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Abstract In a prior paper the authors obtained a four-dimensional discrete inte-
grable dynamical system by the traveling wave reduction from the lattice super-KdV
equation in a case of finitely generated Grassmann algebra. The system is a coupling
of a Quispel-Roberts-Thompson map and a linear map but does not satisfy the sin-
gularity confinement criterion. It was conjectured that the dynamical degree of this
system grows quadratically. In this paper, constructing a rational variety where the
system is lifted to an algebraically stable map and using the action of the map on the
Picard lattice, we prove this conjecture. We also show that invariants can be found
through the same technique.
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1 Introduction

In a prior paper (Carstea and Takenawa 2019b), applying the traveling wave reduc-
tion to the lattice super-KdV equation (Carstea 2015; Xue et al. 2013) in a case
of finitely generated Grassmann algebra, the authors obtained a four-dimensional
discrete integrable dynamical system
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ϕ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̄0 = x2
x̄1 = x3

x̄2 = −x2 − x0 + hx2
1 − x2

x̄3 = −x1 − x3 + 2 − x2 + hx3
(1 − x2)2

. (1)

This system is a Quispel-Roberts-Thompson (QRT) map, a two dimensional map
generating an automorphism of a rational elliptic surface (Quispel et al. 1989), for
variables x0, x2 coupled with linear equations for variables x1, x3 with coefficients
depending on x2. This system has two invariants

I1 = − hx20 − hx0x2 + h2x0x2 + hx20 x2 − hx22 + hx0x
2
2 , (2)

I2 =2hx0 + x20 − 2hx0x1 + 2hx2 + x0x2 − hx1x2 + h2x1x2 + 2hx0x1x2

+ x22 + hx1x
2
2 − hx0x3 + h2x0x3 + hx20 x3 − 2hx2x3 + 2hx0x2x3, (3)

but does not satisfy the singularity confinement criterion proposed by Grammaticos-
Ramani and their collaborators (Grammaticos et al. 1991; Ramani et al. 1991). The
example of this criterion is given in the next section.

In the same paper it is observed that the dynamical degree of (1) grows quadrati-
cally. This phenomena is rather unusual, since as reported in Lafortune et al. (2001),
Gubbiotti (2018), the dynamical degree grows in the fourth order for generic coupled
systems in the form

⎧
⎪⎪⎨

⎪⎪⎩

x̄0 = f0(x0, x1)
x̄1 = f1(x0, x1)
x̄2 = f2(x0, x1, x2)
x̄3 = f3(x0, x1, x2, x3)

,

where the system is a QRT map for variables x0 and x1, and x̄2 (resp. x̄3) depends
on x2 (resp. x3) linearly with coefficients depending on “x0 and x1” (resp. “x0, x1
and x2”). This type of systems is also constructed by generalising the QRTmaps and
referred to as “triangular” in Fordy and Kassotakis (2006).

In this paper, constructing a rational variety where System (1) is lifted to an
algebraically stable map and using the action of the map on the Picard lattice, we
prove the above conjecture. We also show that one can find invariants also using the
action on the Picard group.

In the two-dimensional case, it is known that an autonomous dynamical system
defined by a birational map on a projective rational variety (or more generally Kähler
manifold) can be lifted to either an automorphism or an algebraically stable map on
a rational variety by successive blow-ups (Diller and Fravre 2001). Here, a birational
map ϕ from an N -dimensional rational variety X to itself is said to be algebraically
stable if (ϕ∗)n(D) = (ϕn)∗(D) holds for any divisor class D on X and an arbitrary
positive integer n (Bedford and Kim 2008). These notions are closely related to
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the notion of singularity confinement criterion. While a dynamical system that can
be lifted to automorphisms satisfies singularity confinement criterion (i.e. all the
singularities are confined), a dynamical system that can be lifted only to algebraically
stable map does not satisfy the criterion (i.e. there exists a singularity that is not
confined).

In studies of higher dimensional dynamical systems, the role of automorphisms is
replaced by pseudo-automorphisms, i.e. automorphisms except finite number of sub-
varieties of codimension at least two (Dolgachev andOrtland 1988). In the last decade
a few authors studied how to construct algebraic varieties on the level of pseudo-
automorphisms (Bedford and Kim 2008; Tsuda and Takenawa 2009; Carstea and
Takenawa 2019a). However, since System (1) does not satisfy the singularity con-
finement criterion, it is not expected that it could be lifted to a pseudo-automorphism.
To authors’ knowledge there are no studies (except Sect. 7 of Bedford and Kim
2008, which studies a kind of generalisation of standard Cremona transformation)
on construction of an algebraic variety, in which the original system is lifted not to
a pseudo-automorphism, but rather to an algebraically stable map using blow-ups
along sub-varieties of positive dimensions. Since the varieties obtained by blow-ups
possibly infinitely near depend on the order of blow-ups, this is not a straightforward
but a challenging problem.

Since I2 is degree (1, 1) for x1, x3, we can restrict the phase space into 3-
dimensional one as

ψ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x2
x1 = (

I2 − (x20 + x0x2 + x22 ) − 2h(x0 − x0x1 + x2)
−hx1x2(2x0 + x2 − 1 + h)

)

(
h(−x0 + hx0 + x20 − 2x2 + 2x0x2)

)−1

x2 = −x2 − x0 + hx2
1 − x2

. (4)

We also show that the degree of this 3-dimensional system grows quadratically as
well.

2 Algebraically Stable Space for the 4D System

Let us consider System (1) on the projective space (P1)4. In the following, we aim
to obtain a four-dimensional rational variety by blowing-up procedure such that the
birational map (1) is lifted to an algebraically stable map on the variety.

Let I (ϕ) denote the indeterminacy set of ϕ. It is known that the mapping ϕ is
algebraically stable if and only if there does not exist a positive integer k and a
divisor D on X such that

ϕ(D \ I (ϕ)) ⊂ I (ϕk), (5)
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i.e. the image of the generic part of a divisor by ϕ is included in the indeterminate
set of ϕk (Bedford and Kim 2008; Bayraktar 2013, Proposition 2.3 of Carstea and
Takenawa 2019a). See Sect. 2 of Carstea and Takenawa (2019a) for notations and
related theories used here.

The notion of singularity series of dynamics studied byGrammaticos-Ramani and
their collaborators is closely related to our procedure. Let us start with a hyper-plane
x2 = 1 + ε, where ε is a small parameter for considering Laurent series expression,
and apply ϕ, then we have a “confined” sequence of Laurent series:

· · · →(x (0)
0 , x (0)

1 , 1 + ε, x (0)
3 ) → (1, x (0)

3 ,−hε−1, (1 + hx (0)
3 )ε−2)

→(−hε−1, (1 + hx (0)
3 )ε−2, hε−1,−(1 + hx (0)

3 )ε−2)

→(hε−1,−(1 + hx (0)
3 )ε−2, 1, x (3)

4 ) → (1, x (4)
1 , x (0)

0 , x (4)
3 ) → · · · , (6)

where x (k)
i ’s are complex constants and only the principal term is written for each

entry and a hyper-surface x2 = 0 is contracted to lower-dimensional varieties and
returned to a hyper-surface x0 = 1 after 4 steps. We can also find a cyclic sequence:

(x (0)
0 , x (0)

1 , ε−1, x (0)
3 ) → (ε−1, x (0)

3 ,−ε−1,−x (0)
1 − x (0)

3 )

→(ε−1,−x (0)
1 − x (0)

3 , x (0)
0 , x (0)

1 ) → (x (0)
0 , x (0)

1 , ε−1, x (3)
3 ): returned, (7)

where a hyper-surface x2 = ∞ is contracted to lower-dimensional varieties and
returned to the original hyper-surface after 3 steps, and an “anti-confined” sequence:

· · · →
((

−1 + h

(x (0)
0 − 1)2

)

ε−1, x (−1)
1 , x (−1)

2 , ε−1

)

→(x (0)
0 , ε−1, x (0)

2 , x (0)
3 ) → (x (0)

2 , x (0)
3 , x (1)

2 , ε−1)

→
(

x (1)
2 , ε−1, x (2)

2 ,

(

−1 + h

(x (0)
2 − 1)2

)

ε−1

)

→ · · · , (8)

where a lower dimensional variety is blown-up to a hyper-surface x1 = ∞ and con-
tracted to a lower dimensional variety after 3 steps.

In the following, in order to avoid anti-confined patterns, we consider P2 × P
2

instead of (P1)4. Although there is a possibility that the anti-confined pattern can be
resoluted by some blowing-down procedure, it is not easy to find the actual procedure
on the level of coordinates.

The coordinate system of P2 × P
2 is (x0 : x1 : 1, x2 : x3 : 1), and thus the local

coordinate systems essentially consist of 3 × 3 = 9 charts:

(x0, x1, x2, x3), (y0, y1, x2, x3), (z0, z1, x2, x3),

(x0, x1, y2, y3), (y0, y1, y2, y3), (z0, z1, y2, y3),

(x0, x1, z2, z3), (y0, y1, z2, z3), (z0, z1, z2, z3),
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where yi ’s and zi ’s are

(yi , yi+1) = (x−1
i , x−1

i xi+1) and (zi , zi+1) = (xi x
−1
i+1, x

−1
i+1)

for i = 0, 2. Then, both the cyclic Sequence (7); and the anti-confined Sequence (8)
starting with x (0)

i = ε−1 do not appear, but another cyclic sequence

(x (0)
0 , x (0)

1 , ε−1, c(0)ε−1) → (ε−1, c(0)ε−1,−ε−1,−c(0)ε−1)

→(−ε−1,−c(0)ε−1, x (0)
0 , x (0)

1 ) → (x (0)
0 , x (0)

1 , ε−1, c(0)ε−1): returned (9)

appears, where c(0) is also a complex constant.
In order to resolute the singularity appeared in Sequences (6) and (9), we blow

up the rational variety along the sub-varieties to which some divisor is contracted to.
For Sequence (6), we have three such sub-varieties whose parametric expressions
are

V1 :(x0, x1, z2, z3) = (P, 1, 0, 0),

V2 :(z0, z1, z2, z3) = (0, 0, 0, 0),

V3 :(z0, z1, x2, x3) = (0, 0, P, 1),

where P is a C-valued parameter (independent to another sub-variety), while for
Sequence (9) we have a sub-variety

V4 :(z0, z1, z2, z3) = (P, 0, P, 0).

That is, the subvarietyV1 is theZariski closure of {(x0, x1, x2, x3) = (P, 1, 0, 0) | P ∈
C} and V4 is that of {(x0, x1, x2, x3) = (P, 0, P, 0) | P ∈ C} and so forth.

Since V4 includes V2, we have the option of blowing-up order. In the two dimen-
sional case, resolution is unique and the order is not a matter. But in the higher
dimensional case, it affects sensitively to the resulting varieties. Since we only care
on the level of codimension one, the order of blow-ups does not affect the alge-
braical stability in some cases. However, the following results were obtained not in
a straightforward manner but by trial and error.

We can resolute the singularity around V1 by the following five blowups:

C1 :(x0, x1, z2, z3) = (1, P, 0, 0)

← (s1, t1, u1, v1) := (x0 − 1, x1, z2(x0 − 1)−1, z3(x0 − 1)−1),

C2 :(s1, t1, u1, v1) = (0, P, Q, 0)

← (s2, t2, u2, v2) := (s1, t1, u1, v1s
−1
1 ),

C3 :(s2, t2, u2, v2) = (0, P,−h(1 + hP)−1, Q)

← (s3, t3, u3, v3) := (s2, t2, (u2 + h(1 + ht2)
−1)s−1

2 , v2),
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C4 :(s3, t3, u3, v3) = (0, P, Q, (1 + hP)−1)

← (s4, t4, u4, v4) := (s3, t3, u3, (v3 − (1 + ht3)
−1)s−1

3 ),

C5 :(s4, t4, u4, v4) = (0, P, Q, (1 + hP)−2)

← (s5, t5, u5, v5) := (s4, t4, u4, (v4 − (1 + ht4)
−2)s−1

4 ),

where only one of the coordinate systems is written for each blowup. Similarly, we
can resolute the singularity around V3 by the following five blowups:

C6 :(z0, z1, x2, x3) = (0, 0, 1, P)

← (s6, t6, u6, v6) := (x2 − 1, x3, z0(x2 − 1)−1, z1(x2 − 1)−1),

C7 :(s6, t6, u6, v6) = (0, P, Q, 0)

← (s7, t7, u7, v7) := (s6, t6, u6, v6s
−1
6 ),

C8 :(s7, t7, u7, v7) = (0, P,−h(1 + hP)−1, Q)

← (s8, t8, u8, v8) := (s7, t7, (u7 + h(1 + ht7)
−1)s−1

7 , v7),

C9 :(s8, t8, u8, v8) = (0, P, Q, (1 + hP)−1)

← (s9, t9, u9, v9) := (s8, t8, u8, (v8 − (1 + ht8)
−1)s−1

8 ),

C10 :(s9, t9, u9, v9) = (0, P, Q, (1 + hP)−2)

← (s10, t10, u10, v10) := (s9, t9, u9, (v9 − (1 + ht9)
−2)s−1

9 ).

We need three blowups for V4:

C11 :(z0, z1, z2, z3) = (0, 0, 0, 0)

← (s11, t11, u11, v11) := (z0, z1z
−1
0 , z2z

−1
0 , z3z

−1
0 ),

C12 :(s11, t11, u11, v11) = (P, 0, 1, 0)

← (s12, t12, u12, v12) := (s11, t11, (u11 − 1)t−1
11 , v11t

−1
11 ),

C13 :(s12, t12, u12, v12) = (P, 0, Q,−1)

← (s13, t13, u13, v13) := (s12, t12, u12, (v12 + 1)t−1
12 ),

whereC11 correspond to V2, whileC12 andC13 correspond to V4. We need additional
four blowups for V2:
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C14 :(s13, t13, u13, v13) = (0, 0, 1 + h, 0)

← (s14, t14, u14, v14) := (s13t
−1
13 , t13, (u13 − 1 − h)t−1

13 , v13t
−1
13 ),

C15 :(s14, t14, u14, v14) = (P, 0,−2Q − Ph−1, Q)

← (s15, t15, u15, v15) := (s14, t14, v14, (u14 + 2v14 + s14h
−1)t−1

14 ),

C16 :(s15, t15, u15, v15) = (P, 0,−Ph−1, Q)

← (s16, t16, u16, v16) := (s15, t15, (u15 + s15h
−1)t−1

15 , v15),

C17 :(s16, t16, u16, v16) = (P, 0, Q, 2−1Q + (1 + h)h−1P)

← (s17, t17, u17, v17) := (s16, t16, u16, (v16 − 2−1u16 − (1 + h)h−1s16)t
−1
16 ).

The (total transform of) exceptional divisor Ei of i-th blowup is described in the
local chart as

Ei : si = 0, (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14),

Ei : ti = 0, (i = 12, 13, 15, 16, 17).

Let us denote the total transform (with respect to blowups) of the divisors (hyper-
surfaces) c0x0 + c1x1 + a = 0 and c2x2 + c3x3 + b = 0 by Ha and Hb respectively,
where (c0 : c1 : a) and (c2 : c3 : b) are constant P2 vectors. Let us write the classes
of Ha , Hb and Ei modulo linear equivalence as Ha , Hb and Ei . Then, the Picard
group of this variety X becomes a Z-module:

Pic(X ) =ZHa ⊕ ZHb ⊕
17⊕

i=1

ZEi . (10)

Theorem 1 The map (1) is lifted to an algebraically stable map on the rational
variety obtained by blow-ups along Ci , i = 1, 2, . . . , 17, from P

2 × P
2.

Proof The algebraic stability can be checked as follows. In the present case, the
indeterminate set I (ϕ) is given by

I (ϕ) = ϕ−1(E6 − E7) ⊂ E11,

while the condition that the dimension of ϕ(D \ I (ϕ)) is at most two implies D =
E1 − E2 and ϕ(D \ I (ϕ)) = ϕ(E1 − E2) ⊂ E11. It can be checked that ϕ(E1 − E2)

and I (ϕk), k = 1, 2, 3, . . . , are different two-dimensional subvarieties in E11, and
hence (5) can not occur.

The class of proper transform of Ei is

Ei − Ei+1 (i = 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16),

Ei (i = 5, 10, 17), E11 − E15.
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Since the defining function of the hyper-surface z1 = 0 takes zero with multiplicities
0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2 on Ei (i = 1, . . . , 17), it is decomposed
as

Ha =Proper transform

+ (E6 − E7) + 2(E7 − E8) + 2(E8 − E9) + 2(E9 − E10) + 2E10
+ (E11 − E14) + (E12 − E13) + (E13 − E14) + 2(E14 − E15)
+ 2(E15 − E16) + 2(E16 − E17) + 2E17,

where each class enclosed in parentheses determines a prime divisor uniquely (we
called such a class deterministic Carstea et al. 2017). Hence the class of its proper
transform isHa − E6 − E7 − E11 − E12. Similarly, the defining function of the hyper-
surface x2 − 1 = 0 takes zero with multiplicities 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1 on Ei , and therefore the class of its proper transform isHb − E1 − E6 − E11.
Along the same line, the proper transform of z3 = 0 can be computed asHb − E1 −
E2 − E11 − E12.

Using these data, we can compute the pull-back action of Mapping ϕ (1) on the
Picard group. For example, the pull-back of E1 is (x̄1, z̄2, z̄3) = (0, 0, 0), whose
“common factor” on each local coordinate system is x2 − 1, s6, s7, s8 or s9. Thus,
we have

ϕ(E1) =(H2 − E1 − E6 − E11) +
9∑

i=6

(Ei − Ei+1)

=H2 − E1 − E10 − E11.

Along the same line, we have the following proposition.

Proposition 1 The pull-back ϕ∗ of Mapping (1) is a linear action on the Picard
group given by

Ha → Hb,

Hb → Ha + 3Hb − 2E1 − 3E11 − E6,7,9,10,12,13,14,
E1 → Hb − E1,10,11, E2 → Hb − E1,9,11, E3 → Hb − E1,7,9,11 + E8,
E4 → Hb − E1,7,11, E5 → Hb − E1,6,11,
E6 → E14, E7 → E14, E8 → E15, E9 → E16, E10 → E17,
E11 → E1,11 − E14, E12 → Hb − E1,11,13, E13 → Hb − E1,11,12,
E14 → E2, E15 → E3, E16 → E4, E17 → E5,

where Ei1,...,ik denotes Ei1 + · · · + Eik . The Jordan blocks of the corresponding matrix
are
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1, −1, 1
1
3 (3 × 3 blocks),

⎡

⎣
1 1 0
0 1 1
0 0 1

⎤

⎦ ,

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

In particular, the degree of the mapping ϕn grows quadratically with respect to n.

Corollary 1 The degree ofψn for the 3-dimensional mapψ (4) also grows quadrat-
ically with respect to n.

Proof 1Let us denote the initial values as (x0, x1, x2, x3) = (x (0)
0 , x (0)

1 , x (0)
2 , x (0)

3 ).
Mapψn is obtained by substituting x3 = h(x0, x1, x2) to ϕn : x (n)

i = f (n)
i (x0, x1, x2,

x3), i = 0, 1, 2, where h and fi ’s are some rational functions. Hence the degrees
of x (n)

i ’s with respect to x0, x1, x2 are bounded from the above by (degree of h) ×
(degree of f (n)

i ). Since the degrees of f (n)
i ’s are quadraticwith respect ton, the degrees

of x (n)
i ’s are at most quadratic. On the other hand, sinceψ is a QRTmap with respect

to x0 and x2, its degreewith regarding x1 as a constant grows quadratically (Takenawa
2001), hence the degrees of x (n)

i ’s are at least quadratic.

The proper transforms of the conserved quantities I1 and I2 are

I1 : 2Ha + 2Hb − 2E1 − 2E6 − 4E11 − E2,4,7,9,12,13,14,16,
I2 : 2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17,

which are preserved by ϕ∗.
We can consider the inverse problem.

Proposition 2 Hyper-surfaces whose class is 2Ha + 2Hb − 2E1 − 2E6 − 4E11 −
E2,4,7,9,12,13,14,16 are given by C0 + C1 I1 = 0 with (C0 : C1) ∈ P

1 and C1 	= 0.
Hyper-surfaces whose class is 2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17 are
given by C0 + C1 I1 + C2 I2 = 0 with (C0 : C1 : C2) ∈ P

2 and C2 	= 0.

Thus, we can compute invariants by using the action of the system ϕ on the Picard
group.

Proof The proof is straightforward but tedious. For example, the defining polyno-
mials of a curve of the class 2Ha + 2Hb − 2E1 − 2E6 − 4E11 − E2,4,7,9,12,13,14,16 can
be written as

1This kind of argument is not original. More general results can be found in Mase (2016), where it
is shown that all the reduced systems from classical KP or BKP equation have the quadratic degree
growth.
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f (x0, x1, x2, x3) :=
∑

i0, i1, i2, i3 ≥ 0
i0 + i1 + i2 + i3 ≤ 2

ai0i1i2i3x
i0
0 x

i1
1 x

i2
2 x

i3
3 ,

z22 f (x0, x1, z2z
−1
3 , z−1

3 ) around E1,

z20 f (z0z
−1
1 , z−1

1 , x2, x3) around E5,

z20z
2
2 f (z0z

−1
1 , z−1

1 , z2z
−1
3 , z−1

3 ) around E11.

The coefficients are determined so that defining polynomial takes zero with mul-
tiplicity 2, 3, 3, 4, 4, 2, 3, 3, 4, 4, 4, 1, 2, 7, 7, 8, 8 on Ei ’s; which verifies the
claim.
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