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Abstract. Explainable Artificial Intelligence (XAI), i.e., the develop-
ment of more transparent and interpretable AI models, has gained
increased traction over the last few years. This is due to the fact that,
in conjunction with their growth into powerful and ubiquitous tools, AI
models exhibit one detrimental characteristic: a performance-transpa-
rency trade-off. This describes the fact that the more complex a model’s
inner workings, the less clear it is how its predictions or decisions were
achieved. But, especially considering Machine Learning (ML) methods
like Reinforcement Learning (RL) where the system learns autonomously,
the necessity to understand the underlying reasoning for their decisions
becomes apparent. Since, to the best of our knowledge, there exists no
single work offering an overview of Explainable Reinforcement Learn-
ing (XRL) methods, this survey attempts to address this gap. We give a
short summary of the problem, a definition of important terms, and offer
a classification and assessment of current XRL methods. We found that
a) the majority of XRL methods function by mimicking and simplifying
a complex model instead of designing an inherently simple one, and b)
XRL (and XAI) methods often neglect to consider the human side of
the equation, not taking into account research from related fields like
psychology or philosophy. Thus, an interdisciplinary effort is needed to
adapt the generated explanations to a (non-expert) human user in order
to effectively progress in the field of XRL and XAI in general.

Keywords: Machine learning · Explainable · Reinforcement
Learning · Human-computer interaction · Interpretable

1 Introduction

Over the past decades, AI has become ubiquitous in many areas of our everyday
lives. Especially Machine Learning (ML) as one branch of AI has numerous fields
of application, be it transportation [57], advertisement [46], or medicine [38].
Unfortunately, the more powerful and flexible those models are, the more opaque
they become, essentially making them black boxes (see Fig. 1). This trade-off is
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Fig. 1. Schematic representation of the performance-readability trade-off. Simpler, lin-
ear models are easy to understand and interpret, but suffer from a lack of perfor-
mance, while non-linear, more flexible models are too complex to be understood easily.
Adopted from Martens et al. [41].

referred to by different terms in the literature, e.g. readability-performance trade-
off [12], accuracy-comprehensibility trade-off [16], or accuracy-interpretability
trade-off [49]. This work aims to, first, establish the need for eXplainable Arti-
ficial Intelligence (XAI) in general and eXplainable Reinforcement Learning
(XRL) specifically. After that, the general concept of RL is briefly explained
and the most important terms related to XAI are defined. Then, a classification
of XAI models is presented and selected XRL models are sorted into these cate-
gories. Since there already is an abundance of sources on XAI but less so about
XRL specifically, the focus of this work lies on providing information about and
presenting sample methods of XRL models1. Thus, we present one method for
each category in more detail and give a critical evaluation over the existing XRL
methods. We will especially emphasize the need for XAI/XRL models that are
adapted to a human (non-expert) end-user since that is what many XRL models
are lacking but which we deem crucial.

1.1 The Importance of Explainability

Why is explainability so crucial? First, there is one obvious psychology-related
reason: ‘if the users do not trust a model or a prediction, they will not use it’
[48, p. 1]. Trust can be defined as ‘the attitude that an agent will help achieve an
individual’s goals in a situation characterized by uncertainty and vulnerability’
[32] and is an essential prerequisite of using a model or system [12,28]. Bearing
in mind the fact that transparency has been identified as one key component
both in increasing users’ trust [18,67], as well as users’ acceptance of a system
[24], the interest in ‘trustworthy AI’ is not surprising, especially in the context
1 Please note that, while there is a distinction between Reinforcement Learning and

Deep Reinforcement Learning (DRL), for the sake of simplicity, we will refer to both
as just Reinforcement Learning going forward.
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of uncertainty [66]. Thus, in order to confidently use a system, it needs to be
trusted, and in order to be trusted, it needs to be transparent and its decisions
need to be justifiable (for a formal definition of transparency and related terms,
see Sect. 1.3).

Second, AI technologies have become an essential part in almost all domains
of Cyber-Physical Systems (CPSs). Reasons include the thrive for increased effi-
ciency, business model innovations, or the necessity to accommodate volatile
parts of today’s critical infrastructures (e.g. a high share of renewable energy
sources). In time, AI technologies evolved from being an additional input to
an otherwise soundly defined control system, over fully decentralized, but still
rule-governed systems (e.g. the Universal Smart Grid Agent [60]), to a system
where all behavior originates from ML (e.g. AlphaGo Zero and MuZero [51]). For
CPS analysis and operation, however, Adversarial Resilience Learning (ARL)
has emerged as a novel methodology based on DRL [15,59]. It is specifically
designed to analyse and control critical infrastructures; obviously, explainability
is tantamount here.

There is also a legal component to be considered; the EU General Data Pro-
tection Regulation (GDPR) [14], which came into effect in May 2018, aims to
ensure a ‘right to explanation’ [19, p. 1] concerning automated decision-making
and profiling. It states that ‘[...] such processing should subject to suitable safe-
guards, which should include [...] the right to obtain human intervention [...]
[and] an explanation of the decision reached after such assessment’ [14, recital
71]. Additionally, the European Commission set out an AI strategy with trans-
parency and accountability as important principles to be respected [55], and in
their Guidelines on trustworthy AI [56] they state seven key requirements, with
transparency and accountability as two of them.

Finally, there are important practical reasons to consider; despite the increas-
ing efficiency and versatility of AI, its incomprehensibility reduces its usefulness,
since ‘incomprehensible decision-making can still be effective, but its effective-
ness does not mean that it cannot be faulty’ [33, p. 1]. For example, in [54],
neural nets successfully learnt to classify pictures but could be led to misclas-
sification by (to humans) nearly imperceptible perturbations, and in [45], deep
neural nets classified unrecognizable images with >99% certainty. This shows
that a high level of effectiveness (under standard conditions) or even confidence
does not imply that the decisions are correct or based on appropriately-learnt
data. There exists a number of ‘AI explainability toolkits’2 that have common
explainability methods implemented and enable their (easy) use with a pre-built
framework, but, as far as we know, there is none specifically for RL.

Bearing this in mind, and considering the fact that, nowadays, AI can act
increasingly autonomous, explaining and justifying the decisions is now more
crucial than ever, especially in the domain of RL where an agent learns by itself,
without human interaction.

2 E.g. the AI Explainability 360 (AIX360) as the currently most comprehensive one
[4] (see also for a list of other toolkits).
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1.2 Reinforcement Learning

Reinforcement Learning is a trial-and-error learning algorithm in which an
autonomous agent tries to find the optimal solution to a problem through auto-
mated learning [52]. It is usually introduced as a Markov Decision Process (MDP)
if it satisfies the Markov property: the next state depends only on the current
state and the agent’s action(s), not on past states [30].

The learning process is initiated by an agent randomly performing an action
which leads to a certain environmental state. This state has a reward assigned
to it depending on how desirable this outcome is, set by the designer of the task.
The algorithm will then learn a policy, i.e., an action-state-relation, in order to
maximize the cumulative reward and be able to select the most optimal action
in each situation. For more information on RL, see also [34,52].

1.3 Definition of Important Terms

As already mentioned in Sect. 1, the more complex a systems becomes, the less
obvious its inner workings become. Additionally, there is no uniform term for this
trade-off in the literature; XAI methods use an abundance of related, but distinct
terms like transparency, reachability, etc. This inconsistency can be due to one
or both of the following reasons: a) different terms are used in the same sense
due to a lack of official definition of these terms, or b) different terms are used
because the authors (subjectively) draw a distinction between them, without
an official accounting of these differences. In any case, a uniform understanding
and definition of what it means if a method is described as ‘interpretable’ or
‘transparent’ is important in order to clarify the potential, capacity and intention
of a model. This is not an easy task, since there is no unique definition for
the different terms to be found in the literature; even for ‘interpretability’, the
concept which is most commonly used, ‘the term [...] holds no agreed upon
meaning, and yet machine learning conferences frequently publish papers which
wield the term in a quasi-mathematical way’ [35]. In Doshi-Velez and Kim [11,
p. 2], interpretability is ‘the ability to explain or to present in understandable
terms to a human’, however, according to Kim et al. [31, p. 7] ‘a method is
interpretable if a user can correctly and efficiently predict the method’s result’.
Some authors use transparency as a synonym for interpretability [35], some
use comprehensibility as a synonym [16], then again others draw a distinction
between the two [10] (for more information on how the different terms are used in
the literature, we refer the reader to [8,10,11,16,31,35,36,44]). If we tackle this
issue in a more fundamental way, we can look at the definition of ‘to interpret’
or ‘interpretation’. The Oxford Learners Dictionary3 defines it as follows:

• to explain the meaning of something
• to decide that something has a particular meaning and to understand it in

this way
• to translate one language into another as it is spoken
3 https://www.oxfordlearnersdictionaries.com/.

https://www.oxfordlearnersdictionaries.com/
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• the particular way in which something is understood or explained

Seeing that, according to the definition, interpretation contains an explanation,
we can look at the definition for ‘to explain’/‘explanation’:

• to tell somebody about something in a way that makes it easy to understand
• to give a reason, or be a reason, for something
• a statement, fact, or situation that tells you why something happened
• a statement or piece of writing that tells you how something works or makes

something easier to understand

Both definitions share the notion of conveying the reason and meaning of some-
thing in order to make someone understand, but while an explanation is focused
on what to explain, an interpretation has the additional value of considering how
to explain something; it translates and conveys the information in a way that
is more easily understood. And that is, in our opinion, essential in the frame of
XAI/XRL: not only extracting the necessary information, but also presenting
it in an appropriate manner, translating it from the ‘raw data’ into something
humans and especially laypersons can understand.

So, because we deem a shared consensus on the nomenclature important, we
suggest the use of this one uniform term, interpretability, to refer to the ability
to not only extract or generate explanations for the decisions of the model,
but also to present this information in a way that is understandable by human
(non-expert) users to, ultimately, enable them to predict a model’s behaviour.

2 XAI Taxonomy

While there are slight differences between the different taxonomy approaches
[2,4,7], XAI methods can be broadly categorized based on two factors; first,
based on when the information is extracted, the method can be intrinsic or
post-hoc, and second, the scope can be either global or local (see Fig. 2, and
Fig. 3 for examples).

Global and local interpretability refer to the scope of the explanation; global
models explain the entire, general model behaviour, while local models offer
explanations for a specific decision [43]. Global models try to explain the whole
logic of a model by inspecting the structures of the model [2,13]. Local expla-
nations try to answer the question: ‘Why did the model make a certain predic-
tion/decision for an instance/for a group of instances?’ [2,43]. They also try to
identify the contributions of each feature in the input towards a specific out-
put [13]. Additionally, global interpretability techniques lead to users trusting a
model, while local techniques lead to trusting a prediction [13].

Intrinsic vs. post-hoc interpretability depend on the time when the expla-
nation is extracted/generated; An intrinsic model is a ML model that is con-
structed to be inherently interpretable or self-explanatory at the time of training
by restricting the complexity of the model [13]. Decision trees, for example, have
a simple structure and can be easily understood [43]. Post-hoc interpretability, in
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Fig. 2. A pseudo ontology of XAI methods taxonomy. Adapted from Adadi and
Berrada [2].

contrast, is achieved by analyzing the model after training by creating a second,
simpler model, to provide explanations for the original model [13,43]. Surrogate
models or saliency maps are examples for this type [2]. Post-hoc interpretation
models can be applied to intrinsic interpretation models, but not necessarily vice
versa. Just like the models themselves, these interpretability models also suffer
from a transparency-accuracy-trade-off; intrinsic models usually offer accurate
explanations, but, due to their simplicity, their prediction performance suffers.
Post-hoc interpretability models, in contrast, usually keep the accuracy of the
original model intact, but are harder to derive satisfying and simple explanations
from [13].

Another distinction, which usually coincides with the classification into
intrinsic and post-hoc interpretability, is the classification into model-specific
or model-agnostic. Techniques are model-specific if they are limited to a specific
model or model class [43], and they are model-agnostic if they can be used on
any model [43]. As you can also see in Fig. 2, intrinsic models are model-specific,
while post-hoc interpretability models are usually model-agnostic.

Adadi and Berrada [2] offer an overview of common explainability techniques
and their rough (i.e., neither mutually exclusive nor exhaustive) classifications
into these categories. In Sect. 3, we follow their example and provide classifica-
tions for a list of selected XRL method papers.

3 Non-exhaustive List of XRL Methods

A literature review was conducted using the database Google Scholar. Certain
combinations of keywords were used to select papers; first, ‘explainable reinforce-
ment learning’, and ‘XRL’ together with ‘reinforcement learning’ and ‘machine
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Fig. 3. An illustration of global vs. local, and intrinsic vs. post-hoc interpretable
machine learning techniques, with a deep neural network as an example. On the left,
the model and the layers’ constraints are built in a way that is inherently interpretable
(intrinsic interpretability). The middle and right column show post-hoc interpretabil-
ity, achieved by a global and local explanation, respectively. The global explanation
explains the different representations corresponding to the different layers in general,
while the local explanation illustrates the contribution of the different input features
to a certain output. Adopted from Du et al. [13].

learning’ were used. Then, we substituted ‘explainable’ for common variations
used in literature like ‘explainable’, ‘transparent’, and ‘understandable’. We then
scanned the papers for relevance and consulted their citations and reference lists
for additional papers. Because we only wanted to focus on current methods, we
restricted the search to papers from 2010–2020. Table 1 shows the list of selected
papers and their classification according to Sect. 2 based on our understanding.

For a more extensive demonstration of the different approaches, we chose the
latest paper of each quadrant4 and explain them in more detail in the following
sections as an example for the different XRL methods.

4 With the exception of method C in Sect. 3.3, where we present a Linear Model
U-Tree method although another paper with a different, but related method was
published slightly later. See the last paragraph of that section for our reasoning for
this decision.
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Table 1. Selected XRL methods and their categorization according to the taxonomy
described in Sect. 2.

Time Scope

Global Local

Intrinsic • PIRL (Verma et al. [61]) • Hierarchical Policies (Shu et
al. [53])• Fuzzy RL policies (Hein et al.

[22])

Post-hoc • Genetic Programming (Hein et
al. [23])

• Reward Decomposition
(Juozapaitis et al. [29])

• Interestingness Elements
(Sequeira and Gervasio [52])

• Expected Consequences (van der
Waa et al. [62])

• Autonomous Self-Explanation
(Fukuchi et al. [17])

• Soft Decision Trees (Coppens et
al. [9])

• Structural Causal Model
(Madumal et al. [40])

• Deep Q-Networks (Zahavy et al.
[64])

• Complementary RL (Lee [33])

• Autonomous Policy Explanation
(Hayes and Shah [21])

• Expected Consequences (van der
Waa et al. [62])

• Policy Distillation (Rusu et al.
[50])

• Soft Decision Trees (Coppens et
al. [9])

• Linear Model U-Trees (Liu et
al. [37])

• Linear Model U-Trees (Liu et
al. [37])

Notes. Methods in bold are presented in detail in this work.

3.1 Method A: Programmatically Interpretable Reinforcement
Learning

Verma et al. [61] have developed ‘PIRL’, a Programmatically Interpretable Rein-
forcement Learning framework, as an alternative to DRL. In DRL, the policies
are represented by neural networks, making them very hard (if not impossible)
to interpret. The policies in PIRL, on the other hand, while still mimicking the
ones from the DRL model, are represented using a high-level, human-readable
programming language. Here, the problem stays the same as in traditional RL
(i.e., finding a policy that maximises the long-term reward), but in addition,
they restrict the vast amount of target policies with the help of a (policy) sketch.
To find these policies, they employ a framework which was inspired by imitation
learning, called Neurally Directed Program Search (NDPS). This framework first
uses DRL to compute a policy which is used as a neural ‘oracle’ to direct the pol-
icy search for a policy that is as close as possible to the neural oracle. Doing this,
the performances of the resulting policies are not as high than the ones from the
DRL, but they are still satisfactory and, additionally, more easily interpretable.
They evaluate this framework by comparing its performance with, among others,
a traditional DRL framework in The Open Racing Car Simulator (TORCS) [63].
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Here, the controller has to set five parameters (acceleration, brake, clutch, gear
and steering of the car) to steer a car around a race track as fast as possible.
Their results show that, while the DRL leads to quicker lap time, the NDPS still
outperforms this for several reasons: it shows much smoother driving (i.e., less
steering actions) and is less perturbed by noise and blocked sensors. It also is
easier to interpret and is better at generalization, i.e., it performs better in situ-
ations (in this case, tracks) not encountered during training than a DRL model.
Concerning restrictions of this method, it is worth noting that the authors only
considered environments with symbolic inputs, not perceptual, in their experi-
ments. They also only considered deterministic policies, not stochastic policies.

3.2 Method B: Hierarchical and Interpretable Skill Acquisition in
Multi-task Reinforcement Learning

Shu et al. [53] proposed a new framework for multi-task RL using hierarchical
policies that addressed the issue of solving complex tasks that require different
skills and are composed of several (simpler) subtasks. It is based on and extends
multi-task RL with modular policy design through a two-layer hierarchical policy
[3] by incorporating less assumptions, and, thus, less restrictions. They trained
and evaluated their model with object manipulation tasks in a Minecraft game
setting (e.g. finding, getting, or stacking blocks of a certain color), employing
advantage actor-critic as policy optimization using off-policy learning. The model
is hierarchical because each top-level policy (e.g., ‘stack x’) consists of several
lower levels of actions (‘find x’ → ‘get x’ → ‘put x’, see also Fig. 4). The novelty
of this method is the fact that each task is described by a human instruction (e.g.
‘stack blue’), and agents can only access learnt skills through these descriptions,
making its policies and decisions inherently human-interpretable.

Additionally, a key idea of their framework is that a complex task could be
decomposed into several simpler subtasks. If these sub-tasks could be fulfilled
by employing an already learnt ‘base policy’, no new skill had to be learnt; oth-
erwise, it would learn a new skill and perform a different, novel action. To boost
efficiency and accuracy, the framework also incorporated a stochastic temporal
grammar model that was used to model temporal relationships and priorities of
tasks (e.g., before stacking a block on top of another block, you must first obtain
said block).

The resulting framework could efficiently learn hierarchical policies and repre-
sentations in multi-task RL, only needing weak human supervision during train-
ing to decide which skills to learn. Compared to a flat policy that directly maps
the state and instruction to an action, the hierarchical model showed a higher
learning efficiency, could generalize well in new environments, and was inherently
interpretable.
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Fig. 4. Example for the multi-level hierarchical policy for the task to stack two blue
boxes on top of each other. The top-level policy (π3, in red) encompasses the high-
level plan ‘get blue’ → ‘find blue’ → ‘put blue’. Each step (i.e., arrow) either initiates
another policy (marked by a different color) or directly executes an action. Adopted
from Shu et al. [53]. (Color figure online)

3.3 Method C: Toward Interpretable Deep Reinforcement Learning
with Linear Model U-Trees

In Liu et al. [37], a mimic learning framework based on stochastic gradient
descent is introduced. This framework approximates the predictions of an accu-
rate, but complex model by mimicking the model’s Q-function using Linear
Model U-Trees (LMUTs). LMUTs are an extension of Continuous U-Trees
(CUTs) which were developed to approximate continuous functions [58]. The
difference between CUTs and LMUTs is that, instead of constants, LMUTs have
a linear model at each leaf node which also improves its generalization ability.
They also generally have fewer leaves and are therefore simpler and more easily
understandable. The novelty of this method lies in the fact that other tree repre-
sentations used for interpretations were only developed for supervised learning,
not for DRL.

The framework can be used to analyze the importance of input features,
extract rules, and calculate ‘super-pixels’ (‘contiguous patch[es] of similar pix-
els’ [48, p. 1]) in image inputs (see Table 2 and Fig. 5 for an example). It has
two approaches to generate data and mimic the Q-function; the first one is an
experience training setting which records and generates data during the training
process for batch training. It records the state-action pairs and the resulting
Q-values as ‘soft supervision labels’ [37, p. 1] during training. In cases where the
mimic learning model cannot be applied to the training process, the second app-
roach can be used: active play setting, which generates mimic data by applying
the mature DRL to interact with the environment. Here, an online algorithm is
required which uses stochastic gradient descent to dynamically update the linear
models as more data is generated.
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Table 2. Examples of feature influences in the Mountain Car and Cart Pole scenario,
extracted by the LMUTs in Liu et al. [37]

Feature Influence

Mountain Velocity 376.86

Car Position 171.28

Pole angle 30541.54

Cart Cart velocity 8087.68

Pole Cart position 7171.71

Pole velocity at tip 2953.73

Fig. 5. Examples of a) rule extraction, and b) super-pixels extracted by the LMUTs
in Liu et al. [37]. a) Extracted rules for the mountain Cart scenario. Values at the top
are the range of velocity and position and a Q vector (Qmove left,Qno push, Qmove right)
representing the average Q-value). In this example, the cart is moving to the left to the
top of the hill. The car should be pushed left (Qmove left is highest) to prepare for the
final rush to the target on the right side. b) Super-pixels for the Flappy Bird scenario,
marked by red stars. This is the first of four sequential pictures where the focus lies
on the location of the bird and obstacles (i.e., pipes). In later pictures the focus would
shift towards the bird’s location and velocity.

They evaluate the framework in three benchmark environments: Mountain
Car, Cart Pole, and Flappy Bird, all simulated by the OpenAI Gym toolkit
[6]. Mountain Car and Cart Pole have a discrete action space and a continuous
feature space, while Flappy Bird has two discrete actions and four consecutive
images as inputs which result in 80 × 80 pixels each, so 6400 features. The
LMUT method is compared to five other tree methods: a CART regression tree
[39], M5 trees [47] with regression tree options (M5-RT) and with model tree
options (M5-MT), and Fast Incremental Model Trees (FIMT, [27]) in the basic
version, and in the advanced version with adaptive filters (FIMT-AF). The two
parameters fidelity (how well the predictions of the mimic model match those
from the mimicked model) and play performance (how well the average return
in the mimic model matches that of the mimicked model) are used as evaluation
metrics. Compared to CART and FIMT (-AF), the LMUT model showed higher
fidelity with fewer leaves. For the Cart Pole environment, LMUT showed the
highest fidelity, while the M5 trees showed higher performance for the other two
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Fig. 6. Placement of the different tree models on the axes data coverage vs. data
optimality. Adapted from Liu et al. [37].

environments, although LMUT was comparable. Concerning the play perfor-
mance, the LMUT model performs best out of all the models. This was likely due
to the fact that, contrary to the LMUTs, the M5 and CART trees fit equally over
the whole training experience which includes sub-optimal actions in the begin-
ning of training, while the FIMT only adapts to the most recent input and thus
cannot build linear models appropriately. In their work, this is represented by
sorting the methods on an axis between ‘data coverage’ (when the mimic model
matches the mimicked model on a large section of the state space) and ‘data
optimality’ (when it matches the states most important for performance) with
the LMUT at the, as they call it, ‘sweet spot between optimality and coverage’
(see also Fig. 6).

There is a similar, newer tree method that uses Soft Decision Trees (SDTs)
to extract DRL polices [9]. This method was not presented in this paper because,
for one thing, it is less versatile (not offering rule extraction, for example), and
for another, it was not clear whether the SDTs actually adequately explained
the underlying, mimicked policy for their used benchmark.

3.4 Method D: Explainable RL Through a Causal Lens

According to Madumal et al. [40], not only is it important for a RL agent to
explain itself and its actions, but also to bear in mind the human user at the
receiving end of this explanation. Thus, they took advantage of the prominent
theory that humans develop and deploy causal models to explain the world
around them, and have adapted a structural causal model (SCM) based on
Halpern [20] to mimic this for model-free RL. SCMs represent the world with
random exogenous (external) and endogenous (internal) variables, some of which
might exert a causal influence over others. These influences can be described with
a set of structural equations.

Since Madumal et al. [40] focused on providing explanations for an agent’s
behaviour based on the knowledge of how its actions influence the environment,
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they extend the SCM to include the agent’s actions, making it an action influence
model. More specifically, they offer ‘actuals’ and ‘counterfactuals’, that is, their
explanations answer ‘Why?’ as well as ‘Why not?’ questions (e.g. ‘Why (not)
action A?’). This is noticeable because, contrary to most XAI models, it not
only considers actual events occurred, but also hypothetical events that did not
happen, but could have.

In more detail, the process of generating explanations consists of three phases;
first, an action influence model in the form of a directed acyclic graph (DAG)
is required (see Fig. 7 for an example). Next, since it is difficult to uncover the
true structural equations describing the relationships between the variables, this
problem is circumvented by only approximating the equations so that they are
exact enough to simulate the counterfactuals. In Madumal et al. [40], this is done
by multivariate regression models during the training of the RL agent, but any
regression learner can be used. The last phase is generating the explanations,
more specifically, minimally complete contrastive explanations. This means that,
first, instead of including the vectors of variables of ALL nodes in the expla-
nation, it only includes the absolute minimum variables necessary. Moreover, it
explains the actual (e.g. ‘Why action A?’) by simulating the counterfactual (e.g.
‘Why not action B?’) through the structural equations and finding the differ-
ences between the two. The explanation can then be obtained through a simple
NLP template (for an example of an explanation, again, see Fig. 7).

Madumal et al. [40]’s evaluations of the action influence model show promis-
ing results; in a comparison between six RL benchmark domains measuring accu-
racy (‘Can the model accurately predict what the agent will do next?’) and per-
formance (training time), the model shows reasonable task prediction accuracy
and negligible training time. In a human study, comparing the action influence
model with two different models that have learnt how to play Starcraft II (a
real-time strategy game), they assessed task prediction by humans, explanation
satisfaction, and trust in the model. Results showed that the action influence
model performs significantly better for task prediction and explanation satis-
faction, but not for trust. The authors propose that, in order to increase trust,
further interaction might be needed. In the future, advancements to the model
can be made including extending the model to continuous domains or targeting
the explanations to users with different levels of knowledge.

4 Discussion

In this paper, inspired by the current interest in and demand for XAI, we focused
on a particular field of AI: Reinforcement Learning. Since most XAI methods
are tailored for supervised learning, we wanted to give an overview of methods
employed only on RL algorithms, since, to the best of our knowledge, there is
no work present at the current point in time addressing this.

First, we gave an overview over XAI, its importance and issues, and explained
related terms. We stressed the importance of a uniform terminology and have
thus suggested and defined a term to use from here on out. The focus, however,
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Fig. 7. Action influence graph of an agent playing Starcraft II, a real-time strategy
game with a large state and action space, reduced to four actions and nine state vari-
ables for the purpose of generating the explanations. In this case, the causal chain
for the actual action ‘Why As?’ is shown in bold, and the chain for the counterfac-
tual action ‘Why not Ab?’ would be B → An → [Du, Db]. The explanation to the
question ‘Why not build barracks (Ab)?’ would be ‘Because it is more desirable to do
action build supply depot (As) to have more Supply Depots (S) as the goal is to have
more Destroyed Units (Du) and Destroyed buildings (Db)’. Adapted from Madumal
et al. [40].

lay on collecting and providing an overview over the aforementioned XRL meth-
ods. Based on Adadi and Berrada [2]’s work, we have sorted selected methods
according to the scope of the method and the time of information extraction.
We then chose four methods, one for each possible combination of those catego-
rizations, to be presented in detail.

Looking at the collected XRL methods, it becomes clear that post-hoc inter-
pretability models are much more prevalent than intrinsic models. This makes
sense, considering the fact that RL models were developed to solve tasks with-
out human supervision that were too difficult for un-/supervised learning and
are thus highly complex; it is, apparently, easier to simplify an already exist-
ing, complex model than it is to construct it to be simple in the first place. It
seems that the performance-interpretability trade-off is present not only for the
AI methods themselves, but also for the explainability models applied to them.

The allocation to global vs. local scope, however, seems to be more or less
balanced. Of course, the decision to develop a global or a local method is greatly
dependent on the complexity of the model and the task being solved, but one
should also address the question if one of the two is more useful or preferable to
human users. In van der Waa et al.’s study [62], for example, ‘human users tend
to favor explanations about policy rather than about single actions’ (p. 1).

In general, the form of the explanation and the consideration of the intended
target audience is a very important aspect in the development of XAI/XRL
methods. Holzinger et al. [26] emphasize the need for causability : a combination
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of causality - referring to the human reliance on causal models for explanations
- and usability - a term from the area of human-computer interaction defined
as ‘a function of the ease of use [...] and the acceptability of the product’ [5,
p. 2]. Just as usability measures the ‘quality of use’, causability measures the
‘quality of explanation’. In Holzinger et al. [25], they have developed a System
Causability Scale, an explanation interface evaluating explanations along spe-
cific dimensions such as efficiency and completeness. XAI methods also need to
exhibit context-awareness: adapting to environmental and user changes like the
level of experience, cultural or educational differences, domain knowledge, etc.,
in order to be more human-centric [2]. The form and presentation of the explana-
tion is essential as XAI ‘can benefit from existing models of how people define,
generate, select, present, and evaluate explanations’ [42, p. 59]. For example,
research shows that (causal) explanations are contrastive, i.e., humans answer a
‘Why X?’ question through the answer to the – often only implied – counterfac-
tual ‘Why not Y instead?’. This is due to the fact that a complete explanation
for a certain event (instead of an explanation against the counterevent) involves
a higher cognitive load [42]. Not only that, but a layperson also seems to be more
receptive to a contrastive explanation, finding it ‘more intuitive and more valu-
able’ [42, p. 20]. While there are some XAI studies focusing on the human side
of the equation (e.g. [41,65–67]), especially in XRL, this is often neglected [1].

Out of the papers covered in this work, we highlight Madumal et al.’s work
[40], but also Sequeira and Gervasio [52] and van der Waa et al. [62]; of all thirteen
selected XRL methods, only five evaluate (non-expert) user satisfaction and/or
utility of a method [17,29,40,52,62], and only three of these offer contrastive
explanations [40,52,62]. So, of all selected papers, only these free provide a
combination of both, not only offering useful contrastive explanations, but also
explicitly bearing in mind the human user at the end of an explanation.

4.1 Conclusion

For practical, legal, and psychological reasons, XRL (and XAI) is a quickly
advancing field in research that has to address some key challenges to prove
even more beneficial and useful. In order to have a common understanding about
the goals and capabilities of an XAI/XRL model, a ubiquitous terminology is
important; due to this, we suggest the term interpretability to be used from
here on out and have defined it as ‘the ability to not only extract or generate
explanations for the decisions of the model, but also to present this information in
a way that is understandable by human (non-expert) users to, ultimately, enable
them to predict a model’s behaviour’. This is closely related to Causability,
referring to the quality of an explanation [26]. Different approaches are possible
to achieve interpretability, depending on the scope (global vs. local) and the
time of information extraction (intrinsic vs. post-hoc). Due to the complexity of
a RL model, post-hoc interpretability seems to be easier to achieve than intrinsic
interpretability: simplifying the original model (for example with the use of a
surrogate model) instead of developing a simple model in the first place seems
to be easier to achieve, but comes at the cost of accuracy/performance.
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However, despite some existing research, especially XRL models often lack to
consider the human user at the receiving end of an explanation and to adapt the
model to them for maximum benefit. Research shows that contrastive explana-
tions are more intuitive and valuable [42], and there is evidence that human users
favor a global approach over a local one [62]. A context-aware system design is
also important in order to cater to users with different characteristics, goals, and
needs [2]. Especially considering the growing role of AI in critical infrastructures
(for example analyzing and controlling power grids with models such as ARL
[15,59]), where the AI model might have to act autonomously or in cooperation
with a human user, being able to explain and justify the model’s decisions is
crucial.

To achieve this and be able to develop human-centered models for optimal
and efficient human-computer interaction and cooperation, a bigger focus on
interdisciplinary work is necessary, combining efforts from the fields of AI/ML,
psychology, philosophy, and human-computer interaction.
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