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Abstract We propose a component Multiplicative Error Model (MEM) for mod-
elling and forecasting realized volatilitymeasures. In contrast to conventionalMEMs,
the proposed specification resorts to the use of a multiplicative component structure
in order to parsimoniously parameterize the complex dependence structure of real-
ized volatility measures. The long-run component is defined as a linear combination
of MIDAS filters moving at different frequencies, while the short-run component is
constrained to follow a unit mean GARCH recursion. This particular specification
of the long-run component allows to reproduce very persistent oscillations of the
conditional mean of the volatility process, in the spirit of Corsi’s Heterogeneous
Autoregressive Model (HAR). The empirical performances of the proposed model
are assessed by means of an application to the realized volatility of the S&P 500
index.

Keywords Realized volatility · Component Multiplicative Error Model ·
Long-range dependence · MIDAS · Volatility forecasting

1 Introduction

In financial econometrics, the last two decades have witnessed an increasing inter-
est in the development of dynamic models incorporating information on realized
volatility measures. The reason is that it is believed these models can provide more
accurate forecasts of financial volatility than the standard volatility models based on
daily squared returns, e.g. the GARCH(1,1).

Engle and Russell [14] originally proposed the Autoregressive Conditional Dura-
tion (ACD)model as a tool formodelling irregularly spaced transaction data observed
at high frequency. This model has been later generalized in the class of Multiplica-
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tive Error Model (MEM) by [10] for modelling and forecasting positive-valued ran-
dom variables that are decomposed into the product of their conditional mean and a
positive-valued i.i.d. error term with unit mean. Discussions and extensions on the
properties of this model class can be found in [4–8, 18, 19], among others.

One of the most prominent fields of application of MEMs is related to the mod-
elling and forecasting of realized volatility measures. It is well known that these
variables have very rich serial dependence structures sharing the features of clus-
tering and high persistence. The recurrent feature of long-range dependence is con-
ventionally modelled as an Autoregressive Fractionally Integrated Moving Average
(ARFIMA) process as in [3], or using regression models mixing information at dif-
ferent frequencies such as the Heterogeneous AR (HAR) model of [9]. The HAR
model, inspired by the heterogeneous market hypothesis of [20], is based on additive
cascade of volatility components over different horizons. This particular structure,
despite the simplicity of the model, has been found to satisfactorily reproduce the
empirical regularities of realized volatility series, including their highly persistent
autocorrelation structure.

In this field, component models are an appealing alternative to conventional mod-
els since they offer a tractable and parsimonious approach to modelling the persistent
dependence structure of realized volatility measures. Models of this type have first
been proposed in the GARCH framework and are usually characterized by the mix-
ing of two or more components moving at different frequencies. Starting from the
Spline GARCH of [13], where volatility is specified to be the product of a slow-
moving component, represented by an exponential spline, and a short-run compo-
nentwhich follows a unitmeanGARCHprocess, several contributions have extended
and refined this idea. [12] introduced a new class of models called GARCH-MIDAS,
where the long-run component is modelled as a MIDAS (Mixed-Data Sampling,
[16]) polynomial filter which applies to monthly, quarterly or biannual financial or
macroeconomic variables. [2] decomposed the variance into a conditional and an
unconditional component such that the latter evolves smoothly over time through
a linear combination of logistic transition functions taking time as the transition
variable.

Moving to the analysis of intra-daily data, [15] developed the multiplicative com-
ponent GARCH, decomposing the volatility of high-frequency asset returns into the
product of three components, namely, the conditional variance is a product of daily,
diurnal and stochastic intra-daily components. Recently [1] have provided a sur-
vey on univariate and multivariate GARCH-type models featuring a multiplicative
decomposition of the variance into short- and long-run components.

This paper proposes a novel multiplicative dynamic component model which is
able to reproduce the main stylized facts arising from the empirical analysis of time
series of realized volatility. Compared to other specifications falling into the class
of component MEMs, the main innovation of the proposed model can be found in
the structure of the long-run component. Namely, as in [21], this is modelled as an
additive cascade of MIDAS filters moving at different frequencies. This choice is
motivated by the empirical regularities arising from the analysis of realized volatility
measures that are typically characterized by two prominent and related features: a
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slowly moving long-run level and a highly persistent autocorrelation structure. For
ease of reference, we will denote the parametric specification adopted for the long-
run component as a Heterogeneous MIDAS (H-MIDAS) filter. Residual short-term
autocorrelation is then explainedby a short-run component that follows amean revert-
ing unit GARCH-type model. The overall model will be referred to as a H-MIDAS
Component MEMmodel (H-MIDAS-CMEM). It is worth noting that, specifying the
long-run component as an additive cascade of volatility filters as in [9], we implicitly
associate this component to long-run persistent movements of the realized volatility
process.

The model that is here proposed differs from that discussed in [21] under two
main respects. First, in this paper, we model realized volatilities on a daily scale
rather than high-frequency intra-daily trading volumes. Second, the structure of the
MIDAS filters in the long-run component is based on a pure rolling window rather
than on a block rolling window scheme.

The estimation of model parameters can be easily performed by maximizing a
likelihood function based on the assumption of Generalized F distributed errors.
The motivation behind the use of this distribution is twofold. First, nesting different
distributions, the Generalized F results very flexible in modelling the distributional
properties of the observed variable. Second, it can be easily extended to control the
presence of zero outcomes [17].

In order to assess the relative merits of the proposed approach we present the
results of an application to the realized volatility time series of the S&P 500 index in
which the predictive performance of the proposed model is compared to that of the
standardMEMbymeans of an out-of-sample rollingwindow forecasting experiment.
The volatility forecasting performance has been assessed using three different loss
functions, the Mean Squared Error (MSE), the Mean Absolute Error (MAE) and
the QLIKE. The Diebold-Mariano test is then used to evaluate the significance of
differences in the predictive performances of the models under analysis. Our findings
suggest that theH-MIDAS-CMEMsignificantly outperforms the benchmark in terms
of forecasting accuracy.

The remainder of the paper is structured as follows. In Sect. 2, we present the
proposed H-MIDAS-CMEM model, while the estimation procedure is described in
Sect. 3. The results of the empirical application are presented and discussed in Sect.
4. Finally, Sect. 5 concludes.

2 Model Specification

Let {vt,i } be a time series of daily realized volatility (RV) measures observed on day
i in period t , such as in a month or a quarter. The general H-MIDAS-CMEM model
can be formulated as

vt,i = τt,i gt,i εt,i , εt,i |Ft,i−1
i id∼ D+(1,σ2) , (1)
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where Ft,i−1 is the sigma-field generated by the available intra-daily information
until day (i − 1) of period t . The conditional expectation of vt,i , given Ft,i−1, is
the product of two components characterized by different dynamic specifications.
In particular, gt,i represents a daily dynamic component that reproduces autocorre-
lated movements around the current long-run level, while τt,i is a smoothly varying
component given by the sum of MIDAS filters moving at different frequencies. This
component is designed to track the dynamics of the long-run level of realized volatil-
ity.1 In order to make the model identifiable, as in [12], the short-run component is
constrained to follow a mean reverting unit GARCH-type process. Namely, gt,i is
specified as

gt,i = ω∗ +
r∑

j=1

α j
vt,i− j

τt,i− j
+

s∑

k=1

βk gt,i−k, τt,i > 0 ∀t,i . (2)

To fulfill the unitmean assumption on gt,i , it is necessary to set appropriate constraints
on ω∗ by means of a targeting procedure. In particular, taking the expectation of both
sides of gt,i , it is easy to show that

ω∗ = (1 −
r∑

j=1

α j −
s∑

k=1

βk).

Positivity of gt,i is then ensured by setting the following standard constraints:ω∗ > 0,
α j ≥ 0 for j = 1, . . . , r , and βk ≥ 0 for k = 1, . . . , s.2

On the other hand, the low-frequency component is modelled as a linear com-
bination of MIDAS filters of past volatilities aggregated at different frequencies. A
general formulation of the long-run component is given by

log(τt,i ) = δ + θs

K∑

k=1

ϕk(ω1,s, ω2,s) log
(
V S(k)

t,i

)

+ θm

K ∗∑

h=1

ϕh(ω1,m, ω2,m) log
(
V M (h)

t,i

)
,

(3)

where V S(k)
t,i and V M (h)

t,i denote the RV aggregated over a rolling window of length
equal to ns and nm , respectively, with ns > nm , while K is the number of MIDAS
lags and K ∗ = K + ns − nm . In particular,

1The stochastic properties of the model have been derived by [21] to which the interested reader
may refer for additional details.
2Note that strict positivity, i.e. α j > 0 for at least one j ∈ {1, . . . , r}, is needed for identification if
s > 0.
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V S(k)
t,i =

ns∑

j=1

vt,i−(k−1)− j for k = 1, . . . , K (4)

and

V M (h)
t,i =

nm∑

j=1

vt,i−(h−1)− j for h = 1, . . . , K ∗ . (5)

In the empirical application,we choose ns = 125 implying a biannual rollingwindow
RV and nm = 22, meaning that the RV is rolled backmonthly. Furthermore, the long-
run component is considered in terms of logarithmic specification since it does not
require parameter constraints to ensure the positivity of τt,i .

Finally, the weighting functionϕ(ω) is computed according to the Beta weighting
scheme which is generally defined as

ϕk(ω1,ω2) = (k/K )ω1−1(1 − k/K )ω2−1

∑K
j=1( j/K )ω1−1(1 − j/K )ω2−1

, (6)

where the weights in Eq. (6) sum up to 1. As discussed in [16], this Beta-specification
is very flexible, being able to accommodate increasing, decreasing or hump-shaped
weighting schemes, where the number of lags K need to be properly chosen by
information criteria to avoid overfitting problems.

This multiple frequency specification appears to be preferable to the single-
frequency MIDAS filter for at least two different reasons. First, the modeller is not
constrained to choose a specific frequency for trend estimation, but can determine the
optimal blend of low- and high-frequency information in a fully data-driven fashion.
Second, as pointed out in [9], an additive cascade of linear filters, applied to the same
variable aggregated over different time intervals, can allow to reproduce very per-
sistent dynamics such as those typically observed for realized volatilities. We have
also investigated the profitability of adding more components to the specification of
τt,i . However, this did not lead to any noticeable improvement in terms of fit and
forecasting accuracy.

3 Estimation

The model parameters can be estimated in one step by Maximum Likelihood (ML),
assuming that the innovation term follows a Generalized F (GF) distribution. Alter-
natively, estimation could be performed by maximizing a quasi-likelihood function
based on the assumption that the errors εt,i are conditionally distributed as a unit
Exponential distribution that can be seen as the counterpart of the standard normal
distribution for positive-valued random variables [10, 11]. To save space, here we
focus on ML estimation based on the assumption of GF errors.
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In particular, let X be a non-negative random variable, the density function of a
GF random variable is given by

f (x; ζ) = axab−1[c + (x/η)a](−c−b) cc

ηab B(b, c)
, (7)

where ζ = (a, b, c, η)′, a > 0, b > 0, c > 0 and η > 0,withB(·, ·) theBeta function
such that B(b, c) = [�(b)�(c)]/�(b + c). The GF distribution is based on a scale
parameter η and three shape parameters a, b and c, and thus it is very flexible,
nesting different error distributions, such as the Weibull for b = 1 and c → ∞,
the generalized Gamma for c → ∞ and the log-logistic for b = 1 and c = 1. The
Exponential distribution is also asymptotically nested in the GF for a = b = 1 and
c → ∞.

Note that in the presence of zero outcomes the Zero-Augmented Generalized F
(ZAF) distribution [17] can be used.

In order to ensure that the unit mean assumption for εt,i is fulfilled, we need to
set η = ξ−1, where

ξ = c1/a [�(b + 1/a)�(c − 1/a)] [�(b)�(c)]−1 .

The log-likelihood function is then given by

L (v; ϑ) =
∑

t,i

{
log a + (ab − 1) log

(
εt,i

) + c log c − (c + b) log
[
c + (

ξεt,i
)a]+

−log(τt,i gt,i ) − logB(b, c) + ab log(ξ)
}
,

(8)

where εt,i = vt,i
τt,i gt,i

and ϑ is the parameter vector to be estimated.

4 Empirical Application

To assess the performance of the proposed model, in this section, we present and
discuss the results of an empirical application to the S&P 500 realized volatility
series.3 The 5-min intra-daily returns have been used to compute the daily RV series
covering the period between 03 January 2000 and 27 December 2018 for a total of
4766 observations. The analysis has been performed using the software R [23].

Graphical inspection of the S&P500 realized volatility, displayed in Fig. 1, reveals
several periods of high volatility. These essentially refer to the dot com bubble in
2002, the financial crisis starting in mid-2007 and peaking in 2008 and the crisis
in Europe progressed from the banking system to a sovereign debt crisis with the
highest turmoil level in the late 2011. More recently, the stock market sell-off that

3The data have been downloaded from theOMI realized library available at: https://realized.oxford-
man.ox.ac.uk.

https://realized.oxford-man.ox.ac.uk
https://realized.oxford-man.ox.ac.uk
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Fig. 1 S&P 500 Realized Volatility

Table 1 In sample parameter estimates for the Generalized F distribution

Parameter estimates for MEM and H-MIDAS-CMEM. Estimation is performed on the full sample
period 03 Jan 2000–27 Dec 2018 using the GF distribution. Standard errors are reported in smaller
font under the parameter values. All parameters are significant at 5%

occurred between June 2015 and June 2016 is related to different events such as the
Chinese stock market turbulence, but also to the uncertainty around FED interest
rates, oil prices, Brexit and the U.S. presidential election. Finally, economic and
political uncertainties are the most prevalent drivers of market volatility in 2018.

The model parameters have been estimated by ML, relying on the assumption
of GF errors and, as a robustness check, by Exponential QML. Estimation results,
based on the full sample 5-min RV, are reported in Tables 1 and 2, respectively. For
ML, standard errors are based on the numerically estimated Hessian at the optimum,
whereas for QML, we resort to the usual sandwich estimator. The performance of
the H-MIDAS-CMEM has been compared to that of the standard MEM(1,1) speci-
fication, considered as benchmark model.

Regarding theH-MIDAS-CMEM, the short-run component follows amean revert-
ing unit GARCH(1,1) process, while the long-term component is specified as a com-
bination of two MIDAS filters moving at a semiannual (ns = 125) and a monthly
(nm = 22) frequency, with K corresponding to two MIDAS lag years. It is worth
noting that, although the Beta lag structure in (6) includes two parameters, following
a common practice in the literature onMIDASmodels, in our empirical applications,
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ω1,s and ω1,m have been set equal to 1 in order to have monotonically decreasing
weights over the lags.

The panel of the short-term component in Table 1 shows that the intercept ω∗ is
slightly higher for theH-MIDAS-CMEMthan the standardMEM.Furthermore, stan-
dard errors for ω∗ are missing since it is estimated through the expectation targeting
procedure. The parameter α takes values much larger than those typically obtained
fitting GARCH models to log-returns, while the opposite holds for β. The analysis
of the long-run component reveals that all the involved parameters in log(τt,i ) are
statistically significant. In particular, the slope coefficient θs of the biannual filter is
negative, while θm associated to the monthly filter is positive. Moreover, the coef-
ficients ω2,s and ω2,m defining the features of the Beta weighting function take on
values such that the weights slowly decline to zero over the lags. Finally, the panel
referring to the error distribution parameters indicates that the GF coefficients are
similar between MEM and H-MIDAS-CMEM.

From a comparison of the log-likelihoods, it clearly emerges that the value
recorded for the H-MIDAS-CMEM is much larger than that of the competing model.
In addition, the BIC reveals that there is a big improvement coming from the inclu-
sion of the heterogeneous component in the MIDAS trend which allows to better
capture the changes in the dynamics of the average volatility level.

In the QML case (Table 2), the estimated short-run component parameters are
reasonably close to those reported for ML estimation. This is, however, not true for
the parameters of the long-run component. As expected, the BIC values are always
larger than the ones obtained under the GF distribution.

The out-of-sample predictive ability of the models, for the S&P 500 RV time
series, has been assessed via a rolling window forecasting exercise leaving the last
500 observations as out-of-sample forecasting period, that is, 30 December 2016–27
December 2018.

The predictive performance of the examined models is evaluated by computing
the Mean Squared Error (MSE), Mean Absolute Error (MAE) and QLIKE [22] loss
functions, using the 5-min RV as volatility proxy, namely,

Table 2 In sample parameter estimates for the Exponential distribution

Parameter estimates for MEM and H-MIDAS-CMEM. Estimation is performed on the full sample
period 03 Jan 2000–27 Dec 2018 using the Exponential distribution. Robust standard errors are
reported in smaller font under the parameters value. All parameters are significant at 5%
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Table 3 S&P 500 out-of-sample loss functions comparison

Top panel: loss function average values for Mean Squared Error (MSE), Mean Absolute Error
(MAE) and QLIKE. Bottom panel: Diebold-Mariano test statistics (DM) with the corresponding
p-values. Positive statistics are in favour of the H-MIDAS-CMEM model. Values in the table refer
to models fitted using the Generalized F distribution (left panel) and the Exponential distribution
(right panel). Better models correspond to lower losses

MSE =
T∑

t=1

I∑

i=1

(vt,i − v̂t,i )
2;

MAE =
T∑

t=1

I∑

i=1

|vt,i − v̂t,i |;

QL I K E =
T∑

t=1

I∑

i=1

log(v̂t,i ) + vt,i

v̂t,i
.

The significance of differences in forecasting accuracy is assessed by means of the
two-sided Diebold-Mariano test under the null hypothesis thatMEMandH-MIDAS-
CMEM exhibit the same forecasting ability.

The out-of-sample performance of the fitted models is summarized in Table 3,
reporting the average values of the considered loss functions (top panel) and the
Diebold-Mariano (DM) test statistics, together with the associated p-values (bottom
panel). The empirical results suggest that theH-MIDAS-CMEMalways returns aver-
age losses that are significantly lower than those recorded for the benchmark MEM.
The only exception occurs for theMSEwhenmodels are fitted by Exponential QML.
In this case, the H-MIDAS-CMEM still returns a lower average loss, but the null of
equal predictive ability cannot be rejected. Finally, comparing forecasts based on
models fitted by MLE and QMLE, respectively, we find that there are no striking
differences between these two sets of forecasts, with the former returning slightly
lower average losses.

5 Concluding Remarks

This paper investigates the usefulness of the application of the Heterogeneous
MIDAS Component MEM (H-MIDAS-CMEM) for fitting and forecasting realized
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volatilitymeasures. The introduction of the heterogeneousMIDAS component, spec-
ified as an additive cascade of linear filterswhich take on different frequencies, allows
to better capture the main empirical properties of the realized volatility, such as clus-
tering andmemory persistence. The empirical analysis of the realized volatility series
of the S&P 500 index points out that theH-MIDAS-CMEMoutperforms the standard
MEM model in fitting the S&P 500 volatility. At the same time, the out-of-sample
comparison shows that, for all the loss functions considered, the H-MIDAS-CMEM
significantly outperforms the benchmark in terms of predictive accuracy. These find-
ings appear to be robust to the choice of the error distribution. Accordingly, gains in
predictive ability are mainly determined by the dynamic structure of the H-MIDAS-
CMEM, rather than from the estimation method (MLE versus QMLE).

Finally, although the model discussed in this paper is motivated by the empirical
properties of realized volatility measures, our approach can be easily extended to
the analysis of other financial variables sharing the same features, such as trading
volumes, bid-ask spreads and durations.
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