
Chapter 1
Introduction to Modelling in Mathematical
Programming

1.1 Model

In general, a model is a representation of reality (Colin 1973). In that order and in a
more extensive way, Pidd (2010) proposes the model definition as “an explicit and
external representation of part of reality as seen by people who want to use the model
to understand, change, manage and control this part of reality”. On the other hand,
Aracil (1983) defines that “a model constitutes an abstract representation of a certain
aspect of reality and has a structure that is formed by the elements that characterize
the aspect of modelled reality and the relationships between these elements”.

Based on these definitions, we can assume that the objective when creating a
model must be to create a representation as complete and as close as possible to
reality. And the representation of reality is the representation of the elements that
participate in it and their relationships. Based on this, this book aims to be a tool to
build models, mathematical models and, more specifically, mathematical program-
ming models, also called optimization models.

García Sabater (2015) defines mathematical models as “formal models that use
the language of mathematics to describe a system, expressing parameters, variables
and relationships.”

Lowry (1965) distinguishes three types of mathematical models:

Descriptive models: they are used to describe an existing situation. On a set of
variables subject to some mathematical equation, results are obtained that inform
us about a certain situation.

Prediction or forecasting models: they are used for the simulation of future events.
They describe a system over time, which is why some authors include them
within the descriptive models.
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Planning or normative models: they are built based on goals and restrictions. They
pursue the creation of a plan that better reaches a fixed objective and that is going
to be subject to a series of restrictions.

The models of mathematical programming or optimization are planning models
in which mathematical relationships are to be expressed through functions. Model-
ling in the field of mathematical programming corresponds to expressing through
mathematical relationships, called constraints, the specifications of a system where a
series of activities are performed and represented as variables and in which an
optimization criterion or function is followed for its realization. The systems are
formed by a set of related elements that favor both the activities of the system and its
specifications.

Modelling is the tool that allows us to capture the reality of a system within a
mathematical framework, perfectly usable by operational research to find solutions
to the problem posed.

The term optimization is fundamental in the area of mathematical programming.
Optimization consists in the maximization or minimization of a function, known as
the objective function. Mathematical programming looks for valid solutions that
represent the activity of a system and that can be evaluated with respect to that
objective function.

Generally, modelling has been considered a little regulated technique, based on
knowledge of the types of optimization problems and the experience of the modeller.
This book aims to provide a methodology for the construction of a mathematical
model in an integral way, as well as techniques that help us if we want to follow our
own building criteria. The objective is to provide a simple work dynamic that
facilitates the modelling process.

An important aspect in modelling is the description of the system to be modelled.
It is necessary to perfectly identify the elements that are part of the problem and all
the characteristics that are relevant. We should not describe parts of the system that
are not part of the problem. In modelling, it is fundamental to start with an exhaustive
and precise description and, from this, to lead the modeller to a correct definition of
the components of the model.

The book does not deal with the search processes for solutions of the different
resolution methodologies. For this there are countless bibliographical references that
the reader can use.

1.2 Classical Components of a Mathematical Programming
Model

A basic model of mathematical programming consists of four components (Castillo
et al. 2002):
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• Data: the deterministic values that the model handles and that are represented in a
simplified way with the use of parameters.

• Variables: these define the decisions that occur in the problem. The variables
always represent what there is to find out their value. Regarding the value, the
variables of a model can be continuous or integer, and within the integer vari-
ables, a special and important type of variable is distinguished, the binary vari-
ables, which only take the values 1/0 (true/false).

• Constraints: equalities and mathematical inequalities that define the specifica-
tions and rules of the problem. The constraints are mathematical relationships
between the variables and the problem data. The type of relationship determines
the type of model as we will see in Sect. 1.3 of this chapter.

On the other hand, sign constraints associated with the variables of the problem
are also imposed.

• Objective Function: this defines the optimization criterion, which will maximize
or minimize a function.

As we will see next, within the types of mathematical programming models, we
can work with variants regarding the type of data, the linear character of the
mathematical functions, and the number of constraints and objective functions.

1.3 Classification of Mathematical Programming Models

The mathematical programming models or optimization models depend fundamen-
tally on their resolution of the type of variables that are part of it and the linear or
non-linear character of the mathematical expressions that compose it. However,
there are other factors that also define the classification of the models:

• According to the model data:

– Deterministic models: all model data are known and accurate.
– Stochastic models: the data have a random or probabilistic component.

This methodology focuses exclusively on mathematical deterministic models, but
independently of this, some of its techniques for the elaboration of probabilistic
models could be used.

• According to the number of objectives of the problem and the number of
restrictions:

We can work with mathematical models that only have constraints, optimization
problems with an objective function (most common case), or optimization problems
with several objective functions. Similarly, there are optimization problems that do
not have constraints and only have an objective function.
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• According to the type of functions that make up the model and its variables:

– Linear Programming Models: all mathematical expressions are linear.
– Non-linear Programming Models: there are some non-linear expressions,

either in the constraints or in the objective function.

Within the linear models, we distinguish between:

• (Continuous) Linear Programming Models: all the variables are continuous.
• Integer Linear Programming Models: there are integer variables. Within these, the

following are distinguished:

– Pure Integer Linear Programming Models: all are integer variables.
– Mixed Integer Linear Programming Models: there are integer and continuous

variables.
– Binary Linear Programming Models: all variables are binary.

1.4 First Example

In order to quickly introduce the concept of modelling in mathematical program-
ming, let us first take a look at an example of what it takes to obtain a mathematical
model from the description of a system. For our first example, we will consider a
very simplified production system.

Butter Production
Imagine a butter production factory that wants to optimize its daily production of
butter. Two types of butter are made (Sweet and Raw). A kilo of sweet butter gives
the manufacturer a profit of $10 and a kilo of raw a profit of $15. For the production
of butter, two machines are used: a pasteurization machine and a whipping
machine. The daily use time of the pasteurization machine is 3.5 hours and
6 hours for the whipping machine.

The time (in minutes) consumed by each machine to obtain a kilo of butter is
shown in Table 1.1:

To gain simplicity, we ignore the input components for the production of butter
(cream, water, salt, preservatives, etc.) and any cost generated in the process.

Let’s move on to the identification of the basic components of the mathematical
model (variables, constraints, and objective function). The Data component is
displayed, while the constraints and objective function are identified.

1. Variables

As mentioned, the variables of a model represent the actions or activities that
occur in the system and on which it is necessary to decide a value. In our case, the
activity in this system is the production of butter, specifically, the activity of
producing sweet butter and raw butter. What we need to find out is how much
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sweet butter to produce and how much raw butter to produce. To represent these two
actions, we define two variables:

• x1: Amount of sweet butter to be produced
• x2: Amount of raw butter to be produced

Since butter production is measured in kilograms, these two variables will take
continuous values.

We assume that a negative number of kilos of butter cannot be produced, so the
sign of the variables is established as:

x1 � 0

x2 � 0

2. Constraints

The activities of the system require two processes to be carried out: pasteurization
and whipping. Each of them is carried out in a different machine. There are a
pasteurization machine with a working capacity of 3.5 h/day and a whipping
machine with a capacity of 6 h/day.

We need the use of these two machines to carry out our activities. Therefore, we
could consider machines as resources of the production system.

Resources:

– Pasteurization machine
– Whipping machine

The operating specification that these resources impose on the system is its
capacity. Therefore, the total consumption of these resources must not exceed their
capacity. In other words:

Consumption in the pasteurization machine � Capacity of the pasteurization
machine

Consumption in the whipping machine � Capacity of the whipping machine

The consumption of each resource is generated by each of the system’s activities.
Sweet butter production consumes time on each machine, as does the production of
raw butter, according to the values shown in Table 1.1.

Focusing on the pasteurization machine, it is pointed out that:

1 Kg of sweet butter consumes 3 min of pasteurization; therefore:
2 Kg of sweet butter consumes 6 (3 � 2) min of pasteurization.
3 Kg of sweet butter consumes 6 (3 � 3) min of pasteurization.
. . .

Table 1.1 Butter processing
times

Sweet butter Raw butter

Pasteurization 3 3

Whipping 3 6
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so:
x1 Kg of sweet butter consumes 3 � x1 min of pasteurization.
Identical analysis for raw butter generates a consumption of 3x2.
The total consumption in minutes would be expressed therefore as:
3x1 + 3x2 min

The capacity of the pasteurization machine was 3.5 h/day ¼ 210 min/day. We
express capacity and consumption in the same unit, minutes, and the mathematical
expression that defines the constraint of the use of that resource would be as:

3x1 þ 3x2 � 210

In a similar way, the constraint associated with the resource of the whipping
machine would be developed, obtaining as a final set of system restrictions:

– Pasteurization machine ) 3x1 + 8x2 � 210
– Whipping machine ) 3x1 + 6x2 � 360

3. Objective Function

The optimization criterion of the system is the maximization of the benefit of
production. The system has the profit produced by the two activities that constitute
the production process, that is, it is known that a profit of $10 is obtained for the
production of each kilo of sweet butter and $15 for the production of each kilo of raw
butter. Mathematically defining profit expression:

Total Profit ¼ Profit of sweet butter production + Profit of raw butter production
Profit of sweet butter production:

1 Kg of sweet butter ) Profit ¼ $10
2 Kg of sweet butter ) Profit ¼ 10 � 2 ¼ $20
3 Kg of sweet butter ) Profit ¼ 10 � 3 ¼ $30
. . .
x1 Kg of sweet butter ) Profit ¼ $10x1
Profit of raw butter production ¼ 15x1
Total Profit ¼ 10x1 + 15x2

Therefore, the maximization of the benefit is defined as Maximize 10x1 + 15x2.

4. Complete Model

Complete model is defined as:

Maximize 10x1 + 15x2
subject to
3x1 þ 3x2 � 210

3x1 þ 6x2 � 360

x1 � 0

x2 � 0

x1,x2 continuous
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With this we have just expressed a first model with two continuous variables, two
linear constraints and a linear objective function. A solution of the model is any
combination of values of the problem variables (x1, x2) that satisfy the imposed
specifications. Example (x1 ¼ 20, x2 ¼ 30) is a solution that follows the
specifications:

3 � 20þ 3 � 30 � 210 ) 150 � 210

3 � 20þ 6 � 30 � 360 ) 240 � 360

20 � 0

30 � 0

Solution profit : 10� 20þ 15 � 30 ¼ $650

The mission of the resolution methods is to find the optimal solution or one close
to the optimum. As already mentioned, the study of resolution methods is not the
subject of this book. For this problem, the optimal solution is reached for the
production values (x1 ¼ 20, x2¼50) with a profit of $950 (10 � 20 + 15 � 50).

This first example has served to establish the correspondence between System
and Model, about what it means to transform the written description of simple
production processes into a set of mathematical expressions. From the next chapter,
we will define our methodology from a broader perspective.

1.5 Considerations on the Format of a Mathematical Model

The general format of a model can be represented as follows:

Min f Xð Þ
subject to

Gi Xð Þ � bii ¼ 1 . . .m

where:
X: Vector of variables
f(X): Objective function
�: Sign of the constraints [�; ¼; �]
b ¼ (b1. . .bi. . .bm): Vector of independent terms
Gi (X) � bi: Set of m constraints, i ¼ 1 ... m
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An extended representation of this format could be seen as follows:

Min c1x1 þ c2x2 þ . . .þ c jx j þ . . .þ cnxn
s:t

a11x1 þ a12x2 þ . . .þ a1jx j þ . . .þ a1nxn � b1
a21x1 þ a22x2 þ . . .þ a2jx j þ . . .þ a2nxn � b2
. . .

ai1x1 þ ai2x2 þ . . .þ aijx j þ . . .þ ainxn � bi
. . .

am1x1 þ am2x2 þ . . .þ amjx j þ . . .þ amnxn � bm
x1 � 0 x2 � 0 . . . x j � 0 . . . xn � 0

The objective of the problem is considered in a generic way as to minimize the
objective function. The expression of maximizing a function can be transformed into
minimizing by a simple transformation:

Max f xð Þ ) �Min� f xð Þ

The first sign does not affect the resolution of the model, only the value resulting
from the objective function, in which case the sign should be changed, that is, the
value of the objective function of any solution obtained through the minimize
problem will have to change sign to convert it to the maximize problem.

The second sign involves changing the sign of the original objective function. Let
us see the transformation of our first example:

Maximize 10x1 þ 15x2 ) �Minimize� 10x1 þ 15x2ð Þ
) �Minimize� 10x1 � 15x2

The second important aspect in the definition of any model is the sign of the
constraints. Any constraint is limited to the use of three signs: �, ¼, and �.

In literature it is possible to find the generic definition of a model as:

Min f Xð Þ
subject to

Gi Xð Þ � bi⤢i ¼ 1 . . .m

This representation is even more simplified, but equivalent:

In the case of having a constraint with sign Gi (X)� bi, it is sufficient to multiply the
restriction by �1 to convert the sign: �Gi(X) � �bi.

8 1 Introduction to Modelling in Mathematical Programming



In the case of having a constraint with sign ¼, which is equivalent to two similar
constraints, one with sign � and one with sign �: Gi(X) ¼ bi ) Gi(X)� bi;
Gi(X) � bi.

With the signed restriction �, proceed as before: –Gi(X) � –bi.
Therefore, Gi(X) ¼ bi is equivalent to Gi(X) � bi and –Gi(X) � –bi.
So, any model can be expressed with sign �.

On the other hand, the use of the greater-than and the less-than sign is not
allowed. In the case that a system finds a constraint that is defined with those
signs, a small modification must be made to express it correctly. Imagine a generic
constraint Gi(X)<bi. The way of operating is as follows:

If all the variables are integer, the problem is solved by defining as independent
term bi�1, since it is the maximum value that the expression Gi(X) could reach. In
the case of the greater-than sign, Gi(X)>bi, the equivalent constraint is defined as
Gi(X)� bi + 1.

If there are continuous variables, then for the case of <, it may be that the
expression Gi(X) will take values between bi �1 and bi, so the previous transforma-
tion could not be performed. In this case, it is necessary to commit a minimum
controlled error in the constraint, defining the value ε as small as we want, and the
constraint is defined as Gi(X) �bi-ε. In the case of >, Gi(X) � bi+ε.

The adjustment of the value of ε is made according to the precision of the values
that the continuous variables could take and therefore the function Gi(X).

Finally, if an original variable is coming defined as a negative variable xj� 0, then
we do a substitution of variables. We let yi¼�xi . Then yi�0. And we substitute –yi
for xi wherever xi appears in the model. And in the case where xi is a free variable,
unconstrained in sign, we substitute in the model the free variable xi by the difference
of two nonnegative variables, xi ¼ ei � vi, ei�0 and vi�0. If necessary, we can
impose a propositional logic specification in the model so as not to allow the two
variables ei and vi to take positive values.

1.6 Justification of the Use of Mathematical Programming
Models

The advancement of technology and optimization libraries contributes significantly
to the importance of using mathematical models as a way of solving this kind of
problems. For decades, mathematical models have been formulated to represent any
optimization problem, but in most cases, these models have been used as an
insubstantial mathematical contribution, which only allowed for obtaining solutions
for instances with few data. Nowadays, thanks to technology, it is possible to solve
larger problems. For this reason, optimization libraries have proliferated with a more
advanced methodological development, which allow the possibility of solving
optimization problems counting only on the mathematical model, without the
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intervention of the user and without the need to elaborate complex exact or heuristic
methods to obtain solutions.

When we talk about solving mathematical programming models, we talk about
the search for optimal solutions, that is, exact methods of resolution. In an auxiliary
way, mathematical programming can participate in approximate procedures, but on
subproblems of the original one, or using time as a factor in the completion of the
search process of the optimal solution and collecting the best solution found. But in a
primary way, the resolution of mathematical programming models is focused on the
search for an optimal solution.

There are three fundamental factors that affect the choice of how to solve a
problem:

• The computational complexity of the problem: referred to if the problem fits
within the problems of class P (polynomial) or class NP (non-polynomial, and not
class P) (Dean 2016).

• The size of the problem: the size of a problem is determined by the number of
elements involved in it.

• The temporary nature of the problem: there are operational problems for which a
solution is needed in a very limited time. The problem is solved very often, either
because the solution is used in a short period of time or because it is necessary to
test many alternatives with respect to the data. On the other hand, there are tactical
and strategic problems in which the solution is going to be used for a long time
and we are allowed the license to be able to wait a while until obtaining a solution.

The entire optimization problems framed in the computational class P can be
solved optimally without the need of the mathematical model. Above them, the
heuristic resolution does not fit, regardless of the size and temporary nature of the
problem. Likewise, the use of the model to obtain optimal solutions is also usually a
feasible option.

The problems of linear programming, only with continuous variables, are con-
sidered non-complex problems and are solved optimally with the mathematical
model. All existing exact procedures are standards that make use of the model.

When the problem is not considered class P and it is considered NP, then the size
of the problem and its temporary nature come into play. In the first place, it must be
mentioned that each optimization problem in this typology needs its own analysis
regarding the resolution time to obtain optimal solutions. There are NP problems for
which the mathematical model presents very good behavior, even for instances of a
considerable size. On the other hand, there are others where, even for a small size,
the exact resolution procedure uses a lot of time (e.g., many scheduling problems).
For these types of problems, the option of obtaining the optimal solution requires the
mathematical model in the vast majority of cases. There is a very limited group on
which other exact techniques can be used, such as dynamic programming, but this
possibility is very limited.

The other resolution option for NP problems is the heuristic resolution, for which
we do not need the mathematical model. It is the option to choose when there are
time limitations and the exact method uses too much time. It may even be the best
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option if the system data are unreliable or simply because it is not so necessary to
obtain the optimal solution.

Figure 1.1 summarizes the resolution options for an optimization problem.
Real systems tend to have a large volume of data and specifications. Almost all of

them usually have a computational complexity of NP type. Class P problems
represent a very small percentage of optimization problems. All this contributes to
the fact that nowadays heuristic methodologies are the first option for solving a
problem. In any case, I would always recommend the use of the mathematical model
and the exact resolution with optimization libraries as a first resource to try to solve a
problem.

From a futuristic perspective, both the arrival of increasingly faster processors
and the evolution and the rise of computer networks that allow parallel and distrib-
uted computing will contribute to the exact resolution of problems using existing
techniques (such as the branch and bound method) being an increasingly important
option.

It is essential to model with the resolution in mind and to provide a model that
obtains solutions as quickly as possible, so to make the most appropriate model for
the later resolution is a job for the modeller.

Linear Optimization Problem

Continuous Integer

Exact resolution

Model

Class P Class NP

Exact Resolution

Description Model

Exact Resolution Approximate 
Resolution

Model Description

Identify type
(Continuous/Integer)

Identify class 
(P/NP)

Fig. 1.1 Resolution alternatives
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