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Preface

With the advance of computer technology and high-speed networks, we have
witnessed the rise of a new technology in fog/edge computing in recent years.
The past decade has witnessed a significant advance in cloud technology, Internet
of Things (IoT), and 4G/5G wireless communications that expand the traditional
computer technology at both macro and micro levels. In the era of big data, IoT
includes many sensors, actuators, and mobile devices at the network edges. With
the help of 4G and future 5G high-speed communication, data collected at IoT will
be sent to the cloud for storage and processing. However, communication latency,
due to the sheer volume of data collected at IoT to be transmitted to the cloud, poses
a major challenge in cloud technology. Various efforts have been made to allow
IoT to perform limited computation and storage; fog/edge computing goes one step
further to bring some cloud service close to the network edge.

Fog computing is an architecture that makes use of edge devices to carry
out a good amount of computation and storage. Their communication is done
locally and/or routed over the Internet and/or 4G/5G. Fog computing supports
IoT and consists of a control plane and a data plane. Like cloud computing,
fog computing also provides computation, storage, and applications to end-users.
However, fog computing is closer to end-users at the network edge (also known
as edge computing, although these two terms are sometimes used interchangeably)
and has wider geographical distribution. Note that rather than a substitute, fog/edge
computing often services as the complement to cloud computing, and in many
cases, works together with existing cloud technology, like cloudlet. There are many
technical challenges in fog/edge network design, such as computation offloading
which deals with delay minimization, energy minimization, a combination of both,
and caching which decides both placing caching units and their contents. This book
focuses on security and privacy in fog/edge computing.

Security and privacy in fog/edge computing pose some unique challenges as
various services are distributed at the network edge. Security and privacy issues
can be divided into two parts: system-level and service-level. System-level security
and privacy deal with issues in the computing system itself such as modern network
design using virtualization and special threats and attacks and their counter methods

v



vi Preface

in intrusion and malware detections. Service-level security and privacy handle issues
under a service, which can be broadly divided into authentication and trust, access
control, data confidentiality and integrity, privacy preservation, and non-repudiation.
Security and privacy issues can also be partitioned in another orthogonal way
based on system functions, including service provisioning, data processing, data
transmission, and data storage. Note that service decentralization in fog/edge
computing offers a double-edged sword, compared to service centralization in cloud
computing: fog/edge computing offers more flexibility in the system and network
design; however, it also poses some additional challenges in ensuring security and
privacy, especially in supporting mobility, device heterogeneity, location-awareness,
and lightweight solutions.

To handle the security and privacy issues in fog/edge computing, many secure
and privacy-preserved systems, architectures, and algorithms have been designed.
Based on the target, we can classify the existing security and privacy solutions to
fog/edge computing into four categories: user-centric, device-centric, application-
centric, and end-to-end-centric. The user-centric methods focus on the roles of
users that participate in the fog/edge computing, and the corresponding security
and privacy mechanisms are determined based on the roles. The device-centric
methods provide security and privacy solutions for each end device based on its
resources, location, and the roles it plays in the applications. The application-
centric solutions take full advantage of the power, flexibility, and performance of the
existing fog/edge computing systems and consider how to apply policies to different
applications to meet their unique security and privacy requirements. The last group,
end-to-end-centric, emphasizes the secure and privacy-preserved communications
among all participants, such as the remote cloud, edge devices, and end devices.
Because of the heterogeneity of the participants and variety of security and privacy
goals, more and more fog/edge computing-related schemes have been proposed in
the past decade.

The goal of this book is to collect the state-of-the-art development on security
and privacy of fog/edge computing, together with their system architectural support
and applications. This book will be of special value to academics, researchers,
government officials, practitioners, and business organizations (e.g., executives,
system designers, and marketing professionals) who conduct teaching, research,
decision-making, and designing fog/edge technology. The content of the book will
be particularly useful for students studying computer science, computer technology,
and information systems, but also applies to students in business, education, and
economics, who would benefit from the information, models, and case studies
therein.

This book is suitable for serving as a reference book for a graduate course in
fog/edge computing, computer security, privacy, and applications, as well as for
developers in the fog/edge technology industry. Our focus is to expose readers to
the technical challenges in building fog/edge with security and privacy in design,
together with various applications that are related to security and privacy, and
to offer some ideas on how we might overcome them. This book is organized
into five parts with a total of 15 chapters. Each area corresponds to an important
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snapshot, starting from the introduction of fog/edge computing and ending with
the applications of fog/edge computing with a focus on security and privacy. This
book complements several books that have emerged recently in the area, but none
addresses all major issues and possible solutions.

• Part I: Overview of Fog/Edge Computing (Chaps. 1 and 2)
• Part II: Security in Fog/Edge Computing (Chaps. 3, 4, and 5)
• Part III: Privacy in Fog/Edge Computing (Chaps. 6 and 7)
• Part IV: Architectural Design in Fog/Edge Computing (Chaps. 8 and 11)
• Part V: Applications of Fog/Edge Computing (Chaps. 12, 13, 14, and 15)

Part I gives an overview of fog/edge computing, its definition, and relevant
concepts. Chapter 1 presents an overview of fog computing, focusing on its
relationship with cloud technology in terms of low latency and overviewing the
future with the use of 5G communication. Especially, this chapter foresees a
variety of potential security concerns and risks of fog computing on 5G. Chapter
2 focuses on edge computing as an open and distributed architecture that features
decentralized processing power, enabling mobile computing technologies, as well
as the IoT devices or local edge servers. Several applications of edge computing are
also discussed.

Part II focuses on security in fog/edge computing. Chapter 3 describes secure
storage and search services in cloud computing, with a focus on attribute-based
encryption and searchable encryption. Discussion is also given on how to port this
approach to fog/edge where distributed storage is used and protocols should be
lightweight. Chapter 4 focuses on IoT-fog computing, and it discusses a special
type of intrusion detection method based on collaboration, as the traditional and
centralized cloud-based intrusion detection cannot be applied in fog/edge comput-
ing. Chapter 5 studies the feasibility of deploying Byzantine agreement protocols to
improve the security of fog/edge computing in untrusted environments, emphasizing
the consistency, availability, and partition-tolerance tradeoffs.

Part III deals with privacy in fog/edge computing. Chapter 6 investigates
the unique privacy challenges in fog/edge computing as more edge servers and
communication between edge servers and end devices bring more challenges to
users’ privacy. Since edge computing causes a tremendous exchange of a user’s
data, identity, and location to edge server compared to cloud computing, privacy
concerns are more severe compared to that of the cloud. Chapter 7 emphasizes
privacy on edge-based video analysis, a popular machine learning (ML) application
on fog/edge. The authors discuss privacy issues that occurred during the model
training process and propose federated learning, a special type of distributed ML,
driven by a privacy-preserving model training framework.

Part IV takes on the architectural design of fog/edge computing. Chapter 8
gives a comprehensive overview of vulnerabilities in fog/edge computing within
multiple architectural levels, including virtualization and integration into the 5G
networks. Some feasible countermeasures are also recommended. Chapter 9 deals
with security and intelligent management of fog/edge computing, emphasizing trust
management, security isolation, unified data storage, and a smart resource partition.
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Chapter 10 studies an efficient implementation of network-function-virtualization
(NFV)-enabled multicasting in mobile edge computing. Network functions offer
special architecture support, which includes several security functions, such as
intrusion protection/detection system (IPS/IDS), firewalls, web filtering, and flow
filtering. Chapter 11 overviews the blockchain technology as an architectural
building block for trustworthy distributed applications in fog/edge computing. To
support the development of dependable fog services, this chapter also discusses how
to use the blockchain to realize security services such as authentication, secured
communication, availability, privacy, and trust management.

Part V surveys applications of fog/edge computing. Chapter 12 starts with
fog/edge computing in Industrial IoT (IIoT). The focus is on how the creation of
the IIoT technology with fog/edge computing revolutionizes the industrial. Several
industrial applications are presented, such as smart grids, agriculture, healthcare,
and supply chain management. Chapter 13 deals with security problems in edge
computing in applications of augmented reality (AR). Several potential impacts that
edge computing can make on AR system security, including user authentication,
data collection, transformation, and output verification, are given. The authors also
present three open problems for future work. Chapter 14 studies the application of
data streaming in fog/edge computing for the optimal deployment of data stream
processing (DSP) applications, including security and privacy issues. The last
chapter of Part V presents results in the fog/edge-based blockchain application for
finite-lifetime blocks and discusses a special system call LiTiChain, which allows
the deletion of expired transactions and blocks from the blockchain for Edge-IoT
applications.

We would like to express our thanks to all the contributing authors. This book
would not be possible without their generous contributions and dedications. Our
special gratitude is given to the Springer managing editor, Susan Lagerstrom-
Fife, who gave us both initial encouragement and continuous support during the
book editing process. Finally, we want to thank our families in the USA and in
China for their support and patience during this project. This book is dedicated to
our parents for their unwavering support and understanding, especially during the
difficult period of COVID-19 when the only means of interaction is through remote
communication. Readers are encouraged to provide feedback to the contacts below.
We hope readers will find this book useful in their study as well as in the workplace!

Philadelphia, PA, USA Wei Chang

Philadelphia, PA, USA Jie Wu
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Confluence of 4G LTE, 5G, Fog,
and Cloud Computing
and Understanding Security Issues

Khaldoon Alshouiliy and Dharma P. Agrawal

1 Introduction

Nowadays, if people want to buy a new cellphone, they might find that there are
too many acronyms to wrap their heads around. With today’s repertoire containing
the names CDMA, GSM, LTE, WiMax, this is just the scratching the surface
of what technology has molded into today. When one connects to the ‘cloud,’
which is a computing model in which data is stored on remote servers accessed
from the internet, multimedia and private information can be saved safely. This
is an important server that has changed people’s lives significantly over the years
and will continue to grow in innovative ways in the next few. Therefore, we can
conclude that the Internet has become more than a desktop accessory—it has
become a virtual brain that anyone can contribute to, take, or and spectate. The
world relies on the Internet for virtually everything. GPS is used to trace or route
distances and durations. Cloud access allows from making money from just the palm
of your hand using a cellphone, to immediate entertainment through games and
streaming platforms. The capabilities of communication have also evolved through
applications such as WhatsApp, Skype, Viber, and Facetime—making the lives of
people easier and more comfortable to see someone on the other side of the world
on a screen right in front of them. No one can disclaim the impact of the Internet,
telecommunications, cloud computing and how they have altered all aspects of
life. As a result, mutuality of these technologies has, as a result, established a
huge dataset which leads to control of money and power. Process, storage and
protect costs a lot of efforts, specifically in terms of cloud computing, and they
are prominent factors in the workplace internationally. Companies like Microsoft

K. Alshouiliy (�) · D. P. Agrawal
University of Cincinnati, Cincinnati, OH, USA
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and Amazon provide virtually the entire world with their cloud and services and
have left a very reliant mindset upon the workforce, and thus the power and money
aforementioned are granted as their very ‘lifeforce.’ That is why, it is important to
consider these concepts and associated security issues and examine how they can
change the future.

2 4G and LTE

To start with, the first question that comes is what is 4G? To explain simply, 4G is a
newer generation of the 3G. The International Telecommunication Union (ITU-R)
set standards for 4G connectivity, approved in March 2008, requires that all services
described as 4G to adhere to a set of speed and connection standards. For mobile
use, including smartphones and tablets, connection speeds need to have a peak of
at least 100 megabits per second, and for more stationary uses such as mobile hot
spots, at least 1 gigabit per second. When these standards were announced, these
speeds were unheard of in the practical world, as they were intended as a target
for technology developers—a point in the future that marked a significant jump
over the current technology. Over time, the systems that power these networks have
caught up as new broadcasting methods have found their way into the products, as
previously established 3G networks have been improved to the point to which they
can be classified as 4G [1]. The next question is “how does 4G work?” The best
answer to this question is graph provided in Fig. 1.

All customers are connected to the terrestrial unit and then to the base station
where everyone can access to the Internet and other services. If the cell phone
doesn’t support 4G, then there is no way to get any service. A following question
would be, “how does 4G compare with 3G?” To answer this question, we explain

Fig. 1 4G network [2]
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that in 3G, a network required to meet a set of technical standards for speed and
reliability must offer peak data transfer rates of at least 200 kilobits per second. The
first network that was able to reach this requirement was phased out in the U.S. in
2003, and with smartphones starting to achieve more mainstream adoption, there
was a resulting rise in demand for better mobile broadband service. This drive for
higher data speed moved the pace forward in only a few short years, and now 3G
networks can be accessed from 200 kbps to thousands of times higher everywhere.
A network will provide maximum data speeds of at least 100 megabits per second
for high mobility communication (users in vehicles, trains, etc.) as well as at least 1
Gigabit per second for low mobility communication (walkers and stationary users)
to be branded as 4G. Nevertheless, not all 4G networks are made together—they
come with a range of different colors, and others are introduced quicker and larger
than some. LTE, WiMAX, and HSPA+ are the most common deployments, but LTE
is without question the most commonly deployed by major US carriers. Since we
already have 4G, then what does LTE mean?

4G was created by researchers to become what we now know as Long Term
Evolution (LTE). People use 4G as LTE but it’s not the same, truthfully. The
distinction between 4G and 4G LTE is that on a smartphone, the latter one operates
more effectively, offering the highest efficiency and better network coverage. In
addition, the 4G LTE is the fastest in terms of speed. The basic argument would
be that 4G LTE networks will transmit information at speeds between 5 and 12
megabits per second—enough to broadcast live content seamlessly, with faster
reaction time for playing video games online. By comparison, practical transmission
rates for 4G networks can range from 3 to 8 megabits per second, relying on
the latency—the cellular operator and the particular technologies used by its data
network [3]. To follow this, what is next in the world of Telecommunications?

3 5G Network

“What is 5G? Do we need 5G? What is the difference between what we have
now and 5G?” There are many questions that pop up in people’s heads about
5G. To begin, lets understand the 5G concepts. 5G is the fifth generation of the
telecommunication cellular network, but the question is, why do we need 5G? The
answer is to fulfill our future needs since LTE soon will not be able to satisfy our
requirements. 5G cellular network promises to offer sub-millisecond latency and 1
gigabit per second transmission speed to its users. Nonetheless, the new cloud-based
storage and data distribution paradigm does not allow these QoS assurances to be
easily implemented due to the amount of wired network hops between the 5G base
stations and the cloud (different cables and wireless connections provide different
data transmission), which contributes largely to a substantial improvement in
latency. The forwarding directed to the cloud of all the data generated by the devices
will impact the bandwidth and contribute to congestion. Therefore, it is important
to house processing near the computers, close to the data source, so that data can
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be accessed, stored and sorted out by the time, it enters the cloud for the high-
speed transfer of 5G. It brings up the computation, storage and networking services
to the edge of the network and creates many new areas of study to extend Fog
computation over the architecture of the cellular network. This segment addresses
the implications of spreading cloud infrastructure to the edge by addressing use
cases that can be realized by fog computing through 5G networks [4]. However, 5G
contents five different things in it, thus earning its name. It has Millimeter waves,
Massive MIMO, Small cells, beamforming, and Full duplex transmission. Each of
these concepts works totally different from the earlier networks as follow:

• Millimeter Waves
In 5G the electromagnetic signals distances from 1 mm to 1 cm are usually

referred to mm-waves. From 5G of cellular connectivity networks, optimistic
output is required to satisfy a range of applications (e.g. remote control, tracking,
adaptive transport systems, and tactile interaction), with customer experienced
data levels of up to 1 Gbps (500 Mbps) in downlink (uplink) and latency as
low as 0.5 ms. Such goals cannot be seen easily by leveraging the bandwidth
available for 4G systems, rather they require the introduction of additional
frequencies. When the International Telecommunications Union (ITU) launched
the international mobile telecommunications standard 2020 (IMT-2020) as early
as 2012, it also called for a new distribution of bandwidth to cellular networks
around the world. In 2015, the World Radio Communication Conference (WRC)
defined different portions of spectrum for mobile communications from 24 and
86 GHz. It is estimated that tens of GHz will be made available in the mm-wave
band, in compliance with different spectrum allocations per region [5].

• Massive MIMO
Massive Multi-input multi-output (Ma-MIMO) integrated networking infras-

tructure facilitates cellular connectivity improvements and integrates fixed broad-
band technologies such as Wi-Fi and LTE. Another wireless communication
technology is the small cell which plays a vital role in providing 5G communica-
tion. In addition, the Ma-MIMO increases the spectral efficiency for the cellular
networks by using antenna array at the macro base stations (MBSs) provided.
Such MBSs comprise a significant number of active elements to perform the
coherent transceiver operation. The antenna array ensures better signal paths
and improve efficiency by increasing data transmission rate and communication
reliability. This approach requires precise emphasis to be put on providing
electricity for intended consumers, and the effect offers optimum energy output
capacity [6].

• Small Cells
Small cells are made up of complex technologies. This is a node with less

regulated, wireless radio connectivity that can monitor for both licensed and
unlicensed spectrum. This has a length from 10 m to less than a kilometer.
It appears small, but they can individually increase their surface area relative
to length. It will provide improved cellular coverage, power, and applications
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for the households, organizations, and rural areas. They can include various
types of technology in it. Small-cell base stations are a community array, which
plays a very significant role in increasing wireless network capacity. It can
have consistency and has the potential to improve service quality at a highly
competitive price. It’s very useful for the consumers to incorporate a small-cell
network. The number of small-cell towers will decline, too. It also provides a
fine, cleaner signal with less power [7, 8].

• Beamforming
Beamforming is equivalent to providing wireless network traffic signals, to

avoid data streams colliding and interfering with each other.
Beamforming technology allows base stations to target data streams on

individual applications, allowing for improved performance and incoming data
streams while reducing interruption. It can achieve so by monitoring individual
signals as they bounce around, and using “signal-processing algorithms” to
triangulate and map the optimal path back through each user unit through the
air—effectively creating a “wave” of data that flows directly from the base station
to the end of the user [9].

• Full Duplex
Due of the interference it creates, many base stations today cannot transmit

and receive data synchronously at the same frequency. Instead, the sending and
receiving of data will take turns at these base stations. Alternatively, certain base
stations are capable of transmitting data over one frequency and receiving it over
another, but this is not common.

Full Duplex technology will allow base stations to send and receive data at
the same frequency—effectively doubling wireless network capability at their
physical layer. This is important, as 5G networks with emerging applications
will require increased data capacities. This technique has only recently become
possible thanks to silicon transistors that mitigate the interaction of the signal
with itself and the kinks are yet to be found but researchers are high expectations
for the potential of full duplex technique [9]. However, one of the biggest
questions is how 5G helps in terms of the cloud, fog networks, and other
technologies?

4 Fog Computing on 5G Networks

Fog computing and 5G networks are two technologies that have distinct back-
grounds but will eventually merge, as the promises provided by the 5G network
is to make it possible to get data out to the edges.
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4.1 Fog Computing: A Requirement of 5G Networks

The 5G mobile networks are scheduled to enter the market by 2020, but not a reality
at the moment. Communications in 5G networks will indeed be associated with
high-frequency signals that can have more bandwidth to deliver smoother, higher-
quality video and multimedia content in the millimeter-wave frequency band. 5G
network aims to have millisecond and sub-millisecond latency while at the same
time delivering a maximum rate of over 1 gigabit per second [10]. The latency is so
low that the likelihood of radio communication between the bottlenecks is excluded.
Next-generation mobile networks are designed to accommodate communications
that are not limited to human beings (where one can probably mask the latency)
because they are often developed to facilitate secure and efficient machine-to-
machine communication, a use-case that demands low latency in order to be
successful. It has to support fog computing for 5G to be effective, otherwise low
latency radio interfaces would be of no benefit. A standard 5G network would have
smartphone users connecting to a base station, which in turn will be linked through
wired connections to the main network. To eventually access the cloud servers,
requests for a web-based service will go via the base station and the core network.
In such a deployment, even though the low latency radio interface enables sub-
millisecond communication between the mobile device and base station, sending
the request from the base station to the cloud will lead to increased delay in the
order of magnitude.

Fog computing will play a major role in addressing the demands of future 5G
networks. The platform is marketed as a successful way of providing low latency
offered by the 5G New Radio standard. With plans to phase out 5G globally by
2020, 5G and fog computing integration are considered to be an eventual result of
getting computational activities closer to the edge of an industrial network [11].

5 Fog Computing in 5G Networks: An Application
Perspective

Having the 5G networks more than just a networking system is imperative. If
supplied by the network close to the machines, processing and storage facilities
would allow applications to take advantage of low latency radio to have very quick
end-to-end response time. This would significantly benefit both the consumers (by
offering prompt responses) and the operator (by the backbone network loads).
Cloud-to-edge networking shapes the concept of fog computing, and it would not
be incorrect to say that 5G networks can’t meet their commitments without fog
computing. While most see it, fog computing is not a convenience but a required
prerequisite for 5G networks to thrive. Small cells (pico and femto cells), also known
as micro cells, are a core feature of the 5G network that enables fog computing.
Small cells will relieve the pressure on base stations (macro-cells) at the roof top
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by allowing end points to attach to them. A unit can attach to a macro-cell or a
micro-cell. This makes the architecture of 5G networks a hierarchical one—with
at the apex the central network (cloud), followed by macro-cell base stations and
base stations for micro-cells, and eventually, end users. Therefore, from the fog
computing viewpoint, all macro and microcell base stations form the fog nodes, i.e.,
networking nodes that also provide computation and storage. Packets sent uplink
by the systems should be analyzed at the base stations of micro-cells or macro-
cells until they enter the main network. Another major development in technology
is that 5G provides secure device-to-device connectivity. User data is transmitted
directly to the receiver system from the sender computer, with the base station only
handling control information from this switch. It allows communicating between
devices to take place without burdening the base station, thereby embellishing fog
systems with the scalability of managing multiple interacting devices. With projects
containing multiple linked points and constant connectivity between these points,
with an example, smart houses, this would be of categorical benefit. The remainder
of this section addresses 5G network infrastructure, and how fog computing can
be realized. Besides this, the fog applications architecture is often defined as
segregation of application logic into components that can leverage the services
offered by fog computing [4].

5.1 Physical Network Architecture

A fog network over 5G’s physical network infrastructure will expand the state-
of-the-art Heterogeneous Cloud Radio Access Networks architecture [12]. Both
application processing activities are conducted in the conventional HCRAN archi-
tecture on the cloud within the core network, which requires billions of end-users
to transmit their data to the core network. Such a large volume of connectivity may
be crucial to the functionality of the fronthaul which could overburden the core
network, which would have a negative effect on the end-user QoS.

An elegant solution to this issue is to pull down processing and storage capacities
from the cloud near the edge, so that it is possible to eliminate the need to transfer
all the produced data to the cloud by end-users, thus alleviating the fronthaul and
the central network of the enormous traffic surge. Figure 2 indicates areas where
this processing and storage offload can be carried out. The architecture of the fog
network consists of three logical layers that are seen in Fig. 2. The machines in each
layer are capable of hosting computation and storage so that complex computing
offload policies could be developed.

• Device Layer: All terminal machines connected to the fog network are subsumed
by the device layer. The products include IoT products such as cameras, gateways
and so on, and handheld devices such as smartphones, laptops, etc. These devices
can share data directly with the network or connect peer-to-peer with each other.
Such systems are the lowest layer of the fog networks, being the source of
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Fig. 2 The network architecture of a fog network over 5G

all data accessing the network and the primary actuators executing the tasks.
The application layer hosts computing either by embedded coding (for low-end
equipment such as sensors) or as a program running on the computer’s operating
system.

• Fog Layer: The fog layer is comprised of intermediate network equipment
situated in the device layer between the end devices and the cloud layer. The
first phase of offloading in this layer is the Remote Radio Heads (RRHs) and
small cells are connected to the main network by fiber fronthaul. Handling of
incoming data would greatly reduce the pressure on fronthaul here. Macro-cells
also form an offload processing point which sends processed data over backhaul
links to the core network. Ethernet links and intermediate items, such as routers
and switches, in the direction from the radio heads to the core form possible
locations where processing and storage activities can be removed. Development
of software on such platform is made possible by incorporating virtualization
technologies. Each software is bundled as a virtual machine and is installed on
a suitable computer. Virtual machines of the program run alongside the virtual
machine of the host OS (which executes the initial network operations) on a fog
computer hypervisor.

• Cloud Layer: Its layer forms the apex of hierarchical architecture, with vir-
tual cloud servers being the offload points for computation. Theoretically, the
cloud’s unlimited scalability and high-end architecture allow computation to be
performed and involve extensive computing and massive storage that cannot be
achieved at the edge devices. In addition to the processing of application layers,
the cloud layer contains baseband units that process data from RRHs and small
cells to application servers via fronthaul and route processed data.
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5.2 Application Architecture

A fog-ready program must be planned to exploit the full potential of the fog.
Usually, as shown in Fig. 3 [13], an application ready for fog will have the following
components:

• Device component: The part System is connected to the end devices. It executes
operations at the system level, often handling resources, minimizing redundancy,
etc. At periods where the end-user is not only a light client, it also houses
application logic, which needs very low latency responses because this part is
executed on the computer. But this package does not include heavy computing
activities due to the underlying device’s resource constraints.

• Fog component: An application’s fog portion performs tasks that are crucial in
terms of latency and requires computing power that end devices cannot provide.

Fig. 3 Application architecture
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Additionally, because the fog feature is designed to operate on fog devices at the
ground, this component’s coverage isn’t universal. Therefore, this portion should
host logic that involves execution of only local state data. The part of fog is not
attached to a particular unit. It is safe to exist between the edge (consisting of end
devices) and the cloud in any form of the system. Mapping the fog components
into devices relies on the offload points in the direction from the cloud to the
edge. Based on the application’s geographical scope and latency criteria, the
fog portion could be hosted at either of these offload points. In addition, the
positioning of fog components on suitable fog nodes forms a fascinating and
significant research area.

• Cloud component: The cloud component of the core network is bounded to
cloud servers. It contains logic for long-term analyses of the data obtained from
the lower layers and for operations with no latency restrictions of any sort per
sec. Application activities requiring tremendous computing power and storage
are ideal to be put in the cloud portion, allowing them to leverage the cloud’s
unlimited resources. Furthermore, because the cloud layer is at the center of the
network, it gathers input from all users and therefore has a broad understanding of
the entire system. Therefore, application logic requiring knowledge of the global
state of the system should be placed in the cloud component of the application.

Application output is calculated by the coding logic through different layers of
a fog-ready program. Incorrect logic positioning will cripple an application and
make it unable to leverage the advantages that fog computing has to offer. The
following sections address multiple use cases, the criteria of which can be fulfilled
by the specific level of service that fog computing offers when implemented over
a 5G cellular network. We also present the correct mapping of application logic to
application layers for each use-case [14].

6 Latency Critical Application: Mobile Gaming

Gambling is no longer just for fun; it is for profit. Entertainment joys have become
an integral part of the corporate culture. Cloud gaming provides a chance to have
more fun inside the game, by involving the players all over the world. Cloud
gaming, also called on-demand gaming, is thus a new type of gaming environment
made possible by the emergence of online computing, allowing geographically
remote users to compete with one another. Cloud computing is an easy and cost-
effective way to offer high-quality gaming content and has opened up numerous
market possibilities as a result. Video games run on powerful game servers in the
cloud on an online gaming network, while players communicate with the game
using the Internet-connected thin client program. The thin client is an application
that is lightweight and can be accessed on resource-constrained computers, such
as handheld devices. Cloud gaming is omnipresent, enabling players to play a
game from anywhere and at any time, whereas software creators may customize
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their games for a particular computer configuration. A cloud gaming framework
effectively allows a game program on cloud storage, then broadcasts the gameplay
scenes back to the player as a video series. A game player communicates with the
game through a thin client, which is responsible for viewing the video obtained
from the webserver and transmitting the player’s experiences with the game to
the web. Cloud gaming is one of the technologies requiring stringent assurances
of latency, and the inability to have would have a negative effect on user experience.
Additionally, cloud gamers are often particular about the consistency of the video
that is made on their light servers. From this, we can infer that the design of a
cloud gaming program must take into account the distribution of energy, scalability,
and acceptance to faults as well as the needs of gamers. Traditional mobile gaming
deployment includes storing both the computing and data in the cloud, thus making
mobile gaming synonymous with online gaming. Nevertheless, connecting with
the cloud with any request cannot always be the best idea, particularly where
latency requirements are high. Through a large-scale empirical analysis, Choy et
al. [15] have shown that contemporary cloud networks cannot satisfy strict latency
criteria needed for reasonable gameplay for many end-users, thereby putting a cap
on the number of potential users for an on-demand gaming service. Based on
observations, they concluded that extending the cloud network with edge servers
would substantially improve the viability of on-demand gaming or online gaming.
Consequently, unloading any computing that is involved in the cloud-based game to
the edge makes sense. They presented three approaches to computing: cloud-only,
edge-only, and a mixed approach in [15]. Experiments show that the number of users
supported in a hybrid environment that used both cloud and edge servers rose from
70% in a single-service implementation to 90% in multiple users.

These studies give an ample support to the fact that fog computing is an efficient
platform for deploying on-demand games, and we can discuss the deployment of a
cloud-game on fog infrastructure in the following sections.

– Requirements: Cloud gaming is a dynamically immersive technology with strict
latency and video quality specifications and can have a significant effect on user
experience. This addresses the usual criteria of on-demand game as follows:

– Interaction Delay: The authors [16] performed a categorical study of state-of-
the-art cloud gaming systems and took the innovation to the fore in their system
architecture. They also stressed contact latency and streaming efficiency as the
two attributes of cloud gaming service specifications. Standard online games will
render on the local computer, then later refresh the game state on the game server.
Therefore, a typical online gaming player doesn’t experience the impact of pause
in interaction. However, the processing is off-loaded to the server in the case
of online games, and a thin client does not have the ability to mask the user’s
interface delay. This makes cloud gaming tolerant to less delay than conventional
online gaming systems. The average interaction delay for all cloud-based games
will be at an average of 200 ms. Other games, especially action-based games like
First-Person Shooter games, are likely to allow less than 100 ms interaction delay
so that the level of experience of players is not affected.
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– Video Streaming and Encoding: If a cloud-based game player sends an instruc-
tion, it needs to go across the internet to the cloud-based game server, interpreted
by the gaming logic, made by the processing machine, compressed by the video
encoder, and transmitted back to the player. The encoding/compression and
delivery to end-users must take place very quickly in order to prevent loss of the
Quality of Experience (QoE) of the consumers. Besides timeliness in encoding
the consistency of the transmitted video is also an important element in deciding
user experience [17].

– Design Requirements

• Low-latency response: In case of high response time, the user interface would
be disrupted, rendering low latency response a crucial feature of mobile
gaming. To ensure low response time, the network should be sufficiently
flexible to enable user inputs to access the game server when the game logic
is being processed and to record, encrypt and transmit audio/video in a timely
manner.

• High bandwidth: Sharing of video streams forms much of the cloud-game data
exchange. To transmit such an immense amount of data that requires a high
bandwidth link between the game server and the device, even in real-time.

• Global coverage: The online gaming platform has to be available from
anywhere to be able to accommodate users from different geographical areas.
Hence, ensuring a regional scope is imperative for such an operation.

7 5G Gaming

Both controllers ought to be replaced in the first light of the 5G as there will no doubt
a need to play computer games. In addition to purchasing and installing the cards,
there would likely be a major reduction in demand for a decent desktop machine,
which usually costs about $1,500 on average. Figure 4 shows what sports would
look like in 5G games.

Fig. 4 Gaming under the 5G
[16]
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For 5G, all you need is a TV and 5G internet service, which makes gaming
consoles seem meaningless. Although speed could be an enticing attribute that
advertisers can use and communicate to promote 5G to customers, the guarantee
of incredibly low latency may be one of the most promising aspects of 5G networks
for gamers personally. Reducing latency is the foundation on which systems can
be designed to stream games. With 5G offering latency in the sub-1ms region, any
immersive networking technology that the cloud will arise over the next five years
is likely to become the center of it.

The other advantage of extremely low latency is the developers’ ability to offload
some of the computing burdens from a computer. If data can be transmitted quickly
between the source and a computer, a greater proportion of the processing can be
performed remotely. It is particularly important for mobile devices which literally
don’t have the battery-operated or thermal power to make a 4K or 8K triple-A game
without melting down entirely. The growth of edge computing—the development
of smaller, nearby devices rather than a large data center located tens or hundreds
of miles away—could interact with 5G networks to unlock experiences on mobile
devices that were previously impossible [18].

8 5G with Bigdata

As in the near future, we will communicate with each other thousand times larger
than we now have, and a huge flood of data will be added into the data flow. Big data
is a term that refers to data obtained through the internet or from their own initiatives
by any of the organizations. This analysis helps forecast issues such as conditions
or health care. Unlike 4G/LTE, 5G would be more than a one-way cable, providing
a purpose-built network developed and optimized to allow both mobile devices and
automated systems. 5G would in several ways be a facilitator and catalyst in the new
digital revolution, also called Technology 4.0. 5G promises to offer ultra-low latency
(less than a millisecond delay) fast data speeds (in the Gbps range) for applications
in Industrial Automation, Tactile Internet, Robotics and AR/VR applications, etc.
[19].

8.1 Data Analytics

Data processing takes full advantage of the features of the 5the G network, such as
high speed, low latency and mobile edge computing (MEC). The ability of 5G to
enable vast networking through a range of devices (sensors/gateways/controllers),
supported by the centralized network infrastructure, provides the potential to
turn large-scale data-at-rest and data-in-motion into real-time information through
powerful intelligence. In 5G Information Analytics should play a dual role. On the
one hand, analytics will continue to help multiple enterprise applications/use cases
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over 5G networks, and on the other hand, analytics will play a vital role in 5G and
network operations roll-out [20].

8.2 Application Intelligence

5G technology covers a very broad range of situations, from wearables, mobile
phones, smart cities, electric vehicles and modernization of the industry. IoT and
Industry 4.0 will be the big engines for 5G implementations. Context-Aware Engine
(CAE) will become an important part of 5G and will make the network aware of the
underlying meaning and become intelligent enough to have a smart interface and
improved flow control decisions for an individual user on the network.

8.3 Network Intelligence

5G networks are highly dynamic with several levels of virtual services, software and
physical RAN properties, spectrum use, remote networking nodes that are based on
virtualization (NFV) principles for SDN as network features. In order to create a
scalable 5G network, network management must become very important where roll-
out and organizational complexities need to be streamlined. Network planning and
optimization (NPO) determines whether to optimize particular network operations,
and the serviced method should be based on a machine learning algorithm that
analyzes the dynamics of network use and traffic data more closely. In short,
Operations and Business Support Systems (OSS/BSS) will have analytics integrated
and embedded into their toolset, unlike the traditional system where analytics has
been an afterthought [20].

9 5G and Satellites

The new 5th generation of mobile networks (5G) is deliberately designed to offer
by-design standards of extreme versatility to enable increasingly heterogeneous per-
formance, scalability, and implementation scenarios for services and applications.
To achieve these ambitious targets, proposed 5G specification should be called a
“network of networks,” because it will enable the introduction and combination
(as required by the overlying applications) of different and alternative network
stacks and communication technologies. The main cross-cutting enabler for 5G
architecture is the “virtualization” approach. It would enter the 5G infrastructure
on every layer and have “as-a-service” relevant services. Clear and practical mani-
festations of this phase are the technical structures Network Functions Virtualization
(NFV), Software-Defined Networking (SDN), and Software Defined Radio (SDR),
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which together constitute the 5G architecture’s “virtualization” engine [21]. The
future role of satellite networking in these environments becomes apparent when
referring to this model of slicing into which satellite services can be integrated.
When viewed in their present implementation, they are integrated either as Physical
Network Functions (PNFs), or of much greater significance, by integrating their
virtualized operating elements as functional structures within the 5G architecture
system. Satellite networks can play several roles in 5G, due to their inherent
ubiquity and transmission capabilities. The satellite will serve as a main single
backhaul link for rural areas, ships, boats, trains, or an alternate means of delivering
opportunistic external communication and bandwidth resources—also improving
quality of service—or as a mere transportation subnetwork. The incorporation and
utilization of satellite technologies within the 5G network clearly raise additional
criteria and challenges around infrastructure and operation. For instance, on one
side, it is reasonable to assume that satellite subnetworks can be directly applied
to those traffic flows (e.g., mission-critical data) that are associated with 3GPP
5G [22] Quality of Service (QoS) and Indicators (5QI) allows a delay of the
order of 1-2 hundred milliseconds. On the other hand, satellite subnetworks can
be implemented to promote and allow delivery and operation of other intermediate
5G subsystems more effective, such as edge computing nodes required to cope with
tighter and more demanding 5QI rates, such as for Augmented Reality applications.
Satellite interconnectivity can be used in the edge computing scenario for the
simultaneous unicast/multicast/broadcast regional delivery of binaries of video,
audio, and computer applications to a wide number of terminals.

Satellites will have unique opportunities for providing 5G services in rural areas.
In addition, satellites will also support machine-type communications, paving the
way for future technologies like smart production, environmental conservation,
shipping, animal monitoring, etc. By 2020–2025, there will be more than 100 High
Throughput Satellite (HTS) networks utilizing Geostationary Earth Orbit (GEO)
spacecraft, but also Low Earth Orbit (LEO) mega-constellations, providing terabits
per second of bandwidth worldwide. These developed satellite systems are expected
to provide Radio Access Networks (RANs), dubbed satellite RANs, to be integrated
into the 5G system along with other wireless technologies, including cellular
systems, Wi-Fi, and so forth. A native feature of 5G would be the smooth transition
between heterogeneous wireless access technologies, as well as continuous use of
different radio access technologies to improve flexibility, efficiency, and capacity.
Figure 5 portrays the deployment of 5G satellites [22].

10 An Introduction to Telecom Network Security

Today’s telecommunication networks are generally separated into four logical parts:
radio access network, core network, transport network and interconnect network.
Every section of the network consists of three so-called planes, each of which is
responsible for carrying some type of traffic, namely: the control plane carrying



18 K. Alshouiliy and D. P. Agrawal

Fig. 5 Integration of satellite with 5G [23]

the signaling traffic; the user plane carrying the payload (actual-) traffic; and the
administration plane carrying the administrative traffic. As regards network defense,
each of the three planes can be subjected to specific types of threats. There are also
standard hazards, which can potentially impact all three planes. Telecommunication
network security is defined by the following components:

• Standardization: a mechanism by which carriers, suppliers and other stakeholders
set guidelines for how the world’s networks should operate together. This also
covers how best to protect networks and applications from hostile actors.

• Network architecture: Network suppliers plan, create and enforce negotiated
specifications for usable network components and structures, which play an
essential role in making the end-network product both efficient and secure.

• Network configuration: networks are designed to a specified level of protection
during the implementation process, which is necessary for defining protection
criteria and further improving network reliability and durability.

• Network deployment and operation: operating processes that allow networks
to function and achieve targeted protection levels that are highly dependent on
network deployment and operation [24].

11 Understanding Security in the Era of 5G

Telecommunications networks are increasingly expanding through a wide technical
landscape including virtualization, IoT and 4.0 Industry. This is achieved by an
ecosystem of cybersecurity that is as large and degrading. Advances in technology,
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along with wider network growth beyond 5G Runs, are projected to have a major
effect on health, such as SDN, NFV, and edge computing. The 5G 3GPP protocol is
agnostic in that it is sufficiently robust to require various forms of physical and
virtual connectivity between, for example, the radio access network (RAN) and
the core network, from a remote computer to the core network. The distinction
between RAN and core roles raises concerns about competition and efficiency. From
a technical, strategic and efficiency viewpoint, failure to make use of technological
advances in the design and implementation of 5G commercial networks would
eventually prove counterproductive in the realization of particular 5G use cases,
such as essential machine-type communication or applications that belong to
autonomous latency-sensitive systems [25].

With the introduction of 5G networks, the security issues facing service providers
are expected to escalate. Many providers would then want to invest in these
capabilities in an IaaS platform. If this is the case, then the operators will search
at some main features to ensure optimum security. Service companies are facing a
variety of cyber challenges never before seen. Architecture is changing to support
5G networks, and the bad guys will just be opening further doors. 5G would
endorse specific use cases such as e-health and wired vehicles, as opposed to 4G
and previous iterations. In these scenarios, the defense may be a matter of life and
death.

Furthermore, network slicing involves new and complex network protection for
each slice and for each individual device. Additionally, there would be an increasing
DDoS threat from 5G applications on the RAN side which may have been hacked.
What is the answer to all of this? The requisite costs and know-how can be huge.
Here are the five key things that need to be based on: Vulnerability detection
will mitigate certain underlying problems that already account for other security
concerns. Consideration of firewalls to defend the network from external networks
and access controls to reduce user harm. Tools for detecting and preventing intrusion
may also aid by blocking essential risks to health.

We need to protect and patch sophisticated malware. To do this, one needs
to go beyond signature-based methods to find the stuff intended to circumvent
simple filters. Behavior-based inspections of endpoints are necessary, probably
using sandboxing. If a threat has been detected, all instances of it on the network
must be deleted and blocked. Detection of irregularities uses the analysis of packets,
big data, and machine learning to identify risks not detected by simple filters. It
is much more efficient when installing in network switches and routers because it
transforms such tools into safety sensors.

DNS intelligence is critical because today, it is a major vector of attack. Tools
that track DNS behavior and that guard against something harmful are of great
benefit. Yet this in-house production is highly costly and resource intensive. But
one needs to search for an experienced supplier who can support. Any successful 5G
security policy should be focused on threat intelligence. Service providers continue
to search for partners who can help interpret their activities as profile hackers.
This proposed attempting to provide information from the largest possible variety
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of sources. Ensure that the company delivers only actionable information and is
provided promptly [25].

12 5G Security and New Use Cases

The coming 5G networks have the ability to disrupt vertical markets, allowing a
large variety of new technologies to be created—all of which would need new,
differing protection standards. Automated vehicles will be the first such example.
The threat of cyberattacks on automobiles will rise as autonomous vehicles become
more common. To counter this, the National Highway Traffic Safety Agency
takes a multi-layered approach to technology, as it supports innovations for driver
assistance.

Among other advancements in the healthcare sector, 5G technologies can
help with quicker delivery of big patient data, virtual surgery and virtual patient
tracking through IoT devices. These advancements, however, are being offset by
the need for ever-greater protection. Creating threats including misuse of patient
identification, violation of health privacy and protection of medical records. Smart
homes may need stronger verification mechanisms, such as biometric detection,
used in Sensory-made apps that use speech and facial recognition, or fingerprint
entry door locks in hardware stores. In general, IoT devices and sensors will demand
more complex authentication to prevent unauthorized access [26].

13 5G Security and New Network Architectures

In expectation of 5G networks, modern cloud virtualization systems such as SDN
and NFV are booming, but they still come with new security issues. Due to its open,
flexible, programmable existence, SDN and NFV create a new avenue of threats to
security. An SDN network feature, such as the management interfaces, may be used
to target the SDN controller or management system and bring the device down. In
addition to the standard, the security of 5G network infrastructure will evolve. Due
to the capacity of 5G networks to be separated into separate slices, each virtual
slice of the network will need new security requirements depending on the needs of
specific use scenarios. Compromised RAN side 5G devices could also pose a greater
DDoS threat [26] (Fig. 6).

In December 2018 the UK Government’s Department for Internet, Arts, Media
and Sport published a comprehensive report on 5G infrastructure and security. It
outlined four security requirements that need to be fulfilled by 5G networks. Cross-
layer protection will be the first security feature. A cohesive structure is required to
organize various security approaches, such as software or the IoT, for each security
layer.
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Fig. 6 Vulnerabilities for a network with a distributed 5G core [26]

Secondly, the monitoring will be end-to-end. A safe link between the user and the
core network should be provided for the communication paths. It is made difficult
by the centralized existence of 5G network. Cross-domain authentication is a must-
have. 5G networks generate a huge quantity of new usage cases and particular
demands. Because the vertical market can only expand to accommodate these new
use cases, the report calls for collaboration among those in the 5G network to
incorporate comprehensive security solutions across domains. A final mechanism
would be the concept of secure-by-design. As the network changes and evolves,
security must be built into the design during development [26].

14 Security Concerns for Cloud-Based Services

According to the Cloud Security Alliance (CSA), more than 70% of the world’s
companies and markets are currently running on the cloud—at least in part. For
advantages such as reduced operating costs, more accessibility, automated app
upgrades, improved teamwork and the freedom to operate from anywhere, 70% is
not an unprecedented figure. The cloud does have its share of security problems,
though. The “Data Protection Focus Survey” recently found that “90 percent of
organizations are extremely or mildly worried about the protection of the public
cloud.” These concerns run the gamut from vulnerability to hijacked accounts to
malicious insiders to full-scale data breaches. Although cloud services have ushered
in a new age of transmitting and storing data, many companies are still hesitant or
make the move without a clear plan for security in place. Here, we are about to
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go through and show you a big picture view (we just giving a hints about security
concerns) of the top 12 security concerns for cloud-based services to be aware of
[27].

14.1 Security Concern: Data Breaches

A data breach is an event in which a person who is not allowed to do so exposes,
shares, steals or uses important, secure or confidential information. A data loss
may be the main purpose of a targeted attack or may merely be the product of
human error, flaws in the code, or public safety practice. These may contain any
sort of information not meant for public dissemination including, but not limited to,
personal health records, financial information, Personally Identifiable Information
(PII), trade secrets and intellectual property. Cloud-based data from an enterprise
may be of interest to multiple parties for various purposes. Organized crime, for
example, often uses political, health, and personal information to perform a series
of illegal activities. Competitors and foreign nationals may be involved in the secrets
of confidential knowledge, intellectual property, and trade. Activists may choose to
reveal details that may cause shame or harm. Unauthorized sources become a big
problem for companies to access data inside the cloud.

Cloud infrastructure is not special to the possibility of data loss but is regularly
rated as a top concern for cloud customers. Cloud infrastructure is exposed to the
same threats as a conventional corporate network, as well as new avenues of attack
through shared services, cloud provider employees and their devices and cloud
provider third-party partners. Highly open cloud services and the large amount of
data they host makes them an enticing target [27].

14.2 Security Concern: Insufficient Identity, Credential
and Access Management

Data compromises and facilitating attacks will occur due to lack of robust identity
access management framework, inability to use multifactor authentication, poor
use of passwords, and a lack of continuous automated recycling of cryptographic
keys, passwords, and certificates. It is not necessary to embed passwords and
cryptographic keys in the source code or to share them in shared databases such
as GitHub because there is a substantial risk of detection and misuse. Keys need
to be sufficiently maintained and there needs to be a well-secured Public Key
Infrastructure (PKI) to ensure that key security operations are carried out. Identity
applications need to expand and tackle lifecycle management for millions of users
and the Content Protection Policy CSPs. Identity management programs must
facilitate the automatic de-provision of access to services when changes of staffing
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occur, such as cessation in employment or change in position. Identity networks are
increasingly integrated, and federating identity with a cloud service (e.g., Authen-
tication Claim Markup Language SAML assertions) is becoming more common
in order to ease the app management burden. Organizations preparing to federate
their identities with a cloud provider need to consider the protection of the identities
system for the cloud provider, including procedures, technology, user segmentation
(in the case of a shared identity system), and cloud provider implementation. To
cloud service users and operators, multifactor authentication schemes—to example,
smartcard, one-time passwords (OTP), and phone authentication are required. Such
a method of authentication helps tackle the stealing of passwords, where the stolen
passwords require access to services without user consent. Code stealing can
manifest lateral movement attacks in standard networks, such as “pass the hash.”
In situations where the legacy system involves the use of passwords alone, the
authentication mechanism must endorse protocol enforcement such as assurance
of secure password use as well as organizationally defined rotation cycle policies.
Cryptographic keys, including Transport Layer Security (TLS) certificates, are used
to secure user access as well as to encrypt user that must be refreshed regularly
during rest times. Doing this can fix attacks where insufficient authorization keys
are reached. When cryptographic keys are stolen, a lack of key rotation policy can
significantly increase the time and complexity of a successful elapsed breach. Every
centralized data hidden management system (e.g., passwords, private keys, sensitive
client communication database) is a highly valuable option for attackers. The
alternative of centralizing passwords and keys is a compromise where an enterprise
must balance the efficiency trade-off with centralized key control against the danger
presented by centralizing keys. Similar for any high-value item, a high priority will
be the surveillance and security for identity and key management systems [27].

14.3 Security Concern: Insecure Interfaces and APIs

Cloud infrastructure platforms are providing a series of User Interfaces (UIs)
or Application Interfaces (APIs) applications that users utilize to access and
communicate with cloud resources. Such APIs are mostly used for provisioning,
control, orchestration, and tracking. The reliability of these specific APIs depends
on the stability and availability of general cloud services. These interfaces will
be configured to defend against all unintended and intentional efforts to bypass
the regulation, from authentication and access management to encryption and
operation tracking. In addition, organizations and third parties can draw on these
frameworks to give their clients value-added services. It raises the difficulty of
modern hierarchical API; it also increases the risk as it can allow companies to
give their certificates to third parties to enable their service. Generally speaking,
APIs and UIs are the most vulnerable component of a program, and maybe the only
commodity with an IP address accessible beyond the respected organizational cap.
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Such properties assist the objective of times for intense attack, and the first line of
protection and surveillance is appropriate controls to shield them from the Internet
[27].

14.4 Security Concern: System Vulnerabilities

Software flaws are exploitable bugs in systems that can be exploited by attackers to
penetrate a computer network to capture data, gain control of the device or disrupt
service operations. Vulnerabilities within the operating system components—
kernel, system libraries, and programming resources—posed a serious risk to
the protection of all services and records. That sort of hazard isn’t new. Bugs
became an overlying concern after machine invention. Problems only grew further
as networks are developed and are potentially exploitable. With the emergence
of multitenancy in cloud computing, devices from multiple organizations are
positioned in close proximity to each other, and granted access to common memory
and services, providing a new surface of attack. While the harm done by attacks on
network weaknesses can be substantial, these attacks can be mitigated by simple
IT processes. Daily vulnerability testing, monitoring identified network risks and
deploying protection fixes or updates go a long way towards closing security holes
left open by bugs in the framework. Secure design and architecture can lessen the
chances of an attacker taking full control of every part of an information system by
limiting who has access to specific systems [27].

14.5 Security Concern: Account Hijacking

Hijacking of accounts or utilities is not recent. Methods of attack such as phishing,
hacking, and manipulation of bugs in applications will also yield the expected
results. Credentials and passwords are frequently reused, further exacerbating the
effect of these attacks. Web technology introduces new landscape hazards. When
an attacker has access to your passwords, they can search your activities and
transactions, manipulate records, return falsified information and redirect your
customers to unauthorized websites. The instances of your account or operation
will become a new foundation for the attackers. From there they will exploit your
reputation’s strength to initiate subsequent attacks. Organizations should be mindful
of these forms of attacks as well as specific defense-in-depth security techniques to
mitigate the harm arising from a violation—and potential lawsuits. Organizations
will aim to discourage customer and provider exchange of account credentials and
use robust two-factor authentication mechanisms wherever possible. All records and
actions, including service accounts, should be tracked and traceable to a human user
[27].
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14.6 Security Concern: Malicious Insiders

In the defense industry, danger posed by an unauthorized insider has been frequently
addressed. Although the extent of vulnerability is left to question, it is not the case
that an individual enemy is an insider vulnerability. CERN describes an insider
threat as follows: “A malicious insider threat to an entity is an actual or former
employee, contractor or another business partner who has or has allowed access
to the network, program or data of an entity and who has intentionally violated or
misused that access in a way that adversely affects the secrecy, credibility or quality
of the organization’s information.”

14.7 Security Concern: Advanced Persistent Threats

Advanced Persistent Threats (APTs) are a type of cyberattack that infiltrates
networks to create a foothold in target corporations’ computing infrastructure
from which they smuggle data and intellectual property. APTs follow their targets
over long stretches of time, frequently responding to the protective mechanisms
intended to protect themselves against them. Spear phishing, direct intrusion
schemes, distribution of attack code through USB devices, infiltration through
partner networks and the use of unsecured or third-party networks are typical entry
points for APTs. When setting up, APTs will travel laterally through data center
networks and blend in with regular network traffic to achieve their goals. This helps
to educate these teams of the new sophisticated malware threats targeting businesses
and public institutions. While APTs can be difficult to identify and remove,
aggressive monitoring procedures can protect others. As an example, teaching users
to understand and manage social manipulation tactics such as spear phishing, which
are widely used for deploying APTs, is important. Regularly updated detection
campaigns are one of the strongest protections against these forms of threats since
all of these exploits need user interaction or action. Until opening an attachment or
clicking on a connection, staff should be acquainted with thinking twice.

14.8 Security Concern: Data Loss

Any possibility of losing one’s data forever is frightening for customers and
enterprises alike. Data saved in the cloud can be destroyed, rather than for malicious
attacks. An unintentional delete by the cloud service company or, worse, a physical
catastrophe such as a fire or earthquake will result in a significant loss of customer
data unless the vendor or cloud user takes appropriate steps to back up records,
including best practices in business continuity and disaster recovery—as well as
regular data retention and likely off-site storage. In fact, the risk of preventing data



26 K. Alshouiliy and D. P. Agrawal

loss doesn’t only lie on the shoulders of the vendor. When a company encrypts the
data before transferring it to the cloud then it removes the encryption key, otherwise,
the data will still be lost. Cloud users should check the rules on contracting data
loss, inquire about the reliability of a provider’s system to see which company is
responsible for data loss and under what circumstances. Many services provide
regional replication options, cloud data recovery, and premise-to-cloud backups.
The cost of depending on a vendor to hold, back up and secure the data may be
considered against performing the task in-house, and if data is extremely sensitive
decision to do so, maybe possible.

14.9 Security Concern: Insufficient Due Diligence

As managers develop corporate plans, they need to understand digital technology
and CSPs. This is important to build a clear plan and checklist for due diligence
when reviewing innovations and CSPs with the best chance of performance. A
company that attempts to accept cloud computing and pick CSPs without due
consideration is exposed to a multitude of economic, political, technological,
regulatory, and enforcement threats that endanger its performance. Whether the
organization is contemplating moving to the cloud or combining with or replacing
an organization that has migrated to or is considering moving to the cloud, this
applies.

14.10 Security Concern: Abuse and Nefarious Use of Cloud
Services

Poorly protected cloud server installations, free cloud server trials and fraudulent
account sign-ups from payment instrument fraud reveal malicious attacks on cloud
infrastructure models such as IaaS, PaaS and SaaS. Malicious actors may exploit
tools from cloud infrastructure to threaten customers, organizations or other service
providers. Examples of cloud service-based infrastructure abuse include launching
DDoS attacks, email spam, and phishing campaigns; digital currency “mining;”
large-scale automatic button fraud; compromised account database brute-force
computing assaults; and hosting fraudulent or pirated materials. Cloud infrastructure
protection entails CSP prevention of payment system theft and abuse of cloud
services, providing cases of Denial-of-Service (DoS) attacks on inbound and
outbound networks. A cloud service needs to provide an incident management
system to resolve resource misuse, as well as a way of reporting misconduct from a
cloud provider to clients. A service provider will have adequate controls to allow a
client to manage the quality of their service workload [28].
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14.11 Security Concern: Denial of Service

DoS attacks are threats designed to prohibit a service’s customers from getting
access to their data or their programs. Through causing the targeted cloud server
to use disproportionate quantities of limited machine resources, such as processing
capacity, memory, storage space, or network bandwidth, the attacker—or attack-
ers, as is the case for DDoS attacks—causes an unacceptable device bottleneck
and leaves all legitimate service customers puzzled and furious about why the
infrastructure is not reacting. Although DDoS attacks appear to create fear and
media attention—especially when perpetrators act out of a spirit of “hacktivism”
in politics—they are by no means the only type of DoS assault. Application-level
asymmetric DoS attacks take advantage of flaws in web servers, databases, or other
cloud services, allowing a malicious attacker to carry out a single incredibly small
attack payload application—in certain instances less than 100 bytes long. Other
attacks can target similarly restricted resources: an economic DoS challenges the
cash flow of a company, leveraging the complex complexity of cloud to overpower
the capacity of a startup to pay. Similarly, an organization’s intellectual resources
can be caught up easily with a governmental DoS in a legal job and leaving a
corporation similarly unable to deliver business [28].

14.12 Security Concern: Shared Technology Vulnerabilities

Cloud service providers are providing their services scalably by connecting net-
works, websites, or devices. Cloud infrastructure splits the “as a service” package
by modifying hardware/software significantly from the shelf—sometimes at the cost
of reliability. Underlying modules (e.g., CPU caches, GPUs, etc.) underlying the
infrastructure that facilitates the delivery of cloud services could not have been
configured to provide robust separation properties for multi-tenant architecture
(IaaS), re-deployable systems (PaaS), or multi-customer applications (SaaS). It
will lead to flaws in shared infrastructure and can theoretically, be abused in
all distribution models. Robust defense policy is recommended and will include
compliance and control of computing, data, network, device, and user protection,
whether the business model is IaaS, PaaS, or SaaS. The point is that a single bug
or misconfiguration will result in a cloud-wide failure across a whole network.
Mitigations should be introduced to deter violations of common infrastructures,
such as multi-factor authentication on all servers, the Host-based Intrusion Detection
System (HIDS) and Network-based Intrusion Detection Systems (NIDS) on internal
networks; applying concepts of networking least privilege and segmentation, and
keeping shared resources patched [28].
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15 The Risks to 5G IoT: Preparing for the Next Generation
of Cybersecurity Threats

5G’s bold new future also hopes to add unparalleled speed and size to IoT activities
which also includes a new wave of security threats. 5G IoT networks can no longer
blend seamlessly into conventional 4G/LTE cellular-optimized security frameworks
as set out in the NSA white paper, ‘Modern paradigms such as disconnected
operation, small cell data connections, edge-focused communication and more will
transform the central authority authentication model on its head.’ Security analysts
warn of risks to the 5G-IoT system, such as the increased risk of distributed denial of
service (DDoS) attacks and Proximity Service (ProSe) intrusions [29]. The massive
deployment of 5G IoT open, small-cell networks would challenge holding every
device up-to-date and ready to deal with increasingly changing cyber-attacks.

Increased bandwidth would pose more possible security threats, even as the
amount of wired device is exposed to unauthorized access is expected to explode.
Botnets, attacks at the network level, and other disruptive operations pose a complex
security image of advanced, mutable threats. Studies were undertaken by the
University of Lorraine and Dundee University also found “important security holes”
in 5G links, allowing for massive quantities of data theft [26].

16 IoT and Self-Driving Cars

Integrating the Internet into cars that drive themselves is contributing to the
modern age of transport. Real-time coordination on a coordinated basis with
different sensing media will change our understanding with autonomous driving,
provided the following, the number of injuries is dramatically decreased due to
the complete collaboration of the sensors. In turn, real-time traffic management,
identifying the right route, and speed change would reduce travel costs and effects
on the community. Continuous application with the new 5G system offers urgent
emergency geolocation coverage. The use of a central network that collects data
from various sensors installed on central highways and from the autonomous vehicle
navigation system can be considered to be a revolutionary method for automatic
driving. In turn, in the event of pollution or adverse weather situations, the device
should be able to notify autonomous vehicles, thereby enhancing transport safety
[30].

17 Virtual Reality Mobile Application with 5G

Virtual Reality (VR), also referred to as one of the next-generation computing
technologies, is basically a computer-generated immersive interface. In addition,
it takes place with not just audio and video inputs but also other sensory inputs
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in a virtual environment. The interactive VR interface is also provided via the VR
headsets, consisting of head-mounted displays (HMDs). With the expectation of 5G
rollout beginning at the end of 2020, fast adoption of fast-end smartphones, and
low-cost mobile devices, VR HMD shipments and VR apps have risen steadily.
Market research firms predict that, by 2023, the global VR industry will hit a size of
over $34 billion. Despite these opportunities, the latest smartphone VR (apps) and
platform technologies tend to face many technological difficulties, including high
network latency to load and view high-quality interactive content and experiences
with 3D and VR environments. Therefore, both lead to reduced user interaction
(UX). Experts [31] also believe that a significant hurdle to the universal acceptance
of VR applications is the current lack of 5G. The technology will leverage Multi-
Access Edge Computing (MEC) and 5G technologies to address these problems.
The Digiotouch VR app relies on cutting-edge video technology that requires high
bandwidth. With the advent and evolution of modern video formats, particularly
360 degree, even greater bandwidth will be needed. LTE manages 360-degree
video at 4K 30fps, but with running at 8K 90fps, 5G is expected to enhance the
experience. Generally speaking, VR applications will quickly hit LTE’s Gbps cap
as devices grow and become more sophisticated. In [31] app will offer state-of-the-
art user experience with 5G’s expanded capability and a 10× volume. Additionally,
its physical location would limit the 5G powered VR applications less. Due
to dramatically increased infrastructure distribution capabilities and substantially
lower profiles of resource usage. Using MEC ensures that end-users get good
communication efficiency as VR demands a reliable, steady signal [31].

There are primarily four kinds of VR HMD devices: the first type is PC VR
attached to Desktop, such as Oculus Rift, HTC Vive, etc.; the second type is Console
VR attached to a game system, such as PlayStation VR; the third type is handheld
VR, untethered with PC/system but with a smartphone inside, such as Samsung
Gear VR, Google Daydream, etc [32]

18 Security of 5G-V2X

Cellular-Vehicle to All (C-V2X) seeks to address problems related to the con-
ventional accessibility of networking between Vehicle to Infrastructure (V2I)
and Vehicle to Vehicle (V2V). Specifically, C-V2X decreases the number of
organizations participating in vehicle interactions and allows V2X to be extended
to provide wireless protection solutions. For this, the development of LTE-V2X
is groundbreaking, but despite its security framework, it struggles to satisfy the
demands of fast performance, ultra-high reliability, and ultra-low latency. To address
this, 5G-V2X is considered an integral approach that not only addresses LTE-
V2X problems but also offers a function-based network setup. Several reports
were issued for 5G security but none of them focuses specifically on 5G-V2X
security. Rising from Vehicle-to-Network (V2I) to Vehicle-to-Vehicle (V2V), V2X
expands its reach by relying on a multitude of innovations, such as Dedicated Short-



30 K. Alshouiliy and D. P. Agrawal

Range Communications (DSRC), Wireless Networking in Vehicle Setting (WAVE),
CellularV2X (C-V2X), which involves Long-Term Evolution V2X (LTEV2X), 5G
Public-Private Network Alliance (5GPPPV2X) [33–35]. CV2X is also seen as a
base for implementing technologies like Low Power Wide Area Network (LPWAN),
IPv6-Low-Power Wireless Personal Area Network (6LoWPAN) and Long-Range
Wide Area Network (LoRaWAN) where conservation of energy is the primary
motive of the deployed technology [36].

However, this development poses other security issues including the risk of
autonomous vehicles using real-time data and guidance from different sensors
connecting to the cellular network. The real-time planning feedback maps can be
obtained via C-V2X communications. C-V2X’s protection feature helps avoid any
intrusion by impersonation and replay that might misguide the vehicle and lead
to interruptions and accidents. Continuously, driver authentications in supported
cars and secure C-V2X operations can help verify drivers through third-party
authentications.

19 Conclusion

To conclude, cloud computing is seen as a distribution mechanism that offers a
convenient way to store consumer data and safe access to personal and company
information. Users are offered Internet-based on-demand services. Fog computing
doesn’t substitute cloud computing. Fog computing is a major step towards a
centralized cloud by managing data at all node locations, fog computing helps
users to transform data centers into centralized cloud platforms. Fog is an extension
that builds cloud services. Cloud-based data may be segregated and held close to
consumers. Moreover, with all 5G network benefits that we explained in the previous
sections that will be available for people, it will improve the cloud computing and
fog computing work through increasing storage, speed and process and that can
bring another benefit to users and costumers from many different aspects like Online
games, self-drive and big data collect and control.
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An Overview of the Edge Computing
in the Modern Digital Age

Reinaldo Padilha França , Ana Carolina Borges Monteiro ,
Rangel Arthur , and Yuzo Iano

1 Introduction

Cloud computing was seen as a solution with infinite capacity, however, when
this technology appeared, along with the popularization of smartphones, many
companies realized the potential of cloud computing and started to invest intellectual
and financial capital to make it more applicable and with greater capacity to meet
the needs of ordinary people and large institutions. What made data traffic and
processing demands grow so much, the objective was to solve the growing demand
for data access at any time, from anywhere and, increasingly, in large volumes.
It is currently observed that there is data congestion on the network and that the
processing of this information is already overloaded. Services are increasingly
slower and, with the expansion of the use of the Internet of Things (IoT), it tends to
worsen [1, 2].

With edge computing, current and future devices with great processing power
can be part of the work that is performed today by cloud servers. At the same
time, intermediate servers installed closer to these devices physically perform data
processing and send to the cloud only those that should be stored or that require
more processing. Edge Computing is a breakthrough in distributed computing
technology, transporting application, or project data processing directly to where
it is needed, with no need to traffic this information to the cloud. This computation
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runs directly on the nodes of distributed devices and drives processing closer to the
user, while also improving the response speed [3].

Fog or Edge Computing growth is the iteration (or repetition, or duplication)
of a well-known technology cycle that begins with centralized processing and then
evolves into more distributed architectures. Just as the Internet itself went through
this cycle, wherein the beginning, it was only a limited number of mainframes
connected in government facilities and universities. The network only reached
mass scale and affordability when terminals that interfaced with mainframes were
replaced by desktops, which were able to render graphical pages of an emerging
internet. Getting to Distributed Computing [4].

Edge computing denotes the concept of devices that have the ability to perform
advanced processing and analysis and is gaining momentum with the development
of more powerful processors and computer systems present in mobile devices. This
technology provides new possibilities for the IoT (Internet of Things) concept,
since devices that perform some kind of cognitive computing and rely on more
powerful processing are benefiting from this kind of application for tasks such as
face detection, processing natural language, and even recommendation systems [5].

In this context, one must think of the “edge” as the universe of devices connected
by the internet, a counterpart to the cloud. Thus, this technological concept provides
new possibilities in IoT applications, particularly those that rely on cognitive
computing for tasks such as detection, face recognition, language processing, and
obstacle prevention. In some scenarios where data volume and cost to operate cloud
computing are acceptable, this type of application may be ideal considering that
edge computing is one of the driving factors for IoT and Fog Computing, but it has
a field application design for a distributed resource environment, addressing issues
such as reliability. Similarly, the mobile revolution was greatly accelerated with the
arrival of smartphones and other devices, just as gadgets no longer depended solely
on gateways and other field devices. Thus, Edge computing will have a similar effect
on IoT, fueling ecosystem growth as devices become more powerful and capable of
running more complex applications [6].

Therefore, this chapter aims to provide an updated review and overview of
Edge Computing, addressing its evolution and fundamental concepts, showing its
relationship as well as approaching its success.

This survey carries out a bibliographic review of the main research of scientific
articles related to the theme of Edge Computing, published in the last 5 years on
renowned bases.

Thus, the present study is organized as follows: Sect. 1 presents the introduction
and methodology used in this work; Sect. 2 covers Edge Computing Concepts;
Sect. 3 refers to Evolution Edge Computing; Sect. 4 presents an overview on
Edge Computing and Internet of Things (IoT); Sect. 5 points to Edge Computing
Applications; Sect. 6 there is a discussion on the subject; Sect. 7 contains the
Benefits and Challenges of Edge Computing and finally and in Sects. 8 and
“References section” there is a discussion on the topic as well as the bibliographic
references used to carry out this research.
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2 Edge Computing Concepts

Edge computing is the technology in which processing takes place at or near
the physical location of the user or data source. Provided that with the closest
processing, users benefit from faster and more reliable services, while companies
take advantage of the flexibility of hybrid cloud computing. The concept of edge
computing begins with centralized processing that later evolves to distributed
architectures, basically, it is a network of micro data centers for processing critical
data locally, that is, at the “edge” of the network, instead of sending them to the
cloud. This technology is one of the ways that a company can use and distribute a
pool of resources across a large number of locations [7].

This technology emerged to deal with the demands for traffic and data process-
ing, which have become increasingly voluminous and growing, taking into account
those at the edges of the network, these elements are able to process urgent requests
and select which data should be sent to the cloud. The use of augmented and virtual
realities are often hampered by high latency and insufficient bandwidth, since when
using these technologies, it is common to experience slowness or processing delays
that hinder the immersive experience, considering to be solved with the use of edge
computing. For this reason, it is composed, in general, by devices that perform
advanced processing and analysis closer to the data source, performing a sorting of
information to minimize the traffic sent to the central processing, helping to reduce
the bandwidth necessary for communications between the network and devices [8].

Edge computing also allows the possibility of considering the implementation of
these processes in the Internet of Things (IoT), as in smart cars, which are equipped
with high-performance GPUs or CPUs, being effective “data center on wheels”,
consisting of an edge device with self-contained computing capabilities. Taking into
account that without this local processing power, if it were totally dependent on the
cloud, there would be issues such as latency, availability, and quality of the car’s
data transmission infrastructure [9].

Since in an autonomous car, which is packed with sensors that require data
to be transmitted in real-time, as with all IoT devices, there can be no latency
to process driving information, process data, and make decisions practically in
time real. And that is why systems that cannot suffer from latency or availability
difficulties benefit from edge computing. In the same sense that bandwidth per user
is a bottleneck for those who need to transmit large volumes of data. The increase
in the number of devices connected by IoT should worsen this scenario, because
bandwidth congestion can be critical in certain situations [10].

Other benefits of edge computing include the ability to do large data analyzes
and aggregations locally, enabling almost immediate decision making, reducing the
risk of exposure to sensitive data because it stores processing power locally. In this
context, companies have greater control over the spread of information, such as trade
secrets, and are able to comply with regulatory policies, such as the GDPR (General
Data Protection Regulation) [11].
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Fig. 1 Edge computing

So, what is provided by edge computing is that, instead of processing in the
cloud, it takes place at the edge of the network, making it possible that after this
data is treated locally, the most frequently used information is stored in a nearby
location and only those stored for long periods are sent to the cloud [12]. In short,
more computing and analysis is done on the devices themselves, as illustrated in
Fig. 1.

Businesses still benefit from the resilience and costs associated with edge com-
puting. By maintaining computing power locally, regional facilities can continue to
operate independently, even if there is an interruption in the operation of the main
facility. The cost of bandwidth to move data between the main and regional facilities
is also reduced when processing is kept close to the source. In this way, only the most
relevant data crosses the network, making it easier for users to access their files, and
thus overcoming connectivity and latency challenges by keeping content closer to
the source [13].

Because latency is the response time of a request in this computational structure,
and it is lower with edge computing technology precisely because of its proximity
to the data source. When making a comparative parallel, a process using cloud
computing, such information may have to travel long distances between sending
and returning. Still considering that edge computing can be quite useful in places
where the internet connection is not good. An oil platform in the middle of the ocean
produces data that does not need to be sent to the network, as it is about the system
itself. As a security measure, edge computing can be used to send daily reports to
the cloud for long-term storage [7].

Then, the data obtained in the structure of edge computing can make business
analysis and obtaining insights easier and more agile. Making sure companies
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should have the ability to move their operations from the cloud to the edge easily
when needed [3].

3 Evolution Edge Computing

Cloud Computing is already known in corporate environments, since in modern
terms, there is no way to think about developing a business without using archiving
technology in the cloud. It means storing, accessing information and programs
over the internet instead of using a traditional computer or server hard drive. This
technology has enabled companies to rent online access to store files, replacing their
own computing infrastructure or data centers. A significant reduction in costs and
removing the need to expend staff to maintain traditional infrastructures [14].

The cloud supports a large number of functions including more everyday services
such as e-mails or the backup of images from our cell phones. A device must send
data about current conditions to a server that, in this case, could be in another state or
even another country and wait for a response on how to proceed. In factories, homes
and smart transport are examples that could not rely solely on cloud computing,
especially given the growing number of sensors. In a factory environment, Cloud
Computing is present when a factory’s machinery or an autonomous car needs to
obey commands from collected data, and small delays can lead to an accident. In
this sense, Edge Computing helps to significantly reduce latency and improve the
quality and security of services [15].

Edge Computing does not come to replace the cloud, as illustrated in Fig. 2,
which will continue with the same importance, however, it will no longer monop-
olize all functions. Through the network architecture, the data will be collected
and sent to a gateway, which is an intermediate device, and then forwarded to the
cloud. “Edge”, in this sense, corresponds to connected devices that produce data,
in the so-called internet of things (IoT) concept. In the conventional model, the
information is sent to the cloud structure, where calculations, analysis, and others
are performed. But with the explosion in the number of connected devices, Edge
Computing appears to streamline this flow and not overload the cloud structure [9–
16].

It is possible to define Edge Computing as an open and distributed IT archi-
tecture that has decentralized processing power, allowing mobile computing and
IoT technologies. Without Edge Computing, connected devices send all collected
information to the cloud infrastructure. With this technology, it is possible to
“shorten the path” and take consolidated information to the cloud. This increasingly
performs processing on the edge and less in the cloud, for better use of the cloud
[18].

Edge Computing’s idea of making data obtained through an IoT network, for
example, be processed close to the places of origin, will be able to solve latency
impasses. Making the data read and processed by the local device, computer, or
server, instead of all being transmitted to an online data center. By decentralizing the
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Fig. 2 Cloud x Edge computing

processing and storage of data leaving them close to the location, edge computing
will reduce traffic in the cloud, making response time faster, positively affecting
latency and bandwidth [17].

The lack of security is another minimized challenge, since as most data will be on
a gateway, from edge computing they will become more secure and less vulnerable
to attack. As a result, fewer data in the cloud will make encryption easier. With
edge computing the system allows the acceleration of data flow, including real-
time processing without latency, i.e., smart devices and applications respond almost
instantly, as they are created, eliminating waiting time. The processing is carried
out on the equipment itself, before sending all data to the cloud. With specialized
processors, the data can be processed when it is generated, filtered, and identified,
is just stored in the cloud, instead of sending all information to the cloud to be
processed, and then yes stored [19].

Edge Computing’s growth will only be a dampener of the growth of the cloud,
which will follow its exponential rise. The cloud will continue to be very important,
but it will not be the only technology. Since it is related to the amount of data
that is processed in modern times, Cloud Computing is not the best option for
applications with latency intolerance and intensive use of computing. In this sense,
Edge Computing arrives as a fast and flexible solution for more demanding demands
[8, 9].
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4 Edge Computing and Internet of Things (IoT)

The massive use of information technologies in conjunction with the internet has
generated a large amount of data that is growing exponentially. Considering that in
an increasingly connected world, the use of technologies such as IoT and Artificial
Intelligence, make companies start to produce a lot of data and look for more agile
ways to collect and analyze them. In this scenario, edge computing continually gains
strength. The Internet of Things (IoT) is related to the current trend of common
objects in people’s daily lives to become “smart” due to the internet connection.
These devices start to receive and send data through wireless networks, without
requiring direct human intervention. In this context, there are drones, autonomous
cars, smart houses, smartwatches, among many other IoT devices [20].

Through Edge Computing, IoT devices can transmit data to a nearby device,
such as a gateway, capable of understanding and processing information and giving
answers quickly, reducing the need to transfer data to the cloud, and then return the
result. This is one of the cases in which Edge Computing is most needed, since these
devices require real-time processing and transmission, as illustrated in Fig. 3, and
cannot suffer from slow problems and connection failures, as in some cases [21].

This allows that IoT devices to have computational and processing capacity
without relying so much on the cloud. The increase in these connected devices has
led to an obvious and inevitable limitation related to the high volume of data that
must be proportional to the computing resources, which can result in high business
costs, high latency, excessive network usage, unavailability, and reduced reliability
systems. In modern times when any and all electronic devices are connected to the
internet, the current real trend in smart cars will have to make quick decisions and
people will generate even more data. And speed and safety issues will become even
more essential [19].

In the corporate environment, there is a high volume of data produced daily, both
to power systems and to communicate between users as well as between machines
and equipment. This dynamic is part of the IoT, characterized by the connection
of different devices with the ability to communicate with each other and between

Fig. 3 Edge computing data processing
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users in real-time. Where it has been using cloud computing to store data with the
possibility of accessing it using any device connected to the internet. Although this
technology is based on traditional models, the logic of edge computing, the move
away from the cloud, and the rapprochement of computing towards the ends, it is
essential to IoT. It deals with the decentralization of data storage and processing,
allowing everything to happen closer to where the information is generated or used
[22].

In reality, network devices collect information, sometimes in huge volumes, and
send it to a data center or cloud for processing. What edge computing does is triage
locally, which reduces traffic and prevents the information from having to travel to
the data center of a centralized cloud. And that way, with less “travel” of the data,
there is more possibility for the information to be secure, and your privacy becomes
guaranteed, vacating networks and also the latency of the responses [23].

One of the main advantages of edge computing over IoT, and perhaps the main
one, has to do with security. Since storage and processing are brought to the edge
of the network, distributing to several points, substantially increasing the size of
the surface exposed to attacks. And in that sense, there are not several protected
entrance doors. Without a doubt, the cloud has made everything easier, flexible, and
sustainable. However, this structure was not built for a large amount of data and the
constant flow demanded by IoT seen in modern times. This fact triggers delays in
communication and problems with the transmission capacity. And these problems
leave the environment exposed to potentially dangerous flaws for the security of data
and information, for companies that depend on important and sensitive information
traveling on their network [24].

The move from the cloud to edge computing is a natural evolution of technology
cycles. Which starts centralized to decentralize, just like with the internet itself
and computers. With the increase in the volume of data and the need to generate
algorithms, insights, and reports, edge computing complements the cloud model
and brings more efficiency. Since the cloud-enabled several applications, the edge
enables several pieces of information. The rise and need for edge computing are
directly related to IoT in the sense of freeing up bandwidth, dealing with high
volumes of data, and optimizing processing related to the era of connected devices
[25].

With edge computing it is possible to obtain faster processing, with respect to
the data being processed geographically closer to where they are generated, the
response time is less. Obtain less network traffic, since networks to traffic so much
data generated tend to be unoccupied if most actions are resolved without the
need for constant communication with the cloud. Achieve lower costs since it is
not necessary to occupy large storage spaces in outsourced companies, and in this
sense reduce data management costs. Achieve greater efficiency with less latency,
enabling more operations to be carried out more efficiently [26].

Achieve more security, as long as preventive measures are taken, the cloud is
still fragile. In the event of a service crash, all of your customers also fall. In the
same sense, greater privacy is obtained with data being processed locally, since less
information is centralized and, as a result, they have less power over other people’s
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data. And with the decentralization of edge computing, when a service goes down,
the problem is individual. Still taking into account that the services can work offline,
being useful in more remote places, where internet coverage is not ideal [27].

Looking back in time, Cloud Computing arrived at a time when there was a
need to dispense with the use of hardware and increase the security levels of
traditional computing. However, edge computing improves the system, becoming
an intermediary for a more intelligent, effective, and secure use of the cloud. The
potential of the technology is even greater when it is projected to be used in IoT
initiatives, edge computing in industry 4.0, makes it possible to monitor and control
production lines in real-time with closer servers and decentralized management
capacity in micro data centers; in retail, it brings a better computing experience and
benefits business verticals, with the use of sensors in stores creating more attractive
interactions with customers, for example; in smart cities, where the infrastructure
has to be dedicated, not shared, for compliance reasons. Edge Computing, therefore,
can be considered both in the infrastructure of processes related to IoT, as well as in
situations in which one cannot rely exclusively on the internet connection, or even
in which it needs the most important data to be stored locally [28].

In the business environment, one of the great gains of Edge Computing is the
non-dependence on a distant data center, making it possible to manage the periphery
of the network, i.e., the points close to storage and processing. There are several
application scenarios, which, while the world is increasingly connected and IoT
becomes a present reality, edge computing promises to be a solution to handle the
overhead and security of network data [13].

5 Edge Computing Applications

In an increasingly connected and intelligent world, it has become one of the main
demands for the success of companies to find ways to obtain agile and accurate
answers. For this reason, digital business initiatives have demanded new solutions
“in real-time”, which will facilitate the local actions of their operations, as illustrated
in Fig. 4. In this scenario, Edge Computing emerges with ample prominence,
directly meeting corporate needs for high localized computing power [10].

Video game developers face real and perceived delays between in-game actions
in an online environment. What is solved by edge computing, applied in an online
multiplayer game, meaning a much more fluid action and at the same timeless
demand from the cloud, which in turn represents less cost. Today’s players are
tied to a single platform, physical hardware, and very slow software download.
But gamers are demanding more flexibility, more mobility, and more freedom. In
a cloud edge model, the gaming industry must design its edge computing networks
to locate servers as close to gamers as possible. Adaptive Network’s approach to
cloud gaming, enhanced by edge computing, addresses the main issue of providing
sufficient resources during peak usage periods [29].
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Fig. 4 Edge computing connection

The digital transformation of companies and industries was driven mainly by
cloud computing and IoT, reaching the best levels of performance and productivity
that allow for monitoring and optimized decision making. Edge Computing has
accelerated the growth of the company’s digital transformation, with IoT, data anal-
ysis has become the main mechanism for the complete understanding of industrial
processes, along with Machine Learning and Artificial Intelligence techniques to
extract information from data from sensors [5–30].

The most deployed architecture in the industry today consists of sensors that just
collect data and send it to local servers or straight to the cloud. Data traffic has
grown a lot and is likely to increase. The standard architecture of communication
and information distribution on the factory floor in the current model, there is a
chain of information that crosses the process in a linked way, passing from the
machine (PLC–Programmable Logical Controller) to the management systems,
until reaching an ERP (Enterprise Resource Planning) and/or CRM (Customer
Relationship Management). Industries benefit by triggering the process, making the
architecture decentralized, allowing better management of the supply chain and the
industrial process [31, 32].

In telecommunications, the growth of IoT devices along with streaming services,
has meant that cellular networks have reached high levels of data consumption.
Still considering that many smartphone applications leave the computing part in
the cloud, which demands greater data traffic. High latency and low network
availability are inevitable. And to maximize the efficiency of network use, the
decentralized architecture of Edge computing has the capacity to serve tens of
billions of connected devices [33–36].

Shopfloor integration is more efficient with Edge Computing connecting devices
and processes without the need to send data to the cloud. It allows the connection
between the company’s ERP and the shop floor, enabling the IT architecture to be
more responsive and present data in real-time. Making the ERP system have more
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accurate numbers of the manufacturing process, allowing planning and the supply
chain to be more efficient. There are still approaches that can make edge computing
more efficient, depending on what will be served by a given application area [37].

Human-Latency Sensitive is related to the interaction between humans and the
system, with tolerable response times or latencies. It includes cases in which
services are optimized for human consumption, with reference to speed. This could
mean that 15 milliseconds can be the limit between the customer completing a pur-
chase on a given website or simply closing the window. A classic example involving
IoT is that of speech recognition, which currently occurs in the cloud, but as the
network of users grows, it tends to become impractical and will need to be placed
closer to the user, with Edge Computing. Delay in data delivery negatively impacts
a user’s experience with the technology, reducing a retailer’s sales and profitability.
Application examples include small retail, website optimization, augmented reality,
and natural language processing [38].

Machine-to-Machine Latency Sensitive consists of scenarios where systems
consume data with each other, with a tolerable latency that is even lower. Because
machines are able to process data much faster than humans, the consequences of
slow delivery are greater than in the Human-Latency Sensitive archetype. It includes
smart power grids, real-time analytics, smart security, low latency content delivery,
and defense force simulation [39–42].

This is due to the amount of data that systems can consume and process, in these
cases, each millisecond can represent a loss in revenue. Since delays in the trading
of commodities and shares, in which prices fluctuate in fractions of a second, for
example, representing potential business gains in losses. In the industrial context,
subsystems of a production line can exchange data for manufacturing control in a
synchronized way. A longer delay can cause loss of synchronism and system failure
leading to a production stop. SmartGrid technologies applied in energy distribution
to balance supply and consumption in an optimized way, are another example.
Where everyone can be solved with the application of Edge Computing [43–48].

Life Critical encompasses cases that directly impact the health and safety of
human beings. It occurs in cases where a system needs to obtain information,
processes it, and makes decisions in a timely manner, otherwise, it poses a
risk to people’s lives and health. Consequently, speed and reliability are vital.
They include smart transportation, connected/autonomous cars, digital health,
autonomous robots, and drones [49].

Drones need up-to-date data to operate safely and be used for e-commerce
delivery and correspondence. Ditto autonomous vehicles. Still considering that the
latency tolerated between the decision making of an autonomous vehicle may be
different from that tolerated in a cardiac monitoring device, for example. In both
cases, edge computing is an excellent alternative [50–52].

Marketing and sales can also take advantage of edge computing. Related to
digital marketing and its automation for e-commerce, networks with this edge
computing technology can process payments and information more quickly than
if they used exclusively cloud technology. Making the data can be stored and sent
later to the central, in order to generate long-term reports, and the processes have
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already been executed at the edge. And so, edge and cloud computing work together
to improve information processing and security [25, 27].

Finally, companies that need high data security can also benefit from edge
computing, as long as there may be security breaches when data is processed
exclusively in central or cloud computing platforms. They need data processed
quickly, securely and with high performance, that benefits from edge computing
technology, if they have devices that use IoT [24].

6 Discussion

Edge computing is linked to the evolution of IoT, reducing latency, decreasing cloud
dependency, and enabling better data management. Also offering new possibilities
in applications related to machine learning for facial recognition, object detection,
language processing, prevention of obstacles, and derivatives.

In this context, it is the case of security cameras, since all images are sent to
the cloud and a lot of space is needed to store them. With the association of edge
computing and artificial intelligence, combined with machine learning, it is possible
to save bandwidth and storage, with material filtering and sending to the cloud only
what is really relevant.

What can be realized with edge computing technology is an apparent shift to the
next computing cycle. Since long ago, computing was centralized in mainframes,
with banks and other large companies relying on refrigerated offices to manage
their business operations. Many of these mainframes have been deactivated to make
room for the decentralized client-server era. Similarly, cloud computing technology
is essentially the new mainframe, with the data center hosted by a vendor. And edge
computing aiding the natural ebb and flow of that computing, and IoT accelerating
the next step in distributed computing. Edge computing did not come to end cloud
computing or replace it, but to act together with it and bring even more benefits to
companies.

Edge computing is closely linked to the evolution of IoT, as illustrated in Fig.
5, since many of the connected devices take advantage of cloud computing, the
technology also known as the next stage of IoT, related to the progress required for
data processing and analysis increasingly complex carried out close to them. This
method of doing more computing and analysis on the devices themselves generates
less dependence on the cloud and allows better management of the amount of data
generated by the IoT.

After all, with more devices connected, the greater the need for processing
and the data traffic will intensify more and more. In this sense, edge computing
optimizes the use of electronic devices that can be connected to the internet, since it
seeks to bring computing closer to the source of the collected data. Thus, processing
takes place as close as possible to the user’s location or data source.

In IoT, the possibility to analyze information at the point where it is collected
makes the operation more efficient, taking into account that data are the most
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Fig. 5 IoT in Edge computing

important assets of today, and being able to transform them into an immediate value
is a great differential. The data collection is done through the devices, which gather
what was collected, the amount depends on the equipment, and then they are stored
and sent to a processing center, or cloud.

What edge computing does is instead of taking everything to these centers or
the cloud, technology “classifies” this data locally and separates that which can be
processed right there, thus decreasing data traffic and the need for sending them.
Those that are processed at the ends of a network are just a part that is sent to
central directories.

In summary, in this technological structure, cloud computing is above all and,
below, there is another layer of infrastructure that is edge computing. It is then
responsible for selecting the data that should be sent or received by the cloud. And
everything else, that is, users and devices, is subordinate to edge computing.

Edge Computing is the next chapter in the cloud. Factories will be able to perform
predictive maintenance on equipment that is about to fail, retailers will benefit from
access to faster updates to consumer buying trends, and mobile operators will be
able to support game applications, for example, for devices mobile and augmented
reality [2, 8].

5G networks are already considered a mobile edge computing technology. It
is a concept of network architecture that allows cloud computing resources, in
an IT service environment to act at the edge of the cellular network, allowing
the use of Edge in the hybrid cloud strategy. Edge Computing can also enable
augmented reality applications, as long as the technology creates opportunities for
speech and video analysis. It accelerates the Internet by improving the management
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of local content, and through 5G networks, they are able to take health, security,
and industrial production to remote locations through ultra-reliable low-latency
communications [53–55].

5G will become a critical element for companies to adopt Edge Computing
as part of their hybrid multi-cloud strategies. With the new generation of mobile
telephony, the highest speeds and the necessary bandwidth can be offered to further
reduce data latency [56–59].

Fog computing stands out as an extension of the cloud and includes edge
computing. It is through the mist, in layers of network access, that the resources and
services for storage, processing, control, and communication closest to the devices
will be shared. The advantage of this technology is that it is still within the cloud
system, but it extends its capacity to the edges bringing it closer to the data source,
as illustrated in Fig. 6 [60–62].

Edge AI (artificial intelligence of edge) is the use of artificial intelligence
techniques incorporated in the Internet of Things (IoT) endpoints, gateways, and
other devices that compute data at the point of use. A device using Edge AI does not
need to be connected to function properly, as it can process data and make decisions
independently, without a connection [63–64].

The smart edge is a continually expanding set of connected systems and devices
that collect and analyze data, close to your users, data, or both. Users gain real-
time insights and experiences from context-aware and responsive applications.
Smart Edge is designed to help industries manage and get better information
with the growing flow of data generated by warehouses, production facilities,
retail stores, connected buildings, urban infrastructure, and other environments.
They are intelligent applications focused on edge, based on systems ideal for
external environments and compatible with open source software (open-source)

Fig. 6 Fog computing
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and unbundled hardware. Configured with a variety of memory and processor
combinations so that customers can adapt their solutions to remote data center
management for the smart edge [65].

Regarding Industry 4.0, Edge AI enables instant reactions, that is, it has the
ability to process data in real-time and at the place where it is collected, which
eliminates much of the reaction time of a traditional cloud system. To use this
technology, only a gadget that includes a microprocessor and sensors is needed.
In addition, by processing data on-site, possible problems with interrupting the
transmission are avoided and storage of a lot of data in the cloud, for example. Still
considering that this technology is capable of reducing energy consumption and,
thus, improving battery life, a very important fact when thinking about portable
devices [66, 67].

The trends of Edge Computing enhance the corporate network architecture in
order to streamline processes and bring productivity with savings and security.
Companies will again use their structure at the ends, as a strategic measure to make
the best use of the benefits of the cloud and adapt their technology to the IoT [68,
69].

7 Benefits and Challenges of Edge Computing

The advantages of edge computing lie in the decentralization of computational
processing that the cloud computing has traditionally aimed at in relation to services
in some large data centers, as illustrated in Fig. 7, which is positive, since it is
possible to scale and share resources more efficiently and maintain control and IT
security in the enterprise.

Edge computing addresses use cases that cannot be resolved with the cloud
computing centralization approach, due to network requirements or other restric-
tions in general. It focuses on several small computing locations, which reduces
network costs, decreases transmission delays, avoids bandwidth limits, restricts
service failures, and offers greater control over the movement of sensitive data.
Loading time is reduced and with online services deployed closer to users it is
possible to enable static and dynamic caching features.

The poor connectivity of IoT devices benefits edge computing, considering the
need to send information over long distances. One of the advantages is to minimize
the need to pass data over long distances between the device and the server, reducing
latency and requiring less internet bandwidth. And with ever shorter response times,
better for companies that are investing in this new form of technology.

The technology reduces the costs for data transmission, as the infrastructure
for centralized points is bigger and more expensive. But the lower cost of edge
computing infrastructure does not occur only on the network.

With better connectivity and better data transmission, this means a faster
and more consistent experience for end-users, just as for companies and service
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Fig. 7 Edge computing decentralization

providers, it means high availability with real-time monitoring and low latency
applications.

Edge computing enables greater integration between equipment by integrating
devices from different generations on the same network, favoring a reduction in
implementation costs, as equipment can be replaced on time, rather than completely.

Cloud computing platforms and central data processing centers receive high
traffic all the time, which generally generates latency and, as a result, device
downtime, which needs to wait for the data sent to continue operating. In this
scenario, edge computing improves the response speed for IoT devices.

The existence of intelligence closer to the user, at the edges, ensures faster,
cheaper, and more accurate decision making, as time and resources are saved by
avoiding sending large amounts of data to be processed in the cloud. And when data
is needed that’s in the cloud, it can be brought to the edge.

The challenges of edge computing are related to the greater difficulty in the
highly distributed scale, since it can be difficult for small businesses to manage the
indirect costs of physical locations to scale the technology horizontally for many
environments can be more complicated than adding the resources equivalent to a
single primary data center.

It is necessary to have an infrastructure that can be repaired by unskilled
employees and centrally managed by a small number of people with technical
knowledge, because in general, edge computing sites are often remote and have
few or no employees with specialized knowledge.



An Overview of the Edge Computing in the Modern Digital Age 49

With regard to site management operations, they must be carried out to allow
their reproduction at all points of edge computing in order to simplify management,
facilitating problem-solving and preventing software from being implemented
differently in different locations.

Although edge computing offers greater control over information flows by
restricting data geographically, the physical security of these locations is often less,
where these factors increase the risk of malicious actions or accidents.

8 Conclusions

In essence, edge computing optimizes cloud computing systems by executing data
processing at the “edge” of the network, close to the data source. This method
reduces the communication bandwidth needed between the sensors and the data
center, performing analyzes, and generating knowledge at or near the data source.

Edge computing can be used mainly in places where latency, which is the time
required for data to be captured and processed on a network, needs to be as short as
possible. As is the case in IoT environments, this is because edge computing speeds
up the processing of data collected on the IoT network, making it processed close
to where it was collected, instead of having to go through a central location, such as
on cloud computing.

In other words, it refers to the processing power at the edge of a network rather
than retaining that processing power in a cloud or a data center. The factors that
should be considered when making a decision on using edge computing should be
energy, cost of deployment, size of infrastructure, internet bandwidth, processing
capacity, and type of service for a given company.

So far, the role of edge computing has been used primarily to absorb, store, filter,
and send data to cloud systems. However, in modern times, it is seen that these
systems have more computing, storage, and analytical power to consume and act on
the data on the machine’s network.

Since the evolution of technologies and their presence in the most diverse
everyday situations, there is a growing need for solutions for faster and more
assertive processing. And this is where Edge Computing comes in to minimize the
problems caused by traffic overload and the bandwidth necessary to send data to
the cloud, acting on the processing and analysis of the data locally, in addition to
compiling and filtering what should actually be sent to these systems online.

With this, it becomes possible to minimize the traffic and the necessary band-
width, in addition to avoiding problems such as high response time (latency) and
connectivity, since the technology allows the processing of critical data in a faster
and more efficient way without difficulties.
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Part II
Security in Fog/Edge Computing



Secure Search and Storage Services in
Cloud and Fog/Edge Computing

Qin Liu

1 Introduction

Cloud computing, which enables ubiquitous and convenient network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services), has become one of the most promising computing
paradigms. According to the report from Research and Markets [1], cloud com-
puting market in 2017 is US$25.171 billion, and it will reach US$92.488 billion by
2022 at a compound annual growth rate of 29.73% from 2017 to 2022.

In clouds, resources are delivered as services that can be subscribed and unsub-
scribed by customers on-demand. In other words, everything is a service (XaaS) [2]
in clouds, where customers enjoy cloud services anytime and anywhere, using any
kinds of devices connecting to the Internet. Meanwhile, cloud computing, as an
evolved paradigm of distributed computing, parallel computing, grid computing,
and utility computing, has a lot of merits like fast deployment, high availability,
high scalability, rapid elasticity, low costs, and so on [3]. Cloud computing is a
win-win business model. On the one side, cloud users can achieve cost savings
and productivity enhancements, by using cloud-based services to manage projects,
collaborate on documents and presentations, manage enterprisewide contacts and
schedules, and the like. Especially for startups, they can businesses with reduced
upfront investment and expected performance, so as to concentrate more on
developing the core business without worrying about the underlying deployment
details. On the other side, the cloud service provider (CSP) can take full advantage
of idle resources by resource integration and optimizing configuration. Several
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companies (e.g., Amazon Web Services, Microsoft Azure, and Google) offer cloud
services to users in a pay-as-you-go fashion.

Although cloud computing has overwhelming superiorities over traditional
computing models, the application of clouds is still far from expected. Most of the
enterprises only be willing to outsource the data and services that are unrelated
to their business to the cloud. The main reason is that customers worry that their
sensitive data may be deliberately or unintentionally leaked by the CSP. Actually,
the concerns about cloud security are not unnecessary. State-of-art CSPs experience
noteworthy outages and security breaches from time to time due to attacks,
malfunctions or misconfigurations. For example, Gmail’s mass email deletions in
2006, Microsoft Azure had an outage lasting 22 h in 2008, and the recent news
about Apple iCloud leaking out celebrities’ sensitive photos [4], Dropbox password
leak [5] and medical data leak on Amazon [6]. Therefore, a natural way to keep
sensitive data confidential against an untrusted CSP is to apply cryptographic
approaches, by disclosing decryption keys only to authorized users. In this way, only
the authorized entities can decrypt the data with appropriate keys. The unauthorized
entities, even if the CSPs, cannot know data contents. Actually, the state-of-art
CSPs already adopt cryptographic techniques to preserve data confidentiality. For
example, Amazon EC2 encrypt users’ data by default, and Amazon Simple Storage
Service(S3) allows users to encrypt their data before outsourcing.

This book chapter researches the problem of secure search and storage services
in cloud computing. We will first introduce related work on preserving storage
security and search privacy in Sect. 2, before discussing the system model and threat
model in Sect. 3. Then, we will describe cryptographic primitives in Sect. 4 before
proposing possibly feasible approaches to provide secure cloud storage and search
services in Sects. 5 and 6, respectively. Finally, we will discuss how the proposed
schemes can be applied to the fog/edge computing environment in Sect. 7 before
concluding this book chapter in Sect. 8.

2 Related Work

2.1 Fine-Grained Access Control on Encrypted Data

For data encryption, symmetric key and public key cryptosystems are widely used
tools. In symmetric key cryptosystem [7], a shared key between the sender and
the recipient is used as an encryption key and a decryption key. It is quick and
efficient, but its security relies on the length of the shared key. Moreover, different
messages require different shared keys for confidentiality, and thus the number
of keys maintained by each user grows linearly with the number of messages. In
the public key cryptosystem [8], each user has a public/private key pair. Messages
are encrypted with the recipient’s public key, and can only be decrypted with the
corresponding private key. No keys need to be shared between the sender and the
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recipient before communication. It ensures high security, but it is much slower than
a symmetric key cryptosystem.

In cloud computing environments, data is generally shared by many data users
of different roles and attributes, thus how to achieve fine-grained access controls on
ciphertexts becomes a burning question. A lot of researches have been conducted
on achieving fine-grained access controls based on symmetric and public key
cryptosystems, all of which face various challenges. For example, Kallahalla et
al. [9] classified data with similar Access Control Lists (ACLs) into a file group, and
then encrypted each file group with a symmetric key. This key will be distributed
to the users in the ACL, so that only they can access this group of files. The
main drawback of this approach is that the number of symmetric keys managed
by each user grows linearly with the number of file groups he/she is authorized
to access. Goh et al. [10] encrypted the data with a symmetric key, which was in
turn encrypted with the public keys of the users in the ACL. Therefore, only the
users in the ACL can use their secret keys to recover the symmetric key, and then
use the symmetric key to recover the data. The main drawback of this approach is
that the encryption cost grows linearly with the number of users in the ACL. Liu et
al. [11] constructed an efficient data sharing scheme in cloud computing by using the
one-to-many property of the Hierarchical Identity-Based Encryption (HIBE) [12],
where a ciphertext can be decrypted by the recipient and all his ancestors with their
own private keys. Though each data needs to be encrypted only once, the length of
ciphertext is affected by the number of recipients.

Attribute-based encryption (ABE) is an effective cryptosystem for ensuring
fine-grained access controls on ciphertexts. The predecessor of ABE is fuzzy
identity-based encryption [13], which is first designed to achieve fault tolerance
in biometric identities. Now, ABE has developed to two branches, key-policy ABE
(KP-ABE) [14] and ciphertext-policy ABE (CP-ABE) [15, 16]. The main difference
between KP-ABE and CP-ABE lies in the location of the access structure, which is
in key and in ciphertext, respectively. CP-ABE allows the data owner to take more
initiative on specifying access structure for the ciphertext, and thus is more suitable
for a data sharing environment.

The original ABE systems only support monotone access policy and assume
the existence of a single private key generator (PKG). A lot of research has been
done to achieve more expressive access policy [17–20], and distributed key manage-
ment [21–23]. To achieve a flexible access control in cloud computing, our previous
work [24–26] proposed a Hierarchical Attribute-Based Encryption (HABE) scheme,
by combining HIBE and ABE systems. The HABE scheme supports both ID-based
and attribute-based access policies, with hierarchical key generation properties.
On the basis of the ABE scheme, Zhu et al. [27] proposed a Comparison-based
encryption (CBE) scheme by making use of forward and backward derivation
functions and applied CBE to the cloud environment. However, the encryption cost
of the CBE scheme grows linearly with the number of attributes in the access
policy. To solve this problem, our previous work proposed a Hierarchical CBE
scheme by incorporating the attribute hierarchy into the CBE scheme [28]. Wu et
al. [29] proposed a Multi-message Ciphertext Policy Attribute-Based Encryption
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(MCP-ABE) scheme to achieve scalable media data sharing in clouds. Li et al. [30]
leveraged ABE techniques to achieve fine-grained and scalable data access control
on Personal Health Records (PHRs) in cloud environments. ABE inherently exposes
the access structure. To achieve both payload hiding and attribute hiding, Predicate
Encryption (PE) [31, 32] was proposed as a stronger security notion of ABE. In this
book chapter, we will introduce the HABE scheme, which simultaneously achieves
a fine-grained access control, high performance, practicability, and scalability, so as
to be more applicable in cloud computing.

2.2 User Revocation

User revocation is a well studied, but non-trivial task. The key problem is that
the revoked users still retain the keys issued earlier, and thus can still decrypt
ciphertexts. Therefore, whenever a user is revoked, the re-keying and re-encryption
operations need to be executed by the data owner to prevent the revoked user from
accessing the future data. For example, when ABE is adopted to encrypt data,
the work in reference [33] proposed to require the data owner to periodically re-
encrypt the data, and re-distribute new keys to authorized users. This approach is
very inefficient due to the heavy workload introduced on the data owner.

A better solution is to let the data owner delegate a third party to execute
some computational intensive tasks, e.g., re-encryption, while leaking the least
information. Proxy re-encryption [34, 35] is a good choice, where a semi-trusted
proxy is able to convert a ciphertext that can be decrypted by Alice into another
ciphertext that can be decrypted by Bob, without knowing the underlying data and
user secret keys. For example, the work in reference [36] is the first to combine KP-
ABE and PRE to delegate most of the computation tasks involved in user revocation
to the CSP. Our previous work [25] is the first to combine PRE and a CP-ABE
system (HABE) to achieve a scalable revocation mechanism in cloud computing.
The work in reference [37] that supports attribute revocation may be applicable to
a cloud environment. This approach requires that once a user is revoked from a
system, the data owner should send PRE keys to the CSP, with which the CSP can
be delegated to execute re-encryption. The main problem of this approach is that the
data owner should be online in order to send the PRE keys to the CSP in a timely
fashion, to prevent the revoked user from accessing the data. The delay of issuing
PRE keys may cause potential security risks.

Shi et al. [38] proposed a dubbed directly revocable key-policy ABE with
verifiable ciphertext delegation (drvuKPABE) scheme to achieve direct revocation
and verifiable ciphertext delegation. Liu et al. [39] proposed a time-based proxy
re-encryption (TimePRE) scheme, which allowed the cloud to automatically re-
encrypt the ciphertexts based on time. Yang et al. [40] presented a conditional
proxy re-encryption scheme to achieve cloud-enabled user revocation. Yang et
al. [41] proposed a novel scheme that enables efficient access control with dynamic
policy updating in cloud computing. They designed policy updating algorithms for
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different types of access policies so as to simultaneously achieve correctness and
completeness and meet security requirements. Inspired by the work in [41], our
previous work [28] developed the DPU scheme to efficiently achieve dynamic policy
updating in cloud-based PHR environments.

In this book chapter, we will introduce the TimePRE scheme, which extends the
HABE [24–26] by incorporating the concept of time to perform automatic proxy
re-encryption. The main difference from prior work is that the TimePRE scheme
enables each user’s access right to be effective in a pre-determined time, and enables
the CSP to re-encrypt ciphertexts automatically based on its own time. Thus, the data
owner can be offline in the process of user revocations.

2.3 Searchable Encryption

The first searchable encryption scheme was first proposed by Song et al. [42],
where both the user query as well as the data is encrypted under a symmetric key
setting. Depending on the selection of index key, pk, and search key, sk, existing SE
solutions can be classified into symmetric-key settings (sk = pk) and public-key
settings (sk �= pk). In their scheme, each word in the file is encrypted independently
with a symmetric key, and is encapsulated with a two-layer structure. On receiving
a trapdoor from the user, the server can get rid of the outer layer and determine
whether the file matches user query or not. The main drawback of this approach
is that the server has to scan the whole file collection while conducting searches,
and thus the searching cost grows linearly with the number of files in the collection.
Since then, there has been much work conducted in this field, for example, both
Goh [43] and Chang et al. [44] developed secure searchable index schemes to solve
the problem of linear searching cost. Furthermore, to allows the users to verify
the integrity of the search results returned by an untrusted platform, Kurosawa et
al. [45] proposed a verifiable searchable symmetric encryption scheme. However,
their scheme only supports verification of static data. Kamara et al. [46] proposed
a dynamic verifiable searchable symmetric encryption scheme to achieve integrity
verification of search results from dynamic data sets.

The work in [47] proposed the first public key-based searchable encryption
protocol, where anyone with the public key can encrypt data, but only users with
the private key can generate queries. The typical application of their work is to
employ a gateway to test whether certain keywords are contained in an email without
learning any information about the email and keywords. The above work supports
only OR semantic in the keywords. As an attempt to enrich search predicates,
searchable encryption schemes that support conjunctive keyword search [48], subset
query [50], and range query [51], have also been proposed. Popa et al. [52] proposed
a CryptDB system that allows users to execute SQL queries over encrypted data, by
using adjustable searchable encryption incorporating with an SQL-aware encryption
strategy and onion encryption.
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Recently, ranked SE and fuzzy keyword-based SE were proposed to optimize
the query results. Ranked SE enables users to retrieve the most matched files from
the untrusted server. For example, Wang et al. [53] encrypted files and queries with
Order Preserving Symmetric Encryption [54] and utilized keyword frequency to
rank results; Cao et al. [55] proposed a multi-keyword ranked searchable encryption
scheme by applying the secure KNN technique [56] to rank results based on inner
products. Fuzzy keyword-based SE aims to improve the matching ratio in the case
that the users are not sure about the accurate keywords. For example, Li et al. [57]
proposed fuzzy keyword search over encrypted data in cloud computing, which
would return the matching files even if users’ searching inputs does not exactly
match the predefined keywords; Wang et al. [58] extended fuzzy keyword search
to multi-keyword environments by using Bloom filter [59] and locality-sensitive
hashing [60]. To enrich the search patterns, Fu et al. [61] designed a content-
based symmetric SE scheme to enable efficient semantic searches; Wang et al. [62]
proposed a scheme for a generalized pattern-matching string-search. To improve the
security, Ding et al. [63] proposed a random traversal algorithm, which produced
different visiting paths on the index for the identical queries with different keys.
Boldyreva et al. [64] improved the security of existing fuzzy search schemes based
on closeness graphs. To improve search efficiency, Moataz et al. [65] employed
letter orthogonalization to allow testing of string membership by computing inner
products; Hahn et al. [66] transformed the problem of secure substring search into
range queries for fast execution time.

In terms of fine-grained search authorization, Bao et al. [67] proposed an
authorized searchable encryption in a multi-users setting, which allowed the data
owner to enforce an access policy by distributing some secret keys to authorized
users; Li et al. [68] constructed an authorized private keyword search scheme based
on hierarchical predicate encryption (HPE) [32]. Zheng et al. [69] proposed an
attribute-based keyword search (ABKS) scheme based on ABE, which allowed the
data owner to control the keyword search operation over the outsourced encrypted
data. This book chapter will introduce the dynamic attribute-based keyword search
(DABKS) scheme [70, 71] that incorporate proxy re-encryption (PRE) and a secret
sharing scheme (SSS) into ABKS to achieve achieve policy updates in an efficient
way.

3 Problem Formulation

3.1 System Model

As shown in Fig. 1, our system model consists of three types of entities: data owner,
data user, and cloud server.
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Fig. 1 System model

• Data owner possesses a large-scale collection of files F and decides to outsource
them in the encrypted forms C for reduced cost and convenient access. After
outsourcing all the above information, she can perform updates (add/delete) on
ciphertexts on demand by sending an update instruction to the cloud server. To
enable efficient searches, she builds a searchable index from file collection F and
a universal keyword set W and uploads file ciphertexts and an encrypted index,
{C, I}, to the cloud server. For access authorization, she is responsible for the
secure distribution of key information to qualified data users.

• Data user sends the cloud server a trapdoor, Tϑ , to retrieve files matching query
ϑ after obtaining a warrant from the data owner. Upon receiving search results
Cϑ from the cloud server, he performs decryption locally to recover file contents.

• Cloud server maintained by the CSP centralizes abundant resources to provide
data storage and query services to data owners and data users, respectively. Upon
receiving the store request from the data owner, it stores the encrypted files and
index {C, I} to appropriate locations. Given a trapdoor Tϑ sent by the data user,
it evaluates Tϑ on the encrypted index I and returns all matched ciphertexts Cϑ

as search results. Besides, it also follows the data owner’s command to perform
updates on {C, I} appropriately.

3.2 Threat Model

We assume that the data owner and the authorized data users are fully trusted.
Furthermore, we assume that communication channels are secured under existing
security protocols such as SSL. According to the attack ways initiated by the
CSP, we mainly consider the Honest but curious model: A honest but curious CSP
would correctly execute the prespecified protocol, but still attempt to learn extra
information about the stored data and the received message.
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Therefore are two kinds of privacy against the adversary: file privacy and query
privacy. In terms of file privacy, the file should be accessed by only the authorized
users. That is, the attacker cannot deduce the contents of files from the encrypted
data stored in the cloud.

In terms of query privacy, the ideal case is that the server should learn nothing
during the query process. However, this perfect level of privacy requires expensive
primitives, such as oblivious RAM [72] and fully homomorphic encryption [73].
To be practical, existing work trades leakage for efficiency. This leakage typically
includes search pattern and access pattern. As defined in [74], access pattern refers
to the outcome of search results, i.e., which documents have been returned; search
pattern refers to whether two searches have been performed for the same keyword.

4 Preliminaries

4.1 Definitions and Assumptions

Definition 1 (Bilinear Map) Let G1 and G2 be two cyclic groups of some large
prime order q, where G1 is an additive group and G2 is a multiplicative group. A
bilinear map, ê: G1 ×G1 → G2, satisfies the following properties: (1) Computable:
There is a polynomial time algorithm to compute ê(P ,Q) ∈ G2, for any P,Q ∈ G1.
(2) Bilinear: ê(α0P, α1Q) = ê(P ,Q)α0α1 for all P,Q ∈ G1 and all α0, α1 ∈ Z

∗
q .

(3) Non-degenerate: The map does not send all pairs in G1 × G1 to the identity in
G2.

Definition 2 (BDH Parameter Generator) A randomized algorithm IG is called
a BDH parameter generator if IG takes a sufficiently large security parameter K as
input, runs in polynomial time in K , and outputs a prime number q, the description
of two groups G1 and G2 of order q, and the description of a bilinear map ê :
G1 × G1 → G2.

Definition 3 (BDH Problem) Given a random element P ∈ G1, as well as α0P ,
α1P , and α2P , for some α0, α1, α2 ∈ Z

∗
q , compute ê(P , P )α0α1α2 ∈ G2.

Definition 4 (BDH Assumption) If IG is a BDH parameter generator, the advan-
tage AdvIG(B) that an algorithm B has in solving the BDH problem is defined to be
the probability that B outputs ê(P , P )α0α1α2 on inputs q, G1, G2, ê, P , α0P , α1P ,
α2P , where (q,G1,G2, ê) are the outputs of IG for a sufficiently large security
parameter K , P is a random element ∈ G1, and α0, α1, α2 are random elements of
Z

∗
q . The BDH assumption is that AdvIG(B) is negligible for any efficient algorithm

B.
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4.2 Proxy Re-encryption

Let us illustrate the motivation of the PRE scheme [34] by the following example:
Alice receives emails encrypted under her public key PKA via a semi-trusted mail
server. When she leaves for vacation, she wants to delegate her email to Bob whose
public key is PKB , but does not want to share her secret key SKA with him. The
PRE scheme allows Alice to provide a PRE key RKA→B to the mail server, with
which the mail server can convert a ciphertext that is encrypted under Alice’s public
key PKA into another ciphertext that can be decrypted by Bob’s secret key SKB ,
without seeing the underlying plaintext, SKA, and SKB .

Let G be a multiplicative group of prime order q, and g be a random generator
of G. The PRE scheme is consisted of the following algorithms:

Key Generation Alice can choose a random element a ∈ Z
∗
q as her secret key

SKA, and her public key PKA is ga ∈ G. In the same way, Bob’s public/secret
key pair (SKB, PKB) are (b, gb). The PRE key RKA→B = b/a( mod q) is used
to transfer a ciphertext that is encrypted under PKA to the ciphertext that can be
decrypted with SKB , and vice versa.

Encryption To encrypt a message m ∈ G to Alice, the sender randomly chooses
r ∈ Z

∗
q , and generates ciphertext CA = (CA1, CA2) = (grm, gar ).

Decryption Given the ciphertext CA = (CA1, CA2), Alice can recover message m

with her secret key a by calculating CA1/(CA2)
1/a .

Re-encryption Given RKA→B , the mail server can convert CA to CB that can
be decrypted by Bob as follows: CB1 = CA1 and CB2 = (CA2)

RKA→B . Given
the ciphertext (CB1, CB2), Bob can recover message m with his secret key b by
calculating CB1/(CB2)

1/b.

Note that although the data is encrypted twice, first encrypted with Alice’s public
key, and then re-encrypted with a PRE key, Bob only needs to execute decryption
once to recover data. The PRE scheme is based on ElGamal encryption [75], and
thus the ciphertext is semantically secure, and given the PRE key, the mail server
cannot guess the secret keys a nor b. Please refer to [34] for more details.

5 Secure Storage Services

Since the cloud service provider (CSP) is outside the users’ trusted domain,
existing research suggests encrypting data before outsourcing. In cloud computing
environments, data is generally shared by many data users of different roles and
attributes, thus how to achieve fine-grained access controls on ciphertexts becomes
a burning question.

In CP-ABE, users are identified by a set of attributes rather than an exact identity.
The data is encrypted with an attribute-based access structure, such that only the
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Fig. 2 Company A outsources an encrypted database to the cloud

users whose attributes satisfy the access structure can decrypt the ciphertext using
their private keys. For example, for data which is encrypted with the access structure
{(Student ∧ CIS) ∨ Staff}, either users with attributes Student and CIS,
or users with attribute Staff, can recover data. The original ABE systems only
support monotone access policy and assume the existence of a single private key
generator (PKG). A lot of research has been done to achieve more expressive access
policy [17, 18], and distributed key management [22, 23].

However, new problems, such as fine-grained access control on the encrypted
data and scalable user revocation, emerge for ABE schemes. To illustrate, let
us consider the following application scenario, as shown in Fig. 2. Suppose that
University A outsources the electronic library database to a cloud for easy access
by its staff and students. For the protection of copyright, each piece of data is
encrypted before outsourcing. In this application, the staff and students are users,
and University A is the data owner who will specify the access structure for each
data, and will distribute decryption keys to users. Once joining University A, each
user will first be assigned an access right with certain validity for accessing the
outsourced database. Once the period of validity passes, this user should request
an extension for his access right from University A. In Fig. 2, data F ’s access
structure stipulates that only Alice or the students in computer information science
(CIS) department have the right to access it. In this access structure, the data
owner describes the intended recipients using not only their IDs but also descriptive
attributes, such as Staff, Student, and CIS. Therefore, the adopted encryption
scheme should have the ability to efficiently implement a fine-grained access control
over ID and attributes simultaneously.

Furthermore, from the above application scenario, we observe that each user’s
access right is only effective in a predetermined period of time. For example, the
effective time of Alice’s access right is from 01/01/2020 to 12/31/2020 and she can
access the database in year 2020, but the effective time of Bob’s access right is
from 05/01/2020 to 06/30/2020 and thus he cannot access the database after June.
Therefore, the adopted encryption scheme should support a scalable revocation
mechanism to efficiently achieve a dynamic set of users.

To achieve a flexible access control in cloud computing, our previous work [24–
26] proposed a Hierarchical Attribute-Based Encryption (HABE) scheme, by
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combining HIBE and ABE systems. The main merits of the HABE scheme is as
follows: (1) It supports both ID-based and attribute-based access policies, with
hierarchical key generation properties. (2) It requires only a constant number of
bilinear map operations during decryption, is tailored for best serving the needs of
accessing data anytime and anywhere.

Our subsequent work proposed a time-based proxy re-encryption (TimePRE)
scheme, by incorporating the concept of time into a combination of HABE
and proxy-re-encryption (PRE). The TimePRE take full advantage of abundant
resources in a cloud by delegating the CSP to execute computationally intensive
tasks in user revocations, while leaking the least information to the CSP. The main
merits of the TimePRE scheme is as follows: (1) It enables the CSP to automatically
re-encrypt data without receiving any PRE keys from the data owner. Therefore,
our scheme can avoid the security risks caused by the delay of issuing PRE keys.
(2) It allows a user’s access right to automatically expire after a predetermined
period of time. Therefore, the data owner, who can be offline in the process of
user revocations, has much less workload. In the next subsections, we will expatiate
the HABE scheme and the TimePRE scheme. The most relevant notations used in
HABE and TimePRE are shown in Table 1.

5.1 Hierarchical Attribute-Based Encryption

The access structure in HABE is expressed as disjunctive normal form (DNF). For

example, access structure A = N∨
i=1

(CCi) = N∨
i=1

(
ni∧

j=1
aij ) consists of N conjunctive

clauses, CC1, . . . , CCN , where the i-th conjunctive clause CCi is expressed as ai1∧
ai2 ∧ . . . ∧ aini

. The users that possess all of the attributes in CCi can decrypt the
ciphertext. The original HABE allows a delegation mechanism in the generation of
decryption keys. For ease of illustration, we simplify the HABE scheme to a one-
layer structure and provide a modified version as follows:

Setup(K,UA) → (PK,MK): takes the security parameter K and the universal
attribute UA as input, and outputs system public key PK and system master key
MK as follows:

PK = ({PKa}a∈UA, q,G1,G2,Q0, ê, P0, P1)

MK = ({ska}a∈UA,mk0,mk1, SK1)

where (q,G1,G2, ê) are the outputs of a BDH parameter generator IG, P0 is a
random generator of G1, and P1 is a random element in G1; ska ∈ Z

∗
q is the secret

key of attribute a and PKa = skaP0 ∈ G1 is the public key of attribute a; mk0 and
mk1 are random elements in Z

∗
q , Q0 = mk0P0 ∈ G1, and SK1 = mk0P1 ∈ G1.

GenKey(PK,MK, IDu, a) →: takes system public key PK , system master
key MK , user identity IDu, and attribute a as inputs to generate a decryption key
dku,a = (SKu, SKu,a) as follows:
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Table 1 Summary of
Notations in HABE

Notation Description

K Security parameter

UA Universal attributes

PK System public key

MK System master key

s Root secret key

PKa Initial public key of attribute a

ska Initial secret key of attribute a

T A specific day (y,m, d), month (y,m), or year (y)

PKT
a Time-based public key of attribute aa

A Data access structure

t Data access timeb

Tu An effective time periodc

PKu User public key

SKu User identity secret key (UIK)

SK
Tu
u,a Time-based user attribute secret key (UAK)d

⊆ Satisfying a condition

aIf T is a particular day (y,m, d), PKT
a = PK

(y,m,d)
a ; If T is a

particular month (y,m), PKT
a = PK

(y,m)
a ; If T is a particular

year (y), PKT
a = PK

(y)
a

bData access time is a particular day (y,m, d)
cAn effective time period is a particular day (y,m, d), month
(y,m), or year (y)
dIf Tu is a particular day (y,m, d), SK

Tu
u,a = SK

(y,m,d)
u,a ; If T is

a particular month (y,m), SK
Tu
u,a = SK

(y,m)
u,a ; If T is a particular

year (y), SK
Tu
u,a = SK

(y)
u,a

SKu = mk1mkuP0 ∈ G1

SKu,a = SK1 + mk1mkuPKa ∈ G1

where mku = H1(PKu) ∈ Z
∗
q and H1: G1 → Z

∗
q is a hash function which can be

modeled as random oracle.
Encrypt (PK,A,M) → (CA) : takes system public key PK , access structure

A, and message M as inputs to generate a ciphertext CA.

A = N∨
i=1

(CCi) = N∨
i=1

(
ni∧

j=1
aij ),

U0 = rP0,

{Ui = r
∑

a∈CCi

PKa}1≤i≤N,

V = F · ê(Q0, rnAP1)

where N ∈ Z
+ is the number of conjunctive clauses in A, ni ∈ Z

+ is the number of
attributes in the i-th conjunctive clause CCi , and aij is the j-th attribute in CCi ; r is
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a random element in Z
∗
q , and nA is the lowest common multiple (LCM) of n1,. . . ,

nN .
Decrypt (PK,CA, {dku,a}a
A) → (M) : takes system public key PK , cipher-

text CA, and user decryption keys {dku,a}a
A as inputs, and outputs message M ,
where a 
 A denotes u’s attributes satisfy the access structure A.

F = V/(

ê(U0,
nA
ni

∑

a∈CCi

SKu,a)

ê(SKu,
nA
ni

Ui)
)

From the above construction, we know that The Encrypt and Decrypt algorithms
require only a constant number of bilinear map operations, and the length of the
ciphertext is related to the number of conjunctive clauses (O(N)), instead of the
number of attributes (O(m)), in the access structure. To encrypt a data, we need to
execute one bilinear map and O(N) number of point multiplication operations to
output a ciphertext of O(N) length, where N is the number of conjunctive clauses
in the access structure; To recover a data, we only need to execute O(1) bilinear
map operations. The HABE scheme is proven to be semantically secure under the
random oracle model and the BDH assumption. In Table 2, we briefly compare
our scheme with the work by Bethencourt et al. [15] and the work by Muller et
al. [16]. We believe that the most expensive computation is bilinear map operation,
abbreviated as map, the next is the exponentiation operation, abbreviated as exp. In
Table 2, n, S, N , T , and P denote the number of attributes associated with a user,
the number of attributes in an access structure, the number of conjunctive clauses
in an access structure, and the number of attributes in an access structure that is
matched by attributes in a user’s private key, respectively. More details can be found
in [25, 26].

5.2 Overview of TimePRE

While a user exits the system, his/her access right should be revoked. A typical
application is that a company authorizes its staffs to access corporate data; while

Table 2 Comparisons of
CP-ABE schemes

Properties Reference [15] Reference [16] HABE

User key size O(2n) O(n) O(n)

Ciphertext O(2S) O(3N) O(N)

Encryption (exp) O(2N) O(3N) O(N)

Decryption (map) O(2P) O(1) O(1)

Full delegation No No Yes

Multiple AAs No Yes Yes

Access structure Monotone DNF DNF
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a staff left the company, his/her access right should be revoked. In the case of
accessing encrypted data, the revoked users still retain the keys issued earlier, and
thus can still decrypt ciphertexts. Therefore, whenever a user is revoked, the re-
keying and re-encryption operations need to be executed by the data owner to
prevent the revoked user from accessing the future data.

User revocation is a well studied, but non-trivial task. In an ABE encryption
system, it is more tricky to achieve effective user revocation, since each attribute
is conceivably possessed by multiple different users so that multiple different users
might match the same decryption policy [76]. The usual solution is to require each
attribute to contain a time frame within which it is valid, and the latest version
of attributes and user information will be periodically distributed. As discussed in
Bethencourt et al. [33], this type of solution, which demands the users to maintain a
large amount of private key storage, lacks flexibility and scalability.

Other than requiring the data owner to do all of work on user revocation, a better
solution is to let the data owner delegate a third party (e.g., the service provider)
to execute some computational intensive tasks, e.g., re-encryption. Since the third
party is not fully trusted, delegation should leak the least information. Proxy Re-
Encryption (PRE) [34, 77] is a good choice, where a semi-trusted proxy is able to
convert a ciphertext that can be decrypted by Alice into another ciphertext that can
be decrypted by Bob, without knowing the underlying data and user secret keys.

In recent work, Yu et al. [36] and our previous work [24–26] applied proxy
re-encryption (PRE) [34] into KP-ABE and CP-ABE, respectively, to achieve a
scalable revocation mechanism in cloud computing. Once a user is revoked from
a system, this kind of approaches, also called instruction-based PRE, require that
the data owner should distribute new keys to unrevoked users, and send PRE keys
to the CSPs, which can be delegated to execute re-encryption in a lazy way [9].
Although the revocation can be performed on demand, the data owner needs to send
the PRE keys to the servers in a timely fashion, to prevent the revoked user from
accessing the data. The delay of issuing PRE keys may cause potential security
risks. To solve this problem, Liu et al. [39] proposed a TimePRE scheme, which
allows the servers to perform re-encryption automatically. In their work, each user’s
access right is effective within a pre-determined time, and enables the servers to
re-encrypt ciphertexts automatically based on its own time. Thus, the data owner
can be offline in the process of user revocations. The differences between the
instruction-based PRE and the time-based PRE are shown in Fig. 3. Suppose that
T 1 < T 2 < . . . < T 6. In the instruction-based PRE, data user A who is revoked at
T 2 can access data from the clouds before the CSP re-encrypts the data at T 4.

The main idea of the TimePRE scheme is to incorporate the concept of time
into the combination of HABE and PRE. Intuitively, each user is identified by a set
of attributes and a set of effective time periods that denotes how long the user is
eligible for these attributes, i.e., the period of validity of the user’s access right. The
data accessed by the users is associated with an attribute-based access structure and
an access time. The access structure is specified by the data owner, but the access
time is updated by the CSP with the time of receiving an access request. The data
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Fig. 3 Proxy re-encryption in clouds. (a) Instruction-based PRE. (b) Time-based PRE
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Fig. 4 Three-level time tree and attribute a’s PRE key tree. (a) Sample time tree. (b) Sample PRE
key tree for attribute a

can be recovered by only the users whose attributes satisfies the access structure and
whose access rights are effective in the access time.

To enable the CSP to update the access time automatically, we first express actual
time as a time tree. The height of the time tree can be changed as required. For ease
of presentation, in this paper we only consider a three-layer time tree as shown in
Fig. 4a, where time is accurate to the day, and the time tree is classified into three
layers in order: year, month, and day. We use (y,m, d), (y,m), and (y) to denote
a particular day, month, and year, respectively. For example, (2020, 4, 5) denotes
April 5, 2020. The access time associated with a data corresponds to a leaf node in
the time tree, and the effective time periods associated with a user correspond to a
set of nodes in the time tree. If there is a node corresponding to an effective time
period that is an ancestor of (or the same as) the node corresponding to the access
time, then the user’s access right is effective in the access time.

Then, we allow the data owner and the CSP to share a root secret key s in
advance, with which the CSP can calculate required PRE keys based on its own time
and re-encrypt corresponding ciphertext automatically. Specifically, at any time,
each attribute a is associated with one initial public key PKa , and three time-based
public keys: day-based public key PK

(y,m,d)
a , month-based public key PK

(y,m)
a , and

year-based public key PK
(y)
a , each of which denotes a’s public key in a particular
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day (y,m, d), month (y,m), and year (y), respectively. For example, given current
time (2020, 4, 5), attribute a’s public keys include PKa , PK

(2020,4,5)
a , PK

(2020,4)
a ,

and PK
(2020)
a . In the TimePRE scheme, the original ciphertexts are encrypted by

the data owner using the initial public keys of attributes in the data access structure.
On receiving a request, the CSP first uses the root secret key s to calculate PRE keys
on all attributes in the access structure based on its own time, and then uses these
PRE keys to re-encrypt the original ciphertext by updating the initial public keys of
all attributes in the access structure to time-based public keys.

We use s
(y)
a , s

(y,m)
a , and s

(y,m,d)
a to denote the PRE keys on attribute a in time

(y), (y,m), and (y,m, d), which can be used to update attribute a’s initial public
key PKa to time-based public keys PK

(y)
a , PK

(y,m)
a , and PK

(y,m,d)
a , respectively.

As shown in Fig. 4b, for each attribute a, the CSP can use the root secret key s and
the time tree to hierarchically calculate the time-based PRE keys with Eq. (1):

s
(y)
a = Hsa (y) (1a)

s
(y,m)
a = H

s
(y)
a

(m) (1b)

s
(y,m,d)
a = H

s
(y,m)
a

(d) (1c)

where sa = Hs(a), a, y,m, d ∈ {0, 1}∗ is a string corresponding to specific
attribute, year, month, and day; and Hs,Hsa ,Hs

(y)
a

, H
s
(y,m)
a

: {0, 1}∗ → Z
∗
q are hash

functions with indexes s, sa , s
(y)
a , and s

(y,m)
a , respectively.

Furthermore, to incorporate the concept of time to HABE, each user is granted
with a set of time-based user attribute secret keys (UAK). Each time-based UAK is
associated with a user, an attribute, and an effective time period. If user u is eligible
for attribute a in day (y,m, d), the data owner first uses the root secret key s to
obtain day-based attribute public key PK

(y,m,d)
a from initial attribute public key

PKa , and then uses PK
(y,m,d)
a to generate a day-based UAK SK

(y,m,d)
u,a for user u.

The same situation holds for the case that user u is eligible for attribute a in a month
(y,m) or a year (y).

Return to the application in Sect. 1, Alice is authorized to possess attributes
Staff and CIS, and her effective time period is (2020), she will be issued
time-based UAK as shown in Table 3; Bob is authorized to possess attributes
Student and CIS, and his effective time periods are (2020, 5) and (2020, 6),
he will be issued time-based UAK as shown in Table 4. Given an access time
(2020, 7, 1) and data F with access structure A = {(Student ∧ CIS) ∨ Staff},
the CSP will use the root secret key s to calculate the PRE keys in (2020),
(2020, 7), and (2020, 7, 1) for all attributes in A, say {s(2020)

Student}, {s(2020,7)
Student},

{s(2020,7,1)
Student }, {s(2020)

CIS }, {s(2020,7)
CIS },{s(2020,7,1)

CIS }, {s(2020)
Staff}, {s(2020,7)

Staff }, {s(2020,7,1)
Staff }.

Then, it will use these PRE keys to re-encrypt original ciphertext by updating
initial public keys {PKStudent, PKCIS, PKStaff} to year-based attribute
public keys {PK

(2020)
Student, PK

(2020)
CIS , PK

(2020)
Staff}, month-based attribute public
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Table 3 Alice’s time-based user attribute secret keys

Key Description

SK
(2020)
(Alice, Staff) UAK on attribute Staff effective in 2020

SK
(2020)
(Alice, CIS) UAK on attribute CIS effective in 2020

Table 4 Bob’s time-based user attribute secret keys

Key Description

SK
(2020,5)
(Bob, Student) UAK on attribute Student effective in (2020, 5)

SK
(2020,6)
(Bob, Student) UAK on attribute Student effective in (2020, 6)

SK
(2020,5)
(Bob, CIS) UAK on attribute CIS effective in (2020, 5)

SK
(2020,6)
(Bob, CIS) UAK on attribute CIS effective in (2020, 6)

keys {PK
(2020,7)
Student, PK

(2020,7)
CIS , PK

(2020,7)
Staff }, and day-based attribute public keys

{PK
(2020,7,1)
Student , PK

(2020,7,1)
CIS , PK

(2020,7,1)
Staff }. Given the re-encrypted ciphertext,

only the users who possess {SK
(2020)
u,Student, SK

(2020)
u,CIS } (or {SK

(2020)
u,Staff}, or

{SK
(2020,7)
u,Student, SK

(2020,7)
u,CIS }, or {SK

(2020,7)
u,Staff}, or {SK

(2020,7,1)
u,Student, SK

(2020,7,1)
u,CIS }, or

{SK
(2020,7,1)
u,Staff }) can recover data F . Therefore, Alice, who possesses year-based

UAK {SK
(2020)
Alice,Staff} can recover data F , but Bob, whose effective time periods

are overdue in (2020, 7, 1) cannot recover data F any more.

5.3 Construction of TimePRE

1. Setup(K,UA) → (PK,MK, s) : The data owner takes a security parameter K

and the universal attribute UA as inputs, and outputs the system public key PK ,
the system master key MK , and a root secret key s ∈ Z

∗
q as follows:

PK = ({PKa}a∈UA, q,G1,G2,Q0, ê, P0, P1)

MK = ({ska}a∈UA,mk0,mk1, SK1)

where (q,G1,G2, ê) are the outputs of a BDH parameter generator [49] IG, P0
is a random generator of G1, P1 is a random element in G1; ska ∈ Z

∗
q is the

initial secret key of attribute a and PKa = skaP0 ∈ G1 is the initial public key
of attribute a; mk0 and mk1 are random elements in Z

∗
q , Q0 = mk0P0 ∈ G1, and

SK1 = mk0P1 ∈ G1. PK will be published, MK will be kept secret, and s will
be sent to the CSP.

2. GenKey(PK,MK, s, PKu, a, Tu) → (SKu, SK
Tu
u,a) : After authenticating

user u is eligible for attribute a and his access right is effective in time period
Tu, the data owner takes the system public key PK , the system master key MK ,
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user public key PKu, and the root secret key s as inputs, and generates a UIK
SKu and a time-based UAK SK

Tu
u,a , as follows:

SKu = mk1mkuP0

SK
Tu
u,a = SK1 + mk1mkuPK

Tu
a

where mku = H1(PKu) ∈ Z
∗
q , H1: G1 → Z

∗
q is a hash function which can be

modeled as random oracle, and PK
Tu,a
a is the time-based public key of attribute

a in time Tu. Specifically, we have the following three cases: (1) Tu is a particular
day (y,m, d) and SK

(y,m,d)
u,a = SK1 + mk1mkuPK

(y,m,d)
a ; (2) Tu is a particular

month (y,m) and SK
(y,m)
u,a = SK1 +mk1mkuPK

(y,m)
a ; (3) Tu is a particular year

(y) and SK
(y)
u,a = SK1 + mk1mkuPK

(y)
a .

Here, time-based attribute public keys can be calculated with Eq. (2):

PK
(y)
a = PKa + s

(y)
a P0 (2a)

PK
(y,m)
a = PKa + s

(y,m)
a P0 (2b)

PK
(y,m,d)
a = PKa + s

(y,m,d)
a P0 (2c)

where PRE keys s
(y)
a , s

(y,m)
a , s

(y,m,d)
a can be calculated with Eq. (1).

3. Encrypt (PK,A, F ) → (CA) : This algorithm is the same as the Encryption
algorithm in HABE. The data owner encrypts data F ∈ G2 with access structure

A = N∨
i=1

(CCi) = N∨
i=1

(
ni∧

j=1
aij ) as follows: It first picks a random element r ∈ Z

∗
q ,

and then sets nA to be the lowest common multiple (LCM) of n1,. . . , nN . Finally,
it calculates Eq. (3) to produce the ciphertext:

U0 = rP0, (3a)

{Ui = r
∑

a∈CCi

PKa}1≤i≤N, (3b)

V = F · ê(Q0, rnAP1) (3c)

The original ciphertext is set to CA = (A, U0, {Ui}1≤i≤N, V ).
4. ReEncrypt (CA, s, t) → (Ct

A
) : On receiving a user’s request for data F , the

CSP first determines current time, say t = (y,m, d). Then, it uses the root secret
key s and access time t to re-encrypt the original ciphertext CA with Eq. (4):

Ut
0 = U0 + r ′P0, (4a)

Ut
(y)i =

∑

a∈CCi

(Ui + r ′PKa + s
(y)
a Ut

0), (4b)
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Ut
(y,m)i =

∑

a∈CCi

(Ui + r ′PKa + s
(y,m)
a Ut

0), (4c)

Ut
(y,m,d)i =

∑

a∈CCi

(Ui + r ′PKa + s
(y,m,d)
a Ut

0), (4d)

V t = V · ê(Q0, r
′nAP1) (4e)

where r ′ is randomly chosen from Z
∗
q and the PRE keys s

y
a , s

(y,m)
a , s

(y,m,d)
a can

be calculated with Eq. (1). The ciphertext that is re-encrypted in time t is set to
Ct
A

= (A, t, U t
0, {Ut

(y)i}1≤i≤N, {Ut
(y,m)i}1≤i≤N, {Ut

(y,m,d)i}1≤i≤N, V t ).

5. Decrypt (PK,Ct
A
, SKu, {SK

Tu
u,a}a⊆A,Tu⊆t ) → (F ) : Given ciphertext Ct

A
,

user u, whose attributes satisfy the i-th conjunctive clause CCi and whose
effective time period Tu satisfies the access time t , uses his UIK SKu and UAKs
{SK

Tu
u,a}a⊆A,Tu⊆t to recover data F with Eq. (5):

F = V t/

ê(Ut
0,

nA
ni

∑

a∈CCi

SK
Tu
u,a)

ê(SKu,
nA
ni

U t
Tui)

(5)

Specifically, there are three cases:

(1) Tu is a particular day (y,m, d) and Eq. (5) is equivalent to:

F = V t/

ê(Ut
0,

nA
ni

∑

a∈CCi

SK
(y,m,d)
u,a )

ê(SKu,
nA
ni

U t
(y,m,d)i)

(2) Tu is a particular month (y,m) and Eq. (5) is equivalent to:

F = V t/

ê(Ut
0,

nA
ni

∑

a∈CCi

SK
(y,m)
u,a )

ê(SKu,
nA
ni

U t
(y,m)i)

(3) Tu is a particular year (y) and Eq. (5) is equivalent to:

F = V t/

ê(Ut
0,

nA
ni

∑

a∈CCi

SK
(y)
u,a)

ê(SKu,
nA
ni

U t
(y)i)

The key technique of the TimePRE scheme is that the root secret key s is
simultaneously used by the data owner to generate time-based UAKs, and by the
CSP to generate PRE keys. Note that each time-based UAK is generated with time-
based attribute public key, which is in turn generated by s and an effective time
period Tu; each data is first encrypted with initial attribute public keys, and will be
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updated by the CSP to day-based attribute public keys, which are in turn generated
by s and the access time of receiving a request t . Therefore, even if s is only shared
between the data owner and the CSP, the users still can decrypt the ciphertext when
their attributes satisfy the access structure and their access rights are effective in the
access time. Furthermore, the GenKey algorithm should take the system master key
MK as inputs, which is kept secret by the data owner. Thus, given the root secret
key that has nothing to do with the system master key, the CSP cannot know any
information about the UAKs.

Security Analysis of TimePRE The Encrypt algorithm in the TimePRE scheme
is the same as the Encryption algorithm in HABE, which has been proven to be
semantically secure in [25]. Therefore, we consider that the TimePRE scheme is
secure if the following propositions hold:

• Proposition 1. The keys produced by the GenKey algorithm are secure.
• Proposition 2. The ciphertext produced by the ReEncrypt algorithm is semanti-

cally secure.
• Proposition 3. Given the root secret key and the original ciphertext, the

CSP cannot know neither the underlying data, nor UAKs while executing re-
encryption.

For Proposition 1, we prove that the GenKey algorithm is as secure as the Key
Generation algorithm in HABE. First, the way to generate UIK is the same in both
algorithms. Then, given the system public key PK , the system master key MK , user
public key PKu, and attribute a, if the data owner takes the time-based attribute
public key PK

(Tu)
a as inputs of the Key Generation algorithm in HABE, then the

produced UAK is the same as that of the GenKey algorithm that takes time Tu,
the initial attribute public key PKa , and the root secret key s as inputs. As proven
in [25], due to the BDH assumption, the malicious users cannot obtain MK , even if
all of them collude. Therefore, Proposition 1 is correct.

For Proposition 2, we prove that the ReEncrypt algorithm is as secure as the
Encryption algorithm in HABE. Given system public key PK and data F with
access structure A, if the data owner takes the time-based attribute public keys
{PK

(y)
a }a∈A, {PK

(y,m)
a }a∈A, {PK

(y,m,d)
a }a∈A, and a random number r ′′ = r + r ′

as inputs of the Encryption algorithm in HABE, then the produced ciphertext is
the same as that of the the ReEncrypt algorithm that takes time t = (y,m, d), the
original ciphertext CA, and root secret key s as inputs. Therefore, Proposition 2 is
correct.

For completeness, we provide an intuitive security proof for the ReEncrypt
algorithm as follows:

Recall that data F is re-encrypted to V t = F · ê(Q0, (r + r ′)nAP1) in time
t = (y,m, d). Therefore, an adversary A needs to construct ê(Q0, (r + r ′)nAP1) =
ê(U t

0, SK1)
nA to recover F . From the GenKey algorithm, we know that the only

occurrence of SK1 is in the UAKs. In our security model, we assume that the CSP
will not collude with the malicious users, who possess UAKs. Therefore, we only
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consider the case that malicious users work independently, or collude to compromise
data security.

We consider that the TimePRE scheme is insecure if one of the following cases
happens: (1) Adversary A, whose effective time period satisfies the access time, but
whose attributes do not satisfy the access control, can recover data F . (2) Adversary
A, whose attributes satisfy the access control, but whose effective time does not
satisfy the access time, can recover data F .

For case (1), we have the following assumptions for ease of presenta-
tion: Adversary A has requested UAKs on all but one of the attributes
ai1, . . . , ai(k−1), ai(k+1), . . . , aini

in CCi for user u, and has requested a UAK
on the missing attribute aik for user u

′
. Both users’ effective time periods Tu and

Tu′ satisfy the access time t = (y,m, d). Based on Proposition 1, we know that the
adversary cannot generate fake keys. The only occurrence of SK1 is in the UAKs,
so the adversary has to use UAKs requested for user u and u

′
for bilinear map,

yielding for some α:

ê(U t
0,

nA
ni

ni∑

j=1,j �=k

SK
Tu
u,aij

+ nA
ni

SK
Tu′
u

′
,aik

+ α)

= ê(U t
0, SK1)

nA ê(r ′′P0, α)ê(SKu′ , r ′′PK
Tu′
aik

)
nA
ni ê(SKu, r

′′ ni∑

j=1,j �=k

PK
Tu
aij

)
nA
ni

where r ′′ = r + r ′. To obtain ê(U0, SK1)
nA , the last three elements have to be

eliminated. Note that SKu′ and SKu are known to adversary A, but r is randomly
chosen by the data owner for the original ciphertext CA and r ′ is randomly chosen by

the CSP for the re-encrypted ciphertext Ct
A

. The adversary cannot know r ′′PK
Tu′
aik

or

r ′′ ni∑

j=1,j �=k

PK
Tu
aij

, even if he knows Ut
(Tu)i and Ut

(Tu′ )i due to the BDH assumption.

Therefore, adversary A cannot recover the data from V t .
For case (2), we have the following assumptions for ease of presentation:

Adversary A has requested UAKs on all attributes in CCi for user u. Any effective
time period Tu of this user does not satisfy the access time t = (y,m, d). Based
on Proposition 1, we know that the adversary cannot generate fake keys. The only
occurrence of SK1 is in the UAKs, so the adversary has to use UAKs requested for
user u for bilinear map, yielding for some α:

ê(U t
0,

nA
ni

ni∑

j=1
SK

Tu
u,aij

+ α)

= ê(U t
0, SK1)

nA ê(r ′′P0, α)ê(SKu, r
′′ ni∑

j=1
PK

Tu
aij

)
nA
ni

where r ′′ = r + r ′. To obtain ê(U0, SK1)
nA , the last two elements have to be

eliminated. Note that the SKu is known to adversary A, but r is randomly chosen
by the data owner for the original ciphertext CA and r ′ is randomly chosen by the
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CSP for the re-encrypted ciphertext Ct
A

. The adversary cannot know r ′′ ni∑

j=1,j �=k

P
Tu
aij

,

even if he knows Ut
i and U

Tu

i due to the BDH assumption. Therefore, adversary A
cannot recover data from V t .

For Proposition 3, we first prove that the CSP cannot derive the system master
key MK and UAKs from the root secret key s. As compared to HABE, the TimePRE
scheme discloses an additional root secret key to the CSP, which is randomly chosen
by the data owner and has nothing to do with the system master key. Therefore,
the CSP cannot derive the system master key from the root secret key. Based on
Proposition 1, the CSP cannot obtain UAKs without the system master key.

Then, we prove that the CSP cannot compromise data security given the original
ciphertext. Note that the original ciphertext is encrypted with the Encrypt algorithm,
which is semantically secure. Therefore, the ciphertext can be decrypted by only the
entity who possesses UAKs on the initial attribute public keys. In the TimePRE
scheme, a users’ UAKs are generated on the time-based attribute public key, rather
than the initial attribute public key. Therefore, only the data owner with the initial
attribute secret keys can recover the data from the original ciphertext. Neither the
users, nor the CSP can decrypt the original ciphertext.

6 Secure Search Services

Since the cloud service provider (CSP) may leak users’ private data consciously
or unconsciously, existing research suggests encrypting data before outsourcing
to preserve user privacy. However, data encryption would make searching over
ciphertexts a very challenging task. The simple solution that downloads the whole
data set from the cloud will incur extensive communication costs. Therefore,
searchable encryption (SE) [42, 47] was proposed to enable a user to retrieve data
of interest while keeping user privacy from the CSP.

In previous SE solutions, the search permission is granted in a coarse-grained
way. That is, the data user has the ability to generate search tokens for all the
keywords by using the search key. In many situations, such a kind of search
authorization will cause a potential risk of privacy disclosure. To illustrate, let us
consider the following scenario: Company A outsources the file management system
to Amazon S3 for easy access by its staff. Suppose that the collaboration agreement,
F, described with keywords “Company B” and “Project X” can be accessed only by
the manager of Company A. If attacker Alice is allowed to first search with keyword
“Project X”, and then with keyword “Company B”, she can infer that Company A
is cooperating with Company B on Project X from the search results returned, even
if she cannot recover file content.

To alleviate this problem, the work in [69] proposed the attribute-based keyword
search (ABKS) scheme, which utilizes attribute-based encryption (ABE) [14, 15] to
achieve fine-grained search authorization for public-key settings. In ABKS, each
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keyword wi is associated with an access policy AP , and each search token is
associated with a keyword wj and a set of attributes S. The data user can search
the file only when her attributes satisfy the access policy, denoted as S 
 AP , as
well as wj = wi . However, ABKS never considered the problem of a dynamic
access policy for keywords. If AP is changed to AP ′, it requires the data owner to
re-encrypt the relevant keywords with AP ′, so that only the users whose attributes
satisfy AP ′ have the search permission. For frequent updates on a large number of
files, the workload on the data owner is heavy.

To achieve a fine-grained search authorization in an efficient way, this book
chapter proposes a dynamic attribute-based keyword search (DABKS) scheme, by
incorporating proxy re-encryption (PRE) and a secret sharing scheme (SSS) into
ABKS. In DABKS, the CSP can be delegated to update the access policy for
keywords without compromising user privacy. Specifically, DABKS expresses the
access policy AP as an access tree, and transforms the problem of updating an
AND/OR gate in AP to that of updating a threshold gate. For example, the AND
gate is transformed to (t, t) gate, and the OR gate is transformed to (1, t) gate.
Therefore, the updating of the AND gate can be treated as updating (t, t) gate to
(t ′, t ′) gate, and the updating of the OR gate can be treated as updating (1, t) gate
to (1, t ′) gate, where t ′ = t + 1 for adding an attribute to the AND/OR gate and
t ′ = t − 1 for removing an attributes from the AND/OR gate.

6.1 Preliminaries

For ease of illustration, bilinear map is written in the form of e(ga, gb) =
e(gb, ga) = e(g, g)ab for any a, b ∈ Zp. Let A = {A1, . . . , AM } denote the
universal attributes in the system. The cloud user u is described by a set of attributes
Su ⊆ A. The data owner holds a collection of files � = {F1, . . . , Fn}, where each
file Fi can be described by a set of distinct keywords Wi . Before uploading file Fi to
the cloud, the data owner will first encrypt Fi with ABE under access policy APF ,
and then encrypts each keyword in Wi with DABKS under access policy APK . The
ciphertext for keyword w and file Fi is denoted as cphw and CFi

, respectively. It is
worth noticing that APF stipulates which entities can decrypt Fi and APK stipulates
which entities can search over Wi might be different. To retrieve files containing
keyword w, the data user u will issue a search token T okw to the CSP, which will
return {{cphw}w∈Wi

, CFi
} only when Su 
 APK and w ∈ Wi . To update APK

to AP ′
K , the data owner will send an update instruction � to the CSP, which will

update related keyword ciphertexts to preserve the correctness of the access policy
for keywords Wi .

Access Tree As the work in [15] suggests, the access policy APK can be depicted
as an access tree T , where each interior node denotes a gate, and each leave node
is depicted as an attribute. For example, given APK = (A1 ∨ A2) ∧ A3, its access
tree T is as shown in Fig. 5a. In T , each node x is associated with a threshold value
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Fig. 5 Access tree. (a) Sample access tree. (b) Sample tree implementation

kx . For the interior node x with Nx children, kx = 1 when x is an OR gate, and
kx = Nx when x is an AND gate. For all leave nodes, the threshold value is 1.

Let lev(T ) denote leave nodes in T . If x ∈ lev(T ), att (x) is used to denote the
attribute associated with node x. Furthermore, T defines an ordering between the
children of each node, and parent (x) and index(x) returns the parent and the order
number of children node x, respectively.

Let T with root R correspond to the access tree of access policy APK . To check
whether a set of attributes Su satisfies APK , denoted as Su 
 APK , we compute
TR(Su) recursively as follows: Suppose that Tx denotes the subtree of T rooted at
the node x. If x is a non-leaf node, we evaluate Tb(Su) for each child b of node x.
Tx(Su) returns 1 if and only if at least kx children return 1. If x is a leaf node, then
Tx(Su) returns 1 if and only if att (x) ∈ Su.

Secret Sharing Scheme (SSS) To share the secret σ in T , the secret sharing
scheme (SSS) generates � = {qx(0)}x∈T as follows:

SSS(σ, T ) → �: A random polynomial qR of degree kR − 1 is chosen for
qR(0) = σ . The rest of points in qR are randomly chosen. For each node x ∈ T , a
random polynomial qx of degree kx −1 is chosen for qx(0) = qparent (x)(index(x)).
The rest of points in qx are chosen randomly. For example, Fig. 5b shows the tree
implementation process. To recover the secret σ , the users with sufficient secret
shares can perform Lagrange interpolation recursively. Please refer to [15] for more
details.

6.2 Scheme Definition

The most used notations are shown in Table 5. The DABKS scheme consists of the
following algorithms:
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Table 5 Summary of Notations in DABKS, respectively

Notation Description

PK,MK System public/master key

Su Attribute set associated with cloud user u

sku Search key for cloud user u

Tw, T ′
w Original/new access policy for keyword w

cphw, cph′
w Original/new ciphertext for keyword w

T okw Search token for keyword w

� A set of secret shares for nodes in Tw

UK Update key for updating Tw to T ′
w

� Auxiliary information for Att2AND/Att2OR gate

• Init (λ) → (PK,MK): The TTP takes a security parameter λ as input to
initialize the system, and outputs system public key PK and system master key
MK .

• KeyGen(PK,MK, Su) → sku: The TTP takes system public key PK , system
master key MK , and a set of attributes Su associated with data user u as input,
and outputs search key sku for u.

• EncKW(PK,w, Tw) → (cphw,�): Given keyword w associated with access
tree Tw, the data owner takes system public key PK , Tw and w as inputs, and
outputs the keyword ciphertext cphw and the secret shares � for nodes in Tw.

• T okenGen(sku,w) → T okw: The data user u takes a keyword w and the search
key sku as inputs, and outputs a search token T okw for w.

• Search(T okw, cphw) → {0, 1}: On receiving the search request from data user
u, the CSP evaluates the search token T okw on keyword ciphertext cphw, and
outputs 1 if Su 
 Tw. Otherwise, it outputs 0.

• GenUpd(�, T ′
w) → (UK,�): The data owner takes the new access tree T ′

w and
the secret shares � for nodes in the original access tree Tw as inputs, and outputs
an update key UK and some auxiliary information �.

• ExeUpd(UK,�, cphw) → cph′
w: The CSP utilizes the update key UK and

the auxiliary information � to update the original ciphertext cphw to the new
ciphertext cph′

w.

Given (PK,MK) generated by the Init algorithm, sku generated by the
KeyGen algorithm, cphw generated by EncKW algorithm, and T okw generated
by the T okenGen algorithm, the DABKS scheme is correct if the following holds:
(1) the Search(T okw, cphw) algorithm returns 1 if and only if Su 
 Tw. (2) After
running algorithms GenUpd and ExeUpd, the Search(T okw, cph′

w) algorithm
returns 1 if and only if Su 
 T ′

w.
Let � = {F1, . . . , Fn} be a set of files created by data owner v, where each file

Fi is described by a set of keywords Wi . For ease of illustration, we assume that
the access policies for Wi and Fi are the same, i.e., APK = APF . Since our work
focuses on preserving keyword privacy and query privacy, we omit the construction
of these algorithms in this paper. From the systematic point of view, our scheme
works as follows:
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1. System setup. The TTP runs the Init algorithm to generate the system public key
PK and the system master key MK . It then sends PK to the CSP.

2. Data creation. The data owner processes the data before outsourcing as follows:
(1) it classifies � into several file groups, where a group of files share the
same access policy. (2) Suppose that file Fi is associated with access policy
APK , which will be expressed as access tree Tw. Given Tw, it runs the EncKW
algorithm to encrypt each keyword w ∈ Wi , and runs the EncFile algorithm to
encrypt Fi . (3) It sends the keyword ciphertexts and file ciphertext, denoted as
{{cphw}w∈W i, CFi

}Fi∈�, to the CSP.
3. User grant. When a new cloud user u joins the system, the TTP first determines

the attribute set Su, which stipulates the search permission and data access right,
for u. It then runs algorithms GenKey and KeyGen to generate decryption key
SKu and search key sku to u, respectively. Finally, the TTP sends the generated
keys (SKu, sku) along with system public key PK to u.

4. Policy update. If the access policy for file Fi is changed to AP ′
K , the data owner

first builds a new access tree T ′
w for AP ′

K , and then runs the GenUpd algorithm
to generate the update key UK and some auxiliary information �. The update
instruction sent to the CSP is set to � = {Fid,UO,UK,�}, where Fid is the
ID of file Fi and UO is the specific update operation. On receiving the policy
update request, the CSP first locates Fi , and then runs the ExeUpd algorithm to
generate new ciphertexts {cph′

w}w∈Wi
for Wi based on �.

5. Data access. If data user u wants to retrieve files containing keyword w, it runs
the TokenGen algorithm to generate a search token T okw, which will be sent to
the CSP. On receiving the data access request, the CSP runs the Search algorithm
by evaluating the search token on the whole keyword ciphertext set, and returns
the searching results, denoted as {{cphw}w∈W i, CFi

}Search(T okw,cphw)=1. If u’s
attributes satisfy the access policy of Fi , it can run the Decrypt algorithm to
recover file content.

Taking Fig. 6 as an example, � = {F1, . . . , F7} are classified into two groups,
denoted as FG1 and FG2. Let APK,1 and APK,2 denote the access policy
associated with file group FG1 and FG2, respectively. The data owner will encrypt
F1, . . . , F4 with APK,1 and F5, F6, F7 with APK,2. Therefore, data user u with
attribute set Su = {A1, A2} has permission to search files only in FG1. That is, u

can generate valid search tokens for keywords a, b, c, d only. If APK,2 is updated
to AP ′

K,2 = {A1 ∧ A2}, u can search all files in �.

6.3 Policy Updating

Efficient policy updating is still a challenging problem. A simple scheme is that
the data owner retrieves the relevant keywords and re-encrypted them with the new
access policy before sending them back to the cloud. However, for frequent updates
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Fig. 6 Example of keyword search

Fig. 7 Policy updating operations. (a) Att2OR and AttRmOR. (b) Att2AND and AttRmAND

on a large number of files, the workload on the data owner is heavy. In this paper,
we propose a DABKS scheme that achieving an efficient update of access policy by
delegating the policy updating operations to the cloud.

Inspired by the work in [41], we consider four basic operations involved in policy
updating (Fig. 7): Att2OR denotes adding an attribute to an OR gate, Att2AND

denotes adding an attribute to an AND gate, AttRmOR denotes removing an
attribute from an OR gate, and AttRmAND denotes removing an attribute from
an AND gate. Given access tree T over access policy APK , the data owner needs to
preserve � = {qx(0)}x∈T generated by SSS, where qx(0) is the sharer of secret σ

for node x.
Let node y be the AND/OR gate that will be updated, where A1, . . . , Am are

the original attributes under y. Let qy(0) and {qx1(0), . . . , qxm(0)} denote the secret
shares for node y and y’s children nodes x1, . . . , xm, where att (xi) = Ai for i ∈
[1,m]. Given an access tree Tw, the DABKS scheme will produce a ciphertext for
each leave node x based on share qx(0). The original and new ciphertext for node
xi is denoted as Ci and C′

i , respectively.

• Att2OR : This operation can be transformed to updating a (1,m) gate to a
(1,m + 1) gate. Given qy(0) and the new access policy T ′, the data owner runs
SSS to generate new shares {q ′

x1
(0), . . . , q ′

xm+1
(0)} for attributes A1, . . . , Am+1.

Since qxi
(0) = q ′

xi
(0) = qy(0) for i ∈ [1,m + 1], the ciphertexts for

the original attributes will not be changed, i.e., C′
i = Ci for i ∈ [1,m].

For the newly added attribute Am+1, the data owner needs to generate a new
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ciphertext C′
m+1 based on q ′

xm+1
(0). Finally, it sets the update instruction � =

{Fid,Att2OR,NULL,C′
m+1} to the CSP, which will add C′

m+1 to cphw and
update the access tree to T ′

w by adding Am+1 under node y.
• AttRmOR : This operation can be transformed to updating a (1,m)

gate to a (1,m − 1) gate. As the Att2OR operation, we have qxi
(0) =

q ′
xi

(0) = qy(0) for i ∈ [1,m − 1]. Therefore, the data owner will send
� = {Fid,AttRmOR,NULL,NULL} to the CSP, which will remove Cm

from cphw and update the access tree to T ′
w by removing Am under node y.

• Att2AND : This operation can be transformed to updating a (m,m) gate to
a (m + 1,m + 1) gate. Given qy(0) and the new access policy T ′, the data
owner runs SSS to generate new shares {q ′

x1
(0), . . . , q ′

xm+1
(0)} for attributes

A1, . . . , Am+1. Next, it executes the GenUpd algorithm to generate the update
key UK for attributes A1, . . . , Am. Moreover, it generates a ciphertext C′

m+1
for the newly added attribute Am+1 based on q ′

xm+1
(0). Finally, it sends � =

{Fid,Att2AND,UK,C′
m+1} to the CSP, which will execute the ExeUpd

algorithm to update the ciphertext Ci to C′
i for i ∈ [1,m], add the new ciphertext

C′
m+1 to the cphw, and update the access tree to T ′

w by adding Am+1 under node
y.

• AttRmAND : This operation can be transformed to updating a (m,m) gate to a
(m−1,m−1) gate. Given qy(0) and the new access policy T ′, the data owner runs
SSS to generate new shares {q ′

x1
(0), . . . , q ′

xm−1
(0)} for attributes A1, . . . , Am−1.

Next, it executes the GenUpd algorithm to generate the update key UK for
C1 . . . , Cm−1. Finally, it sends � = {Fid,AttRmAND,UK,NULL to the
CSP, which will execute the ExeUpd algorithm to update the ciphertext Ci to
C′

i for i ∈ [1,m − 1], remove Cm from cphw, and update the access tree to T ′
w

by removing Am under node y.

6.4 Construction

Init (λ): Let e : G0 × G0 → G1 be the bilinear group, where G0 and G1 are cyclic
groups of prime order p, the TTP takes security parameter λ as input, and sets the
system public key PK and the system master key MK as follows:

PK = {H1,H2, e, g, p, ga, gb, gc}, MK = (a, b, c),

where H1 : {0, 1}∗ → G0 is a hash function modeled as a random oracle, H2 :
{0, 1}∗ → Zp is a one-way hash function, g ∈ G0 is the random generator of G0,
and a, b, c are randomly chosen from Zp.

KeyGen(PK,MK, Su): For data user u associated with attribute set Su, the
TTP generates search key sku for u as follows: it first randomly selects r ∈ Zp,
and computes D = g(ac−r)/b. Then, it selects a random rj ∈ Zp for each attribute
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Aj ∈ Su, and computes Bj = grH1(Aj )
rj and B̄j = grj . The search key is set as

follows:

sku = (Su,D, {(Bj , B̄j )}Aj ∈Su)

EncKW(PK,w, Tw): To encrypt keyword w under access tree Tw, the data
owner first randomly selects r1, σ ∈ Zp, and computes K1 = gcr1 , K2 =
ga(r1+σ)gbH2(w)r1 , and K3 = gbσ . Then, it computes Cxi

= gqxi
(0) and C̄xi

=
H1(att (xi))

qxi (0) , where qxi
(0) is the share of secret σ for leave node xi in Tw

generated by SSS. The ciphertext for keyword w is set as:

cphw = (Tw,K1,K2,K3, {Ci = (Cxi
, C̄xi

)}xi∈lev(Tw))

T okenGen(sku,w): To retrieve files containing keyword w, data user u asso-
ciated with attribute set Su chooses a random s ∈ Zp, and computes tk1 =
(gagbH2(w))s , tk2 = gcs , and tk3 = Ds = g(ac−r)s/b. In addition, for each Aj ∈ Su,
it computes B ′

j = Bs
j and B̄ ′

j = B̄s
j . The search token for keyword w is set as:

T okw = (Su, tk1, tk2, tk3, {(B ′
j , B̄

′
j )}Aj ∈Su)

Search(T okw, cphw): On receiving the search token T okw from data user u,
the CSP first constructs a set S ∈ Su that satisfies the access tree Tw specified
in cphw, and then it computes Exi

= e(B ′
i , Cxi

)/e(B̄ ′
i , C̄xi

) = e(g, g)rsqxi
(0) for

each attribute Ai ∈ S, where Ai = att (xi) for xi ∈ lev(T ). Next, it executes the
Lagrange interpolation to recover ER = e(g, g)rsσ . Finally, it tests whether Eq. (6)
holds.

e(K2, tk2) = e(K1, tk1)e(tk3,K3)ER (6)

If so, it outputs 1, and 0 otherwise.
GenUpd(�, T ′

w): Given the new access tree T ′
w for keyword w, the data owner

first locates the gate node that will be modified. Let node y denote the AND/OR gate
being updated, where A1, . . . , Am and A1, . . . , Am′ are original and new attributes
under node y, respectively. Given qy(0) the share associated with node y, it first
takes qx(0) and T ′

w as inputs of the SSS algorithm, and obtains the new secret shares
for nodes x1, . . . , xm′ in T ′

w, denoted as {q ′
xi

(0)}i∈[1,m′]. Then, it generates update
key for attributes A1, . . . , Am as follows:

UK = {(UK1,i , UK2,i )}i∈[1,m] (7)

where UK1,i = gσ , UK2,i = H1(att (xi))
σ , and σ = q ′

xi
(0)−qxi

(0). Furthermore,
for adding an attribute Am+1 under gate node y, the data owner generates the new
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ciphertext C′
m+1 for Am+1 as follows: it computes C′

xm+1
= g

q ′
xm+1

(0) and C̄′
xm+1

=
H1(att (xm+1))

q ′
xm+1

(0)). The new ciphertext is set as C′
m+1 = (C′

xm+1
, C̄′

xm+1
).

ExeUpd(UK,�, cphw): After receiving the policy updating request from the
data owner, the CSP utilizes the update key UK to update the original keyword
ciphertext cphw as follows: For each leave node xi under the changing gate node y,

it computes C′
xi

= Cxi
·UK1,i = g

q ′
xi

(0) and C̄′
xi

= C̄xi
·UK2,i = H1(att (xi))

q ′
xi

(0).
Then, the new ciphertext for keyword w is set as:

cph′
w = (T ′

w,K1,K2,K3, {C′
i = (C′

xi
, C̄′

xi
)}xi∈lev(T ′

w))

6.5 Correctness Proof

In the Search algorithm, for each attribute Aj ∈ S, we have:

Exi
= e(B ′

j ,Cxi
)

e(B̄ ′
j ,C̄xi

)
= e(grsH1(Aj )

rj s
,g

qxi
(0)

)

e(g
rj s

,H1(att (xi ))
qxi (0) )

= e(g, g)rsqxi
(0)

(8)

If Su 
 Tw, we can recover ER = e(g, g)rsqR(0) = e(g, g)rsσ by executing the
Lagrange interpolation. Therefore, the right side of Eq. (6) will evolve as follows:

e(K1, tk1)e(tk3,K3)ER

= e(gcr1 , gasgbsH2(w))e(g(acs−rs)/b, gbσ )e(g, g)rsσ

= e(g, g)acs(r1+σ)e(g, g)bcsH2(w)r1

(9)

The left side of Eq. (6) will evolve as follows:

e(K2, tk2) = e(ga(r1+σ)gbH2(w)r1 , gcs)

= e(g, g)acs(r1+σ)e(g, g)bcsH2(w)r1 (10)

Therefore, Eq. (6) holds only when Su 
 Tw.
Then, we prove that the output of the Search algorithm is still correct after the

GenUpd and ExeUpd algorithms. Due to the limited space, we only provide the
correct proof for the Att2AND operation in this paper. Let q ′

x1
, . . . , q ′

xm
, q ′

xm+1
be

the secret shares of σ for the leave nodes in T ′
w. For the original attribute Ai where

i ∈ [1,m], C′
i = (C′

xi
, C̄′

xi
) will be constructed as follows:

C′
xi

= Cxi
· UK1,i

= gqxi
(0)g

q ′
xi

(0)−qxi
(0) = g

q ′
xi

(0)
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C̄′
xi

= C̄xi
· UK2,i

= H1(att (xi))
qxi

(0)H1(att (xi))
q ′

xi
(0)−qxi

(0)

= H1(att (xi))
q ′

xi
(0) (11)

The new ciphertext C′
m+1 corresponding to Am+1 is constructed as follows:

C′
m+1 = (C′

xm+1
, C̄′

xm+1
)

= (g
q ′

xm+1
(0)

, H1(att (xm+1))
q ′

xm+1
(0)

)
(12)

Given the updated ciphertexts C′
i for i ∈ [1,m + 1], ER = e(g, g)rsqR(0) =

e(g, g)rsσ can be recovered only when Su 
 Tw. Therefore, the DABKS scheme is
correct. �

6.6 Security Sketch

The work in [69] has proven that, given the one-way hash function H2, the ABKS
scheme is selectively secure against chosen-keyword attacks in the generic bilinear
group model and achieves keyword secrecy in the random oracle model. The
correctness proof has proven that the DABKS scheme carries out a correct search
control after the update of access policy APK . Therefore, the security of our scheme
can be derived from that of the ABKS scheme. �

6.7 Performance Analysis

We will analyze the performance of the DABKS scheme in terms of computational
and communication complexity. For ease of understanding, we provide the follow-
ing notations to denote the running time for various operations in our scheme: H1 is
used to denote the operation of mapping a bit-string to an element of G0, e is used
to denote the pairing operation, E0 and E1 are used to denote the exponentiation
operation in G0 and G1, respectively. We neglect the multiplication in G0 and G1
and hash operations, since they are much less expensive compared to the above
operations.

Table 6 shows the asymptotic complexity of the DABKS scheme, where S

denotes the number of attributes associated with a data user, N denotes the number
of attributes in a data owner’s access policy, m denotes the number of attributes
under an AND/OR gate node, which will be updated, and |G0| denotes the length
of elements in G0. The Init algorithm will be run in system initialization phase, and
can be done once for all. Therefore, the TTP spends most of its time for generating
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Table 6 Performance analysis of DABKS

Computation Communication

KeyGen (2S + 2)E0 + SH1 (2S + 1)|G0|
EncKW (2N + 4)E0 + NH1 (2N + 3)|G0|
TokenGen (2S + 4)E0 (2S + 3)|G0|
Search (2N + 3)e + NE1

GenUpd (2m + 2)E0 + (m + 1)H1 (2m + 2)|G0|
ExeUpd (2E0 + H1)m

search key sk for the data users, the complexity of which relates to S, the number
of attributes associated with a user. For the data owner, the EncKW algorithm is
mainly impacted by N , the number of attributes in the specified access policy, and
the GenUpd algorithm is mainly impacted by m, the number of attributes under the
updating gate node. For the data user, the cost of the TokenGen algorithm will grow
linearly with S. For the CSP, the ExeUpd algorithm is also impacted by m.

7 Security in Fog/Edge Computing

Rapid development of sensing, communication, and micro-controller technologies
are making everything connected and smarter, termed the Internet of Things (IoT).
The cloud usually has almost unlimited resources, but it is located far away from IoT
end devices. Fog computing, a.k.a edge computing, is proposed to enable computing
directly at the edge of networks by delivering new applications and services for
billions of connected devices. Fog devices are usually access points, set-top-boxes,
road side units,

Our secure storage/secure schemes can be applied to fog/edge computing
environment. In this way, many computation-heavy and resource-demanding tasks
can be delegated to the edge layer, so as to alleviate the resource constraints at the
user side. The general idea is to distribute multiple copies of each ciphertext to the
fog devices that close to the user. The user will interact with the edge layer instead
the central cloud to save communication cost. The system model is composed of
three tiers: user tier, edge tier, and cloud tier. The user tier is composed of users’
thin-clients that are assumed to be trusted. The user tier uploads ciphertexts to the
cloud tier and interacts with the edge tier to retrieve appropriate data. The edge tier
located between the user and the cloud is comprised of fog devices such as router,
gateway, switch, and Access Points (APs). These fog devices can collaboratively
share storage and computing facilities. We assume that the edge tier is a computing
facility on the users premises (organization), hence, considered to be trusted. The
user’s search token is sent to the edge tier. On retrieving the searching request, the
fog devices first check whether corresponding ciphertexts locate in the edge tier or
not. If so, the fog devices evaluate the search query on the ciphertexts and return
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search results to user; Otherwise, the fog devices contact the cloud tier to retrieve
corresponding ciphertexts before performing searches. The cloud tier centralizes
sufficient storage and computing resources, providing storage services. The cloud
servers are considered to be honest but curious. Therefore, all data will be encrypted
before being uploading to the cloud.

In the tiered architecture, the main problem is which ciphertexts should be
distributed to the fog devices. A naive solution is to let the fog devices store all
the ciphertexts, so that the user can retrieve all the required data at the edge layer.
However, this simple solution requires that the storage space of a fog device is as
large as that of the central cloud. Therefore, a novel cache algorithm is required to
locate appropriate ciphertexts to fog devices.

8 Conclusion

Despite a bit of hype, cloud computing is undeniably a fundamental trend of IT
technologies. More and more IT companies are diving into launching cloud prod-
ucts, such as Amazon’s EC2, Google’s AppEng, Microsoft’s Azure, etc. However,
security is the main obstacle hindering the wide adoption of cloud computing. In
this book chapter, we research the security and privacy problems in cloud storage
and search services. The research results will play an important role in for providing
secure services in cloud computing.
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Collaborative Intrusion Detection
Schemes in Fog-to-Things Computing

Abebe Diro, Abdun Mahmood, and Naveen Chilamkurti

1 Background

The IoT is an emerging technology that aims to provide a virtual presence for a
massive number of intelligent physical objects. In other words, it is a new network
of things that extend IT systems to physical environments in order to form a
globally connected heterogeneous network of smart objects [1]. This has ushered
in the era of smart connectivity, where the power of computing has moved from
desktops to pockets and wearable devices [2]. One of the main driving factor for
the rapid adoption of the IoT is the miniaturization of hardware. This has enabled
the mass production of these smart objects and has also led to its affordability.
The potential of IoT technologies and services has prompted wide interest across
the globe in the adoption of IoT applications. IoT technologies have been applied
to several critical infrastructures, in particular, to devices which are used in smart
homes, smart cities and operational technologies [3]. The accumulative effect of this
massive connectivity and wide applicability is the surge of data (over 60 ZB data by
2020) at the edge of the network. The explosion of data accounts for about nine
trillion USD economic impacts [4, 5]. The big data generated from IoT devices can
have a potential influence on people’s day-to-day activities such as offering huge
profitability and improving quality of life. At the same time, the surge in the traffic
from IoT applications increases the potential danger of cyber-attacks as the IoT
come with unseen protocols, work flows, interfaces and applications.

Centralized platforms such as cloud suffer from scalability and high delay in
data collection, communication and suffer reaction time for IoT applications. Due
to this, the ability to leverage embedded intelligence in distributed IoT network is an
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essential architectural component [6, 7]. This necessitates to extend the cloud to a
cognitive and distributed network known as fog computing (FC). FC is an emerging
architecture of distributed computing [8] that pushes the cloud to the edge of the
network for efficient data collection, computation and control, communication and
networking, data access and storage [9]. It is a horizontal distributed architecture
that distributes the services and resources closer to the origin of the data. FC differs
substantially from edge and mobile computing in data processing mechanisms, and
the location of intelligence and computational power. It is the push of centralised
computing towards the edge of the network, particularly wireless networks, to solve
the limitations of the cloud. The emerging usage of FC, however, is not to replace
the cloud, but it complements the cloud by bringing intelligence into distributed
fog nodes. The FC architecture provides a cloud-to-things continuum which caters
for latency, bandwidth and the communication requirements of next generation
networks [10]. In addition to controlling and managing the massive amount of IoT
data as a mini-cloud at the edge, FC provides a layered architecture as a cloud-to-
things continuum for big data storage and analytics.

FC enables the delivery of new types of services closer to the IoT. As it
confines data movement, storage and processing to the edge of the network, it
offers scalability and low latency for real-time systems [11]. IoT applications
benefit from FC services in offloading computation and storage services, and in
communicating with nearby nodes for service delivery. In such networks, obtaining
networking services from nearby nodes guarantees the IoT urgent response time for
supported real-time applications, while delegating closer nodes for computation and
storage facilities helps the smart applications to be resource efficient. As it is closer
to clients, FC supports IoT applications that leverage artificial intelligence (AI),
such as augmented and virtual reality. It is an ideal paradigm for next-generation
networks that support the convergence of IoT, 5G and AI applications The shift from
centralisation, such as the cloud, to fog networking has also been necessitated by
other unique features and advantages in the IoT, such as mobility support, location
awareness, scalability, heterogeneity, low latency, and geographic distribution [12].
Because of this, smart city applications such as smart grids, smart transportation
and health care systems benefit greatly from fog computing as it provides embedded
and distributed intelligence for IoT in data collection and resource utilisation. This
reinforces that FC is an ideal architectural element in the application of IoT security,
especially cooperative intrusion detection system.

2 Intrusion Detection for IoT-Fog Computing

2.1 Significance

Cyber-attack detection systems lay a major role in monitoring networks [13]
and systems because controls such as cryptographic access controls alone cannot
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provide the required level of security against the ever-evolving cyber-attacks.
This is due to the fact that these systems are limited by aging and design and
implementation flaws.

Traditional Internet attack threats and their variants continue to be the major
threats for the IoT-Fog computing [14]. The focus of Internet attacks is data
manipulation whereas IoT-Fog attacks target controlling actuation. With limited
protection, IoT devices are targeted in massive-scale and simplicity than traditional
Internet devices. The origin of the attacks could be external adversaries that
intend to gain access to the internal network or insiders that have the motive
and opportunity to misuse, attack or steal information. The impact and treatment
of IoT vulnerabilities is different from the traditional Internet due to resource
limitations. The vulnerability of IoT devices can be at the network, device, interface
or infrastructure level [11].

With their increased popularity, the adoption and use of IoT applications
are highly susceptibility to security attacks [15]. The security of IoT devices
is of particular significance as the technology was envisioned without security
considerations [11], and the devices are largely engaged in sensitive data collection
about humans, critical infrastructures, government secrets and businesses [16].
These assets and infrastructures are an attractive target for state espionage, denial
of service, identity theft, fraud and other disruptive attacks. For instance, the
cardiovascular measurements of patients can be monitored in real-time by IoT
devices integrated in pacemakers, which is extremely sensitive information in terms
of privacy, should the readings come under a cyber-attack. IoT attacks can also
escalate to massive devices in the IoT network which can be further hired as a botnet
for attacks such as DDoS, ransomware, and data ex-filtration. Therefore, these are
indications that the IoT environment opens a completely new challenge to security
as cyber-attacks propagate from the digital to the physical world.

The importance of securing IoT devices can be witnessed from the recent cyber-
attacks on several applications such as the manufacturing industry, connected cars,
Internet service providers and eHealth systems. For instance, in an industrial IoT
application, a German steel plant experienced a serious cyber-attack that caused
significant damage to the production system in 2014 [17]. This attack shows that
hackers can succeed in damaging industrial systems [18]. In connected cars, the
exploitation of vulnerabilities in the Jeep SUV firmware enabled hackers to hijack
its multimedia system over the cellular network in 2015. This incident has serious
implications for security controls in smart transportation systems [19]. Furthermore,
in 2016, the DNS service provider, Dyn, was attacked by a massive DDoS attack
using an IoT botnet as a vector [20–22]. Thus, these security issues motivate the
investigation into securing smart devices by employing IoT security controls.
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2.2 Resource, Scalability and Algorithms Requirements

A secured system guarantees the principles of the widely applicable information
security model, namely, the CIA Triad [23] (Confidentiality, Integrity and Avail-
ability).

IoT security, however, prioritizes a new Triad named AIC (Authentication,
Integrity and Confidentiality). Since security breaches are inevitable despite the
mitigation technologies in place, continuous monitoring and detection systems are
equally required. These IoT security requirements are complex and competing in
nature because of the limited resources, massive connectivity and distributed nature
of these devices. Hence, the problems of securing IoT applications against cyber-
attacks are resource constraints, a lack of scalable architecture, and a lack of existing
accurate and robust solutions.

The Resource Constraints Problem An exponential increment in the number of
heterogeneous IoT devices increases the likelihood of cyber-attacks in various forms
and targets. Nevertheless, IoT devices lack support for the evolving and complex
security mechanisms such as cryptography and intrusion detection systems due to
resource constraints. These small devices cannot compute complex cryptographic
elements [24] for device authentication, data confidentiality and deep packet
inspection as they are built with limited processors and memory. The same is true for
intrusion detection systems, which consume massive storage and processing power
for the real-time monitoring and detection requirements of IoT devices. For instance,
the meter of a smart grid microcontroller has no capability of computing traditional
Internet cryptographic and performing continuous monitoring of intrusion detection
operations. Thus, less resource-demanding cryptosystems should be adopted to
reduce message size in storage, transit and computing.

The Architectural Scalability Problem IoT systems lack well-established comput-
ing models unlike traditional networks that make use of the client-server model.
However, as a client-server standard model, traditional security solutions such as
cloud-based security functions and services cannot be implemented for massive-
scale and distributed IoT devices due to high latency, bandwidth inefficiency and
a lack of scalability. Fog-IoT communication is predominantly at edge i.e. adhoc
communications. These kinds of traffic should be kept to the edge as much as
possible. Sending traffic to the cloud suffers from costs such as communication,
latency, etc. So, traditional cloud computing need to be extended to the edge to
serve the purpose of the IoT. It is impractical to manage the real-time monitoring
of billions of IoT devices using the remote cloud. For instance, in smart grids, the
deployment of smart meter microcontroller security schemes on the cloud incurs
significant overheads. In the IoT environment, most of the produced traffic is not
transmitted to the cloud but is rather consumed at the edge of the network. This
indicates that there is a strong requirement for a distributed intelligent security
architecture to offload security operations as centralized security schemes become
inscalable for heterogeneous IoT networks.
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A Lack of Existing Accurate and Robust Intrusion Detection Systems Intrusion
detection systems, such as signatures and rules, have been proposed by several
re-searchers [25, 26]. In addition to the human effort invested in updating sig-
natures/rules, these static systems have already failed to detect novel attacks.
Furthermore, anomaly detection systems using a machine learning approach have
suffered from low accuracy and lack robustness under adversarial attacks. Adver-
saries attacks can change the state of intrusion detection systems that build on the top
of machine learning, specifically traditional neural networks. However, advanced
machine learning algorithms have emerged in other fields such as image processing
that are robust against perturbations from adversaries. However, traditional ML
schemes fail to protect from ever-evolving cyber-attacks.

To sum up, the traditional heavyweight cryptography elements and intrusion
detection systems, and the current architecture of securing the Internet is far from
delivering the security of the IoT. Thus, there is a need to develop a new lightweight
security framework which can efficiently run over the large-scale deployment of
small IoT devices.

2.3 Challenges and Limitations of the State-of-the-Art IDS for
Fog-to-Things Computing

The construction of a resilient IDS is one of the network security challenges faced by
organizations and industries despite the advancement of detection techniques [27].
These challenges include decreasing the high false alarm rate (FAR), the detection
of novel attacks, the lack of training and test data and dynamic network and system
behaviours. These challenges are some of the reasons for the continued widespread
use of inefficient and inaccurate signature-based solutions and the reluctance to
adopt anomaly-based systems. Thus, as an additional layer of defence to thwart
cyber-criminals, effective and robust IDSs should be deployed to monitor malicious
activities in real-time for IoT applications. IDSs for the IoT in particular, should be
characterized by:

• fast and accurate detection for a timely incident response and recovery with less
damage

• deterrence of attacks, acting as prevention systems
• logging of intrusion events for future prevention

However, the detection technologies for IoT devices are challenged by:

1. big data- increased connectivity, mainly due to the fact that the IoT needs a high
response time for processing and detection of big data volume.

2. depth of monitoring- high accuracy of detection requires deep pattern extraction
and attribute extraction.
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3. heterogeneity of data and protocols-heterogeneity introduces complexity of
discriminating an attack from normal behaviours.

As a technique of intrusion detection, ML has been applied for cybersecurity appli-
cations for over a decade [28]. For instance, spam/phishing detection has extensively
used ML techniques where a trained ML classifier distinguishes whether a given
email is spam or not by learning from a database of manually labelled emails. As
part of the detection process, textual-based content features and meta-features such
as message size, IP address and the presence of attachments are extracted from the
email to be discriminated as either spam or benign. The classifiers can be classical
machine learning classifiers such decision trees (DTs), as support vector machines
(SVMs), and artificial neural networks (ANNs). Furthermore, ML has been applied
to static malware detection (before execution) using structural information such as
the sequence of bytes. Dynamic (during execution) malware detection leverages
runtime statistics such as network usage patterns. The classification of malware
usually involves feature extraction using n-grams and portable executable (PE).
The obtained features can be used as the input of machine learning algorithms for
malware detection [29]. Therefore, ML has wide application to intrusion detection
systems.

However, the practical usage of ML have been impeded due to the extensive
human power required for feature extraction [30]. Though feature extraction
constitutes a significant overheads (approx. 80%) of IDS efforts, the engineered
features fail to accurately reflect the true patterns of training data [31]. It is likely that
these human crafted features miss essential features that help in intrusion detection.
This may lead to less scalable, slow and less accurate attack detectors on big data.
This means traditional ML struggles to capture the evolving face of cyber-attacks
due to incorporated human errors in the process of feature engineering. Furthermore,
most zero-day attacks are slight mutants of the previously known threats (approx.
99% the same) [32]. The so-called new attacks (1%) are derived from the [33]
already known vectors using similar logic and concepts. Traditional ML algorithms
face difficulty in recognizing mutants, mainly for their incapability of extracting
deep and abstract features. With the increased power and resources of attackers,
traditional ML algorithms are too shallow to detect evolving and complex cyber-
attacks. These problems have hindered the adoption of the specific anomaly-based
detection of ML to penetrate into security market. This has led to stick with the
inaccurate signature-based solutions. Therefore, it is essential to investigate a robust
technique for learning such as deep algorithms for the application of intrusion
detection.

2.4 Leveraging Fog Nodes for IDS

Despite its huge advantages, the centralised model of the cloud cannot satisfy
the requirements of data collection, processing, storage and sharing for distributed
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services and applications such as IoTs [34]. The application of cloud computing for
the security of the IoT forms a far apart IoT-Cloud communication architecture that
consists of IoT on the users side and the cloud at the remote site. As the distance gap
is large between things and the cloud, this two-tier architecture of cloud-to-things
computing is not scalable and suffers from a large delay for IoT-based applications.
This could be aggravated by the increase in the number of IoT devices, which
necessitates an architectural change in the way data processing, storage, control
and communication can be handled on the Internet. The architectural arrangement
should consider the resource-constraint nature of IoT devices which needs to offload
data storage and processing to nodes in proximity [35]. This indicates that the
cloud should be extended towards the IoT to form a distributed layer between
smart objects and the cloud to monitor resource management and to control IoT
devices more closely. The requirements of IoT applications such as latency, location
awareness, mobility and resource constraints could be solved using the newly
formed distributed architecture formed by pushing the cloud towards the edge.
To this end, one of the emerging architectures that supports these requirements is
known as fog computing.

The consideration of appropriate network architecture is as important as selecting
suitable security algorithms [36]. The individual node security and perimeter
security schemes of IT devices cannot be adapted to IoT security because of
processing and storage limitations. Simultaneously, the lack of scalability and the
remoteness of centralized-cloud hosted security mechanisms cannot satisfy specific
requirements such as delay sensitivity and bandwidth efficiency [37]. Such schemes
were designed for the traditional Internet where hosts are sparsely connected
with sufficient storage, processing and communication resources. It highlights that
neither security approaches are suitable for the IoT with limited resources and
because they are massively connected to support real-time applications [38, 39].
Apart from offloading computations and storage from both things and the cloud, a
fog-based security mechanism seems to be scalable and distributed in the ecosystem
that quickly recognizes attacks or suspicious behaviors before escalating to the
end devices. This is a crucial property for a fast incident response in IoT without
service disruptions, especially for industrial IoT with real-time mission-critical
applications. For instance, the service interruption by DDoS on smart grids and
connected vehicles can be detected on nearby fog nodes without disrupting the
power grids and the car engines, respectively. suspicious events and threats from the
Internet are more quickly deterred at fog network than in the cloud, which makes
FC-based IDS appealing for critical infrastructures.

2.5 Fog Computing IDS Architecture

One of the most important design and implementation aspect of IDS is to choose
an architecture that shows the distribution of IDS components. Though evolving
continuously, architecturally, there are mainly three approaches of implementing
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Table 1 Resource overheads and scalability of IDS architectures for fog computing

Design approach Processing Storage Communication latency Scalability

Things-fog-level Medium Medium Low High

Fog-cloud-level Low Low High Medium

Things-fog-cloud-level Very low Very low Very high Medium

IDS for IoT in fog computing: Things-fog-level, Fog-cloud-level and Things-fog-
cloud-level. The resource usage and scalability of each approach is depicted in
Table 1.

Things-Fog-Level IDS Approach Fog-level is more powerful than things-level
in processing, storage and communication resources. Leveraging fog nodes-level
together with IoT devices in implementing IDS can bring about a significant
efficiency in utilization of resources, response time and threat detection capabilities.
This is due to the fact that IoT devices have host-level visibility while the fog
nodes have subnetwork-level control and visibility. For instance, IDS monitoring
systems in each fog node can collect IoT traffic for malicious event detection which
they can share with their neighbourhoods. This brings about intelligence sharing
for accurate threat hunting and detection in exchanging AI models and parameters.
This architecture is promising in saving resources, fast detection and low false alarm
rates, specifically if there is a mechanism of horizontal cooperation among fog nodes
[40]. As technological advancement progresses, this architecture will reasonably
enable efficient use of computing, processing and communication resources at
the edge of the network. Thus, it provides low latency in detecting suspicious
behaviours in the IoT network, which is essential for fast incident response (Fig. 1).

Things-fog-level IDS is appropriate for monitoring and logging IoT traffic
applications to detect misuses of login and access control policies. The main
drawback of this approach is that it is heavy for fog nodes to perform traffic
monitoring and intrusion detection at the same time for massive-scale IoT devices.
This inculcates that the number of IoT devices monitored under a single fog
node should be optimized. As the things-level cannot handle heavy tasks, it also
needs a careful design in distributing IDS functions and operations across things-
fog nodes. On the other hand, the lack of global network view by the IDS of
this architecture can significantly impact the detection rate as it lacks a holistic
contextual knowledge. Finally, it is likely that the architecture fails to discover
internal attacks if much of the IDS functions reside in fog nodes.

Fog-Cloud-Level IDS Approach This approach includes IoT layer to fog envi-
ronment, and distributes IDS functionalities across fog and cloud levels [41]. The
fog level can be leveraged to detect anomalies based on machine learning models.
This enables to quickly identify suspicious events before propagating to critical
infrastructures. Distributing intrusion detection model across local fog nodes can
be taken as a technique of offloading overheads of computing and storage from
resource-constrained devices [42]. Simultaneously, fog nodes can share machine
learning models and parameters for sharing local experiences. The second level
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Fig. 1 Things-fog-level architecture

can leverage the cloud in complementing IDS operation by performing intrusion
classification or clustering. The scheme provides higher capacity of processing and
storage than the Things-fog-level IDS Approach. In addition, it provides higher
privacy protection and global network view. This architecture can be deployed to
detect cyber-attacks such as scanning and DDoS as it is equipped with tremendous
resources. However, it offers relatively lower response time than the same approach.
This indicates that distributed intrusion detection mechanism is more scalable and
accurate, and efficient than the cloud approach alone in terms of response time,
communication bandwidth.

The architecture is vulnerable to internal attacks as there is no IDS function at
IoT level. Nevertheless, there is no way to detect encrypted traffic as the things are
without any IDS.

Things-Fog-Cloud-Level IDS Approach Intrusion detection can be distributed
on three nodes [43]: cloud, fog and edge. The cloud might be responsible for
heavyweight functions such as clustering network traffic and training detectors as it
is equipped with sufficient resources while the fog level deals with the analysis of
alerts. The pre-trained models on the cloud can be deployed on the edge devices to
detect malicious events for IoT applications. As things are located at the periphery,
the resource efficiency and performance of this approach might lie between the
approaches of Things-fog-level and fog-cloud-level IDSs. The global orientation of
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Fig. 2 Things-fog-cloud-level architecture

the cloud, and the distribution of the fog will make this approach of IDS deployment
to have a complete picture of the network. As IDS can be deployed at IoT level, it
is extremely useful to detect malicious encrypted traffic. While this approach can
provide improved accuracy, detection time, and efficient use of resources it might
complicate the design and implementation of IDS. Despite its complexity, three-tier
IDS architecture is reliable and secure for fog computing (Fig. 2).

However, the distance of the cloud can expose data communication for security
and privacy threats. It is also complicated to coordinate the IDS functionalities
distributed across three tiers.

3 Emerging Trends and Enablers for Detecting Intrusions in
Fog-to-Things Computing

This section discusses the background and theories of emerging technolo-
gies/mechanisms such artificial intelligence and fog computing which are used
in building the intrusion detection system in fog-to-things.

3.1 The Emergence of Deep Learning for Cyber Defense

ML is a field of AI that deals with the mechanism of learning from data. The
prevalent machine learning algorithms include linear regression, decision trees,
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naive-Bayes classifier, logistic regression, SVMs and ANNs [44]. Deep learning
(DL) is an advanced machine learning scheme, consisting of deeply layered neural
networks(NNs) through which hierarchical and automatical features are learned. It
is a ML scheme with several hierarchical layers of complex non-linear processing
stages to model complex relationships using multiple levels of representations.
DL is a recent breakthrough in ML that mimics the ability of human brain to
learn from experience. Similar to the capability of human brain to process raw
data using neuron inputs in learning the high-level features, DL enables input
data to be fed into deep NNs for hierarchical feature extraction, training and
classification [45]. It has a capacity of stabilizing and generalizing model training
on big data [46]. The algorithms can discover complex functions mapping input into
output without manual human expert intervention. DL algorithms have benefited
from the advancement of hardware technologies (e.g. GPU) and algorithms (e.g.
deep neural networks). The generation of a massive amount of learning data has
also significantly contributed to this evolution as observed in globally dominant
companies such as Google and Facebook.

Several deep learning applications have flourished in the field of big data such as
image classification, object recognition, natural language processing and computer
vision [47]. While large global companies such as Google, Microsoft, and Facebook
have already embraced deep learning and have embedded it into their products, the
cybersecurity industry is lagging behind in applying this technology to safeguard
businesses and products. The success of DL in various areas can be adopted to
solve the limitations of traditional ML in combating cyber-threats. For example,
mutations due to attacks can be small, for instance, changes to image pixels. This
means that DL can bring cybersecurity to a next level by discriminating even small
variations of cyber-attacks. Because of the massive amount of data generated by IoT
devices and systems, deep learning methods are highly effective in detecting and
analyzing intrusions to IoT systems. It has been shown in traffic classification and
IDS [40] applications. Hence, the capability of DL in compressed and automatic
feature engineering and self-learning empowers IDS in resource efficiency, high
cyber-attack detection rate and quick detection.

3.2 The Need for Autonomous Cyber Defense

There are several ongoing efforts in academia to bring the success of ML in various
fields to cyber security applications. In adopting ML as an underlying technology,
cybersecurity can harness the potentials of ML in numerous applications. Malware
detection is probably the most prominent application of ML [48, 49]. Network
anomaly detection [50] is another widely researched area of ML in cybersecu-
rity. ML is also the backbone technology behind the newly emerged biometric
authentication for network and mobile security [51]. The ultimate goal of these
efforts is to improve the security posture of industries, businesses and governments
by effectively assisting security experts in distinguishing malicious activities from
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normal network profile at machine speed in big data. This enables to save the time,
efforts and cost in making decisions of segregating normal network data from cyber-
attacks.

While tremendous achievements have been made in applying ML to cyberse-
curity, there is a large vacuum to fill the gaps of research in bringing autonomy
cybersecurity [52]. The existing ML based security systems have made massive
progress in predicting and classifying cyber-attacks using network traffic. However,
the slow in speed, and the limited in knowledge of human loop fail to make rapid
actionable decisions on the outputs of ML models. To solve this issue, and improve
a security posture, ML should be given a permission to take actions and decisions
to respond to cyber-attacks at machine speeds. Despite technical and administrative
challenges, autonomous and intelligent security systems using AI will revolutionize
the security of all sectors.

Classical ML algorithms are constrained by the steps of decisions made to solve
a problem [53]. While some problems are a sing-step in nature, others required
multi-steps to be solved. The multi-step decision process calls for learning systems
which provide feedback, particularly reinforcement learning. Reinforcement learn-
ing functions without labelled data (unlike supervised learning), however, it also
requires feedback to guide the algorithm (unlike supervised learning). This means it
is a semi-supervised learning scheme that needs to understand the consequence of
its actions to reinforce the behaviour (positive or negative) to continuously learn to
react to its environment. In the efforts to improve a security posture of organisations
and governments, embracing autonomy enables to reduce human loops from the
security in taking actions and decisions. Reinforcement learning fits perfectly in
line of making autonomous decisions in cybersecurity, especially to detect and
defend cyber-criminals. Apart from automatic learning like other ML algorithms,
it provides algorithms that learn policies of next system/network profile from the
observable state of systems/networks. This enables to learn automatically over
historical data from past experiences in various actions, conditions and settings
using feedback signal to adapt to previously unseen conditions.

With the prevalence of machine learning such as reinforcement learning in
playing games, cybersecurity is massively benefited from the autonomy of AI
applications. Like playing games, autonomous cybersecurity requires experience
gathering, opponent defeating and measurable rewards. In a dynamic network,
observing the normal network profiles at various points in time, reinforcement
learning can learn general policy about the state of the network through Markov
Decision Process (MDP). As a multi-step problem solving process, MDP can be
defined using four components: state-space, action-space, reward function, and
discount factor [54].

Observation Space: Commonly known as the state space, this describes what
the reinforcement learning agent can see and observe about the world to use in its
decision-making process. In the course of learning to solve a problem, observable
relevant features or everything monitored by the algorithm to decide is determined
state-space. Actions: This is a set of actions the agent can choose from and execute
as part of its policy. In other words, it is the set of actions and conditions under
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Fig. 3 Iterative reinforcement learning decision cycle

which an algorithm can be used. Reward Signal: This provides both positive and
negative reinforcement to the agent and informs the learning algorithm as to whether
actions are leading to favourable or unfavourable outcomes. The reward function is
the feedback signal the algorithm uses to learn and optimize policies. After receiving
a reward as a consequence of an action, the change in the environment enables to
update the policy and maximize the reward for future actions. The Discount Factor
specifies the value of long-term vs. short-term rewards.

As shown in Fig. 3, an agent is responsible for updating and optimizing the
security program and function of a network. For instance, the agent can perform
actions, such as scans, logging, monitoring and classifications. Referring to its
policy and observed current state of a network, the agent can decide on the bets
next course of action at any given time. The actions taken from the observation,
learned from prior experiences, will be a new experience for the next observation,
and it is used to update a policy. The feedback is applied as a positive or negative
reward in improving the security posture of the network in iterative manner. Hence,
reinforcement learning algorithms can adapt to, and autonomously solve complex
long-term unseen problems of network security in dynamic environment.

MDP can be formulated by 5-attributes consisting of state at time t t (st ), an
action at time t (at ), state probability transition at time t (P (st + 1|st , at ), discount
factor γ and reward function at time t (rt ). The objective function is to come up with
the appropriate action to be taken at each state (i.e. produce an optimal policy π∗)
to maximize the agent’s reward over long period of time).

As a common reinforcement learning algorithm, Q-learning is a temporal
difference learning that uses recursive algorithm to estimate a value function. It
works by forming a Q table in which states form rows and actions represent
columns. The quality function Q(s,a) estimates the maximum overall reward r the
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agent obtains in the state s and performing the action a to transit to next state s
′
. The

solution to the Bellman equation Q(s, a) = r+ γ maxaQ(s
′
, a

′
) provides the value

of Q(s,a) for all states and actions. This means Q(s,a) converges to optimal quality
function Q∗(s, a) after a random start by iterating the Bellman equation. Practically,
however, the derivative form of the Bellman equation, known as temporal difference
learning function, is used in updating the Q value to Q’, where α(0 < α < 1) is a
learning rate and γ (0 < γ < 1) is a constant for immediate or delayed reward.

Q̂(s, a) ← (1 − α)(Q(s, a) + α(r + γmaxaQ(ŝ, â))

RL solves complex problems which requires continuous and real-time learning,
particularly for mitigating the evolving cyber-attacks. It is ideal for cybersecurity
IoT security domains where construction of security learning models is challenging
due to real-time prevention and detection requirements. However, as in other
machine learning algorithms, RL suffers from curse of dimensionality to be
deployed on a single node as learning agents and spaces increase in real-time. With
the advent of deep learning, the curse of dimensionally is significantly reduced for
learning from IoT traffic as it provides representation learning with hundreds of state
features and actions. This enables, at least partially, to automatically learn policy
generalizations from a massive state-space of cyber-domain. Further scalability can
be achieved from devising a novel architecture that enables to learn locally, but
exchange experiences using coordination. In this regard, the distributed fog nodes
significantly reduce the need to train and monitor network traffic on a single node
such as cloud.

3.3 The Application of Federated Learning-Based Intrusion
Detection in Fog Computing

Federated learning is a decentralized and collaborative mechanism of training
machine learning models for increased the efficiency and confidentiality of the
training [55]. It assumes the existence of N nodes represented by Si , where i ∈
[1, N], each having training data Di . Each node Si locally trains on data Di to
produce a model Mi t with a performance of Pi . In federated learning, all nodes
jointly train a model Mf with a performance of Pf where there exists i ∈ [1, N ]
such that Pf > Pi .

Intrusion detection system could harness the benefits of FL if blockchain is
leveraged as an underlying distributed system to securely and transparently store
and exchange ML model updates. The combination of FL with blockchain concept
provides auditable, reliable and traceable jointly-learned ML models [56]. In
fact, the distributed immutable ledger property of the blockchain can provide a
mechanism of tracing ML parameter updates such as weights, gradients and models
to mitigate adversarial attacks that can evade or poison ML models. This means
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blockchain mechanism enables the integrity of incrementally-learned ML models
by cryptographically chaining a series of ML models.

FL can reduce the workload of training models on traditionally centralized
systems such as cloud by distributing computation, storage and communication
of learning. This architecture can be the next generation of anomaly detection
mechanism for resource- constrained environments, specifically IoT-fog computing.
Deep FL has been investigated for anomaly detection in system logs [57]. It has
been indicated that FL minimizes the volume of data storage and movement in both
decentralized and centralized systems, which significantly reduces the chance of
data security and privacy. However, the it requires extensive studies to prove its data
leakage resistance [33], effectiveness, efficiency and performance as the area is new
to the scientific community.

4 Deep Learning-Based Intrusion Detection Schemes for Fog
Computing: A Use Case

4.1 Architecture

This section showcases distributed IDS using deep learning scheme.
Fog nodes cam be leveraged to locally train ML models that can monitor IoT

applications for suspicious events. The nodes can periodically exchange parameters
to jointly establish the best model by model averaging via coordinator node/server.
The coordinator node is used as a point of parameter and experience exchange
among the fog nodes as it is prohibitively expensive in communication and
processing to adopt peer-to-peer architecture in IoT environment. In this case, the
diversity of IoT devices under the control of diverse fog nodes plays a pivotal role in
providing different local observation. The result is that the coordinator has a better
knowledge of the current state of the whole IoT-Fog network though each node is
better aware of the local situations. Under this assumption, the coordinator agent
learns whether or not to alarm, or take defensive action. With certain degree of
accuracy, a fog node can take offensive action such as closing ports of attack or
disabling an IoT device. The topology of the proposed IDS is depicted in Fig. 4. It
consists of a fog node and IoT devices. Each fog node monitors IoT devices under its
control, and receives only partial state of the global IoT network to make decisions.
The hierarchical level consists of h tiers (in our case, it is 2 i.e. IoT-fog-Coordinator).
Thus, the number of IoT devices under a coordinator node is

∑h
0 nh−1.
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Fig. 4 Deep model-based attack detection architecture for fog-to-things communication

4.2 Algorithms

The proposed self-taught system has two learning modules and a classifier which
aims at:

1. Reducing dimensionality for lightweight IDS construction
2. Accelerating training and detection
3. Improving the accuracy of detection

Stochastic gradient descent (often abbreviated SGD) is an iterative method for opti-
mizing an objective function with suitable smoothness properties (e.g. differentiable
or subdifferentiable). It can be regarded as a stochastic approximation of gradient
descent optimization, since it replaces the actual gradient (calculated from the entire
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data set) by an estimate thereof (calculated from a randomly selected subset of the
data) [58]. The training and aggregation algorithms are adopted from sequential
SGD for distributed fog network. Having initial training weights Wn , a learning rate
α and bias parameters bn, DAT Atotal is the total data space across all distributed
m nodes. This means data on a given fog node DAT A1,DAT A2, . . . , DAT Am

are subsets of DAT Atotal . The local data DAT Ai on the given fog node can
be further divided into DAT Ai1 ,DAT Ai2 , . . . , DAT Ais samples. The DAT Ais

samples on each fog node is further be split into DAT Aisc on processor threads nc.
Algorithm 1 shows local training and model/parameter updates on each fog node
while Algorithm 2 reveals the aggregate function at the coordinator node.

Algorithm 1 Local-learning ( α, nreceive, nsend )
step=0
While TRUE

If(step % nreceive ==0 )
then get-Paramaeters (parameters)

data ← get-minibatch (k ∈ data)
sgd ←compute-sgd (parameters, k)
update weights Wji := Wji − α

αL(W,b|j)
αWji

update bias bji := Wji − α
αL(W,b|j)

αbji

If(step % nsend ==0 )
send-Paramaeters (ΔWji , Δbji)

Algorithm 2 Aggregate ( p1, p2,. . . , pn,nf og)
receive p from all nf og nodes
updated parameter=compute 1

nf og

∑nf og

i=1 pi

send the updated p to all

As shown in the training algorithm, the coordinator server broadcast initial
random parameters to other nodes for training. Each node runs multiple threads
that are aggregated at master thread. The coordinator, finally, receives update from
the master thread of every node asynchronously. The algorithm shows the process
of local intrusion detection that is orchestrated by the coordinator server.

4.3 Evaluation and Discussions

The primary requirements of an attack detection system in modern networks are
automatic feature extraction and high accuracy of detection. We conduct experi-
ments using two forms of semi-supervised cyber-attack detection in our system on
the NSL-KDD dataset: the AE model and DBN model. In both cases, unsupervised
abstract feature extraction is used from unlabeled data using the technique of pre-
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training. In these self-taught schemes, the pre-training process only considers the
unsupervised extraction of features in the half symmetry (encoding) of the encode-
decode scheme. This arrangement aims to decrease the computational cost for
training and detection while delivering almost the same accuracy as the encode-
decode process. The other approach incorporates the supervised learning approach,
in particular, the LSTM model. All the unsupervised models use shallow learning
systems as the end layer for classification. The rationale behind the choice of these
algorithms over other is their effectiveness in other fields, and their ability to produce
lightweight features for the resource-constrained IoT environment. The comparison
of the deep models is with classical machine learning models such as softmax alone
and random forest. It is also essential to discuss the implications of the obtained
results.

The AE Model In the experimentation phase, the deep learning package Keras
on Theano and the distributed processing framework Apache Spark [59] are
combined to implement the system Fig. 6. The first learning module in our training
procedure gives optimal parameters for the second module as can be seen from
the steps involved in our attack detection system in Fig. 5. First, m unlabelled data
x

(1)
u , x

(2)
u , x

(3)
u , . . . , x

(m)
u ∈ Rn are extracted from the training data by removing

the labels. These samples are input to the unsupervised module to learn the
optimal parameter set such as weight W, and bias b (as shown in Fig 5). Then,
m labelled train data {(x(1)

l , y(1)), (x
(2)
l , y(2)), (x

(3)
l , y(3)) . . . , x

(m)
l } ∈ Rn are fed to

the supervised module to produce reduced and latent representation of the same data
as {(h(1)

l , y(1)), (h
(2)
l , y(2)), (h

(3)
l , y(3)) . . . , h

(m)
l } ∈ Rn through the reconstruction

of the output values {(x(1)
l , y(1)), (x

(2)
l , y(2)), (x

(3)
l , y(3)) . . . , x

(m)
l } ∈ Rn. At this

stage, AEs extract layer-wise hierarchical and discriminatory features, which enable
the model to learn the complex relationships in the data. The module learns features
from d-dimensional input vector x ∈ Rd to map to latent representation hi ∈ Ddi

using a deterministic function:

hi = σ(Wi.hi−1 + bi); i = 1, n (1)

where σ is activation function and n is the number of hidden layers.
The second module enables the original input data to be substituted with

vectors of activation h
(m)
l . The training set becomes {(h(1)

l , y(1)), (h
(2)
l , y(2)), (h

(3)
l ,

y(3)) . . . , h
(m)
l }. Finally, the dimension-reduced input set is applied to Softmax to

obtain the prediction functions. The test data passes through the same procedure as
the training data in the module 2 for prediction/classification (Figs. 6, 7, and 8).

We compared our AE-Softmax with single-Softmax and single-RF using binary
classification as shown in Table 2. Accordingly, the best accuracy of the proposed
distributed deep learning model is observed to be 99.20% while the single-Softmax
and single-RF have a best accuracy of 97.22% and 84.57%, respectively. In the same
experiment, the detection rate of the deep learning mode is superior to its shallow
counterparts. It is also observed that our model outperforms both the single-Softmax
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Fig. 5 Block diagram of the proposed AE based attack detection

Fig. 6 AE model training and test curve on 2-class NSL-KDD dataset in distributed settings

and RF in FAR as shown in Table 2. The ROC curve of a shallow model (RF model)
lies below that deep model with higher number of FARs.

The DBN Model As in the case of AE, the features are learned by layer-wise
pre-training using RBM to provide the initial weights. The learning step involves
the adjustment of network weights in the hidden successive layers of RBM. After
initializing DBN from the weights obtained in the pre-training phase, iterative global
parameter adjustment (fine-tuning) is accomplished by a backpropagation algorithm
in training the whole network. The weights obtained through this process enhance
the discrimination capacity of the model. Cross-entropy is used as the loss function
in this unsupervised fine-tuning phase, and regularization techniques are applied to
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Fig. 7 Comparison between DL and SL in detection time in distributed settings

Fig. 8 Comparison between DL and SL in training time distributed settings

solve the problem of over-fitting. The fine-tuning stage ends with trained model and
weights for classification purposes. The classification task inputs the last hidden
layer k to discriminate the network traffic into normal/attack or normal/multi-attack
classes. In relation to performance measures, unseen test data are chosen to represent
zero-day attack detection. The training curves of the accuracy of the algorithm are
shown in Fig. 9.

As shown in Table 3, the detection accuracy of DL is better than classic ML
model. Though there are performance differences among various deep models, they
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Table 2 The performance of AE-softmax vs Single-Softmax Model on 2-class NSL-KDD
dataset in standalone and distributed settings

Algorithm Detection rate (DR) False alarm rate (FAR)

Distributed AE-softmax 99.20 0.80

Single-softmax 95.22 6.57

Single-RF 84.57 15.43

Standalone AE-softmax 97.72 2.28

Fig. 9 DBN accuracy on NSL-KDD dataset in distributed settings

Table 3 Performance of deep vs shallow models of DBN on 2-class NSL-KDD dataset in
standalone and distributed settings

Algorithm Detection rate (DR) % False alarm rate (FAR) %

Distributed DBN-softmax 99.78 0.22

Standalone DBN-softmax 97.95 2.05

AE-DBN-softmax 99 1

achieved better performance than the centralized model. For instance, in binary
classification, Table 3 shows the FAR of the DL (0.22%) is much less than that of the
ML model (6.57%). In multi-classes, as shown in Table 4, the performance of DL
is also better than the normal ML model for most attack categories. For instance,
the R2L.U2R recall of the DL is 91%, while the traditional model has a recall of
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Table 4 Performance of deep vs shallow models of DBN on 4-class NSL-KDD dataset in
distributed settings

Model type Class Precision (%) Recall (%) F1 measure (%)

DBN-softmax Normal 99.52 97.43 98.47

DoS 97 99.5 98.22

Probe 98.56 99 98.78

R2L.U2R 71 91 80

Single-softmax Normal 99.35 95 97

DoS 96.55 99 97.77

Probe 87.44 99.48 93

R2L.U2R 42 82.49 55.55

Fig. 10 Performance of binary classification

82.49%. Similarly, the average recall of DL is 96.5% whereas SL scores an average
recall of 93.66% in multi-classification.

The LSTM Model As shown in Table 6 and Fig. 10, the overall detection rate
(99.91%) of the DL is over 9% higher than the ML (90%). It is evident that the high
values of precision and recall are related to low false positives and false negatives,
respectively.

The training and detection times of the LSTM model are also compared with the
LR model, as shown in Table 5. The average number of instances trained on the LR
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Table 5 Performance results of models on ISCX dataset

Algorithm Average instances trained per sec Average test instances per sec Memory space (MB)

LSTM 374.8 80.2 5.6

RF 54.3 1177.8 286

Table 6 The performance of LSTM vs RF on ISCX and AWID datasets in binary classification

ISCX dataset AWID dataset

Algorithm ACC Recall Precision ACC Recall Precision

LSTM 99.91 99.96 99.85 98.22 98.9 98.5

RF 90.92 99 89.11 84.87 90 85

model per second is 54.3 while LSTM required 374.6 training instances per second.
It can be seen that the training time od LSTM network is considerably greater than
training the LR model. Moreover, it has been observed LR model has detected
1177.8 instances per second while LSTM model has detected 80.2 instances per
second. However, the memory storage of the LR model is almost 50 times greater
than that of the LSTM model. This indicates the compactness features and models
of deep learning.

LSTM model has been compared with softmax in multi-class classification. It
has been shown that the overall detection rate of LSTM model (98.85%) is greater
than the rate of softmax (86%) similar to binary classification scheme (Table 6).

5 Conclusion and Further Research

IDSs have a significant importance for monitoring IoT systems against internal and
external cyber-attacks. The emergence of fog computing has brought about new
alternative distributed architectures for implementing IDS in the context of IoT
applications. The choice of an architecture in which IDS can be deployed depends
on the parameters such as resource efficiency, scalability and response time.

Pre-training has been effective in accelerating data training and attack detection.
For instance, the training times of SL are higher than DL, and increasing sharply
as the number of nodes increase while the training times of DL are almost constant
and below that of SL. Similarly, the detection speed of DL is less than that of SL
as the node increases. The experiment results show clearly that the reduction of
dimensions gained through pre-training techniques enabled to build lightweight IDS
as shown in Figs. 8 and 7, respectively. The results indicate that the deep learning
model is superior in detection accuracy, detection rate and false alarm rate over the
shallow model. In the proposed distributed and parallel learning approach, every
fog node trains its data locally using AE and shares the best parameters with the
other nodes via the coordinator node. The details of the architecture are depicted in
Fig. 4. The architecture enabled to contain training data to the edge which would
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have been trained on a single location, the cloud. It distributes storage, processing
and controls to local nodes so that each fog node can detect cyber-threats for the
nearby IoT devices while best model is exchanged via the coordinator node. As
shown in Table 2, the boost in accuracy of deep model could be a result of model
and parameter sharing among fog network computing nodes. This is compelling
evidence to show that the parameter-sharing approach results in the scalability and
increased accuracy of the detector compared to the standalone detector.

From the detailed analysis, it seems that things-fog architecture provides a
significant reduction in the latency of communication between IoT devices and
fog nodes for detecting suspicious events and cyber-attacks. Though it also enables
to offload computational and processing activities, it doesn’t offer a massive save
of the resources in contrast to the things-fog-cloud scheme. However, distributing
detection schemes across things-fog-cloud enables to save processing and storage
resources as the cloud offloads most of the operations. Nevertheless, this approach
complicates IDS design and incurs relatively higher latency of communication than
the first scheme.

With regard to improving IDS algorithms, a limited number of works in the
literature indicate that there is a strong need for lightweight IDS that can reduce
false alarm rate. In this regard, the things-fog architecture ideal in hosting learning
algorithms in such a way that fog nodes can share best parameters or models in
peer-to-peer or via coordinator.

It is wise to explore the application of blockchain-based fog architecture for
implementing IDS as it has a potential benefit of overcoming the poisoning and
evasion attacks of machine learning models. Technologies such as software defined
networking (SDN) can also provide a global view of fog networks by utilizing its
controller in cooperating fog nodes.
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On the Feasibility of Byzantine
Agreement to Secure Fog/Edge Data
Management

Ali Shoker and Houssam Yactine

1 Introduction

Fog and edge computing extend the cloud computing model by offloading some of
the storage and computation closer to the data source or user [5, 50, 57, 61]. This
is achieved through introducing extra storage and computing layers between the
cloud data center and fog/edge applications, often latency-sensitive. The benefits
are many: reduced response time, less bandwidth utilization, higher security and
privacy, among others [5, 56, 75].

In particular, security (and privacy) can be improved since data is kept close to
its source rather than being exposed to vulnerable environments all the way to the
cloud center. However, this form of isolation makes the fog/edge nodes prone to
data integrity problems due to potential malicious attacks or arbitrary faults usually
tolerated via replication, e.g., Byzantine fault tolerance [8, 42]. On the other hand,
applications that benefit from replicated or decentralized data across fog/edge nodes
have to face the challenge of data management in untrusted environments.

The need for trusted systems against malicious and arbitrary, a.k.a., Byzan-
tine [19, 41, 69], behaviors is gaining a lot of attention given the rise of the
blockchain technology. Beyond its prime application, i.e., cryptocurrency [48, 73],
blockchains proposed a generic solution to decentralized systems whose nodes are
not (all) trusted. This has recently caused disruption in several fields of computer
technology and economy [51], and revived a new wave of Byzantine fault tolerance
(BFT) research [3, 7, 9, 21, 35, 37, 43, 44], as traditionally known in academia for
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decades [8, 42]. This raises the question whether BFT and blockchain protocols can
be leveraged to empower fog/edge applications in untrusted environments.

A notable observation is that fog/edge computing and Blockchain technologies
introduce complementary security solutions and challenges. While fog/edge com-
puting improves the edge node security and privacy by reducing the attack surface,
i.e., through limiting the exposure to external edge domains, blockchain is geared
towards remote data access in untrusted environments.

In particular, blockchain ensures the integrity of the system against Byzantine
behaviors through employing some variants of agreement protocols to maintain
a total order on operations. This brings the classical CAP and PACELC theo-
rems [1, 22] tradeoffs between availability and consistency, which requires trading
one for the other in geo-replicated systems, where network partition-tolerance is
often impossible.

In this work, we shed the light on the feasibility of BFT/blockchain protocols
to fog/edge computing from a data management perspective. Our aim is to explore
(in Sect. 4) the available BFT approaches and analyze their application to fog/edge
computing considering the different security, consistency, and availability tradeoffs.
While we do not intend to do an exhaustive survey of existing techniques, we try to
ease the understanding of the existing synergies among different areas like fog/edge
computing, blockchain, security, and data management. Our study addresses three
different tradeoff approaches:

1. The first is using the Strong Consistency (SC) model as those Byzantine fault
tolerant State-Machine Replication (SMR) protocols [8, 28, 76]. In general, these
solutions are not effective in the geo-replicated fog/edge setting due to their high
latency on both read and write operations [71].

2. The second is an Eventual Consistency (EC) approach that makes use of
blockchain protocols in a peer-to-peer fashion while using a variant of proof-of-
something protocols (e.g., Proof-of-Work, Proof-of-Stake, etc. [15, 20, 34, 45].
Such protocols provide low response time on read (although stale) operations,
but they are blocking on write operations.

3. The third approach is based on Strong Eventual Consistency (SEC) [58, 62, 79]
that allows (stale) reads as well as immediate writes. This works as long as
operations are designed to be commutative, provided with a conflict-resolution
technique as in Conflict-free Replicated DataTypes or Cloud types [6, 59]. This
approach has recently gained great adoption in industry, in the fault-recovery
model, which encouraged the development of solutions in the Byzantine fault
model as well [62, 79].

Our findings, presented in Sect. 5, demonstrate that addressing Byzantine behav-
iors in fog/edge computing is in its infancy. Despite the recent development of
BFT/blockchain solutions, they are yet to meet the needs of latency-sensitive
fog/edge applications. Interestingly, there is significant overlap in different aspects
of these technologies and their application requirements which encourages further
research in this direction.
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2 Background on Fog/Edge Computing, BFT, and
Blockchains

Fog/edge computing and blockchain emerged in the last decade as two distinct tech-
nologies with different purposes [48, 57]. However, they currently share common
fundamentals and applications. We first overview these technologies demonstrating
their definitions.

2.1 Fog/Edge Computing

Edge computing was proposed in 2009 [57] as an intermediate layer, originally
the Cloudlet, between the cloud and the application to reduce the response time
especially in latency-sensitive and computation-hungry applications, e.g., speech
recognition, natural language processing, computer vision and graphics, machine
learning, augmented reality, planning, and decision making. This later evolved to
the foundation of different hierarchical layers between the application and the cloud,
giving rise to what is known as fog computing. Fog computing targeted the Internet
of things applications [46, 53, 64, 78] where data generated by smart things is
aggregated and preprocessed before off-loading it to the cloud or edge layers.

More recently, as used in the OpenFog Standard [31, 50], the benefits of
edge computing in terms of reduced latency, bandwidth use, and security evolved
to lateral (distributed) layer in the fog close to the data source and fog/edge
applications [50, 61].

In this work, we adopt the OpenFog Standard [50] definition of for and edge
computing. As depicted in Fig. 1, the fog is a hierarchy of layers located between
the application and the cloud data center. In this architecture, the network edge
represents the horizontal layer close to the applications. However, we generalize
the edge to support more definitions where the network edge depends on the context
and applications [32, 55, 78]. For instance, a MEC server is the edge in mobile com-
puting, the router/gateway layer is the edge in smart networking [32, 55], whereas
the smart boards are the edge in smart IoT applications [13, 46, 50, 61, 64, 78] (e.g.,
agriculture, industrial manufacturing, etc.). Therefore, we assume the existence of
different edge layers that constitute a horizontal layer in the fog architecture, as in
Fig. 1.

Last, but not least, security is fundamental in fog/edge computing. Huge
amounts of sensitive (personal, public, or governmental) data is collected via smart
things [30, 65, 66], i.e., sensors, cars, networks, cameras, etc. More seriously, this
data is the knowledge base for decision making in smart and safety-critical systems
where attacked actuators can be catastrophic [54, 67]. Fog/edge computing mitigates
these threats by not exposing the data to remote sites. However, this is a double-
edged sword: it reduces the attack surface to external threats, but makes the edge
node less tolerant to Byzantine attacks that can besiege the node making it a single
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Smart things

Cloud data center

Fog layer (Gateway edge)

Fog layer (Server edge)

Fig. 1 Fog/edge computing architecture

point of failure. In addition, access to remote data beyond the local edge domain
becomes more challenging since edge nodes and peers are often less protected or
equipped compared to cloud data centers.

2.2 Blockchain and BFT

The Blockchain was first proposed as an underlying layer for the Bitcoin cryptocur-
rency [48]. It proposed a distributed peer-to-peer infrastructure that implemented
distributed consensus in untrusted environments, based on cryptography and heavy
computation. Any two untrusted peers can transact over the network that guarantees
total order on transactions and immutability via a Proof-of-Work (PoW) leader
election protocol: the peer that solves a cryptographic puzzle [16] is chosen as leader
and has the privilege to commit a set of transactions in a block (in the blockchain).
This has later progressed in three interesting directions.

The first is abstracting the blockchain as an infrastructure in untrusted environ-
ments for applications where a trusted centralized authority cannot be assumed or
guaranteed [7, 37, 73]. This gave rise to a plethora of applications in Fintech, supply
chain, social networks, industry, IoT, economy, etc.

The second direction is the observation that the blockchain security model is
equivalent to the Byzantine model that targets malicious or arbitrary behaviors, and
has been studied for three decades in academia [8, 36, 42]. This suggested new
sustainable alternatives to the PoW protocols that are criticized for being extremely
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Full node (Fat)
Light node (Thin)

Fig. 2 A common Blockchain architecture

energy-hungry1 (a process called mining). In particular, the Practical Byzantine
Fault Tolerance (PBFT) [8] protocol represented a gold standard that inspired most
modern BFT and blockchain protocols (see Sect. 4).

The third direction is moving towards hybrid P2P architectures. Indeed, it was
observed that pure P2P blockchain protocols hit the practical limits [28, 52, 71]
towards finality latency (e.g., time to confirm transactions), scalability (storage
and computation limits), and energy (due to the PoW puzzle solving). Therefore,
most recent blockchains [7, 37, 48, 73] adopt the architectures depicted in Fig. 2.
Thin nodes have constrained resources and thus offload the storage and heavy
computation to fat nodes, with abundant resources.

3 Fog/Edge Computing Meets Blockchain

Despite growing in two distinct areas, the fog/edge computing and blockchain tech-
nologies intersect in several aspects. For instance, they both (1) embrace distribution
or decentralization as a means to boost the availability of the deployed service;
and (2) they try to reduce the latency on applications by locating computation and
storage closer to the data source or user.

More interestingly, blockchain can be complementary to fog/edge computing in
security [33, 80]: Although keeping the data close to its source in edge computing
avoids vulnerabilities outside the local edge domain, it makes it a single point
of failure and prone to malicious attacks. This is common in edge applications
where nodes are fat edge nodes with abundant resources that can empower

1https://www.bbc.com/news/technology-48853230.

https://www.bbc.com/news/technology-48853230
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latency-sensitive computation-hungry applications like gaming, augmented reality,
autonomous driving safety assistance, etc.

Modern edge systems are becoming more distributed across edge nodes not
necessarily within the same edge domain [50, 61]. This necessitates secure data
sharing in vulnerable environments. This is common in thin edge networks as in
smart cities, agriculture, manufacturing, collaborative applications, etc.

Not surprisingly, the standard way to tolerate such attacks is via Byzantine
Agreement, e.g., using BFT protocols which is a main foundation of blockchain.
This makes the latter a potential candidate to bridge the security gap of fog/edge
systems in untrusted settings. It is therefore interesting to discuss the existing
potential and challenges towards this direction.

In the next sections, we tackle this topic through focusing on the Byzantine
resilient data management perspective and its availability and consistency tradeoffs.

4 The Scope of Byzantine-Resilient Data Management
Approaches

The benefits of fog/edge computing come at the price of new challenges at the
data management level. Indeed, bringing storage and computation close to the
data source, e.g., smart things, is deemed efficient as long as the data queried or
updated is recent and local. Once access to remotely geolocated data sources or more
historical data is sought, requests (Writes and Reads) are either offloaded close to the
data storage or the data is pulled to close-by edge nodes. This is controversial with
the low latency and autonomy requirements of fog/edge applications. The problem
is further aggravated in the presence of faults and Byzantine behaviors or malicious
attacks where an agreement is usually required to maintain a replicated state and
thus exclude such non-benign behaviors.

These challenges suggest some tradeoffs specified by the CAP theorem [22]: one
has to trade availability for consistency or vice versa, given that partition-tolerance
cannot be guaranteed in geo-replicated systems. Consequently, there are three main
data consistency approaches that are usually followed in such systems:

1. Strong Consistency: this trades availability for consistency through ensuring
atomic writes and reads on data before delivering to the application or end
user. This is often implemented through a State-Machine-Replication (SMR)
consensus protocol, like Paxos or Raft [40, 49] under crash-recovery faults, and
PBFT [8] under Byzantine faults.

2. Eventual Consistency: this trades consistency for availability to ensure low
response time (mainly on reads) and high autonomy of fog/edge applications [63,
70]. However, these approaches suffer from finality delays or rollbacks on writes,
which cannot be afforded in most fog/edge applications. Blockchain’s proof-
of-something (PoX), e.g., proof-of-stake and proof-of-work [15, 20, 34] or a
combination between them, is the prominent approach here.
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3. Strong Eventual Consistency: this is a tradeoff model of the preceding ones
that allows low response time on reads and writes and eventually resolve potential
conflicts maintaining the expected fog/edge application semantics [58, 79]. Well-
known approaches here using Last-Writer-Wins (LWW) [74] or Conflict-free
Replicated DataTypes (CRDTs) [59] to resolve conflicts in decentralized data
management e.g., Cassandra [18, 38], OBFT [79], and ByzEc [62].

In the following section, we overview the current approaches in the three
categories with more emphasis on the secure fog/edge data management solutions
in face of Byzantine/malicious behaviors.

4.1 Approach 1: Strong Consistency (BFT-SMR)

4.1.1 System and Faults Models

Fog/edge nodes are asynchronously connected by a network or the Internet. Each
node retains a full replica of the data in the system. Replicas communicate through
messaging over the network. The network may fail to deliver messages, delay them,
duplicate them, or deliver them out of order. The system follows the Byzantine
failure model where Byzantine nodes may behave arbitrarily or maliciously (e.g.,
controlled by a strong adversary).

However, replicas are assumed to fail independently. This assumes a high
degree of diversity in different nodes, e.g., hardware, operating system, libraries,
implementations, etc. All nodes use cryptographic techniques to prevent spoofing
and replays and to detect corrupted messages. In particular, messages are signed
via public-key signatures or message authentication codes, and message integrity
is verified via digests produced by collision-resistant hash functions. Finally, an
adversary is assumed to be computationally bound, i.e., it is unable to break the
aforementioned cryptographic techniques.

4.1.2 Problem Definition

In fog/edge computing, an application sends requests to the closest possible edge
node in the system. If this node is malicious or Byzantine, the data integrity could
be violated and thus the fog application semantics is broken. A BFT-SMR system
solves this by having the replicas act as single state machines where all requests,
reads and writes, are confirmed by the entire machine before delivery [8, 42]. This
is done by solving the standard problem of Byzantine Agreement (or consensus) to
ensure the integrity of the system despite the presence of a minority of Byzantine
replicas (usually up to one third). The Byzantine consensus problem [24, 42] has the
following general requirements:
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• Agreement: Correct nodes i output the same value o.
• Validity: If all or majority of nodes have the same input b, then o = b.
• Termination: All correct nodes decide on an output and terminate.

4.1.3 Desired Safety and Liveness Properties

Safety in such systems requires the system to satisfy linearizability (or serializ-
ability), i.e., execute operations atomically one at a time [42]. In particular, this
ensures that data invariants in the service cannot be broken by Byzantine clients
or replicas. Safety is usually maintained despite network partitions, and thus the
protocols run under partial synchrony: there is an unknown bound where the
system eventually synchronizes [8]. Liveness on the other hand means that clients
eventually receive replies to their requests, provided that at most one third of the
replicas is Byzantine. Due to the impossibility of implementing consensus in an
asynchronous system [17], such systems rely on a weak form of synchrony, i.e.,
partial synchrony [8], to maintain liveness.

4.1.4 Byzantine Agreement

To demonstrate the Byzantine agreement technique, we focus on the Practical
Byzantine Fault Tolerance (PBFT) protocol [8] that is considered a gold standard
for BFT- SMR. Since our purpose is to demonstrate the concept, we opt to exclude
the pedantic details that can be consulted in the references.

In this paradigm, replicas form a deterministic state machine. On each request,
either read or write, a Byzantine consensus protocol is run to ensure the atomicity
across all (usually 3f + 1) replicas despite the presence of f Byzantine replicas.
The consensus protocol is usually quorum-based: a request is confirmed if it has a
majority quorum of matching replies. The purpose is to ensure that the intersection
of read-write and write-write quorums does not correspond to a Byzantine replica
as shown in Fig. 3.

Figure 4 summarizes the phases of PBFT which are often used in Byzantine
agreement algorithms. In this figure, replica 0 is the primary and replica 4 is
Byzantine. In a nutshell, the protocol works as follows:

• The replicas are arranged in a sequence of configurations, called views.
• In each view, a primary node plays the role of the leader to other backup nodes.

Fig. 3 The intersection of
read-write and write-write
quorums

RQ WQ

RQ ∩ WQ > 1
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Fig. 4 PBFT Byzantine agreement phases in normal case operation

• When a client sends a request to a primary node, it starts a three-phase protocol
to atomically multicast the request to the backup nodes.

• in the pre-prepare phase, the primary multicasts a pre-prepare message to all
other backup replicas.

• When receiving the pre-prepare message, the backup node enter the prepare
phase by multicasting a prepare message to all other replicas including the
primary and add both messages pre-prepare and prepare to its log.

• When prepared correctly, the node multicasts a commit message to other replicas.
This starts the commit phase. When replicas accept commit message, execute it
and send a reply to the primary or the client directly.

• The recipient (the primary or the client) waits for a majority quorum of matching
replies from different replicas.

Since BFT-SMR replicas are assumed to be deterministic and start in the same
initial state, the system satisfies the safety property by guaranteeing that all non
Byzantine replicas agree on a total order for the execution of requests despite
Byzantine failures. Although the system can achieve safety under asynchrony,
partial synchrony is required in some cases to detect a misbehaving primary to
ensure progress across views.

In the case where a Byzantine primary is detected, a primary election phase [8]
is started by the backups (upon agreement) and a new view with a new primary
is started (we omit these details for simplicity). This is necessary to maintain the
liveness of the system. Another liveness requirement is that the intersection of
quorums is f + 1 nodes instead of f as is usually considered in non-Byzantine
consensus protocols, e.g., Paxos and Raft [40, 49]. The reason is that it is impossible
to differentiate a Byzantine node from a slow one, e.g., under network partitioning.
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This guarantees that despite network partitions and up to f Byzantine nodes, the
system can still make progress and commit requests.

4.1.5 Current State of the Art Solutions

The practical Byzantine fault tolerant protocol PBFT is the seminal practical BFT
protocol from which its successors inspire. Before the blockchain era, this protocol
has been considered very costly due to its high latency, low throughput and fault-
scalability (up to f = 5). Consequently, several optimizations have been introduced
in other protocols as in Zyzzyva, Q/U, HQ, UpRight [2, 10, 12, 36], etc.

After the introduction of blockchain’s Proof-of-Work protocol variants, known to
be heavily computation-hungry, PBFT is now referred to as a sustainable protocol.
This urged another round of optimizations that lead to modern protocols like
Tendermint, HyperLedger, HotStuff, SBFT, FBFT [3, 7, 25, 37, 44], etc. Although
these protocols managed to reduce the latency, throughput, and scalability of PBFT,
they could not completely avoid the synchronization overhead of consensus [28, 71].

In particular, the best-case latency where no Byzantine faults exists can range
from one, e.g., SBFT, to three messaging round-trips, HotStuff. On the other hand,
Tendermint and HotStuff make use of primary node rotation (which makes fair use
of primary node features), and thus optimize for the view-change protocol. Finally,
HyperLedger and FBFT try to divide the load over federated groups or channels to
improve the scalability of the system, but they are backed by protocols similar to the
previous ones.

4.1.6 Feasibility Discussion and Limitations

Having a consensus protocol at its core, a BFT-SMR approach implements the
strong consistency (serializability) model: all writes and reads are totally ordered
and atomically confirmed after a Byzantine majority agreement is reached. Similar
to the classical non-Byzantine consensus protocols, like Paxos and Raft, BFT-SMR
protocols exhibit high synchronization overhead at scale. The overhead is much
higher in the BFT-SMR case due to the high replication factor (3f + 1 replicas
to tolerate f Byzantine replicas), extensive cryptography use, and the complex
consensus messaging pattern. This incurs high latency and low throughput and
scalability. Given this, BFT protocols could not cope with the demands of fog/edge
computing for two reasons: latency and scalability.

In particular, edge servers are usually located close to the end clients to avoid the
network delays to remote nodes. Once a BFT-SMR protocol is used, this overhead is
even higher since the system is as slow as the slowest (likely far-most) replica. This
is controversial to the purpose of edge computing that optimizes for low-latency
cases. The second problem is that the limited scalability of such protocols constrains
the number of edge replicas that can be deployed. This means that upon using a
BFT protocol, it is not possible to take full advantage of edge computing as edge
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nodes cannot always be located close to many users (assumed to be geographically
dispersed).

Finally, it is worthwhile to mention that several cryptocurrency platforms are
using Blockchain protocols that are inspired from BFT-SMR. However, most of
these protocols are optimized to be more scalable in public settings [3, 7, 25, 37, 44].

4.2 Approach 2: Eventual Consistency (BFT-P2P)

4.2.1 System and Faults Models

The system model in this category assumes that edge nodes are peers connected
through a peer-to-peer (P2P) network. Nodes communicate through messaging that
are propagated via a gossip protocol in an asynchronous multi-hop manner. Mem-
bership can be private or public. Whereas in the former case nodes’ identities are
known a priori, nodes have to establish Sybil-resistant identities (i.e., public/private
keys) in the latter [48, 73].

A standard method is to solve a computationally-hard puzzle on their locally-
generated identities (i.e., public keys) verified by all other non-Byzantine nodes.
All messages sent in the network are authenticated with the sender’s private key
to prevent spoofing. (To avoid repetition, all assumptions on the network and
cryptographic techniques in the BFT-SMR case hold here as well.) To improve the
scalability, the system can be sharded in such a way several shards can commit
transactions in parallel. Another possibility is to arrange nodes in committees to
assist in committing atomic transactions. Nodes can be fat or thin nodes. Thin nodes
that cannot afford retaining the entire state can hold a cache, and request the missing
data from a fat node.

4.2.2 Problem Definition

The ultimate goal of BFT-P2P systems is to eventually achieve agreement on a total
order. Since full zero-hop membership is not possible, nodes are allowed to submit
update requests that are eventually confirmed by the system. This allows a huge
number of concurrent updates that is hard to maintain conflict resolution. Therefore,
it is common to arrange several requests in more coarse-grained transactions
confirmed in blocks. Total order is then achieved as long as a trusted leader exists to
commit valid transactions. Therefore, the problem in such systems is often a leader
election problem [26], whose specifications are:

• Uniqueness: There is exactly one non-faulty process that considers itself the
leader.

• Agreement: All non-faulty group members know this leader.
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4.2.3 Desired Safety and Liveness Properties

The safety properties of BFT-P2P are often more relaxed than in BFT-SMR.
In particular, serializability is only enforced eventually. This means there is an
instability period after the execution of a transaction and before it is confirmed. The
guarantee here is that all confirmed transactions are totally-ordered. This however
only holds for update requests. Read requests are delivered locally or requested from
a remote fat node in the case of a cache miss. Importantly, concurrent read requests
are not observed until they get confirmed (which reduces freshness).

On the other hand, the liveness property requires transactions to be eventually
committed. This necessitates the successful election of a leader which is the core
of such systems as explained next. In general, despite this guarantee, such systems
suffer from finality delays due to the starvation caused by concurrent transactions at
scale.

4.2.4 Blocks, Transactions, and the (Block) Chain

The BFT-P2P approach optimizes for scalability and decentralization. It allows for
thousands to millions of nodes across the globe to participate in the system through
asynchronous messaging via a P2P gossip protocol.

In particular, any node can issue write requests in transactions that are eventually
confirmed by the system. Confirmation is crucial to maintain a consistent state
through ensuring total order of write operations. Since consensus is not practical
at this (up to millions) scale, as discussed in BFT-SMR, this approach relies on a
single leader at a time to confirm requests. For security and availability reasons, this
requires a fair (e.g., random or contribution-based) leader election technique. The
uniqueness property of leader election ensures that no concurrent confirmations are
happening at a time.

Another scalability technique in such systems is segregating transactions (of
requests) into coarse-grained batches, called blocks. In its epoch, a leader can
confirm one block instead of a single request or transaction. The purpose is to reduce
the overhead of the (costly) leader election process in favor of a larger number of
requests confirmed on each epoch. The ultimate goal is to reduce the finality of the
system that is sometimes orders of magnitude higher than BFT-SMR.

A security requirement in blockchain applications is to ensure the immutability of
confirmed blocks against a strong adversary (e.g., that controls half of the network).
To prevent this, confirmed blocks are linked in a chain of blocks, i.e., a blockchain,
by including the reference (i.e., a hash digest) of the last globally committed block
in the blockchain in a newly committed block. This makes it extremely hard for an
adversary to revert back confirmed blocks (unless it controls more than 50% of the
network).
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4.2.5 Leader Election

Leader election in a BFT-P2P system is a daunting task due the huge number of
peers in the decentralized, likely globally-scaled, system. Consequently, choosing
a leader though atomic broadcast is impractical. There are two main approaches
to do leader election, i.e., via Proof-of-Something (PoX) or Committees. Proof-
of-Something is a generalization of Proof-of-Work (PoW), originally used in the
Bitcoin [48] underlying blockchain leader election (a process called mining).

In PoW, leader election is a competition through which peers try to solve an
extremely hard-to-solve cryptographic puzzle [16]: to find a salt that when hashed
with a digest of the last block in the chain satisfies a publicly known difficulty
property (e.g., ends with a leading number of zeros). The salt stands as a PoW for
the node to confirm a new block (i.e., implicitly chosen as leader for that epoch).
This technique boosts the security since it is arguably very hard to control 51% of
the computing power of the network [72]. Solving the puzzle is also key to reduce
Sybil attacks [14] in public settings. For these reasons, PoW is currently advocated
for scenarios that require high decentralization and security (e.g., Cryptocurrencies).

Unfortunately, the PoW approach is known to be extremely energy-consuming
and not green-friendly [60, 68]. This encouraged the research for several less-costly
alternatives like Proof-of-Stake [34] that is biased to peers that contribute more
to the network. Although PoS is less secure than PoW, it has many benefits over
PoW such as faster processing of transactions lows energy consumption. In addition
to PoS, there are Proof-of-Elapsed-Time (PoET) that uses random waiting time
protocol using trusted execution environment like Intel’s Software Guard Extension
(SGX), and many others [4, 11]. However, it argued that none of the new alternatives
can achieve the security level of PoW. Regardless of the PoX method use, these
protocols are often criticized for having finality delays.

In particular, the time to provide a PoX incurs some waiting time by design,
that ranges from seconds to minutes [48, 73]. This imposes direct impact on write
requests that cannot be committed in a low latency as required in most fog/edge
applications.

An alternative leader election method is to use BFT-SMR protocols within peers
organized in Committees [37]. A committee is a group of elected peers that have
some extra privileges. Since the committee size is usually orders of magnitude
smaller than the entire network size, it is possible to run a consensus protocol.
The committee that runs the consensus protocols can thus choose a leader and
commit transactions. This solution reduces the fairness in the system given the
committee selection technique, and diminishes decentralization that is sought in
several applications. In addition, this technique reduces the finality of transactions,
but it is as best as the BFT-SMR protocols used in a committee.
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4.2.6 Current State of the Art Solutions

Common BFT-P2P are mainly those developed for blockchain applications. All
protocols inspired from the Bitcoin blockchain that proposed the Proof-of-Work
approach [48]. However, Bitcoin’s protocol only considered cryptocurrency appli-
cations. The blockchain protocol used in Ethereum [73] is similar to that of Bitcoin,
however it generalizes the blockchain for any turing-machine style application,
among them supply chain, decentralized organizations, etc. These two protocols
imposed a tuned latency on issuing new blocks (on average 10 min in Bitcoin
and several seconds in Ethereum) and required extensive computation power
(e.g., equivalent to those of complete countries [27]). The underlying Blockchain
protocols of both Bitcoin and Ethereum are BFT-P2P. These protcols however do
not use the classical BFT-SMR consensus to reach agreement. They follow an
asynchronous majority agreement with Game Theory [47] approach in PoW to
decide on a leader that confirms transactions (in a block).

These protocols can maintain security if up to half of the network nodes are
Byzantine [72].

Several protocols have been found later to address these caveats. Among them the
Proof-of-Stake variants suggested freezing a stake (i.e., an amount of cryptocoins)
for an amount of time to have the chance of block confirmation [34]. Other Proof-
of-Something protocols, like Proof-of-Storage, Proof-of-Stake-Velocity, Proof-of-
Credit, Proof-of-Exercise [60], followed the same concept without requiring solving
a crypto-puzzle. Proof-of-Elapsed-Time (PoET) proposed replacing the puzzle with
a time-delay proposed by a protocol in trusted execution environment like Intel’s
Software Guard Extension (SGX), and many others [9, 11].

Alternative protocols that are based on BFT protocols are considered hybrid
protocols of PoX and scalable versions of PBFT (or its variants discussed in
Sect. 4.2). For instance, Tendermint extends the PBFT protocol with Proof-of-Stake
approach, i.e., by giving weights to the peer’s vote. Algorand [21] uses Pure Proof-
of-Stake (PPoS) consensus protocol built on Byzantine Agreement (BA) similar to
PBFT. Each block is approved by a unique committee of nodes that are randomly
selected by a lottery-based verifiable random function based on public information
from the blockchain.

A similar randomness approach used by Dfinity [29] is to have a decen-
tralized randomness beacon to produce random outputs as the seed. Similarly,
Omniledger [35] used a committee selection process in a similar fashion as the
lottery algorithm of Algorand in addition to sharding: splitting the overheads of
processing trans-actions among groups of nodes, called shards. In a similar fashion,
Elastico [43] uses shards processed by smaller BFT-based committees whose
number grows near linearly in the total computational power of the network.

All of these protocols are considered less secure than PoS methods as they can
only tolerate up to one third of Byzantine nodes in addition to sometimes being
vulnerable to DoS attacks. The advantage is that finality latency, e.g., few seconds,
is often less than that of PoX-based protocols.
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4.2.7 Feasibility Discussion and Limitations

BFT-P2P protocols are geared for large numbers of peers communicating through
gossip protocols. This limits their finality speed and thus imposes high latency
on write requests. In this paradigm, applications are required to expect some
time (seconds or minutes) to make sure a request has been eventually confirmed.
Although this can be acceptable in some fog/edge applications that aim at reducing
the overhead on cloud datacenters, it is not feasible for fog/edge applications where
timely responses are crucial.

In addition, some PoW variants allow for forks that are only resolved later, by
rolling back confirmed blocks. This can have serious implications on some fog
applications where actuators are controlled based on this data. These very solutions
are also very expensive to implement due to the extensive energy consumption that
is scarce—especially—in thin edge networks.

Nevertheless, these protocols are typical for cryptocurrencies due to their high
scalability in public permissionless settings.

4.3 Approach 3: Strong Eventual Consistency (BFT-SEC)

4.3.1 System and Faults Models

This approach assumes a system of edge nodes that are loosely coupled in an asyn-
chronous network. Nodes communicate through messaging via a reliable broadcast
or gossip P2P protocol. The system assumes that at most f fog/edge servers out of
3f + 1 can be Byzantine. In addition, a Strong Eventual Consistency [58] (SEC)
is assumed on data: to reduce response time, edge nodes can serve (concurrent)
read and write requests of clients immediately, and they eventually synchronize
their states in the background. Therefore, a client’s read request retrieves the
value of the locally observed state where write requests may yield conflicts with
remote nodes. This has two implications at the data level: client applications are
assumed to tolerate stale reads, and employ a conflict-resolution technique to
ensure convergence. Examples are the use of Last Writer Wins in Cassandra [38],
Cloud Types [6], or Conflict-free Replicated DataTypes where operations are
assumed/made commutative [59].

Some hybrid variants adopt a two-tier structure where a separate BFT cluster is
used in the backend. In this case, the same assumptions used in Sect. 4.1 holds. In
addition, the cryptographic assumptions made in Sect. 4.1 are also assumed here.

4.3.2 Problem Definition

Although in the [58] (SEC) model concurrent writes can lead to divergence, a
conflict resolution technique can ensure system convergence under benign faults.
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Fig. 5 The problem of divergence in the presence of Byzantine node(s)

However, as exemplified in Fig. 5, convergence is violated if fog/edge servers
are Byzantine. In fact, an attacked fog/edge server can apply local operations
incorrectly. Thus, even after the propagation of remote operations to all other
fog/edge servers, the Byzantine replicas will diverge forever as there is no chance
to “pause” or halt the running system. On the other hand, the possibility to use a
classical BFT protocol is also unacceptable. Indeed, since clients cannot tolerate
the delays of integrity checking with other fog/edge servers prior to the reply, as
in BFT protocols [8, 36], a Byzantine fog/edge server will “free-ride” and diverge
from other correct fog/edge servers.

4.3.3 Desired Safety and Liveness Properties

Regarding the safety property, the system requires that all resulting states generated
at all correct edge/fog servers are eventually equivalent. This assumes a commuta-
tivity property of used datatypes which leads to equivalent state upon executing the
same log of operations [79]. Furthermore, the fog/edge nodes’ agreement on that
stable state is required to be final.

As for liveness, all correct fog/edge nodes should always agree on a stable state
once operations are delivered thereof. This is often guaranteed by having the distinct
write quorums intersect in more than 2f + 1 nodes despite network partitions.

For the BFT cluster side, when used, liveness and safety properties follow the
same rules described in the BFT-SMR case in Sect. 4.1.
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4.3.4 Current Solutions

This approach is based on the Optimistic Byzantine Fault Tolerance model
(OBFT) [79]. Such approach does not require total order on operations as long
as the datatypes used are commutative. The idea is that applying the same set of
commutative operations in any order will lead to the same final state if Byzantine
nodes are tolerated. This allows for concurrent writes without synchronization with
other nodes which reduces the response time significantly. As explained above, the
disadvantage is that read requests only observe the locally delivered operations (i.e.,
the remote concurrent writes are temporally not locally reflected in the state).

In OBFT, Byzantine agreement is used only to establish a common state syn-
chronization point. The set of individual states is needed to resolve conflicts passing
through a state synchronization round, which typically involves the following
steps:

1. Byzantine agreement on the set of individual states to be used for construction of
the final state.

2. Construct the final state given the set of individual states.
3. Resolve any inconsistency at each individual replica based on the final state.

In this solution, the algorithms used to compute the final state must meet the
following two requirements: (1) The algorithms must be deterministic to ensure that
all non-faulty replicas adopt the same final state; and (2) the final state must be
a valid state in that it should not include changes introduced by Byzantine faulty
entities (such as clients or replicas). Unfortunately, this solution is not suitable for
edge computing due to the blocking synchronization phase and the implementation
complexity, as the authors declare [77].

An alternative solution [62], called ByzEc, assumes a three-tier system model
(sketched in Fig. 6) that is composed of a frontend and backend. The backend
deploys a BFT cluster (that runs a PBFT-like protocol) which serve as validation
service for frontend requests. The frontend follows the geo-replicated system model
in which fog/edge servers are geographically located and fully replicated. A client
application, such as an IoT device, issues its requests to a single fog/edge node,
preferably the closest one. As shown in Fig. 6, the frontend of ByzEc is composed
of the clients layer and fog/edge servers layer. The clients layer can have thousands
of simultaneous clients with different capacities. This is common in available
systems [23] where application semantics are exploited to improve performance.

The fog/edge servers layer runs the service and can include tens of fog/edge
servers geo-graphically distributed as points of presence close to clients in various
regions. Similar to OBFT case, since applications tolerate reading stale data,
fog/edge servers follow a relaxed data consistency model (e.g., eventual consistency
or causal consistency [39]) in which they serve client’s replies without prompt
synchronization with other fog/edge servers.
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Fig. 6 ByzEc architecture

4.3.5 Feasibility Discussion and Limitations

This approach is promising as it does not violate the latency requirements in
fog/edge systems. However, it is limited to applications that make use of commuta-
tive operations and can tolerate some window of unverified state via the BFT cluster.
This practically means the existence of a backlog and recovery scheme at the client
to rollback malicious updates. For instance, edge applications can implement Ads,
membership counters, recommender-based sets using this approach. Since this data
is not critical, it may be desired to take advantage of the low-latency. To the contrary,
this is not feasible to cases where actuators exists since physical actions cannot be
rolled back.

In addition, the OBFT [79] solution is impractical since it requires blocking
state synchronization to ensure consistent state for all non-Byzantine replicas. To
the contrary, ByzEc [62] avoid blocking by running Byzantine agreement in the
background, off the critical path of clients requests. Although promising, these
solutions are not mature enough to be used in fog/edge computing.

5 Findings and Concluding Remarks

Fog/edge computing is a promising model that is optimized for data- and latency-
sensitive applications as it keeps computation and data close within the secure edge
domain, i.e., close to data source and user-end [50, 57]. This mitigates the potential
threats that otherwise arise along the way to the cloud center. It however raises new
challenges on the availability of the system against malicious attacks that can exploit
this form of isolation.
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More recently, fog/edge computing systems are becoming more distributed [50,
61] which requires secure data management in untrusted environments: different
edge nodes belong to untrusted owners or domains. We therefore believe that
making fog/edge systems more resilient to Byzantine behaviors is of high relevance
that is worth more research.

In this work, we analyzed the relevance of Blockchain or Byzantine resilient
solutions to fog/edge computing focusing on the availability and consistency
tradeoffs—raised by the CAP theorem in scalable and available systems [22]. Our
goal is to make it easier for researchers in the different areas to make synergies
between these topics. A summary of the main characteristics and differences
between these approaches is presented in Table 1.

This study lead to these following findings and conclusions:

• Blockchain and BFT protocols have the potential to bridge the distributed
fog/edge systems gap in untrusted environments. This is referred to the common-
alities in fog/edge and blockchain architectures and applications (as discussed in
Sects. 2 and 3).

• Blockchain solutions are still immature to be used in fog/edge computing due to
their limitations on finality latency. However, there are promising advancements
that encourage further research.

• BFT-SMR are strongly consistent solutions that have limited scalability and
high latency on reads and writes. This is not suitable for many latency-sensitive
fog/edge applications. However, applications that can afford a latency up to one
second, e.g., no use of actuators, may benefit from these solutions to improve
their tolerance to Byzantine attacks.

• BFT-P2P PoX are eventually consistent solutions that have high finality latency
on writes (seconds or minutes) which is unacceptable in fog/edge applications.

• BFT-P2P are hybrid (PoX-BFT-based) eventually consistent solutions that have
the potential in the future to support scalable fog/edge applications where a
finality latency of less than a second is acceptable. We encourage more research
in this direction.

Table 1 Comparison of the three different Byzantine-resilient data management approaches for
fog/edge

Approach Considered solutions Consistency Latency Security Fog/edge compatibility

BFT-SMR PBFT, Zyzzyva, Q/U, Strong Medium Medium Low

HQ, UpRight, BFTSMaRt,

BFT-P2P HotStuff, SBFT, FBFT. . . Eventual High High Medium

PoW, PoS, DPoS, PoE,

PoET, PoSV, SGX, PPoS. . .

BFT-SEC OBFT, ByzEc Strong eventual Low Medium Medium
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• BFT-SEC is a tradeoff between Byzantine resilience and availability. It is tailored
to distributed fog/edge applications where read and write latency is critical (e.g.,
in milliseconds) but freshness is not and recovery is possible. Current solutions
are limited to applications and data types supported by conflict resolution
techniques like CRDTs and Cloud Types [6, 59].
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Privacy Issues in Edge Computing

Qi Xia, Zeyi Tao, and Qun Li

1 Introduction

With the quick development of Internet of Things (IoT), massive data is produced
every day. For example, photographers can easily take 100 Mb photos per day; a
surveillance camera can easily take 20 Gb video record per day. Considering the
numerous amount of IoT devices, the total amount of data is beyond imagination.
The computational limitation of an IoT device makes it almost impossible to process
and analyse surveillance camera videos and photos in real time. With the help of
cloud computing, a centralized server with sufficient computational power is able to
process this data. However, limited by the low bandwidth and high latency, cloud
computing is not efficient enough to deal with this large amount of data in real time.
Therefore, edge computing has emerged as an effective technology to reach high
bandwidth and low latency [1–4]. By offloading some of the computational power
and storage to the edge of the network, edge computing is capable to deliver new
services and applications to billions of IoT devices, such as augmented reality, video
analytics, smart home, smart hospital, Internet of vehicles, etc.

Figure 1 shows a simple structure of cloud edge infrastructure. Cloud server,
which has sufficient computational resources and storage space, is usually in a data
center and far away from most of end users. At the edge of the network, edge
servers are geographically close to end devices to ensure high bandwidth and low
latency. Edge servers usually have considerable computational resources and storage
space than end devices, but not as many as cloud server. The end device usually
communicates with the edge server to get a quick response.
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However, privacy is an important issue of edge computing [5, 6]. In summary,
there are three kinds of privacy concerns in edge computing.

• Data Privacy Because of the high bandwidth of edge computing, more data
are transmitted between end devices and edge servers. This allows more private
information to be transmitted. On the other hand, unlike cloud computing, which
has a central data center and is usually strictly supervised, edge servers are hard
to control. Therefore there may be some edge servers that are curious about the
sensitive data of end users. While the end device is usually connected to the
nearest edge server and may be migrated from one edge server to another edge
server for a better quality of experience, it is easy to leak private data during
this process. In order to protect sensitive data, in edge computing, a privacy-
preserving algorithm may be run between the cloud server and the edge server or
the end device and the edge server.

• Location Privacy In edge computing, the location privacy mainly refers to
the location privacy of the edge device users. Since edge devices are usually
connected to the geographically closest edge server to offload tasks for a better
experience, a curious edge server, can easily infer that the location of the end
device user is not far from the edge server. In addition to this concern, once the
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user with the end device moves and the end device shifts service from one edge
server to another edge server, by communicating with each other, the active path
information of this user may even be disclosed to the curious edge server. This
will pose a big challenge to protect our location information.

• Identity Privacy Identity privacy is also a very serious privacy issue. It occurs
in some practical applications in real life. For instance, when connect with the
edge server, it is very common to fill some online forms or provide sensitive
personal information. This information may be stored in the edge server and
later be requested for authorization. Since this information is related to end user’s
identity and may connect with user’s payment or other sensitive information, for
most people, this identity privacy is more sensitive.

Apart from these three concerns, recent research has focuses more on the
combination of edge computing and emerging technologies, such as big data and
machine learning. Big data and machine learning are the hottest areas recently. Edge
computing is an ideal platform for big data and machine learning because of its high
bandwidth and low latency. It can also arrange resource allocation to maximize the
use of the computational resources from end devices, edge servers and cloud servers.
However, some wireless big data and machine learning applications such as smart
city, online business, smart hospital, etc., contain a lot of sensitive information,
which brings new challenge to user privacy. In fact, most of the privacy issues
with big data and machine learning are still about data privacy, location privacy
and identity privacy. However, since the scale of the data set in these areas is much
larger than the conventional privacy problem, we will introduce this problem in a
separate section as well as differential privacy, which is a popular technique for big
data privacy issues on the edge.

In this chapter, we will first introduce three conventional privacy issues and
some existing algorithms for these issues in edge computing: data privacy, identity
privacy, location privacy. Then we will discuss the privacy issues in edge com-
puting and emerging technologies big data and machine learning. The definition,
implementations and properties of a widely used technique differential privacy
are introduced. Then we talk about several proposed algorithms using differential
privacy in big data and machine learning privacy. In the end of this chapter, we
discuss about some future work and summarize this chapter.

2 Conventional Privacy Issues in Edge Computing

2.1 Overview

The high-frequency interactions between edge users and service providers (such
as data transmission, information query and online transaction) continue to arouse
people’s extensive attention to various privacy requirements in data, identity and
location. Users want to store their private data on a data server or cloud with cheap
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maintenance fees and access it anywhere at anytime with any device. Users can also
collect useful information such as working hours around facilities, gasoline prices,
attractions etc. around them. In addition, users can benefit from fast online payment
through their portable devices. However, there exists many honest but curious
adversaries such as edge data centers, infrastructure providers, service providers
etc. They greatly challenge the privacy of edge computing paradigms. Compared
with traditional privacy issues in cloud schemes, privacy in edge computing is
more difficult to protect because for users, they do not even know whether a
service provider is trustworthy. Therefore, preserving the privacy of users is a huge
challenge that must be carefully considered. In this section, similar to the privacy
issues in cloud computing, we consider three conventional privacy issues on data
privacy, identity privacy and location privacy in edge computing area.

2.2 Data Privacy

Storing data into cloud/edge storage is attractive for most end users due to the facts
that:

• users can access their data remotely and share data easily;
• users can avoid capital expenditure on physical hardware costs;
• users do not have to worry about file and storage management issues and leave

this burden to the cloud/edge service.

Although cloud/edge services provide users with convenience and value, the data
privacy issue remains a big challenge. Sensitive information such as photos,
personal health records, and even government data may be leaked to unauthorized
users and third party companies or even be hacked. While cloud service providers
are usually under strict supervision, edge service providers are not trustworthy at
all time, which brings more serious privacy challenges. The edge service providers
therefore use firewall or virtualization to prevent data leakage. However, these
mechanisms can not protect users’ privacy because of untrusted edge storage
services.

In cloud computing, in order to preserve the privacy of the data stored in the
cloud, the conventional approach is to encrypt users’ sensitive data before loading
it into the cloud. Then users can retrieve the data back via keyword search or
ranked keyword search. Several keyword search based encryption schemes have
been proposed to ensure the privacy of data, including [7–9]. However, the main
drawback of the encryption methods is their high computational cost and com-
putational overhead. When using resource-constrained mobile devices, it may not
be feasible to encrypt large size data. Another type of scheme uses symmetric-key
cryptography and public-key cryptography respectively such as [10–12]. Similar to
keyword based search scheme, high CPU usage and memory requirement during the
encryption and decryption process become a bottleneck.
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In order to mitigate the problem that the traditional encryption schemes in cloud
computing cannot work well in the mobile edge cloud environment, there are several
solutions.

2.2.1 Hybrid Architecture for Privacy-Preserving Data Utilization

Li et al. [13] proposed a practical hybrid architecture, in which a private cloud is
introduced as an access interface between the data owner and the public cloud.
This private cloud can be used as an extension for the resource-constrained mobile
devices. Under this architecture, a data utilization system is provided to achieve both
exact keyword search and fine-grained access control over encrypted data.

Although this architecture is introduced in cloud computing, it is suitable for
resource-constrained mobile devices. This hybrid architecture has four entities in
the system: data owners/users, attribute authority, private cloud and public cloud.
The attribute authority is a key authority to generate public and private parameters
and public cloud is used to store the data. Private cloud is a new entity to solve
the problems that the computing resource of end devices is restricted. This system
supports key authorization and revocation such that the access control of users is
easy to manage. In addition, keyword-based query is supported so that an authorized
user is able to use individual private key to generate a query for certain keywords.
With the symbol-based trie, it can improve keyword search efficiency.

2.2.2 Pseudo-Random Permutation Based Method for Mobile Edge
Computing

Later Bahrami and Singhal [14] proposed a new light-weight method for mobile
clients to store data on one or more clouds by using pseudo-random permutation
(PRP) based on chaos systems. The biggest advantage of using PRP is that this
method does not require too much computational power and therefore can be run in
mobile devices with low overhead.

There are two phases in this method: disassembly phase and assembly phase,
which are similar to the encryption and decryption. In the disassembly phase, we
split the files into several parts, which includes one file that contains the header of
the original file and multiple files that contain the content of the original file. This
process is based on a pseudo-random based pattern and the chunks in each file are
also pseudo-randomly scramble with a chaos system. Then in the assembly phase,
the end user can use the stored chaos system to reorder the chunks, and then use the
stored pattern to decrypt the original file.
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2.2.3 ESPPA

In 2016, Pasupuleti et al. [15] proposed a method named efficient and secure
privacy-preserving approach (ESPPA). This approach utilizes the probabilistic
public key encryption technique and ranked keyword search, which reduces the
processing overhead of data owners while encrypting files. This also provides an
efficient solution for resource-constrained mobile devices.

Unlike the solution we introduced in Sect. 2.2.1, this algorithm does not require
an additional private cloud. However, it can still achieve the ranked keyword search
for effective data utilization reasons. The ranked keyword search means that when
the authorized user queries for a keyword, the edge cloud server finds matching files,
ranks the matching files by the relevance scores and send back the top-K relevant
files. In order to preserve the privacy on resource-constrained mobile devices,
instead of using homomorphic encryption [7], they choose to use probabilistic
public key encryption technique [16]. Therefore, the proposed method can achieve
the integrity of encrypted files and index stored in the edge cloud.

2.3 Location Privacy

In recent years, more and more applications have been adopted for location-based
services (LBSs) and have achieved success in many aspects such as improving
traffic, road planning, finding the nearest points-of-interest (POIs) etc. Edge com-
puting is a natural and perfect system for LBS, since the end devices usually
connect to the geographically nearest edge server for a better quality of experience.
To enjoy such conveniences provided by LBS, users have to send queries to the
LBS server. However, these queries contain massive information such as users’
locations, interests, hobbies etc. Untrusted LBS servers can easily access these
sensitive personal data and release these data to third parties such as advertisers.
There are two types of location based privacy issue.

• Restricted Space Identification For example, the disclosure of a user’s location
may reveal the user’s real-world identity and it has the potential problems to
allow an adversary to locate the subject and cause physical harm.

• Observation Identification For example, if a LBS provider frequently observes
the user’s queries for bar and liquor, the adversary may infer the user is alcoholic.

Although distinct, the above two types of privacy issues are closely related.
In order to address privacy issues in LBS and avoid personal information abuse,

many approaches have been proposed over recent years. In general, they all share a
simple principle of k-anonymous. K-anonymity was firstly introduced by Gruteser
and Grunwald [17]. The location information is represented by a tuple with three
intervals ([x1, x2], [y1, y2], [t1, t2]). The first two intervals describe an area A where
the specific user is located. And [t1, t2] indicates a time period of the user being
present in such an area. When the user submits the query with a location tuple to the
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LBS server, the k-anonymous protocol requires an area A containing at least k − 1
neighbors. Therefore k-anonymity prevents disclosure of user location by ensuring
that user location information can only be accessed by LBS servers if there are
at least k − 1 distinct associated locations which are indistinguishable. Generally
speaking, the larger the anonymity set k is, the higher is the degree of anonymity.
To achieve k-anonymity, there are three types of solution: trusted anonymization
server-based schemes, mobile device-based schemes and caching schemes.

2.3.1 Trusted Anonymization Server-Based Schemes

This method is based on a trusted central server called centralized location
anonymizer [18, 19]. The goal of this anonymizer is to randomly arrange queries
from end devices to one of several edge servers for protecting location privacy.

In detail, to achieve k-anonymity, a query is submitted to the LBS server via a
centralized location anonymizer. The centralized location anonymizer enlarges the
queried location into a Cloaking Region (CR) where the other k − 1 neighbors are
also covered. As a result, it is difficult for the untrusted LBS server to distinguish the
user’s real location from other users. These are simple, straightforward and effective
methods. However, they suffer from a single point of failure. Since these methods
heavily rely on the location anonymizers, once adversary gains control of them, the
privacy of all users will be compromised. At the same time, they have a performance
bottleneck because all the submitted queries have to go through a single location
anonymizer.

2.3.2 Mobile Device-Based Schemes

In order to avoid the problems in Sect. 2.3.1, instead of using a centralized
anonymizer, [20, 21] suggest using dummy locations, which are randomly selected
from the user’s mobile device to achieve k-anonymity. This can apparently solve the
privacy leakage risk in centralized location anonymizer.

However, the side information (e.g., query probability) can be utilized by
adversaries, and hence reducing the anonymity degree of k-anonymity. By carefully
selecting dummy locations, one can potentially eliminate side information leak-
age [22, 23]. The drawback of these kind of solutions is quite obvious, that is, the
communication and storage cost is pretty high. Some compromising solutions focus
on decreasing the computational and storage overhead by using VHC mapping [24],
encountered-based solution [25], and k-anonymous cloaking box [26]. In addition,
it is also a heavy computational cost for resource-constrained mobile devices.
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2.3.3 Caching Schemes

There are more and more research on caching schemes recently. All these schemes
are based on pre-fetching the useful location-based information in cache of end
devices. We list some recent works below.

Shahriyar et al. proposed Caché to improve user location privacy [27]. The core
idea of this method is to periodically pre-fetch potentially useful location-enhanced
content well in advance. Thus the end devices can retrieve the location-enhanced
content when they need it. This protects the precise location of end users.

Xiaoyan et al. proposed an alternative method called MobiCache [28]. Their
method combines k-anonymity and Dummy Selection Algorithm (DSA). In order to
increase the cache hit ratio, they generate some dummy locations that have not been
queried before and choose them to query. In addition, they proposed an enhanced-
DSA to choose dummy locations from cells which can make more contributions
to both the cache hit ratio and user’s location privacy even if they are not cached
before.

In 2015, Ben et al. [53] proposed another caching-based solution to protect
location privacy in LBSs. In their method, they propose an entropy-based privacy
metric to measure the relation between cache hit ratio and the achieved privacy. Then
based on this metric, they propose Caching-aware Dummy Selection Algorithm to
achieve location privacy.

Although these methods can somehow protect the location privacy of end users,
end users still need to store a huge amount of service data for a large area. Besides,
to cache data, the end devices need more communications and computations.

2.4 Identity Privacy

Personal Identifiable Information (PII) or user identity is information about a person
which has been collected, assessed or used by edge cloud services on demand.
For example, when users establish their new edge service, they usually fill out
an online form and provide sensitive personal information (e.g., name, gender,
address, phone number, credit card number, etc.). This information may be stored in
a central Identity Provider (IdP) and may be disseminated to service providers (SPs)
later for the use of authorizing requests, completing payment, customizing services
and so on. In early 2018, the Facebook data scandal caused 50 million users’
PII to be disclosed to third party company, Cambridge Analytica, for “analysis”
purposes via SP. This practical example tells us to stay alert to protect our personal
information properly. Identity privacy issues are highly related to the problem of
Identity Management (IDM) in the past decade. There are several solutions recently
about identity privacy in edge computing.

In 2013, Khan et al. [29] proposed a light-weight identity protection scheme for
Cloud-based mobile users for dynamic credential generation instead of the digital
credential method. It uses a trusted entity to offload frequently occurring dynamic
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credential generation operations to reduce the computational cost on resource-
limited mobile devices.

Then Park et al. [30] proposed an Improved Identity Management Protocol
(I2DM) by using Pretty Good Privacy (PGP) that is based on Public Key Infrastruc-
ture (PKI) for secure mobile cloud computing. I2DM aims to find the weakest point
in the network, maximize the load balance at this point to reduce the communication
cost. This helps end device users manage their identity information easier.

Consolidated Identity Management (CIDM) system [31] aimed at mitigating
three possible vulnerabilities: IDM server compromise, mobile device compromise,
and network traffic interception. In practice, privacy is a challenge in IDM.
According to [32, 33], identity management must meet the following challenges:
undetectability aims to hide users’ transactions and any other actions in a system;
unlinkability aims to disconnect user identities and their history of transactions;
confidentiality aims to enable users’ controls. CIDM also uses a trusted third-party
authorization server of IDM to manage the sensitive identity information of users.
This method can distribute authorization credentials in the token into two related
but different parts to countermeasure illegal access vulnerabilities. They also add a
human interaction layer before each access is granted which can help defeat mobile
devices that are compromised by adversaries.

3 Privacy in Edge Computing with Emerging Technologies

3.1 Overview

The emerging technology big data [34, 35] and machine learning [36, 37] have
brought convenience to people’s daily work and life. For example, people can
talk to smart home assistant such as Siri or Alexa to get daily temperature, traffic
information, control of lights and TV in their home, etc., instead of doing so
by themselves; smart city can collect people’s public safety, health, utility, and
transportation data to help organize the city and make decisions; video analytics
use machine learning and especially deep learning to analyze, classify, and process
the video in real time; hospital can collect patients’ symptoms and disease data
and use machine learning to help them understand the disease and diagnosis more
effectively.

In order for all these applications to be implemented in practice, a powerful
and efficient infrastructure must be provided. Edge computing is naturally a good
solution. With the benefit of high bandwidth, edge computing is capable to transmit
large amounts of data to edge server for processing to help those end devices with
limited computational resources. On the other hand, in some areas that require real
time response such as deep neural network training and smart hospital diagnosis,
low latency of edge computing is a big advantage.
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However, there are several privacy concerns when we talk about big data and
machine learning with edge computing. Since the high bandwidth brings more data
exchange between the end device and the edge server, the data privacy concern is
more serious than ever. As we cannot guarantee if the edge server is trustworthy
because of the various edge server providers, the edge server may be curious
about end user’s private data, causing the leakage of the sensitive information. In
summary, the privacy issues in machine learning usually occurs in the training phase
and inference phase and the privacy issues in big data usually occurs in the data
collection and data mining process.

To protect the users from these kinds of privacy concerns. A lot of privacy-
preserving algorithms have been proposed recently. In summary, a good privacy-
preserving algorithm must have the following requests.

• Private Privacy is obviously the core requirement of the algorithm. We must have
privacy guarantee to prevent malicious or curious edge servers.

• Effective Here the effectiveness does not mean how effective this algorithm pro-
tects the privacy. It means that after we make privacy-preserving modifications
to the algorithm, it should not lose the effectiveness performance a lot than state-
of-the-art algorithm without preserving the privacy. For example, assuming that
a face recognition model with normal training can have 95% accuracy, when we
use privacy-preserving training, the accuracy should not have a big drop. If the
performance drops a lot, it loses the meaning of training.

• Scalability The scale of the dataset in big data and machine learning is usually
considerably large. Regardless of the smart city, smart hospital, or any other
applications in big data, a big amount of data is the necessary foundation of
big data for future analysis and implementation. Thus, the privacy-preserving
algorithm must be able to deal with a large scale of dataset while the time
complexity should not increase significantly with the increasing scale of the
dataset.

• Lightweight Since one advantage of edge computing is the low latency, preserv-
ing the privacy should not bring more computational or communication overhead
to the edge computing system. When we need to make considerable computations
in edge server and end devices or make several data communications between
edge server and end device to ensure privacy, the quality of experience will
reduce significantly. So lightweight is a reasonable condition for privacy-
preserving algorithms.

There are several existing techniques to preserve the privacy of big data and
machine learning in edge computing. We will first introduce preliminary knowledge
of differential privacy, which is a common technique in practice, then talk about
some recent algorithms to protect the privacy.
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3.2 Differential Privacy Preliminary

In this subsection, we will introduce some preliminary knowledges of differential
privacy to help understand the recent privacy-preserving algorithms in big data and
machine learning along with edge computing.

3.2.1 Definition

Differential privacy is one of the most important techniques to protect privacy
recently. It is a practical technique to protect the privacy leakage problem in small
perturbation of dataset. In another word, it provides a constraint to conventional
algorithms that are used to analyze the dataset such that in statistics, it can limit the
private information disclosure for whose information is in the dataset.

For example, there is a database that records the salary of each employer. We have
a query to get the total compensation of a group of employers. Then we can query the
database twice: one is for all data and the other is for all data but a specific employer.
Then the difference of the two queries is the exact salary of this specific employer.
We can find out that even if the query does not leak any information of a single user,
the difference of subdataset can leak the private information. Theoretically we have
following definitions.

Definition 1 (Query) A Query fi is a mapping function defined on a database D.
Denote F = {f1, f2, · · · , fn} as a group of queries.

Definition 2 (Adjacent Databases) Assuming database D and D′ have the same
attribute structure and they differ at most one element, in another word, one database
is the proper subset of the other database and the larger database contains one more
additional data, we call D and D′ adjacent databases to each other.

For example, if D = {1, 2, 3, 4, 5, 6, 7} and D′ = {1, 2, 3, 5, 6, 7}, D and D′
differ only one element 4, then D and D′ are adjacent databases.

The first theoretical definition ε-differential privacy is from [38] as following.

Definition 3 (ε-Differential Privacy) A randomized function query f gives ε-
differential privacy if for all datasets D1 and D2 who are adjacent databases, and
all S ⊆ Range(f ),

Pr(f (D1) ∈ S) ≤ eε · Pr(f (D2) ∈ S) (1)

The probability is taken over the coin tosses of f .

Definition 3 is a little bit abstract. Let’s talk about it in details. In fact, this
definition uses ε to control the difference of the query output distribution in those
two adjacent databases. In some papers we also call this query a mechanism or
algorithm. They output of the query has randomness. This definition guarantees that
even if some data are added or removed from the database, the output of the query
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should not be significantly changed. For example, when we want to query the total
compensation of a group of people, just returning the exact total compensation is
at privacy leakage risk. An ε-differential private query should return a range or a
random number around the total compensation, so even if we run this query a lot of
times to its adjacent databases, the exact salary for an individual is still protected.

ε-differential privacy is a powerful way to protect privacy, but sometimes
Definition 3 is too strong to achieve, there is a general (ε, δ)-differential privacy
defined in [39] as following.

Definition 4 ((ε, δ)-Differential Privacy) A randomized function query f gives
(ε, δ)-differential privacy if for all datasets D1 and D2 who are adjacent databases,
and all S ⊆ Range(f ),

Pr(f (D1) ∈ S) ≤ eε · Pr(f (D2) ∈ S) + δ (2)

The probability is taken over the coin tosses of f .

Definition 4 is more general than Definition 3 since there is an added δ on the
right of (2). In practice, we always choose δ as a very small constant. ε-differential
is a special case of (ε, δ)-differential privacy when we choose δ = 0.

3.2.2 Implementation

After we know definitions of the classic ε-differential privacy and the generalized
(ε, δ)-differential privacy, we know that the differential privacy is to make modifica-
tions to query results such that query results are accurate in general but ambiguous
enough to protect the privacy of the individual data. However, how to implement the
differential privacy is a problem.

A natural idea to implement differential privacy is to add the noise to the query
result so that the result can be more ambiguity. For example, in the previous example
about the total compensation, we can add some noise to the total compensation
result such that the query result is not exact number of total compensation but an
approximate result around the exact number. Then we can use this result as the query
output and it can protect the privacy of a single data.

Practical ways to implement differential privacy are based on this idea of adding
noise. Basically there are three ways to add the noise: Laplace mechanism, Gaussian
mechanism and exponential mechanism. We will talk about them one by one. Before
we talk about these three mechanisms, we first define the global and local sensitivity
of a query, or function.

Definition 5 (Global Sensitivity) For a query function f : D → R
d where D is a

database and R
d is a d-dimensional real number vector, its global sensitivity in any

adjacent databases D and D′ is

GSf = max
D,D′ ||f (D) − F(D′)|| (3)
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Table 1 Laplace, Gaussian and exponential mechanisms

Mechanism Modified query result Noise PDF

Laplace f (D) + N(0,GS2
f δ2) 1

2b
e− |x−μ|

b

Gaussian f (D) + N(0,GS2
f δ2) 1

b
√

2π
e
− (x−μ)2

2b2

Exponential Pr(Mex(D) = r) = e

eεq(D,r)

2·GSq(·,r)

∑
r e

eεq(D,r)

2·GSq(·,r)
N/A

Definition 6 (Local Sensitivity) For a query function f : D → R
d where D is

a database and R
d is a d-dimensional real number vector, its local sensitivity in a

given database D and all its adjacent database D′ is

LSf (D) = max
D′ ||f (D) − F(D′)|| (4)

The Laplace, Gaussian and exponential mechanisms are listed in Table 1.
According to [39–41], we have the following Theorem 1 to introduce the privacy

guarantee of these three mechanisms.

Theorem 1 If we use the Laplace mechanism and exponential mechanism as the
query result, then it satisfies ε-differential privacy. If we use Gaussian mechanism
as the query result, then it satisfies (ε, δ)-differential privacy.

3.2.3 Properties

When we have several different differential private algorithms, one question is how
the privacy will change after we combine them. Here we introduce two major
combination methods: sequential and parallel. Theoretically, we have following
theorems.

Theorem 2 (Sequential Composition) If M1,M2, · · · ,Mn are algorithms or
queries that access a private databse D such that Mi satisfies εi-differential
privacy, then the combination of their outputs satisfies ε-differential privacy where
ε = ε1 + ε2 + · · · + εn.

Theorem 3 (Parallel Composition) IfM1,M2, · · · ,Mn are algorithms or queries
that respectively access disjoint database D1,D2, · · · ,Dn such that Mi satisfies
εi-differential privacy, then the combination of their outputs satisfies ε-differential
privacy where ε = max(ε1, ε2, · · · , εn).

These properties provides the privacy guarantee for multiple combinations of
algorithms. Therefore, once we have more than one differential private algorithms,
we can also achieve differential privacy with sequential or parallel combinations of
them.
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3.3 Privacy-Preserving Algorithms

In this section, we will introduce some privacy preserving algorithms in big data
and machine learning along with edge computing in details. It should be noted that
the privacy problems in this area are at a very new stage and still have a lot of work
to do, some pioneers have already found some important topics along with a series
of techniques to solve these problems. The two major problems in this area are:

• Machine learning model training and prediction privacy.
• Big data privacy.

There are also some other privacy topics in this area. We will talk about those
problems in the following sections.

3.3.1 Preserving Privacy in Machine Learning

The model training and prediction are the most important part of machine learning.
They are also two of the major procedures in big data analysis. A good machine
learning model can provide very accurate fitting and prediction results, which brings
a lot of useful information to help us study the dataset and make a convenience to
human beings. However, the model training of deep learning or big data analysis
always requires a large demand of computational resources. To distribute the
computational resources, edge computing provides a natural platform to offload the
heavy computation from the end devices to edge servers or cloud servers.

The data privacy is always a big concern in this process. From the trained model
or the training process, a lot of information can be leaked. Recent research can even
rebuild the dataset from the training model by generative adversarial networks [42].
Therefore it is very important to protect the privacy while training the model. In
summary, it has two phases of privacy leakage concerns:

• Training Phase Training a machine learning model encourages the machine
to learn the explicit knowledge of the training dataset. With edge computing,
there are two ways of training. The first one is the distributed machine learning.
Multiple end devices or edge servers work together to train a model. In this
scenario, privacy may leak when the centralized parameter server is malicious
or some peer workers are curious. The second case is leveraging the training
phase to the edge server by end device. Because some machine learning models
are complicated such as deep neural networks, it is a common way to leverage
part of the training to the edge server. There are lots of interactions between
end devices and edge server such as parameter transmission and weight update,
which can also leak private information.

• Inference Phase After the machine learning model is trained, the application
is to use the trained model to do inference. While the most of the models are
deployed in the edge server, end user can communicate with the edge server to
implement the inference phase. The input data are uploaded to the edge server
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and the inference results will be returned to the end device. This can cause data
or identity leakage.

Differential privacy is a very common technique to use in this area. One of
the problems in differential privacy is that it will lose the accuracy of the query
if we want to protect more privacy since we add noise to query results. However
in machine learning training, this is not a very big concern because in machine
learning and big data, the model training is usually based on numerous data and to
learning the statistics regulation among them. It also usually needs a lot of epochs
of training to get a good performance, so an individual noise is not a big deal and
those noise is assumed in the statistical model itself. Since in differential privacy,
the noise we added usually satisfies a distribution of mean value 0, after several
epochs of training, the interference of the noise will be offset. Therefore, differential
privacy is a good way to protect privacy in machine learning model training. There
are several existing works in this area.

Model Partition

In 2018, Yunlong et al. [54] proposed a model partition based privacy preserving
model training algorithm in edge computing. Their algorithm mainly focuses on
deep neural network model training.

In deep neural network, there are multiple layers in the neural network. Training
a whole network on the end device is a cumbersome work and usually consumes
a lot of time. A natural idea is to offload this work to edge server. To protect the
privacy, they split the whole neural network into two parts. The first part contains
only the first layer and the activation function. The other part contains all rest layers.
To reasonably distribute computational resources and protect the privacy, they let
the first part run on end devices and the second part run on the edge server. To
protect the privacy, in the forward propagation process, Gaussian noise is added to
activation results of the first part so that the adversary cannot refer the original input
data by activation results. In the backward propagation, the backward loss change
information is transmitted from the edge server to end devices to finish one iteration.

It is apparent that activation results that is transmitted from end devices to the
edge server is (ε, δ)-differential private because of the Gaussian noise added to
results. However, to ensure the privacy, it is also important to ensure that when
all activation results pass through the second part of neural networks on the edge
server, the output is still private. We can take the output as a combination of input
activation results. From properties of differential privacy, since the total loss of
network prediction can be seen as a composed mechanism of multiple differential
private mechanisms, the final output also satisfies differential privacy. This means
that this model partition way can preserve the privacy in neural network model
training on edge computing.
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Output Perturbation and Objective Perturbation

Output perturbation and objective perturbation are two algorithms that was proposed
by Miao et al. in 2018 [43]. Unlike the model partition, output perturbation and
objective perturbation can not only be used in deep neural networks, but also extend
to other machine learning techniques.

The difference between those two algorithms is that output perturbation is adding
Laplace noise to the output prediction to preserve the privacy of the model prediction
and objective perturbation is adding Laplace noise to the objective function or loss
function to preserve the privacy of the model training.

Assuming the modified loss function is K(u,D), we have:

K(u,D) = 1

n

∑

i

Loss(u(xi), yi) + λZ(u) (5)

where u(·) is the function of the prediction model, xi, yi are the data and target in
database D, Loss(·) is a loss function and Z(·) represents the smoothness of the
function. Then the prediction model U is to minimize this modified loss function to
get a good model.

U = arg min
u

K(u,D) (6)

Output perturbation algorithm is adding a random Laplace noise q to the result
of U :

U ′(x) = U(x) + q (7)

This can protect the privacy of prediction results.
On the other hand, objective perturbation algorithm adds Laplace noise to the

modified loss function K(u,D):

K ′(u,D) = K(u,D) + 1

n
qT u (8)

By minimizing the L2 normalization of K ′(u,D), we can get the prediction model
U by:

U = arg min
u

K ′(u,D) + 1

2
||u||2 (9)

From Du et al. [43], the privacy analysis is given to ensure the ε-differential
privacy in those two algorithms. They can respectively protect the data privacy
during the training and prediction processes.
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Separate Training

Separate training is another algorithm proposed by Mengmeng et al. to protect the
data privacy [44]. It uses two edge servers and assumes that there are no collusion
between both of them.

Within the separate training aggregation framework, two edge servers collect data
from sensors in each area. Once a sensor collect some data, it will randomly split the
collected data into two parts and randomly send each part with Laplace noise to an
edge server. The process will continue until edge servers collect enough data. Both
edge servers will aggregate the received data and train a machine learning model
based on those data. With the assumption that there is no collusion between edge
servers, each edge server cannot get or infer the completed data by itself. When
executing queries, both of edge servers compute queries based on their models. To
protect the privacy, Laplace noises are added to query results. They by aggregating
prediction results from both edge servers, a privacy-preserving prediction result is
obtained.

The authors of this paper proved that if each record is independent in this
dataset, the aggregated result can also provide ε-differential privacy. Meanwhile,
from properties of differential privacy, we know that even we have a series of private
mechanisms, the composition of them can still provide a ε-differential privacy.

3.3.2 Preserving Privacy in Big Data

The emerging development of internet of things, massive data are produced and
shared everyday. Big data is a science to study and analyze those large scales of data.
Edge computing has accelerated the speed of collection data. In edge computing,
end devices including various kinds of sensors are collecting numerous amount of
data and transmit to edge servers everyday.

Among big data one important privacy issue is that how to provide privacy
guarantee when publish or release those data. For example, when the data publisher
releases various statistics of the data, the adversary can query those statistics to
recover the original data, which will significantly disclose some important message
or private information. So how to preserve the data privacy while publishing the
big data statistics is a big problem recently. On the other hand, since the data are
usually stored scatteredly on edge servers. Then how to prevent privacy breaches
from honest but curious edge servers is a challenging issue. In the implementation
of big data techniques, there are two phases that may leak the privacy:

• Data Collection Data collection and aggregation are the most intuitive way to
leak the sensitive information. The first step of big data is to collect a large scale
of data and aggregate them, among which a lot of data are sensitive. Meanwhile,
the uncertainty of the credibility in edge servers increases the risk of privacy
leakage. Once the sensitive data is taken advantage by malicious edge servers,
the privacy issue can be really severe.
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• Data Mining Data mining and data analysis are the core step of big data. Data
mining uses some techniques such as statistics learning, machine learning to
study the implicit information of the data. These information usually include the
identity, location, preference, habit information of a single person or a group
of people. While users usually leverage those data mining procedures to the
edge server, privacy-preserving algorithms must be used here to protect against
information leakage by untrusted edge servers.

Differential Privacy is still a common technique in the big data privacy area.
Since for the large scale of data, one row of data is not that important. People are
more willing to care about the approximate result. Therefore, adding noise to the
data will not harm the total performance. In this section, we will summarize some
recent privacy preserving algorithms in big data.

Partitioned Histogram Data Publishing Algorithm

Partitioned histogram data publishing algorithm is proposed by Yi et al. in [45]. It
is an algorithm to protect the data privacy when the edge server release the data. On
one hand, they add noise to the data to keep data private between end devices and
edge server against privacy leakage. On the other hand, during the data transmission,
only the partition histogram of the data statistics will be transmitted to cancel the
impact of the noise.

The algorithm contains four steps. First of all, we need to divide the original
dataset into several histogram bins and add Laplace noise to each bin. Secondly,
cluster partition operation is used to obtain new partition histogram. Thirdly, we
are going to use this new partition histogram to build a wavelet tree using wavelet
transform and add Laplace noise to the wavelet tree. Lastly, we can restore the
histogram partition and publish the private histogram.

The privacy analysis is still based on the differential privacy. Since this algorithm
has added the Laplace noise twice, authors proved that the partition histogram
publishing algorithm based on wavelet transform satisfies ε-differential privacy.

Content-Based Publish–Subscribe Scheme

The content-based publish-subscribe scheme is proposed by Qixu et al. in [46]. It
provides privacy protection to brokers in the publish-subscribe system. The publish-
subscribe system is widely used in modern applications. It is a scheme to categorize
the published messages and send categorized messages to subscribers by brokers.
Edge computing provides a effective platform for this system. However, privacy
issues are in the implementation of publish-subscribe scheme in edge computing
because there may be unethical brokers or brokers are facing risk of hacking, sniffing
and corrupting, which may cause private information leakage.
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This algorithm includes three major steps. The publish-subscribe system firstly
generated notification messages by using top-K U-FIM algorithm based on user’s
dataset to min top-K most frequent itemsets and adding exponential mechanism to
results. Then based on the results, Laplace noise is added to the operated dataset.
In the end, the broker uses attributes of top-K most frequent itemsets to match
corresponding events to publish.

Exponential and Laplace mechanisms are used here to ensure the ε-differential
privacy. So it is both suitable for numeric data and non-numeric data.

3.3.3 Other Topics

There are a lot of other topics in this area. In fact, since this is a very new research
area, the topics are various.

• Smart home hub privacy [47]. They propose a smart home system called
HomePad, which uses elements in a directed graphs to represent applications
in this system and use module functions to isolate the usage of the data. It can
achieve user defined privacy policy by modeling elements and the flow graph
using Prolog rules.

• Differential privacy–based location privacy [48]. A differential privacy based
framework is proposed by Qiucheng et al. to protect location privacy. They build
a noise quadtree to map two-dimensional spatial data into an interval tree, and
nodes in the tree correspond to a certain sub-area of the two-dimensional spatial
data. Then they used Hilbert curve to reduce the retrieval computation cost.

• Online social multimedia big data retrieval privacy [49]. To support big data
analytics while preserving privacy in edge computing, they can build multimedia
content cluster tree from top to the bottom to handle the dynamically varying
cached MC datasets and add noise to the cluster tree. In addition, they propose
an evaluation method to measure the credibility of edge nodes.

• Smart city privacy [50]. The authors talk about modeling the privacy content
among the big data including data graph, information graph and knowledge graph
of smart city in DIKW (Data, Information and Knowledge) architecture. They
categorize context graphs into target resources and add privacy guarantee to the
conversion for IoT devices to process.

• Internet of connected vehicles privacy [51]. They design a V2V (Vehicle-to-
Vehicle) communication-based route-obtaining algorithm to offload the com-
putation to edge nodes. Then they propose NSGA-II (non-dominated sorting
genetic algorithm II) to reduce the computational cost and preserve privacy of
vehicles tracking, identity tampering and virtual vehicle hijacking.

• Federated learning privacy [52]. They adopt a blockchain to replace the central-
ized server in the classic federated learning system to reduce the privacy leakage
risk. In addition, they also add differential privacy noise to extracted features
and intermediate computational results in order to protect end user’s privacy and
enhance test accuracy.
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All these topics are new and interesting. In reality, many work of privacy
problems in edge computing are still at an early stage and have a lot of work to
explore. We will talk about them in the next section.

4 Future Work

In the previous section, we mentioned that the privacy problems in edge computing
are still in a very early stage. In fact, with the rapid development of edge computing
and the gradual demand of privacy, more and more people have started to pay
attention to the privacy issues. In addition to the topics we discussed in previous
sections, we believe that there will be more interesting privacy problems in edge
computing area. Here are some examples.

• Real time analysis. In edge computing, low latency brings a lot of opportunities
on real time analysis. While sensors and end devices collect a lot of dynamic
data and need to analyze them in real time, privacy guarantee should also be
provided in a timely manner. Therefore, there must be efficient and effective
privacy-preserving algorithms in real time.

• Privacy overhead. Nowadays, privacy-preserving algorithms are more focused on
how to preserve privacy effectively. However, in order to obtain privacy, there are
more computational overheads, which may introduce significant latency to the
edge computing environment. Therefore, it is also important to preserve privacy
while saving computational costs.

• Privacy accuracy balance. At present, many privacy-preserving algorithms,
especially those that use differential privacy, will introduce noise into query
results, which may lead to a decrease in accuracy. How to balance the privacy
guarantee and the accuracy reduction will be an interesting problem.

• Smart vehicle. Self-driving vehicle is a trend of the future car. A lot of companies
and research institutions are paying attention to it. Edge computing provides
convenience on sensing data and vehicle communication. However, driving
information is important and sensitive. How to provide the privacy for self-
driving car will be a very popular privacy problem.

5 Summary

In this chapter, we have talked about some existing privacy-preserving algorithms
and useful techniques in conventional data, location and identity privacy and new
technologies machine learning and big data, but there are a lot of more interesting
open privacy problems in edge computing. It is a growing demand for people to
protect their private information in this age of information explosion. The privacy
problem in edge computing must be paid more attention in the future.
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Privacy-Preserving Edge Video Analytics

Miao Hu, Yao Fu, and Di Wu

1 Introduction

Edge video analytics (EVA) shows great potential to be applied in artificial
intelligence-driven system design, e.g., autonomous driving and smart city, and
has been an area of intense research in the past few years. Given a video clip
taken from cameras, edge video analytics is the process of extracting features from
images/videos and applying these features to emerging applications, e.g., finding
the criminal from the crowd. Apart from surveillance, it has applications in robotics,
multimedia and forensics. The design and implementation of an efficient EVA model
has always been an essential issue, which has received significant attention from
both the computer vision research community and the computer system research
community due to its wide applicability and utility.

In recent years, the privacy issues in edge video analytics aroused tremendous
attentions. In summary, the privacy issues can be classified into the following
categories: (1) Privacy in video collection. In most video analytics applications,
the video collector (e.g., the camera) does not locally conduct the tasks due to
resource limitation. Generally, the videos will be offloaded to other computation-
powerful servers for model training and task execution. In the video collection and
offloading process, video contents are inevitably at the risk of private information
leakage [12, 28, 30, 33]. (2) Privacy in video storage. It is also a big concern
to determine where should the collectors store their video contents with private
information. Reliable data storage is important for video analysis tasks, especially
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for a video retrieval application. Some studies (e.g., [7] and [28]) applied a trusted
edge server performing video denaturing and providing data storage. (3) Privacy
in video analytics. The privacy issues in video analytics-related applications attract
more and more attentions, such as [14, 15, 18]. The video analytics applications are
generally built on neural network models. Intuitively, some works persist that the
privacy issues are solved as only network parameters are shared. However, network
parameters can be leveraged to reveal private information of video contents. The
privacy issues still cannot be ignored.

Despite the privacy issues mentioned above, the design of a privacy-preserving
edge video analytics system is especially challenging: First, the goals of improving
EVA model accuracy and protecting client privacy are somewhat conflicted with
each other. Commonly, the model performance relies on the accuracy of model
parameters trained on each dataset. A higher EVA model accuracy is always at
the cost of more disclosure of privacy on clients’ video contents. Second, existing
crypto-based privacy-preserving approaches (e.g., homomorphic encryption) are too
compute-intensive, which are not practical to be implemented in the real systems
[14, 15, 18]. A light-weight privacy-preserving EVA model with low complexity is
more desirable. Third, most popular privacy-preserving schemes (e.g., differential
privacy) usually face with serious performance degradation [9, 31]. Besides, it is
also unclear how the EVA model accuracy varies under different privacy conditions.
Last but not the least, the EVA model training condition might change with time.
It is expected to design a flexible EVA model training framework that can be
dynamically tuned to fit all scenes. To solve the privacy issues in EVA systems,
researchers have made significant progress in the past years. However, the above
four key challenges have not been well addressed.

In this chapter, our objective is to address the above mentioned challenges
and achieve both high accuracy and privacy preservation simultaneously. To this
purpose, we propose a light-weight federated learning framework for EVA model
training, which is called FedEVA. The main idea of FedEVA is to perturb clients’
private model parameters with publicly available model parameters using a local
perturbation operation, while the model training algorithms can still be run over
perturbed parameters. There is no need for the coordinator server to recover the
private model parameters. Note that, compared with compute-intensive crypto
operations, both perturbation and model aggregation in our FedEVA framework
are linear operations with low time and space complexity. Thus, FedEVA is light-
weight and highly efficient. In addition, our framework can ensure the same
recommendation accuracy on the perturbed parameters as that on the original
parameters. It is possible for adversaries to capture perturbed model parameters,
but they cannot easily recover the private model parameters of clients due to the
lack of perturbation key. Thus, FedEVA can effectively prevent the leakage of user
privacy.

Overall, our main contributions in this chapter can be summarized as below:

• We propose a light-weight privacy-preserving EVA framework called FedEVA.
By conducting perturbation over private EVA model parameters, our proposed
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framework can prevent the leakage of client personal information. We also verify
that the model accuracy will not be affected by introducing FedEVA into the EVA
model training systems.

• Different from previous crypto-based methods, FedEVA is light-weight and
highly efficient. In the meanwhile, the EVA model training can still work well on
the perturbed parameters. We can also dynamically change the weight parameters
of the FedEVA framework to achieve different degree of privacy preservation,
which improves the scalability and flexibility of a privacy-preserving EVA
system.

• We evaluate our FedEVA framework through large-scale real-world datasets.
The experiment results show that our FedEVA framework achieves a significant
improvement in protecting client privacy compared to baselines, meanwhile the
accuracy and efficiency of the EVA model can still be guaranteed.

The remainder of this chapter is organized as follows. Section 2 introduces the
historical backgrounds for edge video analytics and standard privacy-preserving
solutions. Section 3 presents the preliminary information. Section 4 proposed
the system model, where the detailed algorithms are shown in Sect. 5. Section 6
evaluates the performance of the proposed algorithms. Section 7 concludes this
chapter and outlooks future research directions.

2 Related Works

2.1 Edge Video Analytics

Utilization of edge computing in video analytics can help save cost, bandwidth and
energy. To design an efficient edge computing system for real-time video stream
analytics, characteristics of video contents should also be taken into consideration.
Bilal and Erbad [3] highlighted potentials and prospects of edge computing for
interactive media, and presented some preliminary works on how edge computing
can be used to tackle video analytics challenges. Ran et al. [22] designed a
framework tied together front-end devices with more powerful backend “helpers”
to allow deep learning to be executed locally or remotely in the cloud/edge.
They considered the complex interaction among model accuracy, video quality,
battery constraints, network data usage, and network conditions to determine an
optimal offloading strategy. Wang et al. [29] proposed an adaptive wireless video
transcoding framework based on the edge computing paradigm by deploying edge
transcoding servers close to base stations. It is essential to efficiently extract video
characteristics, and then apply them into edge computing architecture design.

Some special characteristics from video content or edge servers can be further
exploited to enhance the EVA system efficiency. Zhang et al. [34] presented Vigil,
which contributed on frame selection to suppress redundancy. When multiple
cameras capture different views of an object or person of interest to the user query,
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Vigil uploads only the frames that best capture the scene. Chowdhery and Chiang
[6] proposed a model predictive compression algorithm that uses predicted drone
trajectory to select and transmit the most important image frames to the ground
station to maximize the application utility while minimizing the network bandwidth
consumption.

The model training is one of the most important issues for EVA system design,
which has also attracted tremendous attentions. Liu et al. [20] proposed a general
deep neural network (DNN) architecture, and used it in their edge-based video
analytics system. They also implemented a buffer management scheme, which
uses Nvidia CUDA mapped memory feature to simplify the memory movement
between CPU and GPU. Tarasov and Savchenko [25] proposed to apply the multi-
task cascaded convolutional networks to obtain facial regions on each video frame.
Then image features are extracted from each located face using preliminary trained
convolutional neural networks (CNNs). Yaseen et al. [32] focused on tuning hyper-
parameters associated with the deep learning algorithm to construct the video
analytics model. Uddin et al. [27] proposed SIAT, which provided basic distributed
video processing APIs and distributed dynamic feature extraction APIs which
extract prominent information from the video data. In this chapter, we focus on
the privacy-preserving EVA model training framework design.

2.2 Privacy-Preserving Video Analytics

For video analytics applications, a large number of surveillance cameras installed
at different places capture video data for further analytics. The privacy issues have
been focused in the video analytics framework design, which allows users to have
specific control over their sensitive information, preventing from being abused by
third parties.

With the advance of computer version (CV) technologies, it is possible to achieve
a more granular privacy protection in the initial stage of data collection. Wang et al.
[28, 30] developed OpenFace, a mechanism for privacy-preserving data collection,
which denatures captured video data based on user-defined privacy policy. By
applying video denaturing technology, OpenFace can selectively blur faces that
occur in video frames, greatly alleviating the privacy concern. Zarepour et al. [33]
blurred or eliminated the sensitive subjects with image processing technologies.
Jana et al. [12] proposed DARKLY, which is integrated with OpenCV and replace
the raw input feature with opaque references, which cannot be directly dereferenced
by an untrusted application. However, the characteristics of the pictures or videos
may be changed and cannot be applied into the video analytics.

During the data analysis phase, sensitive information may need to be processed
on untrusted platforms due to the limited computing power of edge nodes. During
the analysing stage, crypto technologies can reduce unauthorized data access. Fully
homomorphic encryption allows data analytics being performed on encrypted data
directly, instead of applying an additional decryption operation on the video. Jiang et
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al. [14] used level homomorphic encryption and performed privacy preserving scale-
invariant feature transform on encrypted images. To enable encryption operations
to run on resource constrained nodes, [15] proposed TargetFinder, which applies
homomorphic encryption to search for images that include the target on encrypted
data. Besides, TargetFinder used optimization technologies to reduce computation
overhead of cryptographic primitives on energy and computation-constrained edge
devices. Besides, [18] proposed a novel privacy preserving computing frame-
work, where the terminal devices perform the light-weight permutation-substitution
encryption and edge nodes adopt the homomorphic encryption. The edge-assisted
framework can greatly reduce the computational, communication and storage
burden while ensuring data security.

Federated learning facilitates the collaborative training of models without the
sharing of raw data. By averaging local gradient updates, federated averaging
(FedAvg) proposed by McMahan et al. [21] performs well on federated learning
with non-iid data. However, [2, 17] demonstrated that simply maintaining data
locality during training processes does not provide sufficient privacy guarantees.
Recently, some privacy-preserving frameworks were proposed to hide clients’
contributions during training, balancing the trade-off between privacy loss and
model performance. Bonawitz et al. [4] designed a communication-efficient, failure-
robust protocol for secure aggregation of high-dimensional data.

To obscure an individual’s identity, differential privacy (DP) adds mathematical
noise to a small sample of the individual’s usage pattern. For example, [10] proposed
an algorithm for client sided differential privacy preserving federated optimization.
Wu et al. [31] used noisy differentially-private gradients to minimize the fitness
cost of the federated learning model using stochastic gradient descent. However,
differential privacy might lead to slow convergence on model training, and possibly
low accuracy given a large number of parties with relatively small amounts of data.

It is non-trivial to design a federated learning system capable of preventing
interference over training on the distributed datasets while ensuring the resulting
model also has acceptable predictive accuracy. Some federated learning approaches
use secure multiparty computation (SMC) to accelerate the model convergence rate,
however this might introduce a high burden on the communications between clients.
Moreover, SMC is vulnerable to interference. Truex et al. [26] proposed a scalable
approach to protect against interference threats, which combines differential privacy
with secure multiparty computation. However, it is unclear how to realize the
SMC operations without introducing high computation overhead. To the authors’
best knowledge, it is still a great challenge to balance the tradeoff between the
training performance and the privacy-preserving level. This chapter aims to propose
a privacy-preserving federated learning system without affecting the performance
of video analytics model.
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3 Technical Preliminary

Before presenting the system model and the proposed privacy-preserving edge video
analytics scheme, we first introduce some preliminary knowledge.

3.1 Federated Optimization

Federated learning, as a federated optimization paradigm, makes multiple devices to
jointly learn a global objective model without sharing their local data. The training
data is stored on the local clients or edge devices, which can prevent the leakage of
user privacy. Similar to distributed optimization, federated learning allows clients
or edge devices to compute local updates and a coordinator server makes use of the
gradients sent by user devices to aggregate global model parameters.

Following the pioneer work proposed by McMahan et al. [21], we also assume a
synchronous update scheme that proceeds in rounds of communication. There is a
fixed set of K clients with fixed datasets D1,D2, · · · ,DK where nk = |Dk|. At the
beginning of each round, a random fraction C of clients is selected, and the server
sends the current global algorithm state to each of these clients (e.g., the current
model parameters). We only select a fraction of clients for efficiency. Each selected
client then performs local computation based on the global state and its local dataset,
and sends an update to the server. The server then applies these updates to its global
state, and the process repeats (Fig. 1).

While we focus on non-convex neural network objectives, the algorithm we
consider is applicable to any finite-sum objective of the form

min
ω

f (ω), (1)

where

f (ω) = 1

n

n∑

i=1

fi(ω). (2)

client edge server coordinator server
video offloading

model retrieval

gradients sharing

model update

Fig. 1 Federated learning driven edge video analytics model training framework
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For a machine learning problem, we have fi(ω) = l(xi, yi;ω), where the loss
of the prediction on example (xi, yi) made with model parameters ω. Thus, we can
re-write the objective in Eq. (1) as

f (ω) =
K∑

k=1

nk

n
Fk(ω), (3)

where

Fk(ω) = 1

nk

∑

i∈Dk

fi(ω). (4)

The recent video analytics applications of deep learning have almost exclusively
relied on variants of stochastic gradient descent (SGD) for optimization. SGD can be
applied naively to the federated optimization problem, where a single batch gradient
calculation (say on a randomly selected client) is done per round of communication.
This approach is computationally efficient, but requires very large numbers of
rounds of training to produce good models.

3.2 Federated Averaging

Federated Averaging (FedAvg) is the most common algorithm for federated learn-
ing, by optimizing the local objective Fk on client k in each round t. T is defined to
indicate the number of total rounds of client-server communications and parameter
updates to produce global model. In FedAvg, when each client locally executes the
procedure of gradient descent on the current model using its local data, we have

ωk
t+1 = ωt − ηt∇Fk(ωt , ξ

k
t ), (5)

where ωt are the current model parameters, ηt is the learning rate, ξk
t and ωk

t+1 are
local data used and new parameters, respectively. The global iteration step in the
server is to take an average of the locally updated results and obtain a new global
model, namely,

ωt+1 =
∑

k∈St

nk

n
ωk

t+1. (6)
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client edge server coordinator server
video offloading

model retrieval

gradients sharing

model update

eavesdropper

Fig. 2 The general eavesdropper attack model

3.3 Attack Model

The attacker takes advantage of unsecured network communications to access data
as it is being sent or received by its user. This chapter mainly focuses on the
eavesdropping attack, also known as the sniffing or snooping attack. As shown in
Fig. 2, an eavesdropper might monitor the information transmitted over a network
by a computer, smartphone, or another connected device. Thus some key features of
the local captured videos are at risk of information disclosure.

4 FedEVA Framework Overview

The focus of the FedEVA framework is to protect the private information (e.g.,
video analytics results) in clients’ video contents from being leaked. We utilize a
helper with publicly available training datasets to guarantee the privacy-preserving
property while not introducing much communication or computation overhead. To
the authors’ best knowledge, this concept is first introduced in this work. We will
present more design details in the following.

The FedEVA framework contains four key components, i.e., the client, the edge
server, the helper and the coordinator server.

• Client. The client is responsible for collecting the video contents and offloading
them to the edge server. As the video source, the client can be the camera, the
cellphone, the laptop, and so on. Generally, the client side does not have much
computation resource for model training.

• Edge server. The edge servers train the EVA model based on the video contents
collected from its connected clients. Generally, the edge server is in the proximity
of its connected clients. We assume that the video offloading process is executed
on a dedicated communication channel, which cannot cause the leakage of
information. This work focuses on the possible leakage of the learned EVA model
parameters from the edge server to the coordinator server.
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Fig. 3 FedEVA: a federated learning driven edge video analytics framework

• Helper. The helper is associated with pre-downloaded video datasets. The
implementation of the helper is one of the key contributions of the proposed
FedEVA framework. Since the training results from the helper will be shared to
other edge servers, the helper only runs on the public datasets to prevent the
disclosure of private information.

• Coordinator server. The coordinator assists all the edge servers to collabora-
tively train models using FedAvg or FedSGD algorithm.

As shown in Fig. 3, the FedEVA framework contains data or information work-
flow between the modules. We introduce the key procedures as follows.

• Video offloading. Due to the limited computation resources, the client does not
locally execute the model training function. Instead, each client periodly offloads
its generated video clips regarded as the model inputs to the nearby edge server
in connection.

• Distributed model training. The model training is conducted on the edge server
with image/video inputs collected from clients. In this work, we do not propose a
new model training algorithm, and any model training schemes can be applied to
our FedEVA framework. In our FedEVA framework, the model training process
can be divided into two categories.

– Model training on the private datasets. The private clients are recruited
to help enhance the performance of the trained EVA model. The incentive
mechanisms are out of the scope of this work, which can be found in some
other literatures, e.g., [24].

– Model training on the public datasets. The helper proposed in our FedEVA
framework is to help guarantee the privacy-preserving level of the analytics
results from the private clients.
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• Public gradients sharing. In the FedEVA framework, the privacy issues on the
client sides are guaranteed by the setting of “public gradients sharing”. Each
client will receive the identical public gradients from the helper. By adding
different weights to the public gradients, the actual gradient update based on
the private video dataset can thus be guaranteed.

• Model update. In the coordinator server, the perturbed gradients will be summed
to obtained a synchronized EVA model. The “model update” procedure will
continue to update until the EVA model approaches a rather good level of
performance.

The FedEVA framework can be integrated into any edge-based video analytics
system. The model training framework can work well on the perturbed parameters
without recovering the practical parameters from each local user. As modifications
are mostly made at the user side, it is easy to rapidly deploy the FedEVA framework
over the existing edge-based video analytics systems. One limitation is that the
perturbation operation requires the use of model parameters trained on the public
dataset, which may not be always available in certain scenarios. One feasible
solution is to design incentive mechanism to promote some users denoting their
datasets as the public ones.

5 FedEVA Algorithm Design and Analysis

This section will introduce the designed algorithm in our FedEVA framework for
each module. As the client will not need to conduct a lot of operations, we will
present the algorithms designed for the helper, the edge server, and the coordinator
server, respectively.

5.1 Algorithm Design

5.1.1 Algorithm 1: Helper Algorithm

The operation on the helper is similar to that in standard federated learning, as
illustrated in Algorithm 1.

Algorithm 1 Helper algorithm
1: HelperUpdate(ω): // run on the helper
2: B ← (split D ′ into batches of size B)
3: for batch b ∈ B do
4: ω′ ← ω − η∇l(ω; b)

5: end for
6: return ω′ to each edge server
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5.1.2 Algorithm 2: Edge Server Algorithm

Different from the operation on the helper, the model parameter update will not be
directly sent to the coordinator server due to the privacy concerns. Instead, the model
update ω will be perturbed with the public update ω′ returned from the helper. In
detail, we will define a weight parameter α and perturb the local model update ω

with a weighted public update ω′, i.e.,

ω = ω + αω′, (7)

where α ∼ Lap(0, b) can be fit with the Laplace distribution following [8], and
b is the scale parameter. The variance of parameter α is σ 2 = 2b−2. Note that
the privacy level increases with the value of σ . However, the value of σ cannot be
increased without limit. A large value of σ will make the coordinated model tend to
that trained in the helper. Afterwards, the perturbed model update will be sent to the
coordinator server.

Algorithm 2 Edge server algorithm
1: EdgeUpdate(k, ω): // run on edge server k

2: B ← (split Dk into batches of size B)
3: for batch b ∈ B do
4: ω ← ω − η∇l(ω; b)

5: end for
6: randomly generate a weight α ∼ Lap(0, b), and obtain ω = ω + αω′
7: return ω to the coordinator server

5.1.3 Algorithm 3: Coordinator Server Algorithm

The global iteration step in the coordinator server is to take an average of the locally
updated results and obtain a new global model. The model update is as below:

ωt+1 =
∑

k∈St

nk

n
ωk

t+1. (8)

5.2 Analysis on Privacy Preservation

To quantify the level of privacy preservation provided by our FedEVA framework,
we consider the existence of malicious attackers (e.g., eavesdroppers). According to
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Algorithm 3 Coordinator server algorithm
1: initialize ω0
2: for each round t do
3: St ← (random set of m clients)
4: for each client k ∈ St in parallel do
5: ωk

t+1 ← PrivateUpdate(k, ωt )

6: end for

7: ωt+1 ←∑k∈St

nk

n
ωk

t+1

8: end for
9: return ω to the coordinator server

[5, 13], a privacy preservation metric, called Privacy Preserving Distance (PPD), is
defined as below.

Definition 1 (Privacy Preserving Distance (PPD)) is defined as the difference
between the real model parameters and the perturbed model parameters. That is,

PPD =
∑M

u=1 ||ru −Lru||2
M

. (9)

Specifically, a higher PPD is desirable for privacy protection, which can prevent the
attackers from obtaining the original private model parameters.

Based on the distribution of PPDs, we further introduce another privacy preserv-
ing metric, called Privacy Preserving Indicator (PPI) as following.

Definition 2 (Privacy Preserving Indicator (PPI)) For a FedEVA user u, let ru

denote its real model parameter vector andLru denote the perturbed model parameter
vector. Then, we have the privacy preservation indicator defined as:

Ip = Pr

{ ∑M
u=1 ||ru −Lru||2

M
≤ εp

}

, (10)

where εp denotes a privacy preservation distance threshold.

Given a specific εp, the value of Ip indicates the per-rating distortion probability
between the perturbed model parameter vector and the original model parameter
vector. A lower Ip indicates a better privacy preservation degree, and vice versa.

The private model parameters are perturbed by individual users before transmit-
ting them to the coordinator server. Thus, only perturbed model parametersLru can be
captured by attackers. For a local FedEVA user u, the privacy preservation indicator
can be rewritten as:

Ip,u = Pr
{||ru − řu||2 ≤ εp

}
. (11)
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Note that the perturbed model parameter vector is not only related to real model
parameters ru but also related to the model parameters trained on the public dataset.

To prove the privacy level of our FedEVA framework, we compare it with the
standard differential privacy (DP) scheme whose noise w is drawn from Laplace

distribution, i.e., Lap(0, λDP ) = 1
2λDP

exp
(
− |x|

λDP

)
, where λDP = Δru

ε
presented

by Dwork and Roth [8]. We obtain the following proposition.

Proposition 1 For a local FedEVA user u, when the adding noise α follows the
Laplace distribution α ∼ Lap(0, λ0), we can achieve

IFedEV A
p,u = IDP

p,u , ∀u ∈ U , (12)

where λ0 = λDP‖r′‖2
= Δru

ε‖r′‖2
.

Proof Starting from the Algorithm 3, we have

‖ru − řu‖2 = |α|‖r′‖2.

Therefore, we have

IFedEV A
p,u = Pr{|α| ≤ εp

‖r′‖2
} = 1 − exp(− εp

λ0‖r′‖2
). (13)

Similarly, for ε-DP, we have

IDP
p,u = Pr{|w| ≤ εp} = 1 − exp

(

− εp

λDP

)

. (14)

Combining (13) and (14), we obtain

IFedEV A
p,u = IDP

p,u

exp(− εp

λ0‖r′‖2
) = exp

(

− εp

λDP

)

.

Hence to ensure same privacy level, we set λ0 = λDP‖r′‖2
.

6 Performance Evaluation

In this section, we conduct field measurements to evaluate the performance of the
proposed FedEVA scheme.
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6.1 Experiment Settings

We reform the YOLOv3-tiny model [23] into the federated learning setting based
on an open source implementation1 and train the model on the COCO dataset [19].
To evaluate the performance of the FedEVA scheme, we compare it with other state-
of-the-art algorithms.

• Central YOLOv3-tiny algorithm. YOLO is a real-time object detection algo-
rithm that has been widely applied in video analytics.

• Standard FedAvg algorithm. FegAvg is a classical algorithm in FL which
allows many clients to train a model collaboratively without sharing private data
between clients or with the server, which can provide a certain level of privacy.

• FedAvg+LDP algorithm. Differential privacy (DP) describes the patterns of the
dataset while withholding information about individuals in the dataset. Local
DP (LDP) adds noise to each client’s update before sharing with the server, and
guarantees much stronger protection to clients’ privacy.

We set the batch size as 8 and use multi-scale training. Following [16], we use
Adam optimizer and gradient accumulations. In other words, the model is updated
every two batches. The standard YOLOv3-tiny model is trained based on [23]. In
the FL setting, we equally partition the COCO dataset into N = 10 parts and give
each client one part. We carry out experiments on both IID and non-IID data, where
the IID assumption is typically made by distributed optimization algorithms and the
non-IID data is assumed by the federated optimization algorithms. On the IID case,
we randomly shuffle the data before assigning to clients. On the non-IID case, we
sort all data in the order of image type, which is accessible in the COCO dataset.
After that, the data of the same type are aggregated together and each client will
only have a few types of data.

In each global epoch, all clients participate the training process by receiving the
model from the server and training it locally. We set local epoch E = 1. In FedAvg,
all clients’ updates are averaged with the weight of their data count. In FedEVA, one
client is presumed as the public edge server; while other nine clients are private edge
servers. The value of α in FedEVA is generated by Laplace distribution Lap(0, b),
where b = 0.15. In local DP setting, to guarantee the privacy, we clip the update
with C = 30, which was introduced by Abadi et al. [1].

We achieve (200, 10−9)-DP using Laplace mechanism. Holohan et al. [11]
proved if b ≥ C

ε−log(1−δ)
, Lap(0, b) satisfies (ε, δ)-DP. In our experiment, we have

b = 30
200−log(1−10−9)

� 0.15 so that we can compare FedEVA and FL+LDP fairly.

The Laplace function we use is shown in Fig. 4. We generate 106 random numbers
with respect to Lap(0, 0.15) and count the number of points falling in every interval.

The experiment results are compared with two performance metrics, including:

1https://github.com/eriklindernoren/PyTorch-YOLOv3.

https://github.com/eriklindernoren/PyTorch-YOLOv3
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Fig. 4 PDF of Laplace function Lap(0, 0.15)

• Model accuracy. We use the mean Average Precision (mAP) as the metric to
evaluate the EVA model accuracy.

• Privacy level. We use the privacy preserving distance (PPD) in Proposition 1 as
the metric for evaluating the privacy level. A larger PPD indicates a better privacy
level, and vice versa. We assume the central training model is noise-free, i.e., the
actual model.

We train YOLO model for 60 epochs and evaluate the model after each epoch.

6.2 Experiment Results

The experiments are conducted under both IID case and non-IID case.

6.2.1 IID Case

Figure 5 compares the mAP during training process with different FL models
and central training. The x-axis represents the epoch number, while the y-axis
represents the mAP of the aggregated model in each epoch. Note that the mAP
metric of FedAvg+LDP scheme is 0 during 60 epochs, i.e., the FedAvg+LDP scheme
diverges in the EVA model training. From this experiment, we can observe the mAP
performance of all distributed versions of the YOLO algorithm is worse than that
of the central version. We also find that the mAP metric of our FedEVA scheme
is similar to that with the standard FedAvg scheme. This experiment indicates the
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Fig. 5 Comparison of mAP on the IID COCO dataset

Fig. 6 Comparison of privacy level on the IID COCO dataset

effectiveness of our FedEVA scheme, which greatly outperforms the FedAvg+LDP
scheme under our experimental settings.

Figure 6 compares the privacy level of FedAvg, FedEVA, and FedAvg+LDP.
The x-axis represents the epoch number, while the y-axis represents the privacy
level. Specifically, the privacy level of the central version of YOLO is zero, i.e.,
the privacy issue is not considered in the standard version. By comparison, our
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FedEVA scheme outperforms the standard FedAvg scheme, which implies that the
design in this chapter can achieve a better privacy preservation degree. Although
the FedAvg+DLP scheme guarantees a stronger privacy protection, the EVA model
training performance under the FedAvg+DLP scheme is invalid.

6.2.2 Non-IID Case

Figure 7 compares the mAP during training process with different FL models and
central training on the non-IID dataset. The x-axis represents the epoch number,
while the y-axis represents the mAP of the aggregated model in each epoch. Note
that the mAP metric of FedAvg+LDP is 0 during 60 epochs. From this experiment,
we can observe the mAP performance of FedEVA is still similar to that of standard
FedAvg, though both FedEVA and FedAvg perform worse on the non-IID dataset
than that on the IID dataset. This experiment indicates our FedEVA scheme is as
robust as FedAvg and outperforms FedAvg+LDP under the non-IID case.

Figure 8 compares the privacy level of FedAvg, FedEVA, and FedAvg+LDP
versus the training epoch. The x-axis represents the epoch number, while the y-axis
represents the privacy level. As the privacy issue is not considered in the standard
version, the privacy level of the central version of YOLO is zero in default. Again,
although the FedAvg+DLP scheme guarantees a stronger privacy protection, the
performance of EVA model training under the FedAvg+DLP scheme is invalid.
By comparison, the FedEVA scheme achieves a similar privacy level as that in the
standard FedAvg scheme, however, our FedEVA scheme achieves much stronger
protection on clients’ privacy.

Fig. 7 Comparison of mAP on the non-IID COCO dataset
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Fig. 8 Comparison of privacy level on the non-IID COCO dataset

7 Conclusions

This chapter proposed a federated learning driven privacy-preserving edge video
analytics model training system, named as FedEVA. By locally perturbing the
private rating, the model parameters can still guarantee the model training accuracy,
while preventing eavesdroppers from tapping clients’ video contents information.
The key idea lies in that the design of the perturbation method will not change the
model training and updating structure. Besides, we also verify with experiments
that our FedEVA framework outperforms the standard FedAvg scheme in the degree
of privacy preservation. The FedEVA framework is practical and efficient as the
perturbation operation is a linear operation with low time and space complexity.
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Vulnerabilities in Fog/Edge Computing
from Architectural Perspectives

Nhu-Ngoc Dao, Ngoc-Thanh Dinh, Quoc-Viet Pham, Trung V. Phan,
Sungrae Cho, and Torsten Braun

1 Introduction

Nowadays, the commercial exploitation of the Internet of Things (IoT), a.k.a., IoTi-
zation, transforms traditional human life to smart life by involving a variety of daily
objects and devices in Internet services. These things are typically equipped with
sensors, independent processors, and memory as well as networking technology,
such as Bluetooth, WiFi, cellular, and Ethernet connection. According to the Cisco
report [3], 500 billion IoT devices are forecast to be in use by 2030, realizing the
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emerging trends of smartization, such as smart home, smart office, smart factory, and
smart city. The connected things cover a broad range of digital devices, including
home appliances, personal devices, industrial machines, and medical sensors. These
IoT devices are characterized by different performances in terms of computational
power, memory size, and battery capacity; they generate a variety of data [27].
Mostly, IoT data are not locally processed by IoT devices owing to resource
limitations. These big IoT data are offloaded to networks [22, 27]. The heterogeneity
and massiveness of the data are severe challenges for network infrastructure.

To cope with the aforementioned challenges, networks expand their computa-
tional capability from the core to the edge, resulting in a new fog/edge computing
(FEC) system [9]. This computational cloudization in the whole network demon-
strates a hierarchical architecture, where cloud computing is centralized on the
root, fog computing is distributed in the middle, and edge computing is positioned
closer to user devices [8]. In this model, service performance and latency are
high at the cloud and lower from the fog to the edge. The hierarchical computing
model allows networks to flexibly accommodate different users’ requirements with
appropriate resources on demand. For instance, real-time data offloaded from
industrial machines in a smart factory are frequently prioritized to be processed
by the FEC system with low latency. Meanwhile, video streamed from surveillance
cameras should be offloaded to the cloud for heavy processing and huge storage
[25, 31]. The supplementation of FEC has great significance in addressing issues
caused by data heterogeneity and massiveness in the IoT paradigm [5].

Despite the advantages of computational flexibility and low latency, FEC systems
has two major challenges: (1) power limitation owing to resource constraints and
(2) security and privacy for personal user data protection. Specifically, in term
of security and privacy, the supplementation of the FEC system in between the
cloud and user devices makes it vulnerable against severe external attacks on north
and south interfaces, as well as internally among FEC components. While the
standardization of security-related functions and components in the FEC system
is still in progress by the European Telecommunications Standardization Institute
(ETSI) [11–13], external interfaces must deal with diverse protocols to interact with
heterogeneous IoT devices and technologies.

Numerous recent researches have focused on mitigating these architectural
security challenges [29, 33, 34]. State-of-the-art studies have mainly focused on
protocol development, security model adaptation, and additional security compo-
nent integration into the FEC system. Accordingly, they tackled security issues
including authentication and access control, secure communications, trust and pri-
vacy preservation, eavesdropping prevention, attack countermeasures, and security
service management. To provide a comprehensive overview of security issues in
the hierarchical FEC architecture, this chapter considers FEC in multiple models,
such as intrinsic architecture, the standard reference FEC architecture, FEC vir-
tualization, and FEC integration into the 5G network. Unlike system and network
architectures, these models adopt computation architectures that focus on describing
and analyzing the involved computing components, their interfaces, and functional
relationships.
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The organization of this chapter is as follows:

• First, an introduction of computational cloudization is given with insights
comparing FEC with other related platforms, such as ad hoc computing and cloud
computing. Collaborations among these computing platforms in terms of security
prevention are derived from the analysis as an open thought.

• Next, security and privacy issues in the intrinsic architecture of a fog/edge
server are described. The analysis shows potential vulnerabilities in the main
components of the fog/edge server, including buffer/memory, processor, task
scheduler, input/output interfaces, and the operating platform. Consequently,
recent collaborative approaches inside the fog/edge server are introduced, which
have been proposed to address security issues, such as infrastructure virtualiza-
tion and software containerization.

• Third, the standard reference architecture of the hierarchical FEC is analyzed
to discover security and privacy issues with the involved components and their
links from both operational and management/control domains. Based on this,
adversary model analysis points out missing functions and procedures that may
be exploited to attack the system. Finally, feasible approaches to fix these issues
are recommended.

• Fourth, the FEC architecture is discussed from a network function virtualization
(NFV) perspective. In this view, FEC, referred to as a virtualized network
function, is controlled by the NFV management and orchestration. Hence, all
common vulnerabilities of the NFV architecture have the same effect on FEC
as well. This section also discusses possible integrations and implementations of
security functions (as a network function) to protect the virtualized FEC system.

• Fifth, the deployment of FEC in a standard 5G mobile reference architecture
is demonstrated. In this deployment, the FEC system is considered as a native
function to provide computing services to mobile subscribers as well as net-
work elements. Possible security and privacy issues related to interfaces and
operational procedures are analyzed. Finally, corresponding recommendations
for these issues are proposed.

• Finally, the conclusion of the chapter summarizes the security and privacy
challenges in the FEC system from architectural perspectives. Future studies in
this research domain are recommended.

2 Computational Cloudization

Computational cloudization defines the ability of networks to aggregate in-network
computing resources on a pool level and flexibly allocate these resources on
demand. Spreading throughout the whole network, cloudization provides comput-
ing, caching, and networking infrastructures at the core, distribution, and access
tiers, i.e., cloud, fog, and edge computing, respectively [8, 29]. From a deployment
perspective, a fog system located at a macro (primary) base station manages
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and connects a group of edge computing systems located at small (secondary)
base stations in a local area. In this context, there exist high orchestration and
harmonization between fog computing and edge computing systems to offer highly
localized offloading services to the users in the local area [6, 7]. The collaboration
between fog computing and edge computing systems is referred to as hierarchical
FEC. Figure 1 illustrates the computational cloudization on a typical network
architecture. It shows that the computing performance and latency decrease from
the cloud to the edge.

On top of the cloudization model, the cloud computing offers users on-demand
delivery of computing infrastructure remotely at the center of the network. This
infrastructure provides a tailored amount of resources per user request in both
time and space [35]. Typically, the cloud is featured by its advantages of super
performance, large storage, high availability, and security; however, it faces high
latency and bottle-neck bandwidth. Owing to these characteristics, cloud computing
benefits offloaded services that require complex data processing and/or a large
amount of storage without latency sensitivity, such as video encoding and storage,
periodical data mining, ubiquitous information fusion, and machine-learning based
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analysis. In several contexts, the offloaded services for the cloud are the pre-
processed output from FEC systems. The cloud and FEC systems interact with each
other via the north interface.

In contrast, FEC systems, which consist of fog and edge computing plat-
forms, offer hierarchical cloud-computing capabilities and IT infrastructure in local
networks [19, 30]. This environment is characterized by low latency and high
bandwidth in the proximity of user devices. In addition, the hybrid hierarchical
architecture of FEC allows dynamic task sharing among fog/edge servers, enabling
flexible resource allocation to accommodate various user requirements. However,
because FEC systems are limited by resource constraints, they only provide users
with medium/low performance and ephemeral storage [24]. Prime examples of
FEC utilization include local weather forecasting, smart transportation, smart
manufacturing, and healthcare services [2, 6, 25]. Because FEC is the frontier of
the networks that user devices associate for offloading services, the heterogeneity
of user connection technologies requires FEC to adapt to various protocols on the
south interfaces.

Table 1 compares cloud and FEC systems. Based on the aforementioned analysis
of computational cloudization, we observe the following security and privacy
issues:

• New security and privacy issues are raised because of FEC expansion. To
provide friendly services to heterogeneous user devices, FEC opens the south
interface for various association protocols. This openness comes at the cost of
authentication and access control vulnerabilities, which are proportional to the
number of supported protocols. In particular, most user devices are lightweight
IoTs that cannot adapt to robust security solutions.

• Moreover, as the frontier of in-network computing systems, FEC receives traffic
directly from the user devices. Therefore, FEC suffers from denial-of-service
(DoS) attacks first. This is more critical in the big IoT era, where IoT devices may
be exploited by attackers to generate promiscuous flooding traffic in a distributed

Table 1 Comparison between the cloud and FEC systems

Characteristic Cloud computing Fog/edge computing

Deployment Centralized at data center and core
network

Distributed at local network

Computing
capability

Super performance Medium/low performance

Response latency High Low

Localization No Yes

Architectural
model

Flat Hierarchical

Standardization Yes Partial

Targeted services Heavy computation Real-time and location-aware
computation



198 N.-N. Dao et al.

manner. For instance, Mirai malware hijacked more than 400,000 IoT devices to
generate approximately 1 Tbps of DoS traffic to an Internet host in 2016 [21].

• The communication between FEC and user devices mostly operates on open
air interfaces in access networks. Therefore, secure (and possibly dedicated)
channels are required to mitigate eavesdropping and jamming attacks. Spectrum
efficiency and overhead should be stringently considered in any applicable
solutions.

• To serve diverse user applications, security service management in FEC must
ensure isolation, privacy, and anonymity of data processing and storage for
tenant-users. A security-as-a-service (SaaS) platform should be deployed in FEC
for this.

• On the north interface between the cloud and FEC, single points of failure and
trust management are the main challenges. While the bottle-neck bandwidth is
vulnerable against DoS attack, trust management is vitally important for service
delegation and collaboration.

3 Vulnerabilities in Intrinsic FEC Architecture

A fog/edge server (FES) is a physical entity of the FEC system that performs
the offloaded tasks arriving from user devices. A typical FES comprises hard-
ware/middleware infrastructure, operating platform, and FEC services. Figure 2
depicts the intrinsic FEC architecture of an FES.

3.1 Hardware/Middleware Infrastructure

In an FES, the hardware/middleware infrastructure includes networking, computing,
and storage resources as well as resource management. A queuing-theoretic model
of the hardware/middleware infrastructure is described in Fig. 2 as follows.

• Networking resource represents input and output interfaces of the queue. These
interfaces are identified by unique IP addresses, and each of them has a given
maximum bandwidth for both user traffic arrival and departure. The output
interfaces can either forward the processed user data to external parties (e.g.,
other FESs, the cloud, and user devices) or save the data to internal storage as a
caching function. It is easily seen that the interfaces are vulnerable against two
attacks. First, a DoS attack may be exploited to inject a large amount of bogus
traffic to overwhelm the interfaces’ bandwidth. As a result, authorized user data
may not be delivered successfully. Second, a man-in-the-middle (MITM) attack
an possibly spoof source addresses of the authorized user devices and destination
addresses of the targeted external parties to eavesdrop the data before and after
computation in front of the input and output interfaces, respectively.
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Fig. 2 Intrinsic fog/edge computing architecture of a fog/edge server

• Computing resource is referred to as processor (e.g., CPU and GPU) frequencies.
Tasks offloaded from different user services may have different computational
complexities. In addition, the required amount of processor frequencies for task
execution is usually proportional to the task complexities [7]. By exploiting
this relationship, attackers can combine the IP spoofing and malfunctioned-task
flooding techniques to send a massive number of bogus complex tasks aiming to
exhaust the processor.

• Storage resource includes a queuing buffer for incoming data and a permanent
storage for outgoing data. It is observed that the queuing buffer is vulnerable
against DoS attack, as seen in the networking resource. Meanwhile, the per-
manent storage must deal with authentication and access control attacks from
unauthorized users. Data privacy preservation and data loss prevention are the
main responsibilities in a secure storage.

• Resource management covers the task scheduler and resource virtualization. The
task scheduler controls task arrival and departure rates of the queuing system by
adjusting the processor frequency. On the contrary, the resource virtualization
function abstracts physical resource components to provide FEC services with
resources on demands. Because the resource management entities are middle-
ware, they can be hijacked by a backdoor attack and become malfunctioned.



200 N.-N. Dao et al.

3.2 Operating Platform

The operating platform running in an FES is a part of a comprehensive FEC
framework that provides an environment to manage and control the operation of
all FESs in the system. From a systematic perspective, an operating platform is
considered as a contact agent for each FES. For internal collaboration in the FES,
the operating platform handles interactions between FEC services and hardware
infrastructure. The operating platform and FEC services can be either natively
installed on the FES or deployed as docker containers.

Recently, several open source projects have launched for this purpose. For
instance, the Linux foundation initiated the EdgeX Foundry and Akraino Edge
Stack in 2017 and 2018, respectively. The integration between these projects aims
at providing an orchestrated fog and edge computing service to multiple IoT
applications in a practical manner. Lead by the OpenCORD projects under the Open
Networking Foundation (ONF), the Central Office Rearchiteced as a Datacenter
(CORD) framework combines the NFV, software defined networking (SDN), and
elastic computing technologies to provide cloudization agility in the whole network.
The reference implementation of CORD can be commercial off-the-shelf (COTS)
servers, white-box networking switches/routers, and traffic aggregators. Other
remarkable projects include Apache Edgent, StarlingX, and Eclipse Edge [32].

Because the operating platform is a software, most vulnerabilities are due to
backdoor exploitation. Specific security issues depend on the selected platform
software. As a contact point of FEC as well as an operation manager between
FEC services and hardware infrastructure, the operating platform is considered an
attractive victim for attackers. By exploiting the operating platform, attackers can
perform numerous harmful actions to the system, such as modifying the FEC service
policy, controlling the computing resources, stealing the user data, and destroying
the computing services.

3.3 FEC Services

FEC services are applications dedicated to executing offloaded tasks from user
devices. Depending on the class of the computing tasks, FEC services are different
from each other in terms of software configuration, resource requirement, library
dependency, and content restriction. For optimal deployment, FEC services typi-
cally adopt the containerization mechanism. If the FES is a dedicated hardware, each
FEC service is within a container. Otherwise, if a common hardware is partly shared
for the FES, the FEC operating platform and involved services are encapsulated in
a container with its own running environment.
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Facilitated by the advantages of the containerization mechanism, key security
concerns for FEC services are related to trustworthiness and authentication/access
control issues. Trust management is performed by a mutual attestation between
the contained entity and the supported environment. Meanwhile, authentication
and access control ensure secure software operation by using various mechanisms,
such as identification (ID), hardware root of trust (HW-RoT), and Authentica-
tion/Authorization/Accounting (AAA).

4 Vulnerabilities in Hierarchical FEC Reference
Architecture

The mission of FEC standardization has attracted considerable attention owing
to the exponential growth of in-network computing demands. To supplement
each other, individual organizations participating in developing the FEC reference
architecture have their own focuses. For instance, the OpenFog consortium (recently
merged with the Industrial Internet Consortium on January 2019) introduced the
OpenFog reference model [26], which specifies major attributes that a system
should embody to offer advanced features satisfying various user services. The pro-
posed OpenFog attributes include security, scalability, openness, autonomy, reliabil-
ity/availability/serviceability (RAS), agility, hierarchy, and programmability. The
OpenFog model has been released in the technical document OPFRA001.020817
and approved in the Institute of Electrical and Electronics Engineers (IEEE) 1934–
2018 standard [16]. Moreover, the Telecommunication Standardization Sector of
the International Telecommunication Union (ITU-T) has issued Recommendation
ITU-T Q.5001 [17], which specifies user cases, signalling requirements, and inter-
action procedures among computing components in an intelligent edge computing
framework. The application of this recommendation ensures interoperability in
FEC system. From a computational perspective, ETSI proposed a multi-access
edge computing (MEC) framework and reference architecture in standard ETSI
GS MEC 003 and related specification documents [11–14, 19]. The reference
architecture defines functions and components of a hierarchical FEC framework
as well as their interactive interfaces. Referring to the NFV models and mobile
network architectures, the standards describe how the proposed FEC architecture
integrates into these environments adaptively and efficiently. The interoperability of
these integrations is validated through collaborations with related groups, including
but not limited to, the Open Connectivity Foundation (OCF), the Open Network
function virtualization (OpenNFV), and the third Generation Partnership Project
(3GPP). The following sections consider security and privacy issues in a hierarchical
FEC reference architecture adopting these aforementioned standards.
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4.1 Reference Architecture

Figure 3 illustrates internal/external functional components and interfaces in a
comprehensive hierarchical FEC reference architecture. The reference architecture
is described in both computational operation and management planes on the basis
of the ETSI MEC standards [13]. Typically, all functional components (a.k.a. FEC
nodes—FECNs) in the FEC architecture can be divided into four functional blocks
labelled as (I)–(IV). A combination of blocks (I) and (II) represents a single FEC
system architecture (i.e., a cluster of FESs), and blocks (III) and (IV) are considered
external systems. From a functional perspective, blocks (I) and (IV) are the task
responsor and interrogator in the operational domain, respectively. Meanwhile,
blocks (II) and (III) are low/high-level controllers in the management domain,
respectively.

• Block (I) includes FESs and their peer interface Mp3. The Mp3 defines reference
points between two FEC platforms for control communication. Optionally, con-
trol messages can be exchanged between FEC platforms belonging to different
FEC systems to facilitate intertier/intercluster features of FEC system coordina-
tion, such as computing handover, service redundancy, and load balancing. Note
that the intrinsic FEC architecture of an FES as well as its vulnerabilities were in
Sect. 3.

• Block (II) contains FEC platform and virtualization infrastructure managers for
each FEC system. The FEC platform manager is responsible for the life cycle
of FEC services and FEC service rules and requirements, such as authorization,
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traffic engineering, and service conflict handling. The FEC platform manager
contacts multiple FEC platforms in a single FEC system via the Mm5 interface.
In addition, the virtualization infrastructure manager configures and provisions
the virtualization infrastructures in FESs to prepare sufficient resources to run
FEC services on demand. Interaction between the FEC platform manager and
the virtualization infrastructure manager is to exchange service requirements and
virtualized resource states.

• Block (III) comprises a central FEC orchestrator for resource orchestration
and FEC service harmonization in a whole hierarchical FEC system. The
FEC orchestrator is connected to the operation support system (OSS) of the
network to obtain service requests from user devices. The interfaces between
components in blocks (II) and (III) are Mm2 (OSS–FEC platform managers),
Mm3 (FEC orchestrator–FEC platform managers), and Mm4 (FEC orchestrator–
virtualization infrastructure managers).

• Block (IV) includes frontend components, which gather computational requests
from user devices. The requests are aggregated at the user application lifecycle
management (LCM) proxy and customer facing service (CFS) portal, then
delivered to the OSS and FEC orchestrator.

4.2 Adversary Models

Figure 4 illustrates an FEC security stack derived from the above description of the
function and interaction relationships among components in the hierarchical FEC
architecture [15, 26, 28]. The FEC security stack complies with the ITU-T X.800
recommendation and covers five viewing levels, including communication level
security (communication view), application level security (software view), system
software security (system view), FEC platform security (platform view), and node
hardware security (node view). Because four lower security levels were discussed

Communication level security (communication view)

Application level security (software view)

System software security (system view)

FEC platform security

Node hardware security (node view)

Security aspects
(ID,HW-RoT,

Attestation,
Authentication,

Authorization, etc.)

Fig. 4 Fog/edge computing security stack
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as vulnerabilities of intrinsic architecture for each individual FECN in Sect. 3, this
section focuses on analyzing common adversary models at the communication level.

4.2.1 Eavesdropping

• Objective: Eavesdropping attacks aim at confidentiality violation by capturing
information delivered via communication channels, such as internal links (Mm1,
Mm6, and Mp3), intertier/intercluster links (Mm5 and Mm7), and external links
(Mm2–4, Mm8, and Mm9).

• Initial capabilities: To execute the attacks, the adversary is assumed to feature
the following capabilities. First, a system penetration is exploited to reach the
reference points on communication channels. For this purpose, the adversary
may scan addresses and/or identifications of the channels actively/passively.
Second, the adversary must obtain knowledge about the configuration parameters
of the transaction protocols used among FECNs for protocol cracking. Third,
decryption capability is requested to decrypt the captured messages on the
channels to reveal clear-text information. Eavesdropping activities can also be
performed as a hidden data crawler after successfully taking control of the
FECNs by other attacks, such as malware and hijacking.

• Tools: Sniffer, malware, social engineering, cryptographic attack, etc.
• Attack process: Typically, the attack process includes the following steps. First,

the adversary must specify the point of sniffing to copy the transmission message.
The sniffing points can be a switching node operating on the communication
channel or act as a listener in a wireless environment. Once the sniffing point is
attached to the channel, the next step is to crack the transmission protocol used
among FECNs if possible. Otherwise, the transmission messages are copied and
then decrypted offline using a powerful computer.

4.2.2 Denial of Service (DoS)

• Objective: DoS attacks target a serviceability violation, which causes resources
to become unreachable/unavailable at the FEC systems. Two typical DoS attack
strategies on FEC systems are volumetric and task-complex traffic injections
(as well as their combination). In this circumstance, external interfaces, FEC
orchestrator, and FEC services are attractive targets.

• Initial capabilities: To prepare for an effective DoS attack, the adversary must
identify the attack destination. In other words, the input interface addresses of
FEC systems and/or FECNs are needed for a volumetric traffic injection, while
service ports and service authentication/authorization permits are additionally
required for a task-complex traffic injection. In all cases, a chain of supportive
tools may be used to boost the attack impact.

• Tools: Sniffer, malware, social engineering, botnets, IP spoofing, amplifiers,
faked data generator, etc.
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• Attack process: Initially, the attack destination identification can be achieved
using several methods, such as sniffer and social engineering. Next, to generate
a large malicious traffic targeting the destination, vulnerable user devices may be
hijacked using a malware or software crack. Then, a grid of botnets, command
and control infrastructure, and amplifiers is used to enforce the hijacked devices
flooding bogus traffic to the destination. In addition, an IP spoofing technique
can be applied to produce diverse source addresses. In particular, authorized
hijacked devices may be recruited to create task-complex traffic to severely
exhaust the resources at the destination. While a volumetric attack consumes
network resources and session port pools, a task-complex attack causes the
depletion of computing resource. Note that a hybrid attack may be utilized to
achieve significantly stronger attack effects.

4.2.3 Man in the Middle

• Objective: MITM attacks cause data integrity and privacy violation where
sensitive information is leaked and/or modified without legal authorization. As
a result, service authentication violation and data confidentiality violation are
additional effects.

• Initial capabilities: To be a “hidden man in the middle”, the adversary secretly
positions himself in the communication path between user devices and the
FECNs. For this purpose, the adversary must impersonate or take control of
one of the parties participating in the communication. In other words, at least
the middle devices and/or the victims (i.e., user devices and the FECNs) must
be identified. Moreover, the adversary must have knowledge about configuration
parameters of the transaction protocols as well as authentication/authorization
materials of the service session for a data modification attack.

• Tools: Sniffer, malware, social engineering, jammer, cryptographic attack, etc.
• Attack process: The adversary does the same actions to obtain the identification

of the targeted devices and/or take control of them. Once adversary is in between
the user devices and the FECNs, and depending on the role of the adversary in
the communication, the adversary can have different effects on the data by using
various attacks, such as message/transaction replay, spoofing, and traffic pattern
collection.

4.3 Security Recommendations

To deal with the aforementioned threats, OpenFog recommends appropriate trans-
action and security protocols using the communication channels among FECNs.
In particular, a client-server paradigm is applied for the transaction between
FECNs in internal and interior communications. Meanwhile, the event-based
publish-subscribe messaging patterns are implemented for information exchanges.
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Table 2 Secure FECN-to-FECN communications

Application models Transaction protocols Security protocols

Client-Server SOAP over HTTP WSS, TLS/DTLS

RESTful HTTP/COAP

Publish-Subscribe MQTT, AMQP, RTPS TLS/DTLS

Table 2 lists the protocol suites recommended in OpenFog OPFRA001.020817
[26]. Depending on the deployment infrastructure and technologies, the following
security standards should be additionally utilized:

• 802.1AR—Secure device identity
• 802.1AE—Media access control (MAC) security
• 802.1X—Port-based (authenticated) media access control
• IPsec AH & ESP, Tunnel/Transport modes
• (D)TLS—(Datagram) Transport layer security

5 Vulnerabilities in FEC Virtualization

Softwarization has been considered as one of the key foundations of next-generation
networks [8, 9], where SDN and NFV technologies are implemented to replace
dedicated devices and network services with elastic virtualized resources and
software solutions. In this context, the FEC virtualization architecture standardized
by ETSI [11, 12] allows FEC services to be instantiated on NFV infrastructure. In
this virtualized environment, ETSI NFV management and orchestration (MANO)
components are utilized to mitigate a part of the FEC management and control
operations. From the NFV architectural perspective, FECNs are considered as
virtualized network functions (VNFs) of the networks. Figure 5 describes the FEC
virtualization model. In vertical management, FEC systems are monitored by the
OSS via the interface Mm1, as analyzed in Sect. 4. In horizontal management, the
NFV MANO manages FECNs from a network virtualization perspective.

For virtualization management, NFV MANO architecture comprises three major
components: virtualization infrastructure manager (VIM), VNF manager (VNFM),
and NFV orchestrator (NFVO) [10]. The VIM performs resource management
and allocation regarding the computing, storage, and network resources as well as
monitors virtualization operations, such as capacity states, fault collection, and issue
analysis. On the contrary, the VNFM is in charge of VNF lifecycle management
such as service installation, update, query, and termination. A couple of VIMs and
VNFMs are deployed for each VNF tier or cluster. In a hierarchical NFV system, a
central NFVO exists to manage multiple couples of VNFM and VIM at NFV tiers
and/or clusters as well as external interaction with other systems.
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Matching the FEC components and services into the NFV architecture, the
VIM is responsible for managing FES resources as an NFV infrastructure (NFVI)
via interface Nf-Vi, the VNFM is responsible for managing FEC platforms, FEC
services, and FEC platform manager (FEPM-V) as three types of VNF services
via three corresponding interfaces: Ve-Vnfm-vnf, Mv3, and Ve-Vnfm-em/Mv2,
respectively. At the center, the NFVO considers and manages the FEC orchestrator
as a VNF application manager (referred to as FEAO) via interface Mv1. Note that
in this integration model, the FEC system does not need its own virtualization
infrastructure managers for FEC tiers and clusters. These works are covered by the
VIMs of the NFV MANO.

Equipped with additional external interfaces, the FEC virtualization architecture
exposes several vulnerabilities. Major threats are protocol attacks and NFV MANO
hijacking. In particular, the protocols used on interfaces Mv1, Mv2/Ve-Vnfm-em,
Mv3, Ve-Vnfm-vnf, and Nf-Vi are targets for sniffing, corrupting, and modifying
through eavesdropping, jamming, MITM, and protocol cracking attacks. Mean-
while, any security exploitation in the NFV MANO may cause unexpectable effects
on the FEC functions and operations via spurious management message exchanges.

Despite of these security issues, the NFV MANO offers undeniable advantages to
FEC systems in terms of outside security support. Various comprehensive security
solutions as VNF applications can be deployed to effectively protect the FEC system
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against emerging threats. For instance, a blockchain-based framework has been
utilized to provide secure transactions for FEC operations [18, 23]. Typical defense
solutions are recommended for the FEC system by the OpenFog standard [26]:

• Intrusion prevention systems (IPS)
• Deep packet inspection (DPI)
• Application layer proxy
• System monitoring and audit trail

6 Vulnerabilities of FEC Integration into the 5G Network

Currently, FEC has been deployed in existing networks (4G mobile networks and
below) as an optional add-on function to handle traffic in several different modes,
such as breakout, in-line, tap, and independent modes, as described in [14]. Via these
modes, the traffic is either redirected or duplicated to FEC systems as a third-party
application. These deployments restrict the FEC systems from flexibly collaborating
with advanced network functions, such as service handover, mobility management,
and unified threat management.

With 5G, because the 3GPP standards identify FEC as a key technology to
enable a low latency and intelligent edge, the FEC system has been designed
to be integrated into the 5G network as a native application function (AF) [19].
This integration allows the FEC system to exploit a wide range of services and
information offered by other standard network functions. Figure 6 illustrates FEC
integration into the 5G network.

To map the FEC system onto a network AF, two reference interfaces have
to be considered: N6 and Naf. The N6 interface provides connection between
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Fig. 6 Fog/edge computing integration into the 5G network
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Table 3 Vulnerabilities in FEC via other 5G network elements

Threat Description

DoS attack DoS attacks aim to interrupt operation of 5G network elements serving
FEC systems, such as subscriber information management, mobility
management, and handover management

Hijacking attack The adversary aims to take control of network elements. Consequently,
these elements are utilized to generate fake information and requests,
modify legal information, and ignore message exchange with the FEC
system

MITM attack MITM attacks impersonate legal network elements to eavesdrop
information exchanged with the FEC system. In high-level attacks, the
attackers can modify the information

IP spoofing attack The adversary generates and advertises spoofed addresses of authorized
network elements by attacking directory service functions, e.g., domain
name system (DNS) servers. This action leads to unstable
communication between the FEC system and other network elements

Misconfiguration
attack

The adversary prevents configuration transfer from the OSS to the FEC
orchestrator, leading to malfunctioned FEC services. In high-level
attacks, the configuration may be modified to accommodate other
attacks

an FES and a user plane function (UPF). In the 5G network, the UPF is a
fundamental component that aggregates local traffic and performs data packet
engineering, as controlled by the session management function (SMF). Via the
N6 interface, the UPF encapsulates and exchanges user data to/from the FES. For
management purposes, the FEC orchestrator collaborates with other 5G network
functions through the common service based interface (SBI) message bus. The FEC
orchestrator supports the Naf interface to provide standard application programming
interfaces (APIs) for the others. Joining the SBI message bus demonstrates a high-
level integration of the FEC into the 5G network.

Regarding security and privacy, for ease of imagination, FEC integration into
the 5G core ecosystem can be thought to be similar to the case of a candidate
country becoming a member state of the European Union. Definitely, a member
state enjoys many advantages shared by the others in the union. However, the
openness among member states also opens for possible threats from the remaining
countries. Similarly, after integration, the FEC system obtains many advanced
features supported by other network functions. However, the vulnerabilities in
security and privacy of the FEC system increase along with risks from other network
functions [1]. Table 3 summarizes the threats possibly affecting the FEC system via
other 5G network elements.

As a countermeasure against the abovementioned attacks, a two-level protection
should to be established. The first level of protection is provided by other 5G
network elements and dedicated security service system for DoS prevention, traffic
isolation, and configuration verification. The second level of protection is locally
equipped at the FEC system that mainly aims at providing AAA security and
privacy for identity verification and service access control [4, 20]. In addition, self



210 N.-N. Dao et al.

management and orchestration should be configured to maintain FEC functionalities
in cases of control missynchronization among network elements.

7 Summary

This chapter provided a comprehensive overview of vulnerabilities in FEC systems
within multiple architectural levels, including intrinsic FEC, hierarchical FEC
system, FEC virtualization, and FEC integration into the 5G networks. Adversary
analysis of each FEC architecture has exposed particular security and privacy issues
in the computing components and their interfaces. Based on the analysis, feasible
countermeasure strategies were recommended. This chapter presents the readers
with state-of-the-art knowledge to develop, modify, customize, and redesign secure
FEC architectures adapting to various applied scenarios.
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Security and Intelligent Management
for Fog/Edge Computing Resources

Jun Wu

1 Introduction

With the evolutionary growth of Internet of Things (IoT), it is estimated that almost
50 billion devices will be interconnected by 2020, and the generated data traffic
will grow by another 1000 times. Sensing data from huge number of heterogeneous
sensors will generate big data at the edge of IoT. With the emergence of diverse
IoT applications (e.g., environment monitoring, e-health, industrial control), it
becomes challenging for fog/edge computing to deal with these heterogeneous IoT
environments with edge big data. Driving by this trend, fog/edge computing, an
emerging computing paradigm, has received a tremendous amount of interest. By
pushing data storage, computing, analysis and controls closer to the network edge,
fog/edge computing has been widely recognized as a promising solution to meet
the requirements of low latency, high scalability and energy efficiency, as well as
mitigate the network traffic burdens.

Currently, there are four novel development trends for fog/edge computing.
First, motivated by the success of artificial intelligence (AI) in a wide spectrum
of fields, it is envisaged that AI powered fog/edge computing could enhance the
intelligent processing and analysis capabilities at the edge of the networks. Based
on the fog/edge computing, edge AI or edge intelligence, is beginning to receive a
tremendous amount of interest. Second, as next generation networking technologies,
software-defined networks (SDN) and information-centric networks (ICN) has been
introduced into networked fog/edge computing. These deep integration technologies
provide evolutionary networking approach for fog/edge computing, which can
support the reconfigurable fog/edge computing architecture and contents process-
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ing/analysis capabilities at the communication layer for 5G/6G. Third, optimized
big data architecture is a must for edge big data analysis. Improved architectures
of traditional big data, such as Hadoop and MapReduce, have attracted a lot of
attentions.

Aforementioned novel development trends introduce a lot of benefits into
fog/edge computing. However, the security and intelligent management problems
of fog/edge computing resources are meanwhile introduced, which are still open
issues. First, because fog/edge computing is usually deployed in large-scale IoT,
it faces various threats from untrusted distributed geographic multi-sources and
differentiated layer of the networks. Traditional security approaches cannot be used
in fog/edge computing due to the limited computing and storage resources at edge.
Second, content threats will be generated at the communication layer, because
SDN/ICN technologies has been introduced into networked fog/edge computing
nodes. Third, at the edge of the networks, there is unbalance between the users
and providers of fog/edge computing resources. On-demand resource scheduling
and balance are the must for fog/edge computing. Based on aforementioned
motivations, this chapter aims to study the lightweight security and intelligent
scheduling approaches for fog/edge computing resources. Novel technologies, such
as blockchain, edge learning and semantic reasoning, will integrated seamlessly
in the proposed architecture. To resolve aforementioned problems, this chapter
studies the collaborative trust, content intrusion detection and security isolation,
storage resource intelligent orchestration, smart resources partitioning technologies
for fog/edge computing. This work is significant to promote the highly secure and
efficient fog/edge computing for next generation networks.

2 Related Works

Currently, the security and smart scheduling of fog/edge computing resources have
been attracted a lot of attentions. Basically, existing works focus on the security
of communications, storage, data analysis of fog/edge computing. First, because
context-aware capability is a novel and special feature of the fog/edge computing,
content security protection should be provided at the communication layer. Second,
big data at the edge raise up the requirements of efficient and dynamic edge storage
resource scheduling. Third, the computing and processing resources configurations
should be considerations. Related works are presented as follows.

Considering content awareness and edge distribution, edge/fog computing can
provide benefits to defense in the performance of threat-aware filtering and semantic
reasoning to construct edge defense isolation. In order to satisfy the secure automa-
tion control requirements of contents in IoT environments, exploiting edge/fog
computing to achieve adaptive operations platform has been perceived as a promis-
ing approach, which enabled high manageability of IoT [1]. Moreover, content
and data analysis technologies of fog/edge computing has been widely applied in
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next generation networks [2], security defense [3, 4], and optimizing computation
resources of the application layer [5].

Edge storage related technologies have attracted a lot of attentions. Most of the
recent research works about edge storage mainly focuses on the optimization and
enrichment of the storage algorithms. In [6], Guanlin Wu et al. proposed a multiplier
cooperative storage algorithm based on alternating directions. It minimizes the
latency of task implementation and the total cost of the entire operation while
maximizing node utilization of local information and system reliability. Besides,
considering fairness metrics, the authors proposed an approximation algorithm to
achieve caching load balance based on an integer linear programming problem
in [7]. In [8], a three-layer architecture model for data storage management is
proposed. It provides an adaptive algorithm that dynamically increases the high
predictive precision required to provide efficient real-time decisions making and
minimizes the amount of data stored in limited storage space. Cloud-edge collab-
orative work mode makes information interaction more convenient. Recently, most
researches focus on resource scheduling and delay optimization. A vehicle control
framework coordinated an Upper Edge Server is proposed in [9]. It enables more
flexible scheduling of edge servers in view of the autonomous control of the vehicle.
It also addresses the balance among the size of required edge servers, the capacity,
and the ratio of dominated time. In [10], by integrating the advantages of edge
platform and cloud platform, a new framework is proposed for the joint processing
between the edge and cloud. It leverages the full network cognition and recorded
information provided by the cloud, guiding edge computing components to meet
the multiple performance demands of heterogeneous IoT networks. In addition, in
[11], three scheduling algorithms (static, dynamic and batch synchronization) are
able to solve problems when edge and cloud work collectively. The emergence
of Hadoop allows data storage to be distributed, while HDFS, the bottom of
Hadoop, is not suitable for use at the edge. Its framework is built on a specific
collection of nodes. Specifically, the NameNode (only one) that provides metadata
services and the DataNode that provides storage blocks are the units of the HDFS.
However, HDFS has a drawback, which is a single point of failure, because there
is only one NameNode. The work in [12] investigates the performance of the
Hadoop benchmark suite, which runs on both physical and virtual infrastructure
on the test platform for edge computing deployment. Moreover, most of the work
focuses on analyzing and compressing data with MapReduce. Compared with cloud
computing, edge computing lacks research on data storage architecture.

Many existing works focus on the processing and computing resources manage-
ment of fog/edge computing. Different from the cloud-based system that aggregates
all edge data into a remote data center, edge/fog computing provides a more efficient
and scalable platform that enables context-awareness, low latency, energy efficiency,
and big data analytics [13, 14]. Resource partitioning is a hot topic in wireless
communication filed [15–17]. Existing studies always focused on the management
of radio and frequency resources in femtocell and small cells. Due to the hetero-
geneity nature of wireless communication, the most popular approach for radio
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resource partitioning was frequency reuse. Singh and Andrews [18] provided a joint
analytical framework for users offloading and resource partitioning in co-channel
heterogeneous networks. Recently, another study [19] exploited the Stackelberg
game model to optimize cooperatively the resource partitioning and data offloading
in co-channel two-tier heterogeneous networks. However, different from resource
partitioning in wireless communication, edge/fog computing pay more attention on
recognizing which is the most popular delay sensitive services regardless of the
data scale or user number in a domain so that the existing studies on resource
partitioning in wireless communication cannot be applied in fog/edge computing
systems. Moreover, the existing resources partitioning approaches designed for
cloud-enabled IIoT also cannot be applied to fog-enabled IoT directly. For example,
Mach and Becvar [20] formulated a load balancing problem between multiple fog
servers as the cooperative resource sharing. However, the existing load balancing
scheme required all data traffic to pass through an additional load balancer.
To improve the efficiency of big data analysis, the literature [21] proposed a
computation partitioning model for mobile cloud computing. However, this method
only can improve the data processing efficiency in data center, but not adapt to
fog computing paradigm due to the decentralization nature of fog computing [22].
Expect for the studies on flows shunting in IIoT, some early proposals in [23,
24] also tried to develop the autonomous resources allocation platforms for IoT to
reduce the service response time under the fog environment. Recently, advocating
the underlying edge/fog computing infrastructures to share their resources was also
very insightful [25, 26]. However, it was not easy to observe the computing states
of all heterogeneous edge devices in realtime [27].

3 Collaborative Trusted Edge/Fog Computing

A typical collaborative trusted service discovery system comprises three categories
of entities: trust evidence providers, fog nodes, and trusted service discovery users,
which are shown in Fig. 1. (1) Trust Evidence Providers are IoT devices that have
cooperated with fog nodes. When they work with fog nodes, each IoT device will
record trust evidence of fog nodes according to performance of fog nodes. The trust
evidence can be recorded based on diverse trust properties in terms of Quality-of-
Service (QoS) trust and social trust, where trust properties indicate the variables
employed to measure the trustworthiness. By aggregating the trust evidence, one can
obtain the trust values of fog nodes and block untrusted nodes. (2) Fog Nodes run a
cross-blockchain structure consisting of multiple parallel blockchains. Each parallel
blockchain stores encrypted data of fog nodes that serve in a specific application.
The encrypted data includes the encrypted location information of fog nodes and the
corresponding encrypted trust evidence collected by edge/fog devices. Fog nodes
search for trusted fog nodes for users using encrypted data in the blockchain. After
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Fig. 1 Collaborative trusted service discovery architecture for fog computing

that, fog nodes send back the encrypted trust evidence of fog nodes which are in the
preset areas. (3) Trusted Service Discovery Users require to locate trusted fog nodes
that can provide specific service in predefined areas. They send encrypted query
request to fog nodes and ask them to send back encrypted trust evidence belonging
to the fog nodes who can provide that service in the search areas. Then the user will
purchase the decryption key from the trust evidence provider and calculate the trust
values of these nodes.

3.1 Fog Nodes Information Encryption

Step. 1: The generation of {l[i]}: Set the initial values of the scaled Zhongtang
chaotic system as x[0], y[0], and z[0]. Three pseudorandom sequences {x[i]}, {y[i]},
{z[i]} are constructed by iterating the chaotic system 2 × N2 × 3 × r times, where
N2 and r denote the image size, the frequency of color information encryption
scheme, respectively. Then l[i] equals to max(x[i], y[i], z[i]), The element of
pseudorandom sequence {L[i]} is calculated as mod(floor(l[i] × 1014), 256).

Step. 2: The construction of M2: Present fog nodes as icons on blank image M2
using rendering rules. The rules are given as follows. The location of one icon on
the image is determined by the coordinate information of one fog node. The color
of the icon is determined by the service type of that fog node. Performing r rounds
of color information encryption operations on M1 to obtain intermediate image M2.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, y, k) = (y − 1) × N + (k − 1) × N2 + x,

R’
M1,k−1 (x, y) = L [f (x, y, k)] ⊕ RM1,k−1 (x, y) ,

R’’
M1,k−1 (x, y) = R’

M1,k−1 (x, y) + L [f (x, y, k) + 1] ,

RM1,k (x, y) = mod
(
R’’

M1,k−1 (x, y) , 256
)

,

G’
M1,k−1 (x, y) = L [f (x, y, k + 1)] ⊕ GM1,k−1 (x, y) ,

G’’
M1,k−1 (x, y) = G’

M1,k−1 (x, y) + L [f (x, y, k + 1) + 1] ,

GM1,k (x, y) = mod
(
G’’

M1,k−1 (x, y) , 256
)

,

B’
M1,k−1 (x, y) = L [f (x, y, k + 2)] ⊕ BM1,k−1 (x, y) ,

B’’
M1,k−1 (x, y) = B’

M1,k−1 (x, y) + L [f (x, y, k + 2) + 1] ,

BM1,k (x, y) = mod
(
B’’

M1,k−1 (x, y) , 256
)

,

(1)

RM1, k(x, y), GM1, k(x, y), BM1, k(x, y) denote the ciphertexts generated by
performing k rounds of color information encryption operations on RM1(x, y),
GM1(x, y), and BM1(x, y). N2 is the total number of pixels in M1.

Step. 3: The creation of M3: Final encrypted image M3 is gained by performing
t times of generalized Arnold transform on M2. m and n are set as the control
parameters of the generalized Arnold transform. Then the process of scrambling
the coordinates of pixel (x, y) with one round of generalized Arnold transform can
be described as

⎧
⎨

⎩

RM3 (x, y) =RM2 (mod (x + n × y,N) , mod (m × x + (n × m + 1) × y,N) ) ,

GM3 (x, y) =GM2 (mod (x + n × y,N) , mod (m × x + (n × m + 1) × y,N) ) ,

BM3 (x, y) =BM2 (mod (x + n × y,N) , mod (m × x + (n × m + 1) × y,N) ) .

(2)

And the final encrypted image M3 is obtained by encrypting intermediate image
M2 with t rounds of generalized Arnold transform. Moreover, the trust evidence
of each fog node is also encrypted by a symmetric key algorithm with a specific
encryption key. After that, M3 is stored in the parallel blockchain along with the
encrypted trust evidence.

3.2 Trusted Service Request Generation

Trusted service request generation includes following two steps. Step. 1: The
construction of the trusted service request: In the trusted service request, the trusted
service discovery user defines the service type of fog nodes and the area where it
should provide service. Then the user renders the search area on an image M4 using
the rendering rules. Step. 2: The encryption of the trusted service request: Encrypt
M4 to obtain final encryption image M5, where the encryption algorithm and key set
are the same with that performed on M1. Then the query request M5 is sent to the
fog node of the parallel blockchain.
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3.3 Privacy-Preserving Range Query and Response

Step. 1: The construction of query criteria: Query criteria are used to judge whether
M3 meets the demand of the trusted service discovery user. Then the query criteria
of pixel M5(x, y) can be calculated as

⎧
⎨

⎩

U (x, y) = RM3 (x, y) ⊕ RM5 (x, y) ,

V (x, y) = GM3 (x, y) ⊕ GM5 (x, y) ,

W (x, y) = BM3 (x, y) ⊕ BM5 (x, y) .

(3)

Step. 2: Results list (RL) creation: For M5(x, y), the coordinates information
and color information of the pixel will be stored into RL if U(x, y), V(x, y), W(x, y)
are all zero. Then, the query response RL and the corresponding encrypted trust
evidence of the fog nodes are stored into the router parallel blockchain and sent to
the corresponding trusted service discovery user in an off-chain manner by the fog
node.

3.4 Trusted Evidence Aggregation

For RM5(x, y), GM5(x, y), BM5(x, y) in the results list, its original coordinate values
(X,Y) can be obtained by performing t times of inverse generalized Arnold
transform on (x, y). After that, the color component values of the corresponding
original pixel can be retrieved by decrypting RM5(x, y), GM5(x, y), BM5(x, y) with r
rounds of color information decryption operations. And the details on performing
k - th round of color information decryption operations on M5(x, y) can be expressed
as in (4).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (X, Y, k) = N × (Y − 1) + X + (k − 1) × N2,

DRM5,k−1 (x, y) = DRM5,k−1 (x, y) − L [f (X, Y, k) + 1] ,

DR’’
M5,k−1 (x, y) = mod

(
DR’

M5,k−1 (x, y) , 256
)

DRM5,k (x, y) = L [f (X, Y, k)] ⊕ DR’’
M5,k−1 (x, y) ,

DG’
M5,k−1 (x, y) = DGM5,k−1 (x, y) − L [f (X, Y, k + 1) + 1] ,

DG’’
M5,k−1 (x, y) = mod

(
DG’

M5,k−1 (x, y) , 256
)

,

DGM5,k (x, y) = L [f (X, Y, k + 1)] ⊕ DG’’
M5,k−1 (x, y) ,

DB’
M5,k−1 (x, y) = DBM5,k−1 (x, y) − L [f (X, Y, k + 2) + 1] ,

DB’’
M5,k−1 (x, y) = mod

(
DB’

M5,k−1 (x, y) , 256
)

,

DBM5,k (x, y) = L [f (X, Y, k + 2)] ⊕ DB’’
M5,k−1 (x, y) .

(4)
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The location information of fog nodes that fulfill the requirement of the trusted
service discovery user are stored in the decrypted RL. Then the user sends
some cryptocurrency to the trust evidence provider to obtain the decryption key.
The user can purchase encrypted trust evidence from other parallel blockchain
using cryptocurrency exchange. The trusted service discovery user can evaluate
trustworthiness of fogs by aggregating the obtained trust evidence.

The proposed Collaborative Trusted Service Discovery (CTSD) can evaluate the
credibility of fog nodes by collaboratively aggregating trust evidence using cross-
blockchain-enabled fog computing. A cross-blockchain structure is firstly proposed
to ensure the encrypted location information and trust evidence of fog nodes can be
propagated in a tamper-proofing and eavesdropping-resistance manner. And novel
privacy-preserving range query based collaborative trust evidence aggregation is
proposed to aggregate encrypted trust evidence using encrypted location informa-
tion. The proposed CTSD improves the trustworthiness of fog computing.

4 Intrusion Detection and Security Isolation
for Edge/Fog Computing

Currently, intrusion detection and security isolation are very important issues for
edge/fog computing in content centric environments. Host Defense Fog Nodes
(HDFNs) are constructed between host nodes and network nodes in edge/fog
computing networks. Host defense is deployed logically between hosts and next
hop of edge/fog computing nodes to prevent malicious data from entering contents.
It is placed on fog nodes that achieve seamless coverage of host geographically.
Each host is in a jurisdiction of one corresponding fog node. Moreover, due to the
computation of fog nodes, the burden for hosts of configuring defense mechanism
is sharply reduced.

4.1 Basic Idea of Edge Defense Mechanism with Content
Semantic Awareness

The proposed edge defense for edge/fog computing to provide protection with
semantic reasoning and smart content threat-aware. The proposed system utilizes
fog computing for boundary isolation. Fog computing, offloading intelligence
and recourses from cloud center to edge network, is introduced to provide edge
computation and distribution required by the proposed defense mechanism. Fog
computing provides context and content awareness for semantic analysis and
customized configuration of intrusion detection and security isolation. Without
being placed on routers or hosts, the requirements of infrastructure performance
are greatly reduced. Moreover, we proposed a semantic reasoning approach based
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on Knowledge Graph (KG). It is designed to collect security knowledge and mine
the illegal information relationships that may exist between the requested content
and the blacklist. To protect against potential and ongoing attacks, our algorithm
collects contextual traffic related to the pending packets, emphasizing the relevant
semantic dimensions to guide reasoning. Potential threats of pending packets and
their response data can be predicted by analyzing content attributes by interest
names.

Smart reasoning algorithms with semantic knowledge to mine potential content
threats are proposed with KG. Firstly, communication context was selected as
weights based on semantics to guide the inference direction. Moreover, weighted
semantic inference was designed to reason the threatening relations and knowledge
with interest packets and then limit the content of response packets. Our proposed
semantic inference mechanism can perceive penetrated and obfuscating content
threats, and configured customized knowledge policies with distinct interests
according to the security knowledge constructed from inference.

4.2 Architecture of Smart Reasoning Based Content Threat
Fog-Defense

Host Defense Fog Nodes (HDFNs) are constructed between hosts and networks of.
Host defense is deployed logically between hosts and next hop of edge/fog nodes
to prevent malicious data from entering edge/fog systems. It is placed on fog nodes
that achieve seamless coverage of host geographically. Each host is in a jurisdiction
of one corresponding edge/fog computing node. Moreover, due to the computation
of fog nodes, the burden for hosts of configuring defense mechanism is sharply
reduced. The basic architecture is shown in Fig. 2.

The monitoring layer receives packets from the source and record communica-
tion histories of covered edge/fog nodes including location, terminals, activities and
resources. Parsing and detecting packets including both requests and responses, and
device attributes of each edge/fog computing node, the monitoring layer can help to
perceive host behavior and contextual traffic.

The context analysis layer parses the pending packet and extracts necessary
content. Content including packet names, publisher keys and excluding information
for names of responses is extracted from interest packets. For data packets,
components of name, signature, sighed information and content are extracted into
the database. The extracted content is analyzed to compute the relevance of history
communication to select the most related context packets.

The strategy layer implements semantic reasoning with Knowledge Graph on
packet names and content to mine inherent threats. For interest packets, the policy
layer firstly selects the relevant context traffic and calculate a correlation weight
matrix to guide the direction of reasoning. It then mines implicit threatening entities
and underlying threatening relations between content and blacklists. By combining
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Fig. 2 Structure design of proposed HDFNs

the interest packet components to limit producer identity and exclude package
names, the user-configured strategy is generated and are called interest-configured
strategy (ICSs).

In the filtering layer, blacklist-based content matching is performed to prevent
exception requests. In addition, the data integrity and validity are checked to prevent
requests and ICS from being tampered with by malicious nodes for interest packets.
For received data packets, ICS matching and content filters, integrity and validity
permission checking are implemented in an orderly fashion. In data packets, the
whole content is filtered to prevent illegal and falsity content attacking whereas in
interest packets the content names are filtered for malicious request detection.

In the security layer, in order to add up the blacklist with reasoned threats, the ICS
tag is added by the tagging module on interest packets. Therefore, the extra edge/fog
computing nodes save the time and energy of processing packets and acquire ICSs
when caching the interest. The encryption module conducts encryption for a tagged
interest packet. The transport layer then forwards new packets to the next hop.
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4.3 Smart Semantic Reasoning for Defense Knowledge Policy

The PTransE model is applied to find the potential sensitive entities to composite
a relation between requests and blacklists, which are likely to be the obfuscating
objects in the responded data packets. One captures its meaning, such as head
entity eh, relation r and tail entity et, and the other are projection vectors ehp,
etp, constructing two mapping matrices, βreh and βret. PTransE takes multiple-step
relation paths into consideration for representation learning, the score function of
multiple steps is defined in.

Fr

(
Oβ
) =
∑

pm∈Oβ �(pm|eh,et )Fr (p
m)

∑
Pm∈Oβ(eh,et)

�( pm|eh,et )
(5)

During the training, we took KG triples as learning samples to optimize
parameters in loss function as is proposed in. We construct false triples as negative
samples by replacing random elements in KG triples. The loss function value
continuously reduced through learning, and the entity vector and relation matrix
can better reflect the semantic information of entities and relations. Relations with
the similar semantics with context and requests were learnt as a result. We trained
the model to optimize the loss metric thus obtaining multistep relations of entity
pairs Oβ (eh, et) = {pm1,···pmα}, where each relation path is pm = (τ 1,···τ l).

To guide the relation path direction, we modified the resource function �(pm|eh,
et) which measures the resource flowed from eh to et as the path reliability. When
the middle entity ei − 1∈We, the resource allocated to the next entity is weakened by
the relevance weight resulting in lower loss function in learning. And θ is defined as
below.
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As a result, the blacklists are expanded with the reasoned middle entities for each
request. A response will be blocked when the middle entities are detected in the
packet content.

To build edge defense against potential content threats, we proposed a fog based
content threat defense scheme with content-oriented semantic reasoning. The pro-
posed mechanism realized edge defense against content threats by blocking illegal
content and unexpected access. Smart reasoning models for semantics with context
awareness were proposed to mine potential threatening knowledge from packet. The
simulation results showed the proposed fog based ICN defense mechanism could
provide valid and efficient isolation defense. This work is significant to improve
ICN security.
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5 Storage Resource Intelligent Orchestration for Edge/Fog
Computing

5.1 Basic Idea of Proposed Edge Unified Big Data Intelligent
Storage Architecture

The proposed architecture divides edge nodes into two types based on their
functions, namely edge servers, and edge data prosumers. We call the edge nodes as
edge data prosumers, which are the data producers and consumers simultaneously.
While each edge server is composed of a Master and several data containers. The
Master here is equivalent to an agent with control and management capabilities, and
the data container performs the storage tasks assigned by the Master.

There are three main functional modules in the Master, synchronization com-
munication management, dynamic storage, as well as multi-user data write and
mapping. The most distinctive feature is storing data dynamically to meet the
requirements of edge computing. It can use intelligent recommendation algorithms
to decide the stored location of the data, by learning data checking and labeling. As
for communication management, the Master manages the request and reception of
data, which improves the liquidity of data between edge servers. We also set up a
communication protocol pool to enhance the portability and scalability of the edge
server. Similar to HDFS, the data mapping table can facilitate data lookup. The
difference is that it supports arbitrarily modify and delete data, and a file can have
multiple writers. While the data container reports the remaining storage space to the
Master in time. It stores edge fragmented data and user private data, such as the ID
number of a personal medical record in medical scenes, as well as public shared
data that was previously stored in the cloud. Data popularity is the criterion for a
data storage location and is, therefore, an important component of data tags.

The workflow of the proposed architecture is shown in Fig. 3, achieving cloud-
edge collaborative mechanism. Edge data prosumers can do data pre-classification
and preprocess for edge service. The initial popularity of the data is marked by them
and initialized based on the data being called. They make the data more valuable
and easy to analyze for some tasks, such as machine learning. Data uploading and
downloading are the basic functions for the data prosumers. In this paper, we have
enhanced the characteristics of the edge servers. Edge servers can store data sent by
the cloud and the edge. The stored data is dynamic and circulated in the edge servers.
This architecture pays more attention to the interactivity between edge servers.
Besides, the cloud can audit messages. It meanwhile provides computing service
and data storage. Both data sharing and message sharing happen in the cloud.
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Fig. 3 Unified edge big data storage architecture

5.2 Machine Learning Based Dynamic Data Storage Strategy

The dynamic storage area in Master ensures the real-time characteristics of edge
computing. Firstly, the Master identifies the data popularity on the data tag, with
popularity as an important indicator, and Q-learning to determine where the data is
stored. This ensures data that is frequently used can be stored in the edge server, and
data that is not used frequently and that is not user privacy can be stored in the cloud.
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This process reduces the time for data recall and the cost of resources consumed.
And the Master updates the data label according to scalable recommendation
algorithms (e.g. knowledge-based recommendation, deep learning, etc.). Secondly,
by checking the timestamp of the data, the Master determines whether expires and
drops the expired data in time. Thirdly, when the data container reaches its capacity
threshold, the Master cleans its redundant storage contents until there is extra space
to assign tasks again.

5.3 Dynamic Storage Model

Let ae(te) denote that the storage action vector in slot te. |ae(te)|dji = 1 indicates that
data dji is stored in a container of Master yj, and |ae(te)|dji = 0 otherwise. We update
the popularity of the data depending on the received requests from the prosumers,
defined as

DPdji (te) = α·DPdji (te − 1) + (1 − α) ·Ndji
/ 1

D

∑D
q=1 Nqji

(7)

Having observed the prosumer requests at the end of slot te, our edge server state
is expressed as

se (te) = [aT
e (te) ,DP T (te)

]T (8)

Storage performance can be estimated via the state value function

Vπ (se (te)) = lim
T →∞E

[∑T
τ=te

γ τ−T C (se [τ ] , π (se [τ ]))
]

(9)

which is the overall average cost generated by the infinite time range, with the future
discount parameter γ between 0 and 1. The discount factor γ tunes balances current
versus future costs. The best policy π∗ making the minimal cost is

π∗ = argminπ∈�Vπ (se) ,∀se ∈ S

To give a clear overview of how Q-learning works, we define the state-action
value function based on the policy π, namely. We use εt − greedy algorithm to tend
to a best policy. Algorithm 1 shows the dynamic storage mathematics model.
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6 Service Popularity-Based Smart Resources Partitioning
for Edge/Fog Computing

6.1 Basic Idea

To resolve the unbalance problem between resources providers and consumers in
the network edge, a smart resources partitioning scheme, SRPS, is proposed, which
is shown in Fig. 4.

SRPS has three key components: (1) Global fog identifier (GFID): The SRPS
exploits the GFID to name each of fog node. The separation between the GFID
and the global service identifier (GSID) provides support for global observability.
(2) SRPS controller: The SRPS controller is utilized to monitor and control the
computing states of all fog nodes in F-edge/fog. The SRPS controller maintains
the mapping from GFID to GSID. If a fog node moves from GSID to GSID’ or
the computing resource of fog node is exhausted, service providers can redirect
the service requests to a new address to find computing resources without any
service interrupts. (3) Computing task stream list (CTSL): To realize automatic
resources partitioning, the CTSL is presented, which includes three basic tuples:
MatchField, ActionField, and Counter. The parameters in each tuple can be pre-
customized by system designers of F-edge/fog. Since the cloud usually aggregates
large-scale computing, storage, and network resources, a SRPS controller can be
implemented in cloud to monitor the global states of geo-distributed fog entities.
And also, edge/fog users can optimize the resources allocation of each fog node by
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Fig. 4 Architecture of SRPS

adding their own scheduling algorithms into SRPS controller. The states of each
underlying infrastructure (e.g., GPS, camera, liquid meter, and the mometer) are
identified by geo-distributed fog nodes. We emphasize that all of edge devices are
equipped with SDN protocols. Especially, all of the computing tasks on different
edge devices are labeled as record items and added into the defined CTSL.

6.2 Service Popularity Model

Consider there are many different types of edge/fog services to be processed in
edge/fog. An edge/fog service is denoted as E = {αtype, β task, γ SLA}, where αtype,
β task, γ SLA denote application type, computing task and computing quality contract
(CQC). It is common to see that a fog node simultaneously serves for multiple
edge/fog service sessions. Similar to the content caching problem in edge/fog
computing systems, the edge/fog service E on the ith fog node is modeled through a
generalized Zipf function.



Security and Intelligent Management for Fog/Edge Computing Resources 229
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and 0 ≤ γ ≤ 1 is the exponent and kt denotes the popularity

ranking of edge/fog service E on the ith fog node at time t. λ is the number of arrival
E type of edge/fog services on fog node ith during �t spot. And also, the ZE−1

i (∗)
is the inverse function of ZE

i (∗).
Originally, Zipf’s law was found by observing and analyzing the word frequency

distribution. About 20 years ago, the distribution of many Internet services was
proven to follow Zipf’s law and many existing web caching strategies used Zipf’s
law to model Internet users’ service requests. Recently, popularity-based smart
caching for information-centric networking (ICN) has utilized Zipf’ law to model
the content distribution. Now, Zipf’s law is being applied in many fields such as
linguistics, geography, economics, and broadcast TV. Similar to Internet services,
the distribution of edge/fog services also follows Zipf’s law. This paper exploits
Zipf’s law to predict the computing cost of edge/fog services by calculating their
popularity rankings. Fog node gets popularity rankings of edge/fog services by
analyzing the statistics of past and current logs in real time.

6.3 Computing Cost

To improve the resources utilization and computing quality, fog nodes are more
willing to locally process popular edge/fog services and work with fewer remote-
control operations (e.g., wake up, sleep, and migration).

For multiple types of edge/fog services at time t, the computing cost for one
example edge/fog service on fog node is defined as the following function:

C
Ej

i = C
E0
i

Z
Ej
i (kt )

(11)

Where CE0
i is the fixed original computing cost on fog node jth when Z

Ej

i (kt ) = 1.
By combining the Eqs. (1)–(3), the relationship between computing cost and

service popularity is a convex function when γ < 1, while the relationship between
computing cost and service popularity is a concave function when γ > 1. Moreover,
for a fixed �R, �C2 is larger than �C1 and ΔC′

2 is smaller than ΔC’
1. In the other

word, for γ < 1, the change of service popularity when kt < 7 has a greater impact on
the computing cost than the change of service popularity when kt > 16. For γ > 1,
the change of service popularity has a greater impact on the computing cost when



230 J. Wu

kt > 13 than when kt < 20. In this paper, the SRPS shifts the less popular services
on ith fog nodes into the other fog nodes to minimize their computing costs under
γ > 1.

6.4 Popularity-Aware Computation Partitioning Algorithm

The working flow of algorithm 2 illustrated is described step by step as follows. The
input parameters of algorithm 2 contain λδt , fh, ki, T h,Rij , L

R
f , γCQC . Therein,

λδt , fh, Rij , L
R
f can be calculated by fog server based on the edge/fog service

requests in a real system. Th and γ CQC are two constants, which are configured
by the edge/fog engineer according to the engineering experience in the applied
edge/fog scenario. ki is a statistical variable that can be calculated. When the data
flows of edge/fog services arrive at the fog node, the service type of these data flows
will be identified and then the edge/fog service popularity rank on this fog node
will be updated. If the rank of an arriving edge/fog service is less than Th, it will
be pushed into the pending list. Otherwise, it will be pushed into the forwarding
list (FWList). For the edge/fog service on the pending list, fog node will calculate
the computing cost of providing this edge/fog service and observe if the computing
quality is in the scope of γ CQC.The fog node will select a policy (it may be an
identity of a virtual machine). For the edge/fog service on the FWList, the fog node
will send it to the SRPS controller for deeper analysis.

The SRPS scheme modeled the relationship between service popularity and
computing cost with Zipf’s law. Moreover, the SRPS scheme decoupled the
computing control from data processing and support mobile and heterogeneous
computing resource scheduling.

7 Analysis

In this section, we give the main contributions and cost analysis of the proposed
approach for security and intelligent management for fog/edge computing resources.

7.1 Main Contributions

The contributions of aforementioned approaches are as follows:
Firstly, collaborative trust and security protection scheme was proposed for

edge/fog computing systems. The trust evidence can be recorded based on diverse
trust properties in terms of Quality-of-Service (QoS) trust and social trust, where
trust properties indicate the variables employed to measure the trustworthiness. Fog
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Nodes run a cross-blockchain structure consisting of multiple parallel blockchains.
The encrypted data includes the encrypted location information of fog nodes and
the corresponding encrypted trust evidence collected by edge/fog devices. Semantic
based security detection and isolation scheme are proposed for edge/fog computing
system to defense against content threat.

Secondly, a unified data storage architecture that is dedicated to managing data
at the edge is proposed. The characteristic of our proposed architecture is to migrate
the advantages of Hadoop Distributed File System (HDFS) in Cloud Computing to
the edge to ensure that edge services provide better QoS. Moreover, to maximize the
capability of edge nodes, we devise a dynamic storage policy-making mechanism
based on Q-learning, which can recommend data with high invoked popularity
for edge servers and updating data in time accordingly. To achieve a high-level
linkage, we also propose a communication model for edge-cloud and edge-edge
communication. Edge nodes can share their storage information with neighbors by
the synchronous communication.
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Thirdly, a scheme is proposed for service popularity-based smart resources
partitioning. The Zipf’s law is used to calculate the popularity rank of the IIoT
service and predicted the computing cost of arriving IoT services on edge/fog
computing. We provided a solving method of threshold value for forwarding
edge/fog services, and applied it to decide whether the arriving IIoT service should
be locally handled. The work first decoupled the computing control layer from the
computing layer, and provided a programmable interface for edge/fog computing
operators.

7.2 Main Cost

In the proposed approach, each edge/fog computing node can adaptively pick up
and process the most popular IIoT services and smartly partition its resources based
according to the popularity rankings of picked IIoT services. Unpopular IoT services
on an edge/fog node will be forwarded to the other FN for efficient processing. In
other words, it is no need for each edge/fog node to ask for the states of other
edge/fog nodes. Thus, the complexity of proposed algorithms is �(n). The function
of proposed algorithms was not to copy the load balancing and VM migration in
cloud data to distributed edge/fog nodes. By using Algorithms 1 and 2 to partition
the resources of edge/fog nodes, we can obtain minimized computing cost and
minimized CQC validation. All the performance improvements of the proposed
scheme were directly beneficial to edge/fog computing users because the service
popularity reflected the real demands of edge/fog computing users. In terms of
whether it will cause additional computing cost, the answer is inevitable. However,
compare to the improvements of proposed approach, the additional computing cost
caused by complexity of proposed algorithms is minor. Moreover, the additional
computing cost can be handled by resources offloaded from cloud. Besides, the
edge/fog nodes selectively deals with the local delay-sensitive services rather than
all of the arriving edge/fog computing services.

8 Conclusion

In this chapter, the methods and technologies of security and intelligent management
for fog/edge computing resources were studied. Blockchain and semantic are
introduced to enhance the trust and security protection capabilities of the edge/fog
computing systems. Moreover, we are dedicated to the complex application sce-
narios and massive data generated by edge nodes, which takes challenges to the
edge-cloud collaboration. By taking the advantages of Hadoop, a unified edge-
cloud intelligent storage architecture is proposed to improve the performance
of edge services. Finally, the proposed resource partitioning scheme modeled
the relationship between service popularity and computing cost with Zipf’s law,
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which decoupled the computing control from data processing and support mobile
and heterogeneous computing resource scheduling. Future work is the artificial
intelligence collaborations technologies for edge/fog computing systems.
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Algorithms for NFV-Enabled
Multicasting in Mobile Edge Computing

Zichuan Xu and Weifa Liang

1 Introduction

Mobile devices, including smart phones and tablets, gain increasing popularity as
communication tools of users for their business, social networking, and personal
entertainment. However, the computing, storage and battery capacities of each
mobile device are very limited, due to its portal size. Leveraging by rich computing
and storage resources in clouds, mobile devices can offload some of their tasks to
clouds for processing and storage, while the clouds usually are remote located from
their end users. Thus, the response delay to user requests may not be tolerable for
some real-time applications. Instead, a new network service paradigm, Mobile Edge
Computing (MEC), is emerged, which can provide cloud-computing capability
at the edge of core networks in the proximity of mobile users [1]. MEC can
significantly shorten the response delay to user applications, ensure highly efficient
network operation and service delivery, and improve user experience of using the
services, which is an ideal platform to meet ever-growing resource demands of
mobile users for their applications, by enhancing mobile device capabilities in a
real-time manner [34].

Considering that the computing resource in an MEC network is highly dis-
tributed in base stations, edge servers and mobile devices, providing security and
privacy guarantees for multicasting services is fundamentally challenging. Unlike
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conventional core networks or data center networks, various security and privacy
solutions are available. For example, various hardware-oriented middleboxes are
deployed in data center networks to enforce security and privacy functions of
various services in the data center networks. Examples of such network functions
typically include Intrusion Protection/Detection System (IPS/IDS), firewalls, web
filtering, flow filtering, deep packet inspection, or pattern matching and remediation.
However, the deployment of dedicated hardware middleboxes in MEC networks
will increase the operational and maintenance costs, considering the service and
user dynamics of mobile users. Specifically, a deployment hardware-based flow
filter in an edge server means a static placement and configuration of the function
in the network. Security and privacy events can happen in any node of the MEC
network dynamically. The static placement of hardware network functions is no
longer meeting the security and privacy requirements of users. Network Function
Virtualization (NFV) [25] which runs the network function in generic servers as
virtual machines have been envisioned as a promising technique to enable high
security and privacy guarantees in MEC networking. It can also enable fast, agile
service deployment and cost-effective yet error-free service provisioning in future
communication networks. It replaces security network functions from expensive,
dedicated hardware-middleboxes, by software implementation, where each network
function is virtualized as a virtualized network function instance that runs in a virtual
machine in an edge server in MEC.

Although implementing network functions as VNF instances is a promising
technology to guarantee security and privacy of MEC networks, admitting NFV-
enabled multicast requests in an MEC poses several challenges. Firstly, both
computing and storage resources at edge servers and communication resources at
links are not unlimited, in comparison with its counterpart - the powerful centralized
data center network (a cloud). It is of paramount importance to optimize the
performance of the MEC network through judicious allocating its limited resources
to meet user resource demands. Secondly, each NFV-enabled multicast request has
a service function chain requirement, how to steer the data traffic of the request to
go through each network function in its service function chain correctly? Thirdly,
the service chain implementation may either share some existing network function
instances with the other requests or instantiate new VNF instances. How to make
such a decision to minimize the admission cost of the request? Finally, how to
maximize the network throughput by admitting or rejecting each arrived request
immediately if requests arrive one by one without the knowledge of future request
arrivals? In this chapter, we will address the aforementioned challenges.

The novelties of the study in this chapter are as follows. We study NFV-enabled
multicast request admissions in MEC by formulating three novel optimization
problems that explore VNF instance placement and sharing among different NFV-
enabled multicast requests. We aim to maximize the network throughput while
minimizing the accumulative admission cost of admitted requests through striving
for fine tradeoffs between the usages of computing and bandwidth resources. We
devise the very first approximation algorithms for a single NFV-enabled multicast
request admission with the objective to minimize its admission cost, with the
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assumption that the VNFs of a service chain may or may not be consolidated
into a single edge server. We also consider dynamic admissions of NFV-enabled
multicast requests, by developing an online algorithm with a provable competitive
ratio. The key ingredients in the development of these proposed algorithms lie in
(1) dynamically determining the use of existing VNF instances or instantiating new
VNF instances for each request admission; and (2) determining the admission order
of a given set of requests as admitted requests will heavily impact the admissions
of future requests, due to the availability of the demanded resources and whether
existing VNF instances can be shared by future requests.

The main contributions of this chapter are summarized as follows. We study the
NFV-enabled multicast request admissions in an MEC network with the aim to
either minimize the request admission cost, or maximize the network throughput
for a set of requests or a sequence of requests arriving one by one without the
knowledge of future arrivals, subject to both computing and bandwidth resource
capacities on edge servers and links in the network, respectively. We first propose
an approximation algorithm for the cost minimization problem of a single NFV-
enabled multicast request admission. We then develop an efficient heuristic for
a set of NFV-enabled multicast request admissions, by reducing the problem to
the single NFV-enabled multicast request admission. We thirdly consider dynamic
NFV-enabled multicast request admissions by devising an online algorithm with a
provable competitive ratio. We finally evaluate the performance of the proposed
algorithms through experimental simulations. Simulation results reveal that the
proposed algorithms are very promising.

The rest of this chapter is organized as follows. Section 2 conducts literature
review. Section 4 introduces notions, notations, and problem definitions. Sec-
tion 5 devises an approximation algorithm for the cost minimization problem with
consolidated VNFs. Section 6 devises an approximation algorithm for the cost
minimization problem of a single NFV-enabled multicast request admission where
different VNF instances of a service function chain can be deployed to different edge
servers. Section 7 devises an online algorithm for dynamic NFV-enabled multicast
request admissions. Section 8 evaluates the proposed algorithms empirically, and
Sect. 9 concludes the chapter.

2 Related Work

As a key-enabling technology of 5G, MEC networks have gained tremendous
attentions by the research community recently. There are extensive studies of user
unicast and multicast request admissions through resource provisioning in MEC
networks [3, 6, 7, 9, 10, 12, 13, 19, 21, 24, 32, 33]. For example, Jia et al. [11]
considered the assignment of user requests to different edge servers in a Wireless
Metropolitan Area Network with the aim to minimize the maximum delay among
offloaded tasks, by developing heuristics for the problem. Ceselli et al. [3] focused
on the design optimization such as the VM placement and migration, and user
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request assignment, by formulating a Mixed Integer Linear Programming (MILP)
solution and heuristic algorithms for the problem. Xia et al. [26] investigated
opportunistic task offloading under link bandwidth, residual energy in mobile
devices, and computing capacity constraints of edge servers.

All the aforementioned studies assumed that each task will be allocated with
dedicated computing resource, and there is no consideration of utilizing existing
VNF instances to serve new tasks. However, many requests usually demand the
same type of services. If the VNF instance of a specified service has already
been instantiated with sufficient residual processing capacity, the other tasks that
request for the service can make use of the VNF instance. Several recent studies
explored the placement and sharing of VNF instances [9, 13, 30]. For example, Jia
et al. [13, 30] studied a novel task offloading problem in an MEC network, where
each offloading task requests a network function service with a maximum tolerable
delay requirement. They aimed at maximizing the number of requests admitted
while minimizing their admission cost, for which they proposed an efficient online
algorithm. He et al. [9] studied the joint service placement and request scheduling
in order to optimally provision edge services while taking into account the demands
of both sharable and non-sharable resources. They aim to maximize the network
throughput, for which they showed that this joint optimization problem is NP-hard
and then developed heuristic algorithms.

There are several studies of NFV-enabled multicasting in MEC environments [2,
13, 29]. For example, Zhang et al. [35] investigated the NFV-enabled multicasting
problem in SDNs. They assumed that there are sufficient computing and bandwidth
resources to accommodate all multicast requests, for which they provided a 2-
approximation algorithm if only one server is deployed. In reality, it is not
uncommon that both computing and bandwidth resources in MEC are limited,
which need to be carefully allocated. Furthermore, they did not consider dynamic
admissions of NFV-enabled multicast requests, which is much complicated com-
pared with the problem of admitting a single or a set of given requests. Xu et
al. [29] studied the cost minimization problem of admitting a single NFV-enabled
multicast request, where the implementation of the service chain of each request
will be consolidated into a single edge server. Xu et al. [31] recently considered
the admissions of NFV-enabled multicast requests with QoS constraints in MEC by
proposing approximation and heuristic algorithms for the problem. Ma et al. [18, 20]
considered the profit maximization problem in MEC by dynamically admitting
NFV-enabled unicast requests with QoS requirements, for which they developed
an efficient heuristic, and an online algorithm with a provable competitive ratio
if the QoS requirement can be ignored. Although they considered the sharing of
existing VNF instances among different unicast requests, the problem of NFV-
enabled unicast request admissions in [14, 18, 20] is a special case of the problem of
NFV-enabled multicast request admissions where the destination set contains only
one node. The essential differences of the study in this chapter from these mentioned
studies [13, 29, 30, 35] are (1) the VNF instances of the service chain of each NFV-
enabled multicast request in this chapter can be placed to multiple edge servers, not
just one edge server in the previous studies; and (2) the sharing of existing VNF
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instances among different multicast requests has not been explored, this exploration
makes the problem become more challenging.

3 Security Network Functions and Chaining

In this section, we given the definition of security service functions, and describe
their virtualization and chaining.

3.1 Security Network Functions and Their Virtualization

Traditionally, network operators deploy various hardware-based security switches
to ensure secure data transfers within the network. With network function virtu-
alization, these hardware-based switches are replaced by softwarelization, i.e., the
security functions are implemented in pieces of software in virtual machines (VMs)
in servers. Such security functions include firewalls, Intrusion Prevention/Detection
System (IPS/IDS), Deep Packet Inspection (DPI), Application Visibility and Con-
trol (AVC), network virus and malware scanning, sandbox, Data Loss Prevention
(DLP), Distributed Denial of Service (DDoS) mitigation and TLS proxy. For
example, one typical security attack is the DDOS attack, which can easily be
detected via an IDS, by identifying malicious system activities and violation of
system policies. In general, a security network function is a type of network function
that carries out specific security tasks. In addition to packet forwarding that makes
use of security functions, security network functions can be used for buffering,
injecting or blocking malware packets, as well as proxy connections, and most
network security network functions maintain states at the connection, session or
transaction levels.

It is well known that the deployment and purchase cost of hardware-based
switches of security network functions are usually very high. and, their maintenance
cost is also expensive, thus the operational costs of network operators for secure data
transfer within its network usually is not cheap at all. To reduce the operational cost
of provisioning security services, network function virtualization enables running
virtualized security function instances to become agile and non-expensive. In partic-
ular, by leveraging the technique of NFV, security functions can be implemented in
VMs or containers. Security network functions then can be dynamically instantiated,
automatically deployed, and transparently inserted into the traffic flow to address
different security needs for various applications.
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3.2 Security Network Function Chaining

In case a packet flow needs to be processed by a sequence of security network
functions, we term this sequence as a security network function chain for the data
traffic. Specifically, security network function chaining is a technique for selecting
and steering data traffic flows through a sequence of security network functions
by leveraging both Network Function Virtualization (NFV) and Software Defined
Networking (SDN) technologies.

Consider an application scenario where a set of users is going to hold a
tele-conference. To ensure all messages in the tele-conference multicast to all
participants securely, there is a specified security network function chain for this
tele-conference which includes (1) each multicast packet should be encrypted before
reaching other destinations in the untrusted core network; and (2) all traffic should
be inspected by an IDS. Meeting those security requirements need careful chaining
of instances of network encryption functions and IDSs.

4 Optimization Problems for Security Function Chaining

In this section, we first introduce the system model, notions and notations, and then
define the problems precisely.

4.1 System Model

We consider a mobile edge cloud (computing) network (MEC) in a metropolitan
region that is modelled by an undirected graph G = (V ,E), where V is a set
of access points (APs) located at different locations in a metropolitan region, e.g.,
shopping centers, airports, restaurants, bus stations, and hospitals. An edge server is
co-located with each AP node v ∈ V via a high-speed optical cable. This implies
that the communication delay between them is negligible due to plenty of bandwidth
on the cable. For simplicity, each AP node and its co-located edge server will
be used interchangeably if no confusion arises. Each edge server has computing
capacity Cv for implementing various virtualized network functions (VNFs). E is
the set of links between APs. Each link e ∈ E has a bandwidth capacity Be. The
available bandwidth resource of each link is time-varying, because requests arrive in
and depart from the system dynamically [4]. We assume that each AP node covers
a certain area, in which each mobile user can access the MEC service wirelessly
through the AP. In case a mobile user located at an overlapping coverage region of
multiple APs, the mobile user can register itself to an appropriate AP and tune itself
to the parameters of the AP [23]. Figure 1 is an example of an MEC network.
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Access 
Point
(AP)

Cloudlet
(Server)

Fig. 1 An illustrative example of an MEC network consisting of 6 APs with each co-located with
an edge server

4.2 NFV-Enabled Multicast Requests with Service Function
Chain Requirements

Consider an NFV-enabled multicast request rj = (sj ,Dj , ρj , SFCj ) that transmits
its data traffic from the source node sj ∈ V to the given set Dj ⊆ V of destination
nodes with a specified packet rate ρj . Each packet in the data traffic stream must pass
through the sequence of network functions of its service function chain SFCj =
〈fj,1, . . . , fj,l , . . . , fj,Lj

〉 before reaching each of the destinations, where Lj is the
length of SFCj . We assume that a unit packet rate of rj requires bandwidth resource
be in a link e ∈ E, thus, the total amount ρj · be of bandwidth required for rj in e.

We assume that resources in edge servers are virtualized, using container-
based lightweight virtualization technologies, and thus can be allocated and shared
flexibly. Each instance of a virtualized network function (VNF) is a virtual machine
in an edge server. Without loss of generality, we assume that different types of VNFs
among all service function chains of requests can be classified into K types. Denote
by f (k) and C(f (k)) the VNF of type k and the amount of computing resource
consumed for its implementation in an edge server, respectively, 1 ≤ k ≤ K .
Suppose each VNF instance of f (k) has a maximum processing capacity μ(k).
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Fig. 2 An example of an NFV-enabled multicast request with a service function chain that consists
of three network functions: Network Address Translation (NAT), Firewall (FW), and Proxy. Its data
packet traffic flows from the source node Source to a set of seven destination nodes. Each packet
must pass through one VNF instance of each of the three network functions in the service function
chain

Furthermore, if the residual processing capacity of an existing VNF instance is
sufficient to process the data traffic of a newly admitted request, this VNF instance
can be shared by the request. Otherwise, a new VNF instance for the request needs
to be instantiated in an edge server with sufficient residual computing resource in
order to admit the request.

To admit an NFV-enabled multicast request rj , each packet of its data traffic is
enforced to go through a VNF instance of each network function in its SFCj prior
to reaching each of the destinations in Dj . Denote by T (j) the pseudo-multicast
tree that transmits the data traffic of request rj from the source sj to the destinations
in Dj , where a pseudo-multicast tree [28] in fact may be a graph, not a tree. A
pseudo-multicast tree is a directed pseudo-steiner tree which starts from a source
node and reaches each node in a destination set. However, due to the availability
of some edge servers in the MEC (i.e., be able to accommodate the VNF instances
with sufficient resources), each edge server node and physical link of the network
may appear multiple times in the pseudo-multicast tree. Figure 2 is an example
to illustrate the admission of an NFV-enabled multicast request, where for each
network function fj,l in the service function chain SFCj , either an existing VNF
instance (with sufficient residual processing capacity) is selected or a new VNF
instance is instantiated in an edge server fj,l in each path from the source node sj
to each destination node in Dj , and these VNF instances can be placed at different
edge servers.

An example of the pseudo-multicast tree and its relationship with a multicast
tree T is shown in Fig. 3. Notice that given an NFV-enabled multicast request,
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Fig. 3 A pseudo-multicast tree GT derived from a multicast tree T for an NFV-Enabled multicast
request rk , and another tree T ′ derived from GT which has the identical cost as GT . (a) The
multicast tree T . (b) The pseudo-multicast tree GT from T . (c) The cost-identical multicast tree
T ′ from GT

its pseudo-multicast tree may not be unique, because its packet can be directed to
different destinations via different paths. However, the determination of a pseudo-
multicast tree can be tailored to fit different optimization objectives. For example, if
the objective is to minimize the cost of implementing the request, the found pseudo-
multicast tree should be able to achieve the lowest cost.

4.3 Admission Costs of an NFV-Enabled Multicast Request

The admission cost of an NFV-enabled multicast request in an MEC network is the
sum of three constituent costs: the VNF instance processing cost for processing
its data packets, the VNF instance instantiation cost for instantiating new VNF
instances in edge servers, and the bandwidth cost for routing its data traffic along
links in its pseudo-multicast tree. Instantiating VNF instances at edge servers
consumes both computing and storage resources of the edge servers, thus incurs
the VNF instantiation cost. Denote by cins(f

(k), v) the instantiation cost a VNF
instance of network function f (k) in an edge server v, and ρj · cproc(f

(k), v) the
processing cost of data traffic of a request rj at a VNF instance of f (k) at edge
server v, where cproc(f

(k), v) is the cost of processing a packet by a VNF instance
f (k) at edge server v and ρj is the packet rate of rj . Notice that the processing cost
cproc(f

(k), v) of a data packet of different VNF instances at different edge servers
may be significantly different, since different VNF instances consume different
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amounts of computing resources and different edge servers have different amounts
of energy consumptions. In addition, each packet of the data traffic of request rj
is routed along a pseudo-multicast tree T (j) that incurs the communication cost
ρj ·∑e∈T (j) ce, where ce is the unit transmission cost on link e ∈ E, and

∑
e∈T (j) ce

is the cost of transferring a packet along the pseudo-multicast tree T (j).

4.4 Problem Definitions

In practice, different network operators may have different settings of their MEC
networks. Therefore, different network performance indicators can be taken into
account when optimizing the multicasting service delivery process. In particular, the
choice of the objective and resource settings depends on the characteristics of the
provider, e.g., types of available resources, geographical scope of the infrastructure,
nature of the offered services etc. We here define different versions of the NFV-
enabled multicast request admission problem in an MEC network G that cover the
requirements of a wide range of network service providers.

Definition 1 For large-scale network operators that build their own infrastructures,
they want to minimize the cost of operating the MEC networks while guaranteeing
the performance of multicast services. They thus have sufficient computing and
bandwidth resources, and consolidate all VNFs of a service chain into a single
edge server to avoid performance degradation due to inter-VNF data transmission.
Assuming that the MEC network G = (V ,E) has sufficient computing and
bandwidth resources to meet the resource demands of a single NFV-enabled
multicast request and the VNFs of each SFCj of a NFV-enabled request rj can
be consolidated into a single edge server, the the cost minimization problem with
consolidated VNFs in G for an NFV-enabled multicast request rj is to find a pseudo-
multicast tree such that its implementation cost is minimized, if no more than M

edge servers are used for implementing its service chain SFCj , assuming that G

has sufficient computing and bandwidth resources for the request.

Definition 2 For medium and small-scale network operators that lease certain
amounts of computing and bandwidth resources from infrastructure providers, they
want to maximize the utilization of their leased resources while minimizing the
cost of resource usages. We thus have the following optimization problem. Given
an MEC network G = (V ,E) with a set V of edge servers (or APs), each
v ∈ V has computing capacity Cv , let Be be the bandwidth capacity of each link
e ∈ E, assuming that the previous j − 1 NFV-enabled multicast requests have
been responded (admitted or rejected), consider an incoming NFV-enabled multicast
request rj = (sj ,Dj , ρj , SFCj ), the cost minimization problem of admitting
request rj is to find a pseudo-multicast tree T (j) in G to route its data traffic from
the source node sj to each destination node in Dj while each packet in the data
traffic must pass through each VNF instance in the service function chain SFCj ,
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such that its admission cost is minimized, subject to computing and bandwidth
capacities on both edge servers and links of G.

Definition 3 In practical MEC networks, multicast requests arrive into the system
dynamically. Such dynamic requests need to be admitted on their arrivals, such
that the limited resources of an MEC network is maximally utilized. We then have
the following online optimization problem. Given an MEC network G = (V ,E)

with a set V of edge servers, each v ∈ V has computing capacity Cv , and each
link e ∈ E has bandwidth capacity Be. Let r1, r2, . . . , rj be a sequence of NFV-
enabled multicast requests that arrive one by one without the knowledge of future
request arrivals, the online throughput maximization problem in G is to maximize
the number of requests admitted, subject to computing and bandwidth capacities on
both edge servers and links of G.

5 Approximation Algorithms for the Cost Minimization
Problem with Consolidated VNFs

In this section we deal with the cost minimization problem with consolidated VNFs.

5.1 Algorithm Overview

The basic idea of the proposed approximation algorithms is to find a pseudo-
multicast tree rooted at the source and spanning all destinations, and each packet
from the source to destinations passes through an edge server in the tree, such
that the cost of the tree is minimized. To this end, the finest trade-off between the
computing and communication costs needs to be explored. Specifically, if an edge
server v with a lower computing cost is included in the pseudo-multicast tree for
multicast request rj , the processing cost of NFV-enabled rj may be reduced. This
however will increase the communication cost if the edge server v is far from the
destinations of rj . On the other hand, if there are multiple edge servers located at
different branches of the multicast tree, then the packet can pass through each of
the edge servers to reach its destinations in Dk . This will lead to less bandwidth
usages from the source to the destinations, which is achieved at the expense of high
computing cost by employing multiple edge servers. We thus need to identify a set
of edge servers with each implementing the service chain SFCj of rj and find a
pseudo-multicast tree including the identified edge server(s) on the path from the
source sj to each destination u ∈ Dj . As M is a constant, we aim to find a pseudo-
multicast tree in G that contains no more than M edge servers and the path in the
tree from sj to each destination u ∈ Dj must pass through one of the identified edge
servers such that the cost of the tree is minimized.
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Recall that there are |V | APs that are attached with edge servers, clearly M ≤
|V |. As a pseudo-multicast tree for any NFV-enabled multicast request can contain
at least one but no more than M edge servers, there are at most

(|V |
M

)
combinations of

edge servers that can meet the computing resource demand of service chain SFCj

of request rj . For each combination of edge servers, a pseudo-multicast tree in G

can be identified, and the tree with the minimum cost is then used to implement
rk . We thus reduce the NFV-enabled multicast problem to a Steiner tree problem
in an auxiliary undirected graph. An approximate solution to the latter returns an
approximate solution to the former.

5.2 Approximation Algorithm

Given an NFV-enabled multicast request rj , we now devise an approximation
algorithm for the cost minimization problem with consolidated VNFs in G, by
reducing it to the Steiner tree problem in an auxiliary undirected graph Gi

j =
(V i

j , Ei
j ; c) with an edge weight function c for all i with 1 ≤ i ≤ (|V |

M

)
, where

V i
j = V ∪ {s′

j }, Ei
j = E ∪ {(s′

j , v) | v ∈ V i}, V i (⊆ V ) is the ith combination

of edge servers in V , and s′
j is a virtual source of request rj . For each v ∈ V i ,

if edge (sj , v) ∈ E in G, the cost of edge (sj , v) ∈ Ei
j is assigned zero. s′

j is

the new source in Gi
j , replacing the original source sj . Notice that the original

source sj is still contained in Gi
j serving as a ‘regular’ switch node without an

attached edge server. To guarantee that the traffic of rj passes through its service
chain SFCj that is implemented in one or multiple edge servers in V i (⊆ VS),
we connect s′

j with all edge server nodes in V i , where the edge between s′
j

and each edge server node v ∈ V i in Gi
j represents a shortest path psj ,v in

G between nodes sj and v. The weight of edge (s′
j , v) is the cost sum of the

edges in path psj ,v plus the cost of implementing SFCj in edge server v, i.e.,
c(s′

j ,v) = ∑e∈ps′
j
,v

ce · bk + cv(SFCj ), where cv(SFCj ) is the cost of the amount

Cv(SFCj ) of computing resource consumption for implementing SCk . In addition,
the weight ce of each edge e ∈ Ei

k ∩ E is the cost ce · ρj of processing packet rate
ρj of rj on edge e ∈ E. An example of the constructed auxiliary graph Gi

j is shown
in Fig. 4.

For the sake of convenience, in the rest of this chapter we assume that the
APs with attached edge servers is V = {v1, v2, . . . , v|V |}. Having constructed the
auxiliary graph Gi

j , we now find a Steiner tree in Gi
j for request rj . We first find

a minimum spanning tree (MST) T i
mst in a complete graph consisting of nodes in

{s′
j } ∪ Dj , in which each edge is assigned a weight that is equal to the length of the

shortest path in Gi
j between its two endpoints. Let Hi

j be a subgraph of Gi
j derived

from T i
mst by replacing each edge of T i

mst with its corresponding shortest path in Gi
j .
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Fig. 4 An example of the auxiliary graph G5
k = (V 5

k , E5
k ) constructed from an SDN G = (V ,E)

with V 5 = {v1, v6}, assuming that M = 2

We then find an approximate Steiner tree T i
j in Hi

j , by applying the approximation
algorithm due to Kou et al. [16], which will serve as the pseudo-multicast tree for rj .
The detailed algorithm for the cost minimization problem with consolidated VNFs
is given in Algorithm 1.

5.3 Algorithm Analysis

The rest is to show the correctness of Algorithm Appro_Multi, and analyze
its time complexity and the approximation ratio.

Lemma 1 Algorithm Appro_Multi delivers a feasible solution for the NFV-
enabled multicasting problem with and without SDN resource capacity constraints.

Proof We here show that the solution delivered by Algorithm 2 is feasible. Each
path p in Tj from s′

j to one destination d ∈ Dj corresponds to a path in G from sj

to d. This is evidenced by the fact that any path in subgraph Hi
j of Gi

j , starting from

s′
j must use one of its incident edges in Ei

j , and the another endpoint v of the edge

must be an edge server in V i ⊆ V , following the construction of Gi
j . This implies

that each path in Tj from sj to any destination d ∈ Dj must use one of the edge
servers in V i . And Tj includes all nodes in Dj . Thus, the tree obtained is a feasible
pseudo-multicast tree for multicast request rj . ��
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Algorithm 1 Appro_Multi
Input: G = (V ,E), VS , a multicast request rk = (sk,Dk; bk, SCk), and M ≥ 1.
Output: A pseudo-multicast tree Tj for implementing the multicast request rj with the minimum

cost.
1: costj ← ∞; Tj ← ∅; /* the cost of the pseudo-multicast tree */
2: /* each combination of choosing i edge servers from |V | edge servers */;
3: for i ← 1 to

(|V |
M

)
do

4: Construct an auxiliary undirected graph Gi
j = (V i

j , Ei
j ), as illustrated in Fig. 4;

5: Find an MST T i
mst in a complete graph induced by the nodes in {s′

j } ∪ Dj with the weight

of each edge being the length of the shortest path in Gi
j between its two endpoints;

6: Let Hi
j be a subgraph of Gi

j derived from T i
mst , by replacing each edge of T i

mst with the

corresponding shortest path in Gi
j ; find an approximate Steiner tree T i

j in Hi
j rooted at s′

j

and spanning nodes in Dj , by invoking the approximation algorithm due to Kou et al. [16];
7: if c(T i

j ) < costj then

8: costj ← c(T i
j ), Tj ← T i

j ; /* a candidate solution to the problem */
9: if Tj contains node sj then

10: Merge nodes sj and s′
j into s′

j ;
11: Rename s′

j in Tj as sj , and let Tj be the resulting graph (the pseudo-multicast tree) for data
traffic routing of request rj ;

12: return Tj and its cost c(Tj ).

Theorem 1 Given an MEC network G = (V ,E), a set V of APs with each
having an attached edge server, and an NFV-enabled multicast request rj =
(sj ,Dj , ρj , SFCj ), there is a 2M approximation algorithm, Algorithm 2, for
the cost minimization problem with consolidated VNFs, assuming no more than
M edge servers will be employed for its service chain implementation, where
the approximation ratio 2M is the best. The time complexity of the algorithm is
O(|V |3 · |V |M), where M ≥ 1 is a small integer.

Proof We first analyze the approximation ratio of Algorithm 2. Let G∗
T be the

optimal pseudo-multicast tree for the NFV-enabled multicast request rk in G. If
G∗

T is not a multicast tree, there is a corresponding tree T ′ with the identical cost
as G∗

T , following the definition of pseudo-multicast tree; otherwise, GT itself is a
multicast tree. From now on, we denote by T ∗ either the optimal multicast tree G∗

T

or its corresponding cost-identical tree T ′. We assume that there are l edge servers in
T ∗ with each implementing SFCj with 1 ≤ l ≤ M . Without loss of generality, we
assume that these l nodes are v1, v2, . . . , vl , respectively. Clearly, it can be shown
that none of pairs of these nodes in T ∗ has the ancestor and descendant relationship
in terms of a node being used as an edge server, otherwise the node in V will be
treated as a regular AP without the use of its edge server. Each subtree T ∗

vi
of T ∗

rooted at vi contains some destinations, and all of the l subtrees will contain all the
destinations in Dj , following its definition. We construct another tree T ∗

c = (V ′, E′)
which is derived from T ∗ by compressing the path in T ∗ from sj to each node vi

as follows. We replace the source node sj by a node s′
j and the path in T ∗ from sj

to vi by an edge (s′
j , vi), and assign the edge a weight that is the sum of all edge
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costs in the path plus the cost of using edge server vi . In the worst case, each of
such compressions can increase the cost of the optimal tree, and there are in total l

compressions. Furthermore, for each compression, if the cost sum of all edges from
the source sj to each vi dominates the cost of the tree, each of such compressions can
increase the total cost by a value that equals the cost of T ∗. We thus claim that the
cost of tree T ∗

c is no greater than l times the cost of tree T ∗, i.e., c(T ∗
c ) ≤ l · c(T ∗).

It can be seen that there is a multicast tree T i
j in Gi

j rooted at source s′
j and

spanning all destinations in Dj , which has the same topological structure as T ∗
c ,

however, it has a lower cost compared with that of T ∗
c , i.e., c(T i

j ) ≤ c(T ∗
c ). This

is because the weight of each edge in Gi
j between s′

j and vi is the length of the
shortest path in G between the two nodes plus the cost of using edge server vi ,
while the corresponding edge weight in T ∗

c is the sum of all edge weights in the
path in T ∗ between sj and vi plus the cost of using edge server vi .

Let T
OPT,i
j be an optimal multicast tree in Gi

j rooted at s′
j and spanning

all destinations in Dj and each path in the tree from s′
j to a destination goes

through one of the edge servers in V ′. Then, c(T
OPT,i
j ) ≤ c(T i

j ) as T i
j is one

of the multicast trees for NFV-enabled multicast request rj . Let T
app,i
j be an

approximate multicast tree in Gi
j for multicast request rj , by the approximation

algorithm with an approximation ratio of 2 due to Kou et al. [16]. We then have
c(T

app,i
j ) ≤ 2c(T

OPT,i
j ). Since c(T i

j ) ≤ c(T ∗
c ) and c(T ∗

c ) ≤ l · c(T ∗), we have

c(T
app,i
j ) ≤ 2c(T

OPT,i
j ) ≤ 2c(T i

j ) ≤ 2c(T ∗
c ) ≤ 2 · l · c(T ∗). Since a pseudo-

multicast tree Tj with the minimum cost from the
(|V |

M

)
auxiliary undirected graphs

Gi
j for all i with 1 ≤ i ≤ (|V |

M

)
will be found and the value of l is within [1,M], the

cost of the pseudo-multicast tree Tj for rj is no greater than 2M · c(T ∗).
We finally analyze the time complexity of Algorithm 2 as follows. The algorithm

proceeds iteratively. Within each iteration, it first constructs an auxiliary graph Gi
j ,

and then finds an approximate Steiner tree T
app,i
j in Gi

j for each multicast request
rj . It takes O(|E| + |V | log |V |) time to find a single-source shortest path tree in
Gj by Dijkstra’s algorithm, while it takes O(|V i

j |3) = O(|V |3) time to find an

approximate Steiner tree T
app,i
j [16]. There are O(

(|V |
M

)
) ( = O(|V |M)) iterations.

The algorithm thus takes O(|V |3 · |V |M) time. For example, if M = 3, then the time
complexity of Algorithm 2 is O(|V |3 · log3 |V |). ��

6 An Approximation Algorithm for the Cost Minimization
Problem

In this section, we deal with the cost minimization problem of a single NFV-enabled
multicast request admission. We first devise an approximation algorithm for the
problem, and then analyze its performance.
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6.1 Algorithm Overview

Given an MEC network G = (V ,E) and an NFV-enabled multicast request rj , we
aim to minimize the admission cost of the request by steering its data traffic from
the source sj to the set of destinations in Dj while each packet of the data traffic
must pass through a sequence of network functions in its specified service function
chain SFCj . To tackle the problem, it poses three challenges. One is the resource
availability in MEC. Whether request rj should be admitted or not is determined
by the availability of its demanded resources in G; the other is which edge servers
should be identified to implement which network functions of its SFCj ; and finally,
whether new VNF instances will be instantiated or existing VNF instances can be
shared for the implementation of SFCj must be made dynamically. It is essential to
address the aforementioned challenges in order to deliver a cost-efficient solution to
the problem.

The basic idea behind the proposed approximation algorithm for the problem is
reducing it to the directed multicast tree problem in an auxiliary, directed acyclic
graph. If there is a multicast tree in the auxiliary graph rooted at the source sj
and spanning all destinations in Dj , then, request rj can be admitted, otherwise, rj
should be rejected due to lack of sufficient resources to meet its resource demands.
This claim will be shown later in algorithm analysis. A pseudo-multicast tree T (j)

in G [28] finally can be derived from the multicast tree T ′(j) in the auxiliary graph
for the implementation of request rj .

6.2 Approximation Algorithm

Given an NFV-enabled multicast request rj , we can either make use of existing
network function instances as long as their residual processing capacities are
sufficient to admit the request. Or if there is sufficient available computing resource
in an edge server, a new instance for the requested type of network function can be
instantiated in the edge server. Thus, there are multiple candidate instances for each
network function fj,l in its service function chain SFCj in G to be dynamically
determined with 1 ≤ l ≤ Lj .

Denote by λ(j, l) = k the type of network function which is the lth network
function fj,l in SFCj of request rj with 1 ≤ k ≤ K and 1 ≤ l ≤ |SFCj |, and

denote by F
(k)
v the set of VNF instances of type k instantiated in edge server v. Let

μre
i be the residual processing capacity of VNF instance i ∈ F

(k)
v . Let Cre

v be the
residual computing capacity of edge server v ∈ V . Denote by Nl,v the set of VNF
instances that can be employed as the lth network function fj,l in SFCj in edge
server v, including both existing network function instances with sufficient residual
processing capacities, i.e., μre

i ≥ ρj with i ∈ F
(λ(j,l))
v , as well as a new VNF

instance i′ to be created providing sufficient computing resource in edge server v,
i.e., Cre

v ≥ C(f (λ(j,l))). Then, Nl is the set of VNF instances that can be employed
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as the lth network function fj,l in SFCj among all edge servers in V , i.e., Nl =
∪v∈V Nl,v . We assume that the number of VNF instances of the same type in each
edge server is a small constant. To this end, we construct an auxiliary, directed
acyclic graph G′

j = (V ′
j , E

′
j ) for request rj from G as follows.

Let G′ be a subgraph graph of G after removing each link from G if the residual
bandwidth of the link is less than ρj · be. The node set V ′

j of G′
j is the union on sets

Nl of VNF instances with 1 ≤ l ≤ Lj , with the source node sj , the destination node

set Dj of multicast request rj , i.e., V ′
j = ∪Lj

l=1Nl ∪ {sj } ∪ Dj . To ensure that the
network functions of SFCj = 〈fj,1, . . . , fj,l , . . . , fj,Lj

〉 are traversed in order, we
add a directed edge from a node x ∈ Nl−1 to each node y ∈ Nl with 2 ≤ l ≤ Lj

if there is a shortest path in graph G′ between x and y, and the weight w(x, y)

assigned to the directed edge is the sum of the communication cost along the shortest
path in G′ between the edge servers implementing VNF instances x and y and the
processing and VNF instance instantiation cost of network function y. Notice that if
the VNF instance is an existing one, its instantiation cost is 0; and if the two network
functions x and y reside in the same edge server, their communication cost is 0. We
then add a directed edge from sj to each node y ∈ N1 if such a shortest path in G′
exists, and the weight assigned to the edge is the sum of the communication cost
along the shortest path and the processing and VNF instance instantiation cost of
network function y. Also, we add a directed edge from each node x ∈ NL to a node
y ∈ Dj , and set the communication cost along the shortest path from an edge server
that implements network function x to the AP node y as its weight if such a shortest

path in G′ exists. Thus, E′
j = ∪Lj

l=2{〈x, y〉 | x ∈ Nl−1, y ∈ Nl} ∪ {〈sj , y〉 | y ∈
N1} ∪ {〈x, y〉 | x ∈ NLj

, y ∈ Dj }.
To ensure that a multicast request can be admitted without violating computing

capacity of any edge server, it must be mentioned that we here adopt a conservative
request admission strategy. That is, only if the residual computing capacity of an
edge server is sufficient to accommodate all necessary VNF instance instantiating
(any VNF instances in its SFCj ), it can be allowed to create new VNF instances for
request rj . Figure 5 shows the construction of graph G′

j for request rj after the first
j − 1 NFV-enabled multicast requests have been considered. Notice that if there is
a shortest path between a VNF instance hosted in edge server u ∈ V and another
VNF instance hosted in edge server v ∈ V , there will be a shortest path between any
pair of VNF instances hosted in these two edge servers, respectively. For simplicity,
we use an edge in the graph to represent a set of edges between each pair of VNF
instances residing in the two edge servers, respectively.

Having constructed graph G′
j , the cost minimization problem of the admission

of request rj is reduced to find a directed multicast tree T ′(j) in G′
j rooted at sj

and spanning all nodes in Dj , such that the weighted sum of the edges in T ′(j) is
minimized. Notice that the cost c(T ′(j)) is the minimum admission cost of request
rj in G. This is the classic directed Steiner tree problem, which is NP-hard. There
is an approximate solution within |Dj |ε times of the optimal one [5], where ε is
a constant with 0 < ε ≤ 1. The value choice of ε reflects a tradeoff between the
solution accuracy and the running time to obtain the solution. If the multicast tree
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Fig. 5 The auxiliary directed acyclic graph G′
j for NFV-enabled multicast request rj consists of

Lj + 2 layers from left to right, where layer 0 is the source node sj and layer Lj + 1 contains
all destination nodes in Dj . Each layer l with 1 ≤ l ≤ Lj , consists of the VNF instances of type
λ(j, l) that can be deployed to process the data traffic of request rj in some of the edge servers
v ∈ V , and if there is sufficient residual computing resource in an edge server, a new VNF instance
of that type can be instantiated in edge server v as well

T ′(j) in G′
j rooted at sj and spanning all destinations in Dj does exist, a pseudo-

multicast tree T (j) in G rooted at sj and spanning all nodes in Dj can then be
derived. Specifically, we replace each directed edge in the multicast tree T ′(j) by
a set of edges in its corresponding shortest path in G. The detailed description of
the algorithm for the cost minimization problem is given in Algorithm 2, which is
referred to as algorithm Appro_Multi_CH.

6.3 Algorithm Analysis

In the following, we show the correctness of the proposed algorithm, Algo-
rithm Appro_Multi_CH, and analyze its approximation ratio and time complex-
ity.



Algorithms for NFV-Enabled Multicasting in Mobile Edge Computing 253

Algorithm 2 Finding a minimum-cost pseudo-multicast tree in G for request rj ,
i.e., Appro_Multi_CH
Input: An MEC network G = (V ,E) with a set V of edge servers. Assume that the first j − 1

NFV-enabled multicast requests have been considered, and some VNF instances have been
instantiated for the admissions of requests. Now consider an NFV-enabled multicast request
rj = (sj ,Dj , ρj , SFCj ).

Output: Admit or reject request rj , and if rj is admitted, a pseudo-multicast tree T (j) in G will
be delivered.

1: A subgraph G′ is obtained by removing all edges from G whose residual bandwidth is strictly
less than ρj · be;

2: Compute all pairs shortest paths in G′ between each pair of AP nodes;
3: Construct the auxiliary directed acyclic graph G′

j = (V ′
j , E

′
j ) from G, and assign a weight on

each edge in E′
j ;

4: Find an approximate multicast tree T ′(j) in G′
j rooted at sj and spanning all nodes in Dj , by

applying the approximation algorithm on G′
j due to Charikar et al. [5];

5: if T ′(j) in G′
j exists then

6: A pseudo-multicast tree T (j) in G is derived, by replacing each edge in T ′(j) with the
edges of its corresponding shortest path in G;

7: If a selected VNF instance is to be instantiated, create a new VNF instance in its edge
server;

8: Update residual resource capacities of links, edge servers, and VNF instances in G;
9: else

10: Reject request rj .

Lemma 2 An NFV-enabled multicast request rj is admissible in G if and only if
there is a multicast tree T ′(j) in graph G′

j rooted at sj and spanning all nodes in
Dj .

Proof We first show that if there is a multicast tree T ′(j) in G′ rooted at sj and
spanning all nodes in Dj , there is a feasible solution to the cost minimization
problem for request rj in G. It can be seen that G′

j contains Lj + 2 layers with
source sj in layer 0 and all destination nodes in Dj in layer Lj + 1. Thus, for
each destination node d ∈ Dj , there is a directed path in G′

j from sj to d that
goes through a node in each layer, which implies that each packet of request rj
will be processed by either an existing VNF or a newly instantiated VNF of the
network function in that layer, and the segment of the routing path in G that
corresponds a directed edge in G′

j has sufficient communication bandwidth to meet
the requirement of data traffic of rj in G. Thus, the solution delivered is a feasible
solution.

We then show that if there does not exist a multicast tree T ′(j) in G′
j rooted

at sj and spanning all nodes in Dj , then request rj is inadmissible and should be
rejected, i.e., there is not sufficient resources in G to admit the request. Assume that
a destination node d ∈ Dj is not reachable from sj (or d is not contained in T ′(j)).
Assume that node vl in layer l is the smallest layer from which d is reachable in
G′

j with 1 ≤ l ≤ Lj , this implies that there is not any directed edge from any
node in layer l − 1 to node vl in layer l. Following the construction of G′

j , there are
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three possibilities for absence of any such an edge: (1) among all edge servers in
G, either none of them has sufficient computing resource to instantiate a new VNF
for fj,l ∈ SFCj ; or (2) all existing VNF instances of fl,j in these edge servers
have less residual processing capacities for fj,l ; or (3) there is not any path in G′
from any node in layer l − 1 to a node (edge server) in layer l due to the lack of
communication bandwidth to meet the bandwidth requirement of rj . In other words,
it is lack of sufficient resources in G to meet the resource demands of rj , thus, it will
be rejected. ��
Theorem 2 Given an MEC network G = (V ,E) with a set V of APs that
each is attached an edge server, and an NFV-enabled multicast request rj =
(sj ,Dj , ρj , SFCj ), there is an approximation algorithm, Algorithm Appro_
Multi_CH, for the cost minimization problem with an approximation ratio of

|Dj |ε . The algorithm takes O((Lj · |V |) 1
ε |Dj | 2

ε +|V |3) time, where Lj (= |SFCj |)
is the length of SFCj of request rj , and ε is a constant with 0 < ε ≤ 1.

Proof The solution obtained by the proposed algorithm Algorithm Appro_
Multi_CH is feasible, which has been shown by Lemma 2. In the following, we
analyze the approximation ratio of the proposed algorithm. The admission cost of
multicast request rj is the sum of (1) the VNF instance processing cost; (2) the
VNF instance instantiation cost, and (3) the communication bandwidth usage cost.
Each packet of the data traffic of request rj is transferred from the source node
sj to each destination node in Dj while passing through each VNF instance in
its service function chain SFCj . The sum of these three costs is assigned to each
directed edge in E′

j . Thus, the cost of the minimum Steiner tree T ′(j) found in G′
j

rooted at sj and spanning all nodes in Dj , is the minimum admission cost of rj in
G. Following [5], the approximation ratio of the proposed algorithm for the cost
minimization problem for a single multicast request admission is |Dj |ε , where ε is
a constant with 0 < ε ≤ 1.

We finally analyze the time complexity of Algorithm Appro_Multi_CH
as follows. Finding all pairs shortest paths in G′ between each pair of AP nodes
takes O(|V |3) time, by invoking the well-known Floyd-Warshall algorithm. The
construction of the auxiliary directed acyclic graph G′

j for each request rj takes
O(Lj · |V |) time, since there are Lj + 2 layers in G′

j and each layer contains
O(|V |) nodes, assuming that the number of VNF instances of the same type in
each edge server is a small constant, i.e., O(1). Recall that Lj = |SFCj |. Finding

an approximate multicast tree in G′
j for request rj takes time O(|V ′

j |
1
ε |Dj | 2

ε ), by
applying the (|Dj |ε)-approximation algorithm due to Charikar et al. [5]. Thus, the

running time of Algorithm Appro_Multi_CH is O((Lj · |V |) 1
ε |Dj | 2

ε +|V |3)
where ε is a constant with 0 < ε ≤ 1. ��
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7 An Online Algorithm for the Online Throughput
Maximization Problem

In this section, we study the online throughput maximization problem, where NFV-
enabled multicast requests arrive one by one without the knowledge of future request
arrivals. We first propose an online algorithm for the problem, through building a
novel cost model to capture dynamic resource consumptions in G and performing
resource allocations for request admissions based on the built cost model. We then
analyze the competitive ratio and time complexity of the proposed online algorithm.

7.1 The Usage Cost Model of Resources

The basic idea behind the proposed online algorithm is to regulate an online
admission control policy to respond to each arrived request by either admitting or
rejecting it, depending on the availability of its demanded resources and a given
admission control policy. We still make use of the auxiliary directed acyclic graph
G′

j as an important data structure for the online throughput maximization problem.
The weight assigned to each edge in G′

j here however is different from its weight in
the previous section that is defined as follows.

We here introduce a resource usage cost model to measure all different types
of resource consumptions of each VNF instance (processing capacity), each edge
server (computing resource), and each link (bandwidth resource) when admitting
requests. Given the dynamics of resource demands of user requests and occupied
resource releasing in the network, there is a need of a cost model to capture the
dynamic consumptions of various resources in the network in order to assist the
admissions of future requests and better utilize the resources. Intuitively, overloaded
resources usually have higher probabilities to be violated by the resource demands
of currently admitted requests, due to the high dynamics of resource consumptions.
This eventually will affect the admissions of future requests. Therefore, if a type of
resource has been highly utilized, it should be assigned a higher usage cost to reduce
its usage in future; otherwise, it should be assigned a lower usage cost to encourage
its usage in future.

The proposed online algorithm examines each incoming NFV-enabled multicast
request one by one. When request rj arrives, the resource availabilities of the VNF
instances of network functions in its service chain, computing resources in edge
servers, and bandwidth resources in links will determine whether it is admissible.
Recall that F

(k)
v is the set of existing VNF instances of type k in edge server v. If

there is sufficient computing resource in edge server v, a new VNF instance of type
k can be instantiated at it. For the sake of convenience, assume that set F

(k)
v contains

the newly instantiated VNF instance of type k as well.
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Denote by μ
(k)
v,i (j) the residual processing capacity of the VNF instance i ∈ F

(k)
v

of type k in edge server v when request rj arrives with μ
(k)
v,i (0) = μ(k) initially. If

request rj is admitted and its packets is processed by VNF instance i, then μ
(k)
v,i (j) =

μ
(k)
v,i (j − 1) − ρj , otherwise, its residual computing capacity does not change.

As for each network function in service function chain SFCj of rj , a new VNF
instance of it can be instantiated or an existing VNF instance of it can be shared,
a binary variable x

(λ(j,l))
v is introduced for each network function fj,l in SFCj

with 1 ≤ l ≤ |SFCj | = Lj , where x
(λ(j,l))
v is 1 if the lth VNF instance is

newly instantiated in edge server v; otherwise 0. Then, denote by Cv(j) the residual
computing capacity at edge server v ∈ V when request rj arrives with Cv(0) = Cv

initially. If request rj is admitted and some VNF instances are instantiated in edge

server v, then Cv(j) = Cv(j − 1) −∑Lj

l=1 C(f (λ(j,l))) · x
(λ(j,l))
v . Similarly, denote

by Be(j) the residual bandwidth in link e ∈ E when request rj arrives with
Be(j) = Be(j − 1) − ρj · be if request rj is admitted and Be(0) = Be.

To capture the resource usage of request rj , we use an exponential function to

model the cost W
(k)
v,i (j) of processing packets of rj by the VNF instance i ∈ F

(k)
v as

follows,

W
(k)
v,i (j) = μ(k)(α

1− μ
(k)
v,i

(j)

μ(k) − 1), (1)

where α (> 1) is a tuning parameter to be decided later, and 1 − μ
(k)
v,i (j)

μ(k) is the
processing capacity utilization ratio in the VNF instance i when request rj is
considered. Similarly, the cost Wv(j) of instantiating new VNF instances for request
rj at edge server v ∈ V and the cost We(j) of using bandwidth resource at link
e ∈ B are defined, respectively,

Wv(j) = Cv(β
1− Cv(j)

Cv − 1), (2)

We(j) = Be(γ
1− Be(j)

Be − 1), (3)

where β (> 1) and γ (> 1) are tuning parameters to be decided later, and 1 −
Cv(j)
Cv

and 1 − Be(j)
Be

are the resource utilization ratios in edge server v and link e,
respectively, when request rj is considered. In order to encourage the sharing of
VNF instances among multicast requests, we assume that the cost of creating a new
VNF instance is much higher than the cost of processing capacity usage, i.e., β � α.

We then define the normalized usage cost ω(k)
v,i (j) of each VNF instance i ∈ F

(k)
v

in edge server v for request rj as follows,

ω
(k)
v,i (j) = W

(j)
v,i (j)/μ(k) = α

1− μ
(k)
v,i

(j)

μ(k) − 1. (4)
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Similarly, the normalized usage costs ωv(j) at each edge server v ∈ V and ωe(j)

at each link e ∈ E for request rj are defined as follows,

ωv(j) = Wv(j)/Cv = β
1− Cv(j)

Cv − 1, (5)

ωe(j) = We(j)/Be = γ
1− Be(j)

Be − 1. (6)

Having defined the usage costs of different resources in G, now consider the
current incoming NFV-enabled multicast request rj , we construct an auxiliary graph
G′

j = (V ′
j , E

′
j ) which is almost identical to the one for the cost minimization

problem. The difference lies in the weight assignment of edges in G′
j . Specifically,

here the weight assigned to each directed edge in E′
j is the sum of the three

normalized constituent usage costs defined in (4), (5), and (6), respectively. That
is, each edge (x, y) ∈ E′

j has a weight

w(x, y) = ω
(λ(j,l))
v,y (j) + ωv(j) +

∑

e∈P(u,v)

ωe(j), (7)

assuming that x is a VNF instance in level l − 1 deployed in edge server u, y is a
VNF instance in level l deployed in edge server v, P(u, v) is a shortest path in G

between edge servers u and v.
To avoid admitting requests that consume too much resources, thereby

undermining the performance of the MEC, we adopt the following admission
control policy. If (1) the sum of normalized usage costs of the VNF instances
in its service function chain is greater than a given threshold σ1, i.e.,
∑

v∈V

∑Lj

l=1

∑
i∈F

(λ(j,l))
v

ω
(λ(j,l))
v,i (j) > σ1, where Lj = |SFCj |; or (2) the sum

of normalized usage costs of its VNF instantiations is greater than another given
threshold σ2,

∑
v∈V ωv(j) > σ2; or (3) the sum of normalized usage costs of its

bandwidth in links is greater than the third threshold σ3,
∑

e∈E ωe(j) > σ3, request
rj will be rejected, where σ1 = σ2 = σ3 = n, and n = |V |. The detailed algorithm
for the online throughput maximization problem is given in Algorithm 3, which is
referred to as algorithm Online_Multi in the rest of this chapter.

7.2 Algorithm Analysis

We now analyze the competitive ratio and time complexity of the proposed
online algorithm, Algorithm Online_Multi. We first show the upper
bound on the total cost of admitted requests. We then provide a lower bound on
the cost of a rejected request by Algorithm Online_Multi but admitted
by an optimal offline algorithm. We finally derive the competitive ratio of
Algorithm Online_Multi.
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Algorithm 3 Online algorithm for the online throughput maximization problem,
i.e., Online_Multi
Input: An MEC network G = (V ,E) with a set V of APs, each v ∈ V is attached an

edge server with computing capacity Cv , a sequence of NFV-enabled multicast requests
rj = (sj ,Dj , ρj , SFCj ) arriving one by one without the knowledge of future arrivals.

Output: Maximize the network throughput by admitting or rejecting each arrived request rj
immediately. If rj admitted, a pseudo-multicast tree T (j) for rj in G from source node sj
to a set of destination nodes in Dj will be delivered.

1: while request rj arrives do
2: A subgraph G′ of G is constructed by removing each edge with residual bandwidth capacity

less than ρj · be;
3: Construct the auxiliary graph G′

j = (V ′
j , E

′
j ) for request rj , assign a weight to each edge

in E′
j according to Eq. (7);

4: Find an approximate multicast tree T ′(j) in G′
j rooted at sj and spanning all nodes in Dj ,

by applying the approximation algorithm on G′
j due to Charikar et al. [5];

5: if T ′(j) does not exist then
6: Reject request rj ;
7: else
8: Determine whether rj will be accepted by the admission control policy;
9: if rj is admissible then

10: A pseudo-multicast tree T (j) in G is derived from T ′(j), by replacing each edge in
T ′(j) by the edges in its corresponding shortest path in G;

11: If a VNF instance in an edge server is to be instantiated, create the new VNF instance;
12: Update residual resource capacities of VNF instances, links and edge servers in G;

Lemma 3 Given an MEC network G = (V ,E), with each edge server v ∈ V has
computing capacity Cv and a set E of links that each link e ∈ E has bandwidth
capacity Be, denote byA(j) the set of NFV-enabled multicast requests admitted by
the algorithm, Algorithm Online_Multi, until the arrival of request rj . Then,
the cost sums of VNF instances, edge servers, and links when multicast request rj
arrives are

∑

v∈V

Lj∑

l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j) ≤ 2n log α · B(j), (8)

∑

v∈V

Wv(j) ≤ 2nLmax log β · |A(j)| · C(fmax), (9)

∑

e∈E

We(j) ≤ 2n log γ · B(j), (10)

respectively, provided that the maximum length Lmax of any service function
chain is no greater than n, i.e., Lmax = max1≤j ′≤j {|SFCj ′ |} ≤ n, and ρj ′ ≤
min1≤l≤L

j ′ {μ(λ(j ′,l))}
log α

,
∑Lj ′

l=1 C(f (λ(j ′,l))) · x
(λ(j ′,l))
v ≤ minv∈V Cv

log β
, ρj ′ · be ≤ mine∈E Be

log γ
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with 1 ≤ j ′ ≤ j , where
∑Lj ′

l=1 C(f (λ(j ′,l)))·x(λ(j ′,l))
v is the computing resource being

occupied by newly instantiated VNF instances in edge server v for request rj ′ , B(j)

is the accumulative bandwidth resource being occupied by the admitted requests,
i.e., B(j) = ∑rj ′ ∈A(j) ρj ′ · be, and C(fmax) is the maximum computing resource

required among all VNF instance types, i.e., C(fmax) = max1≤k≤K{C(f (k))}.
Proof Consider a request rj ′ ∈ A(j) admitted by Algorithm Online_Multi.

For any VNF instance i ∈ F
(k)
v , we have

W
(k)
v,i (j

′ + 1) − W
(k)
v,i (j

′) = μ(k)(α
1− μ

(k)
v,i

(j ′+1)

μ(k) − 1) − μ(k)(α
1− μ

(k)
v,i

(j ′)
μ(k) − 1)

= μ(k)α
1− μ

(k)
v,i

(j ′)
μ(k) (α

μ
(k)
v,i

(j ′)−μ
(k)
v,i

(j ′+1)

μ(k) − 1) = μ(k)α
1− μ

(k)
v,i

(j ′)
μ(k) (α

ρ
j ′

μ(k) − 1)

= μ(k)α
1− μ

(k)
v,i

(j ′)
μ(k) (2

ρ
j ′

μ(k)
log α − 1) ≤ μ(k)α

1− μ
(k)
v,i

(j ′)
μ(k) · ρj ′

μ(k)
· log α (11)

= α
1− μ

(k)
v,i

(j ′)
μ(k) · ρj ′ · log α, (12)

where Ineq. (11) holds due to that 2a − 1 ≤ a for 0 ≤ a ≤ 1.
Similarly, for any edge server v ∈ V , we have Wv(j

′ + 1) − Wv(j
′) ≤

β
1− Cv(j ′)

Cv (
∑Lj ′

l=1 C(f (λ(j ′,l))) · x
(λ(j ′,l))
v ) log β and for any link e ∈ E, we have

We(j
′ + 1) − We(j

′) ≤ γ
1− Be(j ′)

Be · ρj ′ · be · log γ .
We then calculate the cost sum of all VNF instances when admitting request rj ′ .

The difference of the cost sum of VNF instances before and after admitting request
rj ′ is

∑

v∈V

Lj ′
∑

l=1

∑

i∈F
(λ(j ′,l))
v

W
(k)
v,i (j

′ + 1) − W
(k)
v,i (j

′) =
Lj ′
∑

l=1

W
(k)
v,i (j

′ + 1) − W
(k)
v,i (j

′)

(13)

≤
Lj ′
∑

l=1

α
1− μ

(λ(j ′,l))
v,i

(j ′)
μ(λ(j ′,l)) · ρj ′ · log α, by Ineq. (12)

= ρj ′ · log α

Lj ′
∑

l=1

α
1− μ

(λ(j ′,l))
v,i

(j ′)
μ(λ(j ′,l)) = ρj ′ · log α

⎛

⎜
⎝

Lj ′
∑

l=1

(α
1− μ

(λ(j ′,l))
v,i

(j ′)
μ(λ(j ′,l)) − 1) +

Lj ′
∑

l=1

1

⎞

⎟
⎠

= ρj ′ · log α

⎛

⎝

Lj ′
∑

l=1

ω
(k)
v,i (j

′) + Lj ′

⎞

⎠ ≤ 2nρj ′ · log α (14)
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Ineq. (12) holds since
∑n

i=1 Ai · Bi ≤ ∑n
i=1 Ai ·∑n

i=1 Bi , for all Ai ≥ 0 and
Bi ≥ 0. Equation (13) holds due to that for each network function fj ′,l , only one
VNF instance is employed to process data traffic of request rj ′ . Ineq. (14) holds due
to the fact that if request rj ′ is admitted, the admission control policy is met, i.e.,

∑Lj ′
l=1 ω

(λ(j ′,l))
v,i (j ′) = ∑Lj ′

l=1 α
1− μ

(λ(j ′,l))
v,i

(j ′)
μ(λ(j ′,l)) − 1 ≤ σ1 = n, and the length of service

function chain of request rj ′ is less than the number of APs, i.e., |SFCj ′ | = Lj ′ ≤
Lmax ≤ n.

Similarly, the difference of the cost sum of edge servers before and after
admitting request rj ′ is

∑
v∈V Wv(j

′+1)−Wv(j
′) ≤ 2nLj ′ ·C(fmax) · log β, where

C(fmax) is the maximum computing resource consumption of any VNF instance
f (k), 1 ≤ k ≤ K in the MEC. And the difference of the cost sum of links before
and after admitting request rj ′ is

∑
e∈E We(j

′ + 1) − We(j
′) ≤ 2nρj ′ · be · log γ .

The cost sum of VNF instances for request admissions when rj arrives thus is

∑

v∈V

Lj∑

l=1

∑

i∈F
(k)
v

W
(k)
v,i (j) =

j−1∑

j ′=1

∑

v∈V

Lj ′
∑

l=1

∑

i∈F
(k)
v

W
(k)
v,i (j

′ + 1) − W
(k)
v,i (j

′) (15)

=
∑

rj ′ ∈A(j)

∑

v∈V

∑Lj ′
l=1

∑

i∈F
(λ(j ′,l))
v

(W
(k)
v,i (j

′ + 1) − W
(k)
v,i (j

′))

≤
∑

rj ′ ∈A(j)
2nρj ′ · log α, by Ineq. (14)

= 2n log α
∑

rj ′ ∈A(j)
ρj ′ = 2n log α · B(j),

where Eq. (15) follows from the fact that if a request is not admitted, none of the
processing capacity of any VNF instance will be consumed.

Similarly, the cost sum of edge servers for request admissions when rj arrives
is
∑

v∈V Wv(j) ≤ 2nLmax log β · |A(j)| · C(fmax), and the cost sum of links for
request admissions when rj arrives is

∑
e∈E We(j) ≤ 2n log γ · B(j). ��

We now provide a lower bound on the weight of a rejected request by
Algorithm Online_Multi but admitted by an optimal offline algorithm
denoted by OPT . Before we proceed, we choose appropriate values for α, β,
and γ prior to the arrival of any request rj and VNF instance k, 1 ≤ k ≤ K as
follows.

2n + 2 ≤ α ≤ min
1≤k≤K

{2
μ(k)

ρj } (16)

2n + 2 ≤ β ≤ min
1≤k≤K

min
v∈V

{2
Cv

C(f (k)) } (17)

2n + 2 ≤ γ ≤ min
e∈E

{2
Be

ρj ·be } (18)
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Lemma 4 Let T(j) be the set of requests that are rejected by Algorithm
Online_Multi but admitted by the optimal offline algorithm OPT prior to the
arrival of request rj . Then, for any request rj ′ ∈ T(j), we have

∑

v∈V

Lj ′
∑

l=1

∑

i∈F
(λ(j ′,l))
v

ω
(λ(j ′,l))
v,i (j ′) +

∑

v∈V

ωv(j
′) +
∑

e∈E

ωe(j
′) > min{σ1, σ2, σ3} = n.

Proof Consider a request rj ′ that is admitted by the optimal offline algorithm OPT

yet rejected by Algorithm Online_Multi. A request r ′
j will be rejected by

Algorithm Online_Multi by one of the four cases: (1) at least one VNF
instance does not have sufficient processing capacity to admit request rj ′ ; (2) there
is no sufficient computation resource in edge servers to create new VNF instances
for request rj ′ as required; (3) there is no sufficient bandwidth in G for routing its
data traffic; or (4) the sum of normalized usage costs is too high, in other words, the
admission control policy is not met.

Case (1) At least one VNF instance i′ of type k′ in edge server v′ does not have
sufficient processing capacity to process data traffic of request rj ′ , i.e.,

μ
(k′)
v′,i′(j

′) < ρj ′ . We then have

∑

v∈V

Lj ′
∑

l=1

∑

i∈F
(λ(j ′,l))
v

ω
(λ(j ′,l))
v,i (j ′) ≥ ω

(k′)
v′,i′(j

′) (19)

= α
1−

μ
(k′)
v′,i′ (j

′)
μ(k′) − 1 > α

1− ρ
j ′

μ(k′) − 1, since μ
(k′)
v′,i′(j

′) < ρj ′

≥ α
1− 1

log α − 1 = α

2
− 1 ≥ n, by Ineq. (16)

Case (2) At least one edge server v′ ∈ V does not have sufficient capacity to
create a new instance for a VNF of type k′ in SFCj ′ as required, i.e.,

Cv′(j ′) < C(f (k′)). Similarly, we have
∑

v∈V ωv(j
′) ≥ ωv′(j ′) ≥ β

2 −
1 ≥ n.

Case (3) If request rj ′ is rejected, then there is an edge e′ ∈ E that does not have
sufficient residual bandwidth to accommodate the request. This implies
that Be′(j ′) < ρj ′ ·be. Therefore, the normalized cost sum of E is greater
than σ3, i.e.,

∑
e∈E ωe(j

′) ≥ ωe′(j ′) ≥ γ
2 − 1 ≥ n.

Case (4) Although there are sufficient resources to admit request rj ′ , rj ′ is rejected
by Algorithm Online_Multi due to not meeting the admission
control policy. That is
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∑

v∈V

Lj ′
∑

l=1

∑

i∈F
(λ(j ′,l))
v

ω
(λ(j ′,l))
v,i (j ′)+

∑

v∈V

ωv(j
′)+
∑

e∈E

ωe(j
′)> min{σ1, σ2, σ3}=n.

(20)

Lemma 4 thus follows.
��

We finally analyze the competitive ratio of Algorithm Online_Multi.

Theorem 3 Given an MEC network G = (V ,E) with a set V of APs in
which each v ∈ V is attached an edge server with computing capacity Cv ,
each link e ∈ E has bandwidth capacity Be, there is an online algorithm,
Algorithm Online_Multi, with competitive ratio of O(log n) for the online

throughput maximization problem, and the algorithm takes O((Lj · |V |) 1
ε |Dj | 2

ε )

time to admit each request rj where n = |V |, Lj = |SFCj |, and ε is a constant
with 0 < ε ≤ 1.

Proof Denote by Dmax and ρmax the maximum cardinality of destination set
Dj ′ and the maximum packet rate of request rj ′ among all requests respectively,
prior to the arrival of request rj , i.e., Dmax = max1≤j ′≤j {Dj ′ }, and ρmax =
max1≤j ′≤j {ρj ′ }. We first analyze the competitive ratio of the proposed online
algorithm. We here abuse the notation OPT to denote the optimal offline algorithm
OPT and the number of requests admitted by it. Let A(j) be the set of admitted
requests when request rj arrives, we have

n

Dε
max

(OPT − |A(j)|) ≤ n

Dε
max

∑

rj ′ ∈T(j)

1 ≤
∑
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n (21)
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rj ′ ∈T(j)

∑

v∈V

Lj ′
∑

l=1

∑

i∈F
(λ(j ′,l))
v

ω
(λ(j ′,l))
v,i (j ′) +

∑

rj ′ ∈T(j)

∑

v∈V

ωv(j
′) +

∑

rj ′ ∈T(j)

∑

e∈E

ωe(j
′)

≤
∑

rj ′ ∈T(j)

∑

v∈V

Lj∑

l=1

∑

i∈F
(λ(j,l))
v

ω
(λ(j,l))
v,i (j) +

∑

rj ′ ∈T(j)

∑

v∈V

ωv(j) +
∑

rj ′ ∈T(j)

∑

e∈E

ωe(j), (22)

=
∑

rj ′ ∈T(j)

∑

v∈V

Lj∑

l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j)

μ(λ(j,l))
+
∑

rj ′ ∈T(j)

∑

v∈V

Wv(j)

Cv

+
∑

rj ′ ∈T(j)

∑

e∈E

We(j)

Be

=
∑

v∈V

Lj∑

l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j)

∑

rj ′ ∈T(j)

1

μ(λ(j,l))
+

∑

v∈V

Wv(j)
∑

rj ′ ∈T(j)

1

Cv

+
∑

e∈E

We(j)
∑

rj ′ ∈T(j)

1

Be

(23)



Algorithms for NFV-Enabled Multicasting in Mobile Edge Computing 263

≤
∑

v∈V

Lj∑

l=1

∑

i∈F
(λ(j,l))
v

W
(λ(j,l))
v,i (j) +

∑

v∈V

Wv(j) +
∑

e∈E

We(j) (24)

≤ 2nB(j) log α + 2nLmaxC(fmax) log β · |A(j)| + 2nB(j) log γ

≤ 2n|A(j)|(ρmax log α + Lmax · C(fmax) log β + ρmax · be log γ
)
.

Ineq. (21) holds since Dmax ≥ 1, and 0 < ε ≤ 1, thus Dε
max ≥ 1. Ineq. (22) holds

since the resource utilization ratio does not decrease and thus the usage cost of each
VNF instance, each edge server, and each link does not decrease with more request
admissions. Ineq. (23) holds because

∑m
i=1
∑n

j=1 Ai · Bj ≤ ∑m
i=1 Ai ·∑n

j=1 Bj ,
for all Ai ≥ 0 and Bj ≥ 0. Ineq. (24) holds because all algorithms, including the
optimal offline algorithm OPT , the accumulated usage of resources in any VNF
instance, edge server and link is no greater than its capacity.

Recall that A(j) is the set of requests admitted by Algorithm Online_Multi,
and T(j) is the set of requests rejected by Algorithm Online_Multi

but accepted by the optimal offline algorithm OPT . We have OPT −|A(j)|
|A(j)| ≤

2Dε
max(ρmax log α + Lmax · C(fmax) log β + ρmax · be log γ ). Thus, we have

OPT

|A(j)| ≤ 2Dε
max(ρmax log α+Lmax ·C(fmax) log β+ρmax ·be log γ )+1 = O(log n)

when α = β = γ = O(n).
��

8 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms for the
admissions of NFV-enabled multicasting requests through experimental simula-
tions.

8.1 Experiment Settings

We consider an MEC network G = (V ,E) consisting of from 10 to 250 APs
(edge servers). All network topologies are generated by the tool GT-ITM [8].
The computing capacity of each edge server is set in the range from 2000 to
5000 MHz [13], while the bandwidth capacity of each link varies from 2000 to
20,000 Mbps [15]. The number of different types of network functions K is set
at 30. The computing resource demand of each network function is set from 300
to 600 MHz randomly, and their processing rate is also randomly drawn from 50
to 100 data packets per millisecond [22]. Recall that the admission cost of an
NFV-enabled multicast request consists of three components: the VNF instance
processing cost, the VNF instance instantiation cost, and the bandwidth usage cost,
where the instantiation cost of a VNF instance in an edge server is randomly drawn
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in the interval [0.50, 2.0], while the processing cost of per packet by a VNF instance
is a random value drawn from [0.01, 0.1] [27]. The routing cost per data packet
along a link is a value drawn randomly from the interval [0.01, 0.1]. To generate
request rj , one AP node in V is randomly selected as its source sj , and a set of
AP nodes in V are randomly chosen as its destination set Dj . The data packet rate
is drawn from 2 to 10 packets per millisecond [17], where each data packet is of
size 64 KB. The length of its service function chain is set from 5 to 20, and each
network function is randomly drawn from the K types. The value in each figure is
the mean of the results out of 30 MEC instances of the same size. The running time
of an algorithm is obtained on a machine with 4.0 GHz Intel i7 Quad-core CPU and
32 GB RAM. Unless otherwise specified, these parameters will be adopted in the
default setting.

In the following, we first evaluate the performance of the proposed approxi-
mation algorithms for the minimum cost problem against four baseline heuristics
Alg_One_Server, CostMinGreedy, ExistingGreedy, and NewGreedy.
Algorithm Alg_One_Server [35] only uses a single edge server to imple-
ment service chain SCk of each NFV-enabled multicast request rk . Algorithm
CostMinGreedy considers network functions in the service function chain one
by one, it always chooses the edge server with the minimum admission cost
(including the processing cost, instance instantiation cost, and routing cost) for the
next network function. Algorithm ExistingGreedy considers network functions
one by one and tries to admit the request by existing VNF instances with the
minimum admission cost as long as there is a VNF instance with sufficient residual
processing capacity, while algorithm NewGreedy always aims to instantiate a new
VNF instance for the request providing sufficient computation resource in an edge
server. We finally evaluate the performance of the proposed online algorithm against
a benchmark OnlineLinear for the online throughput maximization problem,
where for each arrived request, algorithm OnlineLinear first excludes those
VNF instances, edge servers and links that do not have sufficient residual resources
to accommodate the admission of the request from the consideration, it then assigns
a cost to each VNF instance, each edge server, and each link, and constructs an
auxiliary directed acyclic graph for the request. It finally finds a multicast tree rooted
at the source node and spanning all destination nodes for the request.

8.2 Performance Evaluation of Approximation Algorithm for
the Cost Minimization Problem with Consolidated VNFs

We first evaluate the performance of algorithm Appro_Multi against that of
algorithm Alg_One_Server by varying the network size from 50 to 250 and the
ratio of the maximum number Dmax of destinations of each request to the network
size |V | from 0.05 to 0.2. The operational cost and running time curves delivered by
algorithms Appro_Multi and Alg_One_Server are drawn in Fig. 6, where the
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(a) (b) (c)

(d) (e) (f)

Fig. 6 The performance of algorithms Appro_Multi and Alg_One_Server with different
ratios of Dmax/|V |. (a) Operational costs with Dmax/|V | = 0.05. (b) Operational costs with
Dmax/|V | = 0.1. (c) Operational costs with Dmax/|V | = 0.2. (d) Running times with
Dmax/|V | = 0.05. (e) Running times with Dmax/|V | = 0.1. (f) Running times with Dmax/|V | =
0.2

operational costs and running times are the average of admitting 1000 NFV-enabled
multicast requests. Specifically, we can see from Fig. 6a that the operational cost by
algorithm Appro_Multi is around 80% of that of algorithm Alg_One_Server.
The reason is that algorithm Appro_Multi may use multiple edge servers that are
close to the destinations of the request to implement the service chain of the request,
which can significantly reduce the cost of bandwidth resource usage. Furthermore,
it can be seen from the figure that the performance gap between the two algorithms
becomes larger and larger, with the increase on the network size. The rationale
behind is that algorithm Appro_Multi has more chances to select a set of edge
servers that are closer to the destinations of each request, considering that more
edge servers in larger networks are to be chosen. The similar performance behavior
can be observed from Fig. 6b and c. Furthermore, it can be seen from Fig. 6d–f that
approximation algorithm Appro_Multi takes a slightly more time than that of
algorithm Alg_One_Server, as different combinations of edge servers in VS are
to be considered.
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8.3 Performance Evaluation of Algorithms for the Cost
Minimization Problem

We first investigate the performance of Algorithm Appro_Multi_CH against
that of three baseline heuristics CostMinGreedy, ExistingGreedy, and
NewGreedy, for the cost minimization problem of a single NFV-enabled
request admission, by varying the network size from 10 to 250. Figure 7
illustrates the admission cost and running time of the four mentioned algorithms.
From Fig. 7a, we can see that Algorithm Appro_Multi_CH achieves
a much lower admission cost than those three benchmarks. Specifically,
Algorithm Appro_Multi_CH is only 43.1%, 24.0%, and 14.4% of
the admission costs of algorithms NewGreedy, ExistingGreedy, and
CostMinGreedy, respectively, when the network size is 250. The reason behind
is that Algorithm Appro_Multi_CH jointly considers the placement of
VNF instances and data traffic routing for a request admission, it also makes
a smart decision between using an existing VNF instance or creating a new
VNF instance. Figure 7b plots the running time curves of the four comparison
algorithms. It can be seen that algorithm NewGreedy achieves the least running
time, as it gives priority to create new VNF instances in edge servers, while
Algorithm Appro_Multi_CH takes the most running time due to the fact that
it strives for finding a multicast tree with the least cost while passing through VNFs
in its service function chain at the same time.
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Fig. 7 Performance of Algorithm Appro_Multi_CH, CostMinGreedy, Existing
Greedy, and NewGreedy, by varying the network size. (a) The admission cost. (b) The running
time
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Fig. 8 Performance of Algorithm Online_Multi and OnlineLinear by varying the
network size from 10 to 250. (a) The network throughput. (b) The admission cost. (c) The running
time

8.4 Performance Evaluation of the Online Algorithm for the
Throughput Maximization Problem

We now evaluate the performance of Algorithm Online_Multi for the online
throughput maximization problem, by varying the network size from 10 to 250
for a sequence of 10,000 requests. Figure 8 plots the performance curves of
different algorithms, from which we can see that Algorithm Online_Multi
outperforms the baseline algorithm OnlineLinear in all cases, and Algorithm
Online_Multi can admit 38.6% more requests than that by algorithm
OnlineLinear when the network size is 200. Figure 8c shows the running
time of the two comparison algorithms.

9 Conclusion and Future Research Directions

In this chapter, we studied NFV-enabled multicast request admissions in an MEC
network by formulating three novel optimization problems. We first proposed
approximation algorithms with provable approximation ratios for the cost mini-
mization problem of a single NFV-enabled multicast request admission. We then
investigated the online throughput maximization problem where NFV-enabled
multicast requests arrive one by one without the knowledge of future request
arrivals, by devising an online algorithm with a provable competitive ratio for it. We
finally evaluated the performance of the proposed algorithms through experimental
simulations. Simulation results demonstrate that the proposed algorithms are very
promising, and exhibits better performance compared with their counterparts.

Apart from the above studies on secure multicasting in MEC networks, there are
several potential directions in MEC networks built upon this research, which are
listed as follows.

• Security-aware multicasting: Besides of the placement and chaining of vir-
tualized security functions for multicasting, the virtualized security functions
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may expose to various security attacks, such as denial of services (DoS). In the
chaining of VNFs for each multicast request, how to consider the security statuses
of VNF instances and edge servers is a challenging issue. Specifically, a potential
research direction is to jointly place VNFs and find multicast routes for multicast
requests, such that the security, delay, and chaining requirements are met.

• Privacy-aware multicasting: Most security network functions are stateful, by
maintaining states of connection, session or transaction levels. The states of
security network functions are very sensitive and may cause security breaches
if the state data is exposed to attackers. To guarantee the correct operation
of security network functions in the process of multicasting data traffic, a
fundamental problem is how to place VNF instances to edge servers with privacy
guarantees of their status data is another future research direction.

• Security-aware VNF migrations: VNF instances in an MEC environment may
be exposed to various unpredictable attacks. Once such attacks happen, resilient
migrations of the VNF instances of each multicast request is an important
problem. Specific challenges include: (1) how to find secure edge servers for
each multicast request, considering the uncertain arrivals of attacks, and (2) how
to identify low-cost back-up paths for each multicast request to enable fast flow
migrations when security breach happen.

References

1. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE
Internet Things J. 5(1), 450–465 (2018)

2. Alhussein, O., Do, P.T., Li, J., Ye, Q., Shi, W., Zhuang, W., Shen, X., Li, X., Rao, J.: Joint
VNF placement and multicast traffic routing in 5G core networks. In: 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, Piscataway (2018)

3. Ceselli, A., Premoli, M., Secci, S.: Mobile edge cloud network design optimization.
IEEE/ACM Trans. Netw. 25(3), 1818–1831 (2017)

4. Chang, C.S., Zajic, T.: Effective bandwidths of departure processes from queues with time
varying capacities. In: Proceedings of INFOCOM’95 . IEEE, Piscataway (1995)

5. Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation
algorithms for directed Steiner problems. J. Algor. 33(1), 73–91 (1998)

6. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense
network. IEEE J. Sel. Areas Commun. 36(3), 587–597 (2018)

7. Feng, H., Llorca, J., Tulino, A.M., Raz, D., Molish, A.F.: Approximation algorithms for the
NFV service distribution problem. In: IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, Piscataway (2017)

8. GT-ITM (2019). http://www.cc.gatech.edu/projects/gtitm/
9. He, T., Khamfroush, H., Wang, S., La Porta, T., Stein, S.: It’s hard to share: joint service

placement and request scheduling in edge clouds with sharable and non-sharable resources. In:
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS). IEEE,
Piscataway (2018)

10. Jia, M., Liang, W., Xu, Z., Huang, M.: Cloudlet load balancing in wireless metropolitan area
networks. In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, Piscataway (2016)

http://www.cc.gatech.edu/projects/gtitm/


Algorithms for NFV-Enabled Multicasting in Mobile Edge Computing 269

11. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to cloudlet allocation in
wireless metropolitan area networks. IEEE Trans. Cloud Comput. 5(4), 725–737 (2017)

12. Jia, M., Liang, W., Huang, M., Xu, Z., Ma, Y.: Throughput maximization of NFV-enabled
unicasting in software-defined networks. In: GLOBECOM 2017-2017 IEEE Global Commu-
nications Conference. IEEE, Piscataway (2017)

13. Jia, M., Liang, W., Xu, Z.: QoS-aware task offloading in distributed cloudlets with virtual
network function services. In: Proceedings of the 20th ACM International Conference on
Modelling, Analysis and Simulation of Wireless and Mobile Systems . ACM, New York (2017)

14. Jia, M., Liang, W., Huang, M., Xu, Z., Ma, Y.: Routing cost minimization and throughput
maximization of NFV-enabled unicasting in software-defined networks. IEEE Trans. Netw.
Serv. Manag. 15(2), 732–745 (2018)

15. Knight, S.. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29, 1765–1775 (2011)

16. Kou, L., Markowsy, G., Berman, L.: A faster algorithm for Steiner trees. Acta Inform. 15,
141–145 (1981)

17. Li, Y., Phan, L.T.X., Loo, B.T.: Network functions virtualization with soft real-time guarantees.
In: IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications. IEEE, Piscataway (2016)

18. Ma, Y., Liang, W., Xu, Z.: Online revenue maximization in NFV-enabled SDNs. In: 2018 IEEE
International Conference on Communications (ICC). IEEE, Piscataway (2018)

19. Ma, Y., Liang, W., Wu, J.: Online NFV-enabled multicasting in mobile edge cloud networks.
In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
IEEE, Piscataway (2019)

20. Ma, Y., Liang, W., Xu, Z., Guo, S.: Profit maximization for admitting requests with network
function services in distributed clouds. IEEE Trans. Parall. Distrib. Syst. 30(5), 1143–1157
(2019)

21. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.: A survey on mobile edge computing: the
communication perspective. IEEE Commun. Surv. Tutor. 19, 2322–2358 (2017)

22. Martins, J., Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., Huici,
F.: ClickOS and the art of network function virtualization. In: 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14) (2014)

23. Pahlavan, K., Krishnamurthy, P.: Principles of Wireless Access and Localization. Wiley,
Hoboken (2013)

24. Qin, Y., Xia, Q., Xu, Z., Zhou, P., Galis, A., Rana, O.F., Ren, J., Wu, G.: Enabling multicast
slices in edge networks. IEEE Internet Things J. (2020). https://doi.org/10.1109/JIOT.2020.
2991107

25. Rossem, S.V., Tavernier, W., Sonkoly, B., Colle, D., Czentye, J., Pickavet, M., Demeester,
P.: Deploying elastic routing capability in an SDN/NFV-enabled environment. In: 2015 IEEE
Conference on Network Function Virtualization and Software Defined Network (NFV-SDN),
pp. 22–24 (2015)

26. Xia, Q., Liang, W., Xu, W.: Throughput maximization for online request admissions in mobile
cloudlets. In: Proceedings of the 38th Annual IEEE Conference on Local Computer Networks
(LCN’13). IEEE, Piscataway (2013)

27. Xu, Z., Liang, W., Galis, A., Ma, Y.: Throughput maximization and resource optimization in
NFV-enabled networks. In: 2017 IEEE International Conference on Communications (ICC).
IEEE, Piscataway (2017)

28. Xu, Z., Liang, W., Huang, M., Jia, M., Guo, S., Galis, A.: Approximation and online algorithms
for NFV-enabled multicasting in SDNs. In: Proceeding of the 37th International Conference on
Distributed Computing Systems (ICDCS’17). IEEE, Piscataway (2017)

29. Xu, Z., Liang, W., Huang, M., Jia, M., Guo, S., Galis, A.: Efficient NFV-enabled multicasting
in SDNs. IEEE Trans. Commun. 67(3), 2052–2070 (2019)

30. Xu, Z., Liang, W., Jia, M., Huang, M., Mao, G.: Task offloading with network function services
in a mobile edge-cloud network. IEEE Trans. Mobile Comput. 18(11), 2672–2685 (2019)

https://doi.org/10.1109/JIOT.2020.2991107
https://doi.org/10.1109/JIOT.2020.2991107


270 Z. Xu and W. Liang

31. Xu, Z., Zhang, Y., Liang, W., Xia, Q., Rana, O., Galis, A., Wu, G., Zhou, P.: NFV-enabled
multicasting in mobile edge clouds with resource sharing. In: Proceedings of the 48th
International Conference on Parallel Processing. ACM, Berlin (2019)

32. Xu, Z., Gong, W., Xia, Q., Liang, W., Rana, O.F., Wu, G.: NFV-enabled IoT service
provisioning in mobile edge clouds. IEEE Trans. Mobile Comput. (2020). https://doi.org/10.
1109/TMC.2020.2972530

33. Xu, Z., Zhang, Z., Liang, W., Xia, Q., Rana, O.F., Wu, G.: QoS-Aware VNF placement and
service chaining for IoT applications in multi-tier mobile edge networks. ACM Trans. Sensor
Netw. 13(3), Article 23:1–23:27 (2020)

34. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues Proceedings
of the Workshop on Mobile Big Data’15, pp. 37–42. ACM, New York (2015)

35. Zhang, S.Q., Zhang, Q., Bannazadeh, H., Garcia, A.L.: Routing algorithms for network
function virtualization enabled multicast topology on SDN. IEEE Trans. Netw. Serv. Manag.
12(4), 580–594 (2015)

https://doi.org/10.1109/TMC.2020.2972530
https://doi.org/10.1109/TMC.2020.2972530


Blockchain-Based Security Services for
Fog Computing

Arvind W. Kiwelekar, Pramod Patil, Laxman D. Netak, and Sanjay U. Waikar

1 Introduction

Emerging technologies are impacting our lives in two different ways. First, these
technologies are improving our standard of living. For example, Artificial and
Machine Learning are the technologies behind personalized health care, intelligent
transport services, free and open education to all. Second, they are also improving
the quality of service we expect from service providers. Technologies such as the
internet and mobile communication are providing the quality of services which
was unimaginable a few years back. For example, these technologies enable 24 ×
7 banking services, global-market for selling local products, and opportunities to
monetize excess personal resources through aggregated services like Airbnb.

In this chapter, we review the impact of two such emerging technologies
called Blockchain Technology and Fog Computing. Both technologies improve the
standard of living and the quality of services offered to us through the internet.

Diverse domains such as Crowd Surveillance and Public Safety, Geospatial
Data Analysis, Intelligent Transport Service, Smart Grid and Smart Healthcare
have started adopting Fog Computing in recent times. Adoption of Fog Computing
mainly aims to reduce the response time required for accessing critical services like
energy, healthcare and transportation.

Deep penetration of information and communication technologies in our social
life is also raising concerns about the security and privacy of the personal data
collected through them. In recent times, use of Blockchain technology has increased
for protecting personal data so that trustworthy system can be built.
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The chapter contributes by presenting an evaluation of Blockchain Technology
in the context of Fog Computing. We first identify the security requirements for
various application domains of Fog Computing. Then we present a detailed analysis
of the strengths and weaknesses of Blockchain Technology to meet these security
requirements.

Rest of the chapter is organized as below: (1) A brief overview of fog computing
(2) Fog computing use cases and their Security requirements (3) Generic Security
requirements for Fog Applications (4) A Blockchain Primer. (5) Blockchain-based
Security Solutions (6) Conclusion.

2 Fog Computing: Introduction

The Fog Computing (FC) [36] is emerging as a complementary computing paradigm
for Cloud Computing (CC) to meet the computing, storage, and network require-
ments of resource-constrained computing nodes. Smartphones, tablets, the Internet
of Things (IoT), wireless sensors and actuators are some of the examples of
resource-constrained computing devices. Such kinds of devices have limited com-
puting power, small memory, and access to the network through wireless media.
Despite their limited capacity, such types of devices are transforming the nature of
computing from an enterprise phenomenon into a pervasive phenomenon.

In this section, we describe limitations of CC to meet the requirements of
resource-constrained devices followed by a description of distinct characteristics
of the Fog in comparison with the Cloud.

2.1 Limitations of Cloud Computing

The Cloud Computing (CC) is now an established alternative to meet the computing,
storage and networking requirements of enterprises in the presence of the reliable
Internet. The cloud provides computing resources and services to remote machines
on a pay-per-use billing model. Additionally, the CC environment offers flexible
deployment models such as Platform as a Service (PaaS, e.g., Google’s Cloud
Services), Infrastructure as a Service (IaaS, e.g., Amazon’s Elastic Computing
Cloud), and Software as a Service (SaaS, e.g., Salesforce’s Cloud Services). This
flexibility makes CC a cost-effective solution to host resources and services for
enterprise computing needs [13].

The CC paradigm has been found useful especially for enterprise resource
planning [33], customer relations management, e-business owing to its character-
istics such as high scalability, ease-of system administration, and support for rich
programming models.

However, the CC environment falls short to meet various requirements of
resource-constrained devices which include IoT, wearable devices, wireless sensors
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and actuators. Some of these requirements identified in the Reference [31] are
described below.

(i) Latency: Video streaming, gaming, smart factories, and connected vehicles are
some of the application scenarios which use devices like IoT and wireless
sensors. The latency requirements of such applications fall in the range of
microseconds to tens of milliseconds. The average latency experienced by
resource-constrained devices when they are connected to the cloud falls in
the range of hundreds of millisecond. This high latency is undesirable in such
application scenarios.

(ii) Bandwidth: The resource-constrained devices typically access the network
through a wireless medium. At the same time, applications enabled by these
devices such as smart factories produce data at the rate of thousands of gigabyte
per second. The cloud computing environments fall short to meet such high
bandwidth requirements.

(iii) Privacy and Security: In some of the application contexts such as health mon-
itoring and control, devices need to transmit private and personal information
for remote processing. The resource-constrained devices lack the computing
power to execute complex encryption algorithms needed to secure data when it
is transmitted over the public Internet as in the case of cloud computing. Hence,
securing such information becomes a challenge when resource-constrained
devices are connected to the cloud.

(iv) Context Awareness: In application scenarios such as connected vehicles,
Intelligent Transport Systems(ITS) need to transfer context information. For
example, information about traffic conditions, weather information, location
and information. When resource-constrained devices are connected to a distant
cloud data centre, transmitting such local information has little temporal and
spatial relevance.

2.2 Distinct Features of Fog Computing

From the functional point of view, Cloud Computing and Fog Computing are
similar phenomena which provide computing, networking and storage resources to
remote machines. Both environments include resource-rich devices such as high-end
servers accessed through either public or private networks. Although the business
model for the FC is currently evolving, similar to CC, the business model of the
FC in future may be centred around pay-per-use billing mechanisms and hosting of
resources by a third party.

In terms of software engineering terminology, Fog computing and Cloud comput-
ing differ regarding non-functional requirements. It includes Performance require-
ments, Reliability requirements, Deployment models and Security requirement.
These requirements are also known as operational requirements. Table 1 shows a
comparison of Edge, Fog and Cloud Requirement [40].
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Table 1 A comparison of edge, fog and cloud computing [40]

Feature Edge computing Fog computing Cloud computing

Latency Low Medium High

Bandwidth Low Medium High

Compute capacity Low Medium High

Reliable compute Low Medium High

Reliable connectivity Low Medium High

Data longevity Low Medium High

Hence, to handle these non-functional requirements emanating from the requests
of edge devices, a new computing paradigm has emerged in recent times called
Fog Computing. The Fog Computing which has introduced a new application
management layer in the middle between cloud and edge devices referred to as a
Fog layer. The Fog layer extends the cloud management services and brings them
nearer to the network.

Fog and Cloud mainly differ in terms of latency. The latency to transfer data from
a Fog to edge devices is lower than when data transfer occurs from an edge device
to a Cloud. This lower latency is because of edge devices are a one-hop topological
distance from fog servers. Also, the network bandwidth between edge devices and
the Fog is much higher through a wireless link than between edge devices and the
Cloud.

Additionally, the Fog stores the data transferred from edge devices for a shorter
period; the Fog periodically pushes the data to the Cloud for archival purposes.

Mobility is another distinct non-functional parameter in which Cloud and Fog
Computing differ. The servers and computing nodes hosting cloud management
services are centralized one. When they are geographically distributed, often
the computing nodes reside in an office premise and not mobile. Unlike this
configuration, a Fog may host computing nodes and services in mobile vehicles.
Also, the number of requests that a Fog may have to handle from mobile clients are
enormous.

Additionally, it is also essential to know the differences between Fog Com-
puting and Edge Computing. Although, the differences between fog and edge
computing are blurred one, we discuss here some of them. An Edge Computing
node supports the computing requirement of edge devices which include wire-
less sensors and actuators. Edge computing nodes are directly interfaced with
edge devices. An edge computing node communicates with edge devices through
conventional communication mode such as pooling and interrupts in contrast to
client-server communication used in Fog Computing. The edge computing node
supports hardware-enabled security, unlike application-level security provided in
Fog Computing. Further, the Edge Computing nodes typically use flash storage
devices, unlike spinning storage disks used in Fog Computing.
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3 Fog Computing Use Cases and Their Security
Requirements

Many application domains such as listed in Table 2 have started adopting Fogs over
Clouds to meet their computation, storage and networking requirements. For these
application domains, Fog platforms meet their requirements of low-latency, high
bandwidth and context-awareness. At the same time, these application domains have
stringent security requirements. A brief description of the security requirements
specific to these domains follows.

1. Urban Surveillance and Public Safety Low-cost surveillance technologies such
as CCTVs and sensors enable to collect and monitor data about people living in
urban areas. For example, law enforcement agencies can track the movement
of suspicious people in designated sensitive areas to prevent any public damage
and crimes. The collected data is location-specific and relevant to take timely
decisions. Hence the fog computing paradigm is an appropriate alternative for
storage and analysis purposes.
Though the data is collected to provide public-safety, it is susceptible for
misuse either by the fog service providers or edge operators who transmit
the surveillance data. One of the frequently cited threats includes a Fog node
operator may share the collected information about the movement of a person to
a third party without informing the concerned person. Another example of threat
includes denial of service attacks through flooding the network by malicious edge
operators. At the same time, such systems are giving rise to a panoptic system
which continuously monitors citizens.

2. Smart Power Grid In the energy sector, the increased thrust upon the adoption
of renewable energy sources (e.g., solar, wind) has changed the relationship
between energy generators and consumers. The conventional energy systems are

Table 2 Security requirements for Fog computing use-cases

Sr. Application domains Security requirements

1 Urban surveillance and public
safety

Privacy and autonomy [12], Panoptic systems [39,
41]

2 Smart power grid Denial of service attacks [7], integrity attacks [25],
Malware attacks, power thefts, billing manipulations
[4]

3 Geospatial data analysis
(UAV)

Secured communication [15, 17], man in the middle
attack, privacy [32]

4 Intelligent transportation
systems (ITS) and connected
vehicles

Authentication, availability, non-repudiation,
integrity [37], denial of service, sybil, black-hole
attack [34]

5 Smart healthcare Data confidentiality, data authentication, data
integrity, availability for wireless body network [35]

6 Industry 4.0 Enterprise cyber-espionage, denial of service attacks,
and phishing attacks [30]
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mostly fuel or coal-based, centralized, and information flows from the generator
to the consumer. The modern energy sector is increasingly using renewable
energy sources, a large number of energy distributors are dispersed along a wide
geographical area, and the information flows in both the direction. The network
of energy generators, distributors and consumers called smart grid [22] is formed
through the use of information and communication technologies, sensors, and
actuators to effectively operate the energy grid.
To effectively operationalize smart grids, Fog computing has emerged as a
preferred distributed paradigm in comparison with cloud computing in recent
times [28]. The guaranteed response time, a large number of decentralized grid
operators and stringent privacy requirements from the consumer point of view
are some of the factors behind the preference of fog computing over cloud
computing.
The security requirements in Smart grid arise from the domain-specific concerns
such as assuring the integrity of the data communicated between grid operators
and consumers [7]. This data includes valuable information such as billing
information, and, energy usage patterns of consumers. Further, a malicious smart
meter can overload the network to disrupt and deny services to authorized
customers from accessing the services provided by a Fog service provider.

3. Geospatial Data Analysis: Low-cost technologies such as Unmanned Aerial
Vehicles (UAV), Radio Frequency Identifiers (RFID) and GPS enabled devices
are producing a large amount of geospatial data [18]. Geographic Information
Systems (GIS) manage and analyze such geospatial data to support urban
planning, agriculture and environment monitoring.
The requirements for reduced storage space, reduced transmission power,
reduced latency and increased throughput are driving software engineers to
adopt the Fog computing paradigm to build GIS applications [5].
The geospatial data need to be protected from different types of security attacks
to ensure regional security and privacy of persons who share the data. The
commonly employed techniques are trust management in GIS service provider,
data integrity checks, and authentication of GIS users [6].

4. Intelligent Transportation Systems (ITS) and Connected Vehicles The Intelli-
gent Transport System (ITS) refers to the use of Information and Communication
Technologies (ICT) for improving the efficiency and effectiveness of transport
services. Some of the technologies that form the backbone of ITS are Wireless
Sensors and actuators, Cloud Computing, and GPS controlled vehicles [29].
The Connected Vehicle (CV) is another related concept that is enabling the
evolution of the next generation of ITS and Internet of Vehicles(IoV). The
connected vehicle refers to using wireless technologies for communicating with
other vehicles and the infrastructure offering transport services[23].
The ITS and Connected Vehicle have started utilizing the advantages of Fog
Computing such as scalability, low latency, and context awareness to improve
the Quality of Services. The use of Fog Computing for ITS reduces the average
trip time, CO2 emissions and fuel consumption [8].
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Jin Cui et al. identify and catalogue various kinds of security attacks for which
autonomous vehicles and ITS need to protect. These include authentication,
availability, data integrity, confidentiality and privacy[9].

5. Smart Healthcare To make healthcare more personalized and precise, medical
systems have started adopting technologies such as wearable health monitoring
devices, IoT, big data analysis, and Artificial Intelligence. Such health care
systems, referred to as smart healthcare systems, have to address computational
and security challenges.
In the context of smart healthcare, the Fog-based platforms tackle the computa-
tional challenges by bringing resources closer to the patients, reducing response
time and by providing energy-efficient data processing[1].
Preserving the privacy of the patient’s data and making health care services
available round the clock are some of the security challenges that need to be
addressed effectively [35].

6. Industry 4.0 The combination of ICT, IoT and intelligent systems have revolu-
tionized manufacturing and production systems in recent times. This industrial
revolution is named as Industry 4.0 [19]. Industry 4.0 has brought a transfor-
mation into the nature of manufacturing units from the automated one to an
autonomous one.
The Fog Computing is a technology that is leading this 4th industrial revolution
because of its inherent strengths such as low latency rate [27], low power
consumption and proximity to wireless sensors and actuators which monitor and
control various production processes.
Some of the common security attacks observed in smart manufacturing systems
are: (1) the leakage of critical production information, and (2) withholding
access to a manufacturing unit. These security threats intend either to disrupt
the production process or the production schedule [30].

4 Generic Security Requirements for Fog Applications

The previous section briefly surveys security requirements for various use cases
of Fog Computing. Some of the security requirements are common across more
than one application domains. For example, protecting end users from the denial
of service attacks is a requirement of ITS, Industry 4.0, and other domains. This
section identifies and explains such generic requirements common across various
Fog applications.

1. Authentication Authentication is the primary service in distributed and net-
worked environment. The purpose of authentication is to verify and validate the
identity of end users. An end user may be a person or a device or an application
who would like to access a service. The task of authenticating is a primitive
operation because it ensures that only legitimate users can enter the network.
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Some of the mechanisms that are commonly used for authenticating users in
cloud computing are: passwords, hard/soft tokens, device identification, bio-
metric identification or a combination of these techniques [43].
While devising effective authentication services for Fog Computing constraints
such as resource limitations of edge devices, high mobility of fog nodes and edge
devices, network heterogeneity and availability of wired wireless communication
need to be considered [43].

2. Secured Communication Assuming a fool-proof underlying secure communi-
cation channel leads to many security attacks such as eavesdropping, spoofing,
and information leakage at application level. Hence, Cloud as well as Fog
applications need to protect the integrity of application data by providing a
secured communication channel on top of underlying un-secured medium.
Two types of communications are observed in Fog networks. First, a communi-
cation between edge devices and fog nodes. This communication can be secured
through symmetric key cryptography. Maintaining an public key infrastructure
and reducing message overhead are some of the challenges that need to be
addressed considering resource constraints of Fog networks.
Second, providing end-to-end security in the presence of multiple hops in a
fog network and mobility of fog nodes are some of the challenges that need to
considered while securing communication among fog nodes.

3. Availability One of the critical requirements that is common across the domains
is that the services offered as Fog services need to be made available round
the clock. Malicious users adopt techniques such as flooding the network with
illegal packets or re-routing network traffic to a wrong destinations for denying
requested services to legitimate users. Promptly detecting and protecting against
such threats can save lives in Health and IIS domains.

4. Privacy Most of the Fog applications track personal information to provide
personalized services. Few examples follow. First, systems like ITS and urban
surveillance monitor mobility patterns of citizens which have personal value.
Second, in case of smart grids, energy usage patterns are tracked and monitored
by grid operators. Third, smart healthcare systems store personal and medical
history of patients. Privacy is at stake when service providers use such critical
personal information for monetary gains or for competitive advantage without the
consent of service users. Designing fog layer which protects unintended usage of
such personal information is a challenge.

5. Trust Management Trust in network-centric systems is a bidirectional phe-
nomenon. Service providers need to earn the trust of service users by providing
timely and secure responses. Also, service users need to demonstrate to service
providers that they are the legitimate and non-malicious users. Such bidirectional
trust is built through a series of interactions among service providers and users.
Quantifying reputations of service providers, opinions of service users and
service level agreements are some of the techniques used in case of cloud-based
service providers.
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Dynamic nature of fog nodes i.e. a fog node leaves and joins network dynam-
ically and mobility of edge devices are some of the factors which need to be
considered while implementing a trust management system at Fog layer.

The emerging blockchain technology has potential to address these security
concerns in the context of Fog Computing. Before discussing blockchain-based
solutions, we are briefly reviewing the essential elements of blockchain technology
follows.

5 A Blockchain Primer

The necessity of blockchain technology can be understood by evaluating potential
and pitfalls of the Internet as a platform for business.

The Internet has introduced an information-centric model of business, and it has
revolutionized the way people transact online. For example, the emergence of e-
commerce sites (e.g., Amazon) has been attributed to the growth and widespread
presence Internet.

The Internet has bridged the information gap that exists between a service
provider and service consumer by creating a third-party for information exchange
called intermediaries or agents or service providers. These agents which are e-
commerce sites, hold the information about who sells what, i.e. seller’s information
and who wants what, i.e. buyers profile and their needs thus bringing together
consumers of services or goods with that of producers.

Some of the advantages of doing business online include the process of business
transactions is simplified, and the time required for businesses is reduced.

Despite the various benefits of the Internet, it has always remained an unreliable
platform to share valuable personal information because of its mediator-centric
model for information exchange. A server or mediator may be a payment gateway
or an e-commerce site. The information shared with such sites is always susceptible
to breach of security and privacy attacks.

The emerging blockchain technology removes these pitfalls by laying a trust
layer on top of the existing Internet technology. It replaces the mediator-centric
model of information exchange with the peer-to-peer model or decentralized model.
It transforms the Internet into a trustworthy platform for doing business when
transacting parties do not trust each other. It eliminates the role of mediator
responsible for authenticating the identities of transacting parties. Initially emerged
as a platform to exchange digital currency over the Internet, now the blockchain
technology is gradually emerging as a general-purpose platform for sharing and
protecting information.

The four fundamental concepts common across the blockchain implementation
are [10]: (1) Distributed Ledger, (2) Cryptography, (3) Consensus Protocols, and (4)
Smart Contracts
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Fig. 1 Blockchain

5.1 Distributed Ledger

In a conventional sense, ledgers are the registers or logbooks employed for account-
keeping or book-keeping operations. Similarly, in the context of a blockchain-based
information system, ledgers are the databases storing up-to-date information about
business transactions. These are distributed among all the nodes participating in the
network. So multiple copies of a ledger exist in a business network. When a node
in a network updates its local copy, all other nodes synchronize their copy with the
updated one. Hence, each copy is consistent with each other.

These ledgers are used to store information about valuable assets. In the Bitcoin
implementation, the first blockchain-based system, ledgers are used to store digital
currencies. It may be used to store information about other valuable assets such as
land records, diamonds, student’s academic credentials and others.

In a blockchain-based information system, records in a distributed ledgers are
arranged in a chain-format, as shown in Fig. 1 for storage purpose. Here, multiple
transactions related to an asset are grouped in a block. The (n + 1)th block in the
chain links to the nth block and the nth block links to the (n − 1)th block and so
on. Due to this peculiar storage arrangement, the distributed ledgers are also known
as Blockchain. The blockchain data structure permits only append of new records.
Updating and deletion of records are not permissible.

The most critical design feature of blockchain-based information system is the
use of hash pointers instead of physical memory based pointers to link blocks in a
chain. A hash pointer is a message digest calculated from the information content
of a block. Whenever a node attempts to tamper the information content, a small
change in the information leads to a ripple effect of changes in hash-pointers making
it impossible to change the information once it has been recorded in the blockchain.

Facilitating mediator-less business transactions and supporting immutability
of stored information are the two significant quality attributes associated with
blockchain-based information systems. These quality attributes are derived from
replicating ledgers on all the nodes in a network and linking blocks in a chain
through hash pointers.
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5.2 Cryptography

Blockchain technology makes heavy use of cryptographic functions to assure trust
among the users transacting over a blockchain-based business network. A typical
business network includes many un-trustworthy elements. These cryptographic
functions address various purposes. Some of them are:

(1) Authenticating the identity of agents involved in a business transaction:
Blockchain-based systems use a kind of asymmetric key cryptography. These
protocols use two different keys called public and private keys. The public
keys are open and used as addresses for performing business transactions
while private keys are secret and used for validating the transactions. SHA-256
(e.g., Bitcoin) and ECDSA (e.g., Hyperledger) are some of the cryptographic
protocols used for this purpose. Cryptographic functions such as digital
signature are also used to authenticate a particular transaction.

(2) Ensuring Privacy: The blockchain technology adopts various mechanisms to
preserve the privacy of a transaction. Below we discuss these mechanisms and
their intentions behind the design.

1. Decentralised Privacy. The blockchain technology adopts decentralization as
one of the guiding design principles. It eliminates the role of mediator to
store transaction information at a central place. The transaction information is
distributed throughout a business network. Thus the threat of a mediator sharing
the transaction information with a third party is eliminated.

2. Use of Asymmetric Cryptography. The blockchain technology uses asymmetric
key cryptography to protect the identity of transaction owners and to authen-
ticate a transaction. Transactions are delinked from the real-world identity of
transaction owners. The transaction owners are identified through using public
keys which an owner can generate multiple times. In this way, transactions are
pseudo-anonymous. The private keys are used to authenticate a transaction.

3. Additional Mechanism for Anonymity: In the majority of blockchains implemen-
tations, transaction owners are identified through pseudo-anonymous identity.
To provide full anonymity, additional mechanisms such are mixing transaction
information, and a cryptographic technique called Zero-Knowledge proof can
be used. In zero-knowledge proof, is a verification technique which assures the
validity of information without disclosing additional information.

5.3 Consensus Protocols

In decentralized systems, agreeing upon the global state of the transaction is a
challenge. In a centralized system, this is not an issue because only one copy
of transaction history is present at the central authority (e.g., Banks main Server
machine). Blockchain being a decentralized system, holds multiple replicas of
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Table 3 Comparison of consensus algorithms [42]

Sr. No. Consensus algorithm Tolerated power of adversary Throughput

Public blockchain

1 PoW 50% Low

2 PoS 50% Good

Private blockchain

1 Paxos/Raft 50% Good

Consortium blockchain

1 PBFT 33% Low

transactions at several nodes. Agreeing upon the unique state of the transaction is
an issue which is solved by executing a consensus process involving all the nodes in
the system. This process is typically carried out in three stages. In the first phase, a
node is elected/selected as a leader node to decide upon a unique state. In the second
stage, transactions are validated. In the third stage, transactions are committed. A
variety of consensus algorithms exists in blockchain-based system. These are often
compared based upon how scalable the algorithm is and several malicious nodes it
tolerates. The Proof-of-Work (PoW) algorithm used in Bitcoin is one example of the
consensus protocol. It selects the leader node responsible for deciding upon a global
state by solving a cryptographic puzzle. It takes about 10 min for solving the puzzle
requiring extensive computational work and much electric energy. It can work in the
presence of 50% of malicious nodes in the network.

The Proof-of-Stake (PoS) is another consensus protocol in which a leader is
selected with the highest stakes in the network. It has been found as scalable as
compared to PoW, and it also works in the presence of 50% of malicious nodes in
the network.

The Practical Byzantine Fault Tolerant (PBFT) is the third example of consensus
protocol which has been found scalable and works in the presence of 33% (1/3)
malicious nodes in the network.

Table 3 compares various consensus protocols used in private, public, and
consortium blockchain.

5.4 Smart-Contracts

Smart-contracts are the most significant element in the blockchain-based system
because it provides configuring the behaviour of such systems. Blockchain pro-
grammers can customize the working of blockchain systems by writing programs
called Smart-Contract. The smart contracts are scripts which are executed when a
specific event occurs in a system. For example, in the context of Bitcoin, a coin may
be released when more than one signatures are validated, or when miners solve a
cryptographic puzzle.



Blockchain-Based Security Services for Fog Computing 283

These scripts can be written in a native language provided by blockchain systems
or general-purpose programmable language. For example, Bitcoin provides a simple
and less expressive native language to write a smart contract while Ethereum
provides a Turing complete native language called Solidity to write smart contracts.
In Hyperledger, blockchain programmers can write a smart contract in a general-
purpose language such as Java/Go.

6 Blockchain Based Security Solutions

This section describes blockchain-based approaches used to provide the solutions
for the generic security requirements identified in Sect. 4 in context of fog or cloud
computing.

6.1 Blockchain Based Authentication

In a networked system such as cloud and fog environment, two modes of authentica-
tions exist. These are centralized authentication, and decentralized authentication.
For example, OAuth 2.0 is a centralized authentication protocol. In such protocols,
a centralized authentication server verifies the credentials submitted by a client, and
it authorizes to access the third party the requested services when it successfully
validates the client. Majority of cloud service providers adopt this mode of
authentication. Authentication services from Google, Facebook, and Twitter act as
authentication servers with the login id and password on these platforms play the
role of the client’s credentials. Such kind of centralized authentication servers suffer
from a single point of failure, and it also invades the privacy of clients [3].

Decentralized authentication protocols overcome the limitations of a centralized
scheme. Pretty Good Privacy (PGP) and Web of Trust (WoT) are some of the
examples of decentralized protocols. Blockchain technology is a platform support-
ing decentralized application development. Hence, it facilitates the development of
decentralized authentication services. This section reviews some of the techniques
that use blockchain technology for authentication purpose.

Fog systems or IoT use blockchain technology to implement in many ways. In the
first kind of implementation, Fog nodes authenticate a client or edge device through
a smart-contract running on the fog nodes. The smart-contract stores a mapping of
edge devices and authorized users along with their credentials. Upon the receipt of
an authentication request, the smart contract running on any of the Fog nodes can
validate the submitted credentials [3].

In the second kind of blockchain-based authentication protocol, the system
makes use of distributed ledgers for storing credential information and authorized
device mapping. Typically the credential information includes asymmetric key
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cryptography or digital signatures. Any fog node running blockchain instance
known as miners can authenticate a request to access the desired service [26].

In the third kind blockchain-based variant, edge devices are grouped into a cluster
called bubbles of trust. The edge devices can send/receive messages within the
bubbles- of- trust. A master node administers each bubble-of-trust. A request for
send or receive is a transaction to be recorded in the blockchain. The master node
validates a send/receive request similar to the case of a certification authority [14].

The blockchain-based authentication mechanisms have been evaluated for vari-
ous kinds of security threats, and they are found robust for denial of service attacks.
Also, these protocols have been scalable as compared to centralized ones[3, 14, 26].

6.2 Blockchain Based Secured Communication

The Fog/Cloud systems which adopt blockchain technology to implement authen-
tication services also use the same for secured communication. As discussed in
Sect. 5.2, the blockchain technology uses cryptography algorithms to communicate
between nodes and to store data in distributed ledgers.

As seen earlier in Sect. 4, two kinds of communication need to secure: (1) from
an edge device to a fog node and, (2) between one fog node to another fog node.
Typically blockchain is implemented as a fog service running on fog nodes.

The communication between edge devices and fog nodes (i.e. blockchain service)
is secured by assigning a public address. In the case of Ethereum, an edge device
is identified through a 20-byte address. This address can be leveraged to establish
an SSL session between an edge device and a fog node [3]. By default, all the
communications between fog-nodes use asymmetric-key cryptography.

The blockchain system adopting secured communication have been found
resilient to attacks such as man-in-the middle and replay attacks. Thus ensuring
data confidentiality, data integrity and communication integrity.

6.3 Blockchain Based Availability

Distributed ledgers and smart contracts are the two storage and computational
elements in a blockchain-based system. Multiple copies of these elements exist
throughout the blockchain network. Consensus protocols maintain a consistent
global state of storage and computational elements. Because of these inherent design
properties, blockchain-based fog services are resilient to a single-point failure.
Hence, they are fault-tolerant, thus reducing down-time.

Denial of service attacks is another means to disrupt the functioning of fog
services. A blockchain-based system can adopt hierarchical mechanisms to defend
itself from such an attack. One such mechanism is implemented in [11]. At the
device level, blockchain miners protect the edge devices against deploying malware
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on edge devices by malicious users. Because all miners authorise and validate an
access to edge devices. At the network level, it is the responsibility of blockchain
to validate each communication emanating from edge devices and among the fog
nodes. Further, as explained in [14], a blockchain-based system can dynamically
form bubbles-of-trust to limit send/receive operations with a group of trusted edge
devices or to isolate a malicious node/device.

6.4 Blockchain Based Privacy

Cloud/Fog service developers who adopt client-server model for interaction have
a limited set of primitives (e.g., storing personal information in the encrypted
format) at their disposal to protect the privacy of the personal information shared
by their users. Unlike this, blockchain, is a peer-to-peer system, provides a range
of mechanisms to protect the privacy of personal data. Below, we explain some of
these primitives.

1. Pseudo-anonymity Blockchain-based system facilitates de-linking of user’s real-
life identity from its system identity. A user can use as many public keys as
s/he wishes to perform an interaction. Also, s/he can use a hash of some of its
real-time identity for performing an interaction. The approach, explained in [2],
adopts this technique to protect health records of patients.

2. Data Ownership In blockchain-based system, it is possible to own and control
access to the personal data by the concerned user[44]. Unlike centralized
systems, data is owned and controlled by service providers.

3. Fine-grained Authorization Data access can be authorized at multiple levels (e.g.
file, record, field) by data owners. Also, one-time data access in contrast to
perpetual data access is possible to grant [44].

4. Encrypted Storage Data is always stored in an encrypted format. Data owner’s
public and private keys are required to decrypt the data.

5. Data Transparency Data owner is aware of what kind of data about him is
collected, and it’s intended use.

6. Incentives for maintaining Privacy The Reference [20] explains an application of
blockchain which forwards safety-critical information (e.g., news of an accident)
in a transport system without disclosing the identity of the forwarder. System
rewards such good behaviour through incentives in the form of a coin which
adds to their reputation.

7. Data Provenance It refers to maintaining metadata about the creation and
each access operation performed on the data. Such kind of metadata is useful
for accountability and forensics purposes, which also increases data privacy.
The Reference [21] describes an application blockchain technology for data
provenance.
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6.5 Blockchain Based Trust Management

Computing trust is a challenging task. Blockchain technology provides various
mechanisms to handle it. This section reviews some of the blockchain-based
approaches to computing trust in decentralized systems.

First computational challenges arise from its subjectivity. Trust is subjective. To
handle the subjectivity, trust is either computed for an entity or for the delivered
data or in a combined way. For example in case of a vehicular ad-hoc network, the
trustworthiness of a vehicle needs to be defined or trustworthiness of a received
message such as a notification about road accident, or trustworthiness of both
message as well as who sent it. In Reference [24], the blockchain-based anonymous
reputation system is explained which computes trustworthiness of a sender and the
received message. Historical interactions and indirect opinions of other participating
nodes are used to calculate the trustworthiness of a message and a sender.

The second computational challenge arise from the fact that trust changes
over the period of time. To address this challenge a blockchain-based solution is
developed in Reference [26]. The approach calculates the trustworthiness of a node,
in the context of wireless sensor networks. The reputation of a node is calculated
based on how it responds to an event. A reputation factor is associated to every
event. To make it relevant with respect to time, reputation factor is a continuously
decreasing function. The immutability feature of the blockchain plays a role to
assign a reputation factor to nodes based on its historic interaction.

The third computational challenge is to develop a trust model which is generic
in the sense that computational process is applicable to multiple domains. This
challenge is addressed in Reference [16] which provides a blockchain-based
solution by identifying diverse attributes for calculating trust. These attributes
includes: reputation, context, environment, goals, expectations, social relationships,
willingness and timeliness of evaluation. The approach further demonstrates the
applicability of the model in the domain of Social Internet of Vehicle (SIoV). It
further states that the emerging technologies such as blockchain and fog computing
are appropriate for providing scalable solution for managing trust in the dynamic
environment such as (SIoV).

7 A Performance Analysis of Blockchain and Fog Computing
Integration

The blockchain computing, particularly public blockchains such as Bitcoin, is
known for its high energy consumption and low throughput. In this context, the
use of blockchain technology in a resource-constrained environment such as Fog
and Edge Computing is questionable. In this section, we discuss the performance
analysis of implementing blockchain as a fog service.
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As seen from Table 2, the security requirements for the majority of the Fog
Computing use cases are of the type to authenticate users, to ensure the privacy
of data, to check the integrity of data, and to provide secured communication.

For the well-known use cases of Blockchain technology such as in the financial
sector, asset management and supply-chain management, the additional security
requirements are to maintain consistency of data in a decentralized network, the
provenance of data and seamless execution of business processes. To realize all such
security requirements, the elements of blockchain technology, such as consensus
protocol and smart contract, in addition to distributed ledger and cryptography,
are necessary to implement. In such contexts, the computation demand and energy
consumption are typically high.

But, a lightweight blockchain implementation that includes minimal elements of
blockchain technology such as distributed ledger and cryptography can meet the
majority of the security requirements of the Fog Computing use cases.

Further, such a lightweight implementation supports different configurable
deployment options. For example, a blockchain service can be deployed with (e.g.,
Cloud+Fog deployment) or without Cloud (e.g., Fog only deployment model). Such
a lightweight implementation additionally shall realize the tasks of encrypting and
decrypting data in the hardware with a secured wireless protocol (e.g., Zigbee) to
achieve secured communication.

Performance of one such lightweight implementation has been reported in [38].
It demonstrates the use of Blockchain technology in Fog computing context for
the smart-healthcare use case. It observes that the energy consumption and latency
requirement is acceptable for the health care use case even when blockchain service
is implemented in the Cloud+Fog integration environment.

However, the performance of Blockchain and Fog Computing integration with
various tuning parameters needs to be evaluated in other application domains of
IoT.

8 Conclusion

Identifying security requirements for an emerging computing platform is a challeng-
ing task. In this chapter, we address this challenge in the context of Fog Computing.
The emerging paradigm of Fog computing assures to deliver reduced latency time,
better throughput and increased scalability to many applications designed around
resource-constrained edge devices.

Due to this assured performance, Fog Computing is increasingly preferred over
Cloud Computing platform in various safety-critical application domains. Few
examples of such application domains include Urban Surveillance and Public
Safety, Smart Grid, Geospatial Data Analysis, Intelligent Transport Systems, Smart
Health care, and Industry 4.0.

All these domains have stringent security requirements. Hence a trustworthy
platform is required to process information in these domains. Despite the blockchain
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technology’s numerous drawbacks such as high energy consumption, an evolving
ecosystem of developers, and legal constraints in the deployment of blockchain-
based solutions; software developers prefer to adopt the blockchain technology as a
robust platform to meet many security requirements.

The chapter describes blockchain-based solutions for authentication, secured
communication, availability privacy, trust management in the context of fog com-
puting. It assumes that the blockchain as a service is available either at the layer
of Cloud or Fog. Such deployments of blockchain-based solutions have been found
scalable and robust to many known security attacks.
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Industrial Internet of Things (IIoT)
Applications of Edge and Fog
Computing: A Review and Future
Directions

G. S. S. Chalapathi, Vinay Chamola, Aabhaas Vaish, and Rajkumar Buyya

1 Introduction

The Internet of Things (IoT) [1] refers to a system of smart devices that are
connected through the Internet. The basic structure of IoT systems involves the use
of a large number of smart devices that can acquire, process, transmit, and receive
data between one another. IoT devices thereby enable us to reliably monitor and
precisely control any environment, control system, or device through this system
of interconnected smart devices. With forecasts predicting an estimated 28.5 billion
network-connected devices to become active by 2022 [2], the IoT technology is
poised to make a total economic impact between $3.9 trillion and $11.1 trillion
per year in 2025 [3]. While most of the IoT systems developed until now have
been consumer-centric, the disruptive nature of this technology has enabled the
adoption of this technology in a gamut of industrial settings thus leading to the
development of Industrial Internet of Things (IIoT) technology [4]. IIoT technol-
ogy, in essence, refers to a system of interconnected smart devices in an industrial
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setting. IIoT connects industrial resources including sensors, actuators, controllers,
machines with each other as well as intelligent control systems. These intelligent
control systems analyse the acquired data and optimize the ongoing industrial
processes to improve execution speed, reduce involved costs, and dynamically
control the industrial environment [4].

One of the most important reasons behind the meteoric rise of IIoT systems
in various industries is that IIoT systems can lead to a significant improvement
in efficiency, throughput, and response time of operations inside these industries
[5]. IIoT has already revolutionized companies in many major industries across the
globe, including the mining industry where IIoT systems have led to the installation
of wireless access points in mining tunnels, and RFID tracking technology has
helped companies in tracking vehicles leading to an increase in production levels
by 400% [6]. Proposed IIoT systems in agricultural settings can help farmers in
nutrient monitoring as well as automated irrigation to improve crop yield [7]. The
medical industry can also benefit from the capabilities of Industrial IoT systems
where emergency services can access data from patients, ambulances, and doctors to
help all stakeholders in making informed decisions and improve resource utilization
[8]. Pilot projects in China have successfully implemented an NB-IoT (Narrow
Band IoT) system for smart electrical meters which allows real-time collection of
power consumption data thereby enabling the energy grid officials to improve the
electricity supply strategy in any area [9]. Similarly, NB-IoT smart parking systems
have been deployed in cities to help drivers easily find parking spaces. Further,
integration of this parking system with payment solutions has led to automated
transaction authorization for parking payment which has subsequently improved
utilization of parking bays [10]. The railway industry can also leverage the power
of IIoT solutions to improve the functioning of surveillance systems, signaling
systems, predictive maintenance, and passenger or freight information systems to
improve services and safety [11]. Supply Chain Management (SCM) can also
benefit by adopting IIoT based systems which will directly enhance tracking and
traceability while also aiding in the optimization of shipment routes based on rapidly
changing customer requirements [12]. While the IIoT shows immense potential as a
transformative technology, it is important to know the critical requirements that must
be validated and verified in the design of IIoT systems to maximize the efficiency
and performance of these systems [13, 14]. These requirements arise from the
challenges often faced by Cyber-Physical Systems (CPS). The requirements of IIoT
systems include Scalability, Fault Tolerance or Reliability, Data Security, Service
Security, Functional Security, and Data Production and Consumption Proximity
(Fig. 1).

With the rise in computational power being offered by computing systems in
general in recent years, the focus of most industries has shifted towards garnering
practical and useful patterns from their data which has been aided by the rapid
development in statistical analysis and learning-based algorithms. Today, industries
that are making use of IIoT solutions want to utilize the massive amount of
data being generated to collect useful insights which can help in the reduction
of unplanned downtimes, improve the efficiency of production, lower energy
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Fig. 1 Edge, fog, and cloud tiers

consumption, etc. However, to process such massive amounts of data, IIoT systems
generally require cloud computing services which often experience large round-trip
delays and poor Quality of Service (QoS) as a large amount of data needs to be
transferred to centralized data-centers for computation [15]. Since most sensors and
data acquisition devices in IIoT systems operate at the periphery of the network,
more data tends to be produced near the periphery of the network, which implies
that processing the data at the edge of the network would be more efficient [16].
Therefore, efforts in shifting the computational power towards the periphery of the
network have given rise to the edge and fog computing paradigms.

Edge Computing refers to the computing paradigm in which computations are
performed at the edge of the network instead of the core of the network. In this
scenario, the “edge” refers to any resource located on any network path between
data acquisition devices (situated near the periphery of the network) and the cloud
datacentre (situated at the core of the network) [16]. The basis of the edge computing
paradigm is that the computations should be done on the “edge” which is in the
proximity of the data sources and this avoids the latency associated with data
transfer to the network’s core.

The Fog Computing paradigm is similar to edge computing in that it also has
a decentralized architecture for computation but with the fundamental difference
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Fig. 2 Industrial IoT data processing layer stack

being that Fog Computing can expand to the core of the network as well [17]. This
means that resources located at both edge and core can be used for computations and
consequently, fog computing can aid in the development of multi-tier solutions that
can offload service demand to the core of the network as the load [17]. However,
in most fog computing systems, the computational power is concentrated with
the LAN resources which are closer to the data sources and further away from
the network core, thus reducing the latency associated with data transfer to the
core as seen in edge computing as well. Therefore, the fundamental difference
between the edge and fog computing paradigms is basically in the location where the
computational power and intelligence are stored. In the case of edge computing, this
computational power is concentrated at the edge of the network usually in powerful
embedded devices like wireless access points or bridges whereas, in the case of
fog computing, the computational power is usually in the LAN resources. The rest
of this chapter is organized as follows: Sect. 2 discusses the background of edge
and fog computing systems and how these paradigms address the requirements of
modern IIoT systems. Section 3 describes various applications of edge computing in
industrial settings. Section 4 elaborates on fog computing applications. In Sect. 5 we
present several outstanding issues and challenges with these computing paradigms
that can be interpreted as future directions for research in this domain. Finally, in
Sect. 6 we conclude with the salient points of this chapter (Fig. 2).

2 Relevant Computing Paradigms and Requirements

IoT is seen as a major technological turn-around in various applications. However,
due to the high volume of data which is generated by several IoT devices, it is
extremely difficult to forward all this data to a central cloud server for processing
as it lays heavy stress on the network. Also, it increases the latency involved in
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processing the data on the cloud server and receiving the results or carrying out a
response on the IoT devices. Edge computing paradigm is a computing technology
that enables data to be processed almost exclusively on the “edge” of the network,
which refers to locations between the end devices (like sensors, controllers, and
actuators) and the centralized cloud servers. The rationale behind the development
of this technology is that computations performed closer to the end devices will lead
to lower latency in the system. This is because the system does not need to transfer
data between edge devices and central cloud servers as the computations have been
offset to closer locations on the edge. Therefore, in edge computing systems, edge
devices can not only request content and services from the cloud servers but can
also perform computational offloading, caching, storage, and processing, thereby
making the edge devices both data producers and consumers [16].

The fog computing paradigm can be understood as an extension of the traditional
cloud computing model wherein additional computational, data handling, and
networking resources (nodes) are placed at locations on the network which are
close to the end devices [18]. The consequence of this extension is that processes
involving data management, data processing, networking, and storage can occur
not only on the centralized cloud servers but also on the connections between end
devices and the cloud servers [19]. Fog computing, therefore, can be extremely
useful for low latency applications as well as applications that generate an enormous
amount of data that cannot be practically transferred to cloud servers in real-time
due to bandwidth constraints [20].

As discussed in the previous section, there are many requirements that cyber-
physical systems need to maintain to become a viable supplement for real-world
operations and applications. These include the following:

1. Scalability which ensures that the increased data transfer between nodes does
not degrade latency or response time.

2. Fault tolerance and reliability which guarantees that the system functions
normally under variable external factors like under high load conditions.

3. Data security which ensures that the system is resistant to external attacks
attempting to steal confidential information stored in the system or network.

4. Service security to make the system resistant to external attacks which are
attempting at disrupting the service provided by the system to the industry such
as through Denial-of-service (DoS) attacks or Blackhole attacks.

5. Functional security so that physical accidents such as fires, explosions, leaks
do not occur at any time especially in industries handling potentially hazardous
substances such as nuclear plants, chemical plants, and oil rigs

6. Data production and computation proximity which ensures that the devices
collecting the data and the systems processing the data are close to each other
over the network to reduce latency.

To realize the benefits offered by the edge and fog computing paradigms, IIoT
systems must be designed as per the network structures of these paradigms since
these paradigms adhere to all the requirements of cyber-physical systems:
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1. Edge and fog computing-based systems are scalable since increased data transfer
between nodes can be addressed by the introduction of additional edge devices
to compensate for the added computational load without degrading the network’s
latency since these devices function in proximity to end devices, and hence, do
not increase the data transfer delays over the network.

2. Edge and fog computing systems are reliable and fault tolerant especially when
compared with cloud-based systems since faults in the centralized cloud servers
would result in a total loss of service but the decentralized nature of Edge and
Fog Computing systems ensures that even if some of the computational nodes
fail, the remaining healthy nodes can still maintain partial service. Furthermore,
if the computational load of the failed nodes can be offset to the remaining
healthy nodes, then the system can still run full service while corrective action is
undertaken.

3. Edge and fog computing systems maintain data security within the system due
to data decentralization which means that if an adversary wants to breach the
system, it would need to breach each one of a large number of decentralized
computing nodes to collect the entire system’s data.

4. Edge and fog computing systems maintain service security by using advanced
defense mechanisms such as per-packet-based detection, data perturbation, and
isolation networks for the identification of and defense against attacks [21].

5. Edge and fog computing systems ensure functional security since these systems
as they can be used to create extremely stable and robust multi-loop control
systems for functionally sensitive industrial operations such as temperature
control [22].

6. Edge and fog computing systems were developed with the rationale that data
consumption (processing, storing, caching, etc.) and production are always in
proximity which is ensured by the fundamental structure of these systems where
computational nodes are located on the edges of the network, which are close to
the end devices at the periphery of the network.

The distributed nature of edge and fog computing systems leads to several advan-
tages in terms of reduced communication times and improved reliability, which
makes these systems especially useful in a variety of industrial settings that
require reliable, latency-sensitive networks for process automation. By realizing the
inherent advantages of these paradigms, a large number of industries have started to
utilize these paradigms in their system designs and we shall look at several such use
cases in the following sections of this chapter.
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3 Industrial Applications of Edge Computing

3.1 Manufacturing Industry

To understand the applications of edge computing in manufacturing, we will be
considering the system architecture for a manufacturing-based setup as presented in
Fig. 3. After describing this architecture, a case study is presented which is based
on the implementation of an active maintenance system on a prototype platform.
Finally, this subsection concludes with a summary of the tests and results from this
case study, as presented in [23].

3.1.1 System Architecture

As depicted in Fig. 3 the architecture has been divided into four domains as
follows:

a. The application domain is responsible for providing a comprehensive oversight
over the entire manufacturing system to aid in the active administration of the
system. This oversight includes services such as monitoring of data flow and
network health, as well as the capacity for control of the system. The application
domain, therefore, allows the system to provide flexible, generalized, and inter-
operable intelligent applications while also aiding in the maintenance of service
security.

b. The data domain is responsible for providing services such as data cleaning, fea-
ture extraction, and intelligent inference, which enables the system to optimize

Fig. 3 Architecture of IoT and edge computing-based manufacturing
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system operations to improve the system’s throughput and efficiency. Another
important feature of this domain is that it allows end nodes to quickly access data,
due to the proximity of the edge computing node and the end devices, which aids
in generating real-time responses for specific events. Therefore, this is a critical
part of dynamically controlled manufacturing systems.

c. The network domain, in essence, is responsible for connecting the end devices
with the data platform and this domain utilizes the Software-Defined Networking
(SDN) architecture [24] to manage operations involved in the control plane
and network transmission. A Time-Sensitive Network (TSN) protocol is also
employed within this domain to handle time-sensitive information and is used
extensively in processing the information related to the network in sequence.
This domain also offers universal standards for sustaining and supervising the
time-sensitive nodes, making it a critical part of the overall system architecture.

d. The device domain refers to the devices located or embedded within the field
apparatus like machine tools, controllers, sensors, actuators, and robots. This
domain must be able to sustain an infrastructure for flexible communication
models to maintain a variety of communication protocols by maintaining nodes
that change the system’s execution strategies dynamically based on the inputs
obtained from the sensors. We normally observe that on the edge nodes, the
information model is built with popular protocols such as OPC UA [25] and Data
Distributed Service (DDS) [26]. Finally, the unified semantics of information
communication is realized within this domain of the system architecture, and it
is also responsible for maintaining data privacy and security.

3.1.2 Active Maintenance Case Study

With the proliferation of cyber-physical systems, a wide variety of industrial projects
are being migrated to edge computing-based frameworks because of the promise
of improved efficiency, ease of maintenance, and real-time adaptability offered by
this computing paradigm. We shall be reviewing a case study on a customized
production line for candy packaging, as entailed in [27]. In this study, a private
cloud was used to provide service to customer orders. To make stable and high-
speed communications possible, an ad-hoc network was built connecting the edge
nodes. Furthermore, to achieve a proper exchange of information, a standardized
version of the DDS protocol and ethernet were integrated before the deployment of
the system. The functioning of the system can be summarized as:

i. Candy packaging tasks were associated with each robot and these tasks were
also linked to the cloud. After getting their assigned tasks, the robots were
required to pick up the particular candy assigned to them and keep the candy
into the relevant open packaging. In this operation, backbone network nodes
were represented by the robots.
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ii. System was also capable of shifting nodes to different positions on the
production line in case of any failures. Therefore, a system with multiple agents
was established to improve the self-governing functionality in this scenario.

iii. The agents of the system, physically represented by robots, were independent
and self-directed which means that their objective and behaviour was not
constrained by other agents of the system.

iv. This system of multiple agents was deployed to complete tasks efficiently by
assigning different agents with various tasks and procedures.

v. CNP (Contract Net Protocol) was used to assign different tasks to different
agents by using techniques such as winning modes, bidding and open tendering.

vi. By the means of contests and discussions the agents can bargain and resolve
their conflicts and so this self-organized system can efficiently complete the
assigned tasks.

The implementation of this scenario was made possible with various setups,
which include the following:

i. With the help of the Hadoop architecture, a distributed data processing system
was built wherein at the local database level, real-time mining and analysis was
performed with the help of Hadoop MapReduce and Hadoop Distributed File
System (HDFS).

ii. Information such as machine status and logs constituted the sensory data which
was used to create a reasoning-based model which was loaded onto a Raspberry
Pi system.

iii. On the Raspberry Pi, an OPC UA server was made functional to perform pre-
processing tasks on the transmission data that was acquired from different
sensory devices. This data was raw in nature and hence, had to be transmitted
safely and reliably which was made possible by the use of OPC UA server.

iv. To integrate the data received from multiple sources, a semantic model was
also built which reformed the data to maintain consistency, accuracy, and merit
of the information. This semantic model used data fusion to provide generate
features as inputs from the acquired data. Finally, this data was used as input to
the reasoning-based model.

3.1.3 Tests Performed

To estimate the difference in performance obtained by using an edge computing-
based system instead of a centralized cloud computing system, a cloud-based system
was also set up in this system [27]. This system had a centralized control server
that managed the different agents of the system. To test the time of operation on the
systems, both were tasked with completing the same orders under similar conditions
of distribution of candy types. The number of candies to be packed was varied and
the average time for robot operation completion was recorded for both systems. The
results are summarized in the following two points:
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i. With an increase in the number of orders, we observe that the self-organized
version built on edge nodes is far more efficient and agile than the centralized
system when the number of orders rises above 2000, as the operation completion
time for the self-organized system becomes consistently lower that of the
centralized system.

ii. With a stable production line, the speed of the backbone network in the
centralized version was observed to be around 16 Mb/s. However, after the
deployment of the self-organized system, the backbone network speed dropped
to around 5–6 Mb/s which represents a 65% drop in speed.

The results of this study [27] suggest, that a decentralized and self-organizing
system can become extremely useful in mass-production scenarios due to the
reduced operation completion time. While the study shows that a decentralized
system leads to a reduction in transmission speeds within the backbone network,
the system can still function efficiently as the reduced operation completion time
outweighs the drop in the backbone network speed thereby increasing the effective
system throughput.

3.2 Supply Chain Management

Supply Chain Management (SCM) can be understood as a set of activities that are
used to control, plan, and monitor the flow of products from their production to
their distribution in the most efficient manner. While modern industries have already
adopted cloud-based technologies to support their supply chains, an increasing
number of these chains have begun to generate massive amounts of data from a
diverse set of sensors and end devices located at different points along the supply
chain. In such situations, it becomes impractical to store and process data in remote
servers due to several reasons such as network bandwidth restrictions, large latency,
and need for better fault tolerance. These restrictions, coupled with the proliferation
of Radio Frequency Identification (RFID) technology, have given rise to edge
computing-based solutions for the supply chain management.

Using the case study of a blackberry (fruit) supply chain as proposed in [28], we
shall attempt to explain how industries can augment their supply chain management
systems to leverage the power of edge computing. The proposed system has a three-
layer architecture which is explained below:

1. Layer 0: This layer includes the data producing end-devices (primarily RFID
embedded sensors) responsible for generating relevant data such as the Electronic
Product Code (EPC), temperature, internal pressure, humidity, air quality, and
other important parameters.

2. Layer 1: This layer is primarily responsible for monitoring and control purposes
which entails the generation of actuator commands, execution of the control
logic, and generation of relevant alarms. With the use of active and smart edge
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nodes along with onboard decision support units, this layer aid administrators in
improved quality monitoring as well as in the execution of real-time corrective
actions.

3. Layer 2: This layer consists of the traditional, centralized servers which can
be used for long-term pattern recognition and analysis of offloaded sensor data,
giving valuable insights that can be useful while optimizing production and
distribution pipelines.

As illustrated in the case study, the introduction of edge computing-based technol-
ogy can enable efficient monitoring and actuation in all three stages of the supply
chain:

• In the field: Edge nodes deployed at farms can aid in the real-time monitoring of
blackberries. Through sensor information, the edge nodes can predict and notify
farmers when the blackberries are ready for harvesting, thus improving shelf-life
for the berries while also ensuring that all berries are harvested at the correct
time.

• In transit: Edge processing nodes and sensors installed in transport vehicles can
monitor various environmental parameters of berries such as temperature, rela-
tive humidity, and light. While these systems can continuously provide updates to
the system managers, they can also execute instant corrective actuation methods
in response to variations in environmental parameters such as controlling the
air conditioning of the vehicle, adjustment of air filters, and notifying the driver
about a possible opening of the vehicle doors.

• At the packing location: The data from the fog nodes can be used to determine
the priority of cooling of incoming crates or pallets of berries which can enhance
the freshness of the products while also minimizing any wastage resulting from
spoilt berries.

This case study illustrates how an edge computing-based system can drastically
improve the quality of monitoring for supply chains while also offering low-latency
actuation techniques for system managers. Furthermore, due to the proximity of
computational resources and end-devices, the amount of data transferred to the
cloud servers is reduced drastically, thereby reducing the strain on the network.
This leads to improved efficiency of these supply chains and while also resulting in
reduced delays associated with the networks supporting these supply chains.

3.3 Food Industry

Modern food manufacturing industries have started to rely heavily on automated
food production systems in factories to improve the quality and speed of production
of consumable items. However, unlike other industries, the food industry constantly
deals with perishable items—whether it is milk or sugar as raw materials or choco-
lates as finished products. Therefore, the food industry must invest in resources and
systems that help in product traceability in all stages of production, processing, and
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distribution. These resources not only aid in the optimization of the manufacturing
and distribution pipeline but also enable the industry to perform product recalls
(such as in the case of some contamination) with minimal losses. In this regard, edge
computing solutions have emerged as viable frameworks due to their distributed
nature and the introduction of these systems can be extremely beneficial for the
food manufacturing industry.

In the system proposed in [29], food manufacturing industries can rely on QR
codes, barcodes, RFID tags, or transponders implanted onto objects such as primary
and secondary packaging, pallets, trucks or containers, throughout the supply chain
to aid in their identification and tracking along the production and supply pipeline.
Edge-computing enabled sensors can be used in the process of product identification
at different points along the production and supply pipelines to ensure that the flow
of products is maintained. Within this system, the edge devices can rely on ad-
hoc networks to communicate with each other to determine bottle-necks along the
production and supply pipelines and automatically optimize these pipelines. The
centralized cloud database can also be linked with this ad-hoc network and can
maintain a global database of the products for administrative supervision. Therefore,
with the use of such an edge-computing powered system, the industry can rely
on a latency-sensitive system that functions with reduced response times, unlike
a traditional cloud computing-based system.

3.4 Distributed Synchronization Services

One of the biggest use cases of cloud computing-based storage is distributed
data storage, commonly referred to as cloud storage services wherein files can be
accessed from anywhere on the planet by connecting a system with cloud storage
servers which periodically synchronize data on different devices to enable access
of files. However, even for small applications like office suite software, cloud
storage services can often lead to unnecessary bandwidth consumption while also
compromising latency. The EdgeCourier [30] is a file storage solution that can
overcome the problems of traditional cloud computing-based distributed storage
options by making use of the edge-hosted personal services (EPS) technique in
conjunction with the ec-sync incremental synchronization approach. The essence
of EPS is to make use of computational resources on the edge nodes (like access
points or base stations) to provide localized services for mobile wireless users
connected to these edge nodes. The ec-sync synchronization approach requires two
participants: the sync-sender and sync-receiver, both of which are instrumental in
the synchronization process which is explained as follows:

• The sync-sender detects if there is any document that requires synchronization
with the receiver and is responsible for capturing the changes made within the
document, by going through every sub-document within the document.

• To capture sub-document changes, the sync-sender compares two files: the edited
document and the last-synced version of the same file.
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• Thereafter, the sync-sender places the detected changes into a file known as edit-
patch, which is transmitted to the sync-receiver.

• Upon receiving the edit-patch file, the sync-receiver applies the edit-patch
differences to the relevant sub-documents from the last-synced version of the
same file to obtain the edited document.

• This edited document is then also shared with the cloud storage services to
transmit it to various EPS instances or nodes across the network for global
synchronization.

Furthermore, an important advantage of having different EPS instances is that
they can be managed by a centralized management service (on a cloud service),
which can migrate data to and from the edge nodes if needed. This, therefore,
leads to better oversight and increased fault tolerance as data can be migrated to
different resources for analysis or in response to outages experienced at edge nodes.
The overview of the EdgeCourier system can be seen in Fig. 4. Laboratory-based
studies on the Edge Courier system [30] showed that with the rise in the size of
documents that need to be synchronized, the time spent on network transmission
becomes notably lower for the EdgeCourier system as seen with a document size
of 1 MB which takes 0.6 s lesser on the EdgeCourier system than on the direct
sync system. Such distributed synchronization systems can be particularly useful in
the software development industry for real-time code synchronization in large team
projects. Similarly, the banking industry can also derive some critical applications
from these systems such as in the real-time synchronization of transactions and
other banking data. These examples clearly show that edge computing powered
data synchronization systems find a lot of applications in modern industries that
require reliable network services. As we have seen, these systems lead to reduced
data transmission over the network, resulting in reduced latency and lesser strain on
the network’s bandwidth capabilities, hence leading to dependable network services.

Fig. 4 System overview for EdgeCourier. (a) Upstream document synchronization. (b) Down-
stream document synchronization
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3.5 Healthcare

With the recent advancements made in the domain of medical IoT devices, the
healthcare industry has started to adopt IoT solutions that provide vital medical
services such as the monitoring of Electrocardiogram (ECG) data and processing
of Magnetic Resonance Imaging (MRI) data. However, most of the traditional IoT
based solutions for healthcare rely heavily on cloud-based processing as well as
storage which has started to create problems for these solutions as the massive
amount of data being generated is straining the communication network’s capacity.
This often leads to unpredictable delays in communication while also promoting
increased latency in the network which can significantly impact healthcare opera-
tions within the hospital or clinic especially in time-sensitive situations that require
urgent reactions such as in heart attacks or strokes. Therefore, modern medical IoT
systems require a flexible multi-level network architecture that can cohesively work
with heterogeneous sensors and process the relevant data with minimal latency to
produce relevant results and responses. These requirements have led to the adoption
of the edge computing paradigm in medical IoT systems due to the benefits it can
provide in terms of reduced latency and improved reliability, both of which are
critical for these systems. In this subsection, we will be reviewing the BodyEdge
architecture [31] as shown in Fig. 5, which is structured and inspired by the edge
computing paradigm to achieve the following goals:

Fig. 5 The BodyEdge [31] architecture
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• Reduced communication delay and latency.
• Wide support for scalability and responsiveness.
• Limited cost in terms of bandwidth for data transmission (i.e. only limited

statistics data needs to be transmitted to the cloud).
• Improved Privacy (since the edge network may be interpreted as a private cloud).

This architecture consists of two complementary parts. The first is a mobile client
called BodyEdge Mobile BodyClient (BE-MBC) which is primarily responsible as
a relay node for communication between the sensors and the edge client using multi-
radio communication technology. The second is a performing gateway known as the
BodyEdge Gateway (BE-GTW), which is placed at the edge of the network and is
primarily responsible for acquiring device data and locally processing it to produce
valuable insights and patterns that can be relayed back to the end devices or sensors.
In addition to this, the gateway also ensures communication with the cloud to allow
users to maintain oversight over this system.

To validate the BodyEdge architecture, it was physically implemented in [31]
and compared with a cloud-based architecture for the task of stress detection using
cardiac sensors. Within the implementation, the BE-MBC module was installed on
a smartwatch which was paired with a chest band to acquire ECG signals. The BE-
GTW was installed on an independent hardware platform (Raspberry Pi3) as well
as on an Azure cloud virtual machine to perform the comparative study. Finally,
the edge-based system with the BE-GTW installed on the Raspberry Pi3 was tested
on 100 athletes to determine stress levels using the Heart Rate Variability (HRV)
technique [32] and the average round trip delay time (RTT) for this case was 152
ms. The same experiment was then conducted with the cloud-based system which
yielded an average round trip delay time (RTT) of 338 ms. This result, therefore,
corroborates our assumptions about the performance benefits offered by edge-
computing-based systems in terms of reduced latency and indicates that medical
IoT systems should indeed adopt edge computing-based network architectures.

3.6 Agriculture

Modern agriculture has extensively embraced automation and modern technology
to improve and optimize existing agricultural processes due to the improved con-
nectivity between agricultural resources. As technology is becoming increasingly
interconnected, edge computing-based infrastructures have started to dominate most
network-based applications, and to tackle the growing amount of data being gener-
ated by end devices, the agricultural industry has also started edge computing-based
architectures to create latency-sensitive applications for agricultural processes. The
concept of Precision Agriculture (PA) has seen a significant rise in popularity due
to the improvement in sensor technologies, and several systems based on edge
computing have been proposed, like the precision agriculture platform [33]. These
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systems make use of intelligent algorithms in conjunction with smart sensors and
actuators in the field to providing real-time monitoring services that enable control
services to maintain optimal environments for crop growth. In the system proposed
in [33], the architecture is divided into 3 tiers namely: crop (Cyber-Physical System
or CPS) tier, edge computing tier, and the cloud tier. The architecture has been
illustrated in Fig 6. The crop (CPS) tier is majorly comprised of sensors that aid
in real-time monitoring of various environmental parameters such as temperature,
humidity, pH, CO2 levels, solar radiation, and other important factors. In addition
to sensors, this tier also supports various actuation devices such as soil nutrition
pumps, valves, irrigation devices, ventilation devices, and light-control devices.
Within this architecture, operations at this tier require low latency and high
reliability in communication so that emergency services can be enacted without
human intervention, which is made possible through the edge computing-based
computational nodes situated closer to the data sources. In continuation, edge nodes
within the edge computing tier are responsible for executing commands through
actuation devices based on inputs received from sensor networks in the crop tier.
Therefore, this layer is responsible for the control of irrigation, climate control,
nutrition control, and other auxiliary tasks like alarm and energy management.
Finally, the cloud tier is responsible for long-term data analytics and system
management services. The physical implementation of this system showed savings
of more than 30% in terms of water consumption along with savings of nearly
80% in terms of some soil nutrients when compared with a regular open crop.
In addition to environmental monitoring, edge computing powered systems can
also be employed for video analytics through UAVs that can help farmers in
optimized weeding and harvesting. This clearly illustrates the impact of automation
on the agricultural industry and shows how edge computing-based architectures can
replace cloud computing frameworks especially in applications that require low-
latency and high reliability.

4 Industrial Applications of Fog Computing

4.1 Smart Grids

Conventional energy grid systems have been powering industries and countries for
the past 100 years, and with the tremendous rise in demand for electrical power, the
domain of IoT has emerged to be the pioneering technology that is leading develop-
ments in the smart grid systems. Traditional grid operations relied on simple analog
meters to record units of power flowing per month to each household or industry,
but with the evolution of intelligent and autonomous systems, modern smart grids
offer solutions that allow comprehensive oversight over energy distribution which
is beneficial to both consumers and producers. For power producers, these smart
grid solutions allow accurate monitoring of energy demands and supplies which
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Fig. 6 Architecture overview for agricultural monitoring system

allows them to effectively control pricing as well as load balancing to sustain the
healthy functioning of the grid. On a similar note, consumers can monitor their
energy consumption in real-time for each device which allows them to effectively
and reliably manage their energy spending. The framework of such a smart grid,
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therefore, involves a heavy dependence on the collection and aggregation of real-
time data from every device within each household or industry that is powered by
the grid. This will inevitably lead to the generation of a large amount of data that
needs to be efficiently managed and analyzed while maintaining the security of the
data. To manage such massive amounts of data, it is easy to perceive that the cloud
computing paradigm cannot be a viable network architecture for these IoT powered
smart grid solutions since the sheer volume of the data would not adhere to any
conventional network’s transmission capacity. To reduce the strain on the network
capacity, fog computing-based grid systems can become a viable option since the
fog computing architecture allows computational offloading from the centralized
cloud servers to fog nodes that are situated closer to the end devices. This distributed
nature allows the network to function with low latency and improved reliability
while also maintaining data security, and these are exactly the properties that a
modern smart grid system requires.

The basic architecture of smart grid systems is generally composed of advanced
metering infrastructure (AMI) along with area networks, data centers, and integrated
substation centers. Within this architecture, AMI ensures two-way communication
is maintained between the end devices and the fog nodes which leads to a secure,
reliable, and cost-effective service. The model proposed in [34] is a three-tier
architecture as shown in Fig. 7.

The first tier is comprised of the smart meters which are responsible for
collecting data regarding energy consumption as well as for inter-tier and intra-tier
communication. The second tier comprises the resource-rich fog nodes which are
responsible for delivering the majority of computational services to the network.
Finally, the third tier comprises the traditional cloud servers which are usually

Fig. 7 Structure of fog computing enabled smart grid
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responsible for oversight and maintenance of the entire grid. This structure allows
inter-tier communication within the first and second tiers which enables different
geographical sub-grids to communicate with one another.

Through the following points, we can appreciate the benefits offered by fog
computing architecture:

• The smart metering technology enables the energy producers to monitor power
loads in real-time which helps them in drafting an effective load-balancing
methodology, with extremely low latencies and transmission delays.

• The smart meters allow consumers to monitor the energy consumed by each
device in real-time and this can aid them in controlling device usage dynamically
to minimize their energy costs.

• While the smart meters maintain a local database of the profile of energy
consumed by each device, they aggregate this data for the complete household
or industry and forward this encrypted aggregate to the fog servers. These fog
servers can then store this data securely within storage systems that are localized
in that geographical area, and because the encryption key is only known to the
fog node and the respective smart meter, the system maintains privacy even if the
data is accessed by someone through the cloud server.

• Finally, the varied geographical location of fog computing nodes can be benefi-
cial to the grid in an interesting way: specifically for the case of electric vehicles
which can be charged at any location inside the grid while the grid maintains the
correct billing information. For instance, if an electric vehicle is charged in any
neighbourhood, the smart meter deployed in that neighbourhood can identify the
owner of the car using a unique identifier and transfer the billing information
via the fog node tier to the owner’s smart meter, thereby ensuring consistency in
billing within the smart grid.

4.2 Satellite Communication

With the recent advances made in satellite technology, the communication industry
has started to rely heavily on satellites to provide access to people situated in
remote locations. Satellite-Terrestrial Networks (STN) are communication networks
that have emerged as one of the most promising low-cost technology which can
lead to ubiquitous access to internet connectivity across the globe. A majority of
STN setups make use of Low Earth Orbit (LEO) satellites to provide connectivity
to sparsely distributed users by interconnecting small terrestrial terminal stations
which are placed in remote locations to ensure maximum area coverage, as shown
in Fig. 8. But, with the evolution of smartphones and tablets, the amount of data that
needs to be transferred across the network has increased drastically, particularly
because of an increase in the number of applications such as speech recognition
and gaming that make use of cloud services to process user-generated data. This
puts a strain on the network’s data transfer capacity, and so we must look towards
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Fig. 8 Traditional satellite terrestrial network

computational offloading to help alleviate this problem. In this situation, satellite
mobile edge computing (SMEC) [35] can be a possible solution that can offload
computation as well as storage to local servers, thereby leading to an improved
QoS, increased reliability, and reduced latency. This technology, although dubbed
as edge computing, is better classified as a fog computing-based technology as
computational resources are essentially an extension of the cloud servers. Therefore,
the introduction of fog computing resources near the end-devices can lead to content
caching and other storage facilities which effectively reduces that traffic in the
overall STN. In terms of computational offloading, the fog sites can be located at 3
different locations, and these are:

• Proximal Terrestrial Offloading (PTO): In this situation, satellite mobile fog
computing servers are deployed at terrestrial stations, as shown in Fig. 9b.
The advantage of this system is that the communication latency is significantly
reduced because backhaul transmission through the satellite is avoided. While
such a system would be extremely useful for terrestrial terminal stations that
cater to dense user areas, it would not be practical for terrestrial terminal stations
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Fig. 9 SMEC with offloading at different fog sites

that are placed in spare user areas especially because these stations do not hold
extra computational facilities and are remote.

• Satellite Borne Offloading (SBO): In this situation, the satellite mobile fog
computing servers are deployed in LEO satellites, as shown in Fig. 9c. With
this network extension, both sparse and dense users will benefit from reduced
latencies while the traffic in the terrestrial backbone network will also reduce
significantly. However, the latency in this situation would be higher than that
of PTO and it would significantly increase the power consumption of satellites
which will be performing the offloaded computations which will not be practical
for satellites with limited power sources.

• Remote Terrestrial Offloading (RTO): In this situation, the satellite mobile fog
computing servers are deployed to the terrestrial backbone network, as shown
in Fig. 9d. In this situation, the delays in transmission over the WAN IP that
connects with the Remote Cloud servers can be avoided and this translates
to a reduced latency when compared to the situation with no edge computing
offloading. The latency in this network scheme is higher than PTO and SBO, but
it is the most practical scheme to implement and maintain.
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Fig. 10 Architecture for the process monitoring system

4.3 Manufacturing Process Monitoring

With rapid globalization, industries across the globe have started to adopt modern
process control systems which rely heavily on sensor networks that efficiently
monitor production lines and processes while collecting valuable data which can
be used to identify faults before they occur while also aiding in optimization efforts
to improve the throughput and performance of the industry. In this regard, we shall
be looking at a fog computing-based framework for process monitoring in different
production environments. The proposed system architecture in [36] is shown in
Fig. 10 and is described sequentially below:

• Step 1: Collect machine data from the production environment that streams
real-time data from various sensor networks and communication adapters that
function on protocols such as Simple Object Access Protocol (SOAP), MTCon-
nect, and Open Platform Communications Unified Architecture (OPC UA).

• Step 2: Stream the raw data to a private computational fog node that is responsible
for real-time monitoring and providing time-sensitive control signals to the
production environment. This allows the system to function with low response
times, improves reliability, and reduces the strain on the network’s capacity as
data is processed in a fog computing node that is situated close to the production
environment.

• Step 3: Also, various samples from this data can be sent to high-performance
cloud data centers which can be used to build models for predictive maintenance
and process optimization. Since these samples are small in size and sporadically
transferred to the cloud, the strain on the network’s capacity is minimal while the
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models built with the sampled data can be extremely beneficial for the industry
in terms of improved throughput and reduced unplanned downtimes.

• Step 4: Apply these predictive models to raw data and obtain tangible insights
into the production environment’s real-time health and performance.

5 Future Research Directions

The edge and fog computing paradigms are considered as powerful extensions to the
cloud computing paradigm, however, they face some common challenges [16] that
are yet to be addressed. In this section, we describe some of the major issues and
challenges faced by these paradigms as well as some potential research directions
for these paradigms.

5.1 Programmability and Task Partitioning

In the traditional cloud computing-based architectures, users generally program
their back-end applications on an abstract platform, without worrying about the
exact configuration of the cloud server. The benefit of this abstraction is pro-
grammability since the user is not aware of the exact configuration of the platform
which means that the cloud service providers can easily compile the application
and run it on a single runtime of the cloud server which can have a variable
configuration, unknown to the user. However, with the rise of the edge and
fog computing paradigms, back-end processing is distributed across an array of
distributed computational nodes—all of which can have slightly different run-times.
This creates interesting and challenging problems for system designers, who need
to design optimized methods for distributing computation as well as storage across
nodes while making sure that synchronization processes do not impact the network’s
transmission capacities and ensure low latency in intra-network transmissions.

An important issue that arises with the evolution of distributed computing
paradigms like edge and fog computing, is the issue of task partitioning. Within
these paradigms, it is imperative that the system design takes into account the
optimization of task partitioning and process scheduling, to facilitate concurrent
execution across distributed nodes. An optimized task partitioning scheme allows
the system to autonomously locate edge or fog nodes in real-time, and intelligently
allocate tasks to these nodes, while taking into account various factors such as the
computational power associated with the nodes as well as the associated overheads
involved in exchanging data between these nodes.

In consideration of these issues, system designers should also think about
control - whether the system should allow users to implicitly or explicitly control
computational resources. In case of implicit control, which can be seen in the case
of Amazon’s Lambda@Edge [37], where the users need not worry about server
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administration, as the web services are responsible for running and scaling the
application at resources available closest to the end-users. This leads to reduced
complexity of programming for the users, while giving system administrators
greater control over the network. In contrast, explicit control of the network gives
users greater flexibility in terms of resource allocation, which can often lead to
improved efficiency and increased reliability. This explicit control, however, comes
at the cost of increased complexity in terms of programmability and goes to illustrate
how designers need to make trade-offs while planning the layout of edge and fog
computing-based systems.

5.2 Security and Privacy

With an increased interest in the edge and fog computing paradigms, people have
started to appreciate the capabilities of these paradigms which enable the extension
of storage, networking, and processing resources of cloud computing servers toward
the edge of the network. However, with this rise in flexibility and distribution leads
to many security and privacy concerns [38] that must be addressed by system
designers. After analyzing several different aspects of network security, we can
summarize the major security and privacy concerns as follows:

1. Trust and Authentication: Edge and Fog Computing-based networks are
expected to provide secure and reliable services to all users and this leads to
an important requirement in that all devices on the network should be able
to trust one another. Therefore, trust plays a two-way role within edge and
fog computing-based networks. This implies that fog or edge nodes that offer
services to the network must be in a position to validate whether the resources
requesting these services are indeed genuine. Similarly, edge or fog nodes
that are transmitting data to or requesting services from network resources
should also be able to verify whether these resources are genuine or not. These
concerns have given rise to various authentication mechanisms that can be used
to authenticate network resources before transmissions and requests. Systems can
employ mechanisms such as permissioned blockchain networks like TrustChain
[39] for authentication, cryptographic authentication schemes like SAKA-FC
[40], and hardware-based authentication schemes like Physically Unclonable
Functions (PUF) [41], to authenticate network resources.

2. Integrity: Edge and Fog Computing systems should always ensure that data
transmission within the network should be done securely so that transmitted data
is not altered or modified by attackers. The most prominent method to ensure
the integrity of data in networks is through cryptographic signature verification
systems like the GNU Privacy Guard (GPG) system [42] which is used to
digitally sign transmitted data. The received data is then verified at the receiving
station to establish the integrity of the data, which is extremely important in
edge and fog computing-based systems as they rely heavily on intra-network
data transfers due to their distributed topology.
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3. Availability: The availability of information refers to the ability of the system to
ensure that authorized parties can access relevant information whenever needed.
The biggest concern concerning the availability of information is Denial of
Service (DoS) attacks that hamper or eliminate accessibility to information. Edge
and Fog Computing-based systems are generally well equipped to handle DoS
attacks since these systems have distributed computational resources, however,
Distributed Denial of Service (DDoS) attacks can still impact these systems and
to protect networks or applications against DoS attacks, designers often make use
of smart DNS resolution services, Web Application Firewalls (WAF), and other
intelligent traffic management techniques to ensure service security.

4. Confidentiality: The confidentiality of information represents the ability of the
system to protect information from being disclosed to unauthorized parties. This
implies that edge and fog computing paradigms should ensure that information
is stored securely to prevent data leaks, which is especially likely due to the
distributed architecture of these paradigms. Edge and Fog Computing-based
architectures often use homomorphic encryption schemes as well as crypto-
graphic hashing techniques to store confidential data at different distributed
locations within the network [50]. Due to the use of these techniques, even if
attackers can gain access to secure databases, they will not be able to understand
the data as it will be in an encrypted format.

5. Data Ownership: This issue extends from the fact that unlike cloud computing-
based systems, edge and fog computing-based systems store data in distributed
locations across the network which means that the system can store data locally
at the computational nodes, thereby providing complete access and ownership
to the end-users. However, these paradigms often involve the transmission of
data between nodes especially when processing or computations have been
offloaded to different nodes on the network, and this creates a problem in the data
ownership. Thus system designers should take this behaviour into account while
drafting the privacy policy of the network. This also involves thinking about legal
jurisdictions, such as when data crosses international borders, it may be subject
to different regulations. This means that data transfer methods should consider
the compatibility of data with two different data regulation policies for the source
and destination.

5.3 Blockchain for IIoT

In recognition of the prevalent security concerns within the domain of edge and fog
computing, researchers have started looking into Blockchain as a potential solution
for these security concerns [43]. Following this technology’s conceptualization in
2008, industries across the world have extensively adopted it for several applications
such as in the authentication of financial transactions, in the preservation of digital
contracts, and in the identification of agents in distributed systems, making it an
extremely viable solution for the security concerns of edge and fog computing.
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The essence of the blockchain technology lies in the decentralized transaction
ledger that maintains the record of all exchanges and transactions. The most
essential components of the distributed ledger are the blocks that comprise the
blockchain, where each block acts as a record of the transactions or exchanges which
are being monitored by the blockchain. To preserve the authenticity of transactions
and exchanges, blockchains rely on two main aspects of the blockchain framework.
First, each block within the ledger possesses a cryptographic hash that uniquely
identifies that block. This hash acts as a fingerprint that is referenced by the next
block after being added to the ledger. This reference-linking structure allows the
distributed ledger to easily identify distortion within the blockchain, since changing
the transaction within any block in the blockchain leads to change in the block’s
unique cryptographic hash, thereby leading to a break in the chain as the references
for each of the following blocks in the ledger need to be changed to remake the
blockchain. Second, each transaction is verified by different agents that maintain
independent copies of the ledger, which makes tampering even more difficult as
any unwarranted changes in the ledger by one agent can be easily identified by
other agents through a block-by-block comparison. These two aspects allow the
blockchain to effectively control distortion to maintain a transparent and verifiable
transaction history.

The tamper-proof nature of blockchain can be extremely useful in addressing the
trust and authentication problems of edge and fog computing. Specifically, these
paradigms can adopt blockchain-based authentication systems such as BSeIn [44]
that allows fine-grained access control, user anonymity, and mutual authentication
while allowing networks of these paradigms to scale as usual. Similarly, the tamper-
proof nature of the blockchain ledger allows the system to detect adversarial end
devices which may be attempting to manipulate raw sensor data, allowing the
system to take immediate countermeasures. Furthermore, the distributed nature
of the edge and fog computing paradigms match the decentralized nature of the
blockchain technology, making such systems resistant to node failures as the loss
of any one node does not compromise the health of the complete system as data
remains distributed across the network.

Although the blockchain technology is relatively new, several interesting systems
have been proposed in the past, which have integrated the blockchain technology
with IIoT architectures, to improve the security and reliability of such systems.
In the BPIIoT platform [45], systems can make use of a peer-to-peer network
as well as smart contracts to allow end devices to share information across the
network after successfully verifying the authenticity of their counterparts within
the network. This enables machine-to-machine (M2M) communication that is safe,
transparent, and verifiable thereby improving the security of systems that utilize
this technology. Similarly, to design edge and fog computing systems that are suited
for distributed data storage, the blockchain technology can be extremely useful in
verifying device identity, while advanced encryption schemes can be used to encrypt
transactions and store them within the blockchain in a chronological fashion. In such
a situation, if an adversarial end device attempts to alter the blockchain, it will be
identified immediately by the other agents in the system while the chronological
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arrangement of transactions can be used to determine the exact time of the attack by
the adversary - leading to easier data recovery. Similarly, edge and fog computing-
based IIoT systems that handle a large variety of goods, identities, and credentials,
can use blockchains to store information relating to these domains. Furthermore,
for physical assets such as end devices, the cryptographic hashes of the device
firmware can be stored in a separate private blockchain to ensure the authenticity
of the hardware within the system.

While the integration of the blockchain technology with edge and fog computing-
based IIoT systems is a viable future direction, we must understand at the existing
limitations of the blockchain technology and work to improve the effectiveness of
this technology. These limitations include:

1. Poor performance on scaling: In contrast with traditional centralized databases,
blockchains tend to slow down with scale due to the complexity of the consensus
mechanisms leading to lower transactional throughput and increased latency.

2. Energy inefficient algorithms: The complexity of proof-of-work (PoW)
increases as the number of transactions conducted increases which makes
these algorithms extremely energy-hungry leading to several issues on battery-
powered IoT devices which are power-constrained and cannot afford to make
such computations.

3. Lack of flexible test platforms: It is imperative to have flexible test plat-
forms in place that allow people to experiment with different configurations
of blockchains in various IIoT applications to test the stability, performance,
scalability, and security of these applications.

5.4 Virtualization

Due to the resource-constrained nature of fog and edge devices, most applications
utilizing these distributed computing paradigms need to run multiple operating
environments on a single edge or fog device. Typically, each edge or fog device
needs to run two different environments for different users, leading to two important
requirements in this respect. First, we require separation of services, wherein
different tasks and user environments must be maintained separately on every node
within the system. Second, we want to ensure application fairness, wherein resource
allocation and distribution of computational power should be monitored by resource
management algorithms that enforce fairness in allocation procedures.

In this regard, virtualization technologies for task partitioning can be viable
options for the encapsulation of services from various users and applications into
separate Virtual Machines (VM). Through the use of VMs, virtualization tech-
nologies can run different operating environments on each node. While extensively
developed virtualization technologies for cloud computing exist [46], their support
for edge and fog based systems remains limited. Therefore, within the field of
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virtualization for edge and fog computing paradigms, there are many standing issues
and challenges, including:

1. Service Encapsulation: In traditional cloud-oriented virtualization, techniques
for service encapsulation to VMs tend to be resource-intensive which makes them
infeasible for virtualization at edge and fog layers. An interesting approach can
be through the deployment of services in containers [47–49]. In this approach,
we use containers as operating system-level virtualization objects to execute
different services on resource-constrained computational nodes, allowing service
encapsulation and improved task allocation procedures.

2. Resource or Container Allocation: The allocation of resources in the form
of containers running on different nodes requires sophisticated allocation algo-
rithms to ensure virtualization in edge and fog computing systems. These
virtualization algorithms should be able to perform resource (computational
capacity) estimation and overhead estimation in real-time to identify the optimal
strategy for task partitioning. Furthermore, these algorithms should not be
resource-intensive and must be able to aggregate the results obtained from
distributed computations to accomplish the overall task, thereby leading to
efficient virtualization.

3. Container Migration: As seen in the earlier sections, the distributed and
decentralized nature of the edge and fog computing paradigms enables us
to design fault-tolerant and reliable systems. To maintain this fault-tolerance,
virtualization techniques must be responsive enough to ensure the migration
of services to other containers (nodes) in response to the failure of nodes that
are currently executing tasks or applications. Therefore, these virtualization
techniques should be able to identify, allocate, and migrate tasks quickly, so that
the system experiences minimal downtime while maintaining a reliable service.
A robust container migration policy will be similarly beneficial for systems under
dynamic workloads and will improve the efficiency of these systems.

Given the success of virtualization techniques in the scenario of traditional cloud
computing services, the development of robust virtualization techniques for edge
and fog computing-based IIoT systems can become an influential force in the future
development of these paradigms.

5.5 Resource Allocation

We already know that edge and fog nodes are constrained in terms of computa-
tional resources, memory, network elements, and energy, and therefore, efficient
management of resources is imperative for the success of these paradigms and
to achieve efficient resource management, resource allocation mechanisms should
work in conjunction with virtualization techniques [20]. To facilitate the process of
task partitioning through virtualization, resource estimation mechanisms, running
as software middleware, should be able to accurately estimate the various resources
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available with the different edge or fog nodes in the system and must be able to
do so with low computational overhead. Similarly, resource allocation mechanisms
should work to ensure the highest QoS for the end-user, and at the same time, it
should ensure fairness of allocation for distinct services, wherein tasks with higher
priority (like real-time content streaming) should receive larger bandwidth when
compared with lower priority tasks. Finally, resource allocation should also take care
of dynamic network situations where IoT devices enter and exit the network at will,
making technologies such as software-defined networking (SDN) important factors
in system design. SDN can aid the system in the management of dynamic network
resources to ensure continued connectivity between them while also improving
oversight and control. By working towards the improvement of resource allocation
mechanisms, system designers can establish better virtualization techniques which,
in turn, will lead to the superior edge and fog computing-based IIoT systems.

5.6 System Metrics

While there exists a large variety of advantages that arise due to the architecture
of the edge and fog computing paradigms, there are some associated metrics that
also need to be considered while designing these paradigms. Importantly, system
designers often deal with the design of policies which govern task partitioning and
work offloading from one computational node to others, and in such situations, they
should give importance to the following metrics:

1. Energy: Edge and fog nodes often consist of embedded devices such as wireless
access points, routers, or switches, which often have power sources in the form
of batteries. Due to the limited capacity of the batteries, system designers should
always consider if it would be energy efficient to offload some task to a particular
node, while also taking into account the computational power associated with
that node and the expected amount of computation that is required for the task
being offloaded. An important environmental benefit in this regard is that the
energy requirement of fog and edge nodes is smaller than that of cloud servers.
This means that the edge and fog nodes can use renewable energy sources for
their power requirements, leading to an overall reduction in CO2 emissions,
which shows that the edge and fog computing paradigms are also much more
eco-friendly when compared to cloud computing.

2. Cost: While migrating applications to edge and fog computing-based archi-
tectures often leads to reduced latency, improved reliability, and increased
fault tolerance, it still comes at the expense of increased cost. With thousands
of embedded computational nodes in modern edge and fog computing-based
systems, the cost is generally much higher than traditional cloud services, which
means that systems within the edge and fog computing paradigms should be cost-
efficient, to justify their development in response to improved user experience.
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3. Bandwidth: The edge and fog computing paradigms need to be designed while
considering bandwidth especially for low-cost systems which generally have
low bandwidths within the network. In the edge and fog computing paradigms,
we see a lower amount of data transmission whenever a larger amount of data
is processed closer to the edge since no data needs to reach the remote cloud
server. However, the distributed nature of the system can often increase the
number of transmissions within the system, especially in co-operative systems
that rely heavily on inter-node communication. Therefore, system designers can
appreciate these major factors that influence bandwidth consumption and can
organize their system accordingly.

6 Summary and Conclusions

With the recent advances within the domain of IIoT, people have started to observe
strong trends that indicate rapid growth in the number of smart devices connected to
IIoT networks and this growth cannot be supported by traditional cloud computing
platforms. In response to this, edge and fog computing systems have emerged as
important frameworks that have the potential to support the growing demands of
automation in different industrial settings. As these paradigms are inherently dis-
tributed in nature, their resources are distributed along the edges of the network. This
in turn leads to reduced latency and improved reliability of services associated with
edge and fog computing-based systems. Through this chapter, we have described
the fundamentals of the edge and fog computing paradigms while comprehensively
exploring the benefits offered by these systems over the traditional cloud-based
platforms. Furthermore, the chapter discusses several industrial applications for
both edge and fog computing through an in-depth analysis of proposed system
architectures for the different industrial use cases. With several supporting case
studies and experiments explained in the chapter, we practically demonstrate the
superiority of these computing paradigms and build a strong case for the adoption of
these paradigms in modern industrial systems. Finally, we present the major issues
and challenges faced by these paradigms, along with some plausible solutions which
serve as future research directions.
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Leveraging Edge Computing for Mobile
Augmented Reality

Sarah M. Lehman and Chiu C. Tan

1 Introduction

Augmented reality (AR) is the insertion of virtual content into a view of the real
world based on environmental context. The virtual content may take the form
of characters, textures, or labels, and is dynamically updated based on the user’s
location, viewing direction, behavior, and other contextual data. The virtual content
utilized in AR systems is traditionally visual in nature, but may be supplemented
with auditory and haptic feedback as well.

AR systems differ from virtual reality (VR) and mixed reality (MR) systems
in several key ways. Virtual reality systems seek to replace the physical world
completely with virtual content, while augmented reality inserts virtual content
into the real world. The range from augmented to mixed reality is a sliding scale;
an application which simply places a virtual character on a tabletop would be
considered augmented reality, whereas an application which identifies a plethora of
grocery and kitchen items and displays possible recipes could be considered mixed
reality. While the difference between AR and MR systems is one of degrees, for the
purposes of this chapter, we will focus on augmented reality systems.

Augmented reality has made great impacts in recent years in both research
and commercial domains, such as education [3, 10, 17], tourism [11, 13, 25, 56],
entertainment [46, 58], healthcare [7, 20, 24, 27, 41], and manufacturing [19, 38, 57].
Contemporary platforms for AR systems are as varied as the systems themselves;
smartphones and tablets are popular tools for AR, but alternative platforms such as
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head-mounted displays (HMDs) like the Microsoft HoloLens,1 and Google Glass,2

and augmented windshields for smart vehicles3 are also gaining popularity. This
wider availability of low-cost AR-enabled hardware has encouraged market growth
for AR systems with global profits of 6.1 billion USD in 2016. As the cost of
hardware decreases and the availability of development tools increases, this profit is
predicted to grow to an estimated 18.8 billion USD in 2020.4

As AR systems increase in prevalence and popularity, the security risks of such
systems must also be considered. There are several points of an AR system that are
vulnerable to different kinds of attacks. Attackers could target user authentication
or input data collection, compromising how the system extracts and prepares data
for processing. They could also target the actual processing of the data itself by
constructing system inputs in such a way that forces the application to produce
a result that is both unexpected to the developer and beneficial to the attacker.
Finally, the attacker could target the output of the application, either to interfere
with outputs from other applications or to compromise the user’s interactions with
their environment. These attacks can be mitigated when the AR system is moved to
the edge, thanks to expanded processing resources and data storage capabilities on
edge servers. However, when moving operations to the edge, an AR system must
first and foremost be able to guarantee low end-to-end latency in order to preserve a
high quality user experience. Understanding how user experience can be measured,
which system metrics impact it, and to what degree, is key to designing an effective
AR system. Ensuring that a system meets these requirements while also providing
a high level of security is even more important.

The rest of the chapter is organized as follows. First, we provide an background
of augmented reality research and development, introducing the AR processing
pipeline. Next, we discuss the security implications for AR systems at large, includ-
ing examples of specific vulnerabilities within each phase of the AR processing
pipeline. Then, we give a brief overview of research efforts focused on moving AR
systems to the network edge as well as the metrics for evaluating them, followed
by an exploration of the security issues for AR at the edge. We wrap up with a
discussion of open problems in this research space, and present our conclusions.

2 Background of AR Systems

The fundamental requirement for an augmented reality system is the ability to sense
and respond to changes in the user’s environment and behavior, typically via the

1https://www.microsoft.com/en-us/hololens.
2https://www.google.com/glass/start/.
3https://www.motorauthority.com/news/1120806_hyundai-turns-the-windshield-into-an-
augmented-reality-nav-system.
4https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/.
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(a) (b)

Fig. 1 App architectures when using (a) AR libraries or (b) computer vision/machine learning
libraries

delivery of visual or auditory cues to the user. Because of this, AR systems rely
on live data feeds from various sensors, such as the camera, microphone, GPS, and
more. The exact implementation for processing these data feeds depends on the type
of underlying library being utilized. For systems built with specialized AR libraries
like ARCore5 and Vuforia6 (Fig. 1a), the library acts as an intermediary between the
core application logic and the target device sensors (such as the camera). The devel-
oper is responsible for initializing the library instance with object files representing
the targets to be recognized, and then subscribing to event listeners that will be
raised when a target is located. This ease of integration comes with a price, however,
as developers are limited to only those functions which the library publisher
explicitly supports. On the other hand, developers using more general-purpose
libraries such as OpenCV7and TensorFlow8 (Fig. 1b) can exert more fine-grained
control over the functionality of their systems, executing any operations for which
they are able to collect data and train models. However, the downside is that these
operations are remarkably resource-intensive, making them difficult to integrate
efficiently into resource-constrained systems.

The pipeline of operations for an AR system is split in three major phases, as
demonstrated by Fig. 2. The first phase is the input phase, during which the AR
device is responsible for collecting data from the on-board sensors, including visual
data from the camera, audio from the microphone, and environmental data such as
location, ambient light levels, and more. The second phase is the transformation
phase, during which the data that has been collected is utilized in a computer vision
or machine learning operation, such as object recognition. This phase includes pre-
processing the data to get it ready for the operation, performing the operation, and

5https://developers.google.com/ar/.
6https://www.vuforia.com.
7https://opencv.org.
8https://www.tensorflow.org.
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Fig. 2 AR processing pipeline

then aggregating the results as appropriate. The final phase is the output phase,
during which the transformation results are used to generate and display virtual
content, such as labels, sounds, or haptic feedback.

There are many types of computer vision and machine learning operations that
can be utilized during the transformation phase of an AR system. Classification
refers to the act of determining the subject of a given image. The drawing of
bounding boxes refers to, not only identifying objects of interest within an image,
but denoting the space they embody by drawing a box around it. Pose estimation
looks at the posture of an entity within an image, such as a human subject, and
recreates the posture of the underlying skeleton. Face detection identifies features
of human faces within a given image in order to judge location, expression, gaze
direction, and more. Target tracking refers to the monitoring of an actor’s position
as they move through a scene, including behind other objects or actors in that scene.
All of these operations and more can be utilized by AR systems to identify users’
context and place responsive content into the environment.

3 Security Risks of AR

Due to the richness of the data collected by AR applications, they are subject to a
number of security and privacy vulnerabilities that non-AR applications do not face.
These vulnerabilities stem from the always-on nature of the microphone and camera
sensors in combination with atypical input methods, such as voice commands or
physical gestures, and environmental or context data, such as GPS location and
accelerometer readings.

Each phase of the AR pipeline is subject to different types of attack. Attacks
during the input phase can target user authentication processes or collection of data
from system sensors or remote servers. Attacks during the transformation phase
can focus on how this collected data is pre-processed, manipulate or compromise
the actual computer vision operation being performed, or contaminate the returned
result. Finally, attacks during the output phase can target the content being generated
or the placement and styling of that content in the system display. We will look at
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examples of different kinds of attacks in each of these phases, and wrap up with a
quick discussion of other concerns in AR security beyond the processing pipeline.

3.1 Input Phase Attacks

3.1.1 User Authentication

AR systems rely on gestures and voice commands to maintain an immersive
experience in a system without traditional input operations, such as typing on
a keyboard or clicking with a mouse. Systems utilizing these non-traditional
input methods rely on user authentication to identify valid inputs and filter out
environmental noise, ensuring that subsequent system operations are germane to the
current user. Proper user authentication can prevent both the creation of incorrect or
unnecessary virtual content, as well as incorrect blocking of desired content.

For voice commands, a third-party attacker can control a victim’s system through
a number of methods. For instance, inaudible or unintelligible commands can be
played through speakers; alternatively, a specific user’s voice can be recorded or
synthesized from recordings and then played back. The typical defense against
attacks like this is called liveness detection, in which the presence of a valid human
user is determined before executing a command. One particular solution presented
in [52] suggested the use of contact microphones in AR headsets to compare waves
travelling through the speaker’s head with those received through the air at the
headset microphone.

Physical gestures are also vulnerable in AR systems. Because gestures are
readily visible by observers, simply making a given gesture is insufficient for
user authentication. The exact manner in which the gesture is completed must be
analyzed to distinguish between users. An example of this is in [53], in which the
IMU sensors of an AR headset are used to monitor and analyze a user’s walking
patterns. The user’s gait is then utilized as a unique identifier for authentication.
Gestures can also be used when pairing devices among multiple users [18, 54],
though extra steps must be taken to prevent man-in-the-middle attacks during the
pairing process.

However, voice- and gesture-based authentication are only really viable with
wearable sensors. For more pervasive AR environments, such as augmented wind-
screens in smart cars, the display is part of the environment and accessible to all
persons in the immediate area. Therefore, performing authentication becomes a
more delicate process than attempting to validate a single user in isolation.

3.1.2 Data Collection

After the AR system has authenticated the user, it can start collecting data. However,
once data is collected by an application, any control that the user has over that data
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is gone. Therefore, limiting a malicious application’s ability to collect data in the
first place becomes a major concern. For example, a retail application which places
virtual furniture in the user’s home would have a justifiable need to recognize planes,
but might also recognize text in the background without indicating as such to the
user. The primary method of defending against this is to rely on the underlying
operating system or commercial libraries to enforce data access limitations. For
example, instead of allowing applications to subscribe directly to device sensors
such as the camera and perform operations on the raw frame, the operating system
could expose access to abstracted objects such as skeletons, faces, and hands [22]. In
this way, applications have access to the objects and associated meta data that they
truly need without accessing raw frames from the camera feed. Similarly, wrappers
could be implemented for popular computer vision libraries such as OpenCV to
enforce a customizable level of sanitation upon frames being processed by a given
application [23].

There are also situations in which data access is based, not on the operation being
performed, but on the user’s environment and the objects therein. Data collection
in this situation can be managed by incorporating access control policies directly
into the user’s environment. One potential approach is to modify a device’s camera
subsystem directly to blank out sections of a 2D plane encompassed by a particular
boundary, or to build a trusted application into the OS to support the identification
of 3D objects to avoid [47, 48]. Another approach would be to instrument individual
spaces or objects within the environment to broadcast their own privacy preferences,
either with physical markers or wireless signals [50]. Once a privacy policy has been
received and the source has been verified, whether as a broadcast or from one of the
device’s own subsystems, it is the operating system’s responsibility to enforce the
necessary response logic, and sanitize the raw sensor data according to the received
policy.

Unfortunately, collecting data from system sensors and nearby devices is not the
source of information that must be secured. AR systems are also subject to side-
channel attacks, in which externally observable data such as power consumption
or network traffic patterns are used to infer private information about the user.
For example, it is possible to infer a user’s location based on patterns in network
traffic when downloading AR data [39]. Additionally, end users typically have a
poor understanding of what data is being collected and how it is being processed
[12, 14], making them more likely to agree to privacy-invading permissions or to
overlook suspicious activity from malicious applications.

However, the primary drawback to these solutions is that they require users to
provide explicit privacy preferences, or for devices and environments to establish
and broadcast individualized security policies. Additionally, application developers
are expected to monitor their own resource consumption or network traffic patterns
to combat side-channel attacks. There is no coordination between users, devices,
or environments, and as such, privacy and security decisions must be made on a
case-by-case basis.
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3.2 Transformation Phase Attacks

Attacks during the transformation phase are largely focused on compromising the
internal computer vision logic of the system, usually by modifying inputs either
to produce an unexpected output or to prevent recognition entirely. Computer
vision modules have long been known to suffer under less than ideal environmental
conditions such as low light, inclement weather, or oblique viewing angles. How-
ever, research has also shown that image classification and other computer vision
operations are also vulnerable to small changes in input images [15, 16, 32, 40].
These minor changes or “perturbations”, so small they’re practically imperceptible
to humans, are interpreted by the system in such a way that the underlying
vision module can return unexpected results, either preventing the desired result
or producing a result more profitable to the attacker.

Additionally, system inputs can be manipulated to prevent recognition altogether.
For example, certain patches can be attached to people’s clothing in order to
prevent surveillance systems from recognizing them as human [55]. Alternatively,
clear bubble-like masks can be worn,9 distorting the facial features enough to fool
facial recognition software but still allow another person to infer facial expression.
“Phantom” glasses also exist,10 which reflect visible and infrared light back at
cameras to block out the area of the face.

Each of these attacks requires the adversary to have some degree of knowledge
of the underlying computer vision model in order to exploit it. Therefore, traditional
solutions typically involve making some change to the underlying model that
negates the attacker’s knowledge of that model. However, updating computer vision
components on distributed devices such as those found in AR systems can be
expensive and unreliable, especially when the devices are resource-constrained.

3.3 Output Phase Attacks

Finally, attacks during the output phase manipulate the type and styling of virtual
content being served to the user. Such attacks can be characterized in terms of who
can display content, what content can be generated, when content will be displayed,
and where content will be placed [28]. By compromising system output, attackers
can distract their victims from the real-world, make them ill from motion sickness,
or interfere with content from other trusted applications. As AR systems using head-
mounted displays or smart windscreens (such as vehicles or helmets) become more

9https://www.businessinsider.com/clothes-accessories-that-outsmart-facial-recognition-tech-
2019-10.
10https://mashable.com/review/review-reflectacles-phantom-anti-facial-recognition-technology-
glasses-frames/.
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(a) (b) (c)

Fig. 3 Examples of output attacks for AR systems. (a) Original. (b) Blocking other Apps. (c)
Blocking real world

popular, dealing with output phase attacks also becomes more important in order to
ensure user safety.

A malicious application can compromise the “who” and “what” aspects via a
number of methods. Attacks made during the transformation phase can modify the
result such that unintended content (or no content at all) is displayed. A malicious
application running on a multi-program system can display its own content on top
of the content from another application, effectively rendering that content obsolete
(Fig. 3b). If the application developers themselves are the attackers, then the “when”
and “where” aspects of system output can also be leveraged to attack the user.
Timing of content can be managed so that it is distracting or irrelevant to the
user’s current context. Content can also placed poorly, either so close to the user’s
viewpoint so as to take up most or all of the view space, or locked in place relative
to the user’s head so that she cannot turn away from it, or placed over top more
relevant real-world content such as a staircase or stop sign (Fig. 3c).

Some researchers have proposed OS-level solutions to manage output security
in AR applications. In [29, 30], the authors designed an AR-specific middle layer
between installed applications and the underlying system sensors and drivers. This
middle layer, called Arya, would be responsible for intercepting raw sensor data,
translating it to high level recognizer objects, and applying security policies to
any resulting application output. Supported policy logic includes detection of and
subsequent remediating logic for a variety of security and safety-violating situations,
such as content that moves too quickly, takes up too much of the user’s view, blocks
road signs or pedestrians while driving, and more. Application output found to be
in violation of a policy can either be modified to satisfy the policy, or blocked
altogether.

However, these defenses suffer from a number of limitations. While the concept
of an AR-specific operating system is not new, it has yet to gain sufficient traction
for commercial and research platforms. Thus, any device running solutions such
as these will be doing so on top of more commercially available operating systems,
and in doing so, incurring non-trivial amounts of processing overhead. Additionally,
output policies must also be explicitly written and applied on a frame-by-frame basis
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for pairwise combinations of apps and users. Some work has been done to pave the
way for securely sharing output in multi-user systems [31, 51], but the focus of such
work has been on pairs of interacting users rather than larger groups.

The limitations described above can be resolved by moving portions of the
AR system to the edge. In the following sections, we will describe the nature of
AR systems at the edge, the impact that moving to the edge has on AR system
requirements, and finally, how the edge can help resolve these security concerns.

4 AR Security at the Edge

The architecture of an edge-enabled AR system consists of several actors, as
displayed in Fig. 4. The first is the AR device, which may be a smartphone, head-
mounted display (HMD), or other “smart” display, such as a vehicular windshield or
helmet faceplate. The AR device connects to the network through a wireless access
point or base station, which will then forward the data from the device to a server,
either there on the edge or deeper within the network.

Figure 5 shows the updated AR pipeline when offloading operations to the edge,
the most commonly offloaded operations being those in the transformation phase.
First, the input phase now includes any necessary pre-processing of the collected
data, such as downsampling an image or video clip. The AR device then forwards
the data to its associated wireless access point, which in turn forwards the data to
the edge server. The transformation phase then begins, wherein the server performs
the necessary computer vision or machine learning operations on the data, such as
object classification or pose estimation. The results of the operation are then sent
back to the wireless access point, which forwards them to the AR device. Finally,
in the output phase, the AR device processes and responds to the results of the
offloaded operation, usually by providing a visual cue to the user, such as displaying
a particular label.

Fig. 4 Example architecture of edge-enabled AR system
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Fig. 5 Modified AR pipeline when offloading to edge server. Highlighted steps are optional,
depending on division of labor between edge server and local AR device

4.1 System Requirements for AR at the Edge

Once an AR system has been moved to the edge, its system requirements change
slightly. Having access to additional storage and compute resources on the edge
frees up local resources on the AR device, but also introduces latency while waiting
for offloaded operations to return their results. It is up to the system designers to
decide which operations to offload, how often, and with what data.

As discussed above, the transformation phase is the portion of the pipeline that is
traditionally offloaded to the edge. This is because the computer vision or machine
learning operation of choice can more or less be treated as a black box, providing
results for a given set of inputs independent of anything else happening on the AR
device. However, the exact data exchanged before and after offloading differs based
on the type of operation being executed. Some systems may offload video clips,
individual frames, or simply sets of features extracted from the local data stream.
The results that the server returns could be labels, coordinates, or even encoded
object files representing the content to be displayed. The degree to which data is
pre-processed before offloading, or the virtual content is generated after receiving
a result (designated as highlighted steps in Fig. 5) are variable depending on the
system being implemented and the availability of resources on the AR device itself.

4.2 Quality of Augmentation at the Edge

When moving an AR system to the edge, it is important to keep in mind how the
new system architecture will affect user experience, as the ultimate success of an AR
system is tightly correlated with user experience and perception. It is not enough for
the system to perform with low resource consumption or for the machine learning
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(a) (b) (c)

Fig. 6 Examples of poor user experience in AR systems. (a) Original. (b) Placement error (lag).
(c) Recognition error

components to achieve high precision and recall. The system must combine these
features into a sum greater than its parts; it must not only correctly identify context,
but also produce the correct output in the correct manner in a timely fashion, a
characteristic that can be broadly summed up by the term quality of augmentation,
or QoA.

Low QoA has direct impacts, not only to the general appeal of a system, but also
to the physiological responses of users. Motion sickness for AR and VR systems,
also called “simulator sickness”, occurs when a user experiences different stimuli
from the system than she expects from the real world, such as recognition errors or
delays in label placement, as shown in Fig. 6. A user with simulator sickness may
experience disorientation, nausea, or vomiting. AR system designers must be very
careful, therefore, to ensure that users of their systems experience a high QoA.

4.2.1 Metrics for QoA

As important as QoA is to AR systems, it is notoriously difficult to define. While
QoA is supported by traditional system metrics such as battery drain or RAM and
CPU consumption, these data points cannot guarantee how users will ultimately
respond. Therefore, many system designers also choose to supplement traditional
system testing with more qualitative testing in the form of user studies. From
gauging simulator sickness [26] to focal length [8] to facilitating device pairing
in multi-user systems [54], gathering feedback directly from users in the form of
questionnaires and interviews has been the traditional method of gauging the quality
of a system’s user experience. However, due to their open-ended nature, user studies
are limited in their ability to provide quantitative system metrics, particularly when
evaluating systems in the wild rather than the lab [33].

Despite the nebulous nature of QoA, there are certain measurements that an
AR system designer can make to approximate it, such as measuring how quickly
content is being generated. The speed at which the system collects data, processes
it, and displays the resulting output can be measured in a number of ways, such as
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Table 1 Symbol definitions for QoA metrics

Symbol Description

p Precision; percentage of true positive predictions out of all positive predictions
made

r Recall; percentage of true positive predictions made out of all ground truth
positives

si Side length (in pixels) of the ith video frame with area s2

ψ Modeled complexity function (convex w.r.t. s2
i )

ξ Modeled accuracy function (concave w.r.t s2
i )

ci Computational complexity of calculating the ith frame

ai Analytical accuracy from calculating the ith frame

end-to-end latency [9, 35–37, 44, 45, 49], and the number of frames displayed per
second (FPS) [29, 48]. Managing these values ensures that the system can respond
in real-time to changes in the user’s behavior and environment, and are discussed in
greater detail in Sect. 4.3.

An AR system designer can also approximate QoA by measuring the accuracy of
generated content, typically in terms of intersection-over-union (IOU) [35, 45] and
mean average precision (mAP) [36, 37]. IOU is utilized often in computer vision
operations that identify specific areas of an image, such as drawing of bounding
boxes. IOU is calculated as the percentage of area shared between a ground truth
box and the predicted box, divided by the total area of those two boxes. A higher
IOU means that the predicted box overlaps and shares more area with the ground
truth box. Likewise, mAP is a common metric for computer vision operations that
focus on classification, that is, identifying the subject of an image. mAP relies on the
concepts of precision, or the rate of true positive predictions out of all predictions
made (Eq. 1), and recall, or the rate of true positive predictions out of all ground
truth positive matches (Eq. 2) (Table 1). mAP calculates the average area-under-
curve when plotting precision and recall for a set of classifications. A higher mAP
means that the system was able, not only to make predictions correctly, but to
identify a high percentage of available items.

p = T P

T P + FP
(1)

r = T P

T P + FN
(2)

4.2.2 Trade-Offs for QoA

To support better quality of augmentation, AR system designers can made certain
trade-offs in the complexity and subsequent accuracy of the internal computer
vision operations, traditionally the most resource-intensive portions of an AR
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system. Figure 6 demonstrates how imbalanced complexity and accuracy can impact
user experience. Figure 6b shows a system which, while accurate, takes so long to
compute a label that the label placement is no longer accurate to the user’s context.
Figure 6c shows a system which quickly computes and places a label, but is highly
inaccurate.

To understand the relationship of accuracy and complexity, the authors in [37]
modeled the amount of time required to perform classification on input frames
of varying sizes. They found that, for a given frame with resolution s2, the time
to complete the operation increases more quickly as the input resolution grows,
while increases in accuracy slow and then plateau. They therefore proposed Eqs. 3
and 4, which model computational complexity and accuracy as convex and concave
functions respectively with respect to the resolution of the ith video frame (Table 1).

This means that it is the developers’ responsibility to explore the impacts of
varyingly complex and accurate models to the performance of their AR systems.
For example, a simpler object detection model might be preferred for a system with
strict latency requirements, while a more complex bounding box model might be
appropriate for a system that requires highly accurate results but can tolerate some
additional latency. Ultimately, it is up to the AR system designers to make these
trade-off decisions relative to the needs of their specific systems.

ci = ψ(s2
i ) (3)

ai = ξ(s2
i ) (4)

4.3 Impacts to Service Latency

The principal problem for AR systems trying to maintain QoA at the edge is
service latency. Augmented reality systems have strict latency restrictions in order to
maintain an immersive user experience; indeed, experts have calculated a maximum
allowable latency of only 100ms for AR operations [5, 6]. This means that the
AR system has less than a tenth of a second from the point of data collection to
process that data, calculate a result, and display virtual content according to that
result (Table 2).

4.3.1 Calculating Service Latency

For an edge-enabled AR system, service latency can be defined as the combination
of transmission latency, or the time it takes to transmit data from the AR device to
the server, and computational latency, or the time required to complete the offloaded
operation. This is reflected in Eq. 5.

Transmission latency only applies to systems with offloaded operations, and
is directly influenced by the amount of data being transported. (Because we are
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Table 2 Symbol definitions for latency metrics

Symbol Description

Ls Service latency

Lt
i Transmission latency for the ith frame

Lc
i Computational latency for the ith frame on a shared, multi-user server

β Number of bits per pixel

Ri Average wireless data rate for the ith user

N Collection of possible edge servers

M Collection of users

σi,n Binary flag representing whether the ith user has been assigned to the nth server

ci Computational complexity of processing the ith frame

fn Set of available computational resources on the nth server

assuming the target server to be on the edge, we do not consider the impact of current
traffic loads within the core network to transmission time.) Equation 6 demonstrates
how transmission latency can be calculated from a system level (rather than wireless
link performance level) where β is the number of bits per pixel, s2

i is the number
of pixels in the ith frame with a side length of s, and Ri is the ith user’s average
wireless data rate [37].

Computational latency is heavily influenced, not only by the amount of
data, but also the complexity of the operation being performed and the amount
of resources available on the server when sharing that server with other users.
Equation 7 demonstrates how this type of latency can be calculated where ci is
the computational complexity of the ith task, and where, for the nth server, σi,n is
a binary variable representing whether the ith user is assigned to this server, fn is
the total set of available computational resources, and fn∑

m∈M σm,n
is the amount of

resources allocated to each user [37].

Ls = Lt + Lc (5)

Lt
i = βs2

i

Ri

(6)

Lc
i =
∑

n∈N

σi,n

ci

fn

∑

m∈M

σm,n (7)

4.3.2 Trade-Offs to Manage Latency

The degree to which service latency impacts a given AR system depends on the
nature of the system and the portions of the AR pipeline being offloaded (shown
in Fig. 5). For resource constrained devices such as smartphones and HMDs, the
operations to be performed might be too resource-intensive to complete locally. For
other devices such as “smart” vehicles with augmented windscreens, the operations
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to be performed might require more data than an individual device can collect on its
own. Therefore, AR system designers must selectively offload certain operations
either to preserve local resources or to aggregate and process larger data sets.
Regardless of the purpose of the offload, the system must still respect the appropriate
latency restrictions to maintain QoA for users.

While network traffic conditions and server workloads are not always under one’s
control, the amount of data being transmitted and the operation being performed
are. To explore the implication of this, the authors in [37] modeled the impacts to
latency and accuracy when offloading object classification operations for models of
various sizes. They observed that decreasing either the resolution of the image being
transmitted or the complexity of the model being executed dramatically decreased
latency, while incurring only a minor cost to accuracy [36]. When increasing
the resolution of the image being transmitted, they observed that computational
latency increased at a gently exponential rate while accuracy tapered off after
an initial increase. This led the authors to conclude that latency and accuracy
of AR operations can be dynamically managed in response to changing network
conditions, assuming the client application has a variety of input image sizes and
computational models to choose from.

However, decreasing the frame size or complexity of the computational model
has a downside, since both of these factors directly impact the system’s quality
of augmentation. Indiscriminately decreasing frame size or computational model
complexity may decrease latency, but it will also negatively impact the accuracy
of computation results. However, by selectively modifying these parameters to
perform controlled approximate augmentation, clients can strike a balance between
managing latency and preserving QoA.

Assuming that service latency is appropriately managed, moving an AR system
to the edge gives that system access to increased computational resources, larger
data sets aggregated from multiple devices, and the ability to make collaborative
decisions between neighboring devices. These features can provide a number of
security benefits to the various stages of the AR processing pipeline. The following
sections discuss these implications in greater detail.

4.4 Securing AR Systems Using the Edge

4.4.1 Input Phase Defenses

User Authentication Recall from Sect. 3.1.1 that one of the major vulnerabilities
for the input phase of AR systems is authenticating the system user. Typical
user authentication solutions, such as those discussed previously, assume that a
user authenticates herself with a partner using wearable sensors and coordinating
protocols. An example of this is the headset-pairing protocol proposed in [54],
which suggests the use of gestures to create a secure communications channel
directly between devices. The devices wirelessly exchange public keys, and using
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those keys, display abstract shapes in the air to be traced by the corresponding
partner. If each user observes their partner to trace the same shape, then the pairing
is successful.

However, approaches like these are limited when attempting to authenticate
individual users within a larger, co-located group. Multiple users within the
same physical space can create authentication interference, such as microphones
collecting overlapping voice commands, or cameras collecting conflicting gestures.
There is also logical ambiguity regarding connections to make between users;
the system must be able to support a wide variety of communication permissions
within the group, such as exclusive partner pairs, groups open to accepting new
members, and closed groups with no option for outsiders to join in. The edge can
help with these authentication problems by becoming the intermediary for user
authentication in group settings, as demonstrated by the sample system in Fig. 7. The
edge server would take responsibility for managing repositories of public keys and
group membership information, mediating connections with new group members,
and supplying short-term keys for use in direct communication among the group.

Data Collection Moving an AR system to the edge can also help control the
collection of environmental data in order to preserve user and bystander privacy, as
discussed in Sect. 3.1.2. In particular, edge servers are a highly advantageous place
to aggregate privacy preference data from multiple users in the same geographic
area, and to generate privacy policies dynamically based on environmental context
in that area. One particular solution suggests the use of specific privacy markers
to prevent recording of restricted 2D surfaces and 3D objects [48]. The original
implementation for this solution required the authors to update their device’s

(a) (b)

Fig. 7 Potential uses for edge servers in (a) output policy generation and (b) display reconciliation
between multiple users
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hardware access layer (HAL) in order to intercept frames from the camera. This
approach allowed them to sanitize each frame before applications running at less
privileged layers could access them, but also incurred a significant performance hit.
It is possible that, instead of modifying the device’s HAL, an intermediate layer
could have been created to offload the frame sanitation operation to a trusted edge
server. Doing so would also allow for the aggregation of privacy markers submitted
by multiple users, or for a system administrator to update the types of markers that
the system can recognize without having to push an update to individual devices.

Instead of markers, systems can also leverage user- or administrator-provided
policies to manage data collection. Systems such as I-Pic [1] require devices
to broadcast privacy policies over BLE to prevent image capture in undesirable
contexts. I-Pic assumes that each user-device pair is proactive in learning and
following the privacy preferences of those nearby. Therefore, each device is
responsible for storing its own local cache of privacy policies for users in the
immediate area, and enforcing those policies on its captured images. Other solutions
such as PrivacyManager [34] utilize data gathered from the environment (such as
location, time of day, or ambient light and sound levels) to determine whether it is
appropriate for a camera to record. Unlike I-Pic, PrivacyManager assumes that each
user-device pair is untrusted, and so relies on a central authority such as a system
administrator to generate and distribute policies. For both of these systems, moving
data storage and policy generation to the edge is highly beneficial. Devices using I-
Pic could store their privacy preferences on the edge server, without having to keep
local copies. Devices using PrivacyManager could aggregate contextual information
at the server, and use it to dynamically update and distribute policies.

4.4.2 Transformation Phase Defenses

Defenses against attacks conducted during the transformation phase of the AR
pipeline borrow heavily from advancements in adversarial machine learning. Tradi-
tional defenses in this area fall into three broad categories, as described in [4]. The
first option is using modified input for training and testing. This is considered
to be a “brute force” strategy, employing approaches such as compressing the
input images, adding random padding, and even training with actual adversarial
examples. While these kinds of defenses can help with adversarial inputs, they
can also hinder correct processing of valid inputs, since any changes to the input
images would be applied regardless of the validity of the image in question. The
second possibility is adding onto the computational model, usually in the form of
a secondary network trained especially either to generate new adversarial inputs or
reverse perturbations applied to existing ones. Unfortunately, the impact to service
latency incurred by adding secondary networks to a computational model makes
this option less attractive for AR systems.

The third option for defense is modifying the computational model itself, such
as updating weights or loss functions within the network to reflect adversarial inputs,
inserting a masking layer to the network before the classification layer, or adding a
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sub-network trained specifically on classification inputs. One notable example of
this kind of defense is called defensive distillation [42]. This approach builds on the
idea of “distilling” a neural network [21], or using the probability vectors generated
by a pre-trained network to train a second, smaller network. This second network
can then be executed on a smaller, more resource-constrained device, which is an
ideal feature for AR systems. Defensive distillation uses these probability vectors,
not to compress the network into a smaller architecture, but to train a new instance of
the same network architecture. Training this new network instance, not on discrete
labeled inputs, but on probability vectors for a group of labels, gives the network a
richer understanding of the trained data sets, making it more robust and resilient to
adversarial inputs.

The approaches discussed here are intended to be applied to the computer vision
model before the parent application is deployed for use in the real world. However,
utilizing the edge for AR systems makes these defenses, particularly modifications
to an active computational model, much more feasible. Not only do edge servers
provide additional processing and storage resources to AR devices, but they also
provide a single point of deployment for an AR system’s computational model.
When changes to a model must be made, or a model must be replaced completely,
it is simpler and faster to deploy the updated model to an edge server than to push
that model to every subscribing AR device.

4.4.3 Output Phase Defenses

Recall from Sect. 3.3 that output attacks against AR systems are described in terms
of who generates the content, what content is being generated, and when and where
that content will be displayed. In these situations, the malicious entity may be the
current application, a background application, or another user. Regardless of the
source, the appropriateness of any given system output is relative to the user’s
current context, as output generated in an empty room will pose no threat while the
same output on a crowded street may obscure crucial real-world content. Solutions
like Arya [29, 30] utilize output control policies imposed at the OS-level to restrict
the conditions under which output can be displayed. However, this system makes
several simplifying assumptions, including manual creation of output policies and
trustworthiness of fellow system users. There is no consideration for dynamically
changing policies or for untrusted fellow users.

Moving output policy creation to the edge allows a system to aggregate and
leverage data collected by many devices in order to determine the appropriate
conditions to write into the policy. Reference [2] builds on Arya to do this,
leveraging reinforcement learning on edge nodes to generate output policies dynam-
ically. However, this solution relies on simulations of application use in order to
generate policy rules, and provides no discussion on how to verify or improve the
performance of that policy in the real-world. An alternative to this solution might
be similar to Fig. 7a, which requires applications to register their output preferences
with a designated edge server, which consolidates and assigns display parameters to
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each one. Alternatively, the same application being executed on multiple devices
could maintain a cache of context data at the edge, such as weather conditions
or network loads, that would subsequently impact how to display data for each
subscribing user.

Regardless of how the output policy is generated, additional consideration needs
to be paid when dealing with multi-user systems. In [31], the authors conducted
a series of user studies investigating how subjects in a multi-user AR system
interact with the environment and each other. They observed that users were quick
to generate or manipulate content to negatively impact their partners, including
modifying each other’s appearance, setting up virtual barriers to block real world
content, and hiding behind virtual content to obscure their own actions. Similarly, in
[43], the authors observed a strong sense of ownership between users and the virtual
content within their immediate space, along with adverse responses to other users
modifying that content or space. In [51], the authors present several case studies
of both co-located and geographically dispersed users, sharing content using both
opt-out and opt-in defaults. Because these interactions are happening in real-time,
this presents a unique opportunity for edge-computing to act as an intermediary
between devices, as demonstrated in Fig. 7b. Instead of devices pairing up and
sending content directly to each other, they can send their intended actions to an
edge server, which reconciles the master view of the shared content, and delivers a
sanitized view to each subscribing user. The physical proximity of an edge server
to the users provides greatly improved latency over a central cloud server, allowing
the system to maintain real-time reactions.

5 Analysis and Discussion

Today’s commercial libraries for augmented reality do not currently provide explicit
support for moving an AR system to the network edge. Some libraries are beginning
to offer remote support in specific areas such as cloud-synced geo-located “anchors”
for multi-user AR systems,11 or leveraging cloud-based resources to execute more
intensive versions of local operations.12 However, the developer has no control over
where these data are being stored or operations are being executed, which means that
any system utilizing these functions is subject to all of the latency costs imposed by
the cloud.

To explore what kind of latency costs a developer might expect when adopting
offloaded operations with these commercial platforms, we conducted a series of
tests comparing service latency when performing a given operation both locally and
remotely. Because there are no commercially available AR libraries that explicitly
support the edge, these offloaded operations are instead being executed on the

11https://developers.google.com/ar/develop/java/cloud-anchors/overview-android.
12https://firebase.google.com/docs/ml-kit/android/label-images.

https://developers.google.com/ar/develop/java/cloud-anchors/overview-android
https://firebase.google.com/docs/ml-kit/android/label-images
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cloud. However, should these library publishers offer edge support in the future, the
performance of such offloaded operations can only improve. Leveraging the results
of our experiments and the current state of commercial library offers, we conclude
this section with a list of open problems for AR research and development at the
network edge.

5.1 Experimental Results Comparing Local and Remote
Processing

To conduct our experiments, we focused on two common computer vision tasks in
augmented reality: text recognition and image labeling. For each computer vision
task, we developed two “flavors” of a smartphone-based AR application - one
which performed the task locally, and one which performed the task remotely. We
then piped in frames from a pre-recorded video, so that each application would be
operating on the same inputs. The CV module would operate on a single frame
at a time; once the current frame completed, a new frame from the video stream
would be requested, meaning slower modules received frames more infrequently.
We conducted our experiments using a Samsung Galaxy GS9 smartphone running
Android 10. The logic for both the local and remote computer vision operations
were implemented using Firebase’s Machine Learning Toolkit (ML Kit).13

We explored the impact of offloading a given operation based on the complexity
and quality of the input video frame. For each application, we designed a collection
of 20 second-long video clips with increasing complexity (volume of text, number
of subjects shown on screen respectively) and quality of the video. Details of the
video files used for the text recognition and image labeling apps can be found in
Tables 3 and 4 respectively.

As each video frame was fed into the app’s CV module, we measured the amount
of time the system took to process the frame in milliseconds. Recall that some
experts have calculated a maximum allowable latency of only 100ms for truly
dynamic and immersive AR operations [5, 6]. With this in mind, we examined
the time required to perform each selected operation (text recognition and image

Table 3 System statistics for input videos used in text recognition. All videos had same
resolution (1920 x 1080 px) and same running time (20 s)

Volume of text Video quality
Lvl 1 Lvl 2 Lvl 3 Lvl 4 Lvl 5 Low Med High Lossless

File size 8 MB 11.6 MB 10.7 MB 12.3 MB 12.7 MB 500 KB 1 MB 8 MB 8 MB

CRF 0 0 0 0 0 51 37 23 0

# of Frames 608 614 607 613 610 608 608 608 608

13https://firebase.google.com/docs/ml-kit.

https://firebase.google.com/docs/ml-kit
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Table 4 System statistics for input videos used in image labeling. All videos had same resolution
(1920 x 1080 px) and same running time (20 s)

Number of subjects Video quality
1 2 3 4 5 Low Med High Lossless

File size 7.6 MB 13 MB 12.9 MB 16.5 MB 12.3 MB 518 KB 1 MB 7.6 MB 7.6 MB

CRF 0 0 0 0 0 51 37 23 0

# of Frames 606 609 615 610 608 606 606 606 606

(a) (b)

Fig. 8 Service latency when performing local and remote text recognition with (a) increasing
volume of text and (b) increasing levels of video quality

labeling) on the appropriate video set, the results of which are shown in Figs. 8
and 9 respectively.

From these results, we can see a clear and significant impact to service latency
when offloading a given operation, with minor improvements if the frame content
is less complex or of low quality. With offloaded operations taking an average of
600 to 1000 ms to complete, relying on offloaded operations is a non-option for AR
applications attempting to maintain a 100ms cap on service latency. However, the
potential is there for AR library publishers to integrate support for the edge into their
existing products and services. Performing an operation locally will always be faster
than offloading, but for certain tasks, the increased compute and storage resources
offered by the edge cannot be replicated or replaced on a standalone device. For
those situations, integrating edge-support into these popular libraries can only be an
improvement for overall system performance.
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Fig. 9 Service latency when performing local and remote image labeling with (a) increasing
volume of subjects and (b) increasing levels of video quality

5.2 Impacts of Security Measures on QoA

As our AR systems inevitably grow beyond our standalone devices, the importance
of security measures and their impact on system performance cannot be ignored.
However, while the latency costs of offloading computer vision operations remain
high, developers will be unlikely to add to that burden by incorporating security
operations as well. Therefore, developers must be sensitive to the trade-off between
latency and security, and manage it carefully according to their systems’ needs.

One benefit of the edge that developers should be sure to leverage is the
centralized storage offered by edge nodes. Edge node storage allows developers
to keep large collections of images, labels, 3D models, privacy and access control
policies, system state data, and computer vision modules without having to store
them locally on users’ devices. State data in particular can be aggregated at a high
level to make better-informed decisions than a single device could make on its own.
By relying on centralized storage, developers can keep the local versions of their
applications small and lightweight, freeing up local resources for additional security
operations.

Developers can also take advantage of the edge for redundant, multi-tiered
operations with increasing levels of precision. An example of this is exhibited by
Firebase’s ML Kit, which recognizes 400 image labels when executing locally,
but over 10,000 labels when executing in the cloud.14 By using a more coarse-
grained, lightweight model on the local device, and offloading to a more robust and

14https://firebase.google.com/docs/ml-kit/label-images.

https://firebase.google.com/docs/ml-kit/label-images
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precise model on the edge when necessary, developers can decrease the number of
operations offloaded while still maintaining high levels of precision when necessary.
Ultimately, it is the developer’s responsibility to balance the security concerns of an
AR system with QoA and user experience. As AR systems start to support multiple
users and multiple applications in particular, this balance will become even more
important.

5.3 Open Problems

In closing, we will discuss a selection of open problems that should be explored
for AR systems security at the edge. The first is the development of more holistic
measurements for quality of augmentation (QoA). Traditional metrics for QoA
such as resource consumption, frame rate, precision, and recall have been borrowed
from software engineering and computer vision domains, and can help approximate
QoA in standalone systems. However, these metrics fail to capture the impact of
service latency and the subsequent trade-offs in computational accuracy that occur
when moving AR systems to the edge. Therefore, we must develop new, more
holistic metrics to reflect the changing nature of edge-enabled AR systems.

The second is the addition of edge support to commercial AR-focused
libraries and APIs. There are many AR-focused libraries and APIs which already
support the abstraction of common computer vision operations. It makes sense,
therefore, for them to also include some support for offloading these operations to
the edge. Some APIs, such as Firebase’s ML Kit (discussed above), allow a devel-
oper to designate whether an operation should be performed locally or remotely,
but do not allow the developer to stipulate what server to use. While adding such
support to commercial libraries can improve overall system performance, there are
risks involved, namely in controlling accidental data leakage. Any research efforts
in this area would have to take this into consideration as well.

The third is for improved user- and policy-driven I/O security for multi-user
and multi-application systems. Current approaches in AR system security focus
primarily on single-user, single-application systems, with some works focusing on
pair-based interactions between users. However, the capabilities of edge-enabled
systems for increased processing, data aggregation, and collaboration between
devices pave the way for systems supporting true multi-user, multi-application
systems. It is easy to envision, for example, smart vehicles collecting data and
collaborating in real-time to build wide-scale views of roadway conditions, and
displaying multiple types of output on their augmented windshields, such as weather
alerts, traffic updates, route suggestions, and other information. It therefore becomes
crucial for these platforms to have methods of reconciling or sandboxing the input
and output operations of these applications, to prevent them from compromising or
interfering with each other.
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6 Conclusions

In this chapter, we have introduced the basic concepts of AR systems and their
related security concerns, as well as the implications of moving such system
operations to the edge. We presented a number of potential impacts that edge
computing can make on AR system security, including user authentication, data
collection, transformation, and output verification. We also presented three open
problems for future work: holistic metrics for quality of augmentation, edge support
in commercial AR-focused libraries, and improved I/O security for multi-user-
multi-app systems.
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Towards a Security-Aware Deployment of
Data Streaming Applications in Fog
Computing

Gabriele Russo Russo, Valeria Cardellini, Francesco Lo Presti,
and Matteo Nardelli

1 Introduction

In the recent few years we have witnessed a worldwide explosion of the volume
of daily produced data, fostered by the spread of sensors, wearable devices, and
smartphones capable of collecting data about their surrounding environment and
our everyday life. Today, all this information plays a key role in our society, and has
become a strategical asset for institutions, companies, and scientists. The analysis of
collected data allows to extract information useful for supporting decision-making,
e.g., gathering new insights by identifying patterns or making predictions based on
past observations.

In this context, the ability of efficiently collecting, storing, and analyzing data
has become a strategic advantage. Nevertheless, the aforementioned growth has
made data processing challenging from a computational point of view, and led to
the development of efficient algorithms, tools, and frameworks for dealing with data
(e.g., the Map-Reduce paradigm, and associated frameworks like Apache Hadoop).

Special interest has been devoted to real-time data analytics, which requires
systems able to process data as soon as they are collected. This is critical in
many application domains, e.g., in network attack detection, where monitoring
information about the incoming traffic should be processed with very low latency. In
this context, a primary role is played by distributed Data Stream Processing (DSP)
systems, which allow to process unbounded sequences of data (i.e., streams),
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flowing at very high rates, exploiting a multitude of computing nodes to spread
the computation.

In the effort to further reduce processing latency with respect to data producers
and consumers, which are often located at the edge of the network, recently DSP
systems have been shifted from traditional cloud data centers to fog comput-
ing environments. By deploying applications in such geographically distributed
infrastructures, latency reduction is achieved at the cost of handling increased
heterogeneity, constrained computational and network resources, and a larger
number of security concerns. These challenges especially impact the application
placement problem, that is the problem of determining the set of computing nodes
where application components are deployed and executed. This choice is indeed
critical for achieving the expected Quality-of-Service (QoS), while minimizing
application operating costs.

The placement problem for DSP applications has been widely investigated in
literature, in the context of both traditional cloud scenarios, and geographically dis-
tributed environments (e.g., fog computing), exploiting a variety of methodologies.
Existing solutions take into account performance-oriented characterizations of both
the application and the computing infrastructure, in order to determine a placement
scheme that optimizes one or more QoS metrics (e.g., system response time, or
deployment monetary cost). Unfortunately, most the existing approaches neglect the
security- and privacy-related concerns that inevitably arise when DSP applications
are deployed in fog-like environments, where they may rely on a mixture of wired
and wireless network links, and computing resources characterized by different
software/hardware configurations, possibly acquired from multiple providers.

In this chapter, to overcome the limitations of existing placement optimization
solutions, we present a simple yet quite general approach to account security related
aspects. To this end, we introduce a formalism to specify application requirements
and describe infrastructure features and capabilities. We also define associated
metrics that capture how well different placement solutions match the specified
application requirements, and allow us then to seamlessly integrate security related
requirements in the overall optimization scheme. Our contributions are as follows.

• We present a formalism for specifying security-related application requirements.
The idea is to represent application requirements as a forest of AND-OR
requirements trees, each capturing a specific security requirement, e.g., privacy,
isolation. At the same time we show how this formalism can be used to derive
several requirement satisfaction metrics.

• We introduce the notion of operator and data stream configurations which define
the set of security related configurations which satisfy the application require-
ments. This is paralleled by the notion of configurations that the infrastructure
computing nodes and data links can support. The concept of configurations is
the basis around which stakeholders can reason about application requirements
and infrastructure characteristics and lay out the foundation of our deployment
problem formulation.
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• Finally, we integrate the aforementioned requirements, configurations and met-
rics in the placement optimization problem, which is formulated as Integer Linear
Programming (ILP), and also accounts for other application non-functional
requirements, e.g., response time and cost, and present the Security-Aware DSP
Placement (SDP) problem. Focusing on a realistic case study, we show how SDP
allows us to compute trade-offs between performance-based metrics, deployment
cost, and security-related requirements satisfaction.

1.1 Organization of the Chapter

In the next section, we will provide an overview of the basic concepts of DSP, and
the challenges faced when deploying this kind of applications in fog environments,
especially as regards security concerns. In Sect. 3, we present a formalism for
specifying the application security-related requirements for deployment. In Sect. 4,
we explain how we model the application placement problem, including the
application and infrastructure model, and the associated QoS and cost metrics. The
resulting problem formulation is presented in Sect. 5, along with an illustrative
example of how it can be applied. We discuss the benefits and limitations of the
presented approach in Sect. 6, and conclude in Sect. 7.

2 Background

In this section, we provide an overview of the main concepts, challenges, and
research directions related to DSP, and the deployment of DSP applications in
the fog environment. First, we describe in Sect. 2.1 the basic concepts and main
challenges related to the deployment of DSP applications. Then, in Sect. 2.2, we
focus on research works that address the placement of DSP applications. Finally, in
Sect. 2.3, we describe works that deal with security and privacy issues in the DSP
domain.

2.1 Data Stream Processing: Basic Concepts and Challenges

A DSP application consists of a network of processing elements, called operators,
connected by data streams. A DSP application can be represented as a directed
acyclic graph (DAG), with data sources, operators, and final consumers as vertices,
and streams as edges. A stream is an unbounded sequence of data items (e.g., event,
tuple). Each operator is a self-contained processing element, that continuously
receives incoming streams, applies a transformation on them, ranging from a simple
operation (e.g., filtering, aggregation) to something more complex (e.g., applying a
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machine learning algorithm to detect some patterns), and generates new outgoing
streams. Each data source (e.g., an IoT sensor or a message queue) generates one or
more streams that feed the DSP application; differently from operators, data sources
have no incoming streams. A final consumer (or sink) is a final receiver of the
application streams; it can push data on a message queue, forward information to
a persistent storage, or trigger the execution of some external services. Differently
from operators, sinks have no outgoing streams.

An example of a DSP application related to the smart health domain, e.g., [2], is
shown in Fig. 1. Data are collected by sensors on users’ devices (e.g., smartphones,
wrist-worn wearable devices), and sent for analysis to a DSP application. The
application may carry out several kinds of processing on the data at the same time.
In the example we consider, the application is used both for (i) detecting anomalies
in the vital parameters monitored (e.g., skin temperature, heartbeat, and oxygen
saturation in the blood) and send notifications to medical staff, and (ii) creating
aggregated statistics. Users’ devices push data into a message queue system, which
in turn sends data as streams to the DSP system for processing. Before entering the
DSP system, data can also be integrated (e.g., to merge the incoming streams into
a single flow) and pre-processed (e.g., to detect duplicates). In the application DAG
we can identify one source of the DSP application, four operators, and two sinks,
the latter corresponding to the data consumers (medical staff and storage system).
The DSP operators perform different tasks that range from aggregating data using
summary statistics (the upper path in the DAG) to detecting any anomaly in the data
streams (the lower path in the DAG). Although simple, this DSP application is an
example of edge-native applications [56], which can take advantage of one or more
of the benefits that arise from the fog/edge deployment: bandwidth scalability, low
latency, enhanced privacy, and improved resiliency to WAN network failures.

DSP applications are typically deployed on either locally distributed clusters or
centralized cloud data centers, which are often distant from data sources. However,
pushing fast-rate data streams from sources to distant computing resources can
exacerbate the load on the Internet infrastructure and introduce excessive delays
experienced by DSP application users. Moreover, considering that both data sources
and consumers are usually located at the network edges, a solution that allows to
improve scalability and reduce network delays lies in deploying DSP applications

Fig. 1 Example of a smart health application
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not only on cloud data centers but also on edge/fog computing resources. Further-
more, the deployment on edge/fog resources can also enable users to selectively
control the disclosure of sensitive information (e.g., vital parameters monitored by
wrist-worn devices as in the example shown in Fig. 1).

In such a distributed scenario, a relevant problem consists in determining the
computing nodes that should host and execute each operator of a DSP application,
aiming to optimize some QoS attributes. This problem is known in literature as the
operator placement problem (or scheduling problem).

Figure 2 illustrates a possible placement of the DSP application shown in Fig. 1
on the computing infrastructure. Multiple operators can also be co-located on the
same computing node (e.g., op2 and op4).

Besides the initial placement of the DSP operators, the deployment of DSP
applications can also be changed at run-time, that is during the application exe-
cution, so to self-adapt it with respect to workload changes and dynamism of the
edge/fog computing environment (e.g., resource constraints, network constraints
in term of latency and bandwidth, resources that join or leave the system). To
this end, different approaches can be applied, ranging from the exploitation of
performance-enhancing techniques (e.g., operator replication by means of elastic
scale-out and scale-in operations, other types of dynamic transformation of the
DAG) to the run-time adaptation of the application placement. The latter can be
achieved at different grains, by placing either all the DSP operators from scratch
(in this case, the placement problem is solved at regular intervals, so to update the
operator location) or only a subset of operators by relying on operator migration
between computing resources. Determining the operator replication degree is often
addressed in literature as an independent and orthogonal decision with respect to
the operator placement, but in [12] we present a problem formulation that jointly
optimizes the replication and placement of DSP applications. In this chapter, we
assume that the operator replication degree has been set at application design

Fig. 2 Illustration of the placement problem for a DSP application
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time; so, we address the initial operator placement that is, how to place to DSP
operators on the computing resources at the application start. To this end, in Sect. 2.2
we focus our literature analysis on those works that address the placement of
DSP applications in the fog/edge scenario, or more generally in a geo-distributed
computing environment. As regards research works dealing with the run-time
self-adaptive control of DSP applications, we refer the interested reader to some
surveys [20, 51] that classify and review them.

2.2 Placement of DSP Applications in the Fog

The DSP placement problem has been widely investigated in literature under
different modeling assumptions and optimization goals (e.g., [21, 62, 63]). We
review the related works organizing them along three main dimensions, that capture
one or more related facets of the problem: (1) placement goals; (2) methodologies
used to define the application placement; and (3) characteristics of the distributed
computing infrastructure managed by the placement solution. For a deeper analysis
of the state of the art, we refer the interested reader to extensive surveys, that analyze
in details the research works addressing the placement problem not only in the
context of DSP applications but also for other kinds of applications deployed in
the fog/edge environment [7, 8, 11, 62].

Placement Goals Existing works consider two main classes of problems: con-
straint satisfaction and objective function optimization. In a constraint satisfaction
problem, we are interested in identifying a deployment solution among all the
feasible ones that satisfy some given requirements (e.g., application performance).
For example, Thoma et al. [63] propose an approach to restrict the set of feasible
deployment by improving the expressiveness of constraints. In most cases, not all
feasible deployment result in desirable application performance; therefore, most
of the existing solutions optimize (i.e., minimize or maximize) a single-objective
function or a multiple objective function. A single-objective optimization considers
a specific and well-defined QoS metric (e.g., response time, throughput, network
usage, cost). A multi-objective optimization (or Pareto optimization) aims to
combine different, possibly conflicting QoS attributes and to find the set of optimal
solutions (i.e., those lying on the so-called Pareto frontier). The existing solutions
aim at optimizing a diversity of objectives, such as to minimize the application
response time (e.g., [6, 19, 34, 52]), the inter-node traffic (e.g., [4, 22, 27, 66, 67]), the
network usage (e.g., [48, 50]), or a generic cost function that can comprise different
QoS metrics (e.g., [5, 13, 21, 38, 53, 65]).

Methodologies The most popular methodologies used to address the operator
placement problem include mathematical programming (e.g. [5, 13, 21]), graph-
theoretic approaches (e.g., [23, 35]), greedy approaches (e.g., [4, 26, 33, 36, 52, 66]),
meta-heuristics (e.g., genetic algorithms [60], local search [17, 61], tabu search and
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simulated annealing [61], steepest descent method and tabu search [31]), as well as
custom heuristics (e.g., [19, 22, 40, 46, 48, 53]).

The operator placement problem, formulated as optimization problem that takes
into account the heterogeneity of application requirements and infrastructural
resources, turns out to be an NP-hard problem [13]. Therefore, many research
efforts focus on applying different methodologies that can solve efficiently the
DSP placement problem within a feasible amount of time, even for large problem
instances.

Computing Infrastructure Most of the existing solutions have been designed for
a clustered environment, where network latencies are almost zero (e.g. [26, 34, 52]).
Although interesting, these approaches might not be suitable for geo-distributed
environments. Several works indirectly consider the network contribution by mini-
mizing the amount of data exchanged between computing nodes (e.g., [4, 21–23,
32, 66]). For example, Eidenbenz et al. [21] propose a heuristic that minimizes
processing and transfer cost, but it works only on resources with uniform capacity.
Relying on a greedy best-fit heuristic, Aniello et al. [4] and Xu et al. [66] propose
algorithms that minimize the inter-node traffic. Other works explicitly take into
account network latencies, thus representing more suitable solutions to operate in
a geo-distributed DSP system (e.g., [6, 13, 19, 29, 40, 48, 50]). Pietzuch et al. [48]
and Rizou et al. [50] minimize the network usage, that is the amount of data that
traverses the network at a given instant.

So far, only a limited number of works are specifically designed for placing DSP
applications in fog/edge computing environments. SpanEdge [53] allows to specify
which operators should be placed as close as possible to the data sources, while
Arkian et al. [5] propose an integer non-linear formulation; to reduce resolution
time, they linearize the problem; nevertheless, also linear formulations may suffer
from scalability issues [40]. The work in [38] presents a Pareto-efficient algorithm
to tackle the operator placement problem considering both the latency and energy
consumption. Khare et al. [33] present an approach that first transforms any arbitrary
DAG into an approximate set of linear chains, then uses a data-driven latency
prediction model for co-located linear chains to drive a greedy heuristic, which
determines the operator placement with the goal to minimize the maximum latency
of all paths in the DAG. Peng at al. [47] jointly target the problems of DSP
operator placement and replication in an edge scenario by proposing a two-stage
approach that first employs a genetic algorithm for finding a solution and then uses
a bottleneck-analysis based on the system queuing model to refine it.

The combination of cloud and edge resources have been also explored. For
example, Ghosh et al. [28] propose a genetic algorithm meta-heuristic and show that
their approach allows to achieve lower latency and more frequent feasible solutions
than placing only on Cloud resources. Da Silva Vieth et al. [59] propose strategies
that first decompose the application DAG, which is a series-parallel one, and then
place its operators in a latency-aware manner. However, all these proposals focus on
reducing the application latency, without taking into account any concern related to
privacy and security.
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A few edge-based stream processing systems support processing on fog/edge
resources with the goal of reducing the need for costly data transfers. These systems
include Cloud services such as AWS IoT Greengrass, Google Cloud IoT Edge,
Microsoft Azure IoT, and research prototypes (e.g., Frontier [44]); however, they
do not appear to place the DSP application over fog/edge resources by taking
into account their peculiarities. On the other hand, this goal is pursed by some
research efforts that extend existing open-source data stream processing systems
such as Apache Storm (e.g., [4, 40, 53, 66]), mainly to show the feasibility of their
approaches.

2.3 Security and Privacy in DSP

In many DSP applications, data streams carry privacy-sensitive information about
users, whose confidentiality must be obviously protected throughout processing.
Other applications, while not dealing with privacy-sensitive data, may carry out
safety-critical tasks based on sensor-provided information (e.g., anomaly detection
in a manufacturing system), where the integrity of the involved data streams must
be guaranteed to avoid unintended (and possibly dangerous) application behaviors.

Guaranteeing confidentiality and integrity of data streams has become a serious
challenge, especially since the availability of computing resources at the edge of
the network fostered the interest for deploying DSP applications in geographically
distributed infrastructures, in the aim of reducing latency. The enforcement of
security and privacy policies is difficult in these environments, where the intrinsic
heterogeneity, and thus the involvement of different standards and communication
stacks, does not allow the application of traditional security countermeasures. This
problem is particularly evident nowadays as data analytics often meet IoT scenarios,
where streams originate from a multitude of potentially untrusted, distributed
devices, and the need for security policy enforcement becomes critical [58].

Security and privacy issues have received limited attention in the field of
distributed DSP systems so far, with research efforts being mainly devoted to
application-level issues, performance, and fault-tolerance. Nonetheless, some effort
has been spent investigating how to integrate privacy-preservation and access
control [55] techniques in DSP systems, in order to guarantee that only authorized
access to privacy-sensitive data is allowed.

Linder and Meier [37] extend the Borealis [1] streaming engine with OxR-
BAC (Owner-extended Role Based Access Control), which aims at protecting
the system against improper release of information, improper modification of
information, and denial of service attacks. Ng et al. [43] propose a framework for
privacy-preservation in data stream processing, built around the two principles of
limited disclosure and limited collection of information. They design a hierarchy-
based policy model and a framework to enforce privacy protection policies, and
hence limit access and operation on data streams. Carminati et al. [10, 15, 16] apply
Role Based Access Control [54] to DSP, relying on secure operators in order to
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replace application operators with security-aware versions. After presenting their
ACStream framework in [10], in [15] they propose a query-rewriting middleware
that does not target a specific underlying DSP framework.

Nehme et al. [41, 42] focus on the continuous access control enforcement for
data streams, observing that, given the long-running nature of DSP systems, the
content of the streamed data and its privacy-sensitivity may change, hence access
control policies may need to be adapted dynamically as a consequence. In particular,
in [42] they introduce the concept of a security punctuation for enforcing access
control, that is a special tuple inserted directly into the data stream, allowing the
data provider to attach security “metadata” to the stream. In [41], they describe
FENCE, a framework for enhancing DSP systems with continuous access control
enforcement through security punctuations, with limited runtime overhead.

Anh and Datta [3] focus on the problem of preserving privacy of data while
stream processing is outsourced to the cloud. They present StreamForce, a frame-
work for enforcing access control policies in presence of an untrusted cloud
provider. Thoma et al. [64] propose PolyStream, a framework that allows users to
cryptographically enforce access controls over streaming data on top of an unmod-
ified DSP system. PolyStream relies on a novel use of security punctuations that
enables flexible, online policy management and key distribution, with significant
overhead reduction. Schilling et al. [57] focus on large-scale distributed Complex
Event Processing systems, proposing access control consolidation mechanisms in
order to ensure the privacy of information even over multiple processing steps in a
multi-domain, large-scale application.

A different point of view on privacy-preservation is offered by Le Quoc
et al. [49]. They aim at preserving users privacy, while still supporting both
information high-utility and low-latency processing. Specifically, they achieve this
goal by blending together two different approaches, namely, sampling (used for
approximate computation) and randomized response (used for privacy-preserving
analytics).

Recently, Burkhalter et al. [9] focused on the special class of applications
dealing with time series data. They propose TimeCrypt, which provides scalable,
real-time analytics over large volumes of encrypted time series data, by allowing
users to define expressive data access and privacy policies, and enforcing them
cryptographically.

The number of works that deal with system- or network-level security aspects
in the context of DSP is significantly smaller. Fisher and Hancke [24] consider the
network-level challenges of transmitting privacy-sensitive data streams from sensors
to the processing servers. In particular, they investigate the use of the Datagram
Transport Layer Security protocol, compared with the more popular Transport Layer
Security protocol. Havet et al. [30] propose SecureStreams, a reactive framework
that combines combines a high-level dataflow programming model with low-level
Intel software guard extensions (SGX) in order to guarantee privacy and integrity
of the processed data. Park et al. [45] focus on the scenario of running stream
analytics on untrusted, resource-constrained devices at the edge of the network.
They present StreamBox-TZ, a stream analytics engine that offers strong data
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security and verifiable results, by isolating computation in a Trusted Execution
Environment (TEE). In particular, StreamBox-TZ relies on a data plane designed
and optimized for a TEE based on ARM TrustZone.

A different approach is proposed by Chaturvedi and Simmhan [18], who apply
Moving Target Defense (MTD) [68] techniques to protect a DSP platform; the
key idea is to introduce system configuration variability at run-time so that any
prior information available to an attacker becomes hardily usable. In particular,
they implement several MTD mechanisms (e.g., migrating operators periodically
over available computing nodes, altering the used port numbers, modifying the
application graph by means of “dummy” operators), and show the feasibility of
the approach by integrating them in Apache Storm.

At a higher level of abstraction, independently of the specific DSP framework
in use and the possibly associated privacy-preservation mechanisms, security and
privacy concerns also impact the choices made for initially deploying DSP appli-
cations over distributed infrastructures, i.e., the placement problem. As explained
above, this problem has been extensively studied, but so far only performance and
cost aspects have been considered in the context of DSP. Security-aware deployment
and scheduling strategies have been proposed instead targeting other kinds of fog
applications (e.g., [25] and [58]). In this chapter, we aim to fill the existing gap
regarding the DSP placement problem, and the consideration of privacy and security
for stream analytics applications in the fog. Although we specifically focus on the
initial placement problem, the approach we will present can be applied for updating
the application deployment at run-time as well, e.g., following a MTD strategy as
suggested in [18].

3 Modeling Security-Related Requirements

Traditional strategies for deploying DSP application over distributed infrastructures
aim at optimizing one or more performance metrics, e.g., application response time,
or throughput. Some of them also account for the monetary cost of the computing
resources chosen for running the application, assuming, e.g., a typical pay-as-you-
go cost model. The recent trend of shifting the data processing applications towards
the edge of the network, closer to the data producers, often forces DSP applications
to be deployed in a less “trusted” environment, compared, e.g., to cloud data centers.
In this new scenario, application deployment strategies should therefore account for
security-related aspects in addition to the other well-known functional and non-
functional metrics and stakeholders should be able to specify a set of requirements
and/or objectives that involve these additional non-functional aspects.

Unfortunately, although several solutions have been proposed in literature, how
stakeholders should express these requirements in a standardized way remains an
open question. In the remainder of this section, we describe a simple yet powerful
technique to formalize and organize the requirements of a DSP application with
respect to the underlying computing and network infrastructure by which it is
hosted.
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3.1 Requirement Categories and Objectives

For a DSP application we might need to specify its security, privacy, or reliability
requirements, in addition to commonly adopted performance and cost objectives.
The application requirements could include a broad range of different aspects,
including software or network configuration, hardware capabilities, location of
the computing resources. Formally, we assume that application requirements are
organized into different Requirement Categories (RCs), denoting with �RC the set
of all the considered categories. An application may hence exhibit requirements
related to one or more RCs. Clearly, the relative relevance of each RC depends
on the specific application. Whilst some RCs may contain critical requirements for
application operation, other RCs may simply represent application “preferences”
with respect to its running environment. In the following, we will show how the
different importance of each requirement will impact the optimization problem we
present.

With each Requirement Category ω, we associate a set of Requirement Objectives
(ROs), denoted as �ω

RO . ROs represent specific properties of the computing
infrastructure or the network (e.g., “type of operating system”, “available encryption
libraries”, “wired/wireless network connectivity”). While RCs are mere abstrac-
tions, representing a collection of similar or related requirements, ROs represent
concrete properties which can be evaluated in order to assess whether, e.g., a certain
computing node satisfies the application needs. Specifically, given a RO ρ, we
denote the set of values ρ can be associated with as Vρ . For example, the “type
of operating system” RO might be associated with the values “Linux”, “Android”,
“Windows”, “Other”. Throughout this chapter, without loss of generality, we will
assume that Vρ is a finite set. We also find useful to define the set of the ROs
comprised by all the RCs, that is �RO =⋃ω �ω

RO , ∀ω ∈ �RC .

3.1.1 Example

Figure 3 depicts a simple hierarchy of Requirement Categories and Objectives
as a tree. We organize requirements into three categories: Runtime Environment,
Physical Security, and Network. Each RC is associated with one or more ROs. The
leaf nodes of the tree reported in the figure contain all the possible values for each
RO.

3.2 Requirements Forest

In our approach, application requirements are expressed by means of AND-OR
trees, which are widely adopted to represent security policies or requirements
(e.g., in [25, 39]). AND-OR trees allow to reduce the overall requirements to
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Requirement Categories

Isolation

Runtime
Environment

Container

None VM

Multi-tenancy

Yes No

Software config.

Operating
System

Linux

Windows Android

Other

Physical Security

Connectivity

Wired

Wireless

Network

Encrypted traffic

Yes No

IPv6

Yes No

Fig. 3 Example of a hierarchy of requirement categories and requirement objectives

Requirement Category

Operator / Stream

RO 1

Value A Value B

RO 2

Value C Value D

...

qA qB qC (1)

AND

OR

Fig. 4 Example of the AND-OR tree used to represent application requirements with respect
to a requirement category. Requirements associated with different operators (or streams) and
requirements involving different requirement objectives for the same application component are
in an AND relationship. Whenever the application specifies multiple accepted options for the same
RO, possibly providing a preference value for each option, the corresponding nodes are in an OR
relationship

the conjunctions and disjunctions of “sub-requirements” (e.g., requirements coming
from specific application components).

In particular, we expect an AND-OR tree Tω to be specified by the application for
each category of interest ω ∈ �RC . Henceforth, the overall application requirements
can be formally expressed as a forest F = {Tω : ∀ ω ∈ �RC}. The structure of
a generic tree Tω is illustrated in Fig. 4. As shown in the figure, the root node
of each tree corresponds to the RC ω itself. The next level of the tree contains
nodes associated with application components (i.e., operators or streams). Each of
these nodes is the root of a subtree that represents the requirements of that specific
operator (or stream). Clearly, in order to satisfy the application requirements, the
requirements of every component must be satisfied. Therefore, each node at this
level of the tree is in conjunction with the others.

Looking at the next level of the tree, the i-th operator (or stream) may be
associated with one or more child nodes representing ROs for which a requirement is
specified. We denote the set of ROs that characterize the deployment requirements
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of operator i as �
ω,i
RO . Recalling that each RO ρ takes values in a finite set Vρ ,

specifying a requirement for ρ means identifying a subset of values Ṽ ⊆ Vρ .
Indeed, in our tree-based representation, RO nodes have one or more child nodes,
each corresponding to a value v ∈ Vρ that allows to satisfy the requirement. These
nodes are leaf nodes of the tree.

We further enrich our formalism by allowing leaf nodes to be associated with an
optional preference value qi

v ∈ (0, 1], which is a measure of how much v ∈ Vρ

satisfies the requirement of i (i.e., qi
v = 1 means that v completely satisfies

the requirement, whilst 0 < qi
v < 1 means that v is a feasible choice for the

application, but with a smaller degree of satisfaction). The preference specification
is optional. Wherever the preference value is not provided, complete satisfaction of
the requirement is assumed (i.e., qi

v = 1). Analogously, for the values v ∈ Vρ not
appearing in the tree, which thus do not satisfy the application requirements, we will
assume the preference value to be zero.

3.2.1 Example

With respect to the reference DSP application depicted in Fig. 1, we show in Fig. 5
an example of the requirements that might be specified for the application. As
explained, within the considered application DAG, some components are critical,
because they (i) deal with privacy-sensitive information about users, and (ii) are
responsible for detecting and reporting potential users’ health diseases. Therefore,
we expect application requirements to focus on these critical operators and streams.

For example, op1 and op2, which analyze users’ data looking for anomalies, may
require software isolation, by running either in a software container or a virtual
machine. Moreover, the application may require to have those operators deployed
in a dedicated node. Specifically, according to the example of Fig. 5a, op1 requires
a dedicated node, but also allows for deployment in a multi-tenant node, with a
preference value smaller than 1; op2 instead strictly requires to run in a dedicated
node.

Requirements can also be specified for data streams (i.e., edges of the application
DAG), imposing restrictions on the network links across which the streams can flow.
Looking at Fig. 5b, we see that in the example the stream from the source to the first
operator requires a network link that supports IPv6. Furthermore, all the streams in
the path from the source to the first sink require data to be encrypted when traversing
the network.

4 DSP Application Placement Modeling

Determining the placement of a DSP application means identifying, within the
available computing infrastructure, the nodes where operators must be deployed and
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Isolation

op1

Runtime Env.

VM Container

Multi-tenancy

No Yes

op2

Runtime Env.

VM Container

Multi-tenancy

No

1 1 1 0.9 1 1 1

(a)

Network

src–op1

Encrypted traffic

Yes

IPv6

Yes

op1–op2

Encrypted traffic

Yes

op2–sink1

Encrypted traffic

Yes

(b)

Fig. 5 Example of requirements for the reference DSP applications

executed. This choice has clearly a major impact on application performance, cost,
reliability, and security, as the available nodes may (i) be equipped with different
amounts of computing resources, (ii) provide different hardware or software
capabilities, and (iii) be connected to each other through different network links.

Our aim is to present a linear programming formulation for determining the
optimal placement of a DSP application, which takes into account performance,
cost, and security metrics. To this end, in this section we will present our model
of both the application and the computing infrastructure, and we will introduce the
QoS metrics we want to optimize.

4.1 System Model

In this section, we describe the system model we consider. In particular, in
Sect. 4.1.1, we present how DSP applications are modeled within our optimization
framework. In Sect. 4.1.2, a model of the computing infrastructure, which hosts the
applications, is introduced.
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4.1.1 Application Model

We represent a DSP application as a labeled directed acyclic graph (DAG) Gdsp =
(Vdsp, Edsp). The nodes in Vdsp represent the application operators as well as
the data sources and sinks (i.e., nodes with no incoming and no outgoing link,
respectively). The edges in Edsp represent the data streams that flow between nodes.

We associate each node and edge in the application graph with various non-
functional attributes. Specifically, for each operator i, we specify: μi , the average
number of data units the operator can process per unit of time, on the reference
processor;1 σi , the selectivity of the operator (i.e., the average number of data units
emitted by the operator per input data unit); Resi , the amount of resources required
for its execution. For the sake of simplicity, we assume Resi to be a scalar value,
representing, e.g., the number of CPU cores used by the operator. Our formulation
can be easily generalized to cope with a vector of required resources, including, e.g.,
the amount of memory needed for execution. Similarly, we characterize the stream
exchanged from operator i to j , (i, j) ∈ Edsp, with its average data rate λ(i,j), and
the average size (in bytes) of the data units belonging to the stream, b(i,j).

Moreover, we associate the application with its requirements forest F, defined in
the previous section. Each operator F induces a set of feasible configurations, i.e.,
the set of configurations which satisfy the operator security requirements. Formally,
we define a configuration φ as a vector φ = (vρ1, vρ2 , . . . , vρN

)
, where vρi

∈ Vρi
is

a value associated with the RO ρi , and {ρ1, ρ2, . . . , ρN } ⊆ �RO .
For each operator i, i ∈ Vdsp, the set of feasible configuration is defined as:

�i =
{
(
vρ1 , vρ2 , . . .

) : vρk
∈ Vρk

,∀ρk ∈
⋃

ω

�
ω,i
RO : qi

vρk
> 0

}

(1)

where �
ω,i
RO is the set of ROs in the RC ω that characterizes the deployment of i, and

qi
vρk

> 0 identifies feasible values for ρ with respect to the operator requirements.
An analogous definition can be given for �(i,j), the set of feasible configurations
for every data stream (i, j) ∈ Edsp.

4.1.2 Computing Infrastructure Model

The computing infrastructure hosting DSP applications comprises a set of com-
puting nodes (being them powerful servers in data centers, or resource-constrained
devices at the edge), and the network resources that interconnect them. Computing
and network resources can be represented as a labeled, fully connected, directed

1Operator processing speed depends on the actual software/hardware architecture where it is
executed. To this end, we define the operator speed with respect to a reference implementation
on a reference architecture.
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graph Gres = (Vres, Eres). Vertices in Vres represent the distributed computing
nodes, whereas the edges in Eres represent the logical links between nodes, which
result by the underlying physical network paths and routing strategies, not modeled
at our level of abstraction. We also model edges of the type (u, u), which capture
local connectivity between operators placed in the same node u.

We characterize each node u ∈ Vres by means of numerical attributes: Resu, the
amount of computing resources available at u; cu, the monetary cost per unit of time
associated with deploying an operator in the node; S

φ
u , the processing speedup with

respect to a reference processor, when using configuration φ.
Each node u ∈ Vres is also associated with a set of node configurations,

�u. The concept of node configuration is analogous to the concept of operator
configuration, introduced above. We recall that a configuration φ is a vector φ =(
vρ1 , vρ2 , . . . , vρN

)
, where vρi

∈ Vρi
is a value associated with the RO ρi , and

{ρ1, ρ2, . . . , ρN } ⊆ �RO . The set of configurations available on u depends on the
hardware/software capabilities of u; it can be defined as:

�u ⊆ {(vρ1 , vρ2 , . . .
) : ∀vρk

∈ V u
ρk

,∀ρk ∈ �u
RO

}
(2)

where V u
ρ ⊆ Vρ is the set of values for the RO ρ supported by u, and �u

RO ⊆ �RO

is the subset of ROs characterizing the node u. Note that in the definition above the
equality does not necessarily hold, as some combinations of values for different ROs
may be unfeasible in practice.

Similar definitions apply to the communication links (u, v) ∈ Eres , each being
associated with a set of configurations �(u,v), defined as:

�(u,v) ⊆
{(

vρ1 , vρ2 , . . .
) : ∀vρk

∈ V (u,v)
ρk

,∀ρk ∈ �
(u,v)
RO

}
(3)

where V
(u,v)
ρ ⊆ Vρ is the set of values for the RO ρ supported by (u, v), and

�
(u,v)
RO ⊆ �RO is the subset of ROs characterizing (u, v). Each link (u, v) and its

configurations are also described by: dφ

(u,v), the network delay between node u and v,
when using network configuration φ; B(u,v), the network capacity available between

u and v; c(u,v), the monetary cost per unit of data exchanged on the link; α
φ

(u,v), a
coefficient that captures any data transmission overhead incurred when using link
configuration φ (e.g., data encryption can lead to sending extra information).

4.2 DSP Placement Model

The DSP placement problem consists in determining a suitable mapping between
the DSP graph Gdsp and the resource graph Gres , as illustrated in Fig. 2. It is often
the case that some operators, especially sources and sinks, are pinned, that is their
placement is fixed. Without loss of generality, we assume that the other operators can
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be placed on any node of the computing infrastructure, provided that the application
requirements for that operator can be satisfied when running in that node.

We can conveniently model the DSP placement problem with binary variables
x

φ
i,u, i ∈ Vdsp, u ∈ Vres , φ ∈ �u. The variable x

φ
i,u has value 1 if operator i is

deployed on node u using configuration φ, and zero otherwise. A correct placement
must deploy an operator on one and only one computing node; this condition can
be guaranteed requiring that

∑
u

∑
φ x

φ
i,u = 1, with u ∈ Vres , i ∈ Vdsp, φ ∈ �u.

For each pinned operator ip, being ū the node it must be deployed on, clearly we

have that x
φ
ip,u = 0 for every node u �= ū. Furthermore, under some configurations

�ε
u ⊆ �u a node u becomes available for exclusive use of a single operator. We

model the choice of exclusively acquiring nodes with additional binary variables wu,
u ∈ Vres , which have value 1 if the node u is exclusively used, and zero otherwise.

We also consider binary variables associated with links, namely y
φ

(i,j),(u,v),
(i, j) ∈ Edsp, (u, v) ∈ Eres , φ ∈ �(u,v), which denotes whether the data stream
flowing from operator i to operator j traverses the network path from node u to
node v, using network configuration φ.

For short, in the following we denote by x and y the placement vectors for nodes
and edges, respectively, where x = 〈xφ

i,u〉, ∀i ∈ Vdsp, ∀u ∈ Vres , ∀φ ∈ �u and

y =
〈
y

φ

(i,j),(u,v)

〉
, ∀(i, j) ∈ Edsp, ∀(u, v) ∈ Eres , ∀φ ∈ �(u,v). Similarly, we define

the exclusive use vector w = 〈wu〉, ∀u ∈ Vres .
Note that our model does not take into account operator replication, that is

allocating multiple parallel replicas of operators to handle larger volumes of input
data. The model we present can be easily extended to consider this scenario, either
by tweaking the decision variables as in [14], or by introducing an intermediate DSP
graph representation, which contains the replicated operators, and then computing
the placement for this new graph. However, both these approaches would make the
formulation less readable, and thus we do not investigate the replication problem in
this chapter.

4.3 QoS and Cost Metrics

Placement decisions have a significant impact on both the achieved QoS and the
associated monetary deployment cost. In this section, we introduce the metrics
we are interested in optimizing, and will be used in our optimization problem
formulation. Specifically, we are interested in optimizing the trade-offs between
performance, security- and privacy-related requirements satisfaction, and deploy-
ment cost. To this end, in Sect. 4.3.1 we will consider application response time
as the reference performance metric; in Sect. 4.3.2 we will show how requirement
satisfaction metrics can be formulated; and in Sect. 4.3.3 we will define the
deployment cost metrics we will use. Note that other metrics can be easily included
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in our optimization framework, e.g., availability or network-related metrics [14]. We
do not show their formulation here because of space limitations.

4.3.1 Response Time

DSP applications are often used in latency-sensitive domains, where we are
interested in processing newly incoming data as soon as possible. For this reason, a
relevant performance metric for DSP application is response time. Given a source-
to-sink path in the application DAG, we define response time as the time it takes for
a data unit emitted by the source to reach the sink, and thus possibly producing a
result/response.

In order to formalize the above definition, we consider a source-to-sink path π =(
π1, π2, . . . , πNπ

)
, πi ∈ Vdsp. We define the application response time associated

with the path π as:

Rπ (x, y) =
πNπ∑

i=π1

Ri(x) +
Nπ−1∑

p=1

D(πp,πp+1)(y) (4)

where the first term accounts for the processing time spent at each operator in π ,
and the second term accounts for the network delay accumulated along the path. In
presence of multiple source-to-sink paths, we may also be interested in the overall
application response time R(x, y), which we define as the maximum response time
among all the paths, i.e., R(x, y) = maxπ Rπ (x, y).

The single operator response time in turn can be formulated as:

Ri(x) =
∑

u∈Vres

∑

φ∈�u

Ri(λi, S
φ
u )x

φ
i,u (5)

where Ri(λ, S) is the operator response time, evaluated with respect to the current
operator input rate λi , and processing speedup S. The total network delay along the
path π is equal to:

D(i,j)(y) =
∑

(u,v)∈Eres

∑

φ∈�(u,v)

d
φ

(u,v)y
φ

(i,j),(u,v) (6)

4.3.2 Security Requirements

Performance-related metrics are not sufficient to characterize the application QoS
in highly distributed fog-like environments. Actually, it is necessary to take
into account additional, non-functional application requirements, especially those
related to security needs. To this end, in addition to the traditionally used response
time metric, we consider a set of metrics that allow quantitatively reasoning
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about the satisfaction of application requirements. In particular, we will define
metrics of the type S

β
α (x, y), which measure the satisfaction level of (a subset of)

the application requirements, with respect to a certain deployment configuration.
All these metrics take value in [0, 1], with 1 indicating perfect matching of the
application requirements, and 0 no satisfaction at all.

Given a placement (x, y), we define an application-level satisfaction metric
S(x, y), which considers the requirements from every RC:

S(x, y) =
∏

ω∈�RC

Sω(x, y) (7)

Then, we define the satisfaction of application requirements related to RC ω ∈ �RC

as:

Sω(x, y) =
∏

i∈Vdsp

Si
ω(x) ·

∏

(i,j)∈Edsp

S(i,j)
ω (y) (8)

where Si
ω(x) measures the requirements satisfaction for operator i, and S

(i,j)
ω (y) for

data stream (i, j), with respect to ω. That is, the satisfaction of the requirements in
ω implies meeting the requirements of all the operators and all the streams. In turn,
evaluating the requirements satisfaction for an operator (or, equivalently, a stream)
with respect to the current placement x, means evaluating how much its current
configuration matches its requirements. Formally, we let φ(x, i) denote the node
configuration in use by operator i under placement x, i.e., φ(x, i) identifies the
unique φ such that, for any node u ∈ Vres , x

φ
i,u = 1. We have:

Si
ω(x) = Si

ω(φ(x, i)) (9)

Henceforth, for each operator i, we need to evaluate Si
ω(φ) in order to assess how

much a configuration φ satisfies its requirements in ω. Recalling that �
ω,i
RO denotes

the set of ROs in ω that characterize the deployment of i, which are in conjunction
with each other, we get:

Si
ω(φ) =

∏

ρ∈�
ω,i
RO

q
i,ρ
φρ

(10)

where q
i,ρ
φρ

∈ [0, 1] is the preference value assigned by operator i to φρ , and φρ is

the value that characterizes ρ in configuration φ.2

2We note that the vector φ possibly specifies a value φρ for a subset of ROs �̃RO ⊆ �RO . Thus,

with a slight abuse of notation, we assume q
i,ρ
φρ

= 0, ∀ρ �∈ �̃RO , i.e., a configuration φ cannot
satisfy requirements for any not specified RO.
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Equivalent metrics can be formulated for data streams in a similar way. We have:

S(i,j)
ω (y) = S(i,j)

ω (φ(y, (i, j))) (11)

where φ(y, (i, j)) is the unique φ such that, for any link (u, v) ∈ Eres , yφ

(i,j),(u,v) =
1. We can thus evaluate the requirement satisfaction for (i, j) under configuration
φ:

S(i,j)
ω (φ) =

∏

ρ∈�
ω,(i,j)
RO

q
(i,j),ρ
φρ

(12)

4.3.3 Deployment Cost

We model the monetary deployment cost associated with the usage of computing
and network resources. We assume a typical pay-as-you-go cost model, where the
monetary cost for each resource is proportional to its usage. In this scenario, we
define the total deployment cost for the application, per unit of time, as C(x, y,w).
It accounts for both the cost of the computing resources and the network usage, as
follows:

C(x, y,w) =
∑

u∈Vres

Cu(x,w) +
∑

(u,v)∈Eres

C(u,v)(y) (13)

The computing nodes cost Cu(x,w) in turn can be formulated as:

Cu(x,w) =
∑

φ∈�u\�ε
u

∑

i∈Vdsp

Resicux
φ
i,u + Resucuwu (14)

where the first term accounts for the cost paid when the node is not exclusively
acquired by an operator, which is proportional to Resi , the amount of resources
allocated to each operator i; the second term instead accounts for the cost paid when
the node is exclusively used by an operator, which is equivalent to paying for all the
resources provided by u, Resu.

The network usage cost is defined as:

C(u,v)(y) = c(u,v)N(u,v)(y) (15)

with N(u,v)(y) representing the amount of data exchanged through the link (u, v),
which can be computed as follows:

N(u,v)(y) =
∑

φ∈�(u,v)

∑

(i,j)∈Edsp

b(i,j)λ(i,j)α
φ

(u,v)y
φ

(i,j),(u,v) (16)
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where b(i,j)λ(i,j) represents the data rate of the stream (i, j), and α
φ

(u,v) is a
coefficient that captures any data transmission overhead incurred when using link
configuration φ.

5 Security-Aware DSP Placement Problem Formulation

When determining the placement of a DSP application, we aim at optimizing a
QoS-based function F(x, y) that involves one or more of the metrics presented in
the previous section. Moreover, we are often expected to additionally satisfy one
or more constraints, revolving around the same metrics of interest. For example, a
fixed monetary budget may be allocated for running the applications; performance-
related Service Level Objectives (SLOs) may have to be met; security requirements
of critical operators may have to be necessarily matched in order for the application
to operate.

In this work, relying on the QoS and cost metrics described above, we consider
three types of constraints, respectively related to the deployment cost, application
performance, and requirements satisfaction.

Deployment Cost Given a defined available budget Cmax , the total application
deployment cost must not exceed Cmax .

Performance We assume performance-related SLO to be defined for the applica-
tion, expressed in terms of application response time. In particular, an upper bound
Rπ

max is defined for each source-to-sink path π . Distinct paths indeed possibly carry
out processing tasks that are more or less latency-critical, and thus can be subject to
different SLOs.

Security-Related Requirements Given a specification of the application Require-
ments Forest, and the requirement satisfaction metrics defined in the previous
section, several constraints can be introduced in the deployment optimization
problem, which allow to model both “hard” and “soft” security requirements. The
generic requirement satisfaction constraint has the form:

Sβ
α (·) ≥ S

β
α,min (17)

By replacing S
β
α (·) with the appropriate concrete metric, the constraint can be

applied to a specific subset of the requirements forest. For example, by using
Sω(x, y), we can formulate a constraint on the satisfaction of the requirements in
the RC ω ∈ �RC ; using Si

ρ(φ(x, i)), we can formulate a constraint associated with
a specific operator i ∈ Vdsp, and a single RO ρ ∈ �RO ; instead, using S(x, y), the
constraint applies to the whole application requirement forest.

Furthermore, by properly setting the lower bound S
β
α,min, we can model different

kinds of requirements. If S
β
α,min = 0 and strict inequality is used, the constraint
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only prohibits using deployment solutions where configurations not accepted by
the application are used (e.g., an operator requiring a Linux-based OS cannot be
deployed in a Windows-based node); if S

β
α,min = 1 we get a hard constraint, where

every single involved requirement must be completely satisfied; if S
β
α,min ∈ (0, 1)

we get a soft constraint, where only a minimum level of satisfaction is needed, based
on the preference values assigned to the various configurations.

5.1 Problem Formulation

We formulate the Security-aware DSP Placement (SDP) problem as an Integer
Linear Programming (ILP) model as follows:

min
x,y

F(x, y)

subjectto :
Rπ

max ≥ Rπ (x, y) ∀π ∈ �dsp (18)

Cmax ≥ C(x, y,w) (19)

S̃
β
α,min ≤ S̃β

α (x, y) (20)

B(u,v) ≥ N(u,v)(y) ∀(u, v) ∈ Eres (21)

Resu ≥
∑

i∈Vdsp

∑

φ∈�u

Resix
φ
i,u ∀u ∈ Vres (22)

1 =
∑

u∈Vres

∑

φ∈�u

x
φ
i,u ∀i ∈ Vdsp (23)

∑

φ∈�u

x
φ
i,u =

∑

v∈Vres

∑

φ∈�(u,v)

y
φ

(i,j),(u,v)
∀(i,j)∈Edsp,

u∈Vres
(24)

∑

φ∈�v

x
φ
j,v =

∑

u∈Vres

∑

φ∈�(u,v)

y
φ

(i,j),(u,v)
∀(i,j)∈Edsp,

v∈Vres
(25)

wu ≥
∑

i∈Vdsp

∑

φ∈�ε
u

x
φ
i,u ∀u ∈ Vres (26)

(1 − wu)M ≥
∑

i∈Vdsp

∑

φ∈�u\�ε
u

x
φ
i,u ∀u ∈ Vres (27)

wu ∈ {0, 1} ∀u ∈ Vres

x
φ
i,u ∈ {0, 1} ∀i∈Vdsp,

u∈Vres ,
φ∈�u
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y
φ

(i,j),(u,v) ∈ {0, 1} ∀(i,j)∈Edsp,

(u,v)∈Eres ,
φ∈�(u,v)

where M � 1 is a large constant, and S̃(·) = log S(·) is used in order to obtain linear
expressions for the requirements satisfaction metrics. Constraints (18)–(20) model
the QoS- and cost-related bounds described above, where—as explained—(20) may
actually be replaced by several constraints involving different security require-
ments. Constraints (21) and (22) are capacity constraints, modeling, respectively,
the limited capacity of network links, and the limited amount of computational
resources available at nodes. Equation (23) reflects the fact that a single node and a
single configuration must be chosen for each operator. Equations (24) and (25) are
flow conservation constraints, which model the logical AND relationship between
placement variables. Constraints (26) and (27) model the relationship between
exclusive use variables and placement configurations.

It is easy to realise that SDP is a NP-hard problem. To this end, it suffices
to observe that SDP is a generalization of the optimal DSP placement problem
presented in [13], which has been shown to be NP-hard.

5.2 Example

We formulate the SDP problem for the smart health application presented in the
previous sections. The requirements for this application, described in Sect. 3, were
reported in Fig. 5. We further assume that a fixed budget Cmax is allocated for
deploying the application, and the application is expected to meet SLOs formulated
in terms of response time. Specifically, denoting as π1 the operators path from the
source to sink1, we assume π1 to have strict latency requirements, and set the
maximum response time along the path, R

π1
max , to 10 ms. For the other path, π2,

we set R
π2
max = 100 ms. Moreover, as we want none of the application requirements

to be ignored, we require S(x, y) to be strictly greater than zero.
We consider different scenarios for formulating the SDP problem, as follows:

• Scenario A: we solve SDP maximizing the satisfaction of application require-
ments, i.e., F(x, y) = S̃(x, y);

• Scenario B: we solve SDP minimizing the worst-case application response time,
i.e., F(x, y) = maxπ∈�dsp

Rπ (x, y). We also consider three cases, considering
an additional constraint on overall requirements satisfaction: (i) S(x, y) > 0;
(ii) S(x, y) ≥ 0.9; (iii) S(x, y) ≥ 0.99.

The computing infrastructure we consider for deployment is depicted in Fig. 6.
The infrastructure is composed of 15 geographically distributed computing nodes:
3 edge nodes, 4 fog nodes distributed across two micro-data centers, and 8 cloud
nodes distributed across two data centers. We assume that the application data
source is pinned on the first edge node. The operators and the sinks can be freely
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Fig. 6 Illustration of the computing infrastructure used in the example, comprising edge nodes,
fog micro-data centers, and cloud data centers

placed in any node of the infrastructure. Compared to a reference cloud node,
processing at the fog nodes is 10% slower, and 20% slower at the edge. Conversely,
cloud nodes are cheaper than those in the fog, which in turn are cheaper than edge
nodes. We assume network delay to be negligible within the same geographical
region (i.e., the same (micro-)data center). We further assume that fog and cloud
nodes support operator execution either as bare processes, or within containers
or within VMs, whereas operators cannot be deployed in edge nodes using VMs.
Moreover, we assume edge nodes cannot be acquired exclusively by a single
operator in this scenario.

Results in Scenario A In this scenario, SDP aims at maximizing the security
requirements satisfaction. To illustrate the results, we solve SDP considering
different choices for the monetary budget Cmax , namely 5, 6, 7, and 10 $/h. The
optimization results in this scenario are reported in Table 1. In Fig. 7, we show
the deployment computed by SDP for Cmax ∈ {5, 10} $/h. In all the considered
experiments, traffic encryption is enforced for all the data streams in the application.
The minimum budget Cmax = 5 $/h leads to a requirements satisfaction degree
equal to 0.9. As illustrated in Fig. 7a, in this case fog and cloud nodes are used
for deploying application operators (except for the pinned data source), with op2
running in an exclusively acquired node. Conversely, op1 is deployed in a multi-
tenant node, leading to partial requirements satisfaction. When the cost budget is
raised to 10 $/h, we can note that (i) op1 is deployed in a dedicated node, completely
satisfying its isolation requirement, (ii) the application path to sink2 is deployed in
the fog, without relying on any cloud node, and (iii) the other application path is
deployed across 3 geographical regions instead of 4 as in the previous case. The
total application response time along the two paths is thus reduced, respectively,
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Table 1 Optimization results
in Scenario A of the example

Cmax ($/h) C ($/h) Rπ1 (ms) Rπ2 (ms) S

5 4.6 9.1 6.0 0.9

6 5.9 9.1 12.0 1.0

7 6.5 9.1 9.0 1.0

10 9.7 6.1 4.0 1.0

(a) (b)

Fig. 7 Deployment computed by SDP in example Scenario A. (a) Cmax = 5 $/h. (b) Cmax =
10 $/h

from 9 ms to 6 ms and from 6 ms to 4 ms. However, the deployment cost is doubled,
from 4.6 $/h to 9.7 $/h.

In the other configurations, instead, with slightly larger allocations for Cmax , SDP
is able to perfectly match application requirements. In all the cases, the response
time along both the paths is within the SLO bound.

Results in Scenario B In this scenario we aim at minimizing the application
response time, while requiring a minimum level of requirements satisfaction, Smin.
We again consider different values for the maximum cost Cmax ∈ {5, 6, 7, 10}, and
solve SDP varying the requirements satisfaction constraint. In Table 2 we report the
optimization results, while in Fig. 8 we show the deployment computed by SDP for
two illustrative cases.

Requiring S(x, y) > 0 means that only configurations with non-zero require-
ments satisfaction can be adopted. Whatever the monetary budget, in this case
SDP computes placement solutions where requirements satisfaction is rather low.
Figure 8a shows the solution for Cmax = 5 $/h. In order to minimize latency,
differently from Scenario A, for this scenario SDP does not use cloud nodes.
Traffic encryption is only used on the “critical” path towards sink1, and only op2 is
deployed in a dedicated node, as it does not admit other configurations.

When we require S(x, y) ≥ 0.9, SDP computes solutions characterized by
higher requirements satisfaction (0.9 in all the considered settings), with negligible
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Table 2 Optimization results
in Scenario B of the example.
The case where Smin is set to
0.99 is not feasible when a
budget of 5 $/h is allocated

Cmax ($/h) Smin C ($/h) Rπ1 (ms) Rπ2 (ms) S

5 > 0 4.6 6.1 6.0 0.11

6 > 0 5.2 1.1 6.0 0.23

7 > 0 5.2 1.1 6.0 0.45

10 > 0 9.4 1.1 1.0 0.23

5 0.90 4.6 6.1 6.0 0.90

6 0.90 5.2 1.1 6.0 0.90

7 0.90 5.2 1.1 6.0 0.90

10 0.90 9.4 1.1 1.0 0.90

5 0.99 - - - -

6 0.99 5.9 6.1 6.0 1.00

7 0.99 6.5 4.1 6.0 1.00

10 0.99 9.1 2.1 4.0 1.00

(a) (b)

Fig. 8 Deployment computed by SDP in example Scenario B

impact on application response time and deployment cost. Interestingly, when we
require S(x, y) ≥ 0.99, SDP is not able to find a feasible solution if the monetary
budget is 5 $/h. Indeed, it would need to exclusively acquire more than one
computing node, and that is expensive. With a higher budget instead SDP is able
to perfectly match the application requirements. We note that this happens at the
cost of slightly higher response time, especially on the critical path π1. Figure 8b
shows the deployment determined when Cmax = 10 $/h. Again, “far” cloud nodes
are not used in this scenario. In this setting, traffic encryption is enabled for all the
data streams, and an additional fog node is exclusively acquired for deploying op1
to satisfy the security requirements.
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6 Discussion

State-of-the-art solutions for the DSP placement problem allow to effectively opti-
mize several QoS metrics, taking into account both functional and non-functional
characterizations of the application operators and the underlying computing infras-
tructure. However, when we move applications out of the traditionally used data
centers, we are forced to look at security, privacy, and data integrity concerns
as major issues. Unfortunately, existing techniques often completely neglect these
aspects.

SDP aims at overcoming this limitation by reserving a primary role to application
deployment requirements. The forest-based approach we presented for specifying
application requirements allows to easily integrate satisfaction metrics into the
placement optimization problem; moreover, it provides large flexibility for formal-
izing application needs. In particular, compared to similar works in the literature,
our approach allows—when needed—to apply different policies to different types of
requirements (e.g., to multiple RCs), and to different operators/data streams, instead
of necessarily collapsing “security” to a single numerical indicator. It is worth
observing that the requirements formalism and the associated metrics presented in
this chapter might not perfectly suit every application domain. Nevertheless, SDP
can be easily adapted to work with a different toolbox for quantitative modeling of
security aspects (e.g., a probabilistic model like that presented in [25]).

The concept of operator (data stream) and node (link) configurations we intro-
duced in SDP provides additional degrees of freedom in the placement optimization.
Compared to previous work on the topic, SDP goes beyond simply determining
a mapping from operators to computing nodes, by also identifying the specific
software configuration to be adopted for each operator. The integration of this
configuration optimization approach with existing software orchestration platforms
will be subject of further investigations, in order to have a system capable of
automatically choosing and applying necessary configuration for the deployed
application.

As noted above, some possible extensions of the presented problem formulation
were intentionally not tackled in this work, and deferred to future research. First
of all, the formulation can be easily generalized to take into account the operator
replication problem, e.g., adopting the approach used in [14]. Moreover, we have
not specifically covered here the issues related to run-time deployment adaptation,
focusing instead on the initial application placement. Nonetheless, adaptation
overhead metrics can be readily introduced in SDP, e.g., following our previous
work [12].
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7 Conclusion

In this chapter, we looked at how security aspects impact the placement problem
for DSP applications. The recent trend of shifting data analytics services from
traditionally used cloud data centers to fog computing environments, in order to
reduce network latency between applications and data sources, forces us to deal
with a broader range of security and privacy issues.

We presented an approach, based on a forest of AND-OR trees, for specifying
additional non-functional application requirements, which are hardily captured by
existing techniques for placement optimization. Relying on this formalism, we also
defined a set of metrics that allow to quantitatively reason about requirements
satisfaction, especially as regards security aspects. We included these metrics in the
ILP-based SDP problem, which determines the optimal DSP application placement
according to several QoS constraints. By means of an illustrative case study of
a smart health application in the fog, we provided insights about the trade-offs
between performance, cost, and security computed by SDP. Our approach provides
great flexibility for specifying requirements, as well as optimization objectives and
constraints. We pointed out some open research directions, especially as regards
the integration of SDP with existing DSP frameworks. As future work, we plan to
investigate this direction, by complementing our modeling effort with experimental
validations, where concrete cybersecurity issues must be fitted within SDP.
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Blockchain of Finite-Lifetime Blocks for
Edge-IoT Applications

Shravan Garlapati

1 Introduction

The Internet of Things (IoT) industry continues to grow rapidly, and it is forecasted
that, by 2030, at least 50 billion devices will have internet connectivity [1]. IoT
devices and sensors generate, process and exchange huge amounts of safety-critical
and privacy-sensitive data and hence the security of these devices and data are a
major concern. Considering the explosive number of devices, it is not a simple
task to address issues in security, privacy and data integrity. To be specific, many
of the state-of-the art security solutions are centralized and they may not fit well
for IoT due to the massive scale of the generated data, single point of failure
and many-to-one nature of the traffic. To overcome these issues, contrary to the
traditional centralized approaches, numerous recent research works proposed the
use of decentralized approaches such as Blockchain [2–5].

Blockchain is a peer-to-peer (P2P) distributed system that offers improved
security and privacy of data [6]. In the last decade, blockchain technology has
gained a lot of attention as it is widely used in cryptocurrencies such as bitcoin,
Ethereum, ripple etc. In recent years, efforts are underway to adopt blockchain
technology in different sectors such as financial services, supply chain, healthcare,
IoT etc. [7–9]. This work considers a scalable blockchain architecture targeted at
IoT applications in edge computing environment. As the number of connected IoT
devices continue to explode exponentially, data storage and processing pose serious
scalability problems to centralized cloud architectures. The Edge computing—a
distributed computing paradigm alleviates these problems by bringing computation,
data processing and storage closer to IoT devices to improve response times and
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save bandwidth [10–12]. With Edge computing, before sending it to the central
cloud, IoT data can be pre-processed at the edge servers to compress and summarize
the collected data. Thus, edge application services reduce the amount of data that
must be moved, and the distance data must travel, resulting in lower latency and
reduced transmission costs. Edge computing offers perfect middle-layer services
between cloud and IoT device layer i.e. it not only handles data processing tasks
for cloud but also takes care of computational offloading of resource constrained
IoT devices for real-time applications such as facial, audio and video recognition,
autonomous cars, smart cities, industry 4.0 and home automation systems etc. [13,
14]. Thus, Edge computing has the potential to reduce the computational load and
power consumption of IoT devices [15–17].

In this context, few recent research works proposed Edge-IoT systems where
edge-servers form a distributed network and employ blockchain to not only manage
the allocation of resources at the edge to resource constrained IoT devices but
also to support storing and sharing of IoT data. In [18], Edge-chain presented a
credit-based resource management system to allocate edge server resource pool
to IoT devices based on pre-defined set of rules, historical usage and application
types. Edge-chain uses blockchain to manage all the IoT activities and transactions
for secure data logging and auditing. Also, [19] proposed a cognitive Edge-IoT
framework that hosts, and processes offloaded geo-tagged multimedia payload and
transactions from IoT nodes and stores results in a blockchain and decentralized
cloud repositories to support secure and privacy-oriented sharing economy services
in a smart city. A decentralized storage, access control, data management and
sharing system employing blockchain is presented in [20] to manage time-series
IoT data at the edge.

As discussed above, many of the previous research works focused on using
blockchain to manage the allocation of edge resources to IoT devices, distributed
access control, secure storage and data management at the edge, but except [21],
none of them focused on storage scalability, a major challenge for Edge-IoT. In
Bitcoin Network (BCN), as of today, more than 250 GB of storage is required
to store full blockchain. The throughput of the bitcoin is around 10 transactions
per sec. On the contrary, considering the massive scale, transaction rate of IoT
devices can be significantly higher compared to monetary transactions of bitcoin.
Hence, the storage capacity needs of Edge-IoT can also be significantly higher
compared to bitcoin and it is possible that the edge servers can ultimately run
out of space to store the full chain. To address this issue, an existing work
proposed LiTiChain—a scalable and lightweight blockchain architecture [21]. In
cryptocurrency systems, monetary transactions and blocks are stored permanently
on the blockchain. On the other hand, IoT data has finite-lifetime and hence expired
transactions and blocks can be deleted from the blockchain. LiTiChain exploited
this idea and proposed a novel blockchain architecture to minimize the storage
requirements. The disadvantage of LiTiChain is, instead of deleting the blocks
immediately upon expiration, it is possible that some blocks are retained longer
to validate remaining blocks, which results in additional storage cost. To address
this issue, μ-LiTiChain—a novel architecture, which is a generalized version of
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LiTiChain is presented in this chapter. Also, p-LiTiChain and s-LiTiChain, which are
variants of μ-LiTiChain are presented. These novel architectures aim at reducing the
additional storage cost incurred by LiTiChain and improving security of the chain.
In this process, μ-LiTiChain, p-LiTiChain and s-LiTiChain provide a trade-off in the
blockchain design (see Sect. 4) in terms of storage cost, security and computational
cost.

The remainder of this chapter is organized as follows: Section 2 describes
the preliminaries that lay the foundation to understand the subsequent sections.
LiTiChain architecture is described in Sect. 3. A generalized version of LiTiChain
architecture i.e. μ-LiTiChain and its two variants i.e. p-LiTiChain and s-LiTiChain
architectures are presented in Sect. 4. Also, in Sect. 4, trade-offs in blockchain
design in terms of storage cost, security and computational cost are discussed.
Section 5 presents the simulation results and analysis. Section 6 concludes the
chapter.

2 Preliminaries

This section describes the basic concepts of blockchain, and system model used in
this study.

2.1 Blockchain

This sub-section describes the basic concepts of blockchain that are derived from the
Bitcoin [6, 21]. Blockchain can be defined as a specific type of distributed ledger that
records transactions between two parties in an efficient and secure manner. In simple
terms, blockchain is a growing list of records called as blocks, which are linked
using cryptography [22]. As the blocks are connected using cryptographic hash, a
block in a blockchain cannot be easily altered and hence the data is resistant to
modification. In order to operate as a distributed ledger, a blockchain based system
is typically managed by a P2P network. For example: in Edge-IoT systems (see Fig.
1), edge-servers form a P2P network. In order to transfer money, a bitcoin node
generates and broadcasts a new transaction to the network. Every new transaction
in a BCN is validated by the bitcoin nodes in the network. In BCN, certain users
with large computational resources known as miners, participate in mining process.
Every miner node independently aggregates transactions into a new block and when
the new block is full, it is appended to blockchain by mining process i.e. miners
solve a cryptographic puzzle with a certain difficulty known as Proof of Work (PoW).
A miner node that first solves the PoW appends the mined block to the blockchain
and broadcasts the solution to the network. All miners in the network validate the
solution, accept the updated blockchain and re-broadcasts the solution. The miner
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Fig. 1 Usage of blockchain in edge-IoT systems

node that first solved the PoW is rewarded with bitcoins. The details of Blockheader,
Blockheight, and Nonce Computation are explained below.

2.1.1 Structure of a Block

As per [23], a block consists of header, metadata and long list of transactions. The
Blockheader consists of three sets of metadata. First, previous blockhash, a pointer
to the previous block. The second set, timestamp, Nonce and difficulty are related
to the mining process. The third part is the merkle tree root. A block is identified
by two identifiers, they are: Blockhash and Blockheight. Blockhash is the primary
identifier and it is obtained by hashing the blockheader twice using the SHA256
algorithm. Another way to identify a block is by its position in the blockchain,
known as blockheight. The first block, known as Genesis block, is at a blockheight
of zero.
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2.1.2 Nonce Computation

It is aforementioned that, in BCN, every miner node independently aggregates
transactions into a new block and when the blocksize reaches a threshold (ex: 1
MB), it tries to solve a PoW cryptographic hash computation problem. PoW takes
previous blockhash, merkle root and timestamp as input and computes hash using
SHA256. The computational challenge involves finding a Nonce that results in an
output hash with certain number of leading bits as zero. The difficulty level in Nonce
computation i.e. the number of leading bits as zeros in output hash is given by the
Difficulty Target parameter specified in the blockheader. In bitcoin, for every new
block, depending on the Difficulty Target, miners may test billions or trillions of
Nonce before the requirements are met. The block is valid only if the miner succeeds
in finding a Nonce that meets the target. The miner node broadcasts the valid block
to the neighbors, which is further propagated to the BCN.

2.2 System Model

The system model assumed in this study is as shown in Fig. 1. It consists of three
layers. They are IoT device layer, Edge layer and cloud layer. IoT device layer
consists of IoT devices that communicate with the Edge servers in the Edge layer.
Generally, every IoT device is associated with an edge server in its vicinity. It is also
possible that an IoT device can communicate with multiple edge servers. Edge layer
contains a network of edge servers that can communicate with each other in a P2P
manner via internet. Every edge server is responsible for collecting, processing and
storing of data from the group of IoT devices associated with it. Also, in the case
of resource constrained IoT devices, edge servers manage allocation of resources
for resource intensive tasks processed by the IoT devices. Cloud layer employs
central storage entity. The edge servers scan, pre-process and compress the raw data
collected from IoT devices before sending it to central storage at the cloud layer.

In Edge layer, edge servers employ blockchain to maintain the security and
privacy of IoT devices and data. Any form of the activity on IoT data such
as computation, access, transfer, storage etc., is considered as a transaction on
the blockchain. Unlike bitcoin blockchain, edge servers employ a permissioned
blockchain. This ensures that only the edge servers with permission can be a
full node in the blockchain network. A full node is a node that maintains a full
blockchain database with all transactions. Hence, a full node can independently and
authoritatively validate and verify any transaction without relying on any other node
in the network [23]. Also, permissioned blockchain has the potential to meet the
high throughput requirements of IoT data transactions. As edge servers employ
permissioned blockchain, they use Practical Byzantine Fault Tolerance (PBFT)
algorithm for distributed consensus [24]. Block creation and deletion are validated
and verified through PBFT.
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3 LiTiChain

As mentioned earlier, LiTiChain proposed a scalable and lightweight architecture
for blockchain of finite-lifetime blocks targeted at edge-IoT applications. The details
of the LiTiChain are discussed in the following sub-sections:

3.1 Expiration Time Ordering Graph

In LiTiChain, lifetime of a block is defined as the difference between creation and
expiration times of the block. As in conventional blockchain, if the finite-lifetime
blocks are chained in the order of their arrival times, when an expired block is
deleted, it is possible that the blockchain can be disconnected. As shown in Fig. 2,
when block b2 is deleted at the end of its expiration time, it results in disconnected
blockchain. Hence, in order to ensure chain connectivity even after the expired
blocks are deleted, LiTiChain proposed a graph structure based on the expiration
time of the blocks. Construction of Expiration time Ordering Graph (EOG) i.e.
inserting new blocks and deleting expired blocks from the blockchain is as shown
in Fig. 3. The number inside a block represents expiration time ei. A new block
is added to the blockchain by creating a directed edge from the new block to an
existing block. The direction of the edge indicates that the hash of a block from
which the edge is emanating is a function of the hash of the block it is pointing to.
Let us assume that the block created at the ith time instant is denoted by bi for i = 1,
2, . . . . Also, let ti and ei respectively denote the creation and expiration time of a
block bi. According to [21], the procedure to construct EOG is as follows:

• If There Exist a Set of Blocks Whose Expiration Time is Later than the new block
bi. In this set, block bi is connected to the block with the earliest expiration time
by a directed edge. Expiration time of the Genesis block G is infinity.

• If expiration time of the new block bi is later than all the existing blocks, bi is
connected to G via a directed edge from bi to G.

The directed graph i.e. EOG constructed based on the above rules will result in
a tree topology with Genesis block G as the root node and the remaining blocks are
connected based on the precedence relation of expiration times. For any directed
edge, the node from which the edge is emanating from is called as a child node and
the node to which the edge is pointing to is known as a parent node. As shown in
Fig. 3, for every node, expiration time of a parent node is later than its child nodes.

Fig. 2 Blockchain based on
linear order of arrival times.
Genesis block (G), creation
time (ti) and expiration time
(ei)

G b1 b2 b3
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Fig. 3 Construction of expiration time ordering graph (a) inserting blocks and (b) deleting blocks

Hence, unlike the conventional blockchain shown in Fig. 2 that can get disconnected
upon the deletion of blocks, at all times, EOG remains a connected graph. But, the
problem with EOG is, blockheight i.e. the distance measured from a block to the
Genesis block can be short. In Fig. 3, blockheight of b5 is 2 but in conventional
blockchain the blockheight of b5 would be 5. Additionally, as the expired blocks are
deleted in EOG, unlike conventional blockchain, size of the chain may not grow,
which results in shallow branches.

3.2 Structure of LiTiChain

As per the longest chain rule in the bitcoin blockchain i.e. longer the chain the harder
it is for the attacker to undo the chain. In other words, longer chains are assumed to
be more secure and hence are preferred [6, 21]. Therefore, to overcome the shallow
EOG-based chains, another graph based on arrival time of blocks known as Arrival
Ordering Graph (AOG) is coupled with the EOG to form LiTiChain, it is as shown
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in Fig. 4. In conventional blockchain, a block bi is connected to its previous block
bi − 1 using previousblockhash. On the other hand, in LiTiChain, as shown in Fig. 5,
every block is connected to two blocks—a parent block bi∗ via EOG and previous
block bi − 1 via AOG. Therefore, for a given block bi, there will be two directed
edges, one connecting to bi∗ and other connecting to bi − 1. In other words, hash
hi of block bi depends on both previous blockhash hi − 1 and parent blockhash hi∗ .
Also, height of a block is now defined as the maximum distance measured from the
block to the Genesis block along EOG and AOG. Therefore, as shown in Fig. 4, with
the addition of AOG edges, blockheight of b6 is increased from 4 to 6, which offers
improved security as per the longest chain rule.

3.3 Retention Cost

When the lifetime of a block bi is expired, ideally the block should be deleted. But,
if a block bi + 1 with the expiration time ei + 1 > ei is connected to bi, there exists
an AOG edge from bi to bi + 1. Therefore, as per the rules of LiTiChain, block bi is
not deleted immediately upon its expiration as it is needed to verify the validity of
bi + 1. Hence, the lifetime of bi is extended to ei + 1 i.e. block bi is retained beyond
its expiration time ei. The retention or the lifetime extension mechanism aids in
maintaining the “hash-chained” property of the blockchain. But the disadvantage of
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retention mechanism is, it incurs additional storage cost, called as retention cost. For
example, in Fig. 4, block b1 should be ideally deleted at time instance 20. As there
exists an AOG edge from b2 to b1 i.e. hash of b2 depends on b1, to validate b2 i.e.
verify that block b2 is not corrupted by an attacker, b1 needs to be stored until the
expiration time of b2 i.e. until time instance 40. Assuming the size of each block is 1
MB and the time count is in seconds, the retention cost of b1 in Fig 4 is 20 MB-Sec.
Section 4 presents two new architectures that aim at reducing the retention cost.

3.4 Limiting AoG Edges and Blockheight

Retention cost of the LiTiChain is directly proportional to the number of AOG edges
i.e. retention cost increases with the increase in the number of AOG edges. Hence,
in order to reduce the retention cost, the number of AOG edges needs to be reduced.
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In this process, LiTiChain proposed R-Height Block Insertion scheme to reduce the
number of AOG edges. Let us assume a new block bi created with two edges, one
connected to parent block bi∗ and other connected to previous block bi − 1. The
procedure for R-Height block insertion is as follows:

• If the height of the parent block bi∗ is less than or equal to R, as explained in Sect.
3.2, an AOG edge is created as usual from bi to bi − 1. So, this incurs retention
cost.

• If the height of the parent block bi∗ is greater than R, AOG edge is not created
from bi to bi − 1 and hence there is no retention cost for block bi. In this case, in
Fig. 5, both PreviousBlockHash and ParentBlockHash are set to the hash h∗

i of
b∗
i .

The rationale behind the above rules is, once the height of a newly added block
reaches a threshold, it is considered to be sufficient enough from security perspective
and hence for its child nodes, the focus shifts to minimizing the overall retention cost
of the chain by removing AOG edges.

4 μ-LiTiChain

This section presents μ-LiTiChain, a generalized version of the LiTiChain archi-
tecture presented in Sect. 3. As mentioned earlier, as per the longest chain rule,
from the security perspective, higher values are preferred for the blockheight. But,
in LiTiChain, higher values of blockheight results in higher retention cost. Let K
denote the blockheight threshold. In LiTiChain, if the blockheight of the parent of a
newly added block bi is less than or equal to K, then an AOG edge is added between
block bi and bi − 1, which incurs retention cost. On the other hand, if the blockheight
of the parent is greater than K, AOG edge is not added and the retention cost of block
bi − 1 is zero. As shown in Fig. 6, in LiTiChain, as the value of K is varied as 1, 2
and 4, overall retention cost increases as 20, 36 and 51. μ-LiTiChain architecture
provides an opportunity to reduce the retention cost in the design of blockchain of
finite-lifetime blocks targeted at Edge-IoT applications

If an attacker intends to corrupt as many transactions as possible in a blockchain,
he has to undo the total blockchain i.e. compute new hash for all the blocks.
In this process, majority of the attacker’s time and resources are spent in Nonce
computation (see Sect. 2.1.2) i.e. finding a new Nonce for each block in the chain.
Therefore, if the number of AOG edges reduces while the height of the blocks
increases or remains same as in LiTiChain, overall retention cost of the chain can
be reduced without lowering attacker’s difficulty in undoing the chain i.e. security
of the chain is maintained at the same level. The proposed μ-LiTiChain architecture
aims at this.

As discussed in Sect. 2.1, in public blockchain systems like bitcoin, for every
mined block, miners are rewarded with bitcoins. To reduce the number of bitcoins
spent as a reward, BCN aims at reducing the number of mined blocks and hence the
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Fig. 6 Increase in number of AOG edges in LiTiChain with K

blocksize used in bitcoin is generally higher. Unlike bitcoin, as discussed in Sect.
2.2, Edge-IoT employs permissioned blockchain. Hence, miners are not rewarded
for solving PoW. Therefore, if edge-servers have enough Nonce computation
resources; it is ok to reduce the blocksize to increase the number of mined blocks,
which increases the height of blocks in a blockchain. Hence, when LiTiChain
branches are shallower, blocksize can be reduced to increase the number of mined
blocks added to the chain to increase the depth of LiTiChain branches. As depth
increases i.e. as the blockheight of the newly added blocks is greater than the
threshold K, blocksize can be increased i.e. the number of mined blocks can be
reduced to reduce the number of Nonce computations. The proposed schemes
exploit this principle to reduce the number of AOG edges and minimize the retention
cost. For the same number of transactions to be processed, the reduction in blocksize
increases the number of mined blocks and the number of Nonce computations,
which leads to higher computational cost. So, there exists a trade-off between
retention cost i.e. additional storage cost, security i.e. height of the blocks in
the chain and Nonce computational cost. The proposed μ-LiTiChain architecture
provides with an opportunity to explore this trade-off in the design of blockchain.

As mentioned earlier, if the edge-servers are equipped with enough Nonce
computation resources; when the blocksize is reduced, the number of mined blocks
increases, which leads to the increase in the height of the blocks in a blockchain.
For a given block, there are two ways in which a block can be replaced by multiple
mined blocks, they are:

• When blocksize can be varied, a regular block in a blockchain can be split into
multiple sub-blocks of same size.
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• When blocksize cannot be varied, multiple light-weight blocks can be connected
to a regular block to increase its height.

Depending on the above steps, two new architectures that are variants of μ-
LiTiChain are presented in this chapter. They are: p-LiTiChain and s-LiTiChain.
Let us define block expansion factor (μ) as the number of blocks replacing a regular
block in a blockchain to increase the height introduced by a block.

μ =
{

p f or p − LiT iChain

s f or s − LiT iChain

In LiTiChain, μ = 1 for all the blocks. If μ = p or s for at least a block in
the chain, it is respectively called as p-LiTiChain or s-LiTiChain. The details are as
follows.

4.1 s-LiTiChain

As discussed above, reducing blocksize is equal to splitting regular block of a
LiTiChain into multiple sub-blocks, together known as s-block. Let s be the number
of sub-blocks. As shown in Fig. 7b, replacing a regular block with an s-block
increases the number of EOG edges and the height introduced by a block from 1 to
s, which has the potential to reduce the number of AOG edges and overall retention
cost of the chain for a given K. Fig. 7c shows a diamond shaped box representing an
s-block. The parameters ei and μi inside the s-block respectively represent expiration

b1b2b3bp bp-1 A regular block 
and ‘p-1’ LWBs

b1b2b3bs bs-1
A regular block 

split into ‘s’ sub-
blocks

(ei,1) Regular block (ei, μi) p-block s-block(ei, μi)

a. Construction of p-block

b. Construction of s-block

c. Types of blocks

Fig. 7 Construction of p-block and s-block
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Fig. 8 Construction of s-LiTiChain

time of the block and block expansion factor used in the construction of this block. If
multiple block expansion factors are used in the design of blockchain, it is possible
that each s-block may employ different block expansion factor. Hence, the subscript
i for the block expansion factor μ inside the s-block shown in Fig. 7c. On the other
hand, if only two values of block expansion factor are used in the blockchain design
i.e. μ ∈ {μ0 = 1, μ1 > 1}, as in Fig. 8, μi is not shown inside the s-block. Also,
as shown in Fig. 8, μ = s = 2 indicates that μ can take two values i.e. μ ∈ {1, 2}.
In other words, μ = 1 is implicit. In Fig. 8, μ = s = 2 for s-block and μ = s = 1
for regular block. In Fig. 8, for μ = s = 2, when K is varied as 1, 2 and 4, overall
retention cost of the chain increases as 20, 20 and 36 i.e. compared to the LiTiChain
discussed in Fig. 6, retention cost is reduced or unchanged for the same K. A μ-
LiTiChain that employs at least one s-block is known as s-LiTiChain. In this work,
to simplify the process of building s-LiTiChain, it is assumed that μ= s takes only
two values (s = 1 and another fixed value s > 1). In other words, s-LiTiChain can
only have two types of blocks i.e. a regular block (s = 1) as in LiTiChain and an
s-block (s > 1).

4.2 p-LiTiChain

Let us assume that for some reason, it is not a best option, or it is inconvenient to split
a block into multiple sub-blocks. In this case, s-LiTiChain cannot be implemented
and hence as an alternative, p-LiTiChain architecture is presented. In bitcoin, the
number of transactions in a block are in the range of 1000–2000 and blocksize is
around 1 MB. Let’s assume a Lightweight Block (LWB) with few empty transactions
(e.g.: 10) and size of around 10 KB i.e. approximately 100 times lighter than
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Fig. 9 Construction of p-LiTiChain

a regular block. As shown in Fig. 7a, a p-block contains a regular block as in
LiTiChain and p-1 LWBs. Hence, if a regular block in a LiTiChain is replaced with a
p-block, the number of EOG edges and height contribution of a block increases from
1 to p, which reduces the number of AOG edges and the overall retention cost of
the chain. Figure 7c shows a rectangular box representing a p-block. The parameters
ei and μi inside the p-block respectively represent expiration time of the block and
block expansion factor used in the construction of the p-block. As discussed in Sect.
4.1, like s-LiTiChain, if multiple block expansion factors are used in the design of
blockchain, it is possible that each p-block may employ different block expansion
factor. Hence, the subscript i for the block expansion factor μ inside the p-block
shown in Fig. 7c. On the other hand, if only two values of block expansion factor
are used in the blockchain design i.e. μ ∈ {μ0 = 1, μ1 > 1}, as in Fig. 9, μi is not
shown inside the s-block. Also, as shown in Fig. 9, μ = 2 indicates that μ can take
two values i.e. μ ∈ {1, 2}. In other words, μ = 1 is implicit. In Fig. 9, μ = p = 2 for
p-block and μ = p = 1 for regular block. In Fig. 9, for μ = p = 2, when K is varied
as 1, 2 and 4, retention cost varies as 20, 20 and 36 i.e. compared to the LiTiChain
in Fig. 6, retention cost is reduced or unchanged for a given K. A μ-LiTiChain that
contains at least one p-block is known as p-LiTiChain. In this work, to reduce the
complexity of p-LiTiChain, it is assumed that p takes only two values (p = 1 and
another fixed value p > 1). In other words, a p-LiTiChain can only have two types of
blocks i.e. a regular block (p = 1) as in LiTiChain and a p-block (with fixed p > 1).

The process of constructing s-LiTiChain and p-LiTiChain i.e. inserting and
deleting blocks is as follows:

• When the Blockheight of the Parent of a Newly Added Block is Less than or
Equal to K, the New Block Added to the Chain is an s/p-block and an AOG edge
is connected between block bi and bi − 1.
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Table 1 Pros and Cons of s-LiTiChain and p-LiTiChain

s-LiTiChain p-LiTiChain

It requires the blockchain design parameter
blocksize to be varied

It is not required to vary the blockchain design
parameter blocksize

There is no storage overhead due to block
splitting

There is storage overhead due to that addition
of light-weight blocks. The amount of overhead
increases with block expansion factor

When block expansion factor is greater than
blockheight threshold, the retention cost of
s-LiTiChain is zero. Hence, the storage
overhead is zero

When block expansion factor is greater than
blockheight threshold, the retention cost of
p-LiTiChain is zero. But the overhead due to
LWBs is non-zero and for higher values of
block expansion factor, it is significant. Hence,
the storage overhead of p-LiTiChain can be
non-zero

• When the blockheight of the parent is greater than K, a regular block is inserted
without an AOG edge.

For a given number of AOG edges, both s-LiTiChain and p-LiTiChain have the
potential to increase the average blockheight of a LiTiChain, respectively by at
least s and p. In other words, for the same number of AOG edges i.e. for same
retention cost, both s-LiTiChain and p-LiTiChain offer better security compared
to LiTiChain i.e. the effort required by an attacker to undo the chain increases
compared to LiTiChain. In p-LiTiChain, even though the size of an LWB is assumed
to be negligible i.e. 100 times smaller than a regular block, for higher values
of p, the overhead due to LWBs is considerable i.e. for μ = p = 10, LWB
overhead is around 100 KB. Hence, for higher values of μ, s-LiTiChain can be
preferred over p-LiTiChain. On the other hand, as shown in Fig. 9, p-LiTiChain
simplifies the blockchain design as it offers the same level of security as s-LiTiChain
without varying the blocksize. Pros and cons of s-LiTiChain and p-LiTiChain are
summarized in Table 1.

4.3 Algorithms

Given blockheight threshold K and valid values of block expansion factor μ, the
steps for adding a new block to the μ-LiTiChain is as shown in Algorithm 1. The
procedure to delete a block in μ-LiTiChain is as shown in Algorithm 2. The steps
given in Algorithm 1 and Algorithm 2 applies to both p-LiTiChain and s-LiTiChain.
In the case of p-LiTiChain and s-LiTiChain, respectively set μ = p and μ = s.
The format of a block in a μ-LiTiChain is assumed to be similar as in conventional
blockchain with few additional fields in the blockheader. They are ParentBlockHash
and ExpiryTime. Please refer to Sect. 3 for the details of these fields. In addition to
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these parameters, a new parameter i.e. DeletionTime is stored outside the blockchain
for every block.

Retention mechanism discussed in Sect. 3.3 is illustrated in line 32 of Algorithm
1 i.e. the value of the Deletiontime of previous block bi − 1 is set to the Expirtytime
of new block ei. This ensures that the block bi − 1 is not deleted until the validity of
the block bi is expired. Also, DeletionTime of the newly added block bi is set to ei.
But, at a later time instance, when another new block bi + 1 is added, it is possible
that the DeletionTime of the block bi can be set to ei + 1. So, unlike ExpirtyTime
which is fixed, DeletionTime is a varying field. Hence, DeletionTime is not a part of
the blockheader as a block cannot be modified after adding it to the blockchain.

Algorithm 1 Insertion of a block
1: Output: Updated Blockchain with newly created block bi
with endtime ei and block expansion factor μ

2: Input: Existing Blockchain, height constraint K, allowed
range of values of block expansion factor μ, time
instance of update D.
3: /* Determining the parent block according to EOG */
4: l∗ ← arg min

l
{l|ei ≤ el}, el is the endtime of the existing

blocks in the blockchain.
5: bi∗ ← bl∗
6: Let d denote the height of the parent block b∗

i

7: /* Determining the previous block according to AOG */
8: m∗ ← arg max

m
{m|em > D}, em is the endtime of the

blocks in the blockchain
9: /* Constraining the height of the new block */
10: if (d = = 0) then /* Parent is Genesis Block */
11: μ ← μmax

12: bi−1 ← bi∗
13: else /* Parent is a non-Genesis Block */
14: if (d ≤ K) then /* Height of parent <= K */
15: bi − 1← bm∗
16: if ((d + μmax) > K ) then
17: j∗ ← arg min

j

(
j | (d + μj

)
> K
)

18: μ ← μj∗
19: else
20: μ ← μmax

21: endif
22: else /* Height of parent > K */
23: μ ← 1
24: bi−1 ← bi∗
25: endif
26: endif
27: Create block bi. The header of bi is updated as below:
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28: Assign current time to the creation timestamp ti
29: Assign the value Hash(b∗

i ) to the field ParentBlockHash
30: Assign the value Hash(b−

i ) to the field PreviousBlockHash
31: Assign the value ei to the field ExpirtyTime
32: Set DeletionTime for blocks bi and b−

i to ei

Algorithm 2 Deletion of blocks
1: Output: Updated blockchain after the removal of expired
blocks.
2: Input: Time instance of update D, Number of blocks N in
the blockchain, ei - end time of block bi
2: for i = 1 : N
3: if (ei = = D)
4: delete block bi
5: endif
6: endfor

5 Performance Evaluation

In this section, performance of LiTiChain and μ-LiTiChain are evaluated using
simulations. Total Retention cost, average and maximum blockheight, total number
of Nonce computations are used as the performance metrics.

5.1 Performance Metrics

As mentioned earlier, ei is the expiration time of a block. Let di be the deletion time
of a block and N denote the total number of blocks. Total Retention Cost (δK) of all
the blocks for a given value of blockheight threshold K is given as follows:

δK =
N∑

i=0

(di − ei)

The average blockheight H and the maximum blockheight M are computed at the
time of creating a new block and deleting an expired block. H is obtained by taking
average of blockheight over all the blocks that are alive in the chain. Similarly, M
is the maximum of the blockheight of all the blocks that are not expired in the
chain. Let H and M denote the time averages of H and M during the lifetime of a
blockchain. H and M are used as the performance metrics. The number of Nonce
computations (ε) of p-LiTiChain and s-LiTiChain are generally higher compared to
LiTiChain. Hence, number of Nonce computations (εK) for a given K is used as a
performance metric.
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5.2 Simulation Setup

In [21], realistic IoT data published by the New York City Taxi and Limousine Com-
mission (TLC) with trip record data for yellow taxis is analyzed. The trip duration
is considered as the lifetime of the transactions. Based on the simulations, it was
concluded that, if the lifetime of blocks in a blockchain has bimodal distributions
with small and large lifetime values, it would result in worst retention cost. The
reason is that, compared to unimodal distributions, in bimodal distributions the short
lifetime blocks suffer relatively more due to the time held back by the long lifetime
blocks. For the purpose of simulations, in order to generate the lifetime data with
a bimodal distribution, similar to [21], lifetime data is sampled from Z which is a
mixture of the following two Gaussian distributions:

Z =
{

Z1 w.p. 0.5
Z2 w.p. 0.5

where Z1~N(300, 1102) and Z2~N(1200, 1102). In order to study the variation in
performance metrics w.r.t mixing proportion, similar to [21], the following two
distributions are also considered.

Ẑ =
{

Z1 w.p. 0.1
Z2 w.p. 0.9

Z̃ =
{

Z1 w.p. 0.9
Z2 w.p. 0.1

Around 10000 lifetime data are sampled from the above distribution. The value
of μ is varied between 1 and 500 and the values of K considered are 10, 50, 100,
300, 400 and 500. For the ease of explanation, let’s call Z, Ẑ and Z̃ as case1, case2
and case3.

5.3 Simulation Results

MATLAB is used to evaluate the performance of LiTiChain and μ-LiTiChain.
Simulation results are averaged over 10 iterations.
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5.3.1 LiTiChain

As discussed above, in LiTiChain, as K increases, the number of AOG edges
increase and hence δK increases. Fig. 10 shows the variation of relative δK w.r.t
δ10 for different values of K. As expected, it is obvious from the simulations that δK
increases with K in LiTiChain. The same behavior is observed for different mixing
proportions i.e. δK increases with K for Z, Ẑ and Z̃. But, the amount of increase in
δK varies with mixing proportions. Compared to Z, in the case of Ẑ, the decrease
in relative retention cost is around 0.2 for all values of K. On the other hand, in the
case of Z̃, compared to Z, the decrease in relative retention cost is in the range of
0.2–0.3 for K ≤ 100 and for K > 100, it is in the range of 0.5–0.7. The variation in
the average absolute values of retention cost w.r.t K for Z, Ẑ and Z̃ is as shown in
Fig. 11. The following conclusions can be drawn from Fig. 11:

• In case1, the proportion of Z1 and Z2 is split exactly into half. Hence, on average
the number of blocks connecting to Genesis block via EOG edge are higher in
Z when compared to Ẑ and Z̃. Therefore, as per the rules given in Sect. 3, the
number of AOG edges in Z are higher when compared to Ẑ and Z̃, resulting in
higher retention costs for Z.

• In case2 and case3, retention cost contribution from the majority population
i.e. Z2 in case2 and Z1 in case3 almost remains same but the distinguishing
factor is the retention cost from the minority population i.e. Z1 in case2 and Z2
in case3.

• In case2, the proportion of Z2 is higher than Z1. The mean of Z1 is 300 which is
less than the mean of Z2 i.e. 1200 and the difference in the mean is 900. Based
on the rules given in Sect. 3 for the construction of LiTiChain, the probability
of a block with a lifetime value selected from Z1 (minority population) forming
an AOG edge with a block whose lifetime value is selected from Z2 (majority
population) is higher than the probability of forming an AOG edge with a block
whose lifetime value is selected from Z1. This is as shown in Fig 12a. AOG edge
between blocks bi and bi + 1 doesn’t incur retention cost. Hence, the retention
cost contribution from most of the blocks with the lifetime values selected
randomly from Z1 is close to zero. Therefore, compared to case3, retention cost
incurred by case2 is lower.

• On the other hand, in case3, the proportion of Z1 is higher than Z2. Based on
the rules given in Sect. 3 for the construction of LiTiChain, the probability of
a block with a lifetime value selected from Z2 (minority population) forming
an AOG edge with a block whose lifetime value is selected from Z1 (majority
population) is higher than the probability of forming an AOG edge with a block
whose lifetime value is selected from Z2. This is as shown in Fig 12b. AOG
edge between blocks bi and bi + 1 incurs non-zero retention cost. Hence, the
retention cost incurred by most of the blocks with the lifetime values selected
randomly from Z2 is non-zero and it is around 900 MB-sec (i.e. 1200–300) for
each block. Therefore, compared to case2, retention cost incurred by case3 is
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Fig. 10 Increase in relative
retention cost w.r.t
blockheight threshold K in
LiTiChain: (a) case 1 — Z i.e.
Z1 w.p. 0.5, Z2 w.p. 0.5, (b)
case 2 — Ẑi.e. Z1 w.p. 0.1,
Z2 w.p. 0.9, and (c) case 3 —
Z̃ i.e. Z1 w.p. 0.9, Z2 w.p. 0.1

a)

b) 

c)  

higher. In case1, the proportion of Z1 and Z2 is split exactly into half. Hence,
the frequency of occurrence of the scenario shown in Fig 12b is higher in case1
when compared to case3. So, the retention cost in case3 is lower when compared
to case1.



Blockchain of Finite-Lifetime Blocks for Edge-IoT Applications 407

10 50 100 200 300 400 500
blockheight Theshold (K)

0

2

4

6

8

10

12

R
et

en
tio

n 
C

os
t (

M
B

-S
ec

)
10 5

case2
case3
case1

Fig. 11 Variation in average absolute retention cost w.r.t blockheight threshold K in LiTiChain
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Fig. 12 Scenarios resulting in retention cost difference between case 2 and case 3: (a) case 2,
doesn’t incur retention cost and (b) case 3, incurs retention cost

Figure 13 shows the variation in H and M for different values of K in LiTiChain.
As expected, in LiTiChain, both H and M increase as the value of K is increased.
But, as shown in Fig. 10, δK i.e. the additional storage cost incurred by the LiTiChain
increases with increase in K. μ-LiTiChain architecture aims at increasing H and M

while reducing δK .
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Fig. 13 Average and maximum blockheight for different values of K in LiTiChain

5.3.2 μ-LiTiChain

case1–Z: To study the performance of μ-LiTiChain i.e. p-LiTiChain and s-
LiTiChain, two values of K, a lower value i.e. K = 50 and a higher value i.e. K
= 500 are considered. Fig. 14 shows the variation in H and M w.r.t μ for K = 50
and 500. As the value of μ increases, H and M increase for both the values of K.
For K = 50, μ ≥ 10 results in an average blockheight of H > 50. Hence, μ ≥ 10
offers the required security as per the longest chain rule in the average sense. Figure
15 shows the variation in relative δK w.r.t increase in μ. As expected, retention
cost δ50 decreases with increase in μ and it is zero when μ > K i.e. when the
value of block expansion factor is greater than the blockheight threshold, it is not
required to extend the lifetime of the expired blocks and hence the additional storage
costs are zero. Hence, in Fig. 15, for K = 50, μ > = 60 results in zero retention
cost.

The lower retention cost and higher average blockheight H are achieved at the
expense of increase in the total number of Nonce Computations (ε). In other words,
the reduction in storage cost and improved security are obtained at the expense of
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Fig. 14 Average and maximum blockheight w.r.t block expansion factor μ for K = 50 and 500

higher computational costs. Figure 16 presents the relative increase in ε w.r.t μ for
K = 50 and 500. As mentioned above, for K = 50, according to Fig. 14, μ ≥ 10 has
the potential to offer the required security for the chain and as per Fig. 15, μ = 60
results in zero retention cost. Also, as shown in Fig. 16, ε50 i.e. the total number of
Nonce computations for μ = 60 are around 6.14 times compared to μ = 1. Hence,
for K = 50, μ = 60 offers the best performance in terms of storage cost, security
and computational cost. On the other hand, as shown in Fig. 14, for K = 500, H
is greater than K for μ = 60. But, according to Fig. 15, δ500 decreases with μ but
it does not reach zero as the value μ is not high enough. Similar to K = 50, there
exists a value of μ for every K that offers optimal performance in terms of storage
cost, security and computational cost.

The difference in the retention cost savings offered by p-LiTiChain and s-
LiTiChain is as shown in Fig. 15. For a given K, the retention cost is same for
both p-LiTiChain and s-LiTiChain when μ = 1 for all the blocks. But, for μ ≥ 1
and μ ≤ K, as it employs LWBs, p-LiTiChain always results in higher retention cost
compared to s-LiTiChain. For μ ≥ K, retention cost is zero for both p-LiTiChain and
s-LiTiChain. Also, unlike s-LiTiChain, where the δK always decreases with increase
in μ, after a certain threshold value of μ, the retention cost of p-LiTiChain tends to
increase rather than decreasing. The reason for this is that, as explained in Sect. 4,
the LWB overhead becomes significant for higher values of μ. Hence, as shown in
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Fig. 15, for K = 500 and μ = 100, the retention cost of p-LiTiChain approximately
doubles when compared to s- LiTiChain. As mentioned earlier in Sect. 4, the size of
LWBs is assumed to be 100 times lighter than regular blocks.

Figure 16 highlights another important point i.e. for K = 50, the total number of
Nonce Computations decreases when μ increases from 50 to 60 and then again
increases for μ = 100. The reason is illustrated by Fig. 17. When μ = 50,
blockheight of b1 is not greater than the threshold K = 50. Hence, a μ-block is used
for b2. Therefore, the total number of Nonce computations ε = 101. On the other
hand, when μ = 60 and 100, blockheight of b1 is greater than the threshold K = 50.
Hence, a regular block is used for b2 and the total number of Nonce computations
are 62 and 102, respectively for μ = 60 and μ = 100.case2–Ẑ and case3–Z̃: The
variation in average and maximum blockheight w.r.t block expansion factor for
K = 50 and K = 500 is as shown in Fig. 18. The following conclusions can be
drawn from Fig. 18:

• In case2, the proportion of Z2 is higher than Z1. Also, the mean lifetime of Z2
i.e. 1200 is higher than Z1 which is 300. Hence, in steady state, at any given time
instance, the number of blocks alive in the blockchain are more in case2 when
compared to case1. Therefore, the average and maximum blockheight shown in
Fig. 18a for case2 are higher than the respectively values show in Fig. 13 for
case1.
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Fig. 17 Illustration of
difference in number of nonce
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• On the other hand, in case3, the proportion of Z1 with a mean lifetime value of
300 is higher than Z2 whose mean lifetime value of 1200. Hence, in steady state,
at any given time instance, the number of blocks alive in the blockchain are less in
case3 when compared to case2 and case1. Therefore, the average and maximum
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Fig. 18 Average and maximum blockheight w.r.t block expansion factor μ for K = 50 and 500:
(a) case 2 and (b) case 3
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blockheight shown in Fig. 18b for case3 are lower than the respectively values
show in Figs. 13 and 18a for case1 and case2.

The difference in the absolute retention cost between case2 and case3 for
different values of blockheight threshold and block expansion factor is as shown
in Fig. 19 for both p-LiTiChain and s-LiTiChain. The conclusions drawn from Fig.
19 are similar to Fig. 11, they are reiterated below, and these conclusions hold for
all combinations of μ and K shown in Fig. 19:

• In both case2 and case3, the retention cost contribution from the majority
population i.e. Z2 in case2 and Z1 in case3 is almost same. But the major
differentiating factor is the retention cost contribution from minority population
i.e. Z1 in case2 and Z2 in case3.

• In case2, based on the rules given in Sect. 3 for the construction of LiTiChain,
the probability of a block with a lifetime value selected from Z1 (minority
population) forming an AOG edge with a block whose lifetime value is selected
from Z2 (majority population) is higher than the probability of forming an AOG
edge with a block whose lifetime value is selected Z1. This is as shown in Fig 12a.
Hence, the retention cost contribution from most of the blocks with the lifetime
values selected randomly from Z1 is close to zero. Therefore, compared to case3,
retention cost incurred by case2 is lower.

• On the other hand, in case3, based on the rules given in Sect. 3 for the
construction of LiTiChain, the probability of a block with a lifetime value
selected from Z2 (minority population) forming an AOG edge with a block
whose lifetime value is selected from Z1 (majority population) is higher than the
probability of forming an AOG edge with a block whose lifetime value is selected
from Z2. This is as shown in Fig. 12b. Hence, the retention cost incurred by most
of the blocks with the lifetime values selected randomly from Z2 is non-zero and
it is around 900 MB-sec (i.e. 1200–300) for each block. Therefore, compared to
case2, retention cost incurred by case3 is higher.

The difference in the total number of Nonce Computations between case2 and
case3 for different values of blockheight threshold and block expansion factor is as
shown in Fig. 20. The following conclusions can be drawn from Fig. 20:

• In case2, it was observed from the simulations that, for μ = 50, the number
of blocks connected to Genesis block via EOG edge are 1190. All these blocks
are μ-blocks i.e. s/p-blocks. The number of μ-blocks connected to non-Genesis
block are 20. For the same distribution of lifetime data i.e. Ẑ, the change in μ does
not vary the number of μ-blocks connected to Genesis block but the number of
μ-blocks connected to non-Genesis block varies. So, when μ is increased from
50 to 60, the number of μ-blocks connected to Genesis block remained at 1786
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a)

b)

Fig. 19 Comparison of retention cost between case2 and case3 for different values of blockheight
threshold (K) and block expansion factor (μ): (a) K = 50 and (b) K = 500
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Fig. 20 Comparison of variation in number of nonce computations w.r.t block expansion factor
for different values of blockheight threshold K

but the number of μ-blocks connected to non-Genesis block are reduced to zero.
Hence, for μ = 50, the number of Nonce Computations is ((1190 + 20) *50)
whereas for μ = 60, number of Nonce Computations are (1190 * 60). Hence,
when μ is varied from 1 to 60, the number of Nonce Computations increases
linearly with μ.

• In case3, it was observed from the simulations that, for μ = 50, the number
of blocks connected to Genesis block via EOG edge are 387, majority of them
belongs to Z2. All these blocks are μ-blocks i.e. s/p-blocks. The number of μ-
blocks connected to non-Genesis block are 797. For the same distribution of
lifetime data i.e. Z̃, the change in μ does not vary the number of μ-blocks
connected to Genesis block but the number of μ-blocks connected to non-
Genesis block varies. So, when μ is increased from 50 to 60, the number of
μ-blocks connected to the Genesis block remained at 387 but the number of μ-
blocks connected to non-Genesis block are reduced to zero. The reason being,
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all the μ-blocks connected to the Genesis block introduced a blockheight of
60, which is greater than the blockheight threshold K = 50. Hence, the blocks
connected to these μ-blocks via EOG edge are regular blocks. Therefore, when
μ is varied from 1 to 50, the number of Nonce Computations increases with μ but
when μ is varied from 50 to 60, the number of Nonce Computations decreases
from ((387 + 797) ∗ 50) to (580 ∗ 60). When μ > 60, the number of Nonce
Computations again increases as (387 ∗ μ) increases with μ.

• From above two points, it can be concluded that the variation in the number
of Nonce Computations w.r.t μ depends significantly on the mixing proportion
of Z1 and Z2. Comparing case2 and case3, the number of μ-blocks connected
to Genesis block are very high in case2. The reason for this is: In case2, the
proportion of Z2 is 90% which is significantly higher than Z1. Hence, as shown
in Fig. 21, in case2, block b3 is connected to Genesis block whereas in case3, as
the proportion of Z2 significantly lower than Z1, block b3 is connected to non-
Genesis block. In case2, the probability of the average lifetime of a block (e.g. b3)
being close to 1200 is very high whereas in case3, the probability of the average
lifetime of a block (e.g. b3) being close to 300 is very high. So, the probability of
b3 being a μ-block is very high in case2 whereas it is less in case3. Hence, the
number of μ-blocks connected to Genesis block are very high in case2.

6 Conclusion

This chapter started by reviewing the LiTiChain architecture presented in the liter-
ature for Edge-IoT applications. LiTiChain architecture has the potential to reduce
IoT data storage costs at Edge servers but it results in higher than ideally expected
storage costs. In order to reduce the retention cost incurred by the LiTiChain, novel
μ-LiTiChain—a generalized version of the LiTiChain architecture is presented.
Two variants of μ-LiTiChain i.e. p-LiTiChain and s-LiTiChain architectures are
also presented. Pros and cons of p-LiTiChain and s-LiTiChain are also discussed.
With extensive simulations, it was shown that the μ-LiTiChain i.e. p-LiTiChain
and s-LiTiChain architectures have the potential to reduce storage cost and offer
better security when compared to LiTiChain at the expense of computational costs.
In conclusion, unlike the LiTiChain architecture, μ-LiTiChain, p-LiTiChain and s-
LiTiChain architectures presented in this chapter offer a tradeoff between storage
cost, security and computational cost which is worth exploring when designing
blockchain for finite-lifetime data applications.
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Fig. 21 Illustration of
difference in number of nonce
computations between case 2
and case 3: (a) case 2 and (b)
case 3
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