
International Series in
Operations Research & Management Science

José Manuel García Sánchez

Modelling in
Mathematical
Programming
Methodology and Techniques

International Series in Operations Research &
Management Science

Volume 298

Series Editor

Camille C. Price
Department of Computer Science, Stephen F. Austin State University,
Nacogdoches, TX, USA

Associate Editor

Joe Zhu
Foisie Business School, Worcester Polytechnic Institute, Worcester, MA, USA

Founding Editor

Frederick S. Hillier
Stanford University, Stanford, CA, USA

More information about this series at http://www.springer.com/series/6161

http://www.springer.com/series/6161

José Manuel García Sánchez

Modelling in Mathematical
Programming
Methodology and Techniques

José Manuel García Sánchez
IO and Business Management
University of Seville
Sevilla, Spain

ISSN 0884-8289 ISSN 2214-7934 (electronic)
International Series in Operations Research & Management Science
ISBN 978-3-030-57249-5 ISBN 978-3-030-57250-1 (eBook)
https://doi.org/10.1007/978-3-030-57250-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021, Corrected Publication 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-57250-1

To Carmen, for her unconditional support.
To Laura and Sara.
To my family.

Preface

Generally, modelling has been considered a little regulated technique, based on
knowledge of the types of optimization problems and the experience of the modeler.
This book presents the first methodology for the building of a mathematical model in
an integral way, as well as new techniques that help us if we want to follow our own
building criteria. The objective is to provide a simple work dynamic that facilitates
the modelling process.

The book is a basic tool for learning to model in mathematical programming,
from models without much complexity to complex system models. The book pre-
sents a structure the models, and complex constraints models more easily. It is a
basic modelling guide for any system, and explains models already existing in the
literature.

The book presents a structure that guides the orderly learning of the components
that the methodology establishes in an optimization problem, within a system:

1. The elements: all the actors that participate in the system. They are diverse in
nature, from people, tools, places, time, etc. They usually have associated infor-
mation that we will call data, and that must be numerical information or to be
defined numerically.

The elements participate in the actions that occur in the system and support its
specifications. They are closely related to the activities that occur in the system, and
the joint identification of both components is sometimes effective.

The elements are configured taking into account their quantitative nature, their
associated data and their reference in the specifications. The quantitative nature of
the elements will be used as a tool to help define decision activities. It is probably an
unnecessary tool for an experienced modeler, but it may be useful for people who
start modelling in mathematical programming.

2. Decision activities: direct actions that occur in the system for which it is necessary
to decide their value, which is not determined. They are associated with the
elements. The decision activities are simple actions. They cannot be the result

vii

of a logical calculation, simple function or combination of other decision activ-
ities. Decision activities define the main variables of a model.

3. Calculations: based on the decision activities, a system may need additional
information that is obtained from these decisions through a calculation process.
Calculations can be generated from other calculations, not only from the base
decisions of the system. The calculations are also represented as variables.

We differentiate between decision variables and calculations. This helps us to
correctly model the relationship between variables. This is one of the important
contributions of the book.

Expressing the relationship with the variables on which it depends can be through
a mathematical function, as a result of a logical proposition, or acting as a bound of
those variables. According to this, we have three types of calculations:

– Auxiliary calculations: represent the calculations obtained from the result of a
linear mathematical function. They are used for a concept of comfort and clarity
in the construction of the model, without being obliged to use it. They give rise to
the auxiliary variables of a problem.

– Logical calculations: they are used to obtain the result of a logical proposition. Its
use is mandatory. The variables generated will be referred to as logical variables.

– Upper/lower bound calculations: they are used to obtain the upper or lower bound
of a set of variable values. The generated variables will be referred to as boundary
variables. Their use is also necessary.

4. Specifications: regulations, impositions or actions of defined value that must be
fulfilled in the system. They give rise to the constraints of the problem, but
specification should not be confused with constraint. Constraint is a mathematical
expression whereas specification is a statement that the system must fulfil and that
is implemented in one or more constraints.

We provide a classification of the specifications of a system, where we highlight,
as another important contribution, a complete guide for the formulation of specifi-
cations based on propositional logic. These types of specifications add complexity to
the problems. The modelling guide reduces complexity in the modelling of this type
of specification, as well as help to understand modelled problems without the use of
a methodology. From the defined components, we will learn to identify the implicit
specifications of a system.

5. Objective criterion: this can be understood as one more specification of the
system. It expresses the criteria that guides the resolution of the system. The
objective will give rise to a linear function of costs, costs that are associated to the
elements of the system and that is known as Objective Function. In certain
objectives, the criterion will also lead to the use of calculations and the definition
of specific constraints. The book will present the modelling of all possible
objectives that may arise in optimization problems.

viii Preface

This book follows a sequential approach to the learning of each of the compo-
nents. However, to explain certain concepts that will appear throughout the meth-
odology, it will sometimes be necessary to refer to components that have not yet
been seen. We do this as simply as possible, leaving the most advanced concepts for
when all the components have been studied.

Sevilla, Spain José Manuel García Sánchez

Preface ix

Contents

1 Introduction to Modelling in Mathematical Programming 1

2 Structure of a Mathematical Programming Model 13

3 The Elements of a System . 25

4 Decision Activities . 79

5 Calculations in a System .113

6 Modelling and Types of Specifications .135

7 The Quantitative Nature of the Elements .211

8 Practical Examples .259

Correction to: Modelling in Mathematical Programming C1

xi

Chapter 1
Introduction to Modelling in Mathematical
Programming

1.1 Model

In general, a model is a representation of reality (Colin 1973). In that order and in a
more extensive way, Pidd (2010) proposes the model definition as “an explicit and
external representation of part of reality as seen by people who want to use the model
to understand, change, manage and control this part of reality”. On the other hand,
Aracil (1983) defines that “a model constitutes an abstract representation of a certain
aspect of reality and has a structure that is formed by the elements that characterize
the aspect of modelled reality and the relationships between these elements”.

Based on these definitions, we can assume that the objective when creating a
model must be to create a representation as complete and as close as possible to
reality. And the representation of reality is the representation of the elements that
participate in it and their relationships. Based on this, this book aims to be a tool to
build models, mathematical models and, more specifically, mathematical program-
ming models, also called optimization models.

García Sabater (2015) defines mathematical models as “formal models that use
the language of mathematics to describe a system, expressing parameters, variables
and relationships.”

Lowry (1965) distinguishes three types of mathematical models:

Descriptive models: they are used to describe an existing situation. On a set of
variables subject to some mathematical equation, results are obtained that inform
us about a certain situation.

Prediction or forecasting models: they are used for the simulation of future events.
They describe a system over time, which is why some authors include them
within the descriptive models.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_1#DOI

Planning or normative models: they are built based on goals and restrictions. They
pursue the creation of a plan that better reaches a fixed objective and that is going
to be subject to a series of restrictions.

The models of mathematical programming or optimization are planning models
in which mathematical relationships are to be expressed through functions. Model-
ling in the field of mathematical programming corresponds to expressing through
mathematical relationships, called constraints, the specifications of a system where a
series of activities are performed and represented as variables and in which an
optimization criterion or function is followed for its realization. The systems are
formed by a set of related elements that favor both the activities of the system and its
specifications.

Modelling is the tool that allows us to capture the reality of a system within a
mathematical framework, perfectly usable by operational research to find solutions
to the problem posed.

The term optimization is fundamental in the area of mathematical programming.
Optimization consists in the maximization or minimization of a function, known as
the objective function. Mathematical programming looks for valid solutions that
represent the activity of a system and that can be evaluated with respect to that
objective function.

Generally, modelling has been considered a little regulated technique, based on
knowledge of the types of optimization problems and the experience of the modeller.
This book aims to provide a methodology for the construction of a mathematical
model in an integral way, as well as techniques that help us if we want to follow our
own building criteria. The objective is to provide a simple work dynamic that
facilitates the modelling process.

An important aspect in modelling is the description of the system to be modelled.
It is necessary to perfectly identify the elements that are part of the problem and all
the characteristics that are relevant. We should not describe parts of the system that
are not part of the problem. In modelling, it is fundamental to start with an exhaustive
and precise description and, from this, to lead the modeller to a correct definition of
the components of the model.

The book does not deal with the search processes for solutions of the different
resolution methodologies. For this there are countless bibliographical references that
the reader can use.

1.2 Classical Components of a Mathematical Programming
Model

A basic model of mathematical programming consists of four components (Castillo
et al. 2002):

2 1 Introduction to Modelling in Mathematical Programming

• Data: the deterministic values that the model handles and that are represented in a
simplified way with the use of parameters.

• Variables: these define the decisions that occur in the problem. The variables
always represent what there is to find out their value. Regarding the value, the
variables of a model can be continuous or integer, and within the integer vari-
ables, a special and important type of variable is distinguished, the binary vari-
ables, which only take the values 1/0 (true/false).

• Constraints: equalities and mathematical inequalities that define the specifica-
tions and rules of the problem. The constraints are mathematical relationships
between the variables and the problem data. The type of relationship determines
the type of model as we will see in Sect. 1.3 of this chapter.

On the other hand, sign constraints associated with the variables of the problem
are also imposed.

• Objective Function: this defines the optimization criterion, which will maximize
or minimize a function.

As we will see next, within the types of mathematical programming models, we
can work with variants regarding the type of data, the linear character of the
mathematical functions, and the number of constraints and objective functions.

1.3 Classification of Mathematical Programming Models

The mathematical programming models or optimization models depend fundamen-
tally on their resolution of the type of variables that are part of it and the linear or
non-linear character of the mathematical expressions that compose it. However,
there are other factors that also define the classification of the models:

• According to the model data:

– Deterministic models: all model data are known and accurate.
– Stochastic models: the data have a random or probabilistic component.

This methodology focuses exclusively on mathematical deterministic models, but
independently of this, some of its techniques for the elaboration of probabilistic
models could be used.

• According to the number of objectives of the problem and the number of
restrictions:

We can work with mathematical models that only have constraints, optimization
problems with an objective function (most common case), or optimization problems
with several objective functions. Similarly, there are optimization problems that do
not have constraints and only have an objective function.

1.3 Classification of Mathematical Programming Models 3

• According to the type of functions that make up the model and its variables:

– Linear Programming Models: all mathematical expressions are linear.
– Non-linear Programming Models: there are some non-linear expressions,

either in the constraints or in the objective function.

Within the linear models, we distinguish between:

• (Continuous) Linear Programming Models: all the variables are continuous.
• Integer Linear Programming Models: there are integer variables. Within these, the

following are distinguished:

– Pure Integer Linear Programming Models: all are integer variables.
– Mixed Integer Linear Programming Models: there are integer and continuous

variables.
– Binary Linear Programming Models: all variables are binary.

1.4 First Example

In order to quickly introduce the concept of modelling in mathematical program-
ming, let us first take a look at an example of what it takes to obtain a mathematical
model from the description of a system. For our first example, we will consider a
very simplified production system.

Butter Production
Imagine a butter production factory that wants to optimize its daily production of
butter. Two types of butter are made (Sweet and Raw). A kilo of sweet butter gives
the manufacturer a profit of $10 and a kilo of raw a profit of $15. For the production
of butter, two machines are used: a pasteurization machine and a whipping
machine. The daily use time of the pasteurization machine is 3.5 hours and
6 hours for the whipping machine.

The time (in minutes) consumed by each machine to obtain a kilo of butter is
shown in Table 1.1:

To gain simplicity, we ignore the input components for the production of butter
(cream, water, salt, preservatives, etc.) and any cost generated in the process.

Let’s move on to the identification of the basic components of the mathematical
model (variables, constraints, and objective function). The Data component is
displayed, while the constraints and objective function are identified.

1. Variables

As mentioned, the variables of a model represent the actions or activities that
occur in the system and on which it is necessary to decide a value. In our case, the
activity in this system is the production of butter, specifically, the activity of
producing sweet butter and raw butter. What we need to find out is how much

4 1 Introduction to Modelling in Mathematical Programming

sweet butter to produce and how much raw butter to produce. To represent these two
actions, we define two variables:

• x1: Amount of sweet butter to be produced
• x2: Amount of raw butter to be produced

Since butter production is measured in kilograms, these two variables will take
continuous values.

We assume that a negative number of kilos of butter cannot be produced, so the
sign of the variables is established as:

x1 � 0

x2 � 0

2. Constraints

The activities of the system require two processes to be carried out: pasteurization
and whipping. Each of them is carried out in a different machine. There are a
pasteurization machine with a working capacity of 3.5 h/day and a whipping
machine with a capacity of 6 h/day.

We need the use of these two machines to carry out our activities. Therefore, we
could consider machines as resources of the production system.

Resources:

– Pasteurization machine
– Whipping machine

The operating specification that these resources impose on the system is its
capacity. Therefore, the total consumption of these resources must not exceed their
capacity. In other words:

Consumption in the pasteurization machine � Capacity of the pasteurization
machine

Consumption in the whipping machine � Capacity of the whipping machine

The consumption of each resource is generated by each of the system’s activities.
Sweet butter production consumes time on each machine, as does the production of
raw butter, according to the values shown in Table 1.1.

Focusing on the pasteurization machine, it is pointed out that:

1 Kg of sweet butter consumes 3 min of pasteurization; therefore:
2 Kg of sweet butter consumes 6 (3 � 2) min of pasteurization.
3 Kg of sweet butter consumes 6 (3 � 3) min of pasteurization.
. . .

Table 1.1 Butter processing
times

Sweet butter Raw butter

Pasteurization 3 3

Whipping 3 6

1.4 First Example 5

so:
x1 Kg of sweet butter consumes 3 � x1 min of pasteurization.
Identical analysis for raw butter generates a consumption of 3x2.
The total consumption in minutes would be expressed therefore as:
3x1 + 3x2 min

The capacity of the pasteurization machine was 3.5 h/day ¼ 210 min/day. We
express capacity and consumption in the same unit, minutes, and the mathematical
expression that defines the constraint of the use of that resource would be as:

3x1 þ 3x2 � 210

In a similar way, the constraint associated with the resource of the whipping
machine would be developed, obtaining as a final set of system restrictions:

– Pasteurization machine) 3x1 + 8x2 � 210
– Whipping machine) 3x1 + 6x2 � 360

3. Objective Function

The optimization criterion of the system is the maximization of the benefit of
production. The system has the profit produced by the two activities that constitute
the production process, that is, it is known that a profit of $10 is obtained for the
production of each kilo of sweet butter and $15 for the production of each kilo of raw
butter. Mathematically defining profit expression:

Total Profit ¼ Profit of sweet butter production + Profit of raw butter production
Profit of sweet butter production:

1 Kg of sweet butter) Profit ¼ $10
2 Kg of sweet butter) Profit ¼ 10 � 2 ¼ $20
3 Kg of sweet butter) Profit ¼ 10 � 3 ¼ $30
. . .
x1 Kg of sweet butter) Profit ¼ $10x1
Profit of raw butter production ¼ 15x1
Total Profit ¼ 10x1 + 15x2

Therefore, the maximization of the benefit is defined as Maximize 10x1 + 15x2.

4. Complete Model

Complete model is defined as:

Maximize 10x1 + 15x2
subject to
3x1 þ 3x2 � 210

3x1 þ 6x2 � 360

x1 � 0

x2 � 0

x1,x2 continuous

6 1 Introduction to Modelling in Mathematical Programming

With this we have just expressed a first model with two continuous variables, two
linear constraints and a linear objective function. A solution of the model is any
combination of values of the problem variables (x1, x2) that satisfy the imposed
specifications. Example (x1 ¼ 20, x2 ¼ 30) is a solution that follows the
specifications:

3 � 20þ 3 � 30 � 210) 150 � 210

3 � 20þ 6 � 30 � 360) 240 � 360

20 � 0

30 � 0

Solution profit : 10� 20þ 15 � 30 ¼ $650

The mission of the resolution methods is to find the optimal solution or one close
to the optimum. As already mentioned, the study of resolution methods is not the
subject of this book. For this problem, the optimal solution is reached for the
production values (x1 ¼ 20, x2¼50) with a profit of $950 (10 � 20 + 15 � 50).

This first example has served to establish the correspondence between System
and Model, about what it means to transform the written description of simple
production processes into a set of mathematical expressions. From the next chapter,
we will define our methodology from a broader perspective.

1.5 Considerations on the Format of a Mathematical Model

The general format of a model can be represented as follows:

Min f Xð Þ
subject to

Gi Xð Þ � bii ¼ 1 . . .m

where:
X: Vector of variables
f(X): Objective function
�: Sign of the constraints [�; ¼; �]
b ¼ (b1. . .bi. . .bm): Vector of independent terms
Gi (X) � bi: Set of m constraints, i ¼ 1 ... m

1.5 Considerations on the Format of a Mathematical Model 7

An extended representation of this format could be seen as follows:

Min c1x1 þ c2x2 þ . . .þ c jx j þ . . .þ cnxn
s:t

a11x1 þ a12x2 þ . . .þ a1jx j þ . . .þ a1nxn � b1
a21x1 þ a22x2 þ . . .þ a2jx j þ . . .þ a2nxn � b2
. . .

ai1x1 þ ai2x2 þ . . .þ aijx j þ . . .þ ainxn � bi
. . .

am1x1 þ am2x2 þ . . .þ amjx j þ . . .þ amnxn � bm
x1 � 0 x2 � 0 . . . x j � 0 . . . xn � 0

The objective of the problem is considered in a generic way as to minimize the
objective function. The expression of maximizing a function can be transformed into
minimizing by a simple transformation:

Max f xð Þ) �Min� f xð Þ

The first sign does not affect the resolution of the model, only the value resulting
from the objective function, in which case the sign should be changed, that is, the
value of the objective function of any solution obtained through the minimize
problem will have to change sign to convert it to the maximize problem.

The second sign involves changing the sign of the original objective function. Let
us see the transformation of our first example:

Maximize 10x1 þ 15x2) �Minimize� 10x1 þ 15x2ð Þ
) �Minimize� 10x1 � 15x2

The second important aspect in the definition of any model is the sign of the
constraints. Any constraint is limited to the use of three signs: �, ¼, and �.

In literature it is possible to find the generic definition of a model as:

Min f Xð Þ
subject to

Gi Xð Þ � bi⤢i ¼ 1 . . .m

This representation is even more simplified, but equivalent:

In the case of having a constraint with sign Gi (X)� bi, it is sufficient to multiply the
restriction by �1 to convert the sign: �Gi(X) � �bi.

8 1 Introduction to Modelling in Mathematical Programming

In the case of having a constraint with sign ¼, which is equivalent to two similar
constraints, one with sign � and one with sign �: Gi(X) ¼ bi) Gi(X)� bi;
Gi(X) � bi.

With the signed restriction �, proceed as before: –Gi(X) � –bi.
Therefore, Gi(X) ¼ bi is equivalent to Gi(X) � bi and –Gi(X) � –bi.
So, any model can be expressed with sign �.

On the other hand, the use of the greater-than and the less-than sign is not
allowed. In the case that a system finds a constraint that is defined with those
signs, a small modification must be made to express it correctly. Imagine a generic
constraint Gi(X)<bi. The way of operating is as follows:

If all the variables are integer, the problem is solved by defining as independent
term bi�1, since it is the maximum value that the expression Gi(X) could reach. In
the case of the greater-than sign, Gi(X)>bi, the equivalent constraint is defined as
Gi(X)� bi + 1.

If there are continuous variables, then for the case of <, it may be that the
expression Gi(X) will take values between bi �1 and bi, so the previous transforma-
tion could not be performed. In this case, it is necessary to commit a minimum
controlled error in the constraint, defining the value ε as small as we want, and the
constraint is defined as Gi(X) �bi-ε. In the case of >, Gi(X) � bi+ε.

The adjustment of the value of ε is made according to the precision of the values
that the continuous variables could take and therefore the function Gi(X).

Finally, if an original variable is coming defined as a negative variable xj� 0, then
we do a substitution of variables. We let yi¼�xi . Then yi�0. And we substitute –yi
for xi wherever xi appears in the model. And in the case where xi is a free variable,
unconstrained in sign, we substitute in the model the free variable xi by the difference
of two nonnegative variables, xi ¼ ei � vi, ei�0 and vi�0. If necessary, we can
impose a propositional logic specification in the model so as not to allow the two
variables ei and vi to take positive values.

1.6 Justification of the Use of Mathematical Programming
Models

The advancement of technology and optimization libraries contributes significantly
to the importance of using mathematical models as a way of solving this kind of
problems. For decades, mathematical models have been formulated to represent any
optimization problem, but in most cases, these models have been used as an
insubstantial mathematical contribution, which only allowed for obtaining solutions
for instances with few data. Nowadays, thanks to technology, it is possible to solve
larger problems. For this reason, optimization libraries have proliferated with a more
advanced methodological development, which allow the possibility of solving
optimization problems counting only on the mathematical model, without the

1.6 Justification of the Use of Mathematical Programming Models 9

intervention of the user and without the need to elaborate complex exact or heuristic
methods to obtain solutions.

When we talk about solving mathematical programming models, we talk about
the search for optimal solutions, that is, exact methods of resolution. In an auxiliary
way, mathematical programming can participate in approximate procedures, but on
subproblems of the original one, or using time as a factor in the completion of the
search process of the optimal solution and collecting the best solution found. But in a
primary way, the resolution of mathematical programming models is focused on the
search for an optimal solution.

There are three fundamental factors that affect the choice of how to solve a
problem:

• The computational complexity of the problem: referred to if the problem fits
within the problems of class P (polynomial) or class NP (non-polynomial, and not
class P) (Dean 2016).

• The size of the problem: the size of a problem is determined by the number of
elements involved in it.

• The temporary nature of the problem: there are operational problems for which a
solution is needed in a very limited time. The problem is solved very often, either
because the solution is used in a short period of time or because it is necessary to
test many alternatives with respect to the data. On the other hand, there are tactical
and strategic problems in which the solution is going to be used for a long time
and we are allowed the license to be able to wait a while until obtaining a solution.

The entire optimization problems framed in the computational class P can be
solved optimally without the need of the mathematical model. Above them, the
heuristic resolution does not fit, regardless of the size and temporary nature of the
problem. Likewise, the use of the model to obtain optimal solutions is also usually a
feasible option.

The problems of linear programming, only with continuous variables, are con-
sidered non-complex problems and are solved optimally with the mathematical
model. All existing exact procedures are standards that make use of the model.

When the problem is not considered class P and it is considered NP, then the size
of the problem and its temporary nature come into play. In the first place, it must be
mentioned that each optimization problem in this typology needs its own analysis
regarding the resolution time to obtain optimal solutions. There are NP problems for
which the mathematical model presents very good behavior, even for instances of a
considerable size. On the other hand, there are others where, even for a small size,
the exact resolution procedure uses a lot of time (e.g., many scheduling problems).
For these types of problems, the option of obtaining the optimal solution requires the
mathematical model in the vast majority of cases. There is a very limited group on
which other exact techniques can be used, such as dynamic programming, but this
possibility is very limited.

The other resolution option for NP problems is the heuristic resolution, for which
we do not need the mathematical model. It is the option to choose when there are
time limitations and the exact method uses too much time. It may even be the best

10 1 Introduction to Modelling in Mathematical Programming

option if the system data are unreliable or simply because it is not so necessary to
obtain the optimal solution.

Figure 1.1 summarizes the resolution options for an optimization problem.
Real systems tend to have a large volume of data and specifications. Almost all of

them usually have a computational complexity of NP type. Class P problems
represent a very small percentage of optimization problems. All this contributes to
the fact that nowadays heuristic methodologies are the first option for solving a
problem. In any case, I would always recommend the use of the mathematical model
and the exact resolution with optimization libraries as a first resource to try to solve a
problem.

From a futuristic perspective, both the arrival of increasingly faster processors
and the evolution and the rise of computer networks that allow parallel and distrib-
uted computing will contribute to the exact resolution of problems using existing
techniques (such as the branch and bound method) being an increasingly important
option.

It is essential to model with the resolution in mind and to provide a model that
obtains solutions as quickly as possible, so to make the most appropriate model for
the later resolution is a job for the modeller.

Linear Optimization Problem

Continuous Integer

Exact resolution

Model

Class P Class NP

Exact Resolution

Description Model

Exact Resolution Approximate
Resolution

Model Description

Identify type
(Continuous/Integer)

Identify class
(P/NP)

Fig. 1.1 Resolution alternatives

1.6 Justification of the Use of Mathematical Programming Models 11

References

Aracil, J. (1983). Introducción a la dinámica de sistemas. Madrid: Alianza Editorial.
Castillo, E., Conejo, P., & Pedregal P. (2002). Formulación y resolución de modelos de

programación matemática en ingeniería y ciencia. Universidad de Castilla La Mancha
Ediciones.

Colin, L. (1973).Models in planning: An introduction to the use of quantitative models in planning.
Oxford: Pergamon Press.

Dean, W. (2016). Computational complexity theory. In The Stanford encyclopedia of philosophy.
Stanford: Metaphysics Research Lab, Stanford University.

García Sabater, J. P. (2015). http://personales.upv.es/jpgarcia/LinkedDocuments/
modeladomatematico.pdf. Modelado y Resolución de Problemas de Organización Industrial
mediante Programación Matemática Lineal. Accessed May, 2020.

Lowry, I. S. (1965). A short course in model design. Journal of the American Institute of Planners,
31, 158.

Pidd, M. (2010). Tools for thinking: Modelling in management science (3rd ed.). Chichester: Wiley.

12 1 Introduction to Modelling in Mathematical Programming

http://personales.upv.es/jpgarcia/LinkedDocuments/modeladomatematico.pdf
http://personales.upv.es/jpgarcia/LinkedDocuments/modeladomatematico.pdf

Chapter 2
Structure of a Mathematical Programming
Model

2.1 Environment of an Optimization Problem

Optimization problems arise within diverse environments of any nature. In this book
we will denominate the environment as a system, so that the system is where the
optimization problem is defined, and it is the system that has the elements that
participate in the problem, the specifications and the criterion that directs the
optimization.

Aracil and Gordillo (1997) refer to the system as an aspect of reality endowed
with a certain complexity because it consists of interacting parts. We can speak of a
system when we refer to any organized environment on which a specific manage-
ment of its elements is proposed, whose objective is to achieve goals under an
objective criterion. In our environment, we will work with static systems, those in
which the information of their elements does not change over time. There are also
dynamic systems, which are solved with other techniques.

Static systems can be considered and solved by optimization techniques. The
objective of this methodology is to convert the description of the system, that is, the
description of an optimization problem, to a mathematical language usable by
optimization techniques in mathematical programming, which is known in terms
of operational research such as “modelling the problem.”

Traditionally, whenever an optimization problem is defined, a management
situation is described within a given environment. The model is the mathematical
representation of the problem. It is perfectly admissible, and just as appropriate, to
refer to the term “model the system” instead of “model the problem,” meaning
“modelling the system,” how to model its operation or model its management. The
result in any case will be a mathematical model that we can refer to as a mathematical
programming model or optimization model, which will later be solved to obtain a
solution for its management.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_2#DOI

2.2 Components of an Optimization Problem

In a system where an optimization problem is defined, the following components are
distinguished:

Elements
The elements are all the actors that participate in the system. They are diverse in
nature, from people, tools, places, time, etc.

They usually have associated information that we will call data, and that must be
numerical information or to be defined numerically.

The elements participate in the actions that occur in the system and also support
its specifications. They are closely related to the activities that occur in the system,
and sometimes the joint identification of both components is effective.

The elements are configured taking into account their nature, their associated
data, and their reference in the specifications.

Decision Activities
These are direct actions that occur in the system for which it is necessary to decide
their value, which is not determined. They are associated with the elements. The
decision activities are simple actions. They cannot be the result of a logical calcu-
lation, simple function, or combination of other decision activities.

Decision activities define the main variables of a model. The values that a variable
can have will be a binary value (1/0), an integer value, or a continuous value.

Calculations
Based on the decision activities, a system may need additional information that is
obtained from these decisions through a calculation process. Even calculations can
be generated from other calculations, not only from the base decisions of the system.
The calculations are also represented as variables, and in classical formulation, they
are also considered decision variables, although they are really only decision vari-
ables for the resolution processes not for the operation of a system.

The way of expressing the relationship with the variables on which it depends can
be through a mathematical function, as a result of a logical proposition, or acting as a
bound of those variables. According to this, we will have three types of calculations:

Auxiliary Calculations

Represent the calculations obtained from the result of a linear mathematical
function. Normally, they are used for a concept of comfort and clarity in the
construction of the model, without being obliged to use it, but they are mandatory
when we want to discretize the value of a function, that is, when we want the value of
a function to be integer. They give rise to the auxiliary variables of a problem.

Logical Calculations

They are used to obtain the result of a logical proposition (Klement 2006). Its use
is mandatory. The variables generated will be referred to as logical variables.

14 2 Structure of a Mathematical Programming Model

Lower/Upper Bound Calculations

They are used to obtain the upper or lower bound of a set of variables. Its use is
also necessary.

Specifications
Regulations, impositions or limitations that must be fulfilled in the system. They
give rise to the constraints of the problem, but specification should not be confused
with constraint. Constraint is a single mathematical expression, whereas the speci-
fication is a characteristic that the system must fulfill and that is implemented in one
or more constraints.

Objective Criterion
This can be understood as one more specification of the system, expressing the
criteria that guide the resolution of the system. The objective will give rise to a linear
function of costs, costs that are associated to the elements of the system and that is
known as objective function. In certain objectives, the criterion will also lead to the
use of calculations and the definition of specific constraints.

This book will follow a sequential approach to the learning of each of the
components, practically following the order presented now. However, to explain
certain concepts that will appear throughout the methodology, it will sometimes be
necessary to refer to components that have not yet been seen. We will try to do this as
simply as possible, leaving the most advanced concepts for when all the components
have been studied.

Figure 2.1 represents the relationships between the different components. The
elements, owners of the system information, relate to all the components of the
system with a special influence on the activities. On them fall the specifications,
calculations, and the optimization criterion. And these components also determine
the typology of the elements, so the relationship is bidirectional.

The decision activities participate in the specifications and the objective criterion.
The calculations that are defined as variables also participate in specifications and the
objective function. They can be necessary to define specifications and the objective
criterion. Likewise, the definition of a calculation is represented as a specification
(Fig. 2.1).

Relationship of Proposed Components and Classical Components
As is logical, the classical components (García Sabater 2015; Castillo et al. 2002) are
quite equivalent to the components proposed in this methodology, with hints that are
displayed in the following figure (Fig. 2.2):

The elements provide all the data, parameters and subscripts that the problem will
have, with an organized structure that will allow its subsequent implementation in an
optimization library. The elements are also used with special relevance in the
definition of problem decision activities, and its quantitative nature will determine
the type of variable. The quantitative nature will depend on its ability to be measured
in the system, its degree of determination, its data, and how the element is identified
in the system.

2.2 Components of an Optimization Problem 15

The decision activities correspond to variables of the problem. The calculations
also generate variables and always have associated constraints. The specifications, as
already mentioned, define constraints. The objective criterion defines the objective
function and may also come with constraints.

2.3 Examples

To illustrate the components of a system, let us look at a couple of simple examples.
The first one was modelled in Chap. 1. We use it here simply to repeat its modelling
but with the components of this methodology. The second system is a sales system.
Both will be used as illustrations for many explanations in future chapters.

Elements

Decision Activities

Calculations

Specifications Objective criterion

Fig. 2.1 Relationship between the proposed components

Elements

Decision Activities

Calculations

Specifications

Objective criterion

Variables

Constraints

Objective function

PROPOSED COMPONENTS CLASSICAL COMPONENTS

Data and parameters

Fig. 2.2 Relationship between components

16 2 Structure of a Mathematical Programming Model

Illustration 2.1: Production of Butter
A butter production factory wants to optimize its daily production of butter. Two
types of butter are made (Sweet and Raw). A kilo of sweet butter gives the manu-
facturer a profit of $10 and a kilo of raw a profit of $15. For the production of butter,
two machines are used, a pasteurization machine and a whipping machine. The
daily use time of the pasteurization machine is 3.5 h and 6 h for the whipping
machine.

The time (in minutes) consumed by each machine to obtain a kilo of butter is
shown in the following table:

Table. Butter processing times (in minutes)

Sweet butter Raw butter
Pasteurization 3 3

Whipping 3 6

1. Elements

Analyzing the statement, we can identify the following participating elements:
Regarding the resources used in production:

• Pasteurization machine: The numerical information associated with this element
in the system is:

– The usage time ¼ 3.5 h.
– The time that a kilo of sweet butter uses in the machine ¼ 3 min.
– The time spent in the machine by kilo of raw butter ¼ 3 min.

• Whipping machine: The associated information coincides with the information of
the pasteurization machine, that is, the time of use (6 h), the time used by a kilo of
sweet butter (3 min), and the time used by a kilo of raw butter (6 min).

Regarding the concepts produced in the system:

• Sweet Butter: The information of this element in the system has already been
partly reflected, and it is the time that a kilo of this element needs in each machine.
In addition to these times, there is also a profit per kilo ¼ $10.

• Raw Butter: Element similar to the other butter and with the same information.

We could also consider as an element another actor that appears in the text, the
factory itself, which would play the role of system. We can verify that it does not
have any characteristic that is translated into a certain value, nor will there be any
activity that must necessarily be associated with it. In any case, its definition as an
element does not complicate the elaboration of the model.

2. Decision Activities

To recognize the decision activities, it is necessary to explore the actions that take
place in the system. To these actions we must assign a type of value (binary, integer,
or continuous) and that the value of the action is not determined.

2.3 Examples 17

The methodology we will use from the next chapter to obtain all the components
of the system will allow us to obtain the activities and assign them the appropriate
type of value. In our example we identify as decision activities:

Production of sweet butter

It is an action associated with the sweet butter element.
It is necessary to examine what type of value this activity has:
If we propose a binary value (1, sweet butter is produced; 0, no sweet butter is

produced), we would not obtain complete information of the activity. As we will
study in the chapter on decision activities, the characteristics of the element discard
this type of value for the activity.

If we propose an integer value, we would be restricting the set of values to only
integer values. However, production is measured in kilos and this is a continuous
measure. Therefore, the appropriate value for the activity is the last of the options, a
continuous value.

Defined the type of value, it is necessary to ask whether it is a known value, a
value to be determined by a function or an indeterminate value. Being an indeter-
minate value, we can affirm that it is a decision activity in the system.

Production of raw butter

Activity of identical nature to the previous one.
A decision variable is generated from each activity. Therefore, the decision

activities associated with producing butter would give rise to two variables:

x1: Kilos of sweet butter that are produced; x1 � 0
x2: Kilos of sweet butter that are produced; x2 � 0

3. Calculations

It is not necessary to perform calculations on the problem. Nor is it necessary to
provide clarity to the model since its size is very small.

4. Specifications

Extracting the specifications is the task for which a greater clarity in the descrip-
tion of the system is needed.

In the study of the types of specifications that we will carry out in Chap. 6, we will
see that a very common specification occurs when some element acts as a resource.
In that case, the element must have associated a numerical characteristic that
represents availability or capacity, and there must be decision activities that consume
that resource.

In our case, both the pasteurization machine and the whipping machine act as
resources.

Regarding pasteurization:

Capacity ¼ 3.5 h ¼ 210 min

18 2 Structure of a Mathematical Programming Model

Consumption:

x1 (sweet butter production) consumes 3 min for each unit that the variable takes.
x2 (raw butter production) consumes 3 min for each unit that the variable takes.

Constraint generated: Consumption � Capacity

3x1 + 3x2 � 210

(It is necessary to work with the same unit of measurement, in this case, minutes.)
Regarding whipping, a specification of the same nature and with the same

participating activities is applied. Constraint generated: 3x1 + 6x2 � 360.

5. Objective Criterion

The criterion is based on maximizing profits. The two existing activities provide
profits:

– The production of sweet butter, x1, provides a unit profit of $10 (profit per unit of
the variable).

– The production of raw butter, x2, provides a unit profit of $15 (profit per unit of
the variable).

Profit expression: 10x1 + 15x2.
The objective function would be Max 10x1 + 15x2.

Complete Model
Max10x1 þ 15x2
s:t:

3x1 þ 3x2 � 210

3x1 þ 6x2 � 360

x1 � 0, x2 � 0

Illustration 2.2 (Source: Meléndez 2019): Sale of Batches
A department store has 200 shirts and 100 trousers from the previous season. They
launch two batch offers, A and B. The Offer A consists of a batch of one shirt and one
trousers, which is sold at $30; Offer B consists of a batch of three shirts and one
trousers, which is sold for $50. They do not want to launch less than 20 batches of
Offer A. On the other hand, they also have the option of transferring pants to an
outlet for a price of $18/trousers, agreeing to pay a fee to the outlet of $80 if they
transfer more than 50 units. The objective is to maximize the profit.

1. Elements

Analyzing the statement, we can identify as participating elements:

• Shirts: The numerical information associated with this element in the system is:

– Stocks of Shirts ¼ 200.

2.3 Examples 19

As we will justify in the chapter dedicated to Elements, it would be an error in
this case to consider each shirt individually as an element:

– Number of shirts in a Batch Offer A ¼ 1

Here is something that we will also analyze in the next chapter – numerical
characteristics that can be associated with more than one element:

– Number of shirts in a Batch Offer B ¼ 3

• Trousers: Similar to the previous element. The associated information is:

– Stocks of trousers ¼ 100
– Number of trousers in a Batch Offer A ¼ 1
– Number of trousers in a Batch Offer B ¼ 1
– The transfer value to the Outlet ¼ $18
– Maximum number of trousers sold to the outlet without paying fee ¼ 50
– Fee for transferring trousers to the outlet ¼ $80

• Batch Offer A: The associated information is:

– Number of shirts ¼ 1

As we have already mentioned, this feature is also associated with the Shirts
element:

– Number of trousers ¼ 1
– Sale price ¼ $30
– The minimum number of batches ¼ 20

• Batch Offer B: It has the same characteristics as Batch Offer A, except the
minimum number of batches, but with different values.

• Outlet:

– Sale price of trousers to the outlet ¼ $18

Since the system we model is associated with the department stores, it is more
logical to use descriptions regarding the system, not with respect to each element.
For this reason, we use the name of the attribute “Sale price” and not Purchase
price, despite the fact that the Outlet buys trousers.

– Maximum number of trousers sold to the outlet without paying fee ¼ 50
– Fee for transferring trousers to the outlet ¼ $80

2. Decision Activities

To recognize the decision activities, it is necessary to explore the actions that
occur in the system.

20 2 Structure of a Mathematical Programming Model

A department store has 200 shirts and 100 trousers from the previous season.
They launch two batch offers, A and B. The Offer A consists of a batch of one shirt
and one trousers, which is sold at $30; Offer B consists of a batch of three shirts and
one trousers, which is sold for $50. They do not want to launch less than 20 batches
of Offer A. On the other hand, you also have the option of selling trousers to an
outlet for a price of $18/trousers, agreeing to pay a fee to the outlet of $ 80 if they
transfer more than 50 units. The objective is to maximize the profit.

The actions of launching batches and selling batches can be considered equivalent
in the system. They refer to the same process.

Launch Batches A and B

It is an action associated with both the Batch Offer A element and the Batch Offer
B element, independently. This generates two decision activities:

– Launch Batch Offer A
– Launch Batch Offer B

The fact that the action corresponds to a decision activity is in the analysis of the
action, with respect to whether it has a known or unknown value, calculated or not
calculated. The first should be to examine what kind of value that activity has. If we
proposed a binary value, we could not determine the number of Offers A and B
launched. If instead we assign an integer value, the semantics of the action should
refer to the number of batches that are launched. This is something indeterminate in
the system; we do not know the number of batches that we are going to launch, nor
can we calculate it from other decision-making activities. This type of value would
determine the decision variables of the problem.

Finally, it would not make sense to use a continuous value since the batches are
discrete elements.

Therefore, the decision activities associated with launching batches would give
rise to two variables:

xA: Number of Batch Offer A launched
xB: Number of Batch Offer B launched

For this same decision activity, the statement also uses the verb sell. It is common
in many descriptions to use different verbs to express the same action.

Transfer Trousers to the Outlet

We are faced with an action related to the element Trousers and the Outlet
element jointly. Again, the value that we can associate with this action is an Integer
value, and the variable that is generated could be defined as:

xPO: Number of Trousers transferred to the Outlet.

Pay a Fee

It cannot be considered a decision activity because its value is obtained by
calculation with respect to other decision activities.

2.3 Examples 21

Maximize the Profit

It is about the objective function. It will correspond to a variable function of the
problem. It is therefore not an action that can be considered a decision activity.

3. Calculations

As mentioned, there is a cost associated with a calculation, in this case a logical
calculation. The value of paying the fee of $80 will be defined by a logical function
or proposition.

For the modelling of a logical calculation, it is necessary, first of all, to define the
variable that will collect the result of the calculation. In this case it is a calculation
with binary value (¼ 1 is to pay the fee; ¼ 0 is not to pay the fee).

Let the variable α ¼ 1 if we pay the fee; 0 otherwise.
And secondly, it is necessary to state the logical proposition that defines the

calculation values:

“If the number of trousers sold to the Outlet is greater than 50, we pay a fee of $80. In
another case, we do not pay anything.”

That would be mathematically expressed as:

IF xPO> 50, THEN α ¼ 1; IF xPO �50, THEN α ¼ 0.

Chapter 5 is devoted to the calculations of a system, and in Chap. 6 we will learn
to model logical propositions. Specifically, this proposition could be modelled with a
single constraint:

xPO � 100α

4. Specifications

From the statement and the elements of the problem, we extract the following
specifications:

An imposed rule is easily identified: “You do not want to launch less than
20 batches of Offer A.”

This specification refers to the activity of launching batches of Offer A. It imposes
a lower bound to the value that the variable xA can take:

xA � 20

The elements Shirts and Trousers have data of availability or capacity and then
must generate specifications that ensure that the consumption of that availability in
the system does not exceed the availability data:

Regarding the Shirts:
Capacity ¼ 200
Consumption:
xA (Launch Batch Offer A) consumes one unit (one shirt) for each unit that the

variable takes (each batch that is sold).
xB (Launch Batch Offer B) consumes three units for each unit that the variable takes.

22 2 Structure of a Mathematical Programming Model

Constraint generated: xA + 3xB � 200
Regarding the Trousers:
Capacity ¼ 100
Consumption:
xA (Launch Batch Offer A) consumes one unit for each unit that the variable takes.
xB (Launch Batch Offer B) consumes one unit for each unit that the variable takes.
xPO (Sell Trousers to the Outlet) consumes one unit for each unit of the variable.
Constraint generated: xA + xB + xPO � 100

5. Objective Criterion

The criterion is based on maximizing the benefit. Three existing activities provide
income and a logical calculation provides cost.

The Offer A batches, xA, provide a unit income of $30 (profit for each unit sold).
The Offer B batches, xB, provide a unit income of $50.
The transfer of trousers, xPO, provides a unit income of $18.
Pay the fee: α provides a unit cost of $80.
Profit expression: 10xA + 15xB + 18xPO � 80α.
The objective function would be Max 10xA + 15xB + 18xPO � 80α.

Complete Model
Max 10xA þ 15xB þ 18xPO
s:t:

xPO � 100α

xA � 20

3xA þ xB � 200

xA þ xB þ xPO � 100

xA � 0, xB � 0, xPO � 0 integers; αbinary

References

Aracil, J, & Gordillo, F. (1997). Dinámica de Sistemas. V 168 Alianza Universidad Textos. Alianza
editorial.

Castillo, E., Conejo, P., & Pedregal, P. (2002). Formulación y resolución de modelos de
programación matemática en ingeniería y ciencia. Universidad de Castilla La Mancha
Ediciones.

García Sabater, J. P. (2015). http://personales.upv.es/jpgarcia/LinkedDocuments/
modeladomatematico.pdf. Modelado y Resolución de Problemas de Organización Industrial
mediante. Programación Matemática Lineal. Accessed May, 2020.

Klement, K. C. (2006). Propositional logic. In J. Fieser, & B. Dowden (Eds.), Internet encyclopedia
of philosophy

Meléndez, I. (2019). https://www.monografias.com/trabajos96/distribucion-redes-administracion-
proyectos/distribucion-redes-administracion-proyectos.shtml#bibliograa. La distribución de
redes y la administración de proyectos. Accessed June 2019.

References 23

http://personales.upv.es/jpgarcia/LinkedDocuments/modeladomatematico.pdf
http://personales.upv.es/jpgarcia/LinkedDocuments/modeladomatematico.pdf
https://www.monografias.com/trabajos96/distribucion-redes-administracion-proyectos/distribucion-redes-administracion-proyectos.shtml#bibliograa
https://www.monografias.com/trabajos96/distribucion-redes-administracion-proyectos/distribucion-redes-administracion-proyectos.shtml#bibliograa

Chapter 3
The Elements of a System

3.1 Introduction

The elements are the individual actors or entities that participate in the system. They
are all the inputs that the system has, the resources it uses, and the outputs it
produces. They can be of any nature: materials, tools, personnel, places, objects,
etc. Also considered as elements are the typologies that could be defined on other
elements, and even resources of space or time.

The elements are distinguished by participating in the activities that occur in the
system and/or providing information on the specifications and objective of the
activities.

The data associated with the elements will be referred to as attributes of the
element. The data are the determined values that the system has, which will refer to
continuous or integer magnitudes and logical properties that will be collected with
binary values. The attributes and their values will influence the quantitative nature of
the elements.

A clear and exhaustive description of the system is necessary for the correct
identification of the elements. Sometimes this description can identify elements that
later have no participation in the optimization problem raised. Despite this, its
preliminary identification will not hinder the construction of the model.

The system itself can always be considered as an element of itself. We will use it
when there are data or specifications that can only be attributed to the system itself.

The identification of elements is an important phase because an incorrect defini-
tion of the elements of a problem will prevent a correct formulation of it. As we will
analyze throughout the chapter, the list of elements of a system does not have to be
unique. Sometimes, it is possible to configure the list of elements of a system in more
than one way. This may lead to loss of efficiency of the model, but its representation
will be admissible.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_3#DOI

On the other hand, once the elements are identified, we can organize them into
sets. Sets will consist of elements of the same nature and function, with identical
attributes with respect to its definition. This will facilitate an abbreviated and abstract
formulation of the model.

What is an element in a system?

• Any physical or conceptual entity that participates in the system: people, places,
machines, tools, parts, or products

• Time periods in which decisions are made or on which specifications are raised
• Any type defined in the system on other elements
• Phases, processes, modes, or states that occur within the system

What is not an element in a system?

• Any measurement concept (kilo, gram, hour, minute, liter, euro, unit, etc.)
• Any action that occurs in the system that is not collected as a process

Let’s take a look at some basic examples:

Illustration 3.1
A company has four suppliers of a product in the market. Each supplier has its own
price policy, discounts, and delivery times.The company has to decide on the units
that it will buy from each supplier to satisfy the demand of the market.

Without giving data on prices, discounts, times, and any other information that
the system uses, it is only possible to obtain the participating elements using the
description made (Table 3.1).

Product prices, discounts, or delivery times are data from the suppliers.

Illustration 3.2
There is a set of 100 objects, each with a weight, a height, and a width. There is also
a set of 25 shelves, each formed by a set of 10 sections. Each section has a width, a
height, and a maximum supported weight. It is about assigning objects to shelving
sections regarding the width, height, and weight of the sections, maximizing the
number of objects to be placed.

Again, without having to give the weight, height, and width data of both objects
and sections, the list of elements could be defined as (Table 3.2).

Table 3.1 List of elements of
Illustration 3.1

Elements

Supplier 1

Supplier 2

Supplier 3

Supplier 4

Company (system)

Product

Market

26 3 The Elements of a System

It is necessary to identify each object, shelf, and section of each shelving as an
element (Table 3.3).

Illustration 3.3
There is a system that produces parts. In the market there are three machine models
(M1, M2, M3) for production. There are two production modes and two worksta-
tions where any mode can be installed in each. The first mode needs to produce
parts, two M1 machines and one M2 machine. The second mode needs to produce
one M2 machine and one M3 machine. Each mode produces at a rate that translates
into number of parts per hour, 45 and 54 respectively. The company wants to plan
the production of 3000 parts during the 18 hours a day, aiming to minimize the
purchase costs of the machinery.

Table 3.2 List of elements of
Illustration 3.2

Elements

Object 1

Object 2

. . .

Object 100

Shelving 1 Section 1_1

Section 1_2

. . .

Section 1_10

Shelving 2 . . .

.

Shelving 25 Section 25_1

Section 25_2

. . .

Section 25_10

System

Table 3.3 List of elements of
Illustration 3.3

Elements

Parts

M1 machines

M2 machines

M3 machines

Market

Mode 1

Mode 2

Workstation 1

Workstation 2

Day

Company (system)

3.1 Introduction 27

Note that we have considered the parts as a single element and not each of the
3000 parts to be manufactured. On the other hand, we have considered each
workstation individually. This aspect will be explored in greater depth throughout
the chapter. The day that has the data of the available hours is included as an element.
The hours are considered a unit of measurement of the time available.

3.2 Data of Elements

The data are specific properties or attributes of the element. A property of an element
is an own aspect of it that defines it in the system. Elements can have properties
whose value is not determined because they have to be defined in the optimization
process and properties of determined value that are the data of the element in the
system. The data must therefore have a numerical value assigned.

The data are used in the system specifications and in the optimization criteria.
Below is an example that differentiates determined and undetermined properties:

Illustration 3.4
There is a system that manufactures containers. The containers have a height of
4 meters and a width of 3 meters. In the system it is necessary to manufacture ten
containers and to determine the length of each container that we manufacture (using
a maximum length of 10 meters), so that we can accommodate a set of 50 pallets that
have a known width, height, and length.

In this system, we would consider the 10 containers and each of the 50 pallets as
elements. The properties of each container are its height and width, but the length is
not a attribute because its value is not determined. Height and width are data.

The pallets are also elements of the system and their properties are data because
they are determined.

Below is a basic example of the data of an element:

Illustration 3.5
. . .
The product we produce has a profit of $10/unit. 1000 units are demanded.
. . .

In this system, the Product element would have two attributes:

Profit ¼ 10 ($/unit)
Demand ¼ 1000 (units)

Most data express quantities that correspond to continuous or integer magnitudes.
However, logical values and links between elements are also incorporated as data.
These relationships between elements are represented by binary values (1/0) with a
meaning of true/false. This type of attributes is presented when there are types of
elements defined explicitly as elements. It is also used to represent the ability of an

28 3 The Elements of a System

element to perform a certain action or not, or to identify logical relationships
between elements. The types of data according to value are presented in Sect. 3.2.3.

On the other hand, when systems are represented graphically, elements and data
must be extracted from the graph. The data in these cases usually represent the
graphic relationship between the elements represented. Section 3.6 will examine
these aspects.

The importance of identifying the data of the elements is in the subsequent
implementation we carry out of the model with some language more than in the
design of the mathematical model itself. In spite of this, structuring the information
of the system will help us identify specifications and control the use of all the
characteristics of the elements of the system.

An attribute has two components:

• A definition scheme: The scheme will have the following information:

– A name
– A parameter with which to identify it in the model
– The belonging
– The type of value

• A numerical value.

Next, we will develop the concepts of belonging (Sects. 3.2.1 and 3.2.2) and type
of value (Sect. 3.2.3). In Sect. 3.2.4 we will define a formal representation, and in
Sect. 3.2.5 we will describe the creation of data from existing ones.

3.2.1 Belonging of the Data

The data refer to the values that the elements of the system have. Regarding the
belonging of the data, they can be of two types:

Own Attribute: The attribute and its value are only property of an element. The
attribute does not refer to any other element.

Shared Attribute: The attribute relates elements. Its value is obtained from the
association between several elements of the system. Logically, the shared data
are assignable to all the elements that share it. The value of the attribute is not
distributed by a function between the elements that share it, but it is fully
attributable to each of the elements that share it.

Let’s take a look at the data and their belonging in our header example. Highlight-
ing the values that appear in the text in bold, we can graphically establish the
relationship between the four elements of the problem (Fig. 3.1).

If we examine the attributes associated with the pasteurization machine
(Table 3.4), usage time is an attribute of its own, not related to any other element.
However, the attribute on the time used by sweet butter in the pasteurization
machine, 3 min, is data that should also be associated with sweet butter. It is

3.2 Data of Elements 29

therefore a shared attribute. The same would apply to the time that raw butter uses.
The whipping machine would have the same data structure (Table 3.5).

Regarding Sweet butter, the data of time are the same attributes that have been
indicated in the machines. The profit is an attribute with its own value. Raw butter
has the same data.

In the definition of a system, there are values whose association with the elements
can be direct and simple, and in other cases it is more difficult to establish its
belonging. This happens when the values are directly assignable to activities and
system calculations. Reference is made to values that can take variables or functions
of variables of the problem or values that impose variables bounds. In most models,
we can obviate the declaration of these values and use them directly in the specifi-
cations of the system without leading to a bad design of the model. It must be borne

Table 3.4 Attributes of pasteurization machine

Pasteurization machine

Pasteurization machine usage time ¼ 3.5 h/day

Time used by 1 kg of Sweet butter in Pasteurization machine ¼ 3 min

Time used by 1 kg of Raw butter in Pasteurization machine ¼ 3 min

A butter production factory wants to optimize its daily pro-
duction of butter. Two types of butter are made (Sweet and
Raw). A kilo of sweet butter gives the manufacturer a profit of
€10 and a kilo of raw a profit of €15 . For the production of
butter, two machines are used, a pasteurization machine and
a whipping machine. The daily use time of the pasteurization
machine is 3.5 hours and 6 hours for the whipping machine.
The time (in minutes) used in each machine to obtain a kilo of
butter is shown in the following table:

Table. Processing times

Sweet butter Raw butter
Pasteurization M. 3 min 3 min
Whipping M. 3 min 6 min

Sweet butter

Raw butter

Pasteurization
machine

Whipping
machine

Text (Illustration 2.1) Elements

Fig. 3.1 Belonging of attributes of Illustration 2.1

Table 3.5 Attributes of sweet butter

Sweet butter

Profit ¼ $10

Time used by 1 kg of Sweet butter in pasteurization machine ¼ 3 min

Time used by 1 kg of Sweet butter in whipping machine ¼ 3 min

30 3 The Elements of a System

in mind that extracting all the data of the elements of a system is a task that requires
thinking more about the implementation than the elaboration of the model. Despite
this, all values could be defined as data of some element, even if that element is the
system itself.

Let’s illustrate some examples of this type of values. To do this, we are going to
incorporate information into the butter production system.

Illustration 3.6
The total production of sweet and raw butter should be a maximum of 80 kg.

The value of a calculation is being established, which is the total of sweet and raw
butter. In this case, the maximum production would correspond to an attribute of the
system.

Illustration 3.7
The production of raw butter is prohibited if more than 100 kg of sweet butter is
produced.

The 100 kg data refers to a value of the production of raw butter. Production is a
system activity and therefore will be associated with a variable. That data of 100 kg
is a possible value of the activity. In any case, this value could be defined as an
attribute of raw butter.

3.2.2 Primary Element in a Shared Attribute

When a shared attribute refers to a value of an intrinsic property of one of the
elements that share the attribute, we will say that this element is the primary element
in the relationship with the shared attribute. The rest of the elements have a
secondary role. The clearest case is when the attribute refers to a quantity value of
one of the elements.

On the other hand, there may also be shared attribute that does not refer to
quantity values of a single element, but refers to a property shared by all the elements
equally, that is, there is no primary element in the relationship. Generally, this occurs
whenever the attribute has a binary value. The binary value usually expresses a
shared property.

Let us see some examples of the identification of primary elements:

Illustration 3.8: Sale of Batches (Illustration 2.2)
A department store has 200 shirts and 100 trousers from the previous season. They
launch two batch offers, A and B. The Offer A consists of a batch of one shirt and one
trousers, which is sold at $30; Offer B consists of a batch of three shirts and one
trousers, which is sold for $50. They do not want to launch less than 20 batches of
Offer A. On the other hand, they also have the option of transferring pants to an
outlet for a price of $18/trousers, agreeing to pay a fee to the outlet of $80 if they
transfer more than 50 units. The objective is to maximize the profit (Table 3.6).

3.2 Data of Elements 31

This example was already modelled in Chap. 2.

3.2.3 Type of Value of the Data

Every attribute has a numerical value associated with it. The type of associated value
can be:

1. Continuous or integer quantity

This refers to some continuous or integer magnitude. If it is continuous, we can
specify the unit of measure of the value. If it is integer, it is measured in number of
units.

Example: Usage time of the pasteurization machine ¼ 180 minutes.
Example: There is a manufacturing system of part P of which there is a stock of

28 units. Part P would be an element with an attribute. Stock ¼ 28 units.

The values of a system that express quantities are usually easily extractable from
the descriptive texts, although there are exceptions. Sometimes, describing quantities

Table 3.6 Table of Elements of Illustration 3.8

Element

Data

Name Belonging
Primary
element

Shirts Stocks of Shirts ¼ 200 Own

Number of shirts in a Batch Offer A ¼ 1 Shared Shirts

Number of shirts in a Batch Offer B ¼ 3 Shared Shirts

Trousers Stocks of Trousers ¼ 100 Own

Number of Trousers in a Batch Offer A ¼ 1 Shared Trousers

Number of Trousers in a Batch Offer B ¼ 1 ¼ 1 Shared Trousers

The transfer value to the Outlet ¼ $18 Shared –

Maximum number of trousers sold to the outlet without
paying fee ¼ 50

Shared Trousers

Fee for transferring trousers to the outlet ¼ $80 Shared –

Batch
Offer A

Sale price ¼ $30 Own

Number of shirts in a Batch Offer A Shared Shirts

Number of Trousers in a Batch Offer A Shared Trousers

Batch
Offer B

Sale price ¼ $30 Own

Number of shirts in a Batch Offer B Shared Shirts

Number of Trousers in a Batch Offer B Shared Trousers

Outlet The transfer value to the Outlet Shared –

Maximum number of trousers sold to the outlet without
paying fee

Shared Trousers

Fee for transferring trousers to the outlet Shared –

32 3 The Elements of a System

using words instead of numbers can mislead the modeller, especially when we have
to distinguish between indeterminate articles (indefinite) or a numeral:

“A product needs one machine A and two B tools”:

A product: indeterminate article
One machine A: numeral ¼ 1) Attribute
Two B tools: numeral ¼ 2) Attribute

In this case, one machine A and two B tools would be attributes.
The way to identify whether it is an indeterminate article or a numeral is in

proving if its substitution by the word “each” is viable:

“Each product needs one A machine and two B tools.”

In the same way, it is possible to discard numbers that refer to quantities of
elements defined in the problem:

“The factory has four machines: M1, M2, M3, and M4.”

If each machine is going to be an element, the quantity of four machines could be
used as an attribute of the system to quantify the number of machines, although it
will rarely be used.

2. Ordinal

The attribute has an integer value that refers to an ordinal of a list of options
reflected or not as elements. This type of value is always optional in a problem. We
can incorporate each option as a binary attribute and even incorporate the options to
the list of system elements and convert the ordinal value to a binary value that
expresses the link between the elements.

On the other hand, the use of an ordinal value requires a simple association
between the element owner of the attribute and the list of elements that the ordinal
identifies. If the association is multiple, we would need to incorporate more ordinal
data, so it is more structured to store the information as binary. In the case of simple
association, the use of ordinal values instead of binary values is usually more
efficient, although it depends on each system.

Let’s take a look at an illustration that reflects these ideas.

Illustration 3.9
There is a set of 20 pieces. Each piece has a color (white, red, or black) and a
weight. There is a set of ten sections where the pieces will be placed. Each section
has a supported weight capacity. In a section you cannot mix pieces of different
color. It is about using the least number of sections.

The elements identified are each piece and each section of unitary type. Each
piece has as attribute the weight and the color. Each section has the capacity of
supported weight as attribute.

3.2 Data of Elements 33

The color of the pieces can be included in a list where each color is referenced by
an ordinal: white (1), red (2), and black (3). The value of the color attribute in each
piece will have a value between 1 and 3 (Table 3.7).

This representation would not have been valid if the pieces had more than one
color, that is, if there had been a multiple association of each piece with the list of
colors. For that type of cases, we will use the binary value. I do not consider the
option of creating several ordinal value data, although in some cases it could be
viable.

3. Binary

Binary values are used to define properties of the element that are answered with a
yes or a no.

The binary value is used to represent an attribute ordinal value in a flexible way,
allowing for the representation of multiple associations. In this case, it may be
convenient to have options of the list identified as elements, although it is not
mandatory.

The binary value is the value needed for data in which its value identifies another
element or elements. This is solved by establishing a shared attribute between both
elements. Therefore, binary value is used in attributes that represent links of belong-
ing or compatibility between elements.

Let’s see how the list of elements of Illustration 3.9 would be using binary value,
in two steps: first, without defining the binary attribute as an element and, second,
making the attribute explicit as an element (Table 3.8).

In Table 3.8 colors are defined as data, but they are not identified as elements of
the system. This is feasible when there are no decision activities where the color of
the pieces participates or specifications that fall on the colors. In any case, the color
of each piece is represented in three binary attributes, so it would allow pieces of
various colors.

In Table 3.9 we incorporate the three colors as elements. This means that the color
attributes become shared between the piece and the corresponding color.

Next, we introduce a couple more illustrations regarding binary attributes.

Table 3.7 Table of data of
Illustration 3.9

Element Data Type

Piece 1 Weight (continuous) Own

Colour (ordinal:1,2,3) Own

. . .

Piece 20 Weight (continuous) Own

Colour (ordinal:1,2,3) Own

Section 1 Supported weight (continuous) Own

. . .

Section 10 Supported weight (continuous) Own

34 3 The Elements of a System

Illustration 3.10
There is a city with five districts. There are two stores V1 and V2. V1 is located in
District 3 and V2 in District 5.

Considering each district (Districts 1 to 5) and each store (V1, V2) as elements,
there is a single attribute in the text, which is the location of the stores. If we were to
give an integer value to the location of V1, we would have to use an ordinal value on

Table 3.8 Table of attributes
of Illustration 3.9 with binary
values not shared

Element Data Type

Piece 1 Weight (continuous) Own

White_Colour (Binary) Own

Red_Colour (Binary) Own

Black_Colour (Binary) Own

.

Piece 20 Weight (continuous) Own

White_Colour (Binary) Own

Red_Colour (Binary) Own

Black_Colour (Binary) Own

Section 1 Supported weight (continuous) Own

.

Section 10 Supported weight (continuous) Own

Table 3.9 Table of attributes
of Illustration 3.7 with binary
values shared

Element Data Type

Piece 1 Weight (continuous) Own

White_Colour_Piece1 (Binary) Shared

Red_Colour_Piece1 (Binary) Shared

Black_Colour_Piece1 (Binary) Shared

.

Piece 20 Weight (continuous) Own

White_Colour_Piece20 (Binary) Shared

Red_Colour_Piece20 (Binary) Shared

Black_Colour_Piece20 (Binary) Shared

Section 1 Supported weight (continuous) Own

.

Section 10 Supported weight (continuous) Own

White Color White_Colour_Piece1 (Binary) Shared

.

White_Colour_Piece20 (Binary) Shared

Red Color Red_Colour_Piece1 (Binary) Shared

.

Red_Colour_Piece20 (Binary) Shared

Black Color Black_Colour_Piece1 (Binary) Shared

.

Black_Colour_Piece20 (Binary) Shared

3.2 Data of Elements 35

the list of districts that identifies the district where the number 3 is located. For V2
the value would be 5.

Since the districts are elements, the most correct way to identify the attribute is
with a shared binary value between the elements V1 and V2 and all the elements that
were part of the possible ordinal values (Districts 1 to 5). The Location attribute
would be shared by each store (V1, V2) with each district (Districts 1 to 5) assigning
a value (1¼ is located/0 ¼ is not located). These values can be represented in a table
(Table 3.10).

Illustration 3.11
There is a company that manufactures a parts model of the aeronautical industry.
The company has designed ten work centers. The manufacturing of parts has three
possibilities or modes of production:

– Mode 1
– Mode 2
– Mode 3

Work center 1 can only hold Mode 1, center 2 can only hold Modes 2 and 3, and
the other centers can hold any mode.

Setting up a center has a cost of $F.
The production cost of each mode is C1 $/part, C2 $/part, and C3 $/part.

Elements:

– Each work center: Work Center 1 to Work Center 10
– Mode 1
– Mode 2
– Mode 3
– Parts

Attributes of Work Centers:

– Each Center has the following attributes:
– Cost: Own Attribute of continuous value.
– Compatibility Center/Mode: A Center can host a series of modes, 1, 2, or 3.

As some centers can have several modes, this precludes the use of ordinal data:

Compatible modes of Center 1 ¼ 1
Compatible modes of Center 2 ¼ 2, 3
Compatible modes of Center 3 ¼ 1, 2, 3
Compatible modes of Center 4 ¼ 1, 2, 3

Table 3.10 Binary attribute Location

Location District 1 District 2 District 3 District 4 District 5

Store 1 0 0 1 0 0

Store 2 0 0 0 0 1

36 3 The Elements of a System

. . .

The solution is to set the attribute as binary and shared between each Center and
each Mode. The values could be represented in a table as shown below (Table 3.11).

Each mode also has the Production Cost as an attribute. As there is a production
cost per part, we consider it also attributable to the part element, and therefore it is
shared with the part.

The natural way in which a binary attribute appears in a problem is in shared
mode between elements, as in the illustrations that we have just shown. However, as
we have already mentioned, it is possible to enter binary data that are own to an
element because the information to which the attribute refers does not need to be
explicit as an element of the system, because it does not participate in the decisions
of the problem nor there are not specifications on the concept that represents the
attribute. Let’s see an example:

Illustration 3.12
There is a series of n pieces of furniture. From each piece of furniture, you know the
price and a property about whether it is sold assembled or not.

The property “assembled piece of furniture” could be considered as a typology of
the furniture elements and would be transformed into an element. On the other hand,
we can leave it exclusively as an attribute of each piece of furniture. In this second
case, the list of elements would be the following (Table 3.12).

3.2.4 Representation

We can design a framework in the form of a table to collect all the information
associated with the definition of a attribute. In the table we will include the following
information:

1. Name: name assigned to the attribute.

Table 3.11 Binary attribute
Compatibility

Compatibility Mode 1 Mode 2 Mode 3

Center 1 1 0 0

Center 2 0 1 1

.

Table 3.12 Elements of
Illustration 3.12

Element Data Type

Piece of furniture 1 Price (Continuous) Own

Assembled (Binary) Own

.

Piece of furniture n Price (Continuous) Own

Assembled (Binary) Own

3.2 Data of Elements 37

2. Parameter: the chosen parameter that we will use in the model to identify
the attribute.

3. Type of value: C (Continuous), I (Integer), O (Ordinal), B (Binary). In the case of
Continuous, we can specify the unit of measure.

4. Belonging: W (Own element), S (Shared).

Finally, and as already mentioned, in addition to the definition, the attribute has a
value that determines it, which we will also include in the table.

Table 3.13 shows the framework.
By inserting that framework in a table with the identification of each element, we

could outline the information of the elements of a system (Table 3.14).
As an illustration for the first Table of Elements, we will represent the elements of

our first example, the production of butter.

Illustration 3.13
Elements of the production of butter

For this first representation, we will indicate all the data of each element,
regardless of whether the shared attribute have already been declared in another
element.

As it is observed, there are attributes that allude to the same value. Logically,
these are the shared attribute, assignable to more than one element. In the pasteur-
ization machine, “Time used by 1 kg of sweet butter in pasteurization machine” is a
property that relates to the pasteurization machine with sweet butter and therefore
attributable to both elements. In the following, we will note the definition of a shared
attribute in a single element, writing down the parameter in the rest of the elements
that share it.

On the other hand, there are data with the same definition and different value
(“Usage time” that appears associated with both the pasteurization machine and the
whipping machine and “Profit” associated with the two types of butter). These are
identical attributes in relation to their definition but each with its own value. The
definition of data will be simplified when we group the elements in sets (Table 3.15).

Table 3.13 Associated framework

Definition

Name Parameter Type of value Belonging Value

Attribute name Parameter name C (unit)/I/O/B W/S –

Table 3.14 Framework associated with an element

Element

Data

Name Parameter Type of value Belonging Value

Element name Attribute name Parameter name C/I/O/B W/S –

.

.

38 3 The Elements of a System

3.2.5 Inclusion of Calculated Data

To facilitate the modelling of certain specifications, it is useful to calculate additional
data from those that already exist. It is a task that appears when we are going to
model the specifications of the problem. Let us see an illustration.

Illustration 3.14
In butter production we want to know as an attribute which butters need more than
8 full minutes to produce a kilo.

In this case we must associate a binary attribute with each butter that responds to
this calculation. That attribute would be own to each type of butter (Table 3.16).

Table 3.15 Table of Elements of the production of butter

Element

Data

Name Param Type Belonging Value

Pasteurization
machine

Usage time TP C
(minutes)

W 180

Time used by 1 kg of sweet butter in
pasteurization machine

TPS C
(minutes)

S 3

Time used by 1 kg of raw butter in
pasteurization machine

TPA C
(minutes)

S 3

Whipping
machine

Usage time TW C
(Minutes)

W 240

Time used by 1 kg of sweet butter in
whipping machine

TWS C
(minutes)

S 3

Time used by 1 kg of raw butter in
whipping machine

TWA C
(minutes)

S 6

Sweet butter Time used by 1 kg of sweet butter in
pasteurization machine

TPS C
(minutes)

S 3

Time used by 1 kg of sweet butter in
whipping machine

TWS C
(minutes)

S 3

Profit BS C (euros/
kg)

P 10

Raw butter Time used by 1 kg of raw butter in
pasteurization machine

TPA C
(minutes)

S 3

Time used by 1 kg of raw butter in
whipping machine

TWA C
(minutes)

S 6

Profit BA C (euros/
Kg)

P 15

3.2 Data of Elements 39

3.3 The Quantitative Nature of the Elements

In this methodology each element is defined by its quantitative or measurable aspect,
which we shall call quantitative nature. The quantitative nature of an element is
expressed according to the following typologies:

Individual Element
The element represents an individual entity, whose discrete quantity in the system is
the unit, the element itself.

An individual element is an element that the system deals with in a particular way
and that in many cases, but not in all, is different from the rest of the elements of the
system.

The elements of our base illustration are individual elements. Pasteurization
machine or the whipping machine is clearly individual, just considering their
quantity. There are one pasteurization machine and one whipping machine. Sweet
butter and raw butter are also individual since the discrete amount of sweet butter or
raw butter is one, there are no raw or sweet butter units. Logically, both raw and
sweet butter will have a continuous amount in the system. Therefore, the individual
elements will have a second typology depending on their properties.

Collective Element
The element represents a concept that has or will have a number of discrete units in
the system, whether that amount is determined or undetermined. The element
represents a collective entity that is quantified discretely. We will name items to
each of those units. The items of a collective element are identical, that is, they have
the same own data in the system, represented in the collective element.

Table 3.16 Inclusion of an attribute calculated

Element

Data

Name Param Type Belonging Value

Sweet
butter

Time used by 1 kg of sweet butter in
pasteurization machine

TPS C
(minutes)

S 3

Time used by 1 kg of sweet butter in
whipping machine

TWS C
(minutes)

S 3

Profit BS C (euros/
kg)

W 10

Production of more than 8 min PS B W 0

Raw
butter

Time used by 1 kg of raw butter in pas-
teurization machine

TPA C
(minutes)

S 3

Time used by 1 kg of raw butter in whip-
ping machine

TWA C
(minutes)

S 6

Profit BA C (euros/
kg)

W 15

Production of more than 8 min PA B W 1

40 3 The Elements of a System

The collective elements will always have a measurable character in the system,
either in the decision activities or in the specifications. In the decision variables of
integer value, a collective element must always participate.

According to the determination of the number of items of the collective element,
we distinguish between:

Determined collective element

The quantity of the element is defined in the system.

Undetermined collective element

The quantity of the element is not determined in the system, but the system works
with quantities of the element.

I. Individual Elements

The individual elements have a second typology based on their data and contin-
uous properties not determined. This second typology must be analyzed when the
decision activities of the system are analyzed. Anyway, we can now define the
typology, for which we need a series of concepts.

As we have already mentioned, the elements have properties that define the
element in the system, and with respect to their determination, they can be:

– Data: Properties of known value.
– Properties of undetermined value: They are properties that allude to some char-

acteristic of the element that is necessary to decide its value. With the decisions
taken in the system, their values will be determined. We do not consider proper-
ties that can be obtained as a result of a calculation or function.

For the quantitative nature of individual elements, we are interested in their data
and indeterminate properties of continuous value. The most common continuous
properties in an element refer to the measurement of its length, volume, weight, time,
position in space, or its scheduling time, in the case of tasks. As property, any
continuous value intrinsic characteristic of the element can be considered.

Identifying these properties is usually simple since the element may have data that
refers to that property, such as a cost per unit of measure, a bound for the value of the
property, or any other information that makes us see the need to consider that
property for the element.

Regarding continuous value data, two circumstances may occur:

– That the determined property cannot be used partially, that is, that we cannot
divide the element with respect to that property. The property is always used in
the system in a comprehensive way.

– That we can make partial use of that determined property. In turn, partial use may
be due to continuous decisions or based on logical or integer decisions. If the
attribute is partially used for logical or integer decisions, the attribute will be
measured in the specifications but will not be measured in the decisions, and
therefore we do not consider it as measurable data.

3.3 The Quantitative Nature of the Elements 41

According to these concepts, we distinguish between:

I.1. Unitary individual element: An individual element is considered unitary if it
has not any property or own data in the system capable of being measured in a
continuous way at the decisions of the problem. A unitary element does not have
any indeterminate property, and if it has any continuous attribute, this attribute is
used in a comprehensive way, or its partial use is not based on continuous
decisions. If the element has shared measurable data, it is never the primary
element in the belonging of the data.

I.2. Measurable individual element: These are elements that have indeterminate
continuous properties or data of continuous value that can be used partially
through continuous decisions. When there is measurable data shared between
elements, the measurable character is imputed to the primary element. An indi-
vidual element can be measurable by more than one concept.

We can identify indeterminate properties in an element, whose value is not
obtained from the decision activities, but simply the value of the property is obtained
by a function of other activities of decision of the problem, and the measurable
character of that property occurs in the specifications. Likewise, the partial use of an
attribute can be made directly in the decisions of the system or in a function with
other defined decision activities. When the measurement is not carried out in the
decision activities, the measurable character of the element is not important because
for the methodology the measurable character acquires meaning in the decision
activities. The identification of this second typology in the individual elements can
be complex at times and requires the analysis of the decision activities to certify their
validity. However, identifying the measurable aspect can help visualize different
valid model configurations. There are systems that support more than one configu-
ration of the quantitative nature of its elements, depending on how the functions of
the elements in the system are described, although generally only one of them is
usually the most efficient. This will be seen in detail in Chap. 7, although examples
will also be seen in Chap. 6. Therefore, the quantitative nature of individual elements
is an auxiliary tool in this phase of the methodology, although the main quantitative
nature, individual or collective element, must be determined at the element
identification.

From all this, examples are presented below, and many illustrations will be
analyzed throughout the book, as we go deeper into the use of all the components.

II. Collective Elements

The collective elements will always have a measurable character in the system,
either in the decision activities or in the specifications. In the decision variables of
integer value, a collective element must always participate. The integer data of an
individual element should always be shared with the collective element to which the
units refer. And that collective element should be primary in that relationship and
support the discrete measurable character of the data. Collective data can have
continuous data referring to each item, but its use can never be partial, but a
comprehensive use of the data in the system.

42 3 The Elements of a System

Table 3.17 summarizes the typologies regarding the quantitative nature of an
element.

The column notation will be added to the format of the Table of Elements defined
in Sect. 3.2.4 as QN (quantitative nature). From now on, the individual elements
without capacity to be measurable in decision activities will be represented with IU,
the individual elements with capacity in the system to be measured in decisions will
be represented with the IM notation and the determined and indeterminate collective
elements with CD and CI, respectively.

In our base example, without entering into decision activities even if it is a
problem already modelled, the four elements are individual. Sweet butter and Acid
butter are two elements with an undetermined amount, since the system does not
know how much butter will be produced. It is obvious that they will be measurable
elements because of having undetermined the quantity property.

The summary of the type of elements of the butter production problem is
presented in Table 3.18.

The machines are also individual and among its information there is a continuous
attribute, the usage time, on which a partial use can be made in the system. Its partial
use can be obtained through a function with respect to the butter produced, but it is
not necessary to determine it by decision activity. Recall the formulation:

Decision activities:

x1: Kilos of sweet butter that are produced (we measure the sweet butter element)
x2: Kilos of sweet butter that are produced (we measure the acid butter element)

Specifications:

Table 3.17 Typologies of
elements with respect to the
quantitative nature

Type of element Notation

I. Individual I

I.1. Unitary individual IU
I.2. Measurable individual IM
II. Collective C

II.1 Determined collective CD

II.2 Undetermined collective CI

Table 3.18 Types of ele-
ments in the example of butter
production

Element Quantitative nature type

Sweet butter Measurable individual

Raw butter Measurable individual

Pasteurization machine Unitary individual

Whipping machine Unitary individual

3.3 The Quantitative Nature of the Elements 43

Measurement of the usage time in the pasteurization machine: It occurs in the
specification of time consumption control: 3x1 + 3x2 � 210.

Measurement of the time of use in the whipping machine:

Equivalently, measurement of the time of use in the whipping machine: 3x1 + 6x2� 360
Objective function: Max 10x1 + 15x2

In this system we could reach to define an equivalent model in which the system’s
decisions were to measure the time of use of each machine with each type of butter,
although it would be larger. In other words, the machines would become measurable
elements in decisions and butter production would become calculations. It is not
usual, but as mentioned, there are systems that support more than one configuration
of its elements. Let’s see how it would be:

Decision activities:

y1S: Assigned time in the pasteurization machine for sweet butter
y1A: Assigned time in the pasteurization machine for acid butter
y2S: Assigned time in the whipping machine for sweet butter
y2A: Assigned time in the whipping machine for acid butter

Specifications:

Control of the consumption of available time:

Pasteurization machine: y1S + y1A � 210
Whipping machine: y2S + y2A � 360

The measurement of the quantity of butter is produced in the specifications
through a lower bound calculation (the calculations of a system will be studied in
Chap. 5).

Measurement of sweet butter production:

x1: Kilos of sweet butter that are produced

Constraints defining the calculation:

x1 � y1S
3

x1 � y2S
3

x2: Kilos of acid butter that are produced

Constraints defining the calculation:

x2 � y1A
3

x2 � y2A
6

Objective function: Max 10x1 + 15x2

To assign the quantitative nature correctly for individual elements, we need to
analyze the decision activities of the problem. In any case, knowing the system

44 3 The Elements of a System

perfectly, we can also glimpse the measurable nature of the individual elements. Let
us look at Illustrations 3.2 and 3.3 described at the beginning of the chapter,
introducing the quantitative nature in the table.

Illustration 3.15: Quantitative Nature of the Elements of Illustration 3.2
There is a set of 100 objects each with a weight, a height, and a width. There is also a
set of 25 shelves each formed by a set of 10 sections. Each section has a width, a
height, and a maximum supported weight. It is about assigning objects to shelving
sections, respecting the width, height, and weight of the sections, maximizing the
number of objects to be placed.

All the elements have been defined individually since they are identified in the
system with their own values in their data, which makes them different from the rest.
Each object has its own weight, height, and width. On the other hand, objects are
defined as unitary because the system treats them in an integral way; there is no
measurement of their continuous data (Table 3.19).

The shelves do not have continuous data and are different according to the data
related to the sections that compose it, so they are defined as individual and unitary.

Each section is different and therefore it is also an individual element. They are
also unitary because in the system the measurement of its supported weight, used
height, or used width is based on logical decisions; the decision of assigning each
object is logical (each object is assigned to each section or not).

Illustration 3.16: Quantitative Nature of the Elements of Illustration 3.3
There is a system that produces parts. In the market there are three models of
machines (M1, M2, M3) for production. There are two production modes and two
workstations where any mode can be installed in each. The first mode needs to
produce parts, for two M1 machines and one M2 machine, and the second mode one
M2 machine and one M3 machine. Each mode produces at a rate that translates into
number of parts per hour, 45 and 54 respectively. The company wants to plan the
production of 3000 parts, during the 18 hours a day, aiming to minimize the
purchase costs of the machinery.

In this system there are not only individual elements. The parts are not treated
individually and each of them is identical. Therefore, it is a collective and deter-
mined element (3000 parts).

On the other hand, there are three models of machines. The three models of
machines are different from each other, so there is no kind of collective consideration
for them. Each model is referenced in the system by quantities or numerals, so it is
also collective elements whose quantity a priori is undetermined in the system. Keep
in mind that the system does not work with the three machine models in a conceptual
way, but in a quantifiable way, because the description refers to units of each model
at all times.

The two modes of production are individual elements that have no own data that
can be measured, so their nature is unitary. They have data shared with the models of
machines, the number of machines that each mode needs, and the rate of production

3.3 The Quantitative Nature of the Elements 45

of parts, shared with the latter. Workstations are treated individually in the system
(any mode can be installed in each) (Table 3.20).

The shared attributes will be represented in a single element, indicating only the
parameter for the rest.

In order to give uniformity to the data and for the grouping process to be simpler,
as we will see in Sect. 3.4, we have included as an attribute each ratio of the number
of machines with each mode, regardless of whether its value is null.

3.3.1 Collective Element vs Individual Items

As we have already mentioned, the items of a collective element are identical, both in
their definition of data and in their values. In addition to this, another important
characteristic that the collective element must have, whether determined or indeter-
minate, is in the very concept of collectivity. Items from collective elements should
never be treated individually in the decisions and specifications of a system. If this
happens, each item should be considered as an individual element and identified
within the typologies of the individual elements. Therefore, the allusions in the
description of decisions and specifications of a collective element must be by
numerals of the element, never particularizing on any or each of them.

Table 3.19 Elements of Illustration 3.15

Element QN

Data

Name Parameter Type of value Belonging Value

Object 1 IU Weight P1 C W –

Height H1 C W –

Width W1 C W –

. . .

Object 100 IU Weight P100 C W –

Height H100 C W –

Width W100 C W –

Shelves 1 IU
. . .

Shelves 25 IU
Section 1 IU Height HS1 C W –

Width WS1 C W –

Supported weight PS1 C W –

Shelves SS1 O W –

. . .

Section 250 IU Height HS250 C W –

Width WS250 C W –

Supported weight PS250 C W –

Shelves SS250 O W –

46 3 The Elements of a System

This characteristic acquires greater relevance if the element, a priori collective, is
indeterminate and the description alludes in a particular way to each item in the
system. In that case, as its quantity is indeterminate, it is necessary to establish an
upper bound in the number of items that the system may need and individualize each
one of them.

Any optimization problem in which elements defined individually with the same
functionality are presented, being identical in their definition of data and values and
they are not referenced in a particular way in the system, can be modelled by
grouping these elements as items of a single collective element. The grouping always
means some loss of relational information, which would be recoverable after the
resolution of the model. However, the grouping streamlines the resolution process
because we will approach a model with fewer variables, which is in general more
efficient. Whenever the conversion of individual elements into items of a collective
element is carried out, an attribute must be added that counts the number of grouped
items.

In Chap. 7 of the book, we will see examples of complex cases in which these
incidents occur, where the influence of the description of the system for the consid-
eration of the element quantitative nature is fundamental.

Table 3.20 Elements of Illustration 3.3

Element QN

Data

Name Parameters Type Belonging Value

Parts CD Production Q I W 3000 parts/
day

Rate_Mode1 R1 I S 45 parts/hour

Rate_Mode2 R2 I S 54 parts/hour

M1
machines

CI Cost C1 C W –

M1_Mode1 M11 I S 2

M1_Mode2 M12 I S 0

M2
machines

CI Cost C2 C W –

M2_Mode1 M21 I S 1

M2_Mode2 M22 I S 1

M3
machines

CI Cost C3 C W –

M3_Mode1 M31 I S 0

M3_Mode2 M32 I S 1

Mode 1 IU R1; M11; M21; M31

Mode 2 IU R2; M12; M22; M32

Workstation
1

IU

Workstation
2

IU

Day IU Available time
disponible

T C W 18 hours

3.3 The Quantitative Nature of the Elements 47

As an illustration, we are going to analyze two problems: first, the batch sale
system already modelled in Chap. 2 as an example of identifying collective elements
and, second, a classic of optimization, the knapsack problem, as an example that
accentuates the influence of the values of the data to establish the typology of
elements.

Illustration 3.17: Sale of Batches (Illustration 3.8) (Meléndez 2019)
A department store has 200 shirts and 100 trousers from the previous season. They
launch two batch offers, A and B. The Offer A consists of a batch of one shirt and one
trousers, which is sold at $30; Offer B consists of a batch of three shirts and one
trousers, which is sold for $50. They do not want to launch less than 20 batches of
Offer A. On the other hand, they also have the option of transferring pants to an
outlet for a price of $18/trousers, agreeing to pay a fee to the outlet of $80 if they
transfer more than 50 units. The objective is to maximize the profit.

In this example there are two concepts, the shirts and the trousers, which can a
priori have a double treatment. The shirts could be considered either as a collective
element or determined, since it consists of 200 units or items, or we could consider
each of those shirts individually as a unitary element. The same would happen with
the trousers. This disjunctive is produced by the discrete and determined character of
the element.

Let’s analyze how the shirts are alluded to in the text:

A department store has 200 shirts and 100 trousers from the previous season. They
launch two batch offers, A and B. Offer A consists of a batch of one shirt and one
trousers, which is sold at $30; Offer B consists of a batch of 3 shirts. . ..

It is observed that in all cases the text alludes to numerals of the collective element
shirts, and at no time a shirt is distinguished in a particular way. This means that the
element is collective and each shirt must not be set up individually. Something
similar happens with trousers.

The system will need to quantify the number of shirt items that it uses to make the
batches in order not to exceed the stock it has, which is 200 shirts.

On the other hand, Batch Offer A and Batch Offer B are also elements of the
system. Both are also collective elements, since in the system the number of batches
that we launch of each type will be decided. Then they are elements whose quantity
is measurable and indeterminate, because we do not know a priori the number of
units that we will have of each batch. There is no reference to any specific item of the
batches, so there is no room for an individual analysis of those items.

In addition to the previous elements, the Outlet also exists as a unitary element. It
is unitary because it is an indivisible element and there are no Outlet items, but we
have a single Outlet. We could also consider the department store as an element, that
is, the system itself.

The rest of the information of the system is referred to data that have the elements
(prices, number of shirts and trousers that make up each batch, the profit of each
batch, a fee, or the limit number of trousers to apply that cost). We portray all of this
information in Table 3.21.

48 3 The Elements of a System

Maximum number of trousers sold to the outlet without paying fee ¼ 50
Fee for transferring trousers to the outlet ¼ $80

Illustration 3.18: Knapsack Problem (Martello and Toth 1990)
Given a knapsack with a volume V and a set of objects, each characterized by a
volume and a value, it is about maximizing the total value of the objects introduced
in the knapsack.

Specifications: The total volume of the objects introduced cannot be greater than
the volume of the knapsack

Objective: Maximize the total value of the objects introduced

We will use two instances of values, which will determine different options for
the elements.

Analyzing the statement, we can extract the backpack and objects as elements of
the problem. Both the backpack and each object are considered, a priori, as individ-
ual. However, depending on the instance, this can vary, because other options can be
considered. This will have an impact on the other components of the model, that is,
activities, specifications, and objective function, which will be defined according to

Table 3.21 Table of Elements of Illustration 3.17

Element QN

Data

Name Parameters

Type
of
value Belonging Value

Shirts CD Stock SS I W 200

N� shirts in Batch A NSA I S 1

N� shirts in Batch B NSB I S 3

Trousers CD Stock SP I W 100

N� trousers in Batch A NTA I S 1

N� trousers in Batch B NTB I S 1

Sale price to the Outlet PO C
($/unit)

S 18

Maximum number of trousers
sold to the outlet without paying
fee

MTO I S 50

Fee for transferring trousers to
the outlet

FTO C ($) S 80

Batch
Offer A

CI Sale price PA C
($/unit)

W 30

NSA; NTA

Batch
Offer B

CI Sale price PB C
($/unit)

W 50

NSB; NTB

Outlet IU PO; MTO;

FTO

3.3 The Quantitative Nature of the Elements 49

the table of problem elements. Despite not having reached the chapters of these
components, as the model is simple, we will present the components according to the
Table of Elements. The instances are the following:

Instance 1
Five objects

Objects Value Volume

1 5 3

2 4 6

3 6 5

4 3 1

5 4 5

Knapsack volume ¼ 8

Instance 2
Five objects

Objects Value Volume

1 2 2

2 2 2

3 6 5

4 6 5

5 6 5

Knapsack volume ¼ 12

Instance 1
Regarding the first set of values, the six objects have the same attributes, weight and
volume, and each object has its own values for them, different from the rest, so there
is no consideration of each object as an instance of a collective element. We are
obliged to consider them as individual. In addition, the objects are of unitary type
because they are treated completely; there is no continuous measurement of their
data in the system, even if they are continuous.

The knapsack is an individual element with a continuous attribute, the volume,
which cannot be measured in decisions as its partial use is based on logical decisions.
The elements table would be as follows (Table 3.22).

• Decision activities:

The activity of the problem is to introduce objects in the knapsack. As we will see
in the chapter dedicated to decision activities, this activity must be defined with

Table 3.22 Elements of the knapsack problem (Instance 1)

Element QN

Data

Name Parameter Type of value Belonging Value

Knapsack IU Volume VM C W 8

Object 1 IU Value p1 C W 5

Volume v1 C W 3

Object 2 IU Value p2 C W 4

Volume v2 C W 6

. . .

Object 5 IU Value p5 C W 4

Volume v5 C W 5

50 3 The Elements of a System

binary value. The activity defines an event with each element of the set of objects and
the knapsack, since it is necessary to determine if each object is introduced or not in
the knapsack. Therefore, we define as variables:

α1 ¼
1 if we introduce object 1 in the knapsack

0 in other case

(

α2 ¼
1 if we introduce object 2 in the knapsack

0 in other case

(
. . .

α5 ¼
1 if we introduce object 5 in the knapsack

0 in other case

(

• Specifications:

– Knapsack volume: The total volume of the objects introduced cannot be
greater than the volume of the knapsack:

v1α1 + v2α2 + v3α3 + v4α4 + v5α5 � VM

• Objective criterion: Maximize the value of objects introduced in the knapsack:
Max p1α1 + p2α2 + p3α3 + p4α4 + p5α5

Instance 2
In Instance 2, in addition to the approach taken for Instance 1, it is possible to
develop another Table of Elements. There are two groups of objects where the values
of the data are identical, and the description of the system does not refer to any object
in a particular way. The only specification of the problem refers in particular to the
knapsack. The objects are treated collectively in the description. This means that for
this second instance, each of these groups of objects could be considered as a
collective element, which would adopt the two attributes of the objects plus an
additional attribute with the number of items of the group (Table 3.23).

• Decision activities:

The activity of introducing objects in the knapsack is associated in this case with
the knapsack and the two groups of objects, giving rise to two events. As the objects

Table 3.23 Table of Elements of the knapsack problem (Instance 2)

Element QN

Data

Name Parameter Type of value Belonging Value

Knapsack IU Volume VM C W 12

Objects of Group 1 CD Value p1 C W 2

Volume v1 C W 2

Stock s1 I W 2

Objects of Group 2 CD Value p2 C W 6

Volume v2 C W 5

Stock s2 I W 3

3.3 The Quantitative Nature of the Elements 51

are measurable, the activity of introducing objects becomes a quantification activity.
We will decide how many objects of each group can be introduced in the knapsack.
We will also see in the chapter dedicated to decision activities that when an activity
involves collective elements, this activity will also be discrete and measurable. The
variables of the problem would be defined as:

x1 ¼ Number of objects of Group 1 introduced in the knapsack
x2 ¼ Number of objects of Group 1 introduced in the knapsack

• Specifications:

– Availability of items:
x1 � n1
x2 � n2

– Knapsack volume:
v1x1 + v2x2 � VM

• Objective criterion:
Max p1x1 + p2x2

As we discussed when simplifying unitary elements in a collective element,
certain information is lost. The solution of Instance 2 would provide the number
of objects that we can introduce from each group, but not the particular objects.
However, this information is irrelevant; since all the objects of each group are
identical, we could select any of them until the numbers of objects x1 and x2 are
introduced.

Relationship Between both Configurations
If we express the Instance 2 with the first Table of Elements, we would have the
following variables and expressions:

Decision activities:
Binary variables: α1, α2, α3, α4, α5
Specifications:
v1α1 + v2α2 + v3α3 + v4α4 + v5α5 � VM)
) 2α1 þ 2α2 þ 6α3 þ 6α4 þ 6α5 � VM

) 2 α1 þ α2ð Þ þ 6 α3 þ α4 þ α5ð Þ � VM
Objective criterion:

Max p1α1 þ p2α2 þ p3α3 þ p4α4 þ p5α5) Max 2α1 þ 2α2 þ 5α3 þ 5α4 þ 5α5
) Max 2 α1 þ α2ð Þ þ 5 α3 þ α4 þ α5ð Þ

Given that:

x1 ¼ α1 + α2) 0 � x1 � 2 ¼ n1
x2 ¼ α3 + α4 + α5) 0 � x2 � 3 ¼ n2
The expressions of the model remain as:
Max 2x1 þ 5x2
2x1 þ 6x2 � VM

x1 � n1
x2 � n2
x1 � 0 x2 � 0

52 3 The Elements of a System

which corresponds with the model for the second Table of Elements (p1¼ 2; p2¼ 5;
v1 ¼ 2; v2 ¼ 6).

3.4 Association of Elements in Sets

Certain elements of a system can be grouped into sets when they have the same
functionality in the system, are of the same quantitative nature, and have the same
definition of data. The grouping into sets introduces the use of subscripts to reference
each element of the set.

The advantage of using sets is that the mathematical definition of the model is
simplified, both in its presentation and in the implementation for its resolution.

The association brings with it a slight modification of the Table of Elements. To
indicate that we allude to a set of elements and to modify our structure, we will add a
column between the name and the quantitative nature that indicates the sets, the
subscripts used, and the number of elements that make up the set (Table 3.24).

For a matter of space, the values of the attributes for the grouped elements will not
be presented in the table, unless there are few elements in the set. The data values of
elements that are not included in any set can be maintained.

The Table of Elements of our butter production system could be simplified by
associating elements into sets. The two machines have the same attributes. Similarly,
for the two types of butters, the same attributes are also defined.

When the elements become part of a set, they end up being referenced by an
ordinal rather than by their own identification in the system. Therefore, the associ-
ation in a set of the two machines means the pasteurization machine is referenced as
index 1 in the set of machines and the whipping machine as index 2. The same
happens with the two butters: sweet butter becomes the index 1 within the set of
butters and raw butter index 2.

The table would be defined as (Table 3.25).
As can be seen, the list of attributes of each set has become two, when actually

each element has three attributes. This simplification occurs because the data shared
between sets are represented only once in the set. “Time used by 1 kg of butter j in
machine i” is representing the time that each machine uses with each butter in a
single row since both the machines and the butters are associated in sets.

Table 3.24 Framework of Table of Elements with sets

Elements Set QN

Data

Name Parameters Type Belonging Value

Name of
set

Subscripts
¼ 1. . .number of
elements

I/IU/IM/
C/CD/CI

Name A C/I/
O/B

W/S . . .

.

. . .

3.4 Association of Elements in Sets 53

3.4.1 Assigning or Removing Data to Create Sets

Sometimes it is possible to assign an attribute to an element that initially does not
have that characteristic, with the idea of matching the attributes of this element with
those of others and thus being able to create a set with all of them. In this way, we can
extend the elements of the same set and thereby simplify the Table of Elements and
the definition of the model. In that case, we assign it an appropriate value to the data
that does not affect the problem. Appropriate value means that a value without utility
is imputed, which for the system is equivalent to not having it. Let’s see an example
that illustrates this possibility.

Illustration 3.19
For the purchase of a product, we have three suppliers in the market (P1, P2, P3).
Each supplier has a product sale price and transport costs (Table 1). The third
provider offers us a discount of $0.5/unit if we buy more than 100 units.

We identify P1, P2, and P3 as elements, as well as the product. We define the
suppliers as unitary and the product as collective. The Table of Elements would be as
follows (Table 3.26).

To associate the three suppliers in a set, we incorporate the Discount and
Threshold data to P1 and P2, assigning zero value, since they do not make any
discounts. With this we managed to unify the data of the three providers, and we can
create the set of suppliers (Table 3.27).

Another possibility that we can admit for the representation of the data is to form
sets and incorporate the data that are specific only to some of the elements of the set

Table 3.25 Table of Elements associated into sets of Illustration 2.1

Elements Set QN

Data

Name Parameters Type Belonging Value

Machines i ¼ 1,2 IU Usage time Ti C
(Min)

W . . .

Time used by 1 kg of
butter j in machine i

TMij C
(Min)

S . . .

Butters j ¼ 1,2 IM Profit Bj C
($/kg)

W . . .

TMij

Table 1 Sale prices and
transport cost

Sale price/unit Transport cost

P1 85 140

P2 88 159

P3 90 150

54 3 The Elements of a System

without the abstract reference of the subscript, only pointing to the specific subscript
of the element that owns the data, as shown in Table 3.28. This is valid for the
representation but can give problems when implementing the model in an optimi-
zation library. Another solution for the implementation is not to consider that
specific data within the element table. This data will be used directly in the speci-
fications without the use of parameters.

The representation of the attributes is not a relevant aspect in the design of the
model, but it is for the implementation of the same.

Table 3.26 Table of Elements of Illustration 3.19

Elements QN

Data

Name Parameters Type Belonging Value

P1 IU Sale price Pr1 C ($/unit) S 85

Transport cost C1 C ($) W 140

P2 IU Sale price Pr2 C ($/unit) S 88

Transport cost C2 C ($) W 159

P3 IU Sale price Pr3 C ($/unit) S 90

Transport cost C3 C ($) W 150

Discount D C ($/unit) S 0,5

Threshold Th I S 100

Products CI Pr1, Pr2, Pr3, D, Th

Table 3.27 Elements associated into sets of Illustration 3.19

Elements Set QN

Data

Name Param Type Belonging Value

Suppliers i ¼ 1. . .3 IU Sale price Pri C ($/unit) S 85;88;90

Transport cost Ci C ($/unit) W 140;159;150

Discount Di C ($/unit) S 0;0;0;5

Threshold Ui I S 0;0;100

Product – CI Pri, Di

Table 3.28 Table of Elements with individual parameters of Illustration 3.19

Elements Set QN

Data

Name Param Type Belonging Value

Suppliers i ¼ 1. . .3 IU Sale price Pri C ($/unit) S 85;88;90

Transport cost Ci C ($/unit) W 140;159;150

Discount D3 C ($/unit) S 0;5

Threshold U3 I S 100

Product – CI Pri, Di

3.4 Association of Elements in Sets 55

3.4.2 Shared Data Between Elements of the Same Set

The norm is to use a single subscript for each set. However, we can reference a set
with more than one subscript in cases where there are shared data between elements
of the same set. Let’s see the following example.

Illustration 3.20
There is a set of four municipalities of which the number of inhabitants and the
distance in Km between each of them (Tables 1 and 2) are known. We want to install
a retail store, and we want to determine the most suitable municipality for it in order
to place the store as close as possible to the inhabitants of all the municipalities.

We identify each municipality and the retail store as elements, all unitary. The
Table of Elements would be as follows (Table 3.29).

Since I need to reference the distance attribute with each pair of municipalities, I
have to define two subscripts, i and j, to refer twice to the same set in the distance
data, Dij. For the other non-shared data, we use a single subscript, in this case the
index i.

This example also illustrates something that can happen in a system, elements
without any attribute, which is the case of the retail store.

3.4.3 Hierarchical Definition of Sets

When a system has elements that are part of other elements, forming a hierarchical
tree, it is possible to identify the child elements using the parent subscript in addition
to the child subscript. In this way, the number of elements in the table decreases, and
the dependency properties are implicit in the identification of the indexes of an
element. The only condition for this is that the child elements of each parent element
are identical.

Table 1 Distance between municipalities (Km)

Distances Municipality 1 Municipality 2 Municipality 3 Municipality 4

Municipality 1 0 12 26 35

Municipality 2 – 0 18 29

Municipality 3 – – 0 8.5

Municipality 4 – – – 0

Table 2 Number of
Inhabitants

Inhabitants

Municipality 1 4800

Municipality 2 6500

Municipality 3 7200

Municipality 4 10540

56 3 The Elements of a System

Illustration 3.21
Given a set of ten boxes, each consisting of five compartments. Each compartment
has a volume and they are identical in all boxes. It is about assigning a list of
30 individual objects, each with a volume, to the compartments. All objects going to
the same compartment must not exceed the volume of the compartment.

Each compartment needs to be considered individually, a total of 50 compart-
ments. However, since the compartments are identical in each box, we could also
apply a hierarchical structure in which we use fewer elements. Let’s first look at a
non-hierarchical configuration of the elements.

Non-hierarchical Table of Elements

In Table 3.30 the compartments are identified with the subscript j. The box to
which each compartment belongs is identified in the Box attribute, with an ordinal
value (we could also have used a shared binary value).

If the decision variables are to assign objects to compartments, wewill use a variable
with subscripts k and j: αkj ¼ 1 if I assign object k to compartment j, 0 otherwise.

Hierarchical Table of Elements

In Table 3.31 each compartment, since they are individual, should be referenced
by index j plus index i of the box to which it belongs. The attribute of belonging is
implicit in this association.

The decision variables associated with the allocation of objects to compartments
would be as follows:

αkji ¼ 1 if I assign object k to compartment j, 0 otherwise.

Table 3.30 No-hierarchical table

Elements Set QN

Data

Name Param Type Belonging Value

Boxes i ¼ 1..10 IU
Compartments j ¼ 1..50 IU Volume VCj

Box Cj O W . . .

Objects k ¼ 1..30 IU Volume vi C W . . .

Table 3.29 Table of Elements of Illustration 3.20

Elements Set QN

Data

Name Par. Type Belonging Value

Municipality i, j ¼ 1..4 IU Distance Dij C (Km) S . . .

Inhabitants Hi I W . . .

Retail store – IU

3.4 Association of Elements in Sets 57

3.5 Data Generating Elements

The identification of elements in a problem does not have to present a single
configuration. We already introduced in Sect. 3.2.2 the possibility of representing
as an element the quality that defines the attribute in the case of binary attribute. This
happens with binary data as well as with continuous or integer attributes. This
happens both with binary data and with continuous or integer data, own or shared,
although in shared attributes it will happen whenever there is no primary element in
the relationship.

The concepts that act as attributes and are not defined as elements are referred to
intrinsic properties of the element, such as any continuous magnitude of the element
(weight, volume, duration, etc.) or characteristics that do not need to be explicit as an
element because there are no decisions or specifications that fall on them in the
system. In the case of representing one of these characteristics as an element, the
design of the model is not hindered, but it is not necessary.

Let’s see a simple illustration of an own attribute that we make explicit as an
element:

Illustration 3.22
There is a city formed by a set of 20 neighborhoods. The number of registered
citizens from each neighborhood is known. The distance between the central points
of each neighborhood is also known. The aim is to install a citizen information point
in a central point of a neighborhood so that the sum of the distances that citizens
travel between the central points of each neighborhood and the information point is
as small as possible.

The elements that we can extract from the text are:

• The city
• 20 neighborhoods
• Citizens
• Central point of each neighborhood (geographical center of each neighborhood)
• Citizen information point

From these elements we can affirm that:

• The city can be considered as the system itself.
• Neighborhood and central point of the neighborhood can be considered as the

same element. It is not necessary to create an element for each neighborhood and

Table 3.31 Hierarchical table

Elements Set QN

Data

Name Param Type Belonging Value

Boxes i ¼ 1..10 IU
Compartments j ¼ 1..5 IU Volume VCj

Objects k ¼ 1..30 IU Volume vi C W . . .

58 3 The Elements of a System

another element for each central point. The neighborhood includes the central
point. Referring to one or the other is indifferent in the system.

• We can do without citizens as an element, since it does not have any characteristic
of its own and no decision or specification falls on the citizens. If it was
considered as an element, it would have to be defined as collective.

Based on this, the Table of Elements could be defined as follows (Table 3.32).
In the case of having made the citizen explicit as an element, the table would have

been as follows (Table 3.33).
The relationship between neighborhoods and citizens has been simplified as

follows (Fig. 3.2).
When a shared concept without primary elements is established as an element,

this new element would have, as own data, all the shared data existing between the
elements that shared the concept. In addition, in the case of attributes shared between
sets, the configuration possibilities in the element table are expanded. On the one
hand, as we already have defined on grouping into sets, the new elements are
referenced with a new index, and it would be necessary to incorporate a shared
binary attribute that identifies the elements that each new element links. And on the
other hand, we can identify each new element with the indexes of the elements that
shared it. Thus, it is not necessary to introduce the relationship as an attribute since it
is embedded in the indexes that identify it.

Let’s see an illustration of this casuistry, expanding Illustration 3.21.

Table 3.32 Table of Elements of Illustration 3.22

Elements Set QN

Data

Name Param Type Belonging Value

Neighborhoods i,
j ¼ 1. . .20

IU N�

citizens
Ni I W . . .

Distance Dij C S . . .

Citizen information
point

– IU

City – IU

Table 3.33 Table of Elements of Illustration 3.22 considering citizens as element

Elements Set QN

Data

Name Param Type Belonging Value

Neighborhoods i,
j ¼ 1. . .20

IU N�

citizens
Ni I S . . .

Distance Dij C S . . .

Citizens – CD Ni

Citizen information
point

– IU

City – IU

3.5 Data Generating Elements 59

Illustration 3.23
There is a set of four municipalities of which the number of inhabitants and the
distance in Km between each of them are known. We want to install a retail store,
and we want to determine the most suitable municipality for it in order to place the
store as close as possible to the citizens of all the municipalities. We also collect
information on whether there is a possibility of refueling between municipalities.

The Table of Elements could be considered in two ways:

Setting 1

We model the table considering only the municipalities and the sales store as
elements (Table 3.34).

The citizens are not taken into account as an element as in Illustration 3.20.

Table 3.34 Table of Elements of Illustration 3.23

Elements Set QN

Data

Name Param Type Belonging Value

Municipalities i, j ¼ 1..4 IU Distance Dij C (Km) S . . .

Refueling Rij B S . . .

Citizens Ha I W . . .

Retail store – IU

Neighborhood 1

Neighborhood i

Neighborhood 20
N20

Citizens 1

Citizens i

Citizens 20

Neighborhood 1

Neighborhood i

Neighborhood 20

N1

Ni

N20

Citizens

Neighborhood 1

Neighborhood i

Neighborhood 20

N1

Ni

N20

N1

Ni

Fig. 3.2 Generation of Citizens as Element

60 3 The Elements of a System

Setting 2

Both distance and refueling are shared attributes that do not have a primary
element in the relationship. We make the relationship between municipalities
explicit, which we will call connection. The data of this relationship, Distance and
Refueling, would become data of the new connection element, and we will incor-
porate a shared attribute for the relationship between municipality and connection
(Table 3.35).

Six elements are identified in the connection set: (Municipality 1 – Municipality
2), (Municipality 1 – Municipality 3), (Municipality 1 – Municipality 4), (Munici-
pality 2 – Municipality 3), (Municipality 2 – Municipality 4), and (Municipality 3 –

Municipality 4).

Setting 3: New Way to Represent Sets

We configure the shared data creating, as in Setting 2, a new element for the link
but incorporating for the identification of each element a subscript for each element
that shared the characteristic. Each element of the new set is identified by a tuple of
subscripts (Table 3.36).

In this way, the identification data of the municipalities that form each connection
is embedded in the subscripts.

Table 3.36 Table of Elements compatible with LINGO

Elements Set QN

Data

Name Param Type Belonging Value

Municipalities i, j ¼ 1..4 IU Citizens Hi I W . . .

Connections (i, j) ¼ (1,2) (1,3)
(1,4) (2,3) (2,4) (3,4)

IU Distance D(ij) C
(Km)

W . . .

Refueling R(ij) B W . . .

Retail store – IU

Table 3.35 Alternative Table of Elements of Illustration 3.23

Elements Set QN

Data

Name Param Type Belonging Value

Municipalities i,
j ¼ 1. . .4

IU Connection-
Municipality

Mik B S . . .

Citizens Hi I W . . .

Connection k ¼ 1. . .6 IU Distance Dk C
(Km)

W ..

Refueling Rk B W . . .

Mik

Retail store – IU

3.5 Data Generating Elements 61

3.6 Identification of Data in Graphic Environments.
Elements in Graphs

When a system is represented graphically, it is very likely that you have to extract
data from the graph, data that relate to the elements of the system. The most popular
cases are the optimization problems in graphs.

To collect data of the graphic representation of a system, two steps are
established:

Step 1: Identify the elements of the system, based on the description provided.
Step 2: Identify the elements in the graph and extract the graphic relationships

between them as data. Graphic data can mean measurements, coverage,
connections, etc.

Connections are a very necessary property in many graphical systems, not only in
graph representation. Here is an example of this property.

Illustration 3.24 (Source: Larrañeta et al. 2003)
The following figure shows the floor of a museum with 10 rooms (ROOM 1 to ROOM
10) connected by 14 doors (P1 to P14). Security cameras will be installed to monitor
the rooms. The security cameras are of two types:

1. Model A: these are installed in the doors and provide surveillance to the rooms
with that particular door.

2. Model B: they are installed in rooms and provide surveillance to the room where
they are installed.

Each type of camera has a different cost (CA and CB, respectively).

D9

D6

D7

ROOM 8

ROOM 1

ROOM 2

ROOM 3 ROOM 5

ROOM 4

ROOM 7

ROOM 9

ROOM 6

ROOM
10D2

D1

D3

D4

D5

D12

D8

D10

D11

D14D13

62 3 The Elements of a System

Reading the text, the configuration of the list of system elements does not offer
much complexity. We have the doors, the rooms, and the Model A and Model B
cameras. We discard the nouns installation and surveillance, directly associated with
the action of installing and monitoring. We also discard cost because it is an attribute
of the camera types and therefore will have a value associated with it. The museum
would be the system element, although it has no data, so it can be ignored as an
element.

A priori, the list of elements could be subject to different proposals:
Regarding the doors, we could consider the doors as a collective element formed

by 14 units, or each door (1 to 14) as an individual element. The same happens with
the rooms. It depends on their attributes and the system specifications. From the text,
no data are extracted for rooms and doors. However, the graph provides important
and necessary information for the modelling of the system and the connection
between doors and rooms:

Door 1 (P1) is connected to Room 1 and Room 2.
Door 2 (P2) is connected to Room 1 and Room 3.
. . .

As discussed in the types of values of an attribute (Sect. 3.2.3), the value of an
attribute must not correspond to an ordinal that identifies another element if the
association is multiple. The solution is to establish a shared attribute between both
elements of binary value. This results in the need to consider the doors and rooms as
unitary elements, since each one has its own connections, that is, its own values in
the connection data, and there are no continuous attributes.

Regarding the A and B cameras, their number is indeterminate because we do not
know how many cameras of each type we are going to have. It is necessary to
consider them collective elements, since the activities will measure the number of
cameras installed in each door or room, having as a specification that one camera per
room or door is installed, at most. In other words, we are looking at an example of
two collective elements whose quantity in the decision activities is going to be 0 or 1.

We can set the following configuration for the Table of Elements (Table 3.37).
This configuration of elements is not unique, although it is the most

recommended for the model. We could have made another design without consid-
ering the doors as an element but an attribute shared between the rooms. This would
lead to a more awkward model, since having decision activities on doors is better

Table 3.37 Table of Elements of Illustration 3.24

Elements Set QN

Data

Name Param Type Belonging Value

Rooms i ¼ 1. . .10 IU Connection Cij B S . . .

Doors j ¼ 1. . .14 IU Cij

Model A Cam. – CI Cost CA C W . . .

Model B Cam. – CI Cost CB C W . . .

3.6 Identification of Data in Graphic Environments. Elements in Graphs 63

considered as elements explicitly rather than having to reference them in the model
using the rooms that connect them (Table 3.38).

If Dik ¼ 1, then there is a door between room i and room k. This implementation
could be the most useful if the system does not consider activities on doors. Since
Model A cameras are installed in doors, it is better for the model to make the doors
explicit as an element. This configuration has been possible thanks to the fact that
there is only one door between the same two rooms.

In the same way as in Illustration 3.23, we can choose a third configuration that
identifies each door with the indexes of the rooms it connects, keeping in mind, as in
the previous case, that there could not be two doors connecting the same rooms,
since in that case both would be identified with the same subscript values.

3.6.1 Representation of Graphs

Graph G (N, A) is formed by a set of elements called nodes (N ¼ {1. . .n}) joined by
links between pairs of nodes called edges or arcs (A ¼ {(i, j)/i2N, j2N})
(Balakrishnan 1997).

In Fig. 3.3, graph G is represented by a set of six nodes, N ¼ {1,2,3,4,5,6}, and a
set of seven edges that link pairs of nodes, Edges ¼ {(1,2); (1,3); (2,5); (3,5); (2,4);
(4,6); (5,6)}.

The basic configuration of the Table of Elements of a graph considers the nodes
of individual type as elements because each node is different from the rest. The edges

5
1

6

3

4

2

Fig. 3.3 Example of graph

Table 3.38 Alternative table of non-recommended elements of Illustration 3.24

Elements Set QN

Data

Name Param Type Belonging Value

Rooms i, k ¼ 1. . .10 IU Door Dik B C . . .

Model A Cam. – CI Cost CA C W . . .

Model B Cam. – CI Cost CB C W . . .

64 3 The Elements of a System

are an attribute of the nodes. Again, the connection between nodes is the attribute
that is extracted from the graphic framework (Table 3.39).

From this configuration, we can make the connections between nodes, that is, the
edges, explicit as elements (Table 3.40).

We can even keep the connection data within the data of the nodes, in case it is
more convenient for representing the system specifications (Table 3.41).

And as in Illustration 3.23, we can reference the edges with two indexes in a
LINGO (Cunningham and Schrage 2004) implementation (Table 3.42).

Any implementation is valid, and we will always look for the most suitable one to
model the system, keeping in mind the rest of the data associated with the graph and
the decision activities that occur in it.

Now, let us suppose each node has a weight and each edge has a cost, as shown in
Fig. 3.4.

The inclusion of these data in Tables 3.39, 3.40 and 3.42 would be as follows
(Tables 3.43, 3.44 and 3.45).

The elements continue to be unitary because those continuous attributes have no
measurable character, so they would be used in the objective function.

Table 3.41 Table of Elements of an enlarged graph

Elements Set QN

Data

Name Par Type Belonging Value

NODES i,j ¼ 1. . .6 I Edge-Node ANik B S . . .

Connection aij B S . . .

EDGES k ¼ 1. . .7 I ANik

Table 3.40 Table of Elements of a graph with edges as elements

Elements Set QN

Data

Name Par Type Belonging Value

NODES i ¼ 1. . .6 I Edge-Node ANik B S . . .

EDGES k ¼ 1. . .7 I ANik

Table 3.39 Basic Table of Elements of a graph

Elements Set QN

Data

Name Param Type Belonging Value

NODES i,j ¼ 1. . .6 I Connection (edges) aij B S . . .

Table 3.42 Table of Elements in a graph compatible with LINGO

Elements Set QN

Data

Name Param Type Belonging Value

NODES i,j ¼ 1..6 I

EDGES (i,j) ¼ (1,2)..(5,6) I

3.6 Identification of Data in Graphic Environments. Elements in Graphs 65

Directed Graphs (Bang-Jensen and Gutin 2000)
When we work with directed graphs, where the edges become arcs, which link a
source node with a destination node by establishing an address in the link, the Table
of Elements is slightly modified since the arc is constituted by two attributes, the
source node and the destination node of the arc. The basic representation of Fig. 3.5
appears in Tables 3.46, 3.47 and 3.48.

5
1

6

3

4

2

P1

P3

P2

P4

P5

P6

C12

C13

C24

C25

C35

C56

C46

Fig. 3.4 Example of graph
with information

Table 3.43 Table of Elements of graph in Fig. 3.4.

Elements Set QN

Data

Name Param Type Belonging Value

NODES i, j ¼ 1..6 I Connection aij B S . . .

Weight Pi C W . . .

Cost Cij C S . . .

Table 3.44 Table of Elements of graph in Fig. 3.4 with edges as elements

Elements Set QN

Data

Name Param Type Belonging Value

NODES i ¼ 1..6 I Edge-Node ANik B C . . .

Weight Pi C P . . .

EDGES k ¼1..7 I ANik

Cost Ck C P . . .

Table 3.45 Table of Elements of graph in Fig. 3.4 compatible with LINGO

Elements Set QN

Data

Name Param Type Belonging Value

NODES i, j ¼ 1..6 I Weight Pi C W . . .

EDGES (i, j) ¼ (1,2). . .(5,6) I Cost Cij C W . . .

66 3 The Elements of a System

In this last representation, the identification of the arc by two indices is also
embedding the origin and destination of the arc. The first index is considered the
origin and the second the destination.

Table 3.48 Table of Elements in a directed graph compatible with LINGO

Elements Set QN

Data

Name Param Type Belonging Value

NODE i, j ¼ 1. . .6 I

ARC (i,j)¼(1,2). . .(5,6) I

5
1

6

3

4

2

Fig. 3.5 Example of
directed graph

Table 3.46 Table of Elements of a directed graph

Elements Set QN

Data

Name Param Type Belonging Value

NODES i, j ¼ 1..6 I Source Oij B S . . .

Destination Dij B S . . .

Table 3.47 Table of Elements of a directed graph with arcs as elements

Elements Set QN

Data

Name Param Type Belonging Value

NODES i ¼ 1..6 I Arc_Source Oik B S . . .

Arc_Destination Dik B S . . .

ARCS k ¼ 1..7 I Oik

Dik

3.6 Identification of Data in Graphic Environments. Elements in Graphs 67

3.7 The Time Element

The time element is a very common element in a system to be optimized. It appears
whenever there are activities or specifications that can be carried out in a set of given
time periods (days, weeks, months, etc.).

Do not confuse the use of the time element with systems that use continuous value
data whose unit of measure is time (duration or availability in time) nor when there
are activities that measure duration. What this means is that there are elements with
properties or data whose unit of measure is time.

The default time element is always present in a system, since any activity carried
out in a system takes place at some point in time. Therefore, it only makes sense to
consider the time element as individual elements when several periods or instants of
time are established for carrying out the activities or specifications. They are
generally unitary, unless the periods have measurable continuous data.

Illustration 3.25
System in which there is a set of n manufacturing tasks and it is necessary to decide
on which day of the week each task is scheduled in the factory. Each task has a
duration time.

The tasks would form a set of elements. It is not mentioned that the tasks are
divisible; therefore they must be considered unitary. To schedule the tasks, we have
identified seven periods, 7 days a week (Table 3.49).

Illustration 3.26
We have a product that we buy from a supplier. The system has to decide how many
units of the product to buy in each month of the year.

In this example, the time periods indicated are the 12 months of the year. Each
month would act as a unitary element (Table 3.50).

Table 3.50 Table of Elements of Illustration 3.26

Elements Set QN

Data

Name Param Type Belonging Value

Product – CI . . .

Supplier – IU
Months t ¼ 1. . .12 IU

Table 3.49 Elements of Illustration 3.25

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .n IU Duration time Ti C W . . .

Time t ¼ 1. . .7 IU

68 3 The Elements of a System

Time participates in a system without being an element in the following cases:

• When there are elements, generally tasks, that have, as undetermined property,
the instant in which they are scheduled. Time acts as a unit of measurement in
decisions (Illustration 3.27).

• When there is time data with a resource utility in the system, usually measurable
in specifications. This was the case for butter production machines (Illustration
2.1), which had a time of use. Also Illustration 3.28 shows a measurable avail-
ability time in which the proprietary elements are periods of time.

• When we have elements that represent tasks or time periods that can be distrib-
uted among other elements, that is, those that can be partially used in decision
activities (Illustration 3.29), and also when there are elements representing tasks
in which their duration must be determined (Illustration 3.28).

In Illustration 3.28 we present an example with elements that have an
undetermined property whose unit of measurement is time. Furthermore, in this
example the time element is also presented as a set of finite periods and where each
period is an element constituted by an available time property that can be measured
both in the specifications and in the decisions. It is an interesting case because it
shows many of the possibilities in which time can be presented in a system.

Finally, in Illustration 3.29 we are going to define another system where time does
not participate as an element, but there are measurable elements whose unit of
measurement in the activities where they participate is time, since partial and
continuous use is made of their duration.

Illustration 3.27
Given a factory in which there is a set of n manufacturing tasks. Each task has a
duration time. We have to decide when each task is scheduled at the factory.

The tasks would form a set of individual elements with an indeterminate contin-
uous property, its scheduling instant. We could consider the factory as an element,
even though it represents the system itself (Table 3.51).

Illustration 3.28
Training Planning (Source: Larrañeta et al. 2003)

A sprinter prepares for his next race. For this event he has to do 3 weeks of
training. In his preparation he must spend hours of training in three disciplines:

1. Speed
2. Resistance
3. Bodybuilding

Table 3.51 Table of Elements of Illustration 3.27

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .n IM Duration time Ti C W . . .

3.7 The Time Element 69

It has been observed that in the performance of the athlete, speed training has an
influence of 40% and the others 30%. The characteristics of the training should be
the following:

– The number of hours dedicated to speed training should increase by at least
1 hour per week.

– In the third week, to avoid fatigue in the runner, the amount of hours dedicated to
the first type of training should not exceed 50% of the total training hours.

– Weekly, they should train 35, 30, and 25 hours per week respectively.
– Finally, for any training to be effective, you must devote at least 4 hours a week,

regardless of which week it is.

Objective: Maximize the performance of the athlete.

For training, it is specified that they use indeterminate hours. That is, a training in
the system is a time, a number of hours, undetermined. Time works as a unit of
measurement for an undetermined continuous property of an element. Elements with
a property, its quantity, measured in hours and not determined, are being described,
so they must be considered as measurable individual elements.

On the other hand, we have the time element, with three periods, the 3 weeks.
These three elements have an attribute of available time or hours capacity that must
be measured in the specifications. We could also consider the sprinter, but since he
will be implicit in all activities, since training always refers to him, we could ignore
him as an element, since he will not represent any option in decisions. The table,
which grouped the elements in sets, would be as follows (Table 3.52).

In the Table of Elements, we have not included attributes that are not attributable
to all the elements of a set or that have a complex assignment, such as the data
referred to in the first two specifications. That information will be used directly in the
modelling of the specifications.

This problem is an interesting example because it presents another configuration
of the elements. We could have considered the time of each week as measurable in
decisions and the disciplines as unitary concepts.

In the first configuration (Table 3.51), we measure the hours of each type of
training in each week, in the decision activities, and in the second we would measure
the hours of each week used in each type of training. The two ways are equivalent,
but the first one measures, in the decisions, each training, and the second one
measures the time of weeks.

Table 3.52 Table of Elements of Illustration 3.28

Elements Set QN

Data

Name Par Type Belonging Value

Training
disciplines

i ¼ 1,2,3 IM Performance Pi C S {0.4;0.3;0.3}

Minimal
hours

mi C W {4,4,4}

Weeks t ¼ 1,2,3 IU Hours Ht C W {35,30,25}

70 3 The Elements of a System

Illustration 3.29
Given a system with a set of n tasks. The tasks are performed by a set of m operators.
Each task has a duration time. Each operator has an affinity with each task. The
system has to decide the time that each operator devotes to each task, so that each
task is carried out completely.

The tasks appear as the first set of elements. Since a task can be divided among
several workers, the task is measurable because we can make continuous partial use
of its duration. The unit of measurement of the division is of time, the time
performed of each task by each operator. The second set of elements are the
operators, which could be considered as unitary (Table 3.53).

3.8 Element Duplication

In the identification of elements, it is important that the description of the system is
clear, and we should not use different ways of expressing the same concept, since
this could lead to unnecessarily duplicating elements of the system. In our example
for butter production, we could have redefined the text by substituting the pasteur-
ization and whipping machines for the pasteurization and whipping processes,
respectively. The text would be as follows:

A butter production factory wants to optimize its daily production of butter. Two
types of butter are made (Sweet and Raw). A kilo of sweet butter gives the manu-
facturer a profit of $10 and a kilo of raw a benefit of $15. For the production of
butter, two processes are used, a pasteurization process and a whipping process.
The daily use time of the pasteurization process is 3.5 hours and 6 hours for the
whipping process.

The time (in minutes) used in each process to obtain a kilo of butter is shown in
the following table:
Table 1 Processing times (minutes)

Sweet butter Raw butter

Pasteurization process 3 3

Whipping process 3 6

Table 3.53 Table of Elements of Illustration 3.29

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .n IM Duration Ti C W . . .

Affinity Aij C S . . .

Operators j ¼ 1. . .m IU Aij

3.8 Element Duplication 71

In this case, the processes replace the machines, and they would be considered
identical elements to the mentioned machines.

However, if in the text, we had used the following wording:
A butter production factory wants to optimize its daily production of butter. Two

types of butter are made (Sweet and Raw). A kilo of sweet butter gives the manu-
facturer a benefit of $10 and a kilo of raw a benefit of $15. For the production of
butter, two processes are used, a pasteurization process and a whipping process.
For each process there is a machine. The daily use time of the pasteurization process
is 3.5 hours and 6 hours for the whipping process. The times (in minutes) used in
each machine to obtain a kilo of butter are collected in the following table:

Table 1 Processing times (minutes)

Sweet butter Raw butter

Pasteurization process 3 3

Whipping process 3 6

We would be using both concepts, processes and machines, and we could fall into
an error of duplicity of elements. Neither of them contributes anything that differ-
entiates one from the other, so they are the same element in the system.

3.9 Examples

3.9.1 Fire Stations (Source: Larrañeta et al. 2003)

An initial study is planned to install two fire stations in an urban area that currently
has none. The approach has been adopted to divide the urban area into five sectors
and carry out a preliminary analysis of the repercussions of the possible location of
the stations in each of the sectors. The average time, in minutes, of answering a call
from a fire station located in a certain sector i for an incident received from each of
the sectors j has been estimated in tij. The average number of calls per day that will
take place from each of the five sectors (Fj) has also been estimated. All these values
are shown in Table 1. For example, it takes 12 minutes to attend an incident from

Table 1 Frequencies and time between sectors

tij Sector 1 Sector 2 Sector 3 Sector 4 Sector 5

Sector 1 5 12 30 20 15

Sector 2 20 4 15 10 25

Sector 3 15 20 6 15 12

Sector 4 25 15 25 4 10

Sector 5 10 25 15 12 5

Frequency 2.5 1.6 2.9 1.8 3.1

72 3 The Elements of a System

sector 5 from a station located in sector 3. The last row shows the average daily
frequency of calls made to the fire service.

The Table of Elements of this system can be considered in two ways, depending
on the consideration of the fire stations. In the first version, we will consider each fire
station as unitary:

Table of Elements: Version 1 (Table 3.54)
As we can see, the stations are identical in the system, as they do not have data. On
the other hand, the text does not allude to any of it in a particular way. In the phrase:

“The average time, in minutes, of answering a call from a fire station located in a
certain sector i for an incident received from each of the sectors j has been
estimated in tij”.

The reference is made to the time data between sectors. It could really eliminate
the reference to the fire station and have simply put “the average time, in minutes, to
answer a call from a certain sector for an incident received from each of the sectors.”
Therefore, we could have proposed a version considering the station element as
collective with two items:

Table of Elements: Version 2 (Table 3.55)
Other nouns in the text such as call or incidence do not need to be defined as
elements, although if they were defined, they would be collective elements.

3.9.2 Food Service (Source: Larrañeta et al. 2003)

A food service business has contracted four banquets for the next four days,
requiring 150 clean tablecloths for the first banquet, 100 for the second, 140 for
the third, and 130 for the fourth. Currently, it has 200 tablecloths in the storeroom,

Table 3.55 Version 2 of the Table of Elements in Example 3.9.1

Elements Set QN

Data

Name Param Type Belonging Value

Sectors i, j ¼ 1. . .5 IU Time tij C S . . .

Frequency fi C W . . .

Stations – CD N� items n I W 2

Table 3.54 Version 1 of the Table of Elements in Example 3.9.1

Elements Set QN

Data

Name Param Type Belonging Value

Sectors i, j ¼ 1. . .5 IU Time tij C S . . .

Frequency fi C W . . .

Fire stations k ¼ 1,2 IU

3.9 Examples 73

all of them clean, and they can buy each day what you need in the market, at a cost of
12 u.m/tablecloth.

After the banquets, the tablecloths can go to the laundry basket, or you can send
them to be washed in the laundry. The laundry offers the following washing service:

– Fast: Wash tablecloths for the next day, at a cost of 6 u.m/tablecloth.
– Slow: Wash tablecloths for 2 days, at a cost of 4 u.m/tablecloth.

The washing processes, fast and slow, could have been included in a set. In spite
of being part of the laundry, it is necessary to consider it as an element since
activities fall on them. The laundry is an element that fades into the background,
and it could even be removed from the table (Table 3.56).

3.9.3 Location of TV Cameras (Source: Larrañeta et al. 2003)

CPL has to televise the game of the year. The producers have identified 10 possible
locations for the installation of cameras and 25 stadium areas that need to be
covered by the cameras. The table below indicates the relationship between both:

Location Covered area

1 1, 3, 4, 6, 7

2 8, 4, 7, 12

3 2, 5, 9, 11, 13

4 1, 2, 18, 19, 21

5 3, 6, 10, 12, 14

6 8, 14, 15, 16, 17

(continued)

Table 3.56 Table of Elements of Example 3.9.2

Elements Set QN

Data

Name Param Type Belonging Value

Banquets i ¼ 1. . .4 IU Tablecloths mi I S . . .

Day dit B S . . .

Storeroom – IU Stock S I S 200

Market – IU Price p C S 12

Basket – IU
Laundry – IU
Fast wash – IU Cost cF C S 6

Slow wash – IU Cost cL C S 4

Days t ¼ 1. . .4 IU dit
Tablecloths – CI mi; S; p; cF; cL

74 3 The Elements of a System

Location Covered area

7 18, 21, 24, 25

8 2, 10, 16, 23

9 1, 6, 11

10 20, 22, 24, 25

Each area of the stadium must be covered by a camera
Location 9 must have a camera
Areas 1 and 2 require coverage of at least two cameras
The objective is to minimize the number of cameras used

In “Minimal coverage” we have recorded the minimum number of cameras that
are required for coverage in each area, being two for areas 1 and 2 and for the rest one
camera (Table 3.57).

3.9.4 Trip Planning

There is a system that assigns travellers to buses. We have a group of 180 travellers
who have hired the services of the TOURBUS Company for today. There are five
trips offered. Each traveller has chosen one of the five trips.

Each traveller also chooses the language (English and Spanish) for explanations.
They have three options to choose from:

– Spanish
– English
– Both of them (if they speak English and Spanish)

The buses have a capacity of 60 seats. There are eight buses.
Each bus that is used must be configured with a language and a trip. Since the

explanations are given on the bus journey, it is necessary to place each traveller so
that the trip and the language of the explanations that are configured on the bus
taking them are compatible with their choice.

TOURBUS wants to use as few buses as possible to cover the trips (Table 3.58).
We have configured the buses as individual, even though they are identical. The

reason is that the buses are referred in an individual way all times in the specifica-
tions (“. . .Each bus that is used must be configured with a language. . .”) and it is
obvious that you have to choose a specific bus for each traveller; therefore, it is

Table 3.57 Table of Elements of Example 3.9.3

Elements Set QN

Data

Name Par Type Belonging Value

Areas i ¼ 1. . .25 IU Coverage Cij B S

Minimal coverage mi I S

Locations j ¼ 1. . .10 IU Cij

Cameras – CI mi

3.9 Examples 75

necessary to identify each bus individually. And in this case they are unitary because
they do not have any measurable continuous data. They have an integer capacity
attribute, the number of seats. The seats have been set up as element although there
are no decisions about them.

On the other hand, we have identified the trips and the languages as elements.
Regarding languages, the shared property Iik will be reflected if the traveller has
chosen Spanish (Ii1 ¼ 1, Ii2 ¼ 0), English (Ii1 ¼ 0, Ii2 ¼ 1), or both (Ii1 ¼ 1; Ii2 ¼ 1).

Reading the text, travellers are treated in a particular way, both to note the values
of their data and in the following specification regarding the assigned bus:

Since the explanations are given on the bus journey, it is necessary to place each
traveller so that the trip and the language of the explanations that are configured
on the bus taking them are compatible with their choice.

It is easy to realize that there are 15 different groups of travellers where each
group would be made up of an identical set of travellers regarding the data of the
system. If there are 5 trips and 3 different options to configure the language data, that
means that there are 15 different types of travellers (Trip 1 + Spanish, Trip 1 +
English, Trip 1 + Any Language, Trip 2 + Spanish, . . ., Trip 5 + Any Language).
This means that we could treat each group as a collective element, since their items
are identical, provided that the text does not deal in a particular way with the items.
This is feasible by changing the description of the previous specification to an
equivalent description:

“Since explanations are given on the bus journey, if we place travellers of a group
on a bus, the trip and the language of the explanations that are configured on that
bus must be compatible with the group’s choice.”

Now travellers are referred to collectively, as items of the travellers groups.
“If we locate travellers. . .” is equivalent to “If we place a number of

travellers. . .”.
The reduced table would look like the following (Table 3.59).
This table will suppose a considerable reduction in the number of decision

variables of the problem with respect to the original table.

Table 3.58 Table of Elements of Example 3.9.4

Elements Set QN

Data

Name Param Type Belonging Value

Travellers i ¼ 1. . .180 IU Trip choice Eij B S . . .

Language choice Iik B S . . .

Trips j ¼ 1. . .5 IU Eij

Languages k ¼ 1,2 IU Iik
Buses r ¼ 1. . .8 IU Capacity Kr I S 60

Seats – CD Kr

76 3 The Elements of a System

3.9.5 Fixed Job Scheduling Problem (Kroon et al. 1995)

There is a set of n tasks with a given start and end time and a weight. There is also a
set of m machines. It deals with selecting tasks to be processed in the machines so
that the selected tasks have a maximum weight. A selected task is processed
completely on a single machine. A machine cannot perform two tasks overlapped
in time.

It is a classic problem within scheduling, specifically a type of problem within the
interval scheduling problem (Kolen et al. 2007).

Two sets of elements, tasks and machines, are clearly identified. Each task has its
own values in its attributes, and they are treated in a complete way; they are not
divisible. It is not allowed to divide it into parts, and those parts can be processed in
different machines.

The machines are identical, but they cannot be treated collectively because the
specifications description alludes to them individually (“A machine cannot perform
two tasks overlapped in time”) (Table 3.60).

Since the system states in the specification “A machine cannot perform two tasks
overlapping in time” to the concept of overlap between tasks, we can make this
characteristic explicit between tasks in a new calculated attribute (Sect. 3.2.5):

We define Oik between tasks i and k, of value 1 if tasks i and k overlap in time and
0 otherwise. The calculation to define the attribute would be:

IF (Ii<¼ Ik and Ik<Fi) or (Ii> Ik and Fk>Ii), THEN Oik¼1; OTHER CASE Oik¼0.

Oik would be incorporated as a shared attribute between the tasks.

Table 3.59 Reduced Table of Elements of Example 3.9.4

Elements Set QN

Data

Name Param Type Belonging Value

Groups of
travellers

i ¼ 1. . .15 CD Trip choice Eij B S . . .

Language
choice

Iik B S . . .

Trips j ¼ 1. . .5 IU Eij

Languages k ¼ 1,2 IU Iik
Buses r ¼ 1. . .8 IU Capacity K I S 60

Seats – CD Kr

Table 3.60 Table of Elements of Example 3.9.5

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .n IU Start time Si C W . . .

End time Ei C W . . .

Weight Pi C W . . .

Machines j ¼ 1. . .m IU

3.9 Examples 77

3.9.6 Health Centers

There is a city formed by 12 health centers. Due to population changes, it has been
decided to reassign Health Centers to citizens, a total of n. We know the address of
each citizen, and therefore, the system allows us to know the distance between their
home and each Health Center. Each health center has a capacity that is expressed in
the number of patients that can be attended per day. It is estimated that 1% of people
go daily to health centers. The objective is to minimize the sum of the distances of
each citizen from the health center assigned (Table 3.61).

References

Balakrishnan, V. K. (1997). Graph theory (1st ed.). New York: McGraw-Hill.
Bang-Jensen, J., & Gutin, G. (2000). Digraphs: Theory, algorithms and applications. Springer.
Cunningham, K., & Schrage, L. (2004). The LINGO algebraic modeling language. In J. Kallrath

(Ed.), Modeling languages in mathematical optimization. Applied optimization (Vol. 88).
Boston: Springer.

Kolen, A., Lenstra, J. K., Papadimitriou, C., & Spieksma, F. (2007). Interval scheduling: A survey.
Naval Research Logistics, 54, 530–543.

Kroon L G, Salomon M and Van Wassenhove L N (1995) Exact and approximation algorithms for
the operational fixed interval scheduling problem. European Journal of Operational Research
82: 190-205

Larrañeta, J., Onieva, L., Cortés, P., Muñuzuri, J., & Guadix, J. (2003). Métodos Cuantitativos en
Ingeniería de Organización. Editorial Universidad de Sevilla.

Martello, S., & Toth, P. (1990). Knapsack problems: Algorithms and computer implementations.
Wiley-Interscience.

Meléndez, I. (2019). https://www.monografias.com/trabajos96/distribucion-redes-administracion-
proyectos/distribucion-redes-administracion-proyectos.shtml#bibliograa. La distribución de
redes y la administración de proyectos.. Accessed June 2019.

Table 3.61 Table of Elements of Example 3.9.6

Elements Set QN

Data

Name Param Type Belonging Value

Health centers i ¼ 1. . .12 IU Distance Dij C S . . .

Capacity Ki I W . . .

Citizens j ¼ 1. . .n IU Dij

City – IU Attendance A C W 0,01

78 3 The Elements of a System

https://archive.org/details/knapsackproblems0000mart
https://www.monografias.com/trabajos96/distribucion-redes-administracion-proyectos/distribucion-redes-administracion-proyectos.shtml#bibliograa
https://www.monografias.com/trabajos96/distribucion-redes-administracion-proyectos/distribucion-redes-administracion-proyectos.shtml#bibliograa

Chapter 4
Decision Activities

4.1 Introduction

Decision activities are independent actions of undetermined value that are carried out
in the system. They are translated into the decision variables of the problem.

A decision activity is made up of the following components:

• The action that determines the activity: this corresponds to a verb.
• The elements that participate in the activity: elements of the system must partic-

ipate in the action that corresponds to the decision activity.
• The quantitative meaning of the action: the quantification of the action defines the

type of value of the variables. The meaning of an action can be of two types:

– Measure: the result of the action is a value referring to any continuous
measure (liters, kilos, time, etc.) or discrete measure (number of units) of an
element. It corresponds to continuous or integer variables, respectively. If the
measurement of units is bounded superiorly by one, the integer variable can be
defined as binary. It is necessary that a measurable element (measurable
individual or collective) participates in a measurement activity as object direct
of the action.

– Logical: the action corresponds to an activity of choice or selection for an
element or group of elements where the response is evaluated with a logical
value, True or False. The activity is determined with binary variables (1/0).
The “1” corresponds to a positive or true evaluation and the “0” to a negative.
All activities where only unitary elements participate will be logical.

The original version of this chapter was revised. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-57250-1_9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021, Corrected Publication 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298
https://doi.org/10.1007/978-3-030-57250-1_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_9#DOI
https://doi.org/10.1007/978-3-030-57250-1_4#DOI

The abovementioned factors are summarized in the definition of a decision
variable. The definition of a variable must contain the elements that participate, the
action, and the unit of measurement if the action is quantified as measure.

However, the identification of decision activities is not carried out in a singular
way, but collectively or jointly. This occurs because the same action can be carried
out independently by the participation of different groups of elements. The partic-
ipation of each group defines a decision variable, but all the variables correspond to
the same action in the system. Therefore, we will identify decision activities in the
form of a set of events, in which an event is a valid association of elements
participating in an action. The participation of the elements is unique with respect
to the rest of the events. Each event corresponds to an individual decision variable
regarding the joint decision activity.

In the definition of a variable, it is easy to identify errors in the design of the
activity. You can detect inconsistencies, as a meaning without logic, an activity that
has a known value and therefore is not a decision activity of the system, or simply a
definition that corresponds to a function or calculation, for the wrong use of the
participating elements. The variables generated from the decision activities must be
independent. Their values are not obtained from any previous calculation.

Not all variables of a problem are independent. There are also the variables that
store calculations. In them, the value is always obtained from the value of other
variables, by calculating a linear function or a conditional function. The calculations
of a system generate the calculation variables, which will be discussed in Chap. 5.

We shall now illustrate the definition of a decision activity and the analysis of
inconsistencies without defining any rules, at least for now, in the definition of
activities. We shall start with the first example.

Illustration 4.1: Production of Butter
A butter production factory wants to optimize its daily production of butter. Two
types of butter are made (Sweet and Raw). A kilo of sweet butter gives the manu-
facturer a profit of $10 and a kilo of raw a profit of $15. For the production of butter,
two machines are used: a pasteurization machine and a whipping machine. The
daily use time of the pasteurization machine is 3.5 hours and 6 hours for the
whipping machine. The time (in minutes) consumed by each machine to obtain a
kilo of butter is shown in the following table:

Table 1. Butter processing times (in minutes)

Sweet butter Raw butter

Pasteurization 3 3

Whipping 3 6

Table of Elements (Table 4.1)

Decision Activities

The only action we can extract from the wording is “manufacture” butter, which
is also used with the synonym “produce.”

80 4 Decision Activities

Action: PRODUCE.
Participating elements: The set of butters (j ¼ 1. . .2), that is, Sweet Butter and

Raw Butter.
Quantification: The action of producing must obtain the quantity of butter produced

since the quantity of butter is a property of undetermined value. This determines
the measurable character of the butters. The unit of measurement used is the kilo.

Events: the activity generates two events:
Produce) Butter j¼1 (Sweet).
Produce) Butter j¼2 (Raw).
These events give rise to two decision variables:
x1 ¼ Kilos of sweet butter produced.
x2 ¼ Kilos of raw butter produced.
The information of the decision activities in simplified form would be:
Produce) Butter j ¼ 1,2.
Decision variables: xj ¼ Kilo of butter type j produced.

If we analyze the definition of a variable, we can see the components (elements
that participate in the event, action, and unit of measurement) that identify the
activity.

Kilos of sweet butter Produced

Unit of measure Participating element Action

Incorrect Definitions
Let us consider some incorrect definitions we could have made of the activity. In
Sect. 4.3.1, within the section dedicated to elements participating in a decision
activity, and in Sect. 4.4 regarding quantification of the activity, we will present a
series of rules that avoid these incorrect definitions.

1. Suppose we identify a single event, in which the two types of butter participate:
Produce) Sweet Butter, Raw Butter
A single variable is generated:
x ¼ Kilos of sweet butter and raw butter produced.

Table 4.1 Elements of Illustration 4.1

Elements Set QN

Data

Name Par Type Belonging Value

Machines i ¼ 1. . .2 IU Usage time Ti C
(Min)

W . . .

Time consumed by 1 kg of
butter j in machine i

TMij C
(Min)

S . . .

Butters j ¼ 1. . .2 IM Benefit Bj C
($/kg)

W . . .

TMij

4.1 Introduction 81

The definition of the components is correct, since it identifies the participating
elements, the action, and the unit of measurement. However, the semantics could be
understood in two ways:

A. We are assuming that the production of each type must be the same.
B. The activity represents the sum of the production of the two types of butter.

In proposition A, we make the mistake of assuming something that the system
does not specify. On the other hand, the definition of a decision variable must not
express a specification. The modelling of the specifications of a system has its own
space that is carried out after the definition of activities. The decision activities must
be defined independently, and then the specifications will impose the values they
can take.

In proposition B, we are representing a function in the definition of the variable.
We are adding up the production of the two types of butter. Therefore, we are
defining a calculation on the correct decision variables, the amount of sweet butter
and the amount of raw butter (x ¼ x1 + x2).

2. Suppose we incorporate the pasteurization machine into the participating
elements.

Produce) Sweet Butter, Raw Butter, Pasteurization Machine
For this action we define two events:
Event 1: Produce) Sweet Butter, Pasteurization Machine.
Event 2: Produce) Raw Butter, Pasteurization Machine.
We analyze one of the events:
Event 1: Produce) Sweet Butter, Pasteurization Machine.
Variable: x1 ¼ Kilos of sweet butter produced in the pasteurization machine.

The semantics of the definition is correct and reflects all the components of the
activity. The incorrectness is in considering the participation of the pasteurization
machine in the decision of the activity. The kilos that are produced from sweet butter
are equal to the kilos of sweet butter that are processed in the pasteurization machine.
The machine does not contribute anything to the decision of how much to produce.

Kilos of sweet butter produced ¼ Kilos of sweet butter produced in the pasteur-
ization machine

Therefore, the participation of the pasteurization machine element in the decision
can be suppressed.

When the element is implicit as a participant in all the events, it is not necessary to
identify it, although there are occasions when, due to the clarity of the definition, it is
maintained. In this case, it was not necessary.

3. Suppose we identify the type of quantification as whole: the definition of the
variables would be:

x1 ¼ N� of units of sweet butter produced.
x2 ¼ N� of units of raw butter produced.

82 4 Decision Activities

Obviously it is wrong because to define integer decision variables, there must
be a collective element in the decision activity. If we take the unit as the kilo, we
would be restricting the production to an integer number of kilos.
We are making the mistake of associating a discrete quantization with a contin-

uous measurable element. The integer quantification is exclusively associated with
the measurement of collective elements.

4. Suppose we identify the type of quantification as binary: in this case the definition
of the variables would be:

α1 ¼ 1 if we produce Sweet Butter; 0 if we do not produce Sweet Butter.
α2 ¼ 1 if we produce Raw Butter; 0 if we do not produce Raw Butter.

This error is usually quite common in modelling. By defining the activity with
this type of value, we do not have information about the quantity that we produce,
and we will not be able to express the specifications and the objective of the
problem. It is enough to analyze the data associated with the butters that always
refer to the unit of measure of their quantity, both the production times in the
machines and the profit.
The definition made of the activity, which obviously does not correspond to a

decision activity but to a calculation, is a logical calculation. If we look at this in
more depth, the values of α1 and α2 are obtained from the value of the correct
decision variables of the activity (x1 ¼ kilos of sweet butter produced; x2 ¼ kilos of
raw butter produced) via the following logical proposition:

If x1 > 0 then α1 ¼ 1; if x1 ¼ 0 then α1 ¼ 0.

This would also be the case for α2.
In the chapters dedicated to logical calculations and to specifications expressed as

propositional logic, we will carry out an in-depth study of the use of conditional
formulas and their modelling.

4.2 Actions of a System

The actions of a system correspond lexically with verbs (buy, sell, send, produce,
install, assign, select, etc.) that may be accompanied by adverbs or prepositions.
Incorporating the participating elements, to any action in a system it is possible to
assign a type of value, either integer, continuous, or binary.

The actions with their participating elements that give rise to decision activities
are actions of indeterminate value and are not always dependent on the value of other
decision activities. Actions that do not fulfill these two properties cannot be consid-
ered as decision activities, either because they have a value already assigned or
because they take values that are obtained from the values of other activities, that is,
they always depend on other activities. These actions will result in system
specifications.

4.2 Actions of a System 83

As actions that can give rise to decision activities, those verbs that denote
imposition (impose, limit, restrict, etc.) are excluded, since they are ways of defining
specifications but do not define an activity in the system. Also, actions that can be
missed out of the text because they act in an explanatory way, i.e., without any
capacity to give rise to activities or specifications, are associated with a defined type
of binary value. Let us take a look at an example:

Illustration 4.2
There is a system of buying a product from suppliers where you must encourage
each supplier to buy at least 20 units.

Encourage is an action, but its value is determined; the wording clearly specifies
that “we must encourage.” This action could be eliminated from the wording without
any problem, being as follows:

System of buying a product from suppliers where each supplier must buy at least
20 units

4.2.1 Actions with Calculated Value

These actions should not be considered as decisions because their value can always
be calculated using other variables of the problem. The system allows to obtain the
value of the action from the variables of other decision activities and even from other
calculations.

If the actions of calculated value have been defined as decision activities, we must
never forget the specification of the calculation that defines the action. That is why it
is more advisable not to define them as an activity and to define them as a
calculation, so as not to forget the restrictions that define it, as will be discussed in
Chap. 5.

In terms of representing the calculation, the following will be involved:

Non-conditional Action
The activity value is determined directly by a linear mathematical function on other
variables of the problem.

The actions with linear value will be part of what we will call auxiliary
calculations.

Illustration 4.3
There is a system of buying and selling a product. To buy we have a set of three
suppliers, and the products are subsequently sold on the market at a price of €
p/unit. You must sell 50% of what you buy.

84 4 Decision Activities

Buying is a decision activity. However, selling is not a decision activity because it
can be defined as an auxiliary calculation:

Selling � y ¼ x1 þ x2 þ x3
2

With x1, x2, x3 decision variables of the activity of buying product from suppliers.
If the objective function manages costs and benefits, it will take the term py as a

benefit.

Conditioned Action or Conditional Value Action
The definition of the action establishes the conditions to determine whether or not it
occurs or the value it will take. The value of the action is determined by conditional
propositions on other variables of the problem.

The conditioned actions will be part of the logical calculations and can be of two
types:

– Conditioned action with a determined value: The action has an associated value.
They are associated with binary variables.

– Linear value conditioned action: The value of the action is obtained from a
function. They will be defined according to the value of that function.

Let us illustrate the two cases:

Illustration 4.4: Conditional Action of Determined Value
The system of Illustration 4.3 has an activity to pay a fee of €100 if the units
purchased exceed 200 units.

The action would be Pay [a fee]. The fee would become an element of the system
with an attribute of value equal to €100. The action of paying the fee is not
independent; it is conditioned to the decision variables of buying. The value of the
conditioned action is binary:

α ¼ 1 if I pay the fee

0 otherwise

�

The conditional proposition that defines its value is the following:

If the purchased units > 200 then I pay the fee, otherwise I do not pay the fee.
Mathematically: If x1 + x2 + x3 > 200 then α ¼1, otherwise α ¼0.

The value of $100 will be associated with the variable of the logical calculation α
in the system cost function with the term 100α.

Illustration 4.5: Conditional Action of Linear Value
The system of Illustration 4.3 has an activity of paying a fee of 1% of the total
purchased if the units purchased exceed 200 units. The purchase price of the product
is c $/unit.

4.2 Actions of a System 85

The action is again Pay a fee, but in this case the fee does not have a certain value
but the result of a linear function on the total purchased. Specifically, we can define
the linear function as follows:

Price of the Fee ¼ 0, 01(x1 + x2 + x3)c

If we defined the conditioned action as binary, the cost function would have to be
non-linear:

α ¼ 1 if I pay the fee

0 otherwise

�

If x1 + x2 + x3 > 200 then α ¼1, otherwise α ¼0.

In the cost function of the system, we would associate the variable α with the
function that calculates the fee 0, 01(x1 + x2 + x3)c, by means of the non-linear
expression 0, 01(x1 + x2 + x3)cα.

Since we always try to avoid non-linear expressions, the correct way would be to
define the action of paying the fee with the value of the function that obtains the price
of the fee, in this case a continuous value:

The logical calculation would be represented in a continuous variable z:

z ¼ Fee paid.

The conditional proposition that defines the calculation is:

If x1 + x2 + x3 > 200 then z ¼ 0, 01(x1 + x2 + x3)c, otherwise z ¼ 0.

In this way we will maintain the system with linear expressions.
Although we have entered into the logical calculations of a system, they will be

examined in depth in Chap. 5.

4.2.2 Actions with Undetermined Value

Actions of undetermined value give rise to the decision activities of the system and
therefore to the decision variables. The decision activities have values independent
of the rest of the problem variables. Notwithstanding this, the specifications of the
system can condition the values that the decision variables can take up to a point of
being able to convert a decision variable into a variable of a calculated action. But a
priori, without the specifications of the system, these values are free and are not
decided by a calculation with respect to other variables. Let us take a look at a very
simple example to illustrate this fact.

Illustration 4.6
In the purchase system of Illustration 4.3, we define a specification that requires the
total units purchased from the product to be 100.

This imposes a constraint on the model of the form:

x1 + x2 + x3 ¼ 100

86 4 Decision Activities

From this specification, the values of x1, x2, and x3 are no longer completely
independent, since x1¼ 100� x2� x3, x2¼ 100� x1� x3, or x3¼ 100� x1� x2. It
could be understood that any one of these decision variables is an auxiliary calcu-
lation of the remaining two and therefore could have been defined as a calculation
instead of as a decision activity. It is inevitable to find situations analogous to this,
where the two interpretations fit. My opinion is that it is more structured to define
them as decision activities and then represent the specification that relates them.
Anyway, either of the two options leads to the same mathematical model.

On the other hand, decision activities can determine values of other decision
activities, but for the latter to be defined as calculation rather than as a decision
activity, the first decision activities must determine the value of the action for any of
the values they take, without exceptions. If only the value of the action is determined
for a subset of the values of the decision activities, the action retains its indeterminate
nature and therefore prevails as a decision activity. Let’s see a significant illustration
of this fact:

Illustration 4.7
There is a system in which stores are rented and raw materials are stored within
them. The system has a set of N stores that can be rented for storage.

The table of elements could be presented in the following way, taking into
account the wording (Table 4.2):

Two actions are clearly identified, rent and store:

Action: Rent [stores].
Participating elements: Stores (i ¼ 1. . .N IU).
Quantification: Binary.
Events: Stores i ¼ 1. . .N.
Decision variables:

αi ¼
1 if rent store i

0 otherwise

�

Action: Store [raw material in stores].
Participating element: Raw material IM; Stores (i ¼ 1. . .N IU).
Quantification: Continuous.
Events: Raw material) Stores i ¼ 1. . .N.
Decision variables: xi: Amount of raw material stored in Store i.

Table 4.2 Elements of Illustration 4.7

Elements Set QN

Data

Name Parameter Type Belonging Value

Stores i ¼ 1. . .N IU
Raw material – IM

4.2 Actions of a System 87

Although not explicitly described, it cannot be stored in a store that you have not
rented (the implicit specifications of a system will be discussed in Chap. 6). This
establishes a partial determination of values between the two groups of variables:

If you have not rented Store i, you cannot store in store i:
) If αi ¼ 0 then xi ¼ 0.

One of the values of the Rent activity determines the value of the Store activity.
However, for the value αi ¼ 1, a value for xi cannot be determined, so it does not
determine xi as a calculation.

On the other hand, activity xi also partially determines the values of αi, since if I
have stored something in store i it is because I have rented the store:

xi > 0 ! αi ¼ 1

However, the missing value of xi, xi ¼ 0, does not determine the value for αi,
because it could have rented the store and not stored any raw material.

Regarding the latter, it is quite reasonable to think, if there are no more elements
in the system that must be taken into account to store in the stores or other activities
related to the stores, that if we rent a store, with the supposed cost that this entails, it
will be to store raw material. This has an important consequence: we can convert the
activity of renting into an action of calculated value, and therefore it is no longer an
activity decision of the system. In this case, we can contemplate the calculation of all
values of αi:

xi > 0 ! αi ¼ 1
xi ¼ 0 ! αi ¼ 0

4.3 Participating Elements in a Decision Activity

Obtaining the right list of participating elements of an activity can be a complex task
in some problems. In fact, it is the phase with the least ability to be regulated. Despite
this, we will try to give some guidelines for a correct selection.

Indicating the elements that participate in an action requires full knowledge of the
system and a table of elements that is defined correctly.

Obtaining the elements involved in an activity is based on looking for relation-
ships between the elements of the system and the action. The search is based on
asking to the action looking for as answer to the element.

The questions we can ask the action are dependent on the meaning of
it. Questions about the value of the activity are logically excluded, like the question
how much? Thus, they are generally questions of the type “What?”, “For what?”,
“Who?”, “Where?”.

If the action is of logical value, obtaining the elements is usually simpler. You
have to look for the elements that we associate with the election.

88 4 Decision Activities

In general, if for example I have a Send activity, the logical thing is to ask What
do I send? It will also seem logical to ask where do I send it from? And where do I
send it? Asking the action is simply an informal tool to help identify the participating
elements. The key is to have a rounded knowledge of the system and to fully
understand the meaning of the activity.

4.3.1 Rules of Participation

Despite being an unregulated task, it is possible to define some work premises in the
participating of the elements:

1. An event of a measurable action can only measure a single element.

In an event we cannot consider the quantification of more than one element since
that would mean establishing a function, and a decision activity is an independent
event, not the result of a calculation or function.

Illustration 4.8: Production of Butter
In our basic problem, the action we identified as a decision activity was PRODUCE.
What do we produce? Sweet Butter and Raw Butter.

There are two measurable elements so we cannot measure both in the same event.
It is necessary to generate two events:

PRODUCE Sweet Butter
PRODUCE Raw Butter

2. In an action in which we identify the participation of an element that does not
function as a direct object to the action, its participation combined or not
with other elements should be an alternative or option among a set of
alternatives, which will be collected in the events of the activity.

There must be other elements that are alternatives to perform that action. If an
element always participates in all the events of an action in a secondary way, we can
exclude it because its participation is implicit. In spite of this, in some cases, to
maintain a clear definition of the activity, we can keep it in participation.

Illustration 4.9: Production of Butter
As we have indicated in 4.1, with this standard we deduce that it is not necessary to
include any of the machines in the participation, since its use is not an alternative but
is obligatory in all the production processes and they are not the direct object of the
action. In this case the direct object of the action is butter.

3. The participation of an element cannot be subject to the participation of
other elements.

If the participation of an element is always produced by the participation of
another, its participation should not be contemplated because there is no alternative.

4.3 Participating Elements in a Decision Activity 89

Illustration 4.10: Production of Parts
There is a parts production system. For the production of parts, we have 6 machines
and 9 operators. A part can be produced in 4 ways:

– Using machine 1 and machine 2
– Using machine 1 and machine 3
– Using machine 4
– Using machine 5 and machine 6

Each machine needs to have an operator for its operation and has a production
rate in number of parts per hour. This production rate of parts increases by 20% if
two operators are assigned to the machine.

Schedule the production of 10,000 parts in order to minimize the total production
time. For simplicity and consistency with respect to the level we are currently at in
the methodology, we discard the sequence concept and assume that machine 2 starts
working when all the parts assigned to mode 1 have been processed in machine
1 (same with machine 3 and with the production in machines 5 and 6).

Table of Elements

The table of elements can be defined as follows (Table 4.3):
Each machine is individual and unitary because they do not have any measurable

properties. MMij is a binary attribute to identify which machines belong to each part
production mode. Operators are a single collective element, since their nine items are
identical in the problem and there is no specification on each item individually.
Modes that only have binary data must be unitary.

Decision Activities

The action of this system is to produce parts. The parts can be produced using four
different forms or production modes. Therefore, each mode represents an alternative
production and must participate in the action. However, it would be a mistake to
consider the participation of the machines in the action of producing, even though
the parts are produced in the machines. Considering the modes of production, each
mode requires the participation of a subset of machines, those included in the MMij

attribute, so that the participation of the machine elements is subject to production
modes and therefore their participation should not be considered.

Table 4.3 Elements of Illustration 4.10

Elements Set QN

Data

Name Param Type Belonging Value

Machines i ¼ 1. . .6 IU Production rate Ri C (parts/hour) W . . .

Modes machines MMij B S . . .

Operators – CD Quantity Q I W 9

Modes j ¼ 1. . .4 IU Modes machines MMij

Parts – CD Demand D I W 10.000

90 4 Decision Activities

Correct Decision Activity
Action: PRODUCE [parts].
Participating elements: Parts (CD), Modes (j ¼ 1. . .4 IU).
Quantification: Integer.
Events: Parts) Modes j ¼ 1. . .4.
Decision variables: xj ¼ Number of parts produced in mode j; j ¼ 1. . .4.

Incorrect Decision Activity
Action: PRODUCE [parts].
Participating elements: Parts (CD), Modes (j¼ 1. . .4 IU), Machines (i¼ 1. . .6 IU).
Quantification: Integer.
Events: Parts) Modes j ¼ 1. . .4) Machines i ¼ 1. . .6/MMij ¼ 1.
Decision variables:
xj ¼ Number of parts produced in mode j with m.achine i; j ¼ 1. . .4.
i ¼ 1. . .6/MMij ¼ 1.

4. Participation of a subset of elements within a set.

From a table of elements associated into sets, the participation of a set of elements
in a decision activity does not have to be complete, but we can only choose a subset
of elements whose data meet a certain condition.

This consideration also occurs in the own generation of events, where we are not
obliged to contemplate all the options of the combination of elements.

Illustration 4.11
Let us suppose a system of purchasing units of our products from a list of N
suppliers. We purchase t-shirts of ten different models and trousers of three models.
Demand data for each model is known. We have an attribute for the supplier
regarding its origin (1: National; 0: Foreign). Foreign suppliers do not supply
trousers.

Table of Elements

The table of elements for this description has the following structure (Table 4.4):

Table 4.4 Elements of Illustration 4.11

Elements Set QN

Data

Name Param Type Belonging Value

Suppliers i ¼ 1. . .N IU Origin Pi B W . . .

T-shirts j ¼ 1. . .10 CD Demand DTj I W . . .

Trousers k ¼ 1. . .3 CD Demand DPk I W . . .

4.3 Participating Elements in a Decision Activity 91

Since the text points to the number of t-shirts and trousers demanded, we class
these elements as collectives.

Decision Activities

If we establish “Buy T-shirts and Trousers” as a decision activity, but taking into
account that trousers are only purchased from national suppliers, the definition of the
activity should reflect the options allowed:

Action: PURCHASE [T-shirts AND Trousers FROM Suppliers].
Participating elements: T-shirts (j ¼ 1. . .10 CD); Trousers (k ¼ 1. . .3 CD);

Suppliers (i ¼ 1. . .N IU).
Quantification: Integer.
Events:
T-shirts j ¼ 1. . .10) Suppliers i ¼ 1. . .N.
Trousers k ¼ 1. . .3) Suppliers i/Pi ¼ 1.
Decision variables:
xij ¼ Number of t-shirts of model j purchased from supplier i; i ¼ 1. . .N, j ¼ 1. . .10.
yik ¼ Number of trousers of model j purchased from supplier i; i/Pi ¼ 1, k ¼ 1. . .3.

In the same way we could have considered two decision activities regarding the
action “Purchase”:

Decision Activity 1:
Action: PURCHASE [T-shirts FROM Suppliers].
Participating elements: T-shirts (j ¼ 1. . .10 CD); Suppliers (i ¼ 1. . .N IU).
Quantification: Integer.
Events: T-shirts j ¼ 1. . .10) Suppliers i ¼ 1. . .N.
Decision variables:
xij ¼ Number of t-shirts of model j purchased from supplier i; i ¼ 1. . .N, j ¼ 1. . .10.

Decision Activity 2:
Action: PURCHASE [Trousers FROM Suppliers].
Participating elements: Trousers (k ¼ 1. . .3 CD); Suppliers (i ¼ 1. . .N IU).
Quantification: Integer.
Events: Trousers k ¼ 1. . .3) Suppliers i/Pi ¼ 1.
Decision variables:
yik ¼ Number of trousers of model j purchased from supplier i; i/Pi ¼ 1, k ¼ 1. . .3.

5. Elements with participation subject to conditions.

When the participation of an element in a decision activity is subject to that
element, it fulfills some condition on other variables (decision activities or calcula-
tions), something that a priori is not determinable, and its participation in the activity
will always be considered, and the condition of the definition in the activity will be
excluded.

Subsequently, a specification will control the values of that activity depending on
the condition. Let us take a look at an example.

92 4 Decision Activities

Illustration 4.12
There is a system in which vehicles are allocated to delivery centers. There are ten
vehicles and three delivery centers, each with a given location. For vehicles that are
assigned to more than one center, we also have to decide on the number of pallets
assigned.

Table of Elements

Although the text is simple and does not incorporate a lot of information
regarding data and specifications, with the information that is provided on each set
of elements (centers, vehicles, and pallets), we can define centers and vehicles as
individual elements and pallets as collective. It specifies that each center has own
values in its data. Regarding the vehicles, they are identical but are defined as unitary
by the specification stating that “For vehicles that are assigned to more than one
center, we also have to decide on the number of pallets assigned,” where each
vehicle is considered individually (we could have replaced “vehicles” for “each
vehicle”). Regarding pallets, we decided to consider them collectives because they
are identical items with an indeterminate number in the system.

We define therefore the following table of elements (Table 4.5).

Decision Activities

From the text, it is easily perceived that there are two activities: assign vehicles to
centers and assign pallets to vehicles. In this second activity, it is not a priori
determined which vehicles will participate, since it depends on the activity of
assigning centers to vehicles, since the statement states that “For vehicles that are
assigned to more than one center, we also have to decide the number of pallets
assigned.”As we have said, in these cases it is necessary to consider the participation
of all vehicles, without any condition. In the specifications section, it will be
necessary to contemplate this condition. Therefore, the activities would be defined
as follows:

Decision Activity 1:
Action: ASSIGN [Centers to Vehicles].
Participating elements: Centers (i ¼ 1. . .3 IU); Vehicles (j ¼ 1. . .10 IU).
Quantification: Binary.
Events: i ¼ 1. . .3) j ¼ 1. . .10.
Decision variables: αij ¼ 1 if we assign center i to vehicle j; 0 otherwise. i ¼ 1. . .3.
j ¼ 1. . .10.

Table 4.5 Elements of Illustration 4.12

Elements Set QN

Data

Name Param Type Belonging Value

Centers i ¼ 1. . .3 IU
Vehicles j ¼ 1. . .10 IU
Pallets CI

4.3 Participating Elements in a Decision Activity 93

Decision Activity 2:
Action: ASSIGN [Pallets to vehicles].
Participating elements: Vehicles (j ¼ 1. . .10 IU); Pallets CI.

Quantification: Integer.
Events: Pallets) j ¼ 1. . .10.
Decision variables:
xj ¼ Number of pallets assigned to vehicle j; j ¼ 1. . .10.

4.4 Quantification of the Activity

Every system requires an analysis of its decision activities, an analysis to determine
what I need to obtain from the decisions. Among the elements participating in the
action, the element that acts as direct object to the action, its capacity to be
measurable and the quantitative analysis of the action on the element, must deter-
mine the type of variable that is generated in the decision activity.

The direct object is a grammatical issue necessary to understand the quantification
of the activity. The direct object is the recipient of the action; it is the thing being
acted upon, the receiver of the action. Let us see some examples:

• “Purchase products from suppliers”: The products are the direct object of the
action, what I purchase. The suppliers are an indirect object.

• “Making butter at the factory”: Butter is the direct object of the action, what
I make.

• “Placing the object on the shelf”: The object is the direct object of the action.

When an action is measurable, the element being measured must necessarily act
as direct object. Carrying out a previous analysis of the elements that can be
measured helps to establish the quantification of the activity. Let us look at some
illustrations on quantifying decision activities.

Illustration 4.13
There is a set of 10 workers and a set of 25 jobs. Each job has an affinity value
between 0 and 1 with each operator. It involves assigning jobs to operators so that
each operator does at least 2 jobs and maximizes the total affinity of the assignment.
Each work must be assigned to a single operator.

Table of Elements

The elements that the description reflects are the jobs and the workers. Affinity is
a shared attribute between each job and each worker.

The activity of the system “assign jobs to workers” does not measure either
workers or jobs but has a logical meaning or choice between elements.

Each job is unitary for several reasons:

94 4 Decision Activities

– Each job is individual because it has an attribute, affinity on each worker, with an
own value not necessarily equal to the rest.

– It is also individual because it refers in an individual way to each job in the
specifications (each job must be assigned to a single operator).

– Each job does not have the capacity to be divisible in the system, so it cannot be
measured continuously, and therefore will have a unitary character.

The same attribute of affinity also makes us consider the workers as individual
elements, and since their data have different values, they are differentiated. Also, the
specifications treat each operator in a particular way. On the other hand, workers do
not have any property with the capacity to be measurable, so they are also unitary
elements.

The table of elements corresponds to the following structure (Table 4.6).

Decision Activities

As we have said, the only action in the system is “assign jobs to workers.”

Action: ASSIGN [Jobs to Workers].
Participating Elements: Jobs i ¼ 1. . .25 IU; Workers j ¼ 1. . .10 IU.
Quantification: Binary.
Events: i ¼ 1. . .25) j ¼ 1. . .10.
Decision variables:
αij ¼ 1 if I assign Job i to Worker j; 0 otherwise. i ¼ 1. . .25, j ¼ 1. . .10.

The works are the element that I assign to the operators, which act as an indirect
object of the action.

In the example a significant characteristic is revealed, the same action can be
expressed using another element as a direct object. We could also have written:
Assign Operators to Jobs. In that case, the quantification would not have changed
because the workers are also unitary individual elements.

Illustration 4.14
We add the following information to the problem of Butter Production:

The system must also assign three workers from the factory to the production of
each type of butter. The company has a staff of 15 workers, and there is a cost for the
allocation of each worker to each type of butter.

Table of Elements

Table 4.6 Elements of Illustration 4.13

Elements Set QN

Data

Name Param Type Belonging Value

Jobs i ¼ 1. . .25 IU Affinity Aij C S . . .

Workers j ¼ 1. . .10 IU Aij

4.4 Quantification of the Activity 95

The new functions of the system add information to the table, which now has the
following structure (Table 4.7).

The workers are incorporated as unitary elements, sharing with each type of
butter the cost of assigning each worker to each type of butter.

In addition, each butter also incorporates the number of workers needed, 3, the
same amount for each butter. Although the attribute refers to the number of workers,
the attribute is own because it cannot be shared with each worker, because each
worker can assume only its individual information. If workers were a collective
element, it would also be the owner of the attribute.

Decision Activities

“The system also has to assign three workers from the factory to the production of
each type of butter.”

In addition to producing butter, the system presents a new decision activity,
“Assign workers to each type of butter.”

As we discussed, no numerical data is included in the definition of an activity, so
we ignore the concept of assigning “three” workers to each butter. This information
will be used in the specifications. The activity would be configured as follows:

Action: ASSIGN [Workers to Butters].
Participating elements: Workers k ¼ 1. . .15; Butters j ¼ 1,2.
Quantification: The action falls on the workers, so it is a logical activity.
Events: Workers k ¼ 1. . .15) Butters j ¼ 1,2.
Decision variables: αkj ¼ 1 if I assign butter j to worker k; 0 otherwise.

If we try to define the activity as “Assign butters to workers,” the butters as direct
objects, which are measurable elements, we must realize that the amount we assign
to a worker will correspond to the total butter produced or none; therefore we are not
measuring the butters, we are defining a logical decision.

To illustrate measurable activities, we propose a classic problem in the world of
mathematical optimization and another example in which most of the participating
elements are continuous and measurable.

Table 4.7 Elements of Illustration 4.14

Elements Set QN

Data

Name Param Type Belonging Value

Machines i ¼ 1. . .2 IU Usage time Ti C
(Min)

W . . .

Time consumed by 1 kg
of butter j in machine i

TMij C
(Min)

S . . .

Butters j ¼ 1. . .2 IM Profit Bj C ($) W . . .

TMij

Worker cost Ckj C ($) S . . .

Number of workers Nj I W 3

Workers k ¼ 1. . .15 IU Ckj . . .

96 4 Decision Activities

Illustration 4.15
A company has m warehouses where its products are located. Each warehouse Ai

(i¼ 1 . . . m) has a stock of Ki units. There is a set of n Customers (j¼ 1 . . . n) with a
demand Dj of product units. The company must supply the customers’ demand of
products from the warehouses. The cost of sending a product from each warehouse
Ai (i ¼ 1 . . . m) to each customer Cj (j ¼ 1 . . . n) is estimated in cij.

Table of Elements

The elements that are identified are:

– The company: the system itself, an implicit individual element in all problems.
– The products: element formed by a set of identical items. It will be considered

collective since we do not need to consider each product unit individually.
– The m warehouses (Ai, i ¼ 1 . . . m): Each store is necessary to consider it

individually since it has an attribute with own value, the number of products.
The use of this attribute will be measured in the system, although this is already
included in the quantitative nature of the product, so we can consider each
warehouse as unitary. When elements are defined abstractly with an index, they
are already being defined in a set.

– The n customers (Cj, j ¼ 1 . . . n): Same as the warehouses, it is a set of unitary
elements.

Nouns that refer to data:

– Stocks, Ki product units that each warehouse owns.
– The demand Dj of product units that each client owns.
– The cost of sending a product from each warehouse to each customer.

All data that refer to product units are also attributable to the product and
therefore are shared with it.

All this is reflected in the following table of elements (Table 4.8).

Decision Activities
Action: SEND [products from warehouses to customers].
Participating elements:
Products (What do I send?) Direct object.
Warehouses (Where do I send it from?).

Table 4.8 Elements of Illustration 4.15

Elements Set QN

Data

Name Param Type Belonging Value

Warehouses i ¼ 1. . .m IU Stock Ki I S . . .

Cost Cij C S . . .

Customers j ¼ 1. . .n IU Demand Dj I S . . .

Cij

Products – CD Ki; Dj; Cij

4.4 Quantification of the Activity 97

Customers (Who do I send it to?).
Quantification: Integer.
Events: Product) i ¼ 1. . .m) j ¼ 1. . .n.
Decision variables:
xij ¼ Number of product units sent from warehouse i to customer j.

The text names another action, supply. This action can be considered in the text as
equivalent to send, assuming the same participating elements. If instead we define it
as an activity in which only each client and the product participate, we would make
the mistake of using an action with determined value as a decision activity. The
quantity of products to supply to each customer j is a known value, its demand Dj.

Illustration 4.16
To make two mixtures, M1 and M2, it is necessary to mix four compounds A, B, C,
and D. Of the compounds A, B, and C, we need between 20% and 40% of the same in
the mixtures. If the content of compound A is higher than compound B in the mixture
M1, it is necessary to introduce compound D in an amount equal to 5% of A.

The costs per kilo of A, B, C, and D are, respectively, CA, CB, CC, and CD.
Determine the composition of the most economical mixtures if I must make a total

of 25 kg of mixtures.

Table of Elements

The elements that are identified as actors in the problem are the two mixtures and
the four compounds. Mixtures must be made, an undetermined amount, by mixing
compounds. Since the mixtures have an undetermined quantity, of the compounds,
we are also going to use an undetermined quantity, which defines them as measur-
able. The amount of mixing will be obtained by a function of the compounds, their
sum. Therefore, mixtures will not be measured in decisions but in specifications.

The table of elements collects all the information (Table 4.9).
In order to unify sets, the minimum and maximum data has been established for

the four compounds, with the following values (Table 4.10).

Decision Activities

A priori, they are identified as actions in the system, make mixtures and mix
compounds in mixtures. When we refer to introducing compound D, we are referring

Table 4.9 Elements of Illustration 4.16

Elements Set QN

Data

Name Param Type Belonging Value

Mixtures i ¼ 1. . .2 IU Minimum Nij C (%) S . . .

Maximum Mij C (%) S . . .

Compounds j ¼ 1. . .4 IM Cost Cj C ($/kilo) W . . .

Nij

Mij

System – IU Total mixtures T C (kg) W 25

98 4 Decision Activities

to the very action of mixing compound D. Regarding the activity of making
mixtures, it is not really a decision activity but an action with calculated linear
value. The amount of a mixture made is the sum of the compounds that compose it.

Mixing compounds in mixtures: The direct objects are the compounds that will be
the elements that are measured in each event.

Action: MIX [compounds in mixtures].
Participating elements:
Compounds j ¼ 1. . .4.
Mixtures i ¼ 1,2.
Quantification: Continuous.
Events: j ¼ 1. . .4) i ¼ 1,2.
Decision variables:
xij ¼ Amount (Kgs) of compound j that are mixed in the mixture i.

4.5 Union of Activities

In some systems, there is the possibility of joining activities that are closely related to
each other. It happens when there is a logical activity, which we will call secondary,
with some elements that also participate in another (logical or measurable) activity,
which we will call primary. The two activities can be combined in a single activity
that incorporates the options for choosing the secondary activity to the primary
activity, provided that there is a conditional relationship between them. The union is
not valid in all cases. The relationship that must exist between both so that the union
of activities can be carried out is the following:

x ¼ primary activity
α ¼ secondary logical activity
y ¼ union activity

If y > 0 then x ¼ y and α ¼1
If y ¼ 0 then x ¼ 0 or α ¼ 0

In the union activity, the action of the primary activity is maintained, assimilating
the secondary activity into the definition itself.

It must be said that in the majority of cases, the union processes are inefficient
since they multiply the number of decision variables of the problem. Only in cases
where they reduce specifications can they make any sense. There may be cases in
which the union embeds specifications between primary and secondary activity. In

Table 4.10 Minimum and
maximum values

M1 M2

Minimum Maximum Minimum Maximum

A 20% 40% 20% 40%

B 20% 40% 20% 40%

C 20% 40% 20% 40%

D 0% 100% 0% 100%

4.5 Union of Activities 99

general, I discourage this option in the modelling of problems, although it is
necessary to incorporate it into the methodology as something that we can find in
the formulation of models.

Let’s see some illustrations of a union process.

Illustration 4.17
There is a set of supermarkets (i¼ 1. . .45), a set of distributors (j¼ 1. . .8), and a set
of vehicles (k ¼ 1. . .6) of distribution. The system must assign distributors to
vehicles and also assign distributors to supermarkets.

Although data have been omitted, we are going to consider each element as
different from the rest and therefore individual and unitary.

Table of Elements (Table 4.11).

Decision Activities

Two activities are identified, on the one hand, to decide the assignment of
distributors to supermarkets and, on the other hand, to assign vehicles to distributors.

Decision Activity 1:
Action: Assign [Supermarkets to distributors].
Participating elements: Supermarkets (i ¼ 1. . .45 IU); Distributors (j ¼ 1. . .8 IU).
Quantification: Binary.
Events: i ¼ 1. . .45) j ¼ 1. . .8.
Decision variables:
αij ¼ 1 if I assign Distributor j to supermarket i; 0 otherwise.
i ¼ 1. . .45, j ¼ 1. . .8.

Decision Activity 2:
Action: Assign [distributors to vehicles].
Participating elements: Distributors (j ¼ 1. . .8); Vehicles (k ¼ 1. . .6).
Quantification: Binary.
Events: i ¼ 1. . .45) j ¼ 1. . .8.
Decision variables:
βij ¼ 1 if I assign Distributor j to Vehicle k; 0 otherwise. j ¼ 1. . .8, k ¼ 1. . .6.

Union of Activities
Action: Assign [supermarkets to distributors with vehicles].

Table 4.11 Elements of Illustration 4.17

Elements Set QN

Data

Name Param Type Belonging Value

Supermarkets i ¼ 1. . .45 IU
Distributors j ¼ 1. . .8 IU
Vehicles k ¼ 1. . .6 IU

100 4 Decision Activities

Participating elements: Supermarkets (i ¼ 1. . .45); Distributors (j ¼ 1. . .8). Vehi-
cles (k ¼ 1. . .6).

Quantification: Binary
Events: i ¼ 1. . .45) j ¼ 1. . .8) k ¼ 1. . .6.
Decision variables:
αijk ¼ 1 if I assign Distributor j “with” Vehicle k to Supermarket i; 0 otherwise.

i ¼ 1. . .45, j ¼ 1. . .8; k ¼ 1. . .6.

In the variable definition, the second assignment activity is embedded in the
“with” preposition. If we analyze the number of variables generated with each
configuration, we will check the low viability of the union (Table 4.12).

Illustration 4.18
There is a distribution merchandise system. There is a set of clients (i ¼ 1 . . . 10)
with a merchandise demand Di, a set of vehicles (j ¼ 1 . . . 5) and a set of routes
(k ¼ 1 . . . 7). Each route passes through a subset of clients that are collected in the
RCik attribute:

RCik ¼ 1 if Route k passes through Client i; 0 if not.

Vehicles must select delivery routes and from these routes serve merchandise to
customers.

We do not add more elements to the problem, since for the illustration this
description suffices. Logically, you could enter trips, days, and also impose speci-
fications of capacity, time, etc.

Table of Elements (Table 4.13)

Since no information about the merchandise is specified, we assume it is
continuous.

Table 4.12 Number of variables in Illustration 4.17

Setup 1 Setup 2: Union

Activity 1: 45*8 ¼ 360 variables
Activity 2: 8*6 ¼ 48 variables
Total ¼ 408 variables

Activity: 45*8*6 ¼ 2160 variables

Table 4.13 Elements of Illustration 4.18

Elements Set QN

Data

Name Param Type Belonging Value

Clients i ¼ 1. . .10 IU Route_Client RCik B S . . .

Demand Di C S . . .

Vehicles j ¼ 1. . .5 IU
Routes k ¼ 1. . .7 IU RCik

Merchandise – IM Di

4.5 Union of Activities 101

Decision Activities

Two activities are identified: select distribution routes to vehicles and serve
merchandise to customers. Let us see how they are configured:

Decision Activity 1:
Action: Select [Routes for Vehicles].
Participating elements: Vehicles (j ¼ 1. . .5 IU); Routes (k ¼ 1. . .7 IU).
Quantification: Binary.
Events: j ¼ 1. . .5) k ¼ 1. . .7.
Decision variables:
αjk ¼ 1 if we select Route k for Vehicle j; 0 otherwise. j ¼ 1. . .5, k ¼ 1. . .7.

Decision Activity 2:
Action: Serve [merchandise to customers with vehicles].
Participating elements*: Merchandise (IM); Clients (i ¼ 1. . .10 IU); Vehicles

(j ¼ 1. . .5 IU).
Quantification: Continuous measurable.
Events: Merchandise) i ¼ 1. . .10) j ¼ 1. . .5.
Decision variables:
xij ¼ Amount of merchandise served to customer i with the vehicle j.

*: Obtaining the elements in this action may have some complexity. If we had
only placed Merchandise and Clients, we would be defining an action with a
determined value, the value of its Demand. If with Merchandise we attend to the
question “What do we serve?”, with the clients “Whom do we serve?”, then with the
vehicles we answer the question “With what do we serve?”

Union of Activities
Primary activity: Serve.
Secondary activity: Select.
Action: Serve [merchandise to customers with vehicles by routes].
Participating Elements: Merchandise (IM); Clients (i ¼ 1. . .10 IU); Vehicles

(j ¼ 1. . .5 IU); Routes (k ¼ 1. . .7 IU).
Quantification: Continuous measurable.
Events: Merchandise) i ¼ 1. . .10) j ¼ 1. . .5) k/ RCik ¼ 1.
Decision variables:
xijk ¼ Amount of merchandise served to customer i with vehicle j by route k.
The secondary activity of Select is replaced with the preposition “by.”

In the generation of events, not all routes must be specified. For each client, only
the routes that pass through it must be considered, information collected in the RCik

parameter. This fact, which is not determined by any decision, since it is due to
information about the problem, is not controlled in the non-union version of the
activities. In that version it would be necessary to include a specification that would
control that a vehicle can only serve a customer if it has chosen a route that passes
through said client. Let us consider how that specification would be:

102 4 Decision Activities

Taking the sets of variables.
αjk ¼ 1 if we select Route k for Vehicle j; 0 otherwise. j ¼ 1. . .5, k ¼ 1. . .7.
xij ¼ Amount of merchandise served to customer i with the vehicle j.

We must assume that the quantity of merchandise served to a customer i by a
vehicle j must be 0 if that vehicle has chosen a route k that does not pass through
customer i (RCik ¼ 0). Mathematically, it would correspond with the following
logical proposition:

8i, 8j, 8k=RCik ¼ 0 : If αjk ¼ 1 Then xij ¼ 0

This specification is not necessary in the union configuration, since the specifi-
cation is included in the definition of events. We can say that this is an advantage of
the union configuration.

4.6 Examples

We are going to obtain the decision activities of the examples presented in examples
Sect. 3.9 from the previous chapter. Therefore, we present in each example the
description and the table or tables of elements already obtained in that chapter.

4.6.1 Fire Stations (Example 3.9.1; Source: Larrañeta et al.
2003)

An initial study is planned to install two fire stations in an urban area that currently
has none. The approach has been adopted to divide the urban area into five sectors
and carry out a preliminary analysis of the repercussions of the possible location of
the stations in each of the sectors. The average time, in minutes, of answering a call
from a fire station located in a certain sector i for an incidence received from each of
the sectors j has been estimated in tij. The average number of calls per day that will
occur from each of the five sectors (Fj) has also been estimated. All these values are

Table 1 Frequencies and time between sectors

tij Sector 1 Sector 2 Sector 3 Sector 4 Sector 5

Sector 1 5 12 30 20 15

Sector 2 20 4 15 10 25

Sector 3 15 20 6 15 12

Sector 4 25 15 25 4 10

Sector 5 10 25 15 12 5

Frequency 2,5 1,6 2,9 1,8 3,1

4.6 Examples 103

shown in Table 1. For example, it takes 12 minutes to go from a station located in
sector 3 to an incident from sector 5. The last row shows the average daily frequency
of calls made to the fire service.

Version 4.1
Table of Elements (Table 4.14)

Decision Activities
Action: Install [fire stations in sectors].
Participating Elements: Fire stations (k ¼ 1,2 IU); Sectors (i ¼ 1. . .5 IU).
Quantification: Binary.
Events: k ¼ 1,2) i ¼ 1. . .5.
Decision variables: αki ¼ 1 if we install fire station k in sector i; 0 otherwise.

Version 4.2
Table of Elements (Table 4.15)

Decision Activities

Action: Install [fire stations in sectors].
Participating elements: Fire stations CD; Sector (i ¼ 1. . .5 IU).
Quantification: Integer.
Events: Fire stations) i ¼ 1. . .5.
Decision variables: xi ¼ Number of fire stations installed in sector i.

Table 4.15 Version 4.2 of the Elements in Example 4.6.1

Elements Set QN

Data

Name Param Type Belonging Value

Sectors i,j ¼ 1. . .5 IU Time tij C S . . .

Frequency fi C W . . .

Fire stations – CD N� items N I W 2

Table 4.14 Version 4.1 of the Elements in Example 4.6.1

Elements Set QN

Data

Name Param Type Belonging Value

Sectors i,j ¼ 1. . .5 IU Time tij C S . . .

Frequency fi C W . . .

Fire stations k ¼ 1,2 IU

104 4 Decision Activities

4.6.2 Food Service (Example 3.9.2; Source: Larrañeta et al.
2003)

A food service business has contracted four banquets for the next 4 days, requiring
150 clean tablecloths for the first banquet, 100 for the second, 140 for the third, and
130 for the fourth. Currently, it has 200 tablecloths in the storeroom, all of them
clean, and they can buy what you need on the market every day at a cost of 12 m.u./
tablecloth.

After the banquets, the tablecloths can go to the laundry basket or send them to
wash in the laundry. The laundry offers the following washing service:

– Fast: Clean tablecloths for the next day, at a cost of 6 m.u/tablecloth.
– Slow: Clean tablecloths for 2 days, at a cost of 4 m.u/tablecloth.

Table of Elements (Table 4.16)

Decision Activities
Action: Buy [tablecloths every day in the market].
Participating elements: Tablecloths CI; Days (t ¼ 1. . .4) IU; Market IU.
Quantification: Integer.
Events: Tablecloths) t ¼ 1. . .4) Market.
Decision variables: xt ¼ Number of tablecloths bought on day t in the market.

Action: Take [tablecloths after the banquets to the basket].
Participating elements: Tablecloths CI; Banquets (i ¼ 1. . .4) IU; Basket IU.
Quantification: Integer.
Events: Tablecloths) i ¼ 1. . .4) Basket.
Decision variables:
yi ¼ Number of tablecloths taken to the basket after the banquet i; i ¼ 1. . .4.

Table 4.16 Table of elements in Example 4.6.2

Elements Set QN

Data

Name Param Type Belonging Value

Banquets i ¼ 1. . .4 IU Tablecloths mi I S . . .

Day dit B S . . .

Storeroom – IU Stock S I S 200

Market – IU Price p C S 12

Basket – IU
Laundry – IU
Fast wash – IU Cost cF C S 6

Slow wash – IU Cost cL C S 4

Days t ¼ 1. . .4 IU dit

Tablecloths – CI mi; S; p; cF; cL

4.6 Examples 105

Action: Send [tablecloths to the laundry in wash modes after the banquets].
Participating elements: Tablecloths CI; Banquets (i ¼ 1. . .4) IU; Laundry IU; Fast

clean; Slow clean.
Quantification: Integer.
Events: Tablecloths) i ¼ 1. . .4) Laundry) Fast wash.
Tablecloths) i ¼ 1. . .4) Laundry) Slow wash.
Decision variables:
zFi ¼ Number of tablecloths sent to wash the laundry in fast wash after banquet i;

i ¼ 1. . .4.
zSi ¼ Number of tablecloths sent to wash the laundry in slow wash after banquet i;

i ¼ 1. . .4.

In this last action, it was necessary to include the type of washing process, fast or
slow, in the participation. If we had only included laundry, we would not have
known how to wash the tablecloths, and therefore, we would not know when they are
available. Similarly, the participation of the laundry could have been overlooked, as
it is implicit.

In the last two actions, we could have swapped the participation of the banquet
with the day, since each banquet i corresponds with each day t:

Action: Take [tablecloths on day t to the basket].
Action: Send [tablecloths to the laundry in wash modes on day t].

In the chapter dedicated to specifications, we will see how this type of problem,
where a measurable element is subject to activities over a set of periods, can be
represented graphically to facilitate the obtaining of activities, auxiliary calculations,
and specifications of equilibrium between the different variables associated with the
measurable element.

4.6.3 Location of TV Cameras (Example 3.9.3; Source:
Larrañeta et al. 2003)

CPL has to televise the game of the year. The producers have identified 10 possible
locations for the installation of cameras and 25 stadium areas that need to be
covered by the cameras. The table below indicates the relationship between both:

Location Covered Area

1 1, 3, 4, 6, 7

2 8, 4, 7, 12

3 2, 5, 9, 11, 13

4 1, 2, 18, 19, 21

5 3, 6, 10, 12, 14

6 8, 14, 15, 16, 17

7 18, 21, 24, 25

(continued)

106 4 Decision Activities

Location Covered Area

8 2, 10, 16, 23

9 1, 6, 11

10 20, 22, 24, 25

Each area of the stadium must be covered by a camera
Location 9 must have a camera
Areas 1 and 2 require coverage of at least two cameras.
The objective is to minimize the number of cameras used (Table 4.17).

Decision Activities
Action: Install [cameras in locations].
Participating Elements: Cameras CI; Locations (j ¼ 1. . .10 IU).
Quantification: Integer.
Events: Cameras) j ¼ 1. . .10.
Decision variables: xj ¼ Number of cameras installed in location j.

In this type of system, the decision variables are defined as binaries:

xj ¼ 1 if we install camera in location j; 0 otherwise.

This way the definition of the maximum number of cameras that we can install in
a location is included in the variable definition, because it is understood. However,
our methodology would define that specification where it should be defined, in the
specifications section, and the variable is defined as integer. In the specifications, the
maximum number of cameras is established: xj � 1. Of course, it is understood that
the variable xj can be defined as binary.

“Cover” would not be a decision activity in the system as it is a determined value
action, we have to provide coverage, it is not an option, and therefore we do not have
to decide anything, so it is a specification.

4.6.4 Trip Planning (Example 3.9.4)

There is a system that assigns travellers to buses. We have a group of 180 travellers
who have hired the services of the BUSTOUR Company for today. There are five
trips offered. Each traveller has chosen one of the five excursions.

Table 4.17 Table of elements in Example 4.6.3

Elements Set QN

Data

Name Param Type Belonging Value

Areas i ¼ 1. . .25 IU Coverage Cij B S

Minimal coverage mi I S

Locations j ¼ 1. . .10 IU Cij

Cameras – CI mi

4.6 Examples 107

Each traveller also chooses the language (English and Spanish) for explanations.
It has three options of choice:

– Spanish
– English
– Both of them (if they speak both English and Spanish)

The buses have a capacity of 60 people. There are eight buses.
Each bus that is used must be configured with a language and a trip. Since the

explanations are given on the bus journey, it is necessary to place each traveller so
that the trip and the language of the explanations that are configured on the bus they
are travelling on are compatible with its choice.

BUSTOUR wants to use as few buses as possible to cover the trips (Table 4.18).

Decision Activities
Action: Assign [Travellers to buses].
Participating elements: Travellers i ¼ 1. . .180 IU; Buses (r ¼ 1. . .8) IU.
Quantification: Binary.
Events: i ¼ 1. . .180) r ¼ 1. . .8.
Decision Variables: αir ¼ 1 if I assign traveller i to bus r; 0 otherwise.

Action: Configure [Language in buses].
Participating elements: Languages k ¼ 1,2 IU; Buses (r ¼ 1. . .8) IU.
Quantification: Binary.
Events: k ¼ 1,2) r ¼ 1. . .8.
Decision Variables: βkr ¼ 1 if I configure language k in bus r; 0 otherwise.

Action: Assign [Trips to buses].
Participating elements: Trips j ¼ 1. . .5 IU; Buses (r ¼ 1. . .8) IU.
Quantification: Binary.
Events: j ¼ 1. . .5) r ¼ 1. . .8.
Decision Variables: ωjr ¼ 1 if assign trip j to bus r; 0 otherwise.

This last activity could also be understood as a logical calculation. The travelers
that you assign to a bus condition the trip that you assign to the bus.

Table 4.18 Table of elements of Example 4.6.4

Elements Set QN

Data

Name Param Type Belonging Value

Travellers i ¼ 1. . .180 IU Trip choice Eij B S . . .

Language choice Iik B S . . .

Trips j ¼ 1. . .5 IU Eij

Languages k ¼ 1,2 IU Iik
Buses r ¼ 1. . .8 IU Capacity Kr I S 60

Seats – CD Kr

108 4 Decision Activities

8j, r : ωjr ¼ 1 IF AND ONLY IF
X

i=Eij¼1

αir > 0

If we define it as a decision activity, we cannot forget to define those propositions
as specifications. We will see that these specifications are typified within the
methodology.

Reduced Table of Elements (Table 4.19)

Regarding the reduced table of elements, the decision activities would be as
follows:

Decision Activities
Action: Assign [Travellers to buses].
Participating elements: Travellers i ¼ 1. . .15 CD; Buses (r ¼ 1. . .8) IU.
Quantification: Integer.
Events: i ¼ 1. . .15) r ¼ 1. . .8.
Decision Variables: xir ¼ Number of travellers from group i assigned to bus r.
The actions of configuring the language and trip to the buses are identical to those

presented for the table of elements 4.18.

Table 4.20 Table of elements of Example 3.9.5

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .n IU Start time Si C W . . .

End time Ei C W . . .

Weight Pi C W . . .

Machines j ¼ 1. . .m IU

Table 4.19 Reduced table of elements of Example 4.6.4

Elements Set QN

Data

Name Param Type Belonging Value

Groups of
travellers

i ¼ 1. . .15 CD Trip choice Eij B S . . .

Language
choice

Iik B S . . .

Trips j ¼ 1. . .5 IU Eij

Languages k ¼ 1,2 IU Iik
Buses r ¼ 1. . .8 IU Capacity K I S 60

Seats – CD Kr

4.6 Examples 109

4.6.5 Fixed Job Scheduling Problem (Example 3.9.5; Kroon
et al. 1995; Kolen et al. 2007)

There is a set of n tasks with a given start and end time and a weight. There is also a
set of m machines. This set selects tasks to be processed in the machines so that the
selected tasks have a maximum weight. A selected task is processed completely on a
single machine. A machine cannot perform two tasks overlapped in time.

Table of Elements (Table 4.20).

Decision Activities

The wording talks of selecting tasks to be processed in the machines. Since the
elements are unitary, the activities are going to be logics, a selection process, in this
case selecting tasks to be processed in machines. The action that defines the activity
is to process tasks in machines. This activity will result in a selection of tasks, those
that have been processed. Therefore, it is not necessary to consider the activity of
selecting tasks in addition to the task of processing tasks in machines. Selecting tasks
corresponds to a logical calculation that is obtained from the activity of processing
(if you have processed a task in a machine, you have selected that task).

Action: Process [task in machines].
Participating elements: Tasks i ¼ 1. . .n IU; Machines j ¼ 1. . .m IU.
Quantification: Binary.
Events: i ¼ 1. . .n) j ¼ 1. . .m.
Decision variables: αij ¼ 1 if we process task i in machine j; 0 otherwise.

4.6.6 Health Centers (Example 3.9.6)

There is a city containing 12 health centers. Due to population changes, it has been
decided to reassign health centers to citizens, a total of n. We know each citizen
address, and therefore, the system allows us to know the distance from their homes
to each health center. Each health center has a capacity that is expressed in the
number of patients that can be seen per day. It is estimated that 1% of people go

Table 4.21 Table of elements of Example 4.6.6

Elements Set QN

Data

Name Param Type Belonging Value

Health centers i ¼ 1. . .12 IU Distance Dij C S . . .

Capacity Ki E W . . .

Citizens j ¼ 1. . .n IU Dij

City – IU Attendance A C W 0,01

110 4 Decision Activities

daily to health centers. The objective is to minimize the sum of the distances between
each citizen and the health center assigned.

Table of Elements (Table 4.21)

Decision Activities
Action: Reassign [citizens to health centers].
Participating elements: Citizens j ¼ 1. . .n IU; Health Centers i ¼ 1. . .12 IU;
Quantification: Binary.
Events: j ¼ 1. . .n) i ¼ 1. . .12.
Decision variables:
αij ¼ 1 if we reassign citizen i to health center j; 0 otherwise.

References

Kolen, A., Lenstra, J. K., Papadimitriou, C., & Spieksma, F. (2007). Interval scheduling: A survey.
Naval Research Logistics, 54, 530–543.

Kroon, L. G., Salomon, M., & VanWassenhove, L. N. (1995). Exact and approximation algorithms
for the operational fixed interval scheduling problem. European Journal of Operational
Research, 82, 190–205.

Larrañeta, J., Onieva, L., Cortés, P., Muñuzuri, J., & Guadix, J. (2003). Métodos Cuantitativos en
Ingeniería de Organización. Sevilla: Editorial Universidad de Sevilla.

References 111

Chapter 5
Calculations in a System

5.1 Introduction

The calculations represent the variables that can appear in an optimization problem
whose values can be obtained from the value of other variables, decision variables
generally, or even previous calculations. They fall on elements of the system, and,
like the activities, they have a type of value associated.

Calculations can sometimes be considered as activities, due to their semantics or
their importance in the system, but they will never be of primary decision, since their
value will be obtained from the value of other variables. This determines the most
significant aspect of these variables:

They always carry constraints that define their meaning, that is, they define the
calculation.

The calculations in a system can be of three types:

• Auxiliary Calculations: Its value is calculated directly through a direct linear
function on the variables on which it depends. Its use is optional except when we
want to impose that the result of the function is an integer value. They help to
work more comfortably with the restrictions of the system. They give rise to the
auxiliary variables of the model.

• Logical Calculations: They are formulated by means of a logical proposition. Its
use is necessary. The value is binary in its great majority, except for the propo-
sitions that are defined to collect the value of a variable when a condition is met,
where non-binary calculations are used to be able to express the function in lineal
way. Already in Chap. 4, we talked about actions that could be presented in a
system and that corresponded with logical calculations. The logical proposition
that defines the calculation can also be understood as another specification of the
system.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_5

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_5#DOI

• Lower/Upper Bound Calculations: They calculate an upper or lower bound of
the values of other system variables. Its use is also necessary. The definition of the
calculation is carried out in a simple way with the imposition of bounds.

5.2 Auxiliary Calculations

An auxiliary calculation corresponds to a variable that substitutes a function of other
variables in order to work with a more simplified model, generally, or to impose
integer values on functions.

Let’s take a look at a simple illustration:

Illustration 5.1
Let the decision variables of a system be defined as:

xi: Number of kilos of product purchased from the supplier Pi. i ¼ 1. . .n

If I want to collect the total purchased in a variable, I define the following
calculation:

Auxiliary calculation: Total kilos (sum) of product purchased from suppliers
Applied to: The system
Definition of calculation variable:
x ¼ Total kilos of product purchased;
x � 0 continuous.
Constraint that defines the calculation: x ¼ x1 + x2 +. . .+ xi +. . .+ xn

If I want that total amount to be an integer number of kilos, the auxiliary variable
is defined as integer and its use is mandatory:

Definition of calculation variable:
x ¼ Number of kilos of product purchased;
x � 0 integer.
Constraint that defines the calculation: x ¼ x1 + x2 +. . .+ xi +. . .+ xn

Within the auxiliary calculations, we will now highlight a very common calcu-
lation, the auxiliary calculation of value selection.

5.2.1 Auxiliary Calculation of Value Selection

It is a calculation that selects the value of an attribute of an element over a set of
elements. For the selection of the element, logical decision variables are usually used
as inputs, although variants of this calculation can also be considered in cases with
integer or continuous variables (see Illustration 5.3). In the case of logical variables,

114 5 Calculations in a System

these variables satisfy a quantitative selection rule in which the selection of an
element is forced. The quantitative selection rules are a type of specification that
will be studied in the specifications chapter (Table 5.1).

Decision variables:
αi ¼ 1 if we select element i; 0 otherwise.
Selection rule: We select one element.Pn
i¼1

αi ¼ 1

Auxiliary calculation: Attribute value of the selected element
Applied to: . . .
Definition of calculation variable: x¼Value of the attribute of the selected element

Constraint that defines the calculation: x ¼Pn
i¼1

Aiαi

If the selection of more than one element were allowed, the variable x would
collect the sum of the values Ai of the selected elements, a less common aspect.

This calculation is extendable to more than one set of elements with shared data
(Table 5.2).

Decision Variables
αij ¼ 1 if I select pair (i,j); 0 otherwise.
Selection rule: We select one pair.Pn
i¼1

Pm
j¼1

αij ¼ 1

Auxiliary calculation: Attribute value Aij of the pair (i, j) selected
Applied to: The system
Definition of calculation variable: x¼Value of the attribute of the selected element

Table 5.1 Diagram 1 of the selection calculation table

Elements Set QN

Data

Name Param Type Belonging Value

Elements i ¼ 1. . .n – Attribute name Aj – – . . .

. . .

. . .

Table 5.2 Diagram 2 of the selection calculation table

Elements Set QN

Data

Name Param Type Belonging Value

Elements1 i ¼ 1. . .n – Attribute name Ajj – S . . .

. . .

Elements2 j ¼ 1. . .m – Ajj

. . .

. . .

5.2 Auxiliary Calculations 115

Constraint that defines the calculation: x ¼Pn
i¼1

Pm
j¼1

Aijαij

It is also possible to perform the calculation for each element of a set on another
set, provided that there is a binary variable that relates them (Table 5.3):

Decision Variables
αij ¼ 1 if we select pair (i,j); 0 otherwise.
Selection rule:

8j :Pn
i¼1

αij ¼ 1

Auxiliary calculation: Attribute value Ai of element i selected for j
Applied to: Each Element 2 (j¼1 . . . m)
Definition of calculation variable:
xj ¼ Value of the attribute of the selected element for j
Constraint that defines the calculation:

x j ¼
Pn
i¼1

Aiαij

Let us take a look at a couple of illustrations of this type of auxiliary calculation:

Illustration 5.2
There is a supermarket company that has several locations (j ¼ 1. . .n) to install
three product distribution centers.

The Company owns supermarkets to be supplied from the locations with some
distribution center, knowing the distance between each supermarket and each
location.

It is about minimizing the sum of the distances between each supermarket and the
assigned location.

Table of Elements (Table 5.4)

Table 5.3 Diagram 3 of the selection calculation table

Elements Set QN

Data

Name Param Type Belonging Value

ELEMENTS1 i¼1. . .n – Attribute name Ai – P . . .

. . .

ELEMENTS2 j¼1. . .m – . . .

. . .

Table 5.4 Table of elements of Illustration 5.2

Elements Set QN

Data

Name Param Type Belonging Value

Locations j ¼ 1. . .n IU Distance Dij C S . . .

Distribution centers – CD Quantity Q I W 3

Supermarkets i ¼ 1. . .m IU Dij

116 5 Calculations in a System

In the configuration carried out, the locations and the supermarkets have been
considered as individual, since they have an attribute of distance that differentiates
them from the rest and unitary because their data are not measurable. We consider
the distribution centres to be a collective element, since they are identical items and
we only refer to the number of centres in the text (numerals of the collective
element).

Decision Activities

We will now simplify the notation associated with the decision activities, indi-
cating only the action with its participant elements and the defined decision vari-
ables. Quantification and events are defined in the declaration of the decision
variables.

Action: Install [distribution centres in locations]
Decision variables:
xj ¼Number of distribution centres installed in location j. j ¼ 1. . .n

Action: Supply [supermarkets from locations (with some distribution centre)]
“with some distribution center” is a condition for locations. As we saw in section

4.3-rule 4, we consider the participation of all locations without condition.
Decision variables:
αij ¼ 1 if location j supplies to supermarket i; 0 otherwise. i ¼ 1. . .m, j ¼ 1. . .n.

For the modelling of the objective criterion, it is necessary to minimize the sum of
the distances of each supermarket to each assigned location.

The distance value for each supermarket between itself and the assigned location
is not reflected in any decision activity and, therefore, we need to perform a
calculation to obtain it. Since it is the value of an attribute, it can be obtained by
an auxiliary calculation of value selection:

Auxiliary calculation: Attribute value Dij of Location j selected for i
Applied to: Each Supermarket (i ¼ 1. . .m)
Definition of calculation variable:
yi ¼ Distance Dij of the selected location for supermarket i
Constraint that defines the calculation:

8i : yi ¼
Pn
j¼1

Dijαij

Prior to the calculation, there was a quantitative selection rule regarding the
number of locations that are assigned to a supermarket, one in this case:

8i : Pn
j¼1

αij ¼ 1

and for that reason, we have been able to develop the formula of the auxiliary
calculation.

Objective function:

Min
Pm
i¼1

yi

5.2 Auxiliary Calculations 117

Illustration 5.3
There is a set of n workers. Each worker lives in a specific city of the province. There
are m work centers in the province located each in a specific city of the province.
Each center has a demand for workers. The company wants to reallocate workers to
centers in a way that minimizes the total distance traveled by workers. The distances
between each pair of cities are known. There are a total of s cities.

Table of Elements (Table 5.5)

Decision Activities
Action: Reallocate [workers to work centers]
Decision variables:
αij ¼ 1 if worker i is reallocated to center j; 0 otherwise. i ¼1. . .n, j ¼ 1. . .m.

For the modeling of the objective function of the system, it is necessary to
minimize the sum of the distances traveled by the workers. This value will be the
distance from the city to which the worker belongs, to the city in which the assigned
center is located. This value can be obtained by an auxiliary calculation of value
selection:

Auxiliary calculation: Distance traveled by the worker i.
Applied to: Each worker (i ¼ 1 . . .n)
Definition of calculation variable:
yi ¼ Distance value Dkk

0 for worker i belonging to city k with assigned center
j belonging to city k'

Constraint that defines the calculation:

8i : yi ¼
Ps
k¼1

Ps
k0¼1

Pm
j¼1

Dkk0CTikCC jk0αij

Objective function:

Min
Pn
i¼1

yi

In this example we could present a table of elements in which we grouped the
workers of each city into a collective element, since they are identical in the system
and we can describe the system without referring to them individually in the
specifications. This is studied in detail in Chap. 7, now we propose the version

Table 5.5 Table of elements of Illustration 5.3

Elements Set QN

Data

Name Param Type Belonging Value

Workers i ¼ 1. . .n IU City_Worker CWik B S . . .

Work Centers j ¼ 1. . .m IU Workers Wj I W . . .

City_Center CCjk B S . . .

Cities k, k0¼ 1. . .s IU Distance Dkk
0 C S . . .

CWik; CCjk

118 5 Calculations in a System

without going into details. Let’s assume that L are the identical groups of workers
that can be formed:

Table of Elements (Table 5.6)

Decision Activities
Action: Reallocate [worker groups to work centers]
Decision variables:
xij ¼ Number of workers of group i reallocated to center j; i ¼ 1. . .L, j ¼ 1. . .m.

The objective now is the selection of distance values between the city where the
group of workers is and all the centers assigned. The value of the total distance
traveled by a group will be the sum of the distance to a center multiplied by the
number of workers assigned to that center. This auxiliary calculation is similar to the
one outlined above.

Auxiliary calculation: Distance traveled by the workers group i
Applied to: Each worker group (i ¼ 1 . . .L)
Definition of calculation variable:
yi ¼ Sum of the distances Dkk0 for group i belonging to city k with each center

assigned j belonging to city k' multiplied by the number of workers assigned to
that center j

Constraint that defines the calculation:

8i : yi ¼
Ps
k¼1

Ps
k0¼1

Pm
j¼1

Dkk0CTikCC jk0xij

Objective function: Min
Pn
i¼1

yi

As much for this version with collective elements as for the version with
individual elements, it is possible a configuration that would simplify the auxiliary
calculations. It would suffice to exclude the elements cities from the system and to
incorporate the distance data between cities as a distance between the worker and the
center. Since I know the city where the worker is and the city where the center is
located, you can calculate that attribute from the distance data between cities:

Table 5.6 Table of grouped elements of Illustration 5.3

Elements Set QN

Data

Name Param Type Belonging Value

Workers
groups

i ¼ 1. . .L CD City_Group CWik B S . . .

Number of
workers

Ni I W

Work centers j ¼ 1. . .m IU Workers Wj I W . . .

City_Center CCjk B S . . .

Cities k, k0¼1. . .s IU Distance Dkk0 C S . . .

CWik;
CCjk

5.2 Auxiliary Calculations 119

The distance between each worker i and each center j would be obtained as:

8i, j : Dij ¼
Ps
k¼1

Ps
k0¼1

Pm
j¼1

Dkk0CTikCC jk0

And that attribute would be included in the table of elements that would be as
shown in Table 5.7 for the Individual version (Table 5.5).

5.3 Logical Calculations

Logical calculations appear in systems where modelling has a more complex
character. Examples can be found Williams (2013) based in modeling techniques
proposed in Mitra et al. (1994) and Williams (1995).

Systems without logical calculations are usually easily to model. Logical calcu-
lations are represented in mandatory use variables that define their values in a logical
statement, so their value is usually binary, although non-binary calculations can also
be defined where the calculated value must collect a variable value to avoid
non-linear expressions. In either case they define logical values (Table 5.8):

The main difficulty in the modelling of a logical calculation is the definition of the
logical proposition or propositions that condition the value of the calculation, and
not so much the modelling, which will be governed by simple rules. The modelling
of logical propositions will be discussed in detail in the next chapter, since logical
propositions are a type of specification within this methodology. In this chapter, we
will only focus on the definition of the logical propositions that determine the values
of the calculation.

Table 5.8 Values of a logical calculation

Values

Logical
calculation

Binary True 1

False 0

Non-
binary

True x Value collected in variable x. The calculation takes as
value, in case True, the one that corresponds to the
variable x

False 0

Table 5.7 Simplified table of elements of Illustration 5.3

Elements Set QN

Data

Name Param Type Belonging Value

Workers i ¼ 1. . .n IU Distance Dij C S . . .

Work centers j ¼ 1. . .m IU Workers Wj I W . . .

Dij . . .

120 5 Calculations in a System

The propositional logic (Mendelson 1997) is necessary for the definition of all the
logical calculations, as well as for the specifications that are formulated by means of
a logical proposition without the need to define a logical calculation. Any logical
proposition can be understood as a system specification, including those that define a
calculation. Therefore, we will define the basic concepts of propositional logic in
order to understand the definition of logical propositions.

5.3.1 Logical Propositions and Logical Operators

In mathematical programming, we can define logical proposition as a mathematical
semantic content that, applied to a solution, is possible to assign a truth value (true or
false).

Depending on their structure or internal complexity, the proposals can be classi-
fied into:

Atomic or Simple Propositions
They refer to a single content of truth; in mathematical terms, linear formulation
corresponds to a linear equation or inequality that can be defined with the following
format:

Left side Sign Right side (independent term)

Lineal function < ; � ; ¼ ; � ; > Numeric value

Illustration 5.4: Example of Simple Propositions
α ¼ 1;
x1 + x2 + x3 � 100;
x1 � x2 < 50;
x � y) x � y � 0;
x � 10;
x > 0;Pn
i=di<10

αi ¼ 1;

Pn
i¼1

αi � 1;

Any constraint of a problem corresponds to a simple proposition on which we
force the solutions to have a truth value. In another case, it would be an inadmissible
solution. However, when an atomic proposition is part of a composite proposition,
its fulfillment is not obligatory, only the fulfillment of the compound proposition is
required.

5.3 Logical Calculations 121

Molecular or Compound Propositions
Propositions constituted by one or more atomic propositions joined by logical
operators.

Illustration 5.5: Examples of compound propositions
α ¼ 1 OR β ¼ 1;
NOT (x1 + x2 � 10)
IF x1 + x2 + x3 � 100 THEN α ¼ 1;
EITHER x1 – x2 < 50 OR y1 < 50;
IF x1 � 10 OR y1 � 20 THEN x2 � 15 AND y2 � 15;

Table 5.9 describes the logical operators with which we can express any logical
proposition. We will analyze them in detail in Chap. 6.

There are more logical operators than those shown, but they are not necessary
because they are reduced to the use of the previous ones. Even for the previous ones,
there are equivalences that will be useful for the definition of logical calculations.
We refer to equivalences with the operator $ (ϕ IF AND ONLY IF ψ) and the
operator ! (IF ϕ THEN ψ).

Illustration 5.6
Let x be an integer variable and α a binary variable.

x � 10 IF AND ONLY IFα ¼ 1 ð5:1Þ

For the first equivalence of Table 5.10, the proposition (5.1) is equivalent to (5.2)
and (5.3).

1:� IFx � 10 THENα ¼ 1 ð5:2Þ

Table 5.9 Logical operators
(given ϕ and ψ logical
propositions)

Operator Symbol Semantic

Negation Ø NOT (ϕ)

Disjunction _ ϕ OR ψ

Conjunction ^ ; & ϕ AND ψ

Conditional ! IF ϕ THEN ψ

Biconditional $ ϕ IF AND ONLY IF ψ

Exclusive disjunction
L

EITHER ϕ OR ψ

Table 5.10 Equivalents
between operators

Proposition Equivalent propositions

ϕ $ ψ ϕ ! ψ
ψ ! ϕ

ϕ ! ψ Ø ψ ! Ø ϕ

122 5 Calculations in a System

2:� IFα ¼ 1 THENx � 10 ð5:3Þ

Proposition (5.3) could also be transformed by the second equivalence of
Table 5.10 in:

IFα ¼ 1 THENx � 10) IF NOT x � 10ð Þ THEN NOT α ¼ 1ð Þ)
) IFx < 10 THENα ¼ 0

ð5:4Þ

5.3.2 Identification and Definition of a Logical Calculation

Logical calculations represent conditioned actions in a system and conditioned
characteristics of elements and are also used in an intermediate way in the modelling
of compound propositions to collect the result of integer or continuous simple
propositions. They can fall on the elements individually or collectively, involving
several of them. Let us see how they can appear in a system:

Identification
As a Conditioned Action

They have already been discussed in the chapter dedicated to decision activities.
Conditional or conditioned value actions are those that are discarded as decision
activities because their values are determined by other decision activities. The
logical calculations of conditioned actions are easy to detect because the action
and conditions are always defined jointly. However, if the modeller defines the
action as a decision activity because it does not perceive its dependence, it must
take into account as a specification the logical propositions that generate the condi-
tions of the action and that define the values of the variable. They can be of two
types:

• Determined value conditional actions: They give rise to binary logical
calculations.

• Conditional linear value actions: They give rise to non-binary logical calcula-
tions. It is the case in which the logical calculation will take the value of another
variable of the problem. They could really be defined as binary, but this would
result in non-linear expressions in the model, so integer or continuous variables
are used to define them.

In any case, conditioned actions need, first, to define the variable and, second, to
express the specification or specifications of propositional logic that define their
values.

5.3 Logical Calculations 123

As a Conditioned Characteristic of an Element

In the system it is necessary to know if a certain element or several elements have
fulfilled any condition that is obtained by a function of variables. Semantically it can
be expressed through a qualification of the element or simply expressing that a
variable or function of variables falls into a range of values. As before, we need to
define the variable that will collect the result and the specification that defines the
calculation. However, this case is more difficult to identify in the problem wording
than in the case of conditioned actions. We need to always reflect on whether what is
needed is contained in some decision variable or in some attribute and, if not, to
express that characteristic as a logical calculation. In general, this category presents
binary calculations mainly, although conditioned linear value characteristics can also
occur.

Typically, the logical variable is used later quantitatively in some other system
specification or in the objective criterion.

In an Auxiliary Way in the Modelling of Compound Logical Propositions

This case presents a compound logical proposition formed with variables already
existing in the problem. When modelling the proposition is undertaken, the defini-
tion of logical variables is necessary to collect the result of some atomic propositions
that are within the global proposition or that are formed in the process. In this case
they are always binary calculations. The case will be seen in detail in the next chapter
devoted to the modelling of specifications, when we analyze the modelling of the
specifications of propositional logic.

Although we have defined three cases, the first two cases are very much related
and according to the way of describing the system, the calculation can be considered
as case 1 or as case 2.

Definition
Logical calculations are represented as logical variables. A logical calculation will
correspond to a variable that is always necessary in the model. The definition of a
logical calculation involves the conditional operator or the biconditional operator,
regardless of whether it can be enunciated with other operators. The format that we
will use to define the logical calculations will be the following:

Binary logical calculation: Semantics of calculation
Applied to: Elements on which it falls.
Definition of logical variable:

β ¼ 1 if the condition is met

0 otherwise

�
Logical proposition: β ¼ 1 IF AND ONLY IF Condition

Non-binary logical calculation: Semantics of calculation
Applied to: Elements on which it falls.
Definition of logical variable:

124 5 Calculations in a System

y ¼ value of x when the condition is met
Logical propositions:
IF Condition THEN y ¼ x

IF NOT Conditionð Þ THEN y ¼ 0

Next let us see a first example of identifying and defining logical calculations,
case 1 or case 2, or identifying whether a composite proposal is presented with
already existing variables and whether for its later modelling we will need the
definition of some logical calculation (case 3).

Illustration 5.7
There is a system of buying a product from four suppliers.

They are defined as decision activities:

x1 ¼ number of product units purchased from supplier 1.
x2 ¼ number of product units purchased from supplier 2.
x3 ¼ number of product units purchased from supplier 3.
x4 ¼ number of product units purchased from supplier 4.

Specifications and actions that we could establish:

1. Pay a fee of $50 if we exceed the 100 total units purchased.
2. Have a discount of 2% on the total of units purchased if I buy at least 1000 from

supplier 1.
3. If I buy more than 30 units from supplier 2, I must buy at least 15 from supplier 3.
4. Do not buy from the first and third supplier at the same time
5. Buy a total of 2000 units or pay a fee of $100
6. The number of suppliers used (from which I buy) is equal to 2.
7. Buy at least 100 units from a supplier.
8. Minimise the number of suppliers from which I bought a maximum of 50 units

1. Pay a fee of $50 if we exceed the 100 total units purchased.

We are facing a conditioned action of determined value (case 1.1): Pay a fee of
$50.

Binary logical calculation: Pay a fee of € 50
Applied to: The system
Definition of logical variable:

β1 ¼
1 if we pay the fee of $50

0 otherwise

�
Logical proposition:

β1 ¼ 1 IF AND ONLY IF
P4
i¼1

xi > 100

2. Have a discount of 2% on the total of units purchased if I buy at least 1000 from
supplier 1

5.3 Logical Calculations 125

Conditional action of linear value (case 1.2)

Non-binary logical calculation:

Have a discount of 2% on the total purchased
P4
i¼1

xi

� �
Applied to: The system
Definition of logical variable: y2 ¼ discount obtained
Logical propositions:

IF x1 � 1000 THEN y2 ¼ 0, 02
X4
i¼1

xi

IF x1 < 1000 THEN y2 ¼ 0

With the continuous variable y2 we have managed to express linearly the value of
the discount obtained. If we had opted for a binary calculation, the result would have
been the following:

Binary logical calculation:

Have a discount of 2% on the total purchased
P4
i¼1

xi

� �
Applied to: The system
Definition of logical variable:

β2 ¼
1 if I obtain the discount of 2%

0 otherwise

�
Logical proposition: β2 ¼ 1 IF AND ONLY IF x1 � 1000

To obtain the discount value we would have to use the next function: β20, 02
P4
i¼1

xi

which is not lineal.

3. If I buy more than 30 units from supplier 2, I must buy at least 15 from supplier 3.

It is a direct logical proposition about system activities (Case 3). We do not need
to incorporate any new variables to state the proposition. We will need binary logical
calculations to model each simple non-binary proposition that appears in the com-
pound statement.

Logical proposition: IF x2 > 30 THEN x3 � 15

4. Do not buy from the first and third supplier at the same time

Compound logical proposition (Case 3)

Logical proposition: NOT(x1 > 0 AND x3 > 0)

5. Buy a total of 2000 units or pay a fee of $100

A conditional action of determined value is defined (Pay a fee of $100) without
using a conditional expression. Actually, the phrase is equivalent to saying: you pay
a fee of $100 if you do not buy a total of 2000 units.

126 5 Calculations in a System

Binary logical calculation: Pay a fee of $100
Applied to: The system
Definition of logical variable:

β5 ¼
1 si I pay a fee of $100

0 otherwise

�

Logical proposition: EITHER
P4
i¼1

xi ¼ 2000 OR β5 ¼ 1

It can also be expressed with the operator $:

β5 ¼ 1 IF AND ONLY IF NOT
P4
i¼1

xi ¼ 2000

� �

6. The number of suppliers used (from which I buy) is equal to 2.

This is a specification that uses a logical calculation of type 2. A qualification of
the suppliers appears: Supplier used. This qualification is obviously not an attribute
and is not included in any decision activity, so it is necessary to define it as a
calculation.

Binary logical calculation: Supplier used
Applied to: Suppliers i ¼ 1. . .4
Definition of logical variable:

δi ¼
1 if supplier i is used

0 otherwise

�
Logical proposition: δi ¼ 1 IF AND ONLY IF xi > 0

The specification states that only two providers must be used:
P4
i¼1

δi ¼ 2

7. Buy at least 100 units from a supplier.

As in point 6, we again establish a quantitative specification on suppliers that
comply with a quality (purchase of at least 100). We must find out if we bought at
least 100 from each supplier and then impose a specification on those calculations:

Binary logical calculation: Supplier with at least 100 units supplied
Applied to: Suppliers i ¼ 1. . .4
Definition of logical variable:

ωi ¼
1 if I buy at least 100 units to the supplier i

0 otherwise

�
Logical proposition: ωi ¼ 1 IF AND ONLY IF xi � 100

Specification requested:
P4
i¼1

ωi � 1

8. Minimize the number of suppliers from which I bought a maximum of 50 units

5.3 Logical Calculations 127

This is similar to the previous one but in this case the calculations are going to be
used in the objective function.

Binary logical calculation: Supplier with a maximum of 50 units supplied
Applied to: Suppliers i ¼ 1. . .4
Definition of logical variable:

λi ¼
1 if buy from supplier i a maximum of 50 units

0 otherwise

�
Logical proposition: λi ¼ 1 IF AND ONLY IF xi � 50

Objective function: Min
P4
i¼1

λi

5.3.3 Reduction of the Definition of a Logical Calculation

In general, the definition of a logical calculation requires the definition of each of the
values that calculation can take. In the case of binary variables, the calculation must
be defined for the value 1 and the value 0, as seen, for example, in Illustration 5.7 –

point 1, regarding the calculation of paying a fee of $50, which was defined as:

β1 ¼ 1 IF AND ONLY IF
X4
i¼1

xi > 100 ð5:5Þ

Operator “IF AND ONLY IF” defines both value 1 and value 0 of the variable β1
in (5.5), since this proposition according to Table 5.10 is equivalent to these two
propositions:

1:� IF β1 ¼ 1 THEN
X4
i¼1

xi > 100

) IF NOT
X4
i¼1

xi > 100

 !
THEN NOT β1 ¼ 1ð Þ)

) IF
X4
i¼1

xi � 100 THEN β1 ¼ 0

ð5:6Þ

2:� IF
X4
i¼1

xi > 100 THEN β1 ¼ 1 ð5:7Þ

However, in some systems, it is not necessary to define all the values of the
calculation variable due to the impact of the variable on the optimization problem.
When a variable implies a cost in the objective function of the problem, it is not
necessary to define value 0 (5.6) in the calculation proposition; we can give freedom

128 5 Calculations in a System

to the variable since, when the problem is solved, it will never consider as an optimal
solution a solution in which the variable is worth 1 and can be 0. An example occurs
in the previous illustration, where β1 ¼ 1 meant that a cost was incurred in the
system.

If we eliminate the definition of β1 ¼ 0 (5.6), in a solution where
P4
i¼1

xi � 100, the

system will be free to assign β1 the value 1 or 0 for that solution, but it will never
impose paying the fee (β1 ¼ 1) since that would go against the objective function.

This also happens in other environments where, although the calculation variable
does not have a cost associated, its definition can be reduced because other charac-
teristics that occur in the system make it possible, although it must be clear that it will
never be incorrect to define all the values of a calculation.

Let’s take a look at an illustration where you can reduce the definition of a
calculation without a cost associated to the calculation:

Illustration 5.8
Suppose we must sell units of a product to a set of 10 customers.

Table of Elements (Table 5.11)

Decision Activities

Action: Sell [Product to customers]
Decision variables:
xi ¼ Number of units of the product sold to the customer i; i ¼ 1. . .10

Specifications

Suppose that the system establishes that you must sell more than 100 units to at
least one customer.

To model this specification, we need to define a logical calculation: from the
activity of selling, find out the quality of selling more than 100 units for each
customer, and then assume that this happens at least once. Therefore, we must define
the following logical calculation:

Binary logical calculation: Customer buying more than 100 units
Applied to: Customer i ¼ 1. . .10
Definition of logical variable:

βi ¼
1 if I sell more than 100 units to customer i

0 otherwise

�
Logical proposition: βi ¼ 1 IF AND ONLY IF xi > 100

Table 5.11 Table of elements of Illustration 5.8

Elements Set QN

Data

Name Param Type Belonging Value

Customers i ¼ 1. . .10 IU
Product – CD

5.3 Logical Calculations 129

Specification requested :
X10
i¼1

βi � 1 ð5:8Þ

Thanks to this specification and although the variables βi do not entail cost, the
definition of the variables βi can be simplified:

According to (5.8) in any solution at least one variable βi will be worth 1, so we
can eliminate value 1 from the definition and only use the definition of the value 0.

8i : IF xi � 100 THEN βi ¼ 0 ð5:9Þ

When the entry of the proposition (5.9) does not comply, that is, when xi>100, the
variable βi will be free to be worth 1 or 0, and since we assume that at least one
variable is worth 1, we are ensuring that at least one customer complies with the
formula xi>100. This can be seen more clearly if we turn the proposition around,
(5.9) can be defined as:

8i : IF βi ¼ 1 THEN xi > 100 ð5:10Þ

Therefore, if βi ¼ 1, that means that xi>100. There may be customers with βi ¼
0, and they may have bought more than 100 units, but that lack of precision is due to
simplification. What is guaranteed is that at least one customer has more than
100, which is what the specification established.

With this type of simplification, always be careful not to use the same calculation
for other specifications that require a precise value. Defining all the calculation
values guarantees that there will never be an error.

In the following we will use the reference Ref. SV every time we reduce values in
the definition of a logical calculation.

5.4 Lower/Upper Bound Calculations

They are used to calculate upper or lower bounds on a set of variables. Its main
function is in the modelling of equilibrium objective functions and specifications,
although they can also have other uses, such as obtaining the entire part of a
continuous variable.

The variables that function as bounds suppose a saving in the use of logical
calculations. With bound calculations the size of the model is reduced and the
efficiency in the resolution is improved.

We could use logical calculations to obtain the maximum or minimum value
between the values of a set of variables, but the process would generate many
constraints and variables. Bound calculations do not necessarily obtain the

130 5 Calculations in a System

maximum or minimum of the set of variables, although it can be forced with the use
of the objective function to achieve those values. The modeller must analyze if, with
the bound variables, it can represent a specification that alludes to the maximum or
minimum of a set. If that possibility does not exist, logical calculations would have
to be incorporated to obtain them.

In any case, the bound calculations are always defined as follows:
If there is a set of variables xi (i¼1. . .n) that can define decision activities or

calculations made in the system, the standard definition of a lower/upper bound
calculation would be:

Upper/lower bound calculation: Upper/Lower bound of the set xi
Applied to: . . .
Variable: xUP ¼ Upper bound of xi (i¼1. . .n) / xLOW ¼ Lower bound of xi (i¼1. . .n)
Constraints defining the calculation: 8i : xi � xUP/ 8 i : xi � xLOW

From these two variables, we could model quantitative impositions such as the
following:

Assume that the difference between the values of xi is not greater than 2:
xUP � xLOW � 2
Assume that the minimum has a value of at least 10:
xLOW � 10

Its usefulness is also in the objective functions of equilibrium, in which the bound
calculations represent the cost variables of the function. Thus, objectives of equilib-
rium can be defined:

Maximize the minimum: Max xLOW
Minimize the maximum: Min xUP
Minimize the difference between the maximum and the minimum:
Min xUP � xLOW

With respect to other utilities of the upper/lower bound calculations, there is the
obtaining of integer parts of continuous values. For that, the key is to define the
calculation with integer value:

Let x be a continuous variable. To get its integer part ([x]), we define a lower
bound calculation as follows:

Lower bound calculation: Lower bound of x
Applied to: . . .
Variable: xLOW ¼ Lower bound of x; xLOW Integer
Constraints defining the calculation: x � xLOW

To ensure that xLOW takes the nearest integer to the value of x, we assume that
xLOW also acts as upper bound to the value of removing an amount infinitesimally
close to 1 to x:

xLOW � x � (1 � ξ); ξ infinitesimal value

5.4 Lower/Upper Bound Calculations 131

If we had wished to obtain the integer part by excess of x(dxe), the calculation
would have been:

Upper bound calculation: Upper bound of x
Applied to: . . .
Variable: xUP ¼ Upper bound of x; xUP Integer
Constraints defining the calculation: x � xUP

And that same variable also acting as the lower bound of x + (1�;ξ):

xUP � x + (1 � ξ)

5.4.1 Bounds on Undetermined Variables

When the lower/upper bound calculation is made on a set of variables where each
variable depends on a condition to be part of the bounds calculation, the constraints
that define the calculation are established by a logical proposition:

There is a set of variables xi (i ¼ 1. . .n) representing activities or calculations:

Upper/lower bound calculation: Upper/Lower bound of the set xi
Applied to: . . .
Variable: xUP ¼ Upper bound of xi (i ¼ 1. . .n)/xLOW ¼ Lower bound of xi

(i ¼ 1. . .n)
Constraints defining the calculation: Constraints resulting from the modelling of

the following logical statement:
8i : IF {condition} THEN xSUP � xi/xINF � xi

Illustration 5.9
We plan to allocate flights that start or end in Barcelona on any given day to pilots of
an airline. The company works with domestic flights that are always doubled, that is,
a flight from Barcelona to another city always has a flight from that city to
Barcelona, within the same day. For this reason, for the planning the company
always assigns the two flights of a double flight to the same pilot, and for that same
reason, it is not necessary to consider the individual flights but only the double
flights.

The information of a double flight is:

– Start time
– End time

In the assignment, it is established as a rule that a pilot cannot carry out daily
work of more than 12 hours. The schedule of the working day is computed as the
difference between the latest end time minus the earliest start time of the double
flights assigned that day.

Logically, we have expressed a very simplified allocation system, solely for the
purpose of showing the use of bound calculations on undetermined variables.

132 5 Calculations in a System

Let us take a look at the table of elements and activities.

Table of Elements (Table 5.12)

The pilots are identical but are treated individually in the system (“a pilot cannot
carry out daily work of more than 12 hours”).

Decision Activities
Action: Assign [Pilots to double flights]
Decision variables: αij ¼ 1 if I assign double flight i to pilot j. j¼1. . .m;

i¼1. . .n;
Specifications

The only specification defined explicitly in the statement is the one for which we
will need the definition of bound calculations:

A pilot cannot carry out daily work of more than 12 hours

The specification falls on each pilot.
To obtain the working interval, we will use an upper bound calculation and a

lower bound one, for each pilot. Bound calculations must be made at the beginning
of the flights assigned to that pilot (lower bound calculation) and the end times of the
flights assigned to the pilot (upper bound calculation).

The reference variables for the calculations would be auxiliary variables (section
5.4) that we would define as:

Auxiliary calculation: Start time of pilots on flights
Applied to: Pilots j ¼ 1. . .m) Flights i¼1. . .n
Definition of calculation variable: xij ¼ Start time of pilot j on flight i
Constraint that defines the calculation: 8i, j : xij ¼ Siαij

Auxiliary calculation: End time of pilots on flights
Applied to: Pilots j¼1. . .m) Flights i¼1. . .n
Definition of calculation variable: yij ¼ End time of pilot j on flight i
Constraint that defines the calculation: 8i, j : yij ¼ Eiαij
The lower/upper bound calculations would be defined as:
Lower bound calculation: Lower bound of the set xij
Applied to: Each pilot j ¼ 1. . .m
Variables: xj

INF ¼ Lower bound of the set xij (i¼1. . .n)
Constraints defining the calculation: It would be a mistake to consider a direct

bound calculation on all auxiliary calculations xij, since for those flights that the

Table 5.12 Table of elements of Illustration 5.9

Elements Set QN

Data

Name Param Type Belonging Value

Pilots j ¼ 1. . .m IU
Double flights i ¼ 1. . .n IU start time Si C W –

end time Ei C W –

5.4 Lower/Upper Bound Calculations 133

pilot does not perform the value of xij is 0, and therefore the value 0 would act as a
lower bound, wrongly. For that reason, we are only going to consider the pair (i,j)
where αij ¼ 1, that is to say, where flights have been assigned to the pilot j.

8j,8i : IF αij ¼ 1 THEN xINFj � xij

Without having used auxiliary variables xij, the definition would be as follows:

8j,8i : IF αij ¼ 1 THEN xINFj � Iiαij

On the other hand, for the calculation of the upper bound, it is not necessary to
establish the condition of non-negativity that we have proposed in the calculation of
the lower bound. As it is a calculation of upper bound, the values 0 do not affect the
calculation:

Upper bound calculation: Upper bound of the set xij
Applied to: Each pilot j ¼ 1. . .m
Variables: yj

SUP ¼ Upper bound of the set xij (i¼1. . .n)
Constraints defining the calculation: 8j,8i : ySUPj � yij

Without having used auxiliary variables yij: 8j,8i : ySUPj � Fiαij
Finally, we can express the specification of a maximum of 12 h per day as:

8j : ySUPj � xINFj � 12

References

Mendelson, E. (1997). Introduction to mathematical logic (4th ed.) Chapman and May.
Mitra, G., Lucas, C., & Moody, S. (1994). Tools for reformulating logical forms into zero-one

mixed integer programs. European Journal of Operational Research, 72, 262–276.
Williams, H. P. (1995). Logic applied to integer programming and integer programming applied to

logic. European Journal of Operational Research, 81, 605–616.
Williams, H. P. (2013). Model building in mathematical programming (5th ed.). Wiley. ISBN:

978-1-118-44333-0.

134 5 Calculations in a System

Chapter 6
Modelling and Types of Specifications

6.1 Introduction

The specifications of an optimization problem include all the constraints existing
within it. The constraints have been catalogued generally according to their meaning,
as Williams (2013) have already pointed out, although proposing a classification of
constraints seems to be a rather complex task. The only classification that I consider
100% valid would be the one that refers to the sign of the constraints. There are
constraints of three signs: �, �, and ¼. However, with this classification, we would
not pay attention to the meaning of the specification. And on the other hand, not all
specifications correspond to a single constraint. There are specifications, as we will
see, that are modelled using more than one constraint.

Therefore, in this methodology, we will propose a classification in two levels. The
upper level is determined by the way in which the specification is stated, whereby we
would have two types of specifications:

A. Specification stated as a simple proposition
B. Specification stated as a compound proposition

In Sect. 5.3, dedicated to logical calculations, we state the concept of proposition
and its typologies. It is important to bear in mind that a proposition in mathematical
programming is defined as a mathematical semantic content that, when applied to a
solution, can be assigned a truth value (true or false).

Remember also that there are two kinds of propositions:

– Simple: also called atomic, they express a statement that cannot be divided into
other propositions because they do not employ any logical operator.

The original version of this chapter was revised. The correction to this chapter is available at https://
doi.org/10.1007/978-3-030-57250-1_9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021, Corrected Publication 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_9#DOI
https://doi.org/10.1007/978-3-030-57250-1_9#DOI
https://doi.org/10.1007/978-3-030-57250-1_6#DOI

– Compound: propositions composed of logical operators and one or more simple
propositions. In the previous chapter, several examples of the formulation of
compound propositions were already shown. In this chapter we will study its
modelling.

Specifications Stated as Simple Propositions
The specifications that are formulated as simple propositions give rise to most of the
constraints of optimization problems. Simple propositions can also be classified,
here with greater difficulty and not exclusively, depending on the meaning or
objective of the constraints or the intervening variables. In this methodology, we
will define the following types of specifications stated as simple propositions:

Quantitative specification of selection

A specification based on the variables involved. Whenever logical activities are
presented on sets of individual elements or binary logical calculations, it is necessary
to analyze the existence of this type of specification, since in many cases they are not
explicitly described in the description of the system because they are understood.

They can be of three types:

– Upper bound
– Lower bound
– Equality

Capacity specifications
Based on the semantics of element data, it is a specification catalogued by some

authors. It is based on availability data of elements that have a resource character in
the system. The two most common formats in which it is presented in a system are:

– Specification focused on the consumption of capacity: The capacity of the
resource can be partially consumed.

– Specification focused on the contribution of capacity: The capacity of the
resource is used to satisfy a fixed demand for capacity. In this case, the capacity
is used in its entirety.

Supply of a demand
Based also on data semantics, it is the opposite of the capacity specification. It

occurs when an element has an attribute that represents a quantity demanded that is
necessary to cover or supply.

Bound imposition specifications

These are the most easily recognizable specifications in a system. It would be a
typology regarding the way of stating the specification. There are two types:

– Imposition of maximums: these impose upper bounds on variables or functions of
variables. Within these we could also include the specifications of capacity
consumption.

– Imposition of minimums: these impose lower bounds on variables or functions of
variables.

136 6 Modelling and Types of Specifications

Allocation or balance specifications
These impose values on variables or functions of measurable variables. They also

impose a balance between the inputs and outputs of a measurable element, collective
or individual. Included in this typology are constraints on the distribution of stocks
or those that impose equality between variable functions.

It is inevitable that sometimes certain specifications will be considered as belong-
ing to more than one typology.

Specifications Stated as Compound Propositions
The specifications enunciated as compound propositions have already appeared in
the chapter dedicated to the logical calculations of a system. They are specifications
that are based on a logical language, using logical operators or a connective to define
the specification. They are also usually easily identifiable in the system description.
As we already mentioned, the modelling of logical propositions could involve the
definition of logical calculations. In this chapter, we will see the modelling of any
type of compound proposition.

The formulation of logic-based propositions has been studied mainly by Mitra
et al. (1994), Williams (1995), and Williams (2009) proposing constraints using
binary decision variables, particular propositions as disjunctive constraints but there
is not a general method for formulating any compound propositions with any
connective.

In this book we will see a general scheme for modelling compound propositions
where the basic rules are based on the modelling of propositions already described
by those authors.

The structure of this chapter is as follows: first (Sect. 6.2) we will analyze the
elements on which the specifications fall. In Sects. 6.3 to 6.7, we will present the
modelling of each type of simple specification (A.1 to A.5). Section 6.8 will deal
with the modelling of compound propositions. Section 6.9 is devoted to objective
functions, since objective functions can be considered as one more specification of
the system. In Sect. 6.10, we will analyze the identification of specifications in the
description of a system.

6.2 Elements on Which the Specification Falls on

When it comes to modelling a specification, the first task is to identify to which
elements the specification is directed. If it is an individual specification, it will be
directed to a particular element within a set, to an element that is not part of any set or
to the system itself. If the specification is directed to a set of elements, the construc-
tion of the specification uses terms such as “Every” or “A” as an indeterminate
article, without referring to one in particular but to any. This means that the
specification will have to be mounted for each element of the set. We can even
express a specification using the term “all.” In this case the norm must also be
mounted for each element individually if they are defined individually.

6.2 Elements on Which the Specification Falls on 137

Illustration 6.1
In a system for assigning jobs to machines, with those elements defined as unitary,
the specification that assigns each job to a machine could be defined as:

– Each job must be assigned to a machine.
– A job will be assigned to a machine.
– All jobs must be assigned to a machine.

It could also be that the specification does not apply to all elements of the set but
only to those that meet a condition subject to the values of their data or their indices.
This will be expressed using the mathematical symbol “such that” (/):

8i/Ci>10: (Ci is an attribute of the elements of the index set i)
8i,j/i>j:
8i/i�3:

We should never express variables in the clause such that. As its value is not
determined, we will not know whether or not the specification is applied:

8i/xi>10: Error!
Whenever we try to define variables in the clause “such that,” we must define a

conditional logical proposition “IF. . .THEN. . .” that uses these variables as an input
condition of the conditional. The logical propositions will be studied in Sect. 6.8.
Let’s look at a simple example:

8i/xi > 10 : αi + βi � 1) 8 i : IF xi > 10 THEN αi + βi � 1

It may also be common for specifications to be defined by the combination of
several sets of elements. Again, the determination of the elements depends on the
way in which they are alluded to in the statement of the specification, if in a
determined way on some elements or in an indeterminate way, which is why all
the combinations that define the specification should be considered. Let us look at an
example:

Illustration 6.2: Distribution of Ham
A ham distribution company has designed a set of 20 delivery routes for distribution.
The company has a portfolio of 350 clients. Each delivery route goes through a
series of known customers. The company has ten vehicles for the distribution stage.
Each vehicle has a given capacity or number of Iberian hams that it can transport.

The demand for ham that must be supplied to each customer is known. Each
vehicle that delivers ham must choose a single route, since more than one would take
too long.

Two vehicles cannot choose the same route.
If a vehicle delivers more than 50 Iberian hams to a customer, it should not

deliver ham to any other customer.
We know the delivery cost of each route.

Table of Elements (Table 6.1)

138 6 Modelling and Types of Specifications

In the Customer_Route attribute, the customers by which each route passes are
annotated. It is therefore shared between routes and customers.

Decision Activities

Action: Deliver [Iberian hams to customers with vehicles]
Decision variables:
xkj ¼ Number of Iberian hams delivered with vehicle k to customer j.
k ¼ 1. . .10, j ¼ 1. . .350

Action: Choose [Routes for vehicles]
Decision variables:
αik ¼1 if I choose Route i for Vehicle k; 0 otherwise. k ¼ 1. . .10, i ¼ 1. . .20

Let us analyze two of the specifications of the system:

Specification 1: Two vehicles cannot choose the same route

The first question would be: which two vehicles? They are not determined, so we
should consider the combination of every two vehicles from the ten vehicles.
Obviously, since vehicles are individuals, this value (two vehicles) cannot represent
a numeral of a collective element.

The second question would be: which route? And again, the answer is indeter-
minate, so we should consider them all.

Therefore, the specification is presented for each pair of vehicles and each route.
For vehicles, we can define a second subscript k'. The specification is defined by a
logical statement:

Logical proposition : 8k, k0, i : NOT αik ¼ 1 AND αik0 ¼ 1ð Þ ð6:1Þ

This specification could also be written as follows: The number of vehicles that
can choose each route must be at most 1:

8i :
X10
k¼1

αik � 1 ð6:2Þ

Table 6.1 Table of elements of Illustration 6.2

Elements SET QN

Data

Name Param Type Belonging Value

Routes i ¼ 1. . .20 IU Customer_Route RCij B S . . .

Cost Ci C W . . .

Customers j ¼ 1. . .350 IU Demand Dj I S . . .

RCij

Vehicles k ¼ 1. . .10 IU Capacity Kk I S . . .

Iberian hams – CD Di; Kk

6.2 Elements on Which the Specification Falls on 139

Specification 2: If a vehicle delivers more than 50 hams to a customer, it should
not deliver ham to any other customer:

“a vehicle”: indeterminate, any vehicle
“a customer”: indeterminate, any customer

“any other customer”: the rest of customers is also indeterminate, any customer.

Logical proposition : 8j, j0= j0 <> j, k : IFxkj > 50 THENxk j0 ¼ 0 ð6:3Þ

The specification could also have been defined with the following equivalent
statement: If a vehicle delivers more than 50 Iberian hams to a customer, the sum of
Iberian hams to the rest of customers will be zero:

Logical proposition : 8j, k : IFxkj > 50 THEN
X
j0 6¼j

xk j0 ¼ 0 ð6:4Þ

Both in (6.2) and in (6.4) the number of specifications is reduced, which a priori
may contribute to improving the resolution times of the model.

6.3 Quantitative Specifications of Selection

Specifications are very common in modelling. They are relevant when we work with
variables of logical decision and can also be enunciated with respect to a set of binary
logical calculations.

This specification expresses a quantitative condition with respect to the set of
binary variables. It is to establish the amount of choices that are going to be given or
that can be given as a maximum or minimum.

Format: Sum of Selection options SIGN Value
General Expression:
α1 + α2 + . . . + αn � Value
Regarding the SIGN (�):

¼Exact imposition or imposition of equality

� Imposition of upper bound

�Imposition of lower bound

Value ¼Quantification of the selection

The sum of binary variables expresses the set (or sets) of elements that are
selection options. The most frequent case of this type of specification occurs between
more than one set of individual elements, normally of unitary nature, which are
combined in the events of the decision activity, although it is also possible to find it
in a single set of elements.

140 6 Modelling and Types of Specifications

As we will see in Sect. 6.10, this type of specification may not appear explicitly in
the description of the system, so we will always have to do an analysis exercise of the
quantitative selection rules when we have systems with logical activities.

Let us consider some examples of the specification in different scenarios:

Illustration 6.3: Case of a Set of Unitary Elements
Let us suppose there is a series of activities that make reference to the use of a unitary
set of machines:

Elements: Machines i ¼ 1. . .n Unitary
Decision activities:
Use (Machines i ¼ 1. . .n)) αi ¼ 1 if I use machine i; 0 otherwise

Quantitative specifications of selection: In this system, specifications such as the
following could be considered:

– You must use (select) at least one machine:
Pn
i¼1

αi � 1

– You must use three machines:
Pn
i¼1

αi ¼ 3

Illustration 6.4: Case of Two Sets of Elements
Let us suppose there is a series of operators that must be assigned to a series of
machines:

Elements: Machines i¼1. . .n Unitary; Operators j¼1. . .m Unitary
Decision activities:
Assign (Operators to Machines) ! αij¼1 if I assign operator j to machine i;

0 otherwise.
Quantitative specifications of selection:
Maximum two operators per machine: This specification falls on each machine of

the system:

8i : Pm
j¼1

αij � 2

An operator must be assigned only one machine: The specification refers to any
operator, since it refers indeterminately to an operator. On the other hand, with
machines it refers to the quantity of a machine.

8j : Pn
i¼1

αij ¼ 1

If we assume a power attribute (P) for the machines, we could find a specification
that does not consider, as a selection option, all the elements of the set of machines:

A machine with power greater than 10000w will be assigned to operator 3:

j ¼ 3 :
P

i=P>10000
αij ¼ 1

6.3 Quantitative Specifications of Selection 141

Illustration 6.5: Case of a Set with Choices About the Set Itself
Let us suppose there is a series of elements that must be assigned among them. Each
element must be associated with another element of the same set:

Elements: Elements i¼1. . .n Unitary;
Decision activity:

Assign [Elements to Elements] ! αij¼1 if I assign element i to element j;
0 otherwise.

Quantitative specifications of selection:

– Each element is associated with a different element of itself.
8i : P

j=j 6¼i
αij ¼ 1

– Since i and j are indices of the same set and is a bi-univocal correspondence,
the association of iwith j is the same as that of jwith i, therefore: 8i, j : αij¼ αji

Illustration 6.6: Case of Two Sets That Share the Selection
Let us suppose that we have divided elements of the same functionality in the system
into two sets due to data, but both share the same logical decision activity on which a
quantitative selection rule is applied.

Elements:
Individuals i¼1. . .n Unitary;
Groups_Type1 j¼1. . .m1 Unitary;
Groups_Type2 k¼1. . .m2 Unitary;
Decision activity:
Assign [Individuals to Groups_Type1 and Groups_Type2]!
!Events: Individuals to Groups_Type1; Individuals to Groups_Type2!
! αij¼1 if I assign Individual i to Group_Type1 j; 0 otherwise.
! βik¼1 if I assign Individual i to Group_Type2 k; 0 otherwise.
Quantitative specifications of selection:
One individual in a group at most:

8i : Pm1

j¼1
αij þ

Pm2

k¼1
βik � 1

6.4 Capacity Specifications

Capacity specifications are ones that appear in systems where there are elements
acting as resources. For this, they must have an attribute of capacity or availability,
either intrinsic to the element or shared with a measurable element, collective or
individual. They usually appear in different ways that are synthesized in the follow-
ing general format:

Format: Capacity Consumption or Demand for Capacity � Capacity Contribution

142 6 Modelling and Types of Specifications

Expression: Both the consumption or demand for capacity and the contribution of
capacity can be fixed and/or variable. Capacity contribution and consumption
must be expressed in the same unit of measure. In the same specification we can
have both a fixed and a variable consumption or contribution at the same time.

Capacity consumption or demand Capacity contribution

Variable Fixed Variable Fixed

Variable Capacity Consumption
This corresponds to the classic consumption format in a capacity specification.

General expression of consumption : c1x1 þ c2x2 þ . . .þ cnxn ð6:5Þ

The capacity consumption is made up of a series of variables represented as x1, x2,
. . ., xn. Each activity performs a consumption that is given by the expression cixi
where ci is the unit consumption of activity xi (the amount of capacity consumed by
each unit of value that variable xi takes).

Fixed Capacity Consumption or Demand
This corresponds to an attribute of the element that demands that capacity. It appears
in systems where a set of elements provide capacity of a measurable element that has
a stock that corresponds to the fixed capacity demand. Decisions focus on the
capacity contribution, not on the amount that is consumed or demanded, which is
fixed.

Fixed Capacity Contribution
An element provides a given capacity, collected as an attribute. Decisions are
focused on how much of that existing capacity is consumed. The specification
falls on the proprietary element of that fixed capacity.

Variable Capacity Contribution
This usually appears in specifications where a fixed capacity is demanded. The
general expression corresponds to an expression similar to (6.5):

General expression of contribution: a1y1 + a2y2 + . . . + amym
The variables yj, j ¼ 1. . .m, represent activities that provide capacity, with aj

being the unit contribution.
There is a set of elements that provide capacity to an element that demands

capacity. Decisions are focused on the contribution of capacity, not on the quantity
that is consumed or demanded, which is constant. The system does not collect the
amount of capacity consumed on each element that contributes capacity, but it
collects the amount of capacity contributed.

This case is very similar to the next type of specification, the specification of
demand contribution. In any case, they are treated here independently because
semantically they are different. In the specification of demand contribution, a

6.4 Capacity Specifications 143

quantity of a measurable element is demanded since it is not possessed, and some
elements can contribute to it. Here, we already have a quantity of a measurable
element and capacity for this is requested. Basically, it is a semantic differentiation.

The most common formats of capacity specifications are collected in Table 6.2.
Let us analyze each case.

6.4.1 Case 1: Variable Capacity Consumption and Fixed
Contribution

The relationship is established between the capacity consumption of an element and
the fixed amount of capacity that the element has in the system.

Format: Consumption � Capacity
General Expression: c1x1 þ c2x2 þ . . .þ cnxn � K

This type of specification is usually not presented explicitly in the system
description, as we will see in Sect. 6.10, but the modeller must detect them from
the data of the table of elements.

Illustration 6.7: Production of Butter
We have already analyzed this problem amply. The specifications that are presented
are only of capacity.

Table of Elements (Table 6.3)

Table 6.2 Most common formats in a capacity specification (Table 6.2)

Cases Format Expression

1 Variable capacity consumption � fixed capacity
contribution

c1x1 + c2x2 + . . . + cnxn � K

2 Variable capacity consumption � fixed and variable
capacity contribution

c1x1 + c2x2 + . . . + cnxn � K
+a1y1 + a2y2 + . . . + amym

3 Fixed capacity consumption or demand � variable
capacity contribution

E � a1y1 + a2y2 + . . . + amym

Table 6.3 Table of elements

Elements Set QN

Data

Name Param Type Belong Value

Machines i ¼ 1. . .2 IM Usage time Ti C
(Min)

P {6,3.5}

Time consumed by 1 kg of
butter j in machine i

TMij C
(Min)

C {3m;3m;
3m;6m}

Butters j ¼ 1. . .2 IM Profit Bj C ($) P . . .

TMij

144 6 Modelling and Types of Specifications

Decision Activities

Action: Produce Butters
Decision variables: xj ¼ Amount of butter type j produced; j ¼ 1,2;

Capacity Specifications

The Whipping Machine (i ¼ 1) has a usage time of T1 ¼ 6 hours which is
measurable.

Variables x1 and x2 consume TM11¼3 min. and TM12¼ 3 min.
Expressing the specification in minutes: 3x1 + 3x2 � 360

Parametric :
X2
j¼1

TM1jx j � T1 ð6:6Þ

– The Pasteurization Machine (i ¼ 2) also has a T2 usage time:

X2
j¼1

TM2jx j � T2 ð6:7Þ

And the parameterized expression that collects (6.6) and (6.7) would be:

8i : P2
j¼1

TMijx j � Ti

Although in this type of specification it is usually more common for consumption
to be carried out by measurable activities, logical activities can also participate as
consumption, as in the following illustration.

Illustration 6.8: Management of a Warehouse
Management of a warehouse in which it is necessary to place a set of Pieces (i ¼
1..n) in a set of Shelves (j ¼ 1 . . . m). Each piece has a weight and a volume. Each
shelf has a load capacity and a volume.

Capacity specifications:
Do not load a shelf with more weight than it can support.
Do not load a shelf with a total volume higher than its own.

Table of Elements (Table 6.4)

Decision Activities

Action: Assign Pieces to Shelves
Decision variables: αij ¼ 1 if I assign piece i to shelves j; 0 otherwise.

6.4 Capacity Specifications 145

Capacity Specifications

Do not load shelves with more weight than it can support: specification applied to
each of the shelves

8j : Pn
i¼1

piαij � PE j

Do not load a shelf with a total volume higher than its own: also applied to each
of the shelves:

8j : Pn
i¼1

viαij � VE j

6.4.2 Case 2: Variable Consumption with Fixed and Variable
Capacity Contribution

Although it is less common, we can also find activities to increase capacity in
addition to consumption. Let us take a look at the following illustration.

Illustration 6.9: Production of Pills
600 Kg of a certain drug is available to make large and small pills. We also have the
possibility of buying more drugs at a price of $0.05/gram.

The big pills require 40 g and the small ones 30 g.
Each large pill provides a profit of $2 and a small one of $1.
The manufacturing capacity is 2000 pills.

Table of Elements (Table 6.5)

Decision Activities
Action: Produce [pills]
Decision variables: xi ¼ Number of pills produced of type i

Action: Buy [drug]
Decision variables: z = Amount of drug bought

Table 6.4 Table of elements of illustration 6.8

Elements Set QN

Data

Name Param Type Belonging Value

Pieces i ¼1. . .n IU Weight pi C W . . .

Volume vi C W . . .

Shelves j ¼ 1. . .m IU Load PEj C W . . .

Volume VEj C W . . .

146 6 Modelling and Types of Specifications

Capacity Specifications

(Case 2) Drug capacity: relapses on the drug. There is a capacity contribution
collected in the variable z.

Pn
i¼1

cixi � E þ z

(Case 1) Manufacturing capacity: applied in the system.

Pn
i¼1

xi � K

6.4.3 Case 3: Fixed Capacity Demand and Variable Capacity
Contribution

There are systems where elements with capacity data and therefore acting as a
resource do not individually define a capacity consumption specification. The reason
is that the problem can be modelled without there being activities that measure
(discretely or continuously) the consumption of that resource. The capacity attribute
is not measured because it is assumed that it has either not been used or used in its
entirety. The system has an element that demands a capacity, and it is necessary that
other elements provide that capacity. Sometimes this specification occurs because
there is a capacity attribute that is assigned to each item of a collective element. Since
the instances are not treated individually but collectively, the capacity attribute
cannot be used for a capacity consumption specification, since this would be applied
individually on each item. The capacity attribute is used as contribution. There are
also cases where the capacity attribute is held by an individual element that acts as
unitary.

The format of the specification would be:

Table 6.5 Table of elements of Illustration 6.9

Elements Set QN

Data

Name Param Type Belonging Value

Drug – IM Availability E C W 600 Kg

Price p C W $0.05/
gr

Amount in pills ci C S {40,30}

Pills i ¼ 1,2 CI ci
Profit bi C W {$2,

$1}

Factory
(System)

– IU Manufacturing
capacity

K I W 2000

6.4 Capacity Specifications 147

Format: Fixed capacity demand � variable capacity contribution

Let us first look at an example that illustrates the case of capacity data imputable
to each item of a collective element (illustration 6.10), and a second illustration
where the capacity attribute is possessed by individual elements. In this second
illustration we will propose the two possible versions: measuring capacity through
consumption and not measuring the capacity of each individual element, by using it
logically in a capacity contribution specification (illustration 6.11).

Illustration 6.10: Celebration Hall
There is a celebration hall where a wedding will take place. The hall has tables of
two sizes. There are tables of 8 seats and tables of 12 seats, 14 and 11 of them,
respectively.

150 guests attend the wedding. The company must decide which tables to use so
that the guests can sit down, minimizing the number of tables used.

Table of Elements (Table 6.6)

Since each type of table is formed by an identical set of items and the text does not
refer individually to them, the tables are configured as collective. The same happens
with the guests. We make explicit the seats as element although there are no
decisions about the seats but so there is a demand for seats for the guests.

Regarding the tables, there are two sets of data on capacity: availability of tables
and the number of seats. The availability is applied to the element globally or
collectively, while the number of seats is capacity attribute regarding each item of
the collective element, so that attribute will not be associated with a specification of
capacity consumption.

Decision Activities

The system imposes the action of using tables as a decision activity. We do not
need to decide where to locate the guests; we simply select tables and establish the
specification of placing 150 guests, based on a certain value action corresponding to
a specification of capacity demand.

Table 6.6 Table of elements of Illustration 6.10

Elements Set QN

Data

Name Param Type Belonging Value

Tables i ¼ 1,2 CD Availability Ni I W {14,11}

Seats Ki I S {8,12}

Seats – CD Ki

Guests – CD Number NG I W 150

148 6 Modelling and Types of Specifications

Action: Use tables
Decision activities: xi ¼ Number of tables i used

Specifications

To seat the 150 guests: We can understand the specification as the guests
demanding a capacity of 150 seats. The tables act as a resource for these places.
Each type of table contributes a certain number of places:

Fixed capacity demand � Variable capacity contribution

150 � 8x1 + 12x2

The capacities of the tables are being used as a contribution. The capacity
refers to each item of the table.
Table availability: This attribute does give rise to a capacity consumption spec-

ification for each type of table

8i : xi � Ni

Objective Criterion

Min x1 + x2

Illustration 6.11: Containers
There is a set of n containers each with a capacity of volume and a cost. There is a
liquid product with an amount of C. The objective consists in the selection of
containers at a minimum cost so that we can store the quantity C of the product.

Version 1: By Capacity Consumption
In this first version, we analyze the system as a system to store liquid in containers.
Therefore, the capacity data will be measured in the specifications. The liquid is a
measurable element by its own continuous quantity used partially.

Table of Elements (Table 6.7)

Decision Activities

Table 6.7 Table of elements of Illustration 6.11 – Version 1

Elements Set QN

Data

Name Param Type Belonging Value

Containers i ¼ 1. . .n IU Cost ci C W . . .

Capacity Ki C W . . .

Liquid product – IM Amount Q C W . . .

6.4 Capacity Specifications 149

Action: Store liquid product in containers
Decision variables: xi ¼ amount of liquid product introduced in container i

We measure the liquid because it is the direct object of the action, “store liquid.”

Specifications

Capacity consumption: In this scenario a capacity consumption specification is to
be proposed for each container, to ensure that the quantity introduced does not
exceed the capacity of the container:

8i : xi � Ki ð6:8Þ

Balance specification: Although we have not yet seen the balance specifications,
in the system, a balance specification is generated with the liquid availability data.
The amount of liquid distributed by all the containers corresponds to the quantity Q.

Xn
i¼1

xi ¼ Q ð6:9Þ

Objective Criterion

Since we minimize the cost of the used or selected containers, it is necessary to
calculate that qualifier for the containers, which becomes a logical calculation on the
containers (if you store in a container, it is because you have selected it). If we had
considered it as a decision activity, that is, on the one hand store and on the other
select, the implicit relationship between the two activities cannot be ignored as a
specification: If I store then I select.

Binary logical calculation: Selected container
Applied to: Containers i¼1. . .n
Definition of logical variable: αi ¼ 1 if I select container i; 0 otherwise
Logical proposition: 8i : i ¼ 1 IF AND ONLY IF xi > 0) Ref. SV (The selec-

tion of a container has a cost so it is useless to select containers if you do not put
anything in them [Sect. 5.3.3])

) 8i : IF xi > 0 THEN αi ¼ 1 ð6:10Þ

In spite of not having presented the modelling of logical propositions yet, we are
going to write the constraints that are generated from modelling (6.10), since it will
be necessary for the simplification process between versions. The constraints gen-
erated are:

150 6 Modelling and Types of Specifications

8i : xi � Kiαi ð6:11Þ

where Ki acts as the upper bound of what can be stored in each container.
The objective function would be:

Min
Xn
i¼1

ciαi ð6:12Þ

Version 2: By capacity contribution
In this second version, we will not introduce liquid into the containers, and therefore
we will not measure at the specifications the capacity of the containers. The only
thing we are going to do as a decision activity is select containers, making sure that
the liquid fits. The liquid becomes unitary because we stop making a partial use of its
quantity in the decision activities.

Table of Elements (Table 6.8)

Decision Activities
Action: Select [Containers]
Decision variables: αi ¼ 1 if I select container i; 0 otherwise.

Specifications

1. Capacity contribution: The liquid element demands a capacity for its quantity.
Each container i has a capacity contribution of value Ki.

Q �
Xn
i¼1

Kiαi ð6:13Þ

Objective Criterion

Minimize costs:

Table 6.8 Table of elements of Illustration 6.11 – Version 2

Elements Set QN

Data

Name Param Type Belonging Value

Containers i ¼ 1. . .n IU Cost ci C W . . .

Capacity Ki C W . . .

Liquid product – IU Amount Q C W . . .

6.4 Capacity Specifications 151

Min
Xn
i¼1

ciαi ð6:14Þ

Relation Between Versions
Objective functions (6.12) and (6.14) are identical. Version 1 is equivalent to version
2 but logically larger. If we perform two simple operations, we can get to version
2 from version 1:

On the one hand, we have in Version 1:

– Modelling of the logical proposition (6.11): 8i : xi � Kiαi
– Capacity specification (6.8): 8i : xi � Ki

It is only necessary to use (6.11). If I select the container (αi¼1) I cannot store
more than its capacity, and if I do not select the container (αi¼0), then
xi � 0)xi ¼ 0.

On the other hand, if we add the n constraints of (6.11), we obtain:

Xn
i¼1

xi �
Xn
i¼1

Kiαi ð6:15Þ

Substituting (6.9) with (6.15):

Pn
i¼1

xi ¼ Q �Pn
i¼1

Kiαi

This corresponds with (6.13), the only constraint that the first version had. In this
way, it is guaranteed that at least quantity Q can be stored, and the use of decision
variable xi is not necessary.

6.5 Supply of a Demand

This is a specification which is analogous to the capacity contribution specification.
It expresses a relationship between the supply of a measurable element, collective or
individual, and the demand requested of that measurable element.

Format: Measurable element supply � (¼) Measurable element demand
General Expression:
The supply is considered variable in the specification. Demand is considered both

fixed and variable, although the most common case is fixed.
a1x1 þ a2x2 þ . . .þ anxn � Dþ d1y1 þ d2y2 þ . . .þ dmym or

a1x1 þ a2x2 þ . . .þ anxn ¼ Dþ d1y1 þ d2y2 þ . . .þ dmym

152 6 Modelling and Types of Specifications

The supply is made up of a series of variables represented as x1, x2,. . .xn
Each activity makes a contribution determined by the value of the expression: aixi

where ai is the unit contribution of the variable xi (the amount supplied by each unit
of the value that takes the variable xi).

The quantity demanded is defined as D. The variables yj represent activities that
may exist in the system to increase demand (dj would be the unit increase in demand
for each activity yj). The supply and the demand must be expressed in the same unit
of measure.

Regarding the sign of the constraint, we can find cases where only � is admis-
sible, others where only ¼ is admissible, and others where both signs are valid. The
validity is governed by the following rules:

– The expression with sign � is correct when the supply involves a cost in the
system or there are unit contributions other than 1.

– The expression with¼ is correct as long as the unit contributions are all equal to 1.

If the unit contributions are different from 1, imposing equality could make the
problem inadmissible because we would not obtain values of xi that give equality, or
we would exclude solutions that could be better for the objective function. Let us
analyze this validity with an illustration:

Illustration 6.12: Buying from Providers
There is a simplified system of buying a product from two providers. It is necessary
to buy 1000 units of the product. The purchase cost is €3 for both providers. (We can
ignore other system features).

Table of Elements (Table 6.9)

Decision Activities
Action: Buy product from providers
Decision variables: xi ¼ Product units bought from provider i

Demand Supply Specification

There is a fixed demand D ¼ 1000 units of the product for which we have the
variable xi as input. The unit contribution is 1. For each unit of product purchased, a
unit of demand is provided.

In this case, the two signs would be valid:

x1 + x2 � 1000 Buying has a cost.

Table 6.9 Table of elements of Illustration 6.12

Elements Set QN

Data

Name Param Type Belonging Value

Providers i ¼ 1,2 IU Cost pi C S {$3, $3}

Product – CD pi
Demand D I W 1000

6.5 Supply of a Demand 153

x1 + x2 ¼ 1000 Unitary contributions are 1.

Now we can modify the statement and incorporate the following information:

“Provider 2 does not serve single units but serves lots of 8 units at a price of $22.”

This modifies the table of elements and the decision activity as follows:

Table of Elements (Table 6.10)

Decision Activities
Action: Buy product from provider 1 and lots from provider 2
Events: Product) provider 1; Lot) provider 2
Decision variables:
x ¼ Product units bought from provider 1
y ¼ Lots bought from provider 2

Demand Supply Specification

The two decision variables, x and y, act as input, but in this case, the unit
contribution of the variable y is 8 (8 units of product are contributed for each lot).

x + 8y � 1000: Correct expression. Buying has a cost and the contributions are
not all the units.

x + 8y ¼ 1000: Incorrect expression. Solutions are excluded.
Obviously, if the system explicitly specifies that we must provide exactly the

amount of demand, then we are obliged to use the equality sign.

6.6 Bound Imposition Specifications

Bound imposition specifications are usually the simplest to identify and model in a
system. They establish lower or upper bounds for measurable activities or for
variable functions (calculations). There are two types:

Upper bound: Imposition of maximum value
Lower bound: Imposition of minimum value

Table 6.10 Table of elements of Illustration 6.12 modified

Elements Set QN

Data

Name Param Type Belonging Value

Provider 1 – IU Product Cost p C S €3

Provider 2 – IU Lot Cost Pl C S €22

Lot – CI Pl

Product units N I S 8

Product – CD p; N

Demand D I W 1000

154 6 Modelling and Types of Specifications

Both the capacity specifications and the demand contribution with sign � can be
understood as a particular case of bound specification. However, we have taken them
out of this category because of the meaning they express. Bound specifications do
not have to represent a concept of capacity consumption or demand supply but are
impositions without defined semantics and of an explicit nature (they must be
explicitly defined in the statement).

Illustration 6.13
For a system that generates the following decision variables:

xi ¼ Number of product units purchased from provider Pi; i ¼ 1 . . . n

The following bound specifications are defined:

1. Do not buy more than 50 units from provider 1: x2 � 50.
2. Buy at least 10 units from provider 2: x1 � 10.
3. Buy more than 20 units from provider 3: x1 > 20)x1 � 21.

Illustration 6.14
System: A set of operators (O1, On) that work in the production of a set of sub-
stances (S1, Sm). The system measures the amount of substance produced by each
operator. The number of kilos produced by operator 1 must be at least 1 kilo more
than the kilos of operator 2.

Table of Elements (Table 6.11)

Decision Activities
Action: Produce substances using operators
Decision variables: xij ¼ Kilos of Substance j produced by operator i

Specifications
Imposition: The number of kilos produced by operator 1 must be at least 1 kilo more

than the kilos of operator 2:

Number of kilos produced by operator 1: Not included in the decision variables
since it is an auxiliary calculation (y1):

y1 ¼
Pm
j¼1

x1j

Number of kilos produced by operator 2:

y2 ¼
Pm
j¼1

x2j

Table 6.11 Elements of
Illustration 6.14

Name Set QN

Operators i ¼ 1. . .n IU
Substances j ¼ 1. . .m IM

6.6 Bound Imposition Specifications 155

Bound specification: a lower limit is imposed on the kilos produced by the
operator 1.

y1 � y2 + 1

6.7 Allocation, Balance, or Equilibrium Specifications

Allocation, balance, or equilibrium specifications are all of the specifications that
define:

– An exact assignment to or imposition of a value on an integer or continuous
variable or on variables functions.

– Balance or equilibrium between variables or functions of variables. This includes
auxiliary calculations.

Their controversy is that they can cause equivalences between auxiliary calcula-
tion and decision activity.

Illustration 6.15
For a system that generates the following decision variables:

xi ¼ Number of product units purchased from provider Pi; i ¼ 1 . . . n

A. Buy 10 units from provider 1:
x1 ¼ 10

B. The sum of quantities purchased from provider 1 and 2 must be 50:
x1 + x2 ¼ 50

C. Buy a total of 500 units:Pn
i¼1

xi ¼ 500

D. Buy the same from provider 1 as from 3:
x1 ¼ x3

As we have said, this type of specification makes certain decision variables cease
to exist because they are given a certain value (Case A) or because they become
auxiliary calculations (cases B, C, D). However, if we differentiate the description of
elements and activities from the specifications, we can consider them as decision
variables. In any case, the system does not vary, but its structure can simply be
represented in several ways.

This type of specification has greater relevance when a relationship of flow
balance is expressed. This happens when a directed graph G (N, A) formed by
nodes (N) and arcs (A) is established as a scenario, where a concept that corresponds
to a measurable element of the system flows through the graph.

The adjective of directed graphs (Bang-Jensen and Gutin, 2000) is important
since the systems that are represented as non-directed graphs (formed by nodes and
edges) have a completely different meaning. An undirected graph always has a

156 6 Modelling and Types of Specifications

meaning of relationship or association between elements that are presented as nodes.
These relationships are represented by its edges. Both nodes and edges can have
associated data (Fig. 6.1).

A directed graph instead has a different meaning. The nodes are elements of the
system, and the arcs are connections between nodes to enable the circulation of an
added concept, the flow, in most cases. There are some scenarios where the direction
has some meaning of relationship between the nodes, as dependency or offspring
meanings. When there is flow, the flow is an element of the problem whose activity
is to circulate through the arcs of the graph. This flow must be injected into the graph
by the nodes and must also be extracted from the graph through the nodes.

The constraints of flow balance mean that the flow to arrive at a node must be
equal to the flow that leaves it.

In Chap. 3 (Tables 3.46, 3.47, and 3.48), we saw three ways of representing the
table of elements of a directed graph. We use Table 3.47, incorporating the flow
concept (Table 6.12):

Directed Graph Undirected Graph

51

3

2

51

3

2

Fig. 6.1 Directed and undirected graphs

Table 6.12 Table of elements of a system with a directed graph

Elements Set QN

Data

Name Param Type Belonging Value

Nodes i ¼ 1. . .n I Origin node NOik B S . . .

Destination node NDik B S . . .

Flow injection Ii C S . . .

Flow demand Di C S . . .

Node Data

Arcs k ¼ 1. . .m I NOik; NDik

Arc Data

Flow – C/IM Ii; Di

Graph – IU

6.7 Allocation, Balance, or Equilibrium Specifications 157

As a directed graph, the data of injection or flow input and demand or flow output
that each node can possess have been incorporated. A node will inject flow, demand
flow, or do neither of these. On the other hand, we can also find systems where
injecting or demanding flow is not an attribute but a decision activity. In that case,
those data would disappear.

In the system, the sum of the flow injected must always be equal to the sum of the
flow demanded.

In Node Data and Arc Data, all those specific data of the system associated with
nodes and arcs would be represented, respectively.

Regarding the decision activities, each system will have specific activities, but
there is always the flow circulation activity in common:

Action: Circulate [flow through the arcs]
Participating elements: Flow C/IM; Arcs k ¼ 1. . .m;
Quantification: Continuous
Events: Flow) k¼1. . .m
Decision variables: xk ¼ Flow that circulates through the arc k.

In general, the constraint of equilibrium or flow balance is expressed as follows:

Format: At each node of the graph: Sum of the Input Flow ¼ Sum of the Output
Flow

General expression:
8i : P

k=NDik¼1
xk þ Ii ¼

P
k=NOik¼1

xk þ Di

The flow xk of all the incoming arcs in i (k/NDik ¼ 1) plus the flow Ii that injects
the node is recorded as input flow.

In output flow, the flow xk of all the outgoing arcs of i (k/NOik ¼ 1) plus the Di

flow demanded by the node is recorded.
We are going to differentiate two types of scenarios in which these restrictions are

presented, and therefore we require the use of directed graphs:

• Explicit Case: the system itself is a directed graph on which an optimization
problem is raised (shortest path, maximum flow, minimum cost flow, etc.).

• Implicit Case: this is the most interesting case. The system is not described as a
graph. However, part of its activity can be represented by a directed graph. The
condition for this is that there must be a measurable element, individual or
collective, subject to activities in which unitary elements also participate. This
acquires a greater meaning if a set of time periods participates in the system as
elements. The complexity in the implicit case lies in the creation of the graph,
although we will give a series of guidelines for its construction in Sect. 6.7.2.

158 6 Modelling and Types of Specifications

6.7.1 Explicit Case

Within the problems associated with directed graphs, we can see one of the most
known and applied, which is the shortest path problem. Let us look at an illustration
of it:

Illustration 6.16: Shortest Path Problem (Dijkstra 1959)
There is a graph G (N, A) where each arc has a cost, obtaining the shortest path
from a source node to a destination node. We model the problem for the graph of the
figure, using Node 1 as the source node and Node 9 as destination.

5
1

6

3

4 8

7

9

1

2

5

3

4

11

6

7

8 9

121
02

Fig. 1 Directed graph G(N,A)

Nodes and arcs have been labelled with a number.

Table of Elements

The problem uses a flow unit that will flow from node 1 to node 9. Therefore,
node 1 injects a flow unit that requires node 9. Although we inject an integer amount
of flow, it is not necessary to consider the flow as collective (discrete measurable),
since in operative research it is demonstrated that by considering it as a continuous

Table 6.13 Table of elements of illustration 6.16

Elements Set QN

Data

Name Param Type Belong Value

Nodes i ¼ 1. . .9 IU Origin node NOik B S . . .

Destination node NDik B S . . .

Flow injection Ii C S {1,. . .,0,0}

Flow demand Di C S {0,. . .,0,1}

Arcs k ¼ 1. . .12 IU NOik; NDik

Cost ck C W . . .

Flow – IM Ii; Di

Graph – IU

6.7 Allocation, Balance, or Equilibrium Specifications 159

measurable, due to the property of unimodularity of its coefficients matrix, variables
will always be integers in the optimal solution (Table 6.13).

Decision Activities

Action: Circulate flow through the arcs
Decision variables: xk ¼ Flow that circulates through the arc k.

Specifications

Flow balance:

8i : P
k=NDik¼1

xk þ Ii ¼
P

k=NOik¼1
xk þ Di

Objective Function

Min
P12
k¼1

ckxk

The shortest path problem does not need any additional specification. The
specification of flow balance not only guarantees the conservation of the flow but
also its continuity; therefore, the set of arcs of the solution guarantees a path.

On the other hand, there are some problems associated with undirected graphs
that have been modelled, transforming the graph into directed and introducing a flow
concept in it. Examples include the Minimum spanning tree problem, MST (Graham
and Hell 1985), or the Steiner problem (Hwang et al. 1992), as well as variants
thereof. Let us consider the case of the MST problem.

Illustration 6.17: MST Problem
There is an undirected graph G (N, A), where each edge has a cost. We try to obtain
the minimum cost spanning tree, that is, obtain a subgraph of G that connects all the
nodes at a minimum cost.

To model this problem with the use of a directed graph, we proceed as follows:
Each edge is transformed into two arcs:

Table 6.14 Table of elements of Illustration 6.17

Elements Set QN

Data

Name Param Type Belonging Value

Nodes i ¼ 1. . .n IU Origin node NOik B C . . .

Destination node NDik B C . . .

Flow injection Ii C C . . .

Flow demand Di C C . . .

Arcs k ¼ 1. . .2m IU NOik; NDik

Cost ck C P . . .

Flow – IM Ii; Di

Graph – IU

160 6 Modelling and Types of Specifications

n�1 flow units are included in the problem (n ¼ number of nodes) that will send
(inject) a node, labelled as root node, to the rest of nodes of the graph. Therefore,
node i will have an injection Ii ¼ n�1, with Di ¼ 0, and the n�1 remaining nodes Ii
¼ 0 and Di ¼ 1.

In the objective function, we consider the cost of the arcs through which the flow
has circulated, so that the cost is incurred if the flow has circulated, regardless of the
amount of flow that has circulated. The cost of each arc is the cost of the associated
edge.

Table of Elements (Table 6.14)

It is not necessary to use a binary attribute that identifies the root node, since it can
be identified by the injection of n�1 flow units.

Decision Activities

Action: Circulate flow through the arcs.
Decision variables: xk ¼ Flow that circulates through the arc k. k ¼ 1. . .2m.

Specifications

Flow balance:

8i : P
k=NDik¼1

xk þ Ii ¼
P

k=NOik¼1
xk þ Di

Objective Criterion

For the objective function, it is necessary to define a logical calculation on each
arc to know whether or not the flow has circulated:

Binary logical calculation: Circulate flow through an arc.
Applied to: Arcs k¼1. . .2m.
Definition of logical variable:
8k: αk ¼ 1 if the flow circulates through arc k; 0 otherwise.
Logical proposition: 8k : αk ¼ 1 IF AND ONLY IF xk > 0) Ref. SV) 8k :

IF xk > 0 THEN αk ¼ 1 .
The expression of costs would be as follows:

Min
P2m
k¼1

ckαk

6.7 Allocation, Balance, or Equilibrium Specifications 161

6.7.2 Implicit Case

The implicit case is an optional support tool for the identification of equilibrium
specifications between variables of the system. It occurs in systems where a mea-
surable element is subjected to activities in which other no measurable individual
elements participate. These activities suppose injections or demands of the measur-
able element and even the transfer of quantities between individual elements. This
becomes even more relevant if the time element participates in the system, that is, if
there is a set of periods in which the activities occur. The activities contribute,
demand, or simply move units of the element over time.

In a graph, only the movement of a measurable element can be represented. If
there is more than one measurable element in a system, a graph must be made for
each of them.

If there are no periods of time, there is only one implicit period in which the
activities take place, as already mentioned in Chap. 3. However, what does need to
happen to represent the problem as a graph is that other individual elements must
participate in the measurement activities.

As we have said, it is not mandatory to design a directed graph to model these
systems, but it is convenient. The graph will contain the activities of the system with
respect to that measurable element and the relationships between them.

The construction procedure of the graph is the following:

Nodes
We will use a node for each individual element that intervenes in the flow of units of
the measurable element in each period of time, except for the time element. By
default, we can use all individual elements as nodes in each period of time and
afterwards eliminate those that are not connected in the final graph. There are
systems where an element only participates in a certain period, and therefore its
use does not make sense in other periods.

The nodes can inject or demand flow. If they are known values, they correspond
to data of those elements. The sum of the flow injected must always be equal to the
demanded flow. It is also possible that the node injects or demands flow, but the
amount is not determined. In this case, injecting or demanding flow corresponds to
decision activities or calculations. By annotating this in the graph, we will represent
the injection with a negative superscript (�) and the demand with a positive
superscript (+).

Arcs
In the arc activities, simple calculations and data of the measurable element are
represented.

We must analyze:

– The movements of units between elements.
– The elements that maintain units over time: since the nodes cannot store units, in

order to respect the principle of flow balance, the units not subject to any activity
in a node must also circulate over time to the node that represents the same

162 6 Modelling and Types of Specifications

element in the next period. With this we achieve a circulation between nodes that
is equivalent to the storage of units of the measurable element over time in that
element.

Finally, once the graph has been designed, it will be necessary to explore which
arcs and which auxiliary calculations define decision activities.

The design of the graph does not have to adapt to a single configuration.
Depending on the interpretation of the activities over time, different designs can
be generated.

From the constructed graph, a flow balance constraint is proposed on each node.
This type of graph can always be refined and simplified, since nodes that have an
input arc and an output arc can be discarded for the balance.

y1-

Warehouse 1

D1
+

Customer 1

Dm
+

D2
+

Customer 2

Customer m

Dj
+

Customer j
xij

xnm

x11

Warehouse 2

y2-

yi-

yn-

Warehouse i

Warehouse n

Fig. 6.2 Implicit directed graph of Illustration 6.18

Table 6.15 Elements of Illustration 6.18

Elements Set QN

Data

Name Param Type Belonging Value

Warehouses i ¼1. . .m IU Stock Ki I S . . .

Cost Cij C S . . .

Customers j¼1. . .n IU Demand Dj I S . . .

Cost Cij

Product – CD Ki; Dj; Cij

6.7 Allocation, Balance, or Equilibrium Specifications 163

This type of graph has always been used in some optimization problems, to turn
them into problems associated with directed graphs. A clear example is the transport
problem, which has been modelled as a minimum cost flow problem:

Illustration 6.18: Transportation Problem (Öztürk et al. 2015)
A company has m warehouses where its products are located. Each warehouse i (i¼
1. . .m) has a stock of Ki units. There is a set of n customers (j ¼ 1. . .n) with a
demand Dj of product units. The company has to supply the product demand of the
customers from the warehouses. The cost of sending a product from each warehouse
i (i ¼ 1. . .m) to each customer j is estimated in cij.

Table of Elements (Table 6.15)

We are facing a system that does not have periods of time. The measurable
element is the product. We designed a graph (Fig. 6.2) with the m warehouses and
the n customers:

The graph will collect the admissible movements of the product units (flow),
which is produced from each warehouse to each customer. Nodes associated with
warehouses inject an undetermined amount of flow (yi for warehouse i). The nodes
associated with customers demand a certain amount of flow, their product demand
Dj. The arcs between each warehouse and each customer include the problem
decision activities (xij ¼ product units that are sent from warehouse i to customer j).

The equations of flow balance generated by the graph are:

8i : yi ¼
Pm
j¼1

xij The flow injection could be defined as an auxiliary calculation.

8j : Pn
i¼1

xij ¼ D j This corresponds with a specification of demand supply (unit

contributions allow the use of the equality sign).
To finish formulating the transport problem, we would have to incorporate the

capacity consumption specification at each warehouse:

8i : Pm
j¼1

xij � Ki

Objective Function
Minimize associated costs. Each decision variable has a unit cost:

Min
Pn
i¼1

Pm
j¼1

cijxij

Let us now take a look at an illustration of the implicit case in a system that
considers more than a period of time. Production planning problems are included in
this type of case:

164 6 Modelling and Types of Specifications

Illustration 6.19: Production Planning of a Product (Larrañeta et al. 1995)
System for the production planning of a factory that produces a product for which
there is a market demand for the next three months of 30, 12, and 26 units. A
warehouse is available to store the manufactured units. Initially, there is a stock in
the warehouse of five units.

The system must determine the quantities produced in each period as well as the
quantities stored (Fig. 6.3).

Table of Elements (Table 6.16)

The three individual elements participate in the three periods.
Since the warehouse can keep units from one period to the next, we join those

nodes with arcs. Labelling flow movements (Fig. 6.4):
The nodes with an entry or injection and an exit or demand can simplify the

labelling, as it is evident that for each node factory and each node market, it is
fulfilled by flow balance (Fig. 6.5):

Fi ¼ xi i ¼ 1, 2, 3

Ei ¼ Di i ¼ 1, 2, 3

x1
-

Factory

D3
+

SI-

Market

Factory Factory

Warehouse Warehouse Warehouse

Market Market

D2
+D1

+

x2
- x3

-

t=1 t=2 t=3

Fig. 6.3 Implicit directed graph of Illustration 6.19

Table 6.16 Elements of Illustration 6.19

Elements Set QN

Data

Name Param Type Belonging Value

Factory – IU
Warehouse – IU Initial stock SI I S 5

Market – IU Demand Dt I S {30,12,26}

Product – CI SI; Dt

Months t ¼ 1. . .3 IU Dt

6.7 Allocation, Balance, or Equilibrium Specifications 165

Therefore, we generate only the equations in the warehouse nodes:

Warehouse t¼1: x1 + SI ¼ D1 + I1
Warehouse t¼2: x2 + I1 ¼ D2 + I2
Warehouse t¼3: x3 + I2 ¼ D3

Generically: 8t : It � 1 + xt ¼ Dt + It (I0 ¼ SI)

The flow balance equations define in themselves both the demand supply spec-
ification of the market element in each period and the auxiliary calculation of the

x1
-

Factory

D3
+

SI-

Market

Factory Factory

Warehouse Warehouse Warehouse

Market Market

D2
+D1

+

x2
- x3

-

t=1 t=2 t=3

F1 F2 F3

E1 E2 E3

I1 I2

Fig. 6.4 Labelled graph of Illustration 6.19

x1
-

Factory

D3
+

SI-

Market

Factory Factory

Warehouse Warehouse Warehouse

Market Market

D2
+D1

+

x2
- x3

-

t=1 t=2 t=3

x1 x2 x3

D1 D2 D3

I1 I2

Fig. 6.5 Simplified labelled graph of Illustration 6.19

166 6 Modelling and Types of Specifications

quantity stored in each period (the action of storing is not really a decision activity
but an auxiliary calculation):

Picking up the excess of units of what stays in the warehouse:

I1 ¼ (SI + x1) � D1

t ¼ 2 : I1 þ x2 � D2

I2 ¼ I1 þ x2ð Þ � D2

t ¼ 3 : I2 þ x3 � D3

I3 ¼ I2 þ x3ð Þ � D3

8t : It � 1 + xt � Dt)8t : It � 1 + xt � It ¼ Dt

Finally, to reinforce the graph design, let us consider an example with more
content:

Illustration 6.20: Food Service (Illustration 3.9.2)
A food service business has contracted three banquets for the next 3 days, requiring
150 clean tablecloths for the first banquet, 100 for the second, 140 for the third, and
130 for the fourth. Currently, it has 200 tablecloths in the storeroom, all of them
clean, and they can buy what you need on the market every day at a cost of 12 m.u/
tablecloth.

After the banquets, the tablecloths can go to the laundry basket or be sent to the
laundry to be washed. The laundry offers the following washing services:

– Fast: Clean tablecloths for the next day, at a cost of 6 m.u/tablecloth.
– Slow: Clean tablecloths in 2 days, at a cost of 4 m.u/tablecloth.

Table of Elements (Table 6.17)
Next, we present a graph design. In the graph, we have excluded the possibility of

washing slowly from the second and three periods and washing quickly from the
fourth one.

Table 6.17 Elements of Illustration 6.20

Elements Set QN

DATA

Name Param Type Belonging Value

Banquets i ¼ 1. . .3 IU Tablecloths mi I S . . .

Day dit B S . . .

Storeroom – IU Stock S I S 200

Market – IU Price p C S 12

Basket – IU
Laundry – IU
Fast wash – IU Cost cF C S 6

Slow wash – IU Cost cL C S 4

Days t ¼ 1. . .3 IU dit
Tablecloths – CI mi; S; p; cF; cL

6.7 Allocation, Balance, or Equilibrium Specifications 167

On the other hand, since the injected units must be extracted from the graph, the
warehouse and the laundry basket are taken as nodes that demand flow units in the
last period of undetermined value.

For the flow balance we can exclude the market because it has a flow injection
and a single exit arc. Similarly, the nodes that represent the fast wash and slow wash
element have a single input and output and it is not necessary to propose the balance
equation.

The labelling of arcs has been as follows:

xt: Quantity of tablecloths purchased on day t
It: Quantity of tablecloths in store (clean tablecloths)
Et: Quantity of tablecloths brought to the banquet i ¼ t (Et ¼ Dt)
Lt: Quantity of tablecloths sent to be washed on day t
Ct: Quantity of tablecloths taken to laundry basket on day t
CIt: Quantity of tablecloths in basket
LRt: Quantity of tablecloths washed quickly on day t
LLt: Quantity of tablecloths washed slowly on day t (Fig. 6.6)

It would have been possible to use two elements to represent the tablecloth
element: clean tablecloth and dirty tablecloth. This configuration would also have
been correct in the system, but it was not necessary to make the distinction since in

x1
-

Market

Banquet
i=1

Market Market

Warehouse Warehouse Warehouse

x2
- x3

-

t=1 t=2 t=3

x1 x2 x3

E1 E2 E3

I1 I2

Banquet
i=2

Banquet
i=3

BasketLaundry Laundry Basket Basket

Fast
wash

Slow
wash

Fast
wash

I3
+

CI3
+

I1
-

L1 C1 L2 C2 C3

LR1 LL1 LR2

CI1 CI2

LR1 LL1 LR2

Fig. 6.6 Implicit directed graph of Illustration 6.20

168 6 Modelling and Types of Specifications

the decision activities the concepts are not intermingled (only clean tablecloths are
bought, only dirty tablecloths are washed, etc.). The system can work with a single
concept.

Dirty tablecloths:

Banquet
i=1

t=1 t=2 t=3

D1
-

Banquet
i=2

Banquet
i=3

BasketLaundry Laundry Basket Basket

Fast
wash

Slow
wash

Fast
wash

L1 C1 L2 C2 C3

LR1 LL1 LR2

CI1

LR1
+ LL1

+ LR2
+

D2
- D3

-

CI3
+

CI2

Fig. 6.8 Implicit directed graph for dirty tablecloths

Clean tablecloths:

x1
-

Market

-

Banquet
i=1

Market Market

Warehouse Warehouse Warehouse

x2
- x3

-

t=1 t=2 t=3

x1 x2 x3

E1 E2 E3

I1 I2

Banquet
i=2

Banquet
i=3

I3
+

I1
-

D1
+ D2

+ D3
+

Fast
wash

Slow
wash

Fast
wash

LL1
-LR1

-
LR2

-

Fig. 6.7 Implicit directed graph for clean tablecloths

6.7 Allocation, Balance, or Equilibrium Specifications 169

However, if we had made the distinction in the table of elements, we should have
designed two graphs, one for each measurable element. The flow of each graph
should be related later. The design would be as follows:

Clean tablecloths (Fig. 6.7).

Dirty tablecloths (Fig. 6.8).

The tablecloth demand Dt becomes a demand for flow in the graph of clean
tablecloths and injection of flow in the graph of dirty tablecloths. With the table-
cloths to be washed (LR and LL), the opposite happens.

6.8 Modelling of Propositional Logic Specifications

At the beginning of the chapter, we assigned specifications to the nature of propo-
sitions, which may be simple or compound. The simple propositions are all the
typologies that we have just studied. Compound propositions are those propositions
that use logical operators or connectives (If . . . then; If and only if; Not; Or; And;
Either . . . or) to relate simple propositions. In this section, we focus on the modelling
of compound propositions. Compound propositions are a key aspect in the formu-
lation of optimization problems of a certain depth.

Since compound propositions are the basis of propositional logic, we shall
consider the propositional logic specification as that which is formulated as a
compound proposition. When using operators, we are always representing a com-
pound proposition.

We already saw in Chap. 5 that logical calculations were defined by compound
propositions, and therefore these propositions can be considered as a propositional
logic specification.

Let us look at some examples of specifications and logical calculations that give
rise to compound propositions:

Illustration 6.21
For a product purchasing system with five suppliers, the following decision vari-
ables are generated:

xi ¼ units of the product purchased from the supplier i. i ¼ 1 . . . 5.
Specifications that we could define:

• Logical proposition 1. – We cannot buy units from supplier 1 and supplier 2:
“NOT (x1>0 AND x2>0)”

• Logical proposition 2. – If you buy more than 10 units from supplier 1 you cannot
buy more than 5 units from supplier 3:

“IF x1>10 THEN x3�5”
• Logical proposition 3. – You must buy 25 units from only one of the suppliers:

“EITHER x1¼25 OR x2¼25 OR x3¼25 OR x4¼25 OR x5¼25”

170 6 Modelling and Types of Specifications

• Logical proposition 4. – If you buy more than 10 units from supplier 4 or supplier
5, you must buy 15 units from supplier 1:

“IF x4>10 OR x5>10 THEN x1¼15”
• Logical proposition 5. – If the system needs a logical calculation to know from

which suppliers we have purchased units:

Binary logical calculation: Supplier provides units
Applied to: Each supplier i¼1. . .5
Variables: αi ¼ 1 if we buy units from supplier i; 0 otherwise. i¼1. . .5
Logical proposition: 8i : αi ¼ 1 IF AND ONLY IF xi > 0

The difficulty of modelling logical propositions lies not so much in obtaining
the constraints that define it, which as we will see in the following sections is
based on the application of some rules but on correctly stating the proposition.
We have already defined the concepts related to the propositional logic in

Chap. 5, when we present the logical calculations. Now we present some of these
concepts with the aim of structuring their modelling. For modelling, we propose a
general scheme where some rules are based on the modelling of propositions already
described by authors. We emphasize as a reference the modelling of propositions
described by Williams (2013).

6.8.1 Simple Propositions and Logical Operators

Atomic or simple propositions are those that are defined without the use of any
logical operator. The format in a lineal formulation would be:

Left part Sign Right part

X (Lineal function) < ; � ; ¼ ; � ; >; 6¼ Independent term (Numeric value)

In mathematical programming, we will distinguish three types of simple
propositions:

– Binary simple proposition: The lineal function from the left part only takes binary
values (1; 0).

– Integer simple proposition: The lineal function from the left part only takes
integer values.

– Continuous simple proposition: The lineal function from the left part takes
continuous values.

This distinction is necessary for the modelling of compound propositions.
In mathematical programming, any valid or admissible solution must satisfy a

truth result (T). Therefore, any restriction such as those defined in Sections 6.3, 6.4,
6.5, 6.6 and 6.7 would correspond to a simple proposition, with an admissible
solution of the problem being one that satisfies a truth result when applied to the

6.8 Modelling of Propositional Logic Specifications 171

Table 6.18 Truth tables of logical operators

Operator Symbol Semantic Truth table

Negation Ø NOT (ϕ)

Disjunction _ ϕ OR ψ

Conjunction ^ ; & ϕ AND ψ

Conditional ! IF ϕ THEN ψ

Biconditional $ ϕ IF AND ONLY IF ψ

Exclusive disjunction
L

EITHER ϕ OR ψ

Table 6.19 Equivalences
between operators

Proposition Equivalent proposition Reference

ϕ $ ψ ϕ! ψ
ψ ! ϕ

f1

ϕ
L

ψ (ϕ ^ Ø (ψ)) _ (Ø (ϕ) ^ ψ) f2
ϕ! ψ Ø ψ ! Ø ϕ f3

172 6 Modelling and Types of Specifications

simple proposition. When faced with composite propositions, where we use logical
operators, the allowable solutions must satisfy the truth results of the operator's truth
table. Let us see the truth tables of each operator:

ϕ y ψ are shown as logical propositions (Table 6.18).

Already in Chap. 5 devoted to logical calculations, we presented equivalences
between some operators. Table 6.19 collects those equivalences in addition to
another with the operator Exclusive disjunction (

L
). The operator Biconditional

($) as well as the operator Exclusive disjunction could be ignored thanks to these
equivalences. However, for convenience, we will take a look at the modelling of
those operators as well. From Table 6.19, we will label with references all the
transformations or formulations that can be used in the modelling of propositions,
in order to be able to reference the origin of the transformation in the text.

6.8.2 Reduction of Signs

For integer or continuous simple propositions, the group of signs is convenient to
reduce it to the set (�;¼;�), except for those to which the negation operator applies.
In that case, for simplicity, reduction is not necessary.

Calling X the linear function of the proposition and V the independent term or
numerical value of the right part of the simple proposition, the transformation of
integer/continuous propositions is the following:

ξ is a small enough value to avoid in continuous propositions that the value less
than V that the linear function could take is greater than (V – ξ), in the case of X < V.
The same applies for X > V.

We do not consider the case of binary atomic propositions in the reduction of
signs, since the forms in which they can be presented are reduced to:

α as a binary linear function: α ¼ 1; α ¼ 0;

For convenience in modelling, in the case α ¼ 0, we can change the value to
1 using the following equivalence:

α ¼ 0) 1 – α ¼ 1; (1 – α) is still a binary expression. [Reference f7]

6.8.3 Modelling Operators Individually

First, we are going to analyze the modelling of connectives or logical operators
individually, that is, we only consider compound propositions that do not have more
than one different operator.

6.8 Modelling of Propositional Logic Specifications 173

To express the constraints resulting from modelling operators, we will distinguish
between the type of value of the linear function (binary, integer, or continuous) and
the sign (�; ¼; �) for the case of integer or continuous simple propositions.

We will denote with the variables X or Y the function of the left part of an integer
or continuous simple proposition. The binary propositions will be expressed with a
Greek letter (α, β, ω, δ, etc.).

In the modelling of operators, the integer or continuous simple propositions will
only be differentiated in the increment or decrement parameters of the independent
term V, as in the case of the reduction of signs (Table 6.20). Therefore, to simplify
the notation, we are going to call the increment parameter RI and the decrement
parameter RD. They will be defined as (Table 6.21):

ξ it will be a small enough value.
In the development of the modelling of some compound propositions, the defi-

nition of binary logical calculations is necessary, as we expressed in Section 5.2.3 of
the previous chapter. These logical calculations serve to collect the result of simple
propositions that are within the compound proposition. They will be collected in
binary variables denoted by ω or by δ1, δ2, δ3, and δ4, when necessary. With these
calculations we are going to ignore this semantic and mathematical definition. The
proposition that defines them mathematically is integrated within the formulation of
the operator.

On the other hand, for any integer or continuous atomic proposition, it will be
necessary to obtain an upper bound and a lower bound of the linear function. The
upper bound is a value that is never surmountable by the function. Equivalently, the
lower bound is a value that can never be exceeded inferiorly by the linear function.
Any value of dimension will be valid in the modelling, although adjusting the upper
bound to the maximum of the linear function and the lower one to the minimum
reduces the space of solutions and usually offers better behavior in the resolution. If

Table 6.20 Reduction of signs in simple propositions

Simple proposition Reduction

ReferenceSign X 2 Z X 2 ℜ

X < V X � Vd e � 1 X � V – ξ f4
X > V X � Vb c þ 1 X � V + ξ f5
X 6¼ V X < V OR x > V

) Ref. f4 y f5)
(X � Vd e � 1) OR
(X � Vb c þ 1)

X < V OR X > V
) Ref. f4 y f5)
(X � V – ξ) OR (X � V + ξ)

f6

Table 6.21 Increment and
decrement parameters

V 2 Z V =2 Z

X 2 Z X 2 ℜ X 2 Z X 2 ℜ

RI 1 ξ dVe � V ξ

RD 1 ξ V � bVc ξ

174 6 Modelling and Types of Specifications

X is our integer or continuous function, we will denote its dimensions with the
following parameters:

Upper bound of X: UBX

Lower bound of X: LBX

Table 6.23 Nomenclature

Input Proposition ϕ

Output Proposition ψ

Binary functions α; β

Integer/continuous functions X; Y

Independent terms of integer/continuous functions V; V1; V2

Table 6.22 Negation operator modelling

Sign Model Reference

NOT (X <
V)

X � V f8

NOT (X �
V)

X > V) f5) X � V + RI f9

NOT (X >
V)

X � V f10

NOT (X �
V)

X < V) f4) X � V – RD f11

NOT (X ¼
V)

EITHER (X < V) OR (X > V))* (X < V) OR (X > V))(X� V – RD)
OR (X � V+ RI)

f12

*In that case, the exclusive disjunction coincides with the inclusive disjunction since the two
propositions can never be fulfilled at the same time. The modelling would not have ended in case
f12 since the connective OR would have to be modelled (Sect. 6.8.3.4)

Table 6.24 Conditional operator modelling with binary input proposition

IF ϕ THEN ψ

ϕ ψ

Type Sign Type Sign Model Ref.

Binary α ¼ 1 Binary β ¼ 1 α � β f13
Binary α ¼ 1 Integer/continuous X � V X � V + (UBX -V)(1�α) f14
Binary α ¼ 1 Integer/continuous X � V X � Vα + LBX (1�α) f15
Binary α ¼ 1 Integer/continuous X ¼ V X � V + (UBX �V)(1�α)

X � Vα + LBX (1�α)
f16

6.8 Modelling of Propositional Logic Specifications 175

6.8.3.1 Negation Operator (NOT; Ø)

Negation operator modelling does not require any complex modelling exercise; it is
just based on representing the opposite proposition. We show the case of whole or
continuous propositions; for binary propositions, the application of the connective
negation is something evident (Table 6.22).

6.8.3.2 Conditional Operator (IF . . . THEN . . . ; →)

The modelling of the conditional operator will be separated into two tables. In
Table 6.24, we will present the modelling of the connective when the proposition
of input of the condition is binary. In Table 6.25, we will deal with the modelling
options when the input and output propositions are integer or continuous.

The nomenclature used in both Tables 6.24 and 6.25 is shown in Table 6.23.
Whenever possible, we should avoid the signs of equality in simple propositions.

If the independent term corresponds to a lower bound of X, we can replace it with the
sign� ([Reference fLB]). Similarly, if it corresponds to an upper bound, we can work
with the sign � ([Reference fUB]).

Any combination of types of propositions not contemplated in the two previous
tables can easily be deduced with the use of the equivalences Ref. f3 and Ref. f7.

The tables could have been further reduced, since we can change the sign� to the
sign � simply by multiplying the proposition by �1. Even equality corresponds to
two propositions of sign � and � with the connective AND, but I prefer this

Table 6.25 Conditional operator modelling with integer/continuous input proposition

IF ϕ THEN ψ

ϕ ψ

Ref Type Sign Model Type Sign Model Ref.

f17 Int/
Cont

X�V1 X � V1+ (UBX �V1)
(1�ω)
X � (V1+R

I) (1�ω) +
LBX ω

Int/
Cont

Y�V2 Y�V2+(UBY �V2)
(1�ω)

f20

f18 Int/
Cont

X�V1 X � V1ω + LBX (1�ω)
X � (V1 � RD) (1�ω)
+UBX ω

Int/
Cont

Y�V2 Y � V2ω +
LBY(1�ω)

f21

f19 Int/
Cont

X¼V1 X � V1+ (UBX �V)(1�
ω)
X � V1ω + LBX (1� ω)
X �(V1�RD)δ1
+UBXω+ UBXδ2
X � (V1+R

I)δ2 +LBXω
+LBXδ1
δ1+δ2¼1� ω

Int/
Cont

Y¼V2 Y�V2+(UBY –V2)
(1�ω)
Y�V2ω+LBY

(1�ω)

f22

176 6 Modelling and Types of Specifications

representation to facilitate the obtaining of the mathematical formulation without
having to change the propositions too much.

Let us take a look at some illustrations:

Illustration 6.22
We have x1, x2, x3 integer variables � 0.
We also have α1 and α2 binary variables.

IF α1¼1 THEN x1+x2 � 10) Ref. f14 [α ¼ α1; X ¼ x1+x2; V¼10])
) x1 þ x2 � 10þ UBx1þx2 � 10ð Þ 1� α1ð Þ
IF α1 ¼ 0 THEN α2 ¼ 0) Ref. f7) IF 1�α1 ¼ 1 THEN 1�α2 ¼1
) Ref. f13) 1 � α1 � 1 � α2
IF α2 ¼ 0 THEN x1 > 10) Ref. f5) IF α2 ¼ 0 THEN x1 � 10) Ref. f7)
) IF 1�α2 ¼ 1 THEN x1 � 11) Ref. f15) x1 � 11α2 þ LBx1 1� α2ð Þ
)[LBx1 ¼ 0]

)x1 � 11α2
IF x1 > 5 THEN x2 � 3) Ref. f5) IF x1 � 6 THEN x2 � 3) Ref. f18 ; f20)

)
x1 � 6ωþ LBx1 1� ωð Þ
x1 � 5 1� ωð Þ þ UBx1ω

x2 � 3þ UBx2 � 3ð Þ 1� ωð Þ
) [LBx1 ¼ 0])

x1 � 6ω

x1 � 5 1� ωð Þ þ UBx1ω

x2 � 3þ UBx2 � 3ð Þ 1� ωð Þ
IF x1 + x3 � 10 THEN α1 ¼1) Ref. f3
) IF NOT (α1 ¼1) THEN NOT (x1 +x3� 10))
) IF α1¼ 0 THEN NOT (x1+ x3� 10)) Ref. f11) IF α1¼ 0 THEN x1+ x3� 9)

Ref. f7) IF 1�α1 ¼ 1 THEN x1+x3 � 9) Ref. f14)
)x1 þ x3 � 9þ UBx1þx3 � 9ð Þ 1� 1� α1ð Þð Þ) x1 þ x3 � 9þ UBx1þx3 � 9ð Þα1

Table 6.26 Biconditional connective modelling with binary propositions

ϕ IF AND ONLY IFψ

ϕ ψ

Type Sign Type Sign Model Ref.

Binary α ¼ 1 Binary β ¼ 1 α ¼ β f23
Binary α ¼ 1 Integer/continuous X � V X � V + (UBX�V)(1�α)

X � (V+RI)(1�α) + LBX α
f24

Binary α ¼ 1 Integer/continuous X � V X � Vα + LBX (1�α)
X � (V� RD)(1�α) + UBX α

f25

Binary α ¼ 1 Integer/continuous X ¼ V X � V+ (UBX �V)(1�α)
X � Vα + LBX (1�α)
X �(V–RD)δ1 + UBX α + UBXδ2
X � (V+RI)δ2 + LBX α + LBXδ1
δ1+δ2¼1�α

f26

6.8 Modelling of Propositional Logic Specifications 177

IF x1�x2 ¼ 5 THEN x3 � 1) Ref. f19; f21)

)

x1 � x2 � 5þ UBx1�x2 � 5ð Þ 1� ωð Þ
x1 � x2 � 5ωþ LBx1�x2 1� ωð Þ
x1 � x2 � 4δ1 þ UBx1�x2ωþ UBx1�x2δ2
x1 � x2 � 6δ2 þ LBx1�x2ωþ LBx1�x2δ1
δ1 þ δ2 ¼ 1� ω

x3 � 1ωþ LBx3 1� ωð Þ

6.8.3.3 Biconditional Operator (IF AND ONLY IF;$)

Following the same format as for the conditional, the modelling tables are the
following (Tables 6.26 and 6.27):

6.8.3.4 Disjunction Operator (OR; ˅)

If there are two or more atomic propositions joined with the operator OR:
ϕi, i¼1,2,. . ., n: ϕ1 OR ϕ2 OR . . . OR ϕn

Modelling follows two steps:

1. We define a logical calculation (ωi) for each atomic proposition ϕi that is integer
or continuous (not binary), to know when the proposition is fulfilled. However, it

Table 6.27 Biconditional connective modelling with integer/continuous propositions

ϕ IF AND ONLY IF ψ
ϕ ψ

Ref. Type Sign Model Type Sign Model Ref.

f27 Int/
Cont

X�V1 X � V1+ (UBX �V1)
(1�ω)
X � (V1+ RI) (1�ω) +
LBX ω

Int/
Cont

Y�V2 Y � V2 + (UBY �V2)
(1�ω)
Y � (V2+ RI)(1�ω) +
LBY ω

f30

f28 Int/
Cont

X�V1 X � V1ω + LBX

(1�ω)
X � (V1� RD)(1�ω)
+ UBX ω

Int/
Cont

Y�V2 Y � V2ω + LBY(1�ω)
Y � (V2�RD)(1�ω) +
UBYω

f31

f29 Int/
Cont

X¼V1 X � V1+ (UBX �V)
(1� ω)
X � V1ω + LBX (1�
ω)
X �(V1–R

D)δ1 +
UBXω + UBXδ2
X � (V1+R

I)δ2 +
LBXω + LBXδ1
δ1+δ2¼1� ω

Int/
Cont

Y¼V2 Y � V2+ (UBY �V2)
(1�ω)
Y � V2ω + LBY (1�
ω)
Y �(V2�RD)δ3 +
UBYω + UBYδ4
Y � (V2+R

I)δ4 +
LBYω + LBYδ3
δ3+δ4¼1�ω

f32

178 6 Modelling and Types of Specifications

is not necessary to control the two output values of the calculation, which would
have been formulated as ϕi$ ωi ¼1. To simplify the modelling, we just need to
pick up the value of ωi when the proposition is not fulfilled:
8i/ϕi 2 Z _ ϕi 2 ℜ : IF NOT (ϕi)THEN ωi ¼ 0

By equivalence f3, we can also define it as:
8i/ϕi 2 Z _ ϕi 2 ℜ : IF ωi ¼ 1 THEN ϕi [Reference f33]

2. A quantitative selection specification is incorporated for the defined ωi and the
binary propositions (i/ϕi E{0,1}: αi ¼1*):P

i=ϕi2ℜ_ϕi2Ζ
ωi þ

P
i=ϕi2 0, 1f g

αi � 1 [Reference f34]

where it is required that at least one proposition be fulfilled.
*: If the binary proposition were defined with value 0, by equivalence f7, we

transform it into value 1.

Illustration 6.23
We have x1, x2 continuous variables � 0.

We also have α1 and α2 binary variables.
Proposition: x1 � 10 _ x2 � 4 _ α1 ¼ 1 _ α2 ¼ 0) Ref. f14)
)x1 � 10 _ x2 � 4 _ α1 ¼ 1 _ (1 � α2) ¼ 1
Model:

1. Logical calculations [Ref. f33]:

IF ω1 ¼ 1 THEN x1� 10) Ref. f14)x1 � 10þ UBx1 � 10ð Þ 1� ω1ð Þ
IF ω2 ¼ 1 THEN x2 � 4) Ref. f15)x2 � 4ω2 þ LBx2 1� ω2ð Þ) LBx2 ¼ 0
)x2 � 4ω2

2. Quantitative selection specification [Ref. f34]:

ω1 + ω2 + α1 + (1 � α2) � 1

6.8.3.5 Conjunction Operator (AND; ˄)

When we have a compound proposition where only the disjunction operator appears,
it is not necessary to perform any modelling processes. Each atomic proposition
corresponds to a restriction in the model.

Instead, the conjunction operator within compound proposals with more opera-
tors needs a modelling process, which we will see in Sect. 6.8.4.

6.8.3.6 Exclusive Disjunction Operator (EITHER . . . OR. . .;
L

)

If there are two or more atomic propositions joined with the operator
L

:

6.8 Modelling of Propositional Logic Specifications 179

ϕi , i ¼1,2,. . ., n: ϕ1
L

ϕ2
L

. . .
L

ϕn

Modelling follows two steps:

1. Similar to step 1) of the connective DISJUNCTION (OR), but in this case the
logical calculation must be defined as:
8i/ϕi 2 Z _ ϕi 2 ℜ : ϕi$ ωi ¼ 1 [Reference f35]

2. A quantitative selection specification is incorporated:P
i=ϕi2ℜ_ϕi2Ζ

ωi þ
P

i=ϕi2 0, 1f g
αi ¼ 1 [Reference f36]

This means that one and only one atomic proposition can be fulfilled.

6.8.4 Modelling Compound Propositions with Various
Operators

Compound propositions can join several atomic propositions using different opera-
tors. Examples can be the following:

Illustration 6.24: Compound Propositions with Several Operators
EITHER ((x1�20 AND y1�10) OR α ¼ 1
((x1�20 AND y1�10) OR NOT (x3 � 20))
IF ((x1�20 OR y1�10) THEN NOT (α ¼ 1 AND β ¼1)
((x1�20 AND y1�10) IF AND ONLY IF (α ¼ 1 OR β ¼1)
. . . .

The modelling process of a compound proposition with several operators is done
from the lowest level in the structure of the proposition to the highest level. The level
is determined by the priority of the operators, according to the structure of paren-
theses. The lower the level, the higher the execution priority of the operator.

The process will always end with a proposition that has only one type of operator
and that will be modelled as defined in Sect. 6.8.3.

We call ψ the proposition that is part of the original compound proposition and in
which only one operator type appears. The modelling process of ψ depending on the
operator is as follows.

6.8.4.1 Negation Operator (NOT;Ø):

The result of the negation operator modelling replaces ψ with Øψ in ϕ, but does not
incorporate additional constraints into the model.

Illustration 6.25
ϕ: EITHER (x1�8 AND x2�10) OR NOT(y�10)
ψ¼ NOT(y�10)
Model of ψ :)Ref. f11) (y�9) [we consider y as integer]
Result: EITHER (x1�8 AND x2�10) OR (y�9)

180 6 Modelling and Types of Specifications

6.8.4.2 Disjunction Operator (OR;˅) and Exclusive Disjunction
(EITHER. . . OR. . .;�):

The step 1) of the exclusive disjunction operator described for the cases in which the
operator appears individually is modelled (Sect. 6.8.3.6.). This is:

ψ ¼ (ψ1 ˅ ψ2 ˅ . . . ˅ ψ i ˅ . . .)
or
ψ ¼ (ψ1 � ψ2 � . . . � ψ i � . . .)
8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i$ ωi ¼ 1 [Reference f35]

The constraint resulting from step 2) of the modelling process (Sect. 6.8.3.4 for
disjunction operator and Sect. 6.8.3.6 for exclusive disjunction operator) is not
incorporated as a constraint to the model, but instead replaces ψ in ϕ. With this
we reduce operators of the original proposition ϕ.

Only for some compound propositions, the following expression for the OR
operator may also be valid:

8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i ωi ¼ 1

Illustration 6.26
ϕ: EITHER (x1�8 OR x2�10) OR (y�9) [x1, x2 integers]
ψ ¼ (x1�8 OR x2�10)
Model of ψ :

) f35) ω1 ¼ 1IF AND ONLY IFx1 � 8)
) f25) x1 � 8ω1 þ LBx1 1� ω1ð Þ ð6:16Þ

) x1 � 7 1� ω1ð Þ þ UBx1ω1 ð6:17Þ
) f35) ω2 ¼ 1IF AND ONLY IFx2 � 10

) f24) x2 � 10þ UBx2 � 10ð Þ 1� ω2ð Þ ð6:18Þ

) x2 � 11 1� ω2ð Þ þ LBx2ω2 ð6:19Þ

(6.16), (6.17), (6.18), and (6.19) are constraints that are incorporated into the
model.

Result:) f34) EITHER (ω1 + ω2 � 1) OR (y�9)
The modelling for this could be carried out as described in Sect. 6.8.3.6.

6.8.4.3 Conjunction Operator (AND; ˄)

This operator had not been used individually for the obvious reasons that there was
no need for any modelling exercise. However, within a proposal with more opera-
tors, it operates in a similar way to the OR and EITHER OR operators:

6.8 Modelling of Propositional Logic Specifications 181

ψ ¼ ψ1 ^ ψ2 ^ . . . ^ ψ i ^ . . . ^ ψnð Þ
8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i$ ωi ¼ 1 [Reference f35]

2. An expression ϕ0 is created with the following format:

ϕ0:

P
i=ψ i2ℜ_ψ i2Ζ

ωi þ
P

i=ψ i2 0, 1f g
αi � n Reference f37½ �

Replacing ψ with ϕ0 in ϕ.

Illustration 6.27
ϕ: EITHER (x1�8 AND x2�10 AND β ¼0) OR (y�9) [x1, x2 integers; β binary]

ψ¼ (x1�8 AND x2�10 AND β ¼0)
Model of ψ :

) f35) ω1 ¼ 1$ x1 � 8) f 25) x1 � 8ω1 þ LBx1 1� ω1ð Þ ð6:20Þ
) x1 � 7 1� ω1ð Þ þ UBx1ω1 ð6:21Þ

) ω2 ¼ 1$ x2 � 10) f24) x2 � 10þ UBx2 � 10ð Þ 1� ω2ð Þ ð6:22Þ
! x2 � 11 1� ω2ð Þ þ LBx2ω2 ð6:23Þ

(6.20), (6.21), (6.22), and (6.23) are constraints that are incorporated into the
model.

ϕ0: ω1 + ω2 + (1�β) � 3
Result:) f37) EITHER (ω1 + ω2 + (1�β) � 3) OR (y�9)

The modelling for this could again be carried out as described in Sect. 6.8.3.6.

6.8.4.4 Conditional and Biconditional Operators

The constraints resulting from operator modelling replace ψ .
Let π1. . . πr be constraints resulting from operator modelling
Proposition (π1 AND π2 AND . . . AND πr) replaces ψ in ϕ.

Illustration 6.28
ϕ: EITHER x1�8 OR (IF x1 + x2 �8 THEN β ¼ 1)

ψ ¼ (IF x1 + x2 �8 THEN β ¼ 1)
Model of ψ :

) f3) IFβ ¼ 0THENx1 þ x2 < 8

) f7; f4) IF1� β ¼ 1THENx1 þ x2 � 7

) f14) x1 þ x2 � 7þ UBx1þx2 � 7ð Þ 1� ω1ð Þ
ð6:24Þ

(6.24) replaces ψ in ϕ:
EITHER x1�8 OR x1 + x2 �7 + (UBx1 + x2 �7)(1�ω1)

182 6 Modelling and Types of Specifications

The modelling for this could again be carried out as described in Sect. 6.8.3.6.

A couple of illustrations to express the complete process.

Illustration 6.29

ϕ : IF x1 � 20 OR y1 � 10ð Þ THEN NOT α ¼ 1 OR β ¼ 0ð Þ
x1, y1 integers, α and β binaries½ �

) f7; f34) IF x1 � 20 OR y1 � 10ð Þ THEN NOT αþ 1� βð Þ � 1ð Þ
) f11) IF x1 � 20 OR y1 � 10ð Þ THEN αþ 1� βð Þ � 0

) f35) ω1 ¼ 1 IF AND ONLY IF x1 � 20

) f25) x1 � 20ω1 þ LBx1 1� ω1ð Þ ð6:25Þ
) x1 � 19 1� ω1ð Þ þ UBx1ω1 ð6:26Þ

) f35) ω2 ¼ 1 IF AND ONLY IF y1 � 10

) f24) y1 � 10þ UBy1 � 10ð Þ 1� ω2ð Þ ð6:27Þ
) y1 � 11 1� ω2ð Þ þ LBy1ω2 ð6:28Þ

) f34) IF ω1 þ ω2 � 1 THEN αþ 1� βð Þ � 0)
) IF ω1 þ ω2 � 1 THEN α� β � �1

) f18) ω1 þ ω2 � ω ð6:29Þ
) ω1 þ ω2 � 2ω ð6:30Þ

) f20) α� β � �1þ 2 1� ωð Þ ð6:31Þ

Therefore, the starting proposition is modelled with a total of seven constraints
(6.25–6.31).

Illustration 6.30

ϕ : EITHER x1 � 1 IF AND ONLY IF α ¼ 1ð Þ OR x2 � 1 AND x3 � 1ð Þ
x1, x2, x3 � 0 integers, α binaryð Þ

) f35) ω1 ¼ 1 IF AND ONLY IF x2 � 1

⇒ f25 ⇒ x2 � ω1 ð6:32Þ
⇒ x2 � UBx2 ω1 ð6:33Þ

⇒ f35 ⇒ω2 ¼ 1 IF AND ONLY IF x3 � 1

⇒ f25 ⇒ x3 � ω2 ð6:34Þ

6.8 Modelling of Propositional Logic Specifications 183

⇒ f25 ⇒ x3 � LBx3ω2 ð6:35Þ
) f37) EITHER x1 � 1 IF AND ONLY IF α ¼ 1ð Þ OR ω1 þ ω2 � 2ð Þ

⇒Ref:f25 ⇒ x1 � α

⇒Ref:f25 ⇒ x1 � UBx1 α

⇒ϕ : EITHER x1 � α AND x1 � UBx1 αð Þ OR ω1 þ ω2 � 2ð Þ
⇒ f35 ⇒ω3 ¼ 1 IF AND ONLY IF x1 � α

⇒ f25 ⇒ x1 � α � � 1� ω3ð Þ ð6:36Þ
⇒ x1 � α � � 1� ω3ð Þ þ UBx1ω3 ð6:37Þ

⇒ f35 ⇒ω4 ¼ 1 IF AND ONLY IF x1 � UBx1 α

⇒ f24 ⇒ x1 � UBx1α � UBx1 1� ω4ð Þ ð6:38Þ
⇒ x1 � UBx1α � 1� ω5ð Þ � UBx1ω4 ð6:39Þ

⇒ f37 ⇒EITHER ω3 þ ω4 � 2ð Þ OR ω1 þ ω2 � 2ð Þ
⇒ f35 ⇒ω5 ¼ 1 IF AND ONLY IF ω3 þ ω4 � 2

⇒ f25 ⇒ω3 þ ω4 � 2ω5 ð6:40Þ
⇒ f25 ⇒ω3 þ ω4 � 1� ω5ð Þ þ 2ω5 ð6:41Þ

⇒ f35 ⇒ω6 ¼ 1 IF AND ONLY IF ω1 þ ω2 � 2

⇒ f25 ⇒ω1 þ ω2 � 2ω6 ð6:42Þ
⇒ f25 ⇒ω1 þ ω2 � 1� ω6ð Þ þ 2ω6 ð6:43Þ

⇒ f36 ⇒ω5 þ ω6 ¼ 1 ð6:44Þ

(6.32) to (6.44) are incorporated as constraints to the model.
Regardless of this methodology, which is sufficient for the modelling of any

proposition, we can also make use of the distributive law between propositions in
order to present the concatenation of propositions in a different way:

If we have ϕ, ψ , and σ propositions, the distributive laws between expressions are
defined as:

ϕ _ ψ ^ σð Þ � ϕ _ ψð Þ ^ ϕ _ σð Þ Reference f38½ �
ϕ ^ ψ _ σð Þ � ϕ ^ ψð Þ _ ϕ ^ σð Þ Reference f39½ �

It is also possible to divide conditional propositions when they are at the highest
level of the compound proposition:

We have ϕ1, ϕ2, . . ., ϕn, ϕm propositions:

IF ϕ1 v ϕ2 v . . . v ϕn THEN ϕm ⇒
⇒ IF ϕ1 THEN ϕm

⇒ IF ϕ2 THEN ϕm [Reference f40]

184 6 Modelling and Types of Specifications

⇒ . . .
⇒ IF ϕn THEN ϕm

IF ϕm THEN ϕ2 ˄ ϕ2 ˄ . . . ˄ ϕn ⇒
⇒ IF ϕm THEN ϕ1

⇒ IF ϕm THEN ϕ2 [Reference f41]
⇒ . . .

⇒ IF ϕm THEN ϕn

6.8.5 Data as Propositions

Sometimes and whenever the specification refers to one or more sets of elements, we
can propose propositions where the wording includes, among its atomic proposi-
tions, conditions on element data values. Let us take a look at some simple examples
in the following illustration.

Illustration 6.31
There is a system for allocating distribution hubs to supermarkets. We have n hubs
and m supermarkets. The distance between hubs and supermarkets and the demand
of each supermarket is known. The system has the following specifications:

1. If the distance between a supermarket and a hub exceeds 50Km, the supermarket
cannot be assigned to the hub.

2. If a supermarket has a demand higher than 1000 kgs, it will be assigned two
hubs.

3. If hub 2 is assigned a supermarket, the supermarket should be less than 1 km
away.

4. If a supermarket assigned to a hub exceeds the distance of 30 km, the hub will be
limited to a maximum of ten supermarkets.

Table of Elements (Table 6.28)

Decision Activities
Action: Allocate hubs to supermarkets
Decision variables: αij ¼ 1 if I allocate Hub i to Supermarket j; 0 otherwise.
Specifications

Table 6.28 Elements of Illustration 6.31

Elements Set QN

Data

Name Param Type Belonging Value

Hubs i ¼ 1. . .n IU Distance Dij C (km) S . . .

Supermarkets j ¼ 1. . .m IU Dij

Demand Mj C (Kgs) W . . .

6.8 Modelling of Propositional Logic Specifications 185

The four specifications of the system are enunciated as conditional logical
propositions. Let us take a look at this statement:

1. If the distance between a supermarket and a hub exceeds 50 km, the supermarket
cannot be assigned to the hub.

If we apply it to any supermarket and any hub:

8i,j: IF Dij > 50 THEN αij¼0
2. If the supermarket has a demand higher than 1000 kgs, it will be assigned

two hubs.

If we apply it to any supermarket:

8j : IF M j > 1000 THEN
Pn
i¼1

αij ¼ 2

3. If hub 2 is allocated to a supermarket, the supermarket must be less than
1 km away.

If we apply it to any supermarket:

8j: IF α2j¼1 THEN D2j< 1

4. If a supermarket assigned to a hub exceeds the distance of 30 km, the hub will be
limited to a maximum of 10 supermarkets.

If we apply it to any supermarket and any hub:

8i, j : IF αij ¼ 1 AND Dij > 1000 THEN
Pm
j¼1

αij � 10

This casuistry does not imply an additional modelling exercise and the rules
previously seen should not be followed. It is only necessary to extract the atomic
propositions associated with data of the global proposition and include it as a
condition of the elements on which the specification falls.

Let us call the data propositions with the term PAt, whether they are one or several
data joined by operators.

We first distinguish the case of propositions with operators individually:
Let ϕ be a proposition of variables (Table 6.29).

Table 6.29 Model of propositions with data

Proposition Modelling Reference

ϕ ˅ PAt 8element/NOT(PAt): ϕ f42
ϕ ˄ PAt 8element/PAt: ϕ f43
ϕ

L
PAt 8element/NOT(PAt): ϕ

8element/PAt: NOT (ϕ)
f44

IF PAt THEN ϕ 8element/PAt: ϕ f45
PAt IF AND ONLY IF ϕ 8element/PAt: NOT (ϕ)

8element/NOT (PAt): ϕ
f46

186 6 Modelling and Types of Specifications

In the case of several operators, references f38, f39, f40, and f41 must be used and
operate as follows:

1. If the conditional operator or the biconditional operator does not exist in the upper
level:

1.1 If necessary, the distributive law (Ref. f38 and f39) is applied until obtaining
a union of propositions of the form:

(ϕ1 OR PAt1) AND (ϕ2 OR PAt2) AND . . .
1.2. For each compound proposition united with the Operator AND, the

following specification is created:
Ref. f42) 8 element/NOT(PAt1): ϕ1

2. If the conditional operator exists in the upper level:
2.1. If necessary, apply Ref. f38 and f39 until obtaining a proposal of the form:

IF ϕ1 OR PAt1 OR (ϕ2 AND PAt2) OR (ϕ3 OR PAt3) OR . . . THEN ψ
Ref. f40) IF ϕ1 THEN ψ) . . .

IF PAt1THEN ψ) Ref. f45)8 element/PAt1: ψ
IF (ϕ2 AND PAt2) THEN ψ)8 element/ PAt2: IF ϕ2 THEN ψ
IF (ϕ3 OR PAt3) THEN ψ)8 element/ NOT(PAt3): IF ϕ THEN ψ
) 8 element/PAt3: ψ
. . .

Next, we model the propositions of Illustration 6.31.

Illustration 6.32: Modelling the propositions of 6.31
(1)
8i,j : IF Dij > 50 THEN αij¼0
) f45) 8i,j/Dij > 50: αij¼0
(2)

8j : IF M j > 1000 THEN
Pn
i¼1

αij ¼ 2

) f45) 8j/Mj > 1000:
Pn
i¼1

αij ¼ 2

(3)
8j: IF α2j¼1 THEN D2j< 1
) f3) 8j: IF NOT (D2j< 1) THEN NOT(α2j¼1)) IF D2j� 1 THEN α2j¼ 0
) f45) 8j/D2j� 1: α2j¼0
(4)

8i, j : IF αij ¼ 1 AND Dij > 1000 THEN
Pm
k¼1

αik � 10

) 8i, j : IF 8i, j=Dij > 1000 : αij ¼ 1
� �

THEN
Xm
k¼1

αik � 10

) 8i, j=Dij > 1000 : IF αij ¼ 1 THEN
Xm
k¼1

αik � 10

6.8 Modelling of Propositional Logic Specifications 187

) Ref. f14) 8i, j=Dij > 1000 :
Pm
k¼1

αik � 10þ m� 10ð Þ 1� αij
� �

6.8.6 Logical Propositions That Express Possibility

When the statement of a system refers to possibilities not subject to conditions, no
specification is really being established unless some additional imposition is
expressed (e.g., “you can buy at most 10 units”). In most cases, possibilities only
serve to establish associations between elements to form activities. The verb we use
when talking about possibilities is the verb “can.” Let us look at an example:

“Provider A can supply units of product 1”: The statement does not generate any
constraint. It is established that provider A participates in the supply of product
1 action.

“Provider B can supply more than 50 units of product 2”: The statement does not
create any constraint. It is established that provider B participates in the supply of
product 2 action.

If any limitation is included in the statement, then it may be necessary to establish
a specification:

“Provider B can only supply product 1.”
In those cases, it is necessary to model the specification by expressing the

statement of impossibility, about what cannot be done: If the supplier can only
supply product 1, then it cannot supply product 2.

If the possibility statement is part of a logical proposition because it has a
condition or is described with any logical connective, then it is necessary to model
that proposition in all cases. For the modelling of this type of logical proposition, it is
necessary to rephrase the proposition to express it in negative. It is about converting
the proposition of possibility into a proposition of impediment. Let us see some
illustrations:

1. “Provider A can supply units of product 1 if provider B does not supply units of
that product”: When there is a simple proposition within the compound propo-
sition that expresses possibility, we rephrase the statement to express it as an
impediment:

“Provider A cannot supply units of product 1 if supplier B does not supply
supplies units of that product”

2. “Provider B can supply more than 50 units of product 2 if provider A supplies
more than 10 units of product 1”:

“Provider B cannot supply more than 50 units of product 2 if provider A
supplies more than 10 less than 11 units of product 1”

The logical process is simple. The verb “can” expresses possibility. The opposite,
“cannot,” expresses that there is no possibility, but both are not disjunctive. Being

188 6 Modelling and Types of Specifications

able to perform an action includes doing it and not doing it. Not being able to do it
expresses only the option of not doing it. That is why it is necessary to model the
expression that imposes a specification, which is the negative.

Let’s take a look at an illustration based on a mathematical environment.

Illustration 6.33
There is a system of assigning workers to tasks. We have 15 tasks and 4 operators.
The tasks have a duration time. Two specifications are established in the
assignment:

– An operator can carry out more than two tasks if he partially performs a task
– The working time of an operator may be more than 10 hours in the case of doing

more than 3 tasks.

Based on the description it is clear that the tasks are divisible in the system,
because they can be partially carried out by several operators, so they have a
measurable character. It is a statement that lacks a description of other norms and
an objective; in this case we will only focus on the two specifications indicated.

Table of Elements (Table 6.30)

Decision Activities
Action: Assign [tasks to Operators]
Decision variables: xij ¼ Amount of time of Task i assigned to Operator j.
Specifications

1. An operator can carry out more than two tasks if he partially performs a task

The specification refers to each operator j¼1. . .4.
First, it is necessary to express the calculation of the number of tasks performed

by an operator as an auxiliary calculation that will use a logical calculation to know if
an operator has been assigned to each task:

Binary logical calculation: Operator assigned to task
Applied to: Each Operator j¼1. . .4 and each task i¼1. . .15
Variables: αij ¼ 1 if operator j is assigned to task i; 0 otherwise. i¼1. . .15; j¼1. . .4
Logical proposition: 8i, 8 j : αij ¼ 1 IF AND ONLY IF xij > 0

The number of tasks performed by each operator can be expressed by an auxiliary
calculation:

Auxiliary calculation: Number of tasks performed by each operator

Table 6.30 Elements of Illustration 6.33

Elements Set QN

Data

Name Param Type Belonging Value

Tasks i ¼ 1. . .15 IM Duration Di C W . . .

Operators j ¼ 1. . .4 IU

6.8 Modelling of Propositional Logic Specifications 189

Applied to: Each operator j¼1. . .4
Variables: yj ¼ number of operator tasks j
Constraints that define the calculation:

8j : y j ¼
P15
i¼1

αij

Second, we also have to create a logical calculation to know if an operator has
partially carried out a task:

Binary logical calculation: Operator partially performs a task
Applied to: Each Operator j¼1. . .4 and each task i¼1. . .15
Variables:
βij ¼ 1 if the operator j partially performs task i; 0 otherwise. i¼1. . .15; j¼1. . .4
Logical proposition:
8i, 8 j : βij ¼ 1 IF AND ONLY IF xij > 0 AND xij < Di

We could also create an auxiliary calculation for collecting the total number of
partially performed tasks:

Auxiliary calculation: Number of tasks partially performed by an operator
Applied to: Each Operator j¼1. . .4
Variables: zj ¼ number of partial tasks of the operator j
Constraints that define the calculation:

8j : z j ¼
P15
i¼1

βij

We return to the starting specification:

“An operator can carry out more than two tasks if he partially completes a task”

And we express it in negative:

“An operator cannot perform more than two tasks if he does not partially do any
task”) “If an operator does not partially do any task, he cannot perform more
than two tasks”

Mathematically:

8j : IF zj ¼ 0 THEN yj � 2

2. The working time of an operator may be more than 10 hours in the case of doing
more than three tasks.

Working time can be collected in an auxiliary calculation:

Auxiliary calculation: Working time of an operator
Applied to: Each Operator j¼1. . .4

190 6 Modelling and Types of Specifications

Variables: wj ¼ Working time of operator j
Constraints that define the calculation:

8j : w j ¼
P15
i¼1

xij

We express the specification as an impediment:

“The working time of an operator cannot exceed 10 hours in the case of performing
no more than three tasks”)

) “If you perform at most three tasks, the working time of an operator cannot
exceed 10 hours”

Mathematically:

8j : IF yj � 3 THEN wj � 10

6.9 Objective Criterion

The objective function is the criterion that guides the search for solutions. Defining
an objective function in the system results in the complete definition of an optimi-
zation problem. As we discussed in the introductory chapter, the illustrations will
focus on problems with a single objective function. However, the typologies and
modelling of the functions that we will explain below can also serve to develop
multiobjective problems or simply to create a function that integrates diverse
weighted functions.

Once a criterion has been defined, all the costs, positive or negative (profits), of
the activities and calculations that participate in that function will be expressed in the
objective function. Therefore, the objective function can be used a priori to identify
decision activities or calculations, since any action that entails a cost will correspond
to a decision activity or calculation.

The normal or most usual situation in a system is that the unit cost of an activity
represented in a variable does not vary whatever the value of the variable. For
example, let x be the decision activity associated with buying units from a supplier
and let c be the cost of a unit. Typically, the cost c is the cost associated with the
purchase of units, regardless of the value of x. The total cost of that activity will be
cx. This will happen as long as the variable is binary, since it only takes 2 values
(Value 0, no cost; Value 1, cost c). Therefore, the objective function is usually the
simplest specification of the system in most cases. It is enough to identify which
variables have cost data with respect to the proposed objective.

However, there are problems in which for a generic variable x, integer or
continuous, the cost that is applied may depend on the value that variable x takes.
The cases that may arise are:

1. The cost of variable x depends on the range of values on which the variable falls

6.9 Objective Criterion 191

2. The cost of variable x depends on the value that another variable takes
3. The cost depends on the deviation of the variable with respect to reference

threshold.

We explain and illustrate below the modelling of each of the cases. Some of the
ideas have been based on the modelling presented by Sarker and Newton (2007).

6.9.1 Cost According to Interval of Values

With a variable x, we define a set of n intervals (Ui�1, Ui] i¼1. . .n, Ui � 0 i¼0. . .n,
and a cost ci associated with each interval (Fig. 6.9).

Since we need to know on what interval (Ui�1, Ui], i¼1 . . . n the variable x has
fallen, it is necessary to define logical calculations, but first, to unify the modelling
process, and it is also necessary to define the closed intervals for each cost value. The
first interval corresponds to [U0, U1]. From the second interval, the first value is
determined by Ui�1+A (A ¼ 1 if x is integer, A ¼ ξ if x is continuous). To unify the
intervals, we define n intervals [Ui�1+B, Ui], where B ¼ 0 if i¼1, B¼A if i> 1.

Binary logical calculation: x belongs to the interval [Ui�1+B, Ui]
Applied to: Each interval i¼1. . .n
Variables:

αi ¼
1 if x 2 Ui�1 þ B,Ui½ �
0 otherwise

�

Logical proposition:
8i : αi ¼ 1 IF AND ONLY IF x � Ui � 1 + B AND x � Ui

Model:
)f35) 8 i : ωi1 ¼ 1 IF AND ONLY IF x � Ui � 1 + B

⇒ f25 ⇒ x � Ui�1 þ Bð Þωi1 þ LBx 1� ωi1ð Þ ð6:45Þ
⇒ f25 ⇒ x � Ui�1 þ B� 1ð Þ 1� ωi1ð Þ þ UBx ωi1 ð6:46Þ
) f35) 8i : ωi2 ¼ 1 IF AND ONLY IF x � Ui

) f24) x � Ui þ UBx � Uið Þ 1� ωi2ð Þ ð6:47Þ

x 2c1c ic 1ic – nc

1U 2U 1iU – iU 1iU + 1nU –0 xU LB= n xU UB=

Fig. 6.9 Value intervals

192 6 Modelling and Types of Specifications

https://www.linguee.es/ingles-espanol/traduccion/threshold.html

) f24) x � Uiþ1ð Þ 1� ωi2ð Þ þ LBxωi2 ð6:48Þ
) f37) 8i : αi ¼ 1 IF AND ONLY IF ωi1 þ ωi1 � 2

) f25) 8i : ωi1 þ ωi1 � 2αi ð6:49Þ
) f25) 8i : ωi1 þ ωi1 � 1þ αi ð6:50Þ

In addition, we need a non-binary logical calculation that collects the value of x in
each interval in order to maintain the linearity when expressing the cost in the
objective function. Only with the variables αi,, the definition of the cost of
x depending on the interval would be defined as:

Pn
i¼1

ciαix

So, we would have a non-linear expression. To avoid this, we must pick up the
value of x, according to the interval on which it falls. The calculation would be:

Non-binary logical calculation: Collect the value of x in each interval [Ui�1+B, Ui]
Applied to: Each interval i¼1. . .n
Variables:

xi ¼
x if αi ¼ 1

0 if αi ¼ 0

�

Logical propositions: 8i: IF αi ¼ 1 THEN xi ¼ x
8i: IF αi ¼ 0 THEN xi ¼ 0
Model:

8i : IFαi ¼ 1 THEN xi ¼ x) f16) 8i : x � xi þ UBx 1� αið Þ ð6:51Þ
) 8i : x � xi ð6:52Þ

8 : IFαi ¼ 0 THEN xi ¼ 0) f7) 8i : IF 1� αi ¼ 1 THEN xi ¼ 0

) f16) 8i : xi � Uiαi ð6:53Þ
) f16) 8i : xi � 0 ð6:54Þ

The expression of the objective function that collects the cost of the variable
x would be defined as:

Pn
i¼1

cixi

Simplification of Constraints
Proposition 8i : αi ¼ 1 IF AND ONLY IF x � Ui � 1 + B AND x � Ui can be
simplified by Ref. SV taking advantage of the characteristics of the variables. The

6.9 Objective Criterion 193

variable x cannot fall onto more than one interval, without imposing it as a condition.
That means that it would suffice to impose the relationship between αi and x:

Only variable αi will take value 1 :
Xn
i¼1

αi ¼ 1 ð6:55Þ

8i : IF αi ¼ 1 THEN x � Ui�1 þ B AND x � Ui

Model:

) f41)8i : IF αi ¼ 1 THEN x � Ui�1 þ B

8i : IF αi ¼ 1 THEN x � Ui

) f15) 8i : x � Ui�1 þ Bð Þ αi ð6:56Þ
) f14) 8i : x � Uiαi þ UBx 1� αið Þ ð6:57Þ

In addition to (6.55), (6.56), and (6.57), we should also include (6.51), (6.52),
(6.53), and (6.54) to complete the modelling, although even (6.51) and (6.52) can
also be substituted for a single equality function:

x ¼
Xn
i¼1

xi ð6:58Þ

Since with the proposition “IF αi¼ 0 THEN xi¼ 0”, all xi take value 0 minus one,
that index i for which αi ¼ 1. By imposing (6.58), the xi that does not take value
0 will automatically take the value of x.

Illustration 6.34
In a purchase system, we have a supplier that offers the following prices for the
product:

– $16 if we buy a maximum of 100 pcs.
– $15 if we buy more than 100 pcs.
– $14 if we buy more than 500 pcs.

If x is the variable associated with the activity of purchasing units of the product
from that supplier, the cost of x is determined by the interval in which x falls:

The constraints generated by determining the cost would be:

194 6 Modelling and Types of Specifications

By (6.53))
x1 � 100α1
x2 � 500α2
x3 � UBxα3

By (6.55))α1 + α2 + α3 ¼ 1

By (6.56) and (6.57))

x � 1α1
x � 100α1 þ UBx 1� α1ð Þ
x � 101α2
x � 500α2 þ UBx 1� α2ð Þ
x � 501α3
x � UBx

��������������

��������������
By (6.58)) x ¼ x1 + x2 + x3

In the objective function, we would introduce the cost terms:

Min . . . + 16x1 + 15x2 + 14x3 + . . .

6.9.2 Cost According to the Value of Another Variable

Although the variable that determines the cost is integer or continuous, it will be
reduced to depend on the value of one or more binary variables. The modelling is
almost identical to the previous case.

Let y be the variable that determines the cost of x, y integer or continuous.
Generally, the cost of x will depend on the range of values in which y falls
(Fig. 6.10).

To know in which interval [Ui�1 + B, Ui] i ¼ 1. . .n the value of y has fallen, we
can just define a logical calculation for each interval in the following way:

Binary logical calculation: y belongs to the interval [Ui�1+B, Ui]
Applied to: Each interval i¼1. . .n
Variables:

αi ¼
1 if y 2 Ui�1 þ B,Ui½ �
0 otherwise

�

y 2c1c ic 1ic – nc

1U 2U 1iU – iU 1iU + 1nU –0 yU LB= n yU UB=

Fig. 6.10 Value intervals
for variable y

6.9 Objective Criterion 195

Logical propositions: As in the reduction of Sect. 6.9.1, it is not necessary to define
the two values of αi, but only impose that:

Only a αi will take value 1:

Xn
i¼1

αi ¼ 1 ð6:59Þ

) Ref. SV)8i : IF αi ¼ 1 THEN y � Ui � 1 + B AND y � Ui

Model:

) f41) 8i : IF αi ¼ 1 THEN y � Ui�1 þ B

8i : IF αi ¼ 1 THEN y � Ui

) f15) 8i : y � Ui�1 þ Bð Þ αi ð6:60Þ
) f14) 8i : y � Uiαi þ UBy 1� αið Þ ð6:61Þ

Variables αi will determine the cost of x:
With α1¼1, the cost of x ¼ c1
With α2¼1, the cost of x ¼ c2
. . .

If the starting variable y had been binary, the previous process would not be
necessary, we would simply continue from this moment, since:

With y ¼ 1 (α1 ¼ y), the cost of x ¼ c1
With y ¼ 0) f7) 1�y ¼ 1 (α2 ¼1�y), the cost of x ¼ c2

To model this process, it is sufficient to collect the value of x in one variable for
each possible cost value:

Non-binary logical calculation: Collect the value of x according to αi
Applied to: Each interval i¼1. . .n
Variables:

xi ¼
x if αi ¼ 1

0 if αi ¼ 0

�

Logical propositions:
IF αi ¼ 1 THEN xi ¼ x
IF αi ¼ 0 THEN xi ¼ 0
Model: (identical to that expressed in 6.9.1) Resulting expressions: (6.51), (6.52),

(6.53), and (6.54). Similarly, (6.51) and (6.52) can be reduced to (6.58).

The expression of the objective function that collects the cost of variable x would
be defined as:

Pn
i¼1

cixi

196 6 Modelling and Types of Specifications

Illustration 6.35
In a purchase system, we have a product whose purchase cost depends on whether
we have signed a contract with the supplier. That contract implies a cost C. The
price of the product unit is $c1 with the signing of the contract and $c2 without the
contract.

The system would have two decision activities:

– Buy product from the supplier
– Sign contract with supplier

This would generate the variables:

x ¼ Product units purchased from the supplier.
β ¼ 1 If I sign a contract with the supplier; 0 otherwise.
The cost of x depends on the value taken by the variable β
β ¼ 1) Cost of x ¼ c1
β ¼ 0) 1� β ¼ 1) Cost of x ¼ c2
Constraints generated are:

By (6.53):
x1 � UBxβ

x2 � UBx 1� βð Þ
By (6.58): x ¼ x1 + x2

In the objective function we would include the cost of signing the contract and the
cost of purchasing units:

Min . . . + Cβ + c1x1 + c2x2 + . . .

6.9.3 Costs Depending on the Deviation of the Variable

In some situations, a reference value can be imposed on the values of a variable, so
that we can be interested in the approach of the variable to that reference value or we
are interested in distancing from it. The distance from this reference is not imposed
as a specification in the problem, but the variable has freedom, penalizing or
rewarding the deviation on the reference value in the objective function.

The bonuses or penalties imposed affect the units deviated from the
reference value.

The following table summarizes all the possibilities that may arise (Table 6.31):

Table 6.31 Cases of
deviation

Deviation Repercussion Section

Excess Penalty 6.9.3.1

Bonus 6.9.3.2

Default Penalty 6.9.3.3

Bonus 6.9.3.4

6.9 Objective Criterion 197

6.9.3.1 Penalty by Excess

Given

U: Reference value (attribute or variable)
p: unit penalty (attribute)

Affected variable: x
Auxiliary variables:

xd: Deviated units by default of x over U
xe: Deviated units by excess of x over U

These variables come from defining a free auxiliary variable y, collecting the
difference between U and x: x + y¼ U. In order to use variables � 0, we perform the
change of variables: y ¼ xd � xe, xd � 0 and xe � 0, and the resulting constraint
would be:

x + xd � xe ¼ U

Although that expression would allow values to be given simultaneously to xd
and xe, this would never occur even in the best case of the problem since the excess
implies a cost, and therefore it is important that xe be as low as possible.

In the objective function, the cost term p xe is included.

Illustration 6.36
Within a sales system, we have a customer to whom we offer the following prices for
the product:

– $16 for the first 100 units purchased
– $15 for units that exceed 100 units.

The affected variable would be the quantity sold of product units to the customer,
which we call x.

The reference value is U ¼ 100
The company suffers a penalty for excess, p ¼ $1 ($16�$15)
Having defined xd and xe, this means that:

x + xd � xe ¼ 100

In the objective function we incorporate the terms of the profit of the sale x and the
penalty:

Max . . . + 16x � 1xe

Being a function of maximizing, the penalty has a minus sign because it is a cost.

6.9.3.2 Bonus by Excess

Given

198 6 Modelling and Types of Specifications

U: Reference value (attribute or variable)
b: unit bonus (attribute)

Affected variable: x
Auxiliary variables:

xd: Deviated units by default of x over U
xe: Deviated units by excess of x over U

Binary variables from logical calculations:
αd: xd>0 IF AND ONLY IF αd ¼1
αe: xe>0 IF AND ONLY IF αe ¼1

Constraints:
In this case it would not be worth imposing only x + xd� xe¼ U, since it interests

the greatest possible value of xe, so that xd and xe would grow to infinity simulta-
neously. Therefore, the logical calculations are defined to know if xd and xe have
become positive and then it is imposed that both cannot be made positive
simultaneously.

Simplifying the definition of the logical calculations to:

αd: IF xd>0 THEN αd ¼1
αe: IF xe>0 THEN αe ¼1

The resulting constraints of this process are:

xþ xd � xe ¼ U

xd � U 	 αd
xe � UBx � U	ð Þαe
αd þ αe � 1

* If the reference value U is a variable, we have to use another upper bound for xd
and xe in the modeling process.

In the objective function, the profit term bxe is incorporated and x would enter in
the function with its base cost.

Illustration 6.37
Within a purchasing system, we have a supplier that offers the following prices for
the product:

– $16 for the first 100 units purchased
– $15 for units that exceed 100 units.

The affected variable would be the purchased quantity of product units to the
supplier, which we call x.

The reference value is U ¼ 100
The bonus for excess is b ¼ $1 ($16�$15)
Having defined xd, xe, αd and αe, this means that:

6.9 Objective Criterion 199

xþ xd � xe ¼ 100

xd � 100αd
xe � UBx � 100ð Þαe
αd þ αe � 1

In the objective function we incorporate the terms of the cost of x and the bonus

Min . . . + 16x � 1xe

that in a minimizing function would have a minus sign because it is a profit.

6.9.3.3 Penalty by Default

Equivalent to Sect. 6.9.3.1.
Given

U: Reference value (attribute or variable)
p: Unit penalty (attribute)

Affected variable: x
Auxiliary variables:

xd: Deviated units by default of x over U
xe: Deviated units by excess of x over U

Constraint: x + xd � xe ¼ U

The objective function incorporates the cost term pxd

Illustration 6.38
In a system of production and sale of product units we have signed with a customer
to supply 1000 units per month, so that if we do not meet that supply we have a
penalty of $P for each unit not delivered.

There is a default penalty with a reference number of U ¼ 1000 units.
The affected variable would be the quantity supplied to the customer, which we

call x.
The default penalty, p ¼ $P
Having defined xd, xe this means that:

x + xd � xe ¼ 1000

In the objective function we would incorporate the penalty:

Min . . . + Pxd + . . .

6.9.3.4 Bonus by Default

Equivalent to Sect. 6.9.3.2.

200 6 Modelling and Types of Specifications

xþ xd � xe ¼ U

xd � Uαd

xe � UBx � Uð Þαe
αd þ αe � 1

If the reference value U is a variable, we have to use another upper bound for xd
and xe in the modeling process.

In the objective function, the benefit term bxd is incorporated.

Illustration 6.39
After the Kyoto protocol, the state proposes bonuses on the gas emissions of our
company in the case of not exceeding the A kg/year, meliorating with $A for each
Kg/year deviated by default.

6.10 Identification of Specifications

The specifications of a system include the standards and operation regulations
declared within it.

From the statement or description of the system, the first task for modelling
involves the identifying of specifications. Extracting the specifications of a system
consists of identifying all the declared norms, both those that are presented explicitly
in the statement and those that are assumed from the nature of the elements and
activities and do not have an explicit description.

Norms that appear explicitly in the description are easy to identify and one only
has to look for verbs of imposition or logical propositions. Those that are found
implicitly in a system, without there being the need to declare them, are specifica-
tions that are based on data of elements, quantitative selection rules, logical condi-
tions between activities, impositions of flow balance, or bounds of measurable
activities:

• Based on data: attributes that express a continuous or integer magnitude of
intrinsic capacity, availability, or demand on a collective or measurable element
always have a specification associated with capacity consumption, capacity
contribution, demand or balance, depending on the system operation. These
specifications may not be defined as such, only the attribute. The same happens
with relational data between elements, for example, of incompatibility of some
action, that probably define constraints regarding decision activities, but they are
not made explicit because they are defined with the attribute itself.

• Quantitative selection rules: many systems assume without making explicit the
norms that define the quantitative selection specifications for certain logic deci-
sion activities between sets of elements. Therefore, it will be necessary to analyze
if there are selection rules on each of the elements that participate in the activity
(Sect. 6.3).

6.10 Identification of Specifications 201

• Logical conditions between activities: sometimes definitions of decision activities
have an implicit relationship between them defined by a logical proposition. This
does not mean that any activity represents a calculation, but some of the values of
one variable condition the value of another.

When a variable defines a calculation, all its values are obtained from the values
of other variables, or they are negligible values in the system. The logical conditions
between activities also occur when we identify a logical calculation as a decision
activity. By not defining it as a calculation, we ignore the logical proposition that
defines it. This logical proposition cannot be ignored from the model, and it would
be represented as a specification.

• Bounds of discrete measurable activities: they appear in measurable decision
activities in which there is an upper bound of measurement of the activity,
individually generally, but also jointly with other measurable activities, without
this information being explicitly included in the statement.

• Flow balance constraints: in the system, equilibrium relationships between activ-
ities and calculations are established, when there are measurable elements and
generally over a set of time periods, and these restrictions are assumed in the
operation of the system without these relationships being explicit.

The modeller must analyze the following aspects in the identification of
specifications:

– The data of elements that can refer to capacity, availability, or demand,
fundamentally

– The selection rules in decision activities
– The decision activities identified in the system in case there is any implicit

relationship between them or if any of them were really a logical calculation
– Balance relationships between variables
– The upper bound of discrete measurable activities

The description of a system should always avoid wrong interpretations, so it is
desirable that the number of implicit specifications be as low as possible, with all the
details indicated in the statement, although some are obvious.

Let’s look at some examples of identifying specifications in systems.

Illustration 6.40: Assigning objects to positions (Romero and Romeijn 2005)
There is a set of n objects and m positions, m> n. Each object has a weight. Each
position has a maximum weight supported. It is about assigning objects to positions.
There is a cost involved in assigning each object to each position. It is about
minimizing the cost of the assignment.

Table of Elements (Table 6.32)

Decision Activities

Action: Assign objects to positions
Decision variables:

202 6 Modelling and Types of Specifications

αij ¼1 if I assign Object i to Position j; 0 otherwise. i¼1. . .n, j¼1. . .m
Specifications

The statement does not present any explicit specification. All specifications are
given implicitly in the description:

Specifications I1. Based on data: each position has a capacity attribute, the
maximum weight supported; therefore, it will be necessary to define a consump-
tion specification in this case on each position.

Constraints:

8j : Pn
i¼1

piαij � M j

Specifications I2. Quantitative selection rules: the activities of the system are
logic; therefore, it will be necessary to analyze which are the quantitative norms
in the selection (Table 6.33):

The most logical analysis is to assume that an object occupies exactly one
position. If it could occupy more than one position, it should have been specified
in the statement. And that amount is mandatory and does not act as a higher level,
since you must place all objects. Therefore, there is an implicit selection rule for each
object. Regarding the positions, there is no rule.

Logically with any position, we can always impose as an upper bound all objects
and as a lower bound no objects, but those specifications would not be necessary and
therefore are not defined.

Table 6.33 Selection diagram

Elements selecting Selectable elements Type of Norm Quantity Constraints

Object
i ¼1. . .n

Positions Upper bound –

Lower bound –

Equality 1 8i : Pm
j¼1

αij ¼ 1

Position
j ¼ 1. . .m

Objects Upper bound –

Lower bound –

Equality –

Table 6.32 Elements of Illustration 6.40

Elements Set QN

Data

Name Param Type Belonging Value

Objects i ¼ 1. . .n IU Weight pi C W . . .

Cost cij C S . . .

Positions j ¼ 1. . .m IU Max_Weight Mj C W . . .

cij

6.10 Identification of Specifications 203

Specifications I3. Logical conditions between activities: there are no relationships
between activities, since there is only one activity.

Specifications I4. Bounds of discrete measurable activities: there are no discrete
measurable activities.

Specifications I5. Flow balance constraints: they do not exist.

Illustration 6.41: Ham distribution
A ham distribution company has designed a set of 20 delivery routes for distribution.
The company has a portfolio of 350 customers. Each delivery route goes through a
series of known customers.

The company has ten vehicles for the distribution. Each vehicle has a given
capacity or number of Iberian hams that it can transport.

The demand for ham is known from each customer and must be attended to. Each
vehicle that delivers Iberian hams must choose a single route, because more than
one would take too long. We know the delivery cost of each route.

Table of Elements (Table 6.34)

In the Route_Customer attribute, customers of each route are annotated. It is
therefore shared between routes and customers.
Decision Activities

Action: Deliver Iberian hams with vehicles to customers.
Decision variables:
xkj ¼ Number of Iberian hams delivered with vehicle k to customer j.
k¼1. . .10, j¼1. . .350
Action: Choose routes for vehicles.
Decision variables:
αik ¼1 if I choose Route i for Vehicle k; 0 otherwise. k¼1. . .10, i¼1. . .20
Explicit Specifications

This statement does present explicit impositions:

– “The demand for ham from each customer is known and must be attended to”: It
is an imposition of demand contribution. The specification refers to satisfying a

Table 6.34 Elements of Illustration 6.41

Elements Set QN

Data

Name Param Type Belonging Value

Routes i ¼ 1. . .20 IU Route_Customer RCij B S . . .

Cost Ci C W . . .

Customers j ¼ 1. . .350 IU Demand Dj I S . . .

RCij

Vehicles k ¼ 1. . .10 IU Capacity Kk I S . . .

Iberian hams – CD Di; Kk

204 6 Modelling and Types of Specifications

demand, so if that imposition had not been explicitly specified, it would have
been logical to identify it implicitly.

Constraints:

8j : P10
k¼1

xkj ¼ D j

Unitary contributions validate the equality sign

– “Each vehicle that delivers Iberian hams must choose a single route”: Explic-
itly, a selection rule is being presented for each vehicle in the activity of choosing
a route (Table 6.35):

Note that it would be a mistake to assume that the route selection rule for each
vehicle would be equal to 1, since we would assign a route to each vehicle. The
specification states that a route is chosen for each vehicle that distributes, so we
cannot consider that everyone will perform the delivery.

In addition, the phrase “each vehicle that delivers” brings light to an implicit
specification existing in the problem, a logical condition between activities (I3).
Implicit Specifications

• Specifications I1. Based on data: each vehicle has a capacity attribute, the
number of Iberian hams that can be transported; therefore it will be necessary
to define a capacity consumption specification for each vehicle. Each customer
also has a demand attribute that will give rise to a demand contribution specifi-
cation, although we have already mentioned that it is given explicitly.

Constraints: 8k : P350
j¼1

xjk � Kk

• Specifications I2. Quantitative selection rules: the selection rule for each
vehicle with respect to routes appears explicitly.

• Specifications I3. Logical conditions between activities: as mentioned,
between the two decision activities there is a logical condition reflected in the
phrase “Each vehicle that delivers ham slices must choose only one route.” This
phrase refers to the fact that in order for a vehicle to distribute ham, it must have a
route assigned to it. If we do not assign a route, it will not distribute Iberian hams.

Table 6.35 Selection diagram of decision activity “Choose routes for vehicles”

Elements selecting Selectable elements Type of norm Quantity Constraints

Vehicle
k ¼ 1. . .10

Routes Upper bound 1 8k : P20
i¼1

αik � 1

Lower bound –

Equality –

Route
i ¼ 1. . .20

Vehicles Upper bound –

Lower bound –

Equality –

6.10 Identification of Specifications 205

Logical proposition: If a vehicle delivers ham, then it must have been assigned a
route.

(If a vehicle delivers ham to a customer then it must have been assigned a route)
Logical proposition with mathematical formulation:

8k,j: IF xkj> 0 THEN
P20
i¼1

αik ¼ 1

In addition to this, it is necessary to contemplate that it is not worth assigning any
route, but only one that passes by the customer to whom it delivers:

Logical proposition: If a vehicle delivers Iberian hams to a customer, then the
vehicle must have assigned a route that passes by that customer.

Logical proposition with mathematical formulation:

8k,j: IF xkj> 0 THEN
P

i=RCij¼1
αik ¼ 1

This second logical proposition encompasses the previous one, since if it is
fulfilled the previous one is fulfilled, so we can omit the first one.

• Specifications I4. Bounds of discrete measurable activities: Measurable activ-
ities do not have a given upper bound.

• Specifications I5. Flow balance constraints: The measurable activities partici-
pate in specifications that have already been reflected.

Illustration 6.42: Supermarket Allocation
There is a supermarket company that has several locations (j ¼1. . .6) to install a
maximum of 3 product distribution centers.

The cost of installing a center in each location is established in CIj m.u.
The Company has 30 supermarkets to be supplied from locations with distribu-

tion centers.
In addition, the following rules must apply in the system:

– Each location with a distribution center can supply a maximum of ten
supermarkets.

– For legal requirements, if the company installs a center in location 3 and another
in location 5, it cannot install any in location 6.

Objective Function
Minimize the cost of the problem taking into account that if the number of

supermarkets assigned to a location is less than 8, it is penalized with a cost of F
m.u.

Table of Elements (Table 6.36)

In the configuration carried out, the locations have been considered as unitary,
since they are different, apart from the fact that they are referred to in a particular
way. Distribution centers and supermarkets are considered collectives, since they are
identical items, determined in the case of supermarkets and indeterminate in the case

206 6 Modelling and Types of Specifications

of distribution centers. And on the other hand, we can avoid referring to those
instances in a particular way in the statement, so we only refer to numerals of the
collective element.

Decision Activities
Action: Install distribution centers in locations.
Decision variables:
xj ¼ Number of distribution centers installed in location j. j ¼ 1. . .6

Action: Supply supermarkets from locations.
Decision variables:
yj ¼Number of supermarkets supplied from location j; j ¼ 1. . .30
Explicit Specifications

The statement explicitly presents the following specifications:

E1. “install a maximum of 3 product distribution centers”:
E2. “30 supermarkets to be supplied from locations with distribution centers”
E3. “Each location with a distribution center can supply a maximum of

10 supermarkets”
E4. “If the company installs a center in location 3 and another in location 5, it

cannot install any in location 6”

The first three correspond to specifications that are based on data, although they
are explicitly described. The fourth specification corresponds to a logical
proposition.

Constraints:

E1.
P6
j¼1

x j � 3

E2.
P6
j¼1

y j ¼ 30

E3. 8j : yj � 10
E4. IF y3¼1 and y5¼1 THEN y6¼0
Implicit Specifications

Table 6.36 Elements of Illustration 6.42

Elements Set QN

Data

Name Param Type Belonging Value

Locations j ¼ 1. . .6 IU Cost CIj C W . . .

Max_Supermarkets MS I S 5

Distribution
centers

– CI Maximum quantity M I W 3

Supermarkets – CD Quantity S I W 30

MS

6.10 Identification of Specifications 207

• Specifications I1. Based on data: as mentioned, the specifications that could be
based on data have been made explicit.

• Specifications I2. Quantitative selection rules: there are no decision activities
selected.

• Specifications I3. Logical conditions between activities: between the two
activities there is a conditional relationship, which is mentioned in the following
sentence:

“30 supermarkets to be supplied from locations with distribution centers”
We have considered as explicit the norm of supplying a total of 30 supermarkets,

but in this sentence, we also allude to the conditional relationship between the two
activities: in order for a location to supply supermarkets, it must have installed a
distribution center.

Mathematically:
We are going to express it negatively because we are dealing with a proposition of

possibility:

“A location can supply supermarkets if it has a distribution center”
“If a location does not have a center installed, then it cannot supply any supermarket”

8j: IF xj¼ 0 THEN yj¼0
• Specifications I4. Bounds of discrete measurable activities: in the problem we

have two measurable activities. The first of the activities, installing centers in
locations, carries an implicit type I4 specification, since the most sensible thing to
do is to assume that a distribution center will be installed in a physical location at
most. It would be strange to think that there may be more or other specifications.
8j: xj � 1

Regarding the second activity, supplying supermarkets, its measurement is not
limited by a specific value.

• Specifications I5. Flow balance constraints: they do not exist.

References

Bang-Jensen, J., & Gutin, G. (2000). Digraphs: Theory, algorithms and applications. Berlin:
Springer.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1, 269–271.

Graham, R. L., & Hell, P. (1985). On the history of the minimum spanning tree problem. Annals of
the History of Computing, 7(1), 43–57.

Hwang, F. K., Richards, D. S., & Winter, P. (1992). The Steiner tree problem (Annals of discrete
mathematics. 53). North-Holland: Elsevier.

Larrañeta, J., Onieva, L., & Lozano, S. (1995). Métodos Modernos de Gestión de la Producción.
Madrid: Alianza Editorial.

Mitra, G., Lucas, C., & Moody, S. (1994). Tools for reformulating logical forms into zero-one
mixed integer programs. European Journal of Operational Research, 72, 262–276.

208 6 Modelling and Types of Specifications

Öztürk, Ö., Gazibey, Y., & Gerdan, O. (2015). The triple test algorithm to get feasible solution for
transportation problems. International Journal of Numerical Methods and Applications, 13,
37–50.

Romero, D., & Romeijn, H. E. (2005). The generalized assignment Problem and Extensions. In D.-
Z. Du & P. M. Pardalos (Eds.), Handbook of combinatorial optimization (Vol. 5, pp. 259–311).
Boston: Springer Kluwer Academic Publishers.

Sarker, R. A., & Newton, C. S. (2007). Optimization modelling. A practical approach. New York:
CRC Press.

Williams, H. P. (1995). Logic applied to integer programming and integer programming applied to
logic. European Journal of Operational Research, 81, 605–616.

Williams, H. P. (2009). Logic and integer programming (pp. 71–103). New York: Springer.
Williams, H. P. (2013). Model building in mathematical programming (5th ed.). Wiley.. ISBN:

978-1-118-44333-0

References 209

Chapter 7
The Quantitative Nature of the Elements

7.1 Introduction

We have already seen throughout the book that the nature of the elements is used as a
tool to help define decision activities. It is probably an unnecessary tool for an
experienced modeller, but it may be useful for people who start modelling in
mathematical programming. The factors that determine the quantitative nature of
the element are its data and its properties, as well as the treatment it receives in the
description of the problem.

Figure 7.1 defines the decision scheme of the quantitative nature of an element.
The most important nuances that can be considered regarding the definition of the

quantitative nature of the elements can be summed up in six cases. Let us see each of
them:

• Case 1. Individual element not measurable defined as measurable

An individual element that has a continuous quantity attribute may appear a priori
to be measurable due to that continuous attribute and may even determine decision
activities where the quantity of the element is measured. However, we can be faced
with a system where that attribute of quantity is not measured because it is always
used completely or globally as a contribution and not partially. Remember that this
methodology does not consider an attribute measurable whose use is logical. There-
fore, suitable in these cases is to define the element as unitary (it would be like
always working with the continent instead of with the content inside it). However, if
we defined the element as measurable individual, we could also model the problem,
though not very efficiently.

• Case 2. Measurable Element with both measurable and logical decisions

This occurs when regarding an element, measurable individual or collective,
decisions are made about its content and its continent, being the direct object to

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_7

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_7#DOI

the action. Decisions about its content are measurable decisions, while decisions
about the global element are logical decisions. We will see how that measurable
character can ensure that all decisions can be defined as measurable. We will also
propose a configuration on these elements that separates the continent from the
content, thus obtaining that the two types of decisions on the same element cannot be
considered.

• Case 3. Individual elements with capacity to be grouped in collective elements

In the configuration of the elements of a system, we can find situations where we
can have individual elements with the capacity to define themselves as collective,
through the modification of the description or through the identification of subgroups
of identical elements. In general, the use of collective elements instead of individual
elements produces a model with a smaller size and greater efficiency. Therefore, it is
good to look for that possibility if the problem does not arise in the first instance. The
cases that we can consider are the following:

Fig. 7.1 Decision diagram of the nature of an element

212 7 The Quantitative Nature of the Elements

– Case 3.1. Redefinition of the system

This case occurrs when we have a set of individual elements with the same
functionality in the system and identical with respect to their data and values, and
we can avoid referring to them individually by redefining the description of the
system. In this way we manage to group the elements as a single collective element,
which will collect all the data of these elements plus an additional attribute of
existence.

With the redefinition of the specifications, we will always convert the particular
allusions to the items in references to numerals of a collective element. This process
can be simple, with a small change in the description of the specifications or may
involve a change of greater scope, which is achieved when you have a rounded
knowledge of the problem and extensive experience in the field of operational
research. Therefore, we distinguish the two cases:

Case 3.1.1. Redefinition of the system with simple changes
Case 3.1.2. Redefinition of the system with complex changes

– Case 3.2. Grouping into subsets

We have a set of individual elements with the same functionality in the system
(same data definition), but their values are not identical in the totality of the elements,
although you can define identical subsets. Again, whenever there is no individual
reference to each item or those allusions can be eliminated, as in case 3.1, we can
create a collective element for each subset.

– Case 3.3. Small changes in the data values

We have a set of individual elements with the same data definition, but the values
of the data differ slightly so that the grouping of collective elements cannot be
carried out. The solution is to assume small errors in the data through changes in the
data values to allow the grouping into collective elements.

• Case 4. Items of indeterminate collective elements that need to be defined
individually

This case differs from the previous ones in the sense that it does not express an
improvement process but a process necessary for modelling the system. It occurs
when the description of a system implies an element as an indeterminate collective,
but the statement treats the possible items of the element individually. In that case it
is necessary to transform each item of that collective element into an individual
element. Since the quantity of the collective element is indeterminate, it will be
necessary to calculate an upper bound of the number of items that it could have, and
that dimension will be the number of individual elements created.

To illustrate all these cases, we will present each casuistry in sections throughout
the chapter.

7.1 Introduction 213

7.2 Individual Element Not Measurable Defined
as Measurable

We are going to illustrate the double treatment of an individual element that has a
continuous attribute that is not used partially: in a first version, the correct version, as
a unitary element and the second as a measurable element by mistakenly considering
this continuous attribute as measurable. It will be shown the suitability of the first
version with respect to the second one.

Illustration 7.1
A factory owns a set of 120 sacks of rice grain. Each sack has its own quantity of
kilos of rice. It is desired to assign the rice to two production sections where it is
processed.

Each sack can only be assigned to a single section, and the full rice content is
discharged.

Each section has a capacity. The time to process rice in each section is T1 sec/kilo
and T2 sec/kilo. It is desired to maximize the production of rice within the 8 hours of
the day.

The following elements are extracted from the statement:

– The factory (the system).
– The two sections.
– Regarding time, the system focuses on the optimization of a day. There are 8 h

within the day. The day would be the individual element in which the activity is
situated and that we will make explicit by assigning the attribute of 8 h. In the
same way, this attribute could have been attributed to the system without declar-
ing the day element. Moreover, the time of 8 h is applicable as the working time
of each section, so we are going to consider it an attribute of the sections.

– Regarding rice sacks, they are distinguished from each other so that each sack
must be considered as an individual element. The amount of rice in each sack is
already discussed as a measurable attribute and yet the phrase “Each sack can
only be assigned to a single section and the full rice content is discharged”
indicates that the item is used in full in the system and therefore is not measurable.

This is going to be the element that distinguishes the two versions. In the first
version, we will define the sacks as unitary elements, while in the second we will
define them as measurable elements.

Version 1
Table of Elements (Table 7.1)

Decision Activities

Action: Assign rice sacks to sections (equivalent to processing sacks in sections).
Decision variables:
αij ¼ 1 if sack j is assigned to Section i; 0 otherwise. i ¼ 1,2; j ¼ 1. . .120.

214 7 The Quantitative Nature of the Elements

Implicit Specifications

I1. Based on data:

– The capacity data of each section:

8i : P120
j¼1

A jαij � Ki

The capacity consumption is carried out by the activity αij. The unit con-
sumption corresponds to the quantity of rice that the sack has, since it is
completely processed in the section.

– The working time attribute in the day affects each section and works as

capacity attribute:

8i : P120
j¼1

TiA jαij � TTi

The unit consumption corresponds to the quantity of kilos of rice that the sack
has, multiplied by the time it takes to use a kilogram in the section.

I2. Quantitative selection rules: Let us analyze the quantitative norms of activity αij
(Table 7.2).

Each sack goes at the most to a section (E1, as appears explicitly). We are not
required to use them all. No quantitative rule is established for each section.

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

Explicit Specifications

E1. “Each bag can only be assigned to a single section.”

Table 7.1 Elements of Illustration 7.1 – Version 1

Elements Set QN

Data

Name Param Type Belong Value

Sections i ¼ 1. . .2 IU Capacity Ki C (kilos) W –

Process time Ti C (sec/kilo) W –

Working time TTi C (hours) W 8

Rice sacks j ¼ 1. . .120 IU Rice quantity Aj C (kilos) W –

Table 7.2 Selection rules of decision activity “Assign Sacks to sections”

Activity Elements selecting Selectable elements Selection Constraints

Assign Sack j ¼ 1. . .120 Sections � 1 E1

Section i ¼ 1,2 Sacks –

7.2 Individual Element Not Measurable Defined as Measurable 215

The selection rule already analyzed:

8j :P2
i¼1

αij � 1

Objective Criterion

Maximize processed kilo of rice:

Max
P2
i¼1

P120
j¼1

A jαij

Version 2
We started to consider the sacks of rice as measurable (Table 7.3).

Decision Activities

Action: Assign Rice sacks to Sections (equivalent to processing rice sacks in
sections).

Decision Variables:
xij ¼ Amount of rice of sack j assigned to Section i. i ¼ 1,2; j ¼ 1. . .120.

Implicit Specifications

I1. Based on data:

– The capacity data of each section:

8i : P120
j¼1

xij � Ki

– The working time attribute in the day affects each section and works as
capacity attribute:

8i : P120
j¼1

Tixij � TTi

Unitary consumption corresponds to the time a kilo uses in the section.

– The availability of rice in each sack implicitly implies a capacity specification:

8j :P2
i¼1

xij � A j

I2. Quantitative selection rules: they do not exist.

Table 7.3 Elements of Illustration 7.1 – Version 2

Elements Set QN

Data

Name Param Type Belonging Value

Sections i ¼ 1. . .2 IU Capacity Ki C (kilos) W –

Process time Ti C (sec/kilo) W –

Working time TTi C (hours) W 8

Rice sacks j ¼ 1. . .120 IM Rice quantity Aj C (kilos) W –

216 7 The Quantitative Nature of the Elements

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

Explicit Specifications

E1: “Each sack of rice can only be assigned to a single section and the entire rice
content is discharged.”

It actually expresses two specifications:

“Each sack of rice can only be assigned to a single section.”
Logical Proposition: 8j : EITHER x1j > 0 OR x2j > 0 .
“The full content of rice is discharged.”
Logical Proposition: 8i, 8 j : IF xij > 0 THEN xij ¼ Ai.

This second specification means that the first one is not necessary. Assigning a
sack of rice to one section assigns all the rice, and therefore no more rice can be
assigned to any other section.

Objective Criterion

Maximize processed kilos of rice:

Max
P2
i¼1

P120
j¼1

xij

7.3 Measurable Element with Both Measurable and Logical
Decisions

It is difficult to find systems where a measurable element in decision activities also
has logical decisions. In many cases this situation is due to the fact that the
optimization problem encompasses several problems that could be independent.
The normal situation is that decisions are measurable and logical calculations are
obtained from those decisions. Anyway, when this situation occurs, we will say that
the logical decisions are made on the continent of the element and the measurable
decisions on the content. Therefore, we will propose the separation of the continent
and the content in the table of elements.

We present two illustrations. The first refers to a measurable individual element
and the second to a collective one. In the first one, we are going to slightly modify the
statement in Illustration 7.1 to assign a mandatory measurable attribute to rice sacks.

Illustration 7.2: Measurable Individual Element
A factory owns a set of 120 sacks of rice grain. Each sack has its own quantity of
kilos of rice. It is desired to assign the rice to two production sections where it is

7.3 Measurable Element with Both Measurable and Logical Decisions 217

processed. Each sack can only be assigned to a single section. Subsequently, the
amount of rice to be processed from each sack is free.

Each section has a capacity. The time to process rice in each section is T1 sec/kilo
and T2 sec/kilo. It is desired to maximize the production of rice in the 8 hours of the
day.

The quantity of rice in each bag becomes a measurable attribute in the decision
activities, since the amount of rice that is processed must be decided. In addition to
deciding the quantity of rice that is processed, in the system there is a logical
decision to assign sacks to the sections. That is, on the one hand sacks are assigned
to sections, and on the other the amount of rice processed must be decided.

The table of elements would be the one described in Table 7.3. However, in the
cases in which the possibility of using the element can be seen both in a measurable
and logical way, it may be more convenient to configure the elements where we
separate the content element from the continent element, making the continent
unitary and the content measurable, as reflected in Table 7.4.

Sacks of rice become unitary. The measurable amount of rice is shared with the
rice element, which acts as primary and supports the measurable nature.

As mentioned, the decision activities would be defined as:

Decision Activities

Action: Assign Sacks to Sections.
Decision variables: αij ¼ 1 if I assign sack j to section i; 0 otherwise.
Action: Process Rice from the Sacks.
Decision variables: xj ¼ Amount of rice processed from sack j.

It is not necessary to include the participation of the sections in the processing
activity, since we already have the activity of assigning sacks to sections, but their
inclusion may favor the subsequent modelling of the specifications.

Action: Process Rice from Sacks in Sections.
Decision variables: xij ¼ Amount of rice from sack j processed in section i.

It could be that we had assigned sack j to section i and we would not have
processed any rice from the sack. Of course, this fact is strange in itself. The logical

Table 7.4 Elements of Illustration 7.2

Elements Set QN

Data

Name Param Type Belong V.

Sections i ¼ 1. . .2 IU Capacity Ki C (kilo) W –

Process time Ti C (sec/kilo) S –

Working time TTi C (hours) W 8

Sacks j ¼ 1. . .120 IU Rice quantity Aj C (kilos) S –

Rice – IM Aj; Ki; Ti

218 7 The Quantitative Nature of the Elements

thing would be to think that if you assign the sack to a section, it is because you are
going to process rice from it in that section; otherwise, it would be normal not to
assign it. If we situate ourselves in this last scenario, we would always include the
sections as participants in the processing activity and the allocation of sacks to
sections would cease to be a decision activity and become a logical calculation.
With this, there would be no logical activity on the measurable element:

Action: Process rice from the sacks in sections.
Decision variables: xij ¼ Amount of rice from sack j processed in section i.

Binary logical calculation: Assign sack j to section i.
Applied to: Each sack j ¼ 1. . .120; each section i ¼ 1,2.
Variables: αij¼1 if I assign sack j to section i; 0 otherwise.
Logical propositions:
8j, i : αij ¼ 1 IF AND ONLY IF xij > 0

We will now illustrate the same case but with respect to a collective element,
which will have decisions about its content and about the continent.

Illustration 7.3: Collective element
A parts machining factory produces 15 different part models (i ¼ 1. . .15). For
manufacturing, it has 10 machines (j ¼ 1. . .10). Each machine uses a time of Tij
minutes to produce a part of model i.

The weekly planning of the production of parts is Pi units of each model i,
although in the system only the daily selection of 5 models is allowed. In the week
there are 6 days of production and a capacity of 12 hours of production each day.

It is about assigning the production of parts to the machines, keeping in mind that
in any machine you cannot produce more than two models of different parts on any
given day.

The objective is to use the least possible time in the production of the parts.
The main elements in the problem are each part model, which are formed by a

number of determined units to produce. Each part model would be a collective
element because it consists of a set of identical items and without individual
reference to each item in the system. That would be the content. The decisions in
the system fall on the content, that is, on the number of parts that will be made each
day in each machine, although in the description it can also be understood that there
is a decision on which models to make each day, since there is a restriction on a
maximum of five models per day. According to this, we should also reference the
continent, which would be the model of each part. It would be a unitary individual
element.

In spite of this, another valid perspective in the problem is to consider only
decisions about the content. The decisions about the continent are converted into a
logical calculation regarding the content (if I have produced parts of a model 1 day, I
have selected that model that day). If I do not opt for the logical calculation option, I

7.3 Measurable Element with Both Measurable and Logical Decisions 219

would have to express the implicit relationship between the decisions as a specifi-
cation to select a model and produce parts. Let us see the two implementations:

Implementation 7.1: Decisions on Content and the Continent (Table 7.5)
Decision Activities

Action: Select Models in Days.
Decision variables: αit ¼ 1 if I select model i in day t; 0 otherwise.
Action: Produce Parts of Models in Machines in Days.
Decision variables:
xijt ¼ Number of parts of model i produced in machine j in day t.

Implicit Specification

We indicate the relationship between both decision variables, regardless of
whether there are other implicit specifications.

I3. Logical conditions between activities: Between αit and xijt, the following
relationship cannot be ignored:

8i, j, t: IF αit ¼ 0 THEN xijt ¼ 0.

Implementation 7.2: Decisions Made Only About the Content

In this second version, we do not make the continent explicit in the table of elements
because the decisions fall on the content exclusively. For this reason, each part
model is considered a collective element (Table 7.6).

Table 7.5 Elements of Illustration 7.3 – Implementation 7.1

Elements Set QN

Data

Name Param Type Belong Value

Models i ¼ 1. . .15 IU Production Pi I S –

Time Tij C (min) S –

Parts – CD Pi

Machines j ¼ 1. . .10 IU Tij
Days t ¼ 1. . .6 IU Available time Ht C (min) W 12*60

Table 7.6 Elements of Illustration 7.3 – Implementation 7.2

Elements Set QN

Data

Name Param Type Belonging Value

Part models i ¼ 1. . .15 CD Production Pi I W –

Time Tij C (min) S –

Machines j ¼ 1. . .10 IU Tij
Days t ¼ 1. . .6 IU Available time Ht C (min) W 12*60

220 7 The Quantitative Nature of the Elements

Decision Activities

Action: Produce parts of models in machines in days.
Decision variables:
xijt ¼ Number of parts of model i produced in machine j in day t.

Logical Calculation

Binary logical calculation: Select models in days.
Applied to: Each model i ¼ 1. . .15; Each day t ¼ 1. . .6.
Variables: αit¼1 if I select model i in day t; 0 otherwise.
Logical propositions:

8i, t : αit ¼ 1 IF AND ONLY IF
P10
j¼1

xijt > 0

7.4 Individual Elements with Capacity to be Grouped
in Collective Elements: Redefining the System
with Simple Changes

To illustrate the change of individual elements to items of a collective element, let us
take a look at a system of allocating distribution centers to supermarkets. The same
system will be defined in three different ways by making small changes in the
description. The three systems are equivalent.

Illustration 7.4: System of Allocating Distribution Centers
There is a supermarket company that has 10 locations (i ¼ 1. . .10) to install a
maximum of 3 product distribution centers. The installation cost in each location is
established in $CIi. In a location one center is installed at most. And each installed
distribution center must be in a single location.

The Company has 25 supermarkets (j ¼ 1. . .25) to be supplied from the distri-
bution centers. Each supermarket must be allocated to a distribution center for its
supply. Each location has a Ki capacity that is expressed in the number of super-
markets that it can supply.

By legal requirements, if the company installs a center in location 3 and another
in location 5, it cannot install any in location 6.

Objective: Minimize the costs of the problem taking into account that if the
number of supermarkets allocated to a center exceeds 10, the center is penalized
with a cost of $F.

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 221

Version 1
Table of Elements

According to the statement:

– The locations are individual and unitary.
– The supermarkets are identical, but they are referred to individually (“each

supermarket must be assigned to a distribution center for its supply”). We
consider them unitary.

– The centers are identical as well, but there is a particular reference to them in the
statement to express a specification (“each distribution center must be in a single
location”). Also, in the objective function, the centers are particularized. We
consider the penalty as an attribute of the center, although being a constant of
all centers we could have considered it as an attribute of the system (Table 7.7).

Decision Activities

There are two decision activities. On the one hand, install centers in locations and,
on the other hand, assign supermarkets to centers.

Action: Install centers in locations.
Decision variables: αij ¼ 1 if center j is installed in location i; 0 otherwise.
Action: Allocate centers to supermarkets.
Decision variables: βkj ¼ 1 if supermarket k is allocated to center j; 0 otherwise.

Specifications

1. Implicit Specifications

I1. Based on data:

Although it could be considered that the specification of capacity is explained
in the statement, we will consider it in the implicit section. There is a capacity
attribute for the locations, expressing the maximum number of supermarkets that
can be supplied from that location (ki). The activities of the problem do not
consume that resource. We need to calculate the supermarkets that are supplied
from each location, because those variables will be the ones that consume that
capacity. It is a logical calculation:

Table 7.7 Elements of Illustration 7.4 – Version 1

Elements Set QN

Data

Name Param Type Belonging Value

Locations i ¼ 1. . .10 IU Cost CIi I W –

Capacity Ki I W –

Centers j ¼ 1,2,3 IU Penalty Pj C W F

Supermarkets k ¼ 1. . .25 IU

222 7 The Quantitative Nature of the Elements

Binary logical calculation: Supermarket supplied from location.
Applied to: Each supermarket k ¼ 1. . .25 and each location i ¼ 1. . .10.
Variables:ωki ¼ 1 if supermarket k is supplied from location i.
Logical proposition: The supermarket k is supplied from the location i if the

supermarket k is allocated to center j that is installed in location i:
8k, i : ωki ¼ 1 $ βk1 ¼ 1 AND αi1 ¼ 1ð Þ OR βk2 ¼ 1 AND αi2 ¼ 1ð Þ
OR βk3 ¼ 1 AND αi3 ¼ 1ð Þ
Proposition modelling:
) Ref. f1)

) 8k, i : IF βk1 ¼ 1 AND αi1 ¼ 1ð Þ OR βk2 ¼ 1 AND αi2 ¼ 1ð Þ
OR βk3 ¼ 1 AND αi3 ¼ 1ð Þ THEN ωki ¼ 1

ð7:1Þ

) 8k, i : IF ωki ¼ 1 THEN βk1 ¼ 1 AND αi1 ¼ 1ð Þ OR βk2 ¼ 1 AND αi2 ¼ 1ð Þ
OR βk3 ¼ 1 AND αi3 ¼ 1ð Þ

ð7:2Þ

Model of (7.1):

) Ref:f40

) 8k, i : IF βk1 ¼ 1 AND αi1 ¼ 1ð Þ THEN ωki ¼ 1) Ref:f3)
) 8k, i : IF βk2 ¼ 1 AND αi2 ¼ 1ð Þ THEN ωki ¼ 1) Ref:f3)
) 8k, i : IF βk3 ¼ 1 AND αi3 ¼ 1ð Þ THEN ωki ¼ 1) Ref:f3)

) IF NOT ωki ¼ 1ð Þ THEN NOT βk1 ¼ 1 AND αi1 ¼ 1ð Þ) Ref:f7)
) IF NOT ωki ¼ 1ð Þ THEN NOT βk2 ¼ 1 AND αi2 ¼ 1ð Þ) Ref:f7)
) IF NOT ωki ¼ 1ð Þ THEN NOT βk3 ¼ 1 AND αi3 ¼ 1ð Þ) Ref:f7)
) IF 1� ωki ¼ 1 THEN NOT βk1 ¼ 1 AND αi1 ¼ 1ð Þ) Ref:f37)
) IF 1� ωki ¼ 1 THEN NOT βk2 ¼ 1 AND αi2 ¼ 1ð Þ) Ref:f37)
) IF 1� ωki ¼ 1 THEN NOT βk3 ¼ 1 AND αi3 ¼ 1ð Þ) Ref:f37)
) IF 1� ωki ¼ 1 THEN NOT βk1 þ αi1 � 2ð Þ) Ref:f11) IF 1� ωki ¼ 1 THEN βk1 þ αi1 � 1

) IF 1� ωki ¼ 1 THEN NOT βk2 þ αi2 � 2ð Þ) Ref:f11) IF 1� ωki ¼ 1 THEN βk2 þ αi2 � 1

) IF1� ωki ¼ 1THEN NOT βk3 þ αi3 � 2ð Þ) Ref:f11) IF 1� ωki ¼ 1 THEN βk3 þ αi3 � 1

) IF 1� ωki ¼ 1 THEN βk1 þ αi1 � 1) Ref:f14) βk1 þ αi1 � 1þ ωki

) IF 1� ωki ¼ 1 THEN βk2 þ αi2 � 1) Ref:f14) βk2 þ αi2 � 1þ ωki

) IF 1� ωki ¼ 1 THEN βk3 þ αi3 � 1) Ref:f14) βk3 þ αi3 � 1þ ωki

�������
�������

ð7:3Þ

Model of (7.2):
In this calculation, we just need the case in which we use ωki ¼ 1, case (7.1). We

can give freedom to the system when conditions to use ωki ¼ 1 do not coincide. That

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 223

means that it is not necessary to impose (7.2). Anyway, if we want ωki to be worth
0 when the proposal is not fulfilled, for a formal question, we model the case (7.2):

) 8k, i : IF ωki ¼ 1 THEN βk1 ¼ 1 AND αi1 ¼ 1ð Þ
OR βk2 ¼ 1 AND αi2 ¼ 1ð Þ OR βk3 ¼ 1 AND αi3 ¼ 1ð Þ

) Ref f37) 8k, i : IF ωki

¼ 1 THEN βk1 þ αi1 � 2ð Þ OR βk2 þ αi2 � 2ð Þ OR βk3 þ αi3 � 2ð Þ

) Ref f35)

) 8k, i : λki1 ¼ 1 IF AND ONLY IF βk1 þ αi1 � 2ð Þ
) Ref f25) βk1 þ αi1 � 2λki1; βk1 þ αi1 � 1þ λki1

) 8k, i : λki2 ¼ 1 IF AND ONLY IF βk2 þ αi2 � 2ð Þ
) Ref f25) βk2 þ αi2 � 2λki2; βk2 þ αi2 � 1þ λki2

) 8k, i : λki3 ¼ 1 IF AND ONLY IF βk3 þ αi3 � 2ð Þ
) Ref f25) βk3 þ αi3 � 2λki3; βk3 þ αi3 � 1þ λki3

��������������
ð7:4Þ

) 8 k, i : IF ωki ¼ 1 THEN λki1 ¼ 1 OR λki2 ¼ 1 OR λki3 ¼ 1
)Ref f34) 8 k, i : IF ωki ¼ 1 THEN λki1 + λki2 + λki3 � 1

) Ref f15) 8k, i : λki1 þ λki2 þ λki3 � ωki ð7:5Þ

The specification would be:

8i :
X25
k¼1

ωki � Ki ð7:6Þ

I2. Quantitative selection rules:

The two sets of binary variables have associated quantitative selection specifica-
tions. Let’s analyze each activity and its participating elements (Table 7.8).

The three specifications are explicitly reflected in the statement.

I3. Logical conditions between activities:

224 7 The Quantitative Nature of the Elements

The two decision activities have an obvious logical relationship: in order for a
center to supply supermarkets, it must have been installed. We express the logical
proposition:

“IF a center has been installed THEN it can supply supermarkets.”
As the proposition expresses possibility, we define it negatively (see Sect. 6.8.6):
“IF a center has not been installed THEN It cannot supply supermarkets.”

Mathematically:
The specification falls on any center that has not been installed in any location and

will not serve any supermarket of the existing ones. Therefore, it falls on the three
sets of elements:

8j, i, k : IF αij ¼ 0 THEN βkj ¼ 0

But it can also be expressed by reducing the number of propositions in the
following way (we change the way of expressing the specification using numerals):

“IF the number of locations in which a center is installed is null THEN the number of
supermarkets to which it will supply will be null”:

8j : IF P10
i¼1

αij ¼ 0 THEN
P25
k¼1

βkj ¼ 0

Expression
P10
i¼1

αij is binary, thanks to the specification that a center cannot be

installed in more than one location.
P25
k¼1

βkjis an integer expression.

We express the specification as:

) Ref:f7) 8j : IF 1�P10
i¼1

αij ¼ 1 THEN
P25
k¼1

βkj ¼ 0)

) Ref:fLB) 8j : IF 1�P10
i¼1

αij ¼ 1 THEN
P25
k¼1

βkj � 0)

Table 7.8 Selection rules in Illustration 7.4 – Version 1

Activity Elements selecting
Selectable
elements Selection Constraints

Install Locations
i ¼ 1. . .10

Centers � 1 E1

Centers j ¼ 1. . .3 Locations � 1 E2

Allocate Supermarket
k ¼ 1. . .25

Centers ¼ 1 E3

Center j ¼ 1. . .3 Supermarkets No imposed selection
specification

–

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 225

) Ref:f14) 8j :
X25
k¼1

βkj � 25
X10
i¼1

αij ð7:7Þ

I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

Explicit Specifications

E1. “In a location one center is installed at the most.”

It is a quantitative selection norm of upper bound for 8i in αij:

8i :
X3
j¼1

αij � 1 ð7:8Þ

E2. “Each installed distribution center must be in a single location.”

It is also a quantitative selection rule for 8j in αij. It would be an upper bound
since there is no obligation to install each center.

8j :
X10
i¼1

αij � 1 ð7:9Þ

E3. “Each supermarket must be allocated to a distribution center for its supply.”

Quantitative selection rule for 8k in the variables βkj

8k :
X3
j¼1

βkj ¼ 1 ð7:10Þ

E4. “If the company installs a center in location 3 and another in location 5, it
cannot install any in location 6.”

It is a compound logical proposition. The simple propositions of which it is
formed are quantitative selection specifications:

– Install a center in location 3:P3
j¼1

α3j ¼ 1

– Install a center in location 5:P3
j¼1

α5j ¼ 1

226 7 The Quantitative Nature of the Elements

– Unable to install a center in location 6:P3
j¼1

α6j ¼ 0

Compound logical proposition:

IF
P3
j¼1

α3j ¼ 1 AND
P3
j¼1

α5j ¼ 1 THEN
P3
j¼1

α6j ¼ 1

where all simple propositions are binary, by the definition of the number of centers in
a location. The modelling would be:

) Ref:f37) IF
P3
j¼1

α3j þ
P3
j¼1

α5j � 2 THEN
P3
j¼1

α6j ¼ 0)

) Ref:f3) IF
P3
j¼1

α6j ¼ 1 THEN
P3
j¼1

α3j þ
P3
j¼1

α5j < 2)

) Ref:f4) IF
P3
j¼1

α6j ¼ 1 THEN
P3
j¼1

α3j þ
P3
j¼1

α5j � 1)

) Ref:f14)
P3
j¼1

α3j þ
P3
j¼1

α5j � 1þ 2� 1ð Þ 1� P3
j¼1

α6j

 !
)

)
X3
j¼1

α3j þ
X3
j¼1

α5j � 2�
X3
j¼1

α6j ð7:11Þ

Objective Criterion

Minimize Costs
Costs ¼ Installation costs in locations + Additional cost to allocate more than

10 supermarkets to any center

– Installation costs in locations ¼P10
i¼1

P3
j¼1

CIiαij.

– Additional Cost: it requires a logical calculation to find out if more than 10 super-
markets have been assigned in each center. The calculation falls on each center:

Binary logical calculation: Center with more than 10 supermarkets.
Applied to: Centers j ¼ 1. . .3.
Variables:

δ j ¼
1 if center j has more than 10 supermarkets

0 otherwise

�
Logical propositions:

8j : IF P25
k¼1

βkj > 10 THEN δ j ¼ 1

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 227

[Ref. SV: It implies a cost, so I can stop defining the value δj ¼ 0].

Proposition modelling:

) Ref:f3) 8j : IF δ j ¼ 0 THEN
P25
k¼1

βkj � 10

) Ref:f7) 8j : IF 1� δ j ¼ 1 THEN
P25
k¼1

βkj � 10

) Ref:f14) 8j : P25
k¼1

βkj � 10þ 25� 10ð Þ 1� 1� δ j

� �� �

) 8j :
X25
k¼1

βkj � 10þ 15δ j ð7:12Þ

O.F.: Min
P10
i¼1

P3
j¼1

CIiαij þ
P3
j¼1

Fδ j

Version 2

By analyzing the table of elements of Version 1, where the centers are identical
elements, we will try to eliminate the specifications that allude to each center in an
individual way, to be able to treat it as a collective element without changing the
system. Let us take a look at the references to the centers in the statement:

– “Install a maximum of 3 product distribution centers”: Here, the centers are
referred to with a numeral, so there is no change at all.

– “In a location one center is installed at the most”: Here we can also interpret a
center as a numeral. It refers to the number of centers that can be installed in one
location.

– “Each installed distribution center must be in a single location”: Here you make
an individual reference about each center. Therefore, it is necessary to modify this
reference. What we are going to do is eliminate that specification. Through
specifying that the number of centers installed in locations cannot be more than
3 and that in one location a center is installed at most, we assume that the number
of centers installed will correspond to the sum of the centers installed in the
locations.

– “If the company installs a center in location 3 and another in location 5, it cannot
install any in location 6”: here again the reference to the center can be considered
as a numeral. Written in another way: “if the company installs 1 center in location
3 and 1 center in location 5, the number of centers in 6 must be 0.”

– “If the number of supermarkets allocated to a center exceeds 10, the center is
penalized”

Here, each center is referred to in a particular way, since the affirmation is made
for each center. This statement makes use of one of the decision activities: allocate
supermarkets to centers.

228 7 The Quantitative Nature of the Elements

The only way to eliminate this allusion is to modify that decision activity. This
way of describing systems is quite common when there are collective elements
whose measurement on an element is at most one. This element ends up taking the
place of the individual element with which it is related, although it is the latter on
which the activities really fall. The idea is to embed the role of the centers in the
locations. The centers act only as an indicator that the location can supply super-
markets. If we have installed a center in the location we can supply, otherwise we
cannot. We are going to make the locations assume the role of center regarding the
allocation of supermarkets. In that way, we would avoid the particular allusion to
centers. The statement will then be as follows:

“There is a supermarket company that has 10 locations (i ¼ 1. . .10) to install a
maximum of 3 product distribution centers. The installation cost in each location is
established in $CIi. In a location one center is installed at the most. And each
installed distribution center must be in a single location.

The Company has 25 supermarkets (j¼ 1. . .25) to be supplied from the locations
with distribution centers. Each supermarket must be allocated to a location with a
distribution center for its supply. Each location has a Ki capacity that is expressed in
the number of supermarkets that it can supply.

By legal requirements, if the company installs a center in location 3 and another in
location 5, it cannot install any in location 6.

Objective: Minimize the costs of the problem taking into account that if the
number of supermarkets allocated to a center location exceeds 10, the center location
is penalized with a cost of $F.”

Table of Elements (Table 7.9)

Decision Activities
Action: Install centers in locations.
Decision variables: xi ¼ number of centers installed in location i.
Action: Allocate supermarkets to locations.
Decision variables:

βki ¼ 1 if supermarket k is allocated to location i; 0 otherwise.

Specifications

We are going to review the specifications indicated in Version 1.

Table 7.9 Elements of Illustration 7.4 – Version 2

Elements Set QN

Data

Name Param Type Belong Value

Locations i ¼ 1. . .10 IU Cost CIi I W 8

Capacity Ki I W –

Penalty Pi C W F

Centers – CI Max number N I W 3

Supermarkets k ¼ 1. . .25 IU

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 229

1. Implicit Specifications

I1. Based on data: In this version the modelling associated with the capacity of
the locations is simplified, since it is the activity represented in βki that
consumes that capacity. The logical calculation ωki defined in Version 1 is
equivalent to βki

8i :
X25
k¼1

βki � Ki ð7:13Þ

I2. Quantitative selection rules:

Those associated with centers with locations and centers with supermarkets
disappear, and supermarkets with locations appear (Table 7.10).

They are specifications that are expressed explicitly (E3) or already defined as
capacity specification (I1).

I3. Logical conditions between activities: The two decision activities maintain
the same logical relationship as in Version 1, but it is formulated with the
following expression:

IF a center has been installed in a location, THEN that location “can” supply
supermarkets.

In a negative way:

IF the number of centers installed in a location is zero, THEN that location cannot
supply any supermarket.

Mathematically:

The specification falls on any location and any supermarket: 8i, k : IF xi ¼ 0
THEN βki ¼ 0.

And again, the number of propositions could be reduced if we join all the
propositions for i:

8i : IF xi ¼ 0 THEN
P25
k¼1

βki ¼ 0

Modelling:) Ref. f7)8i : IF 1� xi ¼ 1 THEN
P25
k¼1

βki ¼ 0)

) Ref:fLB) 8i : IF 1� xi ¼ 1 THEN
P25
k¼1

βki � 0

Table 7.10 Selection rules in Illustration 7.4 – Version 2

Activity Elements selecting Selectable elements Selection Constraints

Allocate Supermarket k ¼ 1. . .25 Locations ¼ 1 E3

Location i ¼ 1. . .10 Supermarkets � Ki I1

230 7 The Quantitative Nature of the Elements

) Ref:f14) 8i :
X25
k¼1

βki � 25xi ð7:14Þ

I4. Bounds of discrete measurable activities: explicitly in E1.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

E1. “In a location one center is installed at most.”

Now it is an upper bound of a measurable activity.

8i : xi � 1 ð7:15Þ

E2. “Install a maximum of 3 product distribution centers.”

X10
i¼1

xi � 3 ð7:16Þ

E3. “Each supermarket must be allocated to a location with a distribution center
for its supply.”

It is a quantitative norm of selection for the βki variables.

8k :
X10
i¼1

βki ¼ 1 ð7:17Þ

The rule states that the location you choose must have a center installed, that is,
xi ¼ 1. As already explained in Sect. 6.3, this type of condition is excluded from the
quantitative rule, where I will consider all the options for the standard. It must be in
an additional specification where the selection of an element that does not meet that
condition is limited or prevented. That is already reflected and modelled in the
implicit specification number 13.

E4. “If the company installs a center in location 3 and another in location 5, it
cannot install any in location 6.”

Now the simple propositions that make up this compound proposition express
assignment specifications:

Compound logical proposition: IF x3 ¼ 1 AND x5 ¼ 1 THEN x6 ¼ 0.
All the functions of simple propositions can be considered as binary, since

8i : xi � 1:

)Ref. f37) IF x3 + x5 � 2 THEN x6 ¼ 0

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 231

)Ref. f3) IF x6 ¼ 1 THEN x3 + x5 < 2
)Ref. f4) IF x6 ¼ 1 THEN x3 + x5 � 1

) Ref:f14) x3 þ x5 � 2� x6 ð7:18Þ

Objective Criterion

Minimize Costs
Costs ¼ Installation costs in locations + Additional cost to allocate more than

10 supermarkets to any location.

Installation costs of centers in locations ¼P10
i¼1

CIixi.

Additional cost: Logical calculation to find out if more than 10 supermarkets have
been assigned in each location:

Binary logical calculation: Location with more than 10 supermarkets.
Applied to: Locations i ¼ 1. . .10.
Variables:

δi ¼
1 if location i has more than 10 supermarkets

0 otherwise

�

Logical proposition: 8i : IF P25
k¼1

βki > 10 THEN δi ¼ 1 [Ref. SV].

Proposition Modelling:) Ref. f3) 8i : IF δi ¼ 0 THEN
P25
k¼1

βki � 10.

) Ref:f7) 8i : IF 1� δi ¼ 1 THEN
P25
k¼1

βki � 10

) Ref:f14) 8i :
X25
k¼1

βki � 10þ 15δi ð7:19Þ

O.F: Min
P10
i¼1

CIixi þ Fδi

Version 3

In this third version, we are going to consider supermarkets as a collective element.
As we have observed in the tables of elements of the previous versions, the
25 supermarkets are identical. Therefore, we must try to modify the description of
the system where they are alluded to in a particular way, without changing the
system.

To do this, the allocation of each supermarket will be made globally, requiring
25 supermarkets to be assigned to the locations with centers. The statement would
now look like this:

232 7 The Quantitative Nature of the Elements

“There is a supermarket company that has 10 locations (i ¼ 1. . .10) to install a
maximum of 3 product distribution centers. The installation cost in each location
is established in $CIi. In a location one center is installed at the most.

The Company has 25 supermarkets (j ¼ 1. . .25) to be supplied from the locations
with distribution centers (the Company must assign 25 supermarkets to the
locations with installed centers). Each supermarket must be allocated to a location
with distribution center for its supply. Each location has a Ki capacity that is
expressed in the number of supermarkets that it can supply.

By legal requirements, if the company installs a center in location 3 and another in
location 5, it cannot install any in location 6.

Objective: Minimize the costs of the problem taking into account that if the number
of supermarkets allocated to a location exceeds 10, the location is penalized with
a cost of $F.”

The configuration of the model would now be as follows:

Table of Elements (Table 7.11)

The capacity attribute of the locations is shared with the supermarket element,
since it refers to the number of supermarkets that can supply.

Decision Activities
Action: Install centers in locations.
Decision variables: xi ¼ number of centers installed in location i.

Action: Allocate supermarkets to locations.
Decision variables: yi ¼ Number of supermarkets allocated to location i.
Specifications

1. Implicit Specification.

I1. Based on data: In this version, the capacity consumption activity of the
locations is yi:

8i : yi � Ki ð7:20Þ

Supermarket inventories are explicitly specified (E3) in the statement.

Table 7.11 Elements of Illustration 7.4 – Version 3

Elements Set QN

Data

Name Param Type Belonging Value

Locations i ¼ 1. . .10 IU Cost CIi I W 8

Capacity Ki I S –

Penalty Pi C W F

Centers – CI Max number N I W 3

Supermarkets – CD Quantity NS I W 25

Ki

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 233

I2. Quantitative selection rules: they do not exist.
I3. Logical conditions between activities: Between xi and yi, there is the same

logical condition as in previous versions: If you do not install any center in a
location, you cannot supply supermarkets:

The specification falls on any location:

8i : IF xi ¼ 0 THEN yi ¼ 0
Modelling:) Ref. fLB) 8i : IF xi � 0 THEN yi � 0

) Ref:f17; f20)
8i : xi � 0þ 1� 0ð Þ 1� ωið Þ
8i : xi � 0þ 1ð Þ 1� ωið Þ þ 0ωi

8i : yi � 0þ Ki � 0ð Þ 1� ωið Þ

)
8i : xi � 1� ωi

8i : xi � 1� ωi

8i : yi � Ki 1� ωið Þ
)

8i : xi ¼ 1� ωi

8i : yi � Ki 1� ωið Þ
) 8i : yi � Kixi

�����
ð7:21Þ

I4. Bounds of discrete measurable activities: explicitly in I1 and E1.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

E1. “In a location one center is installed at the most.”

Identical to the one expressed in Version 2.

8i : xi � 1 ð7:22Þ

We can consider xi as binary variable both here as in version 2.

E2. “Install a maximum of 3 product distribution centers.”

Identical to the one expressed in Version 2.

X10
i¼1

xi � 3 ð7:23Þ

E3. “The Company must assign 25 supermarkets to the locations with installed
centers.”

In this version, what was a quantitative norm of selection becomes an assignment
or equilibrium specification.

234 7 The Quantitative Nature of the Elements

X10
i¼1

yi ¼ 25 ð7:24Þ

E4. “If the company installs a center in location 3 and another in location 5, it
cannot install any in location 6”

Same as in Version 2.

x3 þ x5 � 2� x6 ð7:25Þ

Objective Criterion

Regarding Version 2, the defined logical calculation varies slightly:

Binary logical calculation: Location with more than 10 supermarkets
Applied to: Locations i ¼ 1. . .10
Variables:

δi ¼
1 if location i has more than 10 supermarkets

0 otherwise

�
Logical proposition: 8i : IF yi > 10 THEN δi ¼ 1 [Ref. SV]
Proposition Modelling:
)Ref. f3) 8i : IF δi ¼ 0 THEN yi � 10
)Ref. f7) 8i : IF 1 � δi ¼ 1 THEN yi � 10
)Ref:f14) 8i : yi � 10þ 15δi ð7:26Þ
O.F.: Min

P10
i¼1

CIixi þ Fδið Þ

The following table summarizes the analysis of the three versions regarding their
size (Table 7.12).

Version 1 Constraints: (7.3); (7.6) to (7.12).
Version 2 Constraints: (7.13) to (7.19) except (7.15).
Version 3 Constraints: (7.20) to (7.26) except (7.22).
(7.15) and (7.22) do not count when considering xi as binary.

It can be observed that the optimal size is to make both centers and supermarkets
collectives. Making collectives only the centers, the number of variables is slightly
reduced. This is because the number of centers is not significant, only 3, which does
not lead to a considerable decrease in size.

7.4 Individual Elements with Capacity to be Grouped in Collective Elements. . . 235

7.5 Individual Elements with Capacity to Be Grouped
in Collective Elements: Redefining the System
Description with Complex Changes

When a system can be defined as an alternative to an initial description, with
significant differences, we are facing systems that require a broad knowledge in
the field of operational research and experience in the area to which the problem
corresponds, to allow us to develop the specifications differently.

In this illustration, we are going to deal with an interval scheduling problem, the
fixed jobs scheduling problem (Arkin and Silverberg 1987). In the first description,
the problem specifications prevent the union of items as a collective element, despite
being identical. However, through understanding the problem, we can make a
substantial change in the specifications to stop referring to each item in particular.

Illustration 7.5: Fixed Job Scheduling Problem
There is a set of n jobs characterized by a starting time, a duration, and a weight.
There is also a set of m machines to process the jobs. It is about maximizing the total
weight of the processed jobs taking into account that a machine cannot process two
jobs that overlap in time. A job, if processed, is processed by a single machine.

Unitary Version
After reading the problem, we can define jobs and machines as elements. Each job
has three data of own values, starting time, duration, and weight. Therefore, we
consider them individual and also unitary because none of the data are measurable.
When processing all the jobs in a single machine, we cannot divide the elements, so
we work with it completely.

On the other hand, the machines do not present any data, so they can be
considered identical; nor do they possess any property that must be measured in
the decision activities. Therefore, we consider each machine as a unitary element a
priori or the m machines as items of a collective element in the system. This will
depend on the specifications of the problem. When analyzing the text, we can see
that there is a specification that states that “a machine cannot process two jobs that
overlap in time.” When we say “a machine,” since we use the indeterminate article,
we refer to any of the machines in a particular way. We could have rewritten the text
using “any”: any machine cannot process two jobs that overlap in time. Therefore,
machines are referred to in a particular way, and it is necessary to consider each
machine as unitary.

Table of Elements (Table 7.13)

Table 7.12 Comparison of version sizes

Version 1 Version 2 Version 3

Number of binary variables 358 270 10

Number of integer variables 0 0 10

Number of constraints 805 57 53

236 7 The Quantitative Nature of the Elements

Decision Activities

Action: Process jobs in machines.
Decision variables: αij ¼ 1 if I process job i in machine j; 0 otherwise.

Specifications

1. Implicit Specifications

I1. Based on data: they do not exist.
I2. Quantitative selection rules: the only rule for the variables αij is described

explicitly: A job, if processed, is processed by a single machine
(Table 7.14).

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

From the statement the following specifications are extracted:

E1. “A job, if processed, is processed by a single machine.”

8i :
Xm
j¼1

αij � 1 ð7:27Þ

E2. “A machine cannot process two jobs that overlap in time.”

Table 7.14 Selection rules in Illustration 7.5

Activity Elements selecting Selectable elements Selection Constraints

Process Jobs i ¼ 1. . .n Machines � 1 E1

Machines j ¼ 1. . .m Jobs –

Table 7.13 Elements of Illustration 7.5 – Individual Version

Elements Set QN

Data

Name Param Type Belonging Value

Jobs i ¼ 1. . .n IU Starting time si C W –

Duration di C W –

Weight pi C W –

Machines j ¼ 1. . .m IU

7.5 Individual Elements with Capacity to Be Grouped in Collective Elements. . . 237

A machine cannot process any pair of jobs that overlap in time. It is a logical
proposition with the operator negation that falls on each machine and on each pair of
jobs that overlap in time.

The pairs of overlapping jobs can be calculated before the modelling of the
specification, since it is information obtained from the data of the jobs. Graphically,
two jobs i and i0 are overlapped if they are processed together at some point in time
(Fig. 7.2).

Mathematically, the overlap occurs when the values of the start and duration data
of i and i0 comply with:

8i, i0=i 6¼ i0 : si � si0 & si þ di > si0

The specification would then be as follows:

8j,8i, i0=i 6¼ i0, si � si0 & si þ di > si0 : NOT αij ¼ 1 AND αi0j ¼ 1
� �

Modelling:

) Ref:f37) 8j, 8i, i0=i 6¼ i0, si � si0 & si þ di > si0 : NOT αij þ αi0j � 2
� �

) Ref:f11) 8j, 8i, i0=i 6¼ i0, si � si0 & si þ di > si0 : αij þ αi0j � 1

ð7:28Þ

Objective Criterion

Max
Pn
i¼1

Pm
j¼1

piαij

Collective Version
Let’s modify the statement accordingly: If the modeller has some experience in this
kind of problem, they will know that the overlap specification is equivalent to saying
that, at any moment of the horizon in which the jobs are processed, the number of
jobs that are processed must not exceed the number of existing machines (Kroon
et al. 1995).

Let us look at the following example:
Suppose there is a system with six jobs that are represented in a time diagram

(Fig. 7.3). The system has two machines.
If in any of the moments that make up the plan we say that no more jobs are

processed than existing machines, any solution can be assigned to the machines
afterwards without any overlapping conflict, because every time I start a job I will
have the security of knowing that there is a machine free, since if it were not so, the

i

i’

Fig. 7.2 Overlapping jobs

238 7 The Quantitative Nature of the Elements

selection would not comply with the specification. For our example, a possible
solution would be to select the jobs 1,2,4,5,6, discarding job 3 (Fig. 7.4).

Moreover, it is not necessary to impose this specification at any time in the
horizon, which would require defining all the instants as an element, but only
imposing the overlap specification at times when new overlaps can occur, which
are only the starting time of each job.

The solution for this version of the problem will provide the selected jobs, but not
the specific assignment of which machine processes each job. This task should be
obtained after the resolution, through a simple assignment procedure.

On the other hand, the second specification of the previous version claimed that a
job is processed by a single machine at the most. This specification ceases to exist in
this version, since the processing of the job in the machines is obtained afterwards
and it is in the assignment procedure where that characteristic is imposed.

For all this, the problem would have been stated and modelled in the following
way in the collective version:

There is a set of n jobs characterized by a starting time, a duration, and a weight.
There is also a set of m machines to process the jobs. For every starting time of a
job, the number of jobs that are being processed must not exceed the number of
existing machines. It is about maximizing the total weight of the processed jobs
taking into account that a machine cannot process two jobs that overlap in time. A
job, if processed, is processed by a single machine.

Table of Elements (Table 7.15)

Decision Activities

Action: Process jobs in machines.

1 4

3 6

2 5

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 7.4 A solution to the problem

1 4

3 6

2 5

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 7.3 Example

7.5 Individual Elements with Capacity to Be Grouped in Collective Elements. . . 239

Decision variables: αi ¼ 1 if I process job i in the machines; 0 otherwise.

The jobs are the direct complement of the action. The machines are implicit in
the processing and could be excluded from the definition.

Specifications

1. Implicit Specifications

I1. Based on data: they do not exist.
I2. Quantitative selection rules: they do not exist.
I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

A specification is extracted from the statement:

E1. “For every starting time of a job, the number of jobs that are being processed
must not exceed the number of existing machines.”

It is not necessary to enter the starting times of the jobs in the table of elements as
a period element, although it could have been done in that way as well. The reason is
that these elements as such are embedded in each job element, and therefore, to
allude to them is to refer to each job.

Therefore, the specification falls on each job i. It is a specification of upper bound
for the sum of the variables αk corresponding to jobs k that are processed in the
instant of the starting time of job i. These variables will return the total of machines
that process those jobs k. This sum assumes that the number of m machines is not
exceeded.

8i :
X

k=sk�si & skþdk>si

αk � m ð7:29Þ

Objective Criterion

Maximize the total weight of the processed jobs

Table 7.15 Elements of Illustration 7.5 – Collective Version

Elements Set QN

Data

Name Param Type Belonging Value

Jobs i ¼ 1. . .50 IU Starting time si C W –

Duration di C W –

Weight pi C W –

Machines – CD Quantity m I W –

240 7 The Quantitative Nature of the Elements

O.F.: Max
P50
i¼1

piαi

Let us take a look at a comparison of both models. We consider a general scenario
with n jobs and mmachines. For the individual version, we consider R as the number
of overlapping job pairs [0 � R � (n2�n)] (Table 7.16).

Individual version constraints: (7.27) and (7.28).
Collective version constraints: (7.29).
The number of variables and constraints in the collective version is significantly

reduced.

7.6 Individual Elements with Capacity to be Grouped
in Collective Elements: Through Grouping into Subsets

The grouping into subgroups of items that have the same data values usually leads to
models that are much smaller in size and generally more efficient. We are going to
raise the grouping in this section without modifying data values, since it is not
necessary. In the illustration, guests of a wedding are grouped according to their
characteristics. You will see two versions of modelling, one that does not group and
considers each element as individual and the version that groups collective elements.

Illustration 7.6: Assigning Tables to Wedding Guests (Lewis and Carroll 2016)
There is a celebration hall that should seat the guests of a wedding. The living room
has tables of two sizes. Tables of 8 seats (18 tables) and tables of 12 seats
(12 tables).

200 guests attend the wedding, including seniors, young people, and children.
The guests are also classified as either the groom’s guest or the bride’s guest.
Therefore, each guest has the information of age category and origin.

It has been decided that guests who are children must be placed at tables just for
them. However, older people and young people can mix at the tables, but what is
intended is to have the least number of tables where older and younger people mix
(i.e., if at a table they seat young and old people, that table is removed in the
objective function).

On the other hand, if a table is used, it must have at least six people seated.
Regarding the groom’s guests and the bride’s guests, we also intend to mix as

little as possible at the wedding. In this way, in the objective function we will
minimize the tables where both the mix of older and younger people will be

Table 7.16 Comparison of versions of Illustration 7.5

Individual Version Collective Version

Number of binary variables n�m n

Number of integer variables 0 0

Number of constraints n + (m�R) n

7.6 Individual Elements with Capacity to be Grouped in Collective Elements. . . 241

produced, as groom’s guests and bride’s guests, but if in a table there are both
circumstances, that table only penalizes once, not twice.

For the resolution, we will propose two versions: first of all, a unitary individual
version, where each guest is a unitary individual element of the system. In the second
version, we will group the guests into collective elements according to their typol-
ogy, since the statement allows it.

Regarding the tables, both in one version and in another, it is necessary to
consider them as individual, although the 18 tables of 8 people are identical, as
well as the 12 tables of 12 people. The reason is that they are alluded to in an
individual way on several occasions in the problem: the text implies the need to
know, with respect to each table, whether or not it penalizes the objective function
(“i.e., if both young and old people sit at a table, that table penalizes the objective
function”). There is also a specification to sit at least six people at each table that is
used. “On the other hand, if you use a table, you must have at least 6 people sitting at
it.” In addition to all this, each table is individually measurable because the attribute
of number of guests acts as capacity attribute.

Individual Version
In this first version, the model is built considering each guest as unitary, since guests
are not identical, each one has its age category and its origin as not measurable data.

The table of elements would be as follows:

Table of Elements (Table 7.17)

In the definition of elements, we have made the Origin explicit (groom’s guest or
bride’s guest) and the age category of the guests. We could also have separated the
tables according to their size, but to obtain a more simplified model, we have
included them all in the same set.

Decision Activities

Table 7.17 Elements of Illustration 7.6 – Unitary Version

Elements Set QN

Data

Name Param Type Belonging Value

Tables i ¼ 1. . .30 IU Capacity Ki I S –

Seats – CD Ki

Guests k ¼ 1. . .200 IU Origin Pkp B S –

Age category Ckc B S –

Origins p ¼ 1,2
1: Bride
2: Groom

IU Pkp

Age categories c ¼ 1,2,3
1: Children
2: Young
3: Senior

IU Ckc

242 7 The Quantitative Nature of the Elements

Action: Sitting guests at tables.
Decision variables:
αik: 1 if I seat guest k at table i; 0 otherwise. i ¼ 1. . .30; k ¼ 1. . .200;
Specifications

1. Implicit Specifications

I1. Based on data: There are specifications of capacity consumption for the
tables. Each table has a capacity or number of guests that can be seated.

8i :
X200
k¼1

αik � Ki ð7:30Þ

I2. Quantitative selection rules: It is necessary to analyze the activity of the
problem (Table 7.18).

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

E1. “Guests who are children have to be placed at tables just for them.”

It would be modelled as a logical proposition in which if I seat a child at any table,
the guests at that table are all children:

8i, k=Ck1 ¼ 1 : IF αik ¼ 1 THEN
P200
k0¼1

αik0 ¼
P

k0=Cik0 ¼1

αik0)

) 8i, k=Ck1 ¼ 1 : IF αik ¼ 1 THEN
P200
k0¼1

αik0 �
P

k0=Cik0¼1

αik0 ¼ 0)

) Ref fLB) 8i, k=Ck1 ¼ 1 : IF αik ¼ 1 THEN
P200
k0¼1

αik0 �
P

k0=Cik0¼1

αik0 � 0

Table 7.18 Selection rules in Illustration 7.6

Activity Elements selecting Selectable elements Selection Constraints

Seat Guests i ¼ 1. . .200 Tables ¼ 1 8k : P30
i¼1

αik ¼ 1 (7.31)

Tables j ¼ 1. . .30 Guests � Ki I1

7.6 Individual Elements with Capacity to be Grouped in Collective Elements. . . 243

) Ref f14) 8i, k=Ck1 ¼ 1 :
X200
k0¼1

αik0 �
X

k0=Cik0 ¼1

αik0 � Ki 1� αikð Þ ð7:32Þ

This expression is equivalent to defining that: “If a child is at a table, there cannot
be young and senior guests at that table”:

8i, k=Ck1 ¼ 1 : IF αik ¼ 1 THEN
P

k0=Ck01¼0

αik0 ¼ 0

) Ref:fLB) 8i, k=Ck1 ¼ 1 : IF αik ¼ 1 THEN
P

k0=Ck01¼0

αik0 � 0

) Ref:f37) 8i, k=Ck1 ¼ 1 :
X

k0=Ck01¼0

αik0 � Ki 1� αikð Þ ð7:33Þ

This proposition could also have been modelled through the statement that
children can only sit with children, so we could have expressed it in negative as
follows: “a child cannot be sitting at a table with a non-child guest.”

Therefore, the proposition falls on any table, any child and any non-child guest:

8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : NOT αik ¼ 1 AND αik0 ¼ 1ð Þ)
) Ref:f37) 8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : NOT αik þ αik0 � 2ð Þ

) Ref:f11) 8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : αik þ αik0 � 1 ð7:34Þ

It is a simpler restriction, but we need many more to impose the same
specification.

E2. “If a table is used, it must have at least 6 people seated at it.”

It is also a logical proposition that uses a logical calculation not defined until now
as an input to the condition: “a table is used” or “used table.”

Since the logical calculation is defined as input in the proposition of the specifi-
cation, we can choose to propose the proposition without defining that logical
calculation, since the modelling of the proposition itself will help to define the
calculation. We propose it in the following way:

“If there are guests seated at a table, there must be at least 6.”

8i : IF P200
k¼1

αik > 0 THEN
P200
k¼1

αik � 6

) Ref:f5) 8i : IF P200
k¼1

αik � 1 THEN
P200
k¼1

αik � 6

244 7 The Quantitative Nature of the Elements

) Ref:f18,f21) 8i :
X200
k¼1

αik � ωi ð7:35Þ

) 8i :
X200
k¼1

αik � kiωi ð7:36Þ

) 8i :
X200
k¼1

αik � 6ωi ð7:37Þ

ωi is the logical calculation that responds to whether a table has been used or not.
The third group 7.37 makes the group 7.35 unnecessary.

Objective Criterion

Minimize mixed tables.
To establish the expression of the objective function, we need to find out if each

table has been mixed, that is, if it penalizes in the objective function.
The mix can occur by mixing guests of age category 2 and 3, or by mixing guests

from different origins. Everything can be collected in a logical calculation per table:

Binary logical calculation: Mixed table.
Applied to: Tables i ¼ 1. . .30.
Variables:

δi ¼
1 if table i is mixed

0 otherwise

�
Logical proposition: We can raise it with multiple conditionals to determine value

1 of δi (value 0 is not necessary to determine it because value 1 supposes cost
[Ref. Sv]) or by means of a smaller proposition:

Multiple conditionals:

8i : IF αi1 ¼ 1 AND αi2 ¼ 1 AND C12 6¼ C22 OR C13 6¼ C23 OR P11 6¼ P21ð Þð Þ OR
ðαi1 ¼ 1 AND αi3 ¼ 1 AND C12 6¼ C32 OR C13 6¼ C33 OR P11 6¼ P31ð Þ OR . . .

THEN δi ¼ 1

) Ref:f40)
8i, k, k0 : IF αik ¼ 1 AND αik0 ¼ 1

AND Ck2 6¼ Ck02 OR Ck3 6¼ Ck03 OR Pk1 6¼ Pk01ð Þ THEN δi ¼ 1

In a smaller proposition:

8i : IF
X

k=Ck2¼1

αik > 0 AND
X

k=Ck3¼1

αik > 0

0
@

1
A

7.6 Individual Elements with Capacity to be Grouped in Collective Elements. . . 245

OR
X

k=Pk1¼1

αik > 0 AND
X

k=Pk2¼1

αik > 0

0
@

1
A THEN δi ¼ 1 ð7:38Þ

Proposition modelling: (We use Proposition 7.38)

) Ref:f5))
8i : IF P

k=Ck2¼1
αik � 1 AND

P
k=Ck3¼1

αik � 1

 !

OR
P

k=Pk1¼1
αik � 1 AND

P
k=Pk2¼1

αik � 1

 !
THEN δi ¼ 1

Ref:f35)

8i : λi1 ¼ 1 IF AND ONLY IF
P

k=Ck2¼1
αik � 1

8i : λi2 ¼ 1 IF AND ONLY IF
P

k=Ck3¼1
αik � 1

8i : λi3 ¼ 1 IF AND ONLY IF
P

k=Pk1¼1
αik � 1

8i : λi4 ¼ 1 IF AND ONLY IF
P

k=Pk2¼1
αik � 1

) Ref:f25)

8i : P
k=Ck2¼1

αik � λi1

8i : P
k=Ck2¼1

αik � Kiλi1

8i : P
k=Ck3¼1

αik � λi2

8i : P
k=Ck3¼1

αik � Kiλi2

ð7:39Þ

8i :
X

k=Pk1¼1

αik � λi3

8i :
X

k=Pk1¼1

αik � Kiλi3

8i :
X

k=Pk2¼1

αik � λi4

8i :
X

k=Pk2¼1

αik � Kiλi4

ð7:40Þ

Ref. f37) 8 i : IF (λi1 + λi2 � 2) OR (λi3 + λi4 � 2) THEN δi ¼ 1

Ref:f35)
8i : λi1 þ λi2 � 2ð Þ IF AND ONLY IF πi1 ¼ 1

8i : λi3 þ λi4 � 2ð Þ IF AND ONLY IF πi2 ¼ 1

246 7 The Quantitative Nature of the Elements

) Ref:f25)

8i : λi1 þ λi2 � 2πi1

8i : λi1 þ λi2 � 1� πi1ð Þ þ 2πi1

8i : λi3 þ λi4 � 2πi2

8i : λi3 þ λi4 � 1� πi2ð Þ þ 2πi2

ð7:41Þ

)Ref. f34) 8 i : IF πi1 + πi2 � 1 THEN δi ¼ 1
)Ref. f3) 8 i : IF δi ¼ 0 THEN πi1 + πi2 � 0

Ref:f7) 8i : IF 1� δi ¼ 1 THEN πi1 þ πi2 � 0

) 8i : πi1 þ πi2 � 2δi ð7:42Þ

O.F.: Min
P30
i¼1

δi

Collective Version

It is easy to organize guests into six different groups (Table 7.19).
Within each group, there is a set of identical items that do not have any

specification or calculation on each individually in the system.
Obviously, as I know the guests, the values N1–N6 are known. For the table of

elements, we use a set with those six groups of guests.

Table of Elements (Table 7.20)

Decision Activities

Action: Sitting guests at tables.
Decision variables: xik ¼ Number of guests of group k sitting at table i.

Specifications

1. Implicit Specifications

I1. Based on data:

I1.1. Table capacity:

8i :
X6
k¼1

xik � Ki ð7:43Þ

I1.2. The new data of existence of each group of guests gives rise to an
assignment specification based on an action of determined value,
since it is necessary to seat the invited Nk of each group:

7.6 Individual Elements with Capacity to be Grouped in Collective Elements. . . 247

8k :
X30
i¼1

xik ¼ Nk ð7:44Þ

I2. Quantitative selection rules: they do not exist.
I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

E1. “Guests who are children have to be placed at tables just for them.”

This logical proposition is stated with guest numerals: There cannot be a positive
number of non-child guests at a table with a positive number of children.

Therefore, the proposition falls on any table, the two groups of children and the
four groups that are not children:

8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : NOT xik > 0 AND xik0 > 0ð Þ)
) Ref:f5) 8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : NOT xik � 1 AND xik0 � 1ð Þ
) Ref:f35)

8i, k=Ck1 ¼ 1 : xik � 1 IF AND ONLY IF βik ¼ 1

8i, k0=Ck01 ¼ 0 : xik0 � 1 IF AND ONLY IF δik0 ¼ 1

Table 7.20 Elements of Illustration 7.6 – Collective Version

Elements Set QN

Data

Name Param Type Belonging Value

Tables i ¼ 1. . .30 IU Capacity Ki I S –

Seats – CD Ki

Groups of guests k ¼ 1. . .6 CD Number of guests Nk I W –

Origin Pkp B S –

Age category Ckc B S –

Origins p ¼ 1,2 IU Pkp

Age categories c ¼ 1,2,3 IU Ckc

Table 7.19 Subgroups of
guests in Illustration 7.6

Guests

Groom’s guest Bride’s guest

Children Young Seniors Children Young Seniors

1. . .N1 1. . .N2 1. . .N3 1. . .N4 1. . .N5 1. . .N6

248 7 The Quantitative Nature of the Elements

)

8i, k=Ck1 ¼ 1 : xik � βik

8i, k=Ck1 ¼ 1 : xik � Kiβik

8i, k0=Ck01 ¼ 0 : xik0 � δik0

8i, k0=Ck01 ¼ 0 : xik0 � Kiδik0

�����������
ð7:45Þ

) Ref:f37) 8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : NOT βik þ δik0 � 2ð Þ

) Ref:f11) 8i, k=Ck1 ¼ 1, k0=Ck01 ¼ 0 : βik þ δik0 � 1 ð7:46Þ

E2. “If a table is used, it must have at least 6 people seated at it.”

As stated in the unitary version:

“If there are guests seated at a table, there must be at least 6.”

8i : IF P6
k¼1

xik > 0 THEN
P6
k¼1

xik � 6

) Ref:f5) 8i : IF P6
k¼1

xik � 1 THEN
P6
k¼1

xik � 6)

) Ref:f18,f21) 8i :
X6
k¼1

xik � ωi ð7:47Þ

) 8i :
X6
k¼1

xik � kiωi ð7:48Þ

) 8i :
X6
k¼1

xik � 6ωi ð7:49Þ

ωi is the logical calculation that responds to whether a table has been used. The
group of constraints (7.49) makes the group (7.47) unnecessary.

Objective Criterion

Minimize mixed tables.
To establish the expression of the objective function, we need to find out if each

table has been mixed, that is, if it penalizes in the objective function.

Binary Logical Calculation: Mixed table.
Applied to: Tables i ¼ 1. . .30.
Variables:

δi ¼
1 if table i is mixed

0 otherwise

�

7.6 Individual Elements with Capacity to be Grouped in Collective Elements. . . 249

Logical Propositions:

8i : IF
X

k=Ck2¼1

xik > 0 AND
X

k=Ck3¼1

xik > 0

0
@

1
A

OR
X

k=Pk1¼1

xik > 0 AND
X

k=Pk2¼1

xik > 0

0
@

1
A THEN δi ¼ 1

[Ref. SV]

Proposition modelling:

) Ref:f5))
8i : IF P

k=Ck2¼1
xik � 1 AND

P
k=Ck3¼1

xik � 1

 !

OR
P

k=Pk1¼1
xik � 1 AND

P
k=Pk2¼1

xik � 1

 !
THEN δi ¼ 1

) Ref:f35)

8i : λi1 ¼ 1 IF AND ONLY IF
P

k=Ck2¼1
xik � 1

8i : λi2 ¼ 1 IF AND ONLY IF
P

k=Ck3¼1
xik � 1

8i : λi3 ¼ 1 IF AND ONLY IF
P

k=Pk1¼1
xik � 1

8i : λi4 ¼ 1 IF AND ONLY IF
P

k=Pk2¼1
xik � 1

) Ref:f25)

8i : P
k=Ck2¼1

xik � λi1

8i : P
k=Ck2¼1

xik � Kiλi1

8i : P
k=Ck3¼1

xik � λi2

8i : P
k=Ck3¼1

xik � Kiλi2

ð7:50Þ

8i :
X

k=Pk1¼1

xik � λi3

8i :
X

k=Pk1¼1

xik � Kiλi3

8i :
X

k=Pk2¼1

xik � λi4

8i :
X

k=Pk2¼1

xik � Kiλi4

ð7:51Þ

)Ref. f37) 8 i : IF (λi1 + λi2 � 2) OR (λi3 + λi4 � 2) THEN δi ¼ 1

250 7 The Quantitative Nature of the Elements

) Ref:f35)
8i : λi1 þ λi2 � 2ð Þ IF AND ONLY IF πi1 ¼ 1

8i : λi3 þ λi4 � 2ð Þ IF AND ONLY IF πi2 ¼ 1

) Ref:f25)

8i : λi1 þ λi2 � 2πi1

8i : λi1 þ λi2 � 1� πi1ð Þ þ 2πi1

8i : λi3 þ λi4 � 2πi2

8i : λi3 þ λi4 � 1� πi2ð Þ þ 2πi2

ð7:52Þ

)Ref. f34) 8 i : IF πi1 + πi2 � 1 THEN δi ¼ 1
)Ref. f3) 8 i : IF δi ¼ 0 THEN πi1 + πi2 � 0

Ref:f7) 8i : IF 1� δi ¼ 1 THEN πi1 þ πi2 � 0

) 8i : πi1 þ πi2 � 2δi ð7:53Þ

F.O.: Min
P30
i¼1

δi

Let us take a look at a comparison of both models (Table 7.21).
Constraints considered:
Individual Version: 7.30, 7.31, 7.32, 7.36, 7.37, 7.39, 7.40, 7.41, 7.42
Collective Version: 7.43, 7.44, 7.45, 7.46, 7.48, 7.49, 7.50, 7.51, 7.52, 7.53
The collective version is much more efficient with respect to the size than the

individual version, especially in the number of variables.

7.7 Individual Elements with Capacity to Be Grouped
in Collective Elements: Through Small Changes
in the Data Values

These are systems in which it is permissible to make small variations in the data, in
order to simplify the problem. With this we can make groups of elements as items of
a collective element. It may also be necessary to make small changes in the statement
to avoid referring to each item in particular and to do so by means of numerals of the
collective element. Let us see an illustration that groups the citizens of a city
according to their address, assuming identical distances of citizens who live in the
same street or stretch of street. Related problems in Wang et al. (2018)

Illustration 7.7: Allocation of Health Centers to Citizens
There is a city formed by five health centers. Due to changes in locations, it has been
decided to restructure the allocation of health centers to its 50,000 citizens. We know

7.7 Individual Elements with Capacity to Be Grouped in Collective Elements. . . 251

the address of each citizen, and therefore, the system allows us to know the distance
from his address to each health center. Each health center has a capacity that is
expressed as the number of citizens that can be attended to per day. It is estimated
that 1% of people go to the doctor daily. The objective is to minimize the sum of the
distances from each citizen address to the assigned health center.

In the statement each citizen must be considered as an individual element of the
system, since each one will have a distance from each health center, without there
being many coincidences. On the other hand, they are unitary because they do not
have measurable data or properties. In the second version, we will group citizens
who share a common area, such as a street or a section of street. These citizens will
therefore have the same values of distance to health centers.

Individual Version
The table of elements would be as follows:

Table of Elements (Table 7.22)

In the definition of data, we logically ignore the address, since it is not a numeric
attribute.

Decision Activities

Action: Allocate citizens to health centers.
Decision variables:
αij: 1 if I allocate citizen i to health center j; 0 otherwise.
i ¼ 1. . .50.000; j ¼ 1. . .5.

Specifications

1. Implicit Specifications

I1. Based on data: Capacity specification of each health center (although it can
also be considered as explicit by the description of the capacity).

8j :
X50000
i¼1

0, 01αij � K j ð7:54Þ

I2. Quantitative selection rules: Variables αij define quantitative selection rules
(Table 7.23).

Table 7.21 Comparison of version sizes in Illustration 7.6

Individual Version Collective Version

Number of binary variables 6240 420

Number of integer variables 0 180

Number of constraints 680+ (30 � N� of children) 606

252 7 The Quantitative Nature of the Elements

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

They do not exist.

Objective Criterion

O.F.: MIN
P50000
i¼1

P5
j¼1

Dijαij

Collective Version
In the collective version, we assign the same distance value to the citizens who live
in the same area, street or street section.

This version requires a slight modification of the statement, to stop referring to
each citizen in particular. We can refer in particular to each group of citizens, but we
must avoid referring to each citizen individually.

On the other hand, we need to assign an attribute to each group of citizens with
the number of citizens it has. Assuming that a total of m groups has been formed, we
will use the data Ni, i ¼ 1. . .m to name the number of citizens of each group.

The statement would look like this:
There is a city formed by five health centers. Due to changes in locations, it has

been decided to restructure the allocation of health centers to its 50,000 citizens. We
know the address of each citizen, and therefore, the system allows us to know the
distance from his area to each health center. Each health center has a capacity that
is expressed as the number of citizens that can be attended to per day. It is estimated
that 1% of people go to the doctor daily. The objective is to minimize the sum of the
distances from citizens to the assigned health centers.

Table of Elements (Table 7.24)

Table 7.23 Selection rules in Illustration 7.7

Activity Elements selecting Selectable elements Selection Constraints

Allocate Citizens i ¼ 1. . .50,000 Health centers ¼ 1 8i : P5
j¼1

αij ¼ 1 (7.55)

Health centers j ¼ 1. . .5 Citizens � Ki I1

Table 7.22 Elements of Illustration 7.7 – Individual version

Elements Set QN

Data

Name Param Type Belonging Value

Citizens i ¼ 1. . .50.000 IU Distance Dij C S –

Health centers j ¼ 1. . .5 IU Capacity Kj I W –

Dij

7.7 Individual Elements with Capacity to Be Grouped in Collective Elements. . . 253

In the table of elements, we have considered each group of citizens as a collective,
and we have introduced them all in a set of m elements. This scenario, as in
Illustration 7.2 on elements where we could make the content and the continent
explicit, also allows a table of elements in which we consider each group as unitary
(continent) and the citizen as collective (content). In that case, the table would have
the following form (Table 7.25).

In this table we have grouped the content in a single collective element since the
citizens are identical with respect to their own data. The capacity attribute of each
health center is shared with the Citizens element. This integer attribute had been
own, while there was no need to create the collective element Citizens. Either table is
valid to represent the elements of the problem.

Decision Activities

Action: Allocate groups of citizens to Health centers.
Decision variables:
xij: Number of citizens of group i allocated to Health center j.

Specifications

1. Implicit Specifications

I1. Based on data:

I1.1. Capacity of each health center: We keep it as implicit. Now the activity is xij.

Table 7.24 Elements of Illustration 7.7 – Collective Version

Elements Set QN

Data

Name Param Type Belonging Value

Groups of citizens i ¼ 1. . .m CD Distance Dij C S –

Quantity Ni I W –

Health centers j ¼ 1. . .5 IU Capacity Kj I W –

Dij

Table 7.25 Elements of Illustration 7.7 – Collective Version with continent and content elements

Elements Set QN

Data

Name Param Type Belonging Value

Group of citizens i ¼ 1. . .m IU Distance Dij C S –

Quantity Ni I S

Health centers j ¼ 1. . .5 IU Capacity Kj I S –

Dij

Citizens – CD Kj, Ni

254 7 The Quantitative Nature of the Elements

8j :
Xm
i¼1

0, 01xij � K j ð7:56Þ

I1.2. The citizen stock data of each group generates a balance specification:

8i :
X5
j¼1

xij ¼ Ni ð7:57Þ

I2. Quantitative selection rules: they do not exist.
I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

They do not exist.

Objective Criterion

O.F.: MIN
Pm
i¼1

P5
j¼1

Dijxij

Comparison of both models (Table 7.26).

7.8 Items of Indeterminate Collective Elements that Need
to Be Defined Individually

According to most of the illustrations seen so far, if a system has an element with a
number of indeterminate items, that element is considered indeterminate collective,
by default. However, if the system description refers individually to the possible
items that the element will have, it is necessary to consider each possible item as an
individual element. This means that the collective element must be converted into a
set of individual elements. As we do not know how many items we can have, from
the description of the system, it is necessary to calculate an upper bound of the
number of items, keeping it as small as possible to avoid an unnecessary increase in
the number of variables that can be generated in the problem.

By slightly modifying statement 7.6, we can illustrate this case.

Illustration 7.8: Illustration 7.6 with an Indeterminate Number of Tables
There is a celebration hall that should place the guests of a wedding. The living
room can use tables of two sizes (tables of 8 seats and tables of 12 seats).

7.8 Items of Indeterminate Collective Elements that Need to Be Defined Individually 255

200 guests attend the wedding, including seniors, young people, and children.
The guests are also classified as the groom’s guest or the bride’s guest. Therefore,
each guest has the information of age category and origin.

It has been decided that guests who are children must be placed at tables just for
them. However, older people and young people can mix at the tables, but what is
intended is to have the least number of tables where older and younger people mix
(i.e., if at a table they seat young and old people, that table penalizes in the objective
function).

On the other hand, if a table is used, it must have at least six people seated at it.
Regarding the groom’s guests and bride’s guests, we also intend to mix as little as

possible at the wedding. In this way, in the objective function we will minimize the
tables where both the mix of older and younger people will be produced, as groom’s
guests and bride’s guests, but if in a table there are both circumstances, that table
only penalizes once, not twice.

The modification we have made has been to disregard a certain number of tables,
both 8 and 12 seats. Therefore, the tables become indeterminate, which could lead us
to visualize each type of table as an indeterminate collective element. However, as in
the statement there are several specifications that allude to (tables) individual items
(if a table is used, it must have at least six people seated at it, if at a table they seat
young and old people, that table penalizes in the objective function), it is necessary
to keep the tables as individual elements. The problem is that its number is indeter-
minate; therefore it is necessary to calculate an upper bound of the number of tables
of 8 and 12 people that could be used without losing possible solutions to the
problem. If we have 200 guests, the maximum number of tables of 8 that could be
used is obtained by rounding the quotient between the number of guests and the
number of places of that type of tables: 200

8

� � ¼ 25tables. The same applies to tables

of 12 places: 200
12

� � ¼ 17tables. In this way, the table of elements for the individual
guest version would have a total of 42 tables:

Table of Elements (Table 7.27)

Let us take a look at another illustration to finish the chapter.

Illustration 7.9
There is a set of n tasks that must be processed in a machining factory. The
processing is done in a machine model for which we must subcontract units. Each
task has a process time and is processed completely on the same machine. The

Table 7.26 Comparison of versions of Illustration 7.7

Individual Version Collective Version

Number of binary variables 250.000 0

Number of integer variables 0 5 m

Number of constraints 50.005 m + 5

256 7 The Quantitative Nature of the Elements

objective of the problem is to minimize the number of machines needed to process all
the tasks in a given time limit.

The machines could be considered as an indeterminate collective element, but the
system needs its individual consideration, since it is necessary to know in which
machine each task is processed. Therefore, an upper bound of its number is neces-
sary. This level can be obtained in various ways. The simplest is to use as many
machines as jobs. The tasks are processed completely in the same machine, so they
must be considered non-divisible and therefore unitary.

Table of Elements (Table 7.28)

References

Arkin, E. M., & Silverberg, E. B. (1987). Scheduling jobs with fixed start and end times. Discrete
Applied Mathematics, 18, 1–8.

Kroon, L. G., Salomon, M., & VanWassenhove, L. N. (1995). Exact and approximation algorithms
for the operational fixed interval scheduling problem. European Journal of Operational
Research, 82, 190–205.

Lewis, R., & Carroll, F. (2016). Creating seating plans: A practical application. Journal of the
Operational Research Society, 67, 1353–1362.

Wang, L., Huan, S., & Lu, G. (2018). Healthcare facility location-allocation optimization for
China’s developing cities utilizing a multi-objective decision support approach. Sustainability,
10, 4580.

Table 7.27 Elements of Illustration 7.8

Elements Set QN

Data

Name Param Type Belonging Value

Tables i ¼ 1. . .42 IU Capacity Ki I S –

Seats – CD Ki

Guests k ¼ 1. . .200 IU Origin Pkp B S –

Age category Ckc B S –

Origins p ¼ 1,2 IU Pkp

Age categories c ¼ 1,2,3 IU Ckc

Table 7.28 Elements of Illustration 7.9

Elements Set QN

Data

Name Param Type Belonging Value

Factory – IU Time limit TL C W –

Tasks i ¼ 1. . .n IU Process time ti C W –

Machines j ¼ 1. . .n IU

References 257

Chapter 8
Practical Examples

8.1 Production with Fixed Costs

A company is dedicated to the manufacture of steel sheets. The manufacturing of the
material is composed of three phases: Fusion of Steel (R1), Format (R2), and
Cooling (R3). Three types of sheets are manufactured (P1, P2, and P3).

The consumption of time required to manufacture each sheet in each phase is
indicated in the table, as well as the total time available for each phase. The
marginal benefits obtained by each unit of the products are indicated in the table.
But there is also a fixed cost that is incurred if units of a product are manufactured
(e.g., if units of P2 are manufactured, a cost of $500 is incurred regardless of the
number of units manufactured); if not manufactured, the cost is zero. The objective is
to maximize profits.

Table: System data

P1 P2 P3

Profit/unit 35 50 40

Fixed cost 1000 500 1500 Time available

R1 2 3 6 500

R2 7 2 3 400

R3 4 5 2 300

Table of Elements (Table 8.1)

Decision Activities

Action: Produce sheets.
Decision variables: xj ¼ Number of sheets j produced.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_8

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1_8#DOI

Specifications

1. Implicit Specifications

I1. Based on data:

I1.1. Time availability of each phase: specification of capacity
consumption.

8i : P3
j¼1

tijx j � Di

I2. Quantitative selection rules: they do not exist.
I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications
Not considered

Objective Criterion
Maximize Total Profit – Costs

Total Profit ¼ P3
j¼1

I jx j

Costs: The statement mentions that fixed costs are incurred in the case of
producing units of each sheet. It is signalling a conditioned action, incurring fixed
costs, which corresponds to a logical calculation:

Binary logical Calculation: Incur in fixed cost.
Applied to: Each sheet j.
Variables:
ωj ¼ 1 if fixed cost is incurred for the production of sheets j; 0 otherwise.
Logical Proposition:
8j : ωj ¼ 1 $ xj > 0) Ref SV) 8j : IF xj > 0 THEN ωj ¼ 1
Proposition modelling:
) Ref. f3) 8j : IF ωj ¼ 0 THEN xj � 0
) Ref. f14) 8j : x j � CSx j ω j

The cost expression would be: Costs ¼ P3
j¼1

C jω j

Table 8.1 Elements of example 8.1

Elements Set QN

Data

Name Param Type Belonging Value

Phases i ¼1. . .3 IU Time available Di C W –

time phase-sheet tij C S –

Sheets j ¼1. . .3 CD Profit Bj C W –

Fixed cost Cj C W –

tij

260 8 Practical Examples

8.2 Graph Coloring Problem [Jensen and Toft (1995)]

There is a map with a set of n regions. We have four markers or different colors to
paint the regions. We must paint each region with a color so that two adjacent
regions are not painted with the same color. The objective is to minimize the number
of colors used.

Table of Elements (Table 8.2)

The table of elements reflects the colors as individual and unitary although we do
not reflect any data that distinguishes them. The statement alludes in particular to
each color: “two adjacent regions are not painted with the same color.”

In the phrase we do not refer to a number of colors, but to any color individually:

“Two adjacent regions are not painted with the color j ¼ 1”
“Two adjacent regions are not painted with the color j ¼ 2”
...

On the other hand, the adjacency between pairs of regions is known attribute that
is represented in binary form: aik ¼ 1 if the region i and k are adjacent; 0 if not.

Decision Activities

Action: Painting regions with colors.
Decision variables: αij ¼ 1 if I paint region i with color j; 0 otherwise.

Specifications

1. Implicit Specifications

I1. Based on data: they do not exist.
I2. Quantitative selection rules: there are logical activities, so it is necessary to

analyze the quantitative selection rules. However, the only norm is explicitly
described in the statement (“We have to paint each region with a color”)
(Table 8.3).

Table 8.2 Elements of example 8.2

Elements Set QN

Data

Name Param Type Belonging Value

Regions i, k ¼ 1...n IU Adjacency aik B S . . .

Colors j ¼ 1. . .4 IU

Table 8.3 Scheme of selection of the activity Painting regions with colors

Activity Elements selecting Selectable elements Selection Constraints

Paint Colors j ¼ 1. . .4 Regions –

Regions i ¼ 1. . .n Colors ¼1 E1

8.2 Graph Coloring Problem [Jensen and Toft (1995)] 261

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

E1. “We have to paint each region with a color.”

8i : P4
j¼1

αij ¼ 1

E2. “Two adjacent regions are not painted with the same color.”

It is an imposition of negation that is constructed by propositional logic. The
specification refers to each adjacent pair of regions i, k and to any color. Therefore:

8j, 8 i, k/aik ¼ 1 : NOT(αij ¼ 1 AND αkj ¼ 1)
) Ref f37) 8j, 8 i, k/aik ¼ 1 : NOT(αij + αkj � 2)
) Ref f11) 8j, 8 i, k/aik ¼ 1 : αij + αkj � 1

Objective Criterion

Minimize the number of colors used.
Colors used) Since the colors are individual, we have to analyze it individually

) color used) information that is not found in any variable and that therefore is a
calculation to be made. It is a conditioned characteristic associated with each color
(whether it has been used or not):

Binary logical calculation: Color used.
Applied to: Each color j.
Variables: βj ¼ 1 if color j is used; 0 otherwise.
Logical proposition:

8j : β j ¼ 1 IF AND ONLY IF
Pn
i¼1

αij � 1

) Ref SV) 8j : IF Pn
i¼1

αij � 1 THEN β j ¼ 1

Proposition Modelling:

) Ref. f3) 8j : IF β j ¼ 0 THEN
Pn
i¼1

αij < 1

) Ref f7, f4) 8j : IF 1� β j ¼ 1 THEN
Pn
i¼1

αij � 0

) Ref. f14) 8j : Pn
i¼1

αij � n β j

The objective function would finally be:

Min
P4
j¼1

β j

262 8 Practical Examples

8.3 Configuration of Work Centers

It is a company that manufactures a part model for the automotive industry. The
company has designed ten work centers in its plant. The manufacture of the parts
has two possibilities or modes of production:

Mode 1: the work center needs an M1 machine, an H1 tool and two H2 tools.
Mode 2: the work center needs an M2 machine, an M3 machine, an H2 tool and an

H3 tool.

The company must decide on the production mode that is installed in each center.
Work centers 1, 2, and 3 can accommodate any mode, while the rest only mode 1.

The purchase costs of each type of machine and tool are the following:

Element Cost

Machine M1 $Cm1

Machine M2 $Cm2

Machine M3 $Cm3

Tool H1 $Ch1
Tool H2 $Ch2
Tool H3 $Ch3

The start-up of a Center has a cost of $F/year. The production cost of each mode
is $C1/part and $C2/part. The production obtained with each mode is K1 parts/day
and K2 parts/day, respectively. The year has 260 working days.

The M1 machine emits too many gases, so if its number is greater than 3, it is
necessary to buy a gas heatsink valued at $E.

On the other hand, due to acoustic issues, centers 3 and 4 cannot simultaneously
hold Mode 1, if centers 1 and 2 hold Mode 2.

The company must value both productivity and costs for its new structure. For
this, it establishes on the one hand a production goal of 10,000 parts per year and an
annual objective of minimizing costs, considering:

– An annual amortization of 10% for purchase costs.
– The tool provider applies a discount of 15%/tool if more than 30 total tools are

purchased.
– The machine supplier applies a bonus of $b if a total of at least 20 machines are

purchased.

Table of Elements (Table 8.4)
In the table of elements, almost all the elements and numerical data of the

statement have been reflected. As we discussed in Chap. 3, it is not necessary for
the methodology to represent all the data or elements, only the elements that are
going to be alternatives for the decision activities, or the data associated with sets of
elements.

8.3 Configuration of Work Centers 263

The system will have a gas heatsink or none; therefore it can be considered as an
indeterminate collective with a maximum quantity of one, or simply unitary.

We could have used a smaller table in which we did not explicitly specify the
parts, the gas heatsink, the providers, and the year, since they do not participate in
any decision activity or do so implicitly. In that case, the data and any specification
would be attributed to the system.

We can even convert the daily production of parts into annual production by
multiplying the daily production by the number of working days and thereby
eliminating the Working days attribute (Table 8.5).

Decision Activities

Action: Install Modes in Centers.
Decision variables: αij ¼ 1 if I install mode j in center i; 0 otherwise.

The purchase of machines and tools is not a decision activity in the system, but a
calculation motivated by the installation of modes in centers. It is an auxiliary
calculation because it is enunciated by an equality function. Machines and tools
purchased:

Table 8.4 Elements of Example 8.3

Elements Set QN

Data

Name Param Type Belonging Value

Centers i ¼ 1. . .10 IU Compatibility Aij B S -

Cost Fi C W €F

Modes j ¼ 1,2 IU Aij

Cost Cj C S -

Production Pj I S -

Number of
machines

MMjm I S -

Number of tools HMjh I S -

Machines m ¼ 1,2,3 CI Cost CMm C W -

MMjm

Tools h ¼ 1,2,3 CI Cost CHh C W -

HMjh

Parts – CD Goal G I W 10.000

Cj ; Pi

Gas heatsink – IU Cost CD C W €E

Tool provider – IU Discount D C W 0.15

Tools threshold UH I W 31

Machine
provider

– IU Bonus B C W €b

Machines
threshold

UM I W 20

Year – IU Working days WD I W 260

264 8 Practical Examples

8m : xm ¼
X10
i¼1

X2
j¼1

MMjmαij

8h : yh ¼
X10
i¼1

X2
j¼1

HMjhαij

The data MMjm and HMjh that contain the number of m machines and h tools that
each mode needs, respectively, are used.

Specifications

1. Implicit Specifications
I1. Based on data: There is a demand attribute in the system, the production goal

of 10.000 parts. It is necessary to formulate a specification of demand
contribution that falls on the system:

P10
i¼1

P2
j¼1

P jDαij � 10:000

The contribution is made by the activity αij. The unit contribution corre-
sponds to the parts that are manufactured per year with each mode (APj).

I2. Quantitative selection rules: Let’s analyze the quantitative norms of selection
of the activity αij (Table 8.6).

It seems correct to express a norm of at most one mode in each center. We must
allow none to be installed because it is not necessary to obtain more production.

Table 8.5 Reduced table of elements of Example 8.3

Elements Set QN

Data

Name Param Type Belonging Value

Centers i ¼ 1. . .10 IU Compatibility Aij B C -

Cost Fi C P $F

Modes j ¼ 1, 2 IU Aij

Cost Cj C P –

Annual Production APj E P –

Number of machines MMjm E C –

Number of tools HMjh E C –

Machines m ¼ 1,2,3 CI Cost CMm C P –

MMjm

Tools h ¼ 1,2,3 CI Cost CHh C P –

HMjh

System – IU Parts G E P 10.000

Gas heatsink cost SC C P $E

Discount Dto C P 0.15

Tools threshold UH E P 31

Bonus B C P $b

Machines threshold UM E P 20

8.3 Configuration of Work Centers 265

Nowhere in the statement is there a mode installed in each center. On the other hand,
it is understood that the installed mode remains throughout the year, since the system
does not talk about mode changes in the same center. If so, it would be necessary to
consider the property installation time as measurable in each center.

I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications

E1. “Work centers 1,2 and 3 can accommodate any mode, while the rest only
Mode 1.”

The phrase imposes restriction on centers 4 to 10. Centers 4 to 10 can only
accommodate Mode 1. We propose the specification in a negative way:
Centers 4 to 10 cannot accommodate Mode 2:

8i ¼ 4...10 : NOT(αi2 ¼ 1)) 8i ¼ 4...10 : αi2 ¼ 0
E2. “The M1 machine emits too many gases, so if its number is greater than 3, it

is necessary to buy a gas heatsink valued at $E.”

This sentence contains a logical proposition that defines a conditioned action,
which is “buy a gas heatsink.” We could have considered it within the definition of
the objective function since the gas heatsink only supposes a purchase cost in the
system.

Binary logical calculation: Buy gas heatsink.
Applied to: The system.
Variable: β ¼ 1 if I buy gas heatsink; 0 otherwise.
Logical proposition:
8j : β ¼ 1 IF AND ONLY IF x1 � 4) Ref SV) IF x1 � 4 THEN β ¼ 1
Proposition modelling:
) Ref. f3) IF β ¼ 0 THEN x1 < 4
) Ref f7, f4) IF 1 � β ¼ 1 THEN x1 � 3
) Ref. f14) x1 � 10 β [We have taken 10 as the upper bound of x1, since there are

10 centers and one M1 machine is installed at most in a center].

E3. “Centers 3 and 4 cannot simultaneously hold Mode 1, if centers 1 and 2 hold
Mode 2.”

Table 8.6 Diagram of the decision activity of Installing modes in centers

Activity Elements selecting Selectable elements Selection Constraints

Install Modes j ¼ 1,2 Centers –

Centers i¼1. . .10 Modes � 1 8i : P2
j¼1

αij � 1

266 8 Practical Examples

It is a specification stated as a logical proposition:

“If centers 1 and 2 hold Mode 2 then centers 3 and 4 cannot simultaneously hold
Mode 1.”

Mathematically:

IF (α12 ¼ 1 AND α22 ¼ 1) THEN NOT(α31 ¼ 1 AND α41 ¼ 1)

Modelling:

) Ref. f37) IF α12 + α22 � 2 THEN NOT(α31 + α41 � 2)
) Ref. f11)IF α12 + α22 � 2 THEN α31 + α41 � 1

) Ref. f18, f20)
α12 þ α22 � 2ω

α12 þ α22 � 1þ ω

α31 þ α41 � 2� ω

Objective Criterion
Minimize costs) Minimize purchase costs subject to amortization + Start-up cost

of centers + Production costs � Discount for tool purchase � Bonus for the
purchase of machines.

Purchase costs ¼ Purchase of tools + Purchase of machines + Purchase of the
heatsink

Purchase costs ¼ 0, 1
P3
h¼1

CHhyh þ
P3
m¼1

CMmxm þ SCβ

� �

Start-up cost of centers ¼ P10
i¼1

P2
j¼1

Fiαij.

A calculation was not necessary to know if a center had been put into operation.
We directly use the αij variables that establish if a mode is installed, which is
equivalent to putting the center into operation.

Production costs ¼ P10
i¼1

P2
j¼1

C jAP jαij

Discount for tool purchase: it is necessary to define a non-binary logical calcu-
lation that will directly collect the value of the discount.

Non-binary logical calculation: Apply discount.
Applied to: The system.
Variables: yD ¼ Discount value.
Logic propositions:

IF
X3
h¼1

yh > 30 THEN yD ¼
X3
h¼1

0, 15Chhyh

IF
X3
h¼1

yh � 30 THEN yD ¼ 0

8.3 Configuration of Work Centers 267

Proposition modelling:

IF
P3
h¼1

yh > 30 THEN yD ¼ P3
h¼1

0, 15Chhyh

) Ref. f5) IF
P3
h¼1

yh � 31 THEN yD ¼ P3
h¼1

0, 15Chhyh

)IF
P3
h¼1

yh � 31 THEN yD� P3
h¼1

0, 15Chhyh ¼ 0

) Ref. fLB) IF
P3
h¼1

yh � 31 THEN yD� P3
h¼1

0, 15Chhyh � 0

) Ref. f18)
P3
h¼1

yh � 31ωH1

) Ref. f18)
P3
h¼1

yh � 30 1� ωHð Þ þ UBP3
h¼1

yh

ωH1

) Ref. f20) yD� P3
h¼1

0, 15Chhyh � UB
yD�

P3
h¼1

0,15Chhyh

1� ωH1ð Þ

IF
P3
h¼1

yh � 30 THEN yD ¼ 0)

) Ref. fLB)IF
P3
h¼1

yh � 30 THEN yD � 0

) Ref. f17)
P3
h¼1

yh � 30 þ UBP3
h¼1

yh

� 30

0
B@

1
CA 1� ωH2ð Þ

) Ref. f17)
P3
h¼1

yh � 31 1� ωH2ð Þ
) Ref. f20) yD � UByD(1 � ωH2)

Bonus for the purchase of machines: it is also necessary to define a logical
calculation, in this case binary because the bonus action has a certain value.

Binary logical calculation: Bonus purchase of machines.
Applied to: The system.
Variables: π ¼ 1 if I apply bonus €b; 0 otherwise.
Logical proposition:

π ¼ 1 $ P3
m¼1

xm � 20

Proposition modelling:
) Ref. f25)X3
m¼1

xm � 20π

X3
m¼1

xm � 19 1� πð Þ þ UBP3
m¼1

xm

π

268 8 Practical Examples

The objective function would finally be:

Min 0, 1
P3
h¼1

CHhyhþ
�

X3
m¼1

CMmxm þ SCβÞ þ
X10
i¼1

X2
j¼1

Fiαij þ
X10
i¼1

X2
j¼1

C jP jDαij � yD� bπ

8.4 Production and Delivery of Solar Panels

The EPRS Factory is a producer of solar panels. It manufactures two models of
plates daily (P1, P2) that differ in size, among other technical details. It has a
portfolio of three client companies (E1, E2, E3) that have requested the following
amounts for the month of April:

Client Panel Units

E1 P1 35

E2 P1 100

E3 P1 40

E1 P2 60

E2 P2 10

Currently, its warehouse has 4 P1 panels and 3 P2 panels. The capacity of the
warehouse is not considered as it is large enough to store any number of panels that
the company handles. The factory has a daily production capacity of six P1 panels
and three P2 panels. In the month of April, there are 21 working days.

For the daily transport of panels, there is a trailer with a capacity of 120 m3. The
volume of each plate is as follows: P1 Volume ¼ 12 m3; P2 Volume ¼ 16 m3

The trailer can do, at most, one of the following routes daily:

Route Companies served Cost

1 E1 C1

2 E2 C2

3 E3 C3

4 E1+E2 C4

5 E2+E3 C5

In manufacturing planning, due to the characteristics of the process, only one
type of panel can be produced each day. The day on which the type of panel is
changed in the production process, the factory incurs an extra cost of $E.

8.4 Production and Delivery of Solar Panels 269

Regarding panels that are not delivered due to lack of capacity, the company
estimates a unit cost cn1 and cn2, for panels P1 and P2, respectively, for each panel
not delivered from the April demand.

The factory wants to manage the production and delivery of panels with the main
objective of minimizing costs.

Table of Elements (Table 8.7)

The daily production capacity is not necessary to associate it with the days t ¼
1–31, since it is constant for each day and therefore, we can consider it as being only
associated to the factory.

Decision Activities

A priori, diverse activities are identified on two collective elements, the panels P1
and P2, over a set of time periods. For this reason, we can design a directed graph to
collect the activities and calculations on those measurable elements. We must create
a graph for each plate, which will be analogous. Therefore, we simply create the
graph for Panels P1 (Fig. 8.1).

From the labelling of arcs in the graph, we can extract the variables of the
problem; some of them will be identified as decision activities and others as auxiliary
calculations.

xjt: Number of Pj panels produced in the factory on day t
Ajt: Number of Pj panels stored in the Warehouse after day t
DVjt: Number of Pj panels distributed in the vehicle on day t
Rjrt: Number of Pj panels distributed via the route r on day t

Table 8.7 Elements of Example 8.4

Elements Set QN

Data

Name Param Type Belong Value

Clients i ¼ 1. . .3 IU Demand Dij I S –

Client-route CRir B S –

Panels j ¼ 1,2 (P1,
P2)

CD Dij; Ij;
Kj

Volume VPj C W {16,10}

Non-delivery cost cnj C W –

Routes r ¼ 1. . .5 IU Air

Cost cr C W –

Vehicle – IU Volume V C W 120

Warehouse – IU Stock Ij I S {4,3}

Factory – IU Daily production
capacity

Kj I S {6,3}

Extra cost CE C W –

Days of
April

t ¼ 1. . .21 IU Kjt

270 8 Practical Examples

Ejrit: Number of Pj panels delivered to client i via route r on day t
yjit: Number of Pj panels delivered to client i on day t

From all these variables, we can only define as decision variables:

– The panels that we produce: xjt
– The panels that we deliver to each client i via each route: Ejrit

The rest corresponds to auxiliary calculations obtained by applying the flow
balance equation in the nodes:

8j, i, t : yjit ¼
P

r=CRir¼1
Ejirt

8j, r, t : Rjrt ¼
P

i=CRir¼1
Ejirt

8j, t : DVjt ¼
P5
r¼1

Rjrt

8j, t ¼ 1 : Ajt ¼ xjt þ I j � DVjt

8j, t > 1 : Ajt ¼ xjt þ Ajt�1 � DVjt

Specifications

1. Implicit Specifications
I1. Based on data: there is a capacity attribute in the system, the daily production

capacity of the factory each day. The warehouse is not considered.

I1.1. 8j, t : xjt � Kj

Fig. 8.1 Graph for Panels P1

8.4 Production and Delivery of Solar Panels 271

Also, the vehicle has a capacity attribute, its volume, to be controlled
daily:

I1.2. 8t : P2
j¼1

VP jDVjt � V

Regarding the demand, we are not obliged to meet it, but undelivered units may
remain, which will entail a cost in the objective function. Therefore, it is not
necessary to propose a demand contribution specification. Only, the demand could
be treated as an upper bound of the number of units to be delivered; although the
manufacture of panels involves a cost and therefore the system should not manu-
facture more units than those requested by the customers, production costs are not
mentioned in the statement, only change of production of panels and routes. This can
lead to the fact that if we do not specify the quantities to be delivered, the resolution
of the model offers an optimal solution in which more panels than those requested
are delivered. Therefore, to maintain the consistency of the solution, we define the
demand as an upper bound. The specification falls on each client and each type of
panel:

I1.3. 8i, j : P25
t¼1

yjit � Dij

I2. Quantitative selection rules: they do not exist.
I3. Logical conditions between activities: they do not exist.
I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: those previously associated with the auxiliary

calculations.
2. Explicit Specifications

E1. “The trailer can do, at most, one of the following routes daily”

This specification works with the Rjrt variables. It establishes a relationship in
which at most one variable can be positive. This can be stated by different
propositions:

8t, r ¼ 1 : IF
X2
j¼1

R j1t > 0 THEN
X
r 6¼1

X2
j¼1

R j1t ¼ 0

8t, r ¼ 2 : IF
X2
j¼1

R j2t > 0 THEN
X
r 6¼2

X2
j¼1

R j1t ¼ 0

⋯

But the simplest way is to first define the logical calculation on each route to
know if it has been chosen or not and then define a quantitative selection rule with
the logical variables:

Binary logical calculation: Route chosen every day.
Applied to: Each route r and each day t.

272 8 Practical Examples

Variables: βrt ¼ 1 if I choose route r on day t; 0 otherwise.
Logical proposition:

8r, t : βrt ¼ 1 $ P2
j¼1

Rjrt � 1

) Ref Sv) 8r, t : IF P2
j¼1

Rjrt � 1 THEN βrt ¼ 1

Quantitative selection rule:

8t : P5
r¼1

βrt � 1

E2. “Only one type of panel can be produced each day”:

It is a logical specification: the two types of panels cannot be produced each day:

8t : NOT(x1t > 0 AND x2t > 0)
) Ref. f5)8t : NOT(x1t � 1 AND x2t � 1)

) Ref. f35)
8t : ω1t ¼ 1 $ x1t � 1

8t : ω2t ¼ 1 $ x2t � 1

) Ref. f25)

8t : x1t � ω1t

8t : x1t � UBx1tω1t

8t : x2t � ω2t

8t : x2t � UBx2tω2t

) Ref. f37)8t : NOT(ω1t + ω2t � 2)) Ref. f11)8t : ω1t + ω2t � 1
Objective Criterion

The objective, although not defined explicitly, is to minimize costs. The costs of
the system are:

– Cost for panel production change: CE
– Cost of each route: Cr

– Cost for non-delivery of panels: cnj

The costs for production change and route can be produced on each day t. The
cost for non-delivery of units does not depend on t.

Cost for panel production change: It will be necessary to define a logical
calculation on each day t, starting from the second day, to know if there has been
a change in the panels that are produced. But the definition is not so simple, since
there may be days on which the system does not produce and we have to keep track
of which type of panel was the last to produce before t to know if there has been a
change on day t. Therefore, we will define a previous logical calculation every day
and with each panel, to know if that panel was the last to be produced. For that
calculation, we are going to use the logical calculation already defined in E2, ωjt,
which told us if panel j had been produced on day t.

Binary logical calculation: Last panel produced.
Applied to: Each day t and each panel j.

8.4 Production and Delivery of Solar Panels 273

Variables: δjt ¼ 1 if the last panel produced up to day t was panel j; 0 otherwise.
Logical proposition: It can be considered in several equivalent forms:
Form 1:
t ¼ 1 : δ j1 ¼ 1 IF AND ONLY IF ω j1 ¼ 1

8t, t > 1, j ¼ 1 : δ1t ¼ 1 IF AND ONLY IF ω1t ¼ 1 OR ω2t ¼ 0 AND δ1t�1 ¼ 1ð Þ
8t, t > 1, j ¼ 2 : δ2t ¼ 1 IF AND ONLY IF ω2t ¼ 1 OR ω1t ¼ 0 AND δ2t�1 ¼ 1ð Þ
Form 2:
8t : IF ω1t ¼ 1 THEN δ1t ¼ 1

8t : IF ω2t ¼ 1 THEN δ1t ¼ 0

8t : IF ω2t ¼ 1 THEN δ2t ¼ 1

8t : IF ω1t ¼ 1 THEN δ2t ¼ 0

8t=t > 1 : IF ω1t ¼ 0 AND ω2t ¼ 0 THEN δ1t ¼ δ1t�1 AND δ2t ¼ δ2t�1

Modelling of logical proposition (FORM 1):
t ¼ 1 : δj1 ¼ 1 IF AND ONLY IF ωj1 ¼ 1
)Ref. f23) t ¼ 1 : δj1 ¼ ωj1

8t, t > 1, j ¼ 1 : δ1t ¼ 1 IF AND ONLY IF ω1t ¼ 1 OR (ω2t ¼ 0 AND δ1t � 1 ¼ 1)
) Ref:f37) 8t, t > 1, j ¼ 1 :

δ1t ¼ 1 IF AND ONLY IF ω1t ¼ 1 OR 1� ω2tð Þ þ δ1t�1 � 2ð Þ
) Ref:f35) λ1t ¼ 1 $ 1� ω2tð Þ þ δ1t�1 � 2ð Þ
) Ref:f25) 1� ω2tð Þ þ δ1t�1 � 2λ1t
) Ref:f25) 1� ω2tð Þ þ δ1t�1 � 1� λ1tð Þ þ 2λ1t
) Ref:f34) 8t, t > 1, j ¼ 1 : δ1t ¼ 1 IF AND ONLY IF ω1t þ λ1t � 1

) Ref:f25) ω1t þ λ1t � δ1t

) Ref:f25) ω1t þ λ1t � 2δ1t
8t, t > 1, j ¼ 2 : δ2t ¼ 1 IF AND ONLY IF ω2t ¼ 1 OR ω1t ¼ 0 AND δ2t�1 ¼ 1ð Þ
) Ref:f37) 8t, t > 1, j ¼ 2 :

δ2t ¼ 1 IF AND ONLY IF ω2t ¼ 1 OR 1� ω1tð Þ þ δ2t�1 � 2ð Þ
) Ref:f35) λ2t ¼ 1 $ 1� ω1tð Þ þ δ2t�1 � 2ð Þ
) Ref:f25) 1� ω1tð Þ þ δ2t�1 � 2λ2t
) Ref:f25) 1� ω1tð Þ þ δ2t�1 � 1� λ2tð Þ þ 2λ2t
) Ref:f34) 8t, t > 1, j ¼ 1 : δ2t ¼ 1 IF AND ONLY IFω2t þ λ2t � 1

) Ref:f25) ω2t þ λ2t � δ2t

) Ref:f25) ω2t þ λ2t � 2δ2t

Binary logical calculation: Production change each day.
Applied to: Each day t, t>1.
Variables: αt ¼ 1 if production change is on day t; 0 otherwise.
Logical proposition:

274 8 Practical Examples

8t/t > 1 : αt ¼ 1 IF AND ONLY IF (δ1t ¼ 1 AND δ2t � 1 ¼ 1) OR (δ2t ¼ 1 AND
δ1t � 1 ¼ 1)

Proposition Modelling:
) Ref. f37)
8t/t > 1 : αt ¼ 1 IF AND ONLY IF (δ1t + δ2t � 1 � 2) OR (δ2t + δ1t � 1 � 2)

) Ref. f35)
8t=t > 1 : π1t ¼ 1 $ δ1t þ δ2t�1 � 2ð Þ
8t=t > 1 : π2t ¼ 1 $ δ2t þ δ1t�1 � 2ð Þ

) Ref. f25))

8t=t > 1 : δ1t þ δ2t�1 � 2π1t
8t=t > 1 : δ1t þ δ2t�1 � 1� π1tð Þ þ 2π1t
8t=t > 1 : δ2t þ δ1t�1 � 2π2t
8t=t > 1 : δ2t þ δ1t�1 � 1� π2tð Þ þ 2π2t

) Ref. f34)8t/t > 1 : αt ¼ 1 IF AND ONLY IF π1t + π2t � 1

) Ref. f25)
8t=t > 1 : π1t þ π2t � αt

8t=t > 1 : π1t þ π2t � αt

The expression of this cost will be:
P25
t¼2

CEαt .

Cost of each route: since we have already defined the logical calculation on the
route chosen on each day t, βrt, the expression of this cost would be:

P5
r¼1

P25
t¼1

Crβrt

Cost for non-delivery of panels: panels j that are not delivered to each client
i correspond to the expression:

Dij �
P25
t¼1

yjit

The expression of the cost will then be:
P2
j¼1

P3
i¼1

cn j Dij �
P25
t¼1

yjit

� �
.

Final Expression of the Objective Function:

Min
P25
t¼2

CEαt þ
P5
r¼1

P25
t¼1

Crβrt þ
P2
j¼1

P3
i¼1

cn j Dij �
P25
t¼1

yjit

� �
)

) Min
P25
t¼2

CEαt þ
P5
r¼1

P25
t¼1

Crβrt �
P2
j¼1

P3
i¼1

P25
t¼1

cn jyjit

8.4 Production and Delivery of Solar Panels 275

8.5 Selection of a Tree in a Graph

There is an undirected graph G (N, E), n¼number of nodes, e¼ number of edges.
The nodes have a weight associated with them and the edges a cost. We must obtain
a tree (connected graph without cycles) of G with at least r nodes, r�n, maximizing
the total weight of the selected nodes minus the total cost of the edges.

We are faced with a problem associated with an undirected graph. In Chap. 3 we
presented the table of generic elements of directed and undirected graphs. Based on
that information, we will define our table of elements.

This type of system requires certain knowledge of operational research in the field
of graphs, particularly knowledge of the specifications, which are supposed to be
known and are not usually presented explicitly in the statement. As the statement
mentions, the objective is to obtain a tree. Obtaining a tree carries with it a series of
specifications associated with the selection of edges, which would be our decision
activity.

It is also implicit that in an optimization problem associated with an undirected
graph, the decision activities are limited to the selection of edges and/or nodes. In our
example, it is sufficient to define only the selection of edges. The selection of nodes,
although it can be defined as a decision activity, is really a logical calculation. A
node is selected if one of the edges that connect it has been selected. Our network has
at least r nodes, which corresponds to an explicit specification of the problem.

When problems arise in obtaining trees in graphs, the main problem is selecting
edges that do not form cycles. This can be achieved by using various strategies of
formulating the problem. The most efficient strategies convert the undirected graph
into a directed one, assigning two arcs for each edge. On this directed graph, there
are strategies that incorporate a flow concept in the graph and others that use the
definition of levels.

For our example, we are going to model the problem using two strategies. The
first one does not turn the graph into a directed one, but it needs to collect all the
cycles that the graph has, to later state in the specifications that there must not be any
of them in the tree (Dantzig et al. 1954). To obtain all the cycles of a graph, a
recursive and exponential algorithm is needed that explores the paths that can be
generated from each node. The second strategy is based on the formulation of Miller
et al. (1960) for obtaining a tree in a graph. The strategy needs to use a directed
graph, but it is not necessary to incorporate a flow concept. Also it is incorporated an
indeterminate continuous property to the nodes, their depth.

Strategy 1: Formulation Based on the Formulation of Dantzig et al. (1954)
Table of Elements

276 8 Practical Examples

In the table of elements, we include the list of the cycles of the graph, a total of v.
From each cycle we store the edges that form it and a data calculation, the number of
them (Table 8.8).

Decision Activities

Action: Select edges.
Decision variables: αk ¼ 1 if I select edge k; 0 otherwise.

Specifications

The specifications for forming a tree of an undirected graph are as follows:

1. The number of selected nodes must be equal to the number of selected edges
plus one.

2. We cannot select all the edges belonging to a cycle.

We must, before specification 1, define the logical calculation of the selected
node:

Binary logical calculation: Selected node.
Applied to: Each node i.
Variables: βi ¼ 1 if I select node i; 0 otherwise.
Logical proposition:
8i : βi ¼ 1 IF AND ONLY IF

P
k=ENik¼1

αk � 1

) Ref. SV)8i : IF P
k=ANik¼1

αk � 1 THEN βi ¼ 1

Specification 1.
Pn
i¼1

βi ¼
Pm
k¼1

αk þ 1

Specification 2. 8c : P
k=ECck¼1

αk � Nc � 1

It is also necessary to make it explicit that there must be at least r selected nodes:

Table 8.8 Elements of Example 8.5 – Strategy 1

Elements Set QN

Data

Name Param Type Belonging Value

Nodes i ¼ 1...n IU Edge-Node ENik B S . . .

Weight Wi C W . . .

Edges k¼1. . .m IU Cost Ck C W . . .

ENik; ECck

Cycles c¼1. . .v IU Edge-Cycle ECck B S . . .

Number Nc E W . . .

8.5 Selection of a Tree in a Graph 277

Specification 3.
Pn
i¼1

βi � r

Objective Criterion

Maximize total of node weights minus total of edge costs:

O:F: : Max
Pn
i¼1

Wiβi �
Pm
k¼1

Ckαk

Strategy 2: Formulation Based on the Formulation of Miller, Tucker, and Zemlin
(1960)
Table of Elements

In this case we use the table of directed graphs, converting each edge into two
arcs. In addition, the nodes become individual measurable elements due to the
indeterminate property introduced on their depth in the solution tree (Table 8.9).

Decision Activities

Action: Select Arcs.
Decision variables: αk ¼ 1 if I select arc k; 0 otherwise.

In addition to the activity of selecting, an activity is required that assigns a
depth level value to the nodes.

Action: Assign depth to the nodes.
Decision variables: xi ¼ Depth level assigned to the node i.

Specifications

The logical calculation is maintained to know the selected nodes, but in this
version, we only consider that for a node to be selected, some arc must have been
selected with a destination in that node:

Binary logical calculation: Selected node.
Applied to: Each node i.
Variables: βi ¼ 1 if I select node i; 0 otherwise.
Logical proposition:
8i : βi ¼ 1 IF AND ONLY IF

P
k=Dik¼1 _Oik¼1

αk � 1

Table 8.9 Elements of Example 8.5 – Strategy 2

Elements Set QN

Data

Name Param Type Belonging Value

Nodes i ¼ 1...n IM Source node Oik B S . . .

Destination node Dik B S . . .

Weight Wi C W . . .

Arcs k¼1. . .2m IU Oik; Dik

Cost Ck C W . . .

278 8 Practical Examples

) Ref. SV) 8i : IF P
k=Dik¼1 _Oik¼1

αk � 1 THEN βi ¼ 1

The specifications to form a tree are:

1. The number of selected nodes must be equal to the number of selected arcs
plus one.

Pn
i¼1

βi ¼
P2m
k¼1

αk þ 1

2. To prevent the formation of cycles, it is imposed that if an arc is selected, the
depth of the destination node is lower than that of the source node. It is a logical
proposition that is stated as follows:

8k, i/Oik ¼ 1, j/Djk ¼ 1 : IF αk ¼ 1 THEN xi > xj

MTZ establishes a minimum difference between depths of 1, although any
positive value would work:

8k, i/Oik ¼ 1, j/Djk ¼ 1 : IF αk ¼ 1 THEN xi � xj + 1)
) 8 k, i/Oik ¼ 1, j/Djk ¼ 1 : IF αk ¼ 1 THEN xi � xj � 1
) Ref:f15)
8k, i=Oik ¼ 1, j=Djk ¼ 1 : xi � x j � αk þ 1� nð Þ 1� αkð Þ
LBxi�xk ¼ 0� n� 1ð Þ ¼ 1� n½ �
) 8k, i=Oik ¼ 1, j=Djk ¼ 1 : xi � x j � nαk � 1� n

3. At least r selected nodes:Pn
i¼1

βi � r

Objective Criterion

O.F.:Max
Pn
i¼1

Wiβi �
P2m
k¼1

Ckαk

8.6 Programming of Pilots for an Airline’s Flights

The calculation of the pilots needed to cover the scheduled flights of an airline in a
given period, as well as the specific programming of them, is an optimization
problem that would fall within the interval of scheduling problems (Spieksma 1999).

It is a system that can be transferred to other work environments, because we can
consider it as a system of assigning work shifts. What differentiates shift systems are
the specific restrictions regarding the assignments that workers have. For our system,
we will work with the real specifications of a well-known airline, although we will
simplify certain aspects that are irrelevant to the modelling exercise.

Description of the system:

8.6 Programming of Pilots for an Airline’s Flights 279

The company configures as a trip an airplane journey that begins and ends at the
same airport. That is, the company considers a trip to be a double flight with a brief
20-minute break at the destination airport on the outward journey. Therefore, the
planning of pilots is carried out independently by each city. The pilots are assigned a
city as a base, and all their flights begin and end in the same city. This is realistic
and possible because the company does not carry out long flights, such as ocean
liners, where the round trip would not be viable in the same day. In our example we
will plan the flights of a city.

The necessary information of the flight is the following:

– Departure time
– Arrival time
– Type of flight (requires pilot with experience or not): this can be defined in a

binary way: 1 ¼ Need experience; 0 ¼ Experience not needed.

Pilots will be associated with a type related to their experience. We will have
pilots of less than 1000 flight hours (without experience) and pilots with at least
1000 hours (experienced).

The working specifications for a pilot are the following:

– Maximum daily activity time (TMAX_1): the activity starts at the departure time
of the first flight of the day assigned to the arrival time of the last flight.

– Maximum number of flight hours in the month (TMAX_2).
– Maximum activity time in the month (TMAX_3).
– Minimum rest time between the last flight of a day and the first flight of the next

day (DM).
– Each pilot must adjust to a model in which he works 5 consecutive days and rests

4. This means that each pilot has to adjust to one of these five patterns:

W: Work; R: Rest

Days: 1 2 3 4 5 6 7 8 9 10 11 . . .

Pattern 1: W W W W W R R R R W W . . .

Pattern 2: R W W W W W R R R R W . . .

Pattern 3: R R W W W W W R R R R . . .

Pattern 4: R R R W W W W W R R R . . .

Pattern 5: R R R R W W W W W R R . . .

In addition to these specifications, there is the basic specification of any shift or
interval scheduling system, which is that a pilot cannot perform two overlapping
flights over time. In our case, we are going to impose that there should be at least
20 min between two trips that are assigned to the same pilot.

Table of Elements

With the pilots of the company, which can be of two types, we are in principle
looking at two undetermined collective elements, since one of the tasks of the
problem is to calculate the number of pilots of each type. However, the statement

280 8 Practical Examples

always alludes individually to each pilot who will own the system, which means that
it is necessary to calculate an upper bound of the number of pilots needed and to
work with each pilot as an individual element. In our case we will take m1 for
experienced pilots and m2 for inexperienced pilots. To reduce the number of sub-
scripts in the table, we will group all the pilots into a single set, a total of m ¼ m1 +
m2. The first m1 pilots will be the pilots with experience and the rest without
experience (Table 8.10).

The daily rule Apt has value 1 if the day t with pattern p is a working day, and 0 if
it is a day of rest.

Decision Activities

The main activity of the system is the assignment of pilots to trips.

Action: Assign Pilots to Trips.
Decision variables: αij ¼ 1 if I assign Pilot i to Trip j; 0 otherwise.
But it is not the only activity. In the statement it is mentioned that each pilot must be

assigned to a work pattern. The activity will be configured as follows:
Action: Assign Work patterns to Pilots.
Decision variables: βip ¼ 1 if I assign pattern p to pilot i; 0 otherwise.
Specifications

1. Implicit Specifications
I1. Based on data: Based on flight typologies, we have the specification that an

inexperienced pilot cannot manage a type of flight that needs an experienced
pilot:

8j/Tj ¼ 1, 8 i/Ei ¼ 0 : NOT(αij ¼ 1)
I2. Quantitative selection rules: Regarding the main activity of the system, we

know that each flight needs one pilot (Table 8.11).

Table 8.10 Elements of Example 8.6

Elements Set QN

Data

Name Param Type Belong Value

Pilots i ¼ 1...m IU Experience Ei B W –

Trips (double
flights)

j ¼ 1. . .n IU Starting time Ij C W –

End time Fj C W –

Day Dj E W –

Type Tj B W –

Work patterns p ¼ 1. . .5 IU Daily rule Apt B S

Days t ¼ 1. . .30 IU Apt

System – IU Maximum daily
activity time

TMAX_1 C W –

Maximum month
hours

TMAX_2 C W –

Maximum month
activity time

TMAX_3 C W –

Minimum rest time DM C W –

8.6 Programming of Pilots for an Airline’s Flights 281

Regarding the other activity of choice, it is explicitly described that each pilot has
a pattern (E5).

I3. Logical conditions between activities:

Implicitly we have a relationship between activities αij and βip: A pilot cannot
carry out a flight that is on one of the rest days of his work schedule. Since it is not
explicitly described, we introduce it in this section:

The condition will be applied to each pilot, each pattern and each trip of each day
in which the working rule for that pattern and day that it is one of rest.

8i, p, t/Apt ¼ 0, j/Dj ¼ t : IF βip ¼ 1 THEN αij ¼ 0

I4. Bounds of discrete measurable activities: they do not exist.
I5. Flow balance constraints: they do not exist.

2. Explicit Specifications
E1. Maximum daily activity time: the activity starts at the departure time of the

first flight of the day assigned to the arrival time of the last flight.

It is necessary to declare bound calculations to obtain the starting and end time of
each pilot:

Bound calculations must collect a lower and upper bound on the trips that the pilot
made each day.

If we define, for example, the lower bound calculation as:

Lower Bound Calculation: Lower bound of the starting times of the trips assigned
to the Pilot i on each day t.

Applied to: Each pilot i, each day t.
Variables:
xMIN

it ¼ lower bound of the starting time of the activity of pilot i on day t.
Constraints defining the calculation:
8i, 8 t, 8 j/Dj ¼ t : xMIN

it � Ijαij

We would be making an error, since when pilot i does not perform trip j, αij ¼
0, and therefore, Ijαij ¼ 0, the lower bound would always be 0. We want to calculate
the bound between the flights that the pilot has made. Those that you have not made
should not influence the lower bound. For this, we must use the definition of bounds

Table 8.11 Diagram of the decision activity Assign pilots to trips

Activity Elements selecting Selectable elements Selection Constraints

Assign Pilots i ¼ 1. . .m Trips –

Trips j ¼ 1. . .n Pilots ¼ 1 8j : Pm
i¼1

αij ¼ 1

282 8 Practical Examples

explained in Sect. 5.4.1 applied to variables that are not determined a priori. The
constraints that define the calculation are based on a logical proposition:

Lower Bound calculation: Lower bound of the starting times of the trips assigned
to the Pilot i on each day t

Applied to: Each pilot i, each day t.
Variables:
xMIN

it ¼ lower bound of the starting time of the activity of pilot i on day t.
Constraints defining the calculation:
8i, 8 t, 8 j/Dj ¼ t : IF αij ¼ 1 THEN xMIN

it � Ijαij

For the arrival value of the trips made by each pilot, it is not necessary to use a
logical proposition, since the upper bound can be imposed on all the pairs (i, j). In
the case of not performing the trip, αij ¼ 0, and therefore, Fjαij ¼ 0, it will not
influence the calculation of a upper bound.

Upper Bound calculation: Upper bound of the end times of the trips assigned to the
Pilot i on each day t.

Applied to: Each pilot i, each day t.
Variables:
xMAX

it ¼ upper bound of the activity of pilot i on day t.
Constraints defining the calculation:
8i, 8 t, 8 j/Dj ¼ t : xMAX

it � Fjαij

The specification is an imposition of upper bound to the activity range:

8i, 8 t : xMAX
it � xMIN

it � TMAX _ 1

E2. Maximum number of flight hours in the month.

This specification is a capacity constraint on each pilot. The consumption is
performed by the variables αij with a unitary consumption equal to the time of trip j.

8i : Pn
j¼1

F j � I j
� �

αij � TMAX 2

E3. Maximum activity time in the month.

It would suffice to add the activity of each day and impose the upper bound:

8i : P30
t¼1

xMAX
it � xMIN

itð Þ � TMAX 3

E4. Minimum rest time between the last trip of a day and the first trip of the next
day.

We apply it to each pilot every couple of consecutive days of the month:

8i, 8 t/t < 30 : xMAX
it � xMIN

it + 1 � DM

E5. Each pilot must adjust to one of these five patterns.

8.6 Programming of Pilots for an Airline’s Flights 283

8i : P5
p¼1

βip ¼ 1

E6. There should be at least 20 minutes between two flights that are assigned to
the same pilot.

The specification falls on each pilot and every two trips that do not have an
interval of 20 min between them:

8i,8j, j0=I j0 < F j þ 20min&I j0 � I j : NOT αij ¼ 1 AND αi j0 ¼ 1
� �

Objective Criterion

The objective function will minimize the number of pilots needed. Therefore, we
are going to minimize the number of pilots that make a trip. We will have to perform
a logical calculation on each pilot that has or has not carried out flights and then
minimize the sum of the logical variables.

Binary logical calculation: Pilot who has performed trips.
Applied to: Each pilot i.
Variables: 8i : δi ¼ 1 if pilot i performs trips; 0 otherwise.
Logical proposition:

8i : δi ¼ 1 IF AND ONLY IF
Pn
j¼1

αij > 0

) Ref. SV) 8i : IF Pn
j¼1

αij > 0 THEN δi ¼ 1

Objective Function

Min
Pm
i¼1

δi

References

Dantzig, G. B., Fulkerson, D. R., & Johnson, S. M. (1954). Solution of a large scale traveling
salesman problem. Operations Research, 2, 393–410.

Jensen, T. R., & Toft, B. (1995). Graph coloring problems. New York: Wiley-Interscience. ISBN
0-471-02865-7.

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulations and
traveling salesman problems. Journal of the ACM, 7, 326–329.

Spieksma, F. C. R. (1999). On the approximability of an interval scheduling problem. Journal of
Scheduling, 2(5), 215–227.

284 8 Practical Examples

https://en.wikipedia.org/wiki/Special:BookSources/0-471-02865-7

Correction to: Modelling in Mathematical
Programming

Correction to:
J. M. García Sánchez, Modelling in Mathematical Programming, International
Series in Operations Research & Management Science,
https://doi.org/10.1007/978-3-030-57250-1

This book was inadvertently published without updating the following corrections:

The city information in the affiliation of the author has been corrected as:

José Manuel García Sánchez
IO and Business Management
University of Seville
Sevilla, Spain

In Chapter 4,
On page 99; section 4.5: the line “If y ¼ 0 then x ¼ 0 and α ¼ 0” should be “If y ¼
0 then x ¼ 0 or α ¼ 0”

On page 104: the caption for Table 4.15 was corrected to read as “Table 4.15
Version 4.2 of the Elements in Example 4.6.1”

In Chapter 6, page 181, the following note has been included under section 6.8.4.2.
NOTE: Only for some compound propositions, the following expression for the

OR operator may also be valid:
8i/ψ i 2 Z _ ψ i 2 ℜ : ψ i ωi ¼ 1

The updated online versions of these chapters can be found at
https://doi.org/10.1007/978-3-030-57250-1_4
https://doi.org/10.1007/978-3-030-57250-1_6
https://doi.org/10.1007/978-3-030-57250-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2021
J. M. García Sánchez,Modelling in Mathematical Programming, International Series
in Operations Research & Management Science 298,
https://doi.org/10.1007/978-3-030-57250-1_9

C1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57250-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-57250-1
https://doi.org/10.1007/978-3-030-57250-1_9#DOI

	Preface
	Contents
	Chapter 1: Introduction to Modelling in Mathematical Programming
	1.1 Model
	1.2 Classical Components of a Mathematical Programming Model
	1.3 Classification of Mathematical Programming Models
	1.4 First Example
	1.5 Considerations on the Format of a Mathematical Model
	1.6 Justification of the Use of Mathematical Programming Models
	References

	Chapter 2: Structure of a Mathematical Programming Model
	2.1 Environment of an Optimization Problem
	2.2 Components of an Optimization Problem
	2.3 Examples
	References

	Chapter 3: The Elements of a System
	3.1 Introduction
	3.2 Data of Elements
	3.2.1 Belonging of the Data
	3.2.2 Primary Element in a Shared Attribute
	3.2.3 Type of Value of the Data
	3.2.4 Representation
	3.2.5 Inclusion of Calculated Data

	3.3 The Quantitative Nature of the Elements
	3.3.1 Collective Element vs Individual Items

	3.4 Association of Elements in Sets
	3.4.1 Assigning or Removing Data to Create Sets
	3.4.2 Shared Data Between Elements of the Same Set
	3.4.3 Hierarchical Definition of Sets

	3.5 Data Generating Elements
	3.6 Identification of Data in Graphic Environments. Elements in Graphs
	3.6.1 Representation of Graphs

	3.7 The Time Element
	3.8 Element Duplication
	3.9 Examples
	3.9.1 Fire Stations (Source: Larrañeta et al. 2003)
	3.9.2 Food Service (Source: Larrañeta et al. 2003)
	3.9.3 Location of TV Cameras (Source: Larrañeta et al. 2003)
	3.9.4 Trip Planning
	3.9.5 Fixed Job Scheduling Problem (Kroon et al. 1995)
	3.9.6 Health Centers

	References

	Chapter 4: Decision Activities
	4.1 Introduction
	4.2 Actions of a System
	4.2.1 Actions with Calculated Value
	4.2.2 Actions with Undetermined Value

	4.3 Participating Elements in a Decision Activity
	4.3.1 Rules of Participation

	4.4 Quantification of the Activity
	4.5 Union of Activities
	4.6 Examples
	4.6.1 Fire Stations (Example 3.9.1; Source: Larrañeta et al. 2003)
	4.6.2 Food Service (Example 3.9.2; Source: Larrañeta et al. 2003)
	4.6.3 Location of TV Cameras (Example 3.9.3; Source: Larrañeta et al. 2003)
	4.6.4 Trip Planning (Example 3.9.4)
	4.6.5 Fixed Job Scheduling Problem (Example 3.9.5; Kroon et al. 1995; Kolen et al. 2007)
	4.6.6 Health Centers (Example 3.9.6)

	References

	Chapter 5: Calculations in a System
	5.1 Introduction
	5.2 Auxiliary Calculations
	5.2.1 Auxiliary Calculation of Value Selection

	5.3 Logical Calculations
	5.3.1 Logical Propositions and Logical Operators
	5.3.2 Identification and Definition of a Logical Calculation
	5.3.3 Reduction of the Definition of a Logical Calculation

	5.4 Lower/Upper Bound Calculations
	5.4.1 Bounds on Undetermined Variables

	References

	Chapter 6: Modelling and Types of Specifications
	6.1 Introduction
	6.2 Elements on Which the Specification Falls on
	6.3 Quantitative Specifications of Selection
	6.4 Capacity Specifications
	6.4.1 Case 1: Variable Capacity Consumption and Fixed Contribution
	6.4.2 Case 2: Variable Consumption with Fixed and Variable Capacity Contribution
	6.4.3 Case 3: Fixed Capacity Demand and Variable Capacity Contribution

	6.5 Supply of a Demand
	6.6 Bound Imposition Specifications
	6.7 Allocation, Balance, or Equilibrium Specifications
	6.7.1 Explicit Case
	6.7.2 Implicit Case

	6.8 Modelling of Propositional Logic Specifications
	6.8.1 Simple Propositions and Logical Operators
	6.8.2 Reduction of Signs
	6.8.3 Modelling Operators Individually
	6.8.3.1 Negation Operator (NOT;)
	6.8.3.2 Conditional Operator (IF THEN ;)
	6.8.3.3 Biconditional Operator (IF AND ONLY IF;)
	6.8.3.4 Disjunction Operator (OR;)
	6.8.3.5 Conjunction Operator (AND;)
	6.8.3.6 Exclusive Disjunction Operator (EITHER OR;)

	6.8.4 Modelling Compound Propositions with Various Operators
	6.8.4.1 Negation Operator (NOT;):
	6.8.4.2 Disjunction Operator (OR;) and Exclusive Disjunction (EITHER OR;):
	6.8.4.3 Conjunction Operator (AND;)
	6.8.4.4 Conditional and Biconditional Operators

	6.8.5 Data as Propositions
	6.8.6 Logical Propositions That Express Possibility

	6.9 Objective Criterion
	6.9.1 Cost According to Interval of Values
	6.9.2 Cost According to the Value of Another Variable
	6.9.3 Costs Depending on the Deviation of the Variable
	6.9.3.1 Penalty by Excess
	6.9.3.2 Bonus by Excess
	6.9.3.3 Penalty by Default
	6.9.3.4 Bonus by Default

	6.10 Identification of Specifications
	References

	Chapter 7: The Quantitative Nature of the Elements
	7.1 Introduction
	7.2 Individual Element Not Measurable Defined as Measurable
	7.3 Measurable Element with Both Measurable and Logical Decisions
	7.4 Individual Elements with Capacity to be Grouped in Collective Elements: Redefining the System with Simple Changes
	7.5 Individual Elements with Capacity to Be Grouped in Collective Elements: Redefining the System Description with Complex Cha...
	7.6 Individual Elements with Capacity to be Grouped in Collective Elements: Through Grouping into Subsets
	7.7 Individual Elements with Capacity to Be Grouped in Collective Elements: Through Small Changes in the Data Values
	7.8 Items of Indeterminate Collective Elements that Need to Be Defined Individually
	References

	Chapter 8: Practical Examples
	8.1 Production with Fixed Costs
	8.2 Graph Coloring Problem [Jensen and Toft (1995)]
	8.3 Configuration of Work Centers
	8.4 Production and Delivery of Solar Panels
	8.5 Selection of a Tree in a Graph
	8.6 Programming of Pilots for an Airline´s Flights
	References

	Correction to: Modelling in Mathematical Programming

