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Abstract Volatility in financial markets has both low- and high-frequency com-
ponents which determine its dynamic evolution. Previous modelling efforts in the
GARCH context (e.g. the Spline-GARCH) were aimed at estimating the low-
frequency component as a smooth function of time around which short-term dynam-
ics evolves. Alternatively, recent literature has introduced the possibility of consider-
ing data sampled at different frequencies to estimate the influence of macro-variables
on volatility. In this paper, we extend a recently developed model, here labelled Dou-
ble Asymmetric GARCH-MIDAS model, where a market volatility variable (in our
context, VIX) is inserted as a daily lagged variable, and monthly variations repre-
sent an additional channel through which market volatility can influence individual
stocks. We want to convey the idea that such variations (separately) affect the short-
and long-run components, possibly having a separate impact according to their sign.

Keywords Volatility · Asymmetry · GARCH-MIDAS · Forecasting

1 Introduction

Volatility modelling has been extensively studied: more than 30 years have gone by
since the seminal contributions by [9, 14]. As they have about 25 K citations each
(and some pertinent papers do not even mention them), it is clear that GARCH-type
models are the standard among academicians and practitioners alike. These models
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Fig. 1 S&P 500 Index and its realized volatility

build upon stylized facts of persistence in the conditional second moments (volatility
clustering), an analysis made easier by the direct measurement of volatility, starting
from the availability of ultra-high-frequency data (cf. [7]). Looking directly at the
series of the Standard and Poor’s (S&P) 500 Index and of its realized volatility, as
illustrated in Fig. 1, one encounters two of such stylized facts in need of adequate
modelling: the first is that volatility has a slow-moving/state-dependent average local
level of volatility to be accounted for, and hence its dynamic evolution is driven by
two components: a high-frequency and a low-frequency one. Another is that peaks
of volatility are recorded in correspondence with streaks of downturns in the index,
a sign of well-documented asymmetry in the dynamics.

Various suggestions exist in the literature to model the first of these two stylized
facts: in a Markov Switching approach, GARCH parameters are state-dependent
([10, 13, 19], among others). The resulting high-frequency dynamics varies across
states and evolves around a constant average level of volatility within states as a low-
frequency component. In other contributions, the two components are additive; [12,
15] specify a model in which higher persistence is an identifying condition for the
long-run component. The most popular GARCH specification is one in which long-
and short-run components combine multiplicatively with the error term. Amado et
al. [4] survey the contributions in this field: the common feature is that long run is
a term which smoothly amplifies or dampens the short-run GARCH dynamics. The
long-run term can be a deterministic function of time as in the Spline GARCH [16];
a logistic function of a forcing variable as in the Smooth Transition approach ([1–3],
for instance); an exponential function of a one-sided filter of past values of a variable
sampled at a lower frequency than the daily series of interest, as in the GARCH-
MIDAS of [17]. In this paper, we take a modification of this latter model, called the
Double Asymmetric GARCH-MIDAS (DAGM) introduced by [5], where a rate of
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change at a low frequency is allowed to have differentiated effects according to its
sign, determining a local trend around which an asymmetric GARCH that describes
the short-run dynamics. A market volatility variable (in our context, we choose the
VIX index which is based on implied volatilities from at-the-money option prices)
is inserted as a daily lagged variable, and monthly variations represent an additional
channel through which market volatility can influence individual stocks.

The issue at stake in this empirically motivated paper is how this information
about market-based volatility can help in shaping the MIDAS-GARCH dynamics.
The idea we are pursuing is to illustrate

1. how a predetermined daily variable (in lagged levels) adds some significant
influence to the short-run component (an asymmetric GARCH in the form of
the GJR [18] model—this would be the first asymmetry considered); and, most
importantly,

2. how the same variable observed at a lower frequency (in lagged first differences)
can determine a useful combination (in the MIDAS sense seen in detail below)
for the low-frequency component in the slowly moving level of local average
volatility. In particular, it is of interest to explore what frequency (weekly or
monthly), works best in this context, and what horizon is informative. In so
doing, we maintain that positive changes (an increase in volatility) and negative
ones should be treated differently in the model (this is the second asymmetry
considered).

The results show that in characterizing the volatility dynamics, our model with
monthly data and six months of lagged information works best, together with the
contribution of the laggedVIX in the short-run component. Out-of-sample, themodel
behaves well, with a performance which is dependent on the sub-period considered.

The rest of the paper is organized as follows: Sect. 2 addresses the empirical
question, illustrating first how the DAGMworks and then we report the results of an
application of various GARCH, GARCH-MIDAS and DAGM models on the S&P
500 volatility, both in- and out-of-sample perspectives. Finally, Sect. 3 concludes.

2 Modelling Volatility with the DAGMModel

Let us focus on the GARCH-MIDAS model, here synthetically labelled GM: the
paper by [17] defines GARCH dynamics in the presence of mixed frequency vari-
ables. The short-run component varies with the same frequency as the dependent
variable while the long-run component filters the lower frequency macro-Variable(s)
(MV) observations. Recent contributions on (univariate) GARCH-MIDAS model
are [6, 8, 11].

The paper by [5] proposes a DAGMwhere asymmetry in the short run is captured
by a GJR-type [18] reaction to the sign of past returns, and positive and negative MV
values have different impacts on the long-run.
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2.1 The DAGM Framework

The DAGM-X model is defined as

ri,t = √
τt × gi,tεi,t , with i = 1, . . . , Nt , (1)

where

• ri,t represents the log-return for day i of the period t ;
• Nt is the number of days for period t , with t = 1, . . . , T ;
• εi,t |�i−1,t ∼ N (0, 1), where �i−1,t denotes the information set up to day i − 1 of
period t ;

• gi,t follows a unit-mean reverting GARCH(1,1) process (short-run component);
• τt provides the slow-moving average level of volatility (long-run component).

The short-run component of the DAGM-X is given by

gi,t = (1 − α − β − γ /2) +
(
α + γ · 1(ri−1,t<0)

) (
ri−1,t

)2

τt
+ βgi−1,t + zVi−1,t ,

(2)
where 1(.) is an indicator function and Vi,t is an additional, positive volatility deter-
minant, observed daily, whose importance on gi,t is given by z. In order to assure the
positivity of gi,t , we impose the constraint z ≥ 0. In absence of Vi,t , the DAGM-X
model becomes the DAGM specification.

The long-run component of the DAGM-X and DAGM is defined as

τt = exp

(

m + θ+
K∑

k=1

δk(ω)+Xt−k1(Xt−k≥0) + θ−
K∑

k=1

δk(ω)−Xt−k1(Xt−k<0)

)

,

(3)
where
• m plays the role of an intercept;
• θ+, θ− represent the asymmetric responses to the one-sided filter;
• δk(ω)+ and δk(ω)− are suitable functions weighing the past K realizations of the
additional stationary variable Xt . As in the related literature, we opt for the Beta
function, that is

δk(ω) = (k/K )ω1−1(1 − k/K )ω2−1

∑K
j=1( j/K )ω1−1(1 − j/K )ω2−1

. (4)

Given thatwe are only interested in the case of largerweights put on themost recent
observations, we set ω1 = 1 and ω2 ≥ 1. Note that the Beta function represented in
(4) is readily applicable for both the GM and the DAGM. In this latter case, it is
sufficient to replace δk(ω) with δk(ω)+ and δk(ω)−.

Thus, the short-run component includes a term related to negative returns (“bad
news” increasing volatility, the well-known leverage effect) and potentially a term
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associatedwith an additionalMVobservedwith the same frequency of the dependent
variable. The long-run component avoids positive and negative compensationswithin
the one-sided filter, separating the positive MV variations from the negative ones.

Typically, MVs can only be observed at low frequency, but here we move out of
the classic MV framework where observations are available only at low frequency.
Thus we take a variable which is observable daily, but can be sampled at lower
frequencies, e.g. weekly or monthly. We take the DAGM to the empirical evaluation
of how different frequencies of observations in the MV may change the results both
in estimation and forecasting. Besides that, we include the same variable at high
frequency in the short-run component (“–X” specifications).

Assuming a conditional normal distribution for the error term εi,t allows to apply
the standard statistical inference (for details on the asymptotic properties of the
GARCH-MIDAS class of models, see [22]) according to the maximization of the
following log-likelihood:

lnL = −1

2

T∑

t=1

[
Nt∑

i=1

[

log(2π) + log(gi,tτt ) +
(
ri,t

)2

gi,tτt

]]

. (5)

2.2 The Role of VIX in the S&P 500 Volatility Dynamics

The returns of interest are daily log-differences of the S&P 500 Index (also examined
on a different sample and context in [5]), annualized on a sample period: 7 January
2000–7 September 2018 (number of daily observations: 4686, collected from Yahoo
Finance).

The MV in this paper is VIX (an implied volatility-based index built on the same
index, cf. [23]) which in our setup will appear: (i) lagged daily as a predetermined
variable in the short-run component gi of the GARCH-X; (ii) lagged variations—
end-of-month or end-of-week (with various choices of K ) in the long-run component.
All the observations concerning VIX have been collected from the Thomson Reuters
Eikon provider. The distance between the estimated volatility, labelled as ĥi , and
the chosen volatility proxy, the realized volatility at five minutes, labelled as σi

and collected from the realized library of the Oxford-Man Institute, are investigated
through three loss functions1: QLIKE, Root Mean Squared Error (RMSE) andMean
Absolute Errors (MAE), defined as follows:

1For ease of notation and because we are only interested in daily estimates, here the suffix t
identifying the period at lower frequency has been suppressed.
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QLIKE : E
(
σi/ĥi + log(ĥi )

)
;

RMSE :
√

E

((
σi − ĥi

)2
)

;

MAE : E
(
|σi − ĥi |

)
.

(6)

2.2.1 Estimation and Diagnostics

The estimation and diagnostics results are shown in Table 1, where we report the
coefficients with their standard errors in parenthesis and their significance. GARCH
is the standard (1, 1) model; the GJR allows for an asymmetric response to the
lagged negative returns; the GARCH-X and GJR-GARCH-X and DAGM-X contain
an extra predetermined variable, the lagged daily VIX. The GM and DAGM are built
on a one-sided filter for the monthly VIX, while in the DAGM-W we consider the
weekly VIX. The last six months of VIX have been used in GM, DAGM, DAGM-X,
and DAGM-W, i.e. K = 6 and Kweek = 24. The choice of the adopted MIDAS lags
derives from some preliminary estimations aiming at finding the best values accord-
ing to the Bayesian information criterion (BIC). The number of “∗” indicates the
significance (10%, 5%, 1%, respectively) of the estimated coefficients heteroscedas-
ticity and autocorrelation consistent ([21], HAC) standard errors in parenthesis). LBl

and LMl report the p-value of the Ljung-Box and ARCH-LM tests on the squared
standardized residuals at lag l, respectively. RMSE is in percentage terms.

A few comments are in order: the GARCH models (first four columns) exhibit
customary results, with the possible surprise of the non-significance of the lagged
VIX in the X specifications. The GM has non-significant coefficient on the one-
sided filter and the wrong sign: as a matter of fact, the information criteria and the
QLIKE signal a worse fit of this model, relative to the standard models. When we
introduce ourDAGM, the signs of the impact coefficients θ+ and θ− are the right ones
(positive, negative, respectively), and significant. The information criteria and the
QLIKE report a marked improvement over the models previously considered, with
the best model being the DAGM-X model where the significant coefficients on the
low-frequency component are, besides the constant, those pertaining to the positive
changes (inducing an increase in volatility). Generally, the residual diagnostics show
a good fit of the models. In particular, almost all the models fail to reject the null
hypotheses of the Ljung-Box andARCH-LM tests, independently of the order of lags
considered. The only model whose p-values are below the significance level of 5%
is the DAGM-X, for l = 12, for both the Ljung-Box and ARCH-LM tests. Despite
this, the conclusion is that the DAGM-X provides the most convincing performance
with VIX contributing to a marked improvement over other models. The result can
be appraised graphically as in Fig. 2 where we show the close proximity of the fitted
values to the realized volatility.
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Table 1 DAGM and GARCH estimates

GARCH GARCH–
X

GJR GJR–X GM DAGM DAGM–X DAGM–
W

α 0.105*** 0.116*** 0.001 0.001 0.001 0.001 0.001 0.001

(0.013) (0.019) (0.01) (0.011) (0.011) (0.01) (0.014) (0.011)

β 0.884*** 0.876*** 0.889*** 0.878*** 0.94*** 0.874*** 0.852*** 0.884***

(0.015) (0.018) (0.015) (0.02) (0.013) (0.015) (0.018) (0.015)

γ 0.192*** 0.225*** 0.11*** 0.194*** 0.198*** 0.19***

(0.023) (0.037) (0.023) (0.022) (0.022) (0.023)

z 0.117 0.165 0.257***

(0.091) (0.104) (0.039)

m 5.169*** 4.956*** 0.686*** 5.123***

(0.315) (0.192) (0.121) (0.205)

θ −0.004

(0.005)

ω 1.36

(1.385)

θ+ 0.164*** 0.101*** 0.096***

(0.042) (0.027) (0.028)

ω+
2 1.372*** 1.681*** 13.876***

(0.368) (0.546) (0.693)

θ− −0.192*** −0.078 −0.431***

(0.065) (0.07) (0.11)

ω−
2 1.017 1.124 1.455***

(0.883) (0.765) (0.492)

BIC 37586.899 37590.534 37393.477 37394.136 37546.527 37404.797 37367.454 37397.298

QLIKE −3.867 −3.865 −3.876 −3.873 −3.882 −3.882 −3.882 −3.879

RMSE 0.418 0.433 0.395 0.418 0.402 0.376 0.364 0.382

LB12 0.274 0.388 0.329 0.123 0.506 0.129 0.048 0.186

LB24 0.322 0.361 0.518 0.239 0.416 0.384 0.229 0.384

LB36 0.362 0.383 0.626 0.37 0.278 0.474 0.37 0.482

LM12 0.26 0.381 0.311 0.092 0.526 0.118 0.037 0.17

LM24 0.318 0.349 0.485 0.159 0.41 0.366 0.203 0.345

LM36 0.411 0.391 0.614 0.253 0.366 0.482 0.371 0.479

NotesAnnualized scale. Sample period: 7 January 2000–7 September 2018. Number of daily obser-
vations: 4686. Ticker: S&P 500. Comparison of the DAGM with other GARCH models. Model
definitions and comments in the text. HAC standard errors in parentheses. ∗, ∗∗ and ∗∗∗ denote
significance at the 10%, 5% and 1% levels, respectively
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Fig. 2 Realized and DAGM-X volatilities. Notes The figure plots the DAGM-X volatility (solid
black line) and the S&P 500 realized volatility (dashed grey line). Shaded areas represent NBER
recession periods. Annualized scale

2.2.2 Forecasting

Further insights can be had moving to an out-of-sample exercise where we estimate
the model over a 10-year period and project one-step ahead for one year and then
move forward the estimation and forecasting window. The results are summarized
in Fig. 3 where we report the presence in a Model Confidence Set as proposed by
[20]. The results (at α = 10%) show that while the DAGM-X has a satisfactory
performance, at the same time the standard GARCH or GJR models enter the set.

3 Wrapping Up

The slow-moving feature of conditional volatility can be addressed within a Double
Asymmetric GARCH-MIDAS framework [5] where the low-frequency variable here
is a volatility measure (variations in VIX). The main novelty in this approach is that
the same variable can be inserted as a forcing variable (-X in levels) in the short-
run component, and we can explore which frequency is the most suitable for the
long-run component (in first differences). The fitting capabilities of this approach
are comforting, with monthly movements in volatility providing the best in-sample
results. In out-of-sample forecasting, though, the model is less satisfactory, in that it
gives a performance very similar to a standard GARCH model.
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GARCH GARCH−X GJR GJR−GARCH−X GM DAGM DAGM−X DAGM−W

2010
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2010/
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Fig. 3 MCS composition. Notes The figure plots the composition of the Model Confidence Set
(MCS). For different loss functions, dark (QLIKE), medium-dark (MSE) and light (MAE) shades
of grey indicate that a given model is included in the MCS, at a significance level of α = 0.1.
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