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Collaborative Workshop for Women
in Mathematical Biology

Rebecca Segal, Blerta Shtylla, and Suzanne Sindi

1 Aim and Scope

Biological systems are complex and highly interconnected. Despite increasing
amounts of information collected, it is not always clear how to use these data
to make conclusions and predictions. Mathematical models are powerful tools in
biology because they allow us to abstract the biological system in order to frame
questions, explore patterns and synthesize information. Indeed, we are writing these
remarks during the COVID-19 Pandemic which has illustrated in a staggering
way the importance of quantitative modeling in aiding our understanding of
complex biological processes. This volume contains the scientific and collaborative
work from the Collaborative Workshop for Women in Mathematical Biology. The
workshop brought together forty-five researchers to collaborate on seven problems
each of which used mathematics to understand complex biological systems. The
workshop was held at the Institute of Pure and Applied Mathematics on the campus
of University of California, Los Angeles from June 17-21, 2019 in Los Angeles, CA
and was organized by Rebecca Segal, Blerta Shtylla, and Suzanne Sindi. The articles
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2 R. Segal et al.

contained in this volume were initiated during the intensive one-week workshop and
continued through follow-up collaborations afterwards.

2 History and Context

Historically, women have been underrepresented in the mathematical sciences.
Although progress has been made, the numbers remain unbalanced. In the most
recent American Mathematical Society Survey from 2017, only 17% of tenure-
track mathematics faculty in doctoral departments are female (http://www.ams.org/
profession/data/annual-survey/demographics). A specific breakdown of distribution
within different types of institutions (https://www.womendomath.org/research/)
gives an even more compelling picture of why research workshops such as this one
can be so valuable for the mathematics community. Research mentoring and support
from senior mentors is one key to success and a workshop environment provides a
significant amount of interaction in a concentrated amount of time.

The primary aim of the Women in Mathematical Biology (WIMB) workshops is
to foster research collaboration among women in mathematical biology. Participants
spend a week making progress on a research project and encouraging innovation
in the application of mathematical, statistical, and computational methods in the
resolution of significant problems in the biosciences. The workshops have a special
format designed to maximize the opportunities to collaborate. The groups are
structured to facilitate tiered mentoring. Each group has a senior researcher who
presents a problem. This person is matched with a co-leader, typically a researcher
in their field but with whom they have not previously collaborated. The groups are
rounded out with researchers at various career stages. By matching senior research
mentors with junior mathematicians, we expand and support the community of
scholars in the mathematical biosciences. To date, WIMB workshops have occurred
at the Institute for Mathematics and its Applications (IMA, https://www.ima.umn.
edu/), the National Institute for Mathematical and Biological Synthesis (NIMBioS,
http://www.nimbios.org/), the Mathematical Biosciences Institute (MBI,https://mbi.
osu.edu/), and most recently at the Institute of Pure and Applied Mathematics
(IPAM, https://www.ipam.ucla.edu/). These workshops have been sponsored by an
ADVANCE grant from the National Science Foundation to the Association for
Women in Mathematics. This award has helped establish research networks in 21
different areas of mathematics research including Control, Commutative Algebra,
Geometry, Data Science, Materials, Operator Algebras, Analysis, Number Theory,
Shape, Topology, Numerical Analysis, and Representation Theory.

For the Mathematical Biology workshops, each group continues their project
together to obtain results that are submitted to the peer-reviewed AWM Proceedings
volume for the workshop. The benefit of such a structured program with leaders,
projects and working groups planned in advance is based on the successful Women
In Numbers (WIN) conferences and works in both directions: senior women will
meet, mentor, and collaborate with the brightest young women in their field on a

http://www.ams.org/profession/data/annual-survey/demographics
http://www.ams.org/profession/data/annual-survey/demographics
https://www.womendomath.org/research/
https://www.ima.umn.edu/
https://www.ima.umn.edu/
http://www.nimbios.org/
https://mbi.osu.edu/
https://mbi.osu.edu/
https://www.ipam.ucla.edu/


Collaborative Workshop for Women in Mathematical Biology 3

part of their research agenda of their choosing, and junior women and students will
develop their network of colleagues and supporters and encounter important new
research areas to work in, thereby improving their chances for successful research
careers.

One of the most critical workshop goals is help establish supportive and
productive research groups that are sustained well beyond the workshop. Below we
include some representative statements from participants shared with us when we
surveyed them at the end of the workshop to assess their opinion of the workshop
structure and the impact of the workshop on their careers. The group dynamics were
overwhelmingly listed as a positive experience:“The opportunity to work with, share
ideas, and learn from a group made up entirely of female mathematicians.” Some
participants appreciated the format of the workshop for allowing “Exclusive time
spent working with talented people on a new project.” Participants left the workshop
satisfied with their experience: “Establishing a new group of collaborators. I’ve
honestly never developed this skill and I’m glad to have had this opportunity.”
The workshop sometimes stretched participants out of their comfort zone while still
providing a positive experience: “Watching in awe as phenomenal women worked
on math and bio. I tried my best to contribute, and although I felt like I still lacked
a lot of background to really make a real impact, it was really inspirational to
learn from women established in their careers. I definitely have a lot more role
models at the end of this trip! The industry panel was helpful in showing me more
career opportunities for a mathematical biologist.” The group leaders were pleased
with the work produced by their teams and all of the participants learned new
mathematics, new biology, or new computational tools to move the research project
in a productive direction. Finally, as organizers we have been delighted to see the
teams initiated at these workshops produce new research projects, papers, proposals
and other scholarly products far beyond the scope of the original team lead project.

3 Research

Within this volume are mathematical research papers covering a wide range of
application areas. The work can be loosely grouped into a few general application
areas: structural organization of biological material, infection modeling, and disease
treatment. Throughout this research are discussions of how to create accurate
models with limited data, how to work across biological scales, and how to best
describe complex structures in a useful manner.

Several teams had research related to the structural organization of organisms.
One project focused on how the protein actin helps form larger structures within
a cell. Other projects studied DNA topology and DNA secondary structure to
understand the design and replication mechanisms in organisms. Actin assembles
into semi-flexible filaments that cross-link to form higher order structures within the
cytoskeleton. This study focused on the dynamics of the formation of a branched
actin structure as observed at the leading edge of motile eukaryotic cells. They



4 R. Segal et al.

constructed a minimal agent-based model for the microscale branching actin dynam-
ics, and a deterministic partial differential equation model for the macroscopic
network growth and bulk diffusion. Their results suggest that perturbations to
microscale rates can have significant consequences at the macroscopic level, and
these should be taken into account when proposing continuum models of actin
network dynamics.

DNA topology, formal grammar R-loops, are three-stranded nucleic acid struc-
tures consisting of two DNA strands and one RNA strand. They form naturally
during transcription when the nascent RNA hybridizes to the template DNA strand,
forcing the coding DNA strand to wrap around the RNA:DNA duplex. In their study,
this team used words generated by the grammars to represent topological segments
of the DNA:DNA and RNA:DNA interactions. They extended this model to include
properties of the DNA nucleotide sequence.

A third group explored the extent to which graph algorithms for community
detection can improve the mining of structural information from the predicted
Boltzmann/Gibbs ensemble for the biological objects known as RNA secondary
structures. Since more structural information is obtained in 50% of the test cases,
this proof-of-principle analysis supports efforts to improve the data mining of RNA
secondary structure ensembles.

Two groups worked broadly in the area of infection: one group examined disease
spread across geographic regions while another group explored in host resolution
of infection. How do interventions impact malaria dynamics between neighboring
countries? Although many countries world wide have taken measures to decrease
the incidence of malaria many regions remain endemic, and in some parts of the
world malaria incidence is increasing. This team considered the case of neighboring
countries Botswana and Zimbabwe, connected by human mobility. They used a
two-patch Ross-MacDonald Model with Lagrangian human mobility to examine
the coupled disease dynamics between these two countries.

Antimicrobial resistance (AMR) is a serious threat to global health today.
The spread of AMR, along with the lack of new drug classes in the antibiotic
pipeline, has resulted in a renewed interest in phage therapy, which is the use of
bacteriophages to treat pathogenic bacterial infections. These researchers utilized
a mathematical model to examine the role of the immune response in concert
with phage-antibiotic combination therapy compounded with the effects of the
immune system on the phages being used for treatment. They explored the effect
of phage-antibiotic combination therapy by adjusting the phage and antibiotics dose
or altering the timing. Their results show that it is important to consider the host
immune system in mathematical models and that frequency and dose of treatment
are important considerations for the effectiveness of treatment.

Finally, two groups worked broadly in the area of disease progression and
treatment. One group developed a model for retinal degeneration while the other
focused on radiation therapy for cancerous tumors. In the retina, photoreceptor
degeneration can result from imbalance in lactate production and consumption as
well as disturbances to pyruvate and glucose levels. To identify the key mechanisms
in metabolism that may be culprits of this degeneration, they used a nonlinear
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system of differential equations to mathematically model the metabolic pathway
of aerobic glycolysis in a healthy cone photoreceptor. Their model allowed them
to analyze the levels of lactate, glucose, and pyruvate within a single cone cell.
They performed numerical simulations, used available metabolic data to estimate
parameters and fit the model to this data, and conducted a sensitivity analysis using
two different methods (LHS/PRCC and eFAST) to identify pathways that have the
largest impact on the system.

Recent technological advances make it possible to collect detailed information
about tumors, and yet clinical assessments about treatment responses are typically
based on sparse datasets. In this work, one team proposed a workflow for choosing
an appropriate model, verifying parameter identifiability, and assessing the amount
of data necessary to accurately calibrate model parameters. They considered a
simple, one-compartment ordinary differential equation model which tracks tumor
volume and a two-compartment model that accounts for tumor volume and the
fraction of necrotic cells contained within the tumor.

4 Concluding Remarks

It merits note that the majority of revisions for this volume were accomplished
during the COVID-19 pandemic; we are both grateful for and proud of the hard work

Fig. 1 Group photograph of the workshop participants
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of our participants during these challenging times. Workshop groups are continuing
to work on furthering the projects and presenting their work at conferences. Past
workshops have had successful research collaborations last for years following the
workshop. The more community building we can accomplish, the higher the rate of
success for women and mathematics. This means more innovative research will be
produced and built upon by the entire mathematics community (Fig. 1).

Acknowledgments The work described herein was initiated during the Collaborative Workshop
for Women in Mathematical Biology hosted by the Institute for Pure and Applied Mathematics at
the University of California, Los Angeles in June 2019. Funding for the workshop was provided
by IPAM, the Association for Women in Mathematics’ NSF ADVANCE “Career Advancement
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Industrial and Applied Mathematics.



Connecting Actin Polymer Dynamics
Across Multiple Scales

Calina Copos, Brittany Bannish, Kelsey Gasior, Rebecca L. Pinals,
Minghao W. Rostami, and Adriana T. Dawes

Abstract Actin is an intracellular protein that constitutes a primary component of
the cellular cytoskeleton and is accordingly crucial for various cell functions. Actin
assembles into semi-flexible filaments that cross-link to form higher order structures
within the cytoskeleton. In turn, the actin cytoskeleton regulates cell shape, and
participates in cell migration and division. A variety of theoretical models have been
proposed to investigate actin dynamics across distinct scales, from the stochastic
nature of protein and molecular motor dynamics to the deterministic macroscopic
behavior of the cytoskeleton. Yet, the relationship between molecular-level actin
processes and cellular-level actin network behavior remains understudied, where
prior models do not holistically bridge the two scales together.

In this work, we focus on the dynamics of the formation of a branched actin
structure as observed at the leading edge of motile eukaryotic cells. We construct
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a minimal agent-based model for the microscale branching actin dynamics, and
a deterministic partial differential equation (PDE) model for the macroscopic
network growth and bulk diffusion. The microscale model is stochastic, as its
dynamics are based on molecular level effects. The effective diffusion constant and
reaction rates of the deterministic model are calculated from averaged simulations
of the microscale model, using the mean displacement of the network front and
characteristics of the actin network density. With this method, we design concrete
metrics that connect phenomenological parameters in the reaction-diffusion system
to the biochemical molecular rates typically measured experimentally. A parameter
sensitivity analysis in the stochastic agent-based model shows that the effective
diffusion and growth constants vary with branching parameters in a complementary
way to ensure that the outward speed of the network remains fixed. These results
suggest that perturbations to microscale rates can have significant consequences
at the macroscopic level, and these should be taken into account when proposing
continuum models of actin network dynamics.

Keywords Actin · Differential equations · Stochastic model · Sensitivity
analysis · Cytoskeleton

1 Introduction

A cell’s mechanical properties are determined by the cytoskeleton whose primary
components are actin filaments (F-actin) [1–4]. Actin filaments are linear polymers
of the abundant intracellular protein actin [5–7], referred to as G-actin when not
polymerized. Regulatory proteins and molecular motors constantly remodel the
actin filaments and their dynamics have been studied in vivo [8], in reconstituted in
vitro systems [2, 9], and in silico [10]. Actin filaments are capable of forming large-
scale networks and can generate pushing, pulling, and resistive forces necessary
for various cellular functions such as cell motility, mechanosensation, and tissue
morphogenesis [8]. Therefore, insights into actin dynamics will advance our
understanding of cellular physiology and associated pathological conditions [2, 11].

Actin filaments in cells are dynamic and strongly out of equilibrium. The
filaments are semi-flexible, rod-like structures approximately 0.007 μm in diameter
and extending several microns in length, formed through the assembly of G-actin
subunits [6, 7]. A filament has two ends, a barbed end and a pointed end, with
distinct growth and decay properties. A filament length undergoes cycles of growth
and decay fueled by an input of chemical energy, in the form of ATP, to bind
and unbind actin monomers [6, 7]. The rates at which actin molecules bind and
unbind from a filament have been measured experimentally [3, 12, 13]. The cell
tightly regulates the number, density, length, and geometry of actin filaments [7].
In particular, the geometry of actin networks is controlled by a class of accessory
proteins that bind to the filaments or their subunits. Through such interactions,
accessory proteins are able to determine the assembly sites for new filaments,
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change the binding and unbinding rates, regulate the partitioning of polymer
proteins between filaments and subunit forms, link filaments to one another, and
generate mechanical forces [6, 7]. Actin filaments have been observed to organize
into branched networks [14, 15], sliding bundles extending over long distances [16],
and transient patterns including vortices and asters [17, 18].

To generate pushing forces for motility, the cell uses the energy of the growth or
polymerization of F-actin [19, 20]. Actin polymerization powers the formation of
flat cellular protrusions, known as lamellipodia, found at the leading edge of motile
cells [8, 21]. Microscopy of the lamellipodial cytoskeleton has revealed multiple
branched actin filaments [15]. The branching structure is governed by the Arp2/3
protein complex, which binds to an existing actin filament and initiates growth
of a new “daughter” filament through a nucleation site at the side of preexisting
filaments. Growth of the “daughter” filament occurs at a tightly regulated angle of
70◦ from the “parent” filament due to the structure of the Arp2/3 complex [22].
The directionality of pushing forces produced by actin polymerization originates
from the uniform orientation of polymerizing actin filaments with their barbed ends
towards the leading edge of the cell [8]. Here, cells exploit the polarity of filaments,
since growth dynamics are faster at barbed ends than at pointed ends [23, 24].
Polymerization of individual actin filaments produces piconewton forces [25], with
filaments organized into a branched network in lamellipodia or parallel bundles in
filopodia [15]. The localized kinetics of growth, decay, and branching of a protrusive
actin network provide the cell with the scaffold and the mechanical work needed for
directed movement.

Many mathematical models have been developed to capture the structural forma-
tion and force generation of actin networks [20, 26, 27]. Due to the multiscale nature
of actin dynamics, two main approaches are used: agent-based methods [27–29] and
deterministic models using PDEs [30–33]. The effects of different molecular com-
ponents (e.g., depolymerization, stabilizers) on the architecture of a protrusive actin
network has been studied with detailed hybrid micro-macroscopic models [34, 35].
While both techniques are useful for understanding actin dynamics, each presents
limitations. Agent-based models more closely capture the molecular dynamics of
actin by explicitly considering the behavior of actin molecules through rules, such
as, bind to the closest filament at a particular rate. In general, agent-based models
simulate the spatiotemporal actions of certain microscopic entities, or “agents”,
in an effort to recreate and predict more complex large-scale behavior. In these
simulations, agents behave autonomously and through simple rules prescribed at
each time step. The technique is stochastic and can be interpreted as a coarsening of
Brownian and Langevin dynamical models [36]. However, agent-based approaches
are computationally expensive: at every time step, they specifically account for the
movement and interaction of individual molecules, while also assessing the effects
of spatial and environmental properties that ultimately result in the emergence of
certain large-scale phenomena, such as crowding. Such approaches benefit from the
direct relationship to experimental measurements of parameters, yet they present a
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further computational cost in that many instances of a simulation are needed for
reliable statistical information. Agent or rule-based approaches have been used to
reveal small-scale polymerization dynamics in actin polymer networks [26, 37],
but due to the inherent computational complexity, it remains unclear how this
information translates to higher length scales, such as the cell, tissue, or whole
organism.

To overcome such computational costs and still gain a mechanistic under-
standing of actin processes, one approach is to write deterministic equations that
“summarize” all detailed stochastic events. These approaches rely on differential
equations to predict a coarse-grained biological behavior by assuming a well-
mixed system where the molecules of interest exist in high numbers [20, 38–40]
and the spread of the polymer network can be qualitatively approximated by
a diffusion process [41, 42]. In continuum models, the stochastic behavior of
the underlying molecules are typically ignored. While continuum models can be
explored via traditional mathematical analysis, the challenge lies in determining the
terms and parameters of these equations that are representative of the underlying
physical system. Thus, these methods use phenomenological parameters of the
actin network, such as bulk diffusion and reaction terms, that are less readily
obtained experimentally. The relationship between molecular-level actin processes
and cellular-level actin network behavior remains disconnected. This disconnect
presents a unique challenge in modeling actin polymers in an active system across
length scales.

In this work, we design a systematic and rigorous methodology to com-
pare and connect actin molecular effects in agent-based stochastic simulations to
macroscopic behavior in deterministic continuum equations. Measures from these
distinct-scale models enable extrapolation from the molecular to the macroscopic
scale by relating local actin dynamics to phenomenological bulk parameters. First,
we characterize the dynamics of a protrusive actin network in free space using
a minimal agent-based model for the branching of actin filaments from a single
nucleation site based on experimentally measured kinetic rates. Second, in the
macroscopic approach, we simulate the spread of actin filaments from a point source
using a partial differential equation model. The model equation is derived from
first principles of actin filament dynamics and is found to be Skellam’s equation
for unbounded growth of a species together with spatial diffusion. To compare the
emergent networks, multiple instances of the agent-based approach are simulated,
and averaged effective diffusion coefficient and reaction rate are extracted from
the mean displacement of the advancing network front and from the averaged
network density. We identify two concrete metrics, mean displacement and the
averaged filament length density, that connect phenomenological bulk parameters
in the reaction-diffusion systems to the molecular biochemical rates of actin
binding, unbinding, and branching. Using sensitivity analysis on these measures,
we demonstrate that the outward movement of the actin network is insensitive to
changes in parameters associated with branching, while the bulk growth rate and
diffusion coefficient do vary with changes in branching dynamics. We further find
that the outward speed, growth rate constant, and effective diffusion increase with
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F-actin polymerization rate but decrease with increasing depolymerization of actin
filaments. By formalizing the relationship between micro- and macro-scale actin
network dynamics, we demonstrate a nonlinear dependence of bulk parameters on
molecular characteristics, indicating the need for careful model construction and
justification when modeling the dynamics of actin networks.

2 Mathematical Models

2.1 Microscale Agent-Based Model

2.1.1 Model Description

We build a minimal, agent-based model sufficient to capture the local microstructure
of a branching actin network. This model includes the dynamics of actin filament
polymerization, depolymerization, and branching from a nucleation site [1, 2, 43,
44]. We treat F-actin filaments as rigid rods. Each actin filament has a base (pointed
end) fixed in space and a tip (barbed end) capable of growing or shrinking due
to the addition or removal of actin monomers, respectively. We assume that there
is an unlimited pool of actin monomers available for filament growth, in line
with normal, intracellular conditions [3]. For simplicity, we neglect the effects of
barbed end capping, mechanical response of actin filaments, resistance of the plasma
membrane, cytosolic flow, and molecular motors and regulatory proteins. Motivated
by the short timescale of the initial burst of a growing actin network, we assume
that the pointed end of actin filaments is stabilized at a nucleation site, and thus, do
not account for the turnover dynamics at the pointed end. The physical setup of the
model is similar to conditions associated with in vitro experiments, as well as initial
actin network growth in cells, before components such as actin monomers become
limiting.

2.1.2 Numerical Implementation

At the start of each simulation, an actin filament of length zero is assigned an angle
of growth from the nucleation site (located at the origin) from a uniform random
distribution. Once a filament is prescribed a direction of growth, it will not change
throughout the time-evolution of that particular filament. At each subsequent time
step in the simulation, there are four possible outcomes: (i) growth of the filament
with probability ppoly, (ii) shrinkage of the filament with probability pdepoly, (iii) no
change in filament length, or (iv) branching of a preexisting filament into a “daugh-
ter” filament with probability pbranch provided that the “parent” filament has reached
a critical length Lbranch, measured from the closest branch point. To determine
which outcome occurs, two random numbers are independently generated for each
filament. The first random number governs polymerization (i) or depolymerization
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(ii): if the random number is less than ppoly, polymerization occurs, and if greater
than 1 − pdepoly, depolymerization occurs. If the first random number is greater
than or equal to ppoly and less than or equal to 1 − pdepoly, then the filament neither
polymerizes nor depolymerizes this time step, and therefore remains the same length
(iii). Similarly, if the random number is simultaneously less than ppoly and greater
than 1 − pdepoly, then both polymerization and depolymerization occur within this
time step, and therefore the filament remains the same length (iii). Both filament
growth and shrinkage occur in discrete increments corresponding to the length of a
G-actin monomer, Δx = 0.0027 μm [4]. We enforce that a filament of length zero
cannot depolymerize.

The second random number pertains to filament branching (iv). For filaments of
length greater than Lbranch, a new filament can be initiated at a randomly oriented
70◦-angle from a preexisting filament tip in correspondence with the effect of
Arp2/3 protein complex. If the second random number is less than the probability
of branching, pbranch, for the given filament, then the filament will branch and
create a “daughter” filament now capable of autonomous growth and branching.
This branching potential models the biological effect of the Arp2/3 complex without
explicitly including Arp2/3 concentration as a variable.

The step-wise process is repeated until the final simulation time is reached.
Simulation steps are summarized graphically in Fig. 1. All parameters for the
model are listed in Table 1. We calculate several different measurements from the
microscale simulation, as described below.

2.1.3 Parameter Estimation

Actin dynamics have been extensively studied in vivo and in vitro, providing many
rate constants used in this study. A 10 μM actin monomer concentration elongates
the barbed ends of F-actin filaments at a reported velocity of 0.3 μm/s [3]. We use
this measurement to calculate the polymerization probability, ppoly, via the formula:

assembly rate = polymerization probability × length added to filament

× number of timesteps per second (1)

0.3 μm
s = ppoly × 0.0027 μm × 1

0.005 s
, (2)

which implies that ppoly = 0.56. For simplicity, we round this probability to ppoly =
0.6 in the microscale model simulations. ADP-actin has a depolymerization rate of
4.0 1/s at the barbed ends of actin filaments [3]. This measurement represents the
rate of depolymerization of one actin subunit per second, thus a filament loses length
at a rate of

4.0 subunit
s × 0.0027 μm

subunit = 0.0108 μm
s . (3)
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Fig. 1 Flow chart of the algorithm implemented for the agent-based microscale model. All steps
following “Initialization” are repeated at every time step

To calculate the depolymerization probability, pdepoly, we use the analogous for-
mula:

disassembly rate = depolymerization probability × length removed from filament

× number of timesteps per sec (4)

0.0108 μm
s = pdepoly × 0.0027 μm × 1

0.005 s
, (5)

which yields pdepoly = 0.02.
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Table 1 Microscale model parameter values. Details on parameter estimation are available in
Sect. 2.1.3. Values flagged with one star (∗) were calculated from [3] and depend on the time
step as indicated in Eqs. 2 and 5. The value flagged with a dagger (†) is motivated by literature
measurements of actin filament length per branch which vary from 0.02 to 5 μm [15, 45–49]

Parameter Meaning Value

pbranch Probability of branching normal CDF

ppoly Probability of polymerizing 0.6∗

pdepoly Probability of depolymerizing 0.02∗

Lbranch Critical length before branching can occur 0.2 μm†

Tend Total run time 10 s

Δt Time step 0.005 s

nsim Number of independent simulations 10

Model parameter Lbranch represents the critical length a filament must reach
before branching can occur. Literature estimates for the spacing of branching Arp2/3
complexes along a filament vary widely, from 0.02 to 5 μm [15, 45–49]. We choose
an intermediate estimate, Lbranch = 0.2 μm, which is of similar order to the
values from other studies [48, 49]. The branching probability, pbranch, is chosen
from a cumulative distribution function (CDF) of the standard normal distribution
with mean, μ = 2 and standard deviation, σ = 1. For in vitro systems, branch
formation is inefficient because once an Arp2/3 complex is bound to a filament, the
reported branching rate is slow (estimated to be 0.0022−0.007 s−1) [49]. Given the
relative dynamic scales of polymerization/depolymerization versus branching, we
assume that (de)polymerization occurs at a prescribed rate, but because branching
is infrequent, its probability is drawn from a distribution function.

The three microscale model probabilities are calculated in a time-step-dependent
manner, such that the results of the microscale simulation are independent of
the value of Δt , for a given time step for which calculated polymerization and
depolymerization probabilities are not greater than 1. For example, polymerization
and depolymerization probabilities are obtained using Eqs. 1 and 4. From Eqs. 1
and 2 we see that the largest possible value of Δt consistent with a probability
less than or equal to 1 is 0.009 s. The branching probability, pbranch, is always
obtained using the CDF described in the preceding paragraph, but branching is
only allowed to happen at fixed time intervals of 0.005 s. Using the Δt value from
Table 1, branching can occur every time step with probability pbranch. If, instead,
Δt = 0.0025 s, branching can occur every other time step with probability pbranch.
Simulations in this study were performed with a time step Δt = 0.005 to ensure
that all results are internally consistent and comparable.
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2.2 Macroscale Deterministic Model

2.2.1 Model Description

We model the growth and spread of a branching actin network through a reaction-
diffusion form of the chemical species conservation equation derived in Sect. 2.2.2.
This form is frequently known as Skellam’s equation, applied to describe popu-
lations that grow exponentially and disperse randomly [50]. The two-dimensional
Skellam’s equation is

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ rũ. (6)

In the context of our actin network, ũ(x, y, t) is a dimensionless, normalized number
density of polymerized actin monomers at location (x, y) and time t , D is the
diffusion coefficient of the network (network spread), and r is the effective growth
rate constant (network growth). More precise definitions of ũ and r will be given
in Sect. 2.2.2. Note that the diffusion coefficient is in reference to the bulk F-actin
network spread, rather than representing Fickian behavior of monomers as has been
done in previous literature [31, 40]. We use no flux boundary conditions in Eq. 6 to
enforce no flow of actin across the cell membrane. For the initial condition of Eq. 6,
we prescribe a point source at the origin.

2.2.2 Derivation of Reaction Term from First Principles

We present a derivation of the reaction term in Skellam’s continuum description
(Eq. 6) from simple kinetic considerations of actin filaments which include poly-
merization, depolymerization, and branching.

First, we write the molecular scheme for actin filament polymerization and
depolymerization in the form of chemical equations. We denote a G-actin monomer
in the cytoplasmic pool by M , an actin polymer chain consisting of n − 1 subunits
by pn−1, and a one monomer longer actin polymer chain by pn. The process of
binding and unbinding of an actin monomer is described by the following reversible
chemical reaction:

M + pn−1

kf−⇀↽−
kr

pn . (7)

The constants kf and kr represent the forward and reverse rate constants, respec-
tively, and encompass the dynamics that lead to the growth/shrinking of an actin
filament.
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Next, the biochemical reaction in Eq. 7 can be translated into a differential
equation that describes rates of change of the F-actin network density. To write the
corresponding equations, we first use the law of mass action which states that the
rate of reaction is proportional to the product of the concentrations. Then, the rates
of the forward (rf ) and reverse (rr ) reactions are:

rf = kf [M] [pn−1], (8)

rr = kr [pn], (9)

where brackets denote concentrations of M, pn−1, and pn, in number per unit
area. This single actin polymerization/depolymerization reaction can be extended
to capture all actin filaments reacting simultaneously across the network as follows:

rf = kf [M] [Pn−1], (10)

rr = kr [Pn], (11)

where we define

Pn =
n∑

i=2

i [pi]. (12)

Under the assumption that the forward and reverse reactions are each elementary
steps, the net reaction rate is

rnet = rf − rr = kf [M] [Pn−1] − kr [Pn]. (13)

We note that the monomer concentration [M] can be eliminated from Eq. 13 if it is
expressed in terms of initial concentration of monomers in the cell cytoplasm [M]0:

[M] = [M]0 −
n∑

i=2

i [pi] = [M]0 − [Pn]. (14)

Lastly, we note that [Pn] = [Pn−1] + n [pn]. We can assume a minor contribution
from actin polymers at this maximum length, such that [Pn] ≈ [Pn−1]. Then, Eq. 13
becomes

rnet = kf

(
[M]0 − [Pn]

)
[Pn] − kr [Pn], (15)

and can be further simplified if we divide both sides of the equation by [M]0:

rnet

[M]0
= [M]0

[Pn]
[M]0

[(
1 − [Pn]

[M]0

)
kf − 1

[M]0
kr

]
. (16)
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We introduce variable ũ as the polymerized actin concentration normalized by the
initial monomeric actin concentration and r as an effective growth rate constant:

ũ = [Pn]
[M]0

, r = kf [M]0. (17)

The normalized net reaction rate in Eq. 16 simplifies to

rnet

[M]0
= rũ(1 − ũ) − kr ũ . (18)

Describing the macroscale dynamics of polymerized actin concentration [Pn] as
simultaneously diffusing in two-dimensional space with diffusion coefficient D

and undergoing molecular reactions with the net reaction rate rnet results in the
following PDE:

∂[Pn]
∂t

= D

(
∂2[Pn]
∂x2 + ∂2[Pn]

∂y2

)
+ rnet . (19)

The equation expressed in terms of variable ũ = [Pn]/[M]0 becomes

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ rnet

[M]0
. (20)

Finally, substituting in the full form of the normalized net reaction rate from Eq. 18
produces

∂ũ

∂t
= D

(
∂2ũ

∂x2
+ ∂2ũ

∂y2

)
+ r ũ (1 − ũ) − kr ũ . (21)

Special Cases
We consider two special cases of the kinetics derived above. In the case where
monomeric actin concentration is much larger than polymerized actin concentration,
the normalized net reaction rate in Eq. 18 becomes

rnet

[M]0
= rũ − kr ũ . (22)

Further, based upon experimental measurements in [3] whereby the depolymeriza-
tion rate is approximately three orders of magnitude slower than that of polymeriza-
tion (i.e., slow reverse rate with kr → 0), the normalized net reaction rate in Eq. 18
simplifies to

rnet

[M]0
= rũ (1 − ũ) . (23)
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Taking these two special cases together yields the following net reaction rate:

rnet

[M]0
= rũ . (24)

Substituting rnet /[M]0 for the case of both unlimited monomers and slow depoly-
merization into Eq. 20 yields the same functional form as Skellam’s equation for
unbounded growth (Eq. 6):

∂ũ

∂t
= D

(
∂2ũ

∂x2
+ ∂2ũ

∂y2

)
+ rũ . (25)

Conversely, substituting rnet /[M]0 for only the case of slow depolymerization into
Eq. 20 produces Fisher’s equation for saturated growth:

∂ũ

∂t
= D

(
∂2ũ

∂x2 + ∂2ũ

∂y2

)
+ r ũ (1 − ũ) . (26)

For the current system under study, the two aforementioned special case assump-
tions hold, in that the monomer pool is unlimited and the rate of polymerization far
exceeds the rate of depolymerization. Therefore, the former equation (Skellam’s) is
chosen to model macroscale actin dynamics.

One of the main goals of this study is to compare the F-actin densities predicted
by the microscale model and the macroscale model. We introduce the length density,
u(x, y, t), which is defined as the total length of actin filaments per unit area at the
location (x, y) and time t . The length density is related to ũ by

u = 0.0027 μm × [M]0 × ũ, (27)

recalling from Sect. 2.1.2 that 0.0027 μm is the length added to an actin filament by
a monomer. As 0.0027 μm×[M]0 is a constant, u also satisfies Skellam’s equation:

∂u

∂t
= D

(
∂2u

∂x2 + ∂2u

∂y2

)
+ ru. (28)

We note that while ũ is dimensionless, u is measured in length per unit area and
thus, has units of μm/μm2 = 1/μm. As it is more straightforward to calculate the
length density of F-actin in the microscale model, we will use u instead of ũ.

2.2.3 Analytical Solution of PDE

The analytical solution to Eq. 28, given an initial point source at the origin is

u(x, y, t) = u0

4πDt
exp

(
rt − x2 + y2

4Dt

)
, (29)
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where u0 is the magnitude of the point source. For sufficiently large times t , the
F-actin density in Eq. 29 propagates as a unidirectional wave moving at a constant
speed v. To see this, we first fix u and solve for x2 + y2 from Eq. (29):

x2 + y2 = 4rDt2 − 4Dt

(
ln t + ln

4πuD

u0

)
. (30)

Applying the limit of large time yields

lim
t→+∞

√
x2 + y2

t
= lim

t→+∞ 2

√
rD − D

t

(
ln t + ln

4πuD

u0

)
= 2

√
rD . (31)

For large enough t values, u(x, y, t) is a traveling wave propagating with speed
v = 2

√
rD. Indeed, in the stochastic simulations, we observe that the speed at

which the periphery of the actin network advances is roughly constant (see Fig. 2c).
The wave-like behavior of an actin network has attracted considerable interest

in recent years [51–54]. In [54], a variety of experimental and theoretical studies
of actin traveling waves have been classified and reviewed. It is generally thought
that actin waves result from the interplay between “activators” and “inhibitors”
of actin dynamics modulated by regulatory proteins. Activation and inhibition are
incorporated into our stochastic model by introducing the probabilities of branching,
polymerization, and depolymerization. For a fixed set of parameter values, we can
infer the values of r , D from the F-actin density averaged over many runs of the
stochastic model. In addition, by varying these stochastic model parameters, we can
gain insight into how they affect r , D, and the wave speed of the network.

3 Mathematical Methods

3.1 Measures to Connect Microscale Agent-Based and
Macroscale Deterministic Models

In this section, we state the framework we developed to compare and connect
the microscale agent-based approach in Sect. 2.1 to the macroscale continuum
system in Sect. 2.2. From many instances of the stochastic simulation, the averaged
mean displacement and network density are computed and used, together with
the analytical solution of Skellam’s equation in Eq. 29, to extract an effective
bulk diffusion coefficient and unsaturated growth rate. These two quantities in the
continuum model are completely identifiable by characteristics of the microscale
dynamics.
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Fig. 2 Agent-based microscale model of a branching actin structure. (a) Resulting branching
networks at different time instances of t = 3, 7, and 10 s. Light gray dots represent Arp2/3 protein
complexes, dark gray squares indicate the initial nucleation site, and solid black lines denote F-
actin filaments. (b) F-actin length density at t = 10 s. The filament length density is calculated
from one realization of the stochastic system and measures the filament length per area. (c) Mean
displacement of 10 independent realizations of the model (solid), with the corresponding best-
fit linear approximation (dashed). The slope of the linear approximation corresponds to the wave
speed of the leading edge of the network, v = 0.31 μm/s. The parameters used in stochastic
agent-based simulations are provided in Table 1. Mean displacement is discussed in more detail in
Sect. 3.1.1

3.1.1 Mean Displacement

To track the movement of the actin network in the stochastic simulations, we
define a “fictitious particle” to be the filament tip extending the greatest distance
from the nucleation site at the origin. The position of this fictitious particle is
calculated at each time step and we report the displacement of the fictitious particle
as a function of time averaged over 10 independent realizations of the microscale
algorithm (Fig. 2c). Note that the fictitious particle may not correspond to the same
individual filament tip in consecutive time steps. We find the mean displacement
over time is well-fitted by a linear function with a goodness-of-fit coefficient
of R2 = 0.99996; the linear correlation coefficient varied insignificantly with
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parameter variations. The slope of mean displacement of the fictitious particle in
the stochastic simulations can be interpreted as the speed of propagation of the
leading edge of the network. The speed of the network in the continuum approach
was derived in Eq. 31. Combining these yields one link between the microscale
simulations and the macroscale system:

v = lim
t→∞

x

t
= 2

√
rD . (32)

Here, v denotes the slope of the line which fits the mean displacement curve over
time. We note that the important quantity for our analysis is “mean displacement”,
not mean-squared displacement, because our system does not undergo a purely
diffusive process. Instead, we use mean displacement to extract the wave speed of
an advancing network that undergoes both diffusion and density-dependent growth.

3.1.2 Derivation of r and D from the Network Density

To distinguish between the effective diffusion coefficient and growth rate in the wave
speed in Eq. 32, a second measure is necessary to isolate the two parameters. To gain
insight about what the second measure should be, we look to simplify the analytical
solution of Skellam’s equation to obtain an expression for one of the parameters.
At an arbitrary time point ti , and considering a cross-section of the solution (along
y = 0 in Fig. 2b), Eq. 29 simplifies to

u(x, 0, ti ) = u0

4πD ti
exp

(
r ti − x2

4D ti

)
. (33)

Its first and second spatial derivatives are:

∂

∂x
(u(x, 0, ti )) = − u0x

8πD2t2
i

exp

(
r ti − x2

4D ti

)
, (34)

∂2

∂x2 (u(x, 0, ti )) = − u0

8πD3t3
i

(
D ti − x2

2

)
exp

(
r ti − x2

4D ti

)
. (35)

The spatial profile of the solution along a horizontal slice with y = 0 at ti = 10 s
together with its gradient are shown in Fig. 3a. At any point in time, there are
three points of interest in the solution: the global maximum and the two inflection
points. These points correspond to the zero of the gradient function (for the global
maximum) and the global maxima and minima of the gradient function (for the
inflection points). Critical point analysis shows that for Eq. 33 the global maximum
of the solution occurs at x = 0, while the inflection points occur at x = ±√

2Dti .
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Fig. 3 Connection between macroscale deterministic and microscale agent-based models of a
branching actin network. (a) Cross-section of the solution (solid line, Eq. 33) and first derivative
(dotted line, Eq. 34) of the 2D solution to Skellam’s equation with y = 0 at ti = 10 s. The
maximum of the solution (vertical black line) and the two inflection points (vertical gray lines) are
indicated as three points of interest used to explicitly calculate the growth rate constant (r) from
simulations of the microscale system. (b) F-actin length density averaged over 1000 independent
runs of the microscale model (solid line), and its calculated gradient (dotted line)

To obtain an analytical expression for r , we find the global maximum of the
solution curve at a time point t1:

u(0, 0, t1) = u0

4πD t1
exp(r t1) . (36)

A similar expression is obtained for t2. Taking the ratio of u(0, 0, t1) and u(0, 0, t2),
we conclude that

u(0, 0, t1)

u(0, 0, t2)
=

u0
4πD t1

exp(r t1)

u0
4πD t2

exp(r t2)
, (37)

= t2

t1
exp

(
r (t1 − t2)

)
, (38)

⇒ r =
ln

(
u(0,0,t1)
u(0,0,t2)

)
+ ln

(
t1
t2

)
t1 − t2

. (39)

Here, u(0, 0, t1) and u(0, 0, t2) are the maximum values of our solution function at
two different arbitrary time points. By averaging over many independent microscale
simulations for a fixed set of parameters, we can approximate the maximum value
of the actin network density. Thus, for two choices of time points t1 and t2, and the
corresponding maximum values of actin network concentration averaged over many
microscale simulations, we can explicitly calculate r , as follows:

r =
ln

(
max value at t1
max value at t2

)
+ ln

(
t1
t2

)
t1 − t2

. (40)
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Another method for estimating r is to use the inflection points, rather than the
maximum value of the solution profile. The inflection points at time t1 occur at
x = ±√

2D t1. At those points, the gradient of the solution curve is

∂

∂x
(u(x, 0, t1))

∣∣∣
x=±√

2D t1
= − u0

8πD2t2
1

(
±√

2D t1

)
exp

(
r t1 − (±√

2D t1)
2

4D t1

)
,

(41)

= ∓ u0

4
√

2π(D t1)3/2
exp

(
r t1 − 1

2

)
, (42)

= ∓
(

u0 e−1/2

4
√

2π

)
exp(r t1)

(D t1)3/2 . (43)

Note the first expression on the right-hand side is constant, while the second expres-
sion depends on the parameters as well as the choice of a time point. We have a sim-

ilar expression at time point t2. Reminding ourselves that ∂
∂x

(u(x, 0, ti ))

∣∣∣
x=±√

2Dti
is simply the maximum gradient of the actin network at time ti , we take the ratio of
the expressions at times t1 and t2:

max gradient at t1

max gradient at t2
=

∓
(

u0 e−1/2

4
√

2π

)
exp(r t1)

(D t1)
3/2

∓
(

u0 e−1/2

4
√

2π

)
exp(r t2)

(D t2)
3/2

, (44)

= exp
(
r (t1 − t2)

)(
t2

t1

)3/2

, (45)

⇒ r =
ln

(
max gradient at t1
max gradient at t2

)
+ 3

2 ln
(

t1
t2

)
t1 − t2

(46)

This provides a second method to explicitly calculate r from stochastic runs of the
microscale model.

To extract the growth rate constant, r , from the microscale agent-based system
using either Eq. 40 or 46 entails the calculation of the length density u at a time point
ti , and we now address how this is done. We consider 1000 independent realizations
of the microscale model. The computational domain [−5, 5 μm] × [−5, 5 μm] is
uniformly subdivided into 100 × 100 boxes of size 0.1 × 0.1 μm. In each run of
the microscale model and for every discretized box, we calculate the length density
at the center of the box at time ti . To be more precise, we consider the example in
Fig. 4, where a 0.1 × 0.1 μm grid box centered at (x, y) at time ti in one simulation
of the microscale model is shown. There are three filaments that “cross” the box, that
is, a portion of each of the three filaments is contained in the box. We calculate the
length of each portion, add up the three lengths, and set the length density at (x, y)

and ti in the current run of the microscale model to be the sum divided by 0.01,
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Filament 2

Filament 1

Filament 3

(x, y)

Fig. 4 A 0.1 × 0.1 μm grid box of an instance of the microscale stochastic model. The grid box
is centered at (x, y) with three filaments partially contained in it

the area of the box. To obtain u(x, y, ti ), we average the densities at (x, y) and ti
calculated in all 1000 independent simulations.The solid curve in Fig. 3b represents
the averaged F-actin density at (x, 0) and ti = 10 s with default parameters provided
in Table 1. To compute its spatial gradient, represented by the dashed line in Fig. 3b,
we use centered differences.

Once we obtain r , and using the slope of the mean displacement of the network
front, we can isolate the effective diffusion coefficient from Eq. 32 as

D = v2

4r
. (47)

3.2 Sensitivity Analysis

To determine how microscale rates affect macroscale network behavior, we perform
a series of sensitivity analyses. Specifically, we focus on three macroscopic
measures: the wave speed of the advancing actin front (v), the effective growth
rate constant (r), and the diffusion coefficient of the actin network (D) (Fig. 5).
The microscale parameters varied are the critical length required for a filament
to branch (Lbranch), the polymerization probability (ppoly), the depolymerization
probability (pdepoly), and the mean (μ) and standard deviation (σ ) of the cumulative
distribution function for filament branching probability (pbranch). As several of these
parameters simultaneously influence the architecture of the network, three groups of
parameters are established for analysis: Lbranch, μ vs. σ , and ppoly vs. pdepoly. For
each set of parameter runs, all other parameters are fixed at their default values in
Table 1. Parameters are varied over the following ranges: 0.15 ≤ Lbranch ≤ 1.2 μm,
0 ≤ ppoly ≤ 0.75, 0 ≤ pdepoly ≤ 1, 0 ≤ μ ≤ 5, and 0 ≤ σ ≤ 5.

The lower bound for the critical branching length is chosen to ensure computa-
tional tractability – as this value is lowered further, the network density continues
to grow exponentially and becomes computationally demanding. The upper bound



Connecting Actin Polymer Dynamics Across Multiple Scales 25

Fig. 5 Sensitivity analysis of the wave speed (v, μm/s), network growth rate (r , 1/s), and diffusion
coefficient (D, μm2/s) as microscale parameters are varied. Effect of critical branching length
(Lbranch) on extracted (a) wave speed, (b) rate constant, and (c) diffusion coefficient. Black dots
indicate the mean of 3 independent runs and red bars indicate standard error. The dotted lines
serve as visual aids for the range of values for resulting wave speeds. The insets in (b) and (c)
are more refined parameter variations for critical branching lengths between 0.3 and 0.7 μm. The
horizontal axes of the insets represent critical branching lengths, while the vertical axes are the
growth rate constant and diffusion coefficient, respectively. Effect of parameters associated with the
branching probability with mean (μ) and standard deviation (σ ) on calculated (d) wave speed, (e)
network growth rate, and (f) diffusion coefficient. Effect of polymerization and depolymerization
probabilities, (ppoly and pdepoly, respectively), on extracted (g) wave speed, (h) network growth
rate, and (i) diffusion coefficient

for branching length is selected to capture the leveling-off behavior in Fig. 5b, c.
Further, the interval for critical branching length encompasses many of the exper-
imentally measured lengths. The upper bound for ppoly is again chosen to ensure
computational tractability – a high polymerization rate with simultaneous low
depolymerization rate increases the computational cost. Lastly, the two parameters
associated with the cumulative distribution function for branching probability are
non-negative. Their upper bound is arbitrary, yet importantly captures the essential
trends in the network behavior in Fig. 5e, f.
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4 Results

4.1 Micro-to-Macroscale Connection

To connect the dynamics of a branched actin network across the distinct scales, we
simulate 1000 runs of the microscale agent-based model and record the resulting
average actin density over a computational domain [−5, 5 μm] × [−5, 5 μm] at
time points t = 7, 8, 9, 10, and 15 s. We then calculate the wave speed, followed
by the network growth rate and effective diffusion coefficient based on the data
collected from these simulations (see Sect. 3.1). Specifically, the wave speed results
are calculated from the average speed of a fictitious particle at the leading edge of
the network, or the slope of the mean displacement over time (Fig. 5a, d, g). To
obtain the slope, the plot of the mean displacement over time is fitted by a line
with a goodness-of-fit coefficient of R2 = 0.9999 − 0.99999 for most choices
of parameters. The goodness-of-fit is lower, R2 = 0.5 − 0.6, for similar rates
of polymerization and depolymerization. This is because the network undergoes
periods of growth followed by decay and the effect is even more dramatic when
depolymerization rate is faster than polymerization rate. In this case we report
that the wave speed is zero since overall the network cannot grow. The maximum
averaged filament length density or the maximum rate of change of the averaged
density at time points t1 = 9 and t2 = 10 s yields the growth rate constant from
Eq. 40 (Fig. 5b, e, h). Lastly, the effective diffusion of the bulk network can be
readily calculated according to Eq. 47 (Fig. 5c, f, i). We simulate the PDE model
in Eq. 28 using the diffusion coefficient and growth rate determined above, and
compare the density predicted by the continuum model to the averaged density
produced by the agent-based model (Fig. 6). We choose u0 = 0.1 in Eq. 29, which
seems to give the best overall fit to the microscale model.

We report that the wave speed is v ≈ 0.31 μm/s, while the rate constant is r ≈
0.88 1/s using Eq. 40, and the diffusion constant is D ≈ 0.03 μm2/s. The averaged
actin densities along a cross-section with y = 0 at times t = 7, 8, 9, 10, 15 s
produced by the agent-based simulations are plotted in light gray in Fig. 6, while
the corresponding densities from Skellam’s equation are shown in dark gray.

4.2 Results of the Sensitivity Analysis

We find that the wave speed of the actin network is largely unaffected by branching
parameters, either the critical branching length or the mean and standard deviation of
the cumulative distribution function for branching probability (Fig. 5a, d). However,
the wave speed does depend on polymerization and depolymerization probabilities,
which dictate the rate of growth of filaments. This result is reasonable given our
initial assumption of unlimited resources – branching events control the spatial
distribution of the network, while the rates of filament length change dictate
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Fig. 6 Comparison of F-actin density profiles obtained from agent-based simulations ( light)
and analytical solution to Skellam’s equation (dark) along a cross-section with y = 0 and time
instances of (a) 7 s, (b) 8 s, (c) 9 s, (d) 10 s, and (e) 15 s. Macroscale parameters for the solution to
Skellam’s equation, D = 0.03 μm2/s and r = 0.88 1/s, were calculated from averaged agent-based
simulations as described in Sect. 3
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the speed of network extension. Thus, increasing the polymerization probability
increases the rate at which the network grows outwardly, i.e., the wave speed
(Fig. 5g). Similarly, as the depolymerization probability increases, actin filaments
are less likely to grow until eventually the overall growth of the network is arrested
(top left corner on Fig. 5g).

In contrast, the effective growth rate constant and diffusion coefficient are
affected by all five microscale kinetic parameters while keeping the wave speed
of the network constant (Fig. 5, last two columns). We find that the growth rate
constant is approximately inversely proportional to the critical branching length
(Fig. 5b). The physical intuition is that the growth rate constant is a measure of
the number of tips available for growth events (Eq. 7). For large critical branching
lengths, the network is composed of a small number of filaments that persistently
grow until the length condition for a branching event is met. Since a branching event
can only occur at tips of filaments in our model, for large critical lengths only a small
number of tips are available as branching sites, resulting in a small number of sites
undergoing growth. The growth rate ranges between roughly 0.1 and 1.2 1/s, where
the lower bound is attained for critical branching lengths over ∼0.5 μm. Variation
of the two parameters of the branching cumulative distribution function – mean
and standard deviation – produce a transition from the lower to the upper bound
of growth rate (Fig. 5e). For a fixed but low standard deviation of the cumulative
distribution function, decreasing the mean shifts the cumulative distribution to the
left and thus increases the probability that a branching event can occur. However,
for a fixed mean, increasing the standard deviation of the cumulative distribution
decreases its slope, and thus results in larger probability for a filament to branch.
Taken together, a left-shifted, shallow branching cumulative distribution function
results in more branching events, and thus more filament tips that can undergo
growth (bottom right in Fig. 5e). A similar but more gradual transition is found
with changes in polymerization and depolymerization rates (Fig. 5h). The upper
bound of the effective growth rate occurs for rapidly growing actin filaments, where
polymerization probability is high but depolymerization probability is low (Fig. 5h,
bottom right). This is due to filaments with a high polymerization probability
reaching their critical lengths more quickly, allowing branching to start sooner, and
the network to spread out more quickly. To summarize, our findings indicate that
the growth rate of the leading edge of the network is dependent on the growth and
decay rates of the filaments, but also on the number of filament tips available for
binding of G-actin monomers.

The effective diffusion constant is calculated from the wave speed and growth
rate constant using Eq. 47. Thus, to maintain a constant wave speed as critical
branching length and branching probability are varied (Fig. 5a, d), the parameter
dependence of the diffusion constant must complement the parameter dependence of
the rate constant (Fig. 5b–c, e–f). We find that the diffusion coefficient increases with
increasing critical branching length until it reaches a plateau value of approximately
0.25 μm2/s for branching lengths over ∼0.5 μm (Fig. 5c). In this regime, the
network is composed of few, long filaments that grow persistently since branching
does not occur until a large critical length is reached. The network front moves
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in an approximately ballistic way rather than a diffusive, space-exploring way. We
note that the transition to a plateau occurs at a similar critical branching length of
0.5 μm for both the diffusion constant and growth rate constant because the wave
speed is constant at this critical branching length (in fact, it is constant across all
branching length values). A sharp transition in the diffusion constant is reported as
the branching probability parameters – mean and standard deviation – are varied
(Fig. 5f). A high mean coupled with a low standard deviation results in a cumulative
distribution function that is steep and shifted to the right. This results in a lower
probability to branch, which means that individual filaments grow more persistently,
and the effective diffusion of the actin network from the nucleation site is faster (top
left in Fig. 5f). Reducing the mean or increasing the standard deviation increases the
probability to branch, which results in a denser actin network that does not diffuse
as far from the nucleation site (see smaller diffusion coefficients in bottom and right
of Fig. 5f). For fixed branching parameters, the effective diffusion can be slightly
increased through faster growth of the filament, or slightly decreased with faster
decay of the filament length (Fig. 5i). Specifically, permissible diffusion constants
ranges between 0.005 and 0.035 μm2/s.

5 Discussion

Distinct F-actin density profiles arise from the stochastic, microscale simulations
and the deterministic, macroscale model (Fig. 6). In the microscale approach, the
flat filamentous actin profile with sharp shoulders at the boundary indicates that
the outward drive of the advancing actin network dominates over the filament
production term. In contrast, the continuum model reveals a more balanced outward
diffusion with reaction production at the origin, as evidenced by the smooth profile
growing in both radial extent and magnitude. This functional mismatch between the
microscale and macroscale results could be due to assumptions of either model.

In the microscale model, we have only incorporated polymerization and depoly-
merization dynamics from the barbed actin filament end, with Arp2/3-mediated
branching, while neglecting molecular motors and regulatory proteins involved
in actin dynamics. We have also neglected the effects of barbed end capping
and mechanical properties of actin filaments. Future extensions of the model will
incorporate a wider set of proteins acting on the actin filaments, as well as the
effect of these proteins on the network structure and outgrowth. Moreover, we aim to
investigate how limited availability, or a small finite pool, of G-actin monomers and
Arp2/3 complexes affects the resulting network architecture. This resource-limited
case presents a study relevant for various biological conditions.

With the macroscale model, we have arrived at the simplified reaction-diffusion
equation in Eq. 6 by incorporating two main assumptions on the reaction term: (1)
initial monomeric actin concentration far exceeds that of polymerized actin and
(2) slow reverse reaction (depolymerization) rate at the barbed end. Assumption
(1) is mathematically expressed by removing the saturating effect of the forward
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reaction term (polymerization). Physically, this implies an unlimited pool of actin
monomers is available to be polymerized into actin filaments. Qualitatively, limiting
monomeric actin would result in slower network growth but potentially similar
resultant network morphology. However, this may invalidate the second assumption,
as the forward rate becomes comparable in magnitude to the reverse rate. In
assumption (2), we rely on experimental measurements of actin polymerization
and depolymerization rates [3]. The more significant role of polymerization is
recapitulated in our calculated wave speed from the microscale simulation, which
is 0.31 μm/s, in close accord with the empirical polymerization rate of 0.3 μm/s
reported in [3]. The combined effect of implementing assumptions (1) and (2) is
a higher net reaction rate, or a higher production of polymerized actin. Without
incorporating these assumptions, the peak in polymerized actin at the domain center
(Fig. 6) may decrease, resulting in shoulders that more closely resemble those
from the microscale model. However, the hurdle to incorporating the full reaction
term (Eq. 18) is that there is no analytical solution for Eq. 21, and thus no direct
connection to the microscale model outputs. Specifically, the value of effective
rate constant r is calculated by Eqs. 40 and 46, and the traveling wave nature of
Skellam’s equation at long times provides the wave speed v (Eq. 32), from which
diffusion coefficient D can be directly calculated (Eq. 47). This leads to the main
assumption of the macroscale model, whereby the form of the PDE (Eq. 6) assumes
that actin network dynamics can be captured by a combination of reactive and
diffusive components. However, the absence of the shoulders in the density profile
present in the microscale model (Fig. 6) suggests that the PDE form can be modified
for improved matching across the two scales. The absence of these shoulders may
be an artifact of this PDE form. Thus, other PDE forms are being pursued for future
work. Finally, a spatially-dependent reaction term may be incorporated to correct
for the fact that the polymerization/depolymerization and especially branching
reactions are not truly homogeneous reactions occurring throughout the bulk phase
of the system, but rather, there is a distinct location dependence as to where the
reaction is taking place (e.g., only at the filament tips or with a minimum spacing).

Taken together, these results suggest that great care must be taken to ensure
models of actin dynamics are consistent with the underlying physical system.
Here, we propose a methodology to compare microscale stochastic approaches to
macroscale PDE models in order to directly correlate kinetic rates like binding and
unbinding rates to macroscopic parameters like diffusion and saturated growth coef-
ficients. These concrete metrics will connect phenomological diffusion coefficient
and reaction constants in PDEs to experimentally measurable molecular rates.
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Modeling RNA:DNA Hybrids with
Formal Grammars

Natas̆a Jonoska, Nida Obatake, Svetlana Poznanović, Candice Price,
Manda Riehl, and Mariel Vazquez

Abstract R-loops are nucleic acid structures consisting of a DNA:RNA hybrid and
a DNA single strand. They form naturally during transcription when the nascent
RNA hybridizes to the template DNA, forcing the coding DNA strand to wrap
around the RNA:DNA duplex. Although formation of R-loops can have deleterious
effects on genome integrity, there is evidence of their role as potential regulators
of gene expression and DNA repair. Here we initiate an abstract model based on
formal grammars to describe RNA:DNA interactions and the formation of R-loops.
Separately we use a sliding window approach that accounts for properties of the
DNA nucleotide sequence, such as C-richness and CG-skew, to identify segments
favoring R-loops. We evaluate these properties on two DNA plasmids that are known
to form R-loops and compare results with a recent energetics model from the Chédin
Lab. Our abstract approach for R-loops is an initial step toward a more sophisticated
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framework which can take into account the effect of DNA topology on R-loop
formation.

1 Introduction

RNA can have significant regulatory roles in biological processes such as gene
expression, gene inhibition and others (reviewed in the special issue [19]). Recently,
some interest has shifted towards the regulatory role of the transcript RNA, often
assumed to be just an intermediate towards the protein coding mRNA. In particular,
formation of R-loops is seen as a major factor in the RNA transcript involvement in
DNA repair [23].

R-loops are three-stranded hybrid structures consisting of an RNA:DNA duplex,
and a displaced single strand of DNA (illustrated in Fig. 1). Experimental results
indicate the prevalence of R-loops in vastly different genomes. In particular R-loops
have been shown to occur with surprising regularity at highly conserved hotspots
throughout mammalian genomes [2]. A high throughput sequencing method that
can provide genome-wide profiling of R-loops showed that up to 5% of the human
genome has the potential of forming R-loops [18]. While R-loops seem to be the
most abundant non-B DNA structures found to date (reviewed in [2]), little is known
about their function, their mechanism of formation, or their geometry and topology.
Most R-loop locations detected in [18] coincided with genes, and there is evidence
that R-loops form concurrently with transcription. In a process that is yet to be

RNAP

coding DNA

DNA template

RNA transcript

Fig. 1 A schematic depiction of an R-loop. Top: The DNA duplex is formed by two DNA strands
in black and green. The black strand represents the coding DNA strand, while the green represents
the DNA template (non-coding). The red strand represents the RNA transcript. The 3′-ends are
indicated with an arrowhead. The blue box assumes the polymerase reading of the template DNA,
and synthesizing the RNA. Bottom: Simplified depiction of the R-loop. We assume that this
diagram is read from left to right, with the polymerase on the left (outside the image). The region
between the two leftmost vertical dashed lines indicates the location where the RNA transcript
invades the DNA duplex, thus initiating the R-loop. Likewise, the two vertical dashed lines on the
right indicate the R-loop termination region



Modeling RNA:DNA Hybrids with Formal Grammars 37

understood, the RNA transcript occasionally hybridizes with the DNA template and
the second (coding) DNA strand ‘entangles’ with the RNA:DNA duplex causing the
formation of a co-transcriptional R-loop [2].

Transcription and the effect of DNA topology on R-loop formation. Transcription
is a molecular process that converts a gene encoded in a double stranded DNA
molecule into RNA transcript, which is eventually translated into a protein. The
double-stranded DNA consists of two sugar-phosphate backbones lined up by
complementary sequences of nucleotides (A,T,C,G). One of the strands is the
coding strand (i.e. it carries genetic code) and is indicated in black in Fig. 1.
The other strand, complementary to the coding strand, is the template strand
(indicated in green in Fig. 1). The DNA template is transcribed into RNA by the
RNA polymerase. The coding and template DNA strands form a double helix held
together by hydrogen bonds. Therefore the transcription machinery (blue box in
Figs. 1 and 2a) must break the bonds and open the helix before the RNA polymerase
can use the template DNA to produce the complementary RNA transcript. Because
DNA is right-handed, the opening of the helix induces an accumulation of torsional
stress due to over twisting.

Over twisting is promptly converted into positive supercoiling ahead of the RNA
polymerase and compensatory negative supercoiling behind (see twin supercoiling
domain, Fig. 2). Note that the local accumulation of supercoiling during transcrip-
tion, added to the presence of any ambient supercoiling of the DNA, increases
torsional stress on the DNA duplex. These factors play a role during the branch
migration involving DNA template dissociation from its complementary DNA
strand (the coding DNA) and hybridizing with the newly formed RNA transcript,
forming and stabilizing an R-loop. To learn more about DNA topology and the
effect of transcription in this context, the reader is referred to [1]. The field of
DNA topology studies the topology (e.g., knotting and spatial embeddings) and
geometry (e.g., twisting, supercoiling) of circular or topologically constrained DNA
molecules.

An energy-based statistical mechanical model of R-loop formation was proposed
in [21]. This model and its computer implementation (R-looper) incorporates
contributions from both sequence and DNA topology to predict the most favorable
locations of R-loop formation assuming that the system is in equilibrium. R-
looper aims to identify factors that contribute to changes in energy during R-loop
formation, and to predict genetic locations favorable for R-loops. The strong
role of DNA supercoiling in R-loop formation predicted by the simulation was
experimentally supported, as was the strong role of the intrinsic properties of the
template DNA sequence (specifically, its C-richness and CG-skew) [6, 9, 15, 16, 24].
Based on these results a study of R-loop formation must include a discussion of both
topology and sequence contributions [21].

In Sect. 2, we introduce a model for R-loops based on a formal grammar with
the goal of building a framework for describing the structure of the R-loops and
the spatial molecular embedding. This model sets the stage for a future, more
sophisticated grammar that could take into account topology and geometry of R-
loops (see discussion in Sect. 5). In formal language theory, a grammar is a set of



38 N. Jonoska et al.

(a) (b)

polymerise
RNA

Fig. 2 Local changes in DNA topology during transcription: the twin supercoil domain. The
term DNA topology is used by biologists to refer to both topology and geometry of DNA. A
supercoil corresponds to a crossing of the axis of the DNA double-helix over itself. When the
axis is assigned an orientation, the supercoils are positive or negative depending on the sign of the
crossing (as indicated in the image). (a) As the DNA template (in green) is transcribed into RNA
(in red), positive (+) supercoils accumulate ahead of the polymerase and compensatory negative
(−) supercoils accumulate behind. The arrow on the (red) RNA strand indicates the direction of the
polymerase. (b) The duplex DNA is represented as a ribbon, omitting the helical twists, showing
only the positive and the negative supercoils

production rules that generate strings in a formal language. Applications of formal
grammars can be found in a wide range of areas from theoretical computer science,
to theoretical linguistics, to molecular biology. In molecular biology, applications
include modeling regulation of gene expression [3], gene structure prediction [4],
and RNA secondary structure prediction [17].

The formal grammar model for R-loops presented here focuses on the structure of
an R-loop as described by the braiding of the strands as illustrated in Fig. 1 (bottom),
and is informed by sequence contributions. More precisely, the proposed grammar
rules depend on the relative nucleotide sequence favorability for R-loop formation.
Several experimental results indicate that the presence of a G-rich RNA transcript
provides relatively higher thermodynamic stability of an RNA:DNA duplex over a
DNA:DNA duplex [10, 13, 14, 22]. This may lead to the breaking of the hydrogen
bonds within a topologically strained DNA:DNA duplex. Breakage can then trigger
a RNA:DNA branch migration, and the affinity for hybridization of a G-rich RNA
transcript with its DNA template may yield favorable regions for R-loop formation.
We propose a test for the sequence dependency for R-loop formation and compare
our approach with the results from R-looper whose results have been experimentally
tested with two plasmids [21].

This chapter is organized as follows. Section 2 gives the necessary background
on formal grammars. Section 3 defines the grammar that describes a language for
R-loops. Section 4 discusses incorporating the nucleotide sequence dependency into
the mathematical framework. In particular, our model takes into account sequence
contributions from C-richness and CG-skew. We conclude with an outline of future
steps, including a discussion on the contributions of DNA topology and other
entanglement considerations in Sect. 5.
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2 Formal Grammars: An Overview

In this section we give a short background on formal grammars needed for this work.
Good introductions to the different types grammars and languages as well as their
properties can be found in [8] and [20].

A finite set Σ is called an alphabet and its elements are called symbols. For an
alphabet Σ , let Σ∗ denote the set of all finite sequences of symbols called strings
or words formed by the symbols of Σ . The empty word is a word with no symbols
and is denoted ε. We set Σ+ = Σ∗ \ {ε}. For example, if Σ = {a, b}, then the
set of words over Σ is Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, . . . } while
Σ+ = {a, b, aa, ab, ba, bb, aaa, aab, aba, . . . }. We use lower case letters at the
beginning of the Roman alphabet (e.g., a, b, c, . . . ) to indicate symbols and lower
case letters at the end of the Roman alphabet to indicate words (e.g., u, v,w, . . . ).

For a word u = a1a2 · · · an, where ai ∈ Σ , we say that the length of u is |u| = n.
The length of the empty string ε is 0. The number of symbols in u equal to a is
denoted |u|a , for example |aab|a = 2 and |aab|b = 1. For any 1 ≤ i < j ≤ n, the
substring aiai+1 · · · aj of u is denoted by u[i,j ].

Definition 1 A grammar Γ is a 4-tuple (S,N,Σ,P ), where

• N is an alphabet whose symbols are called nonterminals,
• Σ is an alphabet whose symbols are called terminals,
• P is a finite set of production rules of the form w → w′ for some words w,w′ ∈

(Σ ∪ N)∗ provided that at least one symbol in w is nonterminal, and
• S ∈ N is a designated nonterminal called the start symbol.

Here we adopt the standard convention where upper case Roman characters (e.g.
A, B, S) are used to denote the nonterminals, and lower case Roman characters (e.g.
a, b, c) to denote the terminals. Let u be a word in (Σ ∪ N)∗ and r : w → w′ be
a rule in P . Applying the production rule r to the word (or string) u means finding
a substring w in u and replacing it with w′, while keeping the rest unchanged. For
example, if x, y,w ∈ Σ∗, applying rule w → w′ to the word u = xwy produces
v = xw′y. We write u

r�⇒ v.
We say that a word w ∈ Σ∗ can be derived, and denote it as S

∗�⇒ w, if
there is a sequence of production rules r1, r2, . . . , rn and a sequence of words in
w1, . . . , wn ∈ (Σ ∪ N)∗, where wn = w, such that

S
r1�⇒ w1

r2�⇒ w2
r3�⇒ · · · rn�⇒ wn = w.

Such a sequence of applications of rules r1, r2, ..., rn is called a derivation of w.
The language described by the grammar Γ is the set of all words with only terminal
symbols that can be derived, i.e.,

L(Γ ) := {w ∈ Σ∗ | S
∗�⇒ w}.
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Example 1 Consider the grammar Γ = (S,N,Σ,P ) with

N ={S,A,B} Σ = {a, b}
P ={r1 : S → aA, r2 : S → bB, r3 : A → aA,

r4 : B → bB, r5 : A → ε, r6 : B → ε, r7 : S → ε}.

The word aaaa is in L(G) because it can be derived in the following way:

S
r1�⇒ aA

r3�⇒ aaA
r3�⇒ aaaA

r3�⇒ aaaaA
r5�⇒ aaaa.

Based on its production rules, the language L(Γ ) described by this grammar Γ

consists of words with a single symbol, that is

L(Γ ) = a∗ ∪ b∗.

We note that a common abuse of notation when the alphabet is just a singleton is
to replace {a} with a, and {a}∗ with a∗.

We often remove the superscript over the arrows when rules are easily identifiable
and write u → v instead of u

r�⇒ v. We use the convention to shorten the description
of the rules that have the same left hand-side by using vertical bars. For example,
the expression w → w1 | w2 | w3 means that the set of rules P contains w →
w1, w → w2, and w → w3. With these conventions, a grammar is completely
determined by the list of production rules.

Example 2 Consider the grammar defined with rules:

S → aSb | ε.

In this grammar there are two rules, S → aSb and S → ε. The symbol S is the only
nonterminal, and the set of terminals is {a, b}. Then, every derivation is of the form:

S ⇒ aSb ⇒ aaSbb · · · ⇒ aa · · · aSbb · · · b ⇒ aa · · · abb · · · b.

Because with the application of the rules the number of a’s remains equal to the
number of b’s, the language defined by this grammar is L = {anbn | n ≥ 0}.

In formal language theory, the Chomsky hierarchy refers to the containment
hierarchy of four levels of languages: regular, context-free, context-sensitive and
computably enumerable languages [20].

A grammar is said to be regular if all production rules are of the type: A → a,
A → aB, or A → ε, where A,B ∈ N and a ∈ Σ . This means that with each
rule, either a nonterminal is replaced by a terminal, or it is replaced by a terminal
followed by another nonterminal, or it is erased. Regular languages are those that
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can be generated by a regular grammar. The grammar in Example 1 is regular and,
consequently it describes a regular language a∗ ∪ b∗.

In context-free grammars, the rules are of the type A → x, where A ∈ N and
x is a string (possibly empty) of terminals and nonterminals. In context-sensitive
grammars, the rules are of the type xAy → xzy, where x, y, z are strings of
terminals and nonterminals. Context-free (respectively, context-sensitive) languages
are the ones that can be generated by context-free (respectively, context-sensitive)
grammars. The grammar in Example 2 and the language it generates are context-
free. One can show that this language is not regular, i.e., there is no regular grammar
that defines this language [8, 20]. Computably enumerable languages are defined by
grammars without constraints.

3 R-Loop Grammars

An R-loop is a structure consisting of a RNA:DNA hybrid and a displaced DNA
single strand (Fig. 1). While here we focus on co-transcriptional R-loops, the
mathematical framework can be applied to any R-loop or other nucleic acid triplex.
First we summarize the transcription process which infers the construction of the
grammar.

During transcription, the RNA polymerase complex binds to the promoter region
of a gene in a double-stranded DNA molecule, unwinds the DNA double helix,
and transcribes the template strand into a single-stranded RNA molecule (the RNA
transcript) one nucleotide at a time in the 3′ → 5′ direction. The nucleotide
sequence of the RNA transcript is complementary to that of the DNA template,
and is identical to the sequence of the coding DNA after replacing each T with a U .
As transcription proceeds along the template (as the polymerase moves) the RNA
transcript exits the ‘bubble’ formed by the polymerase complex and the unwound
DNA duplex. Simultaneously, the DNA double helix reforms behind the complex.
At the end of the process the RNA transcript is released. For reasons that are still
unclear, occasionally the RNA transcript hybridizes with the DNA template thus
giving rise to a co-transcriptional R-loop.

We represent the formation of an R-loop as a string (word) over the alphabet
Σ = {σ, σ̂ , τ, τ̂ , α, ω}. Each symbol in the alphabet can be described as a 3-
stranded local structure corresponding to the length of one half turn of B-form
DNA, approximately 5 nucleotides (see Fig. 3). The symbols τ and τ̂ represent a
RNA:DNA hybrid, σ and σ̂ represent a DNA:DNA duplex, and α and ω represent
a structure where all three strands interact. Note that in τ and τ̂ , and in σ and σ̂ , the
third strand is assumed to not interact (via hydrogen bonds) with the duplex.

Presence of ˆ on top of the symbols, such as σ̂ or τ̂ , indicates that the corre-
sponding duplex is in a stable configuration. Less stable half-turn configurations are
denoted by σ and τ , without the ˆ , are more likely to transition into one of the
3-stranded hybrids α or ω via strand branch migration. The production rules will
be guided by the stability of the half-turns σ and τ (DNA:DNA and RNA:DNA,
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σ̂ σ

τ̂ τ

α ω

Fig. 3 Interpretation of each of the symbols used in the grammar. The black strand represents
the coding DNA strand, the green strand represents the template DNA strand, and the red strand
represents the RNA transcript. Here, σ and σ̂ are DNA:DNA hybrids, τ and τ̂ are RNA:DNA
hybrids, and α and ω are transitions between the two. The ‘ ˆ ’ indicate more stable configurations.
Less stable configurations are depicted with some breakage in the hydrogen bonds to suggest that
there is more prevalent ‘breathing’ of the duplex in that region. The breakage in σ and τ is indicated
only by symbols in Fig. 4

σ̂ σ α τ̂ τ̂ τ̂ τ̂ τ̂ τ̂ τ ω σ̂ σ σ̂

Fig. 4 An example R-loop associated with the word · · · σ̂ σατ̂ τ̂ τ̂ τ̂ τ̂ τ̂ τωσ̂σ · · · . Note that if the
sequence stability weakens within an R-loop then a τ may follow after an initial string of one or
more τ̂ ’s, and this may lead into an R-loop termination region, indicated by ω. The three strand
sections corresponding to α and ω indicate the branch migration when RNA ‘invades’ the DNA
duplex (α) and leaves the duplex (ω). Observe that there may be other words that correspond to the
same R-loop, because the sequence stability may vary both within and outside the R-loop

respectively). The remaining two symbols of the alphabet, α and ω, are used to
represent R-loop initiation and termination regions. The start of the R-loop, denoted
by α, is the structure formation at the moment when RNA ‘invades’ the DNA:DNA
duplex. The end of the R-loop, denoted by ω, is the structure obtained when the
RNA dissociates from the RNA:DNA duplex and the DNA returns to its native state.
Figure 4 illustrates how an R-loop can be represented by a string over Σ .

How the different symbols are assigned to the specific genomic region will
be guided by the biology. Some nucleotide sequences that are prone to R-loop
formation have been identified experimentally and models have been proposed to
predict them. As a first approximation, in the next section we use the preliminary
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data used in a recent energetics model to assign stable vs unstable half-turn segments
in both a RNA:DNA duplex and in a DNA:DNA duplex [21]. We assume that a
DNA sequence of nucleotides is favorable for R-loop formation (i.e. the RNA:DNA
duplex is more stable) if it is C-rich and CG-skewed (see Sect. 4 for definitions of
these terms).

We assume that an R-loop necessarily starts with a short nucleotide sequence that
has an “unstable” DNA:DNA duplex, indicated by σ . The three strand formation
when the RNA ‘invades’ the DNA duplex through branch migration is indicated by
α and is followed by a half-turn of a stable RNA:DNA duplex indicated by τ̂ . Hence
the word contains the subword σατ̂ . Similarly, the end of the R-loop is obtained
from a sequence starting with at least one unstable RNA:DNA half-turn denoted by
τ , followed by the three strand formation ω where the RNA dissociates from the
DNA and by a stable DNA duplex (σ̂ ). Hence the R-loop word must also contain
the subword τωσ̂ .

The following grammar Γ generates the words associated with R-loops. Recall
from Sect. 2 that by defining the production rules we uniquely define a grammar.

S → σ̂D | σD rules:start

σ̂D → σ̂ σ̂D | σ̂ σD rules:s − D − duplex

the grammar Γ : σD → σ σ̂D | σσD | σατ̂R rules:us − D − duplex

τ̂R → τ̂ τ̂R | τ̂ τR rules:s − R − duplex

τR → τ τ̂R | ττR | τωσ̂D′ rules:us − R − duplex

D′ → σ̂D′ | σD′ | ε rules:end

The set of nonterminals in Γ is N = {S,D,R,D′}, where each of the
nonterminals is associated with one of the hybrid structures. The nonterminals D

and D′ are used to generate DNA duplexes before and after the R-loop, respectively.
The nonterminal R is used to generate the symbols that correspond to the RNA:DNA
duplex within the R-loop. The symbol S is the starting symbol of the grammar. The
grammar Γ uses six types of rules as indicated above. Rules start are the starting
rules that generate either σD or σ̂D, a half-turn DNA duplex. If the DNA duplex
represented by σ̂ is stable, then according to rules s-D-duplex (stable DNA duplex)
the next half-turn must be another DNA duplex, which could be stable (σ̂D), or not
(σD). If the DNA duplex represented by σ is not stable (i.e. σD), then according to
the rules us-D-duplex (the unstable duplex rules) it can also be followed by a three
strand formation α and a stable RNA:DNA duplex τ̂ (e.g. σD → σατ̂R). Rules s-
R-duplex (stable RNA:DNA duplex) and rules us-R-duplex (unstable RNA:DNA
duplex) are analogous to the rules s-D-duplex and us-D-duplex, except that they
generate the string corresponding to the R-loop. The first two rules in end are
analogous to rules start, with the addition of the last rule D′ → ε which is used to
stop the word derivation.
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The grammar Γ is context-sensitive, meaning that the rules with nonterminals
D and R on the left hand side depend on the preceding symbol. Recall that the
language derived from the grammar Γ is defined as the set of words with only
terminal symbols which can be derived. Describing the set of words generated by the
grammar is straightforward. Every word derivation in Γ starts with S and generates
σ or σ̂ followed by a nonterminal D. Depending on whether σ or σ̂ precedes D, the
next symbols that are generated are again σ or σ̂ (rules s-D-duplex). In addition,
if σ precedes D (rules us-D-duplex), then the next symbols could be σατ̂ which
generate the word xσατ̂R where x ∈ {σ, σ̂ }∗. After this word one can only apply
rules s-R-duplex which generate new symbols τ or τ̂ with a non-terminal R. Rules
s-R-duplex and us-R-duplex are then applied to symbols τ̂ and/or τ followed by
R. If at some point we use the last rule of us-R-duplex, the symbols that follow
are τωσ̂ followed by a nonterminal D′, and the corresponding word has the form
xσατ̂yτωσ̂D′, where y ∈ {τ, τ̂ }∗. Note that once D′ appears in a word, the rules
end are the only rules that can be applied and they generate symbols σ or σ̂ . The
derivation stops with an application of rule D′ → ε. In sum, the final word generated
by the grammar has the form xσατ̂yτωσ̂ z where z ∈ {σ, σ̂ }∗. Based on this we have
the following proposition. We call the formal language specified with Γ the R-loop
language.

Proposition 1 The R-loop language described by Γ is

L(Γ ) = {
xσατ̂yτωσ̂ z | x, z ∈ {σ, σ̂ }∗, y ∈ {τ, τ̂ }∗}

or equivalently, L(Γ ) =(σ ∪ σ̂ )∗ σ α τ̂ (τ ∪ τ̂ )∗ τ ω σ̂ (σ ∪ σ̂ )∗.

As a consequence of Proposition 1, the language of the grammar Γ is regular,
that is, it can be described by a regular expression [20]. Therefore, there is a regular
grammar Γ̂ with the same alphabet Σ that is equivalent to Γ . Γ̂ defines the same
R-loop language with the following production rules:

S → σS | σ̂ S | σQ1

Q1 → αQ2

Q2 → τ̂Q3

Q3 → τQ3 | τ̂Q3 | τQ4

the grammar Γ̂ : Q4 → ωQ5

Q5 → σ̂Q6

Q6 → σQ6 | σ̂Q6 | ε
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Although Γ̂ is regular, i.e., it is a different grammar from the initial context-
sensitive grammar Γ , the meaning of the symbols σ, σ̂ , τ, τ̂ that indicate nucleotide
stability remains unchanged.

4 A Discrete Model to Estimate R-Loop Favorability

In order for the grammar Γ presented in Sect. 3 to be useful, it requires information
about how favorable or unfavorable a particular stretch of DNA is for R-loop
formation. The grammar as constructed in the previous section contains no such
information. We are interested in incorporating into the grammar Γ information on
nucleotide sequence contributions combined with the topological changes, to detect
and predict R-loop formation. We initiate this line of work in this publication. In
this section we start with a simple discrete model for estimating R-loop favorability
based only on properties of the nucleotide sequence. More specifically, we focus
on two different measures, C-richness (cytosine-rich sequence) and CG-skew
(cytosine-guanine ratio).

Intuitively, one would expect R-loops to occur infrequently. However, they
account for up to 5% of the human genome, and represent the most common non-
B DNA structures quantified to date (reviewed in [2]). General investigations of
nucleic acid hybrid stability have measured the relative free energy of a nucleic acid
duplex (denoted by ΔΔG0 in kcal/mole) as the free energy of the given duplex
minus the free energy of the most stable duplex [13, 14]. The results of these
studies are summarized in Fig. 5 and show that a hybrid consisting of a purine-rich
RNA and pyrimidine-rich DNA (denoted r(GA).d(CT)) is significantly more stable
than the corresponding DNA:DNA hybrid (denoted d(GA).d(CT)). The stabilities
of the other two possible duplexes (denoted r(GU).d(CA) and d(GT).d(CA)) are
comparable to each other. This suggests that the strand migration initiated by an
RNA strand as it invades a DNA:DNA duplex is more likely to occur when the
template DNA is C-rich (or equivalently, when the transcript RNA is G-rich).
On the other hand, the d(GA).r(CU) stacking is significantly less stable than the
d(GA).d(CT) stacking, while the stabilities of r(CA).d(GT) and d(CA).d(GT) (not
shown in Fig. 5) are comparable to each other. So, a G-rich DNA template would
result in a thermodynamically unfavorable RNA:DNA duplex. Based on this, we
expect that the R-loops are more likely to form in regions where the template DNA is
C-rich and CG-skew. In the discrete model below we focus on those two quantities.

Experimental observations suggest that C-rich regions that are also CG-skewed
are correlated with R-loop occurrence [6]. However, not all CG-skewed areas are
associated with R-loops [15]. In [21] the authors proposed a statistical mechanics
model of R-loop energetics that provides predictions of R-loop favorability for
a given nucleotide sequence. This model takes into account contributions of
both the sequence and the supercoiling. The theoretical predictions were tested
experimentally on two plasmids [2, 21].
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least stablemost stable

0 2 4 6 8 10 12 14

r(GA).r(CU) r(GA).d(CT) d(GA).d(CT) d(GA).r(CU)

Fig. 5 Plot of the relative stability of duplexes; from the most stable duplex (r(GA).r(CU)) at the
left, to the least stable duplex (d(GA).r(CU)) at the right. Stability is determined by computing the
relative free energy (ΔΔG0) of the duplexes in kilocalories per mole [13, 14]. The scale indicates
the relative free energy of a duplex with respect to the most stable duplex shown as reference at 0.
Other duplexes, such as r(CA).d(GT) and d(CA).d(GT) that are above 8 are not indicated in order
to keep the figure readable, and because they are not significant in our sequence analysis of R-loops

Before we proceed we introduce several definitions. The DNA alphabet is
ΣDNA = {A,G,C, T }, and the binary alphabet is ΣB = {0, 1}. A DNA sequence
is a word w ∈ Σ∗

DNA. Recall that the number of symbols in w equal to a symbol a

is denoted |w|a .

Definition 2 ([7]) The CG-skew of a DNA sequence w is a function
Csk : Σ+

DNA → [−1, 1] where

Csk(w) =

⎧⎪⎪⎨
⎪⎪⎩

|w|C − |w|G
|w|C + |w|G for |w|C + |w|G > 0

0 otherwise .

The CG-skew of a DNA sequence measures the dominance in occurrences of
cytosine with respect to guanine. If Csk(w) = 1, then the DNA segment w is
a sequence that contains cytosines but no guanines. Conversely, Csk(w) = −1
indicates a sequence that contains guanines but no cytosines. Further, a 2:1 ratio
of cytosine to guanine in a strand would result in a CG-skew value of 0.33.

Definition 3 The C-richness of a DNA sequence w is a function Cr : Σ+
DNA →

[0, 1] where

Cr(w) = |w|C
|w| .

In order to explore the contributions of C-richness and CG-skew as predictors for
R-loops, we consider the plasmids (given as template strands in the 5’-3’ direction)
of the experimental analysis from the Chédin lab [21].

We compute CG-skew and C-richness using a sliding window approach. Given
thresholds t1 and t2, and a sequence of nucleotides, we associate a binary score for
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CG-skew and C-richness to each subword of length �; a score of 1 if the threshold is
met, and a score of 0 if the threshold is not met. We employ the following definitions.

Let f : Σ+
DNA → R be a function defines on the set of DNA sequences (i.e.

Σ+
DNA). The function can be measuring properties of the sequence, such as C-

richness or CG-skew. For each function f let t be a real number indicating the
threshold. A �-window t-threshold for f is the function T t

�,f : Σ+
DNA → ΣB

defined with T t
�,f (w) = b1b2 · · · b|w| where

for 1 ≤ i ≤ |w| − � bi =
{

1 iff (w[i,i+�−1]) ≥ t

0 otherwise

for |w| − � < i ≤ |w| bi =
{

1 iff (w[i,|w|]) ≥ t

0 otherwise.

Note that as we reach the end of the string, if there are fewer than � nucleotides
left, we consider the same thresholds but on the remaining, shorter, substrings. Thus
it becomes more difficult to meet the predetermined thresholds towards the end of
the string.

Of interest to the study of R-loops are two functions: the �-window t1-threshold
for CG-skew, T

t1
�,Csk

; and the �-window t2-threshold for C-richness, T
t2
�,Cr

. Starting
from the first nucleotide in the template DNA we consider a substring of length �

and compute the values of T
t1
�,Csk

and T
t2
�,Cr

moving from left to right one nucleotide
at each step. If a substring is found to be both CG-skewed and C-rich, then we say it
is double-C-rich. The double-C-rich string corresponding to w is wB = T

t1
�,Csk

(w)∧
T

t2
�,Cr

(w). For two binary strings u = b1 · · · bk and u′ = b′
1 · · · b′

k we define v =
u ∧ u′ = c1 · · · ck such that for all i = 1, . . . , k we have ci = 1 if and only if
bi = b′

i = 1.
We create a binary string of double-C-richness for the entire nucleotide string

(called the double-C-rich string). In Examples 3–4, we illustrate these definitions
for a hypothetical string of nucleotides.

Example 3 Consider an example string of length 30 in Σ+
DNA given by

w =AGAGCCCGATCCAGACCCCGACGTTACGAA and a window size � = 10.
Suppose the CG-skew threshold is t1 = 0.3 and the threshold for C-richness is
t2 = 0.5.

In the first ten nucleotides, there are 3 C’s and 3 G’s, so the CG-skew Csk(w[1,10])
is 0

6 . For nucleotides 2–11 the CG-skew is Csk(w[2,11]) = 1
7 and for nucleotides 3–

12 we have Csk(w[3,12]) = 3
7 . Since 3

7 ≥ 0.3, the first three symbols in the �-window
t1-threshold for T

t1
�,Csk

(w) are 001. The entire string is

T 0.3
10,Csk

(w) = 001111111111101111000000000000.

If the threshold changes to t1 = 0.35, the string becomes
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T 0.35
10,Csk

(w) = 001110001111101100000000000000.

In this example the threshold for C-richness is t2 = 0.5, and there are only
3 C’s in the first ten nucleotides, then the C-richness is Cr(w[1,10]) = 3

10 <

0.5. Therefore the first ten nucleotides are not C-rich and the first symbol of
T

t2
�,Cr

(w) is 0. Nucleotides 3–12 have 5 C’s, so this meets the threshold of 0.5
and is considered a C-rich region. The resulting string with threshold 0.5 is
T 0.5

10,Cr
(w) = 001110001111111100000000000000. If we use a threshold of 0.6,

the string becomes T 0.6
10,Cr

(w) = 000000000110000000000000000000.
Only when the window of size � is both CG-skewed and C-rich do we say

that it is double-C-rich, and the corresponding entry in the string wB receives a
value of 1. With thresholds 0.3 and 0.5 (for CG-skew and C-richness, respectively),
wB = T 0.3

10,Csk
(w) ∧ T 0.5

10,Cr
(w) = 001110001111101100000000000000. Observe

that the string wD is sensitive to the thresholds chosen. With thresholds t1 = 0.3 and
t2 = 0.6, for the same nucleotide sequence the string becomes wB = T 0.3

10,Csk
(w) ∧

T 0.6
10,Cr

(w) = 000000000110000000000000000000.

We consider that an isolated occurrence of double-C-richness does not corre-
spond to likelihood of R-loop formation. This agrees with an in vitro analysis
that showed that some accumulation of double-C-richness provides an optimal
situation for R-loop formation [15]. Therefore here we consider an accumulation
string with window j to be a function Accj : Σ+

B → {1, . . . , j}∗ defined by
Accj (wB) = wA = a1a2 · · · ak where

ai =
⎧⎨
⎩

|wB [i,i+j−1]|1 for 1 ≤ i ≤ |wB | − j

|wB [i,|wB |]|1 for |wB | − j < i ≤ |wB |.

The string wA = Accj (wB) is obtained from the binary string wB = b1b2 · · · bk

such that ai gives the number of 1’s within a window of size j in the substring
bibi+1 · · · bi+j−1. For any fixed pair of thresholds t1 and t2 of C-richness and CG-
skew, the values of the symbols in the accumulation string can be interpreted as an
indication of R-loop likelihood.

Example 4 Consider the sequence w from Example 3. If we record occurrences
of double-C-richness within a window size j = 5, then the double-C-rich binary
string wB = 001110001111101100000000000000 has an accumulation string of
Acc5(wB) = wA = 333222345444322100000000000000. Note that a1 = 3, since
the substring b1 · · · b5 = 00111 has three 1’s.

Remark 1 The accumulation strings give a sequence-based estimate for favorable
sites for R-loop formation. Such portions of the accumulation strings with high
values help in deciding which rule of Γ applies for each half turn of DNA. The
accumulation string in Example 4 has length 30 and corresponds to six half-turns of
DNA (five nucleotides per half-turn) and therefore it can be represented with a word
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containing six σ ,τ -symbols. If, for example, we set a threshold of 4 as a minimum
requirement in the accumulation string for R-loop favorability, then the length 5
substrings in the accumulation string that contain a 4 (or larger) could correspond
to symbols σ , ατ̂ , or τ̂ , while the length 5 substrings with no values larger than 3
could correspond to symbols τ , ωσ̂ , or σ̂ . We note that symbols α and ω indicate
the location of the 3-strand branch migration. For simplicity we assume that they
correspond to transitions between a DNA:DNA hybrid and a RNA:DNA hybrid,
and do not assign a number of nucleotides to them.

In Example 4 the segment a1a2 . . . a5 = 33322 of the string wA does not
correspond with a favorable region. In this case the first symbol of a word in the R-
loop language corresponding to w would be σ̂ . Since a8 = 4, a9 = 5 and a10 = 4,
the second symbol of the word (corresponding to a6 · · · a10 = 23454) could be σ .
The string a11 · · · a15 = 44322 continues to be favorable for R-loop formation, and
could in fact indicate the start of an R-loop. Continuing in a similar manner, one
possibility for a word from the grammar corresponding to our accumulation string
would be wR = σ̂ σατ̂ τωσ̂ σ̂ . The use of a threshold of 4 for R-loop favorability in
this example is only for illustration purposes.

Hence, starting from a DNA string w, we apply �-window threshold functions for
Csk and Cr to obtain the corresponding double-C-rich binary string wB , to which
we associate a j -window accumulation string wA. Using an accumulation threshold
we then produce a word wR in the R-loop language providing structural information
about the DNA:DNA and RNA:DNA hybrids and branch migration.

In order to compare the likelihood of R-loop formation for a given DNA string w

using its accumulation string wA to the existing energetics model [21], we obtained
the template sequences (written in the 5’ to 3’ direction) for the experimentally
tested plasmids w = pFC53 of length 3906 nucleotides, and w′ = pFC8 of length
3669 nucleotides (personal communication with the authors). The window value for
T

t1
�,Csk

and T
t2
�,Cr

for both plasmids was set to � = 10. We examined the sequences for
both plasmids, and experimented with different �-window threshold values t1 and
t2 of CG-skew and C-richness. For each pair (t1, t2), we created an accumulation
string wA by recording the number of occurrences of double-C-richness in each
window of length j . We tested values of j between 5 and 100 and found that
when j is too small, the accumulation strings are not sensitive enough, and when
j is too large, the values in wA and w′

A miss fluctuations within the double-C-rich
regions. We used j = 50 (this roughly corresponds to 5 full turns of DNA) for
the strings w and w′ associated with the plasmids pFC53 and pFC8. We considered
all possible pairs of threshold values t1, t2 between 0 and 1 with step size 0.05
for the functions Csk and Cr (a total of 400 accumulation strings, 20 for each
threshold), and computed the accumulation strings wA and w′

A. We then compared
accumulation string wA and w′

A to the R-looper output probability string (both
indexed by nucleotide position number), and computed Spearman’s rank correlation
coefficient to find the accumulation string with optimal threshold values.
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Fig. 6 Comparison between R-looper and the accumulation string analysis for the region of
plasmid pFC53 from nucleotide position 800 to 1400. The R-looper probabilities output is
indicated by the blue curve. The accumulation string values for pFC53 with t1 = 0.1 and t2 = 0.8
are plotted in orange. Each entry of the accumulation string counts the number of 1’s in the
corresponding double-C-rich string in the succeeding 50 nucleotides. The region of the plasmid
not included in the figure has an R-loop probability zero, and the corresponding accumulation
string consists entirely of zeros

For plasmid pFC53 (3906 nucleotides), the correlation coefficient was maxi-
mized (at 0.799) when t1 = 0.1 and t2 = 0.8. This result is somewhat surprising
since it suggests that C-richness is the determining factor in approximating the R-
looper output. The result is shown in Fig. 6. In the graph the maximum accumulation
string value was normalized to the same height as a probability of 1 from R-looper.

For plasmid pFC8 (3669 nucleotides) we found optimal thresholds of t1 = 0.1
and t2 = 0.6, with Spearman coefficient of 0.658. Again we see that C-richness
is driving the correlation with the R-looper output, as depicted in Fig. 7. The code
used for these computations is available publicly at https://github.com/mandariehl/
rloopsplusstats.

Comparing the results for these two plasmids, one can observe that the optimal
Cr thresholds t2 disagree. This suggests that C-richness is a larger driving force in R-
loop formation than CG-skew, at least when taking R-looper results as a reference.
Because the CG-skew threshold is not 0, we believe it is important to continue to
include this parameter as structure and topology is incorporated with this model.

https://github.com/mandariehl/rloopsplusstats
https://github.com/mandariehl/rloopsplusstats
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Fig. 7 Comparison between R-looper and the accumulation string analysis for the region of
plasmid pFC8 from nucleotide position 1 to 2170. The R-looper probabilities output is indicated
by the blue curve. The accumulation string values with t1 = 0.1 and t2 = 0.6 are plotted in orange.
Each entry of the accumulation string counts the number of 1’s in the corresponding double-C-rich
string in the succeeding 50 nucleotides. The plasmid region not included in the figure has R-loop
probability zero, and its accumulation string consists entirely of zeros

5 Discussion

The study of R-loops has gained visibility in recent years due to their prevalence
and importance for the well-being of the cell. Understanding their mechanism
of formation as well as their geometry and topology is key to establishing their
biological role. In this paper we propose an abstract framework to model R-loops
based on formal grammars, as well as a simple method to assess probability of R-
loop formation based on sequence contributions.

It is of interest to obtain a stochastic grammar and a probabilistic model for
R-loop formation by attaching probabilities to the production rules in the R-loop
grammar Γ proposed in Sect. 3.

Proposition 1 shows that the R-loop language is regular. The class of regular
languages is the class of languages described by regular grammars, and is equivalent
to the class of languages accepted by finite state automata [20]. Finite state automata
equipped with probability measure associated with their state transitions are Markov
chain discrete dynamical systems. The framework proposed in Sect. 4 sets the base
for determining appropriate probabilities associated with each transition rule in Γ̂ ,
which is the subject of a future study. Such a model could supplement the predictions
based on energy minimization given by R-looper.

A potential advantage of a probabilistic modeling approach is that it can be
readily extended to include future sources of statistical information of R-loop
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formation. An example of a successful probabilistic model is Pfold [11, 12], which
combines a stochastic context-free grammar with evolutionary tree information for
a consensus secondary structure prediction of homologous RNA sequences.

The design of a probabilistic grammar affects the prediction of R-loop formation.
One advantage of ‘lightweight’ grammars such as the one proposed in this work is
the practicality in their implementation. Moreover, the simplicity of the grammar
does not necessarily imply poor predictive power, as can be seen in the case of RNA
secondary structure prediction [5].

Since our grammar Γ̂ is regular and each R-loop has exactly one derivation,
the probabilities can be obtained by simple counting: one needs to determine the
frequency with which each production rule is used for a set of R-loops. On the other
hand, since in Γ the symbols σ and τ correspond to a half-turn pairwise interaction
between the two DNA strands, for the template DNA and the RNA strand, the
derived strings from such a grammar can be used to infer the three dimensional
structure of the molecule when the R-loop initiates.

In Sect. 4, we used plasmids pFC53 and pFC8 [21] to test a simple measure of
R-loop favorability based on C-richness and CG-skew. In this way, a given sequence
is assigned optimal thresholds t1, t2 for R-loop formation. The optimal thresholds
obtained for the two plasmids turned out to be different. Averaging them results in
a drop of the Spearman correlation coefficient to 0.634 for pFC53 and 0.345 for
pFC8. This suggests that Cr and Csk values are not sufficient to predict R-loops.
Indeed, it has been shown that R-loops are very sensitive to changes in the topology
of the DNA template and that negative superhelicity is required for R-loop stability
[21]. The parameters of our discrete model are sensitive to the nucleotide sequence
and provide useful information about R-loop favorability in some regions and to
inform on the eventual probability assignments to grammar rules. In a refinement
of the model, one should consider supercoiling and other measures of topological
entanglement.

A discussion on entanglement and geometry must include both the topology
of the double stranded DNA before and after the formation of the R-loop, as
well as a detailed description of the wrapping of the single stranded DNA around
the RNA:DNA hybrid. Important considerations that have not been incorporated
in the current model include a description of the wrapping of the nontemplate
DNA around the RNA:DNA hybrid, and the supercoiling of DNA prior to R-loop
formation. It has been observed that superhelicity can have a dramatic effect on
R-loop formation [21]. The twin supercoiling domain model (see Fig. 2) predicts
that transcription induces positive supercoiling ahead of the transcription complex,
and negative supercoiling behind it. When added to the ambient supercoiling of
the DNA template, the negative supercoiling behind the polymerase increases the
energetic favorability for R-loop formation [21]. It is of interest to use experimental
data to expand Γ with probability parameters, as well as to include topological and
geometric constraints within the production rules.
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Abstract We explored the extent to which graph algorithms for community
detection can improve the mining of structural information from the predicted
Boltzmann/Gibbs ensemble for the biological objects known as RNA secondary
structures. As described, a new computational pipeline was developed, imple-
mented, and tested against the prior method RNAStructProfiling. Since the new
approach was judged to provide more structural information in 75% of the test cases,
this proof-of-principle analysis supports efforts to improve the data mining of RNA
secondary structure ensembles.
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1 Introduction

A fundamental principle of molecular biology is that structural information leads to
functional insights. By now, accessing the one-dimensional, i.e. sequence, informa-
tion is generally straightforward. However, for many types of RNA molecules, the
most useful information is obtained through experimental determination of three-
dimensional structures. Unfortunately, this is often not feasible for the molecule(s)
of interest. The alternative is to try inferring higher-order structural information
from sequence data. This approach is sufficiently useful that improving structural
predictions remains one of the fundamental challenges in computational molecular
biology.

One way that structural predictions can be improved is by extracting more
information from the available sequence data. For instance, rather than considering
a single possible structure (which has minimum free energy under a standard
thermodynamic model) for the sequence of interest, we can sample from the entire
Boltzmann/Gibbs ensemble according to the free energy approximation in use. This
generates a set of possible low-energy structures whose diversity mitigates some of
the limitations of the thermodynamic model. Now, however, the problem becomes
extracting the most useful structural information from this set of predictions.

Here, we use a graph algorithms approach to address this problem. As described
in Sect. 2, we specifically consider RNA secondary structure, which can be under-
stood as the “two-dimensional” structure and is a very useful intermediate rep-
resentation between the 1D sequence and 3D molecule. Given a representative
set of structures, sampled from the Gibbs ensemble according to their Boltzmann
probability, prior results [19] introduced the profiling method to separate the
structural signal from thermodynamic noise. This is achieved by partitioning the
sampled structures into equivalence classes called profiles, and reporting the most
probable ones in a summary profile graph. While this method works well on
average, we explored the potential to improve the results using community detection
approaches from network analysis.

As described in Sect. 3, the first step is to construct an appropriate graph.
Toward this end, we considered four different dissimilarity scores on the sampled
structures generated by various weightings of the symmetric set difference. The
graph of interest then represents structures as vertices joined by edges when the
structures have high enough similarity/low enough dissimilarity. We did not set an
arbitrary (dis)similarity threshold, but consider a range of sparsification values to
find the most informative. We also considered three different community detection
approaches for partitioning the graph into clusters. The choice of dissimilarity score,
sparsification threshold, and graph clustering algorithm determine a new compu-
tational pipeline for RNA secondary structure ensemble analysis via community
detection.
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The results of this pipeline are reported in Sect. 4. To begin, we implemented
a consistent indexing of structural features for a given sequence, which greatly
facilitates comparisons across different samples. Second, we allow the sparsification
threshold to be determined by the data by adapting a standard clustering quality
assessment, the Caliński-Harabasz (CH) index [1], to our purposes. This allows us
to determine which similarity measure and community detection algorithm are most
informative. Finally, we compare the new partitions produced by this pipeline with
those from profiling on 12 of the 15 test sequences from [19]. (The other 3 were
used for training this new method.)

Overall, we find that, with a reasonable choice of (dis)similarity measure
and graph clustering, our new pipeline recapitulates the original profiling results.
Moreover, we find that there are specific instances where we identify improvements
in the structural information being extracted from the Boltzmann sample. This
suggests that the directions discussed in Sect. 5 may be worth pursuing to yield
still more informative cluster analyses.

2 Background

We begin this section by describing an RNA molecule and illustrating how we
represent a secondary structure using helices. Then, we review computational
methods for predicting RNA secondary structures and for analyzing a Boltzmann
sample. Particular attention is given to the profiling method [19] which identifies
relevant combinations of base pairs in the ensemble, and highlights relationships
among sampled structures. Finally, we discuss some challenges in the profiling
method which have motivated our work.

2.1 RNA Secondary Structure

Ribonucleic acid (RNA) plays an essential role in many biological processes such as
the translation, transcription, regulation and expression of genes. An RNA molecule
consists of four types of nucleotide bases: Adenine (A), Cytosine (C), Guanine
(G), and Uracil (U). RNA molecules have a secondary structure determined by
the hydrogen bonding of complementary bases; the canonical base pairings are
the Watson-Crick ones of A-U/U-A and C-G/G-C as well as the wobble pairing
of G-U/U-G [5, 27]. Although non-canonical nucleotide interactions are known to
exist in RNA molecules, they are not treated as base pairings under the standard
nearest neighbor thermodynamic model (NNTM) used for secondary structure
prediction [24, 31].

We label our RNA molecules by indexing their bases from 1 to n, the length of
the sequence, and use (i, j) to denote a base pair involving nucleotides in positions
i and j with 1 ≤ i < j ≤ n. A key assumption of the NNTM is that base pairs are
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Fig. 1 A secondary structure, drawn by Forna [13], from the Boltzmann sample for the 5S rRNA
sequence from A. tabira which has length 120 nucleotides (nt). This structure contains 11 helices:
(1, 118, 9), (11, 109, 2), (14, 107, 3), (17, 100, 5), (23, 94, 3), (35, 90, 2), (38, 88, 3), (42, 84, 3),
(46, 81, 3), (51, 76, 5), (57, 70, 4)

noncrossing, i.e. if both (i, j) and (i′, j ′) are in a secondary structure with i < i′,
then either i < j < i′ < j ′ or i < i′ < j ′ < j but not i < i′ < j < j ′.
The excluded case is called a pseudoknot, and accurate prediction of these type of
tertiary interactions remains an open problem in the field.

A run of consecutive base pairs of total length k starting with (i, j), i.e. the set
of pairings {(i, j), (i + 1, j − 1), · · · , (i + k − 1, j − k + 1)} where neither i − 1
and j + 1 nor i + k and j − k pair, is called a helix and denoted by (i, j, k). A helix
of length 1 is called an isolated base pair. In this work, we represent a secondary
structure by the set of helices it contains, including any isolated base pairs. Figure 1
illustrates a possible secondary structure for the 5S ribosomal RNA (rRNA) from
the fish Acheilognathus tabira. Helices are highlighted in blue and green. The green
ones will be revisited in Sect. 2.3.

2.2 Computational Methods and Ensemble Analysis

Computational methods for predicting RNA secondary structures based on a nearest
neighbor thermodynamic model (NNTM) date back to the 1980s [25]. The goal
is to use equilibrium stability, as approximated by the NNTM, as the crucial
characteristic for predicting the native base pairings. At first, the focus was on
finding a minimum free energy (MFE) secondary structure [29, 32] for the given
sequence. It was recognized, though, that this approach can and should be broadened
to consider structures within a given energy range of the minimum, e.g. [28, 30]. In
this way, thermodynamic optimization can produce biologically relevant structures
which are only close to the minimum in free energy under the NNTM.

In part due to the uncertainty as to which low-energy structure(s) were worth
investigating, researchers turned to analyzing the distribution of possible secondary
structures. The Boltzmann distribution is used to represent a structure’s frequency
proportional to its free energy. Specifically, for a secondary structure S, its Boltz-
mann equilibrium probability is defined by

P(S) = exp(−E(S)/RT )/Z,
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where E(S) is the free energy of the structure, R is the gas constant, T is the
absolute temperature, and Z is the partition function for all admissible secondary
structures. Here, the partition function is defined by Z = ∑

S exp(−E(S)/RT ) for
S ranging over all possible secondary structures for the given sequence. In 1990,
McCaskill presented an algorithm to compute the partition function [15]. Later,
Ding and Lawrence introduced an algorithm to draw samples from the ensemble
of secondary structures [8], which is the basis of most modern ensemble analysis.

There are numerous approaches to ensemble analysis for understanding sec-
ondary structures arising from a Boltzmann sample [2, 6, 7, 9, 12, 19, 22]. Though
the number of possible structures can increase exponentially as the sequence length
increases [26], a Boltzmann sample of 1000 structures is typically used for mining
representative structures [8]. In [6, 7], Ding, Chan, and Lawrence used a clustering
method to group structures. Their method represents a secondary structure by a
symmetric 0-1 matrix A whose entry Aij is 1 if and only if the base i pairs with
the base j . The distance between two structures is measured by the number of
different base pairs. Using a hierarchical clustering method, they computed clusters
and represented each cluster by the centroid. Another way to group structures is
to use the branching configuration of a structure; Giegerich, Voß, and Rehmsmeier
introduced the concept of RNA shape and presented an algorithm to compute the
shapes [9]. Structures with the same shape belong to an abstract shape class, which is
represented by its MFE member. Finally, profiling [19] is a combinatorial approach
that identifies the dominant combinations of base pairs in the ensemble, and uses
them to highlight similarities and differences across sampled structures. We describe
this approach in further detail in the next section.

2.3 Profiling

In this section, we will describe the profiling pipeline (illustrated in Fig. 2) and
discuss some current challenges of this method. Profiling takes a Boltzmann sample
as input, where the secondary structures are represented as sets of helices.

Helix classes and features In the first step, profiling partitions the set of all
observed helices into “helix classes” using maximal helices and chooses the highest
frequency ones as “features.” A helix g = (i, j, k) is said to be maximal if neither
(i − 1, j + 1) nor (i + k, j − k) would be canonical base pairs. If (i − 1, j + 1) is

Boltzmann
ensemble

Helix
classes

Features

Profiles

Selected
profiles

Summary

graph
profile

Fig. 2 A schematic representation of the profiling pipeline
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not a canonical base pair, but (i + k, j − k) is with j − i − 2k < 4, then the helix
g is also maximal. These conditions insure that a maximal helix is non-extendable
using the canonical Watson-Crick or G,U wobble pairings and does not end with an
hairpin of length less than 3.

Every maximal helix g determines a helix class cg = [g] = [(i, j, k)], which
is the equivalence class of all helices h which are subsets of the set of pairings
{(i, j), . . . , (i + k − 1, j − k + 1)}. Since the frequency of a helix h is the number
of times h appears in the sample, the frequency of [g] is defined as the sum of the
frequencies of its elements. In the following, we will be dealing exclusively with
helix classes, and not individual helices, so will drop the square bracket equivalence
class notation. When considering a specific RNA sequence, helix classes will
be assigned a unique nonnegative integer index as described in Sect. 4.1. When
discussing a particular Boltzmann sample, we will either refer to the helix class
by this integer index and/or by its (i, j , k) triple (without the square brackets).

To identify the most “important” runs of base pairs, called features, helix classes
are ordered by decreasing frequency, and selected up to some threshold. By default,
profiling sets the threshold to be the point of diminishing returns in the frequency
distribution, computed using Shannon entropy [21]. The table in Fig. 3 lists the
features for the 5S rRNA from A. tabira with the indices described in Sect. 4.1.
Three of the four most frequent features appear in Fig. 1 and are the helices colored
green. As it happens, all of the green helices are maximal. However, the helix (11,
109, 2) is not, since it could be extended by the (10, 110) canonical C-G pairing.

Profiles and selected profiles In the second step, profiling consolidates similar
secondary structures according to their profiles, which consist of the set of features
present (from step one). Hence, a profile p is an equivalence class of structures
having the same set of features, although their exact base pairings may vary
somewhat since the features are themselves equivalence classes. Additionally, a
profile says nothing about base pairings from helix classes which are not featured.
The secondary structure in Fig. 1 has only three features (in green) which are
indexed 0, 28, and 17, cf. Fig. 3. The profile for this structure is denoted by the
string ‘[0[28[17]]]’ rather than {0, 17, 28}; the square brackets indicate the nesting
of features, i.e. their relative positioning in the secondary structures,

The number of secondary structures in the Boltzmann sample with a particular
profile is called its specific frequency. Since profiling seeks to highlight relationships
among the sampled structures, it is also useful to define the general frequency of
a profile p to be the number of structures sampled whose profile is a superset
of p. Similarly to feature selection, this stage of the pipeline concludes by
again downselecting by thresholding the specific frequency distribution, producing
selected profiles, which can be used to compare and contrast structures in a summary
profile graph as shown in Fig. 3.

Summary profile graph Profiling outputs a summary profile graph illustrating
relationships between selected profiles. It is inspired by the Hasse diagram for the
subset relation, although it is ‘read’ from smallest/top to largest/bottom sets. The
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Fig. 3 Summary profile
graph for the 5S rRNA from
A. tabira. The secondary
structure for this sequence
illustrated in Fig. 1 has
features 0, 17, and 28
highlighted in green. Since
that structure has no other
base pairings which belong to
a featured helix class, it is one
of the 43 structures sampled
whose profile is [0[28[17]].
However, the general
frequency of this selected
profile is much higher, since
809 of 1000 structures
sampled include these three
features

Helix Triplet Frequency

0 1 118 9 1000

5 92 110 7 858

17 57 70 4 809

28 51 76 5 809

9 14 86 6 698

38 19 82 5 656

21 29 48 4 611

34 31 44 4 537

176 35 42 2 346

[0[9[38[21[176]][28[17]]]][5]]
257/257

[0[9[38[21[34]][28[17]]]][5]]
200/200

[0[9[38[34][28[17]]]][5]]
178/378

21 

[0[28[17]][5]]
51/763

[0[9[38[28[17]]]][5]]
11/651

9 38 

[0[28[17]]]
43/809

5 

[0[9[38[21][28[17]]]][5]]
5/462

176 34 

34 21 

[0]
0/1000

28 17 

goal is to facilitate comparisons in this graph among the high frequency structural
classes identified by profiling the Boltzmann sample.

The vertex set consists of the selected profiles as well as all nonempty inter-
section profiles, with the possible addition of a ‘root’ profile. The intersection
profiles ‘interpolate’ between selected profiles which are not comparable under the
subset relation. More precisely, consider a profile p as a set of features. Then if
P = {p1, . . . , ps} are the selected profiles, the intersection profiles are I \ (P ∪ ∅)

where I = {pi ∩ pj | 1 ≤ i < j ≤ s}. These additional vertices make explicit the
relationship among the selected profiles. The graph is rooted at the profile common
to all sampled structures, which may be the empty set in this case.

In the graph, selected profiles have a solid, rectangular outline while intersection
ones have a dashed oval to clearly distinguish the two types. Each vertex is
labeled with the profile string along with the ratio between the specific and general
frequencies. Note that while the specific frequency of an intersection profile pi ∩pj

may be 0, the general frequency will be at least the sum of the specific frequencies
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of both pi and pj . If the root profile is neither a selected nor an intersection profile,
then it is drawn as a solid oval. Its specific frequency may be 0, but by definition the
general frequency is the sample size (typically 1000 structures).

Two vertices p and p′ in the graph are connected by an edge, understood as from
p to p′, if p � p′ and there is no p′′ ∈ P ∪I with p � p′′

� p′. The edge is labeled
with the feature(s) from p′ \ p.

Challenges in profiling Profiling captures the dominant structural patterns appear-
ing in the Boltzmann sample, and highlights similarities and differences among
structures using the summary profile graph. The method provides informative,
detailed, and reproducible results [19], and may suggest different conformations
for regions of interest, as shown in the proof-of-principle analysis. However, while
generally useful, there are ways in which the profiling approach might be improved.
The example in Fig. 3 illustrates two of them.

Profiling is explicit about separating structural signal from thermodynamic noise.
As a consequence, it is not unusual to have sampled structures which do not appear
in any selected profile. For example, we see from the summary profile graph in
Fig. 3 that there were almost 200 structures sampled for the A. tabira 5S rRNA
sequence that do not contain features 28 and 17. Since this frequency is below the
threshold for feature selection, we do not know if all of those structures contain
a common alternative. Retaining information about alternatives to high frequency
features is one way that profiling could be enhanced. This could be particularly
useful when seeking to understand RNA molecules whose functionality may depend
on switching from one conformation to another.

When considering the list of features for A. tabira, we see that the maximal helix
34 overlaps with 21 and with 176, i.e. there is a least one sequence index which
appears in both feature’s defining set of base pairs. However, since the sampled base
pairs can be a subset of the maximal helix, features 34 and 21 can – and do – coexist
in a secondary structure, and appear together in a selected profile. In contrast, the
overlap between 34 and 176 is substantial enough that they do not appear together
in a selected profile. Recognizing unions of features which are consistently sampled
would enhance profiling by consolidating their frequencies into a stronger structural
signal and reducing the number of selected profiles as well as the complexity of the
summary profile graph. This should better highlight the structural signal present in
the Boltzmann ensemble.

Finally, the complexity of the summary profile graph is also a concern which
has been identified in some of the profiling outputs, although not apparent in the
A. tabira example. This often seems to be the result of a combinatorial explosion
in the number of intersection profiles, perhaps as a consequence of overlapping
features which should be treated as a union, leading to an incomprehensible
graph. These types of challenges motivated us to consider alternative approaches
to analyzing the secondary structures in a Boltzmann sample.
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3 Methods

As described in Sect. 2.3, profiling focuses on denoising the distribution of helix
classes by identifying as features those with high enough probability, and restricting
attention to these features when generating a profile of each structure. However,
potential structural alternatives are not captured due to thresholding the frequency
distribution. To capture the structural alternatives in a comprehensive manner, we
opt to represent the secondary structures by their entire set of helix classes (not
just the featured helix classes), which we refer to as the extended profiles. Here
we describe the methods used to compare structures using these extended profiles.
First, we introduce similarity measures calculated by comparison of the sets of helix
classes, then we describe graph clustering algorithms used for grouping together
structures based on these similarities.

3.1 Similarity Measures

Although we refer to these computations as our similarity measures, we will
actually be computing the dissimilarity between extended profiles. To quantify the
(dis)similarity among structures, we introduce several distance measures based on
set symmetric difference. Using extended profiles, each structure is represented
as a set of helix classes (typically denoted ci), and a natural notion of difference
arises from considering how much these sets differ. Since not all helix classes are
equally important structurally (e.g. some may represent much higher frequency
structures or much lower energy configurations), we consider several weightings of
the symmetric difference in our analysis. The symmetric difference, or disjunctive
union, of two sets A and B is denoted AΔB and is the set of elements which are in
their union A ∪ B but not their intersection A ∩ B.

Base similarity measure We define our base similarity measure of two structures
S and T to be the number of helix classes they disagree on, or more formally, the
cardinality of the symmetric difference of their extended profiles:

mnone(S, T ) = |{ci ∈ SΔT }|.

For example, consider the structures s1 = {c1, c2, c3}, s2 = {c1, c2, c4, c5} on helix
classes ci, 1 ≤ i ≤ 5. The base similarity measure of these two structures is then
mnone(s1, s2) = |(s1 ∪ s2) \ (s1 ∩ s2)| = |{c3, c4, c5}| = 3.

Length-weighted measure To incorporate the idea that two structures which differ
only on a short helix class are closer than two which differ on inclusion of a very
long helix class (measured by number of base pairs), we introduce a length-weighted
similarity measure. Using the standard notation that a helix class cn = (in, jn, kn)
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has start position in, end position jn, and length kn, the length-weighted similarity
measure is

mlength(S, T ) =
∑

ci∈SΔT

ki .

Using the same example given for the base measure, mlength(s1, s2) = k3 + k4 + k5.

Frequency-weighted measure Alternatively, it is plausible that frequency in the
Boltzmann ensemble is a better proxy for helix class importance than length, and
thus we introduce a measure where the symmetric difference is weighted by fi , the
frequency of helix class ci :

mfrequency(S, T ) =
∑

ci∈SΔT

fi .

Here, fi is a proxy for the probability of the helix class ci (which is the sum over
all the frequencies of its helices). In our running example, mfrequency(s1, s2) = f3 +
f4 + f5.

Energy-weighted measure Finally, we incorporate an approximation of the free
energy en for a helix class cn as the weighting function in our symmetric difference:

menergy(S, T ) =
∑

cn∈SΔT

en.

sHere, en is the sum of the free energy associated with each base pair in the helix
in cn. For each helix, we compute a weighted sum of the number of Watson-Crick
pairings A↔U and C↔G as well as wobble pairings G↔U, using weight 2 for
a A↔U pair, 3 for a C↔G pair, and 1 for a G↔U pair to approximate the energy,
similar to Nussinov’s algorithm [16]. In our example, menergy(s1, s2) = e3 +e4 +e5,
where en = 2l{n,AU} + 3l{n,CG} + l{n,GU}, and l{n,αβ} represents the total number of
α ↔ β pairs in a helix class cn.

3.2 Graph Clustering

A common task in graph analytics is to identify communities (clusters) of “similar”
or “well-connected” vertices based on the structure of edges in the network;
the methods used to do this are called graph clustering algorithms. Typically,
communities are disjoint (though some algorithms exist for detecting overlapping
communities), and methods try to optimize measures that formalize the notion that
nodes within a community should be better connected to each other than to nodes
in other communities. Where available, many algorithms can incorporate weights
on the edges (e.g. indicating strength of similarity or association). The quality of
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a partition is evaluated based on measures such as low variance (or high density)
within clusters and high separation (low edge density) between clusters, and some
tuning of the algorithm may be required to produce an optimal clustering. We refer
the reader to [20] for an overview of common methods.

To utilize graph clustering on the set of extended profiles, we form a graph
G = (V ,E), where V is the set of extended profiles from a Boltzmann sample, each
labeled with its frequency of occurrence in the sample. We note that the frequencies
will sum to the sample size (and |V | will typically be smaller due to duplicate
structures and/or similar structures in the same equivalence class). The set E will
initially contain an edge between every pair of vertices, weighted using a similarity
score as defined in Sect. 3.1.

Prior to clustering, we sparsify our input graph by retaining only edges between
the most similar structures. (Recall that the measures from Sect. 3.1 actually
calculate dissimilarity.) This is done by setting a similarity threshold corresponding
to a fixed percentile of the edge weight distribution (e.g. we keep the bottom
40% of edges) to ensure equity across samples. This step enables the application
of (unweighted) graph community detection algorithms by removing connections
between less similar vertices. In general, deleting more edges creates sparsity and
generally increases the number of clusters formed. We discuss threshold selection in
Sect. 4.2. Figure 4 shows an example of thresholding a synthetic instance to remove
70% of the edges.

We tested several graph clustering algorithms using the implementations in
NetworkX [11], and now describe each method individually.

Greedy Modularity Community (GMC): Also known as Clauset-Newman-
Moore, GMC is a hierarchical clustering method that calculates modularity to
determine an optimal graph partition. A graph’s modularity is high when edge
connections are dense within communities and sparse between communities; an
exact formula for calculating modularity is given in [3]. Thus, a “good” partition

Fig. 4 Community detection in the set of extended profiles. The initial input is a graph G =
(V ,E) with vertices V representing extended profiles labeled with their frequency in the
Boltzmann sample. Edges E are weighted with the (dis)similarity score, and a percentage of edges
are removed prior to clustering. The clustering algorithm then groups vertices using the remaining
edge information
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should have a high modularity. To use this property for clustering, GMC begins
with each vertex in its own isolated community. The algorithm then iteratively
merges pairs of communities by determining which pair’s union produces the
largest increase in the graph’s modularity, stopping when no such pair exists. That
is, the algorithm finds the partition of the graph with the maximal modularity.

Girvan Newman (GN): In contrast with GMC, the GN algorithm begins with all
vertices in the same community and progressively removes edges at each iteration of
the algorithm [10]. An edge is selected for removal if it has the highest betweenness
centrality, defined as the number of shortest paths between pairs of vertices that
include that edge. The algorithm continues until all edges have been removed, or
until a specified number of iterations have been completed.

Label Propagation Algorithm (LPA) In this algorithm, each vertex begins with
a unique label, and labels are updated iteratively to match the most frequent label
among neighbors [4]. Ties are broken randomly in the case where multiple labels
are equally frequent among a vertex’s neighbors. This nondeterministic step can
produce different clusterings from multiple runs of the algorithm, which we discuss
in Sect. 4.3.

The output of graph clustering is a partition of the set of extended profiles. The
number of communities generated depends on the clustering algorithm used and the
sparsification threshold; we discuss choosing the optimal threshold using the CH
index for cluster evaluations in Sect. 4.2. For easy interpretation, we also visualize
the clustering by color-coding the nodes in an output graph, shown in Fig. 4.

3.3 Pipeline

The overall flow of the process is shown in Fig. 5. We used RNAstructure1 from
the Mathews Lab at the University of Rochester to perform the initial sampling of
secondary structures from the Boltzmann distribution. After minor data cleaning
and application of consistent indexing to allow comparison across samples, we then
calculate pairwise similarity between structures, construct similarity graphs, and
perform graph clustering. All internal code is written in Python 3 and available
under a BSD 3-clause license at Github.com.2 We compared the clustering results
to the outcome of profiling as implemented in RNAStructProfiling.3

Based on experimental results (see Sect. 4.3), we constructed similarity graphs
using the frequency metric described in Sect. 3.1 and applied the GMC clustering
algorithms described in Sect. 3.2. Clustering quality was assessed using a variant of
the standard CH index, described in Sect. 4.2.

1https://rna.urmc.rochester.edu/RNAstructure.html
2https://github.com/gtDMMB/ipam-wbio-scripts
3The results in this manuscript use a new version of profiling which is still under development and
will be made available at https://github.com/gtDMMB/RNAStructProfiling.

https://rna.urmc.rochester.edu/RNAstructure.html
https://github.com/gtDMMB/ipam-wbio-scripts
https://github.com/gtDMMB/RNAStructProfiling
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Fig. 5 The high level components in the RNA structure clustering pipeline

4 Results and Discussion

As illustrated in Fig. 5, the new structure analysis pipeline depends on three different
components: the similarity score, the thresholding percentage, and the clustering
algorithm. Below we will describe how each of these was determined from the
options explained above, but first we report an improvement to the code base
(consistent indexing) which greatly facilitated comparisons between the original
profiling partitions and the new ones produced by graph clustering. Next, we
describe how the thresholding was handled, since different levels of graph sparsity
were found to generate significantly different partitions. We then address the choice
of similarity score, and then the choice of clustering algorithm. Finally, we report
the results of our new analysis pipeline when tested against 12 of the original 15 test
sequences [19] from four different RNA families. We note that the three transfer
RNA (tRNA) sequences from the original test set were not considered, since they
had been used extensively for training when developing this new approach.

4.1 Consistent Indexing

As originally implemented, profiling indexed helix classes according to their
frequency in the Boltzmann sample currently being analyzed. Since the sampling
is stochastic, these indices can vary somewhat between different samples (e.g.
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(10, 17, 3) might be helix class 1 in sample S1 but helix class 3 in sample S2).
To improve analysis of secondary structures, we introduced a consistent labeling
system so that a given helix class is assigned the same label in any sample for a
given sequence. We begin by assigning a canonical complete ordering to all possible
maximal helix classes for a given sequence.

To enumerate maximal helices, we iterate over all possible start and end points
of helices (starting from either end of the sequence) and check whether they were
matched in a previously identified helix class. If it is a new pairing we then
iteratively increase the helix length until it becomes maximal and add the result
to our list of maximal helix classes. The maximal helix classes are then sorted by
length with ties broken based on earliest start location.

4.2 Clustering Quality Assessment

The partition generated by our new pipeline depends on the similarity measure,
threshold percentage, and clustering algorithm used. To select the most useful of the
four similarity measures and three clustering algorithms considered, we first address
how to determine a threshold percentage for the graph sparsification. This will be
done by adapting the standard Caliński-Harabasz (CH) index [1] for our purposes.

The CH index is often used to determine an optimal number of clusters. It is a
“variance ratio criterion” [1] intended to capture the intuition that, ideally, points
within a cluster are “close together” while the clusters themselves are “far apart.”
Let {C1, . . . , Ck} denote a partition of a data set, such as an ensemble of structures,
of size n into k clusters. The CH index is the ratio of the between-cluster sum of
squares B(k) to the within-cluster sum of squares W(k);

CH(k) = B(k)/(k − 1)

W(k)/(n − k)
.

The numerator measures the sample variance between the different groups, com-
puted based on the distances between the centroid of the n data points and the
centroids of each cluster, while the denominator averages it over each of the k

clusters. More precisely,

B(k) =
k∑

i=1

nid
2(C∗

e , C∗
i ) and W(k) =

k∑
i=1

∑
S∈Ci

d2(C∗
i , S),

where d(C∗
e , C∗

i ) is the distance between the ensemble centroid C∗
e and the centroid

C∗
i of the i-th cluster which contains ni data points, while d(C∗

i , S) is the distance
between the centroid C∗

i and a structure S in the i-th cluster. Following [6], the
centroid of the ith cluster C∗

i is the secondary structure realizing the minimum
total distance to all the other structures in Ci . The ensemble centroid C∗

e is defined
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similarly by considering all structures sampled. Finally, to simplify the calculation
slightly, the distances were not squared.

Typically, the clustering with the maximum CH index is taken to be the best one.
However, we found that too often the maximum CH index was obtained for the
minimum graph sparsity, and the resulting partition was evaluated as being too fine
grained. Instead, we identified the maximum proportional increase in CH index as a
characteristic which correlates with “good” partitions. More specifically, we focus
on the clustering with the highest value of

CHi+1

CHi

for i = 1, 2, . . . . (1)

where CHi is the CH index obtained for the i-th threshold considered.
This approach was validated on the 5S rRNA sequence from the archaea

Desulfurococcus mobilis, as summarized in Table 1 and Fig. 6. The maximum CH
index is reached at edge sparsification threshold 99, and corresponds to a partition
having 28 clusters. Since there are 34 distinct extended profiles, this partition places
the majority of structures into clusters of size 1, a highly granular approach that
fails to reveal many significant similarities between structures. However, the biggest
proportional increase in CH index values occurs at threshold 96 for a partition
with 22 clusters. By direct inspection, we confirmed that each selected profile gets
its own cluster having mass equal to the specific frequency of the corresponding
profile, meaning that this clustering is providing the same information as profiling.
Importantly, we also found that such a partition was identical to our carefully hand-
crafted “ground truth” partition of the extended profiles.

A similar behavior was observed for other test sequences, i.e. a monotone
increasing CH index with the sparsification of the similarity graph but a significant
proportional increase at some critical edge sparsification threshold. Hence, we used

Table 1 CH index evaluation of the clustering for the D. mobilis 5S rRNA. The similarity measure
used was the frequency-weighted symmetric difference, and the clustering was computed with the
GMC graph algorithm. The quality of the clustering was manually evaluated against a hand-crafted
“ground truth” partition of the extended profiles

Threshold # of Clusters # CH index Proportional increase

10–60 1 N/A N/A

70 3 5.052746249119672 N/A

80 5 31.676599148009707 ∼6.27

85 8 303.22637579865153 ∼9.57

90–92 9 265.8620083317187 ∼0.88

93–95 14 1507.975920763893 ∼5.67

96–97 22 164354.62111801244 ∼108.99

98 27 337551.99572649575 ∼2.05

99 28 471345.67741935485 ∼1.40
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Fig. 6 CH index value, number of clusters, and proportional increase of CH index values for
sequence D. mobilis

the largest proportional increase in the CH index to evaluate the quality of the
similarity measure and clustering algorithm in our analysis pipeline.

4.3 Similarity Measure and Clustering Algorithm Selection

To determine which similarity measures and community detection methods were
most suitable in the clustering pipeline, we initially began with the four choices of
similarity measure defined in Sect. 3.1 and three choices of community detection
algorithm listed in Sect. 3.2. We then clustered a selection of RNA sequences over a
range of edge thresholds using each pair of similarity measure/community detection
algorithm in the clustering pipeline. The pair of methods that produced the best
quality of clusterings was selected.

Besides the previously described maximum proportional CH index, several
criteria were used in assessing the quality of the clusterings produced with different
paired methods. First, we desired consistency, as measured by the method’s ability
to reproduce a particular clustering over multiple runs of a sequence through the
pipeline. Second, we wanted a method that produced a monotonic increase in the
total number of clusters with increasing edge thresholds, preferably without large
jumps in the number of clusters so that we could evaluate a more gradual refinement
of the partition. Finally, an optimal method would separate the selected profiles from
profiling into different clusters, allowing for more direct comparison between the
clustering and profiling results. From assessing the clusterings formed from different
pairs of similarity measures and community detection algorithms, we concluded that
the combination of mfrequency and GMC overall produced the best clustering results
across all sequences tested. We summarize this assessment below.
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Choice of similarity measure Not surprisingly, mnone did not perform as well
as the weightings incorporating additional biological information. For instance,
on one of the test sequences, the number of clusters jumped from 2 to 18 when
increasing the edge threshold under mnone, whereas mfrequency produced a more
gradual increase in total clusters. Thus, mnonewas quickly eliminated as a candidate
and we further examined mlength, menergy, and mfrequency on additional sequences.

For D. mobilis, mlength and menergy produced clusters in which selected profiles
from profiling were placed in the same cluster, while mfrequency separated them.
Additionally, we noticed that the CH index for mfrequency clusterings was higher
than those formed using mlength and menergy at the same threshold. Both of these
pointed to mfrequency as a better option for clustering.

It is worth noting that in a Boltzmann distribution, the probability of a structure’s
occurrence (and hence its frequency in a Boltzmann sample) is inversely propor-
tional to the exponential of its energy. Consequentially, when structure similarities
were weighted using menergy, edge removal tended to favor separating high energy,
low probability structures while keeping the higher probability structures in a single
cluster. Edge removal thresholds >90% were generally required to separate the
high probability structures into separate clusters. Thus, while menergy and mfrequency
are related weights, the latter requires lower thresholds to form distinct clusters
separating the high probability structures, and it can do so with greater refinement.

Lastly, we found that mfrequency was more easily interpretable in terms of com-
paring to profiling results, since profiling already takes into account the frequency
of the helix classes. Using mfrequency for clustering may therefore aid in building on
the profiling results, as it may be possible to perfectly reproduce the selected profiles
in clusters generated using frequency for some threshold.

Choice of community detection algorithm In evaluating the community detection
algorithms, we not only examined sample sequence clusterings, but also compared
the algorithms’ mechanics. First, we found that under the LPA algorithm, there
was significant variation in the partitions produced from multiple runs on the same
sample for a given sequence. This can be explained due to the fact that LPA has
a non-deterministic step in its algorithm as described in Sect. 3.2, but we chose to
focus on algorithms with reproducible clusterings in this initial study.

Generally, GMC and GN produced similar results at a given edge sparsification
threshold, and performed comparably on our sample sequences. GMC inherently
optimizes the modularity which in turn determines the number of clusters. On the
other hand, GN requires setting a number of iterations to output a fixed level of the
hierarchical clustering. While we acknowledge that this could be automated using
an assessment of the clustering quality at different hierarchical levels (using e.g. the
CH index), we felt that increasing our pipeline’s reliance on such a metric was less
desirable, and thus chose to focus on GMC for our experiments.
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4.4 Test Sequences

In the next section, we analyze the results of the clustering pipeline, and compare it
with the output of profiling. To assess what improvement this new approach could
achieve, we compared the community detection partitions with the profiling results
for 12 of the original 15 test sequences [19].

As will be described, we considered three sequences from each of four dif-
ferent RNA families: quorum regulatory RNA (Qrr), 5S ribosomal RNA (rRNA),
tetrahydrofolate (THF) riboswitch and thiamine pyrophosphate (TPP) riboswitch.
(The three from the tRNA family were used for training the method.) An RNA
family is a set of homologous sequences which have been found to have a similar
secondary structure, and hence a common functionality across different organisms.
The canonical example is, of course, the tRNA family.

Small non-coding RNA molecules called Qrr have been shown to regulate the
expression of virulence genes in bacterial pathogens [17]. We examine the results of
the clustering pipeline in comparison with the original profiling results for three
Qrr sequences found in members of Vibrionaceae, a family of aquatic bacterial
pathogens: Qrr1 and Qrr3 from Vibrio cholerae and Qrr1 from Vibrio harveyi.
V. cholerae is the human pathogen responsible for causing cholera; it contains four
Qrr molecules that can each affect translation of virulence genes. The common
aquaculture pathogen Vibrio harveyi contains five Qrr molecules (Qrr1-5) that all
must be present to regulate gene expression [17].

THF serves as a coenzyme for metabolic reactions. In bacteria, regulation
of THF biosynthesis and transport is associated with THF riboswitches. THF
riboswitches are a class of RNAs that can bind to THF. These riboswitches are
found in Firmicutes which include Clostridium botulinu, Streptococcus uberis, and
Mitsuokella multacida.

The TPP riboswitch class is the most widespread riboswitch occurring in all
domains of life. Even though it controls different genes involved in the synthesis
or transport of thiamine and its phosphorylated derivatives in bacteria, archaea,
fungi, and plants, TPP is a highly conserved RNA secondary structure. We analyze
three TPP sequences: Bacillus clausii, Pasteurella multocid, and Thermoplasma
acidophilum. B. clausii is an alkaliphilic bacterium used for production of a high-
alkaline protease (M-protease) in laundry detergents. P. multocid is the cause of a
range of diseases in mammals, birds, and humans. T. acidophilum is an archaeon,
originally isolated from a self-heating coal refuse pile, at pH 2 and 59 ◦C.

5S rRNA is a structural and functional component of the ribosome. Although it
is found in all organisms, with the exception of mitochondrial ribosomes of fungi
and animals, its exact function is not fully understood. The secondary structure of a
5S rRNA is generally described by a model obtained from sequence and structural
analysis. We examine the results of the clustering pipeline for the 5S rRNAs
Desulfurococcus mobilis, Acheilognathus tabira and Escherichia coli, highlighting
differences from those obtained by profiling. D. mobilis is an extreme thermophile
that lives at temperatures of up to 97 ◦C in solfataric hot springs, where the pH is
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between 2.2 and 6.5. A. tabira is a species of ray-finned fish that is endemic in
Japan and has 5 subspecies. E. coli is an anaerobic bacterium that normally lives
in the intestines of warm-blooded organisms. Most varieties are harmless, but some
strains can cause diseases.

4.5 Results of Experiments

The new analysis pipeline was tested on 12 sequences, 3 each from 4 different
RNA families, as described in Sect. 4.4. Results were compared against those from
profiling [19], and are summarized in Table 2. To illustrate the methodology, we
will consider two sequences as examples. The complete data for all sequences
— original Boltzmann sample, summary profile graph, clustering partition file,
and visualization of the clustering graph—are available in individual directories at
https://github.com/gtDMMB/ipam-wbio-scripts/Data.

In Table 2, the NCBI accession numbers are given when available, and the
sequence number with publication reference otherwise. No correlation was observed
between the results and sequence length (Len).

The difficulty (Diff) of the profiling analysis for each test sequence was classified
as easy (E), medium (M), or hard (H) as described next. Two factors were considered
in this assessment: the number of selected profiles (SP) and the Boltzmann sample
coverage (Cov). For completeness, we also report the number of features (Feat)
identified and the number of profiles (Prof).

Recall that a profile is an equivalence class of sampled structures determined by
a maximal combination of features. Selected profiles are chosen by an information
entropy thresholding criteria. Coverage is the percentage of the Boltzmann sample
belonging to one of these selected profiles. A sequence was classified as easy if it
had 3–5 selected profiles (and hence a relatively simple profile graph), and coverage
of at least 75% of the sampled structures. If only one of these conditions was met,
then the sequence was classified as medium difficulty, while if both failed, then it
was hard to analyze.

The new analysis pipeline is based on extended profiles, which are the equiva-
lence classes of secondary structures determined by all the helix classes in a sample,
not just the features. In general, the number of extended profiles (EP) is much higher
than the number of profiles. Threshold (Thresh) is the sparsification cutoff, i.e. the
percentage of edges that were removed from the complete graph according to the
edge weight distribution determined by the (dis)similarity measure. The optimal
threshold was determined using a variant of the CH index as described in Sect. 4.2.
Using the GMC community detection algorithm on the sparsified graph results in a
number of clusters (Clust).

For a given sequence, we analyzed the clustering partition realizing the biggest
proportional increase in the CH index. The pipeline produces a detailed partition file
that lists all extended profiles in each cluster along with their frequencies (see Figs. 9
and 10 in Sect. 5 for examples). A visualization of the graph clustering was also

https://github.com/gtDMMB/ipam-wbio-scripts/Data
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Helix Triplet Frequency

5 86 106 8 1000

0 75 117 10 1000

4 22 73 8 1000

9 12 123 6 1000

1 3 133 9 1000

34 37 57 4 999

151 43 51 3 990

212 32 62 3 965

256 93 100 2 637

104 29 67 3 332

154 39 54 3 140

[1[9[4[212[34[151]]]][0[5[256]]]]]
346/609

[1[9[4[104[212[34[151]]]]][0[5[256]]]]]
173/201

104 

[1[9[4[212[34[151]]]][0[5]]]]
201/955

256 

[1[9[4[104[212[34[151]]]]][0[5]]]]
104/317

104 

256 

[1[9[4][0[5]]]]
0/1000

34 151 212 

(a) (b)

Fig. 7 Clustering for D. mobilis 5S rRNA both recapitulates and improves on profiling because,
in addition to capturing the same strong signal present in the ensemble, it retains information about
feature 154 (which was not part of any selected profile). See Fig. 9 on page 77 for details on the
extended profiles in each cluster. (a) D. mobilis summary profile graph (b) D. mobilis clustering
(threshold 96). Each node represents an extended profile, labelled with frequency and colored by
cluster

generated for each sequence (see Figs. 7b and 8b for examples), but was found to be
of minimal assistance in interpreting the results. The profiling and graph clustering
analyses were compared (by painstaking hand comparison of the extended profiles)
for each of the sequences to determine if the graph clustering recapitulates (Recap)
the profiling results, which was generally desired, and/or if it improves (Imprv) on
them by adding new information not observed from profiling.

A clustering partition was judged to recapitulate profiling (Recap) if the selected
profiles were separated into distinct clusters. For instance, the clustering shown
in Fig. 7b for the D. mobilis 5S rRNA (see Fig. 9 on page 77 for details) has the
4 largest clusters corresponding to the selected profiles in Fig. 7a. However, only
a third of our test sequences satisfied this condition, as illustrated by the second
example. In contrast, the clustering for V. cholerae Qrr3 shown in Fig. 8a does not
recapitulate profiling; two of the selected profiles shown in Fig. 8a are grouped in
a single cluster (profiles [[1][13[20]][10][0]] and [[1][13[20]][0]] in Fig. 8a, red
cluster in Fig. 8b, and Summary 0 in Fig. 10 on page 78). For this sequence, these
two selected profiles were not separated clusters until a higher edge sparsification
threshold. Generally, we observed that while there was some clustering partition for
each sequence which did distinguish selected profiles, this was not necessarily true
at the threshold selected using the CH index criteria.

When evaluating whether a clustering partition improved on profiling, we
considered four criteria. First, was the percentage of the sample covered by the
clusters which contained one or more selected profiles higher than the profiling
coverage? Second, did clustering recover non-featured helix classes which were
common to all structures represented by some selected profile? Third, did clustering
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Fig. 8 Clustering for V. cholerae Qrr3 sRNA does not recapitulate profiling (it combines
[[1][13[20]][10][0]] and [[1][13[20]][0]] into a single cluster), but is still an improvement.
Specifically, all profiles in this new cluster missing helix class 10 alternatively contained less
frequent helices over the same general region of base pairs; this implies it is more informative to
consider the two selected profiles as part of one larger group of structures. See Fig. 10 on page 78
for details on the extended profiles in each cluster. (a) V. cholerae Qrr3 summary profile graph (b)
V. cholerae Qrr3 clustering (threshold 67). Each node represents an extended profile, labelled with
frequency and colored by cluster

recover structures containing a feature not present in any selected profiles? Finally,
did clustering highlight overlapping helix classes that could coexist in the sampled
structures? We labelled the clustering improved (Imprv) if at least one of these
conditions was satisfied.

To illustrate, consider again the D. mobilis 5S rRNA sequence. By comparing the
summary profile graph (Fig. 7a) with the clustering results, we see that clustering
retains information about feature 154, which did not appear in any selected profile.
One of the clusters (Summary 4 in Fig. 9) shows that the overlapping features 154
and 34 may coexist. Interestingly, all but one of the structures having feature 154
also contain feature 34.

Alternatively, consider the V. cholerae Qrr3 sequence. As discussed, one cluster
(Summary 0 in Fig. 10) contained the two selected profiles [[1][13[20]][10][0]]
and [[1][13[20]][0]]. Further inspection revealed that most (74 out of 93) of the
extended profiles not containing feature 10 instead contained less frequent helix
classes 5 = (46, 71, 8), 12 = (49, 72, 7), and/or 27 = (52, 63, 4), which coincide
with the same general region of base pairs as feature 10. Thus, the information in the
extended profiles showed that both of these selected profiles actually have similar
base pairings, and it is more informative to consider them in one group of structures.

Overall, the new approach was judged to provide more structural information in
75% of the test cases, and to provide at least as much in 2 of the 3 remaining ones.
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Fig. 9 Output file of the partition for the D. mobilis 5S rRNA extended profiles at threshold 96
corresponding to the clusters visualized in Fig. 7b on page 66

Of the five “easy” sequences, the graph clustering approach provided additional
structural information for three (V. cholerae Qrr3, B. clausii TPP, and D. mobilis 5S
rRNA), and recapitulated one (C. botulinu THF) but did neither for V. cholerae Qrr1.
Of the four sequences classified as medium difficulty for profiling, three improved
(V. harveyi Qrr1, P. multocid TPP, A. tabira 5S rRNA) while one (S. uberis THF) was
just recapitulated. Finally, there were three sequences which were hard for profiling
to analyze, making it more difficult to compare and contrast the outcomes. However,
the clustering output for all three (M. multacida THF, T. acidophilum TPP, E. coli
5S rRNA) met the criteria for improvement.
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Fig. 10 Output file of the partition for the V. cholerae Qrr3 sRNA extended profiles at threshold
67 corresponding to the clusters visualized in Fig. 8b on page 67

5 Conclusions

Based on these preliminary results, we conclude that this proof-of-principle analysis
supports efforts to extract additional structural information from the Boltzmann
sample beyond the features and selected profiles identified by profiling. In moving
forward, several factors are worth consideration.

One option we considered, but did not implement, was using an edit distance
as the (dis)similarity weighting. This was motivated by the problem of multiple
competing helices which produce similar structures, as for V. harveyi Qrr1 (a non-
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improving sequence). An edit distance similarity score might also simplify the
analysis of hard sequences, like E. coli 5S rRNA. Under more careful consideration,
however, the difficulty became how to implement it efficiently; if the edit distance
score involves a matching of helices, then it resembles the NP -hard problem
of Assignment Problem with Disjunctive Constraints [18]. It is possible that our
problem can be formulated to avoid this complexity issue, but further exploration of
this option was beyond the scope of this initial study.

We also note that it will be important to consider how the clusters are presented.
The original method, by design, yields an interpretable signature—the profile—
for each equivalence class in the partition. It is not immediately obvious what the
corresponding label might be for the new partitions. While the centroid structure
can be computed (as is done for the CH index), this is not necessarily the most
informative way to represent a cluster.

Finally, there is the question of how to compare/contrast the different clusters.
Profiling provides the summary profile graph for this purpose, which works well
for the easy and even medium sequences. (A caveat worth mentioning, though, is
that the transitive reduction used is the most computationally intensive profiling
component.) In contrast, in our experience, the standard graph layout algorithms
available are not well suited to visualizing the new community detection partitions.
A visualization method which highlights the similarities and differences between
the parts of the partition, yet is computationally tractable, especially as sequence
length scales, would be quite useful.
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Appendix

Two data files (Figs. 9 and 10) are included to supplement the examples presented
and discussed in Sect. 4.5. The files begin by listing the RNA sequence analyzed and
the CH index for this partition, which had the largest proportional increase. Recall
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that the (dis)similarity measure is the frequency-weighted symmetric difference and
the community detection is performed by the GMC graph algorithm.

The clusters of the partition are listed by decreasing total frequency. Each one
is first described by a “Summary” which lists a cluster label (‘partition id’) and its
total frequency mass, followed by the list of helix classes appearing in the union
of the the cluster elements. This Summary is followed by a list of all the extended
profiles in the cluster, also sorted by decreasing frequency. Each extended profile is
specified by the cluster label, its frequency in the sample (‘multiplicity’), and the set
of helix classes particular to this extended profile.
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How Do Interventions Impact Malaria
Dynamics Between Neighboring
Countries? A Case Study with Botswana
and Zimbabwe

Folashade Agusto, Amy Goldberg, Omayra Ortega, Joan Ponce,
Sofya Zaytseva, Suzanne Sindi, and Sally Blower

Abstract Malaria is a vector-borne disease that is responsible for over 400,000
deaths per year. Although countries around the world have taken measures to
decrease the incidence of malaria, many regions remain endemic. Indeed, progress
towards elimination has stalled in multiple countries. While control efforts are
largely focused at the national level, the movement of individuals between countries
may complicate the efficacy of elimination efforts. Here, we consider the case of
neighboring countries Botswana and Zimbabwe, connected by human mobility.
Both have improved malaria interventions in recent years with differing success.
We use a two-patch Ross-MacDonald model with Lagrangian human mobility to
examine the coupled disease dynamics between these two countries. In particular,
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we are interested in the impact that interventions for controlling malaria applied in
one country can have on the incidence of malaria in the other country. We find that
dynamics and interventions in Zimbabwe can dramatically influence pathways to
elimination in Botswana, largely driven by Zimbabwe’s population size and larger
basic reproduction number.

Keywords Malaria · Multi-patch model · Epidemiology · Vector disease
transmission · Basic reproduction number · Ordinary differential equations

1 Introduction

Concerted efforts over the past 20 years have dramatically decreased the incidence
of malaria in many countries around the world. However, the response to inter-
ventions to reduce malaria has varied geographically, with neighboring countries’
efforts often producing significantly different results. For example, in Botswana,
from 2000 to 2012, annual malaria cases were reduced from over 70,000 to only
about 300. While neighboring countries Zimbabwe, Namibia, and Zambia have also
decreased their malaria rates, they remain high-infection regions, with substantial
tourism and migration connecting these countries and Botswana [51, 53, 57, 72].

Recent empirical approaches have demonstrated the role that source-sink dynam-
ics can play in maintaining epidemics in regions that would not sustain disease
transmission in isolation [40, 56]. Here, we use a model-based approach to examine
the role that human movement can play in infection dynamics in regions that are
interconnected by human mobility, and that are close to eliminating the disease. For
simplicity, we use Botswana and Zimbabwe as a case study to consider infection
dynamics as both of these countries attempt to go from low infection rates to
elimination while remaining connected by human movement.

While a variety of models have considered the infection rates in malaria endemic
countries [2, 41, 67, 69], little is understood about the final steps before elimination.
As more countries move closer to malaria elimination, it is important to understand
the dynamics of infection when the number of cases is low. This period of
endemicity is particularly important because of recent empirical observations that
infection rates have increased in multiple countries that were previously on positive
trajectories towards elimination [50, 57]. Many models of malaria do not include
human movement, yet it has been an important factor preventing elimination in
many countries. For example, malaria was re-introduced to Greece and Sri Lanka
through migration [43, 58], and Botswana has seen an uptick in infection rates since
2017, including an increase in imported cases [57].

Studies that considered movement have often considered a two-patch model of
human and vector dynamics in the context of malaria transmission. Cosner et al. [23]
demonstrated that movement between humans is important for disease persistence.
In their study, the authors built a two-patch model in which the disease would have
died out in both patches in isolation, but is sustained by human movement. The
model uses two different descriptions of movement. In the first type of movement,
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humans are residents of a given patch and remain in that patch most of the time,
while occasionally visiting other patches often enough for pathogen transmission to
occur in the visited patch. The infection rate for humans in a given patch depends
on the number of infectious vectors in other patches and the fraction of the time that
a visiting individual spends in those patches. However, the infection rate is not tied
to any specific type of human movement between classes or patches. Acevedo et al.
[1] studied the impact of human migration in a multi-patch model. They assumed
that the rate of host movement was symmetric between any two patches, and equal
amongst all patches, for simplicity. They showed that local transmission rates are
highly heterogeneous, and the reproduction number, R0, declines asymptotically as
human mobility increases. Ruktanonchai et al. [62, 63] also studied the impact of
human mobility on malaria. The authors conducted an extensive theoretical study
of the system level R0 under a multi-patch model, and considered how malaria
could be eliminated [63]. They also characterized mobility with call-records from
mobile phones to determine transmission foci [62]. Prosper et al. [59] showed that
even regions with low malaria transmission connected by human movement to
regions with higher malaria endemicity should engage in malaria control programs.
However, these previous studies largely focused only on the asymptotic elimination
of the disease by reducing the system basic reproduction number, and not on the
dynamics of the disease from the time intervention begins.

We use a multi-patch model to identify processes that could hinder elimination
prospects, focusing on migration from other endemic countries. Specifically, we
hypothesize that migration from malaria-endemic neighbors, particularly Zim-
babwe, is a barrier to elimination of malaria in Botswana. To test this hypothesis, we
use multi-patch Ross-MacDonald models [23, 62, 63]. In a multi-patch environment,
individual patches may be characterized as sinks or sources [33, 40, 56]. Sinks
are characterized by having low transmission (single-patch R0 < 1), not enough
to sustain an epidemic. Sources are characterized by high transmission (single-
patch R0 > 1), enough to sustain an epidemic in isolation. We investigate the role
that different intervention strategies and mobility patterns can play on the source-
sink dynamics of our multi-patch system. In contrast to most previous studies, we
consider both the R0 and the number of infections in each patch. We study these
quantities in Botswana under varying migration rates from neighboring Zimbabwe,
and use elasticity analysis to identify the most effective intervention strategies.

Resources for interventions to reduce malaria are limited, and often directed at
a single-country level. Therefore it is important to understand the relative utility of
various interventions types and locations. Such intervention strategies may have
different relative effectiveness under different regimes of population density or
migration. Under our model, we test which interventions, in which patch, may be
most effective in reducing malaria in Botswana. Considering source-sink dynamics
of the system, we examine how interventions in one patch influence the infection
rate in the other patch.

In Sect. 2, we first provide details on Botswana and Zimbabwe, our two-country
case study. We then present the model of malaria dynamics we are using and detail
the metrics and parameters we use for Botswana and Zimbabwe. In Sect. 3, we
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study the dynamics of a two-patch model under different scenarios between the two
countries. In Sect. 4, we discuss our findings and generalizations of our approach.

2 Malaria Dynamics in Botswana and Zimbabwe

In this case study we consider malaria dynamics between the connected countries
Botswana and Zimbabwe. The malaria burden in Botswana is low, but potentially
increasing, as it is surrounded by highly malaria-endemic countries. The areas that
report the highest malaria burden are located in northern Botswana, including the
Okavango delta, Ngamiland and Chobe, and to some extent Boteti and Tutume
[51, 53, 72]. We focus on the first three regions: the Okavango delta, Ngamiland and
Chobe. Interestingly, they do not contain the majority of Botswana’s population.
Instead, most people reside along the Eastern side of the country due to better
environmental conditions such as more frequent rains and fertile soil [30]. However,
our focus areas are located on the borders with Zimbabwe, Zambia, and Namibia,
and include the majority of the malaria cases as well as some of the busiest border
posts (Fig. 2). As more than 93% of all arrivals into Botswana occur by road [72],
the transmission of malaria through these ports of entry from areas of higher malaria
incidence into Botswana requires further investigation.

Multiple countries border Botswana and may influence malaria dynamics. Here,
we focus on Zimbabwe as a malaria-endemic neighbor to Botswana for two reasons.
First, according to the official statistics for 2017 [14], Zimbabwe is home to the
majority of people traveling into Botswana on an annual basis. Second, Zimbabwe
continues to be a highly malaria endemic country, with overall larger malaria
incidence (defined as number of cases of the disease, per person per year) as
compared to Botswana (see Figs. 1 and 2).

Fig. 1 Malaria Incidence in
Botswana and Zimbabwe.
Yearly malaria incidence for
Botswana and Zimbabwe
based on World Health
Organization report in 2018
[57]
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Fig. 2 Malaria Incidence in Botswana and Neighboring Countries. Map of Botswana with a
subset of its neighbors, with spatial interpolation of malaria incidence (number of cases per person
per year) [11]. For Botswana, we also plot the population distribution [55], and relevant border
posts with annual number of entries [14]. We see that while Botswana has the lowest malaria
incidence of all its neighbors, the risk of malaria transmission from the bordering countries is high
given the number of border posts and the number of yearly arrivals from the neighboring countries

Human movement is often considered under two different frameworks: Eulerian
(migration) and Lagrangian (visitation) movement. Eulerian movement involves
migration of individuals between patches. Usually, these individuals do not reside
in these patches but move freely between patches [63]. This movement approach
assumes individuals become infected within the patches [23]. Most models involv-
ing mobility use this approach to depict movement from one patch to another
[3, 5–7, 23, 26, 29, 34, 38, 46, 47, 67, 68, 75, 76]. Lagrangian movement on the other
hand involves individuals residing in a specific patch and taking short commute or
visits between patches, and spending part of their time away from their home patch.
In the cause of these short visits they are exposed to or can infect others with the
pathogen [23, 63]. This type of movement has been used in a number of previous
studies [23, 27, 37, 60, 61, 63].

Here, we focus on Lagrangian movement for a few reasons. Due to an eco-
nomic and political down turn, Zimbabweans have been increasingly crossing into
Botswana for work in cow herding, construction, real estate, retail, education,
health, manufacturing, and for visits or holidays since the early 2000s [16, 44].
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Some people cross to shop or trade [16]. Some of these cross-border migrant have
up to 90 days of legal stay in Botswana, and those crossing to shop or to trade stay
for even shorter periods [16].

However, legal immigration into Botswana has been on the decline according
to the national census [15], with less than 0.2% of the total population being
foreign workers, with valid worker permits [15]. Similarly, we expect undocumented
migration to be relatively low compared to visitation because of recently introduced
heightened border controls and increased punishment measures aimed to curb the
number of people entering into Botswana illegally, particularly from Zimbabwe.
Therefore, while permanent migration in and out of Botswana is present, we first
focus on the simpler model with visitation-only (temporary) movement between
patches.

2.1 Two-Patch Botswana-Zimbabwe Model

Mathematical models of malaria transmission have provided insight into the factors
driving transmission, and the effectiveness of possible interventions, which have
formed the basis of predictions under scenarios of climatic, cultural or socio-
economic change [42, 48, 78]. We follow one of the most prominent models of
malaria transmission, the deterministic coupled differential equations of the Ross-
MacDonald model. These equations consider the infection rates of humans and
mosquitoes over time as a function of human recovery rate, mosquito ecology,
human and mosquito population sizes, and human-mosquito interactions [48, 66].

To study malaria dynamics in Botswana and Zimbabwe, we use the two-patch
model of [23, 63]. Within each patch, the dynamics are governed by the (one-patch)
Ross-MacDonald equations. Individuals live in one patch/country, but may spend
some proportion of their time in the other patch/country (Fig. 3). To spatially couple
the two patches, we follow the Lagrangian approach and assume that the movement

Fig. 3 Conceptual
Two-Patch Malaria Model.
Patch 1 (Botswana) and Patch
2 (Zimbabwe) contain both
infected humans (X1 and X2)
and infected mosquitoes (Y1
and Y2). Interactions that
could result in infection are
identified with dotted lines.
Thick dotted lines denote
within patch routes of
infection, while the thin
dotted lines denotes infection
acquired by human mobility
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dynamics between patches is predominantly characterized by visitation, as opposed
to permanent migration. In this way, we incorporate the fraction of time that the
infected population of both mosquitoes and humans in patch 1 spends in patch 2
and vice versa [23]. We let the infected human populations from patch i, be Xi , and
infected mosquitoes from patch i, be Yi . Additionally, we make the assumption that
our total human population (Hi) is fixed at steady state – to simplify our calculations
– and allow Xi , the number of infected humans, and Yi , the number of infected
mosquitoes, to vary. Coupling the dynamics in both patches, the two-patch malaria
model with Lagrangian movement is given as:

dX1

dt
= (

p11a1b1e
−μ1τ1Y1 + p12a2b2e

−μ2τ2Y2
) (H1 − X1)

H1
− r1X1 (1)

dX2

dt
= (

p21a1b1e
−μ1τ1Y1 + p22a2b2e

−μ2τ2Y2
) (H2 − X2)

H2
− r2X2 (2)

dY1

dt
=

(
q11a1c1

X1

H1
+ q12a2c2

X2

H2

)
(V1 − Y1) − μ1Y1 (3)

dY2

dt
=

(
q21a1c1

X1

H1
+ q22a2c2

X2

H2

)
(V2 − Y2) − μ2Y2. (4)

Table 1 Parameters in the model. Definitions correspond to the Ross-MacDonald model with
Lagrangian dynamics (Equations (1), (2), (3), and (4)). We designate patch i = 1 as Botswana and
patch i = 2 as Zimbabwe. Parameter values are taken from the literature, except a, which is fit
to R0 values. In certain analyses, parameters a and μ are varied to study intervention strategies.
Further described in Sect. 2.2

Parameter Value, Botswana Value, Zimbabwe Definition

R0 1.01 1.5 Median reported value by Malaria Atlas
Project

Hi 175,631 12,973,808 Total human population in patch i at
equilibrium values

Vi 10H1 10H2 Total mosquito population

ai 0.082 0.241 Human biting rate of mosquitoes in patch i

bi 0.5 0.5 Transmission efficiency from infected
mosquitoes to humans

ci 0.1 0.1 Transmission efficiency from infected
humans to mosquitoes

μi 1/30 1/10 Mosquito mortality rate patch i

τi 10 10 Incubation period; time a mosquito
becomes infected until it becomes
infectious

ri 1/14 1/14 Recovery rate of humans in patch i

pij ∈ [0, 1] ∈ [0, 1] Fraction of time a human resident in patch
i spends visiting patch j

qij ∈ [0, 1] ∈ [0, 1] Fraction of time a mosquito resident in
patch i spends visiting patch j
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(The parameter and variable definitions are given in Table 1.) The model
incorporates human movement through the visitation parameters pij , defined as
the proportion of time an individual from population i spends in population j . For
simplicity, we assume that mosquitoes do not move. That is, we fix q11 = q22 = 1
and q12 = q21 = 0.

In our analysis of coupled malaria dynamics in Botswana and Zimbabwe we
consider two metrics: (1) R0, the Basic Reproduction Number (both at the system
level and single-patch level), (2) the number of new infections per year in each
patch. We next describe these quantities in terms of our model.

2.1.1 The Reproduction Number R0

The basic reproduction number, R0, represents the average number of secondary
infections from an infected individual. Generally, when R0 > 1, then infection will
spread, and when R0 < 1, infection will eventually decrease to zero. As such, R0 is
a metric that reflects the long-term asymptotic tendency of the infection dynamics.
The approach to compute R0, under the two-patch system is given in [23, 63]. The
expression for the reproduction number, R0, under single patch Ross-MacDonald
model is given by [23, 48, 63]

R0 =
(

ab

μ

)(
V
H

ace−μτ

r

)
. (5)

We see that R0 is the product of the expected number of humans infected by
a single infectious mosquito over its lifetime as well as the number of infected
mosquitoes that arises from a single infectious human over the infection period.

Next, we consider the system level reproduction number R0. While our subse-
quent model analysis focuses exclusively on the two-patch model, for generality we
describe system level R0 calculation in terms of the n-patch model. Consider the n-
dimensional analogue of Equations (1), (2), (3), and (4). (In this case we have n × n

matrices P and Q depicting the human and mosquito mobility respectively.) First,
following [63], we rescale the model in each patch

dxi

dt
=

⎛
⎝ n∑

j=1

ρ−1
i pijmij aj bj e

−μj τj yj

⎞
⎠ (1 − xi) − rixi (6)

dyi

dt
=

⎛
⎝ n∑

j=1

qij aj cj

⎞
⎠ (1 − yi) − μiyi, (7)

where xi = Xi/Hi, yi = Yi/Vi , mij = Vj/Hi is the ratio of the total number of
mosquitoes over the total number of humans and ρi = Hi/H1 is the ratio of the
total human population in patch i and the total human population in the first patch.
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Writing the system represented by Equations (6) and (7) in terms of the individual
patch reproduction numbers R

j

0 we have

dxi

dt
=

n∑
j=1

(ρ−1
i pij ρjR

j

0α−1
j rj yj )(1 − xi) − rixi (8)

dyi

dt
=

n∑
j=1

(qijαjμj )(1 − yi) − μiyi . (9)

The global reproduction number for the n-patch model when both humans and
mosquitoes move is given by the spectral radius of the matrix, R(S), where S is
given by

S = P diag(R0)D
−1QD,

where D = diag((aici)/(riρi)) and diag(R0) is the matrix with the single patch
R

j

0 ’s on the diagonal.
The two-patch reproduction number (see below Equation (10)) is a special case

of when only humans are moving. In this case, Q = I and S simplifies to Sh:

Sh = P diag(R0).

Recall that P is the matrix associated with human movement. Furthermore, the
spectral radius R(Sh) is bounded by the minimum and maximum single patch R0’s.
That is,

(R0)min ≤ R(Sh) ≤ (R0)max,

where (R0)min = mini (R
i
0), and(R0)max = maxi (R

i
0). Note, we will obtain the

same expression for the reproduction number if we use the standard approach of the
next-generation matrix method [63, 74].

Using the theory described above, the system-level R0 for a two-patch model can
be written as

R0 = p11R
1
0

2
+p22R

2
0

2
+

√
(p11R

1
0 + p22R

2
0)2 − 4 (p11 + p22 − 1) R1

0R2
0

2
. (10)

The first two terms in Equation (10) are the weighted average of the individual
reproduction numbers in each patch and the second term is the average number of
secondary infections imported into each patch. The term under the square root is the
average number of secondary infections imported into each patch.

Within the context of a multi-patch environment, individual patches are charac-
terized as sinks (single-patch R0 < 1) or sources (single-patch R0 > 1) [56]. Based
on Equation (10), if both patches in our two-patch model are sinks, the system R0
will be less than 1 and malaria will asymptotically die out. If both patches are
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sources, then malaria will proliferate. In the following sections we consider the
interesting case in which one patch is a sink and the other is a source.

2.1.2 The Number of New Cases

The second metric we use when evaluating malaria dynamics is the number of
new infections in each patch i. That is, the total number of malaria infections
for individuals in patch i regardless of where they were infected. We choose this
particular metric as it allows for the comparison of the model output to data on the
number of new malaria cases, commonly reported by such agencies as the World
Health Organization (WHO) [57]. The first term in the Xi Equations (1) and (2)
represents the rate per unit time of new infections of individuals from patch i. Since
our unit of time is days, the total number of infections within a year starting at t0 is
given by

Yearly New Cases Patch 1

:=
∫ t0+365

t0

(
p11a1b1e

−μ1τ1Y1(t) + p12a2b2e
−μ2τ2Y2(t)

) (H1 − X1(t))

H1
dt

(11)

Yearly New Cases Patch 2

:=
∫ t0+365

t0

(
p21a1b1e

−μ1τ1Y1(t) + p22a2b2e
−μ2τ2Y2(t)

) (H2 − X2(t))

H2
dt.

(12)

Notice that the terms in the previous equations could be further distinguished
between new cases that were acquired in the home patch (p11 and p22 terms) and
those that were acquired in the other patch (p12 and p21 terms). Because humans do
not die from malaria in our model formulation, it is possible for the same individual
to be counted multiple times in the number of new cases because they could be
infected more than once during a given year. In our analysis below, we will study
Equations (11) and (12) both at the steady-state values for Xi and Yi and in response
to different intervention strategies.

2.2 Choosing Parameters for Each Country

The final step before our analysis is to select parameters. Our two patch model
for malaria dynamics has many parameters (see Table 1) that in principle could
differ between patches. However, because the reported data for each country was
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limited, the parameters could not be determined uniquely for each patch. As such,
we selected parameters according to the following process.

First, we determined the human and vector populations. For the human popula-
tion in each country, we used reported values for each as shown in Table 1. Because
there were wildly varying ranges for the ratio of mosquitoes to humans, and the
number of mosquitoes may vary by a factor of 10 between the wet and dry seasons,
for simplicity we assumed a fixed ratio of 10 female mosquitoes per human [9, 52].

Next, there were a number of kinetic parameters we assumed were the same
between both patches. The rate of recovery of humans from malaria, r , varied in
the literature and typically corresponded to recovery without treatment [10, 22].
Because both Botswana and Zimbabwe are countries that have undertaken efforts
to control malaria, we assumed infected individuals would have access to treatment
and estimated that the typical infected period of a human would be 14 days (r =
1/14) for both countries. Reported values for the transmission efficiency of malaria
between mosquitoes to humans, b, and humans to mosquitoes, c, also varied [13,
20, 21, 36]. We selected the representative values of b = 0.5 and c = 0.1 and
assumed these did not vary between patches. For the value of τ , the incubation time
between a mosquito acquiring malaria and becoming infectious, we chose 10 which
is consistent with the reported value in [54].

Finally, the remaining two parameters a and μ were chosen to be different
in the two patches based on the reported use of interventions in Botswana and
Zimbabwe. The use of insecticidal treated bednets (ITN) is one of the more common
intervention strategies. Interestingly, while the ITN coverage for Zimbabwe has
increased since 2011, the actual usage has decreased by 11% points in recent years
[70]. In comparison, this does not seem to be an issue for Botswana, where the usage
of nets has increased since 2011 [17] due to aggressive campaigns undertaken by
various agencies [73]. The parameter in our model which would reflect this type of
intervention is the feeding rate, a. Further, the overall coverage of indoor residual
spraying (IRS) has remained high (about 90%) for Zimbabwe [64]. At the same
time, IRS has been a problem area for Botswana since 2011, remaining at around
70% as reported by the WHO and [30, 65], despite the 90% target. The parameter
in our model which reflects this type of intervention is the mosquito death rate,
μ. Therefore, when considering intervention in both of these countries, we focus
on the present day scenario where Botswana has a relatively smaller μ1 value
(corresponding to smaller mosquito death rate due to insufficient spraying (IRS)
coverage), while Zimbabwe has a relatively larger a2 value (corresponding to higher
feeding rate due to insufficient bed net (ITN) coverage). We assumed μ1 = 1/30
for Botswana and μ2 = 1/10 for Zimbabwe. The value of a was then fit so that
each country had the same R0 as the median reported value for each country by the
Malaria Atlas Project (R0 = 1.01 for Botswana and R0 = 1.5 for Zimbabwe) [8].
(See Table 1 for a full list of parameters used in our work.) For our simulations, we
investigated both 10% and 20% changes in intervention strategies (parameters a and
μ) as possible scenarios that could be undertaken by the governments of Botswana
and Zimbabwe. Based on recent reports on malarial intervention strategies in these
respective countries, as well as cost benefit analysis of the scale-up of intervention
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[77], we feel that both the 10% and 20% changes (in either the positive or negative
direction) are adequate and realistic intervention scenarios that could either happen
by worsening of conditions or in the case that either government steps up their
intervention strategies.

3 Results

With our model and parameters for each country established, we next analyze
malaria dynamics in Botswana and Zimbabwe under several scenarios. First, the
impact of mobility alone on system level behavior is considered. Second, we
consider the impact of intervention strategies in one country, while the other remains
the same. Finally, we consider the impact of changes in both countries at the same
time. We consider the synergistic impact of improved interventions in both countries
as well as how a worsening of malaria conditions in one country can impact the
ability of interventions in the other country to eliminate malaria.

3.1 Impact of Mobility Alone on Botswana and Zimbabwe

We first focus on how mobility alone impacts malaria in our two-patch model under
our two metrics. First, we consider the system level R0. Because both countries have
an R0 value larger than 1 (Table 1), they are currently both sources. In this case, the
mobility parameters in Equation (10) cannot drive the system R0 below 1. However,
mobility can cause the system level R0 to be lower than the maximum single-patch
R0 (Zimbabwe) by increasing the amount of time individuals spend in patch with
the lower R0 (Botswana) (see Fig. 4 and Equation (10)). We note that, as expected,
the system level R0 depends more on p21 than p12 because of the larger single-patch
R0 of Zimbabwe.

The reproduction number is a consequence of the system parameters, so we next
study its sensitivity to our choice of parameters. We use an elasticity analysis to
gain insight into which parameters have the most impact on the basic reproduction
number. The elasticity of the reproduction number R0 to a general parameter p is
simply the proportional change in R0 resulting from a proportional change in p

[19, 24, 59]:

εp = δR0

δp

p

R0
. (13)

If the elasticity of R0 with respect to a parameter p is εp, then a 1% change in
p will result in an εp% change in R0. That is, the elasticity gives the amount of
change in R0 in response to changes in p, making comparisons between parameters
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Fig. 4 System Level R0
Under Varying Mobility.
When Botswana and
Zimbabwe are both sources
with reproduction numbers
R0 = 1.01 and R0 = 1.5,
respectively, the system level
R0 cannot be driven below 1
with mobility alone
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of different scales possible. Moreover, an elasticity analysis provides insight into
prioritizing parameters for targeting by control strategies.

The elasticity analysis of the R0 for each country individually identifies μ and a

as the parameters with the largest impact on R0 in both Botswana and Zimbabwe
(Fig. 5a, b). Indeed, these two parameters are related to two most commonly
implemented malaria interventions: indoor residual spraying and insecticide-treated
bed nets. (We note that for the single patch R0, the elasticity of parameters are
similar between Botswana and Zimbabwe. This is to be expected because they share
many parameters; however, differences appear in the elasticity for μi and τi .)

Next, we conduct an elasticity analysis of the system level R0 for the two
connected patches under two different mobility strategies. Figure 5c, d plot the
elasticity of the system level R0. We see that μ and a are still the parameters that
most affect R0. However, when we allow visitation, the extent of mobility, measured
as pij , impacts the degree to which the system level R0 is sensitive to the parameters.
Therefore, we focus on a and μ for each country in conjunction with different
mobility scenarios for the following sections. When the values for p12 and p21 are
significantly different, the elasticity values change only in value but keep the same
sign. For example, if p12 is significantly smaller than p21, then the elasticity of the
parameters with sub index 2 has larger elasticity values in magnitude preserving the
same sign and vice versa. As above, the parameters in Zimbabwe (patch 2) all affect
R0 more than the analogous parameters in Botswana (patch 1).

Although mobility changes cannot eliminate malaria, we observe that they may
substantially impact the number of cases of malaria in each patch at steady-state.
In Fig. 6 we compare the number of cases of malaria under both high and low
mobility between countries. (We fix the largest rate of mobility to be 0.5 since it
is reasonable to assume that a resident would spend at least 50% of their time in
their home patch.) We note that the number of cases overall is significantly lower
when residents of Zimbabwe spend a large amount of time in Botswana. This makes
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Fig. 5 Elasticity Analysis of the Basic Reproduction Number. (a) The elasticity of the R0 in
Botswana without visitation, p12 = p21 = 0. (b) The elasticity of the R0 in Zimbabwe without
visitation, p12 = p21 = 0. (c) The elasticity of the system level R0 for the case of low mobility
from Botswana to Zimbabwe and high mobility from Zimbabwe to Botswana, p12 = 0.1 and
p21 = 0.2. (d) The elasticity of the system level R0 for the case of high mobility from Botswana
to Zimbabwe and low mobility from Zimbabwe to Botswana, p12 = 0.2 and p21 = 0.1. Darker
colors indicate negative values, and lighter colors indicate positive values

sense as it exposes them to a more favorable R0. For both patches and both high and
low visitation rates to Botswana from Zimbabwe (p21), we note that the more time
a resident from Botswana spends in Zimbabwe (higher p12) the higher the total
number of cases is. As expected, the ratio of cases acquired locally compared to the
total cases changes with p21. For low p12 there appears to nearly always be a greater
proportion of imported cases to Botswana while with high p12 it is possible for the
local cases to exceed the imported cases for low p21. In summary, these results show
that while elimination is not possible, the more time any resident spends in the patch
with the lower local reproduction number (in this case Botswana) the lower the total
number of cases at steady-state.

Since changes in mobility alone are not sufficient to drive the system level
R0 below 1, we want to further investigate how changes in both intervention and
mobility can significantly impact the overall disease dynamics. As both countries are
still struggling to meet their malaria intervention goals, it is of interest how future
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Fig. 6 Impact of Mobility on Local and Imported Malaria Cases. We fix the visitation rate
of Zimbabwe residents visiting Botswana, p21 = 0.1 for (a) and (c) and p21 = 0.5 for (b) and
(d), and vary the visitation rates of Botswana residents to Zimbabwe, p12. We plot the steady-
state number of infections per year in Botswana ((a) and (b)) and Zimbabwe ((c) and (d)). For
both countries, there are substantially fewer cases under high rates of visitation from people in
Zimbabwe to Botswana

changes in intervention strategies along with mobility patterns could influence
malaria incidence in the region. Therefore, in the next sections, we consider four
different scenarios: (1) Botswana improves its intervention strategy, Zimbabwe
remains the same (2) Zimbabwe improves its intervention strategy, Botswana
remains the same (3) Both countries improve their intervention strategies (4)
Botswana improves its intervention strategy, Zimbabwe decreases the quality of its
intervention.

3.2 Impact of a Successful Intervention Strategy in Botswana

Here, we investigate the impact of increased indoor residual spraying (IRS) in
Botswana. As mentioned earlier, one of the challenges for Botswana remains to
be a low uptake of vector control strategies. The implementation of indoor residual
spraying has particularly been problematic, with IRS coverage consistently falling
short of the 90% goal. Therefore, we argue that a realistic scenario for the future is
the increase in spraying coverage in Botswana. In our model, this is controlled by
the mosquito death rate μ1. Therefore, an important question we ask is if Botswana
increases its IRS coverage and Zimbabwe does nothing, how much does mobility
play a role in bringing down the system level R0?

Under this scenario, Botswana (a weak source), can easily be driven to be a sink
with successful intervention (R0 < 1) while Zimbabwe remains a source (R0 > 1).
From Fig. 7, we see that the total system R0 can be brought down below 1 with
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Fig. 7 System LevelR0 Under Intervention in Botswana. We fix p12 = 0.02, and allow p21 and
1/μ1 to vary. Changes in μ1 reflect changes in the insecticide spraying intervention in Botswana.
The system total R0 (Equation (10)) can be reduced below 1 by decreasing 1/μ1. R0 = 1 is shown
in white

a combination of a modest increase in intervention in Botswana (starting with at
least a 5% improvement) and a significant increase in mobility from Zimbabwe to
Botswana (starting at 50% of the time a resident of Zimbabwe spends in Botswana).

Further, as Fig. 7 shows, the total system R0 can also be reduced below 1,
depicted by a white strip on the contour plot, by implementing more intervention
and a less dramatic increase in mobility (p21). However, for moderate to high
improvements (at least 15%), the behavior is dominated by the mobility between
Zimbabwe to Botswana (p21).

Even if the R0 is brought below 1, it may take a long time for the disease to die
out. Therefore, we investigate the number of new infections over time in response
to an intervention in Botswana (20% increase in μ1), assuming implementation in
2019 under two different mobility scenarios. Under this intervention, Botswana is
now a sink with a single-path R0 = 0.789. As Fig. 8 shows, if mobility is high
enough from Zimbabwe to Botswana, then malaria cases decrease. The level of
mobility depicted, p21 = 0.36, was chosen to be just above the level that would
drive the system R0 below 1. However, we note that even 10 year later the number
of cases in both countries is still far above 0.

Together, Figs. 7 and 8 demonstrate that if a successful intervention strategy can
change a source country into a sink, the level of mobility between sink and source
becomes important. In particular, it can result in the overall malaria elimination.
However, elimination may still be years away.
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Fig. 8 Impact of Mobility
and Successful Intervention
in Botswana on New Cases.
The total number of new
malaria cases (Equations (11)
and (12)) under the scenario
that Botswana increases μ1
by 20% under two mobility
strategies: high (dotted
curves, Total R0 = 0.995)
and moderate (solid curves,
Total R0 = 1.35)

3.3 Impact of a Successful Intervention Strategy in Zimbabwe

We next investigate increased bednet usage in Zimbabwe. As Zimbabwe continues
to struggle with implementation of this intervention strategy, it is of interest how
a more successful implementation of bednet usage can impact overall malaria
dynamics in the entire region in the context of mobility. Therefore, an important
question we ask is if Zimbabwe increases its insecticide-treated bednet coverage
(ITN) and Botswana does nothing, how much of a role does mobility play in bringing
down the system level R0? In this case, we change the mosquito feeding rate a2,
which reflects changes in ITN. In this scenario, Zimbabwe can be driven to be a
sink with successful intervention, while Botswana remains a weak source. We find
that with significant improvement in bednet usage (at least a 20% improvement) and
increased visitation from the patch with the higher R0 (Botswana) to the patch with
the lower R0 (Zimbabwe), the system level R0 can be decreased and brought down
below 1 (see Fig. 9).

As before, we examine the dynamics of the new cases after this theoretical
intervention begins in Zimbabwe (Fig. 10). Under this intervention, Zimbabwe is
now a sink (R0 = 0.957). As in Fig. 8, we observe that under the same reasonable
mobility patterns (p12 = 0.02, p21 = 0.1) a successful intervention in Zimbabwe
brings down the overall number of cases. However, when comparing the two
intervention strategies (Figs. 8 and 10), we find that the intervention in Zimbabwe
is more effective at reducing the total number of cases. The greater efficacy of the
intervention in Zimbabwe makes sense as Zimbabwe has a larger population size.
Further, as Fig. 10 shows, if only a 20% improvement in intervention is implemented
(the necessary minimum for elimination) then mobility between Zimbabwe and



100 F. Agusto et al.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

Percent reduction of a2

p 1
2

p21 = 0.1

R0

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Fig. 9 System Level R0 Under Intervention in Zimbabwe. Impact on the system total R0
(Equation (10)) by varying visitation rate from Botswana to Zimbabwe and decreasing the human
biting rate of the mosquitoes in Zimbabwe (a2), corresponding to improvement in the insecticide-
treated bednet coverage. The system R0 = 1 is shown in white

Fig. 10 Impact of Mobility
and Successful Intervention
in Zimbabwe. The total
number of new malaria cases
(Equations (11) and (12))
under the scenario that
Zimbabwe decreases a2 by
20% under two mobility
strategies: moderate (solid
curves, system R0 = 1.005)
and low (dotted curves,
system R0 = 0.998)

Botswana actually has to be quite low to achieve elimination. The level of mobility
depicted, p21 = 0.02, was chosen to be just below the level necessary to drive the
total system R0 below 1.
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3.4 Synergistic Impact of Improved Interventions in Both
Countries

Next, we consider the impact of an increase in intervention in both countries
and ask the question if both countries increase their intervention, how much does
mobility play a role in bringing down the system level R0? In this case, we consider
simultaneously changing μ1 in Botswana and a2 in Zimbabwe.

We find that improved intervention in both countries is a more viable option
for elimination of the disease as it requires not only a less dramatic improvement in
intervention on the part of both countries, but also a less dramatic change in mobility
to obtain disease elimination. Figure 11 demonstrates that even under a moderate
mobility scenario, p21 = 0.1, the disease may be eliminated with less effort on the
parts of both countries.

We then investigate the number of new infections over time in response to a
10% improvement in intervention in both countries implemented in 2019 under
two different mobility scenarios. Under this intervention, Botswana is a sink
(R0 = 0.89) and Zimbabwe remains a weaker source (R0 = 1.211). As Fig. 12
shows, if mobility is high enough between Zimbabwe and Botswana, malaria
can be eliminated. The level of mobility depicted, p21 = .21, was chosen just
above the level necessary to drive the total system R0 below 1. Comparing this
with previous scenarios, we find that when both countries implement successful
intervention strategies, it is possible to obtain disease elimination with an overall
smaller improvement in intervention and a smaller change in mobility on the part
of both countries. Together, Figs. 11 and 12 suggest that if both countries are able
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(a) Low mobility (p12 = 0.02, p21 = 0.02).
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(b) Moderate mobility (p12 = 0.02, p21 = 0.1).

Fig. 11 System LevelR0 Under Intervention in Both Countries. (a) We show percent reduction
of 1

μ1
in Botswana on the x-axis, corresponding to decreasing the lifespan of a mosquito with

successful usage of IRS (spraying) and percent reduction of a2 in Zimbabwe (on the y-axis),
corresponding to the decreasing of mosquito feeding rate through ITN intervention, under the
scenario of low mobility. (b) This is the same as part (a), but for the scenario of moderate mobility.
The system R0 = 1 is shown in white
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Fig. 12 Synergistic Impact
of Improved Interventions
in Both Countries. The total
number of new malaria cases
(Equations (11) and (12))
under the scenario that
Botswana increases μ1 by
10% and Zimbabwe
decreases a2 by 10% under
two mobility strategies:
moderate (solid curves,
system R0 = 1.1) and high
(dotted curves, system
R0 = 0.994)

to make modest improvements, asymptotic elimination is more easily attained and
requires a less dramatic change in mobility patterns.

3.5 Impact of a Worsening of Malaria Conditions in Zimbabwe
on the Ability of Interventions in Botswana to Eliminate
Malaria

Finally, we ask the question if Botswana improves its intervention, while conditions
in Zimbabwe become worse, how much does mobility play a role in bringing down
the system level R0? Here, we again consider simultaneous changes in μ1 for
Botswana and changes a2 for Zimbabwe which can drive Botswana to become a
sink while Zimbabwe remains a strong source.

As this is a more extreme case of the first scenario discussed previously, we
expect that the system level R0 can be driven below 1 only if mobility from the
source into the sink increases dramatically. Moreover, the increase in mobility has
to be more significant than in the scenario where the conditions in Zimbabwe do not
worsen. From Fig. 13, we see this is indeed the case. We again consider the dynamics
of the new cases after this theoretical intervention. In this scenario, Botswana is
driven to be a sink by a 20% increase in intervention (R0 = 0.789), while Zimbabwe
remains a strong source (R0 = 2.154) with a 20% decrease in intervention. As
Fig. 13 shows, if mobility is high enough between Zimbabwe and Botswana, malaria
elimination can be achieved. The level of mobility necessary to result in elimination
is p21 = 0.58, which is significantly higher than all other cases considered, and
is an unrealistic scenario in which people spend more time away from their home
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Fig. 13 Impact of a
Worsening of Malaria
Conditions in Zimbabwe
and Interventions in
Botswana on New Cases.
The total number of new
malaria cases (Equations (11)
and (12)) under the scenario
that Botswana increases μ1
by 20% and Zimbabwe
increases a2 by 20% under
two mobility strategies:
moderate (solid curves,
system R0 = 1.941) and high
(dotted curves, system
R0 = 0.994)

country than in it. This result confirms that if the malaria burden were to get worse
in Zimbabwe, achieving overall elimination would prove to be a lot harder. Indeed,
it would only be possible with substantial intervention success in Botswana along
with a significant increase in mobility from Zimbabwe into Botswana.

4 Discussion

While massive improvements have been made on a global scale in managing
malaria, we are still not at the level of elimination. For 2017, the World Health
Organization (WHO) estimates over 400,000 deaths to malaria, the vast majority
of which occurred in 17 countries [57]. Significant challenges remain in the
management of malaria, including climate change and emerging resistance of
mosquitoes to insecticides [25, 42]. Further complicating elimination efforts, recent
data suggests that malaria incidence is actually increasing in multiple countries
that were previously on positive trajectories [50, 57]. As such, this work, which
considers the dynamics and management of malaria in multiple connected countries,
is particularly timely.

Here, we considered the dynamics of a vector and human population in two
patches that represent Botswana and Zimbabwe. We focused on how strategies
and treatments in one country are impacted by the other country. Our elasticity
analysis and simulations demonstrated that elimination is most easily attained
when countries work together. We considered the impact of different intervention
strategies by varying parameters in each patch independently. Finally, we show
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that, since Zimbabwe has a much larger human population with a higher R0, it can
significantly influence the efforts in Botswana. Similar source-sink dynamics have
been shown to be important in Madagascar [40].

We consider the impact of migration on both the R0 and total number of
infections. These measures provide complementary information about disease
transmission dynamics. R0 is a simple way to interpret the long-term behavior
as either increasing or decreasing disease spread. In contrast, the number of
yearly cases provides immediate feedback that is comparable to reported clinical
incidence data, and perhaps is more informative for economic and clinical planning
of interventions currently. In particular, the R0 can be less than one, suggesting
transmission is decreasing and eventually would be eliminated, while yearly cases
are still nonzero, perhaps still advocating for intervention to decrease the disease
load in the population.

To facilitate analysis, our work considered a simplified model of malaria
dynamics. We now note two features that we did not include and would have
the potential to impact our findings. First, we followed a previous approach to
modeling human mobility which considers visitation between patches. We note that
this allows humans to be infected in either patch. That is, we assume mosquitoes
do not move and only infect humans within their patch. While this assumption
is likely to make sense for short term visitation, this has created the effect in our
model where increasing the amount of time an individual in Zimbabwe spends in
Botswana does not change the incidence of malaria in the vector population. Indeed,
empirical evidence suggests that mosquitoes can move long distances when winds
are high [39]. Second, our model does not consider death of the human population.
It has been previously observed that such features can introduce bifurcations which
fundamentally alter the system dynamics [4, 18, 32, 45].

We theoretically explored the role of movement by considering the p matrix over
a range of values. One could instead use empirical movement data, such as tracking
visas, surveys, or potentially genetics, to estimate p [49, 71]. For example, in [40],
the authors use mobile phone data to quantify movement and link to clinical cases.
Their results were qualitatively similar, with movement from highland sources
maintaining transmission loads in lowland sinks.

Because malaria elimination remains an important problem, mathematical mod-
eling will continue to be a powerful tool for evaluating treatment strategies and
generating predictions. The modeling framework we have chosen may be easily
generalized. First, we note that humans in our model have a home patch. As
such our human mobility is that of short visitation (Lagrangian dynamics) rather
than migration (Eulerian dynamics) [23, 62, 63]. Our model could be adapted to
include both types of mobility. Second, our model framework can clearly include
multiple patches. Because many of the countries with the highest malaria incidence
are geographically adjacent, it is clear that to fully evaluate elimination strategies
multiple countries must be simultaneously depicted. Third, in our model the total
number of vectors and humans remains constant. This allowed us to only model the
fraction of infected populations in each category. However, an alternate approach
which would allow the total populations to change would be to separately model
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the susceptible and infected populations in each category as was done recently in
[12]. Fourth, as has been noted in many recent studies, global climate change will
significantly impact vector populations and for longer term elimination evaluation
such effects should be included [28, 42]. Finally, mathematical models such as
ours require tuning of parameters. The process of linking empirical observations
to parameters is complicated. While our metric of the number of new infections
provides an easier way to compare model output to data (for example, WHO data
which reports the number of new malaria cases), fitting the model to data remains
a challenge. In our work, some parameters come from the literature while some are
fit under the assumption that the mean Malaria Atlas Project reported R0 values for
each country were correct. However, this led to predictions in new cases that were
far greater than the WHO reported cases in each country. Therefore, in the future,
more care needs to be taken when parameterizing the model and making sure it is
consistent with the WHO reported cases in each country. In addition, as mosquito
populations evolve resistance to insecticides it is possible that to fully capture their
behavior, such factors need to be included [35].

As our work has shown, malaria elimination will require the concerted effort
across geopolitical boundaries. Mathematical modeling will be a powerful tool for
evaluating intervention strategies and directing resources. Malaria elimination is an
important human health goal and requires interactions between health organizations,
scientists, and governments [31].
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44. Dominik Kopiński and Andrzej Polus. Is Botswana creating a new Gaza strip? an analysis of
the ‘fence discourse’. Crossing African Borders: Migration and Mobility, page 98, 2017.

45. Guihua Li and Zhen Jin. Bifurcation analysis in models for vector-borne diseases with logistic
growth. The Scientific World Journal, 2014, 2014.

46. Michael Y Li and Zhisheng Shuai. Global stability of an epidemic model in a patchy
environment. Canadian Applied Mathematics Quarterly, 17(1):175–187, 2009.

47. Rongsong Liu, Jiangping Shuai, Jianhong Wu, and Huaiping Zhu. Modeling spatial spread
of west nile virus and impact of directional dispersal of birds. Mathematical Biosciences &
Engineering, 3(1):145, 2006.

48. Sandip Mandal, Ram Rup Sarkar, and Somdatta Sinha. Mathematical models of malaria-a
review. Malaria journal, 10(1):202, 2011.

49. John M Marshall, Sean L Wu, Samson S Kiware, Micky Ndhlovu, André Lin Ouédraogo,
Mahamoudou B Touré, Hugh J Sturrock, Azra C Ghani, Neil M Ferguson, et al. Mathematical
models of human mobility of relevance to malaria transmission in africa. Scientific reports,
8(1):1–12, 2018.

50. Amy Maxmen. How to defuse malaria’s ticking time bomb. Nature, 559:458–465, 2018.
51. K Moakofhi, JK Edwards, M Motlaleng, J Namboze, W Butt, M Obopile, T Mosweunyane,

M Manzi, KC Takarinda, and P Owiti. Advances in malaria elimination in botswana: a dramatic
shift to parasitological diagnosis, 2008–2014. Public health action, 8(1):S34–S38, 2018.

52. Louis Molineaux, Gabriele Gramiccia, World Health Organization, et al. The garki project:
research on the epidemiology and control of malaria in the sudan savanna of west africa, 1980.

53. M Motlaleng, J Edwards, J Namboze, W Butt, K Moakofhi, M Obopile, M Manzi,
KC Takarinda, R Zachariah, P Owiti, et al. Driving towards malaria elimination in botswana by
2018: progress on case-based surveillance, 2013–2014. Public health action, 8(1):S24–S28,
2018.

54. Johanna R Ohm, Francesco Baldini, Priscille Barreaux, Thierry Lefevre, Penelope A Lynch,
Eunho Suh, Shelley A Whitehead, and Matthew B Thomas. Rethinking the extrinsic incubation
period of malaria parasites. Parasites & vectors, 11(1):178, 2018.

55. John Okano. Personal Communication, 2019.
56. Justin T Okano, Katie Sharp, Eugenio Valdano, Laurence Palk, and Sally Blower. Hiv

transmission and source–sink dynamics in sub-saharan africa. The Lancet HIV, 2020.
57. World Health Organization. WHO World Malaria Report 2018. https://apps.who.int/iris/

bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1. Accessed: 2019-06-18.
58. Panagiotis Pergantas, Andreas Tsatsaris, Chrisovalantis Malesios, Georgia Kriparakou, Niko-

laos Demiris, and Yiannis Tselentis. A spatial predictive model for malaria resurgence in
central greece integrating entomological, environmental and social data. PLOS ONE, 12(6):1–
15, 06 2017.

59. Olivia Prosper, Nick Ruktanonchai, and Maia Martcheva. Assessing the role of spatial
heterogeneity and human movement in malaria dynamics and control. Journal of Theoretical
Biology, 303:1–14, 2012.

60. Diego J Rodríguez and Lourdes Torres-Sorando. Models of infectious diseases in spatially
heterogeneous environments. Bulletin of Mathematical Biology, 63(3):547–571, 2001.

61. Shigui Ruan, Wendi Wang, and Simon A Levin. The effect of global travel on the spread of
sars. Mathematical Biosciences & Engineering, 3(1):205, 2006.

https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1
https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1


Modeling Malaria in Botswana and Zimbabwe 109

62. Nick W Ruktanonchai, Patrick DeLeenheer, Andrew J Tatem, Victor A Alegana, T Trevor
Caughlin, Elisabeth zu Erbach-Schoenberg, Christopher Lourenço, Corrine W Ruktanonchai,
and David L Smith. Identifying malaria transmission foci for elimination using human mobility
data. PLoS computational biology, 12(4):e1004846, 2016.

63. Nick W Ruktanonchai, David L Smith, and Patrick De Leenheer. Parasite sources and sinks in
a patched ross–macdonald malaria model with human and mosquito movement: implications
for control. Mathematical biosciences, 279:90–101, 2016.

64. Shadreck Sande, Moses Zimba, Joseph Mberikunashe, Andrew Tangwena, and Anderson
Chimusoro. Progress towards malaria elimination in zimbabwe with special reference to the
period 2003–2015. Malaria journal, 16(1):295, 2017.

65. Chihanga Simon, Kentse Moakofhi, Tjantilili Mosweunyane, Haruna Baba Jibril, Bornapate
Nkomo, Mpho Motlaleng, Davies Sedisa Ntebela, Emmanuel Chanda, and Ubydul Haque.
Malaria control in botswana, 2008–2012: the path towards elimination. Malaria journal,
12(1):458, 2013.

66. David L Smith, Katherine E Battle, Simon I Hay, Christopher M Barker, Thomas W Scott, and
F Ellis McKenzie. Ross, macdonald, and a theory for the dynamics and control of mosquito-
transmitted pathogens. PLoS pathogens, 8(4):e1002588, 2012.

67. David L Smith and F Ellis McKenzie. Statics and dynamics of malaria infection in anopheles
mosquitoes. Malaria journal, 3(1):13, 2004.

68. Gonzalo P Suarez, Oyita Udiani, Brian F Allan, Candice Price, Sadie J Ryan, Eric Lofgren,
Alin Coman, Chris M Stone, Lazaros K Gallos, and Nina H Fefferman. A generic arboviral
model framework for exploring trade-offs between vector control and environmental concerns.
Journal of Theoretical Biology, page 110161, 2020.

69. Mohammad Suleman. Malaria in afghan refugees in pakistan. Transactions of The Royal
Society of Tropical Medicine and Hygiene, 82(1):44–47, 1998.

70. Oscar Tapera. Determinants of long-lasting insecticidal net ownership and utilization in malaria
transmission regions: evidence from zimbabwe demographic and health surveys. Malaria
journal, 18(1):1–7, 2019.

71. Sofonias Tessema, Amy Wesolowski, Anna Chen, Maxwell Murphy, Jordan Wilheim, Anna-
Rosa Mupiri, Nick W Ruktanonchai, Victor A Alegana, Andrew J Tatem, Munyaradzi Tambo,
et al. Using parasite genetic and human mobility data to infer local and cross-border malaria
connectivity in southern africa. Elife, 8:e43510, 2019.

72. RBM Partnership to End Malaria. Malaria Strategic Plan – 2010-2015: Towards Malaria
Elimination. https://endmalaria.org/sites/default/files/botswa2010-2015.pdf. Accessed: 2019-
06-18.

73. United Nations Children’s Fund (UNICEF). Distributing long lasting insecticide treated nets.
https://www.unicef.org/cbsc/index_55833.html. Accessed: 2019-09-3.

74. Pauline Van den Driessche and James Watmough. Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Mathematical bio-
sciences, 180(1-2):29–48, 2002.

75. Wendi Wang and Xiao-Qiang Zhao. An epidemic model in a patchy environment. Mathemat-
ical biosciences, 190(1):97–112, 2004.

76. Wendi Wang and Xiao-Qiang Zhao. An age-structured epidemic model in a patchy environ-
ment. SIAM Journal on Applied Mathematics, 65(5):1597–1614, 2005.

77. Peter Winskill, Patrick G Walker, Richard E Cibulskis, and Azra C Ghani. Prioritizing the
scale-up of interventions for malaria control and elimination. Malaria journal, 18(1):122,
2019.

78. Hyun M Yang and Marcelo U Ferreira. Assessing the effects of global warming and local social
and economic conditions on the malaria transmission. Revista de saude publica, 34(3):214–
222, 2000.

https://endmalaria.org/sites/default/files/botswa2010-2015.pdf
https://www.unicef.org/cbsc/index_55833.html


Investigating the Impact of Combination
Phage and Antibiotic Therapy:
A Modeling Study

Selenne Banuelos, Hayriye Gulbudak, Mary Ann Horn, Qimin Huang,
Aadrita Nandi, Hwayeon Ryu, and Rebecca Segal

Abstract Antimicrobial resistance (AMR) is a serious threat to global health today.
The spread of AMR, along with the lack of new drug classes in the antibiotic
pipeline, has resulted in a renewed interest in phage therapy, which is the use of

The original version of this chapter was revised: Affiliations of the authors “Mary Ann Horn” and
“Qimin Huang” have been corrected. A correction to this chapter is available at https://doi.org/10.
1007/978-3-030-57129-0_9

Authors Selenne Banuelos, Hayriye Gulbudak, Mary Ann Horn, Qimin Huang, Aadrita Nandi,
Hwayeon Ryu, and Rebecca Segal have equally contributed to this chapter.

S. Banuelos
Department of Mathematics, California State University Channel Islands, Camarillo, CA, USA
e-mail: selenne.banuelos@csuci.edu

H. Gulbudak
Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA
e-mail: hayriye.gulbudak@louisiana.edu

M. A. Horn · Q. Huang (�)
Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve
University, Cleveland, OH, USA
e-mail: maryann.horn@case.edu; qxh119@case.edu

A. Nandi
Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL,
USA
e-mail: aadrita.nandi@northwestern.edu

H. Ryu
Department of Mathematics and Statistics, Elon University, Elon, NC, USA
e-mail: hryu@elon.edu

R. Segal
Department of Mathematics and Applied Mathematics, Virginia Commonwealth University,
Richmond, VA, USA
e-mail: rasegal@vcu.edu

© The Association for Women in Mathematics and the Author(s) 2021,
corrected publication 2021
R. Segal et al. (eds.), Using Mathematics to Understand Biological Complexity,
Association for Women in Mathematics Series 22,
https://doi.org/10.1007/978-3-030-57129-0_6

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57129-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-57129-0_9
https://doi.org/10.1007/978-3-030-57129-0_9
mailto:selenne.banuelos@csuci.edu
mailto:hayriye.gulbudak@louisiana.edu
mailto:maryann.horn@case.edu
mailto:qxh119@case.edu
mailto:aadrita.nandi@northwestern.edu
mailto:hryu@elon.edu
mailto:rasegal@vcu.edu
https://doi.org/10.1007/978-3-030-57129-0_6


112 S. Banuelos et al.

bacteriophages to treat pathogenic bacterial infections. This therapy, which was
successfully used to treat a variety of infections in the early twentieth century, had
been largely dismissed due to the discovery of easy to use antibiotics. However,
the continuing emergence of antibiotic resistance has motivated new interest in the
use of phage therapy to treat bacterial infections. Though various models have been
developed to address the AMR-related issues, there are very few studies that con-
sider the effect of phage-antibiotic combination therapy. Moreover, some biological
details such as the effect of the immune system on phage have been neglected.
To address these limitations, we utilized a mathematical model to examine the
role of the immune response in concert with phage-antibiotic combination therapy
compounded with the effects of the immune system on the phages being used for
treatment. We explore the effect of phage-antibiotic combination therapy by adjust-
ing the phage and antibiotics dose or altering the timing. The model results show that
it is important to consider the host immune system in the model and that frequency
and dose of treatment are important considerations for the effectiveness of treatment.
Our study can lead to development of optimal antibiotic use and further reduce the
health risks of the human-animal-plant-ecosystem interface caused by AMR.

Keywords Mathematical modeling · Phage therapy · Antibiotics

1 Introduction

Antimicrobial resistance (AMR) is a serious threat to global health. The Centers
for Disease Control and Prevention (CDC) estimates that at least 2 million people
become infected by antibiotic-resistant bacteria and at least 23,000 people die each
year as a direct result of these infections, costing the United States $55 billion
annually [3]. Infections caused by bacteria are usually treated with antibiotics.
However, due to over-prescribing and mis-prescribing, many strains of bacteria
have become resistant to currently available antibiotics. A list of antibiotic-resistant
pathogens, a catalog of 12 families of bacteria for which new antibiotics are
urgently needed, has been generated by the World Health Organization (WHO) [22].
Nevertheless, since bacteria evolve resistance to antibiotics at a relatively rapid rate,
there has been less commercial interest in developing new antibiotics. Only 6 new
antibiotics were approved by the Food and Drug Administration (FDA) for use in
the United States from 2010 to 2016, an obvious downward trend compared to
the 16 new antibiotics approved by FDA between 1983 and 1987 [41]. In 2015,
a global action plan on antimicrobial resistance (GAP-AMR) was endorsed at the
World Health Assembly, and one of the five strategic objectives of the GAP-AMR
is to optimize the use of antimicrobial agents [65]. In 2018, the U.S. government
launched the Antimicrobial Resistance Challenge to call for leaders from around
the world to work together to improve antibiotic use, accelerate research on new
antibiotics and antibiotic alternatives [3]. The spread of antimicrobial resistance
combined with the lack of new drug classes in the antibiotic pipeline has resulted in
a resurgence of interest in phage therapy.
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Fig. 1 A timeline of important events in the history of phage therapy. (Adapted and updated
from [37])

Phage therapy is the use of bacteriophages to treat pathogenic bacterial infec-
tions. Before the widespread use of antibiotics, phage therapy was successfully
applied in treating a variety of infections in the 1920s and 1930s [45]. Due to a
poor understanding of the biological nature of phages, medical limitations of the
day, and introduction of broader spectrum antibiotics, phage therapy was largely
dismissed by most of western medicine in the 1940s [39]. However, the rise
of antibiotic resistance has resulted in renewed interest in using phage to treat
bacterial infections [53]. One of the first international, single-blind clinical trials
of phage therapy, which aimed to target 220 burn patients with wounds infected by
Escherichia coli or Pseudomonas aeruginosa, was launched in 2015 [17, 33, 47].
Furthermore, clinical trials are currently underway to explore phage treatment
for infections caused by Staphylococcus aureus, particularly for respiratory tract
infection (e.g., pneumonia), and to reduce the population of pathogens in ready-to-
eat foods and meat [1, 25–27, 34, 51]. In contrast to antibiotics, bacteria sensitivity
to phages is largely specific for both species and strain, which can be considered
as a major advantage, since the effects of antibiotics on commensal gut microbes
are notorious for secondary outcomes such as antibiotic-associated diarrhea and
C. difficile infection [46]. See Fig. 1 for a timeline of important events in the
development and use of phage therapy.

Because the problem of antibiotic resistant bacteria is complex and growing,
with no known solution, various mathematical models have been proposed to
explore the dynamics of the variety of systems involved. Most models focus on the
transmission dynamics of antibiotic-resistant bacteria at the host population level
[4, 5, 7–11, 14, 18–21, 28, 30–32, 40, 58–63]; some focus on exploring the relative
contributions of antibiotics and immune response in the treatment of infection on the



114 S. Banuelos et al.

bacterial population level [2, 6, 36, 38, 52]. Now, with increasing interest in phage
therapy as an alternative or supplement to antibiotic treatment [39], mathematical
models incorporating phage therapy have been developed [13, 16, 23, 35, 37, 43,
44, 49, 50, 54, 57, 64]. In particular, Rodriguez-Gonzalez et al. [50] developed
a mathematical model of phage-antibiotic combination therapy, representing the
interactions among bacteria, phage, antibiotics, and the innate immune system,
but ignoring the effect of immune system on phages. Some evidence shows that
while phages do not trigger an immune response, bacteria-boosted innate immunity
activity can act against the phages [29]. This finding may explain instances of phage
ineffectiveness and suggests that there could be better protocols for phage therapy.
To include this important component, we extended earlier models, in particular, the
model developed by Rodriguez-Gonzalez, et al. [50]. The goal is to understand the
role of the immune response in concert with phage-antibiotic combination therapy
by introducing immune activity related to phages to the model.

We aim to explore the effect of phage-antibiotic combination therapy by adjust-
ing the phage and antibiotic doses and/or altering the timing of the dose(s). Details
of the system of nonlinear, ordinary differential equations which take into account
the interactions among bacteria, phage, antibiotics, and the immune system are
given in Sect. 2. In Sects. 3 and 4, equilibria and sensitivity analysis of some reduced
cases are provided. In Sect. 5, the simulation results exploring various infection and
treatment scenarios are presented, followed by a discussion in Sect. 6.

2 Mathematical Model

We present a deterministic antibiotic-phage combination therapy model that
describes density-dependent interactions between two strains of bacteria, phage,
antibiotics, and the host immune response. The model development builds on the
work by Leung and Weitz [34], and Rodriguez-Gonzalez, et al. [50]. The model
in [34] includes phage-sensitive bacteria, phage, and a saturating innate immune
response. The phage therapy model in [50] extended [34] to include two bacteria
strains, phage therapy, antibiotic treatment and some immune response components.
The model presented here adds biological functions not included in these previous
models: interactions of the immune response with phage, and the decay of the
immune response. See Fig. 2 for a schematic diagram of our model.

dBP

dt
=

Growth of BP︷ ︸︸ ︷
rP BP

(
1 − Btot

Kc

)
(1 − μP ) +

Growth of BA mutated to BP︷ ︸︸ ︷
μArABA

(
1 − Btot

Kc

)

−
Immune killing︷ ︸︸ ︷

εIBP

1 + Btot

KD

−
Lysis︷ ︸︸ ︷

BP F(P ),
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Fig. 2 Schematic diagram of the extended phage-antibiotic combination therapy model.
Antibiotic-sensitive bacteria (BA) and phage-sensitive bacteria (BP ) are targeted by antibiotic (A)
and the phage (P ), respectively. The immune response interactions with both bacterial strains are
included in the model. In addition, our model extension building on the model in [50] includes
the innate immunity (I ) stimulation by the presence of phage (in red arrows) and the decay of the
immune response

dBA

dt
=

Growth of BA︷ ︸︸ ︷
rABA

(
1 − Btot

Kc

)
(1 − μA)+

Growth of BP mutated to BA︷ ︸︸ ︷
μP rP BP

(
1 − Btot

Kc

)

−
Immune killing︷ ︸︸ ︷

εIBA

1 + Btot

KD

−
Antibiotic killing︷ ︸︸ ︷

Kkill

A

EC50 + A
BA,

dA

dt
= AI − θA,

dP

dt
=

Replication︷ ︸︸ ︷
β̃BP F (P )−

Decay︷︸︸︷
ωP −

Immune killing︷︸︸︷
κP I ,

dI

dt
=

Stimulation response to bacteria︷ ︸︸ ︷
αI

(
1 − I

KI

)(
Btot

Btot + KN

)
+

Stimulation response to phage︷ ︸︸ ︷
βI

(
1 − I

KI

)(
P

P + KM

)
−

Decay︷︸︸︷
dI .

The phage-sensitive (antibiotic-resistant) bacteria, denoted as BP , respond to
treatment by phages, P , whereas the antibiotic-sensitive (phage-resistant) bacteria,
BA, respond to treatment by antibiotics, A. It can be assumed that bacteria is either
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resistant to phages or to antibiotics due to conservation of evolutionary resources
in the bacteria [15]. The total immune response (I ) is activated by the presence of
bacteria and phages, and attacks both bacterial strains.

The bacteria grow logistically with growth rate ri , carrying capacity Kc, and
density dependence Btot = ∑

i Bi , where i ∈ {A,P }. We assume that phage-
sensitive bacteria mutate to become antibiotic sensitive bacteria with probability
μP . Similarly, μA represents the probability of emergence of phage-sensitive
mutants from antibiotic-sensitive bacteria. Therefore the growth of the bacteria
population is modeled as:

dBi

dt
= riBi

(
1 − Btot

Kc

)
(1 − μi) + μjrjBj

(
1 − Btot

Kc

)

where i, j ∈ {A,P } and i �= j . As in [50] both populations of bacteria are killed by
an activated innate immune response which includes a density-dependent immune
evasion by bacteria. That is, the mass action killing term, εIBi , is scaled by the

parameter
(

1 + Btot

KD

)−1
. See [34] for more details. The decrease in density of BA

by the antibiotic treatment is approximated by a Hill function as in [50]. The phage-
sensitive bacteria are infected and lysed by phage at a rate of F(P ). Following the
work in [50] two phage infection modalities, F(P ), are considered – homogeneous
mixing and heterogeneous mixing. The homogeneous mixing modality is given by
F(P ) = φP so that the infection rate is proportional to the phage density. The
second modality is given by F(P ) = φP γ where γ is the power-law exponent. The
homogeneous mixing modality is assumed for our analytical results in Sect. 3 and
sensitivity analysis in Sect. 4, whereas the heterogeneous mixing model is used for
the numerical analysis in Sect. 5. Mathematical analysis is not valid with fractional
exponents, but it is likely that the phage distribution is heterogeneous.

The growth in the phage density is due to the release of phage through lytic
infection of BP at a rate of β̃. Free phage particles decay at a rate ω. One of the
novel biological features included in this model is the effect of the immune response
on the phage virus. The differences in the effectiveness of phage therapy between in
vitro and in vivo suggest that the infected mammalian host’s immune response may
be responsible for bacterial phage resistance [29]. The per capita kill rate of phage
by the immune response is denoted by κ .

As in [34] we assume there is a saturated innate immune response that is activated
by bacteria. We have included a saturated innate immune response that is activated
by the presence of phage where β is the maximum growth rage, KI is the maximum
capacity, and KM is the phage concentration at which the immune response growth
rate is half its maximum. In addition, we assume that d is the rate of decay in the
immune response. We assume that once the antibiotic treatment is administered it is
injected at a constant rate where A∗ = AI/θ. Parameter values are given in Table 1.
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Table 1 Parameters and Descriptions (CFU colony-forming unit, PFU plaque-forming unit)

Symbol Description Value Reference

BP Density of phage sensitive bacteria 7.4 × 107 CFU/g [34, 50]

BA Density of antibiotic sensitive bacteria 7.4 × 107 CFU/g [34, 50]

Btot Total density of bacteria BP + BA [50]

Kc Bacterial carrying capacity 1010 CFU/g [50]

μP Probability of emergence of antibiotic sensitive
mutants per cellular division

2.85 × 108 [42, 50]

μA Probability of emergence of phage sensitive
mutants per cellular division

2.85 × 108 [42, 50]

κ Killing rate of phage by innate immune response 10−3 h−1 [29]

rp Maximum growth rate of phage sensitive bacteria 0.75 [24, 50]

rA Maximum growth rate of antibiotic sensitive
bacteria

0.675 [50]

KD Bacteria concentration at which immune response is
half as effective

4.1 × 107 CFU/g [50, 56]

KN Bacteria concentration when immune response
growth rate is half its maximum

107 CFU/g [50, 66]

KI Maximum capacity of immune response 2.7 × 106 cell/g [48, 50]

ε BP and BA killing rate by immune system 8.2 × 10−8 g/h [24, 50]

α Maximum growth rate of immune system 0.97 h−1 [50]

β Rate of change in immunity by Phage 10−5 h−1 Estimated

KM Maximum capacity of phage 107 PFU/g Estimated

d Decay rate of immune response 10−4 h−1 Estimated

β̃ Burst size of phage 100 [50]

φ Phage absorption rate 5.4 ∗ 10−8 [50]

γ Power law exponent for heterogeneous mixing 0.6 [50]

θ Antibiotic elimination rate from serum samples 0.53 h−1 [50]

EC50 Concentration of antibiotic at which the killing rate
is half its maximum

0.3697 ug/ml [50]

3 Analytical Results

Here, we analytically explore possible treatment outcomes via equilibria analysis.
In Table 2 we summarize possible equilibria of the system, suggesting that

infection dynamics can result in any of the following cases under combination
treatment:

I. Combination treatment fails.
II. Partial success is gained, since antibiotic sensitive bacteria die out as a result

of combination (or drug-only treatment). Yet, the equilibria analysis, detailed
below, suggests that there might be up to three outcomes, indicating that
the system might have bistable dynamics; i.e., the treatment outcomes might
depend on the initial bacteria density, treatment doses and timing (see numerical
results section).
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Table 2 Possible equilibria of the system

Case Description Equilibrium E†
p = (B

†
P , B

†
A, P †, I †, A†)

(I) Infection equilibrium (*,*,*,*,*)

(II) Antibiotic Sensitive Bacteria (ASB)-free
equilibrium (EASBf )

(*,0,*,*,*)

(III) Infection-free equilibrium (0,0,0,0,*)

(IV) Phage-free (Pf) equilibrium (EPf ) (*,*,0,*,*)

(V) Phage & Antibiotic Sensitive Bacteria
(ASB)-free equilibrium

(*,0,0,*,*)

(VI) Phage & Phage Sensitive Bacteria
(PSB)-free equilibrium

(0,*,0,*,*)

III. Successful treatment. Both phage and antibiotic-sensitive bacteria get cleared.
IV. Phage treatment completely fails. It decays before clearing the phage-sensitive

bacteria.
V. Phage treatment fails, yet drug treatment successfully eradicates the antibiotic

sensitive bacteria.
VI. Drug treatment fails, yet phage therapy eradicates phage sensitive bacteria.

A rigorous mathematical analysis and feasibility of these outcomes require
stability analysis. We provide the detailed analysis of some of the cases. Below, we
provide the details from the analysis of Case (II). Cases (IV) and (V) are detailed
in Appendix. Due to complexity of the system, we explore the possible outcomes
derived here using numerical experiments in Sect. 5.

Case II. Antibiotic Sensitive Bacteria (ASB)-free equilibrium (EASBf ). In the
absence of antibiotic-sensitive (phage-resistant) bacteria, we obtain the following
subsystem:

ḂP = rpBP

(
1 − BP

Kc

)
− εIBP

1 + BP

KD

− BP F(P ), (1)

Ṗ = β̃BP F (P ) − ωP − κP I, (2)

İ = αI

(
1 − I

KI

)(
BP

BP + KN

)
+ βI

(
1 − I

KI

)(
P

P + KM

)
− dI, (3)

Ȧ = AI − θA (4)

where F(P ) = φP and BA = 0. Equilibria of the system are the time-independent
solutions. Here we are interested in phage treatment only, i.e., coexistence equilib-
rium

E†
p = (B

†
P , 0, P †, I †, A†).
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By setting the left hand of the system equal to zero, from the first equation, we
obtain,

rp

(
1 − B

†
P

Kc

)
= εI †

1 + B
†
P

KD

+ φP †, where (B
†
P := f1(I

†, P †)). (5)

By the second equation, we also have

B
†
P = ω + κI †

β̃φ
where (B

†
P := f2(I

†)) (6)

In addition, by the third equation, we get

α

(
1 − I †

KI

)(
B

†
P

B
†
P + KN

)
= −β

(
1 − I †

KI

)(
P †

P † + KM

)
+ d. (7)

Rearranging the equality (7), we have

B
†
P =

α
(

1 − I †

KI

)
−

(
d − β

(
1 − I †

KI

) (
P †

P †+KM

))

KN

(
d − β

(
1 − I †

KI

) (
P †

P †+KM

)) , where (B
†
P := f3(I

†, P †)).

(8)
By the equality (8), we also have

P † =
KM

(
d
(
KNB

†
P + 1

)
− α

(
1 − I †

KI

))
(

1 − I †

KI

) (
β[B†

P KN − 1] + α
)

+ d
(

1 − KNB
†
P

) . (9)

Substituting (9) into (5), we get

rp

φ

(
1 − B

†
P

Kc

)
− εI †

φ(1 + B
†
P

KD
)

=
KM

(
d
(
KNB

†
P + 1

)
− α

(
1 − I †

KI

))
(

1 − I †

KI

) (
β[B†

P KN − 1] + α
)

+ d
(

1 − KNB
†
P

) ,

(10)
where (B

†
P := f4(I

†)).
Finally, by substituting the right hand side of the equation (6) into (10), we get

the following equality as a function of immune equilibrium component, I †:

rp

φ

(
1 − ω + κI †

β̃φKc

)
− εI †

φ(1 + ω + κI †

β̃φKD

)

︸ ︷︷ ︸
h(I †)
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=
KM

(
d

(
KN

ω + κI †

β̃φ
+ 1

)
− α

(
1 − I †

KI

))

(
1 − I †

KI

)(
β[ω + κI †

β̃φ
KN − 1] + α

)
+ d

(
1 − KN

ω + κI †

β̃φ

)
.

︸ ︷︷ ︸
z(I †)

(11)

The positive intersections of the functions h(I †), and z(I †) provide the possible
immune equilibrium component, I †. Notice that the left hand side of the equality,
h(I †), is a decreasing function of I †. Moreover, the function z(I †) has a unique
zero:

I0 =
α − d

(
1 + KNw

β̃φ

)
dKNκ

β̃φ
+ α

KI

,

and two asymptotes I1,2 :

I1,2 =
−a2 ±

√
a2

2 − 4a1a3

2a1
,

where

a1 = −βκKN

β̃φKI

,

a2 = − 1

KI

(
βw

β̃φ
− β + α

)
+ βκKN

β̃φ
− dKNκ

β̃φ
,

a3 = βw

β̃φ
− β + α + d − dKNω

β̃φ
.

Under distinct cases with respect to sign and order of the critical points I0,1,2, the
subsystem (1) might have zero or up to three possible positive equilibria. Note that
whenever I † > 0, we have B

†
P > 0 by the equation (6). Therefore we are looking for

immune equilibrium component, I † : I † > 0 ⇒ P † > 0. This result indicates that
the system might have bistable dynamics; i.e., the treatment outcomes might depend
on the initial bacteria/phage density, treatment doses and timing (see Sect. 5).

4 Sensitivity Analysis

Building on the work in [50], we adopt many parameter values from literature
estimates and behavior fitting. However, several of our parameter values are not
experimentally measurable. To determine the relative effect of fluctuations in
parameter values on the model output, we use Matlab and Simbiology to implement
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the model and run a sensitivity analysis (similar to the process described in [55]).
Sensitivity analysis of parameters for our model will inform us about changes to
which parameters would have the most affect on the model transients. The following
general steps were performed to produce a global sensitivity analysis for all the
parameters over the simulation time period.

First, we established a set of reasonable parameters. The model needs to start
at an admissible point in parameter space. We then used this fitted model to
generate the discretized sensitivity matrix S. We then used S to rank parameters
by sensitivity and set a threshold such that parameters with sensitivity below the
threshold (insensitive) are fixed and parameters with sensitivity above the threshold
(sensitive) are explored.

To apply this process to our model, we used the referenced values as a starting
point as listed in Table 2. Most of these parameter values were used in [50] and
we estimated the new parameter values for the full model to achieved biologically
reasonable transient output for the model. All four observable model outputs (BA,
BP , P , and I ) were sampled at 10 time points (16, 20, 24, 40, 48 h, and days 3–7).
Given that there are 18 model parameters explored, a 40 × 18 discretized sensitivity
matrix S is produced.

Next, we ranked the impact of each parameter on all four observable model
outputs (BA, BP , P , and I ) by calculating a root mean square sensitivity measure, as
defined in Brun et al. [12]. For each column j of the normalized sensitivity matrix,
we get

RMSj =
√√√√1

n

n∑
i=1

(
pj

yi

∂yi

∂pj

)2

.

Parameter j is deemed insensitive if RMSj is less than 5% of the value of
the maximum RMS value calculated over all parameters. By this measure, 12
parameters were deemed insensitive, as shown in Fig. 3, and fixed at their nominal
values in later investigations.

0

5

10

15

˜β φ kkill α κ ω kn rp ra ki ε kd μ2 kc β μ1 km d

5 % max

Fig. 3 Relative sensitivities. Values below 5% of the maximum sensitivity value (indicated with
the dashed line) are considered insensitive
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The model was most sensitive to β̃ and φ. These modulate the rate of phage
replication in the phage equation and also the burst rate of phage infected bacteria.
Since β̃ only appears in the P equation and it actually multiplies φ, in Sect. 5 we
explored the effect of φ on the model outcome. Although not deemed as sensitive,
we also chose to explore the effect of κ , the rate of removal of phage by immune
cells, on the model outcomes since it is a new parameter in our extended system.

In the numerical results below, we explore the changes to model transients that
result from different choices of these sensitive parameters.

5 Numerical Results

In this section, we explore numerically computed transients for some biological
relevant cases of the system and apply our proposed model to investigate the
interactions between bacteria, phages, antibiotics and the immune system.

5.1 Exploring the Immune Response

Without any treatments (either phage or antibiotic), Fig. 4 shows that the activated
immune response can clear bacteria when bacterial densities (cell densities) are low
enough; however, when bacterial densities are sufficiently high, the immune system
cannot mount a sufficient response to clear the infection. The complicated role of
the immune response in therapeutic application of phage and antibiotics are still
overgeneralized here and will be further expanded upon in later versions of the
model.

0 50 100
100

104

108

1012

0 50 100
100

104

108

1012

Fig. 4 Model simulations with two levels of initial cell density. (a) a low initial cell density
BP (0) = BA(0) = 3.7 ∗ 107 CFU/g; (b) a high initial cell density BP (0) = BA(0) = 3.7 ∗ 108

CFU/g. No treatments are applied and other parameter values are fixed as in Table 1
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Fig. 5 Model behaviors with different levels of killing rate, κ , of phage by immune cells. (a)
κ = 10−5; (b) κ = 10−6; (c) κ = 10−7. Here, BP (0) = BA(0) = 3.7 ∗ 108 CFU/g, both phage
and antibiotic treatment were administered 2 h post infection, and other parameter values fixed as
in Table 1

In this model, we have included terms to track that immune cell activity in
response to the presence of phages during treatment [29]. This is a relevant
inclusion to the model because it helps explain instances of phage ineffectiveness.
One component of the new model terms, is the parameter κ , which describes the
clearance of phages by the host immune system. Because this is a new addition to
the model, we investigate the effect the value of κ has on the effectiveness of the
combination phage-antibiotic therapy.

In Fig. 5, we use three different values of κ , with other parameter values fixed as
in Table 1 and initial bacterial levels BP (0) = BA(0) = 3.7 ∗ 108 CFU/g (colony
forming unit per gram). Also during our experiments, both phage and antibiotic
therapy are received 2 h post infection (P = 7.4 ∗ 108 PFU/g, A = 0.035 ug/ml)
(PFU: plaque forming unit). As can be seen in Fig. 5a–c, our results show that
higher values of κ , the killing rate of phages by immune response, results in lower
availability of phages at the equilibrium state, but that the final patient outcome is
not different.

5.2 Effect of Nonlinear Phage Absorption Rate φ

In our simulations, we assume that phage infects and lyses BP bacteria at a rate
F(P ), where the function F(P ) = φP 0.6 is used to account for heterogeneous
mixing. In the above sensitivity analysis (Fig. 3) it is shown that the system’s
transients are sensitive to the nonlinear phage absorption rate φ. We therefore have
explored the predicted effectiveness of phage therapy, as it changes with altering
φ. In Fig. 6, we have shown transients for three different choices of φ, with other



124 S. Banuelos et al.

(A)

100

104

108

1012

100

104

108

1012

(B)

0 50 100 0 50 100 0 50 100
100

104

108

1012

(C)

Fig. 6 Model behaviors with different levels of phage absorption rate. (a) φ = 10.8 ∗ 10−8; (b)
φ = 13.5 ∗ 10−8; (c) φ = 27 ∗ 10−8. Here, BP (0) = BA(0) = 3.7 ∗ 108 CFU/g, both phages
and antibiotic therapy are administered 2 h post infection, and other parameter values are fixed as
in Table 1

parameter values fixed in Table 1 and initial bacterial levels BP (0) = BA(0) =
3.7 ∗ 108 CFU/g. In all panels, both phage and antibiotic therapy are received 2 h
after the start of the simulation. In Fig. 6a, where phage absorption rate is 2φ, the BA

goes to near zero but BP stays high; while in Fig. 6b, where phage absorption rate is
2.5φ, the same initial dose of phages is able to bring down the level of BP to zero,
and we attain the trivial equilibrium; while in Fig. 6c, where phage absorption rate
is 5φ, the BP goes to zero and the process occurs faster than compared to Fig. 6b.

5.3 Effect of Time of Administration of Phage Dose

Next, we investigate the effects of timing of phage therapy on the outcome of the
infection. In all the simulations, antibiotics are given at the start of the simulation,
the initial bacterial levels are BP (0) = BA(0) = 3.7 ∗ 107 CFU/g (a relatively low
level), the nonlinear phage absorption rate is 2φ, and the other parameter values are
fixed as shown in Table 1. In Fig. 7a, the phage dose is given 2 h post infections.
We can see that the antibiotic-sensitive bacteria, BA, decays quickly and goes to
equilibrium near zero. Even though phage therapy lowers the BP bacteria, BP does
not get completely removed from the system and a non-zero equilibrium is achieved
for both BA and BP . However, in Fig. 7b, when the phage is not administered until
10 h after the start of infection, the density of BP is already high. This provides more
access to bacteria hosts for the phages to use for replication and in turn phages are
able to reduce the density of BP . Then in the absence of BP , the phage level also
goes to zero. These experiments indicates that the timing of phage therapy can be
an important factor because phage effectiveness depends on the density of bacteria
present in the system.
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Fig. 7 Model behaviors with different timing of phage therapy. (a) Phage dose 7.4 ∗ 108 PFU/g
was administered 2 h post infection; (b) phage dose 7.4 ∗ 108 PFU/g was administered 10 h post
infection. Here, the initial bacterial level is BP (0) = BA(0) = 3.7 ∗ 107 CFU/g (a relatively low
level), the nonlinear phage absorption rate is 2φ, and the other parameter values are fixed as shown
in Table 1
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Fig. 8 Model behavior in multi-dose regimen of phage therapy. (a) One dose of phage treatment.
The only dose 7.4 ∗ 108 PFU/g was administered 2 h post infection; (b) two doses of phage
treatment. The first dose 7.4 ∗ 108 PFU/g was administered 2 h post infection and the second dose
P = 2.4 ∗ 1012 PFU/g was administered 10 h after the first dose. Here, the initial bacterial level
BP (0) = BA(0) = 3.7 ∗ 108 CFU/g is used, antibiotic therapy is administered 2 h post infection,
and parameter values are fixed as shown in Table 1

5.4 Varying Time and Quantity of Phage Dose in Multi-dose
Regimen

We continue our experiments by varying the frequency and quantity of the phage
therapy dose to explore possible outcomes of phage therapy. For both simulations
in Fig. 8 the same initial infection level BP (0) = BA(0) = 3.7 ∗ 108 CFU/g are
used, the same antibiotic therapy is administered after 2 h, and the parameter values
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Fig. 9 Model behavior in multi-dose regimen of phage therapy. (a) One dose of phage treatment.
The only dose 7.4 ∗ 108 PFU/g was administered 2 h post infection; (b) two doses of phage
treatment. The first dose 7.4 ∗ 108 PFU/g was administered 2 h post infection and the second dose
P = 1.8 ∗ 1012 PFU/g was administered 10 h after first dose; (c) three doses of phage treatment.
The first dose 7.4∗108 PFU/g was administered 2 h post infection, the second dose P = 1.8∗1012

PFU/g was administered 10 h after the first dose, and the third dose P = 4.5 ∗ 1011 PFU/g was
administered 10 h after the second dose. Here, the initial bacterial level BP (0) = BA(0) = 3.7∗108

CFU/g is used, antibiotic therapy is administered 2 h post infection, and parameter values are fixed
as shown in Table 1

are same as in Table 1. In the first experiment (Fig. 8a), we use only one dose of
phage. The dose of phage (P = 7.4 ∗ 108 PFU/g) is administered 2 h post infection.
It is shown that the BA goes to nearly zero, but BP goes to a positive equilibrium
(BP � 0). That is, we do not have a successful treatment. In the second experiment,
we explore two doses of phage. As in (Fig. 8a), the first dose (P = 7.4∗108 PFU/g)
is administered 2 h post infection. Then 10 h after the first dose, the second dose
(P = 2.4 ∗ 1012 PFU/g) is given. We found that if the amount of second dose of
phage is high enough, then the density of BP goes to zero rapidly, and we obtain
a successful treatment at the end. Otherwise, you need to do more doses of phage
treatment (See Fig. 9).

In Fig. 9, three experiments are shown. In all simulations, the same initial
infection level BP (0) = BA(0) = 3.7 ∗ 108 CFU/g is used, antibiotic therapy is
administered 2 h post infection, and parameter values are fixed as shown in Table 1.
To conduct the comparison study, the first experiment (Fig. 9a), is same as Fig. 8,
i.e., only one dose of phages (P = 7.4 ∗ 108 PFU/g) is administered 2 h post
infection and it did not lead to a successful treatment. In the second experiment
(Fig. 9b), we administer two doses of phages. The first dose (P = 7.4 ∗ 108 PFU/g)
is administered 2 h post infection. Then 10 h after the first dose, the second dose
(P = 1.8 ∗ 1012 PFU/g, a relatively low value compared to Fig. 8b) is given. We
found that even though the BP density decreases quickly after the second dose of
phage, it eventually rebound. This indicates we still fail the treatment. In the third
experiment (Fig. 9c), we have three doses of phage therapy. The first two doses are
administered as in the second experiment, i.e., the first dose (P = 7.4 ∗ 108 PFU/g)
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is administered 2 h post infection. Then 10 h after the first dose, the second dose
(P = 1.8 ∗ 1012 PFU/g, a relatively low value compared to Fig. 8b) is given. Now,
10 h after the second dose, we try the third dose (P = 4.5 ∗ 1011 < 1.8 ∗ 1012

PFU/g), and see that we can obtain a successful treatment. Hence, we believe that
the number of doses and the size of the dose of phages have significant impacts on
the clearance of the bacterial infection.

In the above simulations, we have explored possible timing and dose size
combination that allow the bacteria infection to be cleared. In each case, the final
dose is as low as possible to result in the resolution of the infection. However,
there maybe better, more effective timing/dose combinations that result in lower
total phage dose. Future work will use optimal control to identify the best treatment
plan for a given bacteria load.

6 Discussion

In this work, we have analyzed a prior model, developed in [50], for the use of
combination antibiotic and phage therapy for the treatment of a systemic bacterial
infection. We extended it by including immune response to circulating phages.
While phages are not “infectious” to humans, they are a foreign substance in the
body and will elicit an inflammatory response. Additionally, the innate immune
response of the patient will clear some of the phages either through filtration or
through phagocytosis. Therefore, we would like to see if this dynamic is important
to consider for predicting the effectiveness of the combination therapy.

By utilizing equilibria analysis, we find that the model proposed by Rodriguez-
Gonzalez, et al. [50] can have six possible steady-state cases for model outcomes. In
addition, our analysis suggests that in some cases, the system might display bistable
dynamics; i.e., the treatment outcomes can depend on initial conditions, determined
by dose of drug or phage cocktail, or timing of any of these treatments, or the
frequency of these treatments in combinations. Therefore, we numerically explores
outcomes of treatment options using phage therapy in combination with antibiotic
treatment in order to gain insights of how to optimize the treatment outcomes.

We performed a sensitivity analysis to determine which parameters are likely to
affect the transient behavior and the overall outcome of the system. To that end,
we found that two parameters were of the most interest. The one with the most
biological meaning (φ) was investigated and found to have an effect on the outcome
of the system. It will be important in future modeling work to better estimate the
number of phage released during lysis while in a human host.

The timing of the phage treatment was also important for determining patient
outcome. Because phages replicate inside the bacteria, the level of bacterial
infection at the time of treatment initiation influences the effectiveness of the
phage therapy. Repeated dosing with phages is also helpful in clearing the bacterial
infection. Determining dosing protocols and quantifying the related risks will be
important for future studies.
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This initial investigation has been fruitful for understanding some of the compet-
ing dynamics observed in antibiotic/phage combination therapy, and has opened the
work up to further questions and lines of research:

• Are there further interactions with the host immune system that need to be
explored? (Innate/adaptive/filtering)

• Can we determine an optimal treatment strategy?
• Do different bacterial infections require different parameter values or are there

other considerations that need to be made? Some bacteria have “broad spectrum”
response to phages and some require treatment with very specific phages.

• How fast do bacteria develop or lose immunity to phages?
• What additional complications occur in immunocompromized individuals?

There is hope that phage therapy will usher in a new line of treatment for difficult
bacterial infections but there are much work needed to understand the complex
dynamics and to devise effective, broadly implementable treatment protocols.
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Appendix

Case IV. Phage-free equilibrium (E+
Pf

). Setting P = 0, at the steady-state we
obtain the following equation system:

0 = rpBP

(
1 − Btot

Kc

)
(1 − μP ) + μArABA

(
1 − Btot

Kc

)
− εIBP

1 + Btot

KD

, (12)

0 = rABA

(
1 − Btot

Kc

)
(1 − μA) + μP rpBP

(
1 − Btot

Kc

)
− εIBA

1 + Btot

KD

− Kkill

A

EC50 + A
BA,

0 = αI

(
1 − I

KI

)(
Btot

Btot + KN

)
+ βI − dI.
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By the last equation in (12), we have

α

(
1 − I+

KI

)(
B+

tot

B+
tot + KN

)
= d − β. (13)

Then rearranging (13), we obtain

B+
tot = (β − d)KI

αI+KI (d − α − β)
. (14)

Also by the first and second equations in (12), we obtain

(
1 − B+

tot

Kc

)
=

(
εI+

1+ B
+
tot

KD

)
/

[
rp(1 − μP ) + μArA

B+
A

B+
P

]
,

(
1 − B+

tot

Kc

)
=

(
εI+

1+ B
+
tot

KD

+ Kkill
A

EC50+A

)
/

[
rA(1 − μA) + μP rp

B+
P

B+
A

]
.

(15)

By the equality of equations in (15), we have

⎛
⎜⎜⎝ εI+

1 + B+
tot

KD

⎞
⎟⎟⎠

[
rp(1 − μP ) + μArA

B+
A

B+
P

] =

⎛
⎜⎜⎝ εI+

1 + B+
tot

KD

+ Kkill

A

EC50 + A

⎞
⎟⎟⎠

[
rA(1 − μA) + μP rp

B+
P

B+
A

] . (16)

Let x = B+
P

B+
A

, f (I+) =

⎛
⎜⎜⎝ εI+

1 + B+
tot

KD

⎞
⎟⎟⎠ , a0 = rp(1 − μP ), b0 =

Kkill

A

EC50 + A
, c0 = rA(1 − μA), a1 = μArA, and c1 = μP rp. Then by

(16), we obtain

f (I+)[
a0 + a1

1

x

] =
(
f (I+) + b0

)
[c0 + c1x]

. (17)

Then rearranging it, we have

f (I+) [c0 + c1x] = (
f (I+) + b0

) [
a0 + a1

1

x

]
. (18)
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Multiplying both sides with x and rearranging we obtain

a0x
2 + a1x − a2 = 0,

where

a0 = c1f (I+), a1 = f (I+)(c0 − a0) − b0a0, a2 = a1(f (I+) + b0).

Therefore we get the steady-state ratio x = B+
P

B+
A

as follows:

B+
P

B+
A

=
−a1 +

√
a2

1 + 4a0a2

2a0
, (19)

where

a0 = (μP rp)f (I+), (20)

a1 = f (I+)(rA(1 − μA) − rp(1 − μP )) − Kkill

A

EC50 + A
rp(1 − μP ),

a2 = a1(f (I+) + Kkill

A

EC50 + A
).

with f (I) =

⎛
⎜⎜⎝ εI+

1 + B+
tot

KD

⎞
⎟⎟⎠ and B+

tot = (β − d)KI

αI+KI (d − α − β)
.

Also note that B+
P = B+

tot − B+
A . Then by (19), we obtain

B+
A =

(
(β − d)KI

αI+KI (d − α − β)

)
/

⎛
⎝−a1 +

√
a2

1 + 4a0a2

2a0

⎞
⎠ , (21)

where the expressions of ai for i = 0, 1, 2 are given in (20). Therefore the system
has at most one positive phage-free equilibrium E+

Pf .

Case V. Phage & Antibiotic Sensitive Bacteria (ASB)-free equilibrium
EP&ASBf = (B+

P
, 0,A+, 0, I+). Setting P = BA = 0, we obtain the following

equation system:

ḂP = rP BP

(
1 − BP

Kc

)
(1 − μP ) − εIBP

1 + BP

KD

,
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İ = αI

(
1 − I

KI

)(
BP

BP + KN

)
− dI.

At the steady state, by the second equation, we have

α

(
1 − I+

KI

)(
B+

P

B+
P + KN

)
= d. (22)

Rearranging it, we obtain

B+
p = KNw

1 − w
, with w = d(

1 − I+
KI

) . (23)

By the first equation, we also have

B+
p1,2

=
(1 − μp)rp(−I+

Kc

+ 1

KD

)

2(1 − μp)rp

KcKD

±

√
((1−μp)rp)2(− I+

Kc

+ 1

KD

)2 −4
((1−μp)rp)I+((1−μp)rp −ε)

KcKD

2(1 − μp)rp

KcKD

.

(24)

Note that the equalities (23) and (24) are functions of I+, and intersection of both
equations give the equilibrium I+ component of the equilibria of the system, and
the other component of the equilibria can be found by substituting the component
I+ into the equation (23). It is clear that the system can have more than one phage
& antibiotic sensitive bacteria-free equilibrium EP &ASBf = (B+

P , 0, A+, 0, I+).
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Abstract Cell degeneration, including that resulting in retinal diseases, is linked
to metabolic issues. In the retina, photoreceptor degeneration can result from
imbalance in lactate production and consumption as well as disturbances to pyruvate
and glucose levels. To identify the key mechanisms in metabolism that may be
culprits of this degeneration, we use a nonlinear system of differential equations to
mathematically model the metabolic pathway of aerobic glycolysis in a single cone
photoreceptor. This model allows us to analyze the levels of lactate, glucose, and
pyruvate within a single cone cell. We perform numerical simulations, use available
metabolic data to estimate parameters and fit the model to this data, and conduct a
sensitivity analysis using two different methods (LHS/PRCC and eFAST) to identify
pathways that have the largest impact on the system. Using bifurcation techniques,
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we find that the system has a bistable regime, biologically corresponding to a healthy
versus a pathological state. The system exhibits a saddle node bifurcation and
hysteresis. This work confirms the necessity for the external glucose concentration
to sustain the cell even at low initial internal glucose levels. It also validates
the role of β-oxidation of fatty acids which fuel oxidative phosphorylation under
glucose- and lactate-depleted conditions, by showing that the rate of β-oxidation
of ingested outer segment fatty acids in a healthy cone cell must be low. Model
simulations reveal the modulating effect of external lactate in bringing the system
to steady state; the bigger the difference between external lactate and initial internal
lactate concentrations, the longer the system takes to achieve steady state. Parameter
estimation for metabolic data demonstrates the importance of rerouting glucose
and other intermediate metabolites to produce glycerol 3-phosphate (G3P), thus
increasing lipid synthesis (a precursor to fatty acid production) to support their high
growth rate. While a number of parameters are found to be significant by one or
both of the methods for sensitivity analysis, the rate of β-oxidation of ingested
outer segment fatty acids is shown to consistently play an important role in the
concentration of glucose, G3P, and pyruvate, whereas the extracellular lactate level
is shown to consistently play an important role in the concentration of lactate and
acetyl coenzyme A. The ability of these mechanisms to affect key metabolites’
variability and levels (as revealed in our analyses) signifies the importance of inter-
dependent and inter-connected feedback processes modulated by and affecting both
the RPE’s and cone’s metabolism.

Keywords Retina · Photoreceptors · Aerobic glycolysis · β-oxidation and
differential equations

1 Introduction

Photoreceptors are the sensory cells of the eye, and they are the most energetically
demanding cells in the body [52]. Photoreceptors have the most essential role in
vision, absorbing light photons and processing them to electrical signals that can
be transmitted to the brain. Therefore, vision deterioration or blindness occurs if the
vitality and functionality of photoreceptors are compromised. In order to understand
how to mitigate such pathological cases, it is essential to first obtain a firm grasp of
processes that ensure the health of photoreceptors. The factor of upmost importance
for photoreceptor vitality and functionality is metabolism.

To maintain their high metabolic demands and prevent accumulation of photo-
oxidative product, the photoreceptors undergo constant renewal and periodic shed-
ding of their fatty acid-rich outer segment (OS) discs. Aerobic glycolysis is integral
to the renewal process. It facilitates the production of energy and the synthesis of
phospholipids, both which are required for OS renewal. Phagocytosis of the shed OS
by the retinal pigment epithelium (RPE) contributes to the creation of intermediate
metabolites fundamental for photoreceptor energy production via β-oxidation [1].
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Understanding the dynamics of glucose and lactate levels in aerobic glycolysis in
a single cone cell is essential to maintain cone functionality and hence to preserve
central vision. Studies in rod-less retinas have shown that maintaining functional
cones even when 95% are gone may stop blindness [11, 30]. The purpose of this
study is to analyze the key mechanisms affecting the levels of glucose, pyruvate,
and lactate in a single cone cell via a first approximation mathematical model, with
the goal of gaining insight into the interplay of glucose consumption and lactate
production and consumption that may affect normal cone function.

1.1 Biological Background and Modeling Assumptions

1.1.1 Photoreceptors and Retinal Pigment Epithelium (RPE)

Photoreceptors are specialized neurons that convert light into electrical signals that
can be interpreted by the brain [37]. There are two types of photoreceptor cells:
rods and cones. Cones are densely packed in the center of the retina and are
responsible for color vision and high acuity. Rods have high sensitivity to light,
are distributed on the outer edges of the retina, and are responsible for night and
peripheral vision. In the human retina, there are approximately 90 million rod cells
and 4.5 million cone cells [15], making rods twenty times more prevalent than cones.
In the mature human retina (by about age 5 or 6), there are no spontaneous births of
photoreceptors, making their preservation and vitality critical [10]. Photoreceptor
shedding and renewal of their OS has been considered as a type of death and
birth process, as it is the mechanism by which photoreceptors discard unwanted
elements (e.g., accumulated debris or toxic photo-oxidative compound in shed
OS discs) and renew themselves through the recycling of various products. This
process is a measurement of the photoreceptor’s energy uptake and consumption
and associated metabolism [11, 12]. The shedding and renewal process and the
associated metabolism of photoreceptors involve the RPE. The photoreceptors and
the RPE work as a functional unit; glucose is transported from the RPE to the
photoreceptors for their metabolism, lactate produced by photoreceptors and other
retina cells is shuttled to the RPE for its metabolism, and the RPE mediates the
phagocytosis of photoreceptor OS and recycling of fatty acids from these OS discs
which are utilized in oxidative phosphorylation (OXPHOS) in the production of
acetyl coenzyme A (ACoA); see Fig. 1. However, as a first approximation we will
not consider the role of the RPE but instead integrate the feedback mechanisms back
into the cone cell via β-oxidation and external lactate transport.

The RPE lies between the choroid and a layer of photoreceptors. In addition to
functioning as the outer blood retinal barrier and transporting glucose to photore-
ceptor cells through GLUT1 (a facilitated glucose transporter), the RPE is involved
in the phagocytosis of photoreceptor OS discs [57]. It serves as the principal
pathway for the exchange of metabolites and ions between the choroidal blood
supply and the retina [14]. Müeller cells are a layer of retinal glial cells and also
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Fig. 1 Schematic of metabolic pathways and substrate sources in the photoreceptors. This
schematic shows that glucose and lactate flow between the cone photoreceptor and the RPE cell
layer. It illustrates the contribution of glycolysis in providing energy to the cone cell and its role in
helping generate cone outer segments. β-Hydroxybutyrate oxidation (β-HB) comes from oxidation
of fatty acids from the shed outer segments, so that under starvation or low glucose levels they can
be used as oxidative substrates [1]

provide support to photoreceptors. They can release lactate which is metabolized
by photoreceptors [41] and store glycogen which can be broken down to glucose.
A thorough investigation should consider the interaction of the three cell types.
However, in this work we consider, as a first step, a single cone photoreceptor in
the human retina and model the metabolic pathways present. This analysis provides
the foundation for a future application of the model: prediction of the interplay of
metabolites from three cell types (RPE, photoreceptors, and Müeller) coexisting in
the retina.

1.1.2 Glycolysis and Oxidatative Phosphorylation

Photoreceptors are responsible for the majority of the energy consumption in the
retina [38, 50]. Active transport of ions against their electrical and concentration
gradients in neurons is required to repolarize the plasma membrane after depo-
larization, and this process is what consumes the most energy in photoreceptors
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[37, 52]. Moreover, the continual renewal and periodic shedding of OS [56] is also
an extremely energetically demanding process.

All life on Earth relies on adenosine triphosphate (ATP) in energy transfer. ATP is
produced via two pathways, oxidative phospholylation and glycolysis. Glycolysis,
through a series of reactions (described in detail in Sect. 2.1), converts one molecule
of glucose into two molecules of pyruvate, yielding two net molecules of ATP.
If oxygen is present, pyruvate is typically converted to ACoA and enters the
tricarboxylic acid (TCA) cycle, generating 32 net ATP molecules through OXPHOS.
If oxygen is scarce, or if a cell has been metabolically reprogrammed, pyruvate is
instead converted to lactate. However, photoreceptor cells use both pathways for
energy production in the presence of oxygen with the vast majority of pyruvate
being converted into lactate. In other words, despite only producing two molecules
of ATP (versus 32 via OXPHOS), photoreceptors go through glycolysis as well as
OXPHOS.

Glucose serves as the primary fuel in photoreceptors [13] and is broken down
through aerobic glycolysis (glycolysis even in the presence of oxygen), termed the
Warburg effect [2]. The Warburg effect has long been noted as a hallmark of tumors
[23], but is also present in healthy tissue, particularly if their biosynthetic demands
are high. Aerobic glycolysis maintains high fluxes through anabolic pathways and
creates excess carbon which can be exploited for generation of nucleotides, lipids,
and proteins, or diverted to other pathways branching from glycolysis, such as the
pentose phosphate pathway and Kennedy pathway [32].

During glycolysis, glucose is transported into the cell. Rod-derived cone viability
factor (RdCVF), which is secreted by rod photoreceptors, accelerates the uptake
of glucose by cones through its binding with the glucose transporter complex
1/Basigin-1 (GLUT1/BSG-1) and stimulates aerobic glycolysis [3]. RdCVF also
protects cones from degeneration [28, 53]. When glucose is in short supply,
photoreceptors have the ability to take up and metabolize lactate [41].

1.1.3 Lactate Secretion and Consumption

Photoreceptors can produce lactate from pyruvate and secrete it out of the cell or
consume external lactate and convert it to pyruvate for OXPHOS if there is too much
lactate in the extracellular space. The influx of lactate from the extracellular space
would almost certainly slow the rate of glycolysis in the cell because any resulting
higher intracellular lactate concentration shifts the lactate dehydrogenase (LDH)-
catalyzed reaction equilibrium toward a higher NADH/NAD+ ratio. Under normal
conditions, retinal cells oxidize cytosolic NADH to NAD+ (via the reduction/con-
version of pyruvate to lactate in order to regenerate the NAD+). This lactate is
transported out of the cell, thus increasing the amount of extracellular lactate. When
glucose is low, such as during hypoglycemia or aglycemia conditions or hypoxia,
oxidation of external lactate and fatty acids (via β-oxidation) to generate ACoA and
thus produce energy (ATP) is favored [51]. When the photoreceptor cell undergoes
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OXPHOS, it makes citrate which provides an inhibitory feedback to glycolysis when
other intermediates for ATP production are high, indicating additional glucose is not
needed.

Glucose from the choroidal blood passes through the RPE to the retina where
photoreceptors convert it to lactate, and in return, photoreceptors then export lactate
as fuel for the RPE and for neighboring cells [26]. It has been hypothesized that
photoreceptors also take up lactate for energy under low glucose levels. In humans,
insufficient lactate transported out of the cone and rod cells for RPE consumption
can suppress transport of glucose by the RPE. In such a case, the RPE takes glucose
for its metabolism thereby decreasing the amount of glucose that is transported to
the photoreceptors. Thus, lactate secretion for RPE consumption and external lactate
consumption by photoreceptors is a balance process.

1.1.4 Modeling Assumptions

Our model consolidates some of the steps in the glycolytic pathway in a single cone,
for simplicity. Glucose is initially transported into the cell, and the rate of transport
is amplified by the release of RdCVF from rods. The rate of transport is gradient
dependent and modulated by the difference in the amount of glucose inside and
outside the cell. The next step is the conversion of glucose in the cell into glucose-
6-phosphate (G6P) by the enzyme hexokinase 2. This phosphorylation also works
to trap glucose in the cell’s cytosol. Some G6P is diverted to the pentose phosphate
pathway (not included in our model), while the rest moves through the glycolytic
pathway. The enzyme phosphofructokinase (PFK) converts fructose-6-phosphate
to fructose 1,6-biphosphate (not explicitly included in our model). This in turn is
cleaved into two sugar molecules, one of which is dihydroxyacetone phosphate
(DHAP), the substrate for the next reaction. DHAP is converted to glycerol-3-
phosphate (G3P) in the Kennedy pathway and glyceraldehyde-3-phosphate (GAP)
in the glycolytic pathway. The latter metabolite is not explicitly considered in our
model. A number of sequential reactions occur, with the ultimate step aided by the
enzyme pyruvate kinase, resulting in pyruvate. Since our model considers a single
cone, we use the presence of the metabolite concentration [G3P] with an appropriate
scaling factor as a proxy for the amount of RdCVF synthesized by the rods. RdCVF
accelerates glucose uptake in cones [3, 28, 53].

Specifically, our model incorporates the uptake and consumption of glucose, the
production of G3P and pyruvate, and key consecutive chemical reactions in the
cone cell involving lactate, ACoA, and citrate. Pyruvate is converted to lactate,
which is then transported out of the cell. A portion of pyruvate is also transferred
to the mitochondria; there it is converted to ACoA and goes through OXPHOS,
creating citrate, which leads to the production of ATP but also negatively regulates
the glycotic pathway. Citrate inhibits phosphofructokinase (PFK) which slows down
the production of G3P and pyruvate. G3P leads to the production of lipids which are
used to create OS that are shed and phagocytized periodically. The fatty acids from
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Single Cone Photoreceptor Model
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Fig. 2 Flow diagram of the key metabolic pathways within a single cone photoreceptor. Parame-
ters corresponding to each pathway are labeled with black letters while metabolic pathways are
labeled with blue letters (a-l). Parameters are described in Table 2. Brief descriptions of each
pathway are given in Table 1 and are described in detail in Sect. 2.1

the shed OS can feed back into the cone cell as β-hydroxybutyrate (β-HB) which
serves as a substrate for ACoA production. Through the process of β-oxidation fatty
acids in the RPE result in β-HB. The specific pathways are outlined in Fig. 2, and
specific evidence is presented for each pathway in detail below.

2 Mathematical Model

We model six key steps in the glycolytic pathway as a system of six nonlinear
ordinary differential equations that describes metabolic pathways in a single cone.
Specifically, we track the temporal dynamics of the following six concentrations
in the cell: internal glucose ([G]), glycerol-3-phosphate ([G3P]), pyruvate ([PYR]),
lactate ([LACT]), acetyl coenzyme A ([ACoA]), and citrate ([CIT]). The chemical
reactions and up- and down-regulations included in this model are illustrated in
Fig. 2 and listed in Table 1. In Sect. 2.1, we discuss the biological basis for each
interaction pathway used in the model. In Sects. 2.2 and 2.3, we give the model
equations and parameter values used, respectively.
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Table 1 Description of metabolic pathways in the model

Pathway Description References

a Gradient transport of glucose [33, 40]

b Glucose uptake; without and with RdCVF [3, 10, 53]

c Glycolytic flow diverted to G3P [43, 46]

d Glycolytic flow diverted to pyruvate [6]

e Glycolysis inhibition by citrate [6]

f Gradient gating mechanism to transport lactate out of the cell [5, 8, 9, 22, 25]

g Fraction of pyruvate concentration converted into lactate [18, 41, 55]

h Gradient gating mechanism to transport lactate into the cell for
ACoA production

[6, 20]

i Fraction of pyruvate concentration converted into ACoA [36, 47]

j Conversion of ACoA to citrate [47]

k β-HB utilized in production of ACoA [1]

l Diversion of citrate to the cytosol and other metabolic pathways [47]

2.1 Kinetic Pathways in the Model

Here, we provide details of all model pathways shown in Fig. 2 and described in
Table 1. These pathways represent a reduced system, with some pathways omitted
and elements implicitly modeled via proxies. There are multiple intermediates
produced in glycolysis and oxidative phosphorylation which are not explicitly
considered in this work. In order to focus on production and consumption of glucose,
lactate, and pyruvate in a single cone cell we reduce the system to its most essential
components and pathways.

Pathway a: gradient transport of glucose
In the retina, sodium independent glucose transporters (GLUTs) transport glu-

cose by facilitated diffusion down its concentration gradient [40]. GLUT1 is found
in human photoreceptor outer segments [33]. We model this pathway by considering
the difference between external glucose concentration (the parameter GE in our
model) and the internal glucose concentration, the variable [G]. The parameter λ is
a constant of proportionality that governs the rate of glucose uptake based on the
concentration gradient.

Pathway b: glucose uptake without and with stimulation of GLUT1 by
RdCVF

Rod-derived cone viability factor (RdCVF) is secreted in a paracrine manner
by rod photoreceptors and protects cones from degeneration [3, 53]. It binds with
the GLUT1/BSG-1 complex to activate GLUT1 and accelerates the entry of glucose
into the cone. We use [G3P] together with an appropriate scaling factor incorporated
into δ as a proxy for the RdCVF that is synthesized by the rods. G3P is needed for
phospholipid synthesis resulting in the renewal of photoreceptor OS [10]. Since for
every cone cell there are approximately 20 rods in the human retina and G3P in
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our model is a measurement of the cone OS, we scale concentrations to account for
rods’ secretion of RdCVF that accelerates glucose uptake and supports cone vitality.

Note that the parameter n is included in this term so that even in the absence of
RdCVF or our proxy for rods, glucose is passively transported down its gradient
(bidirectionally) into the intracellular space of the cone cell. Thus, λn is the glucose
uptake rate of our cone cell in the absence of RdCVF. The uptake of glucose due to
RdCVF is an allosteric reaction, and therefore there is a binding time requirement
for the enzyme to catalyze the reaction. We therefore use a Hill type function with
a Hill coefficient of 2 to model the sigmoidal response [10, 42].

Pathway c: glycolytic flow diverted to G3P
The sequence of reactions leading to G3P are glucose to glucose-6 phosphate

to fructose 6-phosphate to fructose 1,6-biphosphate to dihydroxyacetone phosphate
(DHAP), and then G3P. Figure 2 indicates the many intermediate steps which are
skipped with the ellipsis in the diagram. We model the conversion of glucose to G3P
with a Hill type function where V[G3P] is the maximal rate of conversion (controlled
by the rate-limiting allosteric enzyme PFK described above) of glucose to G3P and
K[G3P] is the concentration of the ligand that gives half-maximal activity [46].

Pathway d: glycolytic flow diverted to pyruvate
We skip intermediate reactions to focus on the key metabolites of interest;

glucose, pyruvate, and lactate. We take a similar approach as in pathway c and
consider glucose to be the substrate in the reaction resulting in the production of
pyruvate. We can infer from known aerobic glycolysis that the substrate (in this
case glucose) which is not converted to G3P is converted to pyruvate [6]. Thus, a
fraction q of glucose gets converted to G3P, while the remaining fraction 1 − q gets
converted to pyruvate.

Pathway e: glycolysis inhibition by citrate
The flux through the glycolytic pathway must be responsive to conditions both

inside and outside the cell, and the enzyme phosphofructokinase (PFK) is a key
element in this control. PFK is inhibited by citrate, which enhances the allosteric
inhibitory effect of ATP [6]. Elevated citrate levels indicate that biosynthetic
precursors are readily available and additional glucose should not be degraded. The
form of the function capturing this inhibition is reciprocal to the concentration of
citrate and is multiplied to the metabolic reactions that involve glucose as a substrate
down the glycolysis pathway (i.e., the reactions that produce G3P and pyruvate).

Pathway f: gradient gating mechanism to transport lactate out of the cell
Monocarboxylate transport proteins (MCT) are a family of plasma membrane

transporters and allow lactate, pyruvate, and ketone bodies to be actively transported
across cell membranes [5]. The RPE expresses various isoforms of the MCT
transporter [9], as do the photoreceptors, Müeller cells, and the inner blood-retinal
barrier. Inhibition of MCT results in retinal function loss [9], mainly due to lactate
accumulation in the extracellular space. The lactate transport rate is dependent on
pH, temperature, and concentration of internal lactate relative to external cellular
lactate [25]. MCTs faciliate lactate transport down the concentration and pH gra-
dients [8]. MCT1 is particularly important for reducing conditions of intracellular
acidification when glycotic flux is high [22]. MCT1 transports lactate out of the
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photoreceptors and into the RPE. We incorporate this process in our model with
pathway f.

Lactate flux out of the cell depends on the concentration gradient, pH, and
temperature. We model this using a gating function f ([LACT]); see Equation 8. For
large binding affinity of lactate transporter (i.e., for large k values), if the external
lactate concentration LE exceeds the internal lactate concentration [LACT], the gate
closes, and the external lactate is directed to OXPHOS via function h([LACT]) to
produce ACoA; see Equation 9. The height of this function represents the maximal
flux possible, physiologically limited by the concentration and expression of MCT1.

Pathway g: fraction of pyruvate concentration converted into lactate
Pyruvate is converted to lactate in glycolysis. This metabolic reaction is pro-

moted by increased expression of the enzyme lactate dehydrogenase A (LDHA)
and inactivation of pyruvate dehydrogenase [18, 41]. The conversion and direction
of the reaction from pyruvate to lactate depends on lactate dehydrogenase subtypes;
photoreceptors express LDHA which favors the production of lactate from pyruvate
[10].

Pathway h: gradient gating mechanism to transport lactate into the cell for
ACoA production

Pyruvate dehydrogenase complex (PDC) converts pyruvate to ACoA. The con-
sumption of lactate back into the cell depends on a gating mechanism modulated by
the pH levels and the lactate gradient inside and outside the cell. While LDHA
converts pyruvate to lactate, lactate dehydrogenase B (LDHB) converts lactate
to pyruvate. The latter reaction involves external lactate and the newly acquired
pyruvate does not convert back to lactate but rather goes into the mitochondria
where it becomes a substrate in the production of ACoA. The conversion of lactate
to pyruvate and vice versa also depends on NAD+ and NADH levels as they can
drive things in one direction or another. When lactate is used as an energy source,
lactate carbon is ultimately inserted into the TCA cycle in the mitochondria.

Glycolysis and gluconeogenesis are coordinated so that within one cell, one
pathway is relatively inactive while the other is highly active. The rate of glycolysis
is governed by the concentration of glucose whereas the rate of gluconeogenesis is
governed by the concentration of lactate [20]. Inhibition of the enzyme PFK (which
drives glycolysis) and abundance in [CIT] activates gluconeogenesis [6]. Rather
than modeling all steps of gluconeogenesis, we let external lactate feed directly to
ACoA and do not track its passage through pyruvate. This mechanism consolidates
entry of lactate into the cell.

Pathway i: fraction of pyruvate converted into ACoA
After pyruvate is produced, its flux branches off and a fraction ρ of pyruvate is

transferred to the mitochondria by the mitochondrial pyruvate carrier and converted
into ACoA. During glycolysis, the mitochondrial pyruvate dehydrogenase complex
catalyzes the oxidative decarboxylation of pyruvate to produce ACoA [36, 47].

Pathway j: conversion of ACoA to citrate
In the mitochondria, the enzyme citrate synthase catalyzes the conversion of

ACoA and oxaloacetate into citrate [47].
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Pathway k: fatty acids utilized in production of ACoA
During the shedding and subsequent phagocytosis of the OS, a source of fatty

acids is created [1]. This itself can be used for metabolism, and feeds directly into
ACoA. As depicted in pathway k, we use G3P as a proxy for the substrates that are
created through β-oxidation (the process by which fatty acid molecules are broken
down in the mitochondria to generate ACoA). G3P is converted to lipids which
form the photoreceptor’s OS that eventually get shed and become phagolysosomes
containing fatty acids. These fatty acids can be oxidized and generate ACoA. ACoA
leads to the production of β-Hydroxybutyrate (β-HB) via ketogenesis which can be
used as an oxidative substrate in the TCA cycle when glucose is low. In conditions
of glucose starvation, fatty acids are released, broken down, oxidized, and used to
produce ketones that can be used to fuel the cone cell. In our mathematical model,
we do not directly model ketogenesis but instead G3P serves as a proxy for β-
oxidation of fatty acids from ingested OS.

Pathway l: diversion of citrate to the cytosol and other metabolic pathways
Citrate in the mitochondria can be oxidized via the TCA cycle, or it can be

moved to the cytosol to be cleaved by ATP citrate lyase, which regenerates ACoA
and oxaloacetate. This pathway redirects ACoA away from the mitchondria under
conditions of glucose excess [47]. It reduces the glycolytic flux coming into the
TCA cycle and signals the cone cell that ATP is high and there is no need for glucose
metabolism.

2.2 Model Equations

Following the flow diagram given in Fig. 2, we apply mass-action Michaelis-Menten
kinetics and allosteric regulations to the relevant parts of the variable interactions to
yield the resulting system of equations:

d[G]
dt

=
a︷ ︸︸ ︷

λ(GE − [G])

b︷ ︸︸ ︷(
V[G](δ[G3P])2

K2[G] + (δ[G3P])2
+ n

)

−

⎛
⎜⎜⎜⎝

c︷ ︸︸ ︷
qV[G3P][G]2

K2
[G3P] + [G]2

+

d︷ ︸︸ ︷
(1 − q)V[PYR][G]2

K2
[PYR] + [G]2

⎞
⎟⎟⎟⎠

e︷ ︸︸ ︷(
1

1 + β[CIT]

)
(1)

d[G3P]
dt

=

c︷ ︸︸ ︷
qV[G3P][G]2

K2
[G3P] + [G]2

e︷ ︸︸ ︷(
1

1 + β[CIT]

)
−

k︷ ︸︸ ︷
α[G3P] (2)
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d[PYR]
dt

=

d︷ ︸︸ ︷
(1 − q)V[PYR][G]2

K2
[PYR] + [G]2

e︷ ︸︸ ︷(
1

1 + β[CIT]

)

−
g︷ ︸︸ ︷

(1 − ρ)V[LACT][PYR]
K[LACT] + [PYR] −

i︷ ︸︸ ︷
ρV[ACoA][PYR]

K[ACoA] + [PYR] (3)

d[LACT]
dt

=
g︷ ︸︸ ︷

(1 − ρ)V[LACT][PYR]
K[LACT] + [PYR] −

f︷ ︸︸ ︷
f ([LACT])([LACT] − LE) (4)

d[ACoA]
dt

=
i︷ ︸︸ ︷

ρV[ACoA][PYR]
K[ACoA] + [PYR] +

h︷ ︸︸ ︷
h([LACT])(LE − [LACT])

−
j︷ ︸︸ ︷

V[CIT][ACoA]
K[CIT] + [ACoA] +

k︷ ︸︸ ︷
α[G3P] (5)

d[CIT]
dt

=
j︷ ︸︸ ︷

V[CIT][ACoA]
K[CIT] + [ACoA] −

l︷ ︸︸ ︷
φ[CIT] (6)

The model consists of 25 parameters defining various metabolic kinetic processes
affecting internal [G], [PYR], and internal [LACT] within a cone cell; see Table 2.
Since we are not incorporating the RPE and the rod cells, we consider three
intermediate metabolites, G3P, ACoA, and citrate, that affect energy production and
are sources of feedback mechanisms. The former two provide feedback mechanisms
for glucose and fatty acids (in the form of β-HB) to enter the cone cell. They are
proxies for mechanisms being mediated by the RPE and rod cells. The metabolite
G3P in a healthy cone cell can be used to approximate the rods that synthesize
RdCVF as well as the fatty acids that are β-oxidized, converted to β-HB, and
contribute to ACoA. The intermediate metabolite ACoA is a product of pyruvate
and OS fatty acids and is the entry point of the citric acid cycle, also known as
the Krebs cycle or tricarboxylic acid (TCA) cycle. Citrate provides a self-regulating
mechanism through its inhibition of PFK. If citrate builds up, it signals the cell that
the citric acid cycle is backed up and does not need more intermediates to create
ATP, slowing down glycolysis. This in turn reduces the production of pyruvate
and lactate. The six key metabolic processes under consideration in this study are
described by equations (1)–(6) and the 25 parameters, following key features of
photoreceptor biochemistry [10, 29, 31]. As such, we define glycerol-3-phosphate as
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Table 2 Parameter descriptions and units

Parameter Description Units

λ Transport conversion factor mM−1

V[G] Maximum transport rate of glucose mM·min−1

K[G] Substrate concentration that gives half the maximal rate of V[G] mM

n Rate of passive glucose transport in the absence of RdCVF mM·min−1

δ Scaling factor for contribution of RdCVF by rods no units

q Fraction of G converted into G3P no units

V[G3P] Maximum production rate of G3P mM·min−1

K[G3P] Substrate concentration that gives half the maximal rate of V[G3P] mM

V[PYR] Maximum production rate of PYR mM·min−1

K[PYR] Substrate concentration that gives half the maximal rate of V[PYR] mM

β Rate of CIT inhibition of G catabolism (multiplied by an
appropriate conversion factor)

mM−1

α Rate of β-oxidation of ingested OS fatty acids (created from G3P) min−1

to generate the β-HB substrate for ACoA

ρ Fraction of PYR converted into ACoA no units

V[LACT] Maximum production rate of LACT mM·min−1

K[LACT] Substrate concentration that gives half the maximal rate of V[LACT] mM

V[ACoA] Maximum production rate of ACoA mM·min−1

K[ACoA] Substrate concentration that gives half the maximal rate of V[ACoA] mM

φ Rate of CIT converted to ATP min−1

V[CIT] Maximum production rate of CIT mM·min−1

K[CIT] Substrate concentration that gives half the maximal rate of V[CIT] mM

ψ Maximum velocity of lactate transport min−1

k Measurement of binding affinity of lactate transporter mM−1

γ Maximum velocity of lactate transport contributing to ACoA min−1

GE Concentration of glucose outside the cell mM

LE Concentration of lactate outside the cell mM

G3P, which should not be confused with glyceraldehyde-3-phosphate (abbreviated
as GAP, G3P, and GA3P in some literature).

Equation (1) describes the rate of change with respect to time of the glucose
concentration. It increases or decreases proportionally to bidirectional glucose
transport and decreases by catalysis. The transport function of [G3P] [10]:

λn + λ
V[G](δ[G3P])2

K2[G] + (δ[G3P])2
(7)

accounts for the passive transport term (first term of Equation (7)) and the facilitated
transport term (second term of Equation (7)). In passive transport, glucose crosses
the membrane without activation and stimulation by the facilitated transporter
GLUT1, while in facilitated transport, RdCVF stimulates the transport activity of
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GLUT1 by triggering its tetramerization and accelerating the uptake of glucose [10].
The expression δ[G3P] accounts for the concentration of RdCVF synthesized by rod
phothoreceptors since it is assumed that RdCVF concentration is in proportion to
[G3P].1

We model q as the fraction of [G] that is converted into [G3P] and 1 − q as
the remaining fraction of [G] that is converted into [PYR]. The metabolism of
glucose into these two metabolites is inhibited by [CIT], where β is the rate of
citrate inhibition of glucose catabolism.

Equation (2) describes the rate of change with respect to time of the G3P
concentration. [G3P] increases with an influx of glucose, which is inhibited by
citrate, and decreases by production of OS, which serves as a measurement of β-
oxidation of ingested OS fatty acids that contribute to the production of ACoA. We
are taking catabolism of α[G3P] as a proxy for OS fatty acids converted into ACoA.2

Equation (3) describes the rate of change with respect to time of the pyruvate
concentration. [PYR] increases with an influx of glucose, which is inhibited by
citrate, and decreases by its conversion into lactate and ACoA. The factor (1 − ρ)

accounts for the fraction of [PYR] converted into lactate while ρ accounts for the
fraction of [PYR] converted into ACoA.

Equation (4) describes the rate of change with respect to time of the lactate
concentration. [LACT] increases by conversion of pyruvate to lactate via aerobic
glycolosis and increases or decreases by bidirectional lactate transport. The lactate
transport rate is modeled with a logistic function as follows:

f ([LACT]) = ψ

1 + e−k
([LACT]−LE

) , (8)

where ψ is the maximum transport rate, LE is the extracellular concentration of
lactate, and k is the binding affinity of lactate transporters which corresponds to the
steepness of the curve f .

Since LE accounts for the lactate concentration outside of the cell, the gradient
flux of lactate is from inside to outside of the cell when [LACT] > LE , while
the opposite gradient flow occurs when [LACT] < LE . If external lactate is in
abundance, then the transport rate out of the cell is very small, i.e.,

f ([LACT]) ≈ 0, when LE � [LACT].

In other words, if lactate inside of the cell is scarce, relative to external lactate,
then the transport of lactate out of the cell is a slow process. If the intracellular

1There are approximately 20 rods per each cone in the human retina (and 25 to one in mice retina).
G3P leads to the production of lipids which result in new photoreceptor OS. Thus we take [G3P]
as a proxy for rods with the appropriate scaling factor incorporated into δ, the scaling factor for
contribution of RdCVF by rods.
2Since we are not considering the RPE, we will utilize α[G3P] as a proxy for the metabolite β-
hydroxybutyrate produced by the PRE and utilized by the photoreceptor’s TCA.
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lactate concentration is much larger than the extracellular concentration, then lactate
transport out of the cell is faster, i.e.,

f ([LACT]) ≈ ψ, when [LACT] � LE.

Equation (5) describes the rate of change with respect to time of the ACoA
concentration. [ACoA] increases by PYR leakage to the mitochondria and β-HB
produced from OS fatty acids generated by G3P lipid synthesis. It also increases
or decreases by bidirectional lactate transport and decreases by its conversion into
citrate. The lactate transport rate is modeled with a logistic function as follows:

h([LACT]) = γ e−k
([LACT]−LE

)

1 + e−k
([LACT]−LE

) , (9)

where γ is the maximum transport rate and k is the steepness of the curve
h([LACT]).3 The extracellular lactate that comes into the cell gets converted into
pyruvate which is immediately shuttled to the mitochondria for OXPHOS, and there
is no re-conversion of lactate. Mathematically, this means that we can directly model
the gradient influx of external lactate into the mitochondria and the conversion of
this lactate to ACoA with the transport rate h([LACT]). The conversion of LE to
ACoA is metabolically faster when external lactate is in abundance, i.e.,

h([LACT]) ≈ γ, when LE � [LACT].

However, when the LE is scarce, its contribution to the production of ACoA is
negligible, i.e.,

h([LACT]) ≈ 0, when [LACT] � LE.

Equation (6) describes the rate of change with respect to time of the citrate
concentration. [CIT] increases by the conversion of ACoA into citrate and decreases
by its conversion into other intermediate metabolites leading to the creation of ATP.

In our model every resulting product becomes the substrate in the next metabolic
reaction, with the exception of citrate, the last metabolite in our sequence of
metabolic reactions, and lactate, which is modulated by LE . The metabolic conver-
sion of the substrates [G], [G3P], [PYR], and [ACoA] into their respective products,
given by the variables in equations (1)–(6), are modeled with Hill type functions:

VmSn

Kn
d + Sn

,

3By the inverse relation of the functions f ([LACT]) and h([LACT]), the parameters k and LE

have the analogous meaning with respect to each function.
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where Vm is the maximal velocity of the reaction, Kd is the dissociation constant
(or equivalently concentration of the substrate at which the conversion rate achieves
its half-maximum value) and n = 1, 2 is the Hill coefficient. This coefficient relates
to the number of binding sites available in the enzyme. When there is cooperative
binding, n is greater than one, illustrating higher binding affinity of the substrate to
the enzyme [46]. We modeled allosteric regulation kinetics with n = 2, indicative of
multiple binding sites and enzyme cooperation, which results in increased substrate
conversion rates after the first binding event.

2.3 Parameter Values

All model parameters and their meaning are described in Table 2. We performed
an extensive literature search to identify and justify parameter values and ranges
used in the model; see Table 3. When human values were not available, we used
animal values. Note that even through V[G3P] and V[PYR] have the same baseline
values, their corresponding range values, used later for the sensitivity analysis, are
different. When metabolic parameter values for retina cells were not available, we
used values from brain, heart, liver, or muscle tissues. Cancer cells can also serve
as a case study to investigate the predictive capabilities of our model, as they also
exhibit the Warburg effect, converting glucose to lactate even in the presence of
oxygen. Since both cancer and photoreceptor cells utilize aerobic glycolysis for
metabolism and both are high energy demanding cells, we used cancer data to see
how well our cone cell model extends to other aerobic glycolysis systems.

3 Numerical Results

3.1 Model Validation

With parameter values in empirical ranges, we first verified that the model predicts
a temporal evolution comparable to that observed in data. To do this, we compared
model simulations with results from an empirical study in cancer cells, which
provided measurements of the intracellular concentrations of glucose, lactate,
and pyruvate over a period of four hours [54]. Ying et al. [54] measured these
concentrations at six time points (0, 0.5, 1, 2, 3, and 4 h). 4T1 (breast cancer
line) cells were cultured in 10 mM of both glucose and lactate with a pH of
7.4. The concentrations of glucose, lactate, and pyruvate were measured using a
spectrophotometer.4 We averaged the experimental results and used the resulting

4The authors generously shared their data used to generate their Figure 1B for three cells for each
experiment.
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Table 4 Time series averages of glucose, lactate, and pyruvate [54]

Time (hours) Lactate (mM) Glucose (mM) Pyruvate (mM)

0 2.8 1.87 0.042

0.5 13.39 7.98 0.1014

1 21.78 10.49 0.1358

2 21.55 9.81 0.1360

3 21.38 9.62 0.1469

4 21.98 8.49 0.1362

data, given in Table 4, as a first step in validating our model for an aerobic glycolysis
system.

To account for the distinct molecular dynamics and the increased proliferation
rates specific to cancer cells, we considered slightly different values for ten param-
eters than those for a healthy cone cell. See Table 3 for the ten parameter values
labeled as estimated. The different parameters showed that a cancer cell undergoes
aerobic gycolysis in a more disorganized manner while the aerobic glycolysis
process in a cone cell is more controlled. The different parameter values in cancer
revealed less controlled lactate transport in and out of the cell, with significantly
slower lactate transport contributing to ACoA, a faster pace of cell growth, a
slightly higher glucose flux, lower ability to self-regulate glycolysis through citrate
inhibition or less abundance of ATP, and less production of intermediate metabolites
for ATP production by citrate. The differences in these mechanisms are defined
by a much lower k value (0.45 versus 10) in the gating functions h([LACT])
and f ([LACT]), which illustrates back flow and not a complete on-off gating
mechanism of lactate exchange between the extracellular and intracellular space
with a significantly smaller γ , velocity of lactate transport into the cell for ACoA
production; a higher fraction q of glucose converted to G3P for lipid synthesis and
cell growth, which confirms the rapid cancer cell division and growth; a slightly
larger range of glucose transport conversion factor λ, indicating more glucose
supply variability, including a higher demand for glucose; smaller citrate inhibition
of glycolysis β, signifying less self-regulation or potentially less abundance of ATP;
and smaller rate φ of converting citrate to ATP, illustrating a reduction in ATP. The
lack of tight metabolic regulation in cancer was further shown by the two fold
increase in external lactate LE , and the faster metabolic reaction of [CIT], given
by the value of V[CIT], and the larger K[CIT] substrate concentration that gives half
the maximal rate of V[CIT].

The model simulations show a good fit with the data, with all three concentrations
stabilizing to their steady states within a little over an hour, as shown in Fig. 3. Our
model assumes a constant external glucose flow allowing for steady levels of [G]
to be achieved while the experimental data comes from cultured cells leading to an
eventual decay in [G]. Though there are many similarities in metabolism between
cancer cells and photoreceptors in that both cell types exhibit the Warburg effect,
retinal cell parameters differ. However, this qualitative match to data is a good
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Fig. 3 Fitting model predictions with data from cancer cells. In each panel, the black curve
shows the average empirical values, with error bars describing variability (standard deviation) over
a population of three measured cells [54]. The blue curve represents our predicted solution. The
parameters used are as follows: λ = 0.0755, ρ = 0.05, ξ = 8, δ = 65, α = 0.2, β = 1, q = 0.38, n

= 0.001, GE = 13, k = 0.45, γ = 0.015, φ = 0.5, LE = 22, V[G] = 1.2, K[G] = 19, V[G3P] = 0.15,
K[G3P] = 0.143, V[PYR] = 0.15, K[PYR] = 1.7, V[LACT] = 0.14, K[LACT] = 0.125, V[ACoA] = 0.15,
K[ACoA] n 0.02, V[CIT] = 0.1, K[CIT] = 0.5. Initial conditions for the simulation were chosen to
agree with the average empirical ones (in mM): [G] = 1.87; [G3P] = 0.12; [PYR] = 0.042; [LACT]
= 2.8; [ACoA] = 0.03; [CIT] = 0.02

proof of concept for our model, which can now be tuned to parameters specific
for photoreceptors.

3.2 Bifurcation Analysis and Bistability Ranges

As expected, the long-term dynamics of the system depend on its parameter values,
and is altered by parameter perturbations. The model’s sensitivity to changes and
uncertainty in its parameters, which define various key mechanisms of the cone
metobolic system, are further analyzed in Sect. 3.3. Here, we observe the effects
of perturbing specific key parameters, and discuss the crucial consequences of the
number and position of steady states (which correspond to specific physiological
states and may distinguish between viability or failure of the system).

We first analyzed the changes in dynamics in response to variations in the
external glucose concentration, GE . Figure 4 shows the system’s equilibria and their
evolution and phase transitions as GE is increased within the range of 0–13 mM.
Each panel illustrates separately the projection of the same equilibrium curve along
each of the variables in the system, representing key metabolite concentrations.
The figure suggests that a reduced extracellular glucose supply below 2.6 mM (i.e.,
GE < 2.6 mM) cannot successfully sustain the system and elevate internal glucose
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Fig. 4 Equilibrium curves and bifurcations with respect toGE . As the level of external glucose
is varied between GE=0–13 mM, the equilibria of the system are plotted, each panel representing
a different component of the same equilibrium curves. There are two locally stable equilibrium
branches shown as green and blue solid curves, and a saddle equilibrium, shown as a dotted red
curve. The bistability window onsets with a saddle node bifurcation at GE ∼ 2.6 mM (brown
square marker), and closes with another saddle node bifurcation at GE ∼ 11.6 mM (purple square
marker). The other system parameters were held fixed as: λ = 0.0755, n = 0.001, δ = 65, q = 0.18,
β = 1, α=0.2, ρ = 0.05, ϕ = 1, ψ = 8, k = 10, γ = 1, LE = 10; V[G] = 1.2, K[G] = 19, V[G3P] = 0.15,
K[G3P] = 0.143, V[PYR] = 0.15, K[PYR] = 1.7, V[LACT] = 0.14, K[LACT] = 0.125, V[ACoA] = 0.15,
K[ACoA] = 0.02, V[CIT] = 0.03, K[CIT] = 0.0054

to a viable range. In this regime of GE < 2.6 mM, the only attainable long-
term physiological state, represented by the only stable equilibirum reachable from
any initial conditions, is a “low functioning” stable state, shown as a green solid
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curve in the figure, and characterized by [LACT] ∼10 mM with all other metabolite
concentrations close to zero. This represents a pathological state of the cone.

At GE ∼ 2.6 mM, the system undergoes a saddle node bifurcation. If the external
glucose level is raised past this phase transition value, the system enters a bistability
regime, where a second, “viable” physiological steady state becomes available, with
metabolite concentration levels in all components within a range for a healthy cone
cell (illustrated in our panels as a blue solid branch of the equilibrium curve).
Depending on the initial concentrations of the six metabolites in our model, the
cone cell metabolism may converge to either the pathological or the healthy state.
The [G], [G3P], [PYR], [LACT], [ACoA], and [CIT] levels change in response
to GE being further increased up to 13 mM. The internal glucose concentration
[G] increases (up to ∼4.5 mM), and so does the steady state level of [PYR], all the
other components remain relatively unaltered, after a transient following up the birth
of the second steady state. This shows the importance of external glucose and the
components that alter it in driving the system via glucose and pyruvate metabolism.

The bistability window persists up to GE ∼ 11.6 mM, allowing different initial
conditions to converge to one of two locally attracting equilibria (the green and
the blue curves, separated by the unstable saddle shown as a red dotted curve).
Convergence of different initial states in different attraction basins to either of the
two stable steady states is further illustrated in Fig. 5. We show a [G]-[LACT] phase

Fig. 5 Schematic representation of coexistence of equilibria within the bistability window,
shown in a phase-space two-dimensional slice [G]-[LACT]. The two stable equilibria are
shown as a green and a blue dot. A third, saddle equilibrium is shown as a red dot. A few
simulated trajectories converging to the green equilibrium are shown as green curves, and simulated
trajectories which converge to the blue equilibrium are shown as blue curves. The stable manifold
of the saddle was symbolically drawn as a dotted black curve. The fixed parameters are the
same as in Fig. 4. Figure 6 provides a more complete representation of all components for two
representative solutions corresponding to two different initial conditions; one converging to the
green dot, and one converging to the blue dot, for GE=11.5 mM
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Fig. 6 Simulation of two solutions converging to the two different locally attracting equilib-
ria, for our system in the bistability regime (with external glucose concentration GE=11.5 mM
and the rest of the parameters as in Figs. 4 and 5). The left versus the right panels represent
two trajectories which differ only in their initial glucose concentration level. The other initial
concentration are [G3P]=[PYR]=[ACoA]=[CIT]=0, and [LACT] = 9.4 mM. Left. Initial glucose
level [G] = 0.02 mM. The system converges to a non-viable steady state in which all concentrations
are close to zero, except for lactate. Right. Initial glucose level [G] = 2 mM. The system converges
to a biologically viable/ healthy steady state as observed in empirical studies

space slice, for a value of GE within the bistability range. For a more complete
illustration, Fig. 6 shows two potential evolutions of the system in the bistability
regime (for GE = 10 mM). The left panel illustrates all components of the solution
for a set of initial conditions in the basin of attraction of the green (“low functioning”
or unhealthy) stable state, and the right panel for the blue (“high functioning”
or healthy) steady state. The bistability window ends at GE ∼ 11.6 mM, and
henceforth the healthy equilibrium remains the only attainable state in the long
run. The basin of attraction provides a range for the initial concentration levels of
our six metabolites that will drive the system to either the pathological or healthy
state depending on the parameter values. Investigating how varying the parameters
leads to one of these two states provides potential mechanisms that can be altered
as potential therapies for improving cone vitality and sight.

Tracking the behavior of the system in response to varying the transport
conversion factor λ, or the rate of passive glucose transport n, leads to very similar
bifurcation diagrams, bistability windows, and variable ranges. Thus, they are not
further illustrated here. Instead, we focus on α, the rate of β-oxidation of ingested
OS fatty acids created from G3P. While there is a bistability regime that lives
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Fig. 7 Equilibrium curves and bifurcations with respect to α. As the rate α is varied between 0
and 1 min−1, the equilibria of the system are plotted, each panel representing a different component
of the same equilibrium curves. There are two locally stable equilibrium branches shown as green
and blue solid curves, and a saddle equilibrium, shown as a dotted red curve. The bistability
window onsets with a saddle node bifurcation at α ∼ 0.17 min−1 (brown square marker), and
closes with another saddle node bifurcation at α ∼ 0.43 min−1 (purple square marker). GE was
fixed to 10 mM. The other system parameters were held fixed as in Fig. 4

between two saddle node points, the evolution of the system when varying α through
these phase transitions is qualitatively different. We illustrate this behavior in Fig. 7.

When the rate of β-oxidation of fatty acids (α) exceeds the bifurcation value
0.43 min−1, the system exhibits a unique locally stable equilibrium (solid green
curve). This is a low functioning/unhealthy equilibrium, in the sense that all system
components stabilize close to zero, except for [LACT] which stabilizes close to
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10 mM, the external lactate value. Our analyses reveal that prolonged high rates
of β-oxidation (beyond 0.43 min−1) which exist under extreme glucose starvation
and scarce key metabolites will result in the pathological unhealthy state without
any alternative for reprogramming the cone to a healthy state by altering certain
processes or mechanisms. Further, our findings show that the gating mechanisms of
lactate transport in the cone cell is a tightly controlled mechanism and thus always
stabilizes close to the external lactate concentration.

Varying α above the bistability regime does not have significant impact on the
long term outcome. However, when α is reduced past the saddle node bifurcation
(purple marker), the system suddenly enters its bistability regime and gains access
to a second, high functioning/healthy steady state (blue solid curve). Rates of β-
oxidation higher than 0.17 min−1 and lower than 0.43 min−1 provide the possibility
of reprogramming the cone to a healthy state by altering certain processes and mech-
anisms. When α is decreased past the lower saddle node bifurcation at ∼0.17 min−1,
the green curve disappears in the collision with the unstable equilibrium, and the
high functioning steady state becomes the only stable long term outcome. This result
confirms that low rates of β-oxidation are aligned with a robust healthy metabolic
state for the cone that can not be perturbed.

Since the blue curve represents the healthy viable outcome, and in fact the only
stable outcome for small enough values of α, it is useful to track its progression
in response to perturbations of the parameter. As α is progressively lowered, there
is first an increase in all steady state components of the system. After an initial
upward and then downward transient, the [ACoA] and [CIT] concentrations will
consistently settle to the same relatively low states ([ACoA] ∼0.02 mM and [CIT]
∼0.025 mM) as α approaches zero. The other steady state components will continue
to increase as α approaches zero. While [G], [PYR], and [LACT] still settle to values
in the biological range, [G3P] exhibits a blowup as α approaches zero. This is not
at all surprising, since the [G3P] concentration is the compartment affected most
directly by the shutdown of pathway k (i.e., by reducing to zero the β-oxidation of
ingested OS fatty acids created from G3P). Under starvation or additional need of
energy, β-oxidation of fatty acids becomes a key substrate to fuel ATP production
in the TCA cycle. The bifurcation analysis for α shows that when initial [G], [PYR],
and [G3P] levels are relatively low, α has the ability to change the fate of the cone
cell and its metabolism. But α can only do this within a small range of values. This
shows that this process of creating energy via intermediate substrates created from
β-oxidation of fatty acids is mainly an auxiliary process and the main process by
which the cell relies on intermediate metabolites and substrates.

3.3 Sensitivity Analysis

We use sensitivity analysis to determine which processes have the greatest impact on
the intracellular concentrations tracked by the model. Sensitivity analysis includes
the following general steps: (i) vary the model parameters, (ii) perform model
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simulations, (iii) collect information on an output of interest (this can be the
model output or another outcome), and (iv) calculate sensitivity measures. There
are local and global sensitivity analysis methods. In local methods, parameters are
varied one at a time, and in global methods, all parameters are varied at the same
time. Examples of global sensitivity analysis methods include Latin Hypercube
Sampling/Partial Rank Correlation Coefficient (LHS/PRCC), the Sobol method, and
Extended Fourier Amplitude Sensitivity Test (eFAST). Depending on the technique
used, sensitivity measures are called coefficients or indices, and they indicate
the impact of parameter changes on the output of interest [34]. In LHS/PRCC,
the sensitivity measure is named the partial rank correlation coefficient (PRCC).
This method can only be applied when parameter variations result in monotonic
changes in the output [7, 34]. However, the advantages of LHS/PRCC compared to
other global methods are simplicity and much lower computational demand. The
magnitude of the PRCC values provides information about parameter influence on
the outcome of interest.

If the PRCC magnitude is greater than 0.4, the outcome of interest is considered
sensitive to changes in the corresponding parameter [34]. The sign of a PRCC
value shows if the corresponding parameter and the output are directly or inversely
related. A positive coefficient indicates that the parameter and the output move in
the same direction. A negative coefficient means they move in opposite directions,
so as a parameter increases, the output decreases, and vice versa [7, 34]. In
LHS/PRCC, parameters are varied simultaneously using Latin hypercube sampling
(LHS). This involves assigning a probability distribution to each parameter, dividing
the distribution into areas of equal probability and drawing at random and without
replacement a value from every area [7, 34]. With LHS/PRCC, we can examine how
a specific output is affected by an increase or decrease in a specific parameter, which
can be useful for identifying the best parameters to target for control. Additionally,
with LHS/PRCC we can explore how changes in initial conditions influence an
outcome of interest [34].

The eFAST method can be conducted in the case when there are non-monotonic
relationships between parameters (i.e., inputs) and a specific output of interest, but
this approach is more computationally expensive than LHS/PRCC. In eFAST, the
sensitivity measures are called sensitivity indices and they quantify the portion of
variance in the outcome due to uncertainties in the parameters. There is a first order
sensitivity index and total order sensitivity index. The first order index is a measure
of how a parameter contributes to the output variance individually. The total order
index shows the contribution a parameter makes to the output variance individually
and in interaction with other parameters.

The magnitude of sensitivity indices determines the importance of parameters
[34, 44, 45]. In eFAST, parameters are varied at the same time using a sinusoidal
search curve, where angular frequency is specified for each parameter. To compute
the sensitivity indices for a given parameter, a high frequency is assigned to that
parameter, while all other parameters are assigned a low frequency [34, 44, 45].
With eFAST, we can examine which parameter uncertainties have the largest impact
on output variability [34]. Due to the intricacies and complexity of eFAST, initial
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conditions are rarely used as input factors. In the next section, we present the results
of our sensitivity analysis using both the LHS/PRCC and eFAST methods.

3.4 Sensitivity Results

The results of our sensitivity analysis are summarized in Table 5, which correspond
to the detailed results shown in Figs. 8, 9, and 10. For the normal photoreceptor
model, parameters are varied over their corresponding ranges given in Table 3. For
the case of cancer conditions, due to insufficient information regarding parameter
ranges, we allowed for 30% variation around nominal values.

3.4.1 Cancer Conditions

Both the LHS/PRCC and the eFAST sensitivity analysis results for cancer condi-
tions show that the glucose level inside the cell, [G], is most sensitive to changes in
the parameter GE , the concentration of glucose outside the cell. The two methods
also classify as important q (the fraction of glucose converted into G3P), δ (the
increased uptake of glucose facilitated by hypoxia inducible factor 1 signaling,
which up-regulates the expression of the glucose transporter GLUT1, for cancer
cells [24]), V[G] (the maximum transport rate of glucose), λ (the transport conversion
factor), α (the rate of β-oxidation of fatty acids [created from G3P]), and K[G] (the
substrate concentration giving half the maximal rate of V[G]). These parameters are
involved in three key processes responsible for cell energy and growth; total glucose
uptake (a catalyst in both), the utilization of G3P in β-oxidation (that results in β-HB
which can be used as an oxidative substrate in the TCA cycle), and the production
of G3P for lipid synthesis (which is essential for growth). The PRCC results also
reveal that changes in the glucose concentration are inversely related with changes
in the parameters α and K[G]; see Fig. 8.

The PRCC and eFAST analyses for cancer conditions both reveal that the
pyruvate concentration, [PYR], is sensitive to variation in the parameters which
capture the maximum production rate of lactate and pyruvate (V[LACT] and V[PYR],
respectively) and the fraction of glucose converted into G3P (q); see Table 5. The
negative PRCC values corresponding to the sensitivity of [PYR] to changes in q and
V[LACT] indicate that as the fraction of glucose diverted into G3P and the maximum
production rate of lactate decrease, the pyruvate concentration, [PYR], increases.
The PRCC approach also highlights how [PYR] is affected by K[LACT], which
measures the pyruvate concentration that gives half the maximal rate of V[LACT].
Changes in the chemical reaction of [LACT], in particular change in the mechanisms
within as defined by parameters V[LACT] and K[LACT], affect the resulting [PYR] levels.

According to both sensitivity analysis methods, the lactate concentration level
inside a cancer cell, [LACT], is significantly influenced by the concentration of
lactate outside the cell, LE , both in its overall levels and its variability. The eFAST
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Fig. 8 Sensitivity results for [G] using eFAST (top) and LHS/PRCC (bottom) for cancer
conditions. These are the graphical results that are entered in the Cancer conditions column of
Table 5 for [G]. Both methods show that [G], the glucose level inside the cell, is most sensitive to
changes in the parameter GE . Inspection of the top and bottom graphs shows comparable relative
impact on [G] for the remaining parameters, with the exception of V[G3P] which stands out as
influential using PRCC but not eFAST

approach highlights two additional parameters that affect the variability of [LACT].
Uncertainty in the maximum production rate of pyruvate, V[PYR], and the binding
affinity level of the lactate transporter, k, will result in the variability of [LACT]. The
sensitivity results for [G], [PYR], and [LACT] indicate that the initial biochemical
reactions in the gycolysis pathway are sensitive to more mechanisms, as illustrated
by the number of parameters in the corresponding cases in the Cancer conditions
column of Table 5, than the reactions further downstream not including the reactions
in the TCA and the Kennedy pathways.
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Fig. 9 Sensitivity results for [PYR] using eFAST (top) and LHS/PRCC (bottom) using
normal photoreceptor conditions with [G](0) = 2. These are the graphical results that are
entered in the relevant column of Table 5 for [PYR]. The graphs illustrate agreement in the
importance of α and V[PYR]

3.4.2 Normal Cone Cell

Both the LHS/PRCC and eFAST methods show that for a cone cell, where model
simulations are performed with initial condition for glucose of [G](0) = 0.02, the
glucose concentration is sensitive to changes in the level of external glucose (GE).
The results from the eFAST approach indicate that uncertainty in the rate of β-
oxidation of ingested OS fatty acids (created from G3P) (α) has the more significant
impact in the variability of [G]. For low initial concentration levels of glucose there
are more mechanisms affecting [G] variability as indicated by the eFAST results.
The LHS/PRCC and eFAST sensitivity results also have other differences. While
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Fig. 10 Sensitivity results for [LACT] using eFAST (top) and LHS/PRCC (bottom) using
normal photoreceptor conditions with [G](0) = 0.02. These are the graphical results that are
entered in the relevant column of Table 5 for [LACT]. While eFAST classified LE and α as most
influential, PRCC determined that the initial lactate concentration is most important; see the text
for further discussion of these results

PRCC highlights the substrate concentration that gives the half-maximum rate of
V[G3P] as having an impact on the intracellular glucose concentration, this parameter
is not classified as important by eFAST. On the other hand, eFAST indicates that
[G] is sensitive to variation in the parameters K[G], V[G], and V[PYR].

The eFAST results using a higher initial condition for glucose of [G](0) = 2
show that the processes important for the intracellular glucose level are β-oxidation
of OS fatty acids, external glucose, glucose uptake, and pyruvate production. In
addition to indicating the impact of these factors, the PRCC method highlights
the influence of converting glucose to G3P. For [G](0) = 2, the same parameters
impact [G] in the eFAST results. However, for PRCC the number of mechanisms
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affecting [G] increases, so now changes in seven parameters (as opposed to two)
affect [G]. These parameters are involved in glucose uptake, [PYR] biochemical
reaction, glucose diversion to G3P, and β-oxidation. The negative sign of α in the
PRCC analysis indicates that the glucose level in a cone cell decreases as the cell
breaks down OS fatty acids at a higher rate to synthesize β-HB to be utilized as a
substrate in the production of ACoA.

According to the eFAST results with [G](0) = 0.02, the pyruvate concentration,
[PYR], in a cone cell is influenced by the oxidation of OS fatty acids (α), the amount
of glucose outside the cell (GE), the half limiting value of the glucose transport rate
(K[G]), the maximum rate of glucose transport (V[G]), and the maximum production
rate of pyruvate (V[PYR]). In PRCC only three parameters affect [PYR]; GE , K[PYR],
and K[G3P]. The substrate that gives the half-maximal rate of V[PYR], defined by
K[PYR], inversely affects [PYR]. An increase in K[PYR] will increase the amount of
substrate required for [PYR] to reach its saturation level.

The eFAST and PRCC results with [G](0) = 2 differ from those with lower
initial condition for glucose: eFAST no longer classifies external glucose and
glucose uptake as influential, and PRCC shows a whole new set of parameters as
being important. In addition, there are less mechanisms (defined by the model’s
parameters) affecting [PYR] in the eFAST results as compared with the LHS/PRCC
results for [G](0) = 2. Both sensitivity methods highlight [PYR] as being affected
by changes and uncertainties in the parameters that describe β-oxidation and
maximum production rate of [PYR], α and V[PYR], respectively. The PRCC results
indicate an inverse relationship between variation in α and K[G] and changes in
[PYR]. PRCC also identifies the process of diverting glucose to G3P for production
of OS, which are rich in fatty acids, as having a strong effect. See Fig. 9 for the case
with initial condition [G](0) = 2.

When the intracellular lactate level, [LACT], is the outcome of interest, both
sensitivity analysis methods show as important the extracellular lactate level (LE)
when [G](0) = 2. The eFAST results also classify the processes of β-oxidation of OS
fatty acids from lipids produced by G3P (α) and the half-limiting value of glucose
transport (K[G]) as having an impact on [LACT]. The eFAST results for [LACT]
were the same for [G](0) = 0.02 and [G](0) = 2. The PRCC results show that only
the lactate initial condition has an impact on the concentration of lactate inside the
cell when the initial internal glucose concentration is low; see Fig. 10 for the case of
with initial condition [G](0) = 0.02. The relatively small number of parameters that
affect [LACT] levels and variability indicates the strong pull of these mechanisms
(or parameters) to try to bring the external and internal lactate levels to a balance.

For both [G](0) = 0.02 and [G](0) = 2, PRCC and eFAST indicate that β-
oxidation of OS fatty acids from lipids produced by G3P (α) is the most important
process for the level and variability of [G3P]. In addition, PRCC shows that external
glucose (GE) and the half-limiting value of pyruvate production (K[PYR]) have an
impact on the [G3P] level for [G](0) = 0.02, while at the higher initial condition
for glucose, important factors are the conversion of glucose to G3P (q) and the
maximum production rate of G3P (V[G3P]).
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The eFAST results show that uncertainty in the same parameters influences the
variability of [AcoA] at both [G](0) = 0.02 and [G](0) = 2. These parameters are LE

(external lactate level), α (β-oxidation of OS fatty acids), and γ (maximum velocity
of lactate transport contributing to AcoA). PRCC also highlights γ as important but
only for [G](0) = 0.02. With both initial conditions for glucose, the PRCC results
indicate that the external lactate level and the initial internal lactate concentration
have a strong impact on the level of ACoA.

The sensitivity results of [CIT] for [G](0) = 0.02 and [G](0) = 2 are the same
for both methods. PRCC and eFAST indicate that [CIT] is impacted by external
lactate (LE), rate of CIT conversion to ATP (φ), and the maximum production rate
of CIT (V[CIT]). The relative impact of these mechanisms differs within each method.
Uncertainties in external lactate affect the variability of [CIT] the most in eFAST,
with the rate of CIT conversion to ATP having the second largest impact. PRCC
reveals that φ affects [CIT] the most, with V[CIT] having the second largest impact.
An increase in the rate of CIT conversion to ATP reduces the concentration of CIT,
while an increase in the maximum production rate of CIT elevates [CIT].

Interestingly, across both the normal photoreceptor model and cancer conditions,
changes in α affect [G] and [G3P] but only [PYR] in the cone cell. In an analogous
manner, changes in external lactate, LE , affect [LACT], [ACoA], and [CIT] across
photoreceptor and cancer conditions (with one exception).

4 Discussion

4.1 Specific Comments on the Model

In this work, we developed and explored a mathematical model for the dynamics
in the metabolic pathways of a healthy photoreceptor cell. We validated our model
structure by comparing its predictions for concentrations of glucose, lactate, and
pyruvate to data collected in cancer cells [54], which are metabolically similar to
photoreceptors. In addition to developing the model structure, we also identified
parameter values and ranges through a comprehensive literature search. When
possible, we used values specific to photoreceptor cells and, if no measurements
existed, selected another cell type as a proxy.

We applied two different global sensitivity analysis methods (LHS/PRCC and
eFAST) and found the sensitive parameters resulting from each. PRCC reveals how
the output of a model is affected if a parameter is changed, whereas variance-based
methods such as eFAST measure which parameter uncertainty has the largest impact
on output variability [34]. Using these two sensitivity analysis approaches in unison,
we obtained a comprehensive view for which processes reflected in the equations
(via the parameters) have the greatest impact on the metabolic system.

This sensitivity analysis, for the case of a photoreceptor cell, revealed that exter-
nal glucose (reflected by GE) and β-oxidation of fatty acids from OS (generated
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by G3P lipid synthesis) for ACoA production (defined by α) significantly affect
the concentrations of glucose, G3P, and pyruvate at steady state (corresponding
to time equal to 240 minutes). The importance of external glucose indicates
that the effective metabolism of photoreceptors relies on sufficient availability of
glucose, their primary fuel resource. The influence of β-oxidation of fatty acids,
which links glycolysis occurring in the cytosol to oxidative phosphorylation in
the mitochondria, suggests that photoreceptor metabolism is modulated by this
feedback mechanism. The PRCC results also indicate that at a low initial level
of intracellular glucose, the pyruvate concentration is most sensitive to changes in
external glucose, while if greater amount of intracellular glucose is present initially,
the pyruvate concentration is most sensitive to changes in the rate of β-oxidation.

Our sensitivity analyses reveal that ACoA, CIT, and intracellular lactate are
impacted to the greatest extent by external lactate (LE). Furthermore, they are the
only metabolites sensitive to external lactate. This suggests that external lactate is
an important mechanism affecting oxidative phosphorylation, while it does not seem
to have a strong influence on the glycolysis pathway, where external glucose has a
crucial role.

We used bifurcation techniques to study the dependence of the system’s behavior
on the parameters, in particular on GE and α, identified as key parameters by
the sensitivity analysis. We found that the system undergoes two saddle node
bifurcations with respect to these parameters revealing bistability over a range of
parameter values. This is heartening, as a properly designed analysis should reveal
bifurcation parameters to be sensitive [34]. Bistability allowed us to investigate the
mechanisms, defined by the parameters, that can be altered to bring a cone to healthy
conditions from the pathological state. We were also able to determine key ranges
for GE and α as well as initial metabolite levels that will lead to one state versus
another with the aid of bifurcation curves and basins of attraction.

Our analysis found that the system behaves monotonically (broadly speaking)
as the external glucose concentration is increased. This is not surprising when
considering the molecular coupling: as more glucose is made available to the cell,
the internal glucose concentrations are expected to increase, driving in turn (via
pathways c and d) higher concentrations of G3P and PYR, respectively, and further
(via pathway g) a higher concentration of LACT. The level of [LACT] eventually
increase above the external concentration LE , preventing additional production of
[ACoA], and subsequently of [CIT]. Our bifurcation analysis also reveals that a very
low external source of glucose (less than 2.6 mM) cannot drive the cell to function
in a healthy regime, since in the long term all metabolites will be depleted without
an adequate source of glucose to maintain cone metabolism, except for the β-HB
and external lactate used as substrates for ATP production.

Increasing GE to an adequate level pushes the system into the bistability window,
with two potential, and very different outcomes. This opens up the possibility for
the cell to function in a healthy long-term regime (with concentrations which have
been observed empirically within the healthy functional range for the eye). This
alternative prognosis is available based on the cone cell’s current state or ability to
change the current metabolite levels in the cell. If all the molecular pools of the
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cell have become extremely low, the cell can no longer be rescued by increasing
the extracellular glucose. Figure 4 illustrates how an external concentration GE =
11.5 mM or lower cannot resuscitate a cell with already depleted molecular pools
[G3P]=[PYR]=[ACoA]=[CIT]=0, [LACT] close to the external concentration of
10 mM, and [G] = 0.02 mM. The same external concentration of GE = 11.5 mM can
bring a cell to a healthy regime provided the initial glucose is as high as [G] = 2 mM.
Such a surge of glucose input may have, however, other physiological effects on the
system, not captured by our model, and should not be necessarily viewed as a cure-
all strategy.

Our sensitivity and bifurcation analyses support the expectation from the model
diagram (Fig. 2) that the system’s prognosis also depends quite crucially on the rate
α of β-oxidation of ingested OS fatty acids. The metabolites directly affected by
even small changes in α are [G], [G3P], [PYR], [LACT], and [ACoA], but these
perturbations propagate via the tight coupling of the system, affecting the long-term
concentrations of all its components.

Our bifurcation analysis in Sect. 3.2 shows the global effects of having an overly
glucose-starved system corresponding to an extremely large rate of β-oxidation.
Overall, too high of a β-oxidation rate leads to a complete system shutdown. An
extremely low β-oxidation rate leads to a dangerously high accumulation of G3P in
the cell, as the system under-utilizes lipids to be converted to OS (whose fatty acids
will eventually be used to generate β-HB).

The bifurcation analysis for α between ∼0.17–0.43 mM, shows that the bista-
bility regime, hence the optimal functioning of the system, is contingent on its
initial state. If the current state of the cell is close to healthy, further tuning its β-
oxidation rate (e.g., via medication or therapies) can optimize its function. However,
if the cell’s current state is very poor (e.g., based on a history of functioning under
pathological parameter values), the behavior cannot be rescued even by a substantial
adjustment in the β-oxidation rate, and the cell’s function will remain poor. These
effects support our sensitivity analysis, which showed all metabolites of the system
(with the exception CIT) to be sensitive to changes or perturbation of α.

It has been established that the RPE serves as the principal pathway for the
exchange of metabolites (in particular, glucose and lactate) between the choroidal
blood supply and the retina [14]. The fact that external glucose (GE) and the rate
of β-oxidation of fatty acids (α) are highlighted as important by our sensitivity and
bifurcation analyses, as well as external lactate (LE) in the sensitivity analyses,
points to the critical role the RPE plays in photoreceptor metabolism. As these
processes link the metabolism of photoreceptors with the metabolism of the RPE,
our findings indicate that the normal function of photoreceptors relies heavily on
their interaction with the RPE. This aligns with the physiological understating that
photoreceptors and the RPE have a reciprocal resource relation and operate as a
functional unit: the RPE provides photoreceptors with a source of metabolism via
glucose, and photoreceptors provide a source of metabolism for the RPE via lactate.

External lactate is key for maintaining a balanced reciprocal resource relation
between the RPE and photoreceptors, on which cone nutrition and vitality depend.
In addition to glucose supplied by the RPE, photoreceptors can also consume lactate,
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produced by other retinal cells for oxidative metabolism. For example, Müeller cells
are known to secrete lactate which can be used as fuel in photoreceptors [49]. The
high impact of external lactate seen in the sensitivity analysis also points to the
importance of this mechanism for photoreceptor metabolism.

4.2 Limitations and Future Work

We have identified three limitations in our model. (1) Our model considers a single
healthy photoreceptor cell, whereas in reality there are multiple photoreceptors
of different types and other cell types such as RPE and Müeller cells, forming
a “metabolic ecosystem.” Future work will address this complexity. (2) Our
model would be improved if time series data existed for concentration levels of
the metabolites, represented by state variables, in the retina. We identified time
series concentrations of glucose, lacate, and pyruvate for cancer cells, which are
metabolically similar to photoreceptors, but we would expect parameters to differ.
Time series data would also allow us to better estimate parameters to which our
model outputs are sensitive. (3) Some parameter ranges were not available from the
literature, so we were forced to use a different tissue type as a proxy. Because both
LHS/PRCC and eFAST depend on starting with biologically relevant ranges for
each parameter and sampling within that range, this is a concern. If photoreceptor-
specific parameter ranges become available, this model could be updated and
improved.

The RPE is a layer of cells which provides glucose to photoreceptors, and these
cells are also metabolically active. External glucose is very important, and though
it is a parameter in our single-cell model, in future work it will depend on the
dynamics of other cell types. The RPE serves as the main pathway for the exchange
of critical metabolites (specifically, glucose and lactate) between the choroidal
blood supply and the retina [14]. Metabolites that can be used as substitutes for
photoreceptor energy production, during glucose deprivation, are also mediated by
the RPE. Müeller cells are known to secrete lactate which can be used as fuel in
photoreceptors [49]. A future step in this work will be investigating the interaction
of the RPE, Müeller cells, and photoreceptors along with the “metabolic ecosystem”
they create.

5 Conclusions

We developed and analyzed a mathematical model for the dynamics in the metabolic
pathways of a healthy photoreceptor cell. Using two different methods for sensitivity
analysis, we identified the parameters and potential mechanisms that are driving
system output levels and variability which are particularly relevant to photoreceptor
health. The behavior of the model for different values of the highly sensitive
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parameters was explored, and we demonstrated that certain sets of parameters
exhibit phase transitions and bistable behavior where healthy and pathological states
both exist.

Our work confirms the necessity for the external glucose, β-oxidation, and
external lactate concentrations, which are key feedback mechanisms connecting
the RPE and photoreceptors, to sustain the cell. The role of β-oxidation of fatty
acids which fuel oxidative phosphorylation under glucose- and lactate-depleted
conditions, is validated. A low rate of β-oxidation corresponded with the healthy
cone metabolite concentrations in our simulations and bifurcation analysis. Our
results also show the modulating effect of the lactate differential (internal versus
external) in bringing the system to steady state; the bigger the difference, the longer
the system takes to achieve steady state. Additionally, our parameter estimation
results demonstrate the importance of rerouting glucose and other intermediate
metabolites to produce glycerol 3-phosphate (G3P), to increasing lipid synthesis
(a precursor to fatty acid production) to support the cone cell high growth rate. A
number of parameters are found to be significant; however, the rate of β-oxidation
of ingested outer segments is shown to consistently play an important role in the
concentration of glucose, G3P, and pyruvate, whereas the extracellular lactate level
is shown to consistently play an important role in the concentration of lactate and
acetyl coenzyme A.

These mechanisms can be posed to the biology community for future experi-
ments or for potential therapeutic targets. The ability of these mechanisms to affect
key metabolites’ variability and levels (as revealed in our analyses) signifies the
importance of inter-dependent and inter-connected feedback processes modulated
by and affecting both the RPE’s and cone’s metabolism. The modeling and analysis
in this work provide the foundation for a more biologically complex model that
metabolically couples different cell types as found in the retina.
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Appendix

A Simple Model

In this section, System (1)–(6) is simplified to gain more insight into the cone
glucose metabolic pathways. The model is simplified as below:

d[G]
dt

= λ(GE − [G]) (n + V[G]δ[G3P]) − (
qV[G3P] + (1 − q)V[PYR]

) [G]
(10)

d[G3P]
dt

= qV[G3P][G] − α[G3P] (11)

d[PYR]
dt

= (1 − q)V[PYR][G] − (
(1 − ρ)V[LACT] + ρV[ACoA]

) [PYR] (12)

d[LACT]
dt

= (1 − ρ)V[LACT][PYR] − ψ([LACT] − LE) (13)

d[ACoA]
dt

= ρV[ACoA][PYR] + γ (LE − [LACT]) − V[CIT][ACoA] + α[G3P]

(14)

d[CIT]
dt

= V[CIT][ACoA] − φ[CIT]. (15)

We were able to prove existence and uniqueness of the model solution in
System (10)–(15). Furthermore, it was proved that the system evolves to a unique
equilibrium point under healthy conditions. However, the simple model does not
capture the complete qualitative behaviours of the full model as shown by the
stability analysis of the simple model.

Note that System (10)–(15) is well-posed and that all solutions remain within the
state space, [G] ≥ 0, [G3P] ≥ 0, [PYR] ≥ 0, [LACT] ≥ 0, [ACoA] ≥ 0, [CIT] ≥ 0,
since the right-hand side functions of System (10)–(15) are continuously differen-
tiable [48]. The analysis of Model (10)–(15) is done by finding the equilibria and
their corresponding stability properties. Setting the right-hand sides of the equations
(10)–(15) equal to zero yields the following biological meaningful equilibrium point
denoted by E([G∗], [G3P∗], [PYR∗], [LACT∗], [ACoA∗], [CIT∗]), and defined as
follows

[G∗] = GE − 1

2

⎛
⎝GE + a

λb
+ n

b
−

√
n2

b2 + (GE − a

λb
)2 + 2n

b
(GE + a

λb
)

⎞
⎠

(16)
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[G3P∗] = qV[G3P]

α
[G∗] (17)

[PRY∗] = (1 − q)V[PYR]

(1 − ρ)V[LACT] + ρV[ACoA]
[G∗] (18)

[LACT∗] = LE + (1 − q)(1 − ρ)V[LACT]V[PYR]

ψ((1 − ρ)V[LACT] + ρV[ACoA])
[G∗] (19)

[ACoA∗] = κ

V[CIT]
[G∗] (20)

[CIT∗] = κ

φ
[G∗], (21)

where a = qV[G3P] + (1 − q)V[PYR], b = qδV[G]V[G3P]/α and

κ = qV[G3P] +
[
ρV[ACoA] − γ (1 − ρ)V[LACT]

ψ

]
(1 − q)V[PYR]

(1 − ρ)V[LACT] + ρV[ACoA]
,

with κ ≥ 0.

Theorem 1 The equilibrium E exists and it is locally stable.

Proof From the parameter modeling assumptions, it is easy to prove that [G∗] > 0.
Therefore, Equations (17)–(19) are all positive and Equations (20)–(21) are non-
negative if and only if κ ≥ 0. Hence, E is a biologically feasible equilibrium, since
all the elements of E are non-negative for all parameter values of the model. Next,
the Jacobian matrix corresponding to E is given by the following lower triangular
block matrix:

J (E) =
(

J1(E) 0
J ∗

1 J2(E)

)
,

where J ∗
1 is a non-zero matrix and

J1(E) =
(−λ(n + δV[G][G3P∗]) − a δλV[G](GE − [G∗])

qV[G3P] −α

)
,

J2(E) =

⎛
⎜⎜⎝

−(1 − ρ)V[LACT] − ρV[ACoA] 0 0 0
(1 − ρ)V[LACT] −ψ 0 0

ρV[ACoA] −γ −V[CIT] 0
0 0 V[CIT] −φ

⎞
⎟⎟⎠ .
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Therefore, the eigenvalues of J (E) are determined from the eigenvalues of J1(E)

and J2(E). Since J2(E) is a lower triangular matrix, its eigenvalues are given by its
diagonal elements, which are all negative by the parameter modeling assumptions.
From Routh-Hurwitz criteria, n = 2, the eigenvalues of J1(E) are negative or have
negative real part if and only if det (J1(E)) > 0 and tr(J1(E)) < 0. From the model
assumptions follow that tr(J1(E)) = −λ(n + δV[G][G3P∗]) − a − α < 0 and

det (J1(E)) = α
(
λ(n + δV[G][G3P∗]) + a

) + δλqV[G]V[G3P]([G∗] − GE) > 0

if an only if

[G∗] >
1

2

(
GE − a

bλ
− n

b

)
.

From Equation (16)

[G∗] = 1

2

(
GE − a

bλ
− n

b

)
+

√
n2

b2 + (GE − a

λb
)2 + 2n

b
(GE + a

λb
)

>
1

2

(
GE − a

bλ
− n

b

)
.

Therefore, all the eigenvalues of J (E) are negative and hence E is a locally stable
node. ��

Therefore in a long term glucose metabolic dynamic behaviour within a single
cone, all the substrate variables achieve steady-state values, which depend linearly
on the steady-state glucose concentration value, [G∗], Equation (17)–(21). Fur-
thermore, the concentration of glucose inside of the cell is always less than the
outside concentration while the lactate concentration inside is more than the outside
concentration, i.e.,

0 < [G∗] < GE and 0 < LE < [LACT∗]. (22)

Note that [G∗] = 0 if and only if α = 0 or n = 0 and 0 < GE < a/bλ. Therefore
α and n are important parameters for the survival of the cell. Another important
parameter is κ , since when κ = 0 the [ACoA∗] = 0, and [CIT∗] = 0 which also
leads to a pathological metabolic steady-state outcome.

Figure 11 shows the molecular evolution of System (10)–(15), where the
variables evolve to their steady-state values in about 3.3 h (200 min).
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Fig. 11 Molecular evolution of energy demand in a single cone cell. The parameter values are
set to their baseline value for normal photoreceptor model with initial conditions: [G] = 0.2,
[LACT] = 9.4 and the rest of the other initial conditions are set to be equal to zero

B Acronym Glossary

Acronym Definitions

Acronym Meaning

ACoA acetyl coenzyme A

ATP adenosine triphosphate

BSG-1 basigin-1

CIT citrate

DHAP dihydroxyacetone phosphate

eFAST Extended Fourier Amplitude Sensitivity Test

G glucose

GAP glyceraldehyde-3-phosphate

G3P glycerol-3-phosphate

G6P glycerol-6-phosphate

(continued)
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Acronym Definitions

Acronym Meaning

GLUT1 glucosetransporter 1

LACT lactate

LDH lactate dehydrogenase

LDHA lactate dehydrogenase A

LDHB lactate dehydrogenase B

LHS Latin Hypercube Sampling

MCT monocarboxylate transport proteins

NAD nicotinamide adenine dinucleotide

OS outer segment

OXPHOS oxidative phosphorylation

PDC pyruvate dehydrogenase complex

PFK phosphofructokinase

PRCC Partial Rank Correlation Coefficient

PYR pyruvate

RdCVF rod-derived cone viability factor

RdCVFL rod-derived cone viability factor long form

RPE retinal pigmented epithelium

TCA tricarboxylic acid

VEGF vascular endothelial growth factor
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Abstract Recent technological advances make it possible to collect detailed infor-
mation about tumors, and yet clinical assessments about treatment responses are
typically based on sparse datasets. In this work, we propose a workflow for choosing
an appropriate model, verifying parameter identifiability, and assessing the amount
of data necessary to accurately calibrate model parameters. As a proof-of-concept,
we compare tumor growth models of varying complexity in an effort to determine
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the level of model complexity needed to accurately predict tumor growth dynamics
and response to radiotherapy. We consider a simple, one-compartment ordinary
differential equation model which tracks tumor volume and a two-compartment
model that accounts for tumor volume and the fraction of necrotic cells contained
within the tumor. We investigate the structural and practical identifiability of these
models, and the impact of noise on identifiability. We also generate synthetic
data from a more complex, spatially-resolved, cellular automaton model (CA) that
simulates tumor growth and response to radiotherapy. We investigate the fit of the
ODE models to tumor volume data generated by the CA in various parameter
regimes, and we use sequential model calibration to determine how many data points
are required to accurately infer model parameters. Our results suggest that if data on
tumor volumes alone is provided, then a tumor with a large necrotic volume is the
most challenging case to fit. However, supplementing data on total tumor volume
with additional information on the necrotic volume enables the two compartment
ODE model to perform significantly better than the one compartment model in terms
of parameter convergence and predictive power.

Keywords Systems biology · Mathematical oncology · Parameter
identifiability · Bayesian sequential calibration · Model selection

1 Introduction

Cancer remains one of the leading causes of death in the world, second only
to cardiac disease. As such, it represents a significant global public health and
socio-economic problem. Of particular interest, given the unpleasant side-effects
that accompany many cancer treatments, is being able to establish as early as
possible whether a patient will respond (or is responding) to a particular treatment
and, based on this assessment, whether treatment should be continued or a new
treatment started. Mathematical modeling provides a natural framework within
which to answer such questions. In more detail, mechanistic models that describe
the growth dynamics of a tumor and its response to treatment may be fit to patient
data collected during treatment and used to predict how the tumor’s size (and
possibly composition) will change if treatment is continued. Model fits, parameter
estimates, and predictions may be revised as treatment progresses and more patient
data become available. These predictions can then be used to inform decisions about
whether to continue with the current treatment.

The approach outlined above relies upon the availability of time-dependent math-
ematical models of tumor growth and patient data to which the models can be fit.
Advances in technology mean that it is now possible to collect detailed information
about tumors (e.g., their size, spatial composition, mutational status, vascularity and
degree of immune infiltration). Even so, decisions about treatment options (e.g.,
surgery, radiotherapy, chemotherapy and immunotherapy), and assessments about
treatment responses are often based on statistical analyses of sparse and noisy data
relating to a small number of quantities of interest (e.g., tumor volumes at three
time-points: at diagnosis, at treatment start, and at treatment end).
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The availability of detailed information about tumors has undoubtedly stimulated
the development of a large number of mathematical and computational models
of tumor growth. These range from spatially-averaged, phenomenological models
formulated using differential equations (e.g., logistic growth, Gompertzian growth)
[8, 10], to multiphase models based on mixture theory [4, 20] or phase field
theory [22], and multiscale models that couple subcellular, cellular, and tissue
scale phenomena [14]. In addition to simulating tumor growth, these models have
also been used to study tumor responses to treatments including radiotherapy,
chemotherapy, immunotherapy and combinations thereof [3, 19]. Unfortunately,
the absence of suitable experimental data coupled with the complexity of many
of the theoretical models means that few of them have been validated and/or
parameterized. Additionally, the sheer number and variety of available models
makes it difficult to determine which model may be most appropriate for a given
scenario and available data [9, 21, 24].

In this investigation, we propose a workflow for determining an appropriate
model to be used under the constraints of a given scenario (i.e. when data is scarce or
noisy). We begin with an identifiability analysis in two parts: structural identifiabil-
ity, which determines whether the model parameters can be uniquely estimated in an
“ideal world”, and practical identifiability, which reassesses parameter identifiability
in a real-world scenario, in which data is noisy and potentially sparse.

After establishing structural and practical identifiability, we tackle the question
of which model to fit to the available data. We perform a parameter sweep to
measure error in model predictions across different parameter regimes, establishing
conditions under which certain models can be used to make accurate predictions
about tumor growth. While we desire model simplicity whenever possible, we
recognize that in some scenarios (for example, when the tumor comprises a large
portion of necrotic tissue), a model that tracks only tumor volume (for instance)
may not be able to describe the tumor growth dynamics.

Once we have chosen an appropriate model for a given scenario and verified
that its parameters are structurally and practically identifiable, we examine how
the model calibration is affected by the availability of data. In this investigation,
we perform sequential calibration, adding one data point at a time to determine
how much data is necessary to uniquely calibrate the model parameters. At each
step, we use the current parameter values to predict the future tumor volume after
treatment has concluded, and compare this prediction to our known “truth” to assess
whether the current amount of data is adequate for making future predictions. This
investigation helps us to determine the extent to which additional data will increase
the predictive power of our mathematical models.

The approach outlined above serves as a “proof-of-concept” for our proposed
framework; we test our procedure on two simple compartmental models for tumor
growth: one that describes only total tumor volume, and a second that also accounts
for the proportion of necrotic cells. We compare their dynamics to data generated
from a more complex cellular automaton model (CA), which we use as our “truth”.
Additionally, we combine our growth models with the linear-quadratic model [12]
to simulate tumour responses to a radiotherapy treatment regimen and also to test
our model predictions in the presence of an intervention to tumor growth.
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The remainder of this paper is structured as follows. In Sect. 2 we introduce
the one- and two-compartment models that we use to predict tumor growth and
response to radiotherapy. We also outline the structure of the cellular automaton
model that we use to generate synthetic data for fitting the compartment models.
We present typical CA simulation results that illustrate how a tumor’s spatial
composition and growth dynamics may change in response to radiotherapy. In
Sect. 3, we explain how structural and practical identifiability analysis methods
can be used to determine whether it is possible to infer the parameters associated
with a particular model when the data is perfect (structural identifiability) and
noisy (practical identifiability). We include several case studies that investigate
how the addition of noise to the CA data affects the ability to recover model
parameters, and compare the ability of the one- and two-compartment models to
fit data generated by the CA under a variety of conditions, including a range of
necrotic heterogeneity levels. In Sect. 4, we study the goodness of fit of the one-
compartment model to synthetic data generated from the two-compartment model.
Through an extensive search of parameter space, we determine how parameters in
the one- and two-compartment models are related, and discuss how these results
can be used to select an appropriate model that will yield accurate predictions while
still maintaining model simplicity whenever possible. Finally, in Sect. 5 we perform
sequential model calibration to determine how much data is needed to accurately
infer model parameters. The paper concludes in Sect. 6 with a summary of our key
results and directions for future work.

2 The Mathematical Models

Here we introduce the three mathematical models that will be used throughout this
investigation. The first is a one-compartment ODE model that tracks tumor volume
over time. It is the most basic model that we use to describe tumor growth. The
second model is a two-compartment ODE model that incorporates a state variable
for tracking the portion of tumor volume that is composed of necrotic tissue, thereby
allowing for tumor heterogeneity. This model will be used both as a data generator
to test the capabilities of the one-compartment ODE model as well as a model to
be calibrated against “true” data. Our final and most complex model is an cellular
automaton model (CA) that we use to generate our “truth” data, as it is assumed
to most accurately reflect reality by including the cell cycle, quiescent cells, and
oxygen levels [14]. In all three cases, we will incorporate treatment via radiation
using the linear-quadratic model for radiotherapy.

2.1 The One-Compartment Model

Our one-compartment model describes the time evolution of the tumor volume,
V (t), using a logistic growth model with growth rate λ and carrying capacity K:
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dV

dt
= λV

(
1 − V

K

)
︸ ︷︷ ︸
logistic growth

− ηV.︸︷︷︸
natural cell death

(1)

Natural cell death, at rate η, is incorporated via the term −ηV . In what follows,
it will be convenient to re-parameterize Equation (1) to obtain the simpler form

dV

dt
= AV

(
1 − B

A
V

)
, (2)

where A = λ − η and B = λ
K

. From here on, we will refer to the one-compartment
model in its re-scaled form, in Equation (2).

This simple model views the tumor as a homogeneous mass in which all cells
are identical. In practice, however, as the tumor grows, regions at a distance
from oxygen and nutrient sources (e.g., blood vessels for tumors growing in vivo)
may undergo necrotic cell death in response to sustained oxygen and/or nutrient
deprivation. In the one-compartment model, such dead or necrotic cells are assumed
to be removed from the tumor instantaneously.

2.2 The Two-Compartment Model

In order to account for some aspects of tumor heterogeneity, we study a two-
compartment model that tracks the time evolution of the volume of viable tumor
cells (V (t)) and the volume of the necrotic core (N(t)), and that was originally
developed in [18]. The population of proliferating (i.e., viable) cells is assumed
to grow logistically with growth rate λ and carrying capacity K . Additionally, we
assume that viable cells convert to necrotic cells at a constant rate η, and that
necrotic material undergoes natural decay at a constant rate ζ . Combining these
processes, we arrive at the following ODE system for V (t) and N(t):

dV

dt
= λV

(
1 − V

K

)
− ηV, (3a)

dN

dt
= ηV − ζN. (3b)

To facilitate comparison with the one-compartment model, we reformulate (3a)–
(3b) in terms of Y (t), the total tumor volume (Y = V + N ), and Φ(t), the fraction
of the total volume that comprises necrotic cells (Φ = N/Y ). Using this notation,
Equations (3a) and (3b) can be rewritten in the form

dY

dt
= λ(1 − Φ)Y

(
1 − (1 − Φ)

Y

K

)
− ζΦY, (4a)
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dΦ

dt
= (1 − Φ)

[
η − λΦ

(
1 − (1 − Φ)

Y

K

)
− ζΦ

]
. (4b)

We note that in the limit as ζ → ∞ (i.e., if the timescale for degradation of
necrotic material is much shorter than the timescale for other processes included in
the model), Equations (4a) and (4b) reduce to the one-compartment model defined
by Equation (1).

2.3 The Cellular Automaton Model

We use a spatially-explicit, hybrid cellular automaton model (CA) to generate
synthetic tumor volume data. Our cellular automaton model is adapted from the
one developed in [14]. In the CA model, cells are arranged on a 200 × 200 grid,
which represents a two-dimensional cross-section of size 0.36 × 0.36 cm2 through
a three-dimensional spheroid in vitro. Each automaton can be occupied either by a
tumor cell or culture medium. The CA couples the dynamics of automaton elements
arranged on the grid to the oxygen concentration. We identify with each automaton
x = (x, y) at time t a dynamical variable with a state and a neighborhood. The
four possible states are proliferating P , quiescent Q, necrotic N , and empty E ,
determined by the oxygen level at each site: if c > cQ then the cells proliferate,
if cN < c < cQ then the cells stop proliferating and halve the rate at which they
consume oxygen, and if c ≤ cN then the cells become necrotic (see Table 1 for
details). Each cell communicates with cells within its Moore neighborhood, i.e., its
eight nearest neighbors. Proliferating cells are assigned counters that describe

Table 1 A summary of the parameters used in the CA and their default values. Parameter values
are estimated using experimental data from the prostate cancer cell line, PC3, in [14]

Parameter Description Value Units

l Cell size 0.0018 cm

L Domain length 0.36 cm

τ̄cycle(σcycle) Mean (standard deviation) cell cycle
time

18.3 (1.4) h

c∞ Background O2 concentration 2.8 × 10−7 mol cm−3

D O2 diffusion constant 1.8 × 10−5 cm2s−1

cQ O2 concentration threshold for
proliferating cells

1.82 ×10−7 mol cm−3

cN O2 concentration threshold for
quiescent cells

1.68 ×10−7 mol cm−3

κP O2 consumption rate of proliferating
cells

1.0 ×10−8 mol cm−3s−1

κQ O2 consumption rate of quiescent cells 5.0 ×10−9 mol cm−3s−1

pNR Rate of lysis of necrotic cells Range: 0.004–0.016 hr−1
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Fig. 1 Flow diagram describing the cell movement between necrotic, quiescent and proliferating
states. The parameter pRAD denotes the probability that a cell becomes necrotic following
radiotherapy and pRAD = 1 − e−αd−βd2

. The parameter τcycle denotes the specific cell’s assigned
cycle length

where they are in the cell cycle. These counters are initially drawn from a normal
distribution with mean τ̄cycle and standard deviation σcycle. After each time step, the
cell cycle counter of each cell decreases by an amount that depends on the number
of neighboring cells; a smaller reduction in cell cycle time occurs with a larger
number of neighbors, to model the regulatory process known as contact inhibition
of proliferation. Figure 1 summarizes how a cell can transition between quiescent,
proliferating and necrotic states.

We model the single growth-rate-limiting nutrient, oxygen, explicitly via a
reaction-diffusion equation. In particular, the evolution of the oxygen concentration
c(x, t) (mol cm−3) at location x for time t is described by:



186 H. Cho et al.

∂c(x, t)
∂t

= D∇2c(x, t) − Γ (x, t), (5)

where D is the oxygen diffusion coefficient (cm2 s−1). and Γ (x, t) is the oxygen
consumption rate (mol cm−3 s−1), defined as follows:

Γ (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

κP if x is occupied by a proliferating cell

κQ if x is occupied by a quiescent cell

0 otherwise.

The parameters κP and κQ are the rates at which quiescent and proliferating cells
consume oxygen, respectively, and are in mol cm−3 s−1 with κP >= κQ. We also
use the following initial and boundary conditions to describe the situation in which
oxygen diffuses from the boundaries of a square Petri dish into the culture medium:

c(x, y, 0) = c∞,

c(0, y, t) = c(L, y, t) = c(x, 0, t) = c(x, L, t) = c∞,

where L is the domain length, and c∞ is the background O2 concentration. See
Table 1 for a list of the parameter values used to simulate the CA.

When a cell cycle counter reaches 0, the cell divides to produce two identical
cells, one located at the same site as the parent, and one placed in an empty
neighboring site, if available. If more than one neighboring site is empty, the site
with the maximum number of neighbors is chosen to maintain cell-cell adhesion.
If no adjacent sites are empty, then in an effort to simulate the mechanical stress
exerted on neighboring cells during spheroid expansion, we find the shortest chain
of cells connecting the dividing cell to the spheroid’s boundary and shift this chain
outward to create space for the daughter cell. Figure 2a, b displays this process.

A cell becomes necrotic if the oxygen concentration at its location falls below a
specified threshold, or if the cell is irradiated, as discussed in Sect. 2.4. Necrotic cells
are lysed at rate pNR . Lysis involves removing the necrotic cell and then shifting
inward a chain of cells starting from the boundary of the spheroid to fill in the
removed cell’s site. The spheroidal shape of the tumor is preserved by choosing the
boundary cell that is farthest from the spheroid center, and then shifting a chain of
adjacent cells inward. Figure 2c, d displays this process.

All model simulations are initialized by placing a circular cluster of cells in the
center of the grid: this imitates seeding a spheroid in a Petri dish. The cells consume
oxygen as it diffuses from the culture medium and this enables them to progress
through the cell cycle and to divide. As the spheroid grows, oxygen levels at its
center fall. When the oxygen concentration drops below a threshold value cells exit
the cell cycle and become quiescent. As the spheroid grows further, and oxygen
levels decrease further, quiescent cells die via necrosis and the resulting necrotic
debris is transported away from the spheroid.
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Fig. 2 Figures adapted from [14]. The spheroidal shape of the tumor is preserved by shifting a
chain of cells outward when cell division occurs, shown (a) before and (b) after division, and by
pulling a chain of cells inward when a cell lyses, shown (c) before and (d) after lysis. In (a)–(b), P
denotes the dividing parent cell, and D denotes the daughter cell. The dividing cell pushes the chain
of cells in (a), labeled by 1,2,3, outward to occupy the sites shown in (b). In (c)–(d), R denotes
the cell that is removed. The numbered chain of cells, 1–5, are shifted in order to take the place of
cell R

We use the CA to generate a series of synthetic spheroids which differ in their
growth rates, sizes and spatial composition. Parameters are set to baseline values
determined using experimental data from the prostate cancer cell line, PC3, in [14].
The results presented in Fig. 3 show how the size and composition of a spheroid
change over 60 days of growth as we vary pNR , the rate at which necrotic cells
are removed. We use pNR = 0.015 hr−1 and pNR = 0.004 hr−1 to generate
control (untreated) spheroids with approximately 20% and 50% necrotic volume,
respectively, at steady state.

2.4 Radiotherapy Treatment

We now explain how we incorporate treatment with radiotherapy (RT) in all three
models. We consider a typical tumor treatment regimen in which daily doses of 2 Gy
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Fig. 3 CA simulations after 60 days in the absence of treatment, representing two-dimensional
cross-sections of tumor spheroids. On the left, we used pNR = 0.015 to generate a spheroid in
which the necrotic cells occupy approximately 20% of total tumor volume. On the right, we used
pNR = 0.004 to generate a spheroid in which necrotic cells occupy approximately 50% of total
tumor volume

are administered Monday through Friday for 6 weeks. We use the linear-quadratic
model [12] to account for the effect of RT. This model assumes that the fraction of
cells that survive exposure to a dose d of RT is given by

Survival fraction, SF = e−αd−βd2
, (6)

where α and β are tissue specific radiosensitivity parameters that model single
and double strand breaks of the DNA [17]. We assume that the effect of RT
is instantaneous, with the non-surviving cell fraction immediately removed when
therapy is administered. Under these assumptions, the one-compartment model
becomes

dV

dt
= AV

(
1 − B

A
V

)
for t+i < t < t−i+1, (7)

V (t+i ) = exp(−αd − βd2) V (t−i ).

where ti (for i = 1, 2, . . . , N) denote the times at which radiotherapy is delivered,
and V (t±i ) denote the tumour volume just before and after radiotherapy is adminis-
tered.

Treatment in the two-compartment model is modeled analogously, except that the
sink of irradiated cells from the viable tumor volume will have an equal and opposite
source term in the ODE for the necrotic component. Similarly in the cellular
automaton model, each living cell becomes necrotic with probability 1 − e−αd−βd2

when radiotherapy is administered.
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2.5 Typical CA Simulation Results

We generate synthetic spheroids using the CA described in Sect. 2.3, using the
default parameter values listed in Table 1. Snapshots of typical CA tumor spheroids
in the absence of treatment at days 6, 17, 30 and 70 are presented in Fig. 4a. Similar
results showing the response to radiotherapy of tumors with low radiosensitivity are
presented in Fig. 4b and for tumors with high radiosensitivity in Fig. 4c. Tumors
with faster necrotic decay (pNR = 0.015) are shown in the four-panels on the left,
and tumors with slower necrotic decay (pNR = 0.004) are shown on the right. We
note that when radiotherapy is applied, treatment begins on Day 15. We observe that,
in most cases, the size of the tumor on Day 70 is larger when the rate of necrotic
decay is low than when it is high. However, if the tumor has high radiosensitivity,
then the situation reverses: all living cells are eliminated when the necrotic cells
decay slowly but not when they decay rapidly.

For each set of parameter values, we simulate 100 realizations of the CA and
determine how the mean total tumor volume and mean necrotic volume change over
time. Figure 5a presents the averaged results when no treatment is applied, with
results corresponding to the high rate of necrotic decay (pNR = 0.015) on the left,
and results corresponding to the low rate (pNR = 0.004) on the right. Figures 5b, c
summarize the results for both cases when radiotherapy is applied. In Fig. 5b, the
tumor has a lower radiosensitivity level (α/β = 9), while Fig. 5c shows the results
for tumors with higher radiosensitivity (α/β = 1). The plots of mean tumor volume
and mean necrotic volume confirm that the trends we observe in a single realization
(see Fig. 4a–c) are representative of the average behavior in each case. We use the
synthetic data from these representative simulations to calibrate the ODE models in
Sects. 3, 4, and 5.

3 Identifiability Analysis

3.1 Structural Identifiability Analysis

The concept of structural identifiability was first introduced in 1970 by Bellman
and Astrom [2]; they asked whether, given perfect input data and a measured
output signal that relates to available experimental data, it is possible to determine
parameters associated with a dynamical systems model. A model identification
question then asks whether it is possible to uniquely recover all model parameters
given sufficient, error-free data about one (or more) model outputs. We note here that
this type of analysis is sometimes referred to as structural identifiability analysis,
as it relies solely on the properties of the dynamical system and respective model
observable outputs. It should not be confused with practical identifiability analysis,
which is concerned with the ability to recover parameter values from error-prone
experimental data and depends on the computational approach used to parameterize
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Fig. 4 (a) No treatment. Tumor composition on Days 6, 17, 30, and 60 when the rate of necrotic
decay is high (left) and low (right), and no treatment is applied. (b) Low radiosensitivity (α/β = 9).
Tumor composition on Days 6, 17, 30, and 60 when the rate of necrotic decay is high (left) and
low (right), and radiotherapy is applied. (c) High radiosensitivity (α/β = 1). Tumor composition
on Days 6, 17, 30, and 60 when the rate of necrotic decay is high (left) and low (right), and
radiotherapy is applied

the model. It is important to note that many difficulties related to estimating
parameters by fitting mathematical models to datasets may stem from lack of
structural identifiability. In such cases, the system may not admit unique parameter
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Fig. 5 (a) Mean CA spheroid volume with no treatment. The tumor grows in the absence of
radiotherapy, when the rate of necrotic cell death is high (left), and low (right). (b) Mean CA
spheroid volume with low radiosensitivity. The tumor exhibits radiosensitivity level α/β = 9, when
the rate of necrotic cell death is high (left), and low (right). (c) Mean CA spheroid volume for tumor
cells with high radiosensitivity. The tumor exhibits radiosensitivity level α/β = 1, when the rate of
necrotic cell death is high (left), and low (right). The plots in Fig. 5 show the time evolution of the
mean total tumor volume and mean necrotic volume, obtained by averaging over 100 realizations
of the CA. The error bars indicate the standard deviation at each time point. The dashed lines show
the total tumor volume and the necrotic volumes from the representative simulation used to fit to
the ODE models. The figures on the left correspond to spheroids with high rates of necrotic decay
(pNR = 0.015) and small necrotic volumes; those on the right correspond to spheroids with low
rates of necrotic decay (pNR = 0.004) and large necrotic volumes
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sets for a given observed model output. For further details about the techniques we
use, we refer the interested reader to [5, 6]. In the remainder of this section we study
the structural identifiability of the one- and two-compartment models presented
in Sect. 2. Due to the form of the treatment terms, we employ the Taylor series
approach [5, 23] to establish model structural identifiability and then compare our
results with those obtained through a generating series approach implemented in
Matlab through the GenSSI package [7]. To the best of our knowledge, assessing
and characterising the structural identifiability of CAs remains an open problem.
One approach would be to derive mean field descriptions of the CAs and to perform
identifiability analysis of the resulting equations. Alternatively, several authors
have shown how Approximate Bayesian Computation can be used for parameter
inference of CAs [15, 16].

3.1.1 One-Compartment Model: No Radiation

In this case the model reduces to logistic growth, with

dV

dt
= AV

(
1 − B

A
V

)
, (8)

V (0) = V0.

We wish to establish the structural identifiability of the model with unknown
parameters p = {A,B}, observable quantity y(t;p) = V (t) and known initial
conditions V (t = 0) = V0.

Before we state results, we briefly outline the Taylor series approach, as
delineated in [5, 23]. We assume that the observation function y(t;p) is analytic in
a neighborhood of some time. Then we can evaluate y(t;p) and its successive time
derivatives in terms of the model parameters and initial conditions at time t = 0+
using

y(t, p) = y(0+;p) + y(1)(0+;p)t + y(2)(0+;p)
t2

2! + . . . + y(i)(0+;p)
ti

i! + . . . ,

(9)
where

y(i)(0+;p) = diy

dti
(0+;p). (10)

Given Equations (9) and (10), the problem reduces to identifying a system
of algebraic equations that relate the unknown model parameters (here A and
B) to known values of the observable y(t;p) and its derivatives at t = 0+. If
these equations admit unique solutions for each parameter, we consider the system
to be structurally identifiable; otherwise, it is either locally identifiable or non-
identifiable.
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Since for our problem only A and B are unknown, we start by computing the first
two Taylor series coefficients:

V ′(0+) = AV (0+)

(
1 − B

A
V (0+)

)
(11)

V ′′(0+) = AV ′(0+) − 2BV (0+)V ′(0+). (12)

Denoting by a0 = V (0+), a1 = V ′(0+) and a2 = V ′′(0+), we obtain the
following pair of simultaneous equations for the unknown parameters A and B:

a1 = Aa0 − Ba2
0 (13)

a2 = a1A − 2a1Ba0, (14)

with solution

A = 2
a1

a0
− a2

a1
and B = a1

a2
0

− a2

a1a0
. (15)

Since a0, a1, and a2 are known, the variables A and B are globally structurally
identifiable except for at most a set of points of zero measure (i.e., points for which
a0 = 0, a1 = 0). We remark that in this case we have exploited the reduced
number of parameters due to model rescaling. For the original, dimensional model
(1), the three parameters p = {λ,K, η} are not uniquely identifiable: the Taylor
series coefficients do not contain enough information to uniquely extract the three
parameters from tumor volume observations.

Next, we repeat the above analysis using the generating series approach imple-
mented in GenSSI [7]. Briefly, GenSSI implements a generating series approach
coupled with identifiability tableaus [1] for linear and non-linear systems of ODEs.
The underlying principle is to obtain equations for model parameters by computing
successive Lie derivatives of the right hand side of the ODE system and model
observable quantities (y(t;p) = V (t) in our case). If the solution of the system of
parameter equations is unique then the parameters are declared globally identifiable.
We implemented our model in GenSSI and confirmed that {A,B} in (2) are
structurally identifiable, whereas {λ,K, η} in (1) are not structurally identifiable.
These results are consistent with results of the Taylor series approach outlined
above.

3.1.2 One-Compartment Model: Point Radiation Treatment

The problem now reads

dV

dt
= AV

(
1 − B

A
V

)
for t+i < t < t−i+1, (16)
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V (t+i ) = exp(−αd − βd2) V (t−i ).

Since, in this case, the experimental observable y(t;p) = V (t) corresponds to
tumor volume, parameters A and B are identifiable from observations of the system
without therapy (see Equation (15)). In addition, for a radiotherapy treatment the
timing and dose ti and d are also known quantities. Thus, the unknown parameters
to identify from the tumor volume measurements are α and β. In order to identify
α and β, we should compute, in principle at least, two Taylor series coefficients by
employing a Taylor series expansion around the treatment time, ti (note that we use
one-sided limits and derivatives at t±i , as in the previous section).

Using Equation (16), it is straightforward to show:

A1 = AA0Γ − BA2
0Γ

2, (17)

A2 = A1(A − 2BA0Γ ), (18)

where A0 = V (t−i ), A1 = V ′(t+i ), and A2 = V ′′(t+i ) are known, and Γ =
exp(−αd − βd2).

Inspection of Equations (17) and (18) reveals that they do not admit unique
solutions for α and β since α and β appear in both equations via the parameter
grouping Γ . We declare α and β to be non-identifiable in this setting (the same
results were obtained using GenSSI implementation). Therefore, in what follows,
we fix α and vary β. This is reasonable since radiosensitivity of cancer is often
characterized by the ratio α/β; we vary β to allow α/β to take on a range of values.
In practice, estimates of the values of α and the ratio α/β could be obtained, for a
particular biological tissue, by measuring the volume reduction caused by exposure
to different radiotherapy doses and fitting these data to the linear quadratic model.

3.1.3 Two-Compartment Model

The two compartment model with treatment is given by the following model
equations:

dY

dt
= λ(1 − Φ)Y (1 − (1 − Φ)

Y

K
) − ξΦY (19)

dΦ

dt
= (1 − Φ)

[
η − λΦ(1 − (1 − Φ)

Y

K
) − ξΦ

]
, for t+i < t < t−i+1

(20)

Φ(t+i ) = Φ(t−i ) + (1 − Φ(t−i ))(1 − exp(−αd − βd2)). (21)

Since the calculations are similar to, but more involved than those used for
the one-compartment model, the details are presented in the Appendix. For com-
pleteness, we summarize our findings here. In the absence of treatment, with
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p = {λ,K, ξ, η}, observable quantities y(t;p) = {Y (t),Φ(t)}, and known initial
conditions, we obtain unique solutions of the unknown parameters in terms of the
observable quantities and their derivatives; we thus declare all four parameters
structurally identifiable. We also repeat the analysis in the case in which only the
tumor volume is observed, i.e., y(t;p) = Y (t), but with known initial conditions
for the tumor volume and necrotic fraction. In this case, we take higher order Taylor
series coefficients (up to order 4) and find that p = {λ,K, ξ, η} are structurally
identifiable. GenSSI calculations confirm our findings.

When treatment is added, as detailed in the Appendix, we find that the radiation
parameters α and β are not structurally identifiable, in agreement with the analysis
for the single compartment model.

3.2 Practical Identifiability Analysis and Parameter Estimation

After establishing structural identifiability, it is natural to consider the practical
identifiability of a model’s parameters. In particular, given experimental data with
measurement noise and a specific model, is it possible to uniquely determine a set
of model parameter values that are most likely to produce the data?

One approach for determining the practical identifiability of the parameters
while performing model calibration is through the use of a Metropolis algorithm,
based on Markov Chain Monte Carlo (MCMC) techniques. Here, we construct
Markov chains whose stationary distributions coincide with the posterior density
of the parameters; thus, by sampling realizations of our parameters from this chain,
we are effectively sampling from the parameter posterior density. The traditional
Metropolis algorithm, as outlined in [25], constructs the posterior chains by drawing
the next candidate, q∗, from a proposal function J (q∗|qk−1), where qk−1 represents
the previous parameter candidate. The goal of the Metropolis algorithm is to identify
the set of parameter values that maximizes the likelihood function. This is equivalent
to minimizing the sum-of-squares of the differences between the observed and
predicted data. If the new candidate yields a smaller sum-of-squares error than
the previous one, it is accepted as the next value in the posterior chain. Otherwise,
we reject with some specified probability—see [25] for details—and the new state
is taken to be the same as the old one, qk = qk−1. The traditional Metropolis
algorithm assumes a symmetric proposal function J with respect to each of the
individual parameters, though the Metropolis-Hastings algorithm [25] allows for
asymmetric proposal functions. Here, we use the symmetric proposal function
J (q∗|qk−1) = N (qk−1, C), where C is the covariance matrix for the parameter
set.

In what follows, we perform model calibration using the Delayed Rejection
Adaptive Metropolis (DRAM) algorithm for parameter estimation [11]. This exten-
sion of the traditional Metropolis algorithm includes two additional steps. The
first, the delayed rejection step, allows for the proposal of an alternative parameter
candidate from a narrower proposal distribution in place of outright rejection of the
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original candidate. This results in greater mixing in our posterior MCMC chains by
preventing the algorithm from stagnating on a single accepted candidate for long
periods of time while multiple new candidates are rejected. During the adaptation
step, a periodic adaptation of the parameter covariance matrix is performed to incor-
porate new information gained from accepted candidates. This covariance matrix
is built into our proposal distribution; recall, we use J (q∗|qk−1) = N (qk−1, C),
where C is the parameter covariance matrix. Thus, periodically updating C to
reflect new information about the accepted parameter candidates will result in
quicker convergence to the posterior densities. In this investigation, we use an
adaptation interval of every 100 parameter candidates. For further information about
the DRAM algorithm, we refer the interested reader to [11, 25].

After completing the parameter estimation process, we look for evidence of
successful parameter recovery. First, we investigate the MCMC posterior chains
for good mixing; we desire posterior chains that resemble white noise to suggest
that the entire parameter space has been explored without extended stagnation on
certain candidates. For visual examples of well-mixed posterior chains, we refer the
reader to [25]. We also consider the pairwise parameter plots, as these can illustrate
identifiability issues in several ways. Pairs of parameters whose chains are highly
correlated in a strictly linear fashion are said to be unidentifiable in the sense that
they cannot be uniquely identified by calibration with the available data; infinitely
many pairs of parameter values would yield the same model response. Identifiability
issues can also manifest as posterior densities that are unchanged from the specified
prior distributions, indicating that the parameters are uninformed by the available
data. By considering the above indicators, we can determine whether the quality
and quantity of the data is sufficient to support the unique identification of all model
parameters.

3.2.1 The Impact of Necrotic Fraction on Model Calibration

We now investigate the ability of the one- and two-compartment ODE models to fit
synthetic data generated from the CA for different values of the CA parameter pNR ,
the probability of removal of a necrotic cell. We begin by generating synthetic data
in the form of a single representative realization of the CA with α/β = 1 and all
other parameters fixed at the nominal values provided in Table 1. For calibration,
we use data from the first day of weeks 2–7 and day 70 (i.e. days 8, 15, 22, 29, 36,
43, 50, and 70), corresponding to the first day of treatment each week and then a
post-treatment scan to check for tumor regrowth. We feed this data to the relevant
ODE model and estimate all parameters (A, B, and β for the one-compartment
ODE model; λ, k, η, ζ , and β for the two-compartment model). When investigating
the performance of the two-compartment ODE model, we consider two cases: (1)
providing tumor volume and necrotic fraction data, and (2) providing only tumor
volume data, but still estimating necrotic fraction in the absence of that data.

The results presented in Fig. 6a show that the one-compartment ODE fit improves
as pNR increases, suggesting that the one-compartment ODE is better able to model
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Fig. 6 Comparing the ability of the one- and two-compartment ODE models to fit synthetic
data collected from the CA for varying values of pNR , 0.004, 0.008, 0.012, and 0.016. (a) One-
compartment model fit to tumor volume data from the CA model. (b) Two-compartment model
fit to CA tumor volume data without necrotic core fraction data. (c) Two-compartment model fit
to the CA data (for both tumor volume and necrotic fraction). Blue represents tumor volume; red
represents necrotic fraction. Solid curves are fit to the given data; dashed curves show necrotic
fraction estimate from the two-compartment ODE model generated in absence of necrotic data

scenarios in which the necrotic portion of the tumor is minimal. In contrast, the
two-compartment ODE with both sets of data supplied fits the data with reasonable
accuracy in all four cases, regardless of the pNR value—see Fig. 6c. When the
necrotic fraction data is not supplied, the two-compartment model generates good
fits to total tumor volume data alone, for all values of pNR . However, in all cases it
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vastly overestimates the necrotic fraction towards the beginning of the observation
period, as shown in Fig. 6b. Thus, using only tumor volume data, we can reliably use
the two-compartment model to make predictions about tumor volume, but cannot
rely on the calibration to produce an accurate portrayal of the tumor heterogeneity.
Parameter values generated by fitting the models to the CA data for various values
of pNR are given in Table 2.

3.2.2 The Impact of Noise on Parameter Recovery

In this case study, we seek to understand how the addition of noise to the data affects
our ability to recover model parameters; specifically, at what point does the noise
level overcome our ability to determine what parameter values were used to generate
the data? We generate noise uniformly on an interval centered over each data point,
with a range depending on the level of noise desired; that is, at each time t ,

ynoise(t) = yexact(t)(1 + ε),

where ε ∼ U (−x, x) if we desire 100x% noise.
We generate noisy synthetic data for the one-compartment and two-compartment

models in the presence and absence of radiotherapy, and then calibrate the data
against the model used for its generation, varying the noise level from 1% to
20%. The results are presented in Fig. 7, separated into three cases for easier
visualization: (a) one-compartment model, (b) two-compartment model with a
low necrotic fraction (approximately 20% necrotic tissue over the long term
without treatment), and (c) two-compartment model with a high necrotic fraction
(approximately 50% necrotic tissue over the long term without treatment). For the
one-compartment model, we estimate the parameter set [A,B, β] and compare to
the true parameter set [0.5, 2, β], where the value of β used to generate the data
depends on the radiosensitivity level specified. For the two-compartment model, we
estimate [λ,K, η, ζ, β] and compare to the true parameter set [1, 0.5, 0.5, 0.5, β] in
the high-necrotic case, and [1, 0.5, 0.5, 2, β] in the low-necrotic case. In all cases,
we fix α = 0.14 and estimate the radiosensitivity ratio α/β by varying β only,
since we encounter structural identifiability issues when trying to fit both α and β

simultaneously—see Sect. 3.1. Since we are interested in observing the behavior
for a variety of radiosensitivity levels, we consider four cases for each model: no-
treatment, high radiosensitivity (α/β = 1, so β = 0.14), medium radiosensitivity
(α/β = 3, so β = 0.0467), and low radiosensitivity (α/β = 9, so β = 0.0156).
Data is supplied for calibration for two pre-treatment times (days 8 and 15), five
treatment times (during days 22–50), and one post-treatment time (day 70). In each
case, we measure the average relative error in parameter estimates (we compare
the parameter values used to generate the data to those obtained via the parameter
estimation procedure) over 10 runs, for four levels of noise: 1%, 5%, 10%, and 20%.
As seen in Table 3 and Fig. 7, in all cases there is a positive correlation between the
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Fig. 7 Average relative error between the parameter values used to generate the synthetic data and
those obtained by fitting to noisy data, averaged over 10 iterations in each trial for four different
noise levels. (a) One-compartment ODE model with varying noise. (b) Two-compartment ODE
model with low necrotic fraction (ζ = 2) and varying noise. (c) Two-compartment ODE model
with high necrotic fraction (ζ = 0.5) and varying noise. In general, increased noise levels lead to
higher relative errors

noise level and the average relative error in the parameter estimates. That is, as
the level of noise in the data increases, the accuracy with which the true parameter
values can be recovered decreases.

In Fig. 8, we focus on the one-compartment model with treatment and a low α/β

ratio. For each noise level, we plot the posterior densities of our three parameters
post-calibration. With 1% noise, the posterior distributions are centered at the values
used to generate the data and are extremely well-informed, as illustrated by their
narrow posterior densities. As the noise level increases, the posterior distributions
widen, indicating less well-informed parameter estimates with greater variability.
In addition, the distributions tend to drift rightwards as the noise level increases,
suggesting that all parameter values are being overestimated. While we cannot be
sure as to the cause of this “drifting” effect, we hypothesize that it may be due to our
defining of the noise on a local scale, such that pre-treatment data will be “noisier”
on average than data later on in the observation period. Further work is required to
confirm this causation; meanwhile, we should remain cautious when dealing with
noisy pre-treatment data, as it may play a significant role in the calibration of the
parameters.

4 Model Selection

We now move to the question of determining how to choose the model most
appropriate for the available data. When patient data is collected, we seek to identify
a model that can be well calibrated to the data and make accurate predictions, while
also retaining simplicity in terms of the underlying mechanisms and number of
parameters. Minimizing the number of variables and parameters is desirable, due
to the cost of collecting the data and conducting parameter estimation. For example,
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Fig. 8 Series of results showing how the posterior parameter distributions for the one-
compartment model, with treatment and a low α/β ratio, depend on the level of noise in the data.
As the noise level increases, the posteriors become less well-informed and tend to overestimate the
parameter values compared to those used to generate the data

our one-compartment model requires only tumor volume data, whereas our two-
compartment model also uses necrotic fraction data as an input, which is far more
challenging and expensive to collect. Additionally, fitting the two-compartment
model requires exploration of a five-dimensional parameter space, whereas fitting
the one-compartment model requires investigation of a parameter space which is
only three-dimensional. Therefore, we seek to understand when use of the one-
compartment model is adequate, versus when the additional complexity of the
two-compartment model (and cost for data collection) is necessary to accurately
describe the tumor growth dynamics. In this section, we study the goodness of fit of
the one-compartment model to synthetic data generated from the two-compartment
model. In doing so, we address some of the questions raised here.

We generate synthetic data for total tumor volume and necrotic fraction from
the two-compartment model, defined in Equations (4a) and (4b), by sweeping
across the following region of five-dimensional parameter space: {(λ,K, η, ζ, β) ∈
R

5 | 0.2 ≤ λ ≤ 1, 0.1 ≤ K ≤ 1, 0 ≤ η ≤ λ, 0.5 ≤ ζ ≤ 2, 0.014 ≤ β ≤ 0.14}.
We generate a large number of samples (O(103)) using the Halton sequence, a quasi
Monte Carlo method [13]. Then, we fit the synthetic tumor volume data using the
one-compartment model defined in Equation (2).

We identify parameter regimes for which the one-compartment model provides
a good approximation to the data from the two-compartment model and make
note of other parameter regimes for which the one-compartment model does not
approximate the two-compartment data well. The overall relation between the
parameters are shown in Fig. 9; the parameter pairs (λ, A), (λ, B), are positively
correlated since λ is the net tumor growth rate and, by definition, correlated to
parameters representing the growth rate (A) and the inverse of the carrying capacity
(B). Additionally, the values of β that represent radiosensitivity in the two models
are positively correlated to each other, but not correlated to any other parameters,
since the radiotherapy response is assumed to be independent of the tumor model
parameters. We find negative correlation between the pair (η, A), since the natural
death rate η is captured in the overall growth rate A, and between (K, B), also due
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Fig. 9 Relationships between the two-compartment parameter samples (λ,K, η, ζ, β) and the
fitted one-compartment parameters (A,B, β), depicted by contour plots showing the density of
the parameter pairs. The parameter pairs (λ, A) and (λ, B) are positively correlated, while (η, A)

and (K, B) are negatively correlated. The most apparent relation is between β from the two-
compartment model and fitted β in the one-compartment model where the two values are linearly
related

Fig. 10 Examples of tumor volume data V (t) (◦) and necrotic volume (- -) generated from the
two-compartment model defined by Equations (4a) and (4b) and corresponding tumor volume
values Y (t) (×) obtained by fitting the one-compartment model defined by Equation (2) to the data.
In subplots (a) and (b), the approximation is accurate; in subplots (c) and (d), the one-compartment
model fails to accurately capture the behavior of the data. Although in (d), the overall trend is
captured by the one-compartment model, the slope difference toward the end time point may lead
to inaccurate predictions in future time points

to their inverse relation. The necrosis clearing rate ζ is not strongly correlated with
any of the parameters from the one-compartment model.

Figure 10 displays simulation data generated from the two-compartment model
in the absence of treatment. We plot the total tumor volume (Y (0), Y (1), · · · , Y (tf ))

and the corresponding necrosis fraction (Φ(0),Φ(1), · · · , Φ(tf )), where tf =
15. Also shown are the corresponding fits (V (0), V (1), · · · , V (tf )) of the one-
compartment model in Equation (2) to the synthetic data. We find that the
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Table 4 Parameter values used to generate the plots in Figs. 10 and 12. They are the parameter
values of the two-compartment model in Equations (4a) and (4b) and the fitted parameter values
in the one-compartment model Equation (7)

Two-comp. model One-comp. model

λ K η ζ β A B β

Fig. 10a 0.33 0.60 0.26 1.97 0.1159 2.4326

Fig. 10b 0.89 0.90 0.23 1.90 0.6738 0.9061

Fig. 10c 0.92 0.11 0.92 0.77 0.0834 4.9750

Fig. 10d 0.954 0.29 0.92 0.03 0.3906 3.3525

Fig. 12a 0.811 0.934 0.0278 1.58 0.0276 0.779 0.851 0.0123

Fig. 12b 0.508 0.705 0.115 1.50 0.102 0.382 0.59 0.0984

Fig. 12c 0.819 0.170 0.806 0.723 0.0234 0.113 5.00 0.0419

Fig. 12d 0.583 0.972 0.0205 0.531 0.127 0.499 0.468 0.1006

one-compartment model accurately fits synthetic data which is either monotonically
increasing (Fig. 10a), or increasing and saturating (Fig. 10b). It is unable to accu-
rately fit data generated from the two-compartment model for which the growth
dynamics are either non-monotonic (Fig. 10c) or for which the necrotic region is
large (Fig. 10d). We note that the poor fit of the one-compartment model to non-
monotonic growth (Fig. 10c) is expected, since solutions to the one-compartment
model are monotonic. The parameter values used to generate the synthetic data
presented in Fig. 10 are included in Table 4, together with the parameter values
obtained by fitting the one-compartment model to the synthetic data.

To quantify how well the one-compartment model fits data generated from
the two-compartment model (i.e., the goodness of fit of the one-compartment
model), we compute the relative error e

.= ‖y − v‖2/‖y‖2 between the data
y = (Y (0), Y (1), · · · , Y (tf )) and the fitted values v = (V (0), V (1), · · · , V (tf ))

for each parameter sample. Each point plotted in Fig. 11 represents the relative
error when the one-compartment model is fitted to synthetic data generated from
the two-compartment model for a sample parameter set. Figure 11a shows how the
goodness of fit of the one-compartment model decreases as the tumor size reduction
indicator (Y (tf )/ maxt Y (t)) decreases. Smaller values of this quantity correspond
to tumors which have more pronounced, non-monotonic growth dynamics that
cannot be modeled using the one-compartment model that only produces logistic
curves. Figure 11b shows that the goodness of fit of the one-compartment model
decreases as the necrotic volume of the synthetic data increases. This suggests that
measuring the necrotic volume at a given time could be used to decide whether a
one-compartment model can accurately fit the data or whether a two-compartment
model is needed. More specifically, we observed an increased level of relative error e

in some of the fits of the two-compartment data when the necrotic proportion Φ(tf )

at the final time point is large; the relative error can be large when the necrotic
proportion Φ(tf ) is large.

We use a similar workflow to study the goodness of fit of the one-compartment
model to the two-compartment model with radiotherapy. As in the case without
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Fig. 11 Relative error e between the two-compartment tumor volume data generated from
Equations (4a) and (4b) and the one-compartment fit using Equation (2) is plotted with respect
to (a) tumor size reduction Y (tf )/ maxt Y (t) and (b) necrotic fraction Φ(tf ), where tf = 15 is
the final time of our simulation. Subplot (a) shows that data with non-monotonic tumor growth
cannot be captured accurately by the one-compartment model. In particular, we highlight the data
with Y (tf )/ maxt Y (t) < 0.8 (◦) that show large relative error values. Subplot (b) shows that the
proportion of necrotic cells is also related to an increased error using the one-compartment model.
We observe cases with increased error levels in data for which Φ(tf ) > 0.4

Fig. 12 Series of results showing the goodness of fit of the one-compartment model to data
generated from the two-compartment model when treatment with radiotherapy is applied. We
present synthetic data of tumor volume (◦) and necrotic volume (- -) that were generated from
the two-compartment model (see Equations (4a) and (4b)), together with tumor volume data (×)
obtained by fitting to the one-compartment model (see Equation (7)). The fits are accurate in cases
(a) and (b) but not in (c) or (d). In particular, the one-compartment model cannot reproduce the
results of two-compartment model when the untreated growth dynamics are not well-fitted (c), and
when the necrotic region is large (d)

treatment, Fig. 12 shows that there are situations for which the one-compartment
model accurately captures the tumor dynamics (Fig. 12a, b) and others for which
it does not (Fig. 12c, d). The two scenarios which typically yield inaccurate fits
correspond to cases for which tumor growth before treatment can be not captured
well (Fig. 12c) and/or the necrotic region is large (Fig. 12d). Although one can
assume that the overall dynamics in Fig. 12d are captured reasonably well, the peak
and trough during treatment could not be accurately fitted. This could potentially
cause more inaccurate predictions when only a few, noisy data points are added.
The parameter values used to generate the figure are included in Table 4.
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Fig. 13 Relative error e between the two-compartment data generated from Equations (4a)
and (4b) with treatment and the one-compartment fit using Equation (7) with respect to (a) the
parameter ζ and (b) necrotic fraction Φ(t1), where t1 = 20 is the time after the first week
of treatment. The proportion of necrotic cells is positively correlated with the relative error. We
highlight the data with Φ(tf ) > 0.75 (♦) that show large errors

As in the example without treatment, the relative error e is computed using the
two-compartment tumor volume data y and the fitted tumor volume data from the
one-compartment model v. In this case, the data is collected daily until the final time
tf = 70. In Fig. 13b, the error is plotted with respect to the necrotic fraction after the
first week of treatment Φ(t1). The results show that the relative error increases as the
ratio of necrotic core increases. We observe a correlation of the relative error with
the necrotic core, that is more apparent compared to the study without treatment
(Fig. 11b). In addition, in Fig. 13a, we observe correlated patterns with the necrotic
core decay rate ζ , as this is the parameter that determines the size of the necrotic
core.

Next, we verify that the ratio of necrotic core Φ(t) is a robust indicator of
goodness of fit of the one-compartment model with treatment fitted to synthetic
data with noise. Figure 14 shows the relative error, e, against the necrotic fraction
Φ(t), while increasing the noise level of the data up to 20%. A positively correlated
relationship between the relative error of the one-compartment fit and the necrotic
fraction is apparent once treatment is applied, while the noise in the data reduces
the effectiveness of the indicator in cases without treatment. In general, larger noise
in the data impacts the ability to accurately fit the one-compartment model to two-
compartment data, as is shown in Fig. 15, where the fitted β in the one-compartment
model becomes inaccurate as the noise increases. In conclusion, we determine that
the necrotic fraction is a good indicator of the quality of fit of the one-compartment
model to synthetic data generated from the two-compartment model.
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Fig. 14 The impact of adding noise to synthetic data from the two-compartment model on the
ability to fit the one-compartment model without treatment (top) and with treatment (bottom). The
relative error e is plotted with respect to the ratio of necrotic fraction Φ(t) while increasing noise
in the data up to 20%. The least squares regression lines are shown. Despite the increased level of
noise, the necrotic fraction remains a good indicator of the fitness of the one-compartment model
when the treatment is given (bottom). (a) Noise 0%. (b) Noise 10%. (c) Noise 20%

Fig. 15 The impact of adding noise to synthetic data from the two-compartment model reduces
the ability to fit the one-compartment model. The parameter pairs of β that is used to generate
the data from the two-compartment model and fitted using the one-compartment model show that
larger noise in the data results in misfitted β values. (a) Noise 0%. (b) Noise 10%. (c) Noise 20%
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5 Data Inclusion for Model Calibration

In an effort to predict how well simple mathematical models can be calibrated
to clinical data of tumor volumes and to determine how much data is needed to
accurately infer model parameters, we perform a sequential model calibration of: (i)
the one-compartment model to data generated by the two-compartment model; (ii)
the one-compartment model fit to CA data; and, (iii) the two-compartment model
fit to synthetic data generated by the CA. In all cases, the data is generated from
simulations in which tumors are treated with radiotherapy.

In each case, we fit the simpler model to a data set that includes tumor volumes,
and necrotic fractions when relevant, measured once per week with 10% noise
added. The calibration procedure is begun by fitting the lower-fidelity model to the
first three data points (collected from the higher-fidelity model at days 8, 15, and
22); then the low-fidelity model is re-calibrated with the addition of each subsequent
data point in an effort to determine a threshold at which we have “enough” data to
accurately infer our model parameters with well-informed posterior distributions.
When calibrating the one-compartment ODE model, the parameter set [A,B, β] is
estimated; for the two-compartment model, we estimate [λ,K, η, ζ, β]. In all cases,
α remains fixed at 0.14 to avoid identifiability issues.

At each calibration step, we calculate the relative error between the “fitted”
and corresponding “true” parameter values. Since there is no explicit relationship
between the parameters of the CA and those of the ODE models or mapping between
parameters in the one- and two-compartment ODE models, we use a full set of in
silico daily information to provide “true” parameter values. In each case, we initially
fit the one- and two-compartment models to all 71 data points generated from the CA
model and the one-compartment model to all 71 data points generated from the two-
compartment model with no noise added and burn-in and subsequent MCMC chain
lengths of 10,000. The parameter values generated from these fits are considered the
“true” parameter values for each data set. We also assess the ability of the model to
accurately predict the tumor regrowth (defined using the data point at day 70), by
computing the absolute error in prediction when using the current calibrated model
to predict forward in time. Figure 16 displays the calibration results when fitting to
CA data in the “high” necrotic case (when the necrotic cells comprise 50% of total
tumor volume in the absence of treatment). The final fits using all eight data points
are generated using data with 10% noise added and burn-in and subsequent MCMC
chain lengths of 10,000.

From Fig. 16, we see that when the necrotic fraction is high, the parameters
converge well only when the two-compartment model is fit to both tumor volume
and necrotic fraction data. In particular, the one-compartment model (Fig. 16a, b)
does not accurately simulate a tumor with a high necrotic fraction; the fit is poor,
and the estimated parameter values differ markedly from those used to generate
the in silico data. Additionally, the entire fit changes when the final data point is
added. This suggests that information about necrotic volume is needed to achieve a
good fit to the data. When we fit the two-compartment model (Fig. 16c, d) to tumor
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Fig. 16 Model fits with “high” necrotic fraction, “low” α/β ratio, and 10% noise. Blue represents
tumor volume; red represents necrotic fraction. Solid curves are fit to the given data; dashed curves
show necrotic fraction estimate from the two-compartment ODE model generated in absence of
necrotic data. (a)–(b) One-compartment model fit, (c)–(d) Two-compartment model fit to tumor
volume data only, (e)–(f) Two-compartment model fit to tumor volume and necrotic data generated
from the CA
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volume data only (no inclusion of necrotic information) generated from the CA, the
overall fit is reasonable, but parameter values change markedly as the number of
data points used for fitting varies. Additionally, the relative errors in the parameter
values (as compared to those fit using the in silico data set) are high. Providing this
supplemental information allows the slightly more complex two-compartment ODE
model to accurately fit the high-necrotic tumor data; Fig. 16e, f shows a strong fit
with greater consistency in the parameter estimates as data is added sequentially.

Analogous plots obtained by fitting CA data in the “low” necrotic case (when the
necrotic cells comprise 20% of total tumor volume in the absence of treatment), are
presented in Fig. 17. In this figure, all results relate to fits of the one-compartment
model to the CA data as the tumor radiosensitivity varies. The radiosensitivity
decreases from high ( α/β = 1) in (a)–(b), to medium (α/β = 3) in (c)–(d), and low
(α/β = 9) in (e)–(f). Tumor regrowth data generated with medium and high α/β

ratios is accurately predicted, even with only three data points. In the low α/β case,
an additional data point is needed for accurate regrowth predictions. In all cases,
the estimated parameter values converge rapidly to the true parameter values. We
conclude that, despite its simplicity, for all three levels of radiosensitivity, the one-
compartment model not only fits the data well, but can do so with just 3–4 few data
points provided, for tumors with small necrotic regions.

6 Discussion

In this investigation, we have proposed a framework for choosing appropriate
models, verifying the identifiability of their parameters, and calibrating those
parameters with the available data. As a proof-of-concept, we investigated three
distinct models of tumor growth: a one-compartment ODE model tracking tumor
volume over time, a two-compartment model that includes an additional state
variable representing the necrotic volume fraction, and a spatially explicit cellular
automaton model that is more complex than the ODE models. We first showed
that the one- and two-compartment model parameters are structurally identifiable
without treatment, i.e. that one can uniquely recover all parameter values describing
those models, given error-free model output data. However, we found that structural
identifiability does not hold when treatment with radiotherapy is included in the
models, since the radiosensitivity parameters are not uniquely identifiable. This led
us to fix α and vary β only, when conducting model calibration.

Next we considered the practical identifiability of both ODE models. After
adding varying levels of noise to synthetic tumor volume data, we found that the
practical identifiability of parameter values becomes less well-informed for both
the one-compartment and two-compartment models as the noise level increases.
Further, the predicted parameter values tend to overestimate those values used to
generate the data. By performing a sweep of the model parameters, we identified
that the one-compartment model accurately fits synthetic data generated by the two-
compartment model when the data is increasing monotonically or when the necrotic



Data-Driven Modeling of Tumor Growth 211

Fig. 17 The one-compartment model accurately describes tumors with a low necrotic fraction, for
a range of α/β ratios. (a)–(b) α/β = 1, (c)–(d) α/β = 3, (e)–(f) α/β = 9. In all three cases the
relative errors in the estimated parameter values are small; the inclusion of the fourth data point
results in absolute prediction error for tumor regrowth of less than 0.1 cm in all three cases
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region is small. The error of the one-compartment fit to synthetic data increases as
the size of the necrotic region increases, suggesting that in a clinical setting, the
one-compartment ODE model becomes a less accurate predictor of tumor growth as
the size of the necrotic region increases.

We also tested the ability of the simpler models to fit to data generated from
the CA, using only a small number of data points. In agreement with the parameter
sweep results, we found that for tumors with a large necrotic region, the estimated
parameter values converge well only when fitting the two-compartment model to
data on both total tumor and necrotic volumes. This implies that in cases with slow
necrotic decay, information about tumor heterogeneity, rather than simply tumor
volume, is necessary to fit these ODE models to the data. In such cases, i.e., when
the necrotic region is large, the one-compartment ODE model will not accurately
predict the response to treatment and tumor regrowth. However, when the necrotic
fraction is small, it is possible to accurately identify parameters from the one-
compartment model and to characterize tumor response to radiotherapy.

In the future, we aim to explore the sensitivity of the ODE models to intrinsic
noise by adding noise to the parameter space before generating synthetic data and
fitting the models to this data. We are also interested in incorporating multiple
types of cells with different levels of radiosensitivity. We plan to examine how this
additional complexity affects the overall predictive power of the ODE models and
the amount of data needed to make accurate predictions. We also plan to conduct
further experiments studying the impact of the quantity, type, and temporal location
of available data on the ability to accurately calibrate various models.

Appendix: Structural Identifiability for the
Two-Compartment Model

Below, we investigate the structural identifiability of the two-compartment model
with radiotherapy, given in Equations (19) and (20), using the same techniques as
presented in Sect. 3.1.

Case 1: No Radiation

In this case the model reads

dY

dt
= λ(1 − Φ)Y (1 − (1 − Φ)

Y

K
) − ξΦY

dΦ

dt
= (1 − Φ)

[
η − λΦ(1 − (1 − Φ)

Y

K
− ξΦ)

]
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with unknown parameters p = {λ,K, ξ, η}, observable quantities y(p; t) = {Y,Φ},
and known initial conditions. We repeat the analysis as before, using the Taylor
coefficients. We define the following known quantities:

a0 = Y (0+) b0 = φ(0+) a1 = Y ′(0+) b1 = φ′(0+) a2 = Y ′′(0+) b2 = φ′′(0+).

We substitute these quantities into the model system to obtain:

a1 = λ(1 − b0)a0[1 − (1 − b0)
a0

K
] − ξb0a0

= [−(1 − b0)
2a2

0] λ

K
+ [(1 − b0)a0]λ − [b0a0]ξ

b1 = (1 − b0)
[
η − λb0(1 − (1 − b0)

a0

K
− ξb0)

]

+ [−(1 − b0)b0]λ + [(1 − b0)
2b0a0] λ

K
− [(1 − b0)b0]ξ + [(1 − b0)]η.

We differentiate the model equations once more to obtain:

a2 = (−2λ(−1 + b0)2a0 − ((ξ + λ)b0 − λ)K)a1 − a0b1(2(−1 + b0)λa0 + (ξ + λ)K)

K

b2 = (3a0b2
0λ + (−4λa0 + 2(ξ + λ)K)b0 + λa0 − K(ξ + η + λ))b1 + b0a1λ(−1 + b0)2)

K
.

The above four equations can now be used to solve for each parameter as follows:

K = 1

[((b0 − 1)b2 − b2
1)a

2
0 + a2(b0 − 1)2a0 − a2

1(b0 − 1)2]b1

× [(b1(b0 +1)(b0b2 −b2
1 −b2)a

3
0 + ((a1b2 +a2b1)b

2
0 + ((−b2

1 −b2)a1 +a2b1)b0

− a1b
2
1 − a2b1)(−1 + b0)a2

0 − (−a2b
3
0 + (a1b1 + a2)b

2
0 + 2a1b1b0 − 2a1b1)

× a1(−1 + b0)a0 − a3
1b2

0(−1 + b0)
2)(−1 + b0)],

λ = −1

(a0b0b1 + a1b
2
0 − a0b1 − 2a1b0 + a1)a

2
0b1

× [a3
0b2

0b1b2 − a3
0b0b

3
1 + a2

0a1b
3
0b2 − a2

0a1b
2
0b

2
1

+ a2
0a2b

3
0b1 − a0a

2
1b3

0b1 + a0a1a2b
4
0 − a3

1b4
0 − a3

0b3
1

− 2a2
0a1b

2
0b2 − a0a

2
1b2

0b1 − 2a0a1a2b
3
0

+ 2a3
1b3

0 − a3
0b1b2 + a2

0a1b0b2 + a2
0a1b

2
1 − 2a2

0a2b0b1 + 4a0a
2
1b0b1

+ a0a1a2b
2
0 − a3

1b2
0 + a2

0a2b1 − 2a0a
2
1b1]



214 H. Cho et al.

η = −a2
0b0b2 − a2

0b2
1 + a0a2b

2
0 − a2

1b2
0

b1a
2
0

ξ = a2
0b0b2 − a2

0b2
1 + a0a2b

2
0 − a2

1b2
0 − a2

0b2 − a0a1b1 − a0a2b0 + a2
1b0

b1a
2
0

Since we are able to obtain unique solutions for each of the four parameters, we
declare them to be structurally identifiable. For GenSSI, only two Lie derivatives are
needed which yield rank 4, and thus results show all four parameters are structurally
identifiable, in agreement with our calculations above.

In addition to the above analysis, we also repeated the analysis in the case in
which only the tumor volume could be observed, (i.e., y(t;p) = Y (t)), but with
known initial conditions in tumor volume and necrotic fraction. In this case, we
took higher order Taylor series coefficients (up to order 4) and obtained that p =
{λ,K, ξ, η} were structurally identifiable. Similarly, GenSSI took Lie derivatives up
to order 4 and confirmed that all parameters were structurally identifiable.

Case 2: With Radiation Treatment

Similar to the single compartment model, here we examine the effect of a point
treatment. The model equations read:

dY

dt
= λ(1 − Φ)Y (1 − (1 − Φ)

Y

K
) − ξΦY

dΦ

dt
= (1 − Φ)

[
η − λΦ(1 − (1 − Φ)

Y

K
) − ξΦ

]
, for t+i < t < t−i+1

Φ(t+i ) = Φ(t−i ) + (1 − Φ(t−i ))(1 − Γ ),

where Γ = exp(−αd − βd2). Since the other parameters are known and measured
prior to treatment, as in the previous section, we want to solve for p = {α, β}
assuming y(p; t) = {Y,Φ} as observable quantities. We let

A0 = Y (t+i ) B0 = Φ(t−i ) A1 = Y ′(t+i ) B1 = Φ ′(t+i ),

and substitute these quantities into the model equations:

A1 = −A2
0λ(B0 − 1)2

K
Γ 2 − A0(ξ + λ)(B0 − 1)Γ − A0ξ

B1 = [A0λ(B0 −1)2Γ 2 + (B0 −1)((K +A0)λ+ξK)Γ +K(ξ −η + λ)]Γ (B0 − 1)

K
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As with the one-compartment model, we find that the equations are not infor-
mative for α and β simultaneously, thus, we again declare the pair (α, β) to be
non-identifiable in this setting. As before, we choose to fix α for all subsequent
model calibrations and measure the ratio α/β to use as a measure of radiosensitivity.
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