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Abstract The aim of this contribution is to introduce the idea of independent coun-
terfactuals. The technique allows to construct a counterfactual randomvariablewhich
is independent from a set of given covariates, but it follows the same distribution as
the original outcome. The framework is fully nonparametric, and under error exo-
geneity condition the counterfactuals have causal interpretation. On an example of a
stylized linear process, I demonstrate the main mechanisms behind the method. The
finite-sample properties are further tested in a simulation experiment.
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1 Introduction

Estimation of counterfactual designs has become a focal point for policymakers and
practitioners in the fields of policy evaluation and impact assessment. Counterfactual
distributions are an important landmark in themethodology, as they allow tomeasure
not only average effects but, under some regularity conditions, they also capture the
relationship for any point across the distribution of interest [1].

In the context of a counterfactual analysis, one is interested in approximating the
dynamics of an outcome variable Y under a new, possibly unobserved, scenario.
Typically, the construction of such a scenario assumes a shift of a set of covariates
from X to, say, X ′. For instance, a policymaker may want to investigate the effects
of a tariff change on local food prices where the relevant covariates (taxes, fees or
other policy instruments) increase or decrease by some amount.

The vast majority of counterfactual scenarios are user-designed, suffering from
an over-simplification and potential model misspecification biases. Nevertheless, the
recent advances in counterfactual distributions aim at providing possibly assumption-
free inference techniques. [1] offers a complete toolbox to study counterfactual dis-
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tributions through a prism of regression methods. [5] extends the approach to a fully
nonparametric setup and demonstrates that nonparametric estimation has superior
Mean Squared Error (MSE) performance in the case of (functional) model misspeci-
fication. [6] further extends the nonparametric approach to cover partial distributional
effects.

Capitalizing on [8], I propose an alternative identification strategy which defines
the counterfactual scenario as independent from a given set of covariates. Using an
example fromabove, a policymakermaybe interested in approximating the behaviour
of food prices under no policy intervention, exemplifying the overall distortions
created by relevant taxes or fees. In this simple case, one would consider independent
counterfactuals as dropping the entire policy instrument rather than estimating a
counterfactual distribution of food prices at a zero tax rate. Setting a covariate to zero
does not have to uniquely identify the independence criterion. If the taxation becomes
effective only above some minimum threshold, there may be multiple choices for
the counterfactual designs. Similarly, the true relation between the outcome and the
covariates may be actually undefined, or not directly interpretable, for zero-valued
arguments. In such cases, independent counterfactuals offer an attractive alternative
to a standard toolkit.

The framework requires to take a somehow broader perspective on the interpre-
tation of counterfactuals. More specifically, it asks what would be the realization
of an outcome variable for which there would be no evidence against the indepen-
dence condition given the realizations of the covariates. As such, the distribution
of the counterfactual coincides with the distribution of the observed variable, span-
ning over the same information set, but the dependence link versus the covariates is
removed.

The framework has desired asymptotic properties, allowing to apply standard
statistical inference techniques. It also advertises the use of nonparametric methods,
utilizing a smooth version of kernel density/distribution estimates. This, in fact, turns
out to generate substantial efficiency gains over the step-wise estimators [8].

The purpose of this contribution is to offer the basic concepts behind indepen-
dent counterfactual random variables. The extended description of the framework,
covering also an idea of conditionally independent counterfactuals, together with
an extensive numerical exercise and empirical study, is offered by [8]. Section 2
introduces the methodology, which is further illustrated numerically and compared
against the standard linear framework in Sect. 3. A brief numerical study is described
in Sect. 4. Finally, Sect. 5 concludes.

2 Framework

Assume two random variables Y ∈ R and X ∈ R
dX , where dX ≥ 1, with a joint

Cumulative Distribution Function (CDF) denoted by FY,X (y, x), which is r -times
differentiable and strictly monotonic.
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Filtering out the effects between X and Y means constructing a counterfactual
random variable Y ′ =D Y that is independent of X. (Clearly, in case, Y and X are
independent, Y ′ would be simply equal to Y .)

In terms of CDFs, one can write the independence condition as

FY ′|X (y|x) = FY (y) (1)

for all y and x .
The random variable Y ′ can be obtained directly from Eq. (1) by assuming that,

for any point along the X marginal, there is an increasing functional φ, such that
Y ′ = φ(Y, X), which is invertible in Y for all x in the support of X , for which
Eq. (1) holds. The realizations of the counterfactual random variable Y ′ are given by
y′ = φ(y, x). [8] shows that Eq. (1) is satisfied by

Y ′ = F−1
Y (FY |X (Y |x)), (2)

where F−1
Y (q) = inf{y : FY (y) ≥ q} is the quantile function of Y , under the assump-

tion that FY is invertible around the argument. The invertability assumption is satisfied
by the monotonicity of FY (y), which also guarantees that the relation is uniquely
identified for any y and x .1

The relation between Eqs. (2) and (1) follows from

FY ′ |X (y|x) = P(φ(Y, X) ≤ y|X = x) = P(Y ≤ φ−1(y, X)|X = x) = FY |X (φ−1(y, x)|x),

which makes φ−1(y, x) = F−1
Y |X (FY (y)|x), or equivalently φ(y, x)=F−1

Y (FY |X
(y|x)), under the assumptions outlined above.

For the moment, the setup is designed for real-valued Y . In principle, the frame-
work may be extended to multivariate outcome variables, under additional regularity
conditions on the corresponding CDF and conditional CDF. This topic is, however,
beyond the scope of this manuscript.

2.1 Estimation

A major challenge in estimating the function in Eq. (2) results from its nested struc-
ture. [8] provides a set of necessary conditions under which the kernel-based esti-
mator of Eq. (2) is asymptotically tight. In fact, the crucial condition is the Donsker
property of the quantile and conditional CDF estimators, respectively.

1One can define the independence condition in Eq. (1) in terms of PDFs. However, even though
Eq. (2) would still satisfy such a condition, it would not be a unique solution to the PDF condition
for some processes.
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In the setup below I take that Y is univariate and X is potentially multivariate with
dX ≥ 1. The kernel CDF and conditional CDF estimators are given by2

F̂Y (y) = n−1
n∑

i=1

K̄HY
0
(y − Yi ) , (3)

and

F̂Y |X (y|x) =
∑n

i=1 K̄HY |X
0

(y − Yi )KHY |X (x − Xi )
∑n

i=1 KHY |X (x − Xi )
, (4)

where K̄H0(w) = ∫ w

−∞ K (H−1/2
0 u)du is an integrated kernel function. Matrices H

contain smoothing parameters, dubbed as bandwidths, with subscript 0 marking
the CDF marginal and superscripts determining the corresponding distribution of
interest. To simplify the presentation, I take HY

0 = h20Y , H
Y |X
0 = h20Y X and HY |X =

diag(h21Y X , ..., h2dXY X ). Expression

KH(w) = (detH)−1/2K (H−1/2w) (5)

is the scaled kernel with ‘det’ denoting the determinant and K being a generic
multiplicative dW -variate kernel function

K (w1, ..., wdW ) =
dW∏

j=1

k(w j ), (6)

satisfying for each marginal j

∫
k(w j )dw j = 1,

∫
wc

j k(w j )dw j = 0 for c = 1, ..., r − 1,
∫

wc
j k(w j )dw j = κr < ∞ for c = r,

(7)

and k(w) being symmetric and r -times differentiable [4].
The convergence properties of estimators in Eqs. (3) and (4) can be tuned by the

rates of convergence of the smoothing parameters, i.e. h0Y and h jY X for j = 0, ..., dX .
Following [3], to guarantee that Eqs. (3) and (4) are uniformly tight, the sequences
of bandwidths h ≡ h(n) need to satisfy

2The quantiles of Y distribution can be directly extracted from the CDF estimates by solving for
the argument. Although asymptotic properties of the quantiles and CDF correspond, the extraction
of the quantiles through the CDF performs better in applied settings.
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lim
n→∞ n1/2hr0Y = 0, lim

n→∞ nα1h0Y = ∞,

lim
n→∞ n1/2hr0Y X = 0, lim

n→∞ nα2h0Y X = ∞,
(8)

for some α1, α2 > 0 and

lim
n→∞ n1/2 max

j∈1,...,dX
(h j XY )r = 0, lim

n→∞
log(n)

n1/2�dX
j=1h j XY

= 0. (9)

If the support of Y is a compact set on R, the functionals in Eqs. (3) and (4) are
Donsker, and under an additional assumption that F−1

Y is Hadamard differentiable,
the fitted values of y′ ≡ ŷ′ are asymptotically tight [7].

If one represents the sequence of bandwidth as h = Cn−β , for some constantC >

0, Eq. (8) implies that β > 1/(2r) for h0Y and h0Y X , and from Eq. (9) it follows that
β ∈ (1/(2r), 1/(2dX )) for h jY X where j = 1, ..., dX . These conditions are satisfied
for the basic setup with the second-order kernels and dX = 1. In fact, if one extends
dimensionality of X to dX > 1, condition Eq. (9) requires a higher order kernel.

A plug-in estimator of Eq. (2) becomes

ŷ′ = F̂−1
Y (F̂Y |X (y|x)), (10)

for fixed realizations (Y, X) = (y, x). By rearranging the terms and substituting the
kernel estimators from Eqs. (3) and (4), one may obtain ŷ′ by solving

n−1
n∑

i=1

K̄HY
0

(
ŷ′ − Yi

) =
∑n

i=1 K̄HY |X
0

(y − Yi )KHY |X (x − Xi )
∑n

i=1 KHY |X (x − Xi )
. (11)

[8] shows that under the data assumptions outlined above and if F̂Y and F̂Y |X are
Donsker then √

n
(
ŷ′ − y′) d−→ N (0, σ 2), (12)

where σ 2 is given by

σ 2 = FY |X (y|x)(1 − FY |X (y|x))
fY

(
F−1
Y (FY |X (y|x))) +

∫
K (u)2du/ fX (x)

�
dX
j=1h j XY

FY |X (y|x)(1 − FY |X (y|x))
fY

(
F−1
Y (FY |X (y|x))) .

(13)
The first term in σ 2 is the variance of the standard quantile estimator evaluated at the
known quantity FY |X (y|x). The second term results from the fact that the quantity
FY |X (y|x) is, in fact, estimated.



518 M. Wolski

3 Interpretation

Removing the dependence between X andY cannot be directly interpreted as a causal
relation from X to Y . Reverse causality effects are also present in the joint distribu-
tion of (Y, X), and so are in the conditional distribution of Y |X = x . Nevertheless,
the effects of X onto Y have causal interpretation under the so-called exogeneity
assumption, or selection on observables. The assumption requires that there is no
dependence between the covariates and the unobserved error component, X ⊥⊥ ε.

To introduce the concept formally, imagine that ε describes a (possibly discrete)
policy option assigned between different groups of individuals. With the aim to
study the causal effects of a policy e on the outcome Y , denote the set of potential
outcomes by (Y ∗

e : ε ∼ Fε(e)). The identification problems arise as Y is observed
only conditional on ε = e. If the error term e is not randomly assigned (for instance, a
policymaker discriminates between groups what policy e they receive), the observed
Y conditional on ε = e may not be equal to the true variable Y ∗

e . On the other
hand, if e is assigned randomly, variables Y ∗

e and Y |ε = e coincide. The exogeneity
assumptionmay be extended by a set of conditioning covariates X . Under conditional
exogeneity, the independent counterfactuals have also causal interpretation such that
if conditional on X , the error component e is randomly assigned to Y , variables Y ∗

e |X
and Y |X, ε = e agree. Since the observed conditional random variable has causal
interpretation, so has the independent counterfactual for which the X conditional
effects have been integrated out (for more discussion see [1]).

Exogeneity assumption allows also to relate independent counterfactuals to the
distribution of the error term. Consider a general nonseparable model

Y = m(X, ε), (14)

where m is the general functional model and ε is an unobserved continuous error
term. For identification purposes, let us assume thatm(x, .) is strictly increasing in e
and continuous for all x ∈ supp(X), so that its inverse exists and is strictly increasing
and continuous.

Under exogeneity, one finds that after removing the effects of X onto Y , the
counterfactual random variable Y ′ is identified at the Fε(ε) quantiles of Y . Note that

Y ′ = F−1
Y (P(m(X, ε) ≤ Y |X = x))

= F−1
Y (P(ε ≤ m−1(X,Y )|X = x))

= F−1
Y (Fε|X (ε|x))

= F−1
Y (Fε(ε)).

(15)

By the inverse transformation method, one can also readily observe that the distri-
bution of Y ′ coincides with the distribution of Y , i.e. FY ′(y) = FY (y) for all y. This
is not surprising as a sample from a null hypothesis of independence can be often
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constructed by permutation methods [2].3 Permutations are, however, not uniquely
defined, as for a sample {Yi , Xi }ni=1, for any fixed point X = Xi any outcome Yi
may be assigned in the permutation process. Therefore, although permutations are a
powerful tool in hypothesis testing, they cannot be applied as an identification strat-
egy. Independent counterfactuals offer an alternative in this respect, for which the
counterfactual realization is identified at the quantiles determined by the realization
of the error term. It follows that

FY ′(y′) = FY (y′) = FY |X (y|x) = FY (y)δ(y, x), (16)

where I substituted δ(y, x) ≡ FY,X (y, x)/(FY (y)FX (x)).
With endogenous error terms, the counterfactual Y ′ is still identified by the data

but the dependence filtering is contaminated by the relation between X and ε. In
such a case, the independent counterfactual removes the causal relation from X onto
Y , but also from Y onto X , such that the random variables Y ′ and F−1

Y (Fε(ε)) do
not necessarily agree. To illustrate it analytically, let us consider a simple linear
framework.

3.1 Exogenous Linear Model

Consider a stylized process with the first-moment dependence between X and Y

x = eX ,

y = ax +
√
1 − a2eY ,

(17)

where a ∈ (0, 1) is a tuning parameter. Error terms εX and εY follow standard nor-
mal distributions and are mutually independent. (Note that the setup ensures that
the marginal of Y follows also a standard normal distribution.) The closed form
expression for transformation in Eq. (2) can be derived as

F−1
Y (q) = 
−1(q) q ∈ (0, 1),

FY |X (y|x) = 


(
y − ax√
1 − a2

)
,

(18)

where 
 is the standard normal CDF. Putting the expressions together, for the linear
mean-dependent process in Eq. (17) I arrive at

3For an i.i.d sample from a dependent process, one may permute the data along each marginal to
construct a sample from an independent process. In this context, permutation preserves the marginal
distributions but breaks the dependence structure between covariates.
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y′ ≡ φ(y, x) = F−1
Y (FY |X (y|x))

= 
−1

(



(
y − ax√
1 − a2

))
= y − ax√

1 − a2
= eY .

(19)

Equation (19) confirms Eq. (15). In the proposed stylized setup, the distribution of
Y ′ corresponds to the distribution of errors so that the independent counterfactuals
are asymptotically equal to the residuals from the standard Ordinary Least Squares
(OLS) regression applied to the process from Eq. (17). In more general nonseparable
models, the distribution of the error component would be scaled, by the inverse
transformation method, to match the scale of the dependent variable.

3.2 Endogenous Linear Model

Consider now a similar process as in Eq. (17) but with inverse causality structure

y = eY ,

x = ay +
√
1 − a2eX ,

(20)

with similar stationarity conditions as before. Clearly, the exogeneity condition is
violated as X |εY = eY ∼ N (aeY , 1 − a2). Having pointed this out, the identification
in independent counterfactuals removes the entire dependence structure between the
variables, which is exactly the same as in Eq. (17), such that

y′ = y − ax√
1 − a2

=
√
1 − a2eY − aeX . (21)

In this extreme example, because of reverse causality, the counterfactual variable Y ′
does not correspond to the potential outcome variable, which in this case is given
by εY . Nevertheless, the independence condition between Y ′ and X is satisfied as
both variables are transformations of independent random variables and, since the
distributions of Y ′ and Y coincide, FY ′|X (y|x) = FY ′(y) = FY (y).

4 Illustration

To present the setup graphically, I choose the linear model given in Eq. (17), with
additive and exogenous errors. For transparency, I fix the X marginal at x = 1, and I
set the dependence parameter at a = 0.75, such thatY |X = 1 ∼ N (0.75, 1 − 0.752).
The unconditional distribution of Y and the distribution of ε follow standard normal
distributions.
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Table 1 Average MSE and number of fails of fitted independent counterfactuals from Eq. (17).
The numbers are aggregated over 1000 runs

n = 50 n = 100 n = 200 n = 500 n = 1000 n = 2000

MSE(Ŷ ′) 0.116 0.08 0.056 0.035 0.024 0.017

Fails 0.001 0.001 0.001 0.001 0.002 0.002

The strategy is as follows. I randomly draw samples from the joint distribution
(Y, X) and from the conditional distribution Y |X = 1 for different sample lengths
n. Each realization from the conditional distribution sample is then transformed
by Eq. (10), estimated over the joint distribution. The bandwidth parameters are
set by the rule of thumb at h0Y = 1.59σ̂Y n−1/3, h0XY = 1.59σ̂Y n−1/3 and h1XY =
1.06σ̂Xn−1/3, where σ̂Y and σ̂X correspond to standard deviation of samples {Yi } and
{Xi }, respectively. Quantiles of Y are evaluated over the support [−3.7, 3.7] to meet
the compactness condition. If the value falls beyond that interval, I record it as a fail,
and set Ŷ ′

i = Yi .
The results are presented in two ways. Firstly, for different sample sizes, I plot the

histograms of random realizations of independent counterfactuals against the true
densities of Y and Y |X = 1. The outcomes are depicted in Fig. 1.

Secondly, I calculate the MSE of the fitted independent counterfactuals as

MSE(φ(Y, 1)) = n−1
n∑

i=1

(
F̂−1
Y (F̂−i

Y |X (Yi |X = 1)) − F−1
Y (FY |X (Yi |X = 1))

)2
,

(22)
where the superscript−i stands for the leave-one-out kernel aggregate. The numbers
are aggregated over 1000 runs of process in Eq. (17). TheMSE results, together with
the average estimation fails, are given in Table 1.

The simulation results suggest that as the sample size increases the independent
counterfactuals converge to the true unconditional realizations of ε. The number of
estimation fails appears to be contained at negligible levels, and clearly would be
even lower for wider quantile support.

5 Conclusions

Thepurpose of this study is to familiarize theReaderwith a novel dependencefiltering
framework. Under mild regularity conditions, and without assuming any specific
parametric structure, themethod allows to construct a counterfactual randomvariable
which is independent from the effects of given covariates. Under error exogeneity
assumption such a counterfactual has causal interpretation, and moreover, one can
directly relate the counterfactualswith the distributionof the error component through
the probability integral transform.
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Fig. 1 Independent counterfactuals. The plots show the true densities of random variables Y and
Y |X = 1 under process from Eq. (17), together with a histogram of a counterfactual sample {Y ′

i }
of an independent counterfactual random variable Y ′. Vertical lines correspond to the expectations
of Y and Y |X = 1

In settings where a no-dependence scenario can be expressed by specific values
of the covariates, for instance, X = 0, independent counterfactuals can be related
to the literature on counterfactual distributions [1, 5, 6]. Whenever X = 0 is not
directly interpretable as independence, the proposed framework offers an attractive
alternative to a standard toolkit.

I demonstrate how independent counterfactuals perform in a simple linear model
with exogenous and endogenous error terms. In a simulation study, I also show the
finite-sample consistency of the method.
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The framework offers an easy extension to conditionally independent counterfac-
tuals, along the lines proposed by [8]. It can be also applied to support identification
in nonseparable models, statistical tests of independence between the variables or
tests of error exogeneity.
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