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Abstract Neyman [7] was the first to propose a change in measure in the context of
goodness of fit problems. This provided an alternative density to the one for the null
hypothesis. Hoeffding introduced a change of measure formula for the ranks of the
observed data which led to obtaining locally most powerful rank tests. In this paper,
we review these methods and propose a new approach which leads on the one hand
to new derivations of existing statistics. On the other hand, we exploit these methods
to obtain Bayesian applications for ranking data.

Keywords Ranks · Change of measure · Bayesian methods

Mathematics Subject Classification (2010) 62F07 · 62G86 · 62H11

1 Introduction

In a landmark paper, [7] considered the nonparametric goodness of fit problem and
introduced the notion of smooth tests of fit by proposing a parametric family of
alternative densities to the null hypothesis. In this article, we describe a number of
applications of this change of measure. Hence, we obtain a new derivation of the
well-known Friedman statistic as the locally most powerful test in an embedded
family of distributions.

2 Smooth Models

Suppose that the probabilitymass function of a discrete k-dimensional randomvector
X is given by
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π
(
x j ;θ

) = exp
(
θ′x j − K (θ)

)
p j , j = 1, . . . ,m, (1)

where x j is the j th value of X and p = (
p j
)′
denotes the vector of probabilities

when θ = θ0. Here K (θ) is a normalizing constant for which

∑

j

π
(
x j ;θ

) = 1.

We see that the model in (1) prescribes a change of measure from the null to the
alternative hypothesis. Let T = [xi , . . . , xm] be the k × m matrix of possible vector
values of X . Then under the distribution specified by p,

� ≡ Cov p (X) = E p
[
(X − E [X]) (X − E [X])′

]
(2)

= T (diag ( p)) T ′ − (T p) (T p)′ , (3)

where the expectations are with respect to the model (1). This particular situation
arises often when dealing with the nonparametric randomized block design. Define

π (θ) = (π (x1;θ) , . . . ,π (xm;θ))′

and suppose that we would like to test

H0 : θ = 0 vs H1 : θ �= 0.

Letting N denote a multinomial random vector with parameters (n,π (θ)), we see
that the log likelihood as a function of θ is, apart from a constant, proportional to

m∑

j=1

n j log
(
π
(
x j ;θ

)) =
m∑

j=1

n j
(
θ′x j − K (θ)

)

= θ′
⎛

⎝
m∑

j=1

n j x j

⎞

⎠ − nK (θ).

The score vector under the null hypothesis is then given by

U (θ; X) =
m∑

j=1

N j

(
1

π j (θ)

∂π j (θ)

∂θ

)

= T (N − n p) .

Under the null hypothesis,

E [U (θ; X)] = 0,
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and the score statistic is given by

1

n

[
T (N − n p)

]′
�−1

[
T (N − n p)

] = 1

n
(N − n p)′

(
T ′�−1T

)
(N − n p)

L−→ χ2
r ,

(4)
where r = rank

(
T ′�−1T

)
.

In the one-sample ranking problem whereby a group of judges are each asked to
rank a set of t objects in accordance with some criterion, letP = {

ν j , j = 1, . . . , t !}
be the space of all t ! permutations of the integers 1, 2, . . . , t and let the probability
mass distribution defined on P be given by

p = (p1, . . . , pt !) ,

where p j = Pr
(
ν j

)
. Conceptually, each judge selects a ranking ν in accordance

with the probability mass distribution p. In order to test the null hypothesis that each
of the rankings are selected with equal probability, that is,

H0 : p = p0 vs H1 : p �= p0, (5)

where p0 = 1
t !1, define a k-dimensional vector score function X (ν) on the space P

and following (1), let its smooth probability mass function be given as

π(x j ;θ) = exp
(
θ′x j − K (θ)

) 1

t ! , j = 1, . . . , t ! (6)

where θ is a t-dimensional vector, K (θ) is a normalizing constant and x j is a t-
dimensional score vector to be specified in (8). Since

t !∑

j=1

π
(
x j ;θ

) = 1

it can be seen that K (0) = 0 and hence the hypotheses in (5) are equivalent to testing

H0 : θ = 0 vs H1 : θ �= 0. (7)

It follows that the log likelihood function is proportional to

l (θ) ∼ n
[
θ′η̂ − K (θ)

]
,

where

η̂ =
⎡

⎣
t !∑

j=1

x j p̂n j

⎤

⎦ , p̂n j = n j

n
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and n j represents the number of observed occurrences of the ranking ν j . The Rao
score statistic evaluated at θ = 0 is

U (θ; X) = n
∂

∂θ

[
θ′η̂ − K (0)

]

= n

[
η̂ − ∂

∂θ
K (0)

]
,

whereas the information matrix is

I(θ) = −n

[
∂2

∂θ2
K (0)

]
.

The test then rejects the null hypothesis whenever

n2
[
η̂ − ∂

∂θ
K (0)

]′
I−1 (0)

[
η̂ − ∂

∂θ
K (0)

]
> χ2

f (α) ,

where χ2
f (α) is the upper 100(1 − α)% critical value of a chi square distribution

with f = rank(I (θ)) degrees of freedom. We note that the test just obtained is the
locally most powerful test of H0.

Specializing this test statistic to the Spearman score function of adjusted ranks

x j =
(

ν j (1) − t + 1

2
, . . . , ν j (t) − t + 1

2

)′
, j = 1, . . . , t !, (8)

we can show that the Rao score statistic is the well-known Friedman test [5].

W = 12n

t (t + 1)

t∑

i=1

[
R̄i − t + 1

2

]2
, (9)

where R̄i is the average of the ranks assigned to the i th object.

2.1 The Two-Sample Ranking Problem

The approach just described can be used to deal with the two-sample ranking problem
assuming again the Spearman score function. Let X1, X2 be two independent random
vectors whose distributions as in the one sample case are expressed for simplicity as

π
(
x j ;θl

) = exp
{
θ′
lx j − K (θl)

}
pl ( j) , j = 1, . . . , t !, l = 1, 2,
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where θl = (θl1, . . . , θlt )
′ represents the vector of parameters for population l. We

are interested in testing

H0 : θ1 = θ2 vs H1 : θ1 �= θ2.

The probability distribution {pl ( j)} represents an unspecified null situation. Define

p̂l =
(
nl1
nl

, . . . ,
nlt !
nl

)′
,

where ni j represents the number of occurrences of the ranking ν j in sample l.
Also, for l = 1, 2, set

∑
j ni j ≡ nl , γ = θ1 − θ2 and

θl = m + blγ,

where

m = n1θ1 + n2θ2

n1 + n2
, b1 = n2,

n1 + n2
, b2 = − n1

n1 + n2
.

Let �l be the covariance matrix of X l under the null hypothesis defined as

�l = �l − pl p
′
l ,

where �l = diag (pl (1) , . . . , pl (t !)) and pl = (pl (1) , . . . , pl (t !))′. The loga-
rithm of the likelihood L as a function of (m,γ) is proportional to

log L (m,γ) ∼
2∑

l=1

t !∑

j=1

nl j
{
(m + blγ)′ x j − K (θl)

}
.

In order to test
H0 : θ1 = θ2 vs H1 : θ1 �= θ2

we calculate the Rao score test statistic which is given by

n
(
T S p̂1 − T S p̂2

)′
D̂
(
T S p̂1 − T S p̂2

)
. (10)

It can be shown to have asymptotically a χ2
f whenever nl/n → λl > 0 as n → ∞,

where n = n1 + n2. Here D̂ is the Moore–Penrose inverse of T S�̂T ′
S and �̂ is a

consistent estimator of � = �1
λ1

+ �2
λ2

and f is the rank of D̂, as required.



16 M. Alvo

2.2 The Use of Penalized Likelihood

In the previous sections, it was possible to derive test statistics for the one and
two-sample ranking problems by means of the change of measure paradigm. This
paradigm may be exploited to obtain new results for the ranking problems. Specifi-
cally, we consider a negative penalized likelihood function defined to be the negative
log likelihood function subject to a constraint on the parameters which is then mini-
mized with respect to the parameter. This approach yields further insight into ranking
problems.

For the one-sample ranking problem, let

Λ(θ, c) = −θ′
⎡

⎣
t !∑

j=1

n j x j

⎤

⎦ + nK (θ) + λ

( t∑

i=1

θ2i − c

)
(11)

represent the penalizing function for some prescribed values of the constant c. We
shall assume for simplicity that

∥∥x j

∥∥ = 1. When t is large (say t ≥ 10), the compu-
tation of the exact value of the normalizing constant K (θ) involves a summation of
t ! terms. [6] noted the resemblance of (6) to the continuous vonMises-Fisher density

f (x;θ) = ‖θ‖ t−3
2

2
t−3
2 t !I t−3

2
(‖θ‖)�( t−1

2 )
exp

(
θ′x

)
,

where ‖θ‖ is the norm of θ and x is on the unit sphere and Iυ(z) is the modified
Bessel function of the first kind given by

Iυ(z) =
∞∑

k=0

1

�(k + 1)�(υ + k + 1)

( z
2

)2k+ν

.

This seems to suggest the approximation of the constant K (θ) by

exp (−K (θ)) ≈ 1

t ! · ‖θ‖ t−3
2

2
t−3
2 I t−3

2
(‖θ‖)�( t−1

2 )
.

In [1], penalized likelihood was used in ranking situations to obtain further insight
into the differences between groups of rankers.

3 Bayesian Models for Ranking Data

The fact that the model in (1) is itself parametric in nature leads one to consider
an extension to Bayesian considerations. Let R = (R(1), . . . , R(t))′ be a ranking t
items, labeled 1, . . . , t and define the standardized rankings as
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y =
(
R − t + 1

2
1
)

/

√
t (t2 − 1)

12
,

where y is the t × 1 vector with ‖ y‖ ≡ √
y′ y = 1. We consider the following more

general ranking model:

π( y|κ,θ) = C(κ,θ) exp
{
κθ′ y

}
,

where the parameter θ is a t × 1 vector with ‖θ‖ = 1, parameter κ ≥ 0, andC(κ,θ)

is the normalizing constant. This model has a close connection to the distance-based
models considered in [3]. Here, θ is a real-valued vector, representing a consensus
view of the relative preference of the items from the individuals. Since both ‖θ‖ = 1
and ‖ y‖ = 1, the term θ′ y can be seen as cosφ where φ is the angle between the
consensus score vector θ and the observation y. The probability of observing a rank-
ing is proportional to the cosine of the angle from the consensus score vector. The
parameter κ can be viewed as a concentration parameter. For small κ, the distribution
of rankings will appear close to a uniform whereas for larger values of κ, the distri-
bution of rankings will be more concentrated around the consensus score vector. We
call this new model an angle-based ranking model.

To compute the normalizing constant C(κ,θ), let Pt be the set of all possible
permutations of the integers 1, . . . , t . Then

(C(κ,θ))−1 =
∑

y∈P
exp

{
κθT y

}
. (12)

Notice that the summation is over the t ! elements in P . When t is large, say greater
than 15, the exact calculation of the normalizing constant is prohibitive.Using the fact
that the set of t ! permutations lie on a sphere in (t − 1)-space, our model resembles
the continuous vonMises-Fisher distribution, abbreviated as vMF(x|m,κ), which is
defined on a (p − 1) unit sphere with mean directionm and concentration parameter
κ:

p(x|κ,m) = Vp(κ) exp(κm′x),

where

Vp(κ) = κ
p
2 −1

(2π)
p
2 I p

2 −1(κ)
,

and Ia(κ) is themodified Bessel function of the first kind with order a. Consequently,
we may approximate the sum in (12) by an integral over the sphere:

C(κ,θ)  Ct (κ) = κ
t−3
2

2
t−3
2 t !I t−3

2
(κ)�( t−1

2 )
,
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where �(.) is the gamma function. In ([9], it is shown that this approximation is
very accurate for values of κ ranging from 0.01 to 2 and t ranging from 4 to 11.
Moreover, the error drops rapidly as t increases. Note that this approximation allows
us to approximate the first and second derivatives of log C which can facilitate our
computation in what follows.

3.1 Maximum Likelihood Estimation (MLE) of Our Model

Let Y = {
y1, . . . , yN

}
be a random sample of N standardized rankings drawn from

p( y|κ,θ). The log likelihood of (κ,θ) is then given by

l(κ,θ) = n logCt (κ) +
n∑

i=1

κθ′ yi . (13)

Maximizing (13) subject to ‖θ‖ = 1 and κ ≥ 0, we find that themaximum likelihood

estimator of θ is given by θ̂MLE =
∑N

i=1 yi∥
∥
∥
∑N

i=1 yi
∥
∥
∥
, and κ̂ is the solution of

At (κ) ≡ −C
′
t (κ)

Ct (κ)
= I t−1

2
(κ)

I t−3
2

(κ)
=

∥∥∥
∑N

i=1 yi
∥∥∥

N
≡ r. (14)

A simple approximation to the solution of (14) following [4] is given by

κ̂MLE = r(t − 1 − r2)

1 − r2
.

A more precise approximation can be obtained from a few iterations of Newton’s
method. Using the method suggested by [8], starting from an initial value κ0, we can
recursively update κ by iteration:

κi+1 = κi − At (κi ) − r

1 − At (κi )2 − t−2
κi

At (κi )
, i = 0, 1, 2, . . . .

3.2 One-Sample Bayesian Method with Conjugate Prior

Taking a Bayesian approach, we consider the following conjugate prior for (κ,θ) as

p(κ,θ) ∝ [Ct (κ)]ν0 exp
{
β0κm′

0θ
}
, (15)
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where‖m0‖ = 1,ν0,β0 ≥ 0.Given y, the posterior density of (κ,θ) canbe expressed
by

p(α,θ| y) ∝ exp
{
βκm′θ

}
Vt (βκ) · [Ct (κ)]N+ν0

Vt (βκ)
,

wherem =
(
β0m0 + ∑N

i=1 yi
)

β−1,β =
∥∥
∥β0m0 + ∑N

i=1 yi
∥∥
∥. The posterior density

can be factored as
p(κ, θ| y) = p(θ|κ, y)p(κ| y), (16)

where p(θ|κ, y) ∼ vMF(θ|m,βκ) and

p(κ| y) ∝ [Ct (κ)]N+ν0

Vt (βκ)
= κ

t−3
2 (υ0+N ) I t−2

2
(βκ)

[
I t−3

2
(κ)

]ν0+N
(βκ)

t−2
2

.

The normalizing constant for p(κ| y) is not available in closed form. For reasons
explained in [9], we approximate the posterior distribution using the method of
variational inference (abbreviated VI from here on). Variational inference provides
a deterministic approximation to an intractable posterior distribution through opti-
mization. We first adopt a joint vMF- Gamma distribution as the prior for (κ,θ):

p(κ,θ) = p(θ|κ)p(κ)

= vMF(θ|m0,β0κ) Gamma(κ|a0, b0),

where Gamma(κ|a0, b0) is the Gamma density function with shape parameter a0
and rate parameter b0 (i.e., mean equal to a0

b0
), and p(θ|κ) = vMF(θ|m0,β0κ). The

choice of Gamma(κ|a0, b0) for p(κ) is motivated by the fact that for large values
of κ, p(κ) in (15) tends to take the shape of a Gamma density. In fact, for large
values of κ, I t−3

2
(κ)  eκ√

2πκ
, and hence p(κ) becomes the Gamma density with

shape (ν0 − 1) t−2
2 + 1 and rate ν0 − β0:

p(κ) ∝ [Ct (κ)]ν0

Vt (β0κ)
∝ κ(ν0−1) t−2

2 exp(−(ν0 − β0)κ).

Using the variational inference framework, [9] showed that the optimal posterior
distribution of θ conditional on κ is a von Mises-Fisher distribution vMF(θ|m,κβ)

where

β =
∥∥∥∥∥
β0m0 +

N∑

i=1

yi

∥∥∥∥∥
and m =

(

β0m0 +
N∑

i=1

yi

)

β−1.

The optimal posterior distribution of κ is a Gamma(κ|a, b)with shape a and rate
b with
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a = a0 + N

(
t − 3

2

)
+ βκ̄

[
∂

∂βκ
ln I t−2

2
(βκ̄)

]
, (17)

b = b0 + N
∂

∂κ
I t−3

2
(κ̄) + β0

[
∂

∂β0κ
ln I t−2

2
(β0κ̄)

]
. (18)

Finally, the posterior mode κ̄ can be obtained from the previous iteration as

κ̄ =
{

a−1
b if a > 1,

a
b otherwise.

(19)

3.3 Two-Sample Bayesian Method with Conjugate Prior

Let Y i = {
yi1, . . . , yi Ni

}
for i = 1, 2, be two independent random samples of stan-

dardized rankings each drawn, respectively, from p( yi |κi ,θi ). Taking a Bayesian
approach, we assume that conditional on κ, there are independent von Mises conju-
gate priors, respectively, for (θ1,θ2) as

p(θi |κ) ∝ [Ct (κ)]νi0 exp
{
βi0κmT

i0θi
}
,

where ‖mi0‖ = 1, νi0,βi0 ≥ 0. We shall be interested in computing the Bayes factor
when considering two models. Under model 1, denoted M1, θ1 = θ2 whereas under
model 2, denoted M2, equality is not assumed. The Bayes factor comparing the two
models is defined to be

B21 =
∫
p( y1|κ,θ1)p( y2|κ,θ2)p(θ1|κ)p(θ2|κ)dθ1dθ2dκ

∫
p( y1|κ,θ)p( y2|κ,θ)p(θ|κ)dθdκ

=
∫ [∫

p( y1|κ,θ1)p(θ1|κ)dθ1
] [∫

p( y2|κ,θ2)p(θ2|κ)dθ2
]
dκ

∫
p( y1|κ,θ)p( y2|κ,θ)p(θ|κ)dθdκ

.

The Bayes factor enables us to compute the posterior odds of model 2 to model 1.We
fist deal with the denominator in B21.Under M1, we assume a joint vonMises-Fisher
prior on θ and a Gamma prior on κ :

p (θ,κ) = vMF (θ|m0,β0κ)G (κ|a0, b0) .

Hence,

∫
p( y1|κ,θ)p( y2|κ,θ)p(θ|κ)dθdκ =

∫
CN
t (κ) exp

{
βκθTm

}
Vt (β0κ)G (κ|a0, b0) dθdκ

=
∫

CN
t (κ) Vt (β0κ) V−1

t (βκ)G (κ|a0, b0) dκ,
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where N = N1 + N2 and

m =
⎡

⎣β0m0 +
2∑

i=1

Ni∑

j=1

yi j

⎤

⎦β−1,β =‖ m ‖ .

Now,

∫
CN
t (κ) Vt (β0κ) V−1

t (βκ)G (κ|a0, b0) dκ = C

(
β0

β

) t−2
2
∫

⎡

⎢⎢
⎣

κ
a0+N

(
t−3
2

)
−1

e−b0κ I( t−2
2

) (βκ)

I( t−2
2

) (β0κ) I N(
t−3
2

) (κ)

⎤

⎥⎥
⎦ dκ

≈ C

(
β0

β

) t−2
2
∫

κa−1e−bκdκ,

where in the last step, we used the method of variational inference as an approxima-
tion, with

C = ba00
� (a0)

(
2N( t−3

2 ) (t !)N �N

(
t − 1

2

))−1

a1 = a0 + N

(
t − 3

2

)
+ βκ̄

[
∂

∂βκ
ln I t−2

2
(βκ̄)

]
,

b1 = b0 + N
∂

∂κ
I t−3

2
(κ̄) + β0

[
∂

∂β0κ
ln I t−2

2
(β0κ̄)

]

and the posterior mode κ̄ is

κ̄ =
{

a1−1
b1

if a1 > 1,
a1
b1

otherwise.

It follows that the denominator of B21 is

C

(
β0

β

) t−2
2 � (a1)

ba11
.

For the numerator, we shall assume that conditional on κ, there are independent
von Mises conjugate priors, respectively, for θ1,θ2 given by

p(θi |κ) ∝ [Ct (κ)] exp
{
β0κmT

0 θi
}
, i = 1, 2

where ‖m0‖ = 1, β0 ≥ 0. Hence,
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∫ [∫
p( y1|κ,θ1)p(θ1|κ)dθ1

] [∫
p( y2|κ,θ2)p(θ2|κ)dθ2

]
dκ

=
∫

CN
t (κ) exp

{
β1κθ1

Tm1
}
exp

{
β2κθ2

Tm2
}
V 2
t (β0κ)G (κ|a0, b0) dθ1dθ2dκ

=
∫

CN
t (κ) V−1

t (β1κ) V−1
t (β2κ) V 2

t (β0κ)G (κ|a0, b0) dκ

= C

(
β0

β1

) t−2
2
(

β0

β2

) t−2
2
∫

⎡

⎣
κa0+N( t−3

2 )−1e−b0κ I( t−2
2 ) (β1κ) I( t−2

2 ) (β2κ)

I 2
( t−2

2 )
(β0κ) I N

( t−3
2 )

(κ)

⎤

⎦ dκ

= C

(
β0

β1

) t−2
2
(

β0

β2

) t−2
2
∫

κa2−1e−b2κdκ

where for i = 1, 2,

mi =
⎡

⎣β0m0 +
Ni∑

j=1

yi j

⎤

⎦β−1
i =‖ mi ‖

a2 = a0 + N

(
t − 3

2

)
+
∑

i

βi κ̄

[
∂

∂βiκ
ln I t−2

2
(βi κ̄)

]

b2 = b0 + N
∂

∂κ
ln I t−3

2
(κ̄) + 2β0

[
∂

∂β0κ
ln I t−2

2
(β0κ̄)

]

and the posterior mode κ̄ is given recursively:

κ̄ =
{

a2−1
b2

if a2 > 1,
a2
b2

otherwise.

It follows that the numerator of the Bayes factor is

C

(
β0

β1

) t−2
2
(

β0

β2

) t−2
2 � (a1)

ba11
.

The Bayes factor is then given by the ratio
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B21 =
(

β0

β

) t−2
2 �(a1)

b
a1
1

(
β0

β1

) t−2
2
(

β0

β2

) t−2
2 �(a2)

b
a2
2

=
(

β1β2

ββ0

) t−2
2 � (a1) b

a2
2

� (a2) b
a1
1

.

4 Conclusion

In this article, we have considered a few applications of the change of measure
paradigm. In particular, it was possible to obtain a new derivation of the Friedman
statistic.Aswell, extensions to theBayesianmodels for rankingdatawere considered.
Further applications as, for example, to the sign and Wilcoxon tests are found in [2].
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