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Preface

Machine learning and deep learning approaches have become inevitable solutions in 
all domains of engineering. Python is an efficient tool that satisfies the needs of 
engineers, mathematicians, and data scientists in solving their daily problems. The 
algorithms like Neural Network (NN), Support Vector Machine (SVM), Hidden 
Markov Model (HMM) in machine learning approach create easy way for predict-
ing the data set and aids in classifying heterogeneous data. The Python program-
ming language has easy packages available on open source that can immediately 
implement and test these algorithms for real-time problems. Python is becoming a 
very efficient tool, capable of running on small machines (i.e. embedded systems 
and single-board computers) as well as big super computers and gigantic data clus-
ters. More and more IoT-based projects and rapid prototyping are done nowadays to 
solve numerous transient problems using Python and ML approaches. Creating a 
solution to this and sophisticating the new learning of Python and Tensorflow, this 
book covers beginner to advanced levels. It contains 12 parts, starting with basic pip 
installation of packages in Linux and Windows environment, through image pro-
cessing, sentimental analysis, handwriting recognition, factor analysis, feature 
extraction, line recognition, various machine learning approaches, single-board 
computers and IoT projects using Tensorflow. This book provides detailed coding 
explanation along with the output to facilitate the readers and aids easy learning of 
Tensorflow package in Python. It also provides example exercises and their solu-
tions in the appendix. This book will be an insight for new beginners, students, 
scholars, and data scientists to learn and work on Tensorflow and similar packages.

Vijayawada, AP, India�   Kolla Bhanu Prakash
Chennai, Tamil Nadu, India�   G. R. Kanagachidambaresan
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Introduction to Tensorflow Package

Kolla Bhanu Prakash, Adarsha Ruwali, and G. R. Kanagachidambaresan

Tensorflow’s structure is based on the dataflow graph [3]. A dataflow graph as two 
basic computation units:

•	 Node
•	 Edge

A node represents any mathematical operations and an edge [4] depicts the mul-
tidimensional array (tensors). Figure 1 elucidates the graphical flow for x*y + 2 and 
b + W*x equations.

Figure 2 illustrates the computation of Tensorflow in multidimensional.

1  �Why Tensorflow for Deep Learning?

Tensorflow has built-in supports for deep learning [5]. This helps in simplification 
and has an easy-to-use environment to assemble neural networks assigning param-
eters, training and testing any deep learning models [6]. Likewise, simple trainable 
mathematical functions are also present in Tensorflow. All these flexible tools within 
Tensorflow make itself compatible for many concepts under machine learning.
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2  �Installation Guide to Tensorflow

2.1  �System Requirement

Ubuntu 16.04 or later (64-bit)
macOS 0.12.6 (High Sierra) or later (64 bit) no GPU support
Windows 7 or later (64 bit) (python 3 only)
Raspbian 9.0 or later

If you are using python with 3.x version and have installed ‘pip’, then you can 
directly head towards the below installation in command prompt:

Fig. 2  Computation Tensorflow for multi-dimensional operations

Fig. 1  (a) Computation Tensorflow graph for x*y  +  2 (b) Computation Tensorflow graph for 
b + W*x

K. B. Prakash et al.
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$pip3 install Tensorflow

Now if you have Tensorflow already installed in your [6] system and need an 
upgrade:

$pip3 install –ignore-installed –upgrade Tensorflow==1.9
1.9 is the version of Tensorflow to upgrade to

Following is the illustration of how python and Tensorflow both are installed in 
Windows 10 (64 bit):

	1.	 Download python from https://www.python.org.downloads/ as illustrated in 
Fig. 3.

	2.	 Once the python is downloaded, install it adding to the path shown as given in 
Fig. 4.

Fig. 3  Python.org home page

Fig. 4  Python download

Introduction to Tensorflow Package

https://www.python.org.downloads/
http://python.org
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	3.	 Now to install Tensorflow as a library package in the python. Type the command 
shown below:

$ pip3 install Tensorflow, Fig. 5 illustrates the screen after executing the pip 
install command.

The version of Tensorflow installed in the existing system can be verified with 
the following code.

import Tensorflow as tf
tf.version
tf.version will give you the version of package installed in your system

Great! It’s done.

References

	1.	 Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff & Itay Lieder]
	2.	 Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors: Hisham 

El-Amir, Mahmoud Hamdy]
	3.	 TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms 

[Authors: Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli]
	4.	 Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, 

and TensorFlow [Authors: Sebastian Raschka, Vahid Mirjalili]
	5.	 Python Deep Learning: Exploring deep learning techniques, neural network architectures and 

GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater, Gianmario 
Spacagna, Peter Roelants, Valentino Zocca]

	6.	 S. Pichai, “TensorFlow: smarter machine learning for everyone”, Google Official Blog, 2015.

Fig. 5  After running the above command output
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Tensorflow Basics
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1  �Hello Tensorflow Program

This is the very basic [2] program in tensorflow and outputs are given in Figs. 1 and 2.

•	 tf.constant adds value to a given variable and the value remains constant through-
out runtime.

•	 tf.Session runs a computational graph and starts the session where the objects are 
executed.

2  �Representation of Vector/Matrix

The generalized form of vectors and matrices are called tensors [3]. There are dif-
ferent ways of representing tensors declaring its variability or as a constant. To 
represent a vector or simply to print any vector, numpy is another library package 
that handles the vectors and even multidimensional arrays as well. The output of 
each step is illustrated in Fig. 3.

A. K. Jha · A. Ruwali · K. B. Prakash (*) 
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Fig. 2  Output for HelloTensorflow basic code

Fig. 3  Vector representation in numpy package

Fig. 1  System output of simple hello program in tensorflow

A. K. Jha et al.
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3  �With Session() Vs without Session()

Session() helps in the execution of the computational graph and also controls the 
state of the tensorflow runtime [4]. Without session, tensorflow programs cannot be 
executed. Following are the demos of the tensorflow program with and without 
Session() as given in Figs. 4 and 5.

4  �Zeros Matrix and Ones Matrix

Tensorflow built-in functions tf.zeros() and tf.ones() are the functions for matrix 
with all zeros and with all ones, respectively [5]. In the following demo, Figs. 6 and 
7, the size of the matrix is 50 × 50 for both ones and zeros.

5  �Make Matrix Negative

The following demonstration in Fig. 8 helps in negative matrix initialization, that is, 
matrix with –ive elements in row and [6] column initiation using the built-in func-
tion of tensorflow.

Fig. 4  Without session in tensorflow

Fig. 5  With session initialization in tensorflow

Tensorflow Basics
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Fig. 6  tf.ones() example code with session

Fig. 7  tf.ones() example code without session

Fig. 8  Negative matrix initialization

A. K. Jha et al.
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•	 tf.constant, initialize the matrix with 1 × 3 dimension and store it in “a.”
•	 To make matrix negative, tf.negative() is used.

6  �Variables and Constants

The demonstration in Fig. 9 illustrates the constant and variable initializing. Here:

•	 Variables, constants, and placeholders are used to store values at different instances.
•	 Constant values cannot be altered once initialized during runtime.
•	 Variables assigned can be altered if required.
•	 Placeholders reserve space for the variables declared before runtime session.
•	 Global_variables_initializer() returns a variable list that holds the global vari-

ables and variable_initializer() takes all the variable in the variable list and sets 
its variable initializer property to an operation group [7].

7  �Variables Concept in Tensorflow

•	 Variable holds data that vary.
•	 Variable holds and updates parameters in a training model.
•	 It is a tensor having in-memory buffers [8].
•	 Variables are initialized and can be stored to disk during and after training.
•	 That saved data can be restored to exercise the model. Figure 10 elucidates the 

variable concept output with Python.

Fig. 9  Code illustration for global variable initializer

Tensorflow Basics
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Note
A constant’s value is stored in the graph and its value is repeated everywhere the 
graph is loaded. Separately one variable is stored.

8  �Implement Concept of Placeholder

•	 Placeholder holds the variables and its property before, during, and after the ses-
sion is executed.

•	 Placeholder provides the value later when the session is being executed.
•	 feed_dict is to feed the input value to the variable while evaluating the graph.
•	 feed_dict can be initialized during session runtime depicting values to variables 

in placeholder.

9  �Simple Equations Using Tensorflow

Basic mathematical operations are used to implement an equation shown in Figs. 11, 
12, and 13. Constants, variables, or placeholders can be used to form the equation. 
feed_dict is used to feed the [9] input values to the variable held by placeholder dur-
ing session run time.

	(a).	 Implement a + b.

Fig. 10  Variable concept output

A. K. Jha et al.
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	(b).	 Quadratic equation using tensorflow.
	(c).	 Implement 𝒂𝒙𝟐 + 𝒄𝒙𝒚 +𝒃𝒚𝟐.

10  �Simple Operations in Tensorflow

So far, we have discussed about basic operations and equations implemented in 
tensorflow [10]. Here are some more simple operations where tensorflow’s built-in 
functions are used as given in Fig. 14.

Fig. 11  Tensorflow addition concept

Fig. 12  Quadratic example program in tensorflow

Tensorflow Basics
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Fig. 14  Math operations in tensorflow

Fig. 13  Equation concept in tensorflow

A. K. Jha et al.
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tf.add(x, y): add two tensors.
tf.subtract(x, y): tensors of same type are subtracted.
tf.multiply(x, y): element-wise multiplication.
tf.pow(x, y): power of x to y.
tf.exp.(x): equivalent to exponential to the power x.
tf.sqrt(x): equivalent to the power of 0.5.
tf.div(x, y): divided x by y.
tf.mod(x, y): equivalent to x%y.

References

	 1.	Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff&Itay Lieder]
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1  �Matplotlib in Tensorflow

Pyplot provides the necessary figures and axes to get the desired plot [4]. Similarly, 
pylab combines the pyplot functionality with numpy as an effective environment for 
visualization [5].

Implementations

	(a)	 Scatterplot
Figure 1 describes the plotting of scatter plot using matplotlib package in Python.
Before implementing further, let us get familiar with some basic terminolo-

gies used:

•	 Linspace

Syntax Used
Numpy.linspace(start, stop, num = 50, endpoint = True, retstep = False, dtype = None)

Start: start of interval (default value is 0)
Stop: end of interval
num: number of sample generated
dtype: data type of an output array

Linspace is used to create a number sequences [6]. Implementation of this func-
tion and plotting it in a line graph is shown in Fig. 2.
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•	 np.random.randn()

Syntax
numpy.random.randn(d0, d1, …, dn), creates a specified array with random val-
ues w.r.t standard normal distribution as given in Fig. 3.

The values generated by this function are random [7] every time it is executed.
Using the above functions, let us do a scatter plot (Fig. 4), which contains 100 

different values within the range of −10 to +10.

Fig. 1  Scatter plot

Fig. 2  Linear graph

G. R. Kanagachidambaresan and G. Manohar Vinoothna
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1.1  �Histogram Implementation

Syntax
plt.hist(variable used,bins = <constant value>)

X-axis denotes each value and Y-axis or the height of each [8] rectangle repre-
sents the frequency of that value. The demonstration is given in Fig. 5.

Fig. 3  Random number matrix generation

Fig. 4  Linspace with scatter plot

Visualizations
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1.2  �Trigonometric Curves

Matplotlib with numpy is an effective way to represent the data [9]. Trigonometric 
curves of sine, cosine, and tan are shown in Figs. 6, 7, and 8.

Similarly, matplotlib is also used to plot 3D figures [10]. Figure 9 is one sample 
of 3D graph.

Fig. 5  Histogram

G. R. Kanagachidambaresan and G. Manohar Vinoothna
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Fig. 6  Sine curve

Fig. 7  Cosine curve

Visualizations
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Fig. 9  3D axes

Fig. 8  Tan curve

G. R. Kanagachidambaresan and G. Manohar Vinoothna
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Regression

Kolla Bhanu Prakash, Adarsha Ruwali, and G. R. Kanagachidambaresan

1  �Regression Model – Simple Linear Equation

Following are the steps that show the sample for linear equation and its plot (Fig. 1).

	1.	 Import the numpy library and matplotlib.pyplot library.
	2.	 Define number of variables necessary for the program.
	3.	 Iterate the variables for 500 random points.
	4.	 Plot the generated points using matplotlib (Fig. 2).

2  �Linear Regression

Linear regression [4] [5] models predict the correlation among 2 variables or factors 
as shown in Fig. 3. The factor that is being guessed is called dependent variables and 
the factors [6] that were used to guess the value of dependent variables are called 
independent variables [7].

The equation for linear regression is:

Y = MX + C
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Here, M = Gradient of line

X, Y = co-ordinate axes
C = Y-intercept

Algorithm Used
Functionalities of each [8] cell shown in the program below are given in the follow-
ing steps:

	1.	 Import tensorflow, numpy, and matplotlib.pyplot.
	2.	 Initialize total number of epochs, learning rate, and display step.

Fig. 1  Linear equation plot with matplotlib

Fig. 2  Steps and code snippet using matplotlib

K. B. Prakash et al.
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	3.	 In the third cell, input training data and output (target) data are initialized.
	4.	 Placeholders for the variables are declared.
	5.	 Compute the equation h = wx + b, compute cost function using the formula.

	6.	 cost = 
h y

m
�� �2

2
 and to minimize the cost, gradient descent optimizer is used.

	7.	 Initialize global variables at once.
	8.	 Run a session (Figs. 4 and 5).

Implementation of linear regression in tensorflow is pretty straightforward. All 
that is needed is three lines of code. The first line multiplies matrix features to 
matrix weights. The second line is cost or [8] loss function (least squared error). 
Finally, one stage of gradient descent optimization is performed by the third line to 
minimize cost function (Fig. 6).

Many Names of Linear Regression
It can get confusing when you start looking at linear regression [9] because linear 
regression backs for more than 200 years and still every possible angle of it is being 
studied. A new different name is assigned to every angle [10]. The regression is an 
example of a linear model, which presumes a linear correlation among input and 
output variables. The input variable is denoted as input(x) and output(Y). To mea-
sure Y in a more precise manner, a linear arrangement of input variables(x) can be 
utilized. In general, if there is a single input(x) and single output variable then it is 
termed as simple linear regression, if the method has a single input variable and has 
various output variables then it is termed as multiple linear regression.

To improve the performance of linear regression, several techniques are devel-
oped and in that the most popular is ordinary square regression also known as least 
square regression or as least squares linear regression [11].
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Fig. 3  Sample representation of linear model

Regression



26

Learning Model
In linear regression, coefficients used in the equations are estimated. Basically, it 
takes four techniques to prepare and improve the model.

Simple Linear Regression
A simple linear regression has only one input variable. So, only one coefficient 
needs to be estimated in simple linear regression [12]. This means that standard 
deviations, correlation, and co-variance are calculated. All of them should be calcu-
lated to traverse and analyze the statistical properties of the data.

Ordinary Least Squares
The sum of squared errors can be minimized using the ordinary least squares. It 
calculates the distance between each value and the regression line is calculated. 
These distances are squared and all these are added together and finally the sum of 
squared errors is calculated [13].

Fig. 4  Linear regression Part 1
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Ordinary Least Squares (OLS) is used to minimize this expression. It uses linear 
operations of algebra to minimize. Ample amount of memory must be available for 
its matrix operation. The OLS is compatible when the errors are serially uncorre-
lated in the linear estimator.

Gradient Descent
To find the global optimal point of a function, gradient descent is used. Gradient 
descent assigns a random value to the coefficients of the input variable and error is 
calculated every time this step iterates [14].

To further minimize the errors, the learning rate can be used to determine the 
parameters/coefficients and these coefficients are updated from time to time so that 
the goal can be achieved.

Fig. 5  Linear regression Part 2
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Keeping the learning rate too high or too low effects the time of execution and 
the chance of relevant value of the parameters responsible for minimum error alters. 
Choosing an appropriate learning rate improves the steps to take on each iteration.

Regularization
Regularization simply adds more information to solve a problem like over-fitting. 
This step helps to minimize the complexity of the model and also minimizes the 
miscalculations that take place while training the model using the training data [15].

Following are the examples of regularization in linear regression:

•	 LASSO regression: It stands for least absolute shrinkage selector operator. It 
performs L1 regularization [16]. LASSO penalizes the sum of absolute values of 
the coefficient, which is also called L1 penalty.

•	 Ridge regression: Here, OLS loss function is modified and the sum of the squared 
coefficients is minimized [17]. It reduces the model complexity as well as pre-
vents over-fitting.

Fig. 6  Linear regression Part 3
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3  �Logistic Regression

Like all regression analyses, the logistic regression is used to compute or predict the 
probability of the occurrence of a binary or categorical event. The logistic regres-
sion algorithm is used for classification. It is used when the target outcome or 
dependent variable is binary or categorical in nature and is determined by a collec-
tion of independent variables. The independent variables could be continuous, ordi-
nal (some given order on a scale), or nominal (named groups). The logistic function 
helps to threshold the output to either of the two possible binary outcomes in the 
case of binary logistic regression and to the predetermined number of categories in 
case of multinomial or ordinal logistic regression.

One example is to predict the possibility of an email being spam (1) or not spam 
(0). Another example is detecting whether a glioblastoma or a specific type of brain 
tumor is malignant (1) or benign (0).

Given a scenario, where a need arises to classify an email into spam or non-
spam, we can use a linear regression approach to solve the problem. A threshold 
needs to be established, based on which classification may be performed. If the 
threshold is chosen as 0.5 with outcomes above the threshold representing malig-
nant tumor and the ground truth of the data point is malignant, with the predicted 
value of 0.4, the data point will be misclassified as benign, which can lead to serious 
consequences.

It can be inferred from the above example that linear regression is unsuitable for 
the above-stated classification problem. Linear regression is unbounded and this 
summons logistic regression into picture.

Logistic Regression Types
Binary logistic regression: binary logistic regression has only two 2 possible 
outcomes.

Example: Spam or not spam.
Multinomial logistic regression: Multinomial logistic regression has three or 

more categorical outcomes.

Example: Predicting which food is preferred more.
Ordinal logistic regression: It can be called as a generalization of binomial logis-

tic regression. Ordinal regression is used if the outcome is ordinal and the propor-
tional odds assumption is met.

For example: A study explores factors that affect the decision of applying to gradu-
ate school given in Fig. 7. College juniors are asked to apply for graduate school 
if they are doubtful, very probable, or very likely to.

Regression
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4  �Linear Regression by Importing Datasets

Figure 8 elucidates the linear regression steps for imported data.

	1.	 Import pandas, numpy, tensorflow, random, sklearn.metrics, os.path, sklearn.
metrics.

	2.	 Load the datsets using read_csvfrompandas.
	3.	 Initialize TotalFeatures, FeaturesInUse, TotalSampleSize, MiniTestSampleSize.
	4.	 Preprocessing of the data.
	5.	 Initializing the variables.
	6.	 Finding the entropy and defining the optimizer.
	7.	 Training the model.
	8.	 Testing the model.

The dataset contains a total of 376 features where 150 are used.

5  �Logistic Regression by Importing Dataset

Figure 10 elucidates the code for logistic regression using seaborn and tensorflow 
packages.

	1.	 Import numpy, pandas, matplotlib.pyplot, tensorflow.
	2.	 Read the input data (Iris Dataset).
	3.	 Label the data.

Fig. 7  Logistic regression levels
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Fig. 8  Linear regression for imported data
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	4.	 Visualize the data.
	5.	 Split the training and testing data.
	6.	 Normalize processing.
	7.	 Build the model framework.
	8.	 Train the model.
	9.	 Visualize again.

Predicted Output Dataset
The dataset used is Iris Dataset, and it contains 4 features, namely, SepalLength, 
SepalWidth, PetalLength, and PetalWidth. Species is the target attribute (Figs. 9 
and 10).

Figure 11 represents the train and test accuracy of the dataset.

Fig. 8  (continued)
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Fig. 9  Imported dataset 
for linear regression
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Fig. 10  Cross entropy loss plot
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Fig. 10  (continued)
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Here, just assume the word “neuron” simply means a thing that holds a number 
(specifically a number between 0 and 1) [3].

Following is the program for the neural network to recognize handwritten digits. 
Modified National Institute of Standards and Technology (MNIST) is the database/
dataset consisting of about thousands of sample data in order to train the neural 
network model [4]. This dataset is made [5] up of images of handwritten digits, 
28 × 28 pixels in size as given in Fig. 1. Some examples included in the datasets 
are below.

1  �Inside the Code

One-hot-encoding: One-hot-encoding is used to represent the labels of the images. 
It uses binary value vectors to represent numerical or categorical values. Our label 
are the digits (0–9). One of the values is set to 1 to represent the digit at that index 
of the vector [6] and others are set to 0. For example, the digit 2 is represented by 
the vector [0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

For representing the actual images, the 28 × 28 pixels are turned (flattened) into 
a 1D vector that is 784 pixels in [7] size. It is [8] done by X  =  tf.
placeholder(“float”,[None,n_input]) [the one in the RED].

This Neural Network (NN) model is of 5 layers.

•	 Input layer: 784 neurons
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•	 Hidden layer 1: 512 neurons
•	 Hidden layer 2: 256 neurons
•	 Hidden layer 3: 128 neurons
•	 n_output: output layer (0–9digits)

Figure 2 elucidates the visualization of the neural network architecture:

•	 Hyper parameters like learning rate, epoch (n_iterations), batch size (to train the 
large set of data in the model in small chunks), and [9] dropout value (a regular-
ization technique in case if the model overfits the data).

•	 Dropout represents a threshold at which some units are eliminated at random. It 
will be chosen in our final hidden [10] layer giving each unit a 50% possibility of 
being eliminated at each training step.

Fig. 1  Handwritten digits 28 × 28 pixels

Fig. 2  Visualization of the neural network architecture
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Figure 3 explains the code that is trained in neural network and predicts the hand-
written digit image “2.”

•	 AdamOptimizer is an optimization algorithm that is used instead of classical 
stochastic gradient descent procedure update network weights iteratively in 
training data. It is simply used to minimize cost/loss function (cross-entropy in 
this case).
The preceding code successfully trains the neural network to classify the MNIST 

dataset with around 91% accuracy and is tested on an image of digit “2.” However, 
this same problem can achieve about 99% accuracy using a more complex network 
architecture involving convolutional layers.

Fig. 3  Neural network with handwritten text images

Neural Network
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Although convolutional neural networks (CNNs) have been usually used in image 
analysis, they can also be used in data analysis and classification problems.

The convolution layer is the main building block of a convolutional neural net-
work. CNNs [3] are neural networks with architectural constraints to reduce com-
putational complexity.

The hidden layers are named convolutional layers. The basis of the CNN are the 
convolutional layers. Just like any other layers, convolutional layers, the input is 
received and transformed and output that transformed input to the next layer [4]. 
With the convolutional layers, this transformation is called convolutional operation. 
Each convolutional layer has “filters” (simply a matrix with some random values).

1  �How Does It Work?

•	 Basically using CNN, fewer parameters significantly improve the time it takes to 
learn. It reads the image “chunk-by-chunk” as shown in Fig. 1.

•	 Influence of nearby pixels is analyzed by a “filter” (also known as “window”) 
that slides over each n × n pixels of input until it slides over every n × n pixels of 
the image [5]. This sliding is known as “convolving.” The amount the filter shifts 
is named “stride.”

•	 This reduces the number of weights that the neural network must learn compared 
to a multi-layer perceptron (MLP). Filters are assigned randomly that continuously 
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update themselves as the network is trained. Figure 2 illustrates the action of 
edge detection and sharpen filter concepts [6].

•	 Then, a feature map is generated for each filter that is taken through activation 
function (ReLu activation function usually) to decide whether a certain feature is 
present at a given location in the image [7].

•	 ReLu activation function is used in order to increase the non-linearity in our 
image. The transition between pixels, the borders, the colors, etc., are the non-
linear features.

•	 Pooling layers are used in order to select the largest values on the feature maps 
and use these as inputs to other layers. Usually, max pooling is used to find the 
outliers (an observation point that is different/distant from other observation, 
Fig. 3).

•	 In Fig. 3, a cheetah is presented in a different way (normal, rotated, extended). 
The purpose of max pooling (Fig. 4) is to enable [8] the convolutional neural 
network to detect the cheetah when presented with the image.

•	 Now, the pooled feature map is flattened as given in Fig. 5. into a column to 
insert into an artificial neural network later on [9].
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Fig. 2  Edge detection and sharpen filters

Fig. 3  Image of cheetah in (normal, rotated, and extended)

Fig. 4  Example of 2 x 2 filter with a stride of 2

Convolutional Neural Network
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•	 Full Connection: Now the entire flattened pooled feature map is taken as input 
to feed into a fully connected neural network [10]. It integrates the features into 
a wider variety of attributes that [11] improve the ability of convolution network 
for classifying images.

Here is the example for the digit recognition using convolutional neural network 
using tensorflow (Fig. 6).

The max training accuracy is about 98.4% as shown in Fig. 7.
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Fig. 5  Flattening the pooled feature map
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Fig. 6  Training and accuracy measurement code snippet in Python
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Fig. 6  (continued)

Fig. 7  Training accuracy 
value
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Whenever there is sequence of data like text, speech, video those are connected each 
after the other [3]. Software like Siri of Apple and Google translate use recurrent 
neural networks (RNNs). Figure 1 gives the difference in architecture [4] of recur-
rent/feedback based on feed-forward neural network (NN) architecture. (Sequential 
data: ordered data that are equally spaced in time.)

1  �How They Work?

•	 In RNN, information cycles through a loop. It takes both the current input and 
also what it has learned from the inputs [5] it received previously unlike the feed-
forward NN.

•	 Feed-forward NN assigns a weight matrix to its inputs and then produces the 
output. RNN applies weights to the [6] current as well as the earlier input and 
adjusts their weight for both gradient descent and backpropagation through time.

•	 Feed-forward NN maps one input to one output whereas recurrent NN can map 
many to one (e.g., classifying voice), one to many, and many to many (e.g., 
translation).
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1.1  �Backpropagation Through Time (BPTT)

•	 It is simply doing a backpropagation on an unrolled recurrent NN. Unrolling is 
visualization of RNN to help [7] us understand what is happening within the 
network.

•	 While implementing RNN in programming framework, backpropagation is auto-
matically taken care of.

Figure 2 depicts the unrolled RNN.

•	 As the error of a present timestep [8] depends on the previous timestep, unrolling 
of RNN is important for its clarity.

•	 In BPTT, error is backpropagated from the last to first time step calculating error 
for each timestep allowing updating the weights.

•	 However, there are two issues of RNN:

Fig. 1  Recurrent neural network and feed-forwarded neural network

Fig. 2  Unrolled recurrent neural network
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•	 Exploding gradients: When the algorithm assigns considerable importance 
to the weights, without [9] much reason. This problem can be solved by trun-
cating and squashing the gradients.

•	 Vanishing gradients: When the model stops learning and the values of a 
gradient is [10] very small. This problem can be solved using long short-term 
memory (LSTM).

Here, Figs.  3 and 4 program where recurrent NN is implemented using ten-
sor flow.

Fig. 3  Tensorflow implementation of RNN part 1

Recurrent Neural Network
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During Training
Figure 5 shows the accuracy in training and testing phase of RNN using Python.

1.2  �In the Code

•	 Tensorflow, mnist, and the rnn [11] model from tensorflow are imported. Chunk 
size, number of chunks, and rnn size are defined.

•	 Recurrent_neural_network(x) is the function that defines the RNN where 
weight size is rnn_size ×n_classes and biases is [12] just the number of classes 
(n_classes).

•	 Input is passed through the LSTM cell that will recur for the rnn_size.
•	 Every cell has outputs and states at each recurrence [13]. It is done by the 

following:

rnn.rnn(lstm_cell, x, dtype = tf.float32)

Fig. 4  Tensorflow implementation of RNN during training Part 2
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•	 In train_neural_network(x) function, the default learning rate for 
AdamOptimizer will be 0.01.

•	 Accuracy of the trained data is measured up to 98%.

2  �Long Short-Term Memory

•	 LSTM networks are the extension [14] of recurrent NN.
•	 Allows recurrent NNs to remember their input over a long period of time because 

it includes memory information that is [15] close to a computer’s memory since 
the LSTM can read, write, and erase information from its memory.

•	 LSTM consists of three gates: input, forget, and output gate. Well, the work of 
these are already defined by [16] their names (let new input in, delete informa-
tion and output at the current timestep). Figure 6 depicts an LSTM cell.

LSTM ranges from 0 to 1. LSTM maintains the gradient svx sufficiently steep 
and therefore the training is short, and the accuracy is high.

2.1  �LSTM In Keras

The following process is the same for vanilla RNN, LSTM, and gated recurrent unit 
(GRU) when implemented in the keras model.

Fig. 5  Tensorflow implementation RNN accuracy level
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We want our model to predict the next digit. For instance, if the sequential input 
is [5, 6, 7, 8, 9], the model should output 10 as given in Fig. 7.

Import the keras-related libraries from keras.models and keras.layers.

•	 Split training and testing data where 20% of the total size will be used as test data 
(Fig. 8).

•	 Add 2 layers of LSTM (Fig. 9):

Fig. 6  LSTM gates

Fig. 7  Code snippet of LSTM
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•	 return_sequences = True would return output after every node
•	 return_sequences = False would return output after last node

•	 Compile the model with loss function “mean square error(mse)” and [17] opti-
mizer as “adam.” model.summary() helps to see the output shape and parameters 
(Fig. 10).

•	 Fit the model to train with the following parameters as given in Fig. 11.
•	 Predict the model using model.predict() with the test data (x_test) (Fig. 12).
•	 The plots of predicted digit and the target digit in the test data is shown below 

(Fig. 13). Some have high difference with the [18] target digit while some are 
equal.

Similar to what was given above, there are different applications of RNN invari-
ants (RNN, LSTM, GRU) like music generation, stock prediction, and other sequen-
tial data with variable input shape and multiple features.

Fig. 8  Split training data set

Fig. 9  Code explanation on LSTM

Fig. 10  Code explanation Part 2 LSTM

Recurrent Neural Network
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Fig. 12  Code explanation on mode.predict

Fig. 13  Predicted and tested target digit

Fig. 11  Code explanation Part 3 LSTM

G. R. Kanagachidambaresan et al.



61

References

	 1.	Boca Raton Mhaskar H, Liao Q, Poggio T (2016) Learning functions: when is deep better than 
shallow.arXiv:1603.00988

	 2.	Deep Learning for Computer Vision: Expert techniques to train advanced neural networks 
using TensorFlow and Keras. [Authors: RajalingappaaShanmugamani]

	 3.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo 
Zaccone, Md. RezaulKarim, Ahmed Menshawy]

	 4.	Hands-on unsupervised learning with Python : implement machine learning and deep learning 
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	 5.	Li Y, Wang Z, Midya R, Xia Q, Yang JJ (2018) Review of memristor devices in neuromorphic 
computing: materials sciences and device challenges. J Phys D: ApplPhys 51(50):503002

	 6.	Liao Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural net-
works and visual cortex. arXiv:1604.03640

	 7.	Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22
	 8.	Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn 

89(3):1569–1578
	 9.	Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits. 

IEEE Trans Neural Netw Learn Syst 28(8):1734–1746
	10.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using 

TensorFlow 1.x and Keras. [Author: Armando Fandango]
	11.	McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. 

Bull Math Biophys 5(4):115–133
	12.	Medsker L, Jain LC (1999) Recurrent neural networks: design and applications. CRC Press.
	13.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed 

Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]
	14.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-

Vision Projects Using Python, Keras&TensorFlow [Authors: AnirudhKoul, Siddha Ganju, 
MeherKasam]

	15.	Python Deep Learning: Exploring deep learning techniques, neural network architectures 
and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater, 
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	16.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, 
and TensorFlow [Authors: Sebastian Raschka, VahidMirjalili]

	17.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, AmitaKapoor]

	18.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms 
[Authors: Sam Abrahams, DanijarHafner, Erik Erwitt, Ariel Scarpinelli]

Recurrent Neural Network



63© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with 
TensorFlow, EAI/Springer Innovations in Communication and Computing, 
https://doi.org/10.1007/978-3-030-57077-4_8

Application of Machine Learning and Deep 
Learning

Enireddy Vamsidhar, G. R. Kanagachidambaresan, and Kolla Bhanu Prakash

1  �Automobile Industry

Automobile is no exception for the digital transformation. The growing trend in the 
business and diversification of customer needs has led to innovations in the automo-
bile sector. Machine learning (ML) and deep learning (DL)–based innovations are 
transforming the automobile industry [1–3]. ML is providing the prediction of auto-
mobile needs and usage, quality control, recommendation services, and optimized 
supply chain management whereas the DL is providing services like automatic lane 
detection, autonomous driving, and predictive maintenance of the vehicle and 
nearby service stations (Fig. 1).

2  �Climate Change

As the earth keeps warming, the effects of climate change are detrimentally increas-
ing. There were 772 storm and catastrophe incidents in 2016, triple the number that 
existed in 1980. It threatens the operation of civilization, which undoubtedly needs 
significant preparation in order to deal with possible changing weather conditions. 
Weather experts have adopted ML and DL approaches to accelerate the knowledge 
of different elements of the earth system and associated characteristics. These 
researches may help for the sustenance of human race. The applications of ML and 
DL are shown in Fig. 2 [4–6].
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3  �Disaster Management

An estimated 1.35 million lives are lost due to disasters over the past 20 years and 
with post-disaster recovery, approximately 300  U.S. dollars are spent each year. 
Many catastrophes have an effect on environment, buildings, infrastructure, atmo-
sphere, and local residents [7, 8]. Governments and organizations fail to organize 
successful strategies for disaster recovery activities. ML and DL are now able to 
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Fig. 1  Applications of ML and DL in automobile industry
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show their ability in new fields such as disaster management (DM) with their vali-
dated algorithms in detection, estimation, clustering, outer analysis, etc., with real-
time support data from satellites, drones, weather info, etc., as well as history of 
disasters. The ML and DL applications of DM are shown in Fig. 3 [9, 10]. It is clear 
that the ML and DL techniques will rescue people from awful disasters and also 
propose adequate recovery measures to prevent panic [11].

4  �Education

ML in education is a method of customized learning that could be used to provide 
an individualized educational experience for every student. The students are moti-
vated by their own learning, they must follow the rate they like, and make their own 
decisions on what to study according to their curricula. The student assessment, 
performance evaluation, grading, and career prediction are not undauntable tasks 
with ML and DL algorithms, and feedback on curriculum, teacher, etc., are possible 
with less effort provided the data is gathered as per the needs [12–15]. It will take a 
while for the old school educators to use ML. But in no time, everyone will realize 
that ML will revolutionize the education field and the entire nation [16]. DL has 
exciting applications in the world of education [17]. Various applications of ML and 
DL are shown in Fig. 4.
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Fig. 3  Applications of ML and DL in disaster management
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5  �Energy

Carbon sector is the result of a number of sectors. Which comprises coal fuel, elec-
tric power, nuclear power, and clean energy industries, along with firewood-based 
conventional energy industries. Non-renewable fossil and nuclear power are key 
polluting sources and therefore accountable for global warming. Carbon resource 
development and use is very important to the global economy. Every economic 
operation requires energy capital, whether manufacturing products, supplying 
transportation, operating computers, and other machinery. With ML, the demand 
prediction, dynamic pricing of the energy as per the demand, recommendation ser-
vices to the customers, optimal control of generation and distribution, and also 
extended to disaggregation of energy, that is, separation of profiles of individual 
receivers from the energy profile signal to better consumption behavior, improve 
energy efficiency [18, 19]. DL methods are efficiently used in power forecasting 
[20], preventive diagnostics [21], risk detection [22, 23], etc. Various application of 
ML and DL in the energy sector are shown in Fig. 5.
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6  �Entertainment and Media

The prospects for entertainment and media (E&M) to successfully utilize ML are 
more than amazing. ML and DL are used widely in E&M industry. As rich content 
is available in internet, the recommender systems gained the ability to recommend 
the content relevant to the readers, listeners viewers and also the content personal-
ization, target advertisement by companies to the potential customers, personal vir-
tual assistants are intelligent enough to understand the user instructions through 
voice and optimized video search archives has changed the entertainment and media 
industry [24–26] (Fig. 6).

The following are a few top research and applications done by different compa-
nies for E&M industries in the world.

6.1  �AlphaGo

Chess and Go are very popular board games, which resemble in some extent: both 
are played in turns by two players, and no random factor is involved.
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AlphaGo is the artificial intelligence–based (precisely deep reinforcement learn-
ing) game playing developed by Google’s DeepMind that competes the human 
grandmasters in the game of GO.

Two different components are used by AlphaGo: convolutional networks that 
guide the tree search procedure and a tree search procedure. Conceptually, the con-
volutional networks are somewhat similar to Deep Blue’s evaluation function, 
except they are not designed but learned. The tree search procedure can be consid-
ered as a brute-force approach, while the convolutional networks give the gameplay 
a level of intuition. Then DeepMind (the London lab behind AlphaGo) released 
AlphaZero, which defeated the previous 100–0 edition. This edition never focused 
on a compilation of individual expert gestures and learned solely from the self-play 
of adversaries.

In total, three Convolutional Neural Network (CNNs) are trained, of two differ-
ent kinds: two policy networks and one value network in AlphaGo.

6.2  �Voice Generation

Google released WaveNet and Baidu released Deep Speech, both of which are DL 
networks that automatically generate speech.
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Until now, text2voice systems have not been fully autonomous in the way they 
have created new voices; they have been trained to do so manually. The systems that 
are created nowadays are learning to mimic human voices on their own and improve 
with time. When you let an audience try to differentiate them from a real human 
speaking, it is much simpler to do so. While we are not yet there in terms of auto-
mated voice generation, DL brings us a step closer to giving machines the ability to 
speak as human beings do.

6.3  �Music Generation

A DL network can also be trained to produce music compositions using the same 
techniques used for voice recognition. Below is an example from Francesco 
Marchesani who taught the machine how to compose music like the classical com-
poser Chopin. After the computer learns the patterns and statistics unique to 
Chopin’s music, it is creates a whole new piece! For the AI generated music, see 
https://youtu.be/j60J1cGINX4

6.4  �Restoring Sounds in Video

A DL network has been trained in a work by Owens et al. on videos where people 
hit and scratch objects with a drumstick. The scientists muted the video after several 
learnings and asked the machine to replicate the sound it wants to hear and the 
results are remarkable: https://youtu.be/0FW99AQmMc8

Similarly, it can also read the lips. LipNet can lip read, accomplished by Oxford 
and Google’s DeepMind scientists. It was 93% accurate in reading people’s lips 
where an average lip reader has the accuracy of 52%. Video: https://youtu.be/
fa5QGremQf8

6.5  �Automatically Writing Wikipedia

Long short-term memory (LSTM) is the DL architecture used here. It is very accu-
rate on textual input. In a blog post called “The Unreasonable Effectiveness of 
Recurrent Neural Networks” by Andrej Karpathy, a DL model reads math papers, 
Shakespeare, computer code, and Wikipedia. At the end, the computer wrote just 
like the Wikipedia articles and also wrote like Shakespeare. Also, the machine could 
write even computer code and fake math papers. This is a code-writing software for 
computer programs. The text written by the computer does not make sense all the 
time, but it is reasonable to expect it to get there.

Figure 7 displays text like Shakespeare’s but it was written by a deep network 
that was fed Shakespeare’s writings.
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6.6  �Deep-Fake Detection

With the ascendancy of neural network-based learning algorithms, we are now able 
to take on and defeat problems that sounded completely impossible just a few years 
ago. One example is creating deep fakes, or in other words we can record a short 
video and transfer our gestures to target a subject, and this particular technique is so 
advanced that we do not even need a video of our target, just one still image. A paper 
by Face Forensics contains a large dataset of original and manipulated video pairs. 
As this offered a ton of training data for real and forged videos, it became possible 
to use these to train a deep-fake detector. There is not just on detector algorithm, 
writing of neural networks have even more variations. Many more AI practitioners 
created datasets just for deep fake detection [27]. Many politicians have used deep 
fake for awareness and election campaigns. In 2018, Buzzfeed created a deep fake 

Fig. 7  Deep network fed Shakespeare’s words
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of Barak Obama with someone else’s voice for a public service announcement to 
increase awareness of deep fakes. In 2020, during the Delhi legislative assembly 
election campaign, the Bharatiya Janata Party used this technique to distribute a 
version of an English-language campaign advertisement by their leader.

6.7  �Multi-Agent Systems

OpenAI builds a hide-and-seek game for their agents to play with some rules. The 
agents can move by setting a force on themselves in the x and y directions as well 
as rotate along the z-axis. The agents can see objects in their line of sight and within 
a frontal cone. The agents can sense distance to objects, walls, and other agents 
around them using a LIDAR-like sensor. The main principle behind multi-agents 
are that they should coordinate, cooperate, and negotiate with each other, much as 
people do. The goal of this project is to pit two AI teams against each other. The 
agents can grab and move objects in the environment. The agents can lock objects 
in place. Only the team that locked an object can unlock it. In the first million 
rounds, every agents moves around the environment aimlessly without proper strat-
egy and semi-random movements, the seekers are favored, and hence win the major-
ity of the games. Then over time, the hiders learned to lock out the seekers by 
blocking the doors off with the boxes and started winning consistently. The environ-
ment was deliberately designed in the way that hiders can only succeed through 
collaboration. But after ten million rounds, the seekers learned to move blocks to 
climb the boxes, and thus seekers started winning [28].

6.8  �Image Synthesis

Since many years, the neural network–based technique is mainly used for image 
classification which means that they were able to recognize objects like animals, 
traffic, birds, etc., but with the incredible pace of ML, researchers can now have a 
selection of techniques for not only classification but also synthesizing them. One 
way of being able to control the output is to use a technique that is capable of image 
translation, for example, apples to oranges or horses to zebras. It was called 
CycleGAN because it introduced a cycle consistency loss function which meant that 
if we convert a summer image to a winter image and then back to a summer image 
they both should be the same or at least very similar. This can be implemented on 
images to various applications like upscaling images and to make a beautiful time-
lapse video with very smooth translations. Not just changing climate, this imple-
mentation can also be used to generate landscapes or terrain images that are used in 
graphic renders and games [29].
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6.9  �Graphic Generator

NVIDIA researchers, led by Ting-Chun Wang, have created a new DL method that 
creates photorealistic images from high-level marks, thus developing a simulated 
world that enables the consumer to interactively change a scene [30].

7  �Finance

The value of ML in finance is becoming increasingly apparent, but the real long-
term value will probably only become apparent in the coming years. It is used 
widely in algorithmic trading, efficient portfolio management, content creation, 
under writing of loan or insurance, financial risk prediction, sentiment analysis in 
the stock market, and detecting financial frauds [31–33]. DL improves the accuracy 
of forecasting [34] in trading and document analysis in the financial institution [31] 
(Fig. 8).
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Significance

Productivity: Chatbots provide the assistance or [2] access to information quickly 
and efficiently.

Social and relational factors: Conversions of chatbots fuel and strengthen the social 
experiences. Chatting with bots gives the opportunity [3] for humans to speak 
without being judged and improves conversational skills.

Customer service and user satisfaction: Digitizing human interactions can be time-
efficient and cost-effective so that even smaller firms can afford and maintain 
good customer service [4].

The following is the code for the chatbot. It is a sequence-to-sequence model trained 
as [5] a bot. The model is trained on the twitter dataset “twcs.csv”. The collected 
sentences are converted into patterns in the preprocessing [6] part and then fed to 
our model, which learns relations and representations of the data. The architecture 
assumes the same prior distributions for input and output words. Therefore, by 
adopting a new model, it shares [7] embedding layer (pre-trained embedding word) 
between [8] the encoding and decoding processes. To improve the context sensitiv-
ity, the thought vector (i.e., the encoder output) is obtained. To avoid forgetting [9] 
the context during the response generation, the vector [10] of thought is concate-
nated with a dense vector encoding the incomplete answer generated up to the cur-
rent stage.

Code implementation of the chatbot is given in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
Here, 80 iterations are done in total as given in Fig. 8.
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Fig. 1  Chatbot coding Section 1
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Fig. 2  Chatbot coding Section 2
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Fig. 3  Chatbot coding Section 3
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Fig. 4  Chatbot coding Section 4
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Fig. 5  Chatbot coding Section 5
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Fig. 6  Chatbot coding Section 6
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Fig. 7  Chatbot coding Section 7

Fig. 8  Chatbot coding Section 8
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Fig. 9  Chatbot coding Section 9
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Python is favored for coding and working with deep learning and thus has a wide 
range of languages and libraries to look over, as given in Fig. 1.

Theano, one of the main deep learning structures, has stopped dynamic improve-
ment. TensorFlow has devoured Keras altogether [2], elevating it to a top of the line 
Application Program Interface (AP)I. PyTorch is a scientific computing library, 
supplanted a large portion of the low-level code reused from the Lua-based Torch 
venture. Initially, PyTorch was created by Hugh Perkins as a Python wrapper.

It included help for ONNX, a seller unbiased [3] model portrayal, trade design, 
and a deferred execution “diagram mode” runtime called TorchScript. PyTorch is 
another deep learning library with the abilities of fast performance. Essentially, it is 
the Facebook answer for combine burn with Python.

1  �The Significant Highlights of PyTorch

Simple Interface − PyTorch offers simple to utilize API; subsequently, it is viewed 
as extremely easy to work with and runs on Python. The [4] code execution in this 
structure is effortless.

Python use − This library is viewed as Pythonic, which smoothly incorporates 
with the Python core functions. In this way, it can use every one of the administra-
tions and functionalities offered by Python [5]. PyTorch ensures local help for 
Python and utilization of its libraries.
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Dynamic computational charts − PyTorch gives a fantastic stage that offers 
dynamic computational diagrams. In this way, a client can transform them during 
runtime. It is a major highlight of PyTorch. This is exceptionally [6] valuable when 
an engineer has no clue about how a lot of memory is required for making a neural 
system model. They guarantee the diagram would develop progressively – at each 
purpose of code execution, the chart is worked along and can be controlled at run-
time. So every part of the code executing graph was built and able to manipulate at 
runtime.

Facebook: It is effectively utilized in the improvement of Facebook for every last 
bit of its deep learning necessities in the stage. It is actively used in the development 
of Facebook and its subsidiary companies [7].

FAST: PyTorch is quick and feels local, henceforth guaranteeing simple coding 
and fast handling.

Compute Unified Device Architecture (CUDA): The help for CUDA guarantees 
that the code can run on the graphical processor in this way increasing the perfor-
mance of the network.

2  �Why We Prefer PyTorch

•	 It is simple to debug and comprehend the code.
•	 Has the same number of sort of layers as Torch (Unpool, Convolution (CONV) 

1,2,3D, Long Short Term Memory networks (LSTM), Grus).

Tensorflow

Pytorch

Keras

Python

Theano

Lasagne

Fig. 1  The Python extension libraries
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•	 A variety of loss functions are available.
•	 It can be considered as a numpy augmentation to GPUs.
•	 It is quicker than other libraries, as chainer and dynet.

3  �Requirements for Implementing Deep Learning

Deep learning calculations are intended to vigorously rely upon very good quality 
machines as opposed to conventional Artificial Intelligence (AI) [8] calculations. 
Deep learning calculations play out a lot of network duplication tasks that require 
tremendous equipment support. To execute the PyTorch programs, we require a PC 
or laptop with a CUDA-competent graphical processing unit (GPU), GPU with 
8GB of RAM (we recommend an NVIDIA GTX 1070 or better).

4  �PyTorch Basic Components

PyTorch is known for having three levels of abstraction as given below:

•	 Tensor: N-dimensional array which runs on GPU.
•	 Variable: Node in computational graph. This stores data and gradient.
•	 Module: Neural network layer that will store state or learnable weights.

4.1  �Tensor

PyTorch has an inside data structure, the tensor, a multi-dimensional group that 
offers various resemblances with numpy. From [9] that foundation, apparel over-
views of features have been created that make it easy to prepare an endeavor for the 
activity or an assessment concerning another neural framework building organized 
and arranged.

Tensors give animating of logical assignments and PyTorch has packs for passed 
on getting ready, expert structures for capable data stacking, and an expansive 
library of typical significant learning limits.

Creating Tensors
After installing the packages, initialize the empty tensor and assign required values.

PyTorch



90

Ex:

#creates an empty matrix of size 5 × 3
a=torch.empty(5,3)
#Initilizematix with zeros
a=torch r.zeroes(5,3,dtype= torch.long)
#assign values to x
a=torch.tensor(5)

Data Type of Elements
PyTorch automatically decides the data type of the elements of the tensor when it is 
created; the data type applies to all the [10] elements of the tensor. Sometimes that 
can be overridden to convert it into another data type.

Ex:

b = torch.tensor([[3, 8, 9],[4–6]])
print(b.dtype)
# torch.int64
x= torch.tensor([[1,2.5,3],[5.3,5,6]])
print(x.dtype)
 # torch.float32

While initializing also we can define data type:

b = torch.tensor([[3, 8, 9],[4–6]], dtype=torch.int32)
print(b.dtype)
 # torch.int32

Creating Torch tensors from numpy array.

Ex:

a= np.ones(4)
b=torch.from_numpy(a)

Here a is numpy array and initialized with ones. When torch tensor is created 
using numpy array, they share underlying memory location.

Creating numpy array from torch tensors:

S. Imambi et al.
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Ex:

a= torch.ones(4)
b=a.numpy()

4.2  �Autograd Module

The most important thing PyTorch offers is to apply auto differentiation. We will see 
how it works in Fig. 2.

Basic operations are based on the training data set. Next we reply all the values 
of data to reduce the loss at every stage [11]. Then compute gradients. Gradients are 
computed by finding the negative slope and calculating the minima of the loss func-
tion. Automatic differentiation is a difficult and complicated process and that is easy 
through the autograd module. This module created the dynamic computational 
graphs as given in Fig. 3.

Fig. 2  Steps for autograd 
Module
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5  �Implement the Neural Network Using PyTorch

Training a deep learning algorithm involves the following steps: Building a data 
pipeline, building network architecture, using [12] loss function to evaluate the 
architecture, and optimizing the weights of the network architecture using an opti-
mization algorithm.

Preparing a deep learning program includes the accompanying advances like 
building an information pipeline, building [13] system design, evaluating the engi-
neering utilizing a loss function, and optimizing the weights of the network by an 
optimizing algorithm as given Fig. 4.

Fig. 3  Dynamic computational graphs
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Fig. 4  Code snippet for optimizing algorithm
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Neural network may be implemented simply by these steps:

Step 1: Import package and libraries.
Step 2: Input data.
Step 3: Construct NN using torch.nn package.
Step 4: Define all layers.
Step 5: Construct loss function.
Step 6: Run autograd.

The output generated of the above program is as given in Fig. 5.

6  �Difference Between PyTorch and Tensorflow

Table 1 illustrates the classification of PyTorch and Tensorflow.

Fig. 5  Output screenshot of the above code

Table 1  PyTorch and Tensorflow classification

S.no. PyTorch Tensorflow

1 Dynamic computational graph Static computational graph
2 Can make use of standard Python flow 

control
Not able to use

3 Supports Python debugging Does not support
4 Dynamic inspection of variable and 

gradients
Not possible

5 Research oriented Product oriented
6 Developed by Facebook group Developed by Google group

S. Imambi et al.
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7  �PyTorch for Computer Vision

Computer vision is absolutely one of the fields that [14] has been generally affected 
by the appearance of profound learning, for an assortment of reasons. The require-
ment for characterizing or translating the substance of regular pictures existed, 
enormous datasets became accessible, and convolution layers were created that 
could be run rapidly on GPUs [15] with remarkable exactness. This joined with the 
inspiration of the Internet mammoths to comprehend pictures shot by a large num-
ber of clients through their cell phones and oversaw on said goliaths’ platforms.

7.1  �Image Classifier

Image classifier predicts data based [16] on an image set by constructing a neural 
network. Character/object recognition is generally an image processing technique 
where image data is imputed and explored by various libraries of Python and 
PyTorch.

Exploring Data
Standard Python package can be used to load data into numpy array. Then it can be 
converted into torch tensor. Image data is [17] converted using pillow, opencv. 
Audio data is interpreted using scipy and librosa and text data is by spacy and 
cython, etc.

The image prediction using the PyTorch networks is as given in Fig. 6.

Fig. 6  Steps for image classifier
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Data Loading
The first step in deep [18] learning is information loading and handling. PyTorch 
offers utilities for the identical in torch.utils.data. The crucial training in this module 
is Dataset and DataLoader. Dataset is built on the pinnacle of tensor data type and 
is used often for user defined datasets. DataLoader is used if you have a massive 
dataset and you need to load information from a Dataset in historical past in order 
that it is equipped and looking ahead to the schooling loop. We can also use torch.
nn.DataParallel and torch.distributed if CUDA is available. Figure 7 elucidates the 
code snippet of data loading.

Defining layers and hidden nodes of network is given in Figs. 8 and 9.

Fig. 8  Layer definition

Fig. 7  Code snippet of data loading
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Next we have to define optimizer and check whether CUDA is available. If it is 
then use GPU model.

The model was trained after providing information [19] like batch size and num-
ber of epochs. Then validating and testing, the model can be done (Fig. 10).

Fig. 9  CUDA implementation of algorithm

Fig. 10  Code snippet for accuracy
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7.2  �Image Augmentation in Less Data

We can utilize picture increase for profound learning in any setting – hackathons, 
industry ventures, etc. We will likewise construct a picture order model utilizing 
PyTorch to see how picture growth fits into the image.

Deep learning models as a rule require [20] a ton of information for preparing. 
As a rule, the more the information, the better the exhibition of the model. Be that 
as it may, obtaining monstrous measures of information accompanies its own diffi-
culties. Not every person has the profound pockets of the enormous firms.

And the issue with an absence of information is [21] that our profound learning 
model will probably not take in the example or capacity from the information and 
henceforth it will probably not give a decent presentation on inconspicuous 
information.

Image augmentation is the way toward producing new pictures for preparing our 
profound learning model. These new pictures are created utilizing the current pre-
paring pictures and consequently we do not need to gather them physically.

Various Image Augmentation Techniques

Image Rotation
Picture revolution is one of the most ordinarily utilized expansion procedures. It 
can enable our model to get hearty to the adjustments in the direction of items. 
Regardless of whether we pivot the picture, the data of the picture continues as 
before. A vehicle is a vehicle regardless of whether we see it from an alternate 
point

Shifting/Moving Images
There may be situations when the articles in the picture are not consummately 
focal adjusted. In these cases, picture move [22] can be utilized to add move 
invariance to the pictures. By moving the pictures, we can change the situation of 
the article in the picture and consequently give more assortments to the model. 
This will in the end lead to a progressively summed up model.

Flipping Images
Flipping is an augmentation of turn. It enables us to flip the picture in the left 
directly just as up-down bearing. We should perceive how we can execute 
flipping.

After applying the various operations on the images, the data set is ready for the 
building model. The process is same as the image classification model as now the 
data set is having sufficient data.

S. Imambi et al.
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8  �Sequential Data Models

Natural language processing (NLP) provides endless opportunities for artificial 
intelligence problem solving, making products like Amazon Alexa and Google 
Translate possible. If you are a developer or data scientist new to NLP and deep 
learning, this hands-on guide will teach you how to use these approaches with 
PyTorch, a deep learning application built in Python.

Now, we have seen various feed-forward systems. That is, there is no situation 
any stretch of imagination keeps up by the system. This is probably not the conduct 
that we need. Grouping models are vital for NLP: They are models where there is a 
kind of reliance between your data sources over time. The traditional case of a 
grouping model is the hidden Markov model for grammatical feature labeling. 
Another model is the restrictive arbitrary field.

An intermittent neural system is a system that keeps up some sort of state. For 
instance, its yield could be utilized as a component of the following info, with the 
goal that data can propagate along as the system disregards the arrangement. On 
account of an LSTM, for every component in the succession, there is a comparing 
shrouded state, which on a fundamental level can contain data from subjective 
focuses prior in the arrangement. We can utilize the concealed state to foresee words 
in a language model, grammatical feature labels, and a bunch of different things.

8.1  �LSTM in PyTorch

Note a few things before you get into the example. The LSTM at PyTorch finds all 
its inputs to be 3D tensors. The semantics of those tensors “axes” are essential. The 
first axis is the series itself, the second [23] one indexes the mini-batch instances, 
and the third one indexes the input elements. We have not discussed mini-batching, 
so let us just ignore that and assume that on the second axis we will always have 
only 1 dimension. If we want to run the model sequence over the phrase “The girl 
walks,” our input should look as follows (Figs. 11 and 12):

[girl, is, walking]

Ex 2:
An LSTM for part-of-speech tagging.

Problem Definition  Part-of-speech labeling is an outstanding assignment in natu-
ral language processing. It alludes to the way toward ordering words into their 
grammatical forms (otherwise called word classes or lexical classifications). This is 
an administered learning approach as LSTM is an extension of RNN where it shows 
the inputs of participants.
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However, there is an additional second dimension with size 1.
A unique integral was assigned to each term (and tag). We measure a set of 

unique words (and tags), then turn them into a list, and index them into a dictionary 
[24]. The word vocabulary and the tag vocabulary are those dictionaries. We will 
also add a special padding value for the sequences (more on that later), and another 
one for unknown vocabulary words (Fig. 13).

Fig. 11  LSTM implementation in PyTorch Part 1

Fig. 12  LSTM implementation in PyTorch Part 2
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In preprocessing the sequence is generated. And words are generated from the 
sentences using nltk library. The tokens are indexed and assigned the corresponding 
index as given in Fig. 14.

Fig. 13  PyTorch implementation on vocabulary words

Fig. 14  Code implementation of LSTM tagger
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The model was built using the parameter tuned (Fig. 15).
The process is repeated until we get the best fit model (Figs. 16 and 17).

9  �Summary

•	 Deep network models robotically learn to associate inputs and favored outputs 
from examples.

•	 Libraries like PyTorch can help you construct and educate neural network fash-
ions efficiently.

Fig. 16  Epoch initialization and model fit

Fig. 15  Code implementation of parameter tuning
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•	 PyTorch minimizes cognitive overhead, while focusing on flexibility and speed. 
It additionally defaults to immediate execution for operations.

•	 TorchScript is a pre-compiled deferred execution mode that can be invoked from 
Cpp.

•	 PyTorch gives some of software libraries to facilitate deep studying projects.
•	 PyTorch is used in a variety of deep learning applications like object detection, 

image analysis, and sequence modeling.
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1  �Kernel Support Vector Machine

For linearly separable data points and different classes, we can perform simple sup-
port vector machine (SVM), but for the data which are non-linear simple (straight 
line) SVM cannot be suited. The most important point to be noted in the SVM is that 
it can solve the non-linearly separable problems also. To solve the non-linear prob-
lems effectively, two new techniques called soft margin and kernel tricks are 
introduced.

Soft Margin: A line will separate both the classes and it can also tolerate one or a 
small number of misclassified dots.

Kernel Trick: It is used to locate a decision boundary in the case of non-linear 
models.

Kernel SVM is used for non-linearly separable data as it projects non-linearly 
separable data lower dimensions to linearly separable data in higher dimensions.

Types of Kernels
The most commonly used kernels in the SVM classifier are as follows:

	1.	 Linear kernel
	2.	 Radial basis function (RBF) kernel
	3.	 Polynomial kernel
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SVM needs to find the optimal line to properly identify any class. RBF and poly-
nomial kernels are the most widely used.

The Gaussian RBF [3] is the most famous and simple RBF kernel. The influence 
of new features is controlled by gamma (γ). If this value is high then decision on the 
boundary will be influenced by these features.

Polynomial  To draw a non-linear decision boundary, a polynomial kernel can play 
a vital role in drawing a good solution with the use of polynomial features.

How Does it Work

	1.	 Create pattern matrix.
	2.	 Choose a right kernel function.
	3.	 Choose the kernel function parameter and regularization parameter “C” value.
	4.	 Obtain α by executing training algorithm.
	5.	 Using learned weights α and support vectors unseen data is classified.

Advantages in Using Kernel SVM

	1.	 It works pretty well only in the cases where a clear margin of separation is found 
between classes.

	2.	 It works well for high dimensional spaces.
	3.	 Risk of over fitting is less.
	4.	 Performs well for good kernel function.

Disadvantages

	1.	 It is not an easy task to find the right kernel.
	2.	 As the dataset size increases the training time also increases.
	3.	 Understanding and interpreting the final model, variable weight is very 

difficult.
	4.	 SVM hyper parameters are cost (C) and gamma, not easy to tune and hard to 

visualize.

SVM Applications

	1.	 Protein structure prediction
	2.	 Intrusion detection
	3.	 Handwritten recognition
	4.	 Detecting steganography in digital images
	5.	 Breast cancer diagnosis

1.1  �Linear Kernel

Figure 1 elucidates the linear kernel code snippet (Fig. 2).
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1.2  �RBF Kernel

Figure 3 elucidates the RBF kernel code using Python.
Figures 4 and 5 elucidate the output distribution [4] graph and accuracy attained 

through the algorithm.

1.3  �Polynomial Kernel

Figure 6 illustrates the polynomial kernel implementation [5] code snippet using 
Python. Figure 7 shows the SVC distribution in the second space.

Fig. 1  SVC-based linear kernel implementation
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Fig. 2  SVC linear kernel
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Fig. 3  RBF kernel implementation using Python
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Linear kernel is indeed very well suited for text categorization. However [6], that 
is not the only solution and, in some cases, using another kernel might be better. 
Experimental results on iris dataset show that the approximate RBF-kernel SVM 
achieved classification performance and cross validation.

2  �Kernel Ridge Regression

The duality relationship between ridge and [7] counter-ridge leads the way to ker-
nels. If the data is relatively linear, linear regression/least squares are used to model 
the relationship between weight and size. So, fitting a line using least squares will 
minimize the sum of square residuals that ultimately gives size = size-intercept + 
(slope x weight), but this only works when there are a lot of measurements. If there 
are only a few measurements, for example, two measurements for training the 
model, then this leads to “over fitting” for the training data since the minimum sum 
of squared residuals is equal to 0 and variance is high to the testing data. This can 
be overcome using “ridge regression.” Ridge regression fits a new line by introduc-
ing a small bias, and thus a considerable drop in variance can be seen in Fig. 8a and 8b.

In order to get better long-term predictions, this type [8] of regression can play a 
key role. In the equation size = y-intercept + slope x weight, the least squares are 

gamma=10ˆ–1, C=10ˆ–2 gamma=10ˆ0, C=10ˆ–2 gamma=10ˆ1, C=10ˆ–2

gamma=10ˆ–1, C=10ˆ0 gamma=10ˆ0, C=10ˆ0 gamma=10ˆ1, C=10ˆ0

gamma=10ˆ–1, C=10ˆ2 gamma=10ˆ0, C=10ˆ2 gamma=10ˆ1, C=10ˆ2

Fig. 4  RBF kernel output distribution
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used to determine the values for the parameters. The sum of the squared residuals 
are also minimized + lambda x (slope)2, the slope adds a penalty to the traditional 
least square method, and lambda determines how severe the penalty is.

In some cases, it is computationally overhead to calculate the lambda [9] and 
slope especially if the dimensions are regression-less and non-competent. In such 
cases, kernels are used to do the heavy work.

Advantages

	1.	 It might be computationally efficient in some cases when solving [10] the system 
of equations.

	2.	 By defining K = XXT, we can work directly with K and never have to worry 
about X. This is the kernel trick.

	3.	 Working with α is sometimes advantageous (e.g., in SVMs many entries of α 
will be zero).

Steps Involved

	1.	 Initialize population and alpha
	2.	 Identify A, b, and X such that Ax = b, where A is a feature set and b is the target 

at tribute and x is the relationship between A and b
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	3.	 while (X==uniform or number of iterations)
	4.	     Calculate a regularization factor from the Tikhonov matrix (T = alpha x I)
	5.	     if T = 0 then calculate alpha from ATA, alpha = ||ATA||
	6.	     Calculate x, x = (ATA + TTT)−1ATb
	7.	     update alpha, alpha = ||Tx||
	8.	 end while

Fig. 6  Code snippet of polynomial kernel using Python
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Figure 9 provides the code implementation of the above-mentioned algorithm.
Figure 10 shows the output plot of the Python code implementation.
Figure 11 elucidates the Python code implementation [11] of Kernel Ridge 

Regression (KRR) prediction.

Fig. 8a  Kernel ridge regression

Fig. 8b  Kernel ridge simple linear regression
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Fig. 9  Code implementation of aforementioned algorithm

Fig. 10  Kernel ridge

Pattern Recognition and Machine Learning



114

Output

KRR complexity and bandwidth selected and model fitted in 0.130 s.
KRR prediction for 100,000 inputs in 0.166 s.

We also need to formally optimize over λ. Specific λ choices, however, equate 
with specific B choices [12]. Using cross-validation or some other test, either λ or B 
should be chosen, so we can likewise fluctuate λ right now. In the ridge regression, 
there is no meaning for the vector support, which is one of a significant disadvan-
tages in it. This is helpful in light of the fact that we possibly should summarize over 
the help vectors when [13] we test another model, which is a lot simpler than sum-
marizing over the entire training set. In the SVM, the meager condition was result-
ing from the requirements of disparity in light of the fact that the integral states of 
slackness revealed to us that regardless of whether the limitation was idle, at that 
point the multiplier αi was zero. There is no impact of that type here.

3  �Kernel Density Estimator

The Kernel is a non-negative, real-valued probability distribution [14] function with 
an even definite integral, which sets equal to a value of 1. For a continuous random 
variable, estimating the probability density function is done by the kernel density 
estimation.

Characteristics

	1.	 Nonparametric technique
	2.	 Effective multimodal data representation
	3.	 Consideration of noise for observed data
	4.	 Representation of model/state

Fig. 11  Code snippet of KRR prediction
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3.1  �Density Estimation

The three different techniques, unsupervised learning, data modeling, and feature 
engineering, are the ones required for the density estimation [15] and they have to 
walk through the line between them to get the result. In literature, many density 
estimation models are available, but Gaussian mixtures and neighbor-based models 
like kernel density estimation are more popular than the others.

In density estimation, visualization of information can be achieved using the 
histogram in which bins can be defined, but the problem is that choosing the [16] 
bins has a disproportionate effect on results in visualization, so kernel density 
estimator came to exist, which can be presented in several [17] numbers of dimen-
sions and it uses ball tree or Kernel Density (KD) tree for efficient queries. Here 
kernel may be a Gaussian, Tophat, or Epanechnikov (Fig. 12).

3.2  �Constructing a Kernel Density Estimate

	1.	 Select kernel that performs efficiently for the given dataset.

Fig. 12  Kernel densities
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	2.	 On every datum (pi), construct a scaled kernel function:

	
h K p p hi

� �� ��� ��
1 / .

	

where k = chosen kernel function
h is a bandwidth, known as smoothing parameter also called as window width

	3.	 Sum up the individual scaled kernel functions and divide by n, this places a prob-
ability of 1/n to each datum xi. it also ensures the kernel density estimate inte-
grates to 1 over its support set:
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3.3  �Features of the Algorithm

3.3.1  �Bandwidth Selection

Bandwidth selection gives the optimal bandwidth for the solution and [18] it can 
estimates from reference rules (Silverman’s rule) which less impact and another 
empirical approach is Cross validation is often used.

•	 Automatic data-dependent bandwidth selection (MISE  – mean integrated 
squared error) – error between estimated and true error

•	 Variable bandwidth selection – mean shift which is not effective

For choosing bandwidth, small h results small standard deviation best suits when 
sample size is large and data are tightly packed. A large h results large standard 
deviation best suits when sample size is small, and data are sparse.

3.3.2  �Kernels

KDE can be implemented using different kernels that lead to different characteris-
tics of density estimates. As Scipy contains Gaussian, stats models have 7 kernels, 
and Scikit-learn have 6 and each uses a dozen distance metrics for different kernel 
shapes (Fig. 13).

Plot. Kernels ()

3.3.3  �Heterogeneous Data

States models can be a heterogeneous data. In general, this [19] data is nothing but 
a combination of continuous, ordered, and unordered discrete variables.
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3.3.4  �Fast Fourier Transform–Based Computations

For large datasets, KDE is computed efficiently using fast Fourier transform (FFT) 
but requires binning and becomes inefficient in higher dimensions.

3.3.5  �Tree-Based Computations

Using the KD tree that is a specialized data structure, c is used to compute the KDE 
in which it is required to compute M evaluations of N points.

3.3.6  �Computational Efficiency

By comparing the computational efficiency of different algorithms (Table  1), it 
depends on the number of scaling points. It is better in one-dimensional data than in 
multi-dimensional data.

Scikit-learn computers faster than other implementation. But when data is het-
erogeneous, stat model is better and Scipy’s Gaussian KDE is used to obtain the 
results (Figs. 14 and 15).
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Fig. 13  Constructing different kernel level densities
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Table 1  Computational efficiency matrix

Bandwidth 
selection

Available 
Kernels

Multi-
dimension

Heterogeneous 
data

FFT-based 
computation

Tree-based 
computation

Scipy Scott & 
Silverman

One 
(Gauss)

Yes No No No

Stats models 
KDE 
Univariate

Scott & 
Silverman

Seven 1D only No Yes No

Stats models 
KDE 
Multivariate

Normal 
reference 
cross-
validation

Seven Yes Yes No No

Scikit-learn None 
built-in; 
cross val. 
available

6 kernels 
x 12 
metrics

Yes No No Ball tree or 
KD tree

Fig. 14  Code implementation of KDE
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Code Implementation

Advantages
When compared with the commonly used histogram, the kernel density [20] estima-
tor shows several advantages.

	1.	 It is a smooth curve and thus it better exhibits the details of the PDF suggesting 
in some cases non-unimodality.

	2.	 It uses all sample points’ locations, therefore, it better reveals the information 
contained in the sample.

	3.	 It convincingly suggests multimodality.
	4.	 The bias of the kernel estimator is of one order better than that of a histogram 

estimator.
	5.	 Compared with 1D application, 2D kernel applications are even better as the 2D 

histogram.

Disadvantages

	1.	 Annoying artifacts, such as all-positive quantities whose kernel density esti-
mates go into the negative zone. This can be fixed, but (a) it typically is not, and 
(b) when there is no an obvious bound, you still have the issue of the kernel 
density including places.

	2.	 PDF per pixel by KDE, classification by global threshold.
	3.	 Computational cost is high.
	4.	 Memory consumption.
	5.	 Bandwidth selection issue.

Applications

	1.	 Density level estimation.
	2.	 Clustering or unsupervised learning.
	3.	 Description of main content of data.

A range of kernel functions are commonly used: uniform, triangular, biweight, 
triweight, Epanechnikov, normal, and others. Based on the requirement of the result 
and the available dataset, the kernel estimator is used. For accurate results, Gaussian 
kernel is implemented.

4  �Dimensionality Reduction with Kernel Principal 
Component Analysis

Principal component analysis (PCA) is a tool that is used to reduce the dimension 
of the [21] data. It allows reducing the dimension of the data without much loss of 
information. PCA reduces the dimension by finding a few orthogonal linear combi-
nations (principal components) of the original variables with the largest variance. 
The first principal component captures most of the variance in the data. The [22] 
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second principal component is orthogonal to the first principal component and cap-
tures the remaining variance. PCA is a linear method. That is, it can only be applied 
to datasets that are linearly separable. It does an excellent job for datasets, which are 
linearly separable. However, if we use it to non-linear datasets, we might get a result 
that may not be the optimal dimensionality reduction. Kernel PCA uses a kernel 
function to project dataset into a higher dimensional feature space, where it is lin-
early separable. Figures 16, 17, 18, 19, 20 and 21 illustrate the various PCA Python 
code implementations and their corresponding plots.

Fig. 16  Python code snippet for make_moons

Fig. 17  Make-moons plot

Fig. 18  PCA fit Python code snippet
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Fig. 19  PCA plot

Fig. 20  Kernel PCA implementation in Python

Fig. 21  Kernel PCA slot
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Algorithm

	1.	 Construct the covariance matrix of the data.
	2.	 Compute the eigenvectors of this matrix.
	3.	 Eigenvectors corresponding to the largest eigenvalues are used to reconstruct a 

large fraction of variance of the original data.
	4.	 Hence, we are left with a lesser number of eigenvectors, and there might have 

been some data loss in the process.

Code Implementations

Advantages

	1.	 It helps in data compression, and hence reduced storage space.
	2.	 It reduces computation time.
	3.	 It also helps remove redundant features, if any.

Disadvantages

	1.	 It may lead to some amount of data loss.
	2.	 PCA tends to find linear correlations between variables, which is sometimes 

undesirable.
	3.	 PCA fails in cases where mean and covariance are not enough to define 

datasets.
	4.	 We may not know how many principal components to keep in practice, and some 

thumb rules are applied.

5  �Hidden Markov Model to Estimate the Behavior 
of a Person or Animal

A Markov chain (model) describes a stochastic process where [23] the assumed 
probability of future state(s) depends only on the current process state and not on 
any of the states that preceded it. The hidden Markov model (HMM) is a machine 
learning algorithm that is part of the graphic models. Nevertheless, HMM is often 
trained using a supervised method of learning in the [24] case of data being avail-
able for training. Only a little bit of probability knowledge will suffice to understand 
the concept to anyone.

It is important to understand where the HMM algorithm is used. In short, HMM 
is a graphical model, which is generally used in predicting states (hidden) using 
sequential data like weather, text, speech, etc. Figures 22, 23, 24, 25, 26 and 27 
elucidate HMM that estimates the behavior of a person or animal.

Algorithm

	1.	 Import library packages NumPy, pandas.
	2.	 Import HMM library package.
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	3.	 Init blank path.
	4.	 The forward algorithm extension.
	5.	 Find optimal path.

Code Implementation

Advantages

	1.	 Statistical base of HMM is strong.
	2.	 Efficient learning algorithm can take place directly [25] from raw sequence of 

data.
	3.	 It has a wide variety of applications like data mining classifications, structural 

analysis, and pattern discovery.

Disadvantages

	1.	 HMM often has a large number of unstructured parameters.

Fig. 22  HMM Python code snippet
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Fig. 23  Output of HMM

Fig. 24  HMM code implementation part 1
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	2.	 First-order HMM is limited by its first order of Markov property.
	3.	 They cannot express dependencies between hidden states.
	4.	 Modeling protein folds into a complex 3D shape determining its function.

Applications

	1.	 Gene prediction.
	2.	 Modeling protein domains.
	3.	 Clustering of paths for a subgroup.

HMMs are used in a variety of scenarios including manipulation of the natural 
language, robotics, and biogenetics. We have seen some of the basics of HMMs in 
this section, particularly in the context estimating the behavior of a person or 
an animal.

6  �Factor Analysis

Factor analysis is one of the statistical methods that measures of how much one 
observed and correlated variable [26] vary with another by a set of less or unob-
served variables. In other words, it simply is the method that defines the covariance 
relationship between the set of observed variables.

For instance, some data on particular set of people of observed characteristics of 
people. For example, do people having insomnia have suicidal thoughts or feel nau-
seous most of the time and (say) have covariance (insomnia, suicidal thoughts) = 0.2. 
Factor analysis works [27] by supposing that variance and covariance structure in 
the observed characteristics is due to unobserved factors (say) such as depression 

Fig. 25  HMM code implementation part 2
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responsible for the variance between all of the other observed variables. It simply 
describes the variance and covariance by supposing a casual effect of the unob-
served underlying factors on the observed characteristics.

Factor analysis is an extension of PCA. Both models try to approximate the cova-
riance matrix Σ, but factor analysis questions whether the data are consistent with 
some prescribed structure. Figures 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 describe 
the step-wise implementation in Python with various algorithms.

Code Implementation

Fig. 26  HMM code results part 1
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Factor 1 has high factor loadings for E1, E2, E3, E4, and E5 (extraversion).
Factor 2 has high factor loadings for N1, N2, N3, N4, and N5 (neuroticism).
Factor 3 has high factor loadings for C1, C2, C3, C4, and C5 (conscientiousness).
Factor 4 has high factor loadings for O1, O2, O3, O4, and O5 (openness).
Factor 5 has high factor loadings for A1, A2, A3, A4, and A5 (agreeableness).
Factor 6 has none of the high loadings for any variable and is not easily interpreta-

ble. It is good if we take only five factors (Fig. 38). Figures 39 and 40 show the 
Python code implementation and variance results.

Fig. 26  (continued)

Fig. 27  HMM code 
results part 2
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7  �Twitter Sentiment Analysis

Required Packages

•	 Tweepy (!pip install tweepy)
•	 NumPy (!pip install numpy)
•	 Pandas (!pip install pandas)
•	 Matplotlib.pyplot (!pip install matplotlib.pyplot)
•	 Json (!pip install json)
•	 Textblob (!pip install textblob)
•	 Re (!pip install re)

To do Twitter analysis, we need ACCESS_TOKEN, ACCESS_TOKEN_SECRET, 
CONSUMER_KEY, and CONSUMER_SECRET, which can be generated from the 
Twitter developer dashboard. If you are note a Twitter [28] developer, visit https://
developer.twitter.com/ and register with a Twitter account. In order to become a 
Twitter developer, you need to mention why you would like to become a Twitter 

Fig. 28  Factor analysis Python code implementation
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Fig. 29  Factor analysis Python implementation part 1

Fig. 30  Factor analysis Python implementation Bartlett’s test method part 2
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Fig. 31  Factor analysis part 3

Fig. 32  Factor analysis part 4

Fig. 33  Factor analysis 
part 5
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developer and what kind of data you are going to access and where are you going to 
implement the data. Once you are a developer, create an app by mentioning the app 
name, application description, website URL (Github repository link is acceptable), 
callback URL (localhost / http:127.0.0.1:8080), and your usage. Once you finish 
creating an app go to https://developer.twitter.com/en/apps and navigate to the 
details of your app to access keys and tokens where you will find consumer keys and 
access keys.

Now it is time to install packages. After installing all the packages create a 
Python file.

In that file,

	1.	 Import packages.
	2.	 Declare ACCESS_TOKEN, ACCESS_TOKEN_SECRET, CONSUMER_KEY, 

and CONSUMER_SECRET variables and assign your respective keys.

Fig. 34  Factor analysis part 6

Fig. 35  Eigenvalue scree plot
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	3.	 Authenticate your consumer keys with twitter by passing consumer keys to the 
tweepy.OAuthHandler method from the tweepy package that we have imported 
earlier.

	4.	 Pass access tokens to the set_access_token() method of the authenticated Twitter 
object.

	5.	 Get your API by passing the authenticated object to API() from the tweepy 
package.

Code

ACCESS_TOKEN = "your access token"
ACCESS_TOKEN_SECRET = "your access token secret"
CONSUMER_KEY = "your consumer key"
CONSUMER_SECRET = "your consumer secret"
auth = tweepy.OAuthHandler(CONSUMER_KEY,CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN,ACCESS_TOKEN_SECRET)
api = tweepy.API(auth)

Now that we have access to twitter API, we can use that API to stream data. 
Streaming data from twitter can be possible in 2 ways:

	1.	 Using the tweepy API calling method
	2.	 Using the tweepy cursor, streamListener, and a little OOPS implementation

Using the tweepy API Calling Method
tweepy.api class provides various wrappers for API provided by Twitter. Such wrap-
pers include many Timeline Methods:

Fig. 36  Factor analyzer scree plot
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Fig. 37  Output-factor analysis part 1
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Fig. 38  Factor analysis fitting

Fig. 39  Output-factor analysis part 2
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API.home_timeline([since_id][, max_id][, count][, page])
API.statuses_lookup(id[, include_entities][, trim_user][, map])
API.user_timeline([id/user_id/screen_name][, since_id][, max_id]
[, count][, page])
API.retweets_of_me([since_id][, max_id][, count][, page])

For many more, please refer to the following: http://docs.tweepy.org/en/v3.5.0/
api.html

tweets = api.user_timeline(screen_name='cmanmohan', count=20)

Tweets variable contains a list of 20 recent tweets from the user “cmanmohan” 
as a dictionary. For sentimental analysis we are considering the tweet text from all 
those tweets, so we need to extract the data from the “text” directory from each 
dictionary consisting of [‘__class__’, ‘__delattr__’, ‘__dict__’, ‘__dir__’, ‘__
doc__’, ‘__eq__’, ‘__format__’, ‘__ge__’, ‘__getattribute__’, ‘__getstate__’, ‘__
gt__’, ‘__hash__’, ‘__init__’, ‘__init_subclass__’, ‘__le__’, ‘__lt__’, ‘__module__’, 
‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’, ‘__setattr__’, 
‘__sizeof__’, ‘__str__’, ‘__subclasshook__’, ‘__weakref__’, ‘_api’, ‘_json’, 
‘author’, ‘contributors’, ‘coordinates’, ‘created_at’, ‘destroy’, ‘entities’, ‘favorite’, 
‘favorite_count’, ‘favorited’, ‘geo’, ‘id’, ‘id_str’, ‘in_reply_to_screen_name’, ‘in_
reply_to_status_id’, ‘in_reply_to_status_id_str’, ‘in_reply_to_user_id’, ‘in_reply_
to_user_id_str’, ‘is_quote_status’, ‘lang’, ‘parse’, ‘parse_list’, ‘place’, ‘possibly_
sensitive’, ‘quoted_status’, ‘quoted_status_id’, ‘quoted_status_id_str’, ‘retweet’, 
‘retweet_count’, ‘retweeted’, ‘retweets’, ‘source’, ‘source_url’, ‘text’, ‘truncated’, 
‘user’] directories and include those into a pandas Data Frame for processing.

df = pd.DataFrame(data = [tweet.text for tweet in tweets], 
columns=['Tweets'])

Additionally, we can include other directory data like retweet_count, favorite_
count, and created_at for visualization purposes (Fig. 41):

Fig. 40  Variance percentage output
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df['retweets'] = np.array([tweet.retweet_count for tweet in 
tweets])
df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
df['date'] = np.array([tweet.created_at for tweet in tweets])
df.head()

With the data we have in df Data Frame, we can visualize a plot as shown in 
Fig. 42 that illustrates likes and retweets against dates:

# time likes
time_retweets = pd.Series(data=df['likes'].values, 
index=df['date'])
time_retweets.plot(figsize=(16,4),color='b',legend=True,label="Li
kes")
# timeretweets
time_retweets = pd.Series(data=df['retweets'].values, 
index=df['date'])
time_retweets.plot(figsize=(16,4),color='r',legend=True,label="Ret
weets")
plt.show()

Coming to our main objective (sentiment analysis), we know that our data frame 
has Tweets, retweets, likes, and date as attributes and [29] that out target attribute is 
Tweets that contain hyperlinks, special characters, and other noisy elements, and 
hence we need to clean the strings before proceeding to analysis. There are several 

Fig. 41  Tweet retweets and likes tables from twitter
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Fig. 42  Plot the likes and retweets of sentiment analysis
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ways of cleaning data, but regular expression evaluation is fast and easy. Regular 
expression (re) has a method called sub that operates on the leftmost characters in a 
string and we use this method to replace special characters with a space to split them 
using .split(“ ”), which returns the list of words in the text for us to join later to form 
a sentence. Not clear? Let us see this in practice.

defclean_tweet(tweet):

# remove special charecters and hyperlings from the string using 
regular expression
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\
w+:\/\/\S+)", " ", tweet).split())

Now, by passing a noisy string we can get a clean string that is helpful in per-
forming the analysis. For polarity evaluation, we are using a TextBlob [30] package. 
Let us define a function called analyze_sentiment that takes a noisy tweet and 
returns the polarity level of the respective clean tweet. Figures 43 and 44 show the 
post-processing outputs of sentimental analysis.

Fig. 43  After data processing
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Fig. 44  Plots of bar graph for neutral, positive, and negative using tweet API
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defanalyze_sentiment(tweet):

analysis = TextBlob(clean_tweet(tweet))
returnanalysis.sentiment.polarity

The polarity level ranges from −1 to 1, polarity <0 being a negative degree, 
polarity = 0 being a neutral degree, and polarity >1 being a positive degree.

def degree(polarity):

if(polarity>0):
return 'Positive'
elif polarity==0:
return 'Neutral'
else:
return 'Negative'

We can include clean data, polarity, and sentiment (polarity degree) into our df 
Data Frame.:

df['clean_tweet'] = np.array([clean_tweet(tweet) for tweet in 
df['Tweets']])
df['polarity'] = np.array([analyze_sentiment(tweet) for tweet in 
df['Tweets']])
df['sentiment'] = np.array([degree(polarity) for polarity in 
df['polarity']])
df.head()

Now let us see how many positives, neutrals, and negatives are there in our data 
by simply plotting a bar graph:

df['sentiment'].value_counts().plot(kind='bar',color=[‘r’,’g’
,’b’])

Using tweepy Cursor, streamListener, and a Little OOPS Implementation
Tweepy has a streamListener class that allows us to stream live data one after another. 
Since the data is live and leads to large data we can [31] write them to a file, but for 
this time let us limit the tweets on data stream itself and save them in a list named 
tweets_data. Here we are going to implement a little object-oriented programming 
for easy reference. Initially, we need to initiate a listener class that takes tweepy.
streamListener as a parameter, which will have a constructer and 3 tweepy recogniz-
able methods on_data(), on_error(), on_status(). Their working is same as their same 
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suggests. Tweepy.streamListerner will trigger these methods while the data is stream-
ing. on_data() we will append the incoming data to tweets_data list until we reach a 
limit and when on_error() and on_status() we simply print those. Figures 45, 46, and 
47 provide the code implementation and output of the tweepystreamlistener.

classtwitterStreamListener(tweepy.StreamListener):

Fig. 45  Tweets, retweets, and likes input data

Fig. 46  Data after post processing
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Fig. 47  Plots of bar graph for neutral, positive, and negative using tweepy cursor, streamListener
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 """
 Listener class to print received tweets
 """
def __init__(self,limit):
self.count=0

defon_data(self,data):
self.count += 1
tweets_data.append(data)
if(self.count>=limit):
print("Data Extracted:",len(tweets_data))
return False

defon_error(self,status):
print("Error: ", status)

defon_status(self, status):
print("Status: ",status.text)

You can add code for writing streaming data into a file under or in place of the 
line tweets_data.append(data).

In the main class, we have to create an instance of twitterStreamListener in order 
to use the resources of that class. Since we [32] are using a constructor method in 
that class, we need to create an object with a limit as parameter. Remember that this 
class is streaming the data only when tweepy allows access. So here we need to use 
the tweepy.Stream() module to authenticate and pass the class object where stream-
ing methods are initiated. As mentioned earlier, all the streaming data is live con-
taining unnecessary tweets, so we need to filter through those tweets to get the 
desired tweets. twitter.Stream has an inbuild method called filter() to filter tweets 
when given a list of desired keywords/hash tags:

tweets_data = []
if __name__ == "__main__":

 # TWEETS RELATED TO HASHTAG
limit = 20
hash_tag_list = ["coronavirus"]
TwitterStreamListener = twitterStreamListener(limit)
twitterStream = tweepy.Stream(auth, TwitterStreamListener)
twitterStream.filter(track=hash_tag_list)

tweets_data contains all the tweets, and as we have done in the previous method, 
we need to parse the data into a Data Frame but here the tweeter_data contains a list 
of dictionary strings that we need to convert to dictionary using a json package and 
then push them into the Data Frame:
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importjson
df = pd.DataFrame(data = [json.loads(tweet)['text'] for tweet in 
tweets_data], columns=['Tweets'])
df['retweets'] = np.array([json.loads(tweet)['retweet_count'] for 
tweet in tweets_data])
df['likes'] = np.array([json.loads(tweet)['favorite_count'] for 
tweet in tweets_data])
df['date'] = np.array([json.loads(tweet)['created_at'] for tweet 
in tweets_data])
df.head()

Cleaning(), analyze_sentiment(), degree() functions and methodology is same 
and shown in (Fig. 46).

By plotting we get (Fig. 47),
Similarly, for getting the tweets of a particular user, we can use the tweepy.

Cursor method (Figs.  48, 49, and 50), which uses pagenation and works like a 
crawler for Twitter. The basic usage for this method is to crawl the pages of timeline 
of a particular page up to a number of tweets. If the user is given as none, then the 
authenticated user’s ID should be considered:

classTwitterClient():
def __init__(self):
self.twitter_client = tweepy.API(auth)
 # self.twitter_user = twitter_user

defget_twitter_client_api(self):
returnself.twitter_client

defget_user_timeline_tweets(self, num_tweets, user):
tweets=[]
for tweet in tweepy.Cursor(self.twitter_client.user_timeline, id = 
user).items(num_tweets):
tweets.append(tweet)
print("Data Extracted:",len(tweets))
return tweets

In the main class, we need to create an instance of the TwitterClient() class and 
through that we can call the get_user_timeline_tweets() method by passing the 
number of tweets and username of a specific user; if you want your timeline, then 
give “none” in place of username.

Pattern Recognition and Machine Learning



142

tweets_data = []
if __name__ == "__main__":

 # TWEETS RELATED TO A PERTICULAT USER
twitter_client = TwitterClient()
tweets = twitter_client.get_user_timeline_tweets(20,'cmanmohan')

Fig. 49  Data after processing
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Fig. 50  Plots of bar graph for neutral, positive, and negative using Twitter client

Fig. 48  Data input with tweets, retweets, and likes
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Tweets variable consists of data in the form of a list containing all [33] the tweets 
streamed. Like we have done in the previous stages, we need to convert the streamed 
data into a pandas Data Frame:

df = pd.DataFrame(data = [tweet.text for tweet in tweets], 
columns=['Tweets'])
df['retweets'] = np.array([tweet.retweet_count for tweet in 
tweets])
df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
df['date'] = np.array([tweet.created_at for tweet in tweets])
df.head()

Cleaning(), analyze_sentiment(), degree() functions and methodology is same 
and shown in (Fig. 49).

By plotting we get (Fig. 50),
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1  �Introduction

More SBC has come in today’s market for rapid prototyping and modelling ad hoc 
solutions. Table 1 illustrates the recent most sold SBCs.

Single board computers are mainly used for limited applications and mainly 
sophisticated IoT and edge applications [1, 4, 5, 6]. The single computer has very 
low capability and with resources starving in nature. The single board computers are 
enabled with general purpose input and output (GPIO) pins to handle electrical 
signals and communicate with a wire and wirelessly with nearby cyber physical 
systems (CPS) [7, 8, 9, 10, 11]. Figure 1 illustrates the NVIDIA Jetson Nano SBC 
with a 40-pin GPIO. The SBC has the UBUNTU operating system with CUDA 
framework to make GPU computation [12, 13, 14, 15]. The Jetson Nano is enabled 
with a CUDA framework facility to make faster computation.

The package for GPIO activation is Jetson.GPIO, and the following program 
illustrates how to switch on and off an LED using GPIO of Jetson Nano:
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importJetson.GPIO as GPIO
//Package Importing for handling GPIO pins of the SBC
import time
//for delay time setting
GPIO.setmode(GPIO.BOARD)
//mapping the pins as per board numbering
bulp = [18]
//pin number 18 assigned to glow bulp
GPIO.setup(bulp, GPIO.OUT, initial=GPIO.LOW)
//Initializing pin 18 as output pin with zero initial condition, 
so that bulp will be in off condition when it starts
GPIO.output(bulp, GPIO.HIGH)
//pin 18 is assigned high
time.sleep(10);

Table 1  Recent SBCs comparison table

S. No Name of SBC Processor Speed RAM
Operating 
system

1 Raspberry pi 4 Broadcom BCM2711 1.5 GHz 2GB Raspian
2 Ordroid Samsung Exynos5422 

cortex™-A15
2 GHz 2GB Linux and 

android
3 NVIDIA 

Jetsonnano
Quad-core ARM® cortex®-A57 
MPCore processor

1.6GHz 4GB Ubuntu

4 NVIDIA Xavier 8-core ARM v8.2 64-bit CPU 2.26 GHz 12 GB Ubuntu

Fig. 1  NVIDIA Jetson nano single board computer (SBC)
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//make the pin in high state for ten seconds
GPIO.output(bulp, GPIO.LOW)
// bulp off.

The tensor flow installation in GPUs can be done through the following command:

pip3 install tensorflow-gpu #for GPU installation in NVIDIA

Figure 2 illustrates the NVIDIA Xavier single board computer, more capable 
with high resources [16] when compared with the Jetson Nano board. The XAVIER 
board is mainly used for image processing and automatic driving assistance pur-
poses to understand and recognize the images and to acknowledge the system 
accordingly.

Both the NVIDIA Jetson and Xavier modules are [17] enabled with camera 
interface options. The camera can be connected via i2c and USB ports. The follow-
ing procedure describes the camera installation and snapshot code for taking picture 
from a webcam in NVIDIA SBCs.

Installation from git repository using the command.

git clone https://github.com/NVIDIA-AI-IOT/jetcam
cdjetcam
sudo python3 setup.py install

Importing python packages:

Fig. 2  NVIDIA Xavier single board computer
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fromjetcam.csi_camera import CSICamera
cam1 = CSICamera(width=240, height=320, capture_width=1080, cap-
ture_height=720, capture_fps=20)

Here the image display height is specified as 329 and the width is specified as 
240. The width of capturing is 1080 and the height of capturing is 720. The variable 
cam1 is mentioned as CSI for ribbon cable camera.

fromjetcam.usb_camera import USBCamera
cam1 = USBCamera(capture_device=1)

The variable cam1 is set for a USB camera. The code used to open the camera 
shutter is given below:

image = camera.read()

2  �CUDA Programming in NVIDIA

Both the NVIDIA SBCs are capable of working on the CUDA framework. The nvcc 
compiler essential for performing the CUDA [18] operation is to be exported. The 
operating system already comes with CUDA and the following command can be 
used to export the path of language-CUDA:

export PATH=${PATH}:/usr/local/cuda/bin
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64

The verification of the above is done through the following command in ter-
minal box:

nvcc –v

Here in the programming, the sentence to be executed in the GPU should be 
mentioned with __global__ syntax identifier. The TensorRT package can accelerate 
the performance of GPU and provide lower computation time in matrix calcula-
tions. The following code describes the simple matrix multiplication code in the 
CUDA environment in NVIDIA jetsonnano SBC:
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@cuda.jit
“”” initializing CUDA
defmatrixmul(mat1, mat2, matresult):
 """square matrix multiplication (mat1* mat2 = matresult)
p, q = cuda.grid(2)
if p <matresult.shape[0] and q <matresult.shape[1]:
temp = 0.
for k in range(mat1.shape[1]):
temp += mat1[p, k] * mat2[k, q]
matresult[i, j] = temp

The SBC has various industrial needs and is presently solving various industrial 
problems. The following section discusses some of the related industrial problems

3  �Prepackaging Inspection Module for Industry 4.0

This below module aims on developing a prepackaging inspection machine for 
packaging goods before being dispatched. This is a low cost cyber physical system 
which verifies the content in the package and performs a check before wrapping for 
shipment. The kit is trained with the images of toolset in Raspberry pi4 and 
Jetsonnano using deep learning, tensor flow, keras, open cv, and GPIO. The images 
for the inspection are captured by a camera placed on the top center of the comput-
ing machine. The images captured are being trained by the precaptured and stored 
images. The captured images undergo a series of training phases to check and verify 
whether the toolsets are perfectly aligned and placed. In the first step of the process, 
the toolset will be placed in the inspection machine to capture it. Then the captured 
images are segmented into two types: (1) right alignment and (2) wrong alignment. 
The correct images are the ones which are perfectly aligned and placed in the per-
fect order. The wrong images are the ones which are misplaced, misaligned, and in 
some cases certain tools from the toolset are missed during the prepackaging. The 
results of the correct and wrong model are indicated by the machine with the help 
of green and red LEDs. If the image is correct, it will blink green else it will blink 
red. The region of interest for the camera is 32x24 cm.

Figure 3 illustrates the hardware design of the module. The module is trained 
with tensor flow and deep learning modules.
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Figure 4 is the flowchart proposed for the prepackaging inspection machine. The 
equipment is moved inside the region of interest through conveyer mechanism. The 
image is first given as input through a camera sensor properly mounted covering the 
region of interest, then the object is recognized and classified through tensor flow 
deep learning for better accuracy. After classification, the image is checked for cor-
rect alignment and wrong alignment through deep learning and it helps in taking 
decision. If the image is correct, it permits and indicates a green light and rotates the 
conveyer in the forward direction, if the image is wrong it does not permit and indi-
cates a red light. Then the number of correct images and wrong images detected are 
saved and end the process. The counter is integrated with the Google cloud service 
and it is able to indicate the production rate to the subscribers. The system is highly 
accurate and presently trained with more than 3000 images of a single product kit 
set. The same module can be easily trained for other similar applications on 
packaging.

An input image is given and it is stored in .jpeg file format. Then they are tested 
and trained. After testing and training the records are saved. With the records the 
images are trained and evaluate the new input images. Figures 5 and 6 elucidate that 
when the camera senses the correct aligned tool kit, it gives a green signal, else it 
gives a red signal.

Figure 7 illustrates the verification time taken by each single board computer. 
NVIDIA Xavier has the least computational time and checks more packages 
per minute.

NVIDIA Jetson
Nano

Camera sensor

Mechanical kits to
be packed

Fig. 3  Tensor flow–based pre-inspection machine
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Fig. 4  Flowchart diagram

Fig. 5  Real-time results verified as correct alignment
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Fig. 7  Time complexity of different SBCs

Fig. 6  Real-time results verified as wrong alignment
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4  �Fish Geopositioning System for Industry 4.0

This module aims in developing automatic fish positioning system for fish packag-
ing industry, our motive of this invention are to reduce the difficulties faced by the 
labor during cutting process, fastening of packaging work, and to protect the labor 
from eye sight stress, it causes like myopia, glaucoma, hyperopia and smell allergies 
with the help of the technology of neural network.

The first step for packaging is to catch the fish with huge quantity for processing, 
once the fishes are catched, then fishes are taken to the fish processing machine and 
passed into the conveyer and the fishes will start to move over the conveyer track 
belt. The fish are cut and cleaned before preservation and transport. The randomness 
of fish in the conveyer makes the cutting machine more human and intervention is 
required to rotate and properly position the fish for the cutting process.

The position detection of fish is detected by camera, using the convolution neural 
network; if the position is wrong then it is corrected with the help of a motor so that 
the described problem faced by labor will be solved, the efficiency of work will be 
increased, and the task completed faster. Figure 8 illustrates the working process of 
the automatic fish positioning system using deep convolutional neural network 
and IoT.

Figure 9 illustrates the correct and wrong position of fish to be trained for the 
robot. The convolution neural network understands the current position of the fish and 
makes N rotation with a stepper motor drive to rotate the fish to the correct position.

Fish from
catchment

zone

Deep Learning based
Fish position detection

algorithm

Stepper motor, driver
and control algorithm

To Cutting
section

M

Rotating Conveyer
Fish Position rotating

mechanism

M

Fig. 8  Block diagram for automatic fish positioning system

Programming Tensor Flow with Single Board Computers



154

Figure 10 elucidates the results from the SBC, and the SBC is directly connected 
with servo motor through GPIO and commands the servo to make certain necessary 
rotations for cutting and cleaning purposes. Figure 11 shows the wrong position of 
the fish. Figure 12 illustrates the training loss with epoch for the modeled CNN.

Figure 13 illustrates the time taken by a single board computer to complete sin-
gle verification. NVIDIA Xavier takes minimum time to verify the given 
input images.

Fig. 9  Data set for training the fish position

Fig. 10  Real-time results verified – correct position of fish
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Fig. 11  Wrong position 
identification of fish
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Fig. 12  Training loss and accuracy on fish position

Programming Tensor Flow with Single Board Computers



156

5  �Conclusion

The single board computers have become the necessary element for rapid prototyp-
ing and are widely used for edge analytics. The computing devices in SoC are 
enabled with fast computing and a communication device in par with the client. 
Apart from all the constraints, it is low power consuming in nature. The application 
of tensor flow in SBC is enormous and can serve smart city applications. The indus-
try Internet of Things and standard Industry 4.0 provide a bigger platform for SBC 
with opencv and tensor flow applications.
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	2.	 Multi-Layer Perceptron, Keras Intuition, Backpropagation, Activation function, 
and Gradient Descent

 

	3.	 (a). Performing Classification and Regression Using Artificial Neural Network
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(b). Performing Classification and Regression Using Artificial Neural Network
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	4.	 (a). Principal Component Analysis
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(b). Batch Normalization
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�Appendix 2

Project 1
Create a model that predicts whether or not a loan will be default using the histori-
cal data:

Problem Statement – Source - Simplilearn

Steps to Perform
Perform exploratory data analysis and feature engineering and then apply feature 
engineering. Follow up with a deep learning model to predict whether or not the 
loan will be default using the historical data.

Tasks

	1.	 Feature Transformation
Transform categorical values into numerical values (discrete).

	2.	 Exploratory data analysis of different factors of the dataset.
	3.	 Additional Feature Engineering

You will check the correlation between features and will drop those features that 
have a strong correlation.

This will help reduce the number of features and will leave you with the most 
relevant features.
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	4.	 Modeling
After applying Exploratory Data Analysis (EDA) and feature engineering, you 

are now ready to build the predictive models.
In this part, you will create a deep learning model using Keras with tensorflow 

backend.
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Project 2
Build a Convolutional Neural Network (CNN) model that classifies the given pet 
images correctly into dog and cat images:

Problem Statement – Source - Simplilearn

Project Description and Scope
You are provided with the following resources that can be used as inputs for 
your model:

	1.	 A collection of images of pets, that is, cats and dogs. These images are of differ-
ent sizes with varied lighting conditions.

	2.	 Code template containing the following code blocks:

	 (a).	 Import modules (Part 1).
	 (b).	 Set hyper parameters (Part 2).
	 (c).	 Read image data set (Part 3).
	 (d).	 Run tensorflow model (Part 4).

You are expected to write the code for CNN image classification model (between 
Parts 3 and 4) using tensorflow that trains on the data and calculates the accuracy 
score on the test data.
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Project Guidelines
Begin by extracting the ipynb file and the data in the same folder. The CNN model 
(cnn_model_fn) should have the following layers:

•	 Input layer
•	 Convolutional layer 1 with 32 filters of kernel size[5,5]
•	 Pooling layer 1 with pool size[2,2] and stride 2
•	 Convolutional layer 2 with 64 filters of kernel size[5,5]
•	 Pooling layer 2 with pool size[2,2] and stride 2
•	 Dense layer whose output size is fixed in the hyper parameter: fc_size = 32
•	 Dropout layer with dropout probability 0.4

Predict the class by doing a softmax on the output of the dropout layers.
This should be followed by training and evaluation:

•	 For the training step, define the loss function and minimize it.
•	 For the evaluation step, calculate the accuracy.

Run the program for 100, 200, and 300 iterations, respectively. Follow this by a 
report on the final accuracy and loss on the evaluation data.
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