
Chapter 6
Modelling and Types of Specifications

6.1 Introduction

The specifications of an optimization problem include all the constraints existing
within it. The constraints have been catalogued generally according to their meaning,
as Williams (2013) have already pointed out, although proposing a classification of
constraints seems to be a rather complex task. The only classification that I consider
100% valid would be the one that refers to the sign of the constraints. There are
constraints of three signs: �, �, and ¼. However, with this classification, we would
not pay attention to the meaning of the specification. And on the other hand, not all
specifications correspond to a single constraint. There are specifications, as we will
see, that are modelled using more than one constraint.

Therefore, in this methodology, we will propose a classification in two levels. The
upper level is determined by the way in which the specification is stated, whereby we
would have two types of specifications:

A. Specification stated as a simple proposition
B. Specification stated as a compound proposition

In Sect. 5.3, dedicated to logical calculations, we state the concept of proposition
and its typologies. It is important to bear in mind that a proposition in mathematical
programming is defined as a mathematical semantic content that, when applied to a
solution, can be assigned a truth value (true or false).

Remember also that there are two kinds of propositions:

– Simple: also called atomic, they express a statement that cannot be divided into
other propositions because they do not employ any logical operator.

The original version of this chapter was revised. The correction to this chapter is available at https://
doi.org/10.1007/978-3-030-57250-1_9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021, Corrected Publication 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_5
https://doi.org/10.1007/978-3-030-57250-1_9#DOI
https://doi.org/10.1007/978-3-030-57250-1_9#DOI
https://doi.org/10.1007/978-3-030-57250-1_6#DOI

– Compound: propositions composed of logical operators and one or more simple
propositions. In the previous chapter, several examples of the formulation of
compound propositions were already shown. In this chapter we will study its
modelling.

Specifications Stated as Simple Propositions
The specifications that are formulated as simple propositions give rise to most of the
constraints of optimization problems. Simple propositions can also be classified,
here with greater difficulty and not exclusively, depending on the meaning or
objective of the constraints or the intervening variables. In this methodology, we
will define the following types of specifications stated as simple propositions:

Quantitative specification of selection

A specification based on the variables involved. Whenever logical activities are
presented on sets of individual elements or binary logical calculations, it is necessary
to analyze the existence of this type of specification, since in many cases they are not
explicitly described in the description of the system because they are understood.

They can be of three types:

– Upper bound
– Lower bound
– Equality

Capacity specifications
Based on the semantics of element data, it is a specification catalogued by some

authors. It is based on availability data of elements that have a resource character in
the system. The two most common formats in which it is presented in a system are:

– Specification focused on the consumption of capacity: The capacity of the
resource can be partially consumed.

– Specification focused on the contribution of capacity: The capacity of the
resource is used to satisfy a fixed demand for capacity. In this case, the capacity
is used in its entirety.

Supply of a demand
Based also on data semantics, it is the opposite of the capacity specification. It

occurs when an element has an attribute that represents a quantity demanded that is
necessary to cover or supply.

Bound imposition specifications

These are the most easily recognizable specifications in a system. It would be a
typology regarding the way of stating the specification. There are two types:

– Imposition of maximums: these impose upper bounds on variables or functions of
variables. Within these we could also include the specifications of capacity
consumption.

– Imposition of minimums: these impose lower bounds on variables or functions of
variables.

136 6 Modelling and Types of Specifications

Allocation or balance specifications
These impose values on variables or functions of measurable variables. They also

impose a balance between the inputs and outputs of a measurable element, collective
or individual. Included in this typology are constraints on the distribution of stocks
or those that impose equality between variable functions.

It is inevitable that sometimes certain specifications will be considered as belong-
ing to more than one typology.

Specifications Stated as Compound Propositions
The specifications enunciated as compound propositions have already appeared in
the chapter dedicated to the logical calculations of a system. They are specifications
that are based on a logical language, using logical operators or a connective to define
the specification. They are also usually easily identifiable in the system description.
As we already mentioned, the modelling of logical propositions could involve the
definition of logical calculations. In this chapter, we will see the modelling of any
type of compound proposition.

The formulation of logic-based propositions has been studied mainly by Mitra
et al. (1994), Williams (1995), and Williams (2009) proposing constraints using
binary decision variables, particular propositions as disjunctive constraints but there
is not a general method for formulating any compound propositions with any
connective.

In this book we will see a general scheme for modelling compound propositions
where the basic rules are based on the modelling of propositions already described
by those authors.

The structure of this chapter is as follows: first (Sect. 6.2) we will analyze the
elements on which the specifications fall. In Sects. 6.3 to 6.7, we will present the
modelling of each type of simple specification (A.1 to A.5). Section 6.8 will deal
with the modelling of compound propositions. Section 6.9 is devoted to objective
functions, since objective functions can be considered as one more specification of
the system. In Sect. 6.10, we will analyze the identification of specifications in the
description of a system.

6.2 Elements on Which the Specification Falls on

When it comes to modelling a specification, the first task is to identify to which
elements the specification is directed. If it is an individual specification, it will be
directed to a particular element within a set, to an element that is not part of any set or
to the system itself. If the specification is directed to a set of elements, the construc-
tion of the specification uses terms such as “Every” or “A” as an indeterminate
article, without referring to one in particular but to any. This means that the
specification will have to be mounted for each element of the set. We can even
express a specification using the term “all.” In this case the norm must also be
mounted for each element individually if they are defined individually.

6.2 Elements on Which the Specification Falls on 137

Illustration 6.1
In a system for assigning jobs to machines, with those elements defined as unitary,
the specification that assigns each job to a machine could be defined as:

– Each job must be assigned to a machine.
– A job will be assigned to a machine.
– All jobs must be assigned to a machine.

It could also be that the specification does not apply to all elements of the set but
only to those that meet a condition subject to the values of their data or their indices.
This will be expressed using the mathematical symbol “such that” (/):

8i/Ci>10: (Ci is an attribute of the elements of the index set i)
8i,j/i>j:
8i/i�3:

We should never express variables in the clause such that. As its value is not
determined, we will not know whether or not the specification is applied:

8i/xi>10: Error!
Whenever we try to define variables in the clause “such that,” we must define a

conditional logical proposition “IF. . .THEN. . .” that uses these variables as an input
condition of the conditional. The logical propositions will be studied in Sect. 6.8.
Let’s look at a simple example:

8i/xi > 10 : αi + βi � 1) 8 i : IF xi > 10 THEN αi + βi � 1

It may also be common for specifications to be defined by the combination of
several sets of elements. Again, the determination of the elements depends on the
way in which they are alluded to in the statement of the specification, if in a
determined way on some elements or in an indeterminate way, which is why all
the combinations that define the specification should be considered. Let us look at an
example:

Illustration 6.2: Distribution of Ham
A ham distribution company has designed a set of 20 delivery routes for distribution.
The company has a portfolio of 350 clients. Each delivery route goes through a
series of known customers. The company has ten vehicles for the distribution stage.
Each vehicle has a given capacity or number of Iberian hams that it can transport.

The demand for ham that must be supplied to each customer is known. Each
vehicle that delivers ham must choose a single route, since more than one would take
too long.

Two vehicles cannot choose the same route.
If a vehicle delivers more than 50 Iberian hams to a customer, it should not

deliver ham to any other customer.
We know the delivery cost of each route.

Table of Elements (Table 6.1)

138 6 Modelling and Types of Specifications

In the Customer_Route attribute, the customers by which each route passes are
annotated. It is therefore shared between routes and customers.

Decision Activities

Action: Deliver [Iberian hams to customers with vehicles]
Decision variables:
xkj ¼ Number of Iberian hams delivered with vehicle k to customer j.
k ¼ 1. . .10, j ¼ 1. . .350

Action: Choose [Routes for vehicles]
Decision variables:
αik ¼1 if I choose Route i for Vehicle k; 0 otherwise. k ¼ 1. . .10, i ¼ 1. . .20

Let us analyze two of the specifications of the system:

Specification 1: Two vehicles cannot choose the same route

The first question would be: which two vehicles? They are not determined, so we
should consider the combination of every two vehicles from the ten vehicles.
Obviously, since vehicles are individuals, this value (two vehicles) cannot represent
a numeral of a collective element.

The second question would be: which route? And again, the answer is indeter-
minate, so we should consider them all.

Therefore, the specification is presented for each pair of vehicles and each route.
For vehicles, we can define a second subscript k'. The specification is defined by a
logical statement:

Logical proposition : 8k, k0, i : NOT αik ¼ 1 AND αik0 ¼ 1ð Þ ð6:1Þ

This specification could also be written as follows: The number of vehicles that
can choose each route must be at most 1:

8i :
X10
k¼1

αik � 1 ð6:2Þ

Table 6.1 Table of elements of Illustration 6.2

Elements SET QN

Data

Name Param Type Belonging Value

Routes i ¼ 1. . .20 IU Customer_Route RCij B S . . .

Cost Ci C W . . .

Customers j ¼ 1. . .350 IU Demand Dj I S . . .

RCij

Vehicles k ¼ 1. . .10 IU Capacity Kk I S . . .

Iberian hams – CD Di; Kk

6.2 Elements on Which the Specification Falls on 139

Specification 2: If a vehicle delivers more than 50 hams to a customer, it should
not deliver ham to any other customer:

“a vehicle”: indeterminate, any vehicle
“a customer”: indeterminate, any customer

“any other customer”: the rest of customers is also indeterminate, any customer.

Logical proposition : 8j, j0= j0 <> j, k : IFxkj > 50 THENxk j0 ¼ 0 ð6:3Þ

The specification could also have been defined with the following equivalent
statement: If a vehicle delivers more than 50 Iberian hams to a customer, the sum of
Iberian hams to the rest of customers will be zero:

Logical proposition : 8j, k : IFxkj > 50 THEN
X
j0 6¼j

xk j0 ¼ 0 ð6:4Þ

Both in (6.2) and in (6.4) the number of specifications is reduced, which a priori
may contribute to improving the resolution times of the model.

6.3 Quantitative Specifications of Selection

Specifications are very common in modelling. They are relevant when we work with
variables of logical decision and can also be enunciated with respect to a set of binary
logical calculations.

This specification expresses a quantitative condition with respect to the set of
binary variables. It is to establish the amount of choices that are going to be given or
that can be given as a maximum or minimum.

Format: Sum of Selection options SIGN Value
General Expression:
α1 + α2 + . . . + αn � Value
Regarding the SIGN (�):

¼Exact imposition or imposition of equality

� Imposition of upper bound

�Imposition of lower bound

Value ¼Quantification of the selection

The sum of binary variables expresses the set (or sets) of elements that are
selection options. The most frequent case of this type of specification occurs between
more than one set of individual elements, normally of unitary nature, which are
combined in the events of the decision activity, although it is also possible to find it
in a single set of elements.

140 6 Modelling and Types of Specifications

As we will see in Sect. 6.10, this type of specification may not appear explicitly in
the description of the system, so we will always have to do an analysis exercise of the
quantitative selection rules when we have systems with logical activities.

Let us consider some examples of the specification in different scenarios:

Illustration 6.3: Case of a Set of Unitary Elements
Let us suppose there is a series of activities that make reference to the use of a unitary
set of machines:

Elements: Machines i ¼ 1. . .n Unitary
Decision activities:
Use (Machines i ¼ 1. . .n)) αi ¼ 1 if I use machine i; 0 otherwise

Quantitative specifications of selection: In this system, specifications such as the
following could be considered:

– You must use (select) at least one machine:
Pn
i¼1

αi � 1

– You must use three machines:
Pn
i¼1

αi ¼ 3

Illustration 6.4: Case of Two Sets of Elements
Let us suppose there is a series of operators that must be assigned to a series of
machines:

Elements: Machines i¼1. . .n Unitary; Operators j¼1. . .m Unitary
Decision activities:
Assign (Operators to Machines) ! αij¼1 if I assign operator j to machine i;

0 otherwise.
Quantitative specifications of selection:
Maximum two operators per machine: This specification falls on each machine of

the system:

8i : Pm
j¼1

αij � 2

An operator must be assigned only one machine: The specification refers to any
operator, since it refers indeterminately to an operator. On the other hand, with
machines it refers to the quantity of a machine.

8j : Pn
i¼1

αij ¼ 1

If we assume a power attribute (P) for the machines, we could find a specification
that does not consider, as a selection option, all the elements of the set of machines:

A machine with power greater than 10000w will be assigned to operator 3:

j ¼ 3 :
P

i=P>10000
αij ¼ 1

6.3 Quantitative Specifications of Selection 141

Illustration 6.5: Case of a Set with Choices About the Set Itself
Let us suppose there is a series of elements that must be assigned among them. Each
element must be associated with another element of the same set:

Elements: Elements i¼1. . .n Unitary;
Decision activity:

Assign [Elements to Elements] ! αij¼1 if I assign element i to element j;
0 otherwise.

Quantitative specifications of selection:

– Each element is associated with a different element of itself.
8i : P

j=j 6¼i
αij ¼ 1

– Since i and j are indices of the same set and is a bi-univocal correspondence,
the association of iwith j is the same as that of jwith i, therefore: 8i, j : αij¼ αji

Illustration 6.6: Case of Two Sets That Share the Selection
Let us suppose that we have divided elements of the same functionality in the system
into two sets due to data, but both share the same logical decision activity on which a
quantitative selection rule is applied.

Elements:
Individuals i¼1. . .n Unitary;
Groups_Type1 j¼1. . .m1 Unitary;
Groups_Type2 k¼1. . .m2 Unitary;
Decision activity:
Assign [Individuals to Groups_Type1 and Groups_Type2]!
!Events: Individuals to Groups_Type1; Individuals to Groups_Type2!
! αij¼1 if I assign Individual i to Group_Type1 j; 0 otherwise.
! βik¼1 if I assign Individual i to Group_Type2 k; 0 otherwise.
Quantitative specifications of selection:
One individual in a group at most:

8i : Pm1

j¼1
αij þ

Pm2

k¼1
βik � 1

6.4 Capacity Specifications

Capacity specifications are ones that appear in systems where there are elements
acting as resources. For this, they must have an attribute of capacity or availability,
either intrinsic to the element or shared with a measurable element, collective or
individual. They usually appear in different ways that are synthesized in the follow-
ing general format:

Format: Capacity Consumption or Demand for Capacity � Capacity Contribution

142 6 Modelling and Types of Specifications

Expression: Both the consumption or demand for capacity and the contribution of
capacity can be fixed and/or variable. Capacity contribution and consumption
must be expressed in the same unit of measure. In the same specification we can
have both a fixed and a variable consumption or contribution at the same time.

Capacity consumption or demand Capacity contribution

Variable Fixed Variable Fixed

Variable Capacity Consumption
This corresponds to the classic consumption format in a capacity specification.

General expression of consumption : c1x1 þ c2x2 þ . . .þ cnxn ð6:5Þ

The capacity consumption is made up of a series of variables represented as x1, x2,
. . ., xn. Each activity performs a consumption that is given by the expression cixi
where ci is the unit consumption of activity xi (the amount of capacity consumed by
each unit of value that variable xi takes).

Fixed Capacity Consumption or Demand
This corresponds to an attribute of the element that demands that capacity. It appears
in systems where a set of elements provide capacity of a measurable element that has
a stock that corresponds to the fixed capacity demand. Decisions focus on the
capacity contribution, not on the amount that is consumed or demanded, which is
fixed.

Fixed Capacity Contribution
An element provides a given capacity, collected as an attribute. Decisions are
focused on how much of that existing capacity is consumed. The specification
falls on the proprietary element of that fixed capacity.

Variable Capacity Contribution
This usually appears in specifications where a fixed capacity is demanded. The
general expression corresponds to an expression similar to (6.5):

General expression of contribution: a1y1 + a2y2 + . . . + amym
The variables yj, j ¼ 1. . .m, represent activities that provide capacity, with aj

being the unit contribution.
There is a set of elements that provide capacity to an element that demands

capacity. Decisions are focused on the contribution of capacity, not on the quantity
that is consumed or demanded, which is constant. The system does not collect the
amount of capacity consumed on each element that contributes capacity, but it
collects the amount of capacity contributed.

This case is very similar to the next type of specification, the specification of
demand contribution. In any case, they are treated here independently because
semantically they are different. In the specification of demand contribution, a

6.4 Capacity Specifications 143

quantity of a measurable element is demanded since it is not possessed, and some
elements can contribute to it. Here, we already have a quantity of a measurable
element and capacity for this is requested. Basically, it is a semantic differentiation.

The most common formats of capacity specifications are collected in Table 6.2.
Let us analyze each case.

6.4.1 Case 1: Variable Capacity Consumption and Fixed
Contribution

The relationship is established between the capacity consumption of an element and
the fixed amount of capacity that the element has in the system.

Format: Consumption � Capacity
General Expression: c1x1 þ c2x2 þ . . .þ cnxn � K

This type of specification is usually not presented explicitly in the system
description, as we will see in Sect. 6.10, but the modeller must detect them from
the data of the table of elements.

Illustration 6.7: Production of Butter
We have already analyzed this problem amply. The specifications that are presented
are only of capacity.

Table of Elements (Table 6.3)

Table 6.2 Most common formats in a capacity specification (Table 6.2)

Cases Format Expression

1 Variable capacity consumption � fixed capacity
contribution

c1x1 + c2x2 + . . . + cnxn � K

2 Variable capacity consumption � fixed and variable
capacity contribution

c1x1 + c2x2 + . . . + cnxn � K
+a1y1 + a2y2 + . . . + amym

3 Fixed capacity consumption or demand � variable
capacity contribution

E � a1y1 + a2y2 + . . . + amym

Table 6.3 Table of elements

Elements Set QN

Data

Name Param Type Belong Value

Machines i ¼ 1. . .2 IM Usage time Ti C
(Min)

P {6,3.5}

Time consumed by 1 kg of
butter j in machine i

TMij C
(Min)

C {3m;3m;
3m;6m}

Butters j ¼ 1. . .2 IM Profit Bj C ($) P . . .

TMij

144 6 Modelling and Types of Specifications

Decision Activities

Action: Produce Butters
Decision variables: xj ¼ Amount of butter type j produced; j ¼ 1,2;

Capacity Specifications

The Whipping Machine (i ¼ 1) has a usage time of T1 ¼ 6 hours which is
measurable.

Variables x1 and x2 consume TM11¼3 min. and TM12¼ 3 min.
Expressing the specification in minutes: 3x1 + 3x2 � 360

Parametric :
X2
j¼1

TM1jx j � T1 ð6:6Þ

– The Pasteurization Machine (i ¼ 2) also has a T2 usage time:

X2
j¼1

TM2jx j � T2 ð6:7Þ

And the parameterized expression that collects (6.6) and (6.7) would be:

8i : P2
j¼1

TMijx j � Ti

Although in this type of specification it is usually more common for consumption
to be carried out by measurable activities, logical activities can also participate as
consumption, as in the following illustration.

Illustration 6.8: Management of a Warehouse
Management of a warehouse in which it is necessary to place a set of Pieces (i ¼
1..n) in a set of Shelves (j ¼ 1 . . . m). Each piece has a weight and a volume. Each
shelf has a load capacity and a volume.

Capacity specifications:
Do not load a shelf with more weight than it can support.
Do not load a shelf with a total volume higher than its own.

Table of Elements (Table 6.4)

Decision Activities

Action: Assign Pieces to Shelves
Decision variables: αij ¼ 1 if I assign piece i to shelves j; 0 otherwise.

6.4 Capacity Specifications 145

Capacity Specifications

Do not load shelves with more weight than it can support: specification applied to
each of the shelves

8j : Pn
i¼1

piαij � PE j

Do not load a shelf with a total volume higher than its own: also applied to each
of the shelves:

8j : Pn
i¼1

viαij � VE j

6.4.2 Case 2: Variable Consumption with Fixed and Variable
Capacity Contribution

Although it is less common, we can also find activities to increase capacity in
addition to consumption. Let us take a look at the following illustration.

Illustration 6.9: Production of Pills
600 Kg of a certain drug is available to make large and small pills. We also have the
possibility of buying more drugs at a price of $0.05/gram.

The big pills require 40 g and the small ones 30 g.
Each large pill provides a profit of $2 and a small one of $1.
The manufacturing capacity is 2000 pills.

Table of Elements (Table 6.5)

Decision Activities
Action: Produce [pills]
Decision variables: xi ¼ Number of pills produced of type i

Action: Buy [drug]
Decision variables: z = Amount of drug bought

Table 6.4 Table of elements of illustration 6.8

Elements Set QN

Data

Name Param Type Belonging Value

Pieces i ¼1. . .n IU Weight pi C W . . .

Volume vi C W . . .

Shelves j ¼ 1. . .m IU Load PEj C W . . .

Volume VEj C W . . .

146 6 Modelling and Types of Specifications

Capacity Specifications

(Case 2) Drug capacity: relapses on the drug. There is a capacity contribution
collected in the variable z.

Pn
i¼1

cixi � E þ z

(Case 1) Manufacturing capacity: applied in the system.

Pn
i¼1

xi � K

6.4.3 Case 3: Fixed Capacity Demand and Variable Capacity
Contribution

There are systems where elements with capacity data and therefore acting as a
resource do not individually define a capacity consumption specification. The reason
is that the problem can be modelled without there being activities that measure
(discretely or continuously) the consumption of that resource. The capacity attribute
is not measured because it is assumed that it has either not been used or used in its
entirety. The system has an element that demands a capacity, and it is necessary that
other elements provide that capacity. Sometimes this specification occurs because
there is a capacity attribute that is assigned to each item of a collective element. Since
the instances are not treated individually but collectively, the capacity attribute
cannot be used for a capacity consumption specification, since this would be applied
individually on each item. The capacity attribute is used as contribution. There are
also cases where the capacity attribute is held by an individual element that acts as
unitary.

The format of the specification would be:

Table 6.5 Table of elements of Illustration 6.9

Elements Set QN

Data

Name Param Type Belonging Value

Drug – IM Availability E C W 600 Kg

Price p C W $0.05/
gr

Amount in pills ci C S {40,30}

Pills i ¼ 1,2 CI ci
Profit bi C W {$2,

$1}

Factory
(System)

– IU Manufacturing
capacity

K I W 2000

6.4 Capacity Specifications 147

Format: Fixed capacity demand � variable capacity contribution

Let us first look at an example that illustrates the case of capacity data imputable
to each item of a collective element (illustration 6.10), and a second illustration
where the capacity attribute is possessed by individual elements. In this second
illustration we will propose the two possible versions: measuring capacity through
consumption and not measuring the capacity of each individual element, by using it
logically in a capacity contribution specification (illustration 6.11).

Illustration 6.10: Celebration Hall
There is a celebration hall where a wedding will take place. The hall has tables of
two sizes. There are tables of 8 seats and tables of 12 seats, 14 and 11 of them,
respectively.

150 guests attend the wedding. The company must decide which tables to use so
that the guests can sit down, minimizing the number of tables used.

Table of Elements (Table 6.6)

Since each type of table is formed by an identical set of items and the text does not
refer individually to them, the tables are configured as collective. The same happens
with the guests. We make explicit the seats as element although there are no
decisions about the seats but so there is a demand for seats for the guests.

Regarding the tables, there are two sets of data on capacity: availability of tables
and the number of seats. The availability is applied to the element globally or
collectively, while the number of seats is capacity attribute regarding each item of
the collective element, so that attribute will not be associated with a specification of
capacity consumption.

Decision Activities

The system imposes the action of using tables as a decision activity. We do not
need to decide where to locate the guests; we simply select tables and establish the
specification of placing 150 guests, based on a certain value action corresponding to
a specification of capacity demand.

Table 6.6 Table of elements of Illustration 6.10

Elements Set QN

Data

Name Param Type Belonging Value

Tables i ¼ 1,2 CD Availability Ni I W {14,11}

Seats Ki I S {8,12}

Seats – CD Ki

Guests – CD Number NG I W 150

148 6 Modelling and Types of Specifications

Action: Use tables
Decision activities: xi ¼ Number of tables i used

Specifications

To seat the 150 guests: We can understand the specification as the guests
demanding a capacity of 150 seats. The tables act as a resource for these places.
Each type of table contributes a certain number of places:

Fixed capacity demand � Variable capacity contribution

150 � 8x1 + 12x2

The capacities of the tables are being used as a contribution. The capacity
refers to each item of the table.
Table availability: This attribute does give rise to a capacity consumption spec-

ification for each type of table

8i : xi � Ni

Objective Criterion

Min x1 + x2

Illustration 6.11: Containers
There is a set of n containers each with a capacity of volume and a cost. There is a
liquid product with an amount of C. The objective consists in the selection of
containers at a minimum cost so that we can store the quantity C of the product.

Version 1: By Capacity Consumption
In this first version, we analyze the system as a system to store liquid in containers.
Therefore, the capacity data will be measured in the specifications. The liquid is a
measurable element by its own continuous quantity used partially.

Table of Elements (Table 6.7)

Decision Activities

Table 6.7 Table of elements of Illustration 6.11 – Version 1

Elements Set QN

Data

Name Param Type Belonging Value

Containers i ¼ 1. . .n IU Cost ci C W . . .

Capacity Ki C W . . .

Liquid product – IM Amount Q C W . . .

6.4 Capacity Specifications 149

Action: Store liquid product in containers
Decision variables: xi ¼ amount of liquid product introduced in container i

We measure the liquid because it is the direct object of the action, “store liquid.”

Specifications

Capacity consumption: In this scenario a capacity consumption specification is to
be proposed for each container, to ensure that the quantity introduced does not
exceed the capacity of the container:

8i : xi � Ki ð6:8Þ

Balance specification: Although we have not yet seen the balance specifications,
in the system, a balance specification is generated with the liquid availability data.
The amount of liquid distributed by all the containers corresponds to the quantity Q.

Xn
i¼1

xi ¼ Q ð6:9Þ

Objective Criterion

Since we minimize the cost of the used or selected containers, it is necessary to
calculate that qualifier for the containers, which becomes a logical calculation on the
containers (if you store in a container, it is because you have selected it). If we had
considered it as a decision activity, that is, on the one hand store and on the other
select, the implicit relationship between the two activities cannot be ignored as a
specification: If I store then I select.

Binary logical calculation: Selected container
Applied to: Containers i¼1. . .n
Definition of logical variable: αi ¼ 1 if I select container i; 0 otherwise
Logical proposition: 8i : i ¼ 1 IF AND ONLY IF xi > 0) Ref. SV (The selec-

tion of a container has a cost so it is useless to select containers if you do not put
anything in them [Sect. 5.3.3])

) 8i : IF xi > 0 THEN αi ¼ 1 ð6:10Þ

In spite of not having presented the modelling of logical propositions yet, we are
going to write the constraints that are generated from modelling (6.10), since it will
be necessary for the simplification process between versions. The constraints gen-
erated are:

150 6 Modelling and Types of Specifications

https://doi.org/10.1007/978-3-030-57250-1_5

8i : xi � Kiαi ð6:11Þ

where Ki acts as the upper bound of what can be stored in each container.
The objective function would be:

Min
Xn
i¼1

ciαi ð6:12Þ

Version 2: By capacity contribution
In this second version, we will not introduce liquid into the containers, and therefore
we will not measure at the specifications the capacity of the containers. The only
thing we are going to do as a decision activity is select containers, making sure that
the liquid fits. The liquid becomes unitary because we stop making a partial use of its
quantity in the decision activities.

Table of Elements (Table 6.8)

Decision Activities
Action: Select [Containers]
Decision variables: αi ¼ 1 if I select container i; 0 otherwise.

Specifications

1. Capacity contribution: The liquid element demands a capacity for its quantity.
Each container i has a capacity contribution of value Ki.

Q �
Xn
i¼1

Kiαi ð6:13Þ

Objective Criterion

Minimize costs:

Table 6.8 Table of elements of Illustration 6.11 – Version 2

Elements Set QN

Data

Name Param Type Belonging Value

Containers i ¼ 1. . .n IU Cost ci C W . . .

Capacity Ki C W . . .

Liquid product – IU Amount Q C W . . .

6.4 Capacity Specifications 151

Min
Xn
i¼1

ciαi ð6:14Þ

Relation Between Versions
Objective functions (6.12) and (6.14) are identical. Version 1 is equivalent to version
2 but logically larger. If we perform two simple operations, we can get to version
2 from version 1:

On the one hand, we have in Version 1:

– Modelling of the logical proposition (6.11): 8i : xi � Kiαi
– Capacity specification (6.8): 8i : xi � Ki

It is only necessary to use (6.11). If I select the container (αi¼1) I cannot store
more than its capacity, and if I do not select the container (αi¼0), then
xi � 0)xi ¼ 0.

On the other hand, if we add the n constraints of (6.11), we obtain:

Xn
i¼1

xi �
Xn
i¼1

Kiαi ð6:15Þ

Substituting (6.9) with (6.15):

Pn
i¼1

xi ¼ Q �Pn
i¼1

Kiαi

This corresponds with (6.13), the only constraint that the first version had. In this
way, it is guaranteed that at least quantity Q can be stored, and the use of decision
variable xi is not necessary.

6.5 Supply of a Demand

This is a specification which is analogous to the capacity contribution specification.
It expresses a relationship between the supply of a measurable element, collective or
individual, and the demand requested of that measurable element.

Format: Measurable element supply � (¼) Measurable element demand
General Expression:
The supply is considered variable in the specification. Demand is considered both

fixed and variable, although the most common case is fixed.
a1x1 þ a2x2 þ . . .þ anxn � Dþ d1y1 þ d2y2 þ . . .þ dmym or

a1x1 þ a2x2 þ . . .þ anxn ¼ Dþ d1y1 þ d2y2 þ . . .þ dmym

152 6 Modelling and Types of Specifications

The supply is made up of a series of variables represented as x1, x2,. . .xn
Each activity makes a contribution determined by the value of the expression: aixi

where ai is the unit contribution of the variable xi (the amount supplied by each unit
of the value that takes the variable xi).

The quantity demanded is defined as D. The variables yj represent activities that
may exist in the system to increase demand (dj would be the unit increase in demand
for each activity yj). The supply and the demand must be expressed in the same unit
of measure.

Regarding the sign of the constraint, we can find cases where only � is admis-
sible, others where only ¼ is admissible, and others where both signs are valid. The
validity is governed by the following rules:

– The expression with sign � is correct when the supply involves a cost in the
system or there are unit contributions other than 1.

– The expression with¼ is correct as long as the unit contributions are all equal to 1.

If the unit contributions are different from 1, imposing equality could make the
problem inadmissible because we would not obtain values of xi that give equality, or
we would exclude solutions that could be better for the objective function. Let us
analyze this validity with an illustration:

Illustration 6.12: Buying from Providers
There is a simplified system of buying a product from two providers. It is necessary
to buy 1000 units of the product. The purchase cost is €3 for both providers. (We can
ignore other system features).

Table of Elements (Table 6.9)

Decision Activities
Action: Buy product from providers
Decision variables: xi ¼ Product units bought from provider i

Demand Supply Specification

There is a fixed demand D ¼ 1000 units of the product for which we have the
variable xi as input. The unit contribution is 1. For each unit of product purchased, a
unit of demand is provided.

In this case, the two signs would be valid:

x1 + x2 � 1000 Buying has a cost.

Table 6.9 Table of elements of Illustration 6.12

Elements Set QN

Data

Name Param Type Belonging Value

Providers i ¼ 1,2 IU Cost pi C S {$3, $3}

Product – CD pi
Demand D I W 1000

6.5 Supply of a Demand 153

x1 + x2 ¼ 1000 Unitary contributions are 1.

Now we can modify the statement and incorporate the following information:

“Provider 2 does not serve single units but serves lots of 8 units at a price of $22.”

This modifies the table of elements and the decision activity as follows:

Table of Elements (Table 6.10)

Decision Activities
Action: Buy product from provider 1 and lots from provider 2
Events: Product) provider 1; Lot) provider 2
Decision variables:
x ¼ Product units bought from provider 1
y ¼ Lots bought from provider 2

Demand Supply Specification

The two decision variables, x and y, act as input, but in this case, the unit
contribution of the variable y is 8 (8 units of product are contributed for each lot).

x + 8y � 1000: Correct expression. Buying has a cost and the contributions are
not all the units.

x + 8y ¼ 1000: Incorrect expression. Solutions are excluded.
Obviously, if the system explicitly specifies that we must provide exactly the

amount of demand, then we are obliged to use the equality sign.

6.6 Bound Imposition Specifications

Bound imposition specifications are usually the simplest to identify and model in a
system. They establish lower or upper bounds for measurable activities or for
variable functions (calculations). There are two types:

Upper bound: Imposition of maximum value
Lower bound: Imposition of minimum value

Table 6.10 Table of elements of Illustration 6.12 modified

Elements Set QN

Data

Name Param Type Belonging Value

Provider 1 – IU Product Cost p C S €3

Provider 2 – IU Lot Cost Pl C S €22

Lot – CI Pl

Product units N I S 8

Product – CD p; N

Demand D I W 1000

154 6 Modelling and Types of Specifications

Both the capacity specifications and the demand contribution with sign � can be
understood as a particular case of bound specification. However, we have taken them
out of this category because of the meaning they express. Bound specifications do
not have to represent a concept of capacity consumption or demand supply but are
impositions without defined semantics and of an explicit nature (they must be
explicitly defined in the statement).

Illustration 6.13
For a system that generates the following decision variables:

xi ¼ Number of product units purchased from provider Pi; i ¼ 1 . . . n

The following bound specifications are defined:

1. Do not buy more than 50 units from provider 1: x2 � 50.
2. Buy at least 10 units from provider 2: x1 � 10.
3. Buy more than 20 units from provider 3: x1 > 20)x1 � 21.

Illustration 6.14
System: A set of operators (O1, On) that work in the production of a set of sub-
stances (S1, Sm). The system measures the amount of substance produced by each
operator. The number of kilos produced by operator 1 must be at least 1 kilo more
than the kilos of operator 2.

Table of Elements (Table 6.11)

Decision Activities
Action: Produce substances using operators
Decision variables: xij ¼ Kilos of Substance j produced by operator i

Specifications
Imposition: The number of kilos produced by operator 1 must be at least 1 kilo more

than the kilos of operator 2:

Number of kilos produced by operator 1: Not included in the decision variables
since it is an auxiliary calculation (y1):

y1 ¼
Pm
j¼1

x1j

Number of kilos produced by operator 2:

y2 ¼
Pm
j¼1

x2j

Table 6.11 Elements of
Illustration 6.14

Name Set QN

Operators i ¼ 1. . .n IU
Substances j ¼ 1. . .m IM

6.6 Bound Imposition Specifications 155

Bound specification: a lower limit is imposed on the kilos produced by the
operator 1.

y1 � y2 + 1

6.7 Allocation, Balance, or Equilibrium Specifications

Allocation, balance, or equilibrium specifications are all of the specifications that
define:

– An exact assignment to or imposition of a value on an integer or continuous
variable or on variables functions.

– Balance or equilibrium between variables or functions of variables. This includes
auxiliary calculations.

Their controversy is that they can cause equivalences between auxiliary calcula-
tion and decision activity.

Illustration 6.15
For a system that generates the following decision variables:

xi ¼ Number of product units purchased from provider Pi; i ¼ 1 . . . n

A. Buy 10 units from provider 1:
x1 ¼ 10

B. The sum of quantities purchased from provider 1 and 2 must be 50:
x1 + x2 ¼ 50

C. Buy a total of 500 units:Pn
i¼1

xi ¼ 500

D. Buy the same from provider 1 as from 3:
x1 ¼ x3

As we have said, this type of specification makes certain decision variables cease
to exist because they are given a certain value (Case A) or because they become
auxiliary calculations (cases B, C, D). However, if we differentiate the description of
elements and activities from the specifications, we can consider them as decision
variables. In any case, the system does not vary, but its structure can simply be
represented in several ways.

This type of specification has greater relevance when a relationship of flow
balance is expressed. This happens when a directed graph G (N, A) formed by
nodes (N) and arcs (A) is established as a scenario, where a concept that corresponds
to a measurable element of the system flows through the graph.

The adjective of directed graphs (Bang-Jensen and Gutin, 2000) is important
since the systems that are represented as non-directed graphs (formed by nodes and
edges) have a completely different meaning. An undirected graph always has a

156 6 Modelling and Types of Specifications

meaning of relationship or association between elements that are presented as nodes.
These relationships are represented by its edges. Both nodes and edges can have
associated data (Fig. 6.1).

A directed graph instead has a different meaning. The nodes are elements of the
system, and the arcs are connections between nodes to enable the circulation of an
added concept, the flow, in most cases. There are some scenarios where the direction
has some meaning of relationship between the nodes, as dependency or offspring
meanings. When there is flow, the flow is an element of the problem whose activity
is to circulate through the arcs of the graph. This flow must be injected into the graph
by the nodes and must also be extracted from the graph through the nodes.

The constraints of flow balance mean that the flow to arrive at a node must be
equal to the flow that leaves it.

In Chap. 3 (Tables 3.46, 3.47, and 3.48), we saw three ways of representing the
table of elements of a directed graph. We use Table 3.47, incorporating the flow
concept (Table 6.12):

Directed Graph Undirected Graph

51

3

2

51

3

2

Fig. 6.1 Directed and undirected graphs

Table 6.12 Table of elements of a system with a directed graph

Elements Set QN

Data

Name Param Type Belonging Value

Nodes i ¼ 1. . .n I Origin node NOik B S . . .

Destination node NDik B S . . .

Flow injection Ii C S . . .

Flow demand Di C S . . .

Node Data

Arcs k ¼ 1. . .m I NOik; NDik

Arc Data

Flow – C/IM Ii; Di

Graph – IU

6.7 Allocation, Balance, or Equilibrium Specifications 157

https://doi.org/10.1007/978-3-030-57250-1_3
https://doi.org/10.1007/978-3-030-57250-1_3
https://doi.org/10.1007/978-3-030-57250-1_3
https://doi.org/10.1007/978-3-030-57250-1_3

As a directed graph, the data of injection or flow input and demand or flow output
that each node can possess have been incorporated. A node will inject flow, demand
flow, or do neither of these. On the other hand, we can also find systems where
injecting or demanding flow is not an attribute but a decision activity. In that case,
those data would disappear.

In the system, the sum of the flow injected must always be equal to the sum of the
flow demanded.

In Node Data and Arc Data, all those specific data of the system associated with
nodes and arcs would be represented, respectively.

Regarding the decision activities, each system will have specific activities, but
there is always the flow circulation activity in common:

Action: Circulate [flow through the arcs]
Participating elements: Flow C/IM; Arcs k ¼ 1. . .m;
Quantification: Continuous
Events: Flow) k¼1. . .m
Decision variables: xk ¼ Flow that circulates through the arc k.

In general, the constraint of equilibrium or flow balance is expressed as follows:

Format: At each node of the graph: Sum of the Input Flow ¼ Sum of the Output
Flow

General expression:
8i : P

k=NDik¼1
xk þ Ii ¼

P
k=NOik¼1

xk þ Di

The flow xk of all the incoming arcs in i (k/NDik ¼ 1) plus the flow Ii that injects
the node is recorded as input flow.

In output flow, the flow xk of all the outgoing arcs of i (k/NOik ¼ 1) plus the Di

flow demanded by the node is recorded.
We are going to differentiate two types of scenarios in which these restrictions are

presented, and therefore we require the use of directed graphs:

• Explicit Case: the system itself is a directed graph on which an optimization
problem is raised (shortest path, maximum flow, minimum cost flow, etc.).

• Implicit Case: this is the most interesting case. The system is not described as a
graph. However, part of its activity can be represented by a directed graph. The
condition for this is that there must be a measurable element, individual or
collective, subject to activities in which unitary elements also participate. This
acquires a greater meaning if a set of time periods participates in the system as
elements. The complexity in the implicit case lies in the creation of the graph,
although we will give a series of guidelines for its construction in Sect. 6.7.2.

158 6 Modelling and Types of Specifications

6.7.1 Explicit Case

Within the problems associated with directed graphs, we can see one of the most
known and applied, which is the shortest path problem. Let us look at an illustration
of it:

Illustration 6.16: Shortest Path Problem (Dijkstra 1959)
There is a graph G (N, A) where each arc has a cost, obtaining the shortest path
from a source node to a destination node. We model the problem for the graph of the
figure, using Node 1 as the source node and Node 9 as destination.

5
1

6

3

4 8

7

9

1

2

5

3

4

11

6

7

8 9

121
02

Fig. 1 Directed graph G(N,A)

Nodes and arcs have been labelled with a number.

Table of Elements

The problem uses a flow unit that will flow from node 1 to node 9. Therefore,
node 1 injects a flow unit that requires node 9. Although we inject an integer amount
of flow, it is not necessary to consider the flow as collective (discrete measurable),
since in operative research it is demonstrated that by considering it as a continuous

Table 6.13 Table of elements of illustration 6.16

Elements Set QN

Data

Name Param Type Belong Value

Nodes i ¼ 1. . .9 IU Origin node NOik B S . . .

Destination node NDik B S . . .

Flow injection Ii C S {1,. . .,0,0}

Flow demand Di C S {0,. . .,0,1}

Arcs k ¼ 1. . .12 IU NOik; NDik

Cost ck C W . . .

Flow – IM Ii; Di

Graph – IU

6.7 Allocation, Balance, or Equilibrium Specifications 159

measurable, due to the property of unimodularity of its coefficients matrix, variables
will always be integers in the optimal solution (Table 6.13).

Decision Activities

Action: Circulate flow through the arcs
Decision variables: xk ¼ Flow that circulates through the arc k.

Specifications

Flow balance:

8i : P
k=NDik¼1

xk þ Ii ¼
P

k=NOik¼1
xk þ Di

Objective Function

Min
P12
k¼1

ckxk

The shortest path problem does not need any additional specification. The
specification of flow balance not only guarantees the conservation of the flow but
also its continuity; therefore, the set of arcs of the solution guarantees a path.

On the other hand, there are some problems associated with undirected graphs
that have been modelled, transforming the graph into directed and introducing a flow
concept in it. Examples include the Minimum spanning tree problem, MST (Graham
and Hell 1985), or the Steiner problem (Hwang et al. 1992), as well as variants
thereof. Let us consider the case of the MST problem.

Illustration 6.17: MST Problem
There is an undirected graph G (N, A), where each edge has a cost. We try to obtain
the minimum cost spanning tree, that is, obtain a subgraph of G that connects all the
nodes at a minimum cost.

To model this problem with the use of a directed graph, we proceed as follows:
Each edge is transformed into two arcs:

Table 6.14 Table of elements of Illustration 6.17

Elements Set QN

Data

Name Param Type Belonging Value

Nodes i ¼ 1. . .n IU Origin node NOik B C . . .

Destination node NDik B C . . .

Flow injection Ii C C . . .

Flow demand Di C C . . .

Arcs k ¼ 1. . .2m IU NOik; NDik

Cost ck C P . . .

Flow – IM Ii; Di

Graph – IU

160 6 Modelling and Types of Specifications

n�1 flow units are included in the problem (n ¼ number of nodes) that will send
(inject) a node, labelled as root node, to the rest of nodes of the graph. Therefore,
node i will have an injection Ii ¼ n�1, with Di ¼ 0, and the n�1 remaining nodes Ii
¼ 0 and Di ¼ 1.

In the objective function, we consider the cost of the arcs through which the flow
has circulated, so that the cost is incurred if the flow has circulated, regardless of the
amount of flow that has circulated. The cost of each arc is the cost of the associated
edge.

Table of Elements (Table 6.14)

It is not necessary to use a binary attribute that identifies the root node, since it can
be identified by the injection of n�1 flow units.

Decision Activities

Action: Circulate flow through the arcs.
Decision variables: xk ¼ Flow that circulates through the arc k. k ¼ 1. . .2m.

Specifications

Flow balance:

8i : P
k=NDik¼1

xk þ Ii ¼
P

k=NOik¼1
xk þ Di

Objective Criterion

For the objective function, it is necessary to define a logical calculation on each
arc to know whether or not the flow has circulated:

Binary logical calculation: Circulate flow through an arc.
Applied to: Arcs k¼1. . .2m.
Definition of logical variable:
8k: αk ¼ 1 if the flow circulates through arc k; 0 otherwise.
Logical proposition: 8k : αk ¼ 1 IF AND ONLY IF xk > 0) Ref. SV) 8k :

IF xk > 0 THEN αk ¼ 1 .
The expression of costs would be as follows:

Min
P2m
k¼1

ckαk

6.7 Allocation, Balance, or Equilibrium Specifications 161

6.7.2 Implicit Case

The implicit case is an optional support tool for the identification of equilibrium
specifications between variables of the system. It occurs in systems where a mea-
surable element is subjected to activities in which other no measurable individual
elements participate. These activities suppose injections or demands of the measur-
able element and even the transfer of quantities between individual elements. This
becomes even more relevant if the time element participates in the system, that is, if
there is a set of periods in which the activities occur. The activities contribute,
demand, or simply move units of the element over time.

In a graph, only the movement of a measurable element can be represented. If
there is more than one measurable element in a system, a graph must be made for
each of them.

If there are no periods of time, there is only one implicit period in which the
activities take place, as already mentioned in Chap. 3. However, what does need to
happen to represent the problem as a graph is that other individual elements must
participate in the measurement activities.

As we have said, it is not mandatory to design a directed graph to model these
systems, but it is convenient. The graph will contain the activities of the system with
respect to that measurable element and the relationships between them.

The construction procedure of the graph is the following:

Nodes
We will use a node for each individual element that intervenes in the flow of units of
the measurable element in each period of time, except for the time element. By
default, we can use all individual elements as nodes in each period of time and
afterwards eliminate those that are not connected in the final graph. There are
systems where an element only participates in a certain period, and therefore its
use does not make sense in other periods.

The nodes can inject or demand flow. If they are known values, they correspond
to data of those elements. The sum of the flow injected must always be equal to the
demanded flow. It is also possible that the node injects or demands flow, but the
amount is not determined. In this case, injecting or demanding flow corresponds to
decision activities or calculations. By annotating this in the graph, we will represent
the injection with a negative superscript (�) and the demand with a positive
superscript (+).

Arcs
In the arc activities, simple calculations and data of the measurable element are
represented.

We must analyze:

– The movements of units between elements.
– The elements that maintain units over time: since the nodes cannot store units, in

order to respect the principle of flow balance, the units not subject to any activity
in a node must also circulate over time to the node that represents the same

162 6 Modelling and Types of Specifications

https://doi.org/10.1007/978-3-030-57250-1_3

element in the next period. With this we achieve a circulation between nodes that
is equivalent to the storage of units of the measurable element over time in that
element.

Finally, once the graph has been designed, it will be necessary to explore which
arcs and which auxiliary calculations define decision activities.

The design of the graph does not have to adapt to a single configuration.
Depending on the interpretation of the activities over time, different designs can
be generated.

From the constructed graph, a flow balance constraint is proposed on each node.
This type of graph can always be refined and simplified, since nodes that have an
input arc and an output arc can be discarded for the balance.

y1-

Warehouse 1

D1
+

Customer 1

Dm
+

D2
+

Customer 2

Customer m

Dj
+

Customer j
xij

xnm

x11

Warehouse 2

y2-

yi-

yn-

Warehouse i

Warehouse n

Fig. 6.2 Implicit directed graph of Illustration 6.18

Table 6.15 Elements of Illustration 6.18

Elements Set QN

Data

Name Param Type Belonging Value

Warehouses i ¼1. . .m IU Stock Ki I S . . .

Cost Cij C S . . .

Customers j¼1. . .n IU Demand Dj I S . . .

Cost Cij

Product – CD Ki; Dj; Cij

6.7 Allocation, Balance, or Equilibrium Specifications 163

This type of graph has always been used in some optimization problems, to turn
them into problems associated with directed graphs. A clear example is the transport
problem, which has been modelled as a minimum cost flow problem:

Illustration 6.18: Transportation Problem (Öztürk et al. 2015)
A company has m warehouses where its products are located. Each warehouse i (i¼
1. . .m) has a stock of Ki units. There is a set of n customers (j ¼ 1. . .n) with a
demand Dj of product units. The company has to supply the product demand of the
customers from the warehouses. The cost of sending a product from each warehouse
i (i ¼ 1. . .m) to each customer j is estimated in cij.

Table of Elements (Table 6.15)

We are facing a system that does not have periods of time. The measurable
element is the product. We designed a graph (Fig. 6.2) with the m warehouses and
the n customers:

The graph will collect the admissible movements of the product units (flow),
which is produced from each warehouse to each customer. Nodes associated with
warehouses inject an undetermined amount of flow (yi for warehouse i). The nodes
associated with customers demand a certain amount of flow, their product demand
Dj. The arcs between each warehouse and each customer include the problem
decision activities (xij ¼ product units that are sent from warehouse i to customer j).

The equations of flow balance generated by the graph are:

8i : yi ¼
Pm
j¼1

xij The flow injection could be defined as an auxiliary calculation.

8j : Pn
i¼1

xij ¼ D j This corresponds with a specification of demand supply (unit

contributions allow the use of the equality sign).
To finish formulating the transport problem, we would have to incorporate the

capacity consumption specification at each warehouse:

8i : Pm
j¼1

xij � Ki

Objective Function
Minimize associated costs. Each decision variable has a unit cost:

Min
Pn
i¼1

Pm
j¼1

cijxij

Let us now take a look at an illustration of the implicit case in a system that
considers more than a period of time. Production planning problems are included in
this type of case:

164 6 Modelling and Types of Specifications

Illustration 6.19: Production Planning of a Product (Larrañeta et al. 1995)
System for the production planning of a factory that produces a product for which
there is a market demand for the next three months of 30, 12, and 26 units. A
warehouse is available to store the manufactured units. Initially, there is a stock in
the warehouse of five units.

The system must determine the quantities produced in each period as well as the
quantities stored (Fig. 6.3).

Table of Elements (Table 6.16)

The three individual elements participate in the three periods.
Since the warehouse can keep units from one period to the next, we join those

nodes with arcs. Labelling flow movements (Fig. 6.4):
The nodes with an entry or injection and an exit or demand can simplify the

labelling, as it is evident that for each node factory and each node market, it is
fulfilled by flow balance (Fig. 6.5):

Fi ¼ xi i ¼ 1, 2, 3

Ei ¼ Di i ¼ 1, 2, 3

x1
-

Factory

D3
+

SI-

Market

Factory Factory

Warehouse Warehouse Warehouse

Market Market

D2
+D1

+

x2
- x3

-

t=1 t=2 t=3

Fig. 6.3 Implicit directed graph of Illustration 6.19

Table 6.16 Elements of Illustration 6.19

Elements Set QN

Data

Name Param Type Belonging Value

Factory – IU
Warehouse – IU Initial stock SI I S 5

Market – IU Demand Dt I S {30,12,26}

Product – CI SI; Dt

Months t ¼ 1. . .3 IU Dt

6.7 Allocation, Balance, or Equilibrium Specifications 165

Therefore, we generate only the equations in the warehouse nodes:

Warehouse t¼1: x1 + SI ¼ D1 + I1
Warehouse t¼2: x2 + I1 ¼ D2 + I2
Warehouse t¼3: x3 + I2 ¼ D3

Generically: 8t : It � 1 + xt ¼ Dt + It (I0 ¼ SI)

The flow balance equations define in themselves both the demand supply spec-
ification of the market element in each period and the auxiliary calculation of the

x1
-

Factory

D3
+

SI-

Market

Factory Factory

Warehouse Warehouse Warehouse

Market Market

D2
+D1

+

x2
- x3

-

t=1 t=2 t=3

F1 F2 F3

E1 E2 E3

I1 I2

Fig. 6.4 Labelled graph of Illustration 6.19

x1
-

Factory

D3
+

SI-

Market

Factory Factory

Warehouse Warehouse Warehouse

Market Market

D2
+D1

+

x2
- x3

-

t=1 t=2 t=3

x1 x2 x3

D1 D2 D3

I1 I2

Fig. 6.5 Simplified labelled graph of Illustration 6.19

166 6 Modelling and Types of Specifications

quantity stored in each period (the action of storing is not really a decision activity
but an auxiliary calculation):

Picking up the excess of units of what stays in the warehouse:

I1 ¼ (SI + x1) � D1

t ¼ 2 : I1 þ x2 � D2

I2 ¼ I1 þ x2ð Þ � D2

t ¼ 3 : I2 þ x3 � D3

I3 ¼ I2 þ x3ð Þ � D3

8t : It � 1 + xt � Dt)8t : It � 1 + xt � It ¼ Dt

Finally, to reinforce the graph design, let us consider an example with more
content:

Illustration 6.20: Food Service (Illustration 3.9.2)
A food service business has contracted three banquets for the next 3 days, requiring
150 clean tablecloths for the first banquet, 100 for the second, 140 for the third, and
130 for the fourth. Currently, it has 200 tablecloths in the storeroom, all of them
clean, and they can buy what you need on the market every day at a cost of 12 m.u/
tablecloth.

After the banquets, the tablecloths can go to the laundry basket or be sent to the
laundry to be washed. The laundry offers the following washing services:

– Fast: Clean tablecloths for the next day, at a cost of 6 m.u/tablecloth.
– Slow: Clean tablecloths in 2 days, at a cost of 4 m.u/tablecloth.

Table of Elements (Table 6.17)
Next, we present a graph design. In the graph, we have excluded the possibility of

washing slowly from the second and three periods and washing quickly from the
fourth one.

Table 6.17 Elements of Illustration 6.20

Elements Set QN

DATA

Name Param Type Belonging Value

Banquets i ¼ 1. . .3 IU Tablecloths mi I S . . .

Day dit B S . . .

Storeroom – IU Stock S I S 200

Market – IU Price p C S 12

Basket – IU
Laundry – IU
Fast wash – IU Cost cF C S 6

Slow wash – IU Cost cL C S 4

Days t ¼ 1. . .3 IU dit
Tablecloths – CI mi; S; p; cF; cL

6.7 Allocation, Balance, or Equilibrium Specifications 167

On the other hand, since the injected units must be extracted from the graph, the
warehouse and the laundry basket are taken as nodes that demand flow units in the
last period of undetermined value.

For the flow balance we can exclude the market because it has a flow injection
and a single exit arc. Similarly, the nodes that represent the fast wash and slow wash
element have a single input and output and it is not necessary to propose the balance
equation.

The labelling of arcs has been as follows:

xt: Quantity of tablecloths purchased on day t
It: Quantity of tablecloths in store (clean tablecloths)
Et: Quantity of tablecloths brought to the banquet i ¼ t (Et ¼ Dt)
Lt: Quantity of tablecloths sent to be washed on day t
Ct: Quantity of tablecloths taken to laundry basket on day t
CIt: Quantity of tablecloths in basket
LRt: Quantity of tablecloths washed quickly on day t
LLt: Quantity of tablecloths washed slowly on day t (Fig. 6.6)

It would have been possible to use two elements to represent the tablecloth
element: clean tablecloth and dirty tablecloth. This configuration would also have
been correct in the system, but it was not necessary to make the distinction since in

x1
-

Market

Banquet
i=1

Market Market

Warehouse Warehouse Warehouse

x2
- x3

-

t=1 t=2 t=3

x1 x2 x3

E1 E2 E3

I1 I2

Banquet
i=2

Banquet
i=3

BasketLaundry Laundry Basket Basket

Fast
wash

Slow
wash

Fast
wash

I3
+

CI3
+

I1
-

L1 C1 L2 C2 C3

LR1 LL1 LR2

CI1 CI2

LR1 LL1 LR2

Fig. 6.6 Implicit directed graph of Illustration 6.20

168 6 Modelling and Types of Specifications

the decision activities the concepts are not intermingled (only clean tablecloths are
bought, only dirty tablecloths are washed, etc.). The system can work with a single
concept.

Dirty tablecloths:

Banquet
i=1

t=1 t=2 t=3

D1
-

Banquet
i=2

Banquet
i=3

BasketLaundry Laundry Basket Basket

Fast
wash

Slow
wash

Fast
wash

L1 C1 L2 C2 C3

LR1 LL1 LR2

CI1

LR1
+ LL1

+ LR2
+

D2
- D3

-

CI3
+

CI2

Fig. 6.8 Implicit directed graph for dirty tablecloths

Clean tablecloths:

x1
-

Market

-

Banquet
i=1

Market Market

Warehouse Warehouse Warehouse

x2
- x3

-

t=1 t=2 t=3

x1 x2 x3

E1 E2 E3

I1 I2

Banquet
i=2

Banquet
i=3

I3
+

I1
-

D1
+ D2

+ D3
+

Fast
wash

Slow
wash

Fast
wash

LL1
-LR1

-
LR2

-

Fig. 6.7 Implicit directed graph for clean tablecloths

6.7 Allocation, Balance, or Equilibrium Specifications 169

However, if we had made the distinction in the table of elements, we should have
designed two graphs, one for each measurable element. The flow of each graph
should be related later. The design would be as follows:

Clean tablecloths (Fig. 6.7).

Dirty tablecloths (Fig. 6.8).

The tablecloth demand Dt becomes a demand for flow in the graph of clean
tablecloths and injection of flow in the graph of dirty tablecloths. With the table-
cloths to be washed (LR and LL), the opposite happens.

6.8 Modelling of Propositional Logic Specifications

At the beginning of the chapter, we assigned specifications to the nature of propo-
sitions, which may be simple or compound. The simple propositions are all the
typologies that we have just studied. Compound propositions are those propositions
that use logical operators or connectives (If . . . then; If and only if; Not; Or; And;
Either . . . or) to relate simple propositions. In this section, we focus on the modelling
of compound propositions. Compound propositions are a key aspect in the formu-
lation of optimization problems of a certain depth.

Since compound propositions are the basis of propositional logic, we shall
consider the propositional logic specification as that which is formulated as a
compound proposition. When using operators, we are always representing a com-
pound proposition.

We already saw in Chap. 5 that logical calculations were defined by compound
propositions, and therefore these propositions can be considered as a propositional
logic specification.

Let us look at some examples of specifications and logical calculations that give
rise to compound propositions:

Illustration 6.21
For a product purchasing system with five suppliers, the following decision vari-
ables are generated:

xi ¼ units of the product purchased from the supplier i. i ¼ 1 . . . 5.
Specifications that we could define:

• Logical proposition 1. – We cannot buy units from supplier 1 and supplier 2:
“NOT (x1>0 AND x2>0)”

• Logical proposition 2. – If you buy more than 10 units from supplier 1 you cannot
buy more than 5 units from supplier 3:

“IF x1>10 THEN x3�5”
• Logical proposition 3. – You must buy 25 units from only one of the suppliers:

“EITHER x1¼25 OR x2¼25 OR x3¼25 OR x4¼25 OR x5¼25”

170 6 Modelling and Types of Specifications

https://doi.org/10.1007/978-3-030-57250-1_5

• Logical proposition 4. – If you buy more than 10 units from supplier 4 or supplier
5, you must buy 15 units from supplier 1:

“IF x4>10 OR x5>10 THEN x1¼15”
• Logical proposition 5. – If the system needs a logical calculation to know from

which suppliers we have purchased units:

Binary logical calculation: Supplier provides units
Applied to: Each supplier i¼1. . .5
Variables: αi ¼ 1 if we buy units from supplier i; 0 otherwise. i¼1. . .5
Logical proposition: 8i : αi ¼ 1 IF AND ONLY IF xi > 0

The difficulty of modelling logical propositions lies not so much in obtaining
the constraints that define it, which as we will see in the following sections is
based on the application of some rules but on correctly stating the proposition.
We have already defined the concepts related to the propositional logic in

Chap. 5, when we present the logical calculations. Now we present some of these
concepts with the aim of structuring their modelling. For modelling, we propose a
general scheme where some rules are based on the modelling of propositions already
described by authors. We emphasize as a reference the modelling of propositions
described by Williams (2013).

6.8.1 Simple Propositions and Logical Operators

Atomic or simple propositions are those that are defined without the use of any
logical operator. The format in a lineal formulation would be:

Left part Sign Right part

X (Lineal function) < ; � ; ¼ ; � ; >; 6¼ Independent term (Numeric value)

In mathematical programming, we will distinguish three types of simple
propositions:

– Binary simple proposition: The lineal function from the left part only takes binary
values (1; 0).

– Integer simple proposition: The lineal function from the left part only takes
integer values.

– Continuous simple proposition: The lineal function from the left part takes
continuous values.

This distinction is necessary for the modelling of compound propositions.
In mathematical programming, any valid or admissible solution must satisfy a

truth result (T). Therefore, any restriction such as those defined in Sections 6.3, 6.4,
6.5, 6.6 and 6.7 would correspond to a simple proposition, with an admissible
solution of the problem being one that satisfies a truth result when applied to the

6.8 Modelling of Propositional Logic Specifications 171

https://doi.org/10.1007/978-3-030-57250-1_5

Table 6.18 Truth tables of logical operators

Operator Symbol Semantic Truth table

Negation Ø NOT (ϕ)

Disjunction _ ϕ OR ψ

Conjunction ^ ; & ϕ AND ψ

Conditional ! IF ϕ THEN ψ

Biconditional $ ϕ IF AND ONLY IF ψ

Exclusive disjunction
L

EITHER ϕ OR ψ

Table 6.19 Equivalences
between operators

Proposition Equivalent proposition Reference

ϕ $ ψ ϕ! ψ
ψ ! ϕ

f1

ϕ
L

ψ (ϕ ^ Ø (ψ)) _ (Ø (ϕ) ^ ψ) f2
ϕ! ψ Ø ψ ! Ø ϕ f3

172 6 Modelling and Types of Specifications

simple proposition. When faced with composite propositions, where we use logical
operators, the allowable solutions must satisfy the truth results of the operator's truth
table. Let us see the truth tables of each operator:

ϕ y ψ are shown as logical propositions (Table 6.18).

Already in Chap. 5 devoted to logical calculations, we presented equivalences
between some operators. Table 6.19 collects those equivalences in addition to
another with the operator Exclusive disjunction (

L
). The operator Biconditional

($) as well as the operator Exclusive disjunction could be ignored thanks to these
equivalences. However, for convenience, we will take a look at the modelling of
those operators as well. From Table 6.19, we will label with references all the
transformations or formulations that can be used in the modelling of propositions,
in order to be able to reference the origin of the transformation in the text.

6.8.2 Reduction of Signs

For integer or continuous simple propositions, the group of signs is convenient to
reduce it to the set (�;¼;�), except for those to which the negation operator applies.
In that case, for simplicity, reduction is not necessary.

Calling X the linear function of the proposition and V the independent term or
numerical value of the right part of the simple proposition, the transformation of
integer/continuous propositions is the following:

ξ is a small enough value to avoid in continuous propositions that the value less
than V that the linear function could take is greater than (V – ξ), in the case of X < V.
The same applies for X > V.

We do not consider the case of binary atomic propositions in the reduction of
signs, since the forms in which they can be presented are reduced to:

α as a binary linear function: α ¼ 1; α ¼ 0;

For convenience in modelling, in the case α ¼ 0, we can change the value to
1 using the following equivalence:

α ¼ 0) 1 – α ¼ 1; (1 – α) is still a binary expression. [Reference f7]

6.8.3 Modelling Operators Individually

First, we are going to analyze the modelling of connectives or logical operators
individually, that is, we only consider compound propositions that do not have more
than one different operator.

6.8 Modelling of Propositional Logic Specifications 173

https://doi.org/10.1007/978-3-030-57250-1_5

To express the constraints resulting from modelling operators, we will distinguish
between the type of value of the linear function (binary, integer, or continuous) and
the sign (�; ¼; �) for the case of integer or continuous simple propositions.

We will denote with the variables X or Y the function of the left part of an integer
or continuous simple proposition. The binary propositions will be expressed with a
Greek letter (α, β, ω, δ, etc.).

In the modelling of operators, the integer or continuous simple propositions will
only be differentiated in the increment or decrement parameters of the independent
term V, as in the case of the reduction of signs (Table 6.20). Therefore, to simplify
the notation, we are going to call the increment parameter RI and the decrement
parameter RD. They will be defined as (Table 6.21):

ξ it will be a small enough value.
In the development of the modelling of some compound propositions, the defi-

nition of binary logical calculations is necessary, as we expressed in Section 5.2.3 of
the previous chapter. These logical calculations serve to collect the result of simple
propositions that are within the compound proposition. They will be collected in
binary variables denoted by ω or by δ1, δ2, δ3, and δ4, when necessary. With these
calculations we are going to ignore this semantic and mathematical definition. The
proposition that defines them mathematically is integrated within the formulation of
the operator.

On the other hand, for any integer or continuous atomic proposition, it will be
necessary to obtain an upper bound and a lower bound of the linear function. The
upper bound is a value that is never surmountable by the function. Equivalently, the
lower bound is a value that can never be exceeded inferiorly by the linear function.
Any value of dimension will be valid in the modelling, although adjusting the upper
bound to the maximum of the linear function and the lower one to the minimum
reduces the space of solutions and usually offers better behavior in the resolution. If

Table 6.20 Reduction of signs in simple propositions

Simple proposition Reduction

ReferenceSign X 2 Z X 2 ℜ

X < V X � Vd e � 1 X � V – ξ f4
X > V X � Vb c þ 1 X � V + ξ f5
X 6¼ V X < V OR x > V

) Ref. f4 y f5)
(X � Vd e � 1) OR
(X � Vb c þ 1)

X < V OR X > V
) Ref. f4 y f5)
(X � V – ξ) OR (X � V + ξ)

f6

Table 6.21 Increment and
decrement parameters

V 2 Z V =2 Z

X 2 Z X 2 ℜ X 2 Z X 2 ℜ

RI 1 ξ dVe � V ξ

RD 1 ξ V � bVc ξ

174 6 Modelling and Types of Specifications

https://doi.org/10.1007/978-3-030-57250-1_5

X is our integer or continuous function, we will denote its dimensions with the
following parameters:

Upper bound of X: UBX

Lower bound of X: LBX

Table 6.23 Nomenclature

Input Proposition ϕ

Output Proposition ψ

Binary functions α; β

Integer/continuous functions X; Y

Independent terms of integer/continuous functions V; V1; V2

Table 6.22 Negation operator modelling

Sign Model Reference

NOT (X <
V)

X � V f8

NOT (X �
V)

X > V) f5) X � V + RI f9

NOT (X >
V)

X � V f10

NOT (X �
V)

X < V) f4) X � V – RD f11

NOT (X ¼
V)

EITHER (X < V) OR (X > V))* (X < V) OR (X > V))(X� V – RD)
OR (X � V+ RI)

f12

*In that case, the exclusive disjunction coincides with the inclusive disjunction since the two
propositions can never be fulfilled at the same time. The modelling would not have ended in case
f12 since the connective OR would have to be modelled (Sect. 6.8.3.4)

Table 6.24 Conditional operator modelling with binary input proposition

IF ϕ THEN ψ

ϕ ψ

Type Sign Type Sign Model Ref.

Binary α ¼ 1 Binary β ¼ 1 α � β f13
Binary α ¼ 1 Integer/continuous X � V X � V + (UBX -V)(1�α) f14
Binary α ¼ 1 Integer/continuous X � V X � Vα + LBX (1�α) f15
Binary α ¼ 1 Integer/continuous X ¼ V X � V + (UBX �V)(1�α)

X � Vα + LBX (1�α)
f16

6.8 Modelling of Propositional Logic Specifications 175

6.8.3.1 Negation Operator (NOT; Ø)

Negation operator modelling does not require any complex modelling exercise; it is
just based on representing the opposite proposition. We show the case of whole or
continuous propositions; for binary propositions, the application of the connective
negation is something evident (Table 6.22).

6.8.3.2 Conditional Operator (IF . . . THEN . . . ; →)

The modelling of the conditional operator will be separated into two tables. In
Table 6.24, we will present the modelling of the connective when the proposition
of input of the condition is binary. In Table 6.25, we will deal with the modelling
options when the input and output propositions are integer or continuous.

The nomenclature used in both Tables 6.24 and 6.25 is shown in Table 6.23.
Whenever possible, we should avoid the signs of equality in simple propositions.

If the independent term corresponds to a lower bound of X, we can replace it with the
sign� ([Reference fLB]). Similarly, if it corresponds to an upper bound, we can work
with the sign � ([Reference fUB]).

Any combination of types of propositions not contemplated in the two previous
tables can easily be deduced with the use of the equivalences Ref. f3 and Ref. f7.

The tables could have been further reduced, since we can change the sign� to the
sign � simply by multiplying the proposition by �1. Even equality corresponds to
two propositions of sign � and � with the connective AND, but I prefer this

Table 6.25 Conditional operator modelling with integer/continuous input proposition

IF ϕ THEN ψ

ϕ ψ

Ref Type Sign Model Type Sign Model Ref.

f17 Int/
Cont

X�V1 X � V1+ (UBX �V1)
(1�ω)
X � (V1+R

I) (1�ω) +
LBX ω

Int/
Cont

Y�V2 Y�V2+(UBY �V2)
(1�ω)

f20

f18 Int/
Cont

X�V1 X � V1ω + LBX (1�ω)
X � (V1 � RD) (1�ω)
+UBX ω

Int/
Cont

Y�V2 Y � V2ω +
LBY(1�ω)

f21

f19 Int/
Cont

X¼V1 X � V1+ (UBX �V)(1�
ω)
X � V1ω + LBX (1� ω)
X �(V1�RD)δ1
+UBXω+ UBXδ2
X � (V1+R

I)δ2 +LBXω
+LBXδ1
δ1+δ2¼1� ω

Int/
Cont

Y¼V2 Y�V2+(UBY –V2)
(1�ω)
Y�V2ω+LBY

(1�ω)

f22

176 6 Modelling and Types of Specifications

representation to facilitate the obtaining of the mathematical formulation without
having to change the propositions too much.

Let us take a look at some illustrations:

Illustration 6.22
We have x1, x2, x3 integer variables � 0.
We also have α1 and α2 binary variables.

IF α1¼1 THEN x1+x2 � 10) Ref. f14 [α ¼ α1; X ¼ x1+x2; V¼10])
) x1 þ x2 � 10þ UBx1þx2 � 10ð Þ 1� α1ð Þ
IF α1 ¼ 0 THEN α2 ¼ 0) Ref. f7) IF 1�α1 ¼ 1 THEN 1�α2 ¼1
) Ref. f13) 1 � α1 � 1 � α2
IF α2 ¼ 0 THEN x1 > 10) Ref. f5) IF α2 ¼ 0 THEN x1 � 10) Ref. f7)
) IF 1�α2 ¼ 1 THEN x1 � 11) Ref. f15) x1 � 11α2 þ LBx1 1� α2ð Þ
)[LBx1 ¼ 0]

)x1 � 11α2
IF x1 > 5 THEN x2 � 3) Ref. f5) IF x1 � 6 THEN x2 � 3) Ref. f18 ; f20)

)
x1 � 6ωþ LBx1 1� ωð Þ
x1 � 5 1� ωð Þ þ UBx1ω

x2 � 3þ UBx2 � 3ð Þ 1� ωð Þ
) [LBx1 ¼ 0])

x1 � 6ω

x1 � 5 1� ωð Þ þ UBx1ω

x2 � 3þ UBx2 � 3ð Þ 1� ωð Þ
IF x1 + x3 � 10 THEN α1 ¼1) Ref. f3
) IF NOT (α1 ¼1) THEN NOT (x1 +x3� 10))
) IF α1¼ 0 THEN NOT (x1+ x3� 10)) Ref. f11) IF α1¼ 0 THEN x1+ x3� 9)

Ref. f7) IF 1�α1 ¼ 1 THEN x1+x3 � 9) Ref. f14)
)x1 þ x3 � 9þ UBx1þx3 � 9ð Þ 1� 1� α1ð Þð Þ) x1 þ x3 � 9þ UBx1þx3 � 9ð Þα1

Table 6.26 Biconditional connective modelling with binary propositions

ϕ IF AND ONLY IFψ

ϕ ψ

Type Sign Type Sign Model Ref.

Binary α ¼ 1 Binary β ¼ 1 α ¼ β f23
Binary α ¼ 1 Integer/continuous X � V X � V + (UBX�V)(1�α)

X � (V+RI)(1�α) + LBX α
f24

Binary α ¼ 1 Integer/continuous X � V X � Vα + LBX (1�α)
X � (V� RD)(1�α) + UBX α

f25

Binary α ¼ 1 Integer/continuous X ¼ V X � V+ (UBX �V)(1�α)
X � Vα + LBX (1�α)
X �(V–RD)δ1 + UBX α + UBXδ2
X � (V+RI)δ2 + LBX α + LBXδ1
δ1+δ2¼1�α

f26

6.8 Modelling of Propositional Logic Specifications 177

IF x1�x2 ¼ 5 THEN x3 � 1) Ref. f19; f21)

)

x1 � x2 � 5þ UBx1�x2 � 5ð Þ 1� ωð Þ
x1 � x2 � 5ωþ LBx1�x2 1� ωð Þ
x1 � x2 � 4δ1 þ UBx1�x2ωþ UBx1�x2δ2
x1 � x2 � 6δ2 þ LBx1�x2ωþ LBx1�x2δ1
δ1 þ δ2 ¼ 1� ω

x3 � 1ωþ LBx3 1� ωð Þ

6.8.3.3 Biconditional Operator (IF AND ONLY IF;$)

Following the same format as for the conditional, the modelling tables are the
following (Tables 6.26 and 6.27):

6.8.3.4 Disjunction Operator (OR; ˅)

If there are two or more atomic propositions joined with the operator OR:
ϕi, i¼1,2,. . ., n: ϕ1 OR ϕ2 OR . . . OR ϕn

Modelling follows two steps:

1. We define a logical calculation (ωi) for each atomic proposition ϕi that is integer
or continuous (not binary), to know when the proposition is fulfilled. However, it

Table 6.27 Biconditional connective modelling with integer/continuous propositions

ϕ IF AND ONLY IF ψ
ϕ ψ

Ref. Type Sign Model Type Sign Model Ref.

f27 Int/
Cont

X�V1 X � V1+ (UBX �V1)
(1�ω)
X � (V1+ RI) (1�ω) +
LBX ω

Int/
Cont

Y�V2 Y � V2 + (UBY �V2)
(1�ω)
Y � (V2+ RI)(1�ω) +
LBY ω

f30

f28 Int/
Cont

X�V1 X � V1ω + LBX

(1�ω)
X � (V1� RD)(1�ω)
+ UBX ω

Int/
Cont

Y�V2 Y � V2ω + LBY(1�ω)
Y � (V2�RD)(1�ω) +
UBYω

f31

f29 Int/
Cont

X¼V1 X � V1+ (UBX �V)
(1� ω)
X � V1ω + LBX (1�
ω)
X �(V1–R

D)δ1 +
UBXω + UBXδ2
X � (V1+R

I)δ2 +
LBXω + LBXδ1
δ1+δ2¼1� ω

Int/
Cont

Y¼V2 Y � V2+ (UBY �V2)
(1�ω)
Y � V2ω + LBY (1�
ω)
Y �(V2�RD)δ3 +
UBYω + UBYδ4
Y � (V2+R

I)δ4 +
LBYω + LBYδ3
δ3+δ4¼1�ω

f32

178 6 Modelling and Types of Specifications

is not necessary to control the two output values of the calculation, which would
have been formulated as ϕi$ ωi ¼1. To simplify the modelling, we just need to
pick up the value of ωi when the proposition is not fulfilled:
8i/ϕi 2 Z _ ϕi 2 ℜ : IF NOT (ϕi)THEN ωi ¼ 0

By equivalence f3, we can also define it as:
8i/ϕi 2 Z _ ϕi 2 ℜ : IF ωi ¼ 1 THEN ϕi [Reference f33]

2. A quantitative selection specification is incorporated for the defined ωi and the
binary propositions (i/ϕi E{0,1}: αi ¼1*):P

i=ϕi2ℜ_ϕi2Ζ
ωi þ

P
i=ϕi2 0, 1f g

αi � 1 [Reference f34]

where it is required that at least one proposition be fulfilled.
*: If the binary proposition were defined with value 0, by equivalence f7, we

transform it into value 1.

Illustration 6.23
We have x1, x2 continuous variables � 0.

We also have α1 and α2 binary variables.
Proposition: x1 � 10 _ x2 � 4 _ α1 ¼ 1 _ α2 ¼ 0) Ref. f14)
)x1 � 10 _ x2 � 4 _ α1 ¼ 1 _ (1 � α2) ¼ 1
Model:

1. Logical calculations [Ref. f33]:

IF ω1 ¼ 1 THEN x1� 10) Ref. f14)x1 � 10þ UBx1 � 10ð Þ 1� ω1ð Þ
IF ω2 ¼ 1 THEN x2 � 4) Ref. f15)x2 � 4ω2 þ LBx2 1� ω2ð Þ) LBx2 ¼ 0
)x2 � 4ω2

2. Quantitative selection specification [Ref. f34]:

ω1 + ω2 + α1 + (1 � α2) � 1

6.8.3.5 Conjunction Operator (AND; ˄)

When we have a compound proposition where only the disjunction operator appears,
it is not necessary to perform any modelling processes. Each atomic proposition
corresponds to a restriction in the model.

Instead, the conjunction operator within compound proposals with more opera-
tors needs a modelling process, which we will see in Sect. 6.8.4.

6.8.3.6 Exclusive Disjunction Operator (EITHER . . . OR. . .;
L

)

If there are two or more atomic propositions joined with the operator
L

:

6.8 Modelling of Propositional Logic Specifications 179

ϕi , i ¼1,2,. . ., n: ϕ1
L

ϕ2
L

. . .
L

ϕn

Modelling follows two steps:

1. Similar to step 1) of the connective DISJUNCTION (OR), but in this case the
logical calculation must be defined as:
8i/ϕi 2 Z _ ϕi 2 ℜ : ϕi$ ωi ¼ 1 [Reference f35]

2. A quantitative selection specification is incorporated:P
i=ϕi2ℜ_ϕi2Ζ

ωi þ
P

i=ϕi2 0, 1f g
αi ¼ 1 [Reference f36]

This means that one and only one atomic proposition can be fulfilled.

6.8.4 Modelling Compound Propositions with Various
Operators

Compound propositions can join several atomic propositions using different opera-
tors. Examples can be the following:

Illustration 6.24: Compound Propositions with Several Operators
EITHER ((x1�20 AND y1�10) OR α ¼ 1
((x1�20 AND y1�10) OR NOT (x3 � 20))
IF ((x1�20 OR y1�10) THEN NOT (α ¼ 1 AND β ¼1)
((x1�20 AND y1�10) IF AND ONLY IF (α ¼ 1 OR β ¼1)
. . . .

The modelling process of a compound proposition with several operators is done
from the lowest level in the structure of the proposition to the highest level. The level
is determined by the priority of the operators, according to the structure of paren-
theses. The lower the level, the higher the execution priority of the operator.

The process will always end with a proposition that has only one type of operator
and that will be modelled as defined in Sect. 6.8.3.

We call ψ the proposition that is part of the original compound proposition and in
which only one operator type appears. The modelling process of ψ depending on the
operator is as follows.

6.8.4.1 Negation Operator (NOT;Ø):

The result of the negation operator modelling replaces ψ with Øψ in ϕ, but does not
incorporate additional constraints into the model.

Illustration 6.25
ϕ: EITHER (x1�8 AND x2�10) OR NOT(y�10)
ψ¼ NOT(y�10)
Model of ψ :)Ref. f11) (y�9) [we consider y as integer]
Result: EITHER (x1�8 AND x2�10) OR (y�9)

180 6 Modelling and Types of Specifications

6.8.4.2 Disjunction Operator (OR;˅) and Exclusive Disjunction
(EITHER. . . OR. . .;�):

The step 1) of the exclusive disjunction operator described for the cases in which the
operator appears individually is modelled (Sect. 6.8.3.6.). This is:

ψ ¼ (ψ1 ˅ ψ2 ˅ . . . ˅ ψ i ˅ . . .)
or
ψ ¼ (ψ1 � ψ2 � . . . � ψ i � . . .)
8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i$ ωi ¼ 1 [Reference f35]

The constraint resulting from step 2) of the modelling process (Sect. 6.8.3.4 for
disjunction operator and Sect. 6.8.3.6 for exclusive disjunction operator) is not
incorporated as a constraint to the model, but instead replaces ψ in ϕ. With this
we reduce operators of the original proposition ϕ.

Only for some compound propositions, the following expression for the OR
operator may also be valid:

8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i ωi ¼ 1

Illustration 6.26
ϕ: EITHER (x1�8 OR x2�10) OR (y�9) [x1, x2 integers]
ψ ¼ (x1�8 OR x2�10)
Model of ψ :

) f35) ω1 ¼ 1IF AND ONLY IFx1 � 8)
) f25) x1 � 8ω1 þ LBx1 1� ω1ð Þ ð6:16Þ

) x1 � 7 1� ω1ð Þ þ UBx1ω1 ð6:17Þ
) f35) ω2 ¼ 1IF AND ONLY IFx2 � 10

) f24) x2 � 10þ UBx2 � 10ð Þ 1� ω2ð Þ ð6:18Þ

) x2 � 11 1� ω2ð Þ þ LBx2ω2 ð6:19Þ

(6.16), (6.17), (6.18), and (6.19) are constraints that are incorporated into the
model.

Result:) f34) EITHER (ω1 + ω2 � 1) OR (y�9)
The modelling for this could be carried out as described in Sect. 6.8.3.6.

6.8.4.3 Conjunction Operator (AND; ˄)

This operator had not been used individually for the obvious reasons that there was
no need for any modelling exercise. However, within a proposal with more opera-
tors, it operates in a similar way to the OR and EITHER OR operators:

6.8 Modelling of Propositional Logic Specifications 181

ψ ¼ ψ1 ^ ψ2 ^ . . . ^ ψ i ^ . . . ^ ψnð Þ
8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i$ ωi ¼ 1 [Reference f35]

2. An expression ϕ0 is created with the following format:

ϕ0:

P
i=ψ i2ℜ_ψ i2Ζ

ωi þ
P

i=ψ i2 0, 1f g
αi � n Reference f37½ �

Replacing ψ with ϕ0 in ϕ.

Illustration 6.27
ϕ: EITHER (x1�8 AND x2�10 AND β ¼0) OR (y�9) [x1, x2 integers; β binary]

ψ¼ (x1�8 AND x2�10 AND β ¼0)
Model of ψ :

) f35) ω1 ¼ 1$ x1 � 8) f 25) x1 � 8ω1 þ LBx1 1� ω1ð Þ ð6:20Þ
) x1 � 7 1� ω1ð Þ þ UBx1ω1 ð6:21Þ

) ω2 ¼ 1$ x2 � 10) f24) x2 � 10þ UBx2 � 10ð Þ 1� ω2ð Þ ð6:22Þ
! x2 � 11 1� ω2ð Þ þ LBx2ω2 ð6:23Þ

(6.20), (6.21), (6.22), and (6.23) are constraints that are incorporated into the
model.

ϕ0: ω1 + ω2 + (1�β) � 3
Result:) f37) EITHER (ω1 + ω2 + (1�β) � 3) OR (y�9)

The modelling for this could again be carried out as described in Sect. 6.8.3.6.

6.8.4.4 Conditional and Biconditional Operators

The constraints resulting from operator modelling replace ψ .
Let π1. . . πr be constraints resulting from operator modelling
Proposition (π1 AND π2 AND . . . AND πr) replaces ψ in ϕ.

Illustration 6.28
ϕ: EITHER x1�8 OR (IF x1 + x2 �8 THEN β ¼ 1)

ψ ¼ (IF x1 + x2 �8 THEN β ¼ 1)
Model of ψ :

) f3) IFβ ¼ 0THENx1 þ x2 < 8

) f7; f4) IF1� β ¼ 1THENx1 þ x2 � 7

) f14) x1 þ x2 � 7þ UBx1þx2 � 7ð Þ 1� ω1ð Þ
ð6:24Þ

(6.24) replaces ψ in ϕ:
EITHER x1�8 OR x1 + x2 �7 + (UBx1 + x2 �7)(1�ω1)

182 6 Modelling and Types of Specifications

The modelling for this could again be carried out as described in Sect. 6.8.3.6.

A couple of illustrations to express the complete process.

Illustration 6.29

ϕ : IF x1 � 20 OR y1 � 10ð Þ THEN NOT α ¼ 1 OR β ¼ 0ð Þ
x1, y1 integers, α and β binaries½ �

) f7; f34) IF x1 � 20 OR y1 � 10ð Þ THEN NOT αþ 1� βð Þ � 1ð Þ
) f11) IF x1 � 20 OR y1 � 10ð Þ THEN αþ 1� βð Þ � 0

) f35) ω1 ¼ 1 IF AND ONLY IF x1 � 20

) f25) x1 � 20ω1 þ LBx1 1� ω1ð Þ ð6:25Þ
) x1 � 19 1� ω1ð Þ þ UBx1ω1 ð6:26Þ

) f35) ω2 ¼ 1 IF AND ONLY IF y1 � 10

) f24) y1 � 10þ UBy1 � 10ð Þ 1� ω2ð Þ ð6:27Þ
) y1 � 11 1� ω2ð Þ þ LBy1ω2 ð6:28Þ

) f34) IF ω1 þ ω2 � 1 THEN αþ 1� βð Þ � 0)
) IF ω1 þ ω2 � 1 THEN α� β � �1

) f18) ω1 þ ω2 � ω ð6:29Þ
) ω1 þ ω2 � 2ω ð6:30Þ

) f20) α� β � �1þ 2 1� ωð Þ ð6:31Þ

Therefore, the starting proposition is modelled with a total of seven constraints
(6.25–6.31).

Illustration 6.30

ϕ : EITHER x1 � 1 IF AND ONLY IF α ¼ 1ð Þ OR x2 � 1 AND x3 � 1ð Þ
x1, x2, x3 � 0 integers, α binaryð Þ

) f35) ω1 ¼ 1 IF AND ONLY IF x2 � 1

⇒ f25 ⇒ x2 � ω1 ð6:32Þ
⇒ x2 � UBx2 ω1 ð6:33Þ

⇒ f35 ⇒ω2 ¼ 1 IF AND ONLY IF x3 � 1

⇒ f25 ⇒ x3 � ω2 ð6:34Þ

6.8 Modelling of Propositional Logic Specifications 183

⇒ f25 ⇒ x3 � LBx3ω2 ð6:35Þ
) f37) EITHER x1 � 1 IF AND ONLY IF α ¼ 1ð Þ OR ω1 þ ω2 � 2ð Þ

⇒Ref:f25 ⇒ x1 � α

⇒Ref:f25 ⇒ x1 � UBx1 α

⇒ϕ : EITHER x1 � α AND x1 � UBx1 αð Þ OR ω1 þ ω2 � 2ð Þ
⇒ f35 ⇒ω3 ¼ 1 IF AND ONLY IF x1 � α

⇒ f25 ⇒ x1 � α � � 1� ω3ð Þ ð6:36Þ
⇒ x1 � α � � 1� ω3ð Þ þ UBx1ω3 ð6:37Þ

⇒ f35 ⇒ω4 ¼ 1 IF AND ONLY IF x1 � UBx1 α

⇒ f24 ⇒ x1 � UBx1α � UBx1 1� ω4ð Þ ð6:38Þ
⇒ x1 � UBx1α � 1� ω5ð Þ � UBx1ω4 ð6:39Þ

⇒ f37 ⇒EITHER ω3 þ ω4 � 2ð Þ OR ω1 þ ω2 � 2ð Þ
⇒ f35 ⇒ω5 ¼ 1 IF AND ONLY IF ω3 þ ω4 � 2

⇒ f25 ⇒ω3 þ ω4 � 2ω5 ð6:40Þ
⇒ f25 ⇒ω3 þ ω4 � 1� ω5ð Þ þ 2ω5 ð6:41Þ

⇒ f35 ⇒ω6 ¼ 1 IF AND ONLY IF ω1 þ ω2 � 2

⇒ f25 ⇒ω1 þ ω2 � 2ω6 ð6:42Þ
⇒ f25 ⇒ω1 þ ω2 � 1� ω6ð Þ þ 2ω6 ð6:43Þ

⇒ f36 ⇒ω5 þ ω6 ¼ 1 ð6:44Þ

(6.32) to (6.44) are incorporated as constraints to the model.
Regardless of this methodology, which is sufficient for the modelling of any

proposition, we can also make use of the distributive law between propositions in
order to present the concatenation of propositions in a different way:

If we have ϕ, ψ , and σ propositions, the distributive laws between expressions are
defined as:

ϕ _ ψ ^ σð Þ � ϕ _ ψð Þ ^ ϕ _ σð Þ Reference f38½ �
ϕ ^ ψ _ σð Þ � ϕ ^ ψð Þ _ ϕ ^ σð Þ Reference f39½ �

It is also possible to divide conditional propositions when they are at the highest
level of the compound proposition:

We have ϕ1, ϕ2, . . ., ϕn, ϕm propositions:

IF ϕ1 v ϕ2 v . . . v ϕn THEN ϕm ⇒
⇒ IF ϕ1 THEN ϕm

⇒ IF ϕ2 THEN ϕm [Reference f40]

184 6 Modelling and Types of Specifications

⇒ . . .
⇒ IF ϕn THEN ϕm

IF ϕm THEN ϕ2 ˄ ϕ2 ˄ . . . ˄ ϕn ⇒
⇒ IF ϕm THEN ϕ1

⇒ IF ϕm THEN ϕ2 [Reference f41]
⇒ . . .

⇒ IF ϕm THEN ϕn

6.8.5 Data as Propositions

Sometimes and whenever the specification refers to one or more sets of elements, we
can propose propositions where the wording includes, among its atomic proposi-
tions, conditions on element data values. Let us take a look at some simple examples
in the following illustration.

Illustration 6.31
There is a system for allocating distribution hubs to supermarkets. We have n hubs
and m supermarkets. The distance between hubs and supermarkets and the demand
of each supermarket is known. The system has the following specifications:

1. If the distance between a supermarket and a hub exceeds 50Km, the supermarket
cannot be assigned to the hub.

2. If a supermarket has a demand higher than 1000 kgs, it will be assigned two
hubs.

3. If hub 2 is assigned a supermarket, the supermarket should be less than 1 km
away.

4. If a supermarket assigned to a hub exceeds the distance of 30 km, the hub will be
limited to a maximum of ten supermarkets.

Table of Elements (Table 6.28)

Decision Activities
Action: Allocate hubs to supermarkets
Decision variables: αij ¼ 1 if I allocate Hub i to Supermarket j; 0 otherwise.
Specifications

Table 6.28 Elements of Illustration 6.31

Elements Set QN

Data

Name Param Type Belonging Value

Hubs i ¼ 1. . .n IU Distance Dij C (km) S . . .

Supermarkets j ¼ 1. . .m IU Dij

Demand Mj C (Kgs) W . . .

6.8 Modelling of Propositional Logic Specifications 185

The four specifications of the system are enunciated as conditional logical
propositions. Let us take a look at this statement:

1. If the distance between a supermarket and a hub exceeds 50 km, the supermarket
cannot be assigned to the hub.

If we apply it to any supermarket and any hub:

8i,j: IF Dij > 50 THEN αij¼0
2. If the supermarket has a demand higher than 1000 kgs, it will be assigned

two hubs.

If we apply it to any supermarket:

8j : IF M j > 1000 THEN
Pn
i¼1

αij ¼ 2

3. If hub 2 is allocated to a supermarket, the supermarket must be less than
1 km away.

If we apply it to any supermarket:

8j: IF α2j¼1 THEN D2j< 1

4. If a supermarket assigned to a hub exceeds the distance of 30 km, the hub will be
limited to a maximum of 10 supermarkets.

If we apply it to any supermarket and any hub:

8i, j : IF αij ¼ 1 AND Dij > 1000 THEN
Pm
j¼1

αij � 10

This casuistry does not imply an additional modelling exercise and the rules
previously seen should not be followed. It is only necessary to extract the atomic
propositions associated with data of the global proposition and include it as a
condition of the elements on which the specification falls.

Let us call the data propositions with the term PAt, whether they are one or several
data joined by operators.

We first distinguish the case of propositions with operators individually:
Let ϕ be a proposition of variables (Table 6.29).

Table 6.29 Model of propositions with data

Proposition Modelling Reference

ϕ ˅ PAt 8element/NOT(PAt): ϕ f42
ϕ ˄ PAt 8element/PAt: ϕ f43
ϕ

L
PAt 8element/NOT(PAt): ϕ

8element/PAt: NOT (ϕ)
f44

IF PAt THEN ϕ 8element/PAt: ϕ f45
PAt IF AND ONLY IF ϕ 8element/PAt: NOT (ϕ)

8element/NOT (PAt): ϕ
f46

186 6 Modelling and Types of Specifications

In the case of several operators, references f38, f39, f40, and f41 must be used and
operate as follows:

1. If the conditional operator or the biconditional operator does not exist in the upper
level:

1.1 If necessary, the distributive law (Ref. f38 and f39) is applied until obtaining
a union of propositions of the form:

(ϕ1 OR PAt1) AND (ϕ2 OR PAt2) AND . . .
1.2. For each compound proposition united with the Operator AND, the

following specification is created:
Ref. f42) 8 element/NOT(PAt1): ϕ1

2. If the conditional operator exists in the upper level:
2.1. If necessary, apply Ref. f38 and f39 until obtaining a proposal of the form:

IF ϕ1 OR PAt1 OR (ϕ2 AND PAt2) OR (ϕ3 OR PAt3) OR . . . THEN ψ
Ref. f40) IF ϕ1 THEN ψ) . . .

IF PAt1THEN ψ) Ref. f45)8 element/PAt1: ψ
IF (ϕ2 AND PAt2) THEN ψ)8 element/ PAt2: IF ϕ2 THEN ψ
IF (ϕ3 OR PAt3) THEN ψ)8 element/ NOT(PAt3): IF ϕ THEN ψ
) 8 element/PAt3: ψ
. . .

Next, we model the propositions of Illustration 6.31.

Illustration 6.32: Modelling the propositions of 6.31
(1)
8i,j : IF Dij > 50 THEN αij¼0
) f45) 8i,j/Dij > 50: αij¼0
(2)

8j : IF M j > 1000 THEN
Pn
i¼1

αij ¼ 2

) f45) 8j/Mj > 1000:
Pn
i¼1

αij ¼ 2

(3)
8j: IF α2j¼1 THEN D2j< 1
) f3) 8j: IF NOT (D2j< 1) THEN NOT(α2j¼1)) IF D2j� 1 THEN α2j¼ 0
) f45) 8j/D2j� 1: α2j¼0
(4)

8i, j : IF αij ¼ 1 AND Dij > 1000 THEN
Pm
k¼1

αik � 10

) 8i, j : IF 8i, j=Dij > 1000 : αij ¼ 1
� �

THEN
Xm
k¼1

αik � 10

) 8i, j=Dij > 1000 : IF αij ¼ 1 THEN
Xm
k¼1

αik � 10

6.8 Modelling of Propositional Logic Specifications 187

) Ref. f14) 8i, j=Dij > 1000 :
Pm
k¼1

αik � 10þ m� 10ð Þ 1� αij
� �

6.8.6 Logical Propositions That Express Possibility

When the statement of a system refers to possibilities not subject to conditions, no
specification is really being established unless some additional imposition is
expressed (e.g., “you can buy at most 10 units”). In most cases, possibilities only
serve to establish associations between elements to form activities. The verb we use
when talking about possibilities is the verb “can.” Let us look at an example:

“Provider A can supply units of product 1”: The statement does not generate any
constraint. It is established that provider A participates in the supply of product
1 action.

“Provider B can supply more than 50 units of product 2”: The statement does not
create any constraint. It is established that provider B participates in the supply of
product 2 action.

If any limitation is included in the statement, then it may be necessary to establish
a specification:

“Provider B can only supply product 1.”
In those cases, it is necessary to model the specification by expressing the

statement of impossibility, about what cannot be done: If the supplier can only
supply product 1, then it cannot supply product 2.

If the possibility statement is part of a logical proposition because it has a
condition or is described with any logical connective, then it is necessary to model
that proposition in all cases. For the modelling of this type of logical proposition, it is
necessary to rephrase the proposition to express it in negative. It is about converting
the proposition of possibility into a proposition of impediment. Let us see some
illustrations:

1. “Provider A can supply units of product 1 if provider B does not supply units of
that product”: When there is a simple proposition within the compound propo-
sition that expresses possibility, we rephrase the statement to express it as an
impediment:

“Provider A cannot supply units of product 1 if supplier B does not supply
supplies units of that product”

2. “Provider B can supply more than 50 units of product 2 if provider A supplies
more than 10 units of product 1”:

“Provider B cannot supply more than 50 units of product 2 if provider A
supplies more than 10 less than 11 units of product 1”

The logical process is simple. The verb “can” expresses possibility. The opposite,
“cannot,” expresses that there is no possibility, but both are not disjunctive. Being

188 6 Modelling and Types of Specifications

able to perform an action includes doing it and not doing it. Not being able to do it
expresses only the option of not doing it. That is why it is necessary to model the
expression that imposes a specification, which is the negative.

Let’s take a look at an illustration based on a mathematical environment.

Illustration 6.33
There is a system of assigning workers to tasks. We have 15 tasks and 4 operators.
The tasks have a duration time. Two specifications are established in the
assignment:

– An operator can carry out more than two tasks if he partially performs a task
– The working time of an operator may be more than 10 hours in the case of doing

more than 3 tasks.

Based on the description it is clear that the tasks are divisible in the system,
because they can be partially carried out by several operators, so they have a
measurable character. It is a statement that lacks a description of other norms and
an objective; in this case we will only focus on the two specifications indicated.

Table of Elements (Table 6.30)

Decision Activities
Action: Assign [tasks to Operators]
Decision variables: xij ¼ Amount of time of Task i assigned to Operator j.
Specifications

1. An operator can carry out more than two tasks if he partially performs a task

The specification refers to each operator j¼1. . .4.
First, it is necessary to express the calculation of the number of tasks performed

by an operator as an auxiliary calculation that will use a logical calculation to know if
an operator has been assigned to each task:

Binary logical calculation: Operator assigned to task
Applied to: Each Operator j¼1. . .4 and each task i¼1. . .15
Variables: αij ¼ 1 if operator j is assigned to task i; 0 otherwise. i¼1. . .15; j¼1. . .4
Logical proposition: 8i, 8 j : αij ¼ 1 IF AND ONLY IF xij > 0

The number of tasks performed by each operator can be expressed by an auxiliary
calculation:

Auxiliary calculation: Number of tasks performed by each operator

Table 6.30 Elements of Illustration 6.33

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .15 IM Duration Di C W . . .

Operators j ¼ 1. . .4 IU

6.8 Modelling of Propositional Logic Specifications 189

Applied to: Each operator j¼1. . .4
Variables: yj ¼ number of operator tasks j
Constraints that define the calculation:

8j : y j ¼
P15
i¼1

αij

Second, we also have to create a logical calculation to know if an operator has
partially carried out a task:

Binary logical calculation: Operator partially performs a task
Applied to: Each Operator j¼1. . .4 and each task i¼1. . .15
Variables:
βij ¼ 1 if the operator j partially performs task i; 0 otherwise. i¼1. . .15; j¼1. . .4
Logical proposition:
8i, 8 j : βij ¼ 1 IF AND ONLY IF xij > 0 AND xij < Di

We could also create an auxiliary calculation for collecting the total number of
partially performed tasks:

Auxiliary calculation: Number of tasks partially performed by an operator
Applied to: Each Operator j¼1. . .4
Variables: zj ¼ number of partial tasks of the operator j
Constraints that define the calculation:

8j : z j ¼
P15
i¼1

βij

We return to the starting specification:

“An operator can carry out more than two tasks if he partially completes a task”

And we express it in negative:

“An operator cannot perform more than two tasks if he does not partially do any
task”) “If an operator does not partially do any task, he cannot perform more
than two tasks”

Mathematically:

8j : IF zj ¼ 0 THEN yj � 2

2. The working time of an operator may be more than 10 hours in the case of doing
more than three tasks.

Working time can be collected in an auxiliary calculation:

Auxiliary calculation: Working time of an operator
Applied to: Each Operator j¼1. . .4

190 6 Modelling and Types of Specifications

Variables: wj ¼ Working time of operator j
Constraints that define the calculation:

8j : w j ¼
P15
i¼1

xij

We express the specification as an impediment:

“The working time of an operator cannot exceed 10 hours in the case of performing
no more than three tasks”)

) “If you perform at most three tasks, the working time of an operator cannot
exceed 10 hours”

Mathematically:

8j : IF yj � 3 THEN wj � 10

6.9 Objective Criterion

The objective function is the criterion that guides the search for solutions. Defining
an objective function in the system results in the complete definition of an optimi-
zation problem. As we discussed in the introductory chapter, the illustrations will
focus on problems with a single objective function. However, the typologies and
modelling of the functions that we will explain below can also serve to develop
multiobjective problems or simply to create a function that integrates diverse
weighted functions.

Once a criterion has been defined, all the costs, positive or negative (profits), of
the activities and calculations that participate in that function will be expressed in the
objective function. Therefore, the objective function can be used a priori to identify
decision activities or calculations, since any action that entails a cost will correspond
to a decision activity or calculation.

The normal or most usual situation in a system is that the unit cost of an activity
represented in a variable does not vary whatever the value of the variable. For
example, let x be the decision activity associated with buying units from a supplier
and let c be the cost of a unit. Typically, the cost c is the cost associated with the
purchase of units, regardless of the value of x. The total cost of that activity will be
cx. This will happen as long as the variable is binary, since it only takes 2 values
(Value 0, no cost; Value 1, cost c). Therefore, the objective function is usually the
simplest specification of the system in most cases. It is enough to identify which
variables have cost data with respect to the proposed objective.

However, there are problems in which for a generic variable x, integer or
continuous, the cost that is applied may depend on the value that variable x takes.
The cases that may arise are:

1. The cost of variable x depends on the range of values on which the variable falls

6.9 Objective Criterion 191

2. The cost of variable x depends on the value that another variable takes
3. The cost depends on the deviation of the variable with respect to reference

threshold.

We explain and illustrate below the modelling of each of the cases. Some of the
ideas have been based on the modelling presented by Sarker and Newton (2007).

6.9.1 Cost According to Interval of Values

With a variable x, we define a set of n intervals (Ui�1, Ui] i¼1. . .n, Ui � 0 i¼0. . .n,
and a cost ci associated with each interval (Fig. 6.9).

Since we need to know on what interval (Ui�1, Ui], i¼1 . . . n the variable x has
fallen, it is necessary to define logical calculations, but first, to unify the modelling
process, and it is also necessary to define the closed intervals for each cost value. The
first interval corresponds to [U0, U1]. From the second interval, the first value is
determined by Ui�1+A (A ¼ 1 if x is integer, A ¼ ξ if x is continuous). To unify the
intervals, we define n intervals [Ui�1+B, Ui], where B ¼ 0 if i¼1, B¼A if i> 1.

Binary logical calculation: x belongs to the interval [Ui�1+B, Ui]
Applied to: Each interval i¼1. . .n
Variables:

αi ¼
1 if x 2 Ui�1 þ B,Ui½ �
0 otherwise

�

Logical proposition:
8i : αi ¼ 1 IF AND ONLY IF x � Ui � 1 + B AND x � Ui

Model:
)f35) 8 i : ωi1 ¼ 1 IF AND ONLY IF x � Ui � 1 + B

⇒ f25 ⇒ x � Ui�1 þ Bð Þωi1 þ LBx 1� ωi1ð Þ ð6:45Þ
⇒ f25 ⇒ x � Ui�1 þ B� 1ð Þ 1� ωi1ð Þ þ UBx ωi1 ð6:46Þ
) f35) 8i : ωi2 ¼ 1 IF AND ONLY IF x � Ui

) f24) x � Ui þ UBx � Uið Þ 1� ωi2ð Þ ð6:47Þ

x 2c1c ic 1ic – nc

1U 2U 1iU – iU 1iU + 1nU –0 xU LB= n xU UB=

Fig. 6.9 Value intervals

192 6 Modelling and Types of Specifications

https://www.linguee.es/ingles-espanol/traduccion/threshold.html

) f24) x � Uiþ1ð Þ 1� ωi2ð Þ þ LBxωi2 ð6:48Þ
) f37) 8i : αi ¼ 1 IF AND ONLY IF ωi1 þ ωi1 � 2

) f25) 8i : ωi1 þ ωi1 � 2αi ð6:49Þ
) f25) 8i : ωi1 þ ωi1 � 1þ αi ð6:50Þ

In addition, we need a non-binary logical calculation that collects the value of x in
each interval in order to maintain the linearity when expressing the cost in the
objective function. Only with the variables αi,, the definition of the cost of
x depending on the interval would be defined as:

Pn
i¼1

ciαix

So, we would have a non-linear expression. To avoid this, we must pick up the
value of x, according to the interval on which it falls. The calculation would be:

Non-binary logical calculation: Collect the value of x in each interval [Ui�1+B, Ui]
Applied to: Each interval i¼1. . .n
Variables:

xi ¼
x if αi ¼ 1

0 if αi ¼ 0

�

Logical propositions: 8i: IF αi ¼ 1 THEN xi ¼ x
8i: IF αi ¼ 0 THEN xi ¼ 0
Model:

8i : IFαi ¼ 1 THEN xi ¼ x) f16) 8i : x � xi þ UBx 1� αið Þ ð6:51Þ
) 8i : x � xi ð6:52Þ

8 : IFαi ¼ 0 THEN xi ¼ 0) f7) 8i : IF 1� αi ¼ 1 THEN xi ¼ 0

) f16) 8i : xi � Uiαi ð6:53Þ
) f16) 8i : xi � 0 ð6:54Þ

The expression of the objective function that collects the cost of the variable
x would be defined as:

Pn
i¼1

cixi

Simplification of Constraints
Proposition 8i : αi ¼ 1 IF AND ONLY IF x � Ui � 1 + B AND x � Ui can be
simplified by Ref. SV taking advantage of the characteristics of the variables. The

6.9 Objective Criterion 193

variable x cannot fall onto more than one interval, without imposing it as a condition.
That means that it would suffice to impose the relationship between αi and x:

Only variable αi will take value 1 :
Xn
i¼1

αi ¼ 1 ð6:55Þ

8i : IF αi ¼ 1 THEN x � Ui�1 þ B AND x � Ui

Model:

) f41)8i : IF αi ¼ 1 THEN x � Ui�1 þ B

8i : IF αi ¼ 1 THEN x � Ui

) f15) 8i : x � Ui�1 þ Bð Þ αi ð6:56Þ
) f14) 8i : x � Uiαi þ UBx 1� αið Þ ð6:57Þ

In addition to (6.55), (6.56), and (6.57), we should also include (6.51), (6.52),
(6.53), and (6.54) to complete the modelling, although even (6.51) and (6.52) can
also be substituted for a single equality function:

x ¼
Xn
i¼1

xi ð6:58Þ

Since with the proposition “IF αi¼ 0 THEN xi¼ 0”, all xi take value 0 minus one,
that index i for which αi ¼ 1. By imposing (6.58), the xi that does not take value
0 will automatically take the value of x.

Illustration 6.34
In a purchase system, we have a supplier that offers the following prices for the
product:

– $16 if we buy a maximum of 100 pcs.
– $15 if we buy more than 100 pcs.
– $14 if we buy more than 500 pcs.

If x is the variable associated with the activity of purchasing units of the product
from that supplier, the cost of x is determined by the interval in which x falls:

The constraints generated by determining the cost would be:

194 6 Modelling and Types of Specifications

By (6.53))
x1 � 100α1
x2 � 500α2
x3 � UBxα3

By (6.55))α1 + α2 + α3 ¼ 1

By (6.56) and (6.57))

x � 1α1
x � 100α1 þ UBx 1� α1ð Þ
x � 101α2
x � 500α2 þ UBx 1� α2ð Þ
x � 501α3
x � UBx

��������������

��������������
By (6.58)) x ¼ x1 + x2 + x3

In the objective function, we would introduce the cost terms:

Min . . . + 16x1 + 15x2 + 14x3 + . . .

6.9.2 Cost According to the Value of Another Variable

Although the variable that determines the cost is integer or continuous, it will be
reduced to depend on the value of one or more binary variables. The modelling is
almost identical to the previous case.

Let y be the variable that determines the cost of x, y integer or continuous.
Generally, the cost of x will depend on the range of values in which y falls
(Fig. 6.10).

To know in which interval [Ui�1 + B, Ui] i ¼ 1. . .n the value of y has fallen, we
can just define a logical calculation for each interval in the following way:

Binary logical calculation: y belongs to the interval [Ui�1+B, Ui]
Applied to: Each interval i¼1. . .n
Variables:

αi ¼
1 if y 2 Ui�1 þ B,Ui½ �
0 otherwise

�

y 2c1c ic 1ic – nc

1U 2U 1iU – iU 1iU + 1nU –0 yU LB= n yU UB=

Fig. 6.10 Value intervals
for variable y

6.9 Objective Criterion 195

Logical propositions: As in the reduction of Sect. 6.9.1, it is not necessary to define
the two values of αi, but only impose that:

Only a αi will take value 1:

Xn
i¼1

αi ¼ 1 ð6:59Þ

) Ref. SV)8i : IF αi ¼ 1 THEN y � Ui � 1 + B AND y � Ui

Model:

) f41) 8i : IF αi ¼ 1 THEN y � Ui�1 þ B

8i : IF αi ¼ 1 THEN y � Ui

) f15) 8i : y � Ui�1 þ Bð Þ αi ð6:60Þ
) f14) 8i : y � Uiαi þ UBy 1� αið Þ ð6:61Þ

Variables αi will determine the cost of x:
With α1¼1, the cost of x ¼ c1
With α2¼1, the cost of x ¼ c2
. . .

If the starting variable y had been binary, the previous process would not be
necessary, we would simply continue from this moment, since:

With y ¼ 1 (α1 ¼ y), the cost of x ¼ c1
With y ¼ 0) f7) 1�y ¼ 1 (α2 ¼1�y), the cost of x ¼ c2

To model this process, it is sufficient to collect the value of x in one variable for
each possible cost value:

Non-binary logical calculation: Collect the value of x according to αi
Applied to: Each interval i¼1. . .n
Variables:

xi ¼
x if αi ¼ 1

0 if αi ¼ 0

�

Logical propositions:
IF αi ¼ 1 THEN xi ¼ x
IF αi ¼ 0 THEN xi ¼ 0
Model: (identical to that expressed in 6.9.1) Resulting expressions: (6.51), (6.52),

(6.53), and (6.54). Similarly, (6.51) and (6.52) can be reduced to (6.58).

The expression of the objective function that collects the cost of variable x would
be defined as:

Pn
i¼1

cixi

196 6 Modelling and Types of Specifications

Illustration 6.35
In a purchase system, we have a product whose purchase cost depends on whether
we have signed a contract with the supplier. That contract implies a cost C. The
price of the product unit is $c1 with the signing of the contract and $c2 without the
contract.

The system would have two decision activities:

– Buy product from the supplier
– Sign contract with supplier

This would generate the variables:

x ¼ Product units purchased from the supplier.
β ¼ 1 If I sign a contract with the supplier; 0 otherwise.
The cost of x depends on the value taken by the variable β
β ¼ 1) Cost of x ¼ c1
β ¼ 0) 1� β ¼ 1) Cost of x ¼ c2
Constraints generated are:

By (6.53):
x1 � UBxβ

x2 � UBx 1� βð Þ
By (6.58): x ¼ x1 + x2

In the objective function we would include the cost of signing the contract and the
cost of purchasing units:

Min . . . + Cβ + c1x1 + c2x2 + . . .

6.9.3 Costs Depending on the Deviation of the Variable

In some situations, a reference value can be imposed on the values of a variable, so
that we can be interested in the approach of the variable to that reference value or we
are interested in distancing from it. The distance from this reference is not imposed
as a specification in the problem, but the variable has freedom, penalizing or
rewarding the deviation on the reference value in the objective function.

The bonuses or penalties imposed affect the units deviated from the
reference value.

The following table summarizes all the possibilities that may arise (Table 6.31):

Table 6.31 Cases of
deviation

Deviation Repercussion Section

Excess Penalty 6.9.3.1

Bonus 6.9.3.2

Default Penalty 6.9.3.3

Bonus 6.9.3.4

6.9 Objective Criterion 197

6.9.3.1 Penalty by Excess

Given

U: Reference value (attribute or variable)
p: unit penalty (attribute)

Affected variable: x
Auxiliary variables:

xd: Deviated units by default of x over U
xe: Deviated units by excess of x over U

These variables come from defining a free auxiliary variable y, collecting the
difference between U and x: x + y¼ U. In order to use variables � 0, we perform the
change of variables: y ¼ xd � xe, xd � 0 and xe � 0, and the resulting constraint
would be:

x + xd � xe ¼ U

Although that expression would allow values to be given simultaneously to xd
and xe, this would never occur even in the best case of the problem since the excess
implies a cost, and therefore it is important that xe be as low as possible.

In the objective function, the cost term p xe is included.

Illustration 6.36
Within a sales system, we have a customer to whom we offer the following prices for
the product:

– $16 for the first 100 units purchased
– $15 for units that exceed 100 units.

The affected variable would be the quantity sold of product units to the customer,
which we call x.

The reference value is U ¼ 100
The company suffers a penalty for excess, p ¼ $1 ($16�$15)
Having defined xd and xe, this means that:

x + xd � xe ¼ 100

In the objective function we incorporate the terms of the profit of the sale x and the
penalty:

Max . . . + 16x � 1xe

Being a function of maximizing, the penalty has a minus sign because it is a cost.

6.9.3.2 Bonus by Excess

Given

198 6 Modelling and Types of Specifications

U: Reference value (attribute or variable)
b: unit bonus (attribute)

Affected variable: x
Auxiliary variables:

xd: Deviated units by default of x over U
xe: Deviated units by excess of x over U

Binary variables from logical calculations:
αd: xd>0 IF AND ONLY IF αd ¼1
αe: xe>0 IF AND ONLY IF αe ¼1

Constraints:
In this case it would not be worth imposing only x + xd� xe¼ U, since it interests

the greatest possible value of xe, so that xd and xe would grow to infinity simulta-
neously. Therefore, the logical calculations are defined to know if xd and xe have
become positive and then it is imposed that both cannot be made positive
simultaneously.

Simplifying the definition of the logical calculations to:

αd: IF xd>0 THEN αd ¼1
αe: IF xe>0 THEN αe ¼1

The resulting constraints of this process are:

xþ xd � xe ¼ U

xd � U 	 αd
xe � UBx � U	ð Þαe
αd þ αe � 1

* If the reference value U is a variable, we have to use another upper bound for xd
and xe in the modeling process.

In the objective function, the profit term bxe is incorporated and x would enter in
the function with its base cost.

Illustration 6.37
Within a purchasing system, we have a supplier that offers the following prices for
the product:

– $16 for the first 100 units purchased
– $15 for units that exceed 100 units.

The affected variable would be the purchased quantity of product units to the
supplier, which we call x.

The reference value is U ¼ 100
The bonus for excess is b ¼ $1 ($16�$15)
Having defined xd, xe, αd and αe, this means that:

6.9 Objective Criterion 199

xþ xd � xe ¼ 100

xd � 100αd
xe � UBx � 100ð Þαe
αd þ αe � 1

In the objective function we incorporate the terms of the cost of x and the bonus

Min . . . + 16x � 1xe

that in a minimizing function would have a minus sign because it is a profit.

6.9.3.3 Penalty by Default

Equivalent to Sect. 6.9.3.1.
Given

U: Reference value (attribute or variable)
p: Unit penalty (attribute)

Affected variable: x
Auxiliary variables:

xd: Deviated units by default of x over U
xe: Deviated units by excess of x over U

Constraint: x + xd � xe ¼ U

The objective function incorporates the cost term pxd

Illustration 6.38
In a system of production and sale of product units we have signed with a customer
to supply 1000 units per month, so that if we do not meet that supply we have a
penalty of $P for each unit not delivered.

There is a default penalty with a reference number of U ¼ 1000 units.
The affected variable would be the quantity supplied to the customer, which we

call x.
The default penalty, p ¼ $P
Having defined xd, xe this means that:

x + xd � xe ¼ 1000

In the objective function we would incorporate the penalty:

Min . . . + Pxd + . . .

6.9.3.4 Bonus by Default

Equivalent to Sect. 6.9.3.2.

200 6 Modelling and Types of Specifications

xþ xd � xe ¼ U

xd � Uαd

xe � UBx � Uð Þαe
αd þ αe � 1

If the reference value U is a variable, we have to use another upper bound for xd
and xe in the modeling process.

In the objective function, the benefit term bxd is incorporated.

Illustration 6.39
After the Kyoto protocol, the state proposes bonuses on the gas emissions of our
company in the case of not exceeding the A kg/year, meliorating with $A for each
Kg/year deviated by default.

6.10 Identification of Specifications

The specifications of a system include the standards and operation regulations
declared within it.

From the statement or description of the system, the first task for modelling
involves the identifying of specifications. Extracting the specifications of a system
consists of identifying all the declared norms, both those that are presented explicitly
in the statement and those that are assumed from the nature of the elements and
activities and do not have an explicit description.

Norms that appear explicitly in the description are easy to identify and one only
has to look for verbs of imposition or logical propositions. Those that are found
implicitly in a system, without there being the need to declare them, are specifica-
tions that are based on data of elements, quantitative selection rules, logical condi-
tions between activities, impositions of flow balance, or bounds of measurable
activities:

• Based on data: attributes that express a continuous or integer magnitude of
intrinsic capacity, availability, or demand on a collective or measurable element
always have a specification associated with capacity consumption, capacity
contribution, demand or balance, depending on the system operation. These
specifications may not be defined as such, only the attribute. The same happens
with relational data between elements, for example, of incompatibility of some
action, that probably define constraints regarding decision activities, but they are
not made explicit because they are defined with the attribute itself.

• Quantitative selection rules: many systems assume without making explicit the
norms that define the quantitative selection specifications for certain logic deci-
sion activities between sets of elements. Therefore, it will be necessary to analyze
if there are selection rules on each of the elements that participate in the activity
(Sect. 6.3).

6.10 Identification of Specifications 201

• Logical conditions between activities: sometimes definitions of decision activities
have an implicit relationship between them defined by a logical proposition. This
does not mean that any activity represents a calculation, but some of the values of
one variable condition the value of another.

When a variable defines a calculation, all its values are obtained from the values
of other variables, or they are negligible values in the system. The logical conditions
between activities also occur when we identify a logical calculation as a decision
activity. By not defining it as a calculation, we ignore the logical proposition that
defines it. This logical proposition cannot be ignored from the model, and it would
be represented as a specification.

• Bounds of discrete measurable activities: they appear in measurable decision
activities in which there is an upper bound of measurement of the activity,
individually generally, but also jointly with other measurable activities, without
this information being explicitly included in the statement.

• Flow balance constraints: in the system, equilibrium relationships between activ-
ities and calculations are established, when there are measurable elements and
generally over a set of time periods, and these restrictions are assumed in the
operation of the system without these relationships being explicit.

The modeller must analyze the following aspects in the identification of
specifications:

– The data of elements that can refer to capacity, availability, or demand,
fundamentally

– The selection rules in decision activities
– The decision activities identified in the system in case there is any implicit

relationship between them or if any of them were really a logical calculation
– Balance relationships between variables
– The upper bound of discrete measurable activities

The description of a system should always avoid wrong interpretations, so it is
desirable that the number of implicit specifications be as low as possible, with all the
details indicated in the statement, although some are obvious.

Let’s look at some examples of identifying specifications in systems.

Illustration 6.40: Assigning objects to positions (Romero and Romeijn 2005)
There is a set of n objects and m positions, m> n. Each object has a weight. Each
position has a maximum weight supported. It is about assigning objects to positions.
There is a cost involved in assigning each object to each position. It is about
minimizing the cost of the assignment.

Table of Elements (Table 6.32)

Decision Activities

Action: Assign objects to positions
Decision variables:

202 6 Modelling and Types of Specifications

αij ¼1 if I assign Object i to Position j; 0 otherwise. i¼1. . .n, j¼1. . .m
Specifications

The statement does not present any explicit specification. All specifications are
given implicitly in the description:

Specifications I1. Based on data: each position has a capacity attribute, the
maximum weight supported; therefore, it will be necessary to define a consump-
tion specification in this case on each position.

Constraints:

8j : Pn
i¼1

piαij � M j

Specifications I2. Quantitative selection rules: the activities of the system are
logic; therefore, it will be necessary to analyze which are the quantitative norms
in the selection (Table 6.33):

The most logical analysis is to assume that an object occupies exactly one
position. If it could occupy more than one position, it should have been specified
in the statement. And that amount is mandatory and does not act as a higher level,
since you must place all objects. Therefore, there is an implicit selection rule for each
object. Regarding the positions, there is no rule.

Logically with any position, we can always impose as an upper bound all objects
and as a lower bound no objects, but those specifications would not be necessary and
therefore are not defined.

Table 6.33 Selection diagram

Elements selecting Selectable elements Type of Norm Quantity Constraints

Object
i ¼1. . .n

Positions Upper bound –

Lower bound –

Equality 1 8i : Pm
j¼1

αij ¼ 1

Position
j ¼ 1. . .m

Objects Upper bound –

Lower bound –

Equality –

Table 6.32 Elements of Illustration 6.40

Elements Set QN

Data

Name Param Type Belonging Value

Objects i ¼ 1. . .n IU Weight pi C W . . .

Cost cij C S . . .

Positions j ¼ 1. . .m IU Max_Weight Mj C W . . .

cij

6.10 Identification of Specifications 203

Specifications I3. Logical conditions between activities: there are no relationships
between activities, since there is only one activity.

Specifications I4. Bounds of discrete measurable activities: there are no discrete
measurable activities.

Specifications I5. Flow balance constraints: they do not exist.

Illustration 6.41: Ham distribution
A ham distribution company has designed a set of 20 delivery routes for distribution.
The company has a portfolio of 350 customers. Each delivery route goes through a
series of known customers.

The company has ten vehicles for the distribution. Each vehicle has a given
capacity or number of Iberian hams that it can transport.

The demand for ham is known from each customer and must be attended to. Each
vehicle that delivers Iberian hams must choose a single route, because more than
one would take too long. We know the delivery cost of each route.

Table of Elements (Table 6.34)

In the Route_Customer attribute, customers of each route are annotated. It is
therefore shared between routes and customers.
Decision Activities

Action: Deliver Iberian hams with vehicles to customers.
Decision variables:
xkj ¼ Number of Iberian hams delivered with vehicle k to customer j.
k¼1. . .10, j¼1. . .350
Action: Choose routes for vehicles.
Decision variables:
αik ¼1 if I choose Route i for Vehicle k; 0 otherwise. k¼1. . .10, i¼1. . .20
Explicit Specifications

This statement does present explicit impositions:

– “The demand for ham from each customer is known and must be attended to”: It
is an imposition of demand contribution. The specification refers to satisfying a

Table 6.34 Elements of Illustration 6.41

Elements Set QN

Data

Name Param Type Belonging Value

Routes i ¼ 1. . .20 IU Route_Customer RCij B S . . .

Cost Ci C W . . .

Customers j ¼ 1. . .350 IU Demand Dj I S . . .

RCij

Vehicles k ¼ 1. . .10 IU Capacity Kk I S . . .

Iberian hams – CD Di; Kk

204 6 Modelling and Types of Specifications

demand, so if that imposition had not been explicitly specified, it would have
been logical to identify it implicitly.

Constraints:

8j : P10
k¼1

xkj ¼ D j

Unitary contributions validate the equality sign

– “Each vehicle that delivers Iberian hams must choose a single route”: Explic-
itly, a selection rule is being presented for each vehicle in the activity of choosing
a route (Table 6.35):

Note that it would be a mistake to assume that the route selection rule for each
vehicle would be equal to 1, since we would assign a route to each vehicle. The
specification states that a route is chosen for each vehicle that distributes, so we
cannot consider that everyone will perform the delivery.

In addition, the phrase “each vehicle that delivers” brings light to an implicit
specification existing in the problem, a logical condition between activities (I3).
Implicit Specifications

• Specifications I1. Based on data: each vehicle has a capacity attribute, the
number of Iberian hams that can be transported; therefore it will be necessary
to define a capacity consumption specification for each vehicle. Each customer
also has a demand attribute that will give rise to a demand contribution specifi-
cation, although we have already mentioned that it is given explicitly.

Constraints: 8k : P350
j¼1

xjk � Kk

• Specifications I2. Quantitative selection rules: the selection rule for each
vehicle with respect to routes appears explicitly.

• Specifications I3. Logical conditions between activities: as mentioned,
between the two decision activities there is a logical condition reflected in the
phrase “Each vehicle that delivers ham slices must choose only one route.” This
phrase refers to the fact that in order for a vehicle to distribute ham, it must have a
route assigned to it. If we do not assign a route, it will not distribute Iberian hams.

Table 6.35 Selection diagram of decision activity “Choose routes for vehicles”

Elements selecting Selectable elements Type of norm Quantity Constraints

Vehicle
k ¼ 1. . .10

Routes Upper bound 1 8k : P20
i¼1

αik � 1

Lower bound –

Equality –

Route
i ¼ 1. . .20

Vehicles Upper bound –

Lower bound –

Equality –

6.10 Identification of Specifications 205

Logical proposition: If a vehicle delivers ham, then it must have been assigned a
route.

(If a vehicle delivers ham to a customer then it must have been assigned a route)
Logical proposition with mathematical formulation:

8k,j: IF xkj> 0 THEN
P20
i¼1

αik ¼ 1

In addition to this, it is necessary to contemplate that it is not worth assigning any
route, but only one that passes by the customer to whom it delivers:

Logical proposition: If a vehicle delivers Iberian hams to a customer, then the
vehicle must have assigned a route that passes by that customer.

Logical proposition with mathematical formulation:

8k,j: IF xkj> 0 THEN
P

i=RCij¼1
αik ¼ 1

This second logical proposition encompasses the previous one, since if it is
fulfilled the previous one is fulfilled, so we can omit the first one.

• Specifications I4. Bounds of discrete measurable activities: Measurable activ-
ities do not have a given upper bound.

• Specifications I5. Flow balance constraints: The measurable activities partici-
pate in specifications that have already been reflected.

Illustration 6.42: Supermarket Allocation
There is a supermarket company that has several locations (j ¼1. . .6) to install a
maximum of 3 product distribution centers.

The cost of installing a center in each location is established in CIj m.u.
The Company has 30 supermarkets to be supplied from locations with distribu-

tion centers.
In addition, the following rules must apply in the system:

– Each location with a distribution center can supply a maximum of ten
supermarkets.

– For legal requirements, if the company installs a center in location 3 and another
in location 5, it cannot install any in location 6.

Objective Function
Minimize the cost of the problem taking into account that if the number of

supermarkets assigned to a location is less than 8, it is penalized with a cost of F
m.u.

Table of Elements (Table 6.36)

In the configuration carried out, the locations have been considered as unitary,
since they are different, apart from the fact that they are referred to in a particular
way. Distribution centers and supermarkets are considered collectives, since they are
identical items, determined in the case of supermarkets and indeterminate in the case

206 6 Modelling and Types of Specifications

of distribution centers. And on the other hand, we can avoid referring to those
instances in a particular way in the statement, so we only refer to numerals of the
collective element.

Decision Activities
Action: Install distribution centers in locations.
Decision variables:
xj ¼ Number of distribution centers installed in location j. j ¼ 1. . .6

Action: Supply supermarkets from locations.
Decision variables:
yj ¼Number of supermarkets supplied from location j; j ¼ 1. . .30
Explicit Specifications

The statement explicitly presents the following specifications:

E1. “install a maximum of 3 product distribution centers”:
E2. “30 supermarkets to be supplied from locations with distribution centers”
E3. “Each location with a distribution center can supply a maximum of

10 supermarkets”
E4. “If the company installs a center in location 3 and another in location 5, it

cannot install any in location 6”

The first three correspond to specifications that are based on data, although they
are explicitly described. The fourth specification corresponds to a logical
proposition.

Constraints:

E1.
P6
j¼1

x j � 3

E2.
P6
j¼1

y j ¼ 30

E3. 8j : yj � 10
E4. IF y3¼1 and y5¼1 THEN y6¼0
Implicit Specifications

Table 6.36 Elements of Illustration 6.42

Elements Set QN

Data

Name Param Type Belonging Value

Locations j ¼ 1. . .6 IU Cost CIj C W . . .

Max_Supermarkets MS I S 5

Distribution
centers

– CI Maximum quantity M I W 3

Supermarkets – CD Quantity S I W 30

MS

6.10 Identification of Specifications 207

• Specifications I1. Based on data: as mentioned, the specifications that could be
based on data have been made explicit.

• Specifications I2. Quantitative selection rules: there are no decision activities
selected.

• Specifications I3. Logical conditions between activities: between the two
activities there is a conditional relationship, which is mentioned in the following
sentence:

“30 supermarkets to be supplied from locations with distribution centers”
We have considered as explicit the norm of supplying a total of 30 supermarkets,

but in this sentence, we also allude to the conditional relationship between the two
activities: in order for a location to supply supermarkets, it must have installed a
distribution center.

Mathematically:
We are going to express it negatively because we are dealing with a proposition of

possibility:

“A location can supply supermarkets if it has a distribution center”
“If a location does not have a center installed, then it cannot supply any supermarket”

8j: IF xj¼ 0 THEN yj¼0
• Specifications I4. Bounds of discrete measurable activities: in the problem we

have two measurable activities. The first of the activities, installing centers in
locations, carries an implicit type I4 specification, since the most sensible thing to
do is to assume that a distribution center will be installed in a physical location at
most. It would be strange to think that there may be more or other specifications.
8j: xj � 1

Regarding the second activity, supplying supermarkets, its measurement is not
limited by a specific value.

• Specifications I5. Flow balance constraints: they do not exist.

References

Bang-Jensen, J., & Gutin, G. (2000). Digraphs: Theory, algorithms and applications. Berlin:
Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1, 269–271.

Graham, R. L., & Hell, P. (1985). On the history of the minimum spanning tree problem. Annals of
the History of Computing, 7(1), 43–57.

Hwang, F. K., Richards, D. S., & Winter, P. (1992). The Steiner tree problem (Annals of discrete
mathematics. 53). North-Holland: Elsevier.

Larrañeta, J., Onieva, L., & Lozano, S. (1995). Métodos Modernos de Gestión de la Producción.
Madrid: Alianza Editorial.

Mitra, G., Lucas, C., & Moody, S. (1994). Tools for reformulating logical forms into zero-one
mixed integer programs. European Journal of Operational Research, 72, 262–276.

208 6 Modelling and Types of Specifications

Öztürk, Ö., Gazibey, Y., & Gerdan, O. (2015). The triple test algorithm to get feasible solution for
transportation problems. International Journal of Numerical Methods and Applications, 13,
37–50.

Romero, D., & Romeijn, H. E. (2005). The generalized assignment Problem and Extensions. In D.-
Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial optimization (Vol. 5, pp. 259–311).
Boston: Springer Kluwer Academic Publishers.

Sarker, R. A., & Newton, C. S. (2007). Optimization modelling. A practical approach. New York:
CRC Press.

Williams, H. P. (1995). Logic applied to integer programming and integer programming applied to
logic. European Journal of Operational Research, 81, 605–616.

Williams, H. P. (2009). Logic and integer programming (pp. 71–103). New York: Springer.
Williams, H. P. (2013). Model building in mathematical programming (5th ed.). Wiley.. ISBN:

978-1-118-44333-0

References 209

	Chapter 6: Modelling and Types of Specifications
	6.1 Introduction
	6.2 Elements on Which the Specification Falls on
	6.3 Quantitative Specifications of Selection
	6.4 Capacity Specifications
	6.4.1 Case 1: Variable Capacity Consumption and Fixed Contribution
	6.4.2 Case 2: Variable Consumption with Fixed and Variable Capacity Contribution
	6.4.3 Case 3: Fixed Capacity Demand and Variable Capacity Contribution

	6.5 Supply of a Demand
	6.6 Bound Imposition Specifications
	6.7 Allocation, Balance, or Equilibrium Specifications
	6.7.1 Explicit Case
	6.7.2 Implicit Case

	6.8 Modelling of Propositional Logic Specifications
	6.8.1 Simple Propositions and Logical Operators
	6.8.2 Reduction of Signs
	6.8.3 Modelling Operators Individually
	6.8.3.1 Negation Operator (NOT;)
	6.8.3.2 Conditional Operator (IF THEN ;)
	6.8.3.3 Biconditional Operator (IF AND ONLY IF;)
	6.8.3.4 Disjunction Operator (OR;)
	6.8.3.5 Conjunction Operator (AND;)
	6.8.3.6 Exclusive Disjunction Operator (EITHER OR;)

	6.8.4 Modelling Compound Propositions with Various Operators
	6.8.4.1 Negation Operator (NOT;):
	6.8.4.2 Disjunction Operator (OR;) and Exclusive Disjunction (EITHER OR;):
	6.8.4.3 Conjunction Operator (AND;)
	6.8.4.4 Conditional and Biconditional Operators

	6.8.5 Data as Propositions
	6.8.6 Logical Propositions That Express Possibility

	6.9 Objective Criterion
	6.9.1 Cost According to Interval of Values
	6.9.2 Cost According to the Value of Another Variable
	6.9.3 Costs Depending on the Deviation of the Variable
	6.9.3.1 Penalty by Excess
	6.9.3.2 Bonus by Excess
	6.9.3.3 Penalty by Default
	6.9.3.4 Bonus by Default

	6.10 Identification of Specifications
	References

