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Abstract Actin is an intracellular protein that constitutes a primary component of
the cellular cytoskeleton and is accordingly crucial for various cell functions. Actin
assembles into semi-flexible filaments that cross-link to form higher order structures
within the cytoskeleton. In turn, the actin cytoskeleton regulates cell shape, and
participates in cell migration and division. A variety of theoretical models have been
proposed to investigate actin dynamics across distinct scales, from the stochastic
nature of protein and molecular motor dynamics to the deterministic macroscopic
behavior of the cytoskeleton. Yet, the relationship between molecular-level actin
processes and cellular-level actin network behavior remains understudied, where
prior models do not holistically bridge the two scales together.

In this work, we focus on the dynamics of the formation of a branched actin
structure as observed at the leading edge of motile eukaryotic cells. We construct
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a minimal agent-based model for the microscale branching actin dynamics, and
a deterministic partial differential equation (PDE) model for the macroscopic
network growth and bulk diffusion. The microscale model is stochastic, as its
dynamics are based on molecular level effects. The effective diffusion constant and
reaction rates of the deterministic model are calculated from averaged simulations
of the microscale model, using the mean displacement of the network front and
characteristics of the actin network density. With this method, we design concrete
metrics that connect phenomenological parameters in the reaction-diffusion system
to the biochemical molecular rates typically measured experimentally. A parameter
sensitivity analysis in the stochastic agent-based model shows that the effective
diffusion and growth constants vary with branching parameters in a complementary
way to ensure that the outward speed of the network remains fixed. These results
suggest that perturbations to microscale rates can have significant consequences
at the macroscopic level, and these should be taken into account when proposing
continuum models of actin network dynamics.

Keywords Actin · Differential equations · Stochastic model · Sensitivity
analysis · Cytoskeleton

1 Introduction

A cell’s mechanical properties are determined by the cytoskeleton whose primary
components are actin filaments (F-actin) [1–4]. Actin filaments are linear polymers
of the abundant intracellular protein actin [5–7], referred to as G-actin when not
polymerized. Regulatory proteins and molecular motors constantly remodel the
actin filaments and their dynamics have been studied in vivo [8], in reconstituted in
vitro systems [2, 9], and in silico [10]. Actin filaments are capable of forming large-
scale networks and can generate pushing, pulling, and resistive forces necessary
for various cellular functions such as cell motility, mechanosensation, and tissue
morphogenesis [8]. Therefore, insights into actin dynamics will advance our
understanding of cellular physiology and associated pathological conditions [2, 11].

Actin filaments in cells are dynamic and strongly out of equilibrium. The
filaments are semi-flexible, rod-like structures approximately 0.007µm in diameter
and extending several microns in length, formed through the assembly of G-actin
subunits [6, 7]. A filament has two ends, a barbed end and a pointed end, with
distinct growth and decay properties. A filament length undergoes cycles of growth
and decay fueled by an input of chemical energy, in the form of ATP, to bind
and unbind actin monomers [6, 7]. The rates at which actin molecules bind and
unbind from a filament have been measured experimentally [3, 12, 13]. The cell
tightly regulates the number, density, length, and geometry of actin filaments [7].
In particular, the geometry of actin networks is controlled by a class of accessory
proteins that bind to the filaments or their subunits. Through such interactions,
accessory proteins are able to determine the assembly sites for new filaments,
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change the binding and unbinding rates, regulate the partitioning of polymer
proteins between filaments and subunit forms, link filaments to one another, and
generate mechanical forces [6, 7]. Actin filaments have been observed to organize
into branched networks [14, 15], sliding bundles extending over long distances [16],
and transient patterns including vortices and asters [17, 18].

To generate pushing forces for motility, the cell uses the energy of the growth or
polymerization of F-actin [19, 20]. Actin polymerization powers the formation of
flat cellular protrusions, known as lamellipodia, found at the leading edge of motile
cells [8, 21]. Microscopy of the lamellipodial cytoskeleton has revealed multiple
branched actin filaments [15]. The branching structure is governed by the Arp2/3
protein complex, which binds to an existing actin filament and initiates growth
of a new “daughter” filament through a nucleation site at the side of preexisting
filaments. Growth of the “daughter” filament occurs at a tightly regulated angle of
70◦ from the “parent” filament due to the structure of the Arp2/3 complex [22].
The directionality of pushing forces produced by actin polymerization originates
from the uniform orientation of polymerizing actin filaments with their barbed ends
towards the leading edge of the cell [8]. Here, cells exploit the polarity of filaments,
since growth dynamics are faster at barbed ends than at pointed ends [23, 24].
Polymerization of individual actin filaments produces piconewton forces [25], with
filaments organized into a branched network in lamellipodia or parallel bundles in
filopodia [15]. The localized kinetics of growth, decay, and branching of a protrusive
actin network provide the cell with the scaffold and the mechanical work needed for
directed movement.

Many mathematical models have been developed to capture the structural forma-
tion and force generation of actin networks [20, 26, 27]. Due to the multiscale nature
of actin dynamics, two main approaches are used: agent-based methods [27–29] and
deterministic models using PDEs [30–33]. The effects of different molecular com-
ponents (e.g., depolymerization, stabilizers) on the architecture of a protrusive actin
network has been studied with detailed hybrid micro-macroscopic models [34, 35].
While both techniques are useful for understanding actin dynamics, each presents
limitations. Agent-based models more closely capture the molecular dynamics of
actin by explicitly considering the behavior of actin molecules through rules, such
as, bind to the closest filament at a particular rate. In general, agent-based models
simulate the spatiotemporal actions of certain microscopic entities, or “agents”,
in an effort to recreate and predict more complex large-scale behavior. In these
simulations, agents behave autonomously and through simple rules prescribed at
each time step. The technique is stochastic and can be interpreted as a coarsening of
Brownian and Langevin dynamical models [36]. However, agent-based approaches
are computationally expensive: at every time step, they specifically account for the
movement and interaction of individual molecules, while also assessing the effects
of spatial and environmental properties that ultimately result in the emergence of
certain large-scale phenomena, such as crowding. Such approaches benefit from the
direct relationship to experimental measurements of parameters, yet they present a
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further computational cost in that many instances of a simulation are needed for
reliable statistical information. Agent or rule-based approaches have been used to
reveal small-scale polymerization dynamics in actin polymer networks [26, 37],
but due to the inherent computational complexity, it remains unclear how this
information translates to higher length scales, such as the cell, tissue, or whole
organism.

To overcome such computational costs and still gain a mechanistic under-
standing of actin processes, one approach is to write deterministic equations that
“summarize” all detailed stochastic events. These approaches rely on differential
equations to predict a coarse-grained biological behavior by assuming a well-
mixed system where the molecules of interest exist in high numbers [20, 38–40]
and the spread of the polymer network can be qualitatively approximated by
a diffusion process [41, 42]. In continuum models, the stochastic behavior of
the underlying molecules are typically ignored. While continuum models can be
explored via traditional mathematical analysis, the challenge lies in determining the
terms and parameters of these equations that are representative of the underlying
physical system. Thus, these methods use phenomenological parameters of the
actin network, such as bulk diffusion and reaction terms, that are less readily
obtained experimentally. The relationship between molecular-level actin processes
and cellular-level actin network behavior remains disconnected. This disconnect
presents a unique challenge in modeling actin polymers in an active system across
length scales.

In this work, we design a systematic and rigorous methodology to com-
pare and connect actin molecular effects in agent-based stochastic simulations to
macroscopic behavior in deterministic continuum equations. Measures from these
distinct-scale models enable extrapolation from the molecular to the macroscopic
scale by relating local actin dynamics to phenomenological bulk parameters. First,
we characterize the dynamics of a protrusive actin network in free space using
a minimal agent-based model for the branching of actin filaments from a single
nucleation site based on experimentally measured kinetic rates. Second, in the
macroscopic approach, we simulate the spread of actin filaments from a point source
using a partial differential equation model. The model equation is derived from
first principles of actin filament dynamics and is found to be Skellam’s equation
for unbounded growth of a species together with spatial diffusion. To compare the
emergent networks, multiple instances of the agent-based approach are simulated,
and averaged effective diffusion coefficient and reaction rate are extracted from
the mean displacement of the advancing network front and from the averaged
network density. We identify two concrete metrics, mean displacement and the
averaged filament length density, that connect phenomenological bulk parameters
in the reaction-diffusion systems to the molecular biochemical rates of actin
binding, unbinding, and branching. Using sensitivity analysis on these measures,
we demonstrate that the outward movement of the actin network is insensitive to
changes in parameters associated with branching, while the bulk growth rate and
diffusion coefficient do vary with changes in branching dynamics. We further find
that the outward speed, growth rate constant, and effective diffusion increase with
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F-actin polymerization rate but decrease with increasing depolymerization of actin
filaments. By formalizing the relationship between micro- and macro-scale actin
network dynamics, we demonstrate a nonlinear dependence of bulk parameters on
molecular characteristics, indicating the need for careful model construction and
justification when modeling the dynamics of actin networks.

2 Mathematical Models

2.1 Microscale Agent-Based Model

2.1.1 Model Description

We build a minimal, agent-based model sufficient to capture the local microstructure
of a branching actin network. This model includes the dynamics of actin filament
polymerization, depolymerization, and branching from a nucleation site [1, 2, 43,
44]. We treat F-actin filaments as rigid rods. Each actin filament has a base (pointed
end) fixed in space and a tip (barbed end) capable of growing or shrinking due
to the addition or removal of actin monomers, respectively. We assume that there
is an unlimited pool of actin monomers available for filament growth, in line
with normal, intracellular conditions [3]. For simplicity, we neglect the effects of
barbed end capping, mechanical response of actin filaments, resistance of the plasma
membrane, cytosolic flow, and molecular motors and regulatory proteins. Motivated
by the short timescale of the initial burst of a growing actin network, we assume
that the pointed end of actin filaments is stabilized at a nucleation site, and thus, do
not account for the turnover dynamics at the pointed end. The physical setup of the
model is similar to conditions associated with in vitro experiments, as well as initial
actin network growth in cells, before components such as actin monomers become
limiting.

2.1.2 Numerical Implementation

At the start of each simulation, an actin filament of length zero is assigned an angle
of growth from the nucleation site (located at the origin) from a uniform random
distribution. Once a filament is prescribed a direction of growth, it will not change
throughout the time-evolution of that particular filament. At each subsequent time
step in the simulation, there are four possible outcomes: (i) growth of the filament
with probability ppoly, (ii) shrinkage of the filament with probability pdepoly, (iii) no
change in filament length, or (iv) branching of a preexisting filament into a “daugh-
ter” filament with probability pbranch provided that the “parent” filament has reached
a critical length Lbranch, measured from the closest branch point. To determine
which outcome occurs, two random numbers are independently generated for each
filament. The first random number governs polymerization (i) or depolymerization
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(ii): if the random number is less than ppoly, polymerization occurs, and if greater
than 1 − pdepoly, depolymerization occurs. If the first random number is greater
than or equal to ppoly and less than or equal to 1− pdepoly, then the filament neither
polymerizes nor depolymerizes this time step, and therefore remains the same length
(iii). Similarly, if the random number is simultaneously less than ppoly and greater
than 1 − pdepoly, then both polymerization and depolymerization occur within this
time step, and therefore the filament remains the same length (iii). Both filament
growth and shrinkage occur in discrete increments corresponding to the length of a
G-actin monomer, Δx = 0.0027µm [4]. We enforce that a filament of length zero
cannot depolymerize.

The second random number pertains to filament branching (iv). For filaments of
length greater than Lbranch, a new filament can be initiated at a randomly oriented
70◦-angle from a preexisting filament tip in correspondence with the effect of
Arp2/3 protein complex. If the second random number is less than the probability
of branching, pbranch, for the given filament, then the filament will branch and
create a “daughter” filament now capable of autonomous growth and branching.
This branching potential models the biological effect of the Arp2/3 complex without
explicitly including Arp2/3 concentration as a variable.

The step-wise process is repeated until the final simulation time is reached.
Simulation steps are summarized graphically in Fig. 1. All parameters for the
model are listed in Table 1. We calculate several different measurements from the
microscale simulation, as described below.

2.1.3 Parameter Estimation

Actin dynamics have been extensively studied in vivo and in vitro, providing many
rate constants used in this study. A 10µM actin monomer concentration elongates
the barbed ends of F-actin filaments at a reported velocity of 0.3µm/s [3]. We use
this measurement to calculate the polymerization probability, ppoly, via the formula:

assembly rate = polymerization probability × length added to filament

× number of timesteps per second (1)

0.3 µm
s = ppoly × 0.0027µm × 1

0.005 s
, (2)

which implies that ppoly = 0.56. For simplicity, we round this probability to ppoly =
0.6 in the microscale model simulations. ADP-actin has a depolymerization rate of
4.0 1/s at the barbed ends of actin filaments [3]. This measurement represents the
rate of depolymerization of one actin subunit per second, thus a filament loses length
at a rate of

4.0 subunit
s × 0.0027 µm

subunit = 0.0108 µm
s . (3)
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Fig. 1 Flow chart of the algorithm implemented for the agent-based microscale model. All steps
following “Initialization” are repeated at every time step

To calculate the depolymerization probability, pdepoly, we use the analogous for-
mula:

disassembly rate = depolymerization probability × length removed from filament

× number of timesteps per sec (4)

0.0108 µm
s = pdepoly × 0.0027µm × 1

0.005 s
, (5)

which yields pdepoly = 0.02.
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Table 1 Microscale model parameter values. Details on parameter estimation are available in
Sect. 2.1.3. Values flagged with one star (∗) were calculated from [3] and depend on the time
step as indicated in Eqs. 2 and 5. The value flagged with a dagger (†) is motivated by literature
measurements of actin filament length per branch which vary from 0.02 to 5µm [15, 45–49]

Parameter Meaning Value

pbranch Probability of branching normal CDF

ppoly Probability of polymerizing 0.6∗

pdepoly Probability of depolymerizing 0.02∗

Lbranch Critical length before branching can occur 0.2µm†

Tend Total run time 10 s

Δt Time step 0.005 s

nsim Number of independent simulations 10

Model parameter Lbranch represents the critical length a filament must reach
before branching can occur. Literature estimates for the spacing of branching Arp2/3
complexes along a filament vary widely, from 0.02 to 5µm [15, 45–49]. We choose
an intermediate estimate, Lbranch = 0.2µm, which is of similar order to the
values from other studies [48, 49]. The branching probability, pbranch, is chosen
from a cumulative distribution function (CDF) of the standard normal distribution
with mean, μ = 2 and standard deviation, σ = 1. For in vitro systems, branch
formation is inefficient because once an Arp2/3 complex is bound to a filament, the
reported branching rate is slow (estimated to be 0.0022−0.007 s−1) [49]. Given the
relative dynamic scales of polymerization/depolymerization versus branching, we
assume that (de)polymerization occurs at a prescribed rate, but because branching
is infrequent, its probability is drawn from a distribution function.

The three microscale model probabilities are calculated in a time-step-dependent
manner, such that the results of the microscale simulation are independent of
the value of Δt , for a given time step for which calculated polymerization and
depolymerization probabilities are not greater than 1. For example, polymerization
and depolymerization probabilities are obtained using Eqs. 1 and 4. From Eqs. 1
and 2 we see that the largest possible value of Δt consistent with a probability
less than or equal to 1 is 0.009 s. The branching probability, pbranch, is always
obtained using the CDF described in the preceding paragraph, but branching is
only allowed to happen at fixed time intervals of 0.005 s. Using the Δt value from
Table 1, branching can occur every time step with probability pbranch. If, instead,
Δt = 0.0025 s, branching can occur every other time step with probability pbranch.
Simulations in this study were performed with a time step Δt = 0.005 to ensure
that all results are internally consistent and comparable.
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2.2 Macroscale Deterministic Model

2.2.1 Model Description

We model the growth and spread of a branching actin network through a reaction-
diffusion form of the chemical species conservation equation derived in Sect. 2.2.2.
This form is frequently known as Skellam’s equation, applied to describe popu-
lations that grow exponentially and disperse randomly [50]. The two-dimensional
Skellam’s equation is

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ rũ. (6)

In the context of our actin network, ũ(x, y, t) is a dimensionless, normalized number
density of polymerized actin monomers at location (x, y) and time t , D is the
diffusion coefficient of the network (network spread), and r is the effective growth
rate constant (network growth). More precise definitions of ũ and r will be given
in Sect. 2.2.2. Note that the diffusion coefficient is in reference to the bulk F-actin
network spread, rather than representing Fickian behavior of monomers as has been
done in previous literature [31, 40]. We use no flux boundary conditions in Eq. 6 to
enforce no flow of actin across the cell membrane. For the initial condition of Eq. 6,
we prescribe a point source at the origin.

2.2.2 Derivation of Reaction Term from First Principles

We present a derivation of the reaction term in Skellam’s continuum description
(Eq. 6) from simple kinetic considerations of actin filaments which include poly-
merization, depolymerization, and branching.

First, we write the molecular scheme for actin filament polymerization and
depolymerization in the form of chemical equations. We denote a G-actin monomer
in the cytoplasmic pool by M , an actin polymer chain consisting of n − 1 subunits
by pn−1, and a one monomer longer actin polymer chain by pn. The process of
binding and unbinding of an actin monomer is described by the following reversible
chemical reaction:

M + pn−1

kf−⇀↽−
kr

pn . (7)

The constants kf and kr represent the forward and reverse rate constants, respec-
tively, and encompass the dynamics that lead to the growth/shrinking of an actin
filament.
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Next, the biochemical reaction in Eq. 7 can be translated into a differential
equation that describes rates of change of the F-actin network density. To write the
corresponding equations, we first use the law of mass action which states that the
rate of reaction is proportional to the product of the concentrations. Then, the rates
of the forward (rf ) and reverse (rr ) reactions are:

rf = kf [M] [pn−1], (8)

rr = kr [pn], (9)

where brackets denote concentrations of M, pn−1, and pn, in number per unit
area. This single actin polymerization/depolymerization reaction can be extended
to capture all actin filaments reacting simultaneously across the network as follows:

rf = kf [M] [Pn−1], (10)

rr = kr [Pn], (11)

where we define

Pn =
n∑

i=2

i [pi]. (12)

Under the assumption that the forward and reverse reactions are each elementary
steps, the net reaction rate is

rnet = rf − rr = kf [M] [Pn−1] − kr [Pn]. (13)

We note that the monomer concentration [M] can be eliminated from Eq. 13 if it is
expressed in terms of initial concentration of monomers in the cell cytoplasm [M]0:

[M] = [M]0 −
n∑

i=2

i [pi] = [M]0 − [Pn]. (14)

Lastly, we note that [Pn] = [Pn−1] + n [pn]. We can assume a minor contribution
from actin polymers at this maximum length, such that [Pn] ≈ [Pn−1]. Then, Eq. 13
becomes

rnet = kf

(
[M]0 − [Pn]

)
[Pn] − kr [Pn], (15)

and can be further simplified if we divide both sides of the equation by [M]0:
rnet

[M]0 = [M]0 [Pn]
[M]0

[(
1 − [Pn]

[M]0
)

kf − 1

[M]0 kr

]
. (16)
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We introduce variable ũ as the polymerized actin concentration normalized by the
initial monomeric actin concentration and r as an effective growth rate constant:

ũ = [Pn]
[M]0 , r = kf [M]0. (17)

The normalized net reaction rate in Eq. 16 simplifies to

rnet

[M]0 = rũ(1 − ũ) − kr ũ . (18)

Describing the macroscale dynamics of polymerized actin concentration [Pn] as
simultaneously diffusing in two-dimensional space with diffusion coefficient D

and undergoing molecular reactions with the net reaction rate rnet results in the
following PDE:

∂[Pn]
∂t

= D

(
∂2[Pn]
∂x2 + ∂2[Pn]

∂y2

)
+ rnet . (19)

The equation expressed in terms of variable ũ = [Pn]/[M]0 becomes

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ rnet

[M]0 . (20)

Finally, substituting in the full form of the normalized net reaction rate from Eq. 18
produces

∂ũ

∂t
= D

(
∂2ũ

∂x2
+ ∂2ũ

∂y2

)
+ r ũ (1 − ũ) − kr ũ . (21)

Special Cases
We consider two special cases of the kinetics derived above. In the case where
monomeric actin concentration is much larger than polymerized actin concentration,
the normalized net reaction rate in Eq. 18 becomes

rnet

[M]0 = rũ − kr ũ . (22)

Further, based upon experimental measurements in [3] whereby the depolymeriza-
tion rate is approximately three orders of magnitude slower than that of polymeriza-
tion (i.e., slow reverse rate with kr → 0), the normalized net reaction rate in Eq. 18
simplifies to

rnet

[M]0 = rũ (1 − ũ) . (23)
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Taking these two special cases together yields the following net reaction rate:

rnet

[M]0 = rũ . (24)

Substituting rnet /[M]0 for the case of both unlimited monomers and slow depoly-
merization into Eq. 20 yields the same functional form as Skellam’s equation for
unbounded growth (Eq. 6):

∂ũ

∂t
= D

(
∂2ũ

∂x2
+ ∂2ũ

∂y2

)
+ rũ . (25)

Conversely, substituting rnet /[M]0 for only the case of slow depolymerization into
Eq. 20 produces Fisher’s equation for saturated growth:

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ r ũ (1 − ũ) . (26)

For the current system under study, the two aforementioned special case assump-
tions hold, in that the monomer pool is unlimited and the rate of polymerization far
exceeds the rate of depolymerization. Therefore, the former equation (Skellam’s) is
chosen to model macroscale actin dynamics.

One of the main goals of this study is to compare the F-actin densities predicted
by the microscale model and the macroscale model. We introduce the length density,
u(x, y, t), which is defined as the total length of actin filaments per unit area at the
location (x, y) and time t . The length density is related to ũ by

u = 0.0027µm × [M]0 × ũ, (27)

recalling from Sect. 2.1.2 that 0.0027µm is the length added to an actin filament by
a monomer. As 0.0027µm×[M]0 is a constant, u also satisfies Skellam’s equation:

∂u

∂t
= D

(
∂2u

∂x2 + ∂2u

∂y2

)
+ ru. (28)

We note that while ũ is dimensionless, u is measured in length per unit area and
thus, has units of µm/µm2 = 1/µm. As it is more straightforward to calculate the
length density of F-actin in the microscale model, we will use u instead of ũ.

2.2.3 Analytical Solution of PDE

The analytical solution to Eq. 28, given an initial point source at the origin is

u(x, y, t) = u0

4πDt
exp

(
rt − x2 + y2

4Dt

)
, (29)
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where u0 is the magnitude of the point source. For sufficiently large times t , the
F-actin density in Eq. 29 propagates as a unidirectional wave moving at a constant
speed v. To see this, we first fix u and solve for x2 + y2 from Eq. (29):

x2 + y2 = 4rDt2 − 4Dt

(
ln t + ln

4πuD

u0

)
. (30)

Applying the limit of large time yields

lim
t→+∞

√
x2 + y2

t
= lim

t→+∞ 2

√
rD − D

t

(
ln t + ln

4πuD

u0

)
= 2

√
rD . (31)

For large enough t values, u(x, y, t) is a traveling wave propagating with speed
v = 2

√
rD. Indeed, in the stochastic simulations, we observe that the speed at

which the periphery of the actin network advances is roughly constant (see Fig. 2c).
The wave-like behavior of an actin network has attracted considerable interest

in recent years [51–54]. In [54], a variety of experimental and theoretical studies
of actin traveling waves have been classified and reviewed. It is generally thought
that actin waves result from the interplay between “activators” and “inhibitors”
of actin dynamics modulated by regulatory proteins. Activation and inhibition are
incorporated into our stochastic model by introducing the probabilities of branching,
polymerization, and depolymerization. For a fixed set of parameter values, we can
infer the values of r , D from the F-actin density averaged over many runs of the
stochastic model. In addition, by varying these stochastic model parameters, we can
gain insight into how they affect r , D, and the wave speed of the network.

3 Mathematical Methods

3.1 Measures to Connect Microscale Agent-Based and
Macroscale Deterministic Models

In this section, we state the framework we developed to compare and connect
the microscale agent-based approach in Sect. 2.1 to the macroscale continuum
system in Sect. 2.2. From many instances of the stochastic simulation, the averaged
mean displacement and network density are computed and used, together with
the analytical solution of Skellam’s equation in Eq. 29, to extract an effective
bulk diffusion coefficient and unsaturated growth rate. These two quantities in the
continuum model are completely identifiable by characteristics of the microscale
dynamics.
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Fig. 2 Agent-based microscale model of a branching actin structure. (a) Resulting branching
networks at different time instances of t = 3, 7, and 10 s. Light gray dots represent Arp2/3 protein
complexes, dark gray squares indicate the initial nucleation site, and solid black lines denote F-
actin filaments. (b) F-actin length density at t = 10 s. The filament length density is calculated
from one realization of the stochastic system and measures the filament length per area. (c) Mean
displacement of 10 independent realizations of the model (solid), with the corresponding best-
fit linear approximation (dashed). The slope of the linear approximation corresponds to the wave
speed of the leading edge of the network, v = 0.31µm/s. The parameters used in stochastic
agent-based simulations are provided in Table 1. Mean displacement is discussed in more detail in
Sect. 3.1.1

3.1.1 Mean Displacement

To track the movement of the actin network in the stochastic simulations, we
define a “fictitious particle” to be the filament tip extending the greatest distance
from the nucleation site at the origin. The position of this fictitious particle is
calculated at each time step and we report the displacement of the fictitious particle
as a function of time averaged over 10 independent realizations of the microscale
algorithm (Fig. 2c). Note that the fictitious particle may not correspond to the same
individual filament tip in consecutive time steps. We find the mean displacement
over time is well-fitted by a linear function with a goodness-of-fit coefficient
of R2 = 0.99996; the linear correlation coefficient varied insignificantly with
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parameter variations. The slope of mean displacement of the fictitious particle in
the stochastic simulations can be interpreted as the speed of propagation of the
leading edge of the network. The speed of the network in the continuum approach
was derived in Eq. 31. Combining these yields one link between the microscale
simulations and the macroscale system:

v = lim
t→∞

x

t
= 2

√
rD . (32)

Here, v denotes the slope of the line which fits the mean displacement curve over
time. We note that the important quantity for our analysis is “mean displacement”,
not mean-squared displacement, because our system does not undergo a purely
diffusive process. Instead, we use mean displacement to extract the wave speed of
an advancing network that undergoes both diffusion and density-dependent growth.

3.1.2 Derivation of r and D from the Network Density

To distinguish between the effective diffusion coefficient and growth rate in the wave
speed in Eq. 32, a second measure is necessary to isolate the two parameters. To gain
insight about what the second measure should be, we look to simplify the analytical
solution of Skellam’s equation to obtain an expression for one of the parameters.
At an arbitrary time point ti , and considering a cross-section of the solution (along
y = 0 in Fig. 2b), Eq. 29 simplifies to

u(x, 0, ti ) = u0

4πD ti
exp

(
r ti − x2

4D ti

)
. (33)

Its first and second spatial derivatives are:

∂

∂x
(u(x, 0, ti )) = − u0x

8πD2t2i

exp

(
r ti − x2

4D ti

)
, (34)

∂2

∂x2 (u(x, 0, ti )) = − u0

8πD3t3i

(
D ti − x2

2

)
exp

(
r ti − x2

4D ti

)
. (35)

The spatial profile of the solution along a horizontal slice with y = 0 at ti = 10 s
together with its gradient are shown in Fig. 3a. At any point in time, there are
three points of interest in the solution: the global maximum and the two inflection
points. These points correspond to the zero of the gradient function (for the global
maximum) and the global maxima and minima of the gradient function (for the
inflection points). Critical point analysis shows that for Eq. 33 the global maximum
of the solution occurs at x = 0, while the inflection points occur at x = ±√

2Dti .
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Fig. 3 Connection between macroscale deterministic and microscale agent-based models of a
branching actin network. (a) Cross-section of the solution (solid line, Eq. 33) and first derivative
(dotted line, Eq. 34) of the 2D solution to Skellam’s equation with y = 0 at ti = 10 s. The
maximum of the solution (vertical black line) and the two inflection points (vertical gray lines) are
indicated as three points of interest used to explicitly calculate the growth rate constant (r) from
simulations of the microscale system. (b) F-actin length density averaged over 1000 independent
runs of the microscale model (solid line), and its calculated gradient (dotted line)

To obtain an analytical expression for r , we find the global maximum of the
solution curve at a time point t1:

u(0, 0, t1) = u0

4πD t1
exp(r t1) . (36)

A similar expression is obtained for t2. Taking the ratio of u(0, 0, t1) and u(0, 0, t2),
we conclude that

u(0, 0, t1)

u(0, 0, t2)
=

u0
4πD t1

exp(r t1)

u0
4πD t2

exp(r t2)
, (37)

= t2

t1
exp

(
r (t1 − t2)

)
, (38)

⇒ r =
ln

(
u(0,0,t1)
u(0,0,t2)

)
+ ln

(
t1
t2

)
t1 − t2

. (39)

Here, u(0, 0, t1) and u(0, 0, t2) are the maximum values of our solution function at
two different arbitrary time points. By averaging over many independent microscale
simulations for a fixed set of parameters, we can approximate the maximum value
of the actin network density. Thus, for two choices of time points t1 and t2, and the
corresponding maximum values of actin network concentration averaged over many
microscale simulations, we can explicitly calculate r , as follows:

r =
ln

(
max value at t1
max value at t2

)
+ ln

(
t1
t2

)
t1 − t2

. (40)
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Another method for estimating r is to use the inflection points, rather than the
maximum value of the solution profile. The inflection points at time t1 occur at
x = ±√

2D t1. At those points, the gradient of the solution curve is

∂

∂x
(u(x, 0, t1))

∣∣∣
x=±√

2D t1
= − u0

8πD2t21

(
±√

2D t1

)
exp

(
r t1 − (±√

2D t1)
2

4D t1

)
,

(41)

= ∓ u0

4
√
2π(D t1)3/2

exp

(
r t1 − 1

2

)
, (42)

= ∓
(

u0 e−1/2

4
√
2π

)
exp(r t1)

(D t1)3/2
. (43)

Note the first expression on the right-hand side is constant, while the second expres-
sion depends on the parameters as well as the choice of a time point. We have a sim-

ilar expression at time point t2. Reminding ourselves that ∂
∂x

(u(x, 0, ti ))
∣∣∣
x=±√

2Dti
is simply the maximum gradient of the actin network at time ti , we take the ratio of
the expressions at times t1 and t2:

max gradient at t1
max gradient at t2

=
∓

(
u0 e−1/2

4
√
2π

)
exp(r t1)

(D t1)
3/2

∓
(

u0 e−1/2

4
√
2π

)
exp(r t2)

(D t2)
3/2

, (44)

= exp
(
r (t1 − t2)

) (
t2

t1

)3/2

, (45)

⇒ r =
ln

(
max gradient at t1
max gradient at t2

)
+ 3

2 ln
(

t1
t2

)
t1 − t2

(46)

This provides a second method to explicitly calculate r from stochastic runs of the
microscale model.

To extract the growth rate constant, r , from the microscale agent-based system
using either Eq. 40 or 46 entails the calculation of the length density u at a time point
ti , and we now address how this is done. We consider 1000 independent realizations
of the microscale model. The computational domain [−5, 5µm] × [−5, 5µm] is
uniformly subdivided into 100 × 100 boxes of size 0.1 × 0.1µm. In each run of
the microscale model and for every discretized box, we calculate the length density
at the center of the box at time ti . To be more precise, we consider the example in
Fig. 4, where a 0.1× 0.1µm grid box centered at (x, y) at time ti in one simulation
of the microscale model is shown. There are three filaments that “cross” the box, that
is, a portion of each of the three filaments is contained in the box. We calculate the
length of each portion, add up the three lengths, and set the length density at (x, y)

and ti in the current run of the microscale model to be the sum divided by 0.01,
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Filament 2

Filament 1

Filament 3

(x, y)

Fig. 4 A 0.1 × 0.1µm grid box of an instance of the microscale stochastic model. The grid box
is centered at (x, y) with three filaments partially contained in it

the area of the box. To obtain u(x, y, ti ), we average the densities at (x, y) and ti
calculated in all 1000 independent simulations.The solid curve in Fig. 3b represents
the averaged F-actin density at (x, 0) and ti = 10 s with default parameters provided
in Table 1. To compute its spatial gradient, represented by the dashed line in Fig. 3b,
we use centered differences.

Once we obtain r , and using the slope of the mean displacement of the network
front, we can isolate the effective diffusion coefficient from Eq. 32 as

D = v2

4r
. (47)

3.2 Sensitivity Analysis

To determine how microscale rates affect macroscale network behavior, we perform
a series of sensitivity analyses. Specifically, we focus on three macroscopic
measures: the wave speed of the advancing actin front (v), the effective growth
rate constant (r), and the diffusion coefficient of the actin network (D) (Fig. 5).
The microscale parameters varied are the critical length required for a filament
to branch (Lbranch), the polymerization probability (ppoly), the depolymerization
probability (pdepoly), and the mean (μ) and standard deviation (σ ) of the cumulative
distribution function for filament branching probability (pbranch). As several of these
parameters simultaneously influence the architecture of the network, three groups of
parameters are established for analysis: Lbranch, μ vs. σ , and ppoly vs. pdepoly. For
each set of parameter runs, all other parameters are fixed at their default values in
Table 1. Parameters are varied over the following ranges: 0.15 ≤ Lbranch ≤ 1.2µm,
0 ≤ ppoly ≤ 0.75, 0 ≤ pdepoly ≤ 1, 0 ≤ μ ≤ 5, and 0 ≤ σ ≤ 5.

The lower bound for the critical branching length is chosen to ensure computa-
tional tractability – as this value is lowered further, the network density continues
to grow exponentially and becomes computationally demanding. The upper bound
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Fig. 5 Sensitivity analysis of the wave speed (v, µm/s), network growth rate (r , 1/s), and diffusion
coefficient (D, µm2/s) as microscale parameters are varied. Effect of critical branching length
(Lbranch) on extracted (a) wave speed, (b) rate constant, and (c) diffusion coefficient. Black dots
indicate the mean of 3 independent runs and red bars indicate standard error. The dotted lines
serve as visual aids for the range of values for resulting wave speeds. The insets in (b) and (c)
are more refined parameter variations for critical branching lengths between 0.3 and 0.7µm. The
horizontal axes of the insets represent critical branching lengths, while the vertical axes are the
growth rate constant and diffusion coefficient, respectively. Effect of parameters associated with the
branching probability with mean (μ) and standard deviation (σ ) on calculated (d) wave speed, (e)
network growth rate, and (f) diffusion coefficient. Effect of polymerization and depolymerization
probabilities, (ppoly and pdepoly, respectively), on extracted (g) wave speed, (h) network growth
rate, and (i) diffusion coefficient

for branching length is selected to capture the leveling-off behavior in Fig. 5b, c.
Further, the interval for critical branching length encompasses many of the exper-
imentally measured lengths. The upper bound for ppoly is again chosen to ensure
computational tractability – a high polymerization rate with simultaneous low
depolymerization rate increases the computational cost. Lastly, the two parameters
associated with the cumulative distribution function for branching probability are
non-negative. Their upper bound is arbitrary, yet importantly captures the essential
trends in the network behavior in Fig. 5e, f.
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4 Results

4.1 Micro-to-Macroscale Connection

To connect the dynamics of a branched actin network across the distinct scales, we
simulate 1000 runs of the microscale agent-based model and record the resulting
average actin density over a computational domain [−5, 5µm] × [−5, 5µm] at
time points t = 7, 8, 9, 10, and 15 s. We then calculate the wave speed, followed
by the network growth rate and effective diffusion coefficient based on the data
collected from these simulations (see Sect. 3.1). Specifically, the wave speed results
are calculated from the average speed of a fictitious particle at the leading edge of
the network, or the slope of the mean displacement over time (Fig. 5a, d, g). To
obtain the slope, the plot of the mean displacement over time is fitted by a line
with a goodness-of-fit coefficient of R2 = 0.9999 − 0.99999 for most choices
of parameters. The goodness-of-fit is lower, R2 = 0.5 − 0.6, for similar rates
of polymerization and depolymerization. This is because the network undergoes
periods of growth followed by decay and the effect is even more dramatic when
depolymerization rate is faster than polymerization rate. In this case we report
that the wave speed is zero since overall the network cannot grow. The maximum
averaged filament length density or the maximum rate of change of the averaged
density at time points t1 = 9 and t2 = 10 s yields the growth rate constant from
Eq. 40 (Fig. 5b, e, h). Lastly, the effective diffusion of the bulk network can be
readily calculated according to Eq. 47 (Fig. 5c, f, i). We simulate the PDE model
in Eq. 28 using the diffusion coefficient and growth rate determined above, and
compare the density predicted by the continuum model to the averaged density
produced by the agent-based model (Fig. 6). We choose u0 = 0.1 in Eq. 29, which
seems to give the best overall fit to the microscale model.

We report that the wave speed is v ≈ 0.31µm/s, while the rate constant is r ≈
0.88 1/s using Eq. 40, and the diffusion constant is D ≈ 0.03µm2/s. The averaged
actin densities along a cross-section with y = 0 at times t = 7, 8, 9, 10, 15 s
produced by the agent-based simulations are plotted in light gray in Fig. 6, while
the corresponding densities from Skellam’s equation are shown in dark gray.

4.2 Results of the Sensitivity Analysis

We find that the wave speed of the actin network is largely unaffected by branching
parameters, either the critical branching length or the mean and standard deviation of
the cumulative distribution function for branching probability (Fig. 5a, d). However,
the wave speed does depend on polymerization and depolymerization probabilities,
which dictate the rate of growth of filaments. This result is reasonable given our
initial assumption of unlimited resources – branching events control the spatial
distribution of the network, while the rates of filament length change dictate
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Fig. 6 Comparison of F-actin density profiles obtained from agent-based simulations ( light)
and analytical solution to Skellam’s equation (dark) along a cross-section with y = 0 and time
instances of (a) 7 s, (b) 8 s, (c) 9 s, (d) 10 s, and (e) 15 s. Macroscale parameters for the solution to
Skellam’s equation, D = 0.03µm2/s and r = 0.88 1/s, were calculated from averaged agent-based
simulations as described in Sect. 3
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the speed of network extension. Thus, increasing the polymerization probability
increases the rate at which the network grows outwardly, i.e., the wave speed
(Fig. 5g). Similarly, as the depolymerization probability increases, actin filaments
are less likely to grow until eventually the overall growth of the network is arrested
(top left corner on Fig. 5g).

In contrast, the effective growth rate constant and diffusion coefficient are
affected by all five microscale kinetic parameters while keeping the wave speed
of the network constant (Fig. 5, last two columns). We find that the growth rate
constant is approximately inversely proportional to the critical branching length
(Fig. 5b). The physical intuition is that the growth rate constant is a measure of
the number of tips available for growth events (Eq. 7). For large critical branching
lengths, the network is composed of a small number of filaments that persistently
grow until the length condition for a branching event is met. Since a branching event
can only occur at tips of filaments in our model, for large critical lengths only a small
number of tips are available as branching sites, resulting in a small number of sites
undergoing growth. The growth rate ranges between roughly 0.1 and 1.2 1/s, where
the lower bound is attained for critical branching lengths over ∼0.5µm. Variation
of the two parameters of the branching cumulative distribution function – mean
and standard deviation – produce a transition from the lower to the upper bound
of growth rate (Fig. 5e). For a fixed but low standard deviation of the cumulative
distribution function, decreasing the mean shifts the cumulative distribution to the
left and thus increases the probability that a branching event can occur. However,
for a fixed mean, increasing the standard deviation of the cumulative distribution
decreases its slope, and thus results in larger probability for a filament to branch.
Taken together, a left-shifted, shallow branching cumulative distribution function
results in more branching events, and thus more filament tips that can undergo
growth (bottom right in Fig. 5e). A similar but more gradual transition is found
with changes in polymerization and depolymerization rates (Fig. 5h). The upper
bound of the effective growth rate occurs for rapidly growing actin filaments, where
polymerization probability is high but depolymerization probability is low (Fig. 5h,
bottom right). This is due to filaments with a high polymerization probability
reaching their critical lengths more quickly, allowing branching to start sooner, and
the network to spread out more quickly. To summarize, our findings indicate that
the growth rate of the leading edge of the network is dependent on the growth and
decay rates of the filaments, but also on the number of filament tips available for
binding of G-actin monomers.

The effective diffusion constant is calculated from the wave speed and growth
rate constant using Eq. 47. Thus, to maintain a constant wave speed as critical
branching length and branching probability are varied (Fig. 5a, d), the parameter
dependence of the diffusion constant must complement the parameter dependence of
the rate constant (Fig. 5b–c, e–f). We find that the diffusion coefficient increases with
increasing critical branching length until it reaches a plateau value of approximately
0.25µm2/s for branching lengths over ∼0.5µm (Fig. 5c). In this regime, the
network is composed of few, long filaments that grow persistently since branching
does not occur until a large critical length is reached. The network front moves
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in an approximately ballistic way rather than a diffusive, space-exploring way. We
note that the transition to a plateau occurs at a similar critical branching length of
0.5µm for both the diffusion constant and growth rate constant because the wave
speed is constant at this critical branching length (in fact, it is constant across all
branching length values). A sharp transition in the diffusion constant is reported as
the branching probability parameters – mean and standard deviation – are varied
(Fig. 5f). A high mean coupled with a low standard deviation results in a cumulative
distribution function that is steep and shifted to the right. This results in a lower
probability to branch, which means that individual filaments grow more persistently,
and the effective diffusion of the actin network from the nucleation site is faster (top
left in Fig. 5f). Reducing the mean or increasing the standard deviation increases the
probability to branch, which results in a denser actin network that does not diffuse
as far from the nucleation site (see smaller diffusion coefficients in bottom and right
of Fig. 5f). For fixed branching parameters, the effective diffusion can be slightly
increased through faster growth of the filament, or slightly decreased with faster
decay of the filament length (Fig. 5i). Specifically, permissible diffusion constants
ranges between 0.005 and 0.035µm2/s.

5 Discussion

Distinct F-actin density profiles arise from the stochastic, microscale simulations
and the deterministic, macroscale model (Fig. 6). In the microscale approach, the
flat filamentous actin profile with sharp shoulders at the boundary indicates that
the outward drive of the advancing actin network dominates over the filament
production term. In contrast, the continuum model reveals a more balanced outward
diffusion with reaction production at the origin, as evidenced by the smooth profile
growing in both radial extent and magnitude. This functional mismatch between the
microscale and macroscale results could be due to assumptions of either model.

In the microscale model, we have only incorporated polymerization and depoly-
merization dynamics from the barbed actin filament end, with Arp2/3-mediated
branching, while neglecting molecular motors and regulatory proteins involved
in actin dynamics. We have also neglected the effects of barbed end capping
and mechanical properties of actin filaments. Future extensions of the model will
incorporate a wider set of proteins acting on the actin filaments, as well as the
effect of these proteins on the network structure and outgrowth. Moreover, we aim to
investigate how limited availability, or a small finite pool, of G-actin monomers and
Arp2/3 complexes affects the resulting network architecture. This resource-limited
case presents a study relevant for various biological conditions.

With the macroscale model, we have arrived at the simplified reaction-diffusion
equation in Eq. 6 by incorporating two main assumptions on the reaction term: (1)
initial monomeric actin concentration far exceeds that of polymerized actin and
(2) slow reverse reaction (depolymerization) rate at the barbed end. Assumption
(1) is mathematically expressed by removing the saturating effect of the forward
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reaction term (polymerization). Physically, this implies an unlimited pool of actin
monomers is available to be polymerized into actin filaments. Qualitatively, limiting
monomeric actin would result in slower network growth but potentially similar
resultant network morphology. However, this may invalidate the second assumption,
as the forward rate becomes comparable in magnitude to the reverse rate. In
assumption (2), we rely on experimental measurements of actin polymerization
and depolymerization rates [3]. The more significant role of polymerization is
recapitulated in our calculated wave speed from the microscale simulation, which
is 0.31µm/s, in close accord with the empirical polymerization rate of 0.3µm/s
reported in [3]. The combined effect of implementing assumptions (1) and (2) is
a higher net reaction rate, or a higher production of polymerized actin. Without
incorporating these assumptions, the peak in polymerized actin at the domain center
(Fig. 6) may decrease, resulting in shoulders that more closely resemble those
from the microscale model. However, the hurdle to incorporating the full reaction
term (Eq. 18) is that there is no analytical solution for Eq. 21, and thus no direct
connection to the microscale model outputs. Specifically, the value of effective
rate constant r is calculated by Eqs. 40 and 46, and the traveling wave nature of
Skellam’s equation at long times provides the wave speed v (Eq. 32), from which
diffusion coefficient D can be directly calculated (Eq. 47). This leads to the main
assumption of the macroscale model, whereby the form of the PDE (Eq. 6) assumes
that actin network dynamics can be captured by a combination of reactive and
diffusive components. However, the absence of the shoulders in the density profile
present in the microscale model (Fig. 6) suggests that the PDE form can be modified
for improved matching across the two scales. The absence of these shoulders may
be an artifact of this PDE form. Thus, other PDE forms are being pursued for future
work. Finally, a spatially-dependent reaction term may be incorporated to correct
for the fact that the polymerization/depolymerization and especially branching
reactions are not truly homogeneous reactions occurring throughout the bulk phase
of the system, but rather, there is a distinct location dependence as to where the
reaction is taking place (e.g., only at the filament tips or with a minimum spacing).

Taken together, these results suggest that great care must be taken to ensure
models of actin dynamics are consistent with the underlying physical system.
Here, we propose a methodology to compare microscale stochastic approaches to
macroscale PDE models in order to directly correlate kinetic rates like binding and
unbinding rates to macroscopic parameters like diffusion and saturated growth coef-
ficients. These concrete metrics will connect phenomological diffusion coefficient
and reaction constants in PDEs to experimentally measurable molecular rates.
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