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Abstract Recent technological advances make it possible to collect detailed infor-
mation about tumors, and yet clinical assessments about treatment responses are
typically based on sparse datasets. In this work, we propose a workflow for choosing
an appropriate model, verifying parameter identifiability, and assessing the amount
of data necessary to accurately calibrate model parameters. As a proof-of-concept,
we compare tumor growth models of varying complexity in an effort to determine
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the level of model complexity needed to accurately predict tumor growth dynamics
and response to radiotherapy. We consider a simple, one-compartment ordinary
differential equation model which tracks tumor volume and a two-compartment
model that accounts for tumor volume and the fraction of necrotic cells contained
within the tumor. We investigate the structural and practical identifiability of these
models, and the impact of noise on identifiability. We also generate synthetic
data from a more complex, spatially-resolved, cellular automaton model (CA) that
simulates tumor growth and response to radiotherapy. We investigate the fit of the
ODE models to tumor volume data generated by the CA in various parameter
regimes, and we use sequential model calibration to determine howmany data points
are required to accurately infer model parameters. Our results suggest that if data on
tumor volumes alone is provided, then a tumor with a large necrotic volume is the
most challenging case to fit. However, supplementing data on total tumor volume
with additional information on the necrotic volume enables the two compartment
ODEmodel to perform significantly better than the one compartment model in terms
of parameter convergence and predictive power.

Keywords Systems biology · Mathematical oncology · Parameter
identifiability · Bayesian sequential calibration · Model selection

1 Introduction

Cancer remains one of the leading causes of death in the world, second only
to cardiac disease. As such, it represents a significant global public health and
socio-economic problem. Of particular interest, given the unpleasant side-effects
that accompany many cancer treatments, is being able to establish as early as
possible whether a patient will respond (or is responding) to a particular treatment
and, based on this assessment, whether treatment should be continued or a new
treatment started. Mathematical modeling provides a natural framework within
which to answer such questions. In more detail, mechanistic models that describe
the growth dynamics of a tumor and its response to treatment may be fit to patient
data collected during treatment and used to predict how the tumor’s size (and
possibly composition) will change if treatment is continued. Model fits, parameter
estimates, and predictions may be revised as treatment progresses and more patient
data become available. These predictions can then be used to inform decisions about
whether to continue with the current treatment.

The approach outlined above relies upon the availability of time-dependent math-
ematical models of tumor growth and patient data to which the models can be fit.
Advances in technology mean that it is now possible to collect detailed information
about tumors (e.g., their size, spatial composition, mutational status, vascularity and
degree of immune infiltration). Even so, decisions about treatment options (e.g.,
surgery, radiotherapy, chemotherapy and immunotherapy), and assessments about
treatment responses are often based on statistical analyses of sparse and noisy data
relating to a small number of quantities of interest (e.g., tumor volumes at three
time-points: at diagnosis, at treatment start, and at treatment end).
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The availability of detailed information about tumors has undoubtedly stimulated
the development of a large number of mathematical and computational models
of tumor growth. These range from spatially-averaged, phenomenological models
formulated using differential equations (e.g., logistic growth, Gompertzian growth)
[8, 10], to multiphase models based on mixture theory [4, 20] or phase field
theory [22], and multiscale models that couple subcellular, cellular, and tissue
scale phenomena [14]. In addition to simulating tumor growth, these models have
also been used to study tumor responses to treatments including radiotherapy,
chemotherapy, immunotherapy and combinations thereof [3, 19]. Unfortunately,
the absence of suitable experimental data coupled with the complexity of many
of the theoretical models means that few of them have been validated and/or
parameterized. Additionally, the sheer number and variety of available models
makes it difficult to determine which model may be most appropriate for a given
scenario and available data [9, 21, 24].

In this investigation, we propose a workflow for determining an appropriate
model to be used under the constraints of a given scenario (i.e. when data is scarce or
noisy). We begin with an identifiability analysis in two parts: structural identifiabil-
ity, which determines whether the model parameters can be uniquely estimated in an
“ideal world”, and practical identifiability, which reassesses parameter identifiability
in a real-world scenario, in which data is noisy and potentially sparse.

After establishing structural and practical identifiability, we tackle the question
of which model to fit to the available data. We perform a parameter sweep to
measure error in model predictions across different parameter regimes, establishing
conditions under which certain models can be used to make accurate predictions
about tumor growth. While we desire model simplicity whenever possible, we
recognize that in some scenarios (for example, when the tumor comprises a large
portion of necrotic tissue), a model that tracks only tumor volume (for instance)
may not be able to describe the tumor growth dynamics.

Once we have chosen an appropriate model for a given scenario and verified
that its parameters are structurally and practically identifiable, we examine how
the model calibration is affected by the availability of data. In this investigation,
we perform sequential calibration, adding one data point at a time to determine
how much data is necessary to uniquely calibrate the model parameters. At each
step, we use the current parameter values to predict the future tumor volume after
treatment has concluded, and compare this prediction to our known “truth” to assess
whether the current amount of data is adequate for making future predictions. This
investigation helps us to determine the extent to which additional data will increase
the predictive power of our mathematical models.

The approach outlined above serves as a “proof-of-concept” for our proposed
framework; we test our procedure on two simple compartmental models for tumor
growth: one that describes only total tumor volume, and a second that also accounts
for the proportion of necrotic cells. We compare their dynamics to data generated
from a more complex cellular automaton model (CA), which we use as our “truth”.
Additionally, we combine our growth models with the linear-quadratic model [12]
to simulate tumour responses to a radiotherapy treatment regimen and also to test
our model predictions in the presence of an intervention to tumor growth.



182 H. Cho et al.

The remainder of this paper is structured as follows. In Sect. 2 we introduce
the one- and two-compartment models that we use to predict tumor growth and
response to radiotherapy. We also outline the structure of the cellular automaton
model that we use to generate synthetic data for fitting the compartment models.
We present typical CA simulation results that illustrate how a tumor’s spatial
composition and growth dynamics may change in response to radiotherapy. In
Sect. 3, we explain how structural and practical identifiability analysis methods
can be used to determine whether it is possible to infer the parameters associated
with a particular model when the data is perfect (structural identifiability) and
noisy (practical identifiability). We include several case studies that investigate
how the addition of noise to the CA data affects the ability to recover model
parameters, and compare the ability of the one- and two-compartment models to
fit data generated by the CA under a variety of conditions, including a range of
necrotic heterogeneity levels. In Sect. 4, we study the goodness of fit of the one-
compartment model to synthetic data generated from the two-compartment model.
Through an extensive search of parameter space, we determine how parameters in
the one- and two-compartment models are related, and discuss how these results
can be used to select an appropriate model that will yield accurate predictions while
still maintaining model simplicity whenever possible. Finally, in Sect. 5 we perform
sequential model calibration to determine how much data is needed to accurately
infer model parameters. The paper concludes in Sect. 6 with a summary of our key
results and directions for future work.

2 The Mathematical Models

Here we introduce the three mathematical models that will be used throughout this
investigation. The first is a one-compartment ODE model that tracks tumor volume
over time. It is the most basic model that we use to describe tumor growth. The
second model is a two-compartment ODE model that incorporates a state variable
for tracking the portion of tumor volume that is composed of necrotic tissue, thereby
allowing for tumor heterogeneity. This model will be used both as a data generator
to test the capabilities of the one-compartment ODE model as well as a model to
be calibrated against “true” data. Our final and most complex model is an cellular
automaton model (CA) that we use to generate our “truth” data, as it is assumed
to most accurately reflect reality by including the cell cycle, quiescent cells, and
oxygen levels [14]. In all three cases, we will incorporate treatment via radiation
using the linear-quadratic model for radiotherapy.

2.1 The One-Compartment Model

Our one-compartment model describes the time evolution of the tumor volume,
V (t), using a logistic growth model with growth rate λ and carrying capacity K:
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dV

dt
= λV

(
1 − V

K

)
︸ ︷︷ ︸
logistic growth

− ηV.︸︷︷︸
natural cell death

(1)

Natural cell death, at rate η, is incorporated via the term −ηV . In what follows,
it will be convenient to re-parameterize Equation (1) to obtain the simpler form

dV

dt
= AV

(
1 − B

A
V

)
, (2)

where A = λ − η and B = λ
K
. From here on, we will refer to the one-compartment

model in its re-scaled form, in Equation (2).
This simple model views the tumor as a homogeneous mass in which all cells

are identical. In practice, however, as the tumor grows, regions at a distance
from oxygen and nutrient sources (e.g., blood vessels for tumors growing in vivo)
may undergo necrotic cell death in response to sustained oxygen and/or nutrient
deprivation. In the one-compartment model, such dead or necrotic cells are assumed
to be removed from the tumor instantaneously.

2.2 The Two-Compartment Model

In order to account for some aspects of tumor heterogeneity, we study a two-
compartment model that tracks the time evolution of the volume of viable tumor
cells (V (t)) and the volume of the necrotic core (N(t)), and that was originally
developed in [18]. The population of proliferating (i.e., viable) cells is assumed
to grow logistically with growth rate λ and carrying capacity K . Additionally, we
assume that viable cells convert to necrotic cells at a constant rate η, and that
necrotic material undergoes natural decay at a constant rate ζ . Combining these
processes, we arrive at the following ODE system for V (t) and N(t):

dV

dt
= λV

(
1 − V

K

)
− ηV, (3a)

dN

dt
= ηV − ζN. (3b)

To facilitate comparison with the one-compartment model, we reformulate (3a)–
(3b) in terms of Y (t), the total tumor volume (Y = V + N ), and Φ(t), the fraction
of the total volume that comprises necrotic cells (Φ = N/Y ). Using this notation,
Equations (3a) and (3b) can be rewritten in the form

dY

dt
= λ(1 − Φ)Y

(
1 − (1 − Φ)

Y

K

)
− ζΦY, (4a)
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dΦ

dt
= (1 − Φ)

[
η − λΦ

(
1 − (1 − Φ)

Y

K

)
− ζΦ

]
. (4b)

We note that in the limit as ζ → ∞ (i.e., if the timescale for degradation of
necrotic material is much shorter than the timescale for other processes included in
the model), Equations (4a) and (4b) reduce to the one-compartment model defined
by Equation (1).

2.3 The Cellular Automaton Model

We use a spatially-explicit, hybrid cellular automaton model (CA) to generate
synthetic tumor volume data. Our cellular automaton model is adapted from the
one developed in [14]. In the CA model, cells are arranged on a 200× 200 grid,
which represents a two-dimensional cross-section of size 0.36× 0.36 cm2 through
a three-dimensional spheroid in vitro. Each automaton can be occupied either by a
tumor cell or culture medium. The CA couples the dynamics of automaton elements
arranged on the grid to the oxygen concentration. We identify with each automaton
x = (x, y) at time t a dynamical variable with a state and a neighborhood. The
four possible states are proliferating P , quiescent Q, necrotic N , and empty E ,
determined by the oxygen level at each site: if c > cQ then the cells proliferate,
if cN < c < cQ then the cells stop proliferating and halve the rate at which they
consume oxygen, and if c ≤ cN then the cells become necrotic (see Table 1 for
details). Each cell communicates with cells within its Moore neighborhood, i.e., its
eight nearest neighbors. Proliferating cells are assigned counters that describe

Table 1 A summary of the parameters used in the CA and their default values. Parameter values
are estimated using experimental data from the prostate cancer cell line, PC3, in [14]

Parameter Description Value Units

l Cell size 0.0018 cm

L Domain length 0.36 cm

τ̄cycle(σcycle) Mean (standard deviation) cell cycle
time

18.3 (1.4) h

c∞ Background O2 concentration 2.8 × 10−7 mol cm−3

D O2 diffusion constant 1.8 × 10−5 cm2s−1

cQ O2 concentration threshold for
proliferating cells

1.82×10−7 mol cm−3

cN O2 concentration threshold for
quiescent cells

1.68×10−7 mol cm−3

κP O2 consumption rate of proliferating
cells

1.0×10−8 mol cm−3s−1

κQ O2 consumption rate of quiescent cells 5.0×10−9 mol cm−3s−1

pNR Rate of lysis of necrotic cells Range: 0.004–0.016 hr−1
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Fig. 1 Flow diagram describing the cell movement between necrotic, quiescent and proliferating
states. The parameter pRAD denotes the probability that a cell becomes necrotic following
radiotherapy and pRAD = 1− e−αd−βd2 . The parameter τcycle denotes the specific cell’s assigned
cycle length

where they are in the cell cycle. These counters are initially drawn from a normal
distribution with mean τ̄cycle and standard deviation σcycle. After each time step, the
cell cycle counter of each cell decreases by an amount that depends on the number
of neighboring cells; a smaller reduction in cell cycle time occurs with a larger
number of neighbors, to model the regulatory process known as contact inhibition
of proliferation. Figure 1 summarizes how a cell can transition between quiescent,
proliferating and necrotic states.

We model the single growth-rate-limiting nutrient, oxygen, explicitly via a
reaction-diffusion equation. In particular, the evolution of the oxygen concentration
c(x, t) (mol cm−3) at location x for time t is described by:
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∂c(x, t)
∂t

= D∇2c(x, t) − Γ (x, t), (5)

where D is the oxygen diffusion coefficient (cm2 s−1). and Γ (x, t) is the oxygen
consumption rate (mol cm−3 s−1), defined as follows:

Γ (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

κP if x is occupied by a proliferating cell

κQ if x is occupied by a quiescent cell

0 otherwise.

The parameters κP and κQ are the rates at which quiescent and proliferating cells
consume oxygen, respectively, and are in mol cm−3 s−1 with κP >= κQ. We also
use the following initial and boundary conditions to describe the situation in which
oxygen diffuses from the boundaries of a square Petri dish into the culture medium:

c(x, y, 0) = c∞,

c(0, y, t) = c(L, y, t) = c(x, 0, t) = c(x, L, t) = c∞,

where L is the domain length, and c∞ is the background O2 concentration. See
Table 1 for a list of the parameter values used to simulate the CA.

When a cell cycle counter reaches 0, the cell divides to produce two identical
cells, one located at the same site as the parent, and one placed in an empty
neighboring site, if available. If more than one neighboring site is empty, the site
with the maximum number of neighbors is chosen to maintain cell-cell adhesion.
If no adjacent sites are empty, then in an effort to simulate the mechanical stress
exerted on neighboring cells during spheroid expansion, we find the shortest chain
of cells connecting the dividing cell to the spheroid’s boundary and shift this chain
outward to create space for the daughter cell. Figure 2a, b displays this process.

A cell becomes necrotic if the oxygen concentration at its location falls below a
specified threshold, or if the cell is irradiated, as discussed in Sect. 2.4. Necrotic cells
are lysed at rate pNR . Lysis involves removing the necrotic cell and then shifting
inward a chain of cells starting from the boundary of the spheroid to fill in the
removed cell’s site. The spheroidal shape of the tumor is preserved by choosing the
boundary cell that is farthest from the spheroid center, and then shifting a chain of
adjacent cells inward. Figure 2c, d displays this process.

All model simulations are initialized by placing a circular cluster of cells in the
center of the grid: this imitates seeding a spheroid in a Petri dish. The cells consume
oxygen as it diffuses from the culture medium and this enables them to progress
through the cell cycle and to divide. As the spheroid grows, oxygen levels at its
center fall. When the oxygen concentration drops below a threshold value cells exit
the cell cycle and become quiescent. As the spheroid grows further, and oxygen
levels decrease further, quiescent cells die via necrosis and the resulting necrotic
debris is transported away from the spheroid.
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Fig. 2 Figures adapted from [14]. The spheroidal shape of the tumor is preserved by shifting a
chain of cells outward when cell division occurs, shown (a) before and (b) after division, and by
pulling a chain of cells inward when a cell lyses, shown (c) before and (d) after lysis. In (a)–(b), P
denotes the dividing parent cell, and D denotes the daughter cell. The dividing cell pushes the chain
of cells in (a), labeled by 1,2,3, outward to occupy the sites shown in (b). In (c)–(d), R denotes
the cell that is removed. The numbered chain of cells, 1–5, are shifted in order to take the place of
cell R

We use the CA to generate a series of synthetic spheroids which differ in their
growth rates, sizes and spatial composition. Parameters are set to baseline values
determined using experimental data from the prostate cancer cell line, PC3, in [14].
The results presented in Fig. 3 show how the size and composition of a spheroid
change over 60 days of growth as we vary pNR , the rate at which necrotic cells
are removed. We use pNR = 0.015 hr−1 and pNR = 0.004 hr−1 to generate
control (untreated) spheroids with approximately 20% and 50% necrotic volume,
respectively, at steady state.

2.4 Radiotherapy Treatment

We now explain how we incorporate treatment with radiotherapy (RT) in all three
models. We consider a typical tumor treatment regimen in which daily doses of 2 Gy
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Fig. 3 CA simulations after 60 days in the absence of treatment, representing two-dimensional
cross-sections of tumor spheroids. On the left, we used pNR = 0.015 to generate a spheroid in
which the necrotic cells occupy approximately 20% of total tumor volume. On the right, we used
pNR = 0.004 to generate a spheroid in which necrotic cells occupy approximately 50% of total
tumor volume

are administered Monday through Friday for 6 weeks. We use the linear-quadratic
model [12] to account for the effect of RT. This model assumes that the fraction of
cells that survive exposure to a dose d of RT is given by

Survival fraction, SF = e−αd−βd2 , (6)

where α and β are tissue specific radiosensitivity parameters that model single
and double strand breaks of the DNA [17]. We assume that the effect of RT
is instantaneous, with the non-surviving cell fraction immediately removed when
therapy is administered. Under these assumptions, the one-compartment model
becomes

dV

dt
= AV

(
1 − B

A
V

)
for t+i < t < t−i+1, (7)

V (t+i ) = exp(−αd − βd2) V (t−i ).

where ti (for i = 1, 2, . . . , N) denote the times at which radiotherapy is delivered,
and V (t±i ) denote the tumour volume just before and after radiotherapy is adminis-
tered.

Treatment in the two-compartment model is modeled analogously, except that the
sink of irradiated cells from the viable tumor volume will have an equal and opposite
source term in the ODE for the necrotic component. Similarly in the cellular
automaton model, each living cell becomes necrotic with probability 1 − e−αd−βd2

when radiotherapy is administered.
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2.5 Typical CA Simulation Results

We generate synthetic spheroids using the CA described in Sect. 2.3, using the
default parameter values listed in Table 1. Snapshots of typical CA tumor spheroids
in the absence of treatment at days 6, 17, 30 and 70 are presented in Fig. 4a. Similar
results showing the response to radiotherapy of tumors with low radiosensitivity are
presented in Fig. 4b and for tumors with high radiosensitivity in Fig. 4c. Tumors
with faster necrotic decay (pNR = 0.015) are shown in the four-panels on the left,
and tumors with slower necrotic decay (pNR = 0.004) are shown on the right. We
note that when radiotherapy is applied, treatment begins on Day 15.We observe that,
in most cases, the size of the tumor on Day 70 is larger when the rate of necrotic
decay is low than when it is high. However, if the tumor has high radiosensitivity,
then the situation reverses: all living cells are eliminated when the necrotic cells
decay slowly but not when they decay rapidly.

For each set of parameter values, we simulate 100 realizations of the CA and
determine how the mean total tumor volume and mean necrotic volume change over
time. Figure 5a presents the averaged results when no treatment is applied, with
results corresponding to the high rate of necrotic decay (pNR = 0.015) on the left,
and results corresponding to the low rate (pNR = 0.004) on the right. Figures 5b, c
summarize the results for both cases when radiotherapy is applied. In Fig. 5b, the
tumor has a lower radiosensitivity level (α/β = 9), while Fig. 5c shows the results
for tumors with higher radiosensitivity (α/β = 1). The plots of mean tumor volume
and mean necrotic volume confirm that the trends we observe in a single realization
(see Fig. 4a–c) are representative of the average behavior in each case. We use the
synthetic data from these representative simulations to calibrate the ODE models in
Sects. 3, 4, and 5.

3 Identifiability Analysis

3.1 Structural Identifiability Analysis

The concept of structural identifiability was first introduced in 1970 by Bellman
and Astrom [2]; they asked whether, given perfect input data and a measured
output signal that relates to available experimental data, it is possible to determine
parameters associated with a dynamical systems model. A model identification
question then asks whether it is possible to uniquely recover all model parameters
given sufficient, error-free data about one (or more) model outputs. We note here that
this type of analysis is sometimes referred to as structural identifiability analysis,
as it relies solely on the properties of the dynamical system and respective model
observable outputs. It should not be confused with practical identifiability analysis,
which is concerned with the ability to recover parameter values from error-prone
experimental data and depends on the computational approach used to parameterize
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Fig. 4 (a) No treatment. Tumor composition on Days 6, 17, 30, and 60 when the rate of necrotic
decay is high (left) and low (right), and no treatment is applied. (b) Low radiosensitivity (α/β = 9).
Tumor composition on Days 6, 17, 30, and 60 when the rate of necrotic decay is high (left) and
low (right), and radiotherapy is applied. (c) High radiosensitivity (α/β = 1). Tumor composition
on Days 6, 17, 30, and 60 when the rate of necrotic decay is high (left) and low (right), and
radiotherapy is applied

the model. It is important to note that many difficulties related to estimating
parameters by fitting mathematical models to datasets may stem from lack of
structural identifiability. In such cases, the system may not admit unique parameter
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Fig. 5 (a) Mean CA spheroid volume with no treatment. The tumor grows in the absence of
radiotherapy, when the rate of necrotic cell death is high (left), and low (right). (b) Mean CA
spheroid volume with low radiosensitivity. The tumor exhibits radiosensitivity level α/β = 9, when
the rate of necrotic cell death is high (left), and low (right). (c)Mean CA spheroid volume for tumor
cells with high radiosensitivity. The tumor exhibits radiosensitivity level α/β = 1, when the rate of
necrotic cell death is high (left), and low (right). The plots in Fig. 5 show the time evolution of the
mean total tumor volume and mean necrotic volume, obtained by averaging over 100 realizations
of the CA. The error bars indicate the standard deviation at each time point. The dashed lines show
the total tumor volume and the necrotic volumes from the representative simulation used to fit to
the ODE models. The figures on the left correspond to spheroids with high rates of necrotic decay
(pNR = 0.015) and small necrotic volumes; those on the right correspond to spheroids with low
rates of necrotic decay (pNR = 0.004) and large necrotic volumes
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sets for a given observed model output. For further details about the techniques we
use, we refer the interested reader to [5, 6]. In the remainder of this section we study
the structural identifiability of the one- and two-compartment models presented
in Sect. 2. Due to the form of the treatment terms, we employ the Taylor series
approach [5, 23] to establish model structural identifiability and then compare our
results with those obtained through a generating series approach implemented in
Matlab through the GenSSI package [7]. To the best of our knowledge, assessing
and characterising the structural identifiability of CAs remains an open problem.
One approach would be to derive mean field descriptions of the CAs and to perform
identifiability analysis of the resulting equations. Alternatively, several authors
have shown how Approximate Bayesian Computation can be used for parameter
inference of CAs [15, 16].

3.1.1 One-Compartment Model: No Radiation

In this case the model reduces to logistic growth, with

dV

dt
= AV

(
1 − B

A
V

)
, (8)

V (0) = V0.

We wish to establish the structural identifiability of the model with unknown
parameters p = {A,B}, observable quantity y(t;p) = V (t) and known initial
conditions V (t = 0) = V0.

Before we state results, we briefly outline the Taylor series approach, as
delineated in [5, 23]. We assume that the observation function y(t;p) is analytic in
a neighborhood of some time. Then we can evaluate y(t;p) and its successive time
derivatives in terms of the model parameters and initial conditions at time t = 0+
using

y(t, p) = y(0+;p) + y(1)(0+;p)t + y(2)(0+;p)
t2

2! + . . . + y(i)(0+;p)
ti

i! + . . . ,

(9)
where

y(i)(0+;p) = diy

dti
(0+;p). (10)

Given Equations (9) and (10), the problem reduces to identifying a system
of algebraic equations that relate the unknown model parameters (here A and
B) to known values of the observable y(t;p) and its derivatives at t = 0+. If
these equations admit unique solutions for each parameter, we consider the system
to be structurally identifiable; otherwise, it is either locally identifiable or non-
identifiable.
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Since for our problem only A and B are unknown, we start by computing the first
two Taylor series coefficients:

V ′(0+) = AV (0+)

(
1 − B

A
V (0+)

)
(11)

V ′′(0+) = AV ′(0+) − 2BV (0+)V ′(0+). (12)

Denoting by a0 = V (0+), a1 = V ′(0+) and a2 = V ′′(0+), we obtain the
following pair of simultaneous equations for the unknown parameters A and B:

a1 = Aa0 − Ba20 (13)

a2 = a1A − 2a1Ba0, (14)

with solution

A = 2
a1

a0
− a2

a1
and B = a1

a20

− a2

a1a0
. (15)

Since a0, a1, and a2 are known, the variables A and B are globally structurally
identifiable except for at most a set of points of zero measure (i.e., points for which
a0 = 0, a1 = 0). We remark that in this case we have exploited the reduced
number of parameters due to model rescaling. For the original, dimensional model
(1), the three parameters p = {λ,K, η} are not uniquely identifiable: the Taylor
series coefficients do not contain enough information to uniquely extract the three
parameters from tumor volume observations.

Next, we repeat the above analysis using the generating series approach imple-
mented in GenSSI [7]. Briefly, GenSSI implements a generating series approach
coupled with identifiability tableaus [1] for linear and non-linear systems of ODEs.
The underlying principle is to obtain equations for model parameters by computing
successive Lie derivatives of the right hand side of the ODE system and model
observable quantities (y(t;p) = V (t) in our case). If the solution of the system of
parameter equations is unique then the parameters are declared globally identifiable.
We implemented our model in GenSSI and confirmed that {A,B} in (2) are
structurally identifiable, whereas {λ,K, η} in (1) are not structurally identifiable.
These results are consistent with results of the Taylor series approach outlined
above.

3.1.2 One-Compartment Model: Point Radiation Treatment

The problem now reads

dV

dt
= AV

(
1 − B

A
V

)
for t+i < t < t−i+1, (16)
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V (t+i ) = exp(−αd − βd2) V (t−i ).

Since, in this case, the experimental observable y(t;p) = V (t) corresponds to
tumor volume, parameters A and B are identifiable from observations of the system
without therapy (see Equation (15)). In addition, for a radiotherapy treatment the
timing and dose ti and d are also known quantities. Thus, the unknown parameters
to identify from the tumor volume measurements are α and β. In order to identify
α and β, we should compute, in principle at least, two Taylor series coefficients by
employing a Taylor series expansion around the treatment time, ti (note that we use
one-sided limits and derivatives at t±i , as in the previous section).

Using Equation (16), it is straightforward to show:

A1 = AA0Γ − BA2
0Γ

2, (17)

A2 = A1(A − 2BA0Γ ), (18)

where A0 = V (t−i ), A1 = V ′(t+i ), and A2 = V ′′(t+i ) are known, and Γ =
exp(−αd − βd2).

Inspection of Equations (17) and (18) reveals that they do not admit unique
solutions for α and β since α and β appear in both equations via the parameter
grouping Γ . We declare α and β to be non-identifiable in this setting (the same
results were obtained using GenSSI implementation). Therefore, in what follows,
we fix α and vary β. This is reasonable since radiosensitivity of cancer is often
characterized by the ratio α/β; we vary β to allow α/β to take on a range of values.
In practice, estimates of the values of α and the ratio α/β could be obtained, for a
particular biological tissue, by measuring the volume reduction caused by exposure
to different radiotherapy doses and fitting these data to the linear quadratic model.

3.1.3 Two-Compartment Model

The two compartment model with treatment is given by the following model
equations:

dY

dt
= λ(1 − Φ)Y (1 − (1 − Φ)

Y

K
) − ξΦY (19)

dΦ

dt
= (1 − Φ)

[
η − λΦ(1 − (1 − Φ)

Y

K
) − ξΦ

]
, for t+i < t < t−i+1

(20)

Φ(t+i ) = Φ(t−i ) + (1 − Φ(t−i ))(1 − exp(−αd − βd2)). (21)

Since the calculations are similar to, but more involved than those used for
the one-compartment model, the details are presented in the Appendix. For com-
pleteness, we summarize our findings here. In the absence of treatment, with
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p = {λ,K, ξ, η}, observable quantities y(t;p) = {Y (t),Φ(t)}, and known initial
conditions, we obtain unique solutions of the unknown parameters in terms of the
observable quantities and their derivatives; we thus declare all four parameters
structurally identifiable. We also repeat the analysis in the case in which only the
tumor volume is observed, i.e., y(t;p) = Y (t), but with known initial conditions
for the tumor volume and necrotic fraction. In this case, we take higher order Taylor
series coefficients (up to order 4) and find that p = {λ,K, ξ, η} are structurally
identifiable. GenSSI calculations confirm our findings.

When treatment is added, as detailed in the Appendix, we find that the radiation
parameters α and β are not structurally identifiable, in agreement with the analysis
for the single compartment model.

3.2 Practical Identifiability Analysis and Parameter Estimation

After establishing structural identifiability, it is natural to consider the practical
identifiability of a model’s parameters. In particular, given experimental data with
measurement noise and a specific model, is it possible to uniquely determine a set
of model parameter values that are most likely to produce the data?

One approach for determining the practical identifiability of the parameters
while performing model calibration is through the use of a Metropolis algorithm,
based on Markov Chain Monte Carlo (MCMC) techniques. Here, we construct
Markov chains whose stationary distributions coincide with the posterior density
of the parameters; thus, by sampling realizations of our parameters from this chain,
we are effectively sampling from the parameter posterior density. The traditional
Metropolis algorithm, as outlined in [25], constructs the posterior chains by drawing
the next candidate, q∗, from a proposal function J (q∗|qk−1), where qk−1 represents
the previous parameter candidate. The goal of the Metropolis algorithm is to identify
the set of parameter values that maximizes the likelihood function. This is equivalent
to minimizing the sum-of-squares of the differences between the observed and
predicted data. If the new candidate yields a smaller sum-of-squares error than
the previous one, it is accepted as the next value in the posterior chain. Otherwise,
we reject with some specified probability—see [25] for details—and the new state
is taken to be the same as the old one, qk = qk−1. The traditional Metropolis
algorithm assumes a symmetric proposal function J with respect to each of the
individual parameters, though the Metropolis-Hastings algorithm [25] allows for
asymmetric proposal functions. Here, we use the symmetric proposal function
J (q∗|qk−1) = N (qk−1, C), where C is the covariance matrix for the parameter
set.

In what follows, we perform model calibration using the Delayed Rejection
Adaptive Metropolis (DRAM) algorithm for parameter estimation [11]. This exten-
sion of the traditional Metropolis algorithm includes two additional steps. The
first, the delayed rejection step, allows for the proposal of an alternative parameter
candidate from a narrower proposal distribution in place of outright rejection of the
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original candidate. This results in greater mixing in our posterior MCMC chains by
preventing the algorithm from stagnating on a single accepted candidate for long
periods of time while multiple new candidates are rejected. During the adaptation
step, a periodic adaptation of the parameter covariance matrix is performed to incor-
porate new information gained from accepted candidates. This covariance matrix
is built into our proposal distribution; recall, we use J (q∗|qk−1) = N (qk−1, C),
where C is the parameter covariance matrix. Thus, periodically updating C to
reflect new information about the accepted parameter candidates will result in
quicker convergence to the posterior densities. In this investigation, we use an
adaptation interval of every 100 parameter candidates. For further information about
the DRAM algorithm, we refer the interested reader to [11, 25].

After completing the parameter estimation process, we look for evidence of
successful parameter recovery. First, we investigate the MCMC posterior chains
for good mixing; we desire posterior chains that resemble white noise to suggest
that the entire parameter space has been explored without extended stagnation on
certain candidates. For visual examples of well-mixed posterior chains, we refer the
reader to [25]. We also consider the pairwise parameter plots, as these can illustrate
identifiability issues in several ways. Pairs of parameters whose chains are highly
correlated in a strictly linear fashion are said to be unidentifiable in the sense that
they cannot be uniquely identified by calibration with the available data; infinitely
many pairs of parameter values would yield the same model response. Identifiability
issues can also manifest as posterior densities that are unchanged from the specified
prior distributions, indicating that the parameters are uninformed by the available
data. By considering the above indicators, we can determine whether the quality
and quantity of the data is sufficient to support the unique identification of all model
parameters.

3.2.1 The Impact of Necrotic Fraction on Model Calibration

We now investigate the ability of the one- and two-compartment ODE models to fit
synthetic data generated from the CA for different values of the CA parameter pNR ,
the probability of removal of a necrotic cell. We begin by generating synthetic data
in the form of a single representative realization of the CA with α/β = 1 and all
other parameters fixed at the nominal values provided in Table 1. For calibration,
we use data from the first day of weeks 2–7 and day 70 (i.e. days 8, 15, 22, 29, 36,
43, 50, and 70), corresponding to the first day of treatment each week and then a
post-treatment scan to check for tumor regrowth. We feed this data to the relevant
ODE model and estimate all parameters (A, B, and β for the one-compartment
ODE model; λ, k, η, ζ , and β for the two-compartment model). When investigating
the performance of the two-compartment ODE model, we consider two cases: (1)
providing tumor volume and necrotic fraction data, and (2) providing only tumor
volume data, but still estimating necrotic fraction in the absence of that data.

The results presented in Fig. 6a show that the one-compartment ODE fit improves
as pNR increases, suggesting that the one-compartment ODE is better able to model
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Fig. 6 Comparing the ability of the one- and two-compartment ODE models to fit synthetic
data collected from the CA for varying values of pNR , 0.004, 0.008, 0.012, and 0.016. (a) One-
compartment model fit to tumor volume data from the CA model. (b) Two-compartment model
fit to CA tumor volume data without necrotic core fraction data. (c) Two-compartment model fit
to the CA data (for both tumor volume and necrotic fraction). Blue represents tumor volume; red
represents necrotic fraction. Solid curves are fit to the given data; dashed curves show necrotic
fraction estimate from the two-compartment ODE model generated in absence of necrotic data

scenarios in which the necrotic portion of the tumor is minimal. In contrast, the
two-compartment ODE with both sets of data supplied fits the data with reasonable
accuracy in all four cases, regardless of the pNR value—see Fig. 6c. When the
necrotic fraction data is not supplied, the two-compartment model generates good
fits to total tumor volume data alone, for all values of pNR . However, in all cases it
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vastly overestimates the necrotic fraction towards the beginning of the observation
period, as shown in Fig. 6b. Thus, using only tumor volume data, we can reliably use
the two-compartment model to make predictions about tumor volume, but cannot
rely on the calibration to produce an accurate portrayal of the tumor heterogeneity.
Parameter values generated by fitting the models to the CA data for various values
of pNR are given in Table 2.

3.2.2 The Impact of Noise on Parameter Recovery

In this case study, we seek to understand how the addition of noise to the data affects
our ability to recover model parameters; specifically, at what point does the noise
level overcome our ability to determine what parameter values were used to generate
the data? We generate noise uniformly on an interval centered over each data point,
with a range depending on the level of noise desired; that is, at each time t ,

ynoise(t) = yexact(t)(1 + ε),

where ε ∼ U (−x, x) if we desire 100x% noise.
We generate noisy synthetic data for the one-compartment and two-compartment

models in the presence and absence of radiotherapy, and then calibrate the data
against the model used for its generation, varying the noise level from 1% to
20%. The results are presented in Fig. 7, separated into three cases for easier
visualization: (a) one-compartment model, (b) two-compartment model with a
low necrotic fraction (approximately 20% necrotic tissue over the long term
without treatment), and (c) two-compartment model with a high necrotic fraction
(approximately 50% necrotic tissue over the long term without treatment). For the
one-compartment model, we estimate the parameter set [A,B, β] and compare to
the true parameter set [0.5, 2, β], where the value of β used to generate the data
depends on the radiosensitivity level specified. For the two-compartment model, we
estimate [λ,K, η, ζ, β] and compare to the true parameter set [1, 0.5, 0.5, 0.5, β] in
the high-necrotic case, and [1, 0.5, 0.5, 2, β] in the low-necrotic case. In all cases,
we fix α = 0.14 and estimate the radiosensitivity ratio α/β by varying β only,
since we encounter structural identifiability issues when trying to fit both α and β

simultaneously—see Sect. 3.1. Since we are interested in observing the behavior
for a variety of radiosensitivity levels, we consider four cases for each model: no-
treatment, high radiosensitivity (α/β = 1, so β = 0.14), medium radiosensitivity
(α/β = 3, so β = 0.0467), and low radiosensitivity (α/β = 9, so β = 0.0156).
Data is supplied for calibration for two pre-treatment times (days 8 and 15), five
treatment times (during days 22–50), and one post-treatment time (day 70). In each
case, we measure the average relative error in parameter estimates (we compare
the parameter values used to generate the data to those obtained via the parameter
estimation procedure) over 10 runs, for four levels of noise: 1%, 5%, 10%, and 20%.
As seen in Table 3 and Fig. 7, in all cases there is a positive correlation between the
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Fig. 7 Average relative error between the parameter values used to generate the synthetic data and
those obtained by fitting to noisy data, averaged over 10 iterations in each trial for four different
noise levels. (a) One-compartment ODE model with varying noise. (b) Two-compartment ODE
model with low necrotic fraction (ζ = 2) and varying noise. (c) Two-compartment ODE model
with high necrotic fraction (ζ = 0.5) and varying noise. In general, increased noise levels lead to
higher relative errors

noise level and the average relative error in the parameter estimates. That is, as
the level of noise in the data increases, the accuracy with which the true parameter
values can be recovered decreases.

In Fig. 8, we focus on the one-compartment model with treatment and a low α/β

ratio. For each noise level, we plot the posterior densities of our three parameters
post-calibration. With 1% noise, the posterior distributions are centered at the values
used to generate the data and are extremely well-informed, as illustrated by their
narrow posterior densities. As the noise level increases, the posterior distributions
widen, indicating less well-informed parameter estimates with greater variability.
In addition, the distributions tend to drift rightwards as the noise level increases,
suggesting that all parameter values are being overestimated. While we cannot be
sure as to the cause of this “drifting” effect, we hypothesize that it may be due to our
defining of the noise on a local scale, such that pre-treatment data will be “noisier”
on average than data later on in the observation period. Further work is required to
confirm this causation; meanwhile, we should remain cautious when dealing with
noisy pre-treatment data, as it may play a significant role in the calibration of the
parameters.

4 Model Selection

We now move to the question of determining how to choose the model most
appropriate for the available data. When patient data is collected, we seek to identify
a model that can be well calibrated to the data and make accurate predictions, while
also retaining simplicity in terms of the underlying mechanisms and number of
parameters. Minimizing the number of variables and parameters is desirable, due
to the cost of collecting the data and conducting parameter estimation. For example,
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Fig. 8 Series of results showing how the posterior parameter distributions for the one-
compartment model, with treatment and a low α/β ratio, depend on the level of noise in the data.
As the noise level increases, the posteriors become less well-informed and tend to overestimate the
parameter values compared to those used to generate the data

our one-compartment model requires only tumor volume data, whereas our two-
compartment model also uses necrotic fraction data as an input, which is far more
challenging and expensive to collect. Additionally, fitting the two-compartment
model requires exploration of a five-dimensional parameter space, whereas fitting
the one-compartment model requires investigation of a parameter space which is
only three-dimensional. Therefore, we seek to understand when use of the one-
compartment model is adequate, versus when the additional complexity of the
two-compartment model (and cost for data collection) is necessary to accurately
describe the tumor growth dynamics. In this section, we study the goodness of fit of
the one-compartment model to synthetic data generated from the two-compartment
model. In doing so, we address some of the questions raised here.

We generate synthetic data for total tumor volume and necrotic fraction from
the two-compartment model, defined in Equations (4a) and (4b), by sweeping
across the following region of five-dimensional parameter space: {(λ,K, η, ζ, β) ∈
R
5 | 0.2 ≤ λ ≤ 1, 0.1 ≤ K ≤ 1, 0 ≤ η ≤ λ, 0.5 ≤ ζ ≤ 2, 0.014 ≤ β ≤ 0.14}.

We generate a large number of samples (O(103)) using the Halton sequence, a quasi
Monte Carlo method [13]. Then, we fit the synthetic tumor volume data using the
one-compartment model defined in Equation (2).

We identify parameter regimes for which the one-compartment model provides
a good approximation to the data from the two-compartment model and make
note of other parameter regimes for which the one-compartment model does not
approximate the two-compartment data well. The overall relation between the
parameters are shown in Fig. 9; the parameter pairs (λ, A), (λ, B), are positively
correlated since λ is the net tumor growth rate and, by definition, correlated to
parameters representing the growth rate (A) and the inverse of the carrying capacity
(B). Additionally, the values of β that represent radiosensitivity in the two models
are positively correlated to each other, but not correlated to any other parameters,
since the radiotherapy response is assumed to be independent of the tumor model
parameters. We find negative correlation between the pair (η, A), since the natural
death rate η is captured in the overall growth rate A, and between (K, B), also due
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Fig. 9 Relationships between the two-compartment parameter samples (λ,K, η, ζ, β) and the
fitted one-compartment parameters (A,B, β), depicted by contour plots showing the density of
the parameter pairs. The parameter pairs (λ, A) and (λ, B) are positively correlated, while (η, A)

and (K, B) are negatively correlated. The most apparent relation is between β from the two-
compartment model and fitted β in the one-compartment model where the two values are linearly
related

Fig. 10 Examples of tumor volume data V (t) (◦) and necrotic volume (- -) generated from the
two-compartment model defined by Equations (4a) and (4b) and corresponding tumor volume
values Y (t) (×) obtained by fitting the one-compartment model defined by Equation (2) to the data.
In subplots (a) and (b), the approximation is accurate; in subplots (c) and (d), the one-compartment
model fails to accurately capture the behavior of the data. Although in (d), the overall trend is
captured by the one-compartment model, the slope difference toward the end time point may lead
to inaccurate predictions in future time points

to their inverse relation. The necrosis clearing rate ζ is not strongly correlated with
any of the parameters from the one-compartment model.

Figure 10 displays simulation data generated from the two-compartment model
in the absence of treatment. We plot the total tumor volume (Y (0), Y (1), · · · , Y (tf ))

and the corresponding necrosis fraction (Φ(0),Φ(1), · · · , Φ(tf )), where tf =
15. Also shown are the corresponding fits (V (0), V (1), · · · , V (tf )) of the one-
compartment model in Equation (2) to the synthetic data. We find that the
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Table 4 Parameter values used to generate the plots in Figs. 10 and 12. They are the parameter
values of the two-compartment model in Equations (4a) and (4b) and the fitted parameter values
in the one-compartment model Equation (7)

Two-comp. model One-comp. model

λ K η ζ β A B β

Fig. 10a 0.33 0.60 0.26 1.97 0.1159 2.4326

Fig. 10b 0.89 0.90 0.23 1.90 0.6738 0.9061

Fig. 10c 0.92 0.11 0.92 0.77 0.0834 4.9750

Fig. 10d 0.954 0.29 0.92 0.03 0.3906 3.3525

Fig. 12a 0.811 0.934 0.0278 1.58 0.0276 0.779 0.851 0.0123

Fig. 12b 0.508 0.705 0.115 1.50 0.102 0.382 0.59 0.0984

Fig. 12c 0.819 0.170 0.806 0.723 0.0234 0.113 5.00 0.0419

Fig. 12d 0.583 0.972 0.0205 0.531 0.127 0.499 0.468 0.1006

one-compartment model accurately fits synthetic data which is either monotonically
increasing (Fig. 10a), or increasing and saturating (Fig. 10b). It is unable to accu-
rately fit data generated from the two-compartment model for which the growth
dynamics are either non-monotonic (Fig. 10c) or for which the necrotic region is
large (Fig. 10d). We note that the poor fit of the one-compartment model to non-
monotonic growth (Fig. 10c) is expected, since solutions to the one-compartment
model are monotonic. The parameter values used to generate the synthetic data
presented in Fig. 10 are included in Table 4, together with the parameter values
obtained by fitting the one-compartment model to the synthetic data.

To quantify how well the one-compartment model fits data generated from
the two-compartment model (i.e., the goodness of fit of the one-compartment
model), we compute the relative error e

.= ‖y − v‖2/‖y‖2 between the data
y = (Y (0), Y (1), · · · , Y (tf )) and the fitted values v = (V (0), V (1), · · · , V (tf ))

for each parameter sample. Each point plotted in Fig. 11 represents the relative
error when the one-compartment model is fitted to synthetic data generated from
the two-compartment model for a sample parameter set. Figure 11a shows how the
goodness of fit of the one-compartment model decreases as the tumor size reduction
indicator (Y (tf )/maxt Y (t)) decreases. Smaller values of this quantity correspond
to tumors which have more pronounced, non-monotonic growth dynamics that
cannot be modeled using the one-compartment model that only produces logistic
curves. Figure 11b shows that the goodness of fit of the one-compartment model
decreases as the necrotic volume of the synthetic data increases. This suggests that
measuring the necrotic volume at a given time could be used to decide whether a
one-compartment model can accurately fit the data or whether a two-compartment
model is needed. More specifically, we observed an increased level of relative error e
in some of the fits of the two-compartment data when the necrotic proportion Φ(tf )

at the final time point is large; the relative error can be large when the necrotic
proportion Φ(tf ) is large.

We use a similar workflow to study the goodness of fit of the one-compartment
model to the two-compartment model with radiotherapy. As in the case without
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Fig. 11 Relative error e between the two-compartment tumor volume data generated from
Equations (4a) and (4b) and the one-compartment fit using Equation (2) is plotted with respect
to (a) tumor size reduction Y (tf )/maxt Y (t) and (b) necrotic fraction Φ(tf ), where tf = 15 is
the final time of our simulation. Subplot (a) shows that data with non-monotonic tumor growth
cannot be captured accurately by the one-compartment model. In particular, we highlight the data
with Y (tf )/maxt Y (t) < 0.8 (◦) that show large relative error values. Subplot (b) shows that the
proportion of necrotic cells is also related to an increased error using the one-compartment model.
We observe cases with increased error levels in data for which Φ(tf ) > 0.4

Fig. 12 Series of results showing the goodness of fit of the one-compartment model to data
generated from the two-compartment model when treatment with radiotherapy is applied. We
present synthetic data of tumor volume (◦) and necrotic volume (- -) that were generated from
the two-compartment model (see Equations (4a) and (4b)), together with tumor volume data (×)
obtained by fitting to the one-compartment model (see Equation (7)). The fits are accurate in cases
(a) and (b) but not in (c) or (d). In particular, the one-compartment model cannot reproduce the
results of two-compartment model when the untreated growth dynamics are not well-fitted (c), and
when the necrotic region is large (d)

treatment, Fig. 12 shows that there are situations for which the one-compartment
model accurately captures the tumor dynamics (Fig. 12a, b) and others for which
it does not (Fig. 12c, d). The two scenarios which typically yield inaccurate fits
correspond to cases for which tumor growth before treatment can be not captured
well (Fig. 12c) and/or the necrotic region is large (Fig. 12d). Although one can
assume that the overall dynamics in Fig. 12d are captured reasonably well, the peak
and trough during treatment could not be accurately fitted. This could potentially
cause more inaccurate predictions when only a few, noisy data points are added.
The parameter values used to generate the figure are included in Table 4.
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Fig. 13 Relative error e between the two-compartment data generated from Equations (4a)
and (4b) with treatment and the one-compartment fit using Equation (7) with respect to (a) the
parameter ζ and (b) necrotic fraction Φ(t1), where t1 = 20 is the time after the first week
of treatment. The proportion of necrotic cells is positively correlated with the relative error. We
highlight the data with Φ(tf ) > 0.75 (♦) that show large errors

As in the example without treatment, the relative error e is computed using the
two-compartment tumor volume data y and the fitted tumor volume data from the
one-compartment model v. In this case, the data is collected daily until the final time
tf = 70. In Fig. 13b, the error is plotted with respect to the necrotic fraction after the
first week of treatmentΦ(t1). The results show that the relative error increases as the
ratio of necrotic core increases. We observe a correlation of the relative error with
the necrotic core, that is more apparent compared to the study without treatment
(Fig. 11b). In addition, in Fig. 13a, we observe correlated patterns with the necrotic
core decay rate ζ , as this is the parameter that determines the size of the necrotic
core.

Next, we verify that the ratio of necrotic core Φ(t) is a robust indicator of
goodness of fit of the one-compartment model with treatment fitted to synthetic
data with noise. Figure 14 shows the relative error, e, against the necrotic fraction
Φ(t), while increasing the noise level of the data up to 20%. A positively correlated
relationship between the relative error of the one-compartment fit and the necrotic
fraction is apparent once treatment is applied, while the noise in the data reduces
the effectiveness of the indicator in cases without treatment. In general, larger noise
in the data impacts the ability to accurately fit the one-compartment model to two-
compartment data, as is shown in Fig. 15, where the fitted β in the one-compartment
model becomes inaccurate as the noise increases. In conclusion, we determine that
the necrotic fraction is a good indicator of the quality of fit of the one-compartment
model to synthetic data generated from the two-compartment model.
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Fig. 14 The impact of adding noise to synthetic data from the two-compartment model on the
ability to fit the one-compartment model without treatment (top) and with treatment (bottom). The
relative error e is plotted with respect to the ratio of necrotic fraction Φ(t) while increasing noise
in the data up to 20%. The least squares regression lines are shown. Despite the increased level of
noise, the necrotic fraction remains a good indicator of the fitness of the one-compartment model
when the treatment is given (bottom). (a) Noise 0%. (b) Noise 10%. (c) Noise 20%

Fig. 15 The impact of adding noise to synthetic data from the two-compartment model reduces
the ability to fit the one-compartment model. The parameter pairs of β that is used to generate
the data from the two-compartment model and fitted using the one-compartment model show that
larger noise in the data results in misfitted β values. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%
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5 Data Inclusion for Model Calibration

In an effort to predict how well simple mathematical models can be calibrated
to clinical data of tumor volumes and to determine how much data is needed to
accurately infer model parameters, we perform a sequential model calibration of: (i)
the one-compartment model to data generated by the two-compartment model; (ii)
the one-compartment model fit to CA data; and, (iii) the two-compartment model
fit to synthetic data generated by the CA. In all cases, the data is generated from
simulations in which tumors are treated with radiotherapy.

In each case, we fit the simpler model to a data set that includes tumor volumes,
and necrotic fractions when relevant, measured once per week with 10% noise
added. The calibration procedure is begun by fitting the lower-fidelity model to the
first three data points (collected from the higher-fidelity model at days 8, 15, and
22); then the low-fidelity model is re-calibrated with the addition of each subsequent
data point in an effort to determine a threshold at which we have “enough” data to
accurately infer our model parameters with well-informed posterior distributions.
When calibrating the one-compartment ODE model, the parameter set [A,B, β] is
estimated; for the two-compartment model, we estimate [λ,K, η, ζ, β]. In all cases,
α remains fixed at 0.14 to avoid identifiability issues.

At each calibration step, we calculate the relative error between the “fitted”
and corresponding “true” parameter values. Since there is no explicit relationship
between the parameters of the CA and those of the ODEmodels or mapping between
parameters in the one- and two-compartment ODE models, we use a full set of in
silico daily information to provide “true” parameter values. In each case, we initially
fit the one- and two-compartment models to all 71 data points generated from the CA
model and the one-compartment model to all 71 data points generated from the two-
compartment model with no noise added and burn-in and subsequent MCMC chain
lengths of 10,000. The parameter values generated from these fits are considered the
“true” parameter values for each data set. We also assess the ability of the model to
accurately predict the tumor regrowth (defined using the data point at day 70), by
computing the absolute error in prediction when using the current calibrated model
to predict forward in time. Figure 16 displays the calibration results when fitting to
CA data in the “high” necrotic case (when the necrotic cells comprise 50% of total
tumor volume in the absence of treatment). The final fits using all eight data points
are generated using data with 10% noise added and burn-in and subsequent MCMC
chain lengths of 10,000.

From Fig. 16, we see that when the necrotic fraction is high, the parameters
converge well only when the two-compartment model is fit to both tumor volume
and necrotic fraction data. In particular, the one-compartment model (Fig. 16a, b)
does not accurately simulate a tumor with a high necrotic fraction; the fit is poor,
and the estimated parameter values differ markedly from those used to generate
the in silico data. Additionally, the entire fit changes when the final data point is
added. This suggests that information about necrotic volume is needed to achieve a
good fit to the data. When we fit the two-compartment model (Fig. 16c, d) to tumor
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Fig. 16 Model fits with “high” necrotic fraction, “low” α/β ratio, and 10% noise. Blue represents
tumor volume; red represents necrotic fraction. Solid curves are fit to the given data; dashed curves
show necrotic fraction estimate from the two-compartment ODE model generated in absence of
necrotic data. (a)–(b) One-compartment model fit, (c)–(d) Two-compartment model fit to tumor
volume data only, (e)–(f) Two-compartment model fit to tumor volume and necrotic data generated
from the CA
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volume data only (no inclusion of necrotic information) generated from the CA, the
overall fit is reasonable, but parameter values change markedly as the number of
data points used for fitting varies. Additionally, the relative errors in the parameter
values (as compared to those fit using the in silico data set) are high. Providing this
supplemental information allows the slightly more complex two-compartment ODE
model to accurately fit the high-necrotic tumor data; Fig. 16e, f shows a strong fit
with greater consistency in the parameter estimates as data is added sequentially.

Analogous plots obtained by fitting CA data in the “low” necrotic case (when the
necrotic cells comprise 20% of total tumor volume in the absence of treatment), are
presented in Fig. 17. In this figure, all results relate to fits of the one-compartment
model to the CA data as the tumor radiosensitivity varies. The radiosensitivity
decreases from high ( α/β = 1) in (a)–(b), to medium (α/β = 3) in (c)–(d), and low
(α/β = 9) in (e)–(f). Tumor regrowth data generated with medium and high α/β

ratios is accurately predicted, even with only three data points. In the low α/β case,
an additional data point is needed for accurate regrowth predictions. In all cases,
the estimated parameter values converge rapidly to the true parameter values. We
conclude that, despite its simplicity, for all three levels of radiosensitivity, the one-
compartment model not only fits the data well, but can do so with just 3–4 few data
points provided, for tumors with small necrotic regions.

6 Discussion

In this investigation, we have proposed a framework for choosing appropriate
models, verifying the identifiability of their parameters, and calibrating those
parameters with the available data. As a proof-of-concept, we investigated three
distinct models of tumor growth: a one-compartment ODE model tracking tumor
volume over time, a two-compartment model that includes an additional state
variable representing the necrotic volume fraction, and a spatially explicit cellular
automaton model that is more complex than the ODE models. We first showed
that the one- and two-compartment model parameters are structurally identifiable
without treatment, i.e. that one can uniquely recover all parameter values describing
those models, given error-free model output data. However, we found that structural
identifiability does not hold when treatment with radiotherapy is included in the
models, since the radiosensitivity parameters are not uniquely identifiable. This led
us to fix α and vary β only, when conducting model calibration.

Next we considered the practical identifiability of both ODE models. After
adding varying levels of noise to synthetic tumor volume data, we found that the
practical identifiability of parameter values becomes less well-informed for both
the one-compartment and two-compartment models as the noise level increases.
Further, the predicted parameter values tend to overestimate those values used to
generate the data. By performing a sweep of the model parameters, we identified
that the one-compartment model accurately fits synthetic data generated by the two-
compartment model when the data is increasing monotonically or when the necrotic
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Fig. 17 The one-compartment model accurately describes tumors with a low necrotic fraction, for
a range of α/β ratios. (a)–(b) α/β = 1, (c)–(d) α/β = 3, (e)–(f) α/β = 9. In all three cases the
relative errors in the estimated parameter values are small; the inclusion of the fourth data point
results in absolute prediction error for tumor regrowth of less than 0.1 cm in all three cases
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region is small. The error of the one-compartment fit to synthetic data increases as
the size of the necrotic region increases, suggesting that in a clinical setting, the
one-compartment ODE model becomes a less accurate predictor of tumor growth as
the size of the necrotic region increases.

We also tested the ability of the simpler models to fit to data generated from
the CA, using only a small number of data points. In agreement with the parameter
sweep results, we found that for tumors with a large necrotic region, the estimated
parameter values converge well only when fitting the two-compartment model to
data on both total tumor and necrotic volumes. This implies that in cases with slow
necrotic decay, information about tumor heterogeneity, rather than simply tumor
volume, is necessary to fit these ODE models to the data. In such cases, i.e., when
the necrotic region is large, the one-compartment ODE model will not accurately
predict the response to treatment and tumor regrowth. However, when the necrotic
fraction is small, it is possible to accurately identify parameters from the one-
compartment model and to characterize tumor response to radiotherapy.

In the future, we aim to explore the sensitivity of the ODE models to intrinsic
noise by adding noise to the parameter space before generating synthetic data and
fitting the models to this data. We are also interested in incorporating multiple
types of cells with different levels of radiosensitivity. We plan to examine how this
additional complexity affects the overall predictive power of the ODE models and
the amount of data needed to make accurate predictions. We also plan to conduct
further experiments studying the impact of the quantity, type, and temporal location
of available data on the ability to accurately calibrate various models.

Appendix: Structural Identifiability for the
Two-Compartment Model

Below, we investigate the structural identifiability of the two-compartment model
with radiotherapy, given in Equations (19) and (20), using the same techniques as
presented in Sect. 3.1.

Case 1: No Radiation

In this case the model reads

dY

dt
= λ(1 − Φ)Y (1 − (1 − Φ)

Y

K
) − ξΦY

dΦ

dt
= (1 − Φ)

[
η − λΦ(1 − (1 − Φ)

Y

K
− ξΦ)

]
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with unknown parameters p = {λ,K, ξ, η}, observable quantities y(p; t) = {Y,Φ},
and known initial conditions. We repeat the analysis as before, using the Taylor
coefficients. We define the following known quantities:

a0 = Y (0+) b0 = φ(0+) a1 = Y ′(0+) b1 = φ′(0+) a2 = Y ′′(0+) b2 = φ′′(0+).

We substitute these quantities into the model system to obtain:

a1 = λ(1 − b0)a0[1 − (1 − b0)
a0

K
] − ξb0a0

= [−(1 − b0)
2a20]

λ

K
+ [(1 − b0)a0]λ − [b0a0]ξ

b1 = (1 − b0)
[
η − λb0(1 − (1 − b0)

a0

K
− ξb0)

]

+ [−(1 − b0)b0]λ + [(1 − b0)
2b0a0] λ

K
− [(1 − b0)b0]ξ + [(1 − b0)]η.

We differentiate the model equations once more to obtain:

a2 = (−2λ(−1 + b0)
2a0 − ((ξ + λ)b0 − λ)K)a1 − a0b1(2(−1 + b0)λa0 + (ξ + λ)K)

K

b2 = (3a0b
2
0λ + (−4λa0 + 2(ξ + λ)K)b0 + λa0 − K(ξ + η + λ))b1 + b0a1λ(−1 + b0)2)

K
.

The above four equations can now be used to solve for each parameter as follows:

K = 1

[((b0 − 1)b2 − b21)a
2
0 + a2(b0 − 1)2a0 − a21(b0 − 1)2]b1

× [(b1(b0+1)(b0b2−b21 −b2)a
3
0 + ((a1b2+a2b1)b

2
0 + ((−b21 −b2)a1+a2b1)b0

− a1b
2
1 − a2b1)(−1 + b0)a20 − (−a2b

3
0 + (a1b1 + a2)b

2
0 + 2a1b1b0 − 2a1b1)

× a1(−1 + b0)a0 − a31b
2
0(−1 + b0)

2)(−1 + b0)],

λ = −1

(a0b0b1 + a1b
2
0 − a0b1 − 2a1b0 + a1)a

2
0b1

× [a30b20b1b2 − a30b0b
3
1 + a20a1b

3
0b2 − a20a1b

2
0b

2
1

+ a20a2b
3
0b1 − a0a

2
1b

3
0b1 + a0a1a2b

4
0 − a31b

4
0 − a30b

3
1

− 2a20a1b
2
0b2 − a0a

2
1b

2
0b1 − 2a0a1a2b

3
0

+ 2a31b
3
0 − a30b1b2 + a20a1b0b2 + a20a1b

2
1 − 2a20a2b0b1 + 4a0a

2
1b0b1

+ a0a1a2b
2
0 − a31b

2
0 + a20a2b1 − 2a0a

2
1b1]
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η = −a20b0b2 − a20b
2
1 + a0a2b

2
0 − a21b

2
0

b1a
2
0

ξ = a20b0b2 − a20b
2
1 + a0a2b

2
0 − a21b

2
0 − a20b2 − a0a1b1 − a0a2b0 + a21b0

b1a
2
0

Since we are able to obtain unique solutions for each of the four parameters, we
declare them to be structurally identifiable. For GenSSI, only two Lie derivatives are
needed which yield rank 4, and thus results show all four parameters are structurally
identifiable, in agreement with our calculations above.

In addition to the above analysis, we also repeated the analysis in the case in
which only the tumor volume could be observed, (i.e., y(t;p) = Y (t)), but with
known initial conditions in tumor volume and necrotic fraction. In this case, we
took higher order Taylor series coefficients (up to order 4) and obtained that p =
{λ,K, ξ, η} were structurally identifiable. Similarly, GenSSI took Lie derivatives up
to order 4 and confirmed that all parameters were structurally identifiable.

Case 2: With Radiation Treatment

Similar to the single compartment model, here we examine the effect of a point
treatment. The model equations read:

dY

dt
= λ(1 − Φ)Y (1 − (1 − Φ)

Y

K
) − ξΦY

dΦ

dt
= (1 − Φ)

[
η − λΦ(1 − (1 − Φ)

Y

K
) − ξΦ

]
, for t+i < t < t−i+1

Φ(t+i ) = Φ(t−i ) + (1 − Φ(t−i ))(1 − Γ ),

where Γ = exp(−αd − βd2). Since the other parameters are known and measured
prior to treatment, as in the previous section, we want to solve for p = {α, β}
assuming y(p; t) = {Y,Φ} as observable quantities. We let

A0 = Y (t+i ) B0 = Φ(t−i ) A1 = Y ′(t+i ) B1 = Φ ′(t+i ),

and substitute these quantities into the model equations:

A1 = −A2
0λ(B0 − 1)2

K
Γ 2 − A0(ξ + λ)(B0 − 1)Γ − A0ξ

B1 = [A0λ(B0−1)2Γ 2+ (B0−1)((K +A0)λ+ξK)Γ +K(ξ −η + λ)]Γ (B0 − 1)

K
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As with the one-compartment model, we find that the equations are not infor-
mative for α and β simultaneously, thus, we again declare the pair (α, β) to be
non-identifiable in this setting. As before, we choose to fix α for all subsequent
model calibrations and measure the ratio α/β to use as a measure of radiosensitivity.
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