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The title of this paper is a spoof on Butler Lampson’s assertion that there
is no resting place on the road to perfection [1]. While I don’t disagree with his
assertion, the road to provable security is not exactly a road to perfection, so we
can expect some rest stops. In this presentation I will first define what I mean
by a rest stop, then I will argue that rest stops are hard to find, and finally will
explain how to find one in one case.

Let’s start with a question Fred Schneider asked in his blueprint for a science
of security: “Is it ever possible to add defenses and transform one system into
another, where the latter system requires weaker assumptions about the compo-
nents being trusted?” [2] In essence, this question is about adding trustworthy
reductions (i.e., defenses) to decrease the security liability of the trust assump-
tions required by a security property, or more. Let’s suppose for the moment
that the answer to this question is “it’s always possible.” Then, in principle,
we could compose reductions repeatedly until we remove all trust assumptions.
Thus, we could create trust unconditionally, or more accurately trustworthiness,
for whatever security property we obtain at the end of the composition. (This
exercise is hypothetical: Schneider’s paper does not imply that trust creation is
practical.)

A Hypothetical Example. Suppose that we define program partitions in an
untrusted system. Then we remove the assumption that information does not
flow between different partitions by adding a trustworthy separation kernel,
which reduces a simple information-flow isolation model to a system with iso-
lated partitions; see John Rushby’s 1981 proposal [3]. Now if we connect this
system to a network, we still have the remaining assumption that the network
maintains flow isolation between network partitions. However, if the answer to
the question above is “it’s always possible,” then there must be a way to add
another trustworthy reduction (or more) to this system and remove this remain-
ing assumption. Suppose that we add another trustworthy reduction proposed
by Rushby, namely a red/black separation [4]. For example, messages that origi-
nate from a red (classified) partition are split into two parts: the message data,
which are encrypted in a separate partition, and the message header, which is
sent to another separate partition to reduce the amount of information that
can be leaked by header modulation (e.g., destination addresses, packet length,
time between transmissions) to some acceptable level, possibly zero. Then a
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fourth partition combines the controlled header content with the ciphertext of
the message data, and releases the resulting black (unclassified) message to the
network. In effect, the four partitions and the unidirectional flows between them
implement a red/black reduction which separates network flows between isolated
partitions and removes the remaining trust assumption.

Conditional Reductions. Now recall Lampson’s metaphor that “security is frac-
tal: each part of it is as complex as the whole;” see the above-cited paper.
Clearly, if this is true, neither of the previous two examples of reductions can be
unconditional, as their trustworthiness must be conditioned on some other com-
plex assumption. For example, to be trustworthy, the separation kernel must be
formally verifiable, which implies that it must always be small and simple. How-
ever, this condition does not always hold in practice: in 2010, the Information
Assurance Directorate of the NSA argued that high assurance for (i.e. formal ver-
ification of) separation kernels is inappropriate for commodity workstations due
to their complexity [5]. Furthermore, the cryptographic library of the encryption
partition used for the red/black separation reduction must also be formally veri-
fiable. However, this is conditioned by hardness assumptions, specific bounds on
the adversary computation power, and often hardware security modules. Since
the trustworthiness of these reductions is conditional, it is impractical to create
trust in network isolated partitions by composing them as in our hypothetical
example.

If security is indeed fractal, the answer to Schneider’s question above is always
negative. His conjecture that “trust cannot be created, it can only be relocated,”
[6] supports this, and the composition example above illustrates the conjecture.
First, we relocated trust from our system with isolated partitions to the first
reduction, namely to the separation kernel, whose trustworthiness was assumed,
since it is not always formally verifiable. Second, we relocated trust from the
red/black separation network to the hardness assumptions made for the formal
verification of the cryptographic libraries. The impracticality of creating trust
unconditionally was also illustrated by an earlier paper where Ivan Damg̊ard
pointed out that, in cryptography, reduction proofs only relate security prop-
erties to unproven conjectures [7]. Finally, in his commentary to my talk at
SPW-22, Dieter Gollmann came up with what I call the Gollmann complaint
[8]: “reductions often assume that something unknown cannot happen” – a very
succinct statement of the general problem.

Simon Foley: I guess the question I have is, what do you mean by reduction,
because we’re talking about information flow for security properties. If what we
mean by reduction is, say, trace semantics of the system, then the reduction
is the removal of certain traces. In that case, the composition is not going to
preserve security properties because sometimes to achieve a security property
we want to inject additional traces, or additional behaviours.

Reply: Yes, one can view my reduction examples as removals of certain traces.
Note that I was careful to pick reductions that do compose [9]. That is, if one
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has isolated flow partitions, one can construct the red/black separation out of
four partitions and unidirectional channels.

However, you’re absolutely right that, in general, not all reductions can be
composed to achieve a desired security property the way I did here.

Simon Foley: So a reduction is, in simple terms, removal of traces, and what
you’re producing in Fred Schneider’s terms, is enforceable mechanisms or approx-
imations of information-flow properties.

Reply: Certainly, one can view my example reductions this way.

Unconditional Reductions. The possibility of creating trust in a security property
implies the existence of unconditional reductions. A reduction is unconditional if
its efficient, trustworthy execution uses no secrets, no trusted hardware modules,
and no bounds on the adversary power. For example, the trustworthy verifier
implementing such a reduction would only need truly random bits and the speci-
fications of a device’s hardware. Finding truly random bits is not a major hurdle
in practice. If the bandwidth of the random bit generator need not be very high
(e.g., a bit per second), one can even build his/her own true random number
generator by capturing simple quantum effects. Otherwise, one can purchase a
commercially available quantum random number generator; e.g., from ID Quan-
tique. The harder part is finding correct and complete device specifications. Note
that this is always required: without such specifications, one cannot expect solu-
tions to either security or cryptography problems. Instead, one can only expect
surprises. Finally, the trustworthiness of the small and simple verifier must be
proven and the proofs must not depend on any unverified computation.

What Is a Rest Stop? The existence of unconditional reductions is significant in
security. Unconditional reductions imply that the security properties obtained
have no dependency on conjectures whose veracity is unknown or on unknowable
behaviours of individuals who install secrets in one’s system. They offer provable
advantage to a defender over any adversary, and outlive technology advances;
e.g., they are useful post quantum computing. In effect, an unconditional reduc-
tion represents a practical rest stop on the unending road to provable security.
Once we find a rest stop for a security property the property is unconditionally
proved, and then we can move on to prove other security properties. I must
admit that I do not know of any rest stop in software security or cryptography
other than the one I describe in the following example.

A Rest Stop Example. Let a small and simple verifier machine be connected
via a local bus to an external device that may contain persistent malware. The
verifier wants to establish that the device contains all and only the content it
initialized in the device (i.e., it establishes root of trust), and hence the device
is malware free. The verifier knows the device’s hardware specifications ranging
from the ISA, register set (R) primary memory (M) caches, virtual memory,
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TLB, pipelining, multiprocessors, etc. Furthermore, the verifier has a source of
true random numbers. Then, the verifier initializes the device to a family of
concrete space-time optimal computations Cm,t, and challenges the device to
execute a program Cnonce in memory (M,R), whose optimal size m, and time
t on a nonce constructed from the true random numbers. If Cm,t is second pre-
image free and the correct result Cnonce(M,R), which is unpredictable, arrives
in time t, the verifier concludes that the device is malware-free efficiently; i.e.,
in minutes [10]. Note that the adversary who controls the device malware has
unbounded power but is remote. Thus it can only modify a device’s software
and firmware but not its hardware. Furthermore, it cannot access or foresee the
true random numbers used by the verifier to construct the nonce.

Trustworthy Verification. The verifier has three trustworthy security properties.
First, it leaks neither the random numbers to the device (malware) before it
sends the nonce nor the result Cnonce(M,R) and optimal t before it receives
the untrusted-device response; e.g., it obtains and verifies the correct result
Cnonce(M,R) and optimal time t after the device returns its response to the
verifier’s nonce. These two no-leakage properties can be obtained by standard
information flow tracing of verifier code; e.g., by taint analyses of binary code.
Second, the verifier knows the device specifications and can either simulate this
computation on a malware-free simulator or obtain the result and its timing
from another similar device that is known to be malware-free. Third, the verifier
can measure the device computation time in a provably correct manner; e.g.,
it can verifiably disable caches/TLBs, virtual memory, and verifiably set clock
frequency.

In short, the verifier can be trusted to perform an unconditional reduction
from the concrete space-time optimal computation to the device’s root of trust
property.

Jonathan Anderson: So the protocol is using the overt channels that the device
is presenting to the verifier, but that doesn’t necessarily prove that there is an
absence of covert channels, right?

Reply: Yes. It must be proved that the verifier does not leak other information
than the nonce to the device. Recall that to have a covert channel, one has to
have Trojan horse, or a spy, code on the verifier that colludes with the receiver-
device malware; i.e., it encodes information and sends it to the colluding device
malware. There is no such thing on a trusted verifier.

Jonathan Anderson: But is that just because the random bits are never shared
with the device?

Reply: Yes, but also because the verifier is trustworthy; e.g., one can prove that
the random bits enter the local verifier, but not the device, and exit as the nonce,
by information-flow tracing.
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Jonathan Anderson: Right. So I guess one can prove that the device faithfully
executes a function, but this doesn’t necessarily prove what else the device is
doing. There could be other behaviours.

Reply: The device cannot do anything else, since the computation is proven
to be concretely space-time optimal on that device. And the device’s hardware
specifications are assumed to be correct.

Jonathan Anderson: Right. So, I guess this seems to put a lot of importance on
having correct device specifications, but isn’t the problem of verifying hardware
devices even more challenging than the problem of verifying the correct result
and its timing?

Reply: No, because the correct hardware specifications come from the manufac-
turer. And if they are incorrect, one cannot talk about either software security
or cryptography solutions. One can only expect surprises.

Jonathan Anderson: That’s true, but supply-chain attacks are possible, right?

Reply: Yes, but the protocol takes care of those, as I will show shortly.

Fabio Massacci: I have a question about Cm,t. This computation must use the
full extent of the device memory. So if one uses only a subset of the memory, the
computation is no longer going to be space-time optimal. Thus every time one
executes Cm,t, one uses all available device memory. Right?

Reply: Exactly.

Martin Kleppmann: If you have the local verifier that’s already sitting on the
bus, why can’t the verifier just read all of the memory of the machine and check
that it has the expected state? Why do you need all of the complexity of these
optimal Cm,t algorithms?

Reply: One needs these computations because otherwise device malware can
simulate the contents of the device memory and send them to the local veri-
fier. Then the verifier will never know that it read the output of the malware
simulator.

Martin Kleppmann: But you are, at the same time, assuming that your device
specification accurately represents the speed at which the CPU can execute the
algorithm, for example.

Reply: Correct. Accurate device specifications are always required.
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The verifier also needs to use a space-time optimal computation because
otherwise malware could hide in persistent memory and survive power cycles.
Imagine that the device happens to be a controller (i.e., a disc controller, or
a NIC controller, or a DMA controller, or a manageability engine controller),
which has flash memory. That memory could contain malware that is inserted
there by the supply chain [11,12]. For example, an on-line supplier-generated
patch can be surreptitiously interdicted by an adversary who inserts malware
into the controller’s persistent (e.g., flash) memory. Running the space-time opti-
mal computation either detects the presence of malware and other unaccounted
content or returns a correct and timely result. In contrast, if the malware is in
non-persistent (i.e., volatile) memory, all the verifier has to do is to turn off the
device and the malware goes away.

Why is it hard to find such a rest stop? There are two reasons for this. First,
complexity theory lacks examples of computations that are non-asymptotically
space-time optimal in adversary execution on the device’s instruction set archi-
tecture (ISA) rather than on abstract machines; e.g., on Turing Machines or
algebraic computation models [13]. Second, even if such a computation is found,
adversary malware can be powerful enough to violate any control flow integrity of
the verifier-device protocol and exploit availability of multiple device controllers;
e.g., space-time optimality in sequential execution does not necessarily hold when
multiple concurrent device controllers execute different optimal computations.

For example, Horner’s rule for a degree-d polynomial evaluation is known to
be uniquely optimal in infinite fields using 2d operations: d multiplications and
d additions. However, is is not optimal in finite fields or on any realistic ISA
or when the device is controlled by an adversary. Furthermore, the verifier can
send only a single input packet of k << d words to represent a polynomial to
the device regardless of how large d is. Otherwise, malware could pre-process the
evaluation while additional inputs arrive and circumvent the evaluation bounds.

Even if the adversary cannot circumvent space-time optimality of polynomial
evaluation on a specific device ISA and all attempts to use a powerful remote
proxy (e.g., quantum) computer are detected, the adversary can post a future
interrupt that violates the control flow integrity of the verifier-device protocol;
i.e., it triggers after the optimal evaluation result is sent to the verifier and
reboots a malware controlled OS image unbeknown to the verifier.

Furthermore, if the verifier is connected to multiple devices (e.g., peripheral
controllers that have flash memory), each device must execute a different space-
time optimal evaluation whose t scales independent of m. Otherwise, device
evaluations cannot start and finish at roughly same times.

A Solution. A solution that satisfies all necessary requirements can use k-
independent (almost) universal hash functions that are implemented by degree-d
randomized polynomials using input v of d + 1 log p-bit words in length, inde-
pendent of k. These polynomials, which we denote by H(v), have degree d and
k-independent, uniformly distributed coefficients in Zp. Each coefficient si is
itself computed as a polynomial with k random coefficients and input variable
i + 1. They are second pre-image free, so no adversary can find memory or
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register words whose contents differ from the verifier’s choice and pass its check,
except with probability close to a random guess. To input a H(v) into a device,
the verifier needs to send only k + 1 random numbers to the device.

Randomized polynomials have non-asymptotic optimal space-time bounds;
in one-time evaluation on a concrete Word Random Access Machine (cWRAM);
i.e., m = k + 22 and t = (6k − 4)6d, where t scales with d independent of
m. These polynomials offer stronger collision freedom properties than ordinary
universal hash functions. That is, no function and input exist in Zp such that
the function evaluation on the input matches a given randomized-polynomial
evaluation result with more than a very small probability.

Randomized polynomials enable a verifier to check the integrity of control
flow in the code it initializes on a cWRAM device. In turn, this helps imple-
ment verifiable time measurements by provably disabling asynchronous events,
caches/TLBs, virtual memory and stateless peripheral controllers, and by set-
ting clock frequency and the content of the special CPU state. They also assure
bounds scalability, which enables the verifier to establish the existence of its cho-
sen content on the initialized device. Finally, one can show that the space-time
optimality of the randomized polynomials in cWRAM can be retained on a real
device ISA, such as that of a x86 processor.

Fabio Massacci: I have a question about the instruction in memory other than
those for calculating the randomized polynomial. How and when do you execute
those? Of course, you need to have other instructions in memory; otherwise, you
wouldn’t have malware in the first place. Right?

Reply: Yes. Please notice what is in memory at this point: some initialization and
input/output code, which doesn’t have to be space-time optimal, the polynomial
evaluation code, and lots of constants that fill the rest of the memory. However,
I do not have any (e.g., OS, application) code I am really interested in executing
now, but what I have helps me establish the content of the system state, with
high probability. After this, I can load the instructions I really want to execute in
my malware-free state; e.g., I can load the programme that establishes a secure
initial state. In other words, it establishes the invariant that I want to set, such
as the device is disconnected from the internet.

Fabio Massacci: So this means that first you run this code to make sure that
the system state is clean.

Reply: Yes. After that, I can load any other instructions I want, because the
system is in a malware-free initial state that is secure. This is when I start the
system; e.g., I can perform a real boot now.

Jonathan Anderson: So, this is about proving that there’s no malware in
firmware on devices on your computer. What about things like microcode inside
of CPUs?
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Reply: If it’s writable, it’s already included in here; if it’s not, it’s hardware.

Jonathan Anderson: It’s sort of writeable. One can’t write arbitrary things to
it; one can only write signed updates to it, for example.

Reply: That would be fine. These writable registers are part of the CPU state
that is captured in the input v of the randomized polynomial, H(v). This part
of the CPU state can be pretty large [14] as it includes registers that indicate
the disabling of asynchronous events, caches/TLBs, stateless devices, and setting
clock frequencies. The initialization code sets all CPUs’ states. The device may
also include stateless components; e.g., the GPU is code-stateless, as it does
not contain persistent code. So if one disables it, it can no longer contain any
persistent malware.

Note that the input v includes all the CPU state, which can be pretty large,
as noted. If any part of it changes, as for example when malware skips the disable
or set register instructions, the correct input v is modified, so the end result will
be different from the one expected by the verifier.

Jonathan Anderson: My concern is that, although we implicitly trust hardware
currently, we’re also all aware that it could be compromised. But in this cir-
cumstance, the thing I slightly worry about is that now you’re going to make
stronger assumptions about the trustworthiness of the device that you’re run-
ning on, because you proved something based on an assumption that you have
completely accurate device specifications. And that just makes me a little bit
uncomfortable. Getting device specifications, like “tell me the proprietary details
of your pipeline, please,” seems impractical.

Reply: I’m not worried much about the hardware security itself. Why? If some-
body finds security bugs (e.g., hardware Trojans) in an unscrupulous manufac-
turer’s hardware, the manufacturer cannot patch/remove them online, unlike
software/firmware. Eventually that manufacturer will go out of business. This
suggests that the hardware security problem may not be as big as one thinks,
because of business deterrence. However, I am concerned about the correctness
of the (security-bug free) device specifications. This can be a major problem, as
you noticed.

Who may be interested in providing correct device specifications today? Some
device-controller, micro-controller, medical-device manufacturers, who have to
know the specifications of their devices or else they won’t sell them, for legal
liability reasons. However, this is not necessarily true for laptop manufacturers,
for example, where one can’t even get to the bus for the purpose of attaching
a verifier. Eventually one will get accurate device specifications and local bus
connectivity for verification/testing purposes. A place to start is automotive
engineering, where one can plug verification devices into the CAN bus and check
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almost everything connected to that bus. That’s the kind of thing that we need
to do, and for this to work we must have interfaces to plug in verifiers. We are
not there yet, but we will be.

Alastair Beresford: All right, let’s thank Virgil for his talk.
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