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Joris Voerman1,2(B), Aurélie Joseph2, Mickael Coustaty1,
Vincent Poulain d’Andecy2, and Jean-Marc Ogier1
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Abstract. One major drawback of state of the art Neural Networks
(NN)-based approaches for document classification purposes is the large
number of training samples required to obtain an efficient classification.
The minimum required number is around one thousand annotated docu-
ments for each class. In many cases it is very difficult, if not impossible, to
gather this number of samples in real industrial processes. In this paper,
we analyse the efficiency of NN-based document classification systems in
a sub-optimal training case, based on the situation of a company’s doc-
ument stream. We evaluated three different approaches, one based on
image content and two on textual content. The evaluation was divided
into four parts: a reference case, to assess the performance of the sys-
tem in the lab; two cases that each simulate a specific difficulty linked
to document stream processing; and a realistic case that combined all
of these difficulties. The realistic case highlighted the fact that there is
a significant drop in the efficiency of NN-Based document classification
systems. Although they remain efficient for well represented classes (with
an over-fitting of the system for those classes), it is impossible for them to
handle appropriately less well represented classes. NN-Based document
classification systems need to be adapted to resolve these two problems
before they can be considered for use in a company’s document stream.

Keywords: Document classification · Image processing · Language
processing

1 Introduction

Companies generate a large amount of documents everyday, internally or exter-
nal entities. Processing all of these documents required a lot of resources. For
this reason, many companies use automatic system like Digital Mailroom [29]
to reduce the workload of those documents processing. Companies like ABBYY,
KOFAX, PARASCRIPT, YOOZ, etc. propose performing solutions that can pro-
cess electronic and paper documents. For the classification task, most of them
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use a combination of several classifiers specialized for one or some type of doc-
uments, with at least one based on Machine Learning techniques. However, all
these systems have the same issue: they need to be retrained each time new
classes are added. This maintenance is costly in time and in workload because it
needs to build a learning dataset. An option to overcome this problem is to use
an incremental learning system like [29] or [6], but they are not able to compete
with state of the art deep learning systems in performances.

One main objective of this paper is to explore the adaptation of neural net-
work systems to Digital Mailroom context for classification and extraction of
main information inside all companies documents. Thereby, in such industrial
context, an error (i.e. a misclassified document) has more impact than a rejec-
tion (i.e. a document rejected by the system and tagged with no class) because
when a document is rejected, an operator will be warned and will correct it. On
the opposite, an error will not be highlighted as a rejection and the error will be
propagated into the next steps of the system.

One of the best possible modelization of Digital Mailroom entries is a docu-
ment stream model. A document stream is a sequence of documents that appear
irregularly in time. It can be very heterogeneous and composed of numerous
classes unequally represented inside the stream. Indeed a document stream is
generally composed, in a first time, of a core group of some classes highly repre-
sented, that is the majority of the stream. In a second time, remaining documents
are unequally distributed between the majority of other classes, less represented
than previous. Many classes are composed of only few documents that do not
allow an efficient training. In addition, the class composition of a document
stream is in constant growing, spontaneous new category or new sub-category
variation appear time-to-time. And finally, the number of documents per class
increases as the content of a document stream evolves.

This definition highlights two main constraints. First, in a real document
stream application, classes representation are unbalanced. When a training set
is generated from a document stream, it will be by nature unbalanced. This
could reduce neural network methods performances if low represented classes
are insufficiently trained and impact higher represented classes performances
like noises. Then, no train set generated from a document stream could represent
all real cases. The training phase will then be incomplete because the domain
changes endlessly. These unexpected/incomplete classes, at first glance, cannot
be managed by a neural network system.

The objectives of this experimentation is to evaluate the adaptation of neural
network classification methods to these two constraints. Also, to determine and
quantify impacts on network training phases and possible modifications that can
be applied on neural network systems to counter or lessen this impact.

The next section will overview related works and methods that will be com-
pared in the experimentation from Sect. 4. Then, we will describe the testing
protocol used by this evaluation in the Sect. 3 and we will conclude and open
perspectives in the Sect. 5.
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2 Related Work

2.1 Overview

Solutions for document classification by machine learning methods can be
divided in two approaches: Static Learning and Incremental Learning. Static
Learning is based on a stable training corpus, supposed representative of the
domain. Mostly, neural network methods follows this approach and can be them-
selves distinguished in two categories, regarding the fact they are whether based
on pixels information or texts.

The first step to process texts with a neural network is the word represen-
tation. The most widely used techniques currently rely on the word embedding
approach, like Word2Vec [21], GloVe [24] and more recently BERT [7]. These
methods enhance previous textual feature like bag-of-words and word occur-
rences matrix. To limit potential noises, a word selection is commonly apply with
basically a stop-word suppression (“the”, “and”, etc.). More advanced strate-
gies used information gain, mutual information [5], L1 Regularization [22] or
TF-IDF [14] to select useful feature. The second step is the classification itself
with multiple model, mainly Recurrent Neural Network (RNN) [9] and Convolu-
tional Neural Network (CNN) [15,32], and more recently a combination of these
two structures, named RCNN, like in [18]. The RNN approaches are generally
reinforced by specific recurrent cell architecture like Long Short-Term Memory
LSTM [12] and Gated Recurrent Unit GRU [4]. Some industrial application use
this type of network like CloudScan [23] for invoice classification and information
retrieval.

For the image classification, the principal category of neural network method
used is currently the pixel-based CNN with a high diversity of structures:
ResNets [11], InceptionResNet [30], DenseNets [13], etc. But these approaches
are not only restrictive to image and can be extended to documents classification
without any text interpretation, as the RVL-CDIP dataset challenge [10].

All these methods are highly efficient for document classification when the
Static Learning condition is met, but as explained in the introduction, docu-
ment stream does not encounter this condition. The second approach has been
designed to solve this issue with an Incremental Learning process. The main
idea is to reinforce the system gradually at each data encounter and no more
in one training phase. The incremental approach for neural network is relatively
recent because their current structure were not designed for this task. However,
two potential approaches have emerged recently: Structural Adaptation [25] or
Training Adaptation [17,28]. Out of neural network, several classifiers based
on classical algorithm can be find like incremental SVM [20], K-means [1] and
Growing Neural Gas (IGNG) [3] or industrial applications like INTELLIX [29]
or InDUS [6].

In addition of previous methods, two trends appeared in the last decade and
are closed to our situation for classification of low represented classes: Zero-shot
learning and One-Shot/Few-Shot Learning.
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The first, Zero-Shot learning is an image processing challenge where some
classes are need to be classified without previous training samples [31]. This
description seems to be perfect for document stream classification, but all meth-
ods are based on transfer learning from a complete domain, mainly textual,
where all classes are represented. This cannot be applied because no complete
domain exists for our case.

The second, One-Shot Learning, is also an image processing challenge but
where some classes are represented by only few, at least one, samples. This is the
case for some low represented class from document stream. Two main groups of
approaches exist: first group relies on the use of Bayesian-based techniques like in
[19] and [8]; the second group relies on modified neural network architecture like
the Neural Turing Machine (NTM), the Memory Augmented Neural Network
(MANN) [27] and the Siamese Network [16].

In order to assess the performances of those categories of approaches on the
dedicated case of document stream classification, we propose in the next section
to provide a more detailed description of the evaluated methods. These ones
have been chosen for their specificities that will be presented hereafter.

2.2 Compared Methods

Active Adaptive Incremental Neural Gas (A2ING) [3]
A2ING is a document stream classification method by Neural Gas that use an
active semi-supervised sequential training.

The classification by Neural Gas is a machine learning method inspired by
human brain. All classes are represented by centroids, called neurons. These
centroids are put in a space composed in accordance with features chosen to
describe the data, here documents. A document is then associated to the closest
centroid in this feature space. The training is done on the position of centroids
in the space and the classification range. This range is associate to each centroid
and limit the distance allowed to express themselves. This range limitation is
equally used to detect new classes.

This version is inspired by the Adaptive Incremental Neural Gas (AING)
method, which was designed to relies on an incremental learning with an adap-
tive training phases. A2ING is a version with a active semi-supervised sequential
training. Active mean that the training phases need an operator to correct algo-
rithm answers because the learning dataset contains labelled and unlabelled
data, called semi-supervised.

INDUS [6], developed by the french company YOOZ, is design to classify
document stream. This system relies on the A2ING classification algorithm, and
uses the textual information as feature to characterize documents. More pre-
cisely, it used the TF-IDF. INDUS has also a souvenir system allow remembering
classes with few documents in order to assess performance improvement during
the training phase. This study compare it with neural network on document
stream classification.
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Holistic Convolutional Neural Network (HCNN) [10]
HCNN is an image classifier using a CNN based on the pixels information. Its
weights are initialized by a model trained on ImageNet 2012 challenge database
[26]. According to authors, this fine-tuned model offers better performances and
this method has the best results of their study on the RVL-CDIP dataset pro-
posed in the same article. This method take as input a fixed sized image, resized
if necessary, and train pixel-level feature by multiple CNN layers to distinguish
classes. The classification itself is done by three successive fully-connected layers.
We chose the HCNN approach as a baseline for RVL-CDIP classification task
using only the image information.

Recurrent Convolutional Neural Network (RCNN) [18]
RCNN is a bidirectional recurrent CNN for text classification. It uses a word
embedding like word2vec skip-gram model for text representation and is divided
in two steps. The first step is a bidirectional RNN, our implementation used
LSTM cell in the RNN layers. This network compute completely the two sides
context of each word to enhance the word embedding. Contexts are the right
and left sides of the word and are computed from the beginning to the end of
the text. The second step is a CNN feed by the result of the bi-RNN (Fig. 1).
This network end in a fully connected layer to classify input text.

Fig. 1. The structure of the recurrent convolutional network scheme by [18] with sen-
tence sample.

Textual Convolutional Neural Network (TCNN) [15,32]
This system is a combination inspired by two CNN designed for text classifi-
cation. The combination relies on a character-level CNN [32] where each layer
is replaced by a multi-channel CNN [15]. The result in a strong text classifier
by vocabulary that has more basics feature than RCNN. This could have an
importance in this evaluation with a non-optimal training set.



Evaluation of Neural Network Classification Systems on Document Stream 267

3 Testing Protocol

3.1 Dataset

The data-set used for this evaluation is RVL-CDIP [10], which is a subset of the
IIT-CDIP [2] data-set. It is composed of 400 000 documents equally distributed
in 16 classes. Classes correspond to a variety of industrial and administrative
documents from the tobacco’s companies. More specifically, the 16 classes are:
letter, memo, email, file-folder, form, handwritten, invoice, advertisement, bud-
get, news, article, presentation, scientific publication, questionnaire, resume, sci-
entific report and specification. Some classes does not contain any usable text,
like the file-folder one, or very few text like presentation. On the contrary, the
scientific reports are mainly composed of text. Moreover, this advertisement class
have an high structural diversity unlike the resume. For each class, 20 000 doc-
uments as used for the training set, 2500 for the validation set and 2500 for the
test set. Originally, images have variable sizes, a resolution of 200 or 300 dpi and
could be composed of one or multiple pages. For this work, we standardized all
images to 754 * 1000 pixels, 72 dpi and one page.

In order to evaluate the language processing based methods, we applied a
recent OCR software on the IIT-CDIP equivalent images for a better quality.
The creator of RVL-CDIP data-set originally recommends to use their IIT-CDIP
OCR text file but they were not organized in the same way than the RVL-
CDIP images. Text files are computed on multiple page documents that was
not in RVL-CDIP with an old OCR (2006). The new text files solve all those
problems as they are computed on only one page with ABBYY-FineReader
(version 14.0.107.232).

In addition, a private dataset provided by the Yooz company was used to
challenge its own state of the art method [3]. This dataset is a subset of a real
document stream from Yooz’s customers. It is composed of 23 577 documents
unequally distributed in 47 classes, 15 491 documents (65.71%) of them are used
for training, 2203 (9.34%) for validation and 5883 (24,95%) for test. Each class
contains between 1 to 4075 documents. The distribution of documents between
classes is illustrated by Fig. 2. The main drawback of this data-set is its unbal-
anced and incomplete test set. With it, it is impossible to avoid the possibility
of statistical aberration, in particular for classes represented by only one or zero
documents in the test set. In addition, classes with a weak representation does
not really impact global performances even if its specified classification accu-
racy is null. In fact, only a small number of over-represented classes correctly
classified is enough to get a high accuracy score.

3.2 Evaluation Method

This section proposes to introduce the evaluation process apply in the next
section. To evaluate each cases, we have to modify the training set consequently
and only the training set. Classes impacted by the modification and documents
used by the generated set was chosen randomly. For each run a new random
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Fig. 2. Documents distribution between classes in Yooz private dataset. This introduce
the number of document associated to each of 47 dataset classes

set was generated according to the process described to the corresponding case.
Obviously comparison results between methods are computed on the same ran-
domly generated set.

Que les résultats de chaque méthodes sont envoyé à un système de rejet ce
qui permet d’évaluer le niveau de définition de chaque classe par le système et à
quel point ces définition lui permettent bien les différencier entre elle.

In addition, an identical rejection system process each method results to
evaluate the confidence level according to each class and the system capacity
to distinguish classes between them even if the training is sub-optimal. The
rejection system is an experimentally computed threshold applied on confidences
scores obtained from the network. The last layer have one cell per class, and a
sigmoid function provides the probability that the input image belong to each
class. If the highest value is lower than the threshold, we reject the input in order
to not miss-classify it. This is a deliberately simple rejection process because
we wanted to evaluate only method performances and not the rejection system
himself.

As explained in introduction, a rejected document is considered as less impor-
tant than a error. To include this in the evaluation, we choose to do not used
classic F1-Score but a F0.5-score. It improves the importance of precision beside
recall with a modification of β variable of F-score equation (with β = 0.5):

(1 + β2)
Precision · Recall

β2 · Precision + Recall
(1)

The other measures used are the Recall, the Precision and the Rejection Rate.
The last measure is the global system accuracy that not includes the rejection
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system for its calculation, with the objective to display raw performances of
neural network.

4 Experiments

The proposed evaluation tends to compare different methods in four cases: ideal
one with same number of document in training, validation and test; unbalanced
and incomplete cases where all classes are unbalanced or incomplete; a realistic
case which mimics a real document stream. This comparison aims to determine
the efficiency and the adaptation of neural network for document stream classifi-
cation. The first one is used as reference, the two next methods are corresponding
to two specific stream difficulties, and the last one simulate a realistic document
stream. The four next subsections are devoted to each of those cases, with a
presentation of the case, of the modifications applied on the training dataset, an
overall analysis of the results, a methods adaptation analysis and a table with
results.

4.1 Ideal Case

In Ideal case, all the training set of RVL-CDIP is used for the training phase of
each method. It corresponds to the traditional evaluation conditions of neural
network, and we will use it as a benchmark for methods efficiency comparison.

Results display in Table 1 show that the HCNN method got the best results.
This can be explained by the fact that the dataset is more favorable to deep net-
works designed for image content recognition than the one dedicated to the tex-
tual content. Indeed, RVL-CDIP vocabulary is generally poor and many classes
have a low number of words or in the worst case no words like the “file folders”
class. In addition, an entire class and many other documents contain handwritten
text that cannot be processed by the conventional OCR used here for the text
extraction. Indeed, two classes are very complicated for text processing because
they contain too few words and two others are also complicated but with slightly
more words.

TCNN have the best performances for text content methods, it does not need
too many words to work but the four complicated classes reduce drastically its
accuracy. A low number of words is even more detrimental for RCNN that uses
also as feature the word order inside the document text that need more text
resources to be efficient. A2ING method suffer, in addition, of the huge number
of documents because it was not designed to manage this.

4.2 Unbalanced Case

This second case simulates the unbalanced representation distribution between
classes in a document stream. The objectives are to see if this unbalanced distri-
bution impacts the neural network performances and how they are altered. The
training set was modified with a reduction of some class distribution as follows:
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Table 1. Result for ideal case

Value/Method A2ING HCNN RCNN TCNN

Accuracy 31.06% 88.36% 68.15% 79.67%

Precision 95.94% 95.42% 86.10% 93.72%

Recall 23.53% 84.64% 55.34% 69.91%

F0.5-score 59.39% 93.05% 77.48% 87.74%

all classes are divided in four groups of four classes. Each group is linked to a
percentage of their original number of documents and organize in tier. These tier
are respectively tier 5%, 10%, 50% and 100%. This distribution is a modelization
based on real document streams.

All systems are affected by the unbalanced training set and lose between 9%
and 11% of their accuracy as introduced by Table 2. The effect of this unbal-
anced training process highlights the over-fitting problem of the most represented
classes (tier 100%, 50%) and an under-fitting (due to an insufficient training) for
lesser represented classes (tier 10%, 5%). This unbalanced case results in a recall
value higher than the precision for the first tier and the reverse for the second.
The system seems to create trash classes with lesser well defined of tier 100%
classes. These classes have a very low precision (less than 50%) in comparison of
other (around 75%). However, our proposed rejection system allows stabilizing
the precision of high tier classes but to the detriment of low tier recall.

RCNN keep the worst result and it is the second in accuracy loss. It is the
only method where the rejection system has entirely eliminate last tier classes
(tier 5%). The network has not been trained enough to manage these classes
and their confidence scores were too low. HCNN is the most impacted method
for accuracy reduction (−11.10%) but it keeps the highest global performances.
Last tier seems to be the biggest problem instead of tier 10% that keep generally
acceptable performances. TCNN is less impacted than RCNN and can handle
the last tier unlike it.

4.3 Incomplete Case

As explained in introduction of this article, it is impossible to generate a training
set that contains all classes from a real case document stream. Any system used
for document stream classification have to handle new/unexpected classes or at
least reject them as noise. This test is probably the most difficult for neural
network because they are absolutely not designed for this type of situation. The
objectives is then to analyse in particular the rejection result for reduced classes,
the effect of noises during training on complete class performances. For this case
the training set is split in two equal groups. The first one corresponds to complete
classes and uses all the documents for the training phase. The second group is the
noisy classes. We considered those classes in a similar way to the one proposed
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Table 2. Result for unbalanced case and rejection rate means (RRM) for each classes
tier

Value/Method HCNN RCNN TCNN

Accuracy 78.26% 57.08% 71.41%

Precision 89.14% 78.76% 91.63%

Recall 76.25% 51.68% 56.73%

F0.5-score 86.22% 71.29% 81.59%

RRM tier 5% 41.74% 84.85% 55.98%

RRM tier 10% 30.31% 46.64% 42.99%

RRM tier 50% 14.37% 35.43% 58.53%

RRM tier 100% 8.60% 26.35% 15.58%

in the one-shot learning challenge [8,16,19,27]. So only one document is used to
train them.

As expected, the obtained results are bad in accordance to Table 3. No
method has well classified even only one document from the noisy classes, and
the rejection process did not balanced enough the impact of noise on complete
class performances. Only some classes with a specific vocabulary and highly for-
matted structure keep high performances, the other become trash classes and
gather all noisy classes documents. The rejection rate is higher for the noisy
classes than the complete ones, with in average 46.35% of documents rejected.
But it is far from enough.

Again, the confidence scores of the RCNN approach do not allow differenti-
ating enough the document classes, and the rejection system does not work well.
The rejection rate is high for all classes and the noisy classes are not really more
rejected than the others. Only one class obtained a good result as it is strongly
defined by its vocabulary. TCNN and HCNN has got much better performances,
in particular for specific vocabulary classes and for formatted structure classes.
Moreover, they have an higher rejection rate for noisy classes.

4.4 Realistic Case

This scenario is a combination of the two previous cases, and was designed to
be as close as possible to real documents stream. All classes are divided in five
groups with in first time an incomplete group of four classes. In a second time,
four groups of three classes with the same system than unbalanced case, with
tier 5%, 10%, 50% and 100%. With this distribution we can finally simulate
results of neural network methods on a document stream with an ideal test set
and evaluate the global impact of document streams on neural network method
efficiency.

We can observe in Table 4 that the obtained results are better than the
ones from the incomplete case. This can be explained by the fact that fewer
classes were incomplete. On the contrary, the obtained results are lower that



272 J. Voerman et al.

Table 3. Result for incomplete case and rejection rate means (RRM) for each classes
groups

Value/Method HCNN RCNN TCNN

Accuracy 45.99% 40.86% 43.97%

Precision 60.75% 47.40% 61.38%

Recall 71.66% 68.89% 60.10%

F0.5-score 62.66% 50.55% 61.12%

RRM noise 47.22% 36.03% 55.84%

RRM complete 9.46% 26.19% 23.97%

the ones from the unbalanced case with the addition of noisy classes. There is
no prominent differences between each unbalanced tier results and those from
Sect. 4.2, expect for the precision of 100% tier classes that gather in addition
noisy classes documents. On another hand, the rejection rate for incomplete
classes is higher here, around 66.22% on average. Like for Sect. 4.3, no documents
of incomplete classes have been correctly classified. On the whole, all methods
have lost between −23% and −28% of accuracy, so around one third of their
original performances. Conclusions of individual result of each method is similar
to the two previous cases.

The first tests with a artificial reduction of unbalanced seems to slightly
improve performances of methods (with the rejection system). This modification
result in a reduction of train samples for the 100% tier, to equal the 50% tier
(so 6 classes with 50% of their original training samples). This seems to support
the importance of balancing classes in a neural network train set because at first
glance, this reduction of training sample numbers should decrease the method
performances.

5 Conclusion

5.1 Results Summary

In a general analysis based on Table 5, we can say that neural network classifica-
tion systems are unreliable in the situation of industrial document stream. They
cannot handle very low represented or unexpected classes. They can deal, with
difficulty, slightly more represented classes and they have high result for over-
represented classes even if the precision was reduced by sub-represented classes
that they gathered. The impact of incomplete classes is the main problem with
the impossibility to add new unexpected class encountered to the classification
system. This seems to be unsolvable without an important structural adaptation.

The unbalanced number of document per class inside the training set reduces
the performances. The neural network based systems then tends to over-fit their
model for the highest represented classes, to the detriment of the lesser well
defined ones. The less represented classes are affected by sub-optimal training.
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Table 4. Result for realistic case and rejection rate means (RRM) for each classes
groups/tier

Value/Method A2ING HCNN RCNN TCNN

Accuracy 16.27% 62.46% 44.70% 51.93%

Precision 84.63% 77.55% 68.45% 78.50%

Recall 14.00% 71.82% 41.98% 46.98%

F0.5-score 42.13% 76.33% 60.78% 69.21%

RRM noise 97.20% 55.49% 71.02% 72.16%

RRM tier 5% 87.85% 30.01% 89.29% 66.79%

RRM tier 10% 85.20% 29.13% 59.16% 63.87%

RRM tier 50% 77.81% 10.35% 48.12% 33.08%

RRM tier 100% 78.19% 6.81% 18.16% 22.83%

In another hand, the unbalanced distribution of classes problem can be subdued
by an adaptation of the training set. For instance, reducing the gap between
the highest represented classes and the lowest represented classes, has a positive
effect on the thresholded performances (i.e. the ones obtained with the rejection
process) by reducing the over-fitting problem and getting a better modelization
between them. The next step for this ways could be to improve the representation
of low classes by the generation of samples like in [19].

5.2 Neural Networks Robustness Conclusion

On the whole, neural network classification systems are highly preforming in
case where training data was not a problem. But for document stream classifi-
cation, they cannot manage low represented and unexpected classes with same
performances. Although, this type of classes represents more than a half of all
stream classes.

Results introduce by Table 6 computed on the private Yooz’s dataset do not
lead to the same conclusion, all methods performances are high because the test
set composition hide low classes impact on global result. Indeed, if the evaluation
set is incomplete and unbalanced like the training set, low represented classes are
impossible to evaluate, with sometimes only one are two documents. Individual
class performance are not reliable for this dataset because low classes have not
enough test samples. In addition, this too few samples does not impact global
performances. In fact, its is possible to achieved a 70% accuracy with only the
classification of three main classes (Fig. 2).

In an other hand, this dataset was build for the evaluation of text approach
method and HCNN offer a surprisingly high score on it despite is composition
mostly verbose. The RVL-CDIP dataset are probably not the best choice to com-
pare text and image approaches, it was clearly designed for image classification
method.
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Table 5. Summary table RVL-CDIP

Case/Method Acc Pre Rec Acc Pre Rec

RVL-CDIP A2ING HCNN

Ideal 31.06% 95.94% 23.53% 88.36% 95.42% 84.64%

Unbalanced – – – 78.26% 89.14% 76.25%

Incomplete – – – 45.99% 60.75% 71.66%

Realistic 16.27% 84.63% 14.00% 62.46% 77.55% 71.82%

RVL-CDIP RCNN TCNN

Ideal 68.15% 86.10% 55.34% 79.67% 93.72% 69.91%

Unbalanced 57.08% 78.76% 51.68% 71.41% 91.63% 56.73%

Incomplete 40.86% 47.40% 68.89% 43.97% 61.38% 60.10%

Realistic 44.70% 68.45% 41.98% 51.93% 78.50% 46.98%

Table 6. Summary table private data-set

Case/Method Acc Pre Rec Acc Pre Rec

Private D-S A2ING HCNN

True 85.37% 97.88% 80.79% 89.26% 98.13% 88.39%

Private D-S RCNN TCNN

True 88.63% 95.67% 78.83% 93.44% 98.97% 89.28%

5.3 Perspectives

We need more test to determine the limit of training samples required by each
method to stay reliable. Equally, it can be interesting to determine a formula
that describe the behaviour of network efficiency as function of unbalance rate.
One-shot learning methods like NTM and MANN [27] could be a option to
balance impact of incomplete or very low represented classes on performances.
The best solution seems to be the apart classification of this type of classes.

Finally, text or image approaches are both highly performing but not on
same classes and the weakness of one could be balanced by the strength of the
other on this dataset. A good multi-modal system could give better result as
same as an improvement of rejection system.
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