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Abstract. Transparent Machine Learning (ML) is often argued to
increase trust into predictions of algorithms however the growth of new
interpretability approaches is not accompanied by a growth in studies
investigating how interaction of humans and Artificial Intelligence (AI)
systems benefits from transparency. The right level of transparency can
increase trust in an AI system, while inappropriate levels of transparency
can lead to algorithmic bias. In this study we demonstrate that depending
on certain personality traits, humans exhibit different susceptibilities for
algorithmic bias. Our main finding is that susceptibility to algorithmic
bias significantly depends on annotators’ affinity to risk. These findings
help to shed light on the previously underrepresented role of human per-
sonality in human-AI interaction. We believe that taking these aspects
into account when building transparent AI systems can help to ensure
more responsible usage of AI systems.
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1 Introduction

Decision support by Machine Learning (ML) models has become ubiquitous in
everyday life. Responsible usage of such assistive technology requires an appro-
priate level of trust into ML systems [7]. Trust into this technology is often
argued to require interpretability of ML predictions. This is why transparent
ML methods have become an active focus of research. A central research ques-
tion in this field is how methodological advances translate into improvements
in human-AI interaction and trust. Transparent ML research aims at better
explaining ML predictions and systems to humans, but it is difficult to assess
how much human-AI interaction profits from scientific advances in the field.
Many studies proposing new interpretable ML methods do report results with
human-in-the-loop experiments to test the impact of their proposed method on
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human-AI collaboration [26,37]; and there are approaches to compare the qual-
ity interpretability methods in psychophysical experiments with humans [43].
Yet there appears to be no consensus in the community on how the impact of
interpretability methods on human-AI interaction should be evaluated [14].

So while there has been substantial growth in the research field of transpar-
ent AI, studies on the impact of transparency in AI systems on human cogni-
tion remain underrepresented. This development is at odds with the increased
usage of ML systems as decision support systems. In many societies humans
interact more often with computer systems than with other humans and the
importance of a better understanding of machine behaviour and human machine
interaction is widely recognized [36]. When humans interact with ML systems
as often as with machines, studying the interdependence of machine behaviour
and human behaviour becomes increasingly important. Everyday work in many
professions with high responsibility employs assistive ML technology, includ-
ing doctors, policemen and judges. To what extent these professions can profit
from increased transparency or are negatively affected by algorithmic bias, here
referring to humans trusting an AI too much, is an open research question. Algo-
rithmic bias can have severe negative consequences, for instance when policemen
trust biased ML predictions too much. Similarly, algorithm aversion can have
devastating consequences, for example when experienced doctors ignore correct
ML predictions. We argue that the danger of algorithmic bias or algorithm aver-
sion should motivate not only calibrating the transparency level of AI systems.
An equally important focus of research is the calibration of humans for respon-
sible usage of transparent AI systems. The goal of this study is to highlight the
potential of existing psychological research for a better calibration of human-AI
interaction by taking into account personality traits. Our working hypothesis is
that adding transparency does not have the same effect on users of an AI system,
depending on their personality. We employ concepts from psychological research
to investigate how different personality characteristics influence the impact of
transparency in AI assisted decision making.

Human decision making in a collaborative context has been studied exten-
sively in the psychological literature. One major focus of this research is on
personality traits that are related to how tolerant subjects are with respect to
risk and ambiguity. Risk affinity or aversion is studied in decisions in which
subjects have access to the odds of a certain outcome. Tolerance to ambiguity
is studied in decisions in which subjects to not have access to the probabili-
ties associated with each outcome in a decision. Being optmistic in presence of
ambiguity has recently been reported to be an important personality trait for
trust. For instance the authors of [50] show that tolerance to ambiguity reliably
predicts prosocial behaviour. We hypothesize that such behavioural traits are
also involved in human-AI collaboration. We propose to leverage this research
to better understand how humans interact with AI systems. Our results indicate
that not only in human interaction but also in the context of assistive AI tech-
nology, these two factors, tolerance of risky and ambiguous uncertainty, play an
important role. After all, most attempts to render AI systems more transparent
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can be motivated to reduce these very aspects: Transparency of an AI system is
often increased by exposing the model likelihoods for an uncertain decision, or
by showing explanations. Users with high or low affinity to risk and ambiguity
could benefit differently from these transparency aspects.

Our study combines established methods from experimental psychology to
determine personality traits indicative for risk and ambiguity tolerance with
experiments that investigate the susceptibility to algorithmic bias of subjects.
This combination allows to study the influence of these personality traits on the
impact of transparency induced algorithmic bias. More importantly our findings
can be directly applied to real world application scenarios of human-AI inter-
action in which responsible usage of AI systems is of paramount importance,
such as policing, jurisdiction, medicine and many others. After illustrating cases
of algorithmic bias and the differential susceptibility of humans, depending on
their personality traits, we derive guidelines that help to reduce detrimental
algorithmic bias and to maximise the benefits of transparent assistive AI.

2 Related Work

The work on interpretability of ML models has become a central topic of research
in both theoretical aspects of statistical learning as well as applied ML. Many
of the relevant publications at major ML conferences and dedicated workshops
can be broadly categorized in more conceptual contributions or position papers
and technical contributions to the field of interpretability.

In the category of position papers, an important aspect dealt with in [17] is
the question of how we balance our concerns for transparency and ethics with
our desire for interpretability. Herman points out the dilemma in interpretability
research: there is a tradeoff between explaining a model’s decision faithfully and
in a way that humans easily understand. Interpreting ML decisions in an acces-
sible manner for humans is also referred to as simulatability [28]. A reasonable
working hypothesis is that the subjective value of transparency is an important
factor for algorithmic bias. Studying these cases of bias is challenged by the fact
that these biases can occur independently of the conscious perception of users.
And even worse, these biases are likely to affect humans differently depending
on their personality traits.

Intuitive comprehensibility and low cognitive friction of ML prediction expla-
nations that is desired for explanations, and can be used as the basis of quan-
titative comparisons of interpretability approaches [8,29,32,43], is a two sided
sword: Explanations should be comprehensible, but at the same time the nega-
tive aspects of algorithmic biases should be avoided. The need for unbiased and
automated evaluation metrics for transparency in combination with human-in-
the-loop experiments is widely recognized. For instance the authors of [8] high-
light the necessity of understandability of explanations as well as the lack of
consensus when it comes to evaluating interpretability of ML models. They pro-
pose an evaluation taxonomy that comprises both automated evaluations but
also involves evaluations by human laymen. However, the negative and positive
effects of algorithmic biases are not a central focus of that work.
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Interpretability Approaches. On the AI side of human-AI interaction studies,
there is a large body or work advancing the state of the art in transparent
AI. The category of technical contributions can be broadly subdivided into two
types of methods. First there are methods that aim at rendering specific models
interpretable, such as interpretability methods for linear models [16,54] or inter-
pretability for neural network models [33,44,53]. Second there are interpretabil-
ity approaches that aim at rendering any model interpretable, a popular example
are the Local Interpretable Model-Agnostic Explanations (LIME) [37]. As these
latter interpretability methods work without considering the inner workings of
an ML model, they are often referred to as black box interpretability methods.
Due to the popularity of neural network models especially in the field of com-
puter vision there have been a number of interpretability approaches specialized
for that application scenario and the method of choice in this field, deep neural
networks. Some prominent examples are layerwise relevance propagation (LRP),
sensitivity analysis [44] and deconvolutions [53]. For comparing these different
approaches the authors of [40] propose a greedy iterative perturbation proce-
dure for comparing LRP, sensitivity analysis and deconvolutions. The idea is to
remove features where the perturbation probability is proportional to the rele-
vance score of each feature given by the respective interpretability method. An
interesting finding in that study is that the results of interpretability comparisons
can be very different depending on the metric: the authors of [13] performed an
evaluation of sensitivity analysis and came to a different conclusion than [40].

The idea of using perturbations gave rise to many other interpretability
approaches, such as the work on influence functions [5,15,24] and methods based
on game theoretic insights [30,47]. In [47] evaluations are entirely qualitative; in
[30] the authors compare interpretability methods by testing the overlap of expla-
nations with human intuitions. While this approach can be considered quantita-
tive, it is difficult to scale as it requires task specific user studies. Another metric
used in that study for comparisons of evaluations is computational efficiency,
which is simple to quantify, but is not directly related to interpretability. Other
studies also employ user studies and comparisons with human judgements of fea-
ture importance. An interesting approach is taken in [38] in which the authors
let students of an ML class guess what a model would have predicted for a given
instance when provided with an explanation. Similarly the authors of [26] per-
form user studies in which they present rules generated by an interpretability
method and measure how good and how fast students can replicate model predic-
tions. This approach has been taken also in [18] in which the speed and accuracy
are measured with which humans can replicate model decisions. Overall many
studies investigate the impact of transparent AI on human-AI collaboration. Yet
the details of when an explanation leads to detrimental algorithmic bias and the
personality traits governing susceptibility to algorithmic bias remain underrep-
resented. We build our work on the ideas put forward in the above studies, but
we place a special focus on the factors determining algorithmic bias in both ML
models and human personality.
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Decision Making Under Uncertainty. In almost every human-AI collaboration
the final decision is made by humans. For this reason it is of utmost importance
to understand how humans decide. Human decision making [3] is studied in a
number of different fields such as mathematics [12,42], behavioural economics
[20,48] and psychology [46]. The existing literature can be divided into work
that focuses on normative theory, i.e., how decisions should be made with logical
consistency, descriptive models, i.e., how people make decisions, and prescrip-
tive approaches that try to help make people better decisions. Further, decision
making problems can be divided by whether a decision maker has access to out-
come probabilities, i.e., a decision task associated with risky uncertainty, or is
lacking such information, i.e., a decision problem with ambiguous uncertainty.
Depending on whether uncertainty is risky or ambiguous [23], humans tend to
exhibit different behaviour, generally favoring risky options over ambiguous ones
[4,6,45]

Expected utility theory [51] attempts to explain human choice behaviour
using utility functions that take into account the objective value of a choice.
Prior work has recognized the discrepancy between how people should choose
under an expected value maximization principle and their actual choices [39]. It
has been found that choices might deviate from the optimal one for a number
of reasons, including risk aversion [1,19,34]. A widely known example of this
is the St. Petersburg paradox, where players are reluctant to bet on a game
with infinite expected value [39]. Further work in this field introduced subjec-
tive expected utility (SEU) [41] that allows for subjective variations in decision
making behaviour under risk. However the explanatory power of SEU was ques-
tioned in [2] and it was later demonstrated by the Ellsberg paradox [10] that the
rationality assumptions introduced by SEU did not hold in cases where outcome
probabilities are not known, i.e., in cases of ambiguous uncertainty. Ambiguity
aversion and its effects were studied thoroughly in [4] and hence it was found
that ambiguity sensitive behaviour cannot be explained by SEU. Follow up work
then explicitly developed models to explain decision behaviour under ambiguity
[9,12,22,42].

In Psychology risk and ambiguity tolerance are considered two distinct per-
sonality traits [46]. Attitudes towards risky and ambiguous uncertainty can be
estimated using choice models [12], as it was done in [50] to explain pro-social
behaviour. In line with these findings, individuals that exihibt ambiguity toler-
ance were found to be generally optimistic when faced with uncertainty [35,52].

In this work, we employ an utility model that is used to specify subjective
value of an option taking into account risky and ambiguous uncertainty [12].
This model has been used in prior work to determine a subjects attitude to
risky and ambiguous uncertainty [11,27,50]. We believe that human-AI interac-
tion is inherently associated with risky and ambiguous uncertainty, regardless of
whether the interaction occurs during online shopping sessions or when judges
draw on algorithmic decision support for bail decisions.
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3 Experiment

In order to investigate the impact of levels of transparency and its relationship
to risk and ambiguity affinity we ran an annotation task on the crowdworking
platform Amazon Mechanical Turk1. The annotation task was based on a text
classification task, a binary sentiment classification task of IMDb reviews. A ML
model was trained on the task and its predictions and explanations thereof were
exposed to the annotators. We varied the level of transparency and measured
the effect on the agreement between annotators’ responses and a) ground truth
labels and b) model predictions. In order to examine how risk and ambiguity
affinity relates to trust in an AI system with varying levels of transparency we
first determined the affinity of annotators to risk and ambiguity in their decisions,
using a well established psychological task that involves playing a lottery with
known odds (risk) or with unknown odds (ambiguity) [11,27,49,50].

3.1 Risk and Ambiguity Affinity Experiment

The first part of the experiment was an incentivized gambling task for which the
experiment participants had to choose between a safe payout and an uncertain
monetary option. This type of task is known to yield reliable estimates for sub-
jective risk and ambiguity attitudes. Across trials, participants were exposed to
different levels of risk (25%, 50% and 75%) and ambiguity (24%, 50% and 74%).
In half of the trials, participants were exposed to risky gambling options, where
the winning odds were fully observable. The remaining trials had varying levels
of ambiguity associated to them, where the winning probabilities could not be
fully observed. See Fig. 1 for a depiction of a risky and ambiguous trial respec-
tively. All of the ambiguous trials had an objective winning probability of 50%.
The safe payout option had a monetary value of $0.25 whereas the uncertain,
risky and ambiguous, trials were allocated to equally represent monetary values
of $0.25, $0.4, $1.0, $2.5 and $6.25.

We have adopted a subjective utility function based on [12], as it has been
defined in [50] as

SV (p,A, v) =
(

p − β
A

2

)
vα (1)

where the subjective value (SV) is calculated as a function of three param-
eters, the objective winning probability (p), the level of ambiguity (A) and the
monetary amount v in that trial. The two free parameters α and β indicate a
subjects sensitivity to risk and ambiguity respectively. We modelled choice of
the lottery, i.e., whether a subject chose the variable payout option on a given
trial as

P (play lottery) =
1

1 + eγ(SVF −SVV )
. (2)

1 https://www.mturk.com/.

https://www.mturk.com/
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The fixed monetary option is referred to as SVF and the variable, risky or
ambiguous, option is referred to as SVV . For each subject we estimated three
parameters; α, β and a slope of the logistic function γ using maximum likelihood
given choice data that was collected as part of the experiment.

For subjects that are unaffected by ambiguity in their gambling choices,
ambiguity sensitivity β will be 0. A positive β indicates ambiguity aversion, i.e.,
the winning probability is perceived as being less than 50% in ambiguous trials.
On the other hand, a negative β indicates that a subject perceives the winning
probability to be more than 50% in ambiguous trials. Risk neutral subjects will
have an α of 1. A risk averse subject will have an α smaller than 1, and for a
risk tolerant subject α is greater than 1.

Overall, the subjective value function explained participants choice behaviour
extremely well, in 83.5% of trials across all subjects the model predicted choice
correctly. According to the model fit, 41.5% of experiment participants were
identified as being risk and ambiguity averse; the second largest group (31.8%)
was tolerant to both risky and ambiguous uncertainty.

Fig. 1. User interface of the experiment to assess risk affinity and ambiguity tolerance.
Left: Risk condition, users know the odds of winning the lottery. Right: Ambiguity
tolerance condition, subjects do not know the odds, the winning probability in these
trials was always 50%.

3.2 Annotation Task Experiment

In the second part of the experiment, we asked participants to annotate binary
sentiments for 50 movie reviews from IMDb. Depending on the condition, par-
ticipants were exposed to different levels of algorithmic transparency, see Fig. 2
for an exemplary depiction of the experimental conditions.

3.3 Data Set

The task uses the publicly available IMDb movie review sentiment dataset2

which was introduced in [31]. The IMDb rating scale is defined from one to
2 https://www.imdb.com/conditions.

https://www.imdb.com/conditions
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ten stars where all reviews that have less than five stars are considered to have
negative sentiment and all reviews that have more than six stars positive. For
more controlled experimental conditions we further reduced the complexity of
the dataset: We subsampled the full dataset to 50 movie reviews and controlled
for various factors in that sample. Reviews were selected such that they were all
between 400 and 1000 characters long to ensure comparable cognitive load for
all reviews. Positive and negative reviews occurred equally often (25 times each)
and had varying degrees of (relative) ease. This assessment of task ease is based
on prior work in which subjects classified reviews without support; these values
range between 0.5 and 1.0, indicating the fraction of subjects classifying the
reviews correctly. In order to avoid learning and adoption effects, the true labels
were never revealed throughout the experiment. We selected a set of reviews for
which the ML model’s classification accuracy was 80%. Moreover, this accuracy
was symmetrical across positive and negative reviews. Given this design, all
other conventional performance measures such as precision, recall, and specificity
amount to 80% as well. Previous research on IMDb review classification found
that typical human accuracy ranges between 75% and 80% on similar samples
of the same data [43]. All participants were exposed to the same reviews.

Table 1. Held-out per label precision/recall/f1 scores of the ML model used for com-
paring ML interpretability methods on the full IMDb test dataset. In the annotation
task a subsample of this full data set was used, in which several variables were con-
trolled for to ensure comparable cognitive load across data points.

Sentiment Precision Recall f1-score Support

Negative 0.88 0.87 0.87 12500

Positive 0.87 0.88 0.87 12500

Avg/total 0.87 0.87 0.87 25000

3.4 Machine Learning Model

The ML model was trained on the complete training dataset which consists
of 25000 movie reviews and achieved precision/recall/f1 metrics close to 90%
on the test dataset, see Table 1. In all experiments we used unigram bag-of-
words features that was term-frequency inverse document frequency normal-
ized. English stopwords were removed prior to the feature extraction. Bag-of-
words feature vectors x ∈ Rd, where d denotes the number of unigram features,
were used to train an L2 regularized multinomial logistic regression model. Let
y ∈ {1, 2, . . . ,K} be the true label, where K is the total number of labels and
W = [w1, . . . ,wK ] ∈ Rd×K is the concatenation of the weight vectors wk ∈ Rd

associated with the kth class then
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p(y = k|x,W ) =
ezk∑K

j=1 ezj

with zk = w�
k x (3)

We estimated W using stochastic gradient descent (SGD) using the python
library sklearn and used a regularization parameter of 0.0001, other values for
the regularizer lead to similar model performance.

3.5 Interpretability Method

A simple and efficient approach for rendering linear models interpretable is pro-
vided in [16]. While this approach is limited to linear models, it is a special
case of the feature importance ranking measure (FIRM) [54] that can be applied
to arbitrary non-linear models and there are other non-linear extensions [21].
Following Eq. (6) in [16] we obtain the feature importances for each class k
separately by

ak = X�ŷk (4)

where the matrix X ∈ RN×d denotes the N samples in the held out test data
set and the and d denotes the number of unigram features extracted from the
training data set. The predictions of the model for class k on the test data are
denoted ŷk ∈ RN×1. Each dimension of ak ∈ Rd is associated with a feature,
in our case a word in the unigram dictionary. To compute the explanations, i.e.
the highlighted words for sample xi, we selected the feature importances ak

associated with the most likely predicted class k under the model and ranked
the words in a text according to the element-wise product of features xi and
feature/prediction covariances ak. The highlighted words were those that were
present in the text and scored high in terms of their covariance between features
and model predictions. The use of this interpretability method was motivated
by its general applicability, by its simplicity and by its speed. Also this approach
was found to be superior to other interpretability methods including LIME [37]
for this particular combination of data set and ML model [43].

3.6 Experimental Setup

All user study experiments were run on Mechanical Turk where we asked anno-
tators to provide the correct sentiment of 50 movie reviews. The annotation user
interface (UI) is shown in Fig. 2. In total we collected annotations from 248 dis-
tinct workers. For each worker we selected one out of three levels of transparency:

– control: only the move review was shown
– highlights: movie reviews were shown along with the ML model prediction

and the top 3 words according to interpretability score in Eq. 4 were high-
lighted

– highlights with confidence: same as highlights condition but with the like-
lihood for the predicted class as in Eq. 3.
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Fig. 2. Annotation user interface for the AI-assisted IMDb movie review sentiment
classification experiment. Three transparency levels were examined, shown is only the
highest transparency level where the ML prediction with the model confidence was
shown along with the explanation in form of highlighted words; the medium trans-
parency level did not show the model confidence and the lowest level of transparency
only showed the review text.

Each experimental subject was exposed to a transparency condition drawn uni-
formly at random. To control for effects related to the number of words high-
lighted we kept the number of words highlighted fixed to three words in each
text, samples with more words highlighted (e.g. due to duplicate words) were dis-
carded. For each annotation we recorded the annotation time, the experimental
condition, the true label and the label provided by the annotator.

4 Results

We analysed the effects of increased transparency of ML predictions on human
annotators performance. In particular, we investigated the agreement of human
annotators with the ground truth labels and the ML predictions. Analysing
the effects of transparency on annotators’ agreement with the model predictions
allows to investigate algorithmic bias of annotators, meaning the overlap of anno-
tators’ predictions and the predictions of the ML model. Studying the impact of
transparency on human annotators’ agreement with ground truth labels allows
to differentiate cases of beneficial or detrimental algorithmic bias. These effects
were then analysed with respect to the risk and ambiguity affinity of each
annotator.
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Fig. 3. Agreement between annotations by humans and ground truth (left) and ML
model predictions (right) at increasing levels of transparency. Adding transparency
significantly increased overlap between human annotations and ML predictions. But
overlap with ground truth labels is not increased.

4.1 Transparency Increases Algorithmic Bias

When increasing transparency of ML predictions the annotators’ agreement with
the ground truth labels was not affected significantly. As shown in Fig. 3, there
seems to be a slight decrease in human annotation accuracy when explanations
and the model prediction were shown. In contrast, the annotators’ agreement
with the ML model predictions are increased significantly when adding model
transparency. In particular, compared to the control group, algorithmic bias was
increased in the first treatment group where word highlights and the model pre-
diction were shown (Mann-Whitney, p < 0.001, bonferroni-adjusted). Similarly,
algorithmic bias was also significantly increased in the second treatment group
where in addition to the transparency from the first treatment group also model
confidence scores were shown (Mann-Whitney, p < 0.001, bonferroni-adjusted).
These results show that transparency mainly leads to algorithmic bias in our
setting, but does not improve the performance of the annotators significantly.

Transparency Biases Annotators to Wrong ML Predictions. In order to better
understand these effects we divided the data into cases when the ML prediction
was correct and when the ML prediction was wrong. The results shown in Fig. 4
indicate that the effects observed in the overall aggregates in Fig. 3 can be mainly
attributed to those cases when the AI was wrong. When the ML prediction was
wrong, adding transparency led to a significant decrease in annotators agreement
with the ground truth (Kruskal Wallis, p < 0.001). In contrast, there was a
significant increase in the agreement of annotators with the ML model when the
ML prediction was wrong (Kruskal Wallis, p < 0.001). When the ML prediction
was correct, the effect of adding transparency was not significant.
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Fig. 4. Agreement between annotations by humans and ground truth or ML model
predictions, respectively, when the ML prediction was wrong (left) and when the ML
prediction was correct (right) at increasing levels of transparency. When the ML pre-
diction was wrong, transparency decreases annotators’ agreement with ground truth
but increases their agreement with the ML prediction.

4.2 Algorithmic Bias and Model Uncertainty

While intuitive, these insights from conditioning on whether the model was right
or wrong are difficult to translate in real world scenario advices: in most real
world applications the true labels are not known. What often is known is the
uncertainty of a ML prediction. We investigated how algorithmic bias due to
transparency is influenced by model uncertainty. In some cases, when the model
has high accuracy and its uncertainty estimates are well calibrated, this quantity
is closely related to the accuracy of a model, but that is not necessarily the case.
In order to condition on model uncertainty we first computed the entropy of the
binary classifier for each data point

−p(pos) log(p(pos)) − p(neg) log(p(neg)) (5)

where p(pos), p(neg) is the predicted likelihood of the ML model for a positive
or negative review, respectively. We split the data at the median entropy of
all data points into low entropy samples, for which the model was relatively
certain about its prediction, and high entropy samples, for which the model was
uncertain. Note that only in the condition with the highest transparency degree
subjects had access to the probability score, which is in this case directly related
to the entropy. In the two other conditions, the entropy of the model was not
exposed.

Model Uncertainty Decreases Algorithmic Bias. The agreement of subjects with
ground truth labels and model predictions split into low and high entropy
samples is shown in Fig. 5. Similar to the overall effect of algorithmic bias
in Fig. 3, also in this illustration we observe a pronounced algorithmic bias
induced by adding transparency. The agreement between annotators and ML
model increases when adding transparency, especially when only explanations
and model prediction are shown. However, when conditioning on model entropy
we see a strong effect of uncertainty on annotators’ bias: their algorithmic bias is
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Fig. 5. Effect of model uncertainty on agreement between annotations by humans and
ground truth (left) and ML model predictions (right) at increasing levels of trans-
parency. Left : Algorithm transparency is associated with a decrease in annotators’
agreement with true labels when predictions are uncertain, but with an increase when
the ML model is certain. Right : Transparency induces algorithmic bias – especially
when the model is certain.

reduced significantly in all transparency conditions when the model is uncertain
(chi-square test of independence, p < 0.001).

Positive and Negative Effects of Algorithmic Bias. While the overall impact of
transparency, shown in Fig. 3, is mainly algorithmic bias, there appears to be no
effect on the annotators’ agreement with the ground truth. Our results however
suggest that when controlling for model uncertainty, transparency does have an
effect on annotators’ accuracy, but this effect is opposite for low and high entropy
predictions of an ML model. In Fig. 5 (left) we observe that adding transparency
decreases annotators’ accuracy – but only for high entropy samples (chi-square
test of independence, p = 0.018). In contrast when the model is certain, anno-
tation accuracy is increased with transparency (chi-square test of independence,
p < 0.001). These findings have direct implications for the calibration of human
interaction with transparent AI systems. As annotators’ accuracy becomes worse
with added transparency when a model is uncertain, one should consider care-
fully exposing biasing information in such human-AI interaction when the model
is uncertain. Interestingly, this is true also for conditions in which annotators had
access to the model entropy. This finding is somewhat in line with the results in
[25] in which the authors reported that exposing the probabilities of a prediction
did not have a strong positive effect on human subjects.

4.3 Impact of Risk and Ambiguity Tolerance on Transparency
Induced Algorithmic Bias

The above results confirm that transparency induces algorithmic bias, meaning
annotators are more likely to replicate the ML prediction. In this section we
investigate whether annotators exhibit different algorithmic bias susceptibility
depending on the personality traits risk aversion and ambiguity tolerance. We
partitioned the annotators into risk averse and risk affine as well as ambigu-
ity averse and ambiguity tolerant subjects according to the coefficients in Eq. 1
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which were fitted to the data obtained in the gambling experiment. Following
[50] annotators with α > 1 were classified as risk tolerant and and risk averse
otherwise, annotators with β < 0 were classified as ambiguity tolerant and ambi-
guity averse otherwise. The histogram of annotators in each segment is shown
in Table 2.

Table 2. Histogram of annotators classified as risk and ambiguity averse or tolerant

# annotators Ambiguity averse Ambiguity tolerant

Risk averse 103 45

Risk tolerant 21 79

Fig. 6. Same data as in Fig. 3 but here the data is split by risk and ambiguity tolerant
behaviour of annotators. When adding transparency, risk and ambiguity averse anno-
tators exhibit higher agreement with the ML model and less agreement with ground
truth. Risk tolerant and ambiguity averse annotators show the opposite effect. (Color
figure online)

Risk Aversion Correlates with Algorithmic Bias Susceptibilty. The results in
Fig. 6 show that annotators with different risk and ambiguity behaviour are
impacted differently by adding transparency to the assistive ML system. The
most prominent effect is the relationship between risk aversive behaviour and
algorithmic bias. Annotators that tended to be risk averse showed the most pro-
nounced algorithmic bias, as shown in Fig. 6, right, blue (control) vs. orange
(highlights) and green (highlights and confidence) (Mann-Whitney, p < 0.001,
bonferroni-adjusted). Interestingly, the strongest algorithmic bias was observed
for the intermediate level of transparency, when the model prediction confidence
was not shown (orange). This suggests that while risk averse subjects are most
susceptible to algorithmic bias induced by transparency, this tendency is allevi-
ated when the model confidence is shown. In contrast to risk averse annotators,
risk tolerant annotators were not as susceptible to transparency induced algo-
rithmic bias, the agreement of their annotations with the ML model predictions
was less affected (Mann-Whitney, p = 0.003) by the level of transparency.
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Ambiguity Tolerance and Transparency. We also investigated the relationship
between ambiguity tolerance and the impact of transparency on algorithmic
bias and annotation accuracy. Ambiguity tolerance is generally associated with
prosocial behaviour in human interaction [50] and we hypothesized that it could
be important for human AI interaction as well. While our results suggest that
there is an effect of ambiguity tolerance in combination with risk aversion on the
impact on transparency (Fig. 6), these differences are not statistically significant.
This suggests, that while ambiguity tolerance is an important personality trait
for interactions between humans it is less important for the trust relationship
in human-AI interaction. We emphasize however that when conditioning on all
combinations of risk aversion and ambiguity tolerance some groups of subjects
were too small for detecting a significant effect of ambiguity and risk behaviour
on transparency induced algorithmic bias, see also Table 2.

5 Conclusion

Human-Machine interaction has become a central part of everyday life. A large
body of literature is dedicated to improving transparency of ML systems for more
responsible usage of AI systems. We believe that transparency in itself does not
necessarily have positive consequences on human-AI interaction. Both parts, AI
systems and human users, should be calibrated well to avoid cases of unjustified
algorithmic bias, or cases of ignorance of helpful assistive-AI predictions. Opti-
mal calibration however requires an in-depth understanding of both parties and
how they interact. To the best of our knowledge the role of human personality
has been underrepresented in the literature on transparent machine learning. In
this study we investigated the impact of transparency added to an ML system
onto human-AI interaction with a special focus on personality traits that are
associated with trust. We analyzed human-AI interaction by conditioning on
various aspects of the underlying ML model, such as uncertainty or correctness
of a prediction, but also by conditioning on personality traits.

Our results demonstrate that transparency leads to algorithmic bias in
human-AI interaction. Extending previous work, we find that both model cor-
rectness and model uncertainty have an effect on algorithmic bias. In particular
we find that transparency and the induced algorithmic bias can lead to worse
annotation accuracy when the ML model prediction is uncertain or wrong –
but we also find that algorithmic bias can lead to increased annotation accu-
racy when the model is certain or correct in its predictions. This finding has
direct implications for practical applications: for uncertain model predictions,
transparency should be used with care to avoid detrimental algorithmic biases.
This is especially important as many cases, when unjustified algorithmic bias
can have far reaching negative impact, are cases with high uncertainty, such as
time critical decisions in hospitals or policing.

Most importantly however we find that not all subjects were equally suscep-
tible to transparency induced algorithmic bias. Our results show that risk averse
annotators were more susceptible to algorithmic bias than risk affine subjects.
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When increasing transparency risk aversion was associated with an increase in
agreement between annotators and the ML prediction and at the same time with
a decrease in annotation accuracy – a sign of blind trust in ML predictions that
can be attributed to increased transparency. These findings can also be directly
transferred into practical applications. Determining the risk affinity of subjects
can help to optimally calibrate the level of transparency for human-AI interac-
tion. In contrast to the effects of risk aversion we did not find a significant effect
of ambiguity tolerance on algorithmic bias. This result is different from studies
on interaction between humans [50] and suggests that ambiguity tolerance could
play a different role in interactions between humans and interactions between
humans and an ML system.

Taken together our results highlight the potential of methods from psychology
for improving the quality of human-AI interaction. A better understanding of
how different personalities use AI can help to design systems that are both easier
to use and less prone to algorithmic bias. We hope that this line of research will
ultimately help to foster more responsible usage of AI systems.
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