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Abstract We study the ODE/IM correspondence for all the states of the quantum
Boussinesq model. We consider a particular class of third order linear ordinary dif-
ferential operators and show that the generalised monodromy data of such operators
provide solutions to the Bethe Ansatz equations of the Quantum Boussinesq model.
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1 Introduction

The quantumBoussinesq model (Bazhanov et al. 2002) is a 2 dimensional conformal
field theory with a W3 symmetry, and it can be exactly solved via the Bethe Ansatz
equations. This model can be realised as the quantisation of a sl3 Drinfeld-Sokolov
hierarchy, or as the continuum limit of a sl3 XXZ chain. It belongs to a large family of
theories which are known as g-quantum KdV models; they exist for any Kac Moody
algebra g (Feigin and Frenkel 1996) (in the present case g = ̂sl3), and in the simplest
case, namely g = ̂sl2, the Hamiltonian structure of such a theory is the quantisation
of the second Poisson structure of the classical KdV equation (Bazhanov et al. 1996).

According to the celebrated ODE/IM correspondence (Dorey and Tateo 1999,
2000; Bazhanov et al. 2001, 2004; Dorey et al. 2007; Feigin and Frenkel 2011;
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Masoero et al. 2016, 2017; Masoero and Raimondo 2020; Kotousov and Lukyanov
2019) to every state of the g quantumKdVmodel there corresponds a unique gL oper
(here gL is the Langlands dual of g) whose generalised monodromy data provide the
solution of the Bethe Ansatz equations of that state.

In our previous paper (Masoero and Raimondo 2020) we constructed the opers
corresponding to higher states of the g quantum KdV model, for any g untwisted
affinization of a simply laced Lie algebra. This was done by following the definition
given in Feigin and Frenkel (2011); solutions to the Bethe Ansatz were obtained
based on our previous works (Masoero et al. 2016, 2017).

In this note we provide explicit and simpler formulas for opers corresponding
to higher states of the quantum Boussinesq model, by specialising the results of
Masoero and Raimondo (2020) to the case g = ̂sl3. This serves two purposes: we
illustrate the general theory and its somehow heavy machinery in terms of familiar
and simple objects, and we find formulas which are much closer to the original work
on higher states opers of thêsl2-quantum KdV model (Bazhanov et al. 2004), where
higher states are conjectured to correspond to Schrödinger operators with a monster
potential.

As the result of the present paper, we conjecture that the level N states of the quan-
tum Boussinesq model correspond to the following third order differential operators:

L = ∂3
z −
⎛

⎝

N
∑

j=1

(

3

(z − w j )2
+ k

z(z − w j )

)

+ r̄1

z2

⎞

⎠ ∂z

+
N
∑

j=1

(

3

(z − w j )3
+ a j

z(z − w j )2
+ 2(k + 3)a j − k2

3z2(z − w j )

)

+ r̄2

z3
+ 1

z2
+ λzk, (1)

where −3 < k < −2, and r̄1, r̄2 ∈ C, and where the 2N complex variables
{a�, w�}�=1,...,N , satisfy the following system of 2N algebraic equations

a2� − ka� + k2 + 3k − 3r̄1 =
∑

j=1,...,N
j �=�

(

9w2
�

(w� − w j )2
+ 3kw�

w� − w j

)

, (2a)

Aa� + B − 9(k + 2)w� =
N
∑

j=1
j �=�

(

18(k − a� − a j )w
3
�

(w� − w j )
3 + (12k + 9k2 − (63 + 6k)a j − 9ka�)w

2
�

(w� − w j )
2

+ (9k + 16k2 + 6(k2 + 10k + 6)a j − 5ka�)w�

w� − w j

)

. (2b)

The parameters A, B are given by



Opers for Higher States of the Quantum Boussinesq Model 57

A = 14k2 + 50k − 8r̄1 + 45,

B = 27(r̄1 − r̄2) − k(7k2 + 7k + 9r̄2 − 13r̄1 + 9),

and the additional singularities w j , j = 1 . . . , N are assumed to be pairwise distinct
and nonzero. The system of algebraic equation (2) is equivalent to the requirement
that the monodromy around the singular point z = w j is trivial for all j = 1 . . . N ,
independently on the parameter λ.

The correspondence among the free parameters λ, r̄1, r̄2, k of the above equations
and the free parameters c, (Δ2,Δ3),μ (respectively the central charge, the highest
weight, the spectral parameter) of the Quantum Boussinesq model, as constructed in
Bazhanov et al. (2002) (more about this below), goes as follows:

c = −3(4k + 9)(3k + 5)

k + 3
, (3a)

Δ2 = (r̄1 − 8)k2 + 6(r̄1 − 5)k + 9r̄1 − 27

9(k + 3)
, (3b)

Δ3 = (k + 3)3/2

27
(r̄1 − r̄2), (3c)

λ = −i Γ (−k − 2)3μ3, (3d)

where Γ (s) denotes the Γ function with argument s. Moreover the integer N , which
is the number of additional regular singularities in (1), coincides with the level of
the state. Hence, system (2) is expected to possess p2(N ) solutions, where p2(N ) is
the number of bi-coloured partitions of N .

The paper is organised as follows. In Sect. 2 we introduce the quantum KdV
opers, following (Masoero and Raimondo 2020) (which in turns builds on Feigin
and Frenkel 2011), and derive from the general theory of the formulas (1) and (2). In
Sect. 3 we review the construction of solutions of the Bethe Ansatz equations as gen-
eralised monodromy data, following Masoero et al. (2016), Masoero and Raimondo
(2020). Finally, in Sect. 4 we briefly summarise the construction of the quantum
Boussinesq model provided in Bazhanov et al. (2002).

This work deals with differential equations and representation theory. We omit
many proofs of the analytic results, which can be found in greater generality in
Masoero and Raimondo (2020). However, we do provide all details of the algebraic
calculations.

2 Quantum KdV Opers

In this sectionwe introduce theQuantumKdVopers, as defined in Feigin and Frenkel
(2011), in the special case g = ̂sl3, and derive the third order scalar differential oper-



58 D. Masoero and A. Raimondo

ator (1). The reader should refer to Masoero and Raimondo (2020), and references
therein for more details.

We begin by introducing some theory of the algebra sl3(C),1 which we realise as
the Lie algebra of traceless 3 by 3 matrices (in such a way that it coincides with its
first fundamental representation, also known as standard representation). The algebra
has the decomposition n− ⊕ h ⊕ n+, where n− are lower diagonal matrices, h is the
Cartan subalgebra of traceless diagonalmatrices, and n+ are upper diagonalmatrices.
The subalgebra b+ := h ⊕ n+ is called the Borel subalgebra. We provide an explicit
basis of b+ as follows

h1 =
⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ , h2 =
⎛

⎝

0 0 0
0 1 0
0 0 −1

⎞

⎠ , (4)

e1 =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ , e2 =
⎛

⎝

0 0 0
0 0 1
0 0 0

⎞

⎠ , eθ =
⎛

⎝

0 0 1
0 0 0
0 0 0

⎞

⎠ . (5)

We introduce three further elements, the sum of the negative Chevalley generators
of the Lie algebra f ∈ n− (principal nilpotent element), the dual of the Weyl vector
ρ∨ ∈ h, and the dual of the highest root θ∨ ∈ h. We have:

f =
⎛

⎝

0 0 0
1 0 0
0 1 0

⎞

⎠ , ρ∨ = θ∨ =
⎛

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎠ . (6)

The unipotent group N = {exp y, y ∈ n+} acts on sl3 via the formula

exp y.g = g +
∑

k≥1

(ady)
k .g

k! , ady .g := [y, g],

and the affine subspace f + b+ is preserved by the action. Following Kostant (1978),
and given a vector subspace s ⊂ n+, we say that the affine subspace f + s is a
transversal space if

1. The orbit of f + s under the action of N coincides with f + b+.
2. For each s ∈ s, then exp y.( f + s) /∈ f + s unless y = 0.

The subspace s = Ce1 ⊕ Ceθ satisfies the above hypotheses2 and the transversal
space f + s is the space of companion matrices:

1For sake of simplicity we prefer to work with sl3-opers, instead of ̂sl3-opers. We do that by
considering the loop algebra variable λ as a free complex parameter. More about this in Masoero
and Raimondo (2020), Sect. 4.
2As an example, the Cartan subalgebra h satisfies the first but not the second hypothesis above.
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f + s =
⎧

⎨

⎩

⎛

⎝

0 a b
1 0 0
0 1 0

⎞

⎠ | a, b ∈ C

⎫

⎬

⎭

.

We fix this choice for the rest of the paper.

2.1 Opers

We denote by K the field of rational functions in the variable z, and we define

1. g(K ), b+(K ), n+(K ) the Lie algebras of rational functions with values in
g, b+, n+ respectively.

2. The space of (global meromorphic) g-valued connections conn(K ) = {∂z +
g, g ∈ g(K )}.

3. The subset op(K ) = {L = ∂z + f + b, b ∈ b+(K )} ⊂ conn(K ).
4. The group of unipotentGauge transformationsN (K ) = {exp y, y ∈ n+(K )}, act-

ing on conn(K ) via the formula

exp y.(∂z + g) = ∂z −
∑

k≥0

1

(k + 1)! (ady)
k dy

dz
+ exp y.g. (7)

Note that the above action preserves the subset op(K ).
5. The space of sl3 opers as Op(K ) = op(K )/N (K ).

The space of opers Op(K ) admits a very explicit description once a transversal space
f + s is fixed: any element in op(K ) is Gauge equivalent to a unique connection of
the form ∂z + f + s, s ∈ s(K ). Hence we have a bijection

Op(K ) ∼= {∂z + f + s, s ∈ s(K )}.

We call ∂z + f + s the canonical form of any oper Gauge equivalent to it.

2.2 Opers and Scalar ODEs

It is a standard and elementary result that the space of sl3 opers coincides with the
space of third order linear scalar differential operators (with principal symbol equal
to 1 and vanishing sub-principal symbol). Indeed, for what we have said so far, any
oper has a unique representative of the form

L = ∂z + f + v1(z)e1 + v2(z)eθ,
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where v1, v2 are a pair of (arbitrary) rational functions. In the first fundamental
representation, this oper takes the form

L = ∂z +
⎛

⎝

0 v1(z) v2(z)
1 0 0
0 1 0

⎞

⎠ . (8)

If {ε1, ε2, ε3} is the standard basis of C3, and given ψ = C → C
3, with ψ(z) =

ψ1(z)ε1 + ψ2(z)ε2 + ψ3(z)ε3, then the matrix first order equation

Lψ(z) = 0,

is easily seen to be equivalent to the following scalar ODE for the third coefficient
Ψ := ψ3

(∂3
z − v1∂z + v2)Ψ (z) = 0. (9)

We will use this scalar representation in the rest of the paper.

2.3 (Ir)Regular Singularities

Let L be an oper in the canonical form (8), and w ∈ C a pole of v1 or v2, so that

v1 = s̄1(z − w)−δ1 + o((z − w)−δ1),

v2 = s̄2(z − w)−δ2 + o((z − w)−δ2)

for some s̄1, s̄2 �= 0 and some δ1, δ2 ∈ Z. We define (Masoero and Raimondo 2020)

– The slope of the singular point w ∈ C as

μ = max

{

1,max

{

δ1

2
,
δ2

3

}}

∈ Q.

– The principal coefficient of the singular point w as

f − ρ∨ + s̄1e1 + s̄2e2 =
⎛

⎝

−1 s̄1 s̄2

1 0 0
0 1 1

⎞

⎠ if μ = 1,

and

f + s̄1e1 + s̄2e2 =
⎛

⎝

0 s̄1 s̄2

1 0 0
0 1 0

⎞

⎠ if μ > 1.
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As proved in Masoero and Raimondo (2020), the singularity is regular (in the sense
of linear connections) if μ = 1 and irregular if μ > 1.

Remark 1 In the case when w = ∞, we write v1 = zδ1 + o(zδ1), and v2 = s̄2zδ2 +
o(zδ2) for some s̄1, s̄2 �= 0, and δ1, δ2 ∈ Z, and define the slope of w = ∞ as μ =
max{1,max{ δ1

2 , δ2
3 } + 2}. The principal coefficient is defined as above.

2.4 sl3-Quantum KdV Opers

We define sl3-quantum KdV opers following Feigin and Frenkel (2011). To this aim
we fix −3 < k < −2 and r̄1, r̄2 ∈ C and write

L(z,λ) = LG,s(z,λ) + s(z), s ∈ K (s) . (10)

Here LG,s is the ground state oper

LG,s(z,λ) = ∂z +
⎛

⎝

0 r̄1/z2 r̄2/z3 + z−2 + λzk

1 0 0
0 1 0

⎞

⎠ . (11)

We notice that LG,s(z,λ) has two singular points: z = 0 is a regular singularity with
principal coefficient

⎛

⎝

−1 r̄1 r̄2

1 0 0
0 1 1

⎞

⎠ ,

while z = ∞ is an irregular singularity, with slope μ = 4
3 and principal coefficient

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠ .

As it will be reviewed in the next section, one can obtain solutions of theBetheAnsatz
equations by considering the differential equation LG,sψ = 0: more precisely these
are obtained as coefficients of the expansion of the subdominant solution at +∞ in
terms of a distinguished basis of solutions defined at z = 0.

In Bazhanov et al. (2004), Bazhanov, Lukyanov and Zamolodchikov proved that
in the case g = ̂sl2, the ground state oper could be modified without altering the
above global structure, so that the modified equations yield (different) solutions of
the same Bethe Ansatz equations (as coefficients of the same expansion). Feigin and
Frenkel (2011) extended these idea to the case of a general Kac-Moody algebra,
and conjectured that the higher level opers could be uniquely specified by imposing
on the s-valued function s the 4 conditions below. These conditions were shown
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to sufficient (Masoero and Raimondo 2020), and are expected to be necessary for
generic values of the parameters k̂, r̄1, r̄2 (Feigin and Frenkel 2011). We say that the
oper L(z,λ) of the form (10) is a sl3-quantum KdV oper if it satisfies the following
4 assumptions:

Assumption 1 The slope and principal coefficient at 0 do not depend on s.

Assumption 2 The slope and principal coefficient at ∞ do not depend on s.

Assumption 3 All additional singular points are regular and the corresponding prin-
cipal coefficients are conjugated to the element f − ρ∨ − θ∨ ∈ f + h.

Assumption 4 All additional singular points have trivial monodromy for every λ ∈
C.

The following proposition, which is Proposition 4.7 in Masoero and Raimondo
(2020) specialised to the case of g = sl3, is a first characterisation of the Quantum
KdV opers; it shows that they have the form (1).

Proposition 1 An operator L(z,λ) of the form (10) satisfies the first three Assump-
tions if and only if there exists a (possibly empty) arbitrary finite collection of non-
zero mutually distinct complex numbers {w j } j∈J ⊂ C

× and a collection of numbers

{a( j)
11 , a( j)

21 , a( j)
22 } j∈J ⊂ C, such that L(z,λ) has the form

L(z,λ) = ∂z +
⎛

⎝

0 W1 W2

1 0 0
0 1 0

⎞

⎠ , (12)

where

W1(z) = r̄1

z2
+
∑

j∈J

(

3

(z − w j )2
+ a( j)

11

z(z − w j )

)

, (13a)

W2(z,λ) = r̄2

z3
+ 1

z2
+ λzk +

∑

j∈J

(

3

(z − w j )3
+ a( j)

21

z(z − w j )2
+ a( j)

22

z2(z − w j )

)

.

(13b)

Note that when J is empty then (12) reduces to the ground state oper (11). If J is not
empty, then we set J = {1, . . . , N }, for some N ∈ Z+. In order to fully characterise
the sl3-quantum KdV opers, we must impose the fourth and last Assumption on
the opers of the form (12), namely the triviality of the monodromy about all the
additional singularities w j , j = 1 . . . N . We notice that the opers of the form (12)
depend on the 4N complex parameters {a( j)

11 , a( j)
21 , a( j)

22 , w j } j∈1...N . We will show in
the following subsection that the trivial monodromy conditions are equivalent to
a complete system of 4N algebraic equations, which in turn are equivalent to (1)
and (2).



Opers for Higher States of the Quantum Boussinesq Model 63

2.5 Trivial Monodromy Conditions

We fix � ∈ 1 . . . N and study under which conditions the oper L(z,λ) of the form
(12) has trivial monodromy about w�. As we showed in Masoero and Raimondo
(2020), Assumption 3 (more precisely, the fact that θ∨ is a co-root) implies that the
monodromy about w� is trivial if and only if it is trivial in at least one irreducible
(nontrivial) representation. In other words, it is necessary and sufficient that the
monodromy at z = w� is trivial for the solutions of the equation L(z,λ)Ψ = 0 in
the standard representation.

To this aim we write the above equation in the scalar form

(∂3
z − W1∂z + W2)Φ(z) = 0 , (14)

and use the method of the Frobenius expansion, that is we look for solutions of the
form

Φ(β)(z) =
∑

m≥0

Φm(z − w�)
β+m . (15)

Writing the Laurent expansion of (14) at w� as

W1(z) =
+∞
∑

m=0

q(�)
1m (z − w�)

m−2, q(�)
10 = 3, (16a)

W2(z) =
+∞
∑

m=0

q(�)
2m(z − w�)

m−3, q(�)
20 = 3, (16b)

expanding the Eq. (15) in powers of z − w�, and equating to zero term-by-term we
obtain

Φ
(β)

0 P(β) = 0,

P(β + r)Φ(β)
r =

r
∑

m=1

(

(β + r − m)q(�)
1m − q(�)

2m

)

Φ
(β)
r−m, (17)

where the indicial polynomial P(β) = (β − 3)(β − 1)(β + 1). The roots of the indi-
cial polynomial, β = −1, 1, 3, are known as indices. Since the indices are integers,
the monodromy matrix has a unique eigenvalue, 1, with algebraic multiplicity 3,
and the monodromy is trivial if and only if the recursion (17) has a solution for
all the indices. Indeed, in such a case, Φβ(e2πi z) = Φβ(z) for β = −1, 1, 3; other-
wise logarithmic terms must be added to the series (15) and the monodromy is not
diagonalizable (Wasow 2018).

We analyse the recursion (17) separately for the three indices.
The recursion (17) for the index β = 3 admits always a unique solution, since

P(3 + r) �= 0,∀r ≥ 1.
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In the case β = 1, we have that P(β + r) = 0, r ≥ 1 if and only if r = 2. Hence
the recursion is over-determined. Computing the first two terms we obtain

−3Φ(1)
1 =

(

q(�)
11 − q(�)

21

)

Φ
(1)
0 ,

0 × Φ
(1)
2 =

(

2q(�)
11 − q(�)

21

)

Φ
(1)
1 +

(

q(�)
12 − q(�)

22

)

Φ
(1)
0 .

It follows that the recursion for the index β = 1 has at least one solution if and only
if

q(�)
12 − q(�)

22 = 2

3

(

q(�)
11

)2 − q(�)
11 q

(�)
21 + 1

3

(

q(�)
21

)2
. (18)

Finally, the Frobenius method for the index β2 = −1 gives

3Φ(−1)
1 = −

(

q(�)
11 + q(�)

21

)

Φ
(−1)
0 ,

0 × Φ
(−1)
2 = −q(�)

21 Φ
(−1)
1 −

(

q(�)
12 + q(�)

22

)

Φ
(−1)
0 ,

−3Φ(−1)
3 =

(

q(�)
11 − q(�)

21

)

Φ
(−1)
2 − q(�)

22 Φ
(−1)
1 −

(

q(�)
13 + q(�)

23

)

Φ
(−1)
0 ,

0 × Φ
(−1)
4 =

(

2q(�)
11 − q(�)

21

)

Φ
(−1)
3 +

(

q(�)
12 − q(�)

22

)

Φ
(−1)
2 − q(�)

23 Φ
(−1)
1 −

(

q(�)
14 + q(�)

24

)

Φ
(−1)
0 ,

and we obtain the following constraints

q(�)
12 + q(�)

22 = 1

3
q(�)
21 q

(�)
11 + 1

3

(

q(�)
21

)2
,

q(�)
14 + q(�)

24 = (2q(�)
11 − q(�)

21 )

(

−1

9
q(�)
22 (q(�)

11 + q(�)
21 ) + 1

3
(q(�)

13 + q(�)
23 )

)

+ 1

3
q(�)
23 (q(�)

11 + q(�)
21 ).

Combining these with (18) we obtain the following characterisation: themonodromy
about w� is trivial if and only if the following system of 3 equations

q(�)
12 =1

3

(

(

q(�)
11

)2 − q(�)
11 q

(�)
21 +

(

q(�)
21

)2
)

, (19)

q(�)
22 =1

3
q(�)
11

(

2q(�)
21 − q(�)

11

)

, (20)

q(�)
14 + q(�)

24 =1

3
q(�)
13

(

2q(�)
11 − q(�)

21

)

+ q(�)
11 q

(�)
23

+ 1

27
q(�)
11

(

2q(�)
11 − q(�)

21

) (

q(�)
11 − 2q(�)

21

) (

q(�)
11 + q(�)

21

)

. (21)

In order to proceed further we write explicitly the coefficients q’s, which appear
in the above equations, in terms of the parameters of the opers (12)
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q�
10 = 3, q�

20 = 3, q(�)
11 = a(�)

11
w�

, q(�)
21 = a(�)

21
w�

,

q(�)
12 = r̄1 − a(�)

11

w2
�

+
N
∑

j=1
j �=�

(

3

(w� − w j )
2 + a( j)

11
w�(w� − w j )

)

, q(�)
22 = a(�)

22 − a(�)
21

w2
�

,

q(�)
13 = a(�)

11 − 2r̄1

w3
�

−
N
∑

j=1
j �=�

(

6

(w� − w j )
3 + a( j)

11
w�(w� − w j )

2 + a( j)
11

w2
�
(w� − w j )

)

,

q(�)
23 = r̄2 + a(�)

21 − 2a(�)
22 + w�

w3
�

+ λwk
� +

N
∑

j=1
j �=�

(

3

(w� − w j )
3 + a( j)

21
w�(w� − w j )

2 + a( j)
22

w2
�
(w� − w j )

)

,

q(�)
14 = 3r̄1 − a(�)

11

w4
�

+
N
∑

j=1
j �=�

(

9

(w� − w j )
4 + a j

11
w�(w� − w j )

3 + a j
11

w2
�
(w� − w j )

2
+ a j

11

w3
�
(w� − w j )

)

,

q(�)
24 = 3a(�)

22 − a(�)
21 − 3r̄2 − 2w�

w4
�

+ λkwk−1
�

−
N
∑

j=1
j �=�

(

9

(w� − w j )
4 + 2a(�)

21
w�(w� − w j )

3 + a(�)
21 + a(�)

22

w2
�
(w� − w j )

2
+ 2a(�)

22

w3
�
(w� − w j )

)

.

We notice that while Eqs. (19) and (20) do not depend on λ, Eq. (21) is a first-
order polynomial in λ. Since the trivial monodromy conditions must hold for any λ,
Eq. (21) consists of a pair of independent constraints: both the constant part in λ and
the linear part in λ are required to vanish independently. The vanishing of the part
of (21) which is linear in λ reads:

q(�)
11 wk

� − kwk−1
� = 0, or q(�)

11 = k

w�

,

from which we obtain
a(�)
11 = k, � = 1, . . . , N . (22)

Making use of the explicit expression of the q ′s in terms of the a′s, as given above,
and denoting

a� = a(�)
21 , � = 1, . . . , N , (23)

from (20) we obtain

a(�)
22 = 2

3
(k + 3)a� − k2

3
, � = 1, . . . , N . (24)

Substituting (22) and (24) into the expression for the q’s found above, then from
(19) we obtain (2a), while the vanishing of the constant (in λ) coefficient of (21) is
equivalent to (2b).
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We have thus arrived to the following result: an sl3 Quantum KdV oper is equiva-
lent to a scalar third order differential operator of the form (1) such that its coefficients
satisfy the system of algebraic equations (2).

2.6 The Dual Representation. Formal Adjoint Operator

Before we proceed further with our analysis, and we construct solutions to the Bethe
Ansatz equations, we introduce a second representation of the algebra sl3. This is
called the second fundamental representation or dual representation, andwe denote it
byC3∗. If {ε1, ε2, ε3} is the standard basis ofC3 as above,we denote by {ε∗

1, ε
∗
2, ε

∗
3}, the

corresponding dual basis in C3∗ such that 〈ε∗
i , ε j 〉 = δi j . In these basis, the matrices

representing the elements h1, h2, θ∨, ρ∨, e1, e2, eθ, f read

h1 =
⎛

⎝

0 0 0
0 1 0
0 0 −1

⎞

⎠ , h2 =
⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ , ρ∨ = θ∨ =
⎛

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎠ ,

e1 =
⎛

⎝

0 0 0
0 0 1
0 0 0

⎞

⎠ , e2 =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ , eθ =
⎛

⎝

0 0 −1
0 0 0
0 0 0

⎞

⎠ , f =
⎛

⎝

0 0 0
1 0 0
0 1 0

⎞

⎠ .

Aswe have discussed before, the general sl3 oper can bewritten the canonical form as
the connection L = ∂z + f + v1e1 + v2eθ, for an arbitrary pair of rational functions
v1, v2 ∈ K . In the dual representation, we thus have

L = ∂z +
⎛

⎝

0 0 −v2
1 0 v1
0 1 0

⎞

⎠ .

Weshowed that in the standard representationC3 the connectionL is equivalent to the
scalar third order operator (9). In the dual representation the same oper is equivalent
to a different scalar operator, namely to its formal adjoint. Let ψ∗ =: C → C

3∗, with
ψ∗(z) = ψ∗

1(z)ε
∗
1 + ψ∗

2(z)ε
∗
2 + ψ∗

3(z)ε
∗
3, satisfy Lψ∗ = 0 in the dual representation.

Then Ψ ∗(z) := ψ∗
3(z) satisfies the scalar ODE

(−∂3
z + v1∂z + (v2 + v′

1))Ψ
∗(z) = 0 , (25)

which is the formal adjoint of the Eq. (9).

The following standard isomorphisms (of sl3-modules) will be needed later to
derive the Bethe Ansatz equations:

∧2
C

3 ∼= C
3∗ and

∧2
C

3∗ ∼= C
3. Explicitly,
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ı(ε1 ∧ ε2) = ε∗
1, ı(ε1 ∧ ε3) = ε∗

2, ı(ε2 ∧ ε3) = ε∗
3, (26)

ı(ε∗
1 ∧ ε∗

2) = ε1, ı(ε∗
1 ∧ ε∗

3) = ε2, ı(ε∗
2 ∧ ε∗

3) = ε3. (27)

The above isomorphisms imply that if ψ(z),φ(z) are solutions of Lψ(z) = 0, for
ψ : C → C

3 in the standard representation then ı
(

ψ(z) ∧ φ(z)
)

is a solution of the
dual equation Lψ∗(z) = 0, with ψ∗ : C → C

3∗; and conversely.
In the present paper we prefer to work with solutions of the equations in the

scalar form (9) and (25). Recall that the solution of the equations in the scalar
form is just the third component of the solution of the vector equation. If ψ(z) =
ψ1(z)ε1 + ψ2(z)ε2 + ψ3(z)ε3 and φ(z) = φ1(z)ε1 + φ2(z)ε2 + φ3(z)ε3, then a sim-
ple calculation shows that

〈ı(ψ ∧ φ), ε3〉 = Wr [ψ3,φ3]

where Wr [·, ·] denotes the usual Wronskian Wr [ f (z), g(z)] = f (z)g′(z) −
f ′(z)g(z). Similarly, for ψ∗(z) = ψ∗

1(z)ε
∗
1 + ψ∗

2(z)ε
∗
2 + ψ∗

3(z)ε
∗
3 and φ∗(z) =

φ∗
1(z)ε

∗
1 + φ∗

2(z)ε
∗
2 + φ∗

3(z)ε
∗
3 we have

〈ε∗
3, ı(ψ

∗ ∧ φ∗)〉 = Wr [ψ∗
3 ,φ

∗
3].

To prove the above relations, it is sufficient to note that from the matrix first order
equations Lψ(z) = 0,Lψ∗(z) = 0 we obtain the identities ψ2(z) = −ψ′

3(z) and
ψ∗
2 = −ψ∗

3
′(z). We have thus shown that the Wronskian of two solutions of (9)

satisfies (25), and conversely the Wronskian of two solutions of (25) satisfies (9).

2.7 Relation with Previous Works

The ground state sl3-quantum KdV oper, given by Eq. (11), was also considered –
in the scalar form – by Dorey and Tateo (2000), and by Bazhanov et al. (2002), who
wrote the following third order scalar operator

˜L(x, E) = ∂3
x + w̃1

x2
∂x + w̃2

x3
+ x3M − E, (28)

with w̃1 = �̃1�̃2 + �̃1�̃3 + �̃2�̃3 − 2, w̃2 = −�̃1�̃2�̃3 andwhere the �̃i ’s are constrained
by the equation �̃1 + �̃2 + �̃3 = 3. In addition, in our previous paper (Masoero et al.
2016) we considered the ground state oper in the following form

L(x, E) = ∂x +
⎛

⎝

�1/x 0 x3M − E
1 (�2 − �1)/x 0
0 1 −�2/x

⎞

⎠ (29)
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for arbitrary �1, �2 ∈ C and M > 0. We now show that the differential operators
(11), (28), and (29) are equivalent under appropriate change of coordinates and
Gauge transformations, once the parameters are correctly identified. To show that
the differential operators (28) and (29) are equivalent, we write the operator (28) in
the oper form

∂x +
⎛

⎝

0 −w̃1/x2 w̃2/x3 + x3M − E
1 0 0
0 1 0

⎞

⎠ . (30)

It is then a simple computation to show that (30) and (29) are Gauge equivalent if
we set �̃1 = −�1 + 2, �̃2 = �1 − �2 + 1 and �̃3 = �2.

Next we show the equivalence between (29) and (11). As observed in Feigin and
Frenkel (2011), after the change of variable

z = ϕ(x) =
(

k + 3

3

)3

x
3

k+3 , k = −3M + 2

1 + M
, (31)

the operator (29) reads

LG(z,λ) = ∂z +
⎛

⎝

r1/z 0 z−2 + λzk

1 (r2 − r1)/z 0
0 1 −r2/z

⎞

⎠ , (32)

where λ ∈ C and r1, r2 ∈ C are defined by the relations

E = −
(

k + 3

3

)3(k+2)

λ, �i = 3

k + 3
(ri − 1) + 1, i = 1, 2. (33)

It is again a simple computation to show that the opers (32) and (11) are Gauge
equivalent provided the coefficients r1, r2, r̄1, r̄2 satisfy the following relations

{

r̄1 = (r1)2 − r1r2 + (r2)2 − r1 − r2,

r̄2 = r1r2(r1 − r2) + r2(2r2 − r1 − 2).
(34)

2.8 Weyl Group Symmetry

The parametrisation (34) of r̄1, r̄2 in terms of r1 and r2 will be very convenient when
discussing the behaviour of solutions of L(z,λ)ψ = 0 in a neighbourhood of z = 0.
The Weyl group of sl3 – which is isomorphic to the group of permutations of three
elements, S3 – is a symmetry of themap (34), once its action on the parameters r1, r2,
which is called the dot action, is properly defined:
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σ ·
(

r1

r2

)

=
(−r2 + 2

−r1 + 2

)

, τ ·
(

r1

r2

)

=
( −r2 + 2
r1−r2 + 1

)

. (35)

We let the reader verify that σ, τ generate the group S3 (in particular σ2 = 1, τ 3 = 1)
and that the above action is a symmetry of (34). This phenomenon is studied in great
detail and generality in Masoero and Raimondo (2020), Sect. 5.

3 The Bethe Ansatz Equations

In this section we construct solutions of the Bethe Ansatz equations as generalised
monodromy data of Quantum KdV opers, L(z,λ). As proved in Sect. 2, these are
opers of the form

L(z,λ) = ∂z +
⎛

⎝

0 W1 W2

1 0 0
0 1 0

⎞

⎠ , (36)

where

W1(z) = r̄1

z2
+
∑

j∈J

(

3

(z − w j )
2 + k

z(z − w j )

)

, (37a)

W2(z,λ) = r̄2

z3
+ 1

z2
+ λzk +

∑

j∈J

(

3

(z − w j )
3 + a j

z(z − w j )
2 + 2(k + 3)a j − k2

3z2(z − w j )

)

,

(37b)

and where {a j , w j } j=1,...,N satisfy the system of equations (2). We follow Masoero
et al. (2016), Masoero and Raimondo (2020) closely and the reader should refer to
these papers for all missing proofs. Any finite dimensional representation V of sl3
defines the ODE

L(z,λ)ψ = 0, Ψ : C → V .

Since the monodromy of L(z,λ) about w j is trivial for any j , then the solutions of
the above equation are, for fixed λ, analytic functions on the universal cover of C∗,
minus the lift of the pointsw j , j ∈ 1 . . . N . We denote such a domain bŷC. As it was
originally observedbyDorey andTateo, the appearance of theBetheAnsatz equations
is due to a discrete symmetry which acts on both the variable z and the parameter λ.
It is therefore necessary to consider solutions ψ(z,λ) as analytic functions of both
variables z and λ. More precisely for our purpose ψ(z, ·) is assumed to be an entire
function of λ. We thus define a solution to be an analytic mapψ : ̂C × C → V which
satisfies the equation L(z,λ)ψ(z,λ) = 0 for every (z,λ).

The space of solutions, whichwe denote by V (λ), is an infinite dimensional vector
space which, as we showed in Masoero and Raimondo (2020), is simply isomorphic
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to V ⊗ Oλ, where Oλ is the ring of entire functions of the variable λ. This means
that an Oλ-basis of the space of solutions has cardinality dim V .

3.1 Twisted Opers

Let k̂ = −k − 2, so that 0 < k̂ < 1. For any t ∈ R we define the twisted operator
and twisted solution:

Lt (z,λ) := L(e2iπt z, e2iπt k̂λ), (38)

ψt (z,λ) = e2iπtρ
∨
ψ(e2πi t z, e2πi t k̂λ). (39)

Taking into account the oper change of variables (Masoero and Raimondo 2020),
then from (36) we explicitly have

Lt (z,λ) = ∂z + f + e4πi tW1(e
2πi t z)e1 + e6πi tW2(e

2πi t z, e2πi t k̂λ)eθ,

and one easily see that the function ψt (z,λ) satisfiesLt (z,λ)ψt (z,λ) = 0. A crucial
property of the oper (36) is the following Dorey-Tateo discrete symmetry:

Lt=1(z,λ) = L(z,λ) , (40)

which leads us to consider the following (Oλ-linear) monodromy operator

M : V (λ) → V (λ), M(ψ(z,λ)) = e2iπρ∨
ψ(e2πi z, e2πi k̂λ) . (41)

In the case sl3, we just need to consider the equations Lt (z,λ)ψ = 0 for the
standard representation and its dual. More precisely, the standard representation at 0
twist, and the dual representation at twist t = 1

2

L(z,λ)ψ(z,λ) = 0, ψ : ̂C × C → C
3, (42)

L 1
2 (z,λ)ψ∗(z,λ) = 0, ψ∗ : ̂C × C → C

3∗
. (43)

By a slight abuse of notation we denote C
3(λ) the space of solutions of the first

equation, and by C3∗
(λ) the space of solutions of the latter equations, as well as the

solutions of the same equations in the equivalent scalar form

(

∂3
z − W1(z)∂z + W2(z,λ)

)

Ψ (z,λ) = 0, (44)
(

∂3
z − W1(−z)∂z + W2(−z, eπi k̂λ) − W ′

1(−z)
)

Ψ ∗(z,λ) = 0. (45)
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Since the solution of the equations in the scalar form is the third component of a
solution of the equation in the matrix form, and since ρ∨ε3 = −ε3, ρ

∨ε∗
3 = −ε∗

3, the
twist for solutions of the above scalar ODEs is defined as follows

Ψt (z,λ) = e−2iπtΨ (e2πi t z, e2πi t k̂λ) , Ψ ∗
t (z,λ) = e−2iπtΨ ∗(e2πi t z, e2πi t k̂λ).

Equation (45) is the adjoint equation to (44) twisted by t = 1
2 ; and conversely, Eq. (44)

is the adjoint equation to (45) twisted by t = 1
2 . As we recalled in Sect. 2.6, the

Wronskian of two solutions of a scalar ODE solves the adjoint equation. It follows
that

1. If Ψ (z,λ),Φ(z,λ) ∈ C
3(λ) then

Wr [Ψ− 1
2
(z,λ),Φ 1

2
(z,λ)] ∈ C

3∗
(λ),

2. If Ψ ∗(z,λ),Φ∗(z,λ) ∈ C
3∗

(λ), then

Wr [Ψ ∗
− 1

2
(z,λ),Φ∗

1
2
(z,λ)] ∈ C

3(λ).

3.2 The Eigenbasis of the Monodromy Operator. Expansion
at z = 0

The point z = 0 is a regular singularity for the Eqs. (44) and (45), but it is also
a branch point of the potential W2, because of the term λzk . It follows that the
standard Frobenius series cannot provide solution of the above equations at z = 0.
A generalised Frobenius series, introduced in Masoero and Raimondo (2020), does
however the job. The latter is defined as

Φ(β)(z,λ) = zβ
∑

m≥n≥0

cm,nz
mζn , c0,0 = 1 , ζ = λz−k̂ , (46)

where the indicesβ are computed as in the standard Frobeniusmethod: if the equation
reads

(

∂3
z + a + o(1)

z2
∂z + b + o(1)

z3

)

Ψ (z) = 0,

the indices are the roots of the indicial polynomial P(β) = β3 − 3β2 + (2 + a)β +
b. The following facts are proved in Masoero and Raimondo (2020), Proposition
5.1. For every finite dimensional representation V of sl3, and under some genericity
assumptions 3 on the triple (k̂, r̄1, r̄2), we have:

3The genericity assumptions imply that the monodromy operator M is diagonal and no logarithmic
terms appear in the generalised Frobenius series.
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1. The series (46) converges to a solution Φ(β)(z,λ) ∈ V (λ).
2. MΦ(β)(z,λ) = e2πiβΦ(β)(z,λ), where M is the monodromy operator defined in

(41).
3. The collection of the solutions Φ(β)(z,λ) for all indices β forms an Oλ-basis of

V (λ).

In the cases under our study, namely Eqs. (44) and (45), the indicial polynomials
are, respectively, given by

P(β) = β3 − 3β2 + (2 − r̄1)β + r̄2,

P∗(β) = β3 − 3β2 + (2 − r̄1) + 2r̄1 − r̄2.

Using (34), then we obtain the factorizations

P(β) = (β − r2)(β − 1 + r2 − r1)(β − 2 + r1),

P∗(β) = (β − r1)(β − 1 + r1 − r2)(β − 2 + r2),

so that the indices are given by

β1 = r2, β2 = r1 − r2 + 1, β3 = −r1 + 2, (47a)

β∗
1 = −r2 + 2, β∗

2 = r2 − r1 + 1, β∗
3 = r1. (47b)

We denote by

{Φ(β1)(z,λ),Φ(β2)(z,λ),Φ(β3)(z,λ)}, (48a)

{Φ(β∗
1 )(z,λ),Φ(β∗

2 )(z,λ),Φ(β∗
3 )(z,λ)}, (48b)

the corresponding solutions of (44) and (45) respectively. Recall that theWeyl group
acting by the dot action (35) on r1, r2, provides a group of symmetries of r̄1, r̄2, hence
it leaves the indicial polynomial invariant, permuting its roots.4 The (induced) action
of the generators σ, τ of the Weyl group, see (35), on the indices (47) is provided by
the following permutations:

σ(βi ) = βσ(i), τ (βi ) = βτ (i), i = 1, 2, 3, (49a)

σ(β∗
i ) = β∗

σ(i), τ (β∗
i ) = βτ (i), i = 1, 2, 3, (49b)

where
σ(1, 2, 3) := (3, 2, 1), τ (1, 2, 3) := (2, 3, 1). (50)

Comparing the asymptotic behaviour at z = 0, we deduce the following 6 quadratic
identities among the (properly normalised) Φ(β)’s and Φ(β∗)’s. Let s ∈ S3, then (we

4Many authors fix r1, r2 by imposing the conditions �β1 > �β2 > �β3, or equivalently �β∗
3 >

�β∗
2 > �β∗

1 (Bazhanov et al. 2002; Dorey et al. 2007; Masoero et al. 2016).
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can find a normalisation of the solutions Φ(βi ), Φ(β∗
i ) such that):

Wr [Φ(βs(1))

∓ 1
2

, Φ
(βs(2))

± 1
2

] = (−1)p(s)e±iπs(γ)Φ(β∗
s(3)), (51a)

Wr [Φ(β∗
s(3))

∓ 1
2

, Φ
(β∗

s(2))

± 1
2

] = (−1)p(s)e±iπs(γ∗)Φ(βs(1)), (51b)

where p(s) is the parity of s ∈ S3, and where

s(γ) = βs(2) − βs(1), s(γ∗) = β∗
s(2) − β∗

s(3), (52)

with the βs(i) and β∗
s(i) defined by the relations (47) and (49).

3.3 Sibuya Solutions. Expansion at z = ∞

We let q(z,λ) be the Puiseaux series of
(

z−2(1 + λz−k̂)
) 1

3 truncated after terms of
z−1, and S(z,λ) be its primitive

q(z,λ) = z
−2
3
(

1 +
� 1
3k̂

�
∑

l=0

clλ
l z−lk̂

)

, S(z,λ) =
∫ z

q(y,λ)dy, (53)

where cl are the coefficients of Taylor series expansion at y = 0 of (1 − y)
1
3 , and

∫ z yldl = zl+1

l+1 , l �= −1,
∫ z 1

y = log z.
The Sibuya, or subdominant, solution of the Eqs. (44) and (45) is uniquely defined

by the following asymptotics

Ψ (z,λ) = z
2
3 e−S(z,λ)

(

1 + o(1)
)

, as z → +∞, (54a)

Ψ ∗(z,λ) = z
2
3 e−S(z,λ)

(

1 + o(1)
)

, as z → +∞. (54b)

Moreover we have that

Ψ ′(z,λ) = −e−S(z,λ)
(

1 + o(1)
)

, as z → +∞, (55a)

Ψ ∗′
(z,λ) = −e−S(z,λ)

(

1 + o(1)
)

, as z → +∞. (55b)

The Sibuya solutions Ψ,Ψ ∗ satisfy the following properties

– It is the solution (unique up to a multiplicative constant) with the fastest decrease
as z → +∞.

– The asymptotic formulas (54) hold true on the sector | arg z| ≤ π + ε, for some ε >

0 (Masoero et al. 2016). In other words, if we continue analytically Ψ (z,λ), Ψ ∗
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(z,λ) as well as the functions q(z,λ) and S(z,λ) past the negative real semi-axis,
the asymptotic formulas still hold.

– The solutions Ψ (z,λ), Ψ ∗(z,λ) are entire functions of λ, i.e. Ψ (z,λ) ∈ C
3(λ)

and Ψ ∗(z,λ) ∈ C
3∗

(λ).
– Finally, andmost importantly, the solutionsΨ (z,λ), Ψ ∗(z,λ) satisfy the so-called

Ψ -system

Wr [Ψ− 1
2
(z,λ), Ψ 1

2
(z,λ)]) = Ψ ∗(z,λ), (56a)

Wr [Ψ ∗
− 1

2
(z,λ), Ψ ∗

1
2
(z,λ)]) = Ψ (z,λ). (56b)

The latter identities can be checked by comparing the asymptotic expansion of the
left and right hand side as z → +∞.

The Ψ -system is the last necessary ingredient to construct solutions of the Bethe
Ansatz equations.

3.4 Q˜Q System and the Bethe Ansatz

As we have shown, the solutions {Φ(β1)(z,λ),Φ(β2)(z,λ), Φ(β3)(z,λ)} obtained in
(48a) provide an Oλ basis of C3(λ), and the Sibuya solution Ψ (z,λ) belongs to the
same space. It follows that there exists a unique triplet of entire functionsQi (λ) ∈ Oλ,
for i = 1, 2, 3, such that

Ψ (z,λ) = Q1(λ)Φ(β1)(z,λ) + Q2(λ)Φ(β2)(z,λ) + Q3(λ)Φ(β3)(z,λ) . (57a)

Similarly, we have that

Ψ ∗(z,λ) = Q∗
1(λ)Φ(β∗

1 )(z,λ) + Q∗
2(λ)Φ(β∗

2 )(z,λ) + Q∗
3(λ)Φ(β∗

3 )(z,λ) , (57b)

for a unique triplet of entire functions Q∗
i (λ) ∈ Oλ, with i = 1, 2, 3. Substituting

the expansions (57) in the Ψ -system (56) and making use of the relations (51) we
obtain the following quadratic relations among the coefficients Q’s and Q∗’s, which
is known as Q˜Q-system. For each s ∈ S3 we have

(−1)p(s)Q∗
s(3)(λ) = eiπs(γ)Qs(1)(e

−iπk̂λ)Qs(2)(e
iπk̂λ)

− e−iπs(γ)Qs(1)(e
iπk̂λ)Qs(2)(e

−iπk̂λ), (58a)

(−1)p(s)Qs(3)(λ) = eiπs(γ
∗)Q∗

s(1)(e
−iπk̂λ)Qs(2)(e

iπk̂λ)

− e−iπs(γ∗)Q∗
s(1)(e

iπk̂λ)Q∗
s(2)(e

−iπk̂λ), (58b)

where p(s) is the parity of s, and the phases s(γ), s(γ∗) are defined in (52).
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Remark 2 System (58) was shown by Frenkel and Hernandez (2018) to be a univer-
sal system of relations in the commutative Grothendieck ring K0(O) of the category
O of representations of the Borel subalgebra of the quantum affine algebra Uq(̂sl3).

Finally, the Bethe Ansatz equations is a pair of functional relations for each one
of the six pairs of Q functions of the form {Qs(1)Q∗

s(3)}, s ∈ S3. Let λs denote an
arbitrary zero of the function Qs(1),and λ∗

s an arbitrary zero of Q
∗
s(3). Evaluating the

above relations at e±iπk̂λs we obtain the Bethe Ansatz equations

− e2iπs(γ) Qs(1)(e2iπk̂λs)

Qs(1)(e−2iπk̂λs)
= Q∗

s(3)(e
iπk̂λs)

Q∗
s(3)(e

iπk̂λs)
,

− e2iπs(γ
∗) Q∗

s(3)(e
2iπk̂λ∗

s )

Q∗
s(3)(e

−2iπk̂λ∗
s )

= Qs(1)(eiπk̂λ∗
s )

Qs(1)(e−iπk̂λ∗
s )

.

It is believed that each one of the 6 Bethe Ansatz equations is strong enough to
characterise all of the Q’s and Q∗’s, by means of the so-called Destri-De Vega
equations.

4 Quantum Boussinesq Model

The quantum Boussinesq model has been described in great detail by Bazhanov
et al. (2002), from which the notation of the present section is taken and to which
we refer for further details. The model is defined by considering a highest weight
representation VΔ2,Δ3 of the Zamolodchikov’s W3-algebra (Zamolodchikov 1985),
and it is characterized by 4 parameters: the central charge −∞ < c < 2, the high-
est weight (Δ2,Δ3) ∈ C

2, and the spectral parameter μ ∈ C. For generic values of
c,Δ2,Δ3, the representation VΔ2,Δ3 is irreducible, a condition we assume from now
on. Let Ln,Wn , n ∈ Z, denote the generators of theW3 algebra as in Bazhanov et al.
(2002), Sect. 2. The highest weight fixes a ground state |Δ2,Δ3〉 ∈ VΔ2,Δ3 , satisfying
Ln|Δ2,Δ3〉 = Wn|Δ2,Δ3〉 = 0 for n > 0, and

L0|Δ2,Δ3〉 = Δ2|Δ2,Δ3〉 W0|Δ2,Δ3〉 = Δ3|Δ2,Δ3〉.

The W3-module VΔ2,Δ3 admits the level decomposition

VΔ2,Δ3 =
∞
⊕

N=0

V (N )
Δ2,Δ3

, L0V (N )
Δ2,Δ3

= (Δ2 + N )V (N )
Δ2,Δ3

.

The ground state |Δ2,Δ3〉 has level zero, the higher states are obtained by the
action of products of the lowering operators Ln,Wn , n < 0. More precisely, let
{ν1 . . . , νl , ν̄1 . . . , ν̄k},withν j , ν̄ j ∈ N, be a bicoloured integer partition of the integer
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N , namely ν j ≤ ν j+1, ν̄ j ≤ ν̄ j+1 and
∑

j ν j +∑ j ν̄ j = N ; to any such a partition
one associates a state of level N by the formula

∏

j L−ν j

∏

j W−ν̄ j |0〉.
The integrable structure of the quantum Boussinesq model can be conveniently

encoded in the so-called Q-operators (Bazhanov et al. 2002, Sect. 2), from which
the quantum integrals of motion of the model can be obtained. The Q-operators are
more precisely operator-valued functionsQi (t),Qi (t), i = 1, 2, 3, depending on the
parameter t = μ3, where μ is the spectral parameter of the quantum model.5 The
level subspaces V (N )

Δ2,Δ3
are invariant with respect to the action of the Q-operators,

Qi (t) : V (N )
Δ2,Δ3

→ V (N )
Δ2,Δ3

, Qi (t) : V (N )
Δ2,Δ3

→ V (N )
Δ2,Δ3

,

and in particular (for N = 0), the ground state |Δ2,Δ3〉 is an eigenvector for the
Q-operators:

Qi (t)|Δ2,Δ3〉 = P (vac)
i (t)|Δ2,Δ3〉,

Qi (t)|Δ2,Δ3〉 = P
(vac)
i (t)|Δ2,Δ3〉.

As proved in Bazhanov et al. (2002), Sect. 5, the Q-operators (and therefore their
eigenvalues) satisfy the system of quadratic relations

c1Q1(t) = Q2(qt)Q3(q
−1t) − Q3(qt)Q2(q

−1t), (59a)

c1Q1(t) = Q3(qt)Q2(q
−1t) − Q2(qt)Q3(q

−1t), (59b)

c2Q2(t) = Q3(qt)Q1(q
−1t) − Q1(qt)Q3(q

−1t), (59c)

c2Q2(t) = Q1(qt)Q3(q
−1t) − Q3(qt)Q1(q

−1t), (59d)

c3Q3(t) = Q1(qt)Q2(q
−1t) − Q2(qt)Q1(q

−1t), (59e)

c3Q3(t) = Q2(qt)Q1(q
−1t) − Q1(qt)Q2(q

−1t), (59f)

where

q = eiπg, (60a)

c1 = eiπ(p1−
√
3p2) − e−iπ(p1−

√
3p2), (60b)

c2 = e−2iπ p1 − e2iπ p1 , (60c)

c3 = eiπ(p1+
√
3p2) − e−iπ(p1+

√
3p2), (60d)

and the parameter g, p1, p2 are related to c,Δ2,Δ3 by the identities (Bazhanov et al.
2002, Sect. 3)

c = 50 − 24(g + g−1), Δ2 = p21 + p22
g

+ c − 2

24
, Δ3 = 2p2(p22 − 3p21)

(3g)3/2
. (61)

5The spectral parameter μ is denoted λ in Bazhanov et al. (2002).
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4.1 From (58) to (59)

We now prove that the Q˜Q system (58) and the system (59) are equivalent. As a
by-product we deduce the explicit relations (3) among the parameters of the opers,
r̄1, r̄2, k,λ, and the parameters of the quantum theory, c,Δ2,Δ3,μ. More precisely,
we derive (3a), (3b) and (3c) while (3d) can be found in Bazhanov et al. (2002).

Let Qi , Q∗
i . i = 1, 2, 3 be the functions defined by the expansions (57), satisfying

the Q˜Q-system (58). Assume that Qi (0) �= 0 and Q∗
i (0) �= 0, i = 1, 2, 3. Recall the

definition of the indices βi , β∗
i , i = 1, 2, 3 as given in (47). Then, a direct calculation

shows that the functions

Pi (t) = tβi
Qi (t)

Qi (0)
, P∗

i (t) = tβ
∗
i
Q∗

i (t)

Q∗
i (0)

, i = 1, 2, 3

satisfy (59), with the parameters g, p1, p2 appearing in (60) related to the parameters
k̂, r1, r2 by the relations

g = 1 − k̂ = k + 3, p1 = r1

2
+ r2

2
− 1, p2 =

√
3

2
(r1 − r2). (62)

Substituting the above equation into (61) and using (34) we obtain (3a)–(3c).
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