
EAI/Springer Innovations in Communication and Computing

Kolla Bhanu Prakash
G. R. Kanagachidambaresan Editors

Programming
with TensorFlow
Solution for Edge Computing
Applications

EAI/Springer Innovations in Communication
and Computing

Series editor
Imrich Chlamtac, European Alliance for Innovation, Ghent, Belgium

Editor’s Note

The impact of information technologies is creating a new world yet not fully
understood. The extent and speed of economic, life style and social changes
already perceived in everyday life is hard to estimate without understanding the
technological driving forces behind it. This series presents contributed volumes
featuring the latest research and development in the various information engineering
technologies that play a key role in this process.

The range of topics, focusing primarily on communications and computing
engineering include, but are not limited to, wireless networks; mobile communication;
design and learning; gaming; interaction; e-health and pervasive healthcare; energy
management; smart grids; internet of things; cognitive radio networks; computation;
cloud computing; ubiquitous connectivity, and in mode general smart living, smart
cities, Internet of Things and more. The series publishes a combination of expanded
papers selected from hosted and sponsored European Alliance for Innovation (EAI)
conferences that present cutting edge, global research as well as provide new
perspectives on traditional related engineering fields. This content, complemented
with open calls for contribution of book titles and individual chapters, together
maintain Springer’s and EAI’s high standards of academic excellence. The audience
for the books consists of researchers, industry professionals, advanced level students
as well as practitioners in related fields of activity include information and
communication specialists, security experts, economists, urban planners, doctors,
and in general representatives in all those walks of life affected ad contributing to
the information revolution.

About EAI

EAI is a grassroots member organization initiated through cooperation between
businesses, public, private and government organizations to address the global
challenges of Europe’s future competitiveness and link the European Research
community with its counterparts around the globe. EAI reaches out to hundreds of
thousands of individual subscribers on all continents and collaborates with an
institutional member base including Fortune 500 companies, government organizations,
and educational institutions, provide a free research and innovation platform.

Through its open free membership model EAI promotes a new research and
innovation culture based on collaboration, connectivity and recognition of excellence
by community.

More information about this series at http://www.springer.com/series/15427

http://www.springer.com/series/15427

Kolla Bhanu Prakash
G. R. Kanagachidambaresan
Editors

Programming with
TensorFlow
Solution for Edge Computing Applications

ISSN 2522-8595	     ISSN 2522-8609  (electronic)
EAI/Springer Innovations in Communication and Computing
ISBN 978-3-030-57076-7     ISBN 978-3-030-57077-4  (eBook)
https://doi.org/10.1007/978-3-030-57077-4

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Kolla Bhanu Prakash
KL Deemed to be University
Vijayawada, AP, India

G. R. Kanagachidambaresan
Department of CSE
Vel Tech Rangarajan Dr Sagunthala R&D
Institute of Science and Technology
Chennai, Tamil Nadu, India

https://doi.org/10.1007/978-3-030-57077-4

v

Preface

Machine learning and deep learning approaches have become inevitable solutions in
all domains of engineering. Python is an efficient tool that satisfies the needs of
engineers, mathematicians, and data scientists in solving their daily problems. The
algorithms like Neural Network (NN), Support Vector Machine (SVM), Hidden
Markov Model (HMM) in machine learning approach create easy way for predict-
ing the data set and aids in classifying heterogeneous data. The Python program-
ming language has easy packages available on open source that can immediately
implement and test these algorithms for real-time problems. Python is becoming a
very efficient tool, capable of running on small machines (i.e. embedded systems
and single-board computers) as well as big super computers and gigantic data clus-
ters. More and more IoT-based projects and rapid prototyping are done nowadays to
solve numerous transient problems using Python and ML approaches. Creating a
solution to this and sophisticating the new learning of Python and Tensorflow, this
book covers beginner to advanced levels. It contains 12 parts, starting with basic pip
installation of packages in Linux and Windows environment, through image pro-
cessing, sentimental analysis, handwriting recognition, factor analysis, feature
extraction, line recognition, various machine learning approaches, single-board
computers and IoT projects using Tensorflow. This book provides detailed coding
explanation along with the output to facilitate the readers and aids easy learning of
Tensorflow package in Python. It also provides example exercises and their solu-
tions in the appendix. This book will be an insight for new beginners, students,
scholars, and data scientists to learn and work on Tensorflow and similar packages.

Vijayawada, AP, India�  Kolla Bhanu Prakash
Chennai, Tamil Nadu, India�  G. R. Kanagachidambaresan

vii

Acknowledgement

Our sincere thanks to Almighty and our parents for the their blessings, guidance,
love and support in all stages of life. We are thankful to our beloved family members
for standing by us throughout our career and also helping us advance our careers
through editing this book.

Our special thanks to Sri. Koneru Satyanarayana, President, K. L. University,
India and Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and
Technology for their continuous support and encouragement throughout the prepa-
ration of this book. I dedicate this book to them.

Our great thanks to our students and family members who put in their time and
effort to support and contribute in some manner. We would like to express our grati-
tude to all those who supported, shared, talked things over, read, wrote, offered
comments, allowed us to quote their remarks and assisted with editing, proofread-
ing and designing through this book journey. We pay our sincere thanks to the open
data set providers.

We believe that the team of authors provides the perfect blend of knowledge and
skills that went into authoring this book. We thank each of the authors for devoting
their time, patience, perseverance and effort towards this book; we think that it will
be a great asset to all researchers in this field!

We are grateful to Eliska, Mary James and all other members of Springer’s pub-
lishing team who showed us the ropes to creating this book. Without that knowl-
edge, we would not have ventured into starting this book, which ultimately led to
this. Their trust in us, their guidance and providing the necessary time and resources
gave us the freedom to manage this book.

Last but not least, we’d like to thank our readers, who gave us their trust, and we
hope our work inspires and guides them.

Kolla Bhanu Prakash
G. R. Kanagachidambaresan

ix

Contents

��Introduction to Tensorflow Package���     1
Kolla Bhanu Prakash, Adarsha Ruwali, and G. R. Kanagachidambaresan

��Tensorflow Basics ���     5
Abhilash Kumar Jha, Adarsha Ruwali, Kolla Bhanu Prakash,
and G. R. Kanagachidambaresan

��Visualizations���    15
G. R. Kanagachidambaresan and G. Manohar Vinoothna

��Regression ���    23
Kolla Bhanu Prakash, Adarsha Ruwali, and G. R. Kanagachidambaresan

��Neural Network���    39
Pradeep Kumar Vadla, Adarsha Ruwali, Kolla Bhanu Prakash,
M. V. Prasanna Lakshmi, and G. R. Kanagachidambaresan

��Convolutional Neural Network ���    45
Y. V. R. Nagapawan, Kolla Bhanu Prakash,
and G. R. Kanagachidambaresan

��Recurrent Neural Network ���    53
G. R. Kanagachidambaresan, Adarsha Ruwali, Debrup Banerjee,
and Kolla Bhanu Prakash

��Application of Machine Learning and Deep Learning ���������������������������������    63
Enireddy Vamsidhar, G. R. Kanagachidambaresan,
and Kolla Bhanu Prakash

��Chatbot���    75
Kolla Bhanu Prakash, A. J. Sravan Kumar,
and G. R. Kanagachidambaresan

��PyTorch ���    87
Sagar Imambi, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan

x

��Pattern Recognition and Machine Learning ���   105
Bharadwaj, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan

��Programming Tensor Flow with Single Board Computers���������������������������   145
G. R. Kanagachidambaresan, Kolla Bhanu Prakash, and V. Mahima

��Appendices���   159

��References ���   183

Index���   187

Contents

1© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_1

Introduction to Tensorflow Package

Kolla Bhanu Prakash, Adarsha Ruwali, and G. R. Kanagachidambaresan

Tensorflow’s structure is based on the dataflow graph [3]. A dataflow graph as two
basic computation units:

•	 Node
•	 Edge

A node represents any mathematical operations and an edge [4] depicts the mul-
tidimensional array (tensors). Figure 1 elucidates the graphical flow for x*y + 2 and
b + W*x equations.

Figure 2 illustrates the computation of Tensorflow in multidimensional.

1  �Why Tensorflow for Deep Learning?

Tensorflow has built-in supports for deep learning [5]. This helps in simplification
and has an easy-to-use environment to assemble neural networks assigning param-
eters, training and testing any deep learning models [6]. Likewise, simple trainable
mathematical functions are also present in Tensorflow. All these flexible tools within
Tensorflow make itself compatible for many concepts under machine learning.

K. B. Prakash · A. Ruwali
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan (*)
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_1#DOI

2

2  �Installation Guide to Tensorflow

2.1  �System Requirement

Ubuntu 16.04 or later (64-bit)
macOS 0.12.6 (High Sierra) or later (64 bit) no GPU support
Windows 7 or later (64 bit) (python 3 only)
Raspbian 9.0 or later

If you are using python with 3.x version and have installed ‘pip’, then you can
directly head towards the below installation in command prompt:

Fig. 2  Computation Tensorflow for multi-dimensional operations

Fig. 1  (a) Computation Tensorflow graph for x*y + 2 (b) Computation Tensorflow graph for
b + W*x

K. B. Prakash et al.

3

$pip3 install Tensorflow

Now if you have Tensorflow already installed in your [6] system and need an
upgrade:

$pip3 install –ignore-installed –upgrade Tensorflow==1.9
1.9 is the version of Tensorflow to upgrade to

Following is the illustration of how python and Tensorflow both are installed in
Windows 10 (64 bit):

	1.	 Download python from https://www.python.org.downloads/ as illustrated in
Fig. 3.

	2.	 Once the python is downloaded, install it adding to the path shown as given in
Fig. 4.

Fig. 3  Python.org home page

Fig. 4  Python download

Introduction to Tensorflow Package

https://www.python.org.downloads/
http://python.org

4

	3.	 Now to install Tensorflow as a library package in the python. Type the command
shown below:

$ pip3 install Tensorflow, Fig. 5 illustrates the screen after executing the pip
install command.

The version of Tensorflow installed in the existing system can be verified with
the following code.

import Tensorflow as tf
tf.version
tf.version will give you the version of package installed in your system

Great! It’s done.

References

	1.	 Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff & Itay Lieder]
	2.	 Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors: Hisham

El-Amir, Mahmoud Hamdy]
	3.	 TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms

[Authors: Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli]
	4.	 Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,

and TensorFlow [Authors: Sebastian Raschka, Vahid Mirjalili]
	5.	 Python Deep Learning: Exploring deep learning techniques, neural network architectures and

GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater, Gianmario
Spacagna, Peter Roelants, Valentino Zocca]

	6.	 S. Pichai, “TensorFlow: smarter machine learning for everyone”, Google Official Blog, 2015.

Fig. 5  After running the above command output

K. B. Prakash et al.

5© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_2

Tensorflow Basics

Abhilash Kumar Jha, Adarsha Ruwali, Kolla Bhanu Prakash,
and G. R. Kanagachidambaresan

1  �Hello Tensorflow Program

This is the very basic [2] program in tensorflow and outputs are given in Figs. 1 and 2.

•	 tf.constant adds value to a given variable and the value remains constant through-
out runtime.

•	 tf.Session runs a computational graph and starts the session where the objects are
executed.

2  �Representation of Vector/Matrix

The generalized form of vectors and matrices are called tensors [3]. There are dif-
ferent ways of representing tensors declaring its variability or as a constant. To
represent a vector or simply to print any vector, numpy is another library package
that handles the vectors and even multidimensional arrays as well. The output of
each step is illustrated in Fig. 3.

A. K. Jha · A. Ruwali · K. B. Prakash (*)
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_2#DOI

6

Fig. 2  Output for HelloTensorflow basic code

Fig. 3  Vector representation in numpy package

Fig. 1  System output of simple hello program in tensorflow

A. K. Jha et al.

7

3  �With Session() Vs without Session()

Session() helps in the execution of the computational graph and also controls the
state of the tensorflow runtime [4]. Without session, tensorflow programs cannot be
executed. Following are the demos of the tensorflow program with and without
Session() as given in Figs. 4 and 5.

4  �Zeros Matrix and Ones Matrix

Tensorflow built-in functions tf.zeros() and tf.ones() are the functions for matrix
with all zeros and with all ones, respectively [5]. In the following demo, Figs. 6 and
7, the size of the matrix is 50 × 50 for both ones and zeros.

5  �Make Matrix Negative

The following demonstration in Fig. 8 helps in negative matrix initialization, that is,
matrix with –ive elements in row and [6] column initiation using the built-in func-
tion of tensorflow.

Fig. 4  Without session in tensorflow

Fig. 5  With session initialization in tensorflow

Tensorflow Basics

8

Fig. 6  tf.ones() example code with session

Fig. 7  tf.ones() example code without session

Fig. 8  Negative matrix initialization

A. K. Jha et al.

9

•	 tf.constant, initialize the matrix with 1 × 3 dimension and store it in “a.”
•	 To make matrix negative, tf.negative() is used.

6  �Variables and Constants

The demonstration in Fig. 9 illustrates the constant and variable initializing. Here:

•	 Variables, constants, and placeholders are used to store values at different instances.
•	 Constant values cannot be altered once initialized during runtime.
•	 Variables assigned can be altered if required.
•	 Placeholders reserve space for the variables declared before runtime session.
•	 Global_variables_initializer() returns a variable list that holds the global vari-

ables and variable_initializer() takes all the variable in the variable list and sets
its variable initializer property to an operation group [7].

7  �Variables Concept in Tensorflow

•	 Variable holds data that vary.
•	 Variable holds and updates parameters in a training model.
•	 It is a tensor having in-memory buffers [8].
•	 Variables are initialized and can be stored to disk during and after training.
•	 That saved data can be restored to exercise the model. Figure 10 elucidates the

variable concept output with Python.

Fig. 9  Code illustration for global variable initializer

Tensorflow Basics

10

Note
A constant’s value is stored in the graph and its value is repeated everywhere the
graph is loaded. Separately one variable is stored.

8  �Implement Concept of Placeholder

•	 Placeholder holds the variables and its property before, during, and after the ses-
sion is executed.

•	 Placeholder provides the value later when the session is being executed.
•	 feed_dict is to feed the input value to the variable while evaluating the graph.
•	 feed_dict can be initialized during session runtime depicting values to variables

in placeholder.

9  �Simple Equations Using Tensorflow

Basic mathematical operations are used to implement an equation shown in Figs. 11,
12, and 13. Constants, variables, or placeholders can be used to form the equation.
feed_dict is used to feed the [9] input values to the variable held by placeholder dur-
ing session run time.

	(a).	 Implement a + b.

Fig. 10  Variable concept output

A. K. Jha et al.

11

	(b).	 Quadratic equation using tensorflow.
	(c).	 Implement 𝒂𝒙𝟐 + 𝒄𝒙𝒚 +𝒃𝒚𝟐.

10  �Simple Operations in Tensorflow

So far, we have discussed about basic operations and equations implemented in
tensorflow [10]. Here are some more simple operations where tensorflow’s built-in
functions are used as given in Fig. 14.

Fig. 11  Tensorflow addition concept

Fig. 12  Quadratic example program in tensorflow

Tensorflow Basics

12

Fig. 14  Math operations in tensorflow

Fig. 13  Equation concept in tensorflow

A. K. Jha et al.

13

tf.add(x, y): add two tensors.
tf.subtract(x, y): tensors of same type are subtracted.
tf.multiply(x, y): element-wise multiplication.
tf.pow(x, y): power of x to y.
tf.exp.(x): equivalent to exponential to the power x.
tf.sqrt(x): equivalent to the power of 0.5.
tf.div(x, y): divided x by y.
tf.mod(x, y): equivalent to x%y.

References

	 1.	Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff&Itay Lieder]
	 2.	Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors:

Hisham El-Amir, Mahmoud Hamdy]
	 3.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms

[Authors: Sam Abrahams, DanijarHafner, Erik Erwitt, Ariel Scarpinelli]
	 4.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,

and TensorFlow [Authors: Sebastian Raschka, VahidMirjalili]
	 5.	Python Deep Learning: Exploring deep learning techniques, neural network architectures

and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	 6.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed
Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]

	 7.	Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. [Author: AurélienGéron]

	 8.	Learn TensorFlow 2.0: Implement Machine Learning And Deep Learning Models With
Python. [Authors: Pramod Singh, Avinash Manure]

	 9.	Agrawal A, Roy K (2019) Mimicking leaky-integrate-fire spiking neuron using automotion of
domain walls for energy-efficient brain-inspired computing. IEEE Trans Magn 55(1):1–7

	10.	Akinaga H, Shima H (2010) Resistive random access memory (reram) based on metal oxides.
Proc IEEE 98(12):2237–2251

Tensorflow Basics

15© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_3

Visualizations

G. R. Kanagachidambaresan and G. Manohar Vinoothna

1  �Matplotlib in Tensorflow

Pyplot provides the necessary figures and axes to get the desired plot [4]. Similarly,
pylab combines the pyplot functionality with numpy as an effective environment for
visualization [5].

Implementations

	(a)	 Scatterplot
Figure 1 describes the plotting of scatter plot using matplotlib package in Python.
Before implementing further, let us get familiar with some basic terminolo-

gies used:

•	 Linspace

Syntax Used
Numpy.linspace(start, stop, num = 50, endpoint = True, retstep = False, dtype = None)

Start: start of interval (default value is 0)
Stop: end of interval
num: number of sample generated
dtype: data type of an output array

Linspace is used to create a number sequences [6]. Implementation of this func-
tion and plotting it in a line graph is shown in Fig. 2.

G. R. Kanagachidambaresan (*)
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

G. Manohar Vinoothna
KL Deemed to be University, Vijayawada, AP, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_3#DOI

16

•	 np.random.randn()

Syntax
numpy.random.randn(d0, d1, …, dn), creates a specified array with random val-
ues w.r.t standard normal distribution as given in Fig. 3.

The values generated by this function are random [7] every time it is executed.
Using the above functions, let us do a scatter plot (Fig. 4), which contains 100

different values within the range of −10 to +10.

Fig. 1  Scatter plot

Fig. 2  Linear graph

G. R. Kanagachidambaresan and G. Manohar Vinoothna

17

1.1  �Histogram Implementation

Syntax
plt.hist(variable used,bins = <constant value>)

X-axis denotes each value and Y-axis or the height of each [8] rectangle repre-
sents the frequency of that value. The demonstration is given in Fig. 5.

Fig. 3  Random number matrix generation

Fig. 4  Linspace with scatter plot

Visualizations

18

1.2  �Trigonometric Curves

Matplotlib with numpy is an effective way to represent the data [9]. Trigonometric
curves of sine, cosine, and tan are shown in Figs. 6, 7, and 8.

Similarly, matplotlib is also used to plot 3D figures [10]. Figure 9 is one sample
of 3D graph.

Fig. 5  Histogram

G. R. Kanagachidambaresan and G. Manohar Vinoothna

19

Fig. 6  Sine curve

Fig. 7  Cosine curve

Visualizations

20

Fig. 9  3D axes

Fig. 8  Tan curve

G. R. Kanagachidambaresan and G. Manohar Vinoothna

21

References

	 1.	Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff&Itay Lieder]
	 2.	Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors:

Hisham El-Amir, Mahmoud Hamdy]
	 3.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms

[Authors: Sam Abrahams, DanijarHafner, Erik Erwitt, Ariel Scarpinelli]
	 4.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,

and TensorFlow [Authors: Sebastian Raschka, VahidMirjalili]
	 5.	Python Deep Learning: Exploring deep learning techniques, neural network architectures

and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	 6.	M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org

	 7.	D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable exploration of graph
hierarchy space. Visualization and Computer Graphics, IEEE Transactions on, 14(4):900–913,
2008.

	 8.	 J. Abello, F. Van Ham, and N. Krishnan. ASK-Graphview: A large scale graph visualization
sytem. Visualization and Computer Graphics, IEEE Transactions on, 12(5):669–676, 2006.

	 9.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

	10.	Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech
Recognition with Tensorflow and Keras. [Authors: Navin Kumar Manaswi]

Visualizations

http://tensorflow.org

23© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_4

Regression

Kolla Bhanu Prakash, Adarsha Ruwali, and G. R. Kanagachidambaresan

1  �Regression Model – Simple Linear Equation

Following are the steps that show the sample for linear equation and its plot (Fig. 1).

	1.	 Import the numpy library and matplotlib.pyplot library.
	2.	 Define number of variables necessary for the program.
	3.	 Iterate the variables for 500 random points.
	4.	 Plot the generated points using matplotlib (Fig. 2).

2  �Linear Regression

Linear regression [4] [5] models predict the correlation among 2 variables or factors
as shown in Fig. 3. The factor that is being guessed is called dependent variables and
the factors [6] that were used to guess the value of dependent variables are called
independent variables [7].

The equation for linear regression is:

Y = MX + C

K. B. Prakash (*) · A. Ruwali
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_4#DOI

24

Here, M = Gradient of line

X, Y = co-ordinate axes
C = Y-intercept

Algorithm Used
Functionalities of each [8] cell shown in the program below are given in the follow-
ing steps:

	1.	 Import tensorflow, numpy, and matplotlib.pyplot.
	2.	 Initialize total number of epochs, learning rate, and display step.

Fig. 1  Linear equation plot with matplotlib

Fig. 2  Steps and code snippet using matplotlib

K. B. Prakash et al.

25

	3.	 In the third cell, input training data and output (target) data are initialized.
	4.	 Placeholders for the variables are declared.
	5.	 Compute the equation h = wx + b, compute cost function using the formula.

	6.	 cost =
h y

m
�� �2

2
 and to minimize the cost, gradient descent optimizer is used.

	7.	 Initialize global variables at once.
	8.	 Run a session (Figs. 4 and 5).

Implementation of linear regression in tensorflow is pretty straightforward. All
that is needed is three lines of code. The first line multiplies matrix features to
matrix weights. The second line is cost or [8] loss function (least squared error).
Finally, one stage of gradient descent optimization is performed by the third line to
minimize cost function (Fig. 6).

Many Names of Linear Regression
It can get confusing when you start looking at linear regression [9] because linear
regression backs for more than 200 years and still every possible angle of it is being
studied. A new different name is assigned to every angle [10]. The regression is an
example of a linear model, which presumes a linear correlation among input and
output variables. The input variable is denoted as input(x) and output(Y). To mea-
sure Y in a more precise manner, a linear arrangement of input variables(x) can be
utilized. In general, if there is a single input(x) and single output variable then it is
termed as simple linear regression, if the method has a single input variable and has
various output variables then it is termed as multiple linear regression.

To improve the performance of linear regression, several techniques are devel-
oped and in that the most popular is ordinary square regression also known as least
square regression or as least squares linear regression [11].

100

50

0

–50ta
rg

et
 v

al
ue

–100

–150
–3 –2 –1 0

feature value
1 2 3

samples
regression

Fig. 3  Sample representation of linear model

Regression

26

Learning Model
In linear regression, coefficients used in the equations are estimated. Basically, it
takes four techniques to prepare and improve the model.

Simple Linear Regression
A simple linear regression has only one input variable. So, only one coefficient
needs to be estimated in simple linear regression [12]. This means that standard
deviations, correlation, and co-variance are calculated. All of them should be calcu-
lated to traverse and analyze the statistical properties of the data.

Ordinary Least Squares
The sum of squared errors can be minimized using the ordinary least squares. It
calculates the distance between each value and the regression line is calculated.
These distances are squared and all these are added together and finally the sum of
squared errors is calculated [13].

Fig. 4  Linear regression Part 1

K. B. Prakash et al.

27

Ordinary Least Squares (OLS) is used to minimize this expression. It uses linear
operations of algebra to minimize. Ample amount of memory must be available for
its matrix operation. The OLS is compatible when the errors are serially uncorre-
lated in the linear estimator.

Gradient Descent
To find the global optimal point of a function, gradient descent is used. Gradient
descent assigns a random value to the coefficients of the input variable and error is
calculated every time this step iterates [14].

To further minimize the errors, the learning rate can be used to determine the
parameters/coefficients and these coefficients are updated from time to time so that
the goal can be achieved.

Fig. 5  Linear regression Part 2

Regression

28

Keeping the learning rate too high or too low effects the time of execution and
the chance of relevant value of the parameters responsible for minimum error alters.
Choosing an appropriate learning rate improves the steps to take on each iteration.

Regularization
Regularization simply adds more information to solve a problem like over-fitting.
This step helps to minimize the complexity of the model and also minimizes the
miscalculations that take place while training the model using the training data [15].

Following are the examples of regularization in linear regression:

•	 LASSO regression: It stands for least absolute shrinkage selector operator. It
performs L1 regularization [16]. LASSO penalizes the sum of absolute values of
the coefficient, which is also called L1 penalty.

•	 Ridge regression: Here, OLS loss function is modified and the sum of the squared
coefficients is minimized [17]. It reduces the model complexity as well as pre-
vents over-fitting.

Fig. 6  Linear regression Part 3

K. B. Prakash et al.

29

3  �Logistic Regression

Like all regression analyses, the logistic regression is used to compute or predict the
probability of the occurrence of a binary or categorical event. The logistic regres-
sion algorithm is used for classification. It is used when the target outcome or
dependent variable is binary or categorical in nature and is determined by a collec-
tion of independent variables. The independent variables could be continuous, ordi-
nal (some given order on a scale), or nominal (named groups). The logistic function
helps to threshold the output to either of the two possible binary outcomes in the
case of binary logistic regression and to the predetermined number of categories in
case of multinomial or ordinal logistic regression.

One example is to predict the possibility of an email being spam (1) or not spam
(0). Another example is detecting whether a glioblastoma or a specific type of brain
tumor is malignant (1) or benign (0).

Given a scenario, where a need arises to classify an email into spam or non-
spam, we can use a linear regression approach to solve the problem. A threshold
needs to be established, based on which classification may be performed. If the
threshold is chosen as 0.5 with outcomes above the threshold representing malig-
nant tumor and the ground truth of the data point is malignant, with the predicted
value of 0.4, the data point will be misclassified as benign, which can lead to serious
consequences.

It can be inferred from the above example that linear regression is unsuitable for
the above-stated classification problem. Linear regression is unbounded and this
summons logistic regression into picture.

Logistic Regression Types
Binary logistic regression: binary logistic regression has only two 2 possible
outcomes.

Example: Spam or not spam.
Multinomial logistic regression: Multinomial logistic regression has three or

more categorical outcomes.

Example: Predicting which food is preferred more.
Ordinal logistic regression: It can be called as a generalization of binomial logis-

tic regression. Ordinal regression is used if the outcome is ordinal and the propor-
tional odds assumption is met.

For example: A study explores factors that affect the decision of applying to gradu-
ate school given in Fig. 7. College juniors are asked to apply for graduate school
if they are doubtful, very probable, or very likely to.

Regression

30

4  �Linear Regression by Importing Datasets

Figure 8 elucidates the linear regression steps for imported data.

	1.	 Import pandas, numpy, tensorflow, random, sklearn.metrics, os.path, sklearn.
metrics.

	2.	 Load the datsets using read_csvfrompandas.
	3.	 Initialize TotalFeatures, FeaturesInUse, TotalSampleSize, MiniTestSampleSize.
	4.	 Preprocessing of the data.
	5.	 Initializing the variables.
	6.	 Finding the entropy and defining the optimizer.
	7.	 Training the model.
	8.	 Testing the model.

The dataset contains a total of 376 features where 150 are used.

5  �Logistic Regression by Importing Dataset

Figure 10 elucidates the code for logistic regression using seaborn and tensorflow
packages.

	1.	 Import numpy, pandas, matplotlib.pyplot, tensorflow.
	2.	 Read the input data (Iris Dataset).
	3.	 Label the data.

Fig. 7  Logistic regression levels

K. B. Prakash et al.

31

Fig. 8  Linear regression for imported data

Regression

32

	4.	 Visualize the data.
	5.	 Split the training and testing data.
	6.	 Normalize processing.
	7.	 Build the model framework.
	8.	 Train the model.
	9.	 Visualize again.

Predicted Output Dataset
The dataset used is Iris Dataset, and it contains 4 features, namely, SepalLength,
SepalWidth, PetalLength, and PetalWidth. Species is the target attribute (Figs. 9
and 10).

Figure 11 represents the train and test accuracy of the dataset.

Fig. 8  (continued)

K. B. Prakash et al.

33

Fig. 9  Imported dataset
for linear regression

Regression

34

Fig. 10  Cross entropy loss plot

K. B. Prakash et al.

35

Fig. 10  (continued)

Regression

36

References

	 1.	C.C. Paige, M. Saunders, LSQR: an algorithm for sparse linear equations and sparse leas
squares, ACM Transactions on Mathematical Software 8 (1982) 43–71.

	 2.	M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, in: National Bureau of
Standards, Series, vol. #55, Dover Publications, USA, 1964.

	 3.	R.R. Hocking, Methods and Applications of Linear Models, in: Wiley Series in Probability and
Statistics, Wiley-Interscience, New York, 1996.

	 4.	 J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistic and
Econometrics, revised ed., in: Wiley Series in Probability and Statistics, John Wiley & Sons,
Chichester, UK, 1999.

	 5.	G.A.F. Seber, The Linear Hypothesis: A General Theory, in: Griffin’s Statistical Monographs
and Courses, Charles Griffin and Company Limited, London, 1966.

	 6.	S.F. Ashby, M.J. Holst, T.A. Manteuffel, P.E. Saylor, The role of the inner product in stopping
criteria for conjugate gradient iterations, BIT 41 (1) (2001) 26–52.

	 7.	O. Axelsson, I. Kaporin, Error norm estimation and stopping criteria in preconditioned con-
jugate gradient iterations, Journal of Numerical Linear Algebra with Applications 8 (2001)
265–286

	 8.	Agrawal A, Roy K (2019) Mimicking leaky-integrate-fire spiking neuron using automotion of
domain walls for energy-efficient brain-inspired computing. IEEE Trans Magn 55(1):1–7

Fig. 11  Train and test accuracy

Fig. 10  (continued)

K. B. Prakash et al.

37

	 9.	Akinaga H, Shima H (2010) Resistive random access memory (reram) based on metal oxides.
Proc IEEE 98(12):2237–2251

	10.	Amit DJ, Amit DJ (1992) Modeling brain function: the world of attractor neural networks
Cambridge University Press, Cambridge

	11.	Bourzac K (2017) Has intel created a universal memory technology?[news]. IEEE Spectr
54(5):9–10

	12.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

	13.	Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech
Recognition with Tensorflow and Keras. [Authors: Navin Kumar Manaswi]

	14.	 Intelligent mobile projects with TensorFlow : build 10+ artificial intelligence apps using
TensorFlow Mobile and Lite for iOS, Android, and Raspberry Pi. [Authors: Tang, Jeff]

	15.	 Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and
deep learning with TensorFlow and Keras. [Authors: SantanuPattanayak]

	16.	Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural
Networks written in Python, Theano, and TensorFlow. [Authors: LazyProgrammer]

	17.	Deep learning quick reference : useful hacks for training and optimizing deep neural networks
with TensorFlow and Keras. [Authors: Bernico, Mike]

Regression

39© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_5

Neural Network

Pradeep Kumar Vadla, Adarsha Ruwali, Kolla Bhanu Prakash,
M. V. Prasanna Lakshmi, and G. R. Kanagachidambaresan

Here, just assume the word “neuron” simply means a thing that holds a number
(specifically a number between 0 and 1) [3].

Following is the program for the neural network to recognize handwritten digits.
Modified National Institute of Standards and Technology (MNIST) is the database/
dataset consisting of about thousands of sample data in order to train the neural
network model [4]. This dataset is made [5] up of images of handwritten digits,
28 × 28 pixels in size as given in Fig. 1. Some examples included in the datasets
are below.

1  �Inside the Code

One-hot-encoding: One-hot-encoding is used to represent the labels of the images.
It uses binary value vectors to represent numerical or categorical values. Our label
are the digits (0–9). One of the values is set to 1 to represent the digit at that index
of the vector [6] and others are set to 0. For example, the digit 2 is represented by
the vector [0, 0, 1, 0, 0, 0, 0, 0, 0, 0].

For representing the actual images, the 28 × 28 pixels are turned (flattened) into
a 1D vector that is 784 pixels in [7] size. It is [8] done by X = tf.
placeholder(“float”,[None,n_input]) [the one in the RED].

This Neural Network (NN) model is of 5 layers.

•	 Input layer: 784 neurons

P. K. Vadla · A. Ruwali · K. B. Prakash · M. V. P. Lakshmi
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan (*)
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_5#DOI

40

•	 Hidden layer 1: 512 neurons
•	 Hidden layer 2: 256 neurons
•	 Hidden layer 3: 128 neurons
•	 n_output: output layer (0–9digits)

Figure 2 elucidates the visualization of the neural network architecture:

•	 Hyper parameters like learning rate, epoch (n_iterations), batch size (to train the
large set of data in the model in small chunks), and [9] dropout value (a regular-
ization technique in case if the model overfits the data).

•	 Dropout represents a threshold at which some units are eliminated at random. It
will be chosen in our final hidden [10] layer giving each unit a 50% possibility of
being eliminated at each training step.

Fig. 1  Handwritten digits 28 × 28 pixels

Fig. 2  Visualization of the neural network architecture

P. K. Vadla et al.

41

Figure 3 explains the code that is trained in neural network and predicts the hand-
written digit image “2.”

•	 AdamOptimizer is an optimization algorithm that is used instead of classical
stochastic gradient descent procedure update network weights iteratively in
training data. It is simply used to minimize cost/loss function (cross-entropy in
this case).
The preceding code successfully trains the neural network to classify the MNIST

dataset with around 91% accuracy and is tested on an image of digit “2.” However,
this same problem can achieve about 99% accuracy using a more complex network
architecture involving convolutional layers.

Fig. 3  Neural network with handwritten text images

Neural Network

42

References

	 1.	Python Deep Learning: Exploring deep learning techniques, neural network architectures
and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	 2.	Hands-On Transfer Learning with Python Implement Advanced Deep Learning and Neural
Network Models Using TensorFlow and Keras [Authors: DipanjanSarkar, Raghav Bali,
TamoghnaGhosh]

	 3.	Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff&Itay Lieder]
	 4.	Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors:

Hisham El-Amir, Mahmoud Hamdy]
	 5.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms

[Authors: Sam Abrahams, DanijarHafner, Erik Erwitt, Ariel Scarpinelli]
	 6.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,

and TensorFlow [Authors: Sebastian Raschka, VahidMirjalili]

Fig. 3  (continued)

P. K. Vadla et al.

43

	 7.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed
Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]

	 8.	Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. [Author: AurélienGéron]

	 9.	Learn TensorFlow 2.0: Implement Machine Learning And Deep Learning Models With thon.
[Authors: Pramod Singh, Avinash Manure]

	10.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

Neural Network

45© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_6

Convolutional Neural Network

Y. V. R. Nagapawan, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan

Although convolutional neural networks (CNNs) have been usually used in image
analysis, they can also be used in data analysis and classification problems.

The convolution layer is the main building block of a convolutional neural net-
work. CNNs [3] are neural networks with architectural constraints to reduce com-
putational complexity.

The hidden layers are named convolutional layers. The basis of the CNN are the
convolutional layers. Just like any other layers, convolutional layers, the input is
received and transformed and output that transformed input to the next layer [4].
With the convolutional layers, this transformation is called convolutional operation.
Each convolutional layer has “filters” (simply a matrix with some random values).

1  �How Does It Work?

•	 Basically using CNN, fewer parameters significantly improve the time it takes to
learn. It reads the image “chunk-by-chunk” as shown in Fig. 1.

•	 Influence of nearby pixels is analyzed by a “filter” (also known as “window”)
that slides over each n × n pixels of input until it slides over every n × n pixels of
the image [5]. This sliding is known as “convolving.” The amount the filter shifts
is named “stride.”

•	 This reduces the number of weights that the neural network must learn compared
to a multi-layer perceptron (MLP). Filters are assigned randomly that continuously

Y. V. R. Nagapawan · K. B. Prakash (*)
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_6#DOI

46

update themselves as the network is trained. Figure 2 illustrates the action of
edge detection and sharpen filter concepts [6].

•	 Then, a feature map is generated for each filter that is taken through activation
function (ReLu activation function usually) to decide whether a certain feature is
present at a given location in the image [7].

•	 ReLu activation function is used in order to increase the non-linearity in our
image. The transition between pixels, the borders, the colors, etc., are the non-
linear features.

•	 Pooling layers are used in order to select the largest values on the feature maps
and use these as inputs to other layers. Usually, max pooling is used to find the
outliers (an observation point that is different/distant from other observation,
Fig. 3).

•	 In Fig. 3, a cheetah is presented in a different way (normal, rotated, extended).
The purpose of max pooling (Fig. 4) is to enable [8] the convolutional neural
network to detect the cheetah when presented with the image.

•	 Now, the pooled feature map is flattened as given in Fig. 5. into a column to
insert into an artificial neural network later on [9].

3

Source pixel

(–1 × 3) + (0 × 0) + (1 × 1) +
(–2 × 2) + (0 × 6) + (2 × 2) +

(–1 × 2) + (0 × 4) + (1 × 1) = –3

0 1
5

0
3 0

3

2
6 2

4
3

0 3
0

2
4 1

0
6

1 4
1

3
0 1

5
0

3 0
2

2
6 2

4
3

2 3
0

2
4 1

0
6

2 1
1

2
6 2

4
4

0 3
–1 0

1

–2 0
2

–1 0
1

6

2
4 1

0
6

1 6

Convolution filter

Destination pixel

–3

1

Fig. 1  Stride filter in CNN

Y. V. R. Nagapawan et al.

47

Fig. 2  Edge detection and sharpen filters

Fig. 3  Image of cheetah in (normal, rotated, and extended)

Fig. 4  Example of 2 x 2 filter with a stride of 2

Convolutional Neural Network

48

•	 Full Connection: Now the entire flattened pooled feature map is taken as input
to feed into a fully connected neural network [10]. It integrates the features into
a wider variety of attributes that [11] improve the ability of convolution network
for classifying images.

Here is the example for the digit recognition using convolutional neural network
using tensorflow (Fig. 6).

The max training accuracy is about 98.4% as shown in Fig. 7.

Pooled Feature Map

Flattening
1 1 0

4 2 1

0 2 1

1

1

0

4

2

1

0

2

1

Fig. 5  Flattening the pooled feature map

Y. V. R. Nagapawan et al.

49

Fig. 6  Training and accuracy measurement code snippet in Python

Convolutional Neural Network

50

Fig. 6  (continued)

Fig. 7  Training accuracy
value

Y. V. R. Nagapawan et al.

51

References

	 1.	Agrawal A, Roy K (2019) Mimicking leaky-integrate-fire spiking neuron using automotion of
domain walls for energy-efficient brain-inspired computing. IEEE Trans Magn 55(1):1–7

	 2.	Akinaga H, Shima H (2010) Resistive random access memory (reram) based on metal oxides.
Proc IEEE 98(12):2237–2251

	 3.	Amit DJ, Amit DJ (1992) Modeling brain function: the world of attractor neural networks
Cambridge University Press, Cambridge

	 4.	Bourzac K (2017) Has intel created a universal memory technology?[news]. IEEE Spectr
54(5):9–10

	 5.	Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors:
Hisham El-Amir, Mahmoud Hamdy]

	 6.	Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press,
Cambridge

	 7.	 Jeong H, Shi L (2018) Memristor devices for neural networks. J Phys D: Appl Phys
52(2):023003

	 8.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed
Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]

	 9.	Python Deep Learning: Exploring deep learning techniques, neural network architectures and
GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater, Gianmario
Spacagna, Peter Roelants, Valentino Zocca]

	10.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,
and TensorFlow [Authors: Sebastian Raschka, Vahid Mirjalili]

	11.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms
[Authors: Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli]

Convolutional Neural Network

53© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_7

Recurrent Neural Network

G. R. Kanagachidambaresan, Adarsha Ruwali, Debrup Banerjee,
and Kolla Bhanu Prakash

Whenever there is sequence of data like text, speech, video those are connected each
after the other [3]. Software like Siri of Apple and Google translate use recurrent
neural networks (RNNs). Figure 1 gives the difference in architecture [4] of recur-
rent/feedback based on feed-forward neural network (NN) architecture. (Sequential
data: ordered data that are equally spaced in time.)

1  �How They Work?

•	 In RNN, information cycles through a loop. It takes both the current input and
also what it has learned from the inputs [5] it received previously unlike the feed-
forward NN.

•	 Feed-forward NN assigns a weight matrix to its inputs and then produces the
output. RNN applies weights to the [6] current as well as the earlier input and
adjusts their weight for both gradient descent and backpropagation through time.

•	 Feed-forward NN maps one input to one output whereas recurrent NN can map
many to one (e.g., classifying voice), one to many, and many to many (e.g.,
translation).

G. R. Kanagachidambaresan ()
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

A. Ruwali · D. Banerjee · K. B. Prakash
KL Deemed to be University, Vijayawada, AP, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_7#DOI

54

1.1  �Backpropagation Through Time (BPTT)

•	 It is simply doing a backpropagation on an unrolled recurrent NN. Unrolling is
visualization of RNN to help [7] us understand what is happening within the
network.

•	 While implementing RNN in programming framework, backpropagation is auto-
matically taken care of.

Figure 2 depicts the unrolled RNN.

•	 As the error of a present timestep [8] depends on the previous timestep, unrolling
of RNN is important for its clarity.

•	 In BPTT, error is backpropagated from the last to first time step calculating error
for each timestep allowing updating the weights.

•	 However, there are two issues of RNN:

Fig. 1  Recurrent neural network and feed-forwarded neural network

Fig. 2  Unrolled recurrent neural network

G. R. Kanagachidambaresan et al.

55

•	 Exploding gradients: When the algorithm assigns considerable importance
to the weights, without [9] much reason. This problem can be solved by trun-
cating and squashing the gradients.

•	 Vanishing gradients: When the model stops learning and the values of a
gradient is [10] very small. This problem can be solved using long short-term
memory (LSTM).

Here, Figs. 3 and 4 program where recurrent NN is implemented using ten-
sor flow.

Fig. 3  Tensorflow implementation of RNN part 1

Recurrent Neural Network

56

During Training
Figure 5 shows the accuracy in training and testing phase of RNN using Python.

1.2  �In the Code

•	 Tensorflow, mnist, and the rnn [11] model from tensorflow are imported. Chunk
size, number of chunks, and rnn size are defined.

•	 Recurrent_neural_network(x) is the function that defines the RNN where
weight size is rnn_size ×n_classes and biases is [12] just the number of classes
(n_classes).

•	 Input is passed through the LSTM cell that will recur for the rnn_size.
•	 Every cell has outputs and states at each recurrence [13]. It is done by the

following:

rnn.rnn(lstm_cell, x, dtype = tf.float32)

Fig. 4  Tensorflow implementation of RNN during training Part 2

G. R. Kanagachidambaresan et al.

57

•	 In train_neural_network(x) function, the default learning rate for
AdamOptimizer will be 0.01.

•	 Accuracy of the trained data is measured up to 98%.

2  �Long Short-Term Memory

•	 LSTM networks are the extension [14] of recurrent NN.
•	 Allows recurrent NNs to remember their input over a long period of time because

it includes memory information that is [15] close to a computer’s memory since
the LSTM can read, write, and erase information from its memory.

•	 LSTM consists of three gates: input, forget, and output gate. Well, the work of
these are already defined by [16] their names (let new input in, delete informa-
tion and output at the current timestep). Figure 6 depicts an LSTM cell.

LSTM ranges from 0 to 1. LSTM maintains the gradient svx sufficiently steep
and therefore the training is short, and the accuracy is high.

2.1  �LSTM In Keras

The following process is the same for vanilla RNN, LSTM, and gated recurrent unit
(GRU) when implemented in the keras model.

Fig. 5  Tensorflow implementation RNN accuracy level

Recurrent Neural Network

58

We want our model to predict the next digit. For instance, if the sequential input
is [5, 6, 7, 8, 9], the model should output 10 as given in Fig. 7.

Import the keras-related libraries from keras.models and keras.layers.

•	 Split training and testing data where 20% of the total size will be used as test data
(Fig. 8).

•	 Add 2 layers of LSTM (Fig. 9):

Fig. 6  LSTM gates

Fig. 7  Code snippet of LSTM

G. R. Kanagachidambaresan et al.

59

•	 return_sequences = True would return output after every node
•	 return_sequences = False would return output after last node

•	 Compile the model with loss function “mean square error(mse)” and [17] opti-
mizer as “adam.” model.summary() helps to see the output shape and parameters
(Fig. 10).

•	 Fit the model to train with the following parameters as given in Fig. 11.
•	 Predict the model using model.predict() with the test data (x_test) (Fig. 12).
•	 The plots of predicted digit and the target digit in the test data is shown below

(Fig. 13). Some have high difference with the [18] target digit while some are
equal.

Similar to what was given above, there are different applications of RNN invari-
ants (RNN, LSTM, GRU) like music generation, stock prediction, and other sequen-
tial data with variable input shape and multiple features.

Fig. 8  Split training data set

Fig. 9  Code explanation on LSTM

Fig. 10  Code explanation Part 2 LSTM

Recurrent Neural Network

60

Fig. 12  Code explanation on mode.predict

Fig. 13  Predicted and tested target digit

Fig. 11  Code explanation Part 3 LSTM

G. R. Kanagachidambaresan et al.

61

References

	 1.	Boca Raton Mhaskar H, Liao Q, Poggio T (2016) Learning functions: when is deep better than
shallow.arXiv:1603.00988

	 2.	Deep Learning for Computer Vision: Expert techniques to train advanced neural networks
using TensorFlow and Keras. [Authors: RajalingappaaShanmugamani]

	 3.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo
Zaccone, Md. RezaulKarim, Ahmed Menshawy]

	 4.	Hands-on unsupervised learning with Python : implement machine learning and deep learning
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	 5.	Li Y, Wang Z, Midya R, Xia Q, Yang JJ (2018) Review of memristor devices in neuromorphic
computing: materials sciences and device challenges. J Phys D: ApplPhys 51(50):503002

	 6.	Liao Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural net-
works and visual cortex. arXiv:1604.03640

	 7.	Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22
	 8.	Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn

89(3):1569–1578
	 9.	Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits.

IEEE Trans Neural Netw Learn Syst 28(8):1734–1746
	10.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using

TensorFlow 1.x and Keras. [Author: Armando Fandango]
	11.	McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity.

Bull Math Biophys 5(4):115–133
	12.	Medsker L, Jain LC (1999) Recurrent neural networks: design and applications. CRC Press.
	13.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed

Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]
	14.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-

Vision Projects Using Python, Keras&TensorFlow [Authors: AnirudhKoul, Siddha Ganju,
MeherKasam]

	15.	Python Deep Learning: Exploring deep learning techniques, neural network architectures
and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	16.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,
and TensorFlow [Authors: Sebastian Raschka, VahidMirjalili]

	17.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, AmitaKapoor]

	18.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms
[Authors: Sam Abrahams, DanijarHafner, Erik Erwitt, Ariel Scarpinelli]

Recurrent Neural Network

63© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_8

Application of Machine Learning and Deep
Learning

Enireddy Vamsidhar, G. R. Kanagachidambaresan, and Kolla Bhanu Prakash

1  �Automobile Industry

Automobile is no exception for the digital transformation. The growing trend in the
business and diversification of customer needs has led to innovations in the automo-
bile sector. Machine learning (ML) and deep learning (DL)–based innovations are
transforming the automobile industry [1–3]. ML is providing the prediction of auto-
mobile needs and usage, quality control, recommendation services, and optimized
supply chain management whereas the DL is providing services like automatic lane
detection, autonomous driving, and predictive maintenance of the vehicle and
nearby service stations (Fig. 1).

2  �Climate Change

As the earth keeps warming, the effects of climate change are detrimentally increas-
ing. There were 772 storm and catastrophe incidents in 2016, triple the number that
existed in 1980. It threatens the operation of civilization, which undoubtedly needs
significant preparation in order to deal with possible changing weather conditions.
Weather experts have adopted ML and DL approaches to accelerate the knowledge
of different elements of the earth system and associated characteristics. These
researches may help for the sustenance of human race. The applications of ML and
DL are shown in Fig. 2 [4–6].

E. Vamsidhar · G. R. Kanagachidambaresan
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

K. B. Prakash (*)
KL Deemed to be University, Vijayawada, AP, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_8#DOI

64

3  �Disaster Management

An estimated 1.35 million lives are lost due to disasters over the past 20 years and
with post-disaster recovery, approximately 300 U.S. dollars are spent each year.
Many catastrophes have an effect on environment, buildings, infrastructure, atmo-
sphere, and local residents [7, 8]. Governments and organizations fail to organize
successful strategies for disaster recovery activities. ML and DL are now able to

Prediction

Quality Control

Recommendation

Supply Chain
optimization

Automatic Lane
Detection

Autonomous
Driving

DL

ML

Automobile
Industry

Predictive
Maintenance

Fig. 1  Applications of ML and DL in automobile industry

Land Cover
Classification

Weather
Forecasting

Future Climate
Predictions

Hydrology

Extreme Weather
Event Analysis

Drought
Prediction

DL

ML

Climate Change

Fig. 2  Applications of ML and DL in climate change

E. Vamsidhar et al.

65

show their ability in new fields such as disaster management (DM) with their vali-
dated algorithms in detection, estimation, clustering, outer analysis, etc., with real-
time support data from satellites, drones, weather info, etc., as well as history of
disasters. The ML and DL applications of DM are shown in Fig. 3 [9, 10]. It is clear
that the ML and DL techniques will rescue people from awful disasters and also
propose adequate recovery measures to prevent panic [11].

4  �Education

ML in education is a method of customized learning that could be used to provide
an individualized educational experience for every student. The students are moti-
vated by their own learning, they must follow the rate they like, and make their own
decisions on what to study according to their curricula. The student assessment,
performance evaluation, grading, and career prediction are not undauntable tasks
with ML and DL algorithms, and feedback on curriculum, teacher, etc., are possible
with less effort provided the data is gathered as per the needs [12–15]. It will take a
while for the old school educators to use ML. But in no time, everyone will realize
that ML will revolutionize the education field and the entire nation [16]. DL has
exciting applications in the world of education [17]. Various applications of ML and
DL are shown in Fig. 4.

Weather Modelling

Earthquake Fault
Line Ruptures

Flood Management

Contagious Disease
Management

Risk Prediction

Emergency
Reponses

DL

ML

Disaster
Management

Disaster Relief
Measures

Proactive
Management

Fig. 3  Applications of ML and DL in disaster management

Application of Machine Learning and Deep Learning

66

5  �Energy

Carbon sector is the result of a number of sectors. Which comprises coal fuel, elec-
tric power, nuclear power, and clean energy industries, along with firewood-based
conventional energy industries. Non-renewable fossil and nuclear power are key
polluting sources and therefore accountable for global warming. Carbon resource
development and use is very important to the global economy. Every economic
operation requires energy capital, whether manufacturing products, supplying
transportation, operating computers, and other machinery. With ML, the demand
prediction, dynamic pricing of the energy as per the demand, recommendation ser-
vices to the customers, optimal control of generation and distribution, and also
extended to disaggregation of energy, that is, separation of profiles of individual
receivers from the energy profile signal to better consumption behavior, improve
energy efficiency [18, 19]. DL methods are efficiently used in power forecasting
[20], preventive diagnostics [21], risk detection [22, 23], etc. Various application of
ML and DL in the energy sector are shown in Fig. 5.

Teacher Support

Student Grading

Predicting Student
Performance

Student Retention

Feedback
Analysis

Personalized
Learning

DL

ML

Education

Identification

Bio-metric
Authentication

Prediction with
Complex Features

Fig. 4  Applications of ML and DL in education

E. Vamsidhar et al.

67

6  �Entertainment and Media

The prospects for entertainment and media (E&M) to successfully utilize ML are
more than amazing. ML and DL are used widely in E&M industry. As rich content
is available in internet, the recommender systems gained the ability to recommend
the content relevant to the readers, listeners viewers and also the content personal-
ization, target advertisement by companies to the potential customers, personal vir-
tual assistants are intelligent enough to understand the user instructions through
voice and optimized video search archives has changed the entertainment and media
industry [24–26] (Fig. 6).

The following are a few top research and applications done by different compa-
nies for E&M industries in the world.

6.1  �AlphaGo

Chess and Go are very popular board games, which resemble in some extent: both
are played in turns by two players, and no random factor is involved.

Demand
Prediction

Dynamic Pricing

Recommendations

Disaggregation

Fault Detection

Power
Forecasting

DL

ML

Energy

Risk Detection

Preventive
Diagnostics

Fig. 5  Applications of ML and DL in energy

Application of Machine Learning and Deep Learning

68

AlphaGo is the artificial intelligence–based (precisely deep reinforcement learn-
ing) game playing developed by Google’s DeepMind that competes the human
grandmasters in the game of GO.

Two different components are used by AlphaGo: convolutional networks that
guide the tree search procedure and a tree search procedure. Conceptually, the con-
volutional networks are somewhat similar to Deep Blue’s evaluation function,
except they are not designed but learned. The tree search procedure can be consid-
ered as a brute-force approach, while the convolutional networks give the gameplay
a level of intuition. Then DeepMind (the London lab behind AlphaGo) released
AlphaZero, which defeated the previous 100–0 edition. This edition never focused
on a compilation of individual expert gestures and learned solely from the self-play
of adversaries.

In total, three Convolutional Neural Network (CNNs) are trained, of two differ-
ent kinds: two policy networks and one value network in AlphaGo.

6.2  �Voice Generation

Google released WaveNet and Baidu released Deep Speech, both of which are DL
networks that automatically generate speech.

Personalization

Recommender
Systems

Target
Advertising

Speech
Technologies

Personal
Assistants

Video Search
Optimization

DL

ML

Entertainment
and Media

Scene
Recognition

Content
Classification

Prediction

Fig. 6  Applications of ML and DL in entertainment and media

E. Vamsidhar et al.

69

Until now, text2voice systems have not been fully autonomous in the way they
have created new voices; they have been trained to do so manually. The systems that
are created nowadays are learning to mimic human voices on their own and improve
with time. When you let an audience try to differentiate them from a real human
speaking, it is much simpler to do so. While we are not yet there in terms of auto-
mated voice generation, DL brings us a step closer to giving machines the ability to
speak as human beings do.

6.3  �Music Generation

A DL network can also be trained to produce music compositions using the same
techniques used for voice recognition. Below is an example from Francesco
Marchesani who taught the machine how to compose music like the classical com-
poser Chopin. After the computer learns the patterns and statistics unique to
Chopin’s music, it is creates a whole new piece! For the AI generated music, see
https://youtu.be/j60J1cGINX4

6.4  �Restoring Sounds in Video

A DL network has been trained in a work by Owens et al. on videos where people
hit and scratch objects with a drumstick. The scientists muted the video after several
learnings and asked the machine to replicate the sound it wants to hear and the
results are remarkable: https://youtu.be/0FW99AQmMc8

Similarly, it can also read the lips. LipNet can lip read, accomplished by Oxford
and Google’s DeepMind scientists. It was 93% accurate in reading people’s lips
where an average lip reader has the accuracy of 52%. Video: https://youtu.be/
fa5QGremQf8

6.5  �Automatically Writing Wikipedia

Long short-term memory (LSTM) is the DL architecture used here. It is very accu-
rate on textual input. In a blog post called “The Unreasonable Effectiveness of
Recurrent Neural Networks” by Andrej Karpathy, a DL model reads math papers,
Shakespeare, computer code, and Wikipedia. At the end, the computer wrote just
like the Wikipedia articles and also wrote like Shakespeare. Also, the machine could
write even computer code and fake math papers. This is a code-writing software for
computer programs. The text written by the computer does not make sense all the
time, but it is reasonable to expect it to get there.

Figure 7 displays text like Shakespeare’s but it was written by a deep network
that was fed Shakespeare’s writings.

Application of Machine Learning and Deep Learning

https://youtu.be/j60J1cGINX4
https://youtu.be/0FW99AQmMc8
https://youtu.be/fa5QGremQf8
https://youtu.be/fa5QGremQf8

70

6.6  �Deep-Fake Detection

With the ascendancy of neural network-based learning algorithms, we are now able
to take on and defeat problems that sounded completely impossible just a few years
ago. One example is creating deep fakes, or in other words we can record a short
video and transfer our gestures to target a subject, and this particular technique is so
advanced that we do not even need a video of our target, just one still image. A paper
by Face Forensics contains a large dataset of original and manipulated video pairs.
As this offered a ton of training data for real and forged videos, it became possible
to use these to train a deep-fake detector. There is not just on detector algorithm,
writing of neural networks have even more variations. Many more AI practitioners
created datasets just for deep fake detection [27]. Many politicians have used deep
fake for awareness and election campaigns. In 2018, Buzzfeed created a deep fake

Fig. 7  Deep network fed Shakespeare’s words

E. Vamsidhar et al.

71

of Barak Obama with someone else’s voice for a public service announcement to
increase awareness of deep fakes. In 2020, during the Delhi legislative assembly
election campaign, the Bharatiya Janata Party used this technique to distribute a
version of an English-language campaign advertisement by their leader.

6.7  �Multi-Agent Systems

OpenAI builds a hide-and-seek game for their agents to play with some rules. The
agents can move by setting a force on themselves in the x and y directions as well
as rotate along the z-axis. The agents can see objects in their line of sight and within
a frontal cone. The agents can sense distance to objects, walls, and other agents
around them using a LIDAR-like sensor. The main principle behind multi-agents
are that they should coordinate, cooperate, and negotiate with each other, much as
people do. The goal of this project is to pit two AI teams against each other. The
agents can grab and move objects in the environment. The agents can lock objects
in place. Only the team that locked an object can unlock it. In the first million
rounds, every agents moves around the environment aimlessly without proper strat-
egy and semi-random movements, the seekers are favored, and hence win the major-
ity of the games. Then over time, the hiders learned to lock out the seekers by
blocking the doors off with the boxes and started winning consistently. The environ-
ment was deliberately designed in the way that hiders can only succeed through
collaboration. But after ten million rounds, the seekers learned to move blocks to
climb the boxes, and thus seekers started winning [28].

6.8  �Image Synthesis

Since many years, the neural network–based technique is mainly used for image
classification which means that they were able to recognize objects like animals,
traffic, birds, etc., but with the incredible pace of ML, researchers can now have a
selection of techniques for not only classification but also synthesizing them. One
way of being able to control the output is to use a technique that is capable of image
translation, for example, apples to oranges or horses to zebras. It was called
CycleGAN because it introduced a cycle consistency loss function which meant that
if we convert a summer image to a winter image and then back to a summer image
they both should be the same or at least very similar. This can be implemented on
images to various applications like upscaling images and to make a beautiful time-
lapse video with very smooth translations. Not just changing climate, this imple-
mentation can also be used to generate landscapes or terrain images that are used in
graphic renders and games [29].

Application of Machine Learning and Deep Learning

72

6.9  �Graphic Generator

NVIDIA researchers, led by Ting-Chun Wang, have created a new DL method that
creates photorealistic images from high-level marks, thus developing a simulated
world that enables the consumer to interactively change a scene [30].

7  �Finance

The value of ML in finance is becoming increasingly apparent, but the real long-
term value will probably only become apparent in the coming years. It is used
widely in algorithmic trading, efficient portfolio management, content creation,
under writing of loan or insurance, financial risk prediction, sentiment analysis in
the stock market, and detecting financial frauds [31–33]. DL improves the accuracy
of forecasting [34] in trading and document analysis in the financial institution [31]
(Fig. 8).

Stock Trading

Fraud Detection

Risk Prediction

Loan / Insurance
Underwriting

Sentiment Analysis

Money-Laundering
Prevention

DL

ML

Finance

Content Creation

Document Analysis

Forecasting

Fig. 8  Applications of ML and DL in energy

E. Vamsidhar et al.

73

References

	 1.	hmian@anaconda.com, “4 Machine Learning Use Cases in the Automotive Sector”, https://
www.anaconda.com/blog/4-machine-learning-use-cases-automotive, (Last Accessed on
29.04.2020)

	 2.	A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov and B. Vorster, “Deep learning in
the automotive industry: Applications and tools,” 2016 IEEE International Conference on Big
Data (Big Data), Washington, DC, 2016, pp. 3759-3768.

	 3.	Akshay Srinivasa, “4 ways Artificial Intelligence (and Deep Learning) is transforming auto-
motive industry,” https://www.pathpartnertech.com/4-ways-artificial-intelligence-and-deep-
learning-is-transforming-automotive-industry/ (Last Accessed on 29.04.2020).

	 4.	Chris Huntingford, Elizabeth S Jeffers, Michael B Bonsall, Hannah M Christensen, Thomas
Lees and Hui Yang, “Machine learning and artificial intelligence to aid climate change research
and preparedness”, Environmental Research Letters, 14(12), Nov 2019.

	 5.	 Irina Demianchuk, Oxagile, “How Machine Learning and AI Can Help in the Fight Against
Climate Change”, https://www.technologynetworks.com/informatics/articles/how-machine-
learning-and-ai-can-help-in-the-fight-against-climate-change-327269 (Last Accessed on
29.04.2020).

	 6.	RENEE CHO, “Artificial Intelligence—A Game Changer for Climate Change and the
Environment”, https://blogs.ei.columbia.edu/2018/06/05/artificial-intelligence-climate-envi-
ronment/, (Last Accessed on 29.04.2020).

	 7.	Alidoost, Fatemeh & Arefi, Hossein. (2018). Application of Deep Learning for Emergency
Response and Disaster Management.

	 8.	World Bank, “Machine Learning for Disaster Risk Management”, https://reliefweb.int/report/
world/machine-learning-disaster-risk-management-guidance-note-how-machine-learning-
can-be, (Last Accessed on 29.04.2020).

	 9.	Niki LaGrone, “Ethical Machine Learning for Disaster Relief: Rage for Machine Learning”,
https://www.azavea.com/blog/2019/12/10/ethical-machine-learning-for-disaster-relief-rage-
for-machine-learning/, (Last Accessed on 29.04.2020).

	10.	Jeff Catlin, “Artificial Intelligence for Disaster Relief: A Primer”, https://www.lexalytics.com/
lexablog/artificial-intelligence-disaster-relief, (Last Accessed on 29.04.2020).

	11.	NAVEEN JOSHI. “Machine Learning can save us from disasters!”, https://www.allerin.com/
blog/machine-learning-can-save-us-from-disasters, (Last Accessed on 29.04.2020).

	12.	Asthana, Pallavi & Hazela, Bramah. (2020). Applications of Machine Learning in Improving
Learning Environment. https://doi.org/10.1007/978-981-13-8759-3_16.

	13.	Danijel Kučak, Vedran Juričić, Goran Đambić, “Machine Learning In Education - A Survey
of Current Research Trends”, 29th DAAAM International Symposium on Intelligent
Manufacturing and Automation, pp. 406-410, DOI: https://doi.org/10.2507/29th.daaam.
proceedings.059

	14.	Matthew Lynch, “8 Ways Machine Learning Will Improve Education”, https://www.theteched-
vocate.org/8-ways-machine-learning-will-improve-education, (2018), (Last Accessed on
29.04.2020).

	15.	Kotsiantis, S.B. Use of machine learning techniques for educational proposes: a decision sup-
port system for forecasting students’ grades. Artif Intell Rev 37, 331–344 (2012). https://doi.
org/10.1007/s10462-011-9234-x

	16.	How is Machine Learning enhancing the Future of Education?, https://data-flair.training/
blogs/machine-learning-in-education/, (Last Accessed on 29.04.2020).

	17.	ODSC, “Deep Learning is Not Always the Best Solution in Education”, https://medium.
com/@ODSC/deep-learning-is-not-always-the-best-solution-in-education-3aad239446cf,
(Last Accessed on 29.04.2020).

	18.	Arthur Haponik, “Machine Learning in Energy industry”, https://addepto.com/machine-learn-
ing-energy-industry/, (Last Accessed on 29.04.2020).

Application of Machine Learning and Deep Learning

https://www.anaconda.com/blog/4-machine-learning-use-cases-automotive
https://www.anaconda.com/blog/4-machine-learning-use-cases-automotive
https://www.pathpartnertech.com/4-ways-artificial-intelligence-and-deep-learning-is-transforming-automotive-industry/
https://www.pathpartnertech.com/4-ways-artificial-intelligence-and-deep-learning-is-transforming-automotive-industry/
https://www.technologynetworks.com/informatics/articles/how-machine-learning-and-ai-can-help-in-the-fight-against-climate-change-327269
https://www.technologynetworks.com/informatics/articles/how-machine-learning-and-ai-can-help-in-the-fight-against-climate-change-327269
https://blogs.ei.columbia.edu/2018/06/05/artificial-intelligence-climate-environment/
https://blogs.ei.columbia.edu/2018/06/05/artificial-intelligence-climate-environment/
https://reliefweb.int/report/world/machine-learning-disaster-risk-management-guidance-note-how-machine-learning-can-be
https://reliefweb.int/report/world/machine-learning-disaster-risk-management-guidance-note-how-machine-learning-can-be
https://reliefweb.int/report/world/machine-learning-disaster-risk-management-guidance-note-how-machine-learning-can-be
https://www.azavea.com/blog/2019/12/10/ethical-machine-learning-for-disaster-relief-rage-for-machine-learning/
https://www.azavea.com/blog/2019/12/10/ethical-machine-learning-for-disaster-relief-rage-for-machine-learning/
https://www.lexalytics.com/lexablog/artificial-intelligence-disaster-relief
https://www.lexalytics.com/lexablog/artificial-intelligence-disaster-relief
https://www.allerin.com/blog/machine-learning-can-save-us-from-disasters
https://www.allerin.com/blog/machine-learning-can-save-us-from-disasters
https://doi.org/10.1007/978-981-13-8759-3_16
https://doi.org/10.2507/29th.daaam.proceedings.059
https://doi.org/10.2507/29th.daaam.proceedings.059
https://www.thetechedvocate.org/8-ways-machine-learning-will-improve-education
https://www.thetechedvocate.org/8-ways-machine-learning-will-improve-education
https://doi.org/10.1007/s10462-011-9234-x
https://doi.org/10.1007/s10462-011-9234-x
https://data-flair.training/blogs/machine-learning-in-education/
https://data-flair.training/blogs/machine-learning-in-education/
https://medium.com/@ODSC/deep-learning-is-not-always-the-best-solution-in-education-3aad239446cf
https://medium.com/@ODSC/deep-learning-is-not-always-the-best-solution-in-education-3aad239446cf
https://addepto.com/machine-learning-energy-industry
https://addepto.com/machine-learning-energy-industry

74

	19.	Adam Green, “Machine Learning in Energy - A guide for the energy professional”, https://
towardsdatascience.com/machine-learning-in-energy-c729c1af55c8, (Last Accessed on
29.04.2020).

	20.	A. Gensler, J. Henze, B. Sick and N. Raabe, “Deep Learning for solar power forecasting —
An approach using Auto Encoder and LSTM Neural Networks,” 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Budapest, 2016, pp. 002858-002865.

	21.	Deep Learning on Medium, “6 Applications of Machine Learning in Oil and Gas”, https://
mc.ai/6-applications-of-machine-learning-in-oil-and-gas/, (Last Accessed on 29.04.2020).

	22.	F. Chen and M. R. Jahanshahi, “NB-CNN: Deep Learning-Based Crack Detection Using
Convolutional Neural Network and Naïve Bayes Data Fusion,” in IEEE Transactions on
Industrial Electronics, vol. 65, no. 5, pp. 4392-4400, May 2018.

	23.	S. N. Ahsan and S. A. Hassan, “Machine learning based fault prediction system for the primary
heat transport system of CANDU type pressurized heavy water reactor,” 2013 International
Conference on Open Source Systems and Technologies, Lahore, 2013, pp. 68-74.

	24.	Top AI and Machine Learning Trends in Media and Entertainment, https://towardsdatascience.
com/top-ai-and-machine-learning-trends-in-media-and-entertainment-823f7efea928, (Last
Accessed on 29.04.2020).

	25.	D. Cheng et al., “Scene recognition based on extreme learning machine for digital video
archive management,” 2015 IEEE International Conference on Robotics and Biomimetics
(ROBIO), Zhuhai, 2015, pp. 1619-1624.

	26.	Stephano Zanetti and Abdennour El Rhalibi. 2004. Machine learning techniques for FPS in
Q3. In Proceedings of the 2004 ACM SIGCHI International Conference on Advances in com-
puter entertainment technology (ACE ‘04). Association for Computing Machinery, New York,
NY, USA, 239–244. DOI: https://doi.org/10.1145/1067343.1067374

	27.	Paratha neekhara, shehzeen Hussain, malhar jere, farinaz koushanfar julian mcauley,
“Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial
Examples”, arXiv:2002.12749v2 [cs.CV] 14 Mar 2020.

	28.	Browse baker, Ingmar kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
Ignore Modratch,“Emergent toll use form multi-agent autocurricula”, arXiv:1909.07528v2
[cs.LG] 11 Feb 2020.

	29.	 I. Anokhin, P. Solovev, D. Korzhenkov, A. Kharlamov, T. Khakhulin1, A. Silvestrov,
S. Nikolenko, V. Lempitsky, G. Sterkin, “High-Resolution Daytime Translation Without
Domain Labels”, arXiv:2003.08791v2 [cs.CV] 23 Mar 2020.

	30.	Generating and Editing High-Resolution Synthetic Images with GANs, https://news.devel-
oper.nvidia.com/generating-and-editing-high-resolution-synthetic-images-with-gans/, (Last
Accessed on 29.04.2020).

	31.	KC Cheung, “10 Applications of Machine Learning in Finance”, https://algorithmxlab.com/
blog/applications-machine-learning-finance/, (Last Accessed on 29.04.2020).

	32.	AVIRAM EISENBERG, “7 Ways Fintechs Use Machine Learning to Outsmart the
Competition”, https://igniteoutsourcing.com/fintech/machine-learning-in-finance/, (Last
Accessed on 29.04.2020).

	33.	Wei-Yang Lin, Ya-Han Hu, and Chih-Fong Tsai. 2012. Machine Learning in Financial Crisis
Prediction: A Survey. Trans. Sys. Man Cyber Part C 42, 4 (July 2012), 421–436, DOI :https://
doi.org/ 10.1109/ TSMCC.2011.2170420

	34.	Min-Yuh Day and Chia-Chou Lee. 2016. Deep learning for financial sentiment analysis on
finance news providers. In Proceedings of the 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM ‘16). IEEE Press, 1127–1134.

E. Vamsidhar et al.

https://towardsdatascience.com/machine-learning-in-energy-c729c1af55c8
https://towardsdatascience.com/machine-learning-in-energy-c729c1af55c8
https://mc.ai/6-applications-of-machine-learning-in-oil-and-gas/
https://mc.ai/6-applications-of-machine-learning-in-oil-and-gas/
https://towardsdatascience.com/top-ai-and-machine-learning-trends-in-media-and-entertainment-823f7efea928
https://towardsdatascience.com/top-ai-and-machine-learning-trends-in-media-and-entertainment-823f7efea928
https://doi.org/10.1145/1067343.1067374
https://news.developer.nvidia.com/generating-and-editing-high-resolution-synthetic-images-with-gans/
https://news.developer.nvidia.com/generating-and-editing-high-resolution-synthetic-images-with-gans/
https://algorithmxlab.com/blog/applications-machine-learning-finance/
https://algorithmxlab.com/blog/applications-machine-learning-finance/
https://igniteoutsourcing.com/fintech/machine-learning-in-finance/
https://doi.org/
https://doi.org/

75© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_9

Chatbot

Kolla Bhanu Prakash, A. J. Sravan Kumar, and G. R. Kanagachidambaresan

Significance

Productivity: Chatbots provide the assistance or [2] access to information quickly
and efficiently.

Social and relational factors: Conversions of chatbots fuel and strengthen the social
experiences. Chatting with bots gives the opportunity [3] for humans to speak
without being judged and improves conversational skills.

Customer service and user satisfaction: Digitizing human interactions can be time-
efficient and cost-effective so that even smaller firms can afford and maintain
good customer service [4].

The following is the code for the chatbot. It is a sequence-to-sequence model trained
as [5] a bot. The model is trained on the twitter dataset “twcs.csv”. The collected
sentences are converted into patterns in the preprocessing [6] part and then fed to
our model, which learns relations and representations of the data. The architecture
assumes the same prior distributions for input and output words. Therefore, by
adopting a new model, it shares [7] embedding layer (pre-trained embedding word)
between [8] the encoding and decoding processes. To improve the context sensitiv-
ity, the thought vector (i.e., the encoder output) is obtained. To avoid forgetting [9]
the context during the response generation, the vector [10] of thought is concate-
nated with a dense vector encoding the incomplete answer generated up to the cur-
rent stage.

Code implementation of the chatbot is given in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
Here, 80 iterations are done in total as given in Fig. 8.

K. B. Prakash · A. J. S. Kumar
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan (*)
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_9#DOI

76

Fig. 1  Chatbot coding Section 1

K. B. Prakash et al.

77

Fig. 2  Chatbot coding Section 2

Chatbot

78

Fig. 3  Chatbot coding Section 3

K. B. Prakash et al.

79

Fig. 4  Chatbot coding Section 4

Chatbot

80

Fig. 5  Chatbot coding Section 5

K. B. Prakash et al.

81

Fig. 6  Chatbot coding Section 6

Chatbot

82

Fig. 7  Chatbot coding Section 7

Fig. 8  Chatbot coding Section 8

K. B. Prakash et al.

83

Fig. 9  Chatbot coding Section 9

Chatbot

84

References

	 1.	Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech
Recognition with Tensorflow and Keras. [Authors: Navin Kumar Manaswi]

	 2.	Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. [Author: Aurélien Géron]

	 3.	Learn TensorFlow 2.0: Implement Machine Learning And Deep Learning Models With
Python. [Authors: Pramod Singh, Avinash Manure]

	 4.	Hands-On Transfer Learning with Python Implement Advanced Deep Learning and Neural
Network Models Using TensorFlow and Keras [Authors: Dipanjan Sarkar, Raghav Bali,
Tamoghna Ghosh]

	 5.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

	 6.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo
Zaccone, Md. Rezaul Karim, Ahmed Menshawy]

	 7.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, Amita Kapoor]

Fig. 10  Chatbot coding Section 10

K. B. Prakash et al.

85

	 8.	Hands-on unsupervised learning with Python : implement machine learning and deep learning
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	 9.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using
TensorFlow 1.x and Keras. [Author: Armando Fandango]

	10.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-Vision
Projects Using Python, Keras & TensorFlow [Authors: Anirudh Koul, Siddha Ganju, Meher
Kasam]

Chatbot

87© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_10

PyTorch

Sagar Imambi, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan

Python is favored for coding and working with deep learning and thus has a wide
range of languages and libraries to look over, as given in Fig. 1.

Theano, one of the main deep learning structures, has stopped dynamic improve-
ment. TensorFlow has devoured Keras altogether [2], elevating it to a top of the line
Application Program Interface (AP)I. PyTorch is a scientific computing library,
supplanted a large portion of the low-level code reused from the Lua-based Torch
venture. Initially, PyTorch was created by Hugh Perkins as a Python wrapper.

It included help for ONNX, a seller unbiased [3] model portrayal, trade design,
and a deferred execution “diagram mode” runtime called TorchScript. PyTorch is
another deep learning library with the abilities of fast performance. Essentially, it is
the Facebook answer for combine burn with Python.

1  �The Significant Highlights of PyTorch

Simple Interface − PyTorch offers simple to utilize API; subsequently, it is viewed
as extremely easy to work with and runs on Python. The [4] code execution in this
structure is effortless.

Python use − This library is viewed as Pythonic, which smoothly incorporates
with the Python core functions. In this way, it can use every one of the administra-
tions and functionalities offered by Python [5]. PyTorch ensures local help for
Python and utilization of its libraries.

S. Imambi · K. B. Prakash (*)
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_10#DOI

88

Dynamic computational charts − PyTorch gives a fantastic stage that offers
dynamic computational diagrams. In this way, a client can transform them during
runtime. It is a major highlight of PyTorch. This is exceptionally [6] valuable when
an engineer has no clue about how a lot of memory is required for making a neural
system model. They guarantee the diagram would develop progressively – at each
purpose of code execution, the chart is worked along and can be controlled at run-
time. So every part of the code executing graph was built and able to manipulate at
runtime.

Facebook: It is effectively utilized in the improvement of Facebook for every last
bit of its deep learning necessities in the stage. It is actively used in the development
of Facebook and its subsidiary companies [7].

FAST: PyTorch is quick and feels local, henceforth guaranteeing simple coding
and fast handling.

Compute Unified Device Architecture (CUDA): The help for CUDA guarantees
that the code can run on the graphical processor in this way increasing the perfor-
mance of the network.

2  �Why We Prefer PyTorch

•	 It is simple to debug and comprehend the code.
•	 Has the same number of sort of layers as Torch (Unpool, Convolution (CONV)

1,2,3D, Long Short Term Memory networks (LSTM), Grus).

Tensorflow

Pytorch

Keras

Python

Theano

Lasagne

Fig. 1  The Python extension libraries

S. Imambi et al.

89

•	 A variety of loss functions are available.
•	 It can be considered as a numpy augmentation to GPUs.
•	 It is quicker than other libraries, as chainer and dynet.

3  �Requirements for Implementing Deep Learning

Deep learning calculations are intended to vigorously rely upon very good quality
machines as opposed to conventional Artificial Intelligence (AI) [8] calculations.
Deep learning calculations play out a lot of network duplication tasks that require
tremendous equipment support. To execute the PyTorch programs, we require a PC
or laptop with a CUDA-competent graphical processing unit (GPU), GPU with
8GB of RAM (we recommend an NVIDIA GTX 1070 or better).

4  �PyTorch Basic Components

PyTorch is known for having three levels of abstraction as given below:

•	 Tensor: N-dimensional array which runs on GPU.
•	 Variable: Node in computational graph. This stores data and gradient.
•	 Module: Neural network layer that will store state or learnable weights.

4.1  �Tensor

PyTorch has an inside data structure, the tensor, a multi-dimensional group that
offers various resemblances with numpy. From [9] that foundation, apparel over-
views of features have been created that make it easy to prepare an endeavor for the
activity or an assessment concerning another neural framework building organized
and arranged.

Tensors give animating of logical assignments and PyTorch has packs for passed
on getting ready, expert structures for capable data stacking, and an expansive
library of typical significant learning limits.

Creating Tensors
After installing the packages, initialize the empty tensor and assign required values.

PyTorch

90

Ex:

#creates an empty matrix of size 5 × 3
a=torch.empty(5,3)
#Initilizematix with zeros
a=torch r.zeroes(5,3,dtype= torch.long)
#assign values to x
a=torch.tensor(5)

Data Type of Elements
PyTorch automatically decides the data type of the elements of the tensor when it is
created; the data type applies to all the [10] elements of the tensor. Sometimes that
can be overridden to convert it into another data type.

Ex:

b = torch.tensor([[3, 8, 9],[4–6]])
print(b.dtype)
torch.int64
x= torch.tensor([[1,2.5,3],[5.3,5,6]])
print(x.dtype)
 # torch.float32

While initializing also we can define data type:

b = torch.tensor([[3, 8, 9],[4–6]], dtype=torch.int32)
print(b.dtype)
 # torch.int32

Creating Torch tensors from numpy array.

Ex:

a= np.ones(4)
b=torch.from_numpy(a)

Here a is numpy array and initialized with ones. When torch tensor is created
using numpy array, they share underlying memory location.

Creating numpy array from torch tensors:

S. Imambi et al.

91

Ex:

a= torch.ones(4)
b=a.numpy()

4.2  �Autograd Module

The most important thing PyTorch offers is to apply auto differentiation. We will see
how it works in Fig. 2.

Basic operations are based on the training data set. Next we reply all the values
of data to reduce the loss at every stage [11]. Then compute gradients. Gradients are
computed by finding the negative slope and calculating the minima of the loss func-
tion. Automatic differentiation is a difficult and complicated process and that is easy
through the autograd module. This module created the dynamic computational
graphs as given in Fig. 3.

Fig. 2  Steps for autograd
Module

PyTorch

92

5  �Implement the Neural Network Using PyTorch

Training a deep learning algorithm involves the following steps: Building a data
pipeline, building network architecture, using [12] loss function to evaluate the
architecture, and optimizing the weights of the network architecture using an opti-
mization algorithm.

Preparing a deep learning program includes the accompanying advances like
building an information pipeline, building [13] system design, evaluating the engi-
neering utilizing a loss function, and optimizing the weights of the network by an
optimizing algorithm as given Fig. 4.

Fig. 3  Dynamic computational graphs

S. Imambi et al.

93

Fig. 4  Code snippet for optimizing algorithm

PyTorch

94

Neural network may be implemented simply by these steps:

Step 1: Import package and libraries.
Step 2: Input data.
Step 3: Construct NN using torch.nn package.
Step 4: Define all layers.
Step 5: Construct loss function.
Step 6: Run autograd.

The output generated of the above program is as given in Fig. 5.

6  �Difference Between PyTorch and Tensorflow

Table 1 illustrates the classification of PyTorch and Tensorflow.

Fig. 5  Output screenshot of the above code

Table 1  PyTorch and Tensorflow classification

S.no. PyTorch Tensorflow

1 Dynamic computational graph Static computational graph
2 Can make use of standard Python flow

control
Not able to use

3 Supports Python debugging Does not support
4 Dynamic inspection of variable and

gradients
Not possible

5 Research oriented Product oriented
6 Developed by Facebook group Developed by Google group

S. Imambi et al.

95

7  �PyTorch for Computer Vision

Computer vision is absolutely one of the fields that [14] has been generally affected
by the appearance of profound learning, for an assortment of reasons. The require-
ment for characterizing or translating the substance of regular pictures existed,
enormous datasets became accessible, and convolution layers were created that
could be run rapidly on GPUs [15] with remarkable exactness. This joined with the
inspiration of the Internet mammoths to comprehend pictures shot by a large num-
ber of clients through their cell phones and oversaw on said goliaths’ platforms.

7.1  �Image Classifier

Image classifier predicts data based [16] on an image set by constructing a neural
network. Character/object recognition is generally an image processing technique
where image data is imputed and explored by various libraries of Python and
PyTorch.

Exploring Data
Standard Python package can be used to load data into numpy array. Then it can be
converted into torch tensor. Image data is [17] converted using pillow, opencv.
Audio data is interpreted using scipy and librosa and text data is by spacy and
cython, etc.

The image prediction using the PyTorch networks is as given in Fig. 6.

Fig. 6  Steps for image classifier

PyTorch

96

Data Loading
The first step in deep [18] learning is information loading and handling. PyTorch
offers utilities for the identical in torch.utils.data. The crucial training in this module
is Dataset and DataLoader. Dataset is built on the pinnacle of tensor data type and
is used often for user defined datasets. DataLoader is used if you have a massive
dataset and you need to load information from a Dataset in historical past in order
that it is equipped and looking ahead to the schooling loop. We can also use torch.
nn.DataParallel and torch.distributed if CUDA is available. Figure 7 elucidates the
code snippet of data loading.

Defining layers and hidden nodes of network is given in Figs. 8 and 9.

Fig. 8  Layer definition

Fig. 7  Code snippet of data loading

S. Imambi et al.

97

Next we have to define optimizer and check whether CUDA is available. If it is
then use GPU model.

The model was trained after providing information [19] like batch size and num-
ber of epochs. Then validating and testing, the model can be done (Fig. 10).

Fig. 9  CUDA implementation of algorithm

Fig. 10  Code snippet for accuracy

PyTorch

98

7.2  �Image Augmentation in Less Data

We can utilize picture increase for profound learning in any setting – hackathons,
industry ventures, etc. We will likewise construct a picture order model utilizing
PyTorch to see how picture growth fits into the image.

Deep learning models as a rule require [20] a ton of information for preparing.
As a rule, the more the information, the better the exhibition of the model. Be that
as it may, obtaining monstrous measures of information accompanies its own diffi-
culties. Not every person has the profound pockets of the enormous firms.

And the issue with an absence of information is [21] that our profound learning
model will probably not take in the example or capacity from the information and
henceforth it will probably not give a decent presentation on inconspicuous
information.

Image augmentation is the way toward producing new pictures for preparing our
profound learning model. These new pictures are created utilizing the current pre-
paring pictures and consequently we do not need to gather them physically.

Various Image Augmentation Techniques

Image Rotation
Picture revolution is one of the most ordinarily utilized expansion procedures. It
can enable our model to get hearty to the adjustments in the direction of items.
Regardless of whether we pivot the picture, the data of the picture continues as
before. A vehicle is a vehicle regardless of whether we see it from an alternate
point

Shifting/Moving Images
There may be situations when the articles in the picture are not consummately
focal adjusted. In these cases, picture move [22] can be utilized to add move
invariance to the pictures. By moving the pictures, we can change the situation of
the article in the picture and consequently give more assortments to the model.
This will in the end lead to a progressively summed up model.

Flipping Images
Flipping is an augmentation of turn. It enables us to flip the picture in the left
directly just as up-down bearing. We should perceive how we can execute
flipping.

After applying the various operations on the images, the data set is ready for the
building model. The process is same as the image classification model as now the
data set is having sufficient data.

S. Imambi et al.

99

8  �Sequential Data Models

Natural language processing (NLP) provides endless opportunities for artificial
intelligence problem solving, making products like Amazon Alexa and Google
Translate possible. If you are a developer or data scientist new to NLP and deep
learning, this hands-on guide will teach you how to use these approaches with
PyTorch, a deep learning application built in Python.

Now, we have seen various feed-forward systems. That is, there is no situation
any stretch of imagination keeps up by the system. This is probably not the conduct
that we need. Grouping models are vital for NLP: They are models where there is a
kind of reliance between your data sources over time. The traditional case of a
grouping model is the hidden Markov model for grammatical feature labeling.
Another model is the restrictive arbitrary field.

An intermittent neural system is a system that keeps up some sort of state. For
instance, its yield could be utilized as a component of the following info, with the
goal that data can propagate along as the system disregards the arrangement. On
account of an LSTM, for every component in the succession, there is a comparing
shrouded state, which on a fundamental level can contain data from subjective
focuses prior in the arrangement. We can utilize the concealed state to foresee words
in a language model, grammatical feature labels, and a bunch of different things.

8.1  �LSTM in PyTorch

Note a few things before you get into the example. The LSTM at PyTorch finds all
its inputs to be 3D tensors. The semantics of those tensors “axes” are essential. The
first axis is the series itself, the second [23] one indexes the mini-batch instances,
and the third one indexes the input elements. We have not discussed mini-batching,
so let us just ignore that and assume that on the second axis we will always have
only 1 dimension. If we want to run the model sequence over the phrase “The girl
walks,” our input should look as follows (Figs. 11 and 12):

[girl, is, walking]

Ex 2:
An LSTM for part-of-speech tagging.

Problem Definition  Part-of-speech labeling is an outstanding assignment in natu-
ral language processing. It alludes to the way toward ordering words into their
grammatical forms (otherwise called word classes or lexical classifications). This is
an administered learning approach as LSTM is an extension of RNN where it shows
the inputs of participants.

PyTorch

100

However, there is an additional second dimension with size 1.
A unique integral was assigned to each term (and tag). We measure a set of

unique words (and tags), then turn them into a list, and index them into a dictionary
[24]. The word vocabulary and the tag vocabulary are those dictionaries. We will
also add a special padding value for the sequences (more on that later), and another
one for unknown vocabulary words (Fig. 13).

Fig. 11  LSTM implementation in PyTorch Part 1

Fig. 12  LSTM implementation in PyTorch Part 2

S. Imambi et al.

101

In preprocessing the sequence is generated. And words are generated from the
sentences using nltk library. The tokens are indexed and assigned the corresponding
index as given in Fig. 14.

Fig. 13  PyTorch implementation on vocabulary words

Fig. 14  Code implementation of LSTM tagger

PyTorch

102

The model was built using the parameter tuned (Fig. 15).
The process is repeated until we get the best fit model (Figs. 16 and 17).

9  �Summary

•	 Deep network models robotically learn to associate inputs and favored outputs
from examples.

•	 Libraries like PyTorch can help you construct and educate neural network fash-
ions efficiently.

Fig. 16  Epoch initialization and model fit

Fig. 15  Code implementation of parameter tuning

S. Imambi et al.

103

•	 PyTorch minimizes cognitive overhead, while focusing on flexibility and speed.
It additionally defaults to immediate execution for operations.

•	 TorchScript is a pre-compiled deferred execution mode that can be invoked from
Cpp.

•	 PyTorch gives some of software libraries to facilitate deep studying projects.
•	 PyTorch is used in a variety of deep learning applications like object detection,

image analysis, and sequence modeling.

References

	 1.	Deep Learning for Computer Vision: Expert techniques to train advanced neural networks
using TensorFlow and Keras. [Authors: RajalingappaaShanmugamani]

	 2.	Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural
Networks written in Python, Theano, and TensorFlow. [Authors: LazyProgrammer]

	 3.	Deep learning quick reference: useful hacks for training and optimizing deep neural networks
with TensorFlow and Keras. [Authors: Bernico, Mike]

	 4.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo
Zaccone, Md. RezaulKarim, Ahmed Menshawy]

	 5.	Erdmann M, Glombitza J, Walz D. A deep learning-based reconstruction of cosmic
ray-induced air showers. AstropartPhys 2018;97:46–53. doi:https://doi.org/10.1016/j.
astropartphys.2017.10.006, URL http://www.sciencedirect.com/science/article/pii/
S0927650517302219.

	 6.	Feng Q, Lin TTY. The analysis of VERITAS muon images using convolutional neural net-
works, in: Proceedings of the International Astronomical Union, vol. 12, 2016.

	 7.	Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press,
Cambridge

	 8.	Grandison T, Sloman M (2000) A survey of trust in internet applications. IEEE CommunSurv
Tutor 3(4):2–16

Fig. 17  Output matrix value

PyTorch

https://doi.org/10.1016/j.astropartphys.2017.10.006
https://doi.org/10.1016/j.astropartphys.2017.10.006
http://www.sciencedirect.com/science/article/pii/S0927650517302219
http://www.sciencedirect.com/science/article/pii/S0927650517302219

104

	 9.	Guo X, Ipek E, Soyata T (2010) Resistive computation: avoiding the power wall with low-
leakage, STT-MRAM based computing. In: ACM SIGARCH computer architecture news, vol
38. ACM, pp 371–382

	10.	Hands-on unsupervised learning with Python: implement machine learning and deep learning
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	11.	Holch TL, Shilon I, Büchele M, Fischer T, Funk S, Groeger N, Jankowsky D, Lohse T,
Schwanke U, Wagner P. Probing convolutional neural networks forevent reconstruction in
γ -ray astronomy with Cherenkov telescopes, in:PoS ICRC2017, The Fluorescence detec-
tor Array of Single-pixel Telescopes:Contributions to the 35th International Cosmic Ray
Conference (ICRC2017), p. 795, https://doi.org/10.22323/1.301.0795, arXiv:1711.06298.

	12.	Huennefeld M. Deep learning in physics exemplified by the reconstruction of muon-neutrino
events in IceCube, in: PoS ICRC2017, The Fluorescence detector Array of Single-pixel
Telescopes: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017),
p. 1057, https://doi.org/10.22323/1.301.1057.

	13.	Hurst S (1969) An introduction to threshold logic: a survey of present theory and practice.
Radio Electron Eng 37(6):339–351

	14.	 Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and
deep learning with TensorFlow and Keras. [Authors: SantanuPattanayak]

	15.	 Internet of Things for Industry 4.0, EAI, Springer, Editors, G. R. Kanagachidambaresan,
R. Anand, E. Balasubramanian and V. Mahima, Springer.

	16.	Jeong H, Shi L (2018) Memristor devices for neural networks. J Phys D: ApplPhys
52(2):023003

	17.	Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using mem-
ristor networks: a survey. IEEE Trans Emerg Top ComputIntell 2(5):380–395. doi:https://doi.
org/10.1109/TETCI.2018.2838124

	18.	LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44. doi:https://doi.
org/10.1038/nature14539.

	19.	Mangano S, Delgado C, Bernardos M, Lallena M, Vzquez JJR. Extracting gamma-ray infor-
mation from images with convolutional neural networkmethods on simulated cherenkov
telescope array data. In: ANNPR 2018. LNAI, vol. 11081, 2018, p. 243–54. doi:https://doi.
org/10.1007/978-3-319-99978-4, arXiv:1810.00592.

	20.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using
TensorFlow 1.x and Keras. [Author: Armando Fandango]

	21.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-
Vision Projects Using Python, Keras&TensorFlow [Authors: AnirudhKoul, Siddha Ganju,
MeherKasam]

	22.	Python Deep Learning: Exploring deep learning techniques, neural network architectures
and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	23.	Shilon I, Kraus M, Büchele M, Egberts K, Fischer T, HolchTL, Lohse T, Schwanke U, Steppa
C, Funk S. Application of deep learning methods to analysis of imaging atmospheric che-
renkov telescopes data. AstropartPhys 2019; 105: 44–53. doi:https://doi.org/10.1016/j.
astropartphys.2018.10.003, URL http://www.sciencedirect.com/science/article/pii/
S0927650518301178

	24.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, AmitaKapoor]

S. Imambi et al.

https://doi.org/10.22323/1.301.0795
https://doi.org/10.22323/1.301.1057
https://doi.org/10.1109/TETCI.2018.2838124
https://doi.org/10.1109/TETCI.2018.2838124
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-319-99978-4
https://doi.org/10.1007/978-3-319-99978-4
https://doi.org/10.1016/j.astropartphys.2018.10.003
https://doi.org/10.1016/j.astropartphys.2018.10.003
http://www.sciencedirect.com/science/article/pii/S0927650518301178
http://www.sciencedirect.com/science/article/pii/S0927650518301178

105© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_11

Pattern Recognition and Machine
Learning

Bharadwaj, Kolla Bhanu Prakash, and G. R. Kanagachidambaresan

1  �Kernel Support Vector Machine

For linearly separable data points and different classes, we can perform simple sup-
port vector machine (SVM), but for the data which are non-linear simple (straight
line) SVM cannot be suited. The most important point to be noted in the SVM is that
it can solve the non-linearly separable problems also. To solve the non-linear prob-
lems effectively, two new techniques called soft margin and kernel tricks are
introduced.

Soft Margin: A line will separate both the classes and it can also tolerate one or a
small number of misclassified dots.

Kernel Trick: It is used to locate a decision boundary in the case of non-linear
models.

Kernel SVM is used for non-linearly separable data as it projects non-linearly
separable data lower dimensions to linearly separable data in higher dimensions.

Types of Kernels
The most commonly used kernels in the SVM classifier are as follows:

	1.	 Linear kernel
	2.	 Radial basis function (RBF) kernel
	3.	 Polynomial kernel

Bharadwaj · K. B. Prakash (*)
KL Deemed to be University, Vijayawada, AP, India

G. R. Kanagachidambaresan
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_11#DOI

106

SVM needs to find the optimal line to properly identify any class. RBF and poly-
nomial kernels are the most widely used.

The Gaussian RBF [3] is the most famous and simple RBF kernel. The influence
of new features is controlled by gamma (γ). If this value is high then decision on the
boundary will be influenced by these features.

Polynomial  To draw a non-linear decision boundary, a polynomial kernel can play
a vital role in drawing a good solution with the use of polynomial features.

How Does it Work

	1.	 Create pattern matrix.
	2.	 Choose a right kernel function.
	3.	 Choose the kernel function parameter and regularization parameter “C” value.
	4.	 Obtain α by executing training algorithm.
	5.	 Using learned weights α and support vectors unseen data is classified.

Advantages in Using Kernel SVM

	1.	 It works pretty well only in the cases where a clear margin of separation is found
between classes.

	2.	 It works well for high dimensional spaces.
	3.	 Risk of over fitting is less.
	4.	 Performs well for good kernel function.

Disadvantages

	1.	 It is not an easy task to find the right kernel.
	2.	 As the dataset size increases the training time also increases.
	3.	 Understanding and interpreting the final model, variable weight is very

difficult.
	4.	 SVM hyper parameters are cost (C) and gamma, not easy to tune and hard to

visualize.

SVM Applications

	1.	 Protein structure prediction
	2.	 Intrusion detection
	3.	 Handwritten recognition
	4.	 Detecting steganography in digital images
	5.	 Breast cancer diagnosis

1.1  �Linear Kernel

Figure 1 elucidates the linear kernel code snippet (Fig. 2).

Bharadwaj et al.

107

1.2  �RBF Kernel

Figure 3 elucidates the RBF kernel code using Python.
Figures 4 and 5 elucidate the output distribution [4] graph and accuracy attained

through the algorithm.

1.3  �Polynomial Kernel

Figure 6 illustrates the polynomial kernel implementation [5] code snippet using
Python. Figure 7 shows the SVC distribution in the second space.

Fig. 1  SVC-based linear kernel implementation

Text (0.5, 1.0, ‘SVC with linear kernel’)

SVC with linear kernel

5.0

4.5

4.0

3.5

S
ep

al
 w

id
th

3.0

2.5

2.0

5 6
Sepal length

7 8

Fig. 2  SVC linear kernel

Pattern Recognition and Machine Learning

108

Fig. 3  RBF kernel implementation using Python

Bharadwaj et al.

109

Linear kernel is indeed very well suited for text categorization. However [6], that
is not the only solution and, in some cases, using another kernel might be better.
Experimental results on iris dataset show that the approximate RBF-kernel SVM
achieved classification performance and cross validation.

2  �Kernel Ridge Regression

The duality relationship between ridge and [7] counter-ridge leads the way to ker-
nels. If the data is relatively linear, linear regression/least squares are used to model
the relationship between weight and size. So, fitting a line using least squares will
minimize the sum of square residuals that ultimately gives size = size-intercept +
(slope x weight), but this only works when there are a lot of measurements. If there
are only a few measurements, for example, two measurements for training the
model, then this leads to “over fitting” for the training data since the minimum sum
of squared residuals is equal to 0 and variance is high to the testing data. This can
be overcome using “ridge regression.” Ridge regression fits a new line by introduc-
ing a small bias, and thus a considerable drop in variance can be seen in Fig. 8a and 8b.

In order to get better long-term predictions, this type [8] of regression can play a
key role. In the equation size = y-intercept + slope x weight, the least squares are

gamma=10ˆ–1, C=10ˆ–2 gamma=10ˆ0, C=10ˆ–2 gamma=10ˆ1, C=10ˆ–2

gamma=10ˆ–1, C=10ˆ0 gamma=10ˆ0, C=10ˆ0 gamma=10ˆ1, C=10ˆ0

gamma=10ˆ–1, C=10ˆ2 gamma=10ˆ0, C=10ˆ2 gamma=10ˆ1, C=10ˆ2

Fig. 4  RBF kernel output distribution

Pattern Recognition and Machine Learning

110

used to determine the values for the parameters. The sum of the squared residuals
are also minimized + lambda x (slope)2, the slope adds a penalty to the traditional
least square method, and lambda determines how severe the penalty is.

In some cases, it is computationally overhead to calculate the lambda [9] and
slope especially if the dimensions are regression-less and non-competent. In such
cases, kernels are used to do the heavy work.

Advantages

	1.	 It might be computationally efficient in some cases when solving [10] the system
of equations.

	2.	 By defining K = XXT, we can work directly with K and never have to worry
about X. This is the kernel trick.

	3.	 Working with α is sometimes advantageous (e.g., in SVMs many entries of α
will be zero).

Steps Involved

	1.	 Initialize population and alpha
	2.	 Identify A, b, and X such that Ax = b, where A is a feature set and b is the target

at tribute and x is the relationship between A and b

0.9

Validation accuracy

0.01

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

10000000.0

100000000.0

1000000000.0

10000000000.0

1e
-0

9
1e

-0
8

1e
-0

7
1e

-0
6

1e
-0

5

0.
00

01
0.

00
1

0.
01 0.

1
0.

0
10

.0
10

0.
0

10
00

.0

gamma

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Fig. 5  RBF kernel accuracy

Bharadwaj et al.

111

	3.	 while (X==uniform or number of iterations)
	4.	   Calculate a regularization factor from the Tikhonov matrix (T = alpha x I)
	5.	   if T = 0 then calculate alpha from ATA, alpha = ||ATA||
	6.	   Calculate x, x = (ATA + TTT)−1ATb
	7.	   update alpha, alpha = ||Tx||
	8.	 end while

Fig. 6  Code snippet of polynomial kernel using Python

Text (0.5, 1.0, ‘SVC with poly kernel’)

SVC with poly kernel

5.0

4.5

4.0

3.0

3.5

S
ep

al
 w

id
th

2.5

1.5

2.0

1.0
54 6

Sepal length
7 8

Fig. 7  SVC with ploy
kernel

Pattern Recognition and Machine Learning

112

Figure 9 provides the code implementation of the above-mentioned algorithm.
Figure 10 shows the output plot of the Python code implementation.
Figure 11 elucidates the Python code implementation [11] of Kernel Ridge

Regression (KRR) prediction.

Fig. 8a  Kernel ridge regression

Fig. 8b  Kernel ridge simple linear regression

Bharadwaj et al.

113

Fig. 9  Code implementation of aforementioned algorithm

Fig. 10  Kernel ridge

Pattern Recognition and Machine Learning

114

Output

KRR complexity and bandwidth selected and model fitted in 0.130 s.
KRR prediction for 100,000 inputs in 0.166 s.

We also need to formally optimize over λ. Specific λ choices, however, equate
with specific B choices [12]. Using cross-validation or some other test, either λ or B
should be chosen, so we can likewise fluctuate λ right now. In the ridge regression,
there is no meaning for the vector support, which is one of a significant disadvan-
tages in it. This is helpful in light of the fact that we possibly should summarize over
the help vectors when [13] we test another model, which is a lot simpler than sum-
marizing over the entire training set. In the SVM, the meager condition was result-
ing from the requirements of disparity in light of the fact that the integral states of
slackness revealed to us that regardless of whether the limitation was idle, at that
point the multiplier αi was zero. There is no impact of that type here.

3  �Kernel Density Estimator

The Kernel is a non-negative, real-valued probability distribution [14] function with
an even definite integral, which sets equal to a value of 1. For a continuous random
variable, estimating the probability density function is done by the kernel density
estimation.

Characteristics

	1.	 Nonparametric technique
	2.	 Effective multimodal data representation
	3.	 Consideration of noise for observed data
	4.	 Representation of model/state

Fig. 11  Code snippet of KRR prediction

Bharadwaj et al.

115

3.1  �Density Estimation

The three different techniques, unsupervised learning, data modeling, and feature
engineering, are the ones required for the density estimation [15] and they have to
walk through the line between them to get the result. In literature, many density
estimation models are available, but Gaussian mixtures and neighbor-based models
like kernel density estimation are more popular than the others.

In density estimation, visualization of information can be achieved using the
histogram in which bins can be defined, but the problem is that choosing the [16]
bins has a disproportionate effect on results in visualization, so kernel density
estimator came to exist, which can be presented in several [17] numbers of dimen-
sions and it uses ball tree or Kernel Density (KD) tree for efficient queries. Here
kernel may be a Gaussian, Tophat, or Epanechnikov (Fig. 12).

3.2  �Constructing a Kernel Density Estimate

	1.	 Select kernel that performs efficiently for the given dataset.

Fig. 12  Kernel densities

Pattern Recognition and Machine Learning

116

	2.	 On every datum (pi), construct a scaled kernel function:

	
h K p p hi

� �� ��� ��
1 / .

	

where k = chosen kernel function
h is a bandwidth, known as smoothing parameter also called as window width

	3.	 Sum up the individual scaled kernel functions and divide by n, this places a prob-
ability of 1/n to each datum xi. it also ensures the kernel density estimate inte-
grates to 1 over its support set:

	

Æf x n h K
p p
hi

n
i� � � ��

��
�
��

� �

�
�1 1

1 	

3.3  �Features of the Algorithm

3.3.1  �Bandwidth Selection

Bandwidth selection gives the optimal bandwidth for the solution and [18] it can
estimates from reference rules (Silverman’s rule) which less impact and another
empirical approach is Cross validation is often used.

•	 Automatic data-dependent bandwidth selection (MISE – mean integrated
squared error) – error between estimated and true error

•	 Variable bandwidth selection – mean shift which is not effective

For choosing bandwidth, small h results small standard deviation best suits when
sample size is large and data are tightly packed. A large h results large standard
deviation best suits when sample size is small, and data are sparse.

3.3.2  �Kernels

KDE can be implemented using different kernels that lead to different characteris-
tics of density estimates. As Scipy contains Gaussian, stats models have 7 kernels,
and Scikit-learn have 6 and each uses a dozen distance metrics for different kernel
shapes (Fig. 13).

Plot. Kernels ()

3.3.3  �Heterogeneous Data

States models can be a heterogeneous data. In general, this [19] data is nothing but
a combination of continuous, ordered, and unordered discrete variables.

Bharadwaj et al.

117

3.3.4  �Fast Fourier Transform–Based Computations

For large datasets, KDE is computed efficiently using fast Fourier transform (FFT)
but requires binning and becomes inefficient in higher dimensions.

3.3.5  �Tree-Based Computations

Using the KD tree that is a specialized data structure, c is used to compute the KDE
in which it is required to compute M evaluations of N points.

3.3.6  �Computational Efficiency

By comparing the computational efficiency of different algorithms (Table 1), it
depends on the number of scaling points. It is better in one-dimensional data than in
multi-dimensional data.

Scikit-learn computers faster than other implementation. But when data is het-
erogeneous, stat model is better and Scipy’s Gaussian KDE is used to obtain the
results (Figs. 14 and 15).

1.0 gaussian

tophat

epanechnikov

exponential

linear

cosine

0.8

0.6

0.4

0.2

0.0
–2 –1 0 1 2

Fig. 13  Constructing different kernel level densities

Pattern Recognition and Machine Learning

118

Table 1  Computational efficiency matrix

Bandwidth
selection

Available
Kernels

Multi-
dimension

Heterogeneous
data

FFT-based
computation

Tree-based
computation

Scipy Scott &
Silverman

One
(Gauss)

Yes No No No

Stats models
KDE
Univariate

Scott &
Silverman

Seven 1D only No Yes No

Stats models
KDE
Multivariate

Normal
reference
cross-
validation

Seven Yes Yes No No

Scikit-learn None
built-in;
cross val.
available

6 kernels
x 12
metrics

Yes No No Ball tree or
KD tree

Fig. 14  Code implementation of KDE

60 0.4
0.35
0.30
0.25
0.20
0.15
0.10
0.05

0.00

KDE
KDE(low bw)

0.3

0.2

0.1

0.0

50

40

30

20

10

0
–3 –2 –1 0 1 2 3 –3 –2 –1 0 1 2 3 –4 –2 0 2 4

Fig. 15  Log of the probability density value is (−0.02,0.22)

Bharadwaj et al.

119

Code Implementation

Advantages
When compared with the commonly used histogram, the kernel density [20] estima-
tor shows several advantages.

	1.	 It is a smooth curve and thus it better exhibits the details of the PDF suggesting
in some cases non-unimodality.

	2.	 It uses all sample points’ locations, therefore, it better reveals the information
contained in the sample.

	3.	 It convincingly suggests multimodality.
	4.	 The bias of the kernel estimator is of one order better than that of a histogram

estimator.
	5.	 Compared with 1D application, 2D kernel applications are even better as the 2D

histogram.

Disadvantages

	1.	 Annoying artifacts, such as all-positive quantities whose kernel density esti-
mates go into the negative zone. This can be fixed, but (a) it typically is not, and
(b) when there is no an obvious bound, you still have the issue of the kernel
density including places.

	2.	 PDF per pixel by KDE, classification by global threshold.
	3.	 Computational cost is high.
	4.	 Memory consumption.
	5.	 Bandwidth selection issue.

Applications

	1.	 Density level estimation.
	2.	 Clustering or unsupervised learning.
	3.	 Description of main content of data.

A range of kernel functions are commonly used: uniform, triangular, biweight,
triweight, Epanechnikov, normal, and others. Based on the requirement of the result
and the available dataset, the kernel estimator is used. For accurate results, Gaussian
kernel is implemented.

4  �Dimensionality Reduction with Kernel Principal
Component Analysis

Principal component analysis (PCA) is a tool that is used to reduce the dimension
of the [21] data. It allows reducing the dimension of the data without much loss of
information. PCA reduces the dimension by finding a few orthogonal linear combi-
nations (principal components) of the original variables with the largest variance.
The first principal component captures most of the variance in the data. The [22]

Pattern Recognition and Machine Learning

120

second principal component is orthogonal to the first principal component and cap-
tures the remaining variance. PCA is a linear method. That is, it can only be applied
to datasets that are linearly separable. It does an excellent job for datasets, which are
linearly separable. However, if we use it to non-linear datasets, we might get a result
that may not be the optimal dimensionality reduction. Kernel PCA uses a kernel
function to project dataset into a higher dimensional feature space, where it is lin-
early separable. Figures 16, 17, 18, 19, 20 and 21 illustrate the various PCA Python
code implementations and their corresponding plots.

Fig. 16  Python code snippet for make_moons

Fig. 17  Make-moons plot

Fig. 18  PCA fit Python code snippet

Bharadwaj et al.

121

Fig. 19  PCA plot

Fig. 20  Kernel PCA implementation in Python

Fig. 21  Kernel PCA slot

Pattern Recognition and Machine Learning

122

Algorithm

	1.	 Construct the covariance matrix of the data.
	2.	 Compute the eigenvectors of this matrix.
	3.	 Eigenvectors corresponding to the largest eigenvalues are used to reconstruct a

large fraction of variance of the original data.
	4.	 Hence, we are left with a lesser number of eigenvectors, and there might have

been some data loss in the process.

Code Implementations

Advantages

	1.	 It helps in data compression, and hence reduced storage space.
	2.	 It reduces computation time.
	3.	 It also helps remove redundant features, if any.

Disadvantages

	1.	 It may lead to some amount of data loss.
	2.	 PCA tends to find linear correlations between variables, which is sometimes

undesirable.
	3.	 PCA fails in cases where mean and covariance are not enough to define

datasets.
	4.	 We may not know how many principal components to keep in practice, and some

thumb rules are applied.

5  �Hidden Markov Model to Estimate the Behavior
of a Person or Animal

A Markov chain (model) describes a stochastic process where [23] the assumed
probability of future state(s) depends only on the current process state and not on
any of the states that preceded it. The hidden Markov model (HMM) is a machine
learning algorithm that is part of the graphic models. Nevertheless, HMM is often
trained using a supervised method of learning in the [24] case of data being avail-
able for training. Only a little bit of probability knowledge will suffice to understand
the concept to anyone.

It is important to understand where the HMM algorithm is used. In short, HMM
is a graphical model, which is generally used in predicting states (hidden) using
sequential data like weather, text, speech, etc. Figures 22, 23, 24, 25, 26 and 27
elucidate HMM that estimates the behavior of a person or animal.

Algorithm

	1.	 Import library packages NumPy, pandas.
	2.	 Import HMM library package.

Bharadwaj et al.

123

	3.	 Init blank path.
	4.	 The forward algorithm extension.
	5.	 Find optimal path.

Code Implementation

Advantages

	1.	 Statistical base of HMM is strong.
	2.	 Efficient learning algorithm can take place directly [25] from raw sequence of

data.
	3.	 It has a wide variety of applications like data mining classifications, structural

analysis, and pattern discovery.

Disadvantages

	1.	 HMM often has a large number of unstructured parameters.

Fig. 22  HMM Python code snippet

Pattern Recognition and Machine Learning

124

Fig. 23  Output of HMM

Fig. 24  HMM code implementation part 1

Bharadwaj et al.

125

	2.	 First-order HMM is limited by its first order of Markov property.
	3.	 They cannot express dependencies between hidden states.
	4.	 Modeling protein folds into a complex 3D shape determining its function.

Applications

	1.	 Gene prediction.
	2.	 Modeling protein domains.
	3.	 Clustering of paths for a subgroup.

HMMs are used in a variety of scenarios including manipulation of the natural
language, robotics, and biogenetics. We have seen some of the basics of HMMs in
this section, particularly in the context estimating the behavior of a person or
an animal.

6  �Factor Analysis

Factor analysis is one of the statistical methods that measures of how much one
observed and correlated variable [26] vary with another by a set of less or unob-
served variables. In other words, it simply is the method that defines the covariance
relationship between the set of observed variables.

For instance, some data on particular set of people of observed characteristics of
people. For example, do people having insomnia have suicidal thoughts or feel nau-
seous most of the time and (say) have covariance (insomnia, suicidal thoughts) = 0.2.
Factor analysis works [27] by supposing that variance and covariance structure in
the observed characteristics is due to unobserved factors (say) such as depression

Fig. 25  HMM code implementation part 2

Pattern Recognition and Machine Learning

126

responsible for the variance between all of the other observed variables. It simply
describes the variance and covariance by supposing a casual effect of the unob-
served underlying factors on the observed characteristics.

Factor analysis is an extension of PCA. Both models try to approximate the cova-
riance matrix Σ, but factor analysis questions whether the data are consistent with
some prescribed structure. Figures 28, 29, 30, 31, 32, 33, 34, 35, 36 and 37 describe
the step-wise implementation in Python with various algorithms.

Code Implementation

Fig. 26  HMM code results part 1

Bharadwaj et al.

127

Factor 1 has high factor loadings for E1, E2, E3, E4, and E5 (extraversion).
Factor 2 has high factor loadings for N1, N2, N3, N4, and N5 (neuroticism).
Factor 3 has high factor loadings for C1, C2, C3, C4, and C5 (conscientiousness).
Factor 4 has high factor loadings for O1, O2, O3, O4, and O5 (openness).
Factor 5 has high factor loadings for A1, A2, A3, A4, and A5 (agreeableness).
Factor 6 has none of the high loadings for any variable and is not easily interpreta-

ble. It is good if we take only five factors (Fig. 38). Figures 39 and 40 show the
Python code implementation and variance results.

Fig. 26  (continued)

Fig. 27  HMM code
results part 2

Pattern Recognition and Machine Learning

128

7  �Twitter Sentiment Analysis

Required Packages

•	 Tweepy (!pip install tweepy)
•	 NumPy (!pip install numpy)
•	 Pandas (!pip install pandas)
•	 Matplotlib.pyplot (!pip install matplotlib.pyplot)
•	 Json (!pip install json)
•	 Textblob (!pip install textblob)
•	 Re (!pip install re)

To do Twitter analysis, we need ACCESS_TOKEN, ACCESS_TOKEN_SECRET,
CONSUMER_KEY, and CONSUMER_SECRET, which can be generated from the
Twitter developer dashboard. If you are note a Twitter [28] developer, visit https://
developer.twitter.com/ and register with a Twitter account. In order to become a
Twitter developer, you need to mention why you would like to become a Twitter

Fig. 28  Factor analysis Python code implementation

Bharadwaj et al.

https://developer.twitter.com/
https://developer.twitter.com/

129

Fig. 29  Factor analysis Python implementation part 1

Fig. 30  Factor analysis Python implementation Bartlett’s test method part 2

Pattern Recognition and Machine Learning

130

Fig. 31  Factor analysis part 3

Fig. 32  Factor analysis part 4

Fig. 33  Factor analysis
part 5

Bharadwaj et al.

131

developer and what kind of data you are going to access and where are you going to
implement the data. Once you are a developer, create an app by mentioning the app
name, application description, website URL (Github repository link is acceptable),
callback URL (localhost / http:127.0.0.1:8080), and your usage. Once you finish
creating an app go to https://developer.twitter.com/en/apps and navigate to the
details of your app to access keys and tokens where you will find consumer keys and
access keys.

Now it is time to install packages. After installing all the packages create a
Python file.

In that file,

	1.	 Import packages.
	2.	 Declare ACCESS_TOKEN, ACCESS_TOKEN_SECRET, CONSUMER_KEY,

and CONSUMER_SECRET variables and assign your respective keys.

Fig. 34  Factor analysis part 6

Fig. 35  Eigenvalue scree plot

Pattern Recognition and Machine Learning

https://developer.twitter.com/en/apps

132

	3.	 Authenticate your consumer keys with twitter by passing consumer keys to the
tweepy.OAuthHandler method from the tweepy package that we have imported
earlier.

	4.	 Pass access tokens to the set_access_token() method of the authenticated Twitter
object.

	5.	 Get your API by passing the authenticated object to API() from the tweepy
package.

Code

ACCESS_TOKEN = "your access token"
ACCESS_TOKEN_SECRET = "your access token secret"
CONSUMER_KEY = "your consumer key"
CONSUMER_SECRET = "your consumer secret"
auth = tweepy.OAuthHandler(CONSUMER_KEY,CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN,ACCESS_TOKEN_SECRET)
api = tweepy.API(auth)

Now that we have access to twitter API, we can use that API to stream data.
Streaming data from twitter can be possible in 2 ways:

	1.	 Using the tweepy API calling method
	2.	 Using the tweepy cursor, streamListener, and a little OOPS implementation

Using the tweepy API Calling Method
tweepy.api class provides various wrappers for API provided by Twitter. Such wrap-
pers include many Timeline Methods:

Fig. 36  Factor analyzer scree plot

Bharadwaj et al.

133

Fig. 37  Output-factor analysis part 1

Pattern Recognition and Machine Learning

Fig. 38  Factor analysis fitting

Fig. 39  Output-factor analysis part 2

135

API.home_timeline([since_id][, max_id][, count][, page])
API.statuses_lookup(id[, include_entities][, trim_user][, map])
API.user_timeline([id/user_id/screen_name][, since_id][, max_id]
[, count][, page])
API.retweets_of_me([since_id][, max_id][, count][, page])

For many more, please refer to the following: http://docs.tweepy.org/en/v3.5.0/
api.html

tweets = api.user_timeline(screen_name='cmanmohan', count=20)

Tweets variable contains a list of 20 recent tweets from the user “cmanmohan”
as a dictionary. For sentimental analysis we are considering the tweet text from all
those tweets, so we need to extract the data from the “text” directory from each
dictionary consisting of [‘__class__’, ‘__delattr__’, ‘__dict__’, ‘__dir__’, ‘__
doc__’, ‘__eq__’, ‘__format__’, ‘__ge__’, ‘__getattribute__’, ‘__getstate__’, ‘__
gt__’, ‘__hash__’, ‘__init__’, ‘__init_subclass__’, ‘__le__’, ‘__lt__’, ‘__module__’,
‘__ne__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’, ‘__repr__’, ‘__setattr__’,
‘__sizeof__’, ‘__str__’, ‘__subclasshook__’, ‘__weakref__’, ‘_api’, ‘_json’,
‘author’, ‘contributors’, ‘coordinates’, ‘created_at’, ‘destroy’, ‘entities’, ‘favorite’,
‘favorite_count’, ‘favorited’, ‘geo’, ‘id’, ‘id_str’, ‘in_reply_to_screen_name’, ‘in_
reply_to_status_id’, ‘in_reply_to_status_id_str’, ‘in_reply_to_user_id’, ‘in_reply_
to_user_id_str’, ‘is_quote_status’, ‘lang’, ‘parse’, ‘parse_list’, ‘place’, ‘possibly_
sensitive’, ‘quoted_status’, ‘quoted_status_id’, ‘quoted_status_id_str’, ‘retweet’,
‘retweet_count’, ‘retweeted’, ‘retweets’, ‘source’, ‘source_url’, ‘text’, ‘truncated’,
‘user’] directories and include those into a pandas Data Frame for processing.

df = pd.DataFrame(data = [tweet.text for tweet in tweets],
columns=['Tweets'])

Additionally, we can include other directory data like retweet_count, favorite_
count, and created_at for visualization purposes (Fig. 41):

Fig. 40  Variance percentage output

Pattern Recognition and Machine Learning

http://docs.tweepy.org/en/v3.5.0/api.html
http://docs.tweepy.org/en/v3.5.0/api.html

136

df['retweets'] = np.array([tweet.retweet_count for tweet in
tweets])
df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
df['date'] = np.array([tweet.created_at for tweet in tweets])
df.head()

With the data we have in df Data Frame, we can visualize a plot as shown in
Fig. 42 that illustrates likes and retweets against dates:

time likes
time_retweets = pd.Series(data=df['likes'].values,
index=df['date'])
time_retweets.plot(figsize=(16,4),color='b',legend=True,label="Li
kes")
timeretweets
time_retweets = pd.Series(data=df['retweets'].values,
index=df['date'])
time_retweets.plot(figsize=(16,4),color='r',legend=True,label="Ret
weets")
plt.show()

Coming to our main objective (sentiment analysis), we know that our data frame
has Tweets, retweets, likes, and date as attributes and [29] that out target attribute is
Tweets that contain hyperlinks, special characters, and other noisy elements, and
hence we need to clean the strings before proceeding to analysis. There are several

Fig. 41  Tweet retweets and likes tables from twitter

4000
Likes
Retweets

3000

2000

1000

date

0

20
20
-01

-21

20
20
-01

-22

20
20
-01

-23

20
20
-01

-24

20
20
-01

-25

20
20
-01

-26

20
20
-01

-27

20
20
-01

-28

Fig. 42  Plot the likes and retweets of sentiment analysis

Bharadwaj et al.

137

ways of cleaning data, but regular expression evaluation is fast and easy. Regular
expression (re) has a method called sub that operates on the leftmost characters in a
string and we use this method to replace special characters with a space to split them
using .split(“ ”), which returns the list of words in the text for us to join later to form
a sentence. Not clear? Let us see this in practice.

defclean_tweet(tweet):

remove special charecters and hyperlings from the string using
regular expression
return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\
w+:\/\/\S+)", " ", tweet).split())

Now, by passing a noisy string we can get a clean string that is helpful in per-
forming the analysis. For polarity evaluation, we are using a TextBlob [30] package.
Let us define a function called analyze_sentiment that takes a noisy tweet and
returns the polarity level of the respective clean tweet. Figures 43 and 44 show the
post-processing outputs of sentimental analysis.

Fig. 43  After data processing

8

<matplotlib.axes._subplots.AxesSubplot at 0x7f540d9cc5f8>

6

4

2

0

N
eu

tr
al

P
os

iti
ve

N
eg

at
iv

e

Fig. 44  Plots of bar graph for neutral, positive, and negative using tweet API

Pattern Recognition and Machine Learning

138

defanalyze_sentiment(tweet):

analysis = TextBlob(clean_tweet(tweet))
returnanalysis.sentiment.polarity

The polarity level ranges from −1 to 1, polarity <0 being a negative degree,
polarity = 0 being a neutral degree, and polarity >1 being a positive degree.

def degree(polarity):

if(polarity>0):
return 'Positive'
elif polarity==0:
return 'Neutral'
else:
return 'Negative'

We can include clean data, polarity, and sentiment (polarity degree) into our df
Data Frame.:

df['clean_tweet'] = np.array([clean_tweet(tweet) for tweet in
df['Tweets']])
df['polarity'] = np.array([analyze_sentiment(tweet) for tweet in
df['Tweets']])
df['sentiment'] = np.array([degree(polarity) for polarity in
df['polarity']])
df.head()

Now let us see how many positives, neutrals, and negatives are there in our data
by simply plotting a bar graph:

df['sentiment'].value_counts().plot(kind='bar',color=[‘r’,’g’
,’b’])

Using tweepy Cursor, streamListener, and a Little OOPS Implementation
Tweepy has a streamListener class that allows us to stream live data one after another.
Since the data is live and leads to large data we can [31] write them to a file, but for
this time let us limit the tweets on data stream itself and save them in a list named
tweets_data. Here we are going to implement a little object-oriented programming
for easy reference. Initially, we need to initiate a listener class that takes tweepy.
streamListener as a parameter, which will have a constructer and 3 tweepy recogniz-
able methods on_data(), on_error(), on_status(). Their working is same as their same

Bharadwaj et al.

139

suggests. Tweepy.streamListerner will trigger these methods while the data is stream-
ing. on_data() we will append the incoming data to tweets_data list until we reach a
limit and when on_error() and on_status() we simply print those. Figures 45, 46, and
47 provide the code implementation and output of the tweepystreamlistener.

classtwitterStreamListener(tweepy.StreamListener):

Fig. 45  Tweets, retweets, and likes input data

Fig. 46  Data after post processing

8

10

12

14

6

4

2

0

N
eu

tr
al

P
os

iti
ve

N
eg

at
iv
e

Fig. 47  Plots of bar graph for neutral, positive, and negative using tweepy cursor, streamListener

Pattern Recognition and Machine Learning

140

 """
 Listener class to print received tweets
 """
def __init__(self,limit):
self.count=0

defon_data(self,data):
self.count += 1
tweets_data.append(data)
if(self.count>=limit):
print("Data Extracted:",len(tweets_data))
return False

defon_error(self,status):
print("Error: ", status)

defon_status(self, status):
print("Status: ",status.text)

You can add code for writing streaming data into a file under or in place of the
line tweets_data.append(data).

In the main class, we have to create an instance of twitterStreamListener in order
to use the resources of that class. Since we [32] are using a constructor method in
that class, we need to create an object with a limit as parameter. Remember that this
class is streaming the data only when tweepy allows access. So here we need to use
the tweepy.Stream() module to authenticate and pass the class object where stream-
ing methods are initiated. As mentioned earlier, all the streaming data is live con-
taining unnecessary tweets, so we need to filter through those tweets to get the
desired tweets. twitter.Stream has an inbuild method called filter() to filter tweets
when given a list of desired keywords/hash tags:

tweets_data = []
if __name__ == "__main__":

 # TWEETS RELATED TO HASHTAG
limit = 20
hash_tag_list = ["coronavirus"]
TwitterStreamListener = twitterStreamListener(limit)
twitterStream = tweepy.Stream(auth, TwitterStreamListener)
twitterStream.filter(track=hash_tag_list)

tweets_data contains all the tweets, and as we have done in the previous method,
we need to parse the data into a Data Frame but here the tweeter_data contains a list
of dictionary strings that we need to convert to dictionary using a json package and
then push them into the Data Frame:

Bharadwaj et al.

141

importjson
df = pd.DataFrame(data = [json.loads(tweet)['text'] for tweet in
tweets_data], columns=['Tweets'])
df['retweets'] = np.array([json.loads(tweet)['retweet_count'] for
tweet in tweets_data])
df['likes'] = np.array([json.loads(tweet)['favorite_count'] for
tweet in tweets_data])
df['date'] = np.array([json.loads(tweet)['created_at'] for tweet
in tweets_data])
df.head()

Cleaning(), analyze_sentiment(), degree() functions and methodology is same
and shown in (Fig. 46).

By plotting we get (Fig. 47),
Similarly, for getting the tweets of a particular user, we can use the tweepy.

Cursor method (Figs. 48, 49, and 50), which uses pagenation and works like a
crawler for Twitter. The basic usage for this method is to crawl the pages of timeline
of a particular page up to a number of tweets. If the user is given as none, then the
authenticated user’s ID should be considered:

classTwitterClient():
def __init__(self):
self.twitter_client = tweepy.API(auth)
 # self.twitter_user = twitter_user

defget_twitter_client_api(self):
returnself.twitter_client

defget_user_timeline_tweets(self, num_tweets, user):
tweets=[]
for tweet in tweepy.Cursor(self.twitter_client.user_timeline, id =
user).items(num_tweets):
tweets.append(tweet)
print("Data Extracted:",len(tweets))
return tweets

In the main class, we need to create an instance of the TwitterClient() class and
through that we can call the get_user_timeline_tweets() method by passing the
number of tweets and username of a specific user; if you want your timeline, then
give “none” in place of username.

Pattern Recognition and Machine Learning

142

tweets_data = []
if __name__ == "__main__":

 # TWEETS RELATED TO A PERTICULAT USER
twitter_client = TwitterClient()
tweets = twitter_client.get_user_timeline_tweets(20,'cmanmohan')

Fig. 49  Data after processing

8

<matplotlib.axes._subplots.AxesSubplot at 0x7f540d9cc5f8>

6

4

2

0

N
eu

tr
al

P
os

iti
ve

N
eg

at
iv

e

Fig. 50  Plots of bar graph for neutral, positive, and negative using Twitter client

Fig. 48  Data input with tweets, retweets, and likes

Bharadwaj et al.

143

Tweets variable consists of data in the form of a list containing all [33] the tweets
streamed. Like we have done in the previous stages, we need to convert the streamed
data into a pandas Data Frame:

df = pd.DataFrame(data = [tweet.text for tweet in tweets],
columns=['Tweets'])
df['retweets'] = np.array([tweet.retweet_count for tweet in
tweets])
df['likes'] = np.array([tweet.favorite_count for tweet in tweets])
df['date'] = np.array([tweet.created_at for tweet in tweets])
df.head()

Cleaning(), analyze_sentiment(), degree() functions and methodology is same
and shown in (Fig. 49).

By plotting we get (Fig. 50),

References

	 1.	Aizerman, M.A., Braverman, E.M. and Rozoner, L.I. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, 25:821–
837, 1964

	 2.	Baron, R.A., & Ensley, M.D. 2005. Opportunity recognition as the detection of meaningful
patterns: Evidence from the prototypes of novice and experienced entrepreneurs. Manuscript
under review

	 3.	Deep Learning for Computer Vision: Expert techniques to train advanced neural networks
using TensorFlow and Keras. [Authors: RajalingappaaShanmugamani]

	 4.	Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural
Networks written in Python, Theano, and TensorFlow. [Authors: LazyProgrammer]

	 5.	Deep learning quick reference : useful hacks for training and optimizing deep neural networks
with TensorFlow and Keras. [Authors: Bernico, Mike]

	 6.	Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech
Recognition with Tensorflow and Keras. [Authors: Navin Kumar Manaswi]

	 7.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo
Zaccone, Md. RezaulKarim, Ahmed Menshawy]

	 8.	Devroye, L., Gyorfi, L. and Lugosi, G. A Probabilistic Theory of Pattern Recognition. Springer
Verlag, Applications of Mathematics Vol. 31, 1996.

	 9.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

	10.	Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. [Author: AurélienGéron]

	11.	Hands-On Transfer Learning with Python Implement Advanced Deep Learning and Neural
Network Models Using TensorFlow and Keras [Authors: DipanjanSarkar, Raghav Bali,
TamoghnaGhosh]

	12.	Hands-on unsupervised learning with Python : implement machine learning and deep learning
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	13.	 Intelligent mobile projects with TensorFlow : build 10+ artificial intelligence apps using
TensorFlow Mobile and Lite for iOS, Android, and Raspberry Pi. [Authors: Tang, Jeff]

	14.	 Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and
deep learning with TensorFlow and Keras. [Authors: SantanuPattanayak]

Pattern Recognition and Machine Learning

144

	15.	 Internet of Things for Industry 4.0, EAI, Springer, Editors, G. R. Kanagachidambaresan,
R. Anand, E. Balasubramanian and V. Mahima, Springer.

	16.	Krestinskaya O, Bakambekova A, James AP (2019) Amsnet: analog memristive system archi-
tecture for mean-pooling with dropout convolutional neural network. In: IEEE international-
conference on artificial intelligence circuits and systems

	17.	Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network
architectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul Pap
1–14.https://doi.org/10.1109/TCSI.2018.2866510

	18.	Learn TensorFlow 2.0: Implement Machine Learning And Deep Learning Models With
Python. [Authors: Pramod Singh, Avinash Manure]

	19.	Li Y, Wang Z, Midya R, Xia Q, Yang JJ (2018) Review of memristor devices in neuromorphic
computing: materials sciences and device challenges. J Phys D: ApplPhys 51(50):503002

	20.	Liao Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural net-
works and visual cortex. arXiv:1604.03640

	21.	Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22
	22.	Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn

89(3):1569–1578
	23.	Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits.

IEEE Trans Neural Netw Learn Syst 28(8):1734–1746
	24.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using

TensorFlow 1.x and Keras. [Author: Armando Fandango]
	25.	McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity.

Bull Math Biophys 5(4):115–133
	26.	Osuna, E. and Girosi. F. Reducing the run-time complexity of support vector machines. In

International Conference on Pattern Recognition (submitted), 1998
	27.	Osuna, E., Freund, R. and Girosi, F. Training support vector machines: an application to face

detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages 130 – 136,
1997.

	28.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed
Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]

	29.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-
Vision Projects Using Python, Keras&TensorFlow [Authors: AnirudhKoul, Siddha Ganju,
MeherKasam]

	30.	Python Deep Learning: Exploring deep learning techniques, neural network architectures
and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	31.	Ren S, He K, Girshick RB, Sun J (2017) Faster r-cnn: towards real-time object detection with
region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

	32.	Smola, A. and Sch¨olkopf, B. On a kernel-based method for pattern recognition, regression,
approximation and operator inversion. Algorithmica (to appear), 1998.

	33.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, AmitaKapoor]

Bharadwaj et al.

https://doi.org/10.1109/TCSI.2018.2866510

145© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4_12

Programming Tensor Flow with Single
Board Computers

G. R. Kanagachidambaresan, Kolla Bhanu Prakash, and V. Mahima

1  �Introduction

More SBC has come in today’s market for rapid prototyping and modelling ad hoc
solutions. Table 1 illustrates the recent most sold SBCs.

Single board computers are mainly used for limited applications and mainly
sophisticated IoT and edge applications [1, 4, 5, 6]. The single computer has very
low capability and with resources starving in nature. The single board computers are
enabled with general purpose input and output (GPIO) pins to handle electrical
signals and communicate with a wire and wirelessly with nearby cyber physical
systems (CPS) [7, 8, 9, 10, 11]. Figure 1 illustrates the NVIDIA Jetson Nano SBC
with a 40-pin GPIO. The SBC has the UBUNTU operating system with CUDA
framework to make GPU computation [12, 13, 14, 15]. The Jetson Nano is enabled
with a CUDA framework facility to make faster computation.

The package for GPIO activation is Jetson.GPIO, and the following program
illustrates how to switch on and off an LED using GPIO of Jetson Nano:

G. R. Kanagachidambaresan (*) · V. Mahima
Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,
Chennai, Tamil Nadu, India

K. B. Prakash
KL Deemed to be University, Vijayawada, AP, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57077-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-57077-4_12#DOI

146

importJetson.GPIO as GPIO
//Package Importing for handling GPIO pins of the SBC
import time
//for delay time setting
GPIO.setmode(GPIO.BOARD)
//mapping the pins as per board numbering
bulp = [18]
//pin number 18 assigned to glow bulp
GPIO.setup(bulp, GPIO.OUT, initial=GPIO.LOW)
//Initializing pin 18 as output pin with zero initial condition,
so that bulp will be in off condition when it starts
GPIO.output(bulp, GPIO.HIGH)
//pin 18 is assigned high
time.sleep(10);

Table 1  Recent SBCs comparison table

S. No Name of SBC Processor Speed RAM
Operating
system

1 Raspberry pi 4 Broadcom BCM2711 1.5 GHz 2GB Raspian
2 Ordroid Samsung Exynos5422

cortex™-A15
2 GHz 2GB Linux and

android
3 NVIDIA

Jetsonnano
Quad-core ARM® cortex®-A57
MPCore processor

1.6GHz 4GB Ubuntu

4 NVIDIA Xavier 8-core ARM v8.2 64-bit CPU 2.26 GHz 12 GB Ubuntu

Fig. 1  NVIDIA Jetson nano single board computer (SBC)

G. R. Kanagachidambaresan et al.

147

//make the pin in high state for ten seconds
GPIO.output(bulp, GPIO.LOW)
// bulp off.

The tensor flow installation in GPUs can be done through the following command:

pip3 install tensorflow-gpu #for GPU installation in NVIDIA

Figure 2 illustrates the NVIDIA Xavier single board computer, more capable
with high resources [16] when compared with the Jetson Nano board. The XAVIER
board is mainly used for image processing and automatic driving assistance pur-
poses to understand and recognize the images and to acknowledge the system
accordingly.

Both the NVIDIA Jetson and Xavier modules are [17] enabled with camera
interface options. The camera can be connected via i2c and USB ports. The follow-
ing procedure describes the camera installation and snapshot code for taking picture
from a webcam in NVIDIA SBCs.

Installation from git repository using the command.

git clone https://github.com/NVIDIA-AI-IOT/jetcam
cdjetcam
sudo python3 setup.py install

Importing python packages:

Fig. 2  NVIDIA Xavier single board computer

Programming Tensor Flow with Single Board Computers

148

fromjetcam.csi_camera import CSICamera
cam1 = CSICamera(width=240, height=320, capture_width=1080, cap-
ture_height=720, capture_fps=20)

Here the image display height is specified as 329 and the width is specified as
240. The width of capturing is 1080 and the height of capturing is 720. The variable
cam1 is mentioned as CSI for ribbon cable camera.

fromjetcam.usb_camera import USBCamera
cam1 = USBCamera(capture_device=1)

The variable cam1 is set for a USB camera. The code used to open the camera
shutter is given below:

image = camera.read()

2  �CUDA Programming in NVIDIA

Both the NVIDIA SBCs are capable of working on the CUDA framework. The nvcc
compiler essential for performing the CUDA [18] operation is to be exported. The
operating system already comes with CUDA and the following command can be
used to export the path of language-CUDA:

export PATH=${PATH}:/usr/local/cuda/bin
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64

The verification of the above is done through the following command in ter-
minal box:

nvcc –v

Here in the programming, the sentence to be executed in the GPU should be
mentioned with __global__ syntax identifier. The TensorRT package can accelerate
the performance of GPU and provide lower computation time in matrix calcula-
tions. The following code describes the simple matrix multiplication code in the
CUDA environment in NVIDIA jetsonnano SBC:

G. R. Kanagachidambaresan et al.

149

@cuda.jit
“”” initializing CUDA
defmatrixmul(mat1, mat2, matresult):
 """square matrix multiplication (mat1* mat2 = matresult)
p, q = cuda.grid(2)
if p <matresult.shape[0] and q <matresult.shape[1]:
temp = 0.
for k in range(mat1.shape[1]):
temp += mat1[p, k] * mat2[k, q]
matresult[i, j] = temp

The SBC has various industrial needs and is presently solving various industrial
problems. The following section discusses some of the related industrial problems

3  �Prepackaging Inspection Module for Industry 4.0

This below module aims on developing a prepackaging inspection machine for
packaging goods before being dispatched. This is a low cost cyber physical system
which verifies the content in the package and performs a check before wrapping for
shipment. The kit is trained with the images of toolset in Raspberry pi4 and
Jetsonnano using deep learning, tensor flow, keras, open cv, and GPIO. The images
for the inspection are captured by a camera placed on the top center of the comput-
ing machine. The images captured are being trained by the precaptured and stored
images. The captured images undergo a series of training phases to check and verify
whether the toolsets are perfectly aligned and placed. In the first step of the process,
the toolset will be placed in the inspection machine to capture it. Then the captured
images are segmented into two types: (1) right alignment and (2) wrong alignment.
The correct images are the ones which are perfectly aligned and placed in the per-
fect order. The wrong images are the ones which are misplaced, misaligned, and in
some cases certain tools from the toolset are missed during the prepackaging. The
results of the correct and wrong model are indicated by the machine with the help
of green and red LEDs. If the image is correct, it will blink green else it will blink
red. The region of interest for the camera is 32x24 cm.

Figure 3 illustrates the hardware design of the module. The module is trained
with tensor flow and deep learning modules.

Programming Tensor Flow with Single Board Computers

150

Figure 4 is the flowchart proposed for the prepackaging inspection machine. The
equipment is moved inside the region of interest through conveyer mechanism. The
image is first given as input through a camera sensor properly mounted covering the
region of interest, then the object is recognized and classified through tensor flow
deep learning for better accuracy. After classification, the image is checked for cor-
rect alignment and wrong alignment through deep learning and it helps in taking
decision. If the image is correct, it permits and indicates a green light and rotates the
conveyer in the forward direction, if the image is wrong it does not permit and indi-
cates a red light. Then the number of correct images and wrong images detected are
saved and end the process. The counter is integrated with the Google cloud service
and it is able to indicate the production rate to the subscribers. The system is highly
accurate and presently trained with more than 3000 images of a single product kit
set. The same module can be easily trained for other similar applications on
packaging.

An input image is given and it is stored in .jpeg file format. Then they are tested
and trained. After testing and training the records are saved. With the records the
images are trained and evaluate the new input images. Figures 5 and 6 elucidate that
when the camera senses the correct aligned tool kit, it gives a green signal, else it
gives a red signal.

Figure 7 illustrates the verification time taken by each single board computer.
NVIDIA Xavier has the least computational time and checks more packages
per minute.

NVIDIA Jetson
Nano

Camera sensor

Mechanical kits to
be packed

Fig. 3  Tensor flow–based pre-inspection machine

G. R. Kanagachidambaresan et al.

151

Tool Kit data set

Sample Validation

Input features and
labels

Tensorflow Deep
Learning

Feature Extraction

Identified?

Yes

Record

No

Testing
Training

Fig. 4  Flowchart diagram

Fig. 5  Real-time results verified as correct alignment

Programming Tensor Flow with Single Board Computers

152

Fig. 7  Time complexity of different SBCs

Fig. 6  Real-time results verified as wrong alignment

G. R. Kanagachidambaresan et al.

153

4  �Fish Geopositioning System for Industry 4.0

This module aims in developing automatic fish positioning system for fish packag-
ing industry, our motive of this invention are to reduce the difficulties faced by the
labor during cutting process, fastening of packaging work, and to protect the labor
from eye sight stress, it causes like myopia, glaucoma, hyperopia and smell allergies
with the help of the technology of neural network.

The first step for packaging is to catch the fish with huge quantity for processing,
once the fishes are catched, then fishes are taken to the fish processing machine and
passed into the conveyer and the fishes will start to move over the conveyer track
belt. The fish are cut and cleaned before preservation and transport. The randomness
of fish in the conveyer makes the cutting machine more human and intervention is
required to rotate and properly position the fish for the cutting process.

The position detection of fish is detected by camera, using the convolution neural
network; if the position is wrong then it is corrected with the help of a motor so that
the described problem faced by labor will be solved, the efficiency of work will be
increased, and the task completed faster. Figure 8 illustrates the working process of
the automatic fish positioning system using deep convolutional neural network
and IoT.

Figure 9 illustrates the correct and wrong position of fish to be trained for the
robot. The convolution neural network understands the current position of the fish and
makes N rotation with a stepper motor drive to rotate the fish to the correct position.

Fish from
catchment

zone

Deep Learning based
Fish position detection

algorithm

Stepper motor, driver
and control algorithm

To Cutting
section

M

Rotating Conveyer
Fish Position rotating

mechanism

M

Fig. 8  Block diagram for automatic fish positioning system

Programming Tensor Flow with Single Board Computers

154

Figure 10 elucidates the results from the SBC, and the SBC is directly connected
with servo motor through GPIO and commands the servo to make certain necessary
rotations for cutting and cleaning purposes. Figure 11 shows the wrong position of
the fish. Figure 12 illustrates the training loss with epoch for the modeled CNN.

Figure 13 illustrates the time taken by a single board computer to complete sin-
gle verification. NVIDIA Xavier takes minimum time to verify the given
input images.

Fig. 9  Data set for training the fish position

Fig. 10  Real-time results verified – correct position of fish

G. R. Kanagachidambaresan et al.

155

Fig. 11  Wrong position
identification of fish

1.0
training Loss & acuracy on FISH_pos/FISH_Negative

0.8

0.6

0.4

ra
te

 o
f l

os
s/

ac
cu

ra
cy

0.2

train_loss

val_loss

train_acc
val_acc

0.0 2.5 5.0 7.5 10.0

epoch rate

12.5 15.0 17.5

Fig. 12  Training loss and accuracy on fish position

Programming Tensor Flow with Single Board Computers

156

5  �Conclusion

The single board computers have become the necessary element for rapid prototyp-
ing and are widely used for edge analytics. The computing devices in SoC are
enabled with fast computing and a communication device in par with the client.
Apart from all the constraints, it is low power consuming in nature. The application
of tensor flow in SBC is enormous and can serve smart city applications. The indus-
try Internet of Things and standard Industry 4.0 provide a bigger platform for SBC
with opencv and tensor flow applications.

References

	 1.	Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors:
Hisham El-Amir, Mahmoud Hamdy]

	 2.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo
Zaccone, Md. RezaulKarim, Ahmed Menshawy]

	 3.	Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press,
Cambridge

Fig. 13  Verification time for each SBC

G. R. Kanagachidambaresan et al.

157

	 4.	Grandison T, Sloman M (2000) A survey of trust in internet applications. IEEE CommunSurv
Tutor 3(4):2–16

	 5.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

	 6.	Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. [Author: AurélienGéron]

	 7.	Hands-On Transfer Learning with Python Implement Advanced Deep Learning and Neural
Network Models Using TensorFlow and Keras [Authors: DipanjanSarkar, Raghav Bali,
TamoghnaGhosh]

	 8.	Hands-on unsupervised learning with Python: implement machine learning and deep learning
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	 9.	 Internet of Things for Industry 4.0, EAI, Springer, Editors, G. R. Kanagachidambaresan,
R. Anand, E. Balasubramanian and V. Mahima, Springer.

	10.	Learn TensorFlow 2.0: Implement Machine Learning And Deep Learning Models With
Python. [Authors: Pramod Singh, Avinash Manure]

	11.	Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff&Itay Lieder]
	12.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using

TensorFlow 1.x and Keras. [Author: Armando Fandango]
	13.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed

Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]
	14.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-

Vision Projects Using Python, Keras&TensorFlow [Authors: AnirudhKoul, Siddha Ganju,
MeherKasam]

	15.	Python Deep Learning: Exploring deep learning techniques, neural network architectures
and GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater,
GianmarioSpacagna, Peter Roelants, Valentino Zocca]

	16.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,
and TensorFlow [Authors: Sebastian Raschka, VahidMirjalili]

	17.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, AmitaKapoor]

	18.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms
[Authors: Sam Abrahams, DanijarHafner, Erik Erwitt, Ariel Scarpinelli]

Programming Tensor Flow with Single Board Computers

159© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4

�Appendices

�Appendix 1

	1.	 McCulloch-Pitts Neuron Model

https://doi.org/10.1007/978-3-030-57077-4#DOI

160

Appendices

161

	2.	 Multi-Layer Perceptron, Keras Intuition, Backpropagation, Activation function,
and Gradient Descent

	3.	 (a). Performing Classification and Regression Using Artificial Neural Network

Appendices

162

Appendices

163

Appendices

164

(b). Performing Classification and Regression Using Artificial Neural Network

Appendices

165

	4.	 (a). Principal Component Analysis

Appendices

166

Appendices

167

Appendices

168

Appendices

169

(b). Batch Normalization

Appendices

170

�Appendix 2

Project 1
Create a model that predicts whether or not a loan will be default using the histori-
cal data:

Problem Statement – Source - Simplilearn

Steps to Perform
Perform exploratory data analysis and feature engineering and then apply feature
engineering. Follow up with a deep learning model to predict whether or not the
loan will be default using the historical data.

Tasks

	1.	 Feature Transformation
Transform categorical values into numerical values (discrete).

	2.	 Exploratory data analysis of different factors of the dataset.
	3.	 Additional Feature Engineering

You will check the correlation between features and will drop those features that
have a strong correlation.

This will help reduce the number of features and will leave you with the most
relevant features.

Appendices

171

	4.	 Modeling
After applying Exploratory Data Analysis (EDA) and feature engineering, you

are now ready to build the predictive models.
In this part, you will create a deep learning model using Keras with tensorflow

backend.

Appendices

172

Appendices

173

Project 2
Build a Convolutional Neural Network (CNN) model that classifies the given pet
images correctly into dog and cat images:

Problem Statement – Source - Simplilearn

Project Description and Scope
You are provided with the following resources that can be used as inputs for
your model:

	1.	 A collection of images of pets, that is, cats and dogs. These images are of differ-
ent sizes with varied lighting conditions.

	2.	 Code template containing the following code blocks:

	 (a).	 Import modules (Part 1).
	 (b).	 Set hyper parameters (Part 2).
	 (c).	 Read image data set (Part 3).
	 (d).	 Run tensorflow model (Part 4).

You are expected to write the code for CNN image classification model (between
Parts 3 and 4) using tensorflow that trains on the data and calculates the accuracy
score on the test data.

Appendices

174

Project Guidelines
Begin by extracting the ipynb file and the data in the same folder. The CNN model
(cnn_model_fn) should have the following layers:

•	 Input layer
•	 Convolutional layer 1 with 32 filters of kernel size[5,5]
•	 Pooling layer 1 with pool size[2,2] and stride 2
•	 Convolutional layer 2 with 64 filters of kernel size[5,5]
•	 Pooling layer 2 with pool size[2,2] and stride 2
•	 Dense layer whose output size is fixed in the hyper parameter: fc_size = 32
•	 Dropout layer with dropout probability 0.4

Predict the class by doing a softmax on the output of the dropout layers.
This should be followed by training and evaluation:

•	 For the training step, define the loss function and minimize it.
•	 For the evaluation step, calculate the accuracy.

Run the program for 100, 200, and 300 iterations, respectively. Follow this by a
report on the final accuracy and loss on the evaluation data.

Appendices

175

Appendices

176

Appendices

177

Appendices

178

Appendices

179

Appendices

180

Appendices

181

Appendices

183© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4

References

Data Set Web References

	 1.	h t t p s : / / w w w . d i g i t a l o c e a n . c o m / c o m m u n i t y / t u t o r i a l s /
how-to-build-a-neural-network-to-recognize-handwritten-digits-with-tensorflow

	 2.	https://medium.com/@wainglaminlwin/burmese-handwritten-digit-recognition-with-tensor-
flow-74021978c509

	 3.	https://towardsdatascience.com/convolutional-neural-networks-357b9b2d75bd
	 4.	https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d-

3077bac
	 5.	https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-net-

works-cnn
	 6.	https://towardsdatascience.com/a-guide-to-neural-network-layers-with-applications-in-keras-

40ccb7ebb57a
	 7.	https://stepupanalytics.com/detailed-introduction-to-recurrent-neural-networks/
	 8.	https://colah.github.io/posts/2015-08-Understanding-LSTMs/
	 9.	https://en.wikipedia.org/wiki/Long_short-term_memory
	10.	http://www.yaronhadad.com/deep-learning-most-amazing-applications/

References Books

	 1.	Learning TensorFlow [Authors: Tom Hope, Yehezkel S. Resheff & Itay Lieder]
	 2.	Deep Learning Pipeline: Building A Deep Learning Model With TensorFlow [Authors:

Hisham El-Amir, Mahmoud Hamdy]
	 3.	TensorFlow for Machine Intelligence_ A Hands-On Introduction to Learning Algorithms

[Authors: Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli]
	 4.	Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn,

and TensorFlow [Authors: Sebastian Raschka, Vahid Mirjalili]
	 5.	Python Deep Learning: Exploring deep learning techniques, neural network architectures and

GANs with PyTorch, Keras and TensorFlow. [Authors: Ivan Vasilev, Daniel Slater, Gianmario
Spacagna, Peter Roelants, Valentino Zocca]

https://doi.org/10.1007/978-3-030-57077-4#DOI
https://www.digitalocean.com/community/tutorials/how-to-build-a-neural-network-to-recognize-handwritten-digits-with-tensorflow
https://www.digitalocean.com/community/tutorials/how-to-build-a-neural-network-to-recognize-handwritten-digits-with-tensorflow
https://medium.com/@wainglaminlwin/burmese-handwritten-digit-recognition-with-tensorflow-74021978c509
https://medium.com/@wainglaminlwin/burmese-handwritten-digit-recognition-with-tensorflow-74021978c509
https://towardsdatascience.com/convolutional-neural-networks-357b9b2d75bd
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-networks-cnn
https://www.superdatascience.com/blogs/the-ultimate-guide-to-convolutional-neural-networks-cnn
https://towardsdatascience.com/a-guide-to-neural-network-layers-with-applications-in-keras-40ccb7ebb57a
https://towardsdatascience.com/a-guide-to-neural-network-layers-with-applications-in-keras-40ccb7ebb57a
https://stepupanalytics.com/detailed-introduction-to-recurrent-neural-networks/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Long_short-term_memory
http://www.yaronhadad.com/deep-learning-most-amazing-applications/

184

	 6.	Practical Computer Vision Applications Using Deep Learning with CNNs: With Detailed
Examples in Python Using TensorFlow and Kivy. [Author: Ahmed Fawzy Gad]

	 7.	Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. [Author: Aurélien Géron]

	 8.	Learn TensorFlow 2.0: Implement Machine Learning And Deep Learning Models With
Python. [Authors: Pramod Singh, Avinash Manure]

	 9.	Hands-On Transfer Learning with Python Implement Advanced Deep Learning and Neural
Network Models Using TensorFlow and Keras [Authors: Dipanjan Sarkar, Raghav Bali,
Tamoghna Ghosh]

	10.	Hands-On Deep Learning for Images with TensorFlow: Build intelligent computer vision
applications using TensorFlow and Keras [Authors: Will Ballard]

	11.	Deep Learning with Applications Using Python: Chatbots and Face, Object, and Speech
Recognition with Tensorflow and Keras. [Authors: Navin Kumar Manaswi]

	12.	 Intelligent mobile projects with TensorFlow : build 10+ artificial intelligence apps using
TensorFlow Mobile and Lite for iOS, Android, and Raspberry Pi. [Authors: Tang, Jeff]

	13.	 Intelligent Projects Using Python: 9 real-world AI projects leveraging machine learning and
deep learning with TensorFlow and Keras. [Authors: Santanu Pattanayak]

	14.	Deep Learning in Python: Master Data Science and Machine Learning with Modern Neural
Networks written in Python, Theano, and TensorFlow. [Authors: LazyProgrammer]

	15.	Deep learning quick reference : useful hacks for training and optimizing deep neural networks
with TensorFlow and Keras. [Authors: Bernico, Mike]

	16.	Deep Learning for Computer Vision: Expert techniques to train advanced neural networks
using TensorFlow and Keras. [Authors: Rajalingappaa Shanmugamani]

	17.	 Internet of Things for Industry 4.0, EAI, Springer, Editors, G. R. Kanagachidambaresan,
R. Anand, E. Balasubramanian and V. Mahima, Springer.

	18.	Deep Learning with TensorFlow: Explore neural networks with Python [Authors: Giancarlo
Zaccone, Md. Rezaul Karim, Ahmed Menshawy]

	19.	TensorFlow 1.x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-
intelligence driven problems with Python. [Authors: Antonio Gulli, Amita Kapoor]

	20.	Hands-on unsupervised learning with Python : implement machine learning and deep learning
models using Scikit-Learn, TensorFlow, and more [Authors: Bonaccorso, Giuseppe]

	21.	Mastering TensorFlow 1.x: Advanced machine learning and deep learning concepts using
TensorFlow 1.x and Keras. [Author: Armando Fandango]

	22.	Practical Deep Learning for Cloud, Mobile, and Edge: Real-World AI & Computer-Vision
Projects Using Python, Keras & TensorFlow [Authors: Anirudh Koul, Siddha Ganju, Meher
Kasam]

Article References

	23.	Agrawal A, Roy K (2019) Mimicking leaky-integrate-fire spiking neuron using automotion of
domain walls for energy-efficient brain-inspired computing. IEEE Trans Magn 55(1):1–7

	24.	Akinaga H, Shima H (2010) Resistive random access memory (reram) based on metal oxides.
Proc IEEE 98(12):2237–2251

	25.	Amit DJ, Amit DJ (1992) Modeling brain function: the world of attractor neural networks
Cambridge University Press, Cambridge

	26.	Bourzac K (2017) Has intel created a universal memory technology?[news]. IEEE Spectr
54(5):9–10

	27.	Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press,
Cambridge

References

185

	28.	Grandison T, Sloman M (2000) A survey of trust in internet applications. IEEE Commun Surv
Tutor 3(4):2–16

	29.	Guo X, Ipek E, Soyata T (2010) Resistive computation: avoiding the power wall with low-
leakage, STT-MRAM based computing. In: ACM SIGARCH computer architecture news, vol
38. ACM, pp 371–382

	30.	Hurst S (1969) An introduction to threshold logic: a survey of present theory and practice.
Radio Electron Eng 37(6):339–351

	31.	Jeong H, Shi L (2018) Memristor devices for neural networks. J Phys D: Appl Phys
52(2):023003

	32.	Krestinskaya O, Dolzhikova I, James AP (2018) Hierarchical temporal memory using mem-
ristor networks: a survey. IEEE Trans Emerg Top Comput Intell 2(5):380–395. https://doi.
org/10.1109/TETCI.2018.2838124

	33.	Krestinskaya O, James AP, Chua LO (2019) Neuro-memristive circuits for edge com-
puting: a review. IEEE Trans Neural Networks Learn Syst (https://doi.org/10.1109/
TNNLS.2019.2899262). arXiv:1807.00962

	34.	Krestinskaya O, Salama KN, James AP (2018) Learning in memristive neural network archi-
tectures using analog backpropagation circuits. IEEE Trans Circuits Syst I: Regul Pap 1–14.
https://doi.org/10.1109/TCSI.2018.2866510

	35.	Krestinskaya O, Bakambekova A, James AP (2019) Amsnet: analog memristive system archi-
tecture for mean-pooling with dropout convolutional neural network. In: IEEE international-
conference on artificial intelligence circuits and systems

	36.	Li Y, Wang Z, Midya R, Xia Q, Yang JJ (2018) Review of memristor devices in neuromorphic
computing: materials sciences and device challenges. J Phys D: Appl Phys 51(50):503002

	37.	Liao Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural net-
works and visual cortex. arXiv:1604.03640

	38.	Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22
	39.	Ma J, Tang J (2017) A review for dynamics in neuron and neuronal network. Nonlinear Dyn

89(3):1569–1578
	40.	Maan AK, Jayadevi DA, James AP (2017) A survey of memristive threshold logic circuits.

IEEE Trans Neural Netw Learn Syst 28(8):1734–1746
	41.	McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity.

Bull Math Biophys 5(4):115–133
	42.	Medsker L, Jain LC (1999) Recurrent neural networks: design and applications. CRC Press,
	43.	Boca Raton Mhaskar H, Liao Q, Poggio T (2016) Learning functions: when is deep better than

shallow. arXiv:1603.00988
	44.	Nili H, Adam GC, Hoskins B, Prezioso M, Kim J, Mahmoodi MR, Bayat FM, Kavehei O
	45.	Strukov DB (2018) Hardware-intrinsic security primitives enabled by analogue state and non-

linear conductance variations in integrated memristors. Nat Electron 1(3):197
	46.	Raghu M, Poole B, Kleinberg J, Ganguli S, Dickstein JS (2017) On the expressive power

of deep neural networks. In: Proceedings of the 34th international conference on machine
learning-volume 70. pp. 2847–2854. https://www.JMLR.org

	47.	Schlkopf B, Smola AJ, Bach F (2018) Learning with kernels: support vector machines, regu-
larization, optimization, and beyond

	48.	Ren S, He K, Girshick RB, Sun J (2017) Faster r-cnn: towards real-time object detection with
region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

	49.	M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat- ´ tenberg, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org

References

https://doi.org/10.1109/TETCI.2018.2838124
https://doi.org/10.1109/TETCI.2018.2838124
https://doi.org/10.1109/TNNLS.2019.2899262
https://doi.org/10.1109/TNNLS.2019.2899262
https://doi.org/10.1109/TCSI.2018.2866510
https://www.jmlr.org

186

	50.	D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable exploration of graph
hierarchy space. Visualization and Computer Graphics, IEEE Transactions on, 14(4):900–913,
2008.

	51.	J. Abello, F. Van Ham, and N. Krishnan. ASK-Graphview: A large scale graph visualization
sytem. Visualization and Computer Graphics, IEEE Transactions on, 12(5):669–676, 2006.

	52.	C.C. Paige, M. Saunders, LSQR: an algorithm for sparse linear equations and sparse leas
squares, ACM Transactions on Mathematical Software 8 (1982) 43–71.

	53.	M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, in: National Bureau of
Standards, Series, vol. #55, Dover Publications, USA, 1964.

	54.	R.R. Hocking, Methods and Applications of Linear Models, in: Wiley Series in Probability and
Statistics, Wiley-Interscience, New York, 1996.

	55.	J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistic and
Econometrics, revised ed., in: Wiley Series in Probability and Statistics, John Wiley & Sons,
Chichester, UK, 1999.

	56.	G.A.F. Seber, The Linear Hypothesis: A General Theory, in: Griffin’s Statistical Monographs
and Courses, Charles Griffin and Company Limited, London, 1966.

	57.	S.F. Ashby, M.J. Holst, T.A. Manteuffel, P.E. Saylor, The role of the inner product in stopping
criteria for conjugate gradient iterations, BIT 41 (1) (2001) 26–52.

	58.	O. Axelsson, I. Kaporin, Error norm estimation and stopping criteria in preconditioned con-
jugate gradient iterations, Journal of Numerical Linear Algebra with Applications 8 (2001)
265–286

	59.	Baron, R.A., & Ensley, M.D. 2005. Opportunity recognition as the detection of meaningful
patterns: Evidence from the prototypes of novice and experienced entrepreneurs. Manuscript
under review

	60.	Ren S, He K, Girshick RB, Sun J (2017) Faster r-cnn: towards real-time object detection with
region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

	61.	Baron, R.A., & Ensley, M.D. 2005. Opportunity recognition as the detection of meaningful
patterns: Evidence from the prototypes of novice and experienced entrepreneurs. Manuscript
under review

	62.	Smola, A. and Sch¨olkopf, B. On a kernel-based method for pattern recognition, regression,
approximation and operator inversion. Algorithmica (to appear), 1998.

	63.	Osuna, E. and Girosi. F. Reducing the run-time complexity of support vector machines. In
International Conference on Pattern Recognition (submitted), 1998

	64.	Osuna, E., Freund, R. and Girosi, F. Training support vector machines: an application to face
detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages 130 – 136,
1997.

	65.	Devroye, L., Gyorfi, L. and Lugosi, G. A Probabilistic Theory of Pattern Recognition. Springer
Verlag, Applications of Mathematics Vol. 31, 1996.

	66.	Aizerman, M.A., Braverman, E.M. and Rozoner, L.I. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, 25:821–
837, 1964

References

187© Springer Nature Switzerland AG 2021
K. B. Prakash, G. R. Kanagachidambaresan (eds.), Programming with
TensorFlow, EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-57077-4

A
AdamOptimizer, 41
AlphaGo, 68
Artificial intelligence, 68
Artificial neural network, 161
Autograd Module, 91
Automatic fish positioning system, 153
Automatically writing wikipedia, 69
Automobile industry

DL, 63, 64
ML, 63, 64

B
Backpropagation through time (BPTT), 54, 55
Batch normalization, 169
Binary logistic regression, 29

C
Carbon resource development, 66
Carbon sector, 66
Chatbot

architecture, 75
code, 75
implementation, 75

Climate change, 63, 64
Code implementation

advantages, 119
application, 119
disadvantages, 119

Code snippet, 97
Computational efficiency matrix, 118

Computer vision, 95
Constant value, 10
Conveyer mechanism, 150
Convolutional layers, 45
Convolutional neural networks

(CNNs), 174
cheetah, 46, 47
convolutional layers, 45
edge detection, 46, 47
feature map, 46, 48
filter, 45
image analysis, 45
max pooling, 46
neural networks, 45
parameters, 45
pooling layers, 46
ReLu activation function, 46
sharpen filters, 46, 47
stride filter, 45, 46
tensorflow, 48
training and accuracy

measurement code snippet,
Python, 49

value, 50
CycleGAN, 71

D
Data loading, 96
Dataflow graph, 1
DataLoader, 96
Dataset, 32, 39
Deep-fake detection, 70, 71

Index

https://doi.org/10.1007/978-3-030-57077-4#DOI

188

Deep learning (DL), 1
climate change, 63, 64
DM, 64, 65
E&M industry (see Entertainment and

media (E&M))
education, 65, 66
energy, 66, 67, 72
finance, 72
services, 63

Deep learning algorithm, 92
Deep learning calculations, 89
Deep learning models, 98
DeepMin, 68
Dependent variables, 23
Disaster management (DM), 64, 65
Dropout, 40
Dynamic computational graphs, 92

E
Edge, 1
Education, 65, 66
Energy, 66, 67, 72
Entertainment and media (E&M)

AlphaGo, 68
automatically writing wikipedia, 69
deep-fake detection, 70, 71
DL, 67, 68
graphic generator, 72
image synthesis, 71
ML, 67, 68
multi-agent system, 71
music generation, 69
restoring sounds, video, 69
voice generation, 68, 69

Exploding gradients, 55

F
Factor analysis, 125, 127
Feature map, 46
Feed-forward systems, 53, 54, 99
Filters, 45
Fish geopositioning system, 153
Flipping, 98
Fourier transform (FFT), 117

G
Gated recurrent unit (GRU), 57
General purpose input and output

(GPIO), 145
Google, 68
Gradient descent, 27
Graphic generator, 72

H
Hello tensorflow program, 5, 6
Hidden layers, 45
Hidden Markov model (HMM), 122

advantages, 123
algorithm, 122
applications, 125
disadvantages, 123

Histogram implementation, 17
Hyper parameters, 40

I
Image analysis, 45
Image augmentation techniques, 98
Image classifier, 95
Image synthesis, 71
Input variable, 25
Intermittent neural system, 99

K
Kernel density estimation, 114

bandwidth selection, 116
characteristics, 114
smoothing parameter, 116
visualization, 115

Kernel tricks, 105
Kernels

advantages, 106, 110
classifier, 105
computational efficiency, 117
disadvantages, 106
Gaussian RBF, 106
heterogeneous data, 116
KDE, 116
linear, 109
polynomial, 106, 107
RBF, 107
regression, 109
ridge, 109
tree based computations, 117

L
Learning model, 26
Learning rate, 28
Least absolute shrinkage selector operator

(LASSO), 28
Least squares linear regression, 25
Linear equation, 23, 24
Linear regression

algorithm, 24
dependent variables, 23
equation, 23

Index

189

functionalities, 24
gradient descent, 27, 28
imported data, 30, 31
input variable, 25
learning model, 26
least square regression, 25
OLS, 26, 27
part 1, 26
part 2, 27
part 3, 28
regularization, 28
simple linear regression, 26
techniques, 25
tensorflow, 25
three lines, code, 25
variables/factors, 23, 25

Linspace, 15, 16
LipNet, 69
Logistic regression, 29

binary/categorical event, 29
classification, 29
importing dataset, 30, 32
independent variables, 29
levels, 30
linear, 29
logistic function, 29
train and test accuracy, 32, 36
types, 29

Long short-term memory (LSTM), 69
applications, 59
code explanation, 59, 60
code snippet, 58
gates, 57, 58
GRU, 57
keras, 58, 59
recurrent NN, 57

M
Machine learning (ML)

automobile, 63
climate change, 63, 64
DM, 64, 65
E&M industry (see Entertainment and

media (E&M))
education, 65, 66
energy, 66, 67, 72
finance, 72

Mathematical functions, 1
Mathematical operations, 10
Matplotlib, 24

histogram implementation, 17, 18
Linspace, 15–17
pylab, 15
Pyplot, 15

random number matrix generation, 16, 17
scatter plot, 15, 16
3D graph, 18, 20
trigonometric curves, 18–20

Max pooling, 46
model.predict(), 59, 60
Multi-agent system, 71
Multi-layer perceptron (MLP), 45
Multinomial logistic regression, 29
Music generation, 69

N
Natural language processing (NLP), 99
Negative matrix initialization, 7, 8
Neural network, 94

AdamOptimizer, 41
database/dataset, 39
dropout, 40
handwritten digits, 39, 40
handwritten text images, 41
hyper parameters, 40
layers, 39
MNIST dataset, 41
one-hot-encoding, 39
visualization, 40

Neural network–based technique, 71
Neuron, 39
Node, 1
Non-renewable fossil, 66
Nuclear power, 66
NVIDIA Xavier single board computer, 147

O
One-hot-encoding, 39
Ordinal logistic regression, 29
Ordinary least squares (OLS), 26
Output matrix value, 103

P
Part-of-speech tagging, 99
Perform exploratory data analysis, 170
Placeholder, 10
Polynomial features, 106
Pooling layers, 46
Prepackaging inspection machine, 150
Prepackaging inspection module, 149
Principal component analysis (PCA), 119,

122, 165
Pylab, 15
Pyplot, 15
Python, 2, 3, 9, 15, 87, 88
Python code implementation, 112

Index

190

Python core functions, 87
Python package, 95, 147
PyTorch, 87–89, 91, 99, 103

components, 89
computer vision, 95
CUDA guarantees, 88
deep learning calculations, 89
dynamic computational diagrams, 88
elements, 90
implementation, 101
LSTM, 99
networks, 95
prefer, 88
and Tensorflow, 94
tensors, 89

R
Rapid prototyping, 145, 156
Raspberry pi4, 149
Recurrent neural networks (RNNs)

accuracy, 56, 57
BPTT, 54, 55
feed-forwarded neural network, 53, 54
input, 56
LSTM, 57, 59
outputs and states, 56
recurrent_neural_network(x), 56
software, 53
tensor flow, 55, 56
train_neural_network(x) function, 57

Regression
linear, 23–26, 28
logistic, 29

Regularization, 28
ReLu activation function, 46
Ridge regression, 28, 114

S
Scatter plot, 15, 16
Scipy contains Gaussian, 116
Sequence-to-sequence model, 75
Sequential data, 53, 59
Simple linear regression, 26
Single board computer (SBC)

comparison table, 146
CUDA, 145
industrial needs, 149
IoT and edge applications, 145
NVIDIA, 148
time complexity, 152
verification time, 156

Soft margin, 105
Software, 53

Speech data, 53
Split training data set, 59
Statistical correlation, 26
Support vector machine (SVM), 105

applications, 106
soft margin and kernel tricks, 105

T
Tensorflow

command output, 4
constant and variable, 9
dataflow graph, 1
deep learning, 1
equation, 10–12
graphical flow, 1, 2
hello tensorflow program, 5, 6
Matplotlib, 15, 16
multi-dimensional operation, 1, 2
negative matrix initialization, 7, 8
operations, 11, 12
placeholder, 10
program, 5
python download, 3
Python.org home page, 3
system requirement, 2–4
tf.zeros() and tf.ones(), 7, 8
variables concept, 9, 10
vectors/matrices, 5
with Session() vs. without Session(), 7

Tensor flow–based pre-inspection
machine, 150

TensorRT package, 148
Tensors, 5
Tested target digit, 60
tf.negative(), 9
tf.zeros() and tf.ones(), 7, 8
TorchScript, 87, 103
Torch tensors, 90
Trigonometric curves, 18–20
Tweepy API calling method, 132
tweets_data, 138
Twitter sentiment analysis

required packages, 128

V
Vanishing gradients, 55
Variables, 9
Vector/matrix, 5
Voice generation, 68, 69

W
With Session() vs. without Session(), 7

Index

	Preface
	Acknowledgement
	Contents
	Introduction to Tensorflow Package
	1 Why Tensorflow for Deep Learning?
	2 Installation Guide to Tensorflow
	2.1 System Requirement

	References

	Tensorflow Basics
	1 Hello Tensorflow Program
	2 Representation of Vector/Matrix
	3 With Session() Vs without Session()
	4 Zeros Matrix and Ones Matrix
	5 Make Matrix Negative
	6 Variables and Constants
	7 Variables Concept in Tensorflow
	8 Implement Concept of Placeholder
	9 Simple Equations Using Tensorflow
	10 Simple Operations in Tensorflow
	References

	Visualizations
	1 Matplotlib in Tensorflow
	1.1 Histogram Implementation
	1.2 Trigonometric Curves

	References

	Regression
	1 Regression Model – Simple Linear Equation
	2 Linear Regression
	3 Logistic Regression
	4 Linear Regression by Importing Datasets
	5 Logistic Regression by Importing Dataset
	References

	Neural Network
	1 Inside the Code
	References

	Convolutional Neural Network
	1 How Does It Work?
	References

	Recurrent Neural Network
	1 How They Work?
	1.1 Backpropagation Through Time (BPTT)
	1.2 In the Code

	2 Long Short-Term Memory
	2.1 LSTM In Keras

	References

	Application of Machine Learning and Deep Learning
	1 Automobile Industry
	2 Climate Change
	3 Disaster Management
	4 Education
	5 Energy
	6 Entertainment and Media
	6.1 AlphaGo
	6.2 Voice Generation
	6.3 Music Generation
	6.4 Restoring Sounds in Video
	6.5 Automatically Writing Wikipedia
	6.6 Deep-Fake Detection
	6.7 Multi-Agent Systems
	6.8 Image Synthesis
	6.9 Graphic Generator

	7 Finance
	References

	Chatbot
	References

	PyTorch
	1 The Significant Highlights of PyTorch
	2 Why We Prefer PyTorch
	3 Requirements for Implementing Deep Learning
	4 PyTorch Basic Components
	4.1 Tensor
	4.2 Autograd Module

	5 Implement the Neural Network Using PyTorch
	6 Difference Between PyTorch and Tensorflow
	7 PyTorch for Computer Vision
	7.1 Image Classifier
	7.2 Image Augmentation in Less Data

	8 Sequential Data Models
	8.1 LSTM in PyTorch

	9 Summary
	References

	Pattern Recognition and Machine Learning
	1 Kernel Support Vector Machine
	1.1 Linear Kernel
	1.2 RBF Kernel
	1.3 Polynomial Kernel

	2 Kernel Ridge Regression
	3 Kernel Density Estimator
	3.1 Density Estimation
	3.2 Constructing a Kernel Density Estimate
	3.3 Features of the Algorithm
	3.3.1 Bandwidth Selection
	3.3.2 Kernels
	3.3.3 Heterogeneous Data
	3.3.4 Fast Fourier Transform–Based Computations
	3.3.5 Tree-Based Computations
	3.3.6 Computational Efficiency

	4 Dimensionality Reduction with Kernel Principal Component Analysis
	5 Hidden Markov Model to Estimate the Behavior of a Person or Animal
	6 Factor Analysis
	7 Twitter Sentiment Analysis
	References

	Programming Tensor Flow with Single Board Computers
	1 Introduction
	2 CUDA Programming in NVIDIA
	3 Prepackaging Inspection Module for Industry 4.0
	4 Fish Geopositioning System for Industry 4.0
	5 Conclusion
	References

	Appendices
	Appendix 1
	Appendix 2

	References
	Data Set Web References
	References Books
	Article References
	Index

