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Abstract In the literature, there have been considerable interests in the study of
nonsingular rational solutions for nonlinear integrable models. These nonsingular
rational solutions have appeared with different names in a variety of nonlinear sys-
tems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More
importantly, these nonsingular rational solutions have played a key role in the study
of rogue waves. In the paper, we will develop a new procedure to generate lump solu-
tions via Bäcklund transformations and nonlinear superposition formulae for some
integrable models. It is shown that our procedure can be utilized to somewell-studied
equations such as KPI equation, elliptic Toda equation and BKP equation, but also to
comparatively less-studied DJKM equation, Novikov-Veselov equation and negative
flow of the BKP equation.
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1 Introduction

The theory of modern integrable systems originated from the work on the celebrated
Korteweg-de Vries (KdV) equation. It is a prototype water wave model involving a
broad variety of mathematical methods. This theory allows one to study a wide range
of phenomena and problems arising from physics, biology, and pure and applied
mathematics. The special significance of integrable systems is that they combine
tractability with nonlinearity. Hence, these systems enable one to explore nonlinear
phenomena while working with explicit solutions. One of the interesting explicit
solutions in nonlinear dynamics is that of solitons. Kruskal and Zabusky first discov-
ered solitons in the mid-1960s when they worked on the KdV equation. A soliton
is essentially a localized object that may be found in diverse areas of physics, such
as gravitation and field theory, plasma and solid state physics, and hydrodynamics.
The importance of solitons stems from the exhibition of particle-type interactions
and the characterization of the long time asymptotic behavior of the solution.

There are some other types of explicit solutions available in the literature. One
of them is so-called rational solutions, which is important to be found for integrable
equations. It provides us a criterion for integrability as the existence of an infinite
sequence of rational solutions appears to be equivalent to the Painlevé property
(Newell 1987), and the rational solutions are of, at least, potential value in physi-
cal applications. In this regard, of particularly interesting are an important class of
what we called nonsingular rational solutions. To the best of our knowledge, the
study of nonsingular rational solutions to integrable equations can be traced back
to Ames (1967) where N.J. Zabusky found simplest nonsingular rational solution
u = − 4q

1+4q2x2 to the Gardner equation

ut + 12quux + 6u2ux + uxxx = 0.

In the literature, there are three types of nonsingular rational solutions: (1) Alge-
braic solitons; (2) Lump solutions; (3) Rogue wave solutions. There are some exam-
ples which exhibit nonsingular rational solutions. In the case of algebraic solitons, a
typical example is the Benjamin-Ono (BO) equation

ut + 4uux + Huxx = 0, Hu(x, t) ≡ 1

π
PV

∫ ∞

−∞
u(y, t)

y − x
dy. (1)

In Ono (1975), Ono obtained 1-soliton solution u = a
a2(x−at−x0)2+1 . Some further

results about the algebraic solitons of the BO equation could be found in Matsuno
(1982a, b), Case (1979). The second example of algebraic solitons is the mKdV
equation vt + 6v2vx + vxxx = 0,whose simplest algebraic solutionwas also given by
Ono (1976) v = v0 − 4v0

4v20 (x−6v20 t)
2+1

. Furthermore, N-algebraic solitonswere found in
Ablowitz and Satsuma (1978). As for lump solutions, the result can be traced toMan-
akov et al. (1977) where Manakov et al. gave lump solutions to the KPI equation. In
particular, in Ablowitz and Satsuma (1978); Satsuma and Ablowitz (1979), Ablowitz
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and Satsuma developed a newmethod to seek lump solutions to the KPI equation and
DSI equation by taking the “long-wave” limit of the soliton solutions and there have
been many results about this topic; please see Feng et al. (1999), Grammaticos et al.
(2007), Ablowitz et al. (2000), Villarroel and Ablowitz (1999), Ma (2015), Villarroel
and Ablowitz (1994), Gilson and Nimmo (1990), Hu and Willox (1996). The third
line of research about nonsingular rational solutions is rogue wave solutions, which
is of physical significance. As is known, the NLS equation iut + uxx + 2|u|2u = 0

admits the following rogue wave solution u =
(
1 − 4(1+4i t)

1+4x2+16t2

)
e2i t . Obviously, by

taking u −→ ue−2i t , we may get a nonsingular rational solution of the equation

iut + uxx + 2(|u|2 − 1)u = 0.

For more examples, please see, e.g., Kharif et al. (2009), Solli et al. (2007), Peregrine
(1983), Dubard et al. (2010), Dubard andMatveev (2011), Gaillard (2011), Guo et al.
(2012), Ohta and Yang (2012), Li et al. (2013), Ohta and Yang (2012, 2013) and
references therein.

The purpose of this paper is to develop a new procedure to generate lump solutions
to several integrable models. Different from those by Ablowitz and Satsuma by
taking the “long-wave” limit of the soliton solutions obtained and those by Ablowitz
and Villarroel based on inverse scattering transform, the technique we develop here
is via Bäcklund transformations and nonlinear superposition formulae in Hirota’s
bilinear formalism (Hirota and Satsuma 1978). We will apply our procedure to the
some known examples such as KPI equation, two-dimensional Toda equation, BKP
equation to show how it works and further to the DJKM equation, Novikov-Veselov
equation and negative flow of BKP equation to show its effectiveness.

2 The Lump Solutions of KP Equation

The KP equation takes the form

(ut + 6uux + uxxx )x + αuyy = 0. (2)

Traditionally, the Eq. (2) with α = −1 is called KPI, and the one for α = 1 is KPII.
The KPI equation does not have stable soliton solutions but has localized solutions
that decay algebraically as x2 + y2 → ∞ and are called lumps. The lump solutions
of KPI have been first obtained by Manakov et al. (1977) and also by Ablowitz and
Satsuma (1978). Subsequently, Ablowitz and Satsuma derived the determinant form
of the N-lump solution for the KPI equation by taking limits of the corresponding
soliton solutions in Satsuma and Ablowitz (1979). In the following, we will use the
bilinear Bäcklund transformation and the nonlinear superposition formula to rederive
the N-lump solutions of KPI equation.
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Through the dependent variable transformation u = 2(ln f )xx , the Eq. (2) can be
written in bilinear form

(Dx Dt + D4
x + αD2

y) f · f = 0, (3)

where the bilinear operator Dm
x D

k
t is defined by Hirota (2004)

Dm
x D

k
t a · b ≡

(
∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)k

a(x, t)b(x ′, t ′)

∣∣∣∣∣
x ′=x,t ′=t

.

A bilinear Bäcklund transformation for Eq. (3) is given by Nakamura (1981), Hu
(1997)

(aDy + D2
x + λDx) f · f ′ = 0, (4)

(Dt + D3
x − 3aλDy − 3aDx Dy) f · f ′ = 0, (5)

where a2 = 1
3α and λ is an arbitrary constant. We represent (4)–(5) symbolically by

f
λ−→ f ′. The associated nonlinear superposition formula for the Eq. (3) is stated in

the following proposition (Nakamura 1981; Hu 1997).

Proposition 1 Let f0 be a nonzero solution of (3) and suppose that f1 and f2 are

solutions of (3) such that f0
λi−→ fi (i = 1, 2). Then f12 defined by

f0 f12 = c[Dx + 1

2
(λ2 − λ1)] f1 · f2, c is a nonzero real constant (6)

is a new solution to (3) which is related to f1 and f2 under bilinear BT (4)–(5) with
parameters λ2 and λ1 respectively, i.e.

f0

f1

f12

f2

λ1

λ2

λ2

λ1

In Hu (1997), it has been shown if we choose θi = x + pi y − αp2i t , then the

Bäcklund transformation tells us 1
λi=−api−→ fi = θi + βi (where βi is a constant). By

using proposition 1, we can obtain the following solution to the KP equation

f12 = 2

a(p1 − p2)
[ f1x f2 − f1 f2x + 1

2
(λ2 − λ1) f1 f2] =

θ1θ2 + (β1 + 2

a(p1 − p2)
)θ2 + (β2 − 2

a(p1 − p2)
)θ1 + β1β2 + 2(β2 − β1)

a(p1 − p2)
,

(7)
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by taking c = 2
a(p1−p2)

in (6). If α = −1, p2 = p∗
1, β1 = − 2

a(p1−p2)
, β2 = 2

a(p1−p2)
in

(7), then we obtain the 1-lump solution

f12 = θ1θ
∗
1 − 12

(p1 − p∗
1)

2
> 0.

Furthermore, we can obtain an N-lump solution of the KP equation by using the
nonlinear superposition formula repeatedly. For this purpose, we have the following
proposition.

Proposition 2

FN = cN

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fN
(−∂x + λ1

2 ) f1 (−∂x + λ2
2 ) f2 · · · (−∂x + λN

2 ) fN
...

...
...

(−∂x + λ1
2 )N−1 f1 (−∂x + λ2

2 )N−1 f2 · · · (−∂x + λN
2 )N−1 fN

∣∣∣∣∣∣∣∣∣
(8)

is a determinant solution to the KP equation (3), where fi (i = 1, 2, . . . , N ) is
obtained from the seed solution f0 by using Bäcklund transformation (4) and (5),

i.e. f0
λi−→ fi .

In order to obtain the N-lump solution, we take fi = θi + βi , θi = x + pi y −
αp2i t, λi = −api , βi = ∑

j �=i

2
λi−λ j

for i = 1, 2, . . . , N and cN = ∏
1≤i< j≤N

2
λ j−λi

. In this

case, from (8), we have

FN = cN

∣∣∣∣∣∣∣∣∣∣∣

θ1 + β1 · · · θN + βN

−1 + λ1
2 (θ1 + β1) · · · −1 + λN

2 (θN + βN )

.

.

.

.

.

.

(−N + 1)(
λ1
2 )N−2 + (

λ1
2 )N−1(θ1 + β1) · · · (−N + 1)(

λN
N )N−2 + (

λN
2 )N−1(θN + βN )

∣∣∣∣∣∣∣∣∣∣∣
.

It can be verified that the above determinant can be written as the product of the
determinants

∣∣∣∣∣∣∣∣∣

1 λ1
2 · · · ( λ1

2 )N−1

1 λ2
2 · · · ( λ2

2 )N−1

...
...

...

1 λN
2 · · · ( λN

2 )N−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

θ1
2

λ1−λ2
· · · 2

λ1−λN− 2
λ1−λ2

θ2 · · · 2
λ2−λN

...
...

...
...

− 2
λ1−λN

− 2
λ2−λN

· · · θN

∣∣∣∣∣∣∣∣∣
.

By using the basic property of Vandermonde determinant, we know
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FN =

∣∣∣∣∣∣∣∣∣

θ1
2

λ1−λ2
· · · 2

λ1−λN− 2
λ1−λ2

θ2 · · · 2
λ2−λN

...
...

...
...

− 2
λ1−λN

− 2
λ2−λN

· · · θN

∣∣∣∣∣∣∣∣∣
. (9)

If we choose N = 2M, pM+i = (pi )∗(i = 1, 2, . . . , M), then FN gives the M-lump
solutions of KPI equation which coincides with those obtained in Satsuma and
Ablowitz (1979). The positivity of (9) could be found in Ohta and Yang (2013)
for an affirmative answer.

3 The Lump Solutions of the DJKM Equation

The second equation of the KP hierarchy is the DJKM equation which is written as

wxxxxy + 2wxxxwy + 4wxxywx + 6wxywxx − wyyy − 2wxxt = 0. (10)

Through the dependent variable transformation w = 2(ln f )x , the Eq. (10) can be
transformed into the multilinear form

Dx [(D3
x Dy − Dx Dt ) f · f ] · f 2 + 1

2
Dy[(D4

x − 3D2
y) f · f ] · f 2 = 0. (11)

A bilinear Bäcklund transformation for Eq. (11) is given by

(D2
x + i Dy + λ + μDx ) f · f ′ = 0, (12a)

(i Dt + 3

2
λDy − 1

2
D2

y − i

2
μ2Dy − i

2
μDx Dy − i

2
D2

x Dy) f · f ′ = 0, (12b)

where λ,μ are arbitrary constants. If we take λ = 0 for simplicity, then Bäcklund
transformation (12a) and (12b) can be symbolically written as f

μ−→ f ′. The asso-
ciated nonlinear superposition formula for the Eq. (11) is stated in the following
proposition.

Proposition 3 Let f0 be a nonzero solution of (11) and suppose that f1 and f2 are

solutions of (11) such that f0
μi−→ fi (i = 1, 2). Then f12 defined by

f0 f12 = c[Dx + 1

2
(μ2 − μ1)] f1 · f2, (13)

is a new solution to (11) which is related to f1 and f2 under bilinear BT with
parameters μ2 and μ1 respectively. Here c is a nonzero real constant.

Similar with the KP case, we obtain the 1-lump solution to the DJKM equation
by using the Bäcklund transformation and nonlinear superposition formula. By set-
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ting θi = x + pi y − 1
2 p

3
i t , then from bilinear BT, one obtains 1

μi=−i pi−→ fi = θi + βi

(where βi is a constant). Now from the nonlinear superposition formula (13), we
obtain the following solution of the DJKM equation

f12 = 2

μ2 − μ1
[ f1x f2 − f1 f2x + 1

2
(μ2 − μ1) f1 f2] =

θ1θ2 + (β1 + 2

μ2 − μ1)
)θ2 + (β2 − 2

μ2 − μ1
)θ1 + [β1β2 + 2(β2 − β1)

μ2 − μ1
] (14)

by taking c = 2
μ2−μ1

in (13). If we choose p2 = p∗
1, β1 = 2

μ1−μ2
, β2 = 2

μ2−μ1
in (14),

then we obtain μ2 = −μ∗
1, θ2 = θ∗

1 and the 1-lump solution

f12 = θ1θ
∗
1 + 4

(μ1 + μ∗
1)

2
= |θ1|2 + 4

(μ1 + μ∗
1)

2
> 0. (15)

The N-lump solution could be found by using the nonlinear superposition formula
repeatedly.

Proposition 4

FN = cN

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fN
(−∂x + μ1

2 ) f1 (−∂x + μ2

2 ) f2 · · · (−∂x + μN

2 ) fN
...

...
...

...

(−∂x + μ1

2 )N−1 f1 (−∂x + μ2

2 )N−1 f2 · · · (−∂x + μN

2 )N−1 fN

∣∣∣∣∣∣∣∣∣
is a determinant solution to the DJKM equation (11), where fi (i = 1, 2, . . . , N ) are

obtained from seed solution f0 by using BT (12a)–(12b) f0
μi−→ fi .

In order to obtain the multi-lump solution, we take fi = θi + βi , θi = x + pi y −
1
2 p

3
i t, μi = −i pi , βi = ∑

j �=i

2
μi−μ j

for i = 1, 2, . . . , N . After the proper choices of

parameters, the determinant FN could be written as

FN = cN

∣∣∣∣∣∣∣∣

θ1 + β1 · · · θN + βN
.
.
.

.

.

.

(−N + 1)(
μ1
2 )N−2 + (

μ1
2 )N−1(θ1 + β1) · · · (−N + 1)(

μN
N )N−2 + (

μN
2 )N−1(θN + βN )

∣∣∣∣∣∣∣∣
.

It can be verified that the above determinant is also a product of determinants

∣∣∣∣∣∣∣∣∣

1 μ1

2 · · · (
μ1

2 )N−1

1 μ2

2 · · · (
μ2

2 )N−1

...
...

...
...

1 μN

2 · · · (
μN

2 )N−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

θ1
2

μ1−μ2
· · · 2

μ1−μN− 2
μ1−μ2

θ2 · · · 2
μ2−μN

...
...

...
...

− 2
μ1−μN

− 2
μ2−μN

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (16)
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The choice of cN = ∏
1≤i< j≤N

2
μ j−μi

gives us

FN =

∣∣∣∣∣∣∣∣∣∣

θ1
2

μ1−μ2
· · · 2

μ1−μN− 2
μ1−μ2

θ2 · · · 2
μ2−μN

...
...

...
...

− 2
μ1−μN

− 2
μ2−μN

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (17)

For N = 2M and pM+i = (pi )∗ (i = 1, 2, . . . , M), we could find that θM+i =
(θi )

∗, μM+i = −(μi )
∗ and the positivity of FN is the same with KP case. There-

fore, in this case, FN is the M-lump solution of the DJKM equation.

4 The Lump Solutions of the Elliptic Toda Equation

We now consider the so-called elliptic Toda equation

(
∂2

∂x2
+ ∂2

∂ y2
)(log un) = un+1 − 2un + un−1.

This equation has been studied in Villarroel (1998); Villarroel and Ablowitz (1994),
where the inverse scattering method was applied to obtain lump solutions. By the use
of variable transformation un = fn+1 fn−1

f 2n
, we can obtain the following bilinear form

(D2
x + D2

y) fn · fn = (2eDn − 2) fn · fn (18)

which admits a Bäcklund transformation as follows

(Dx + i Dy + λ−1e−Dn + μ) f · g = 0, (19a)

((Dx − i Dy)e
− 1

2 Dn − λe
1
2 Dn + γ e− 1

2 Dn ) f · g = 0. (19b)

Furthermore, from the Bäcklund transformation, we may get the following superpo-
sition formula.

Proposition 5 Let f0(n) be a nonzero solution of Eq. (18) and suppose that f1(n)

and f2(n) are solutions of (18) such that f0(n)
λi−→ fi (n) (i = 1, 2), then there exists

the following nonlinear superposition formula

e− 1
2 Dn f0 · f12 = c(λ1e

− 1
2 Dn − λ2e

1
2 Dn ) f1 · f2 (20)

where f12 is a new solution of (18) related to f1 and f2 with parameters λ2 and λ1

respectively. Here c is a nonzero constant.
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In order to get the lump solution,we choose f0 = 1 and fi (i = 1, 2) as linear func-

tionswith respect to x, y and n, i.e. 1
λi−→ fi = θi + βi = n + pi x + qi y + βi . Then

from the Bäcklund transformation (19a) and (19b), we may getμi = −λ−1
i , γi = λi ,

p j = 1
2 (λ

−1
j + λ j ) and q j = 1

2i (λ
−1
j − λ j ). Therefore, we get the seed function of

the lump solutions

θ j = n + 1

2
(λ−1

j + λ j )x + 1

2i
(λ−1

j − λ j )y, j = 1, 2.

Therefore the nonlinear superposition formula (20) becomes

f12(n) = c(λ1 f1(n − 1) f2(n) − λ2 f1(n) f2(n − 1)). (21)

In this case, if we take c = 1
λ1−λ2

and fi = θi + βi , then (21) can be written as

f12(n) = θ1θ2 + 1

λ1 − λ2
(λ1β2 − λ2(β2 − 1))θ1

+ 1

λ1 − λ2
(λ1(β1 − 1) − λ2β1)θ2 + β1β2 + 1

λ1 − λ2
(λ2β1 − λ1β2). (22)

Furthermore, if we take β1 = λ1
λ1−λ2

, β2 = − λ2
λ1−λ2

, then we have:

f12(n) = θ1θ2 + A, (23)

where A = λ1λ2
(λ1−λ2)2

. Obviously, if we choose λ1 �= λ2, then θ1 = θ∗
2 , A > 0, and

therefore we get 1-lump solution of the elliptic Toda equation which is shown in
Fig. 1.

Proposition 6 The elliptic Toda equation admits the general nonlinear superposi-
tion formula

e− 1
2 Dn FN−1 · FN+1 = c(λNe

− 1
2 Dn − λN+1e

1
2 Dn )FN · F̂N , (24)

Fig. 1 1-lump solution of the elliptic Toda equation
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where

FN (n) =

∣∣∣∣∣∣∣

f1(n) · · · fN (n)
...

...

(−λ1)
N−1 f1(n − N + 1) · · · (−λN )N−1 fN (n − N + 1)

∣∣∣∣∣∣∣
:= |1(n), . . . , N (n)|.

F̂N (n) = |1(n), . . . , N − 1(n), N + 1(n)| .

Here { f j (n, x, y), j = 1, 2, . . . , N + 1} are the seed functions f j (n, x, y) = n +
1
2 (λ

−1
j + λ j )x + 1

2i (λ
−1
j − λ j )y + β j .

Proof It is noted that (24) can be alternatively written as:

FN−1(n − 1)FN+1(n) = (λN FN (n − 1)F̂N (n) − λN+1FN (n)F̂N (n − 1)) (25)

and

FN−1(n − 1) = |1(n − 1), . . . , N − 1(n − 1)| =
N−1∏
i=1

(−λi )D

[
1
N

]

where the determinant D means FN (n) and D

[
j
k

]
means the (N − 1)-th minor of

D whose j-th row and k-th column are deleted. By taking the explicit forms of F
and F̂ into the Eq. (25), we may see the nonlinear superposition formula is a Jacobi
identity.

Inspired by the 1-lump solution, we now choose f j (n) = θ j (n) + β j = n +
1
2 (λ

−1
j + λ j )x + 1

2i (λ
−1
j − λ j )y + β j , and therefore the solution FN (n) can be writ-

ten as

FN (n) =

∣∣∣∣∣∣∣∣∣

θ1 + β1 · · · θN + βN

−λ1(θ1 + β1 − 1) · · · −λN (θN + βN − 1)
...

...

(−λ1)
N−1(θ1 + β1 − N + 1) · · · (−λN )N−1(θN + βN − N + 1)

∣∣∣∣∣∣∣∣∣
,

from which we see that if and only if we take βi = λi
∑
j �=i

1
λi−λ j

, we can get F2M

without the odd term. On the other hand, from the determinant identity, we may get

FN (n) =

∣∣∣∣∣∣∣∣∣

1 −λ1 · · · (−λ1)
N−1

1 −λ2 · · · (−λ2)
N−1

...
...

...

1 −λN · · · (−λN )N−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

θ1
−λ1

λ1−λ2
· · · −λ1

λ1−λN−λ2
λ2−λ1

θ2 · · · −λ2
λ2−λN

...
...

. . .
...

−λN
λN−λ1

−λN
λN−λ2

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (26)
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In this case, we have the following determinant solution

FN (n) =

∣∣∣∣∣∣∣∣∣∣

θ1
−λ1

λ1−λ2
· · · −λ1

λ1−λN−λ2
λ2−λ1

θ2 · · · −λ2
λ2−λN

...
...

. . .
...

−λN
λN−λ1

−λN
λN−λ2

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (27)

In the following,wewant to construct lump solutions from (27).Herewe just consider
the case of N = 4, and set the parameters as λ3 = 1

λ∗
1
, λ4 = 1

λ∗
2
. In this case, we have

F4 = θ1θ
∗
1 θ2θ

∗
2 + λ1λ2

(λ1 − λ2)2
θ∗
1 θ∗

2 + c.c + λ∗
1λ2

(λ∗
1λ2 − 1)2

θ1θ
∗
2 + c.c

+ λ1λ
∗
1

(λ1λ
∗
1 − 1)2

θ2θ
∗
2 + λ2λ

∗
2

(λ2λ
∗
2 − 1)2

θ1θ
∗
1 + A,

where c.c means the complex conjugate and A is greater than zero. It means F4 is
2-lump solution of the Toda equation and Fig. 2 shows 2-lump solution of the Toda
equation.

In general, Villarroel has shown in Villarroel (1998) that the F2N given by (27) is
always greater than 0 if λN+iλ

∗
i = 1 and {λi , 1 ≤ i ≤ 2N } are off the unit circle.

Fig. 2 The interaction of 2-lumps of the Toda equation



90 Gegenhasi et al.

5 The Lump Solution of the BKP Equation

In Gilson and Nimmo (1990), the lump solution of the BKP equation has been
considered by Claire Gilson and Jon Nimmo. In this part, we would like to show the
Bäcklund transformation and nonlinear superposition formula can also provide us a
Pfaffian form to the lump solution of BKP, which indicates this technique could also
be used for the B∞-type equations and Pfaffian forms.

Consider the BKP equation

(ut + 15uu3x + 15u3x − 15uxuy + u5x )x + 5u3x,y − 5uyy = 0.

Through the bilinear transformation u = 2(log f )x , we obtain the bilinear form for
the BKP equation

(D6
x − 5D3

x Dy − 5D2
y + 9Dx Dt ) f · f = 0, (28)

whose Bäcklund transformation is indicated as follows (Hirota 2004)

(D3
x − Dy − 3kD2

x + 3k2Dx) f · g = 0, (29a)

(−D5
x − 5D2

x Dy + 5kD4
x + 5k2D3

x − 10k2Dy + 10kDx Dy + 6Dt ) f · g = 0.
(29b)

Furthermore, we have the following nonlinear superposition formula.

Proposition 7 Let f0 be a nonzero solution of Eq. (28) and suppose that f1 and f2
are solutions such that f0

λi−→ fi (i = 1, 2), then there exists the following nonlinear
superposition formula

[Dx − (k1 + k2)] f0 · f12 = c[Dx + (k1 − k2)] f1 · f2 (30)

where f12 is a new solution related to f1 and f2 with parameters λ2 and λ1 respec-
tively. Here c is a nonzero constant.

For the Bäcklund transformation (29a) and (29b), if we take f0 = 1 and fi (i = 1, 2)
as the linear functions, then fi = θi + βi = x + 3k2i y + 5k4i t + βi , i = 1, 2. In this
case, the nonlinear superposition formula becomes

− d

dx
f12 − (k1 + k2) f12 = f2 − f1 + (k1 − k2) f1 · f2. (31)

By solving this ordinary differential equation, wemay obtain the solution of the BKP
equation
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Fig. 3 The figure of 1-lump solution of the BKP equation

f12 = k2 − k1
k1 + k2

f1 f2 + 2k1
(k1 + k2)2

f1 − 2k2
(k1 + k2)2

f2 + 2
k2 − k1

(k1 + k2)3

= k2 − k1
k1 + k2

θ1θ2 + (k22 − k21)β2 + 2k1
(k1 + k2)2

θ1 + (k22 − k21)β1 − 2k2
(k1 + k2)2

θ2 + A,

where A = k2−k1
k1+k2

β1β2 + β1−β2

k1+k2
− k2−k1

(k1+k2)2
(β1 + β2) + 2 k2−k1

(k1+k2)3
. It can be verified that

if we take β1 = −2k2
k21−k22

, β2 = 2k1
k21−k22

, k2 = k∗
1 and |Imk1| > |Rek1|, then the 1-lump

solution could be obtained.

Remark 1 Notice that the first order ordinary differential equation (31) may have a
general solution, however, in the lump-solution case, we just consider the polynomial
solution of f , hence this solution is unique in this sense.

In Fig. 3, the 1-lump solution of the BKP equation is drawn for a particular choice
of the parameters.

Proposition 8 BKP equation has a general nonlinear superposition formula as fol-
lows

[Dx − (k2n+1 + k2n+2)]F2n · F2n+2 = [Dx + (k2n+1 − k2n+2)]F̂2n+1 · F2n+1. (32)

In particular, the solution F2n, F2n+1 and F̂2n+1 have the Pfaffian forms

F2n = (1, . . . , 2n), F2n+1 = (d0, 1, . . . , 2n + 1), F̂2n+1 = (d0, 1, . . . , 2n, 2n + 2),
(33)

in which the Pfaff element satisfies the following relationship

(d0, i) = fi = θi + βi = x + 3k2i y + 5k4i t + βi ,

(d1, i) = d

dx
(d0, i) + ki (d0, i) = 1 + ki fi , (34)

d

dx
(i, j) + (ki + k j )(i, j) = (d0, d1, i, j), (d0, d1) = 0.



92 Gegenhasi et al.

In order to prove the proposition, we need following lemmas.

Lemma 1 Under the assumption of the Pfaff element (33), we have

d

dx
(1, . . . , 2n) + (

2n∑
i=1

ki )(1, . . . , 2n) = (d0, d1, 1, . . . , 2n). (35)

Proof We will prove this conclusion by induction. For n=1, it is just the assumption
we set in (33). By assumption, it is known that

d

dx
(2, . . . , ĵ, . . . , 2n + 2) +

2n+2∑
i=2,i �= j

ki (2, . . . , ĵ, . . . , 2n + 2) = (d0, d1, 2, . . . , ĵ, . . . , 2n + 2)

holds for Pfaffian of order n. Then for Pfaffian of order n + 1, we have

(d0, d1, 1, . . . , 2n + 2)

=
2n+2∑
j=2

(−1) j [(d0, d1, 1, j)(2, . . . , ĵ, . . . , 2n + 2) + (1, j)(d0, d1, 2, . . . , ĵ, . . . , 2n + 2)]

=
2n+2∑
j=2

(−1) j {[ d

dx
(1, j) + (k1 + k j )(1, j)](2, . . . , ĵ, . . . , 2n + 2)

+ (1, j)[ d

dx
(2, . . . , ĵ, . . . , 2n + 2) +

∑
i �= j

ki (2, . . . , ĵ, . . . , 2n + 2)]}

= d

dx
(1, . . . , 2n + 2) +

2n+2∑
i=1

ki (1, . . . , 2n + 2),

which completes the proof.

Lemma 2 Under the assumption of the Pfaffian element (33), we also have

(d1, 1, . . . , 2n + 1) = d

dx
(d0, 1, . . . , 2n + 1) + (

2n+1∑
i=1

ki )(d0, 1, . . . , 2n + 1), (36a)

(d1, 1, . . . , 2n, 2n + 2) = d

dx
(d0, 1, . . . , 2n, 2n + 2) + (

∑
i �=2n+1

ki )(d0, 1, . . . , 2n, 2n + 2).

(36b)

Proof We just prove the first equation, and the second one can be verified in a similar
way. By expansion of Pfaffian, one has
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(d1, 1, . . . , 2n + 1)

=
2n+1∑
j=1

(−1) j (d1, j)(1, . . . , ĵ, 2n + 1)

=
2n+1∑
j=1

(−1) j−1[ d

dx
(d0, j) + k j (d0, j)](1, . . . , ĵ, . . . , 2n + 1)

= d

dx
(d0, 1, . . . , 2n + 1) +

2n+1∑
j=1

(−1) j−1k j (d0, j)(1, . . . , ĵ, . . . , 2n + 1)

−
2n+1∑
j=1

(−1) j−1(d0, j)[(d0, d1, 1, . . . , ĵ, . . . , 2n + 1) − (

2n+1∑
i=1,i �= j

ki )(1, . . . , ĵ, . . . , 2n + 1)]

= d

dx
(d0, 1, . . . , 2n + 1) + (

2n+1∑
i=1

ki )(d0, . . . , 2n + 1),

and the equation is verified.

The Lemma 1 tells us the left side of the nonlinear superposition formula can be
written as

(d0, d1, 1, . . . , 2n)(1, . . . , 2n + 2) − (1, . . . , 2n)(d0, d1, 1, . . . , 2n + 2), (37)

while the Lemma 2 shows the right side can be written as

− (d1, 1, . . . , 2n + 1)(d0, 1, . . . , 2n, 2n + 2) + (d0, 1, . . . , 2n + 1)(d1, 1, . . . , 2n, 2n + 2).
(38)

Therefore, under these two lemmas, we find that the nonlinear superposition formula
of BKP equation (30) can be written as

(d0, d1, 1, . . . , 2n)(1, . . . , 2n + 2) − (1, . . . , 2n)(d0, d1, 1, . . . , 2n + 2) =
−(d1, 1, . . . , 2n + 1)(d0, 1, . . . , 2n, 2n + 2) + (d0, 1, . . . , 2n + 1)(d1, 1, . . . , 2n, 2n + 2),

which is the Pfaffian identity (Hirota 2004).
And then we would like to prove the F2n given in (33) is always positive or

always negative under some constrains. Following the method mentioned in Gilson
and Nimmo (1990), we first consider the determinant of 2n × 2n skew-symmetric
matrix A = (ai, j )1≤i, j≤2n which can be represented as the square of Pfaffian given
in (33):

F2
2n = (1, 2, . . . , 2n)2 = det A. (39)

Applying Eqs. (33) and (39), we can derive:
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ai, j = ki − k j

ki + k j
[( fi + 2k j

k2i − k2j
)( f j − 2ki

k2i − k2j
) + 2(k2i + k2j )

(k2i − k2j )
2
]. (40)

If we set ki = k∗
n+i , βi = β∗

n+i and |Imki | > |Reki |, then the determinant of A can
be written as the following form:

det A = det

∣∣∣∣ C B
−B∗ C∗

∣∣∣∣ , (41)

which is always positive. In Eq. (41), B = (bi, j )1≤i, j≤n , C = (ci, j )1≤i, j≤n are two
n × n matrices, whose element bi, j , ci, j are given by:

bi, j = ki − k	
j

ki + k	
j

[( fi + 2k	
j

k2i − k	2
j

)( f 	
j − 2ki

k2i − k	2
j

) + 2(k2i + k	2
j )

(k2i − k	2
j )2

],

ci, j = ki − k j

ki + k j
[( fi + 2k j

k2i − k2j
)( f j − 2ki

k2i − k2j
) + 2(k2i + k2j )

(k2i − k2j )
2
].

Since F2
2n > 0 by taking ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki | in F2n , and the

lump solution is a continuous function, so the F2n is always positive or always
negative. Therefore, the solution F2n with ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki |

is the nonsingular rational solution of the BKP equation.

6 The Lump Solutions of the Novikov-Veselov Equation

In this part, we want to discuss the lump solution of the Novikov-Veselov equation

2ut + uxxx + uyyy + 3(u∂−1
y ux )x + 3(u∂−1

x uy)y = 0, (42)

which can be viewed as an extension the KdV equation in two spatial dimensions
and one temporal dimension. Bäcklund Transformation and nonlinear superposition
formula and 1,2-lump solutions have been studied in Hu and Willox (1996). Here
we revisited some important facts.

Under the dependent variable transformation u = u0 + 2(log f )xy with u0 a con-
stant, the Eq. (42) can be transformed into the multilinear form and enjoys the fol-
lowing Bäcklund transformation

(Dx Dy − μDx − λDy + λμ + u0) f · f ′ = 0, (43a)

(2Dt + D3
x + D3

y + 3λ2Dx − 3λD2
x + 3μ2Dy − 3μD2

y) f · f ′ = 0, (43b)

where λ and μ are arbitrary constants. The nonlinear superposition formula can be
stated as follows.
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Fig. 4 1-lump solution of the Novikov-Veselov equation

Proposition 9 Let f0 be a nonzero solution of (42) and suppose that f1 and f2 are

solutions of (42) such that f0
μi−→ fi (i = 1, 2). Then f12 defined by

[Dx − (k1 + k2)] f0 · f12 = c[Dx + (k1 − k2)] f1 · f2 (44)

is a new solution to (42) which is related to f1 and f2 under bilinear BT (43a) and
(43b) with parameters k2 and k1 respectively. Here c is a nonzero real constant.

To obtain the lump solutions, we have to take f0 = 1 and fi = θi + βi = k2i x +
u0y − 3

2(k4i +u30/k
2
i )
t + βi . For 1-lump solution, if we set k2 = k∗

1 , β1 = β∗
2 and Imki >

Reki , (i = 1, 2), then

f12 = (θ1 + 2k21k2
k21 − k22

) × c.c. + 2
k21k

2
2(k

2
1 + k22)

(k21 − k22)
2

,

where c.c. means the complex conjugate. Obviously, f12 is positive and it is a 1-lump
solution. We depict the 1-lump solution of the Novikov-Veselov equation in Fig. 4.

Noticing that the nonlinear superposition formula of the Novikov-Veselov equa-
tion (44) is the same as the BKP equation (30), the Novikov-Veselov equation (44)
possesses the same structure of solution as theBKPequation except the seed function.
Hence we have the following proposition.

Proposition 10 Novikov-Veselov equation owns a general nonlinear superposition
formula

[Dx − (k2n+1 + k2n+2)]F2n · F2n+2 = [Dx + (k2n+1 − k2n+2)]F̂2n+1 · F2n+1, (45)

where

F2n = (1, . . . , 2n), F2n+1 = (d0, 1, . . . , 2n + 1), F̂2n+1 = (d0, 1, . . . , 2n, 2n + 2),
(46)

where the Pfaffian elements satisfy the following relationships
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(d0, i) = fi = θi + βi = k2i x + u0y − 3

2(k4i + u30/k
2
i )
t + βi ,

(d1, i) = d

dx
(d0, i) + ki (d0, i),

d

dx
(i, j) + (ki + k j )(i, j) = (d0, d1, i, j), (d0, d1) = 0. (47)

Since the proof of this proposition is similar to that of BKP equation, we omit it here.
If we set ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki |, then we can show in a similar

way in Sect. 5 that F2n is always positive or always negative. Therefore, we get the
N-lump solution of the Novikov-Veselov equation, which has the representation of
(46) with ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki |.

7 The Lump Solutions for Negative Flow of BKP Equation

InHirota (2004), Sect. 3.3, the author proposed another shallowwave equation, called
the negative flow of BKP equation

uyt − uxxxy − 3(uxuy)x + 3uxx = 0. (48)

By the dependent variable transformation u = 2(log f )x , it can be transformed into
a bilinear form

[(Dt − D3
x )Dy + 3D2

x ] f · f = 0,

which possesses the following Bäcklund transformation

(Dx Dy + λ−1Dx + λDy) f · f ′ = 0, (49a)

(D3
x + 3λD2

x + 3λ2Dx − Dt ) f · f ′ = 0. (49b)

Furthermore, we have the following result.

Proposition 11 Let f0 be a nonzero solution of Eq. (48) and suppose that f1 and

f2 are solutions of (48) such that f0
λi−→ fi (i = 1, 2), then there exists a following

nonlinear superposition formula

(Dx + (k1 − k2)) f0 · f12 = c(Dx − (k1 − k2)) f1 · f2, (50)

where f12 is a new solution of (48) related to f1 and f2 under bilinear BT (49a) and
(49b) with parameters k2 and k1 respectively. Here c is a nonzero constant.

A 1-lump solution of the negative flow for BKP equation is derived in the follow-
ing. Starting with f0 = 1, fi = x − k2i y + 3k2i t + βi (i = 1, 2), we may obtain the
following solution
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f12 = k2 − k1
k1 + k2

f1 f2 + 2k1
(k1 + k2)2

f1 − 2k2
(k1 + k2)2

f2 + 2
k2 − k1

(k1 + k2)3

= k2 − k1
k1 + k2

θ1θ2 + (k22 − k21)β2 + 2k1
(k1 + k2)2

θ1 + (k22 − k21)β1 − 2k2
(k1 + k2)2

θ2 + A,

where A = k2−k1
k1+k2

β1β2 + β1−β2

k1+k2
− k2−k1

(k1+k2)2
(β1 + β2) + 2 k2−k1

(k1+k2)3
. If we take β1 =

−2k2
k21−k22

, β2 = 2k1
k21−k22

, k2 = k∗
1 and |Imk1| > |Rek1|, we get the 1-lump solution.

In order to obtain N-lump solutions, we need to establish a general nonlinear
superposition formula for the negative flow BKP equation.

Proposition 12 The negative flow BKP equation owns a general nonlinear super-
position formula

[Dx − (k2n+1 + k2n+2)]F2n · F2n+2 = [Dx + (k2n+1 − k2n+2)]F̂2n+1 · F2n+1 (51)

and the solutions F2n, F2n+1 and F̂2n+1 are expressed as Pfaffians

F2n = (1, . . . , 2n), F2n+1 = (d0, 1, . . . , 2n + 1), F̂2n+1 = (d0, 1, . . . , 2n, 2n + 2),
(52)

where the Pfaff elements satisfy the following relations

(d0, i) = fi = θi + βi = x − k2i y + 3k2i t + βi ,

(d1, i) = d

dx
(d0, i) + ki (d0, i),

d

dx
(i, j) + (ki + k j )(i, j) = (d0, d1, i, j), (d0, d1) = 0. (53)

The proof of Proposition 12 is similar to the case of BKP equation, so we omit it
here. Furthermore, we can show in a similar way in Sect. 5 that F2n in (52) with
ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki | gives the N-lump solution of the negative

flow of BKP equation.

8 Conclusion

It is truly remarkable that the lump solutions of several integrable models could be
obtained by Bäcklund transformations and nonlinear superposition formulae and the
effectiveness presents itself in this paper. It is natural to expect that this technique
can be applied to more equations in AKP and BKP type, also for CKP and DKP type
equations. The lack of the bilinear Bäcklund transformation of CKP equation brings
us essential difficulty to construct the nonlinear superposition formula, as well as
the lump solution. In particular, we also expect to develop the similar technique to
generate the lump solutions for the discrete integrable lattices.
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