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Abstract In this letter we give fourth-order autonomous recurrence relations with
two invariants, whose degree growth is cubic or exponential. These examples contra-
dict the common belief that maps with sufficiently many invariants can have at most
quadratic growth. Cubic growth may reflect the existence of non-elliptic fibrations
of invariants, whereas we conjecture that the exponentially growing cases lack the
necessary conditions for the applicability of the discrete Liouville theorem.
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1 Introduction

Bi-rational maps in two dimensions have played a crucial role in the study of inte-
grable discrete dynamical systems since the seminal paper of Penrose and Smith
(1981) and the introduction of the QRT mappings in Quispel et al. (1988, 1989).
Elliptic curves and rational elliptic surfaces proved to be one of the main tools in
understanding the geometry behind this kind of integrability, see Sakai (2001), Duis-
termaat (2011), Tsuda (2004). In this letter we give examples of higher-order maps
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whose properties go beyond those of the two-dimensional maps, and show that the
geometry of elliptic fibrations is no longer sufficient to explain their behaviour.

Up to now the QRT mappings appear to describe almost the totality of the known
integrable examples in dimension two with some notable exceptions (Viallet et al.
2004; Duistermaat 2011). However, no general framework exists for higher order
maps. A generalization of the QRT scheme (Quispel et al. 1988, 1989) in dimension
four was given in Capel and Sahadevan (2001). Certain maps obtained in Capel
and Sahadevan (2001) were shown in Hay (2007) to be autonomous reductions
of members of q-Painlevé hierarchies (multiplicative equations in Sakai’s scheme
Sakai 2001). Since hierarchies are known also for the additive discrete Painlevé
equations (Cresswell and Joshi 1999), it is clear that the cases considered in Capel
and Sahadevan (2001) cannot exhaust all the possible integrable autonomous maps
in four dimensions, as already shown in Joshi and Viallet (2018). It is important to
mention that there are also other examples of discrete mappings of higher orders
produced either by periodic or symmetry reductions of integrable partial difference
equations (Papageorgiou et al. 1990; Quispel et al. 1991; van der Kamp and Quispel
2010; Levi and Winternitz 2006) or as Kahan-Hirota-Kimura discretization (Kahan
1993; Kimura and Hirota 2000) of continuous integrable systems (Petrera and Suris
2010; Celledoni et al. 2013, 2014; Petrera et al. 2009).

In this letter, we focus on the study of integrability properties of autonomous
recurrence relations. Here an autonomous recurrence relation is given by a bi-rational
map of the complex projective space into itself:

ϕ : [x] ∈ CP
n → [x′] ∈ CP

n, (1)

where n > 1.1 We take [x] = [
x1 : x2 : · · · : xn+1

]
and [x′] = [

x ′
1 : x ′

2 : · · · : x ′
n+1

]

to be homogeneous coordinates on CP
n . Moreover we recall that a bi-rational map

is a rational map ϕ : V → W of algebraic varieties V and W such that there exists a
map ψ : W → V , which is the inverse of ϕ in the dense subset where both maps are
defined (Shafarevich 1994).

Integrability for autonomous recurrence relations (discrete equations) can be char-
acterized in different ways. In the continuous case, for finite dimensional systems,
integrability is usually understood as the existence of a “sufficiently” high number
of first integrals, i.e. of non-trivial functions constant along the solution of the dif-
ferential system. In the Hamiltonian setting a characterization of integrability was
given by Liouville (1855). In the case of map (1) the analogue of first integrals are
the invariants. To be more precise we state the following:

Definition 1 An invariant of a bi-rational map ϕ : CPn → CP
n is a homogeneous

function I : CPn → C such that it is left unaltered by action of the map, i.e.

ϕ∗ (I ) = I, (2)

where ϕ∗ (I ) means the pullback of I through the map ϕ, i.e. ϕ∗ (I ) = I (ϕ ([x])).
For n > 1, an invariant is said to be non-degenerate if:

1Bi-rational maps in CP
1 are just Möbius transformations so everything is trivial.
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∂ I

∂x1

∂ I

∂xn
�= 0. (3)

Otherwise an invariant is said to be degenerate.

In what follows we will concentrate on a particular class of invariants:

Definition 2 An invariant I is said to be polynomial, if in the affine chart
[x1 : · · · : xn : 1] the function I is a polynomial function.

A polynomial invariant in the sense of Definition 2 written in homogeneous vari-
ables is always a homogeneous rational function of degree 0. The form of the poly-
nomial invariant in homogeneous coordinates is then given by:

I ([x]) = I ′ ([x])
td

, d = deg I ′ ([x]) , (4)

where deg is the total degree.
To better characterize the properties of these invariantswe introduce the following:

Definition 3 Given a polynomial function F : CPn → V , where V can be either
CP

n or C, we define the degree pattern of F to be:

dp F = (
degx1 F, degx2 F, . . . , degxn F

)
. (5)

Remark 1 The degree pattern of a polynomial function F is not invariant under
general bi-rational transformations. However, the degree pattern of a polynomial
function F is invariant under scaling and translations, which are transformations of
the form:

χ : [x] → [ax + b] , a ∈ C \ {0}, b ∈ CP
n. (6)

Example 1 Consider the following map in CP
2:

ϕ : [x : y : t] �→ [−y(x2 − t2) + 2axt2 : x(x2 − t2) : t (x2 − t2)]. (7)

This map is known as the McMillan map (McMillan 1971) and possesses the fol-
lowing invariant:

t4 IMcM = x2y2 + (x2 + y2 − 2axy)t2. (8)

We have dp IMcM = (2, 2), i.e. it is a bi-quadratic polynomial. We also note that the
invariant of a QRT map (Quispel et al. 1988, 1989), IQRT, which is a generalization
of the McMillan map (7), is the ratio of two bi-quadratics in the dynamical variables
of CP2. Hence QRT mappings leave invariant a pencil of curves of degree pattern
(2, 2).
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Example 2 The invariants of the maps presented in Capel and Sahadevan (2001),
ICS, are ratios of bi-quadratics in all the four dynamical variables of CP4, i.e. ratios
of polynomial of degree pattern (2, 2, 2, 2). In this sense the classification of Capel
and Sahadevan (2001) is an extension of the one in Quispel et al. (1988, 1989).

Finally wewill consider invariants that are not of themost general kind, but satisfy
the following condition.

Definition 4 We say that a invariant I : CPn → C is symmetric if it is left unaltered
by the following involution:

ι : [
x1 : x2 : · · · : xn : xn+1

] → [
xn : xn−1 : · · · : x1 : xn+1

]
, (9)

i.e. ι∗ (I ) = I .

We then have the following characterization of integrability for autonomous recur-
rence relations:

(i) Existence of invariants An n-dimensional map is (super) integrable if there
exist n − 1 invariants.

(ii) Liouville integrability (Veselov 1991; Maeda 1987; Bruschi et al. 1991) An
n-dimensional map (in affine coordinates) is integrable if it preserves a Poisson
structure of rank 2r and r + n − 2r = n − r functionally independent invari-
ants in involution with respect to this Poisson structure. In affine coordinates
w = (wn−1, . . . , w0) = [

wn−1 : · · · : w0 : 1] we say that a map ϕ : w �→ w′ is
called a Poisson map of rank 2r ≤ n if there is a skew-symmetric matrix J (w)

of rank 2r satisfies the Jacobian identity

n∑

l=1

(
Jli

∂ Jjk
∂wl−1

+ Jl j
∂ Jki

∂wl−1
+ Jlk

∂ Ji j
∂wl−1

)
= 0, ∀i, j, k, (10)

and
d ϕ J (w) d ϕT = J (w

′
), (11)

where d ϕ is the Jacobianmatrix of themap ϕ, see Capel and Sahadevan (2001),
Olver (1986). The Poisson bracket of two smooth functions f and g is defined
as

{ f, g} = ∇ f J (∇g)T , (12)

where ∇ f is the gradient of f . We can easily see that {wi−1, w j−1} = Ji j . We
note that in the case where the Poisson structure has full rank, i.e. n = 2r , we
only need n/2 invariants which are in involution. In this case the Poissonmatrix
is invertible, and its inverse is called a symplectic matrix. A symplectic matrix
give raise to a symplectic structure.

(iii) Existence of a Lax pair (Lax 1968) An n-dimensional map is integrable if
it arises as compatibility condition of an overdetermined linear system. We
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emphasize the fact that the Lax pair needs to provide us some integrability
aspects of the maps such as invariants or solutions of the non-linear system.
It is known in the literature that not all the Lax pairs satisfy such conditions
(Calogero and Nucci 1991; Hay and Butler 2012, 2015; Gubbiotti et al. 2016).
Lax pairs that do not satisfy such conditions are called fake Lax pairs and their
existence cannot be used to prove integrability of a given system.

(iv) Low growth condition (Veselov 1992; Falqui and Viallet 1993; Bellon and
Viallet 1999) An n-dimensional bi-rational map is integrable if the degree of
growth of the iteratedmapϕk is polynomial with respect to the initial conditions
[x0]. Integrability is then equivalent to the vanishing of the algebraic entropy:

ε = lim
k→∞

1

k
log deg[x0] ϕ

k . (13)

Algebraic entropy is a measure of the complexity of a map, analogous to the
one introduced by Arnol’d (1990) for diffeomorphisms. In this sense growth
is given by computing the number of intersections of the successive images of
a straight line with a generic hyperplane in complex projective space (Veselov
1992).

We emphasize the fact that the above list is not completely exhaustive of all the
possible definitions of integrability. Since we are focused on autonomous recurrence
relations we choose to cover only the most used definition for these ones.

Remark 2 Here, we collect some observations about algebraic entropy and how to
evaluate it.

(i) Algebraic entropy is invariant under bi-rationalmaps (Bellon andViallet 1999).
(ii) In principle, the definition of algebraic entropy in Eq. (13) requires us to com-

pute all the iterates of a bi-rational map ϕ to obtain the sequence{
dk = deg[x0] ϕ

k
}∞
k=0

. Fortunately, for the majority of applications the form
of the sequence can be inferred by using generating functions (Lando 2003):

g (z) =
∞∑

n=0

dkz
k . (14)

(iii) In almost all cases, the generating function turns out to be a rational function,
which can be inferred from a finite number of iterates of the dynamical system.
It then becomes a predictive tool, which can be tested using further terms of the
sequence of degrees. In this paper, we find inferred generating functions for 4
cases given in Eqs. (23), (28), (47), and (53). In each case, the type of argument
required to show that the given generating function is indeed the correct one
may be found in Viallet (2015).
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(iv) When a generating function is available, the algebraic entropy is then given
by the logarithm of the smallest pole of the generating function, see Gubbiotti
(2016), Grammaticos et al. (2009).

Remark 3 The condition of Liouville integrability (Maeda 1987; Veselov 1991;
Bruschi et al. 1991) is stronger than the existence of invariants. Indeed, for a map,
being measure preserving and preserving a Poisson/symplectic structure are very
strong conditions. However, they lead to a great drop in the number of invariants
needed for integrability. The same can be said for the existence of a Lax pair, since it
is well known that a well-posed Lax pair gives all the invariants of the system through
the spectral relations. Finally, the low growth condition means that the complexity of
the map is very low, and it is known that invariants help in reducing the complexity
of a map. Indeed the growth of a map possessing invariants cannot be generic since
the motion is constrained to take place on the intersection of hypersurfaces defined
by the invariants. For maps in CP

2, it was proved in Diller and Favre (2001) that
the growth can be only bounded, linear, quadratic or exponential. Linear cases are
trivially integrable in the sense of invariants.We note that for polynomialmaps, it was
already known fromVeselov (1992) that the growth can be only linear or exponential.
It is known that QRT mappings and other maps with invariants in CP

2 possess
quadratic growth (Duistermaat 2011), so the two notions are actually equivalent for
a large class of integrable systems.

Now we discuss briefly the concept of duality for rational maps, which was intro-
duced in Quispel et al. (2005). Let us assume that our map ϕ possesses L independent
invariants, i.e. I j for j ∈ {1, . . . , L}. Then we can form the linear combination:

H = α1 I1 + · · · + αL IL . (15)

For an unspecified autonomous recurrence relation

[
x1 : x2 : · · · : xn+1

] �→ [
x ′
1 : x1 : · · · : xn

]
, (16)

we can write down the invariant condition for H (15):

Ĥ(x ′
1, [x]) = H

([x′]) − H ([x]) = 0. (17)

Since we know that [x′] = ϕ ([x]) is a solution of (17) we have the following factor-
ization:

Ĥ(x ′
1, [x]) = A

(
x ′
1, [x]

)
B

(
x ′
1, [x]

)
. (18)

We can assume without loss of generality that the map ϕ corresponds to the annihi-
lation of A in (18). Now since degx ′

1
Ĥ = degx1 H and degxn Ĥ = degxn H we have

that if degx1 H, degxn H > 1 the factor B in (18) is non constant.2 In general, since

2We remark that this assertion is possible because we are assuming that all the invariants are non-
degenerate. It is easy to see that degenerate invariants can violate this property.
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the map ϕ is bi-rational, we have the following equalities:

deg Bx ′
1
= degx ′

1
Ĥ − degx ′

1
A = degx1 H − 1, (19a)

deg Bxn = degxn Ĥ − degxn A = degxn H − 1. (19b)

Therefore we have that if degx1 H, degxn H > 2, the annihilation of B does not
define a bi-rational map in general, but may define an algebraic one. However when
degx1 H, degxn H = 2 the annihilation of B defines a bi-rational projective map. We
call this map the dual map and we denote it by ϕ∨.

Remark 4 We note that in principle for degx1 H = degxn H = d > 2, more general
factorizations can be considered:

Ĥ
(
x ′
1, [x]

) =
d∏

i=1

Ai
(
x ′
1, [x]

)
, (20)

but we will not consider this case here.

Now assume that the invariants (and hence the map ϕ) depend on some arbitrary
constants Ii = Ii ([x]; ai ), for i = 1, . . . , M . Choosing some of the ai in such a way
that there remains M arbitrary constants and such that for a subset aik we can write
Eq. (15) in the following way:

H = ai1 J1 + ai2 J2 + · · · + aiK JaiK , (21)

where Ji = Ji ([x]), i = 1, 2, . . . , K are new functions. The parameters aik do not
appear in the dual maps in the same way as the parameters αi do not appear in the
main maps. Therefore, using the factorization (18) the Ji functions are invariants for
the dual maps.

Remark 5 In fact, one can consider more general combinations than linear combi-
nations given in (15) and (21). However, we only consider those linear combinations
given (15) and (21) in this paper.

It is clear from Eq. (21) that even though the dual map is naturally equipped with
some invariants, it is not necessarily equipped with a sufficient number of invariants
to claim integrability. In fact there exist examples of dual maps with any possible
behaviour, integrable, superintegrable and non-integrable (Joshi and Viallet 2018;
Gubbiotti et al. 2020).

In a recent paper (Joshi and Viallet 2018), the authors considered the autonomous
limit of the second member of the dPI and dPII hierarchies (Cresswell and Joshi
1999). We will denote these equations as dP (2)

I and dP (2)
II equations. These dP (2)

I

and dP (2)
II equations are given by autonomous recurrence relations of order four,

and showed to be integrable according to the algebraic entropy approach. They
showed that both maps possess two invariants, one of degree pattern (1, 3, 3, 1) and
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one of degree pattern (2, 4, 4, 2). Using these invariants, they showed that the dual
maps of the dP (2)

I and dP (2)
II equations are integrable according to the algebraic

entropy test and moreover, produced some invariants, showing that these dual maps
were actually superintegrable. Finally they gave a scheme to construct autonomous
recurrence relations with the assigned degree pattern (1, 3, 3, 1) associated with Ilow
and (2, 4, 4, 2) associated with Ihigh and they provided some new examples out of
this construction.

In (Gubbiotti et al. 2020) we consider the problem of finding all fourth order bi-
rational maps ϕ : [x : y : z : u : t] �→ [x ′ : y′ : z′ : u′ : t ′] possessing a polynomial
symmetric invariant Ilow such that dp Ilow = (1, 3, 3, 1) where the only non-zero
coefficients are those appearing in the (1, 3, 3, 1) invariant of both the dP (2)

I and
dP (2)

II equation, and such that ϕ possesses a polynomial symmetric invariant Ihigh
such that dp Ihigh = (2, 4, 4, 2). The two invariants Ilow and Ihigh are assumed to
be functionally independent and non-degenerate. Within this class we have found
the known dP (2)

I and dP (2)
II equations as well as new examples of maps with these

properties.
In this letter we will present in detail four particular examples of this class. In

Sect. 2, wewill discuss two pairs of main-dual maps.Wewill discuss the integrability
property of these maps in light of their invariants and of their growth.Wewill present
maps possessing two invariants and integrable according to the algebraic entropy test
with cubic growth. This implies that another rational invariant cannot exist. Indeed,
the orbits of superintegrable maps with rational invariant are confined to elliptic
curves and the growth is at most quadratic (Bellon 1999; Gizatullin 1980). From
this general statement follows that a four-dimensional map with cubic growth can
possess at most two rational invariants. We note that some examples of cubic growth
were already presented in Joshi and Viallet (2018). However, it was pointed out that
these examples can be deflated to lower dimensional maps with quadratic growth.
This also holds for our maps, i.e. we can deflate them to integrable maps in lower
dimension. Furthermore, we will present a map with two invariants and exponential
growth, that is non-integrable according to the algebraic entropy test. We discuss
some possible reasons why this map is non-integrable even though it possesses two
invariants. In the final Section, we will give some conclusions and an outlook on the
future perspectives of this approach.

2 Notable Examples

In this section we discuss two pairs of maps, which arise as part of a systematic
classification to be presented inGubbiotti et al. (2020). The interest in these particular
maps arises since the relation between their invariants and growth properties is non
trivial. In both cases the main maps possess two functionally independent invariants,
but they behave differently. One map has cubic degree growth, while the other one
has exponential degree growth. Therefore, even though these twomaps have the same
number of invariants with the same degree patterns, one map is integrable and the
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other one is non-integrable. In addition, in both cases the degree growth property of
the dual maps reflect the growth of the main map. However, we note that the degree
growth of the dual map does not always reflect that of the main map (Gubbiotti et
al. 2020).

2.1 (P.i) and Its Dual Map (Q.i)

Consider the map [x] �→ ϕi ([x]) = [x′] given as follows:

x ′ = {[νt2(x + z) + uz2]y + t2μuz + (x + z)2y2}d − at4,

y′ = x2d(t2μ + xy), z′ = yxd(t2μ + xy),

u′ = zxd(t2μ + xy), t ′ = t xd(t2μ + xy).

(P.i)

This map depends on four parameters a, d and μ, ν.
From the construction in Gubbiotti et al. (2020) we know that the map (P.i) pos-

sesses the following invariants:

t6 I P.ilow = at4yz + d
[
νy2z2 − yz(ux − uz − xy)μ

]
t2

− y2z2d(ux − xy − yz − uz),
(22a)

t8 I P.ihigh = [(uz + xy − yz)μ − νyz] at6

+ [
yz(xy + yz + uz)a + dμ2(uz + xy − yz)2

+ 2dμνyz(ux − yz) − dν2y2z2
]
t4

+ [
2dzy(uz + xy − yz)(xy + yz + uz)μ + 2dy2z2νux

]
t2

+ dy2z2(xy + yz + uz)2.

(22b)

Moreover, the map (P.i) has the following degrees of iterates:

{dn}P.i = 1, 4, 12, 28, 52, 86, 130, 188, 260, 348, 452,

576, 720, 886, 1074, 1288, 1528, 1796, 2092 . . .
(23)

The sequence (23) is fitted by:

gP.i(s) = s7 − 3s6 + s5 − s4 + 3s3 + 3s2 + s + 1

(s + 1)(s2 + 1)(s − 1)4
. (24)

This generating function can be found by using the first 15 iterates, and its validity
can be confirmed by using further iterates. See Remark 2 for the justification.

Due to the presence of (s − 1)4 in the denominator we have that the growth of the
map (P.i) is fitted by a cubic polynomial. As discussed in the Introduction this means
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Fig. 1 Affine orbit of
equation (P.i) with
parameters a = 6, μ = 3,
ν = 4 and d = 6 and initial
conditions (x, y, z, u) =
(0.02, 0.05, 0.06, 0.07)

at once that the map is integrable according to the algebraic entropy test and that
another rational invariant cannot exist. This suggests that the geometry of the orbits
of the map (P.i) is nontrivial, and goes beyond the existence of elliptic fibrations.

Explicit numerical calculations and drawings suggest that in the case of map (P.i),
no additional invariant exists. Indeed, if an additional third invariant, even algebraic,
existed then all the orbits of equation (P.i) would lie on a curve. On the other hand
referring to Fig. 1 we see that a generic orbit of equation (P.i) does not lie on a curve.
This implies that no such invariant exists.

The dual map [x] �→ ϕ∨
i ([x]) = [x′] of (P.i) is given by:

x ′ = [β(2xy − 2yz + uz)μ + (βν − α)y(x − z)] t2

+ βy(z2y − x2y + uz2),

y′ = x2β(t2μ + xy), z′ = yxβ(t2μ + xy),

u′ = zxβ(t2μ + xy), t ′ = t xβ(t2μ + xy).

(Q.i)

This map depends on four parameters α, β, and μ, ν. The parameters μ and ν are
shared with the main map (P.i).

The main map (P.i) possesses two invariants and depends on a and d whereas the
dual map (Q.i) does not depend on them. Then according to (21) we can write down
the invariants for the dual map (Q.i) as:

α I P.ilow + β I P.ihigh = aIQ.ilow + d IQ.ihigh. (25)

Therefore, we obtain the following expressions:
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t4 IQ.ilow = [yzα + (μxy − yzμ − yνz + μuz)β]t2
+ βyz(xy + yz + uz),

(26a)

t8 IQ.ihigh = {[
y2z2ν − yz(ux − uz − xy)μ

]
α

+ [
(uz + xy − yz)2μ2 + 2yz(ux − yz)νμ − ν2y2z2

]
β
}
t4

+ {
z2y2(xy + yz − ux + uz)α

+ [
2yz(uz + xy − yz)(xy + yz + uz)μ + 2y2z2νux

]
β
}
t2

+ z2y2(xy + yz + uz)2β.

(26b)

We remark that the invariant (26a) has degree pattern (1, 2, 2, 1) which differs from
dp I P.i

low.
The map (Q.i) has the following degrees of iterates:

{dn}Q.i = 1, 4, 12, 26, 48, 78, 118, 170, 234, 312, 406, 516, 644, 792 . . . (27)

fitted by the generating function:

gQ.i(s) = (s3 − 2s2 − 1)(s3 − s2 − s − 1)

(s2 + s + 1)(s − 1)4
. (28)

This means that the dual map is integrable according to the algebraic entropy test
with cubic growth, just like the main map. See Remark 2 for the justification.

Explicit numerical calculations and drawings suggest that also in the case of map
(Q.i), no additional invariant exists. Indeed, if an additional third invariant, even
algebraic, existed then all the orbits of equation (Q.i) would lie on a curve. In this
case we are actually able to find some orbits lying on a curve, see Fig. 2b. However,

α = 3 μ = 3 ν = 7
β = 3

α = 3 μ = 6 ν = 8
β = 9

Fig. 2 Affine orbit of equation (Q.i) with different parameters but the same initial conditions
(x, y, z, u) = (3, 4, 1, 3)
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it is possible to find orbits of equation (Q.i) that do not lie on a curve. An example
of such orbit is shown in Fig. 2a. Therefore, we can conclude that a globally defined
third invariant does not exist. The existence of some closed orbits like in Fig. 2b
suggests the existence of a non-analytic invariant existing only in some regions of
the space.

Therefore, the pair of main-dual maps (P.i) and (Q.i) consists of two integrable
equations with non-standard degree of growth. However, as remarked above the
degree pattern of the invariants of the maps (P.i) and (Q.i) differ slightly.

We now consider the maps (P.i) and (Q.i) in affine coordinates, which are given
by

ϕ : (w3, w2, w1, w0) �→ (w4, w3, w2, w1), (29)

where

w4 = N1

dw3 (w2w3 + μ)
, (AP.i)

w4 = N2

β w3 (w2w3 + μ)
, (AQ.i)

with

N1 = −d
(
w0w

2
1w2 + w2

1w
2
2 + 2w1w

2
2w3 + w2

2w
2
3 + μw0w1

+ νw1w2 + νw2w3
) − a,

(30)

N2 = βw0w
2
1w2 + βμw0w1 + βw2

1w
2
2 + (α − 2βμ − βν) w1w2

− βw2
3w

2
2 + (2βμ + βν − α) w2w3.

(31)

Invariants for these maps are obtained from Ilow and Ihigh respectively by taking
t = 1, u = w0, z = w1, y = w2, and x = w3.

We note that when a Poisson structure has the full rank, using Eq. (11), one gets

[
det(d ϕ)

]2 = det
(
J (w

′
)
)

det
(
J (w)

) . (32)

This implies that the map ϕ is either volume or anti-volume preserving.
We recall that a map ϕ is called (anti) volume preserving if there is a function

Ω(w) such that the following volume form is preserved

Ω(w) dw0 ∧ dw1 ∧ · · · ∧ dwn−1 = ±Ω(w′) dw′
0 ∧ dw′

1 ∧ · · · ∧ dw′
n−1. (33)

Thus, we can write
∂
(
w′

0, w
′
1, . . . , w

′
n−1

)

∂
(
w0, w1, . . . , wn−1

) = ± Ω(w)

Ω(w′)
, (34)
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where the left hand side is the determinant of the Jacobian matrix of the map ϕ.
In Byrnes et al. (1999) it was proved that if a map in n dimension is (anti) volume
preserving and possesses n − 2 invariant, then we can construct an (anti) Poisson
structure of rank 2 from these invariants. However, these invariants turn out to be
Casimirs (functions that Poisson commute with all other functions) of this Poisson
bracket. Therefore, in order to have Liouville integrability, we need an extra invari-
ant in addition to the known n − 2 invariants if we want to use Poisson structures
constructed this way. In other words, the map is super integrable. Thus, to discuss
Liouville integrability of the maps (AP.i) and (AQ.i), we need to find a Poisson
bracket of rank 4 as we already predicted that the third invariant does not exist.
We do not have that information for these maps but we can show they reduce to
three dimensional Liouville integrable maps via a process called deflation (Joshi
and Viallet 2018). Mutatis mutandis, this process will preserve the invariants, and
in dimension three two invariants are sufficient to claim integrability in the general
sense as discussed in the Introduction.

It is easy to check that the maps (AP.i) and (AQ.i) are volume and anti-volume
preserving, respectively, with respect to the same volume form:

Ω = w1w2(w1w2 + μ). (35)

We now construct the (anti) Poisson structures for these two maps following (Byrnes
et al. 1999). We consider the dual multi-vector of the volume form

τ = m
∂

w0
∧ ∂

w1
∧ ∂

w2
∧ ∂

w3
, (36)

wherem = 1/Ω . A degenerate Poisson structure for the map (AP.i) and a degenerate
anti-Poisson structure for the map (AQ.i) are given by the following contraction

J = τ� d Ilow� d Ihigh, (37)

where Ilow and Ihigh are invariants for these maps in affine coordinates. Since these
(anti) Poisson structures are quite big, we do not present them here.

Remark 6 The Poisson structures which can be constructed using the method of
Byrnes et al. (1999) are degenerate and cannot be used to explain the integrability of
the two maps (AP.i) and (AQ.i).

We also note that the maps (AP.i) and (AQ.i) can be reduced to three dimensional
maps using a deflation vi = wiwi+1. The recurrences for these maps are denoted by
(DP.i) and (DQ.i) and are given as follows

dμ (v0 + v3) + dν (v1 + v2) + d
(
v0v1 + v2

1 + 2v1v2 + v2
2 + v2v3

) + a = 0,
(DP.i)
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βμ (−v0 + 2 βv1 − 2 βv2 + v3) + (βν − α) (v1 − v2) (DQ.i)

+β
(−v0v1 − v2

1 + v2
2 + v2v3

) = 0.

Each of the maps (DP.i) and (DQ.i) has two functionally independent invariants
which can be obtained directly from Ilow and Ihigh even though they live in a different
space. One can check that the map (DP.i) and (DQ.i) are anti-volume preserving
and volume preserving with Ω = v1 + μ. Therefore, we can construct their (anti)
Poisson structure using the three dimensional version of (37). Using the following
invariant from Ilow for (DP.i)

I P.i
1 = dμv0v1 − dμv0v2 + dμv1v2 + dνv1

2 + dv0v1
2 − dv0v1v2

+ dv1
3 + dv1

2v2 + av1, (38)

we have found that the map (dP.i) has an anti-Poisson structure given by

J P.i
12 = d(v1 − v0), J P.i

2,3 = d(v1 − v2),

J P.i
13 = −dμv0 − dμv2 − 2dνv1 − 2dv0v1 + dv0v2 − 3dv1

2 − 2dv1v2 − a

μ + v1
.

Similarly, for the map (DQ.i) we obtain the invariant

IDQ.i1 = βμv0 − βμv1 + βμv2 − νβv1 + βv0v1 + βv1
2 + βv1v2 + αv1, (39)

and the corresponding Poisson structure

JQ.i =

⎡

⎢
⎢
⎢
⎣

0 β
β (μ + ν − v0 − 2v1 − v2) − α

μ + v1−β 0 β

−β (μ + ν − v0 − 2v1 − v2) − α

μ + v1
−β 0

⎤

⎥
⎥
⎥
⎦

.

(40)

For these constructions, I P.i
1 and IQ.i

1 are Casimirs for their associated (anti) Poisson
structures. Their second (anti) Poisson structures can be obtained from the invariant
Ihigh but we do not present here as they are quite big.

It is important to note that the (anti) Poisson structures of (AP.i) and (AQ.i) under
inflation give us the trivial Poisson structures for (DP.i) and (DQ.i), i.e. J = 0, where
0 is the zero matrix. On the other hand, from the common factor that appears in the
Poisson structure of (AP.i), we have found that there exists an anti-invariant K P.i for
this map, i.e. K P.i(w) = −K P.i(w′)where

K P.i = 2d
(
w2w

2
1w0 + w2

2w
2
1 + w1w

2
2w3 + μw0w1 − μw1w2

+ μw2w3 + νw1w2
) + a.

(41)
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However, K P.i is not independent of I P.i
low and I P.i

high since we have

(
K P.i

)2 − 4d I P.i
high − 8d ν I P.i

low = a2. (42)

Using this anti-invariant, we obtain the following anti-invariant for the map (DP.i)

KDP.i = 2dμv0 − 2dμv1 + 2dμv2 + 2dνv1 + 2dv0v1 + 2dv1
2 + 2dv1v2 + a.

(43)
Therefore, using this anti-invariant, we get a Poisson structure for (DP.i) as follows
(after factoring out a constant term)

J P.i
2 =

⎡

⎢⎢⎢
⎣

0 1
μ − ν − v0 − 2v1 − v2

μ + v1−1 0 1

−μ − ν − v0 − 2v1 − v2

μ + v1
−1 0

⎤

⎥⎥⎥
⎦

. (44)

We can check directly that the invariants inherited from the affine map (AP.i) are in
involution with respect to the Poisson structure (44). In the sense of the definition
given in the Introduction, this means that the reduced maps (DP.i) and (DQ.i) are
Liouville integrable.

Remark 7 We notice that we can always use the invariants (38) and (39) to reduce
the three dimensional maps (DP.i) and (DQ.i) to two dimensional maps and relate
them to QRT maps. To be more specific we have that the reduced map of (DQ.i)
preserves a bi-quadratic curve so that it is of the QRT type. On the other hand,
using the anti-invariant, the reduced map of (DP.i) sends a bi-quadratic to another
bi-quadratic and fits in the framework of Roberts and Jogia (2015).

2.2 (P.ii) and Its Dual Map (Q.ii)

Consider the map [x] �→ ϕii ([x]) = [x′] given as follows:

x ′ = [
(x2 + z2)y − uz2

]
μ − t2(u − 2y),

y′ = x(t2 + μx2), z′ = y(t2 + μx2),

u′ = z(t2 + μx2), t ′ = t (t2 + μx2).

(P.ii)

This map only depends on the parameter μ.
From the construction in Gubbiotti et al. (2020) we know that the map (P.ii) has

the following invariants:
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t5 I P.iilow = (x − z) (u − y)
(
t2 + z2μ

) (
μy2 + t2

)
, (45a)

t6 I P.iihigh = [
(x − z)2 y4 + y2z4 − 2yz4u + u2z4

]
μ2

+ 2t2
[(
x2 − 2xz + 2z2

)
y2 − 2yz2u + u2z2

]
μ

+ t4
(
z2 + u2 + x2 + y2 − 2uy − 2xz

)
.

(45b)

Moreover, the map (P.ii) has the following degrees of iterates:

{dn}P.ii = 1, 3, 9, 21, 45, 93, 189, 381, 765, 1533 . . . (46)

fitted by the generating function:

gP.ii(s) = 1 + 2s2

(2s − 1)(s − 1)
. (47)

This means that despite the existence of the two invariants (45) the map (P.ii) is non-
integrable according to the algebraic entropy test: its entropy is positive and given
by ε = log 2. See Remark 2 for the justification.

Therefore we have that the map (P.ii) is an example of non-integrable admitting
two invariants.

Again following (Byrnes et al. 1999) we can produce a Poisson structure of rank 2
for (P.ii) as the affine version of (P.ii) is volume preserving withΩ = (1 + μw2

1)(1 +
μw2

2), where we have taken t = 1, u = w0, z = w1, y = w2, and x = w3. By the
construction, the two invariants (45) become Casimir functions for it, so again the
existence of such Poisson structure does not imply any formof Liouville integrability.
However, we notice that there are common factors appear at every non-zero entry
of this structure. Thus, we have found the following anti-invariant for the map (P.ii)
using these common factors

K P.ii = [
μ

(
w0w

2
1 − w1

2w2 − w1w
2
2 + w2

2w3
) + w0 − w1 − w2 + w3

]×
[
μ

(
w0w

2
1 − w2

1w2 + w1w
2
2 − w2

2w3
) + w0 + w1 − w2 − w3

]

= F1F2.

(48)

This suggests that we should check each factor of K P.i i to see whether they are (anti)
invariants of (P.ii). By direct calculation we can see that the first factor F1 is an anti-
invariant and F2 is an invariant for (P.ii), but they are not functionally independent
of Ilow and Ihigh. In fact, their relations are

I P.ii
high − F2

1 + 2I P.ii
low = 0, and I P.ii

high − F2
2 − 2I P.ii

low = 0. (49)

Therefore, the map (P.ii) actually has two invariants of degrees (1, 2, 2, 1) and
(1, 3, 3, 1). Nevertheless, despite the existence of such invariants the map (P.ii) is
non-integrable in the sense of the algebraic entropy.
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Remark 8 We can use F1 and F2 to construct an anti-Poisson structure for (P.ii)
using the formula (37):

J1,2 = −1, J2,3 = 1, J3,4 = −1,

J1,3 = 2μw1 (w2 − w0)

μw2
1 + 1

, J2,4 = −2μw2 (w3 − w1)

μw2
2 + 1

,

J1,4 = −μ2w1w2 [4 (w0w1 − w0w3 + w2w3) − 3w1w2] + μ
(
w2

1 + w2
2

) + 1
(
μw2

1 + 1
) (

μw2
2 + 1

) .

(50)
We have checked that F2 and I P.i i

low are in involution with respect to this anti-Poisson
structure. A Poisson structure can be obtained by multiplying this anti-Poisson struc-
ture with the anti-invariant F1.

The dual map [x] �→ ϕ∨
i i ([x]) = [x′] of (P.ii) is given as follows:

x ′ = α
[(
x2 − z2

)
y + uz2

]
μ + t2αu + βy2 (x − z) μ

+ t2β (x − z) ,

y′ = αx
(
t2 + μx2

)
, z′ = αy

(
t2 + μx2

)
,

u′ = αz
(
t2 + μx2

)
, t ′ = αt

(
t2 + μx2

)
.

(Q.ii)

This map depends on three parameters α, β and μ. The parameter μ is shared with
the main map (P.ii).

Since the main map (P.ii) possesses two invariants depending only on one param-
eter μ then according to (21) we can write down only a single invariant for the dual
map (Q.ii):

IQ.ii = α I P.iihigh + β I P.iilow. (51)

The invariant (51) has degree pattern (2, 4, 4, 2).
We have then that the dual map (Q.ii) has the following fast-growing degrees of

iterates:

{dn}Q.ii = 1, 3, 9, 21, 45, 93, 189, 381, 765, 1533, 3069 . . . . (52)

The growth of degrees evident in (52) is clearly exponential and is fitted by the
generating function

gQ.ii(s) = 1 + 2s2

(2s − 1)(s − 1)
. (53)

This confirms that the algebraic entropy is positive and equal to ε = log 2. See
Remark 2 for the justification.
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This means that the dual map is non-integrable with same rate of growth as the
main map. In this case we can show that the map is anti-volume preserving with the
same measure as the main map (P.ii). Moreover, we proved that the map (Q.ii) do
not posses any addition invariant up to order 14. Therefore at the present stage we
cannot construct a Poisson structure using the method of Byrnes et al. (1999).

3 Conclusions and Outlook

In this letter, we gave some examples of fourth order bi-rationalmapswith two invari-
ants possessing interesting degree growth properties. These examples come from our
classification of all the fourth-order autonomous recurrence relations possessing two
invariants in a given class of degree patterns (Gubbiotti et al. 2020).

The first pair of bi-rational maps is given by the map (P.i) and its dual (Q.i)
and consists of integrable maps with cubic growth. The interest in maps with cubic
growth arises from geometrical considerations: maps with polynomial but higher
than quadratic growth, can arise only in dimension greater than two (Diller and Favre
2001) and prove, in the case of superintegrable maps, the existence of non-elliptic
fibrations of invariant varieties (Bellon and Viallet 1999). The interest in maps with
this type of growth arose recently following the examples given in Joshi and Viallet
(2018) and we expect them to lead to many new and interesting geometric structures.

The second pair of fourth order bi-rational maps, given by the map (P.ii) and
its dual (Q.ii), consists of non-integrable maps with exponential growth. There are
various possible reasons why the map (P.ii) is non-integrable despite possessing
two invariants. To claim integrability with two invariants according to the discrete
Liouville theorem (Maeda 1987; Bruschi et al. 1991; Veselov 1991) we need to prove
that the map has a symplectic structure and that the two invariants commute with
respect to this symplectic structure. Hence, either the map (P.ii) does not admit any
symplectic structure, or the map (P.ii) admits only symplectic structures such that
the two invariants (45) do not commute. Since, usually, from a set of non-commuting
invariants it is possible to find a set of functionally independent commuting invariants
we conjecture that Eq. (P.ii) is devoid of a non-degenerate Poisson structure.

Work is in progress to characterize the surfaces generated by the invariants in
both integrable and non-integrable cases. We expect this to give new results in the
geometric theory of integrable systems.
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