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Quadrangular Sets in Projective Line
and in Moebius Space, and Geometric
Interpretation of the Non-commutative
Discrete Schwarzian
Kadomtsev–Petviashvili Equation

Adam Doliwa and Jarosław Kosiorek

Abstract We present geometric interpretation of the discrete Schwarzian
Kadomtsev–Petviashvili equation in terms of quadrangular set of points of a pro-
jective line. We give also the corresponding interpretation for the projective line
considered as a Moebius chain space. In this way we incorporate the conformal
geometry interpretation of the equation into the projective geometry approach via
Desargues maps.

Keywords Discrete Schwarzian KP equation · Desargues maps · Projective line ·
Chain geometry · Moebius–Veblen configuration

2010 Mathematics Subject Classification 51B10, 51A20

1 Introduction

In the present paper we address two questions concerning geometric interpretation
of the following discrete integrable system

(φ( jk) − φ(k))(φ( jk) − φ( j))
−1(φ(i j) − φ( j))(φ(i j) − φ(i))

−1(φ(ik) − φ(i))(φ(ik) − φ(k))
−1 = 1,

(1)

where φ : ZN → F is a map from N -dimensional integer lattice to a division
ring F, and indices in brackets denote shifts in the corresponding variables, i.e.
φ(i)(n1, . . . , nN ) = φ(n1, . . . , ni + 1, . . . , nN ).The above equation appeared first as
the generalized lattice spin equation in Nijhoff and Capel (1990), and was called the
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non-commutative discrete Schwarzian Kadomtsev–Petviashvili (SKP) equation in
Bogdanov and Konopelchenko (1998); Konopelchenko and Schief (2005). As being
one of various forms of the discrete Kadomtsev-Petviashvili (KP) system (Hirota
1981; Kuniba et al. 2011), Eq. (1) plays pivotal role in the theory of integrable
systems and its applications.

Relation between geometry of submanifolds and integrable systems is an ongoing
research subject which can be dated back to second half of XIX-th century (Darboux
1887–1896). In fact, geometric approach to discrete integrable systems initiated
in Bobenko and Pinkall (1996), Doliwa and Santini (1997), Konopelchenko and
Schief (1998), see also Bobenko and Suris (2009) for a review, demonstrates that the
basic principles of the theory are encoded in incidence geometry statements, some
of them known in antiquity.

For example, complex F = C version of Eq. (1) was identified in Konopelchenko
and Schief (2002) as amulti-ratio conditionwhich describes generalization to confor-
mal geometry of circles of theMenelaus theorem in themetric geometry (Coxeter and
Greitzer 1967). Quaternionic version of the equation was studied in Konopelchenko
and Schief (2005, 2009), see also King and Schief (2003) for other geometric inter-
pretations of the multi-ratio condition in relation to integrable discrete systems.

The more recently introduced notion of Desargues maps (Doliwa 2010), as under-
lying property of discrete KP equation considers collinearity of three points. This
approach works in projective geometries over division rings and leads directly to the
linear problem for the equation in its non-AbelianHirota–Miwa form (Nimmo2006).
We remark that the Desargues maps give new understanding (Doliwa 2010, 2013) of
the previously studied discrete conjugate nets (Doliwa and Santini 1997). These are
characterized by planarity of elementary quadrilaterals (see also Sauer 1937; Doliwa
1997). The compatibility condition for Desargues maps gives projective Menelaus
theorem, but leaves open the following Question 1: Can the conformal geometry
interpretation of the discrete Schwarzian Kadomtsev–Petviashvili equation be
incorporated into the Desargues map approach? Notice that the recent general-
ization of the Desargues theorem to context of conformal geometry (King and Schief
2012) may suggest something opposite.

When studying reductions of the Desargues maps, as for example in Doliwa
(2013), one is forced to restrict dimension of the ambient projective space up to
“Desarguesmaps into projective line”. Even if the linear problem iswell defined there
the geometric condition, which defines the maps, is empty. This leads to Question 2:
What should replace the Desargues map condition for the ambient space being
projective line? We remark that the analogous problem for discrete conjugate nets
in the ambient space being a plane was successfully solved in Adler (2006).

Our answer for both questions is based on the notion of the quadrangular sets,
whichwas introduced by von Staudt in his seminalwork (von Staudt 1847) as a tool to
provide axiomatization of the projective geometry. We remark that quadrangular sets
of points appeared in integrable discrete geometry in theory of the B-quadrilateral
lattice (Doliwa 2007a), but in the context of the Pappus theorem and the Moebius
pair of tetrahedra, which is outside of the interest of the present paper.
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In Sect. 2 we first recall basic ingredients of the geometry of the projective line,
in particular the notion of cross-ratio in the general non-commutative case (Baer
1952). We also formulate the corresponding concept of the multi-ratio of six points
on the projective line over a division ring, which generalizes the definition known
for commutative case in terms of two cross-ratios or determinants. We show that
quadrangular sets of points are fully characterized by the “multiratio equals one”
condition also in the non-commutative case (as the commutative case is well known
Richter-Gebert 2011). This gives our answer to Question 2, which we present in
Sect. 3.

Our answer to Question 1, which we present in Sect. 4, is also implied by geome-
try of the projective line, but this time the line is equipped with additional structure.
When the division ring F contains a subfieldK in its center then F-projective images
of the canonically embedded K-line form the so called chains. This leads to the
concept of Moebius chain geometry (Benz 1973; Herzer 1995). We show that in
such spaces certain quadrangular sets have particular interpretation in terms of the
so called Moebius–Veblen chain configuration. In the simplest case of the classi-
cal Moebius geometry, where K = R ⊂ C = F the chains are circles (homographic
images of the real line in the complex conformal plane), and our approach gives that
of Konopelchenko and Schief (2002).

2 Projective Geometry of a Line

2.1 Cross-Ratio and Multi-ratio in Projective Geometry over
Division Rings

A right linear space (F,V) consists of a division ringF and an additive abelian group
V such that F acts on V from the right satisfying usual axioms. The corresponding
projective geometry studies linear subspaces of the F-space V. The points of the
corresponding projective space P(F,V) are one dimensional subspaces of (F,V).

Remark For simplicity we assume that F is of characteristic zero, but we expect
that also finite characteristic may be relevant and give interesting results (Białecki
and Doliwa 2005).

A collineation of the linear space (F,V) upon the linear space (F,W) is a bijec-
tive and order preserving mapping σ of the partially ordered (by inclusion) set of
subspaces of V upon the set of subspaces of W. When dimension of V is at least
three, any such collineation is given by a semi-linear map, i.e. linear map V → W

and supplemented by an automorphism of the division ring.
The case of two dimensional linear spaces (i.e. projective lines) needs a special

treatment. Then any bijection of projective line can be called collineation. There
arises the problem of characterizing those maps which are induced by semi-linear
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maps of (F,V). The first step in that direction (the full answer can be found in Baer
1952) makes use of a generalization of the classical notion of cross ratio.

Definition 1 (Baer 1952) Suppose that P, Q, R, S are four distinct points on the

line L . Then the number c ∈ F belongs to the cross ratio

[
P Q
S R

]
⊂ F if there exist

elements p, q ∈ V such that

P = 〈 p〉, Q = 〈q〉, R = 〈 p + q〉, S = 〈 p + qc〉.

Below we present the known expression of the cross-ratio in terms of non-
homogeneous coordinates.

Theorem 1 If k, l are two independent elements of ∈ V, and p, q, r, s are four
distinct elements of F then

[ 〈k + l p〉 〈k + lq〉
〈k + ls〉 〈k + lr〉

]
= [

(s − q)−1(p − s)(p − r)−1(r − q)
]
,

where by for c ∈ F by [c] = {aca−1 | a ∈ F \ {0}} we denote the equivalence class
of conjugate elements.

Remark Given three distinct points P, Q, R ∈ L and given c ∈ F \ {0, 1} there

exists the fourth point S ∈ L , distinct from the previous ones, such that c ∈
[
P Q
S R

]
;

c = 0 corresponds to S = P , c = 1 corresponds to S = R, while to admit S = Q
we need to give the value c = ∞.

Remark When points P, Q, R have been taken as projective basis of the line, i.e.

p = 0, q = ∞, r = 1, then

[
P Q
S R

]
= [s].

The following result for dimV ≥ 3 justifies the use of cross-ratio in describing
geometry of the projective line.

Theorem 2 Suppose that (P, Q, R, S) and (P ′, Q′, R′, S′) are quadruples of dis-
tinct collinear points. There exists collineation π of the linear space (F,V), dimV ≥
3. such thatπ(P) = P ′,π(Q) = Q′,π(R) = R′,π(S) = S′ if and only if there exists
an automorphism α of the division ring F such that

[
P Q
S R

]α

=
[
P ′ Q′
S′ R′

]
.

We present below the analogous geometric notion of multi-ratio in the non-
commutative case, which we adapted from known definition in the commutative
case in terms of two cross-ratios (Morley and Musselman 1937; King and Schief
2003; Richter-Gebert 2011). Like for the non-commutative cross-ratio our geomet-
ric definition leads to a class of conjugate elements of the division ring.



Quadrangular Sets in Projective Line and in Moebius Space, and Geometric … 5

Definition 2 Suppose that P, Q, R, S, T,U are six distinct points on the line L .

Then the number m ∈ F belongs to the multi-ratio

[
P Q S
U R T

]
⊂ F if there exist

elements p, q, s ∈ V such that

P = 〈 p〉, Q = 〈q〉, S = 〈s〉, R = 〈 p + q〉, T = 〈 p + s〉,
U = 〈 p + qa〉, U = 〈 p + sb〉 m = ab−1.

Proposition 3 If k, l are two independent elements of ∈ V, and p, q, r, s, t, u are
six distinct elements of F then

[ 〈k + l p〉 〈k + lq〉 〈k + ls〉
〈k + lu〉 〈k + lr〉 〈k + lt〉

]
=

[
(r − p)−1(q − r)(q − u)−1(s − u)(s − t)−1(t − p)

]
. (2)

Proof Let the vectors p, q ∈ V be such as in Definition 2, define the factors
λ,μ, σ, ρ ∈ F \ {0} for points P, Q, R,U by

(k + l p)λ = p, (k + lq)μ = q, (k + lr)σ = p + q, (k + lu)ρ = p + qa.

Elimination of the factors μ, σ, ρ leads to the relation

a = λ−1(r − p)−1(q − r)(q − u)−1(u − p)λ.

Similar reasoning, but for points P, S, T,U leads to similar relation

b = λ−1(t − p)−1(s − t)(s − u)−1(u − p)λ,

which, combined with the previous one, concludes the proof. �

Remark When the division ring F is commutative, our definition of the multi-ratio[
P Q S
U R T

]
∈ F reduces to the product

[
P Q
U R

] [
P S
U T

]−1

of two cross-ratios.

Proposition 4 The multi-ratio is an invariant of the collineations induced by linear
transformations of the space (F,V).

Proof Fix coordinate system, like in Proposition 3, and use the fact, that such
collineations are generated by affine transformations φ 
→ aφ + b and inversions
φ 
→ φ−1

(aφ + b)(cφ + d)−1 = ac−1 + (b − ac−1d)(cφ + d)−1.

By direct calculation, both transformations preserve the multi-ratio (2) understood
as the class of conjugate elements. �
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Fig. 1 Quadrangular set of points

2.2 Quadrangular Set of Points on Projective Line

A complete quadrangle is a projective figure formed by four points (vertices)
A, B,C, D in the plane, no three of which are collinear, and the six distinct
lines (sides) that are produced by joining them pairwise. The intersection points
AB, . . . ,CD of the six lines with a line not incident with vertices of the quadrangle
form the quadrangular set (von Staudt 1847), see Fig. 1.

It is known that, by Desargues theorem, any five points of the quadrangular set
(labeling fixed) determine uniquely the sixth point of the set. Moreover, collineations
map quadrangular sets into quadrangular sets.

Remark The ordering of the points is important, up to permutation of the letters
A, B,C, D. By combinatorial arguments one can show that given five generic points
of the projective line there are 30 positions of the sixth point such that for appropriate
ordering the six points form a quadrangular set.

Proposition 5 The six distinct points AB, . . . ,CD form a quadrangular set if and
only if their non-homogeneous coordinates �AB, . . . , �CD satisfy the multi-ratio
condition

(�AD − �AC )(�AD − �AB )−1(�BD − �AB )(�BD − �BC )−1(�CD − �BC )(�CD − �AC )−1 = 1. (3)

Proof Given five points of the set, we reconstruct the planar quadrilateral which
allows to obtain the sixth point. It is known (Veblen and Young 1910) that the con-
struction is independent on the freedom in choice of the quadrilateral. Because we
were not able to find the multi-ratio characterization of the quadrangular sets in the
non-commutative case we present its detailed derivation.

In the general case fix coordinate system on the line L = {(a, 0)|a ∈ F}. Choose
an arbitrary point A �= L , which can be given then non-homogeneous coordinates
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(0, 1). The last freedom in the construction is the choice of a point B on the line
〈A, AB〉, which fixes its coordinates

(�1
B,�2

B) = (�AB(1 − σ), σ ), σ ∈ F \ {0, 1}.

Then the coordinates of the point C = 〈A, AC〉 ∩ 〈B, BC〉 are

(�1
C ,�2

C ) = (�AC (1 − μ),μ), μ =
[
�AC − �AB + (�AB − �BC )σ−1

]−1
(�AC − �BC );

notice identity

μ−1 − 1 = (�AC − �BC)−1(�AB − �BC)(σ−1 − 1). (4)

Similarly, the coordinates of the point D = 〈A, AD〉 ∩ 〈C,CD〉 read

(�1
D,�2

D) = (�AD(1 − λ), λ), λ =
[
�AD − �AC + (�AC − �CD)μ−1

]−1
(�AD − �CD),

and then
λ−1 − 1 = (�AD − �CD)−1(�AC − �CD)(μ−1 − 1), (5)

moreover

(�CD − �AC)−1(�AD − �AC) = μ−1(μ − λ)(1 − λ)−1. (6)

Finally, the non-homogeneous coordinates (�BD, 0) of the point BD = L ∩ 〈B, D〉
are given by

�BD = �AB(1 − σ) + [�AD(1 − λ) − �AB(1 − σ)] (σ − λ)−1σ, (7)

what implies

(�BD − �AB)−1(�AD − �AB) = σ−1(σ − λ)(1 − λ)−1. (8)

Equations (4)–(8) give then

(�BD − �BC ) − (�CD − �BC )(�CD − �AC )−1(�AD − �AC )(�AD − �AB )−1(�BD − �AB ) =[
(�AD − �CD)(λ−1 − 1) − (�AB − �BC )(σ−1 − 1) + (�CD − �BC )(μ−1 − 1)

]
λ(σ − λ)−1σ = 0,

which concludes the first part of the proof.
Because Eq. (3) is uniquely solvable for any of its six points, once other five are

given, and by the analogous property of the quadrangular set, the condition described
by the equation completely characterizes quadrangular sets of the projective line. �
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Fig. 2 Veblen configuration
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3 Desargues Maps into Projective Line

3.1 The Veblen Configuration and the Multi-ratio

Consider Veblen or Menelaus (Konopelchenko and Schief 2002) configuration
(62, 43) in projective space, i.e. six points and four lines with two lines incident
with each point, and three points incident with each line, see Fig. 2. We label points
of the configuration by two element subsets of the four element set {A, B,C, D},
and lines by single elements of the same set. A point is incident with the line if its
label contains the label of the line.

Let us present an algebraic description of the Veblen configuration, which can be
considered as a non-commutative version of the theorem of Menelaus (Coxeter and
Greitzer 1967).

Proposition 6 Given points AB ∈ 〈BC, BD〉, AD ∈ 〈BD,CD〉, AC ∈ 〈BC,CD〉
on three sides of the triangle BC, BD,CD, and distinct from its vertices. These three
points are collinear if and only if the corresponding proportionality coefficients
a, b, c ∈ F \ {0, 1} between their non-homogeneous coordinates, as defined by

(�BC − �AB) = (�BD − �AB)a, (9)

(�CD − �AD) = (�BD − �AD)b, (�BC − �AC) = (�CD − �AC)c,

satisfy condition
a = bc. (10)

Proof To show that the collinearity implies condition (10) assume that the vectors
�AB,�AC ,�AD , as calculated from the above linear relations, satisfy the constraint
of the form

�AB − �AC = (�AD − �AC)λ.
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The linear independence of vectors �BD − �CD and �BC − �CD implies then

λ = 1 − (c − 1)(a − 1)−1 = (b − 1)c(a − 1)−1,

which gives Eq. (10).
From theother side, insert the condition (10) intofirst of the above linear equations,

which in conjunction with other two gives

(�AB − �AD)(1 − bc) = (�AC − �AD)(1 − c),

thus showing the collinearity. �

Corollary 7 Assume that for fixed coordinate number i all components �i
AB, . . . ,

�i
CD of the points of the Veblen configuration are distinct (see Fig.2), then the

components satisfy the following multi-ratio condition

(�i
CD − �i

AC )(�i
CD − �i

AD)−1(�i
BD − �i

AD)(�i
BD − �i

AB )−1(�i
BC − �i

AB )(�i
BC − �i

AC )−1 = 1.

Proof Insert expressions

a =(�i
BD − �i

AB)−1(�i
BC − �i

AB),

b =(�i
BD − �i

AD)−1(�i
CD − �i

AD),

c =(�i
CD − �i

AC)−1(�i
BC − �i

AC),

into the condition (10). �

We conclude this Section with a result, which justifies the statement that quadrangu-
lar sets should be considered as Veblen configurations in the geometry of projective
line.

Proposition 8 In the plane of the Veblen configuration consider point O not on
lines of the configuration. The intersection points of lines joining O to vertices of the
configuration with an arbitrary line not incident with O form a quadrangular set.

Proof Take the point O as the first vertex of the quadrangle, fix a line of the Veblen
configuration, and use three remaining points of the configuration as three remaining
vertices of the quadrangle. On the linewe have built then a quadrangular set. The lines
joining the points of the Veblen configuration with point O are the lines joining O
to points of the quadrangular set. Any transversal section of the lines by another line
gives six points perspective with the quadrangular set. Because such transformations
map quadrangular sets into quadrangular sets (Veblen and Young 1910) we obtain
the statement. �

Remark The case when O is a point at infinity and the line is a coordinate line is
actually visualized in Fig. 2.
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3.2 Desargues Maps

From point of view of difference equations usually one considers maps ofZN lattice.
Recently integrable systems on other regular lattices are also of some interest, see for
example (Doliwa et al. 2007). In particular, the Desargues maps, although initially
defined onmultidimensional integer lattice, allow for an interpretation (Doliwa 2011)
as maps from multidimensional root lattice of type A. Such an approach from the
very beginning takes into account the corresponding affine Weyl group symmetry of
the discrete KP system.

Recall that the N ≥ 2-dimensional root lattice Q(AN ) is generated by vectors
along the edges of regular N -simplex in Euclidean space (Conway and Sloane 1988;
Moody and Patera 1992). Vertices of the lattice tessellate the space into N types of
convex polytopes P(k, N ), k = 1, . . . , N , called ambo-simplices. It is known that the
corresponding affine Weyl group W (AN ) acts on the Delaunay tiling by permuting
tiles within each class P(k, N ). The 1-skeleton of P(k, N ) is the so called Johnson
graph J (N + 1, k): its vertices are labeled by k-point subsets of {1, 2, . . . , N + 1},
and edges are the pairs of such sets with (k − 1)-point intersection.

The tiles P(1, N ) are congruent to the initial N -simplex which generates the
vertices of the root lattice. We color its faces P(1, 2) in black. The faces P(2, 2) of
the simplex P(N , N ) we color white. Then P(2, 3) which is regular octahedron has
four black and four white triangular faces, see Fig. 3.

Definition 3 By Desargues map φ : Q(AN ) → P(F,V) we mean a map for which
images of vertices of simplices P(1, 2) with black triangular faces are collinear.

To avoid degenerations it is implicitly assumed that images of vertices of simplices
P(2, 2)withwhite triangular faces are in generic position.Then the octahedra P(2, 3)

φ

φ

Fig. 3 Desargues map
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is mapped into Veblen configurations, see Fig. 3. Moreover, after introduction of
appropriate Z

N coordinates in the lattice the non-homogeneous coordinates of the
map satisfy Eq. (1), compare with Corollary 7. Guided by Proposition 8 we give our
answer to Question 2.

Definition 4 ByDesarguesmap of root lattice Q(AN ) into a projective linewemean
a map for which images of vertices of ambo-simplices P(2, 3) are quadrangular sets
with labeling induced by that of Johnson graph J (4, 2).

4 Desargues Maps in Moebius Chain Geometry

Below we describe the concept of Moebius chain geometry of a projective line,
which allows for a construction of quadrangular sets which satisfy certain additional
property, adjusted to the structure. This will give our answer to Question 1.

4.1 The Concept of Moebius Chain Geometry

Assume that the division ringF contains a proper subfieldK in its center. The division
ringF can be considered then as a divisionK-algebra. Correspondingly, the projective
line over F inherits additional structure, best described within the concept of chain
geometry (Benz 1973; Herzer 1995; Blunck and Herzer 2005). Define the chains as
images of the canonically embeddedK-line (called the standard chain) under action
of the group of collineations induced by linear maps of the F-line. Points are called
cocatenal if they belong to a common chain.

Remark The simplest example forK = R ⊂ C = F is the classical conformalMoe-
bius geometry of circles (as chains) in theRiemann sphere (complex line or conformal
plane). The notion of chain geometry applies actually to anyK-algebra, however we
will be dealing exclusively with division algebras (i.e. with the so called Herzer 1995
Moebius chain geometries).

TheK-vector spaceF can be given natural affine space structure. The straight lines
are the chains which pass through the infinity point of the projective line F ∪ {∞}.
Notice that the notion of “straight line” depends actually on the particular choice
of the infinity point. Two chains are called tangent in point P when after sending
P to infinity the chains are parallel in corresponding affine space. Notice following
results of the Moebius chain geometry:

(1) Any three distinct points of the F-line are contained in exactly one chain.
(2) Four distinct points are cocatenal if and only if their cross-ratio is well defined

element of K \ {0, 1}.
(3) (Miquel condition) Given four chains Ci , i = 1, 2, 3, 4, no three of which have

a common point, but Ci ∩ Ci+1 = {Pi , Qi } for every i (subscripts are taken
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modulo 4). Then the four points Pi are cocatenal if and only if the four points
Qi are cocatenal.

Remark One can consider (Blunck and Havlicek 2000) generalizations of the Moe-
bius chain geometry for whichK is a subdivision ring of F not necessarily contained
in its center (like for example in the case C ⊂ H, where chains are two dimensional
spheres S2 in S4 ≡ H ∪ {∞}). However such a generalization may violate some of
the properties above.

4.2 Moebius–Veblen Configuration

Let us present an analogue of the Veblen axiom/theorem, see also Blunck and Herzer
(2005) for its general version (in a slightly different formulation) for chain geome-
tries.

Proposition 9 Given five distinct points AB, AC, AD, BC, BD of the Moebius
chain space such that the chains C(AB, AC, AD) and C(AB, BC, BD) have
in common additional point I �= AB. Then also the chains C(I, AC, BC) and
C(I, AD, BD) have in common additional point CD �= I , or alternatively the chains
are tangent in I .

Proof By sending the intersection point I to infinity, see Fig. 4, we obtain five points
of the classical Veblen configuration in the affine space (K,F) what allows to con-
struct the sixth point of the “straightened configuration”, and then eventually to go
back to the original one. �

Remark Notice that in the classical Moebius geometry of the complex projective
line the assumption about existence of the point I is not needed. However this
assumption is essential, if we would like to perform the construction in the case
of quaternionic projective line with R ⊂ H.

I=

I

AB

AB
AC

BD

CD

CD

AC

AD

BC

AD

BC

BD

Fig. 4 Moebius–Veblen configuration in Moebius chain geometry
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The points AB, AC, AD,CD, BC, BD will be called ordinary points of the
Moebius–Veblen configuration, while I is called the infinity point of the configura-
tion.

Proposition 10 In the Moebius–Veblen configuration the constructed point CD is
the sixth quadrangular point of the initial five ordinary points in the standard labeling.

Proof In the “straightened configuration” apply Proposition 5 to get coefficients
a, b, c which belong toK \ {0, 1} and satisfy condition (10). But now one can elim-
inate the coefficients directly on the level of Eq. (9) in order to get the multi-ratio
condition (3) inF. Proposition 4, which gives invariance of the condition with respect
to projective collineations of the F-line, and Proposition 5 imply the statement. �

Remark Even if we do not have the point I to our disposal the sixth point CD
of the quadrangular set exists, by the general construction described in Sect. 2.
Then one can consider also the corresponding initial chains C(AB, AC, AD),
C(AB, BC, BD), which contain point AB, and the resulting chains C(AC, BC,CD)

and C(AD, BD,CD) containing the point CD. These new chains can be given only
after construction of the point.

Finally we give our answer to Question 1 presenting the special type of quadran-
gular sets for which the construction of the sixth point follows from Moebius chain
geometry principles, thus incorporating the conformal geometry interpretation of
the discrete Schwarzian Kadomtsev–Petviashvili equation into the Desargues map
approach.

Definition 5 By Moebius quadrangular set we mean the six ordinary points of the
Moebius–Veblen configuration with the labeling as in Proposition 9.

It is well known (Clifford 1871; Konopelchenko and Schief 2002) that the
Moebius–Veblen configuration canbe supplementedby four chainsC(AB, BC, AC),
C(AB, BD, AD), C(AC,CD, AD) and C(BC,CD, BD) which then all intersect
in the so called Clifford point. The new circle-point configuration of 8 points and
8 circles, with each point/circle incident with 4 circles/points, is called the Clif-
ford configuration. Actually, as it was described in Doliwa (2007b), this result in an
equivalent version was known already to Miquel (Miquel 1838).

5 Conclusion

The projective structure of the line and the notion of quadrangular sets can be used
to provide geometric meaning to non-commutative discrete Schwarzian KP sys-
tem. When the thiner structure of the underlying division ring is considered then
the theory becomes more intriguing. Up to now the case of complex and quater-
nionic Moebius spaces (with the subfield of real numbers) have been thoroughly
examined (Konopelchenko and Schief 2002, 2009). There are known works, see for
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example (Bazhanov et al. 2008), where the Miquel condition has been used to study
particular algebras of quantum integrable systems.We expect that the chain geometry
may become useful platform to investigate other quantum algebras of mathematical
physics.
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Complexity and Integrability in 4D
Bi-rational Maps with Two Invariants

Giorgio Gubbiotti, Nalini Joshi, Dinh Thi Tran, and Claude-Michel Viallet

Abstract In this letter we give fourth-order autonomous recurrence relations with
two invariants, whose degree growth is cubic or exponential. These examples contra-
dict the common belief that maps with sufficiently many invariants can have at most
quadratic growth. Cubic growth may reflect the existence of non-elliptic fibrations
of invariants, whereas we conjecture that the exponentially growing cases lack the
necessary conditions for the applicability of the discrete Liouville theorem.

Keywords Integrability · Complexity · Algebraic entropy · Growth of bi-rational
maps · Higher-order difference equation

1 Introduction

Bi-rational maps in two dimensions have played a crucial role in the study of inte-
grable discrete dynamical systems since the seminal paper of Penrose and Smith
(1981) and the introduction of the QRT mappings in Quispel et al. (1988, 1989).
Elliptic curves and rational elliptic surfaces proved to be one of the main tools in
understanding the geometry behind this kind of integrability, see Sakai (2001), Duis-
termaat (2011), Tsuda (2004). In this letter we give examples of higher-order maps
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whose properties go beyond those of the two-dimensional maps, and show that the
geometry of elliptic fibrations is no longer sufficient to explain their behaviour.

Up to now the QRT mappings appear to describe almost the totality of the known
integrable examples in dimension two with some notable exceptions (Viallet et al.
2004; Duistermaat 2011). However, no general framework exists for higher order
maps. A generalization of the QRT scheme (Quispel et al. 1988, 1989) in dimension
four was given in Capel and Sahadevan (2001). Certain maps obtained in Capel
and Sahadevan (2001) were shown in Hay (2007) to be autonomous reductions
of members of q-Painlevé hierarchies (multiplicative equations in Sakai’s scheme
Sakai 2001). Since hierarchies are known also for the additive discrete Painlevé
equations (Cresswell and Joshi 1999), it is clear that the cases considered in Capel
and Sahadevan (2001) cannot exhaust all the possible integrable autonomous maps
in four dimensions, as already shown in Joshi and Viallet (2018). It is important to
mention that there are also other examples of discrete mappings of higher orders
produced either by periodic or symmetry reductions of integrable partial difference
equations (Papageorgiou et al. 1990; Quispel et al. 1991; van der Kamp and Quispel
2010; Levi and Winternitz 2006) or as Kahan-Hirota-Kimura discretization (Kahan
1993; Kimura and Hirota 2000) of continuous integrable systems (Petrera and Suris
2010; Celledoni et al. 2013, 2014; Petrera et al. 2009).

In this letter, we focus on the study of integrability properties of autonomous
recurrence relations. Here an autonomous recurrence relation is given by a bi-rational
map of the complex projective space into itself:

ϕ : [x] ∈ CP
n → [x′] ∈ CP

n, (1)

where n > 1.1 We take [x] = [
x1 : x2 : · · · : xn+1

]
and [x′] = [

x ′
1 : x ′

2 : · · · : x ′
n+1

]

to be homogeneous coordinates on CP
n . Moreover we recall that a bi-rational map

is a rational map ϕ : V → W of algebraic varieties V and W such that there exists a
map ψ : W → V , which is the inverse of ϕ in the dense subset where both maps are
defined (Shafarevich 1994).

Integrability for autonomous recurrence relations (discrete equations) can be char-
acterized in different ways. In the continuous case, for finite dimensional systems,
integrability is usually understood as the existence of a “sufficiently” high number
of first integrals, i.e. of non-trivial functions constant along the solution of the dif-
ferential system. In the Hamiltonian setting a characterization of integrability was
given by Liouville (1855). In the case of map (1) the analogue of first integrals are
the invariants. To be more precise we state the following:

Definition 1 An invariant of a bi-rational map ϕ : CPn → CP
n is a homogeneous

function I : CPn → C such that it is left unaltered by action of the map, i.e.

ϕ∗ (I ) = I, (2)

where ϕ∗ (I ) means the pullback of I through the map ϕ, i.e. ϕ∗ (I ) = I (ϕ ([x])).
For n > 1, an invariant is said to be non-degenerate if:

1Bi-rational maps in CP
1 are just Möbius transformations so everything is trivial.
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∂ I

∂x1

∂ I

∂xn
�= 0. (3)

Otherwise an invariant is said to be degenerate.

In what follows we will concentrate on a particular class of invariants:

Definition 2 An invariant I is said to be polynomial, if in the affine chart
[x1 : · · · : xn : 1] the function I is a polynomial function.

A polynomial invariant in the sense of Definition 2 written in homogeneous vari-
ables is always a homogeneous rational function of degree 0. The form of the poly-
nomial invariant in homogeneous coordinates is then given by:

I ([x]) = I ′ ([x])
td

, d = deg I ′ ([x]) , (4)

where deg is the total degree.
To better characterize the properties of these invariantswe introduce the following:

Definition 3 Given a polynomial function F : CPn → V , where V can be either
CP

n or C, we define the degree pattern of F to be:

dp F = (
degx1 F, degx2 F, . . . , degxn F

)
. (5)

Remark 1 The degree pattern of a polynomial function F is not invariant under
general bi-rational transformations. However, the degree pattern of a polynomial
function F is invariant under scaling and translations, which are transformations of
the form:

χ : [x] → [ax + b] , a ∈ C \ {0}, b ∈ CP
n. (6)

Example 1 Consider the following map in CP
2:

ϕ : [x : y : t] �→ [−y(x2 − t2) + 2axt2 : x(x2 − t2) : t (x2 − t2)]. (7)

This map is known as the McMillan map (McMillan 1971) and possesses the fol-
lowing invariant:

t4 IMcM = x2y2 + (x2 + y2 − 2axy)t2. (8)

We have dp IMcM = (2, 2), i.e. it is a bi-quadratic polynomial. We also note that the
invariant of a QRT map (Quispel et al. 1988, 1989), IQRT, which is a generalization
of the McMillan map (7), is the ratio of two bi-quadratics in the dynamical variables
of CP2. Hence QRT mappings leave invariant a pencil of curves of degree pattern
(2, 2).
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Example 2 The invariants of the maps presented in Capel and Sahadevan (2001),
ICS, are ratios of bi-quadratics in all the four dynamical variables of CP4, i.e. ratios
of polynomial of degree pattern (2, 2, 2, 2). In this sense the classification of Capel
and Sahadevan (2001) is an extension of the one in Quispel et al. (1988, 1989).

Finally wewill consider invariants that are not of themost general kind, but satisfy
the following condition.

Definition 4 We say that a invariant I : CPn → C is symmetric if it is left unaltered
by the following involution:

ι : [
x1 : x2 : · · · : xn : xn+1

] → [
xn : xn−1 : · · · : x1 : xn+1

]
, (9)

i.e. ι∗ (I ) = I .

We then have the following characterization of integrability for autonomous recur-
rence relations:

(i) Existence of invariants An n-dimensional map is (super) integrable if there
exist n − 1 invariants.

(ii) Liouville integrability (Veselov 1991; Maeda 1987; Bruschi et al. 1991) An
n-dimensional map (in affine coordinates) is integrable if it preserves a Poisson
structure of rank 2r and r + n − 2r = n − r functionally independent invari-
ants in involution with respect to this Poisson structure. In affine coordinates
w = (wn−1, . . . , w0) = [

wn−1 : · · · : w0 : 1] we say that a map ϕ : w �→ w′ is
called a Poisson map of rank 2r ≤ n if there is a skew-symmetric matrix J (w)

of rank 2r satisfies the Jacobian identity

n∑

l=1

(
Jli

∂ Jjk
∂wl−1

+ Jl j
∂ Jki

∂wl−1
+ Jlk

∂ Ji j
∂wl−1

)
= 0, ∀i, j, k, (10)

and
d ϕ J (w) d ϕT = J (w

′
), (11)

where d ϕ is the Jacobianmatrix of themap ϕ, see Capel and Sahadevan (2001),
Olver (1986). The Poisson bracket of two smooth functions f and g is defined
as

{ f, g} = ∇ f J (∇g)T , (12)

where ∇ f is the gradient of f . We can easily see that {wi−1, w j−1} = Ji j . We
note that in the case where the Poisson structure has full rank, i.e. n = 2r , we
only need n/2 invariants which are in involution. In this case the Poissonmatrix
is invertible, and its inverse is called a symplectic matrix. A symplectic matrix
give raise to a symplectic structure.

(iii) Existence of a Lax pair (Lax 1968) An n-dimensional map is integrable if
it arises as compatibility condition of an overdetermined linear system. We
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emphasize the fact that the Lax pair needs to provide us some integrability
aspects of the maps such as invariants or solutions of the non-linear system.
It is known in the literature that not all the Lax pairs satisfy such conditions
(Calogero and Nucci 1991; Hay and Butler 2012, 2015; Gubbiotti et al. 2016).
Lax pairs that do not satisfy such conditions are called fake Lax pairs and their
existence cannot be used to prove integrability of a given system.

(iv) Low growth condition (Veselov 1992; Falqui and Viallet 1993; Bellon and
Viallet 1999) An n-dimensional bi-rational map is integrable if the degree of
growth of the iteratedmapϕk is polynomial with respect to the initial conditions
[x0]. Integrability is then equivalent to the vanishing of the algebraic entropy:

ε = lim
k→∞

1

k
log deg[x0] ϕ

k . (13)

Algebraic entropy is a measure of the complexity of a map, analogous to the
one introduced by Arnol’d (1990) for diffeomorphisms. In this sense growth
is given by computing the number of intersections of the successive images of
a straight line with a generic hyperplane in complex projective space (Veselov
1992).

We emphasize the fact that the above list is not completely exhaustive of all the
possible definitions of integrability. Since we are focused on autonomous recurrence
relations we choose to cover only the most used definition for these ones.

Remark 2 Here, we collect some observations about algebraic entropy and how to
evaluate it.

(i) Algebraic entropy is invariant under bi-rationalmaps (Bellon andViallet 1999).
(ii) In principle, the definition of algebraic entropy in Eq. (13) requires us to com-

pute all the iterates of a bi-rational map ϕ to obtain the sequence{
dk = deg[x0] ϕ

k
}∞
k=0

. Fortunately, for the majority of applications the form
of the sequence can be inferred by using generating functions (Lando 2003):

g (z) =
∞∑

n=0

dkz
k . (14)

(iii) In almost all cases, the generating function turns out to be a rational function,
which can be inferred from a finite number of iterates of the dynamical system.
It then becomes a predictive tool, which can be tested using further terms of the
sequence of degrees. In this paper, we find inferred generating functions for 4
cases given in Eqs. (23), (28), (47), and (53). In each case, the type of argument
required to show that the given generating function is indeed the correct one
may be found in Viallet (2015).
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(iv) When a generating function is available, the algebraic entropy is then given
by the logarithm of the smallest pole of the generating function, see Gubbiotti
(2016), Grammaticos et al. (2009).

Remark 3 The condition of Liouville integrability (Maeda 1987; Veselov 1991;
Bruschi et al. 1991) is stronger than the existence of invariants. Indeed, for a map,
being measure preserving and preserving a Poisson/symplectic structure are very
strong conditions. However, they lead to a great drop in the number of invariants
needed for integrability. The same can be said for the existence of a Lax pair, since it
is well known that a well-posed Lax pair gives all the invariants of the system through
the spectral relations. Finally, the low growth condition means that the complexity of
the map is very low, and it is known that invariants help in reducing the complexity
of a map. Indeed the growth of a map possessing invariants cannot be generic since
the motion is constrained to take place on the intersection of hypersurfaces defined
by the invariants. For maps in CP

2, it was proved in Diller and Favre (2001) that
the growth can be only bounded, linear, quadratic or exponential. Linear cases are
trivially integrable in the sense of invariants.We note that for polynomialmaps, it was
already known fromVeselov (1992) that the growth can be only linear or exponential.
It is known that QRT mappings and other maps with invariants in CP

2 possess
quadratic growth (Duistermaat 2011), so the two notions are actually equivalent for
a large class of integrable systems.

Now we discuss briefly the concept of duality for rational maps, which was intro-
duced in Quispel et al. (2005). Let us assume that our map ϕ possesses L independent
invariants, i.e. I j for j ∈ {1, . . . , L}. Then we can form the linear combination:

H = α1 I1 + · · · + αL IL . (15)

For an unspecified autonomous recurrence relation

[
x1 : x2 : · · · : xn+1

] �→ [
x ′
1 : x1 : · · · : xn

]
, (16)

we can write down the invariant condition for H (15):

Ĥ(x ′
1, [x]) = H

([x′]) − H ([x]) = 0. (17)

Since we know that [x′] = ϕ ([x]) is a solution of (17) we have the following factor-
ization:

Ĥ(x ′
1, [x]) = A

(
x ′
1, [x]

)
B

(
x ′
1, [x]

)
. (18)

We can assume without loss of generality that the map ϕ corresponds to the annihi-
lation of A in (18). Now since degx ′

1
Ĥ = degx1 H and degxn Ĥ = degxn H we have

that if degx1 H, degxn H > 1 the factor B in (18) is non constant.2 In general, since

2We remark that this assertion is possible because we are assuming that all the invariants are non-
degenerate. It is easy to see that degenerate invariants can violate this property.
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the map ϕ is bi-rational, we have the following equalities:

deg Bx ′
1
= degx ′

1
Ĥ − degx ′

1
A = degx1 H − 1, (19a)

deg Bxn = degxn Ĥ − degxn A = degxn H − 1. (19b)

Therefore we have that if degx1 H, degxn H > 2, the annihilation of B does not
define a bi-rational map in general, but may define an algebraic one. However when
degx1 H, degxn H = 2 the annihilation of B defines a bi-rational projective map. We
call this map the dual map and we denote it by ϕ∨.

Remark 4 We note that in principle for degx1 H = degxn H = d > 2, more general
factorizations can be considered:

Ĥ
(
x ′
1, [x]

) =
d∏

i=1

Ai
(
x ′
1, [x]

)
, (20)

but we will not consider this case here.

Now assume that the invariants (and hence the map ϕ) depend on some arbitrary
constants Ii = Ii ([x]; ai ), for i = 1, . . . , M . Choosing some of the ai in such a way
that there remains M arbitrary constants and such that for a subset aik we can write
Eq. (15) in the following way:

H = ai1 J1 + ai2 J2 + · · · + aiK JaiK , (21)

where Ji = Ji ([x]), i = 1, 2, . . . , K are new functions. The parameters aik do not
appear in the dual maps in the same way as the parameters αi do not appear in the
main maps. Therefore, using the factorization (18) the Ji functions are invariants for
the dual maps.

Remark 5 In fact, one can consider more general combinations than linear combi-
nations given in (15) and (21). However, we only consider those linear combinations
given (15) and (21) in this paper.

It is clear from Eq. (21) that even though the dual map is naturally equipped with
some invariants, it is not necessarily equipped with a sufficient number of invariants
to claim integrability. In fact there exist examples of dual maps with any possible
behaviour, integrable, superintegrable and non-integrable (Joshi and Viallet 2018;
Gubbiotti et al. 2020).

In a recent paper (Joshi and Viallet 2018), the authors considered the autonomous
limit of the second member of the dPI and dPII hierarchies (Cresswell and Joshi
1999). We will denote these equations as dP (2)

I and dP (2)
II equations. These dP (2)

I

and dP (2)
II equations are given by autonomous recurrence relations of order four,

and showed to be integrable according to the algebraic entropy approach. They
showed that both maps possess two invariants, one of degree pattern (1, 3, 3, 1) and
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one of degree pattern (2, 4, 4, 2). Using these invariants, they showed that the dual
maps of the dP (2)

I and dP (2)
II equations are integrable according to the algebraic

entropy test and moreover, produced some invariants, showing that these dual maps
were actually superintegrable. Finally they gave a scheme to construct autonomous
recurrence relations with the assigned degree pattern (1, 3, 3, 1) associated with Ilow
and (2, 4, 4, 2) associated with Ihigh and they provided some new examples out of
this construction.

In (Gubbiotti et al. 2020) we consider the problem of finding all fourth order bi-
rational maps ϕ : [x : y : z : u : t] �→ [x ′ : y′ : z′ : u′ : t ′] possessing a polynomial
symmetric invariant Ilow such that dp Ilow = (1, 3, 3, 1) where the only non-zero
coefficients are those appearing in the (1, 3, 3, 1) invariant of both the dP (2)

I and
dP (2)

II equation, and such that ϕ possesses a polynomial symmetric invariant Ihigh
such that dp Ihigh = (2, 4, 4, 2). The two invariants Ilow and Ihigh are assumed to
be functionally independent and non-degenerate. Within this class we have found
the known dP (2)

I and dP (2)
II equations as well as new examples of maps with these

properties.
In this letter we will present in detail four particular examples of this class. In

Sect. 2, wewill discuss two pairs of main-dual maps.Wewill discuss the integrability
property of these maps in light of their invariants and of their growth.Wewill present
maps possessing two invariants and integrable according to the algebraic entropy test
with cubic growth. This implies that another rational invariant cannot exist. Indeed,
the orbits of superintegrable maps with rational invariant are confined to elliptic
curves and the growth is at most quadratic (Bellon 1999; Gizatullin 1980). From
this general statement follows that a four-dimensional map with cubic growth can
possess at most two rational invariants. We note that some examples of cubic growth
were already presented in Joshi and Viallet (2018). However, it was pointed out that
these examples can be deflated to lower dimensional maps with quadratic growth.
This also holds for our maps, i.e. we can deflate them to integrable maps in lower
dimension. Furthermore, we will present a map with two invariants and exponential
growth, that is non-integrable according to the algebraic entropy test. We discuss
some possible reasons why this map is non-integrable even though it possesses two
invariants. In the final Section, we will give some conclusions and an outlook on the
future perspectives of this approach.

2 Notable Examples

In this section we discuss two pairs of maps, which arise as part of a systematic
classification to be presented inGubbiotti et al. (2020). The interest in these particular
maps arises since the relation between their invariants and growth properties is non
trivial. In both cases the main maps possess two functionally independent invariants,
but they behave differently. One map has cubic degree growth, while the other one
has exponential degree growth. Therefore, even though these twomaps have the same
number of invariants with the same degree patterns, one map is integrable and the
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other one is non-integrable. In addition, in both cases the degree growth property of
the dual maps reflect the growth of the main map. However, we note that the degree
growth of the dual map does not always reflect that of the main map (Gubbiotti et
al. 2020).

2.1 (P.i) and Its Dual Map (Q.i)

Consider the map [x] �→ ϕi ([x]) = [x′] given as follows:

x ′ = {[νt2(x + z) + uz2]y + t2μuz + (x + z)2y2}d − at4,

y′ = x2d(t2μ + xy), z′ = yxd(t2μ + xy),

u′ = zxd(t2μ + xy), t ′ = t xd(t2μ + xy).

(P.i)

This map depends on four parameters a, d and μ, ν.
From the construction in Gubbiotti et al. (2020) we know that the map (P.i) pos-

sesses the following invariants:

t6 I P.ilow = at4yz + d
[
νy2z2 − yz(ux − uz − xy)μ

]
t2

− y2z2d(ux − xy − yz − uz),
(22a)

t8 I P.ihigh = [(uz + xy − yz)μ − νyz] at6

+ [
yz(xy + yz + uz)a + dμ2(uz + xy − yz)2

+ 2dμνyz(ux − yz) − dν2y2z2
]
t4

+ [
2dzy(uz + xy − yz)(xy + yz + uz)μ + 2dy2z2νux

]
t2

+ dy2z2(xy + yz + uz)2.

(22b)

Moreover, the map (P.i) has the following degrees of iterates:

{dn}P.i = 1, 4, 12, 28, 52, 86, 130, 188, 260, 348, 452,

576, 720, 886, 1074, 1288, 1528, 1796, 2092 . . .
(23)

The sequence (23) is fitted by:

gP.i(s) = s7 − 3s6 + s5 − s4 + 3s3 + 3s2 + s + 1

(s + 1)(s2 + 1)(s − 1)4
. (24)

This generating function can be found by using the first 15 iterates, and its validity
can be confirmed by using further iterates. See Remark 2 for the justification.

Due to the presence of (s − 1)4 in the denominator we have that the growth of the
map (P.i) is fitted by a cubic polynomial. As discussed in the Introduction this means



26 G. Gubbiotti et al.

Fig. 1 Affine orbit of
equation (P.i) with
parameters a = 6, μ = 3,
ν = 4 and d = 6 and initial
conditions (x, y, z, u) =
(0.02, 0.05, 0.06, 0.07)

at once that the map is integrable according to the algebraic entropy test and that
another rational invariant cannot exist. This suggests that the geometry of the orbits
of the map (P.i) is nontrivial, and goes beyond the existence of elliptic fibrations.

Explicit numerical calculations and drawings suggest that in the case of map (P.i),
no additional invariant exists. Indeed, if an additional third invariant, even algebraic,
existed then all the orbits of equation (P.i) would lie on a curve. On the other hand
referring to Fig. 1 we see that a generic orbit of equation (P.i) does not lie on a curve.
This implies that no such invariant exists.

The dual map [x] �→ ϕ∨
i ([x]) = [x′] of (P.i) is given by:

x ′ = [β(2xy − 2yz + uz)μ + (βν − α)y(x − z)] t2

+ βy(z2y − x2y + uz2),

y′ = x2β(t2μ + xy), z′ = yxβ(t2μ + xy),

u′ = zxβ(t2μ + xy), t ′ = t xβ(t2μ + xy).

(Q.i)

This map depends on four parameters α, β, and μ, ν. The parameters μ and ν are
shared with the main map (P.i).

The main map (P.i) possesses two invariants and depends on a and d whereas the
dual map (Q.i) does not depend on them. Then according to (21) we can write down
the invariants for the dual map (Q.i) as:

α I P.ilow + β I P.ihigh = aIQ.ilow + d IQ.ihigh. (25)

Therefore, we obtain the following expressions:



Complexity and Integrability in 4D Bi-rational Maps with Two Invariants 27

t4 IQ.ilow = [yzα + (μxy − yzμ − yνz + μuz)β]t2
+ βyz(xy + yz + uz),

(26a)

t8 IQ.ihigh = {[
y2z2ν − yz(ux − uz − xy)μ

]
α

+ [
(uz + xy − yz)2μ2 + 2yz(ux − yz)νμ − ν2y2z2

]
β
}
t4

+ {
z2y2(xy + yz − ux + uz)α

+ [
2yz(uz + xy − yz)(xy + yz + uz)μ + 2y2z2νux

]
β
}
t2

+ z2y2(xy + yz + uz)2β.

(26b)

We remark that the invariant (26a) has degree pattern (1, 2, 2, 1) which differs from
dp I P.i

low.
The map (Q.i) has the following degrees of iterates:

{dn}Q.i = 1, 4, 12, 26, 48, 78, 118, 170, 234, 312, 406, 516, 644, 792 . . . (27)

fitted by the generating function:

gQ.i(s) = (s3 − 2s2 − 1)(s3 − s2 − s − 1)

(s2 + s + 1)(s − 1)4
. (28)

This means that the dual map is integrable according to the algebraic entropy test
with cubic growth, just like the main map. See Remark 2 for the justification.

Explicit numerical calculations and drawings suggest that also in the case of map
(Q.i), no additional invariant exists. Indeed, if an additional third invariant, even
algebraic, existed then all the orbits of equation (Q.i) would lie on a curve. In this
case we are actually able to find some orbits lying on a curve, see Fig. 2b. However,

α = 3 μ = 3 ν = 7
β = 3

α = 3 μ = 6 ν = 8
β = 9

Fig. 2 Affine orbit of equation (Q.i) with different parameters but the same initial conditions
(x, y, z, u) = (3, 4, 1, 3)
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it is possible to find orbits of equation (Q.i) that do not lie on a curve. An example
of such orbit is shown in Fig. 2a. Therefore, we can conclude that a globally defined
third invariant does not exist. The existence of some closed orbits like in Fig. 2b
suggests the existence of a non-analytic invariant existing only in some regions of
the space.

Therefore, the pair of main-dual maps (P.i) and (Q.i) consists of two integrable
equations with non-standard degree of growth. However, as remarked above the
degree pattern of the invariants of the maps (P.i) and (Q.i) differ slightly.

We now consider the maps (P.i) and (Q.i) in affine coordinates, which are given
by

ϕ : (w3, w2, w1, w0) �→ (w4, w3, w2, w1), (29)

where

w4 = N1

dw3 (w2w3 + μ)
, (AP.i)

w4 = N2

β w3 (w2w3 + μ)
, (AQ.i)

with

N1 = −d
(
w0w

2
1w2 + w2

1w
2
2 + 2w1w

2
2w3 + w2

2w
2
3 + μw0w1

+ νw1w2 + νw2w3
) − a,

(30)

N2 = βw0w
2
1w2 + βμw0w1 + βw2

1w
2
2 + (α − 2βμ − βν) w1w2

− βw2
3w

2
2 + (2βμ + βν − α) w2w3.

(31)

Invariants for these maps are obtained from Ilow and Ihigh respectively by taking
t = 1, u = w0, z = w1, y = w2, and x = w3.

We note that when a Poisson structure has the full rank, using Eq. (11), one gets

[
det(d ϕ)

]2 = det
(
J (w

′
)
)

det
(
J (w)

) . (32)

This implies that the map ϕ is either volume or anti-volume preserving.
We recall that a map ϕ is called (anti) volume preserving if there is a function

Ω(w) such that the following volume form is preserved

Ω(w) dw0 ∧ dw1 ∧ · · · ∧ dwn−1 = ±Ω(w′) dw′
0 ∧ dw′

1 ∧ · · · ∧ dw′
n−1. (33)

Thus, we can write
∂
(
w′

0, w
′
1, . . . , w

′
n−1

)

∂
(
w0, w1, . . . , wn−1

) = ± Ω(w)

Ω(w′)
, (34)
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where the left hand side is the determinant of the Jacobian matrix of the map ϕ.
In Byrnes et al. (1999) it was proved that if a map in n dimension is (anti) volume
preserving and possesses n − 2 invariant, then we can construct an (anti) Poisson
structure of rank 2 from these invariants. However, these invariants turn out to be
Casimirs (functions that Poisson commute with all other functions) of this Poisson
bracket. Therefore, in order to have Liouville integrability, we need an extra invari-
ant in addition to the known n − 2 invariants if we want to use Poisson structures
constructed this way. In other words, the map is super integrable. Thus, to discuss
Liouville integrability of the maps (AP.i) and (AQ.i), we need to find a Poisson
bracket of rank 4 as we already predicted that the third invariant does not exist.
We do not have that information for these maps but we can show they reduce to
three dimensional Liouville integrable maps via a process called deflation (Joshi
and Viallet 2018). Mutatis mutandis, this process will preserve the invariants, and
in dimension three two invariants are sufficient to claim integrability in the general
sense as discussed in the Introduction.

It is easy to check that the maps (AP.i) and (AQ.i) are volume and anti-volume
preserving, respectively, with respect to the same volume form:

Ω = w1w2(w1w2 + μ). (35)

We now construct the (anti) Poisson structures for these two maps following (Byrnes
et al. 1999). We consider the dual multi-vector of the volume form

τ = m
∂

w0
∧ ∂

w1
∧ ∂

w2
∧ ∂

w3
, (36)

wherem = 1/Ω . A degenerate Poisson structure for the map (AP.i) and a degenerate
anti-Poisson structure for the map (AQ.i) are given by the following contraction

J = τ� d Ilow� d Ihigh, (37)

where Ilow and Ihigh are invariants for these maps in affine coordinates. Since these
(anti) Poisson structures are quite big, we do not present them here.

Remark 6 The Poisson structures which can be constructed using the method of
Byrnes et al. (1999) are degenerate and cannot be used to explain the integrability of
the two maps (AP.i) and (AQ.i).

We also note that the maps (AP.i) and (AQ.i) can be reduced to three dimensional
maps using a deflation vi = wiwi+1. The recurrences for these maps are denoted by
(DP.i) and (DQ.i) and are given as follows

dμ (v0 + v3) + dν (v1 + v2) + d
(
v0v1 + v2

1 + 2v1v2 + v2
2 + v2v3

) + a = 0,
(DP.i)
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βμ (−v0 + 2 βv1 − 2 βv2 + v3) + (βν − α) (v1 − v2) (DQ.i)

+β
(−v0v1 − v2

1 + v2
2 + v2v3

) = 0.

Each of the maps (DP.i) and (DQ.i) has two functionally independent invariants
which can be obtained directly from Ilow and Ihigh even though they live in a different
space. One can check that the map (DP.i) and (DQ.i) are anti-volume preserving
and volume preserving with Ω = v1 + μ. Therefore, we can construct their (anti)
Poisson structure using the three dimensional version of (37). Using the following
invariant from Ilow for (DP.i)

I P.i
1 = dμv0v1 − dμv0v2 + dμv1v2 + dνv1

2 + dv0v1
2 − dv0v1v2

+ dv1
3 + dv1

2v2 + av1, (38)

we have found that the map (dP.i) has an anti-Poisson structure given by

J P.i
12 = d(v1 − v0), J P.i

2,3 = d(v1 − v2),

J P.i
13 = −dμv0 − dμv2 − 2dνv1 − 2dv0v1 + dv0v2 − 3dv1

2 − 2dv1v2 − a

μ + v1
.

Similarly, for the map (DQ.i) we obtain the invariant

IDQ.i1 = βμv0 − βμv1 + βμv2 − νβv1 + βv0v1 + βv1
2 + βv1v2 + αv1, (39)

and the corresponding Poisson structure

JQ.i =

⎡

⎢
⎢
⎢
⎣

0 β
β (μ + ν − v0 − 2v1 − v2) − α

μ + v1−β 0 β

−β (μ + ν − v0 − 2v1 − v2) − α

μ + v1
−β 0

⎤

⎥
⎥
⎥
⎦

.

(40)

For these constructions, I P.i
1 and IQ.i

1 are Casimirs for their associated (anti) Poisson
structures. Their second (anti) Poisson structures can be obtained from the invariant
Ihigh but we do not present here as they are quite big.

It is important to note that the (anti) Poisson structures of (AP.i) and (AQ.i) under
inflation give us the trivial Poisson structures for (DP.i) and (DQ.i), i.e. J = 0, where
0 is the zero matrix. On the other hand, from the common factor that appears in the
Poisson structure of (AP.i), we have found that there exists an anti-invariant K P.i for
this map, i.e. K P.i(w) = −K P.i(w′)where

K P.i = 2d
(
w2w

2
1w0 + w2

2w
2
1 + w1w

2
2w3 + μw0w1 − μw1w2

+ μw2w3 + νw1w2
) + a.

(41)
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However, K P.i is not independent of I P.i
low and I P.i

high since we have

(
K P.i

)2 − 4d I P.i
high − 8d ν I P.i

low = a2. (42)

Using this anti-invariant, we obtain the following anti-invariant for the map (DP.i)

KDP.i = 2dμv0 − 2dμv1 + 2dμv2 + 2dνv1 + 2dv0v1 + 2dv1
2 + 2dv1v2 + a.

(43)
Therefore, using this anti-invariant, we get a Poisson structure for (DP.i) as follows
(after factoring out a constant term)

J P.i
2 =

⎡

⎢⎢⎢
⎣

0 1
μ − ν − v0 − 2v1 − v2

μ + v1−1 0 1

−μ − ν − v0 − 2v1 − v2

μ + v1
−1 0

⎤

⎥⎥⎥
⎦

. (44)

We can check directly that the invariants inherited from the affine map (AP.i) are in
involution with respect to the Poisson structure (44). In the sense of the definition
given in the Introduction, this means that the reduced maps (DP.i) and (DQ.i) are
Liouville integrable.

Remark 7 We notice that we can always use the invariants (38) and (39) to reduce
the three dimensional maps (DP.i) and (DQ.i) to two dimensional maps and relate
them to QRT maps. To be more specific we have that the reduced map of (DQ.i)
preserves a bi-quadratic curve so that it is of the QRT type. On the other hand,
using the anti-invariant, the reduced map of (DP.i) sends a bi-quadratic to another
bi-quadratic and fits in the framework of Roberts and Jogia (2015).

2.2 (P.ii) and Its Dual Map (Q.ii)

Consider the map [x] �→ ϕii ([x]) = [x′] given as follows:

x ′ = [
(x2 + z2)y − uz2

]
μ − t2(u − 2y),

y′ = x(t2 + μx2), z′ = y(t2 + μx2),

u′ = z(t2 + μx2), t ′ = t (t2 + μx2).

(P.ii)

This map only depends on the parameter μ.
From the construction in Gubbiotti et al. (2020) we know that the map (P.ii) has

the following invariants:
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t5 I P.iilow = (x − z) (u − y)
(
t2 + z2μ

) (
μy2 + t2

)
, (45a)

t6 I P.iihigh = [
(x − z)2 y4 + y2z4 − 2yz4u + u2z4

]
μ2

+ 2t2
[(
x2 − 2xz + 2z2

)
y2 − 2yz2u + u2z2

]
μ

+ t4
(
z2 + u2 + x2 + y2 − 2uy − 2xz

)
.

(45b)

Moreover, the map (P.ii) has the following degrees of iterates:

{dn}P.ii = 1, 3, 9, 21, 45, 93, 189, 381, 765, 1533 . . . (46)

fitted by the generating function:

gP.ii(s) = 1 + 2s2

(2s − 1)(s − 1)
. (47)

This means that despite the existence of the two invariants (45) the map (P.ii) is non-
integrable according to the algebraic entropy test: its entropy is positive and given
by ε = log 2. See Remark 2 for the justification.

Therefore we have that the map (P.ii) is an example of non-integrable admitting
two invariants.

Again following (Byrnes et al. 1999) we can produce a Poisson structure of rank 2
for (P.ii) as the affine version of (P.ii) is volume preserving withΩ = (1 + μw2

1)(1 +
μw2

2), where we have taken t = 1, u = w0, z = w1, y = w2, and x = w3. By the
construction, the two invariants (45) become Casimir functions for it, so again the
existence of such Poisson structure does not imply any formof Liouville integrability.
However, we notice that there are common factors appear at every non-zero entry
of this structure. Thus, we have found the following anti-invariant for the map (P.ii)
using these common factors

K P.ii = [
μ

(
w0w

2
1 − w1

2w2 − w1w
2
2 + w2

2w3
) + w0 − w1 − w2 + w3

]×
[
μ

(
w0w

2
1 − w2

1w2 + w1w
2
2 − w2

2w3
) + w0 + w1 − w2 − w3

]

= F1F2.

(48)

This suggests that we should check each factor of K P.i i to see whether they are (anti)
invariants of (P.ii). By direct calculation we can see that the first factor F1 is an anti-
invariant and F2 is an invariant for (P.ii), but they are not functionally independent
of Ilow and Ihigh. In fact, their relations are

I P.ii
high − F2

1 + 2I P.ii
low = 0, and I P.ii

high − F2
2 − 2I P.ii

low = 0. (49)

Therefore, the map (P.ii) actually has two invariants of degrees (1, 2, 2, 1) and
(1, 3, 3, 1). Nevertheless, despite the existence of such invariants the map (P.ii) is
non-integrable in the sense of the algebraic entropy.
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Remark 8 We can use F1 and F2 to construct an anti-Poisson structure for (P.ii)
using the formula (37):

J1,2 = −1, J2,3 = 1, J3,4 = −1,

J1,3 = 2μw1 (w2 − w0)

μw2
1 + 1

, J2,4 = −2μw2 (w3 − w1)

μw2
2 + 1

,

J1,4 = −μ2w1w2 [4 (w0w1 − w0w3 + w2w3) − 3w1w2] + μ
(
w2

1 + w2
2

) + 1
(
μw2

1 + 1
) (

μw2
2 + 1

) .

(50)
We have checked that F2 and I P.i i

low are in involution with respect to this anti-Poisson
structure. A Poisson structure can be obtained by multiplying this anti-Poisson struc-
ture with the anti-invariant F1.

The dual map [x] �→ ϕ∨
i i ([x]) = [x′] of (P.ii) is given as follows:

x ′ = α
[(
x2 − z2

)
y + uz2

]
μ + t2αu + βy2 (x − z) μ

+ t2β (x − z) ,

y′ = αx
(
t2 + μx2

)
, z′ = αy

(
t2 + μx2

)
,

u′ = αz
(
t2 + μx2

)
, t ′ = αt

(
t2 + μx2

)
.

(Q.ii)

This map depends on three parameters α, β and μ. The parameter μ is shared with
the main map (P.ii).

Since the main map (P.ii) possesses two invariants depending only on one param-
eter μ then according to (21) we can write down only a single invariant for the dual
map (Q.ii):

IQ.ii = α I P.iihigh + β I P.iilow. (51)

The invariant (51) has degree pattern (2, 4, 4, 2).
We have then that the dual map (Q.ii) has the following fast-growing degrees of

iterates:

{dn}Q.ii = 1, 3, 9, 21, 45, 93, 189, 381, 765, 1533, 3069 . . . . (52)

The growth of degrees evident in (52) is clearly exponential and is fitted by the
generating function

gQ.ii(s) = 1 + 2s2

(2s − 1)(s − 1)
. (53)

This confirms that the algebraic entropy is positive and equal to ε = log 2. See
Remark 2 for the justification.
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This means that the dual map is non-integrable with same rate of growth as the
main map. In this case we can show that the map is anti-volume preserving with the
same measure as the main map (P.ii). Moreover, we proved that the map (Q.ii) do
not posses any addition invariant up to order 14. Therefore at the present stage we
cannot construct a Poisson structure using the method of Byrnes et al. (1999).

3 Conclusions and Outlook

In this letter, we gave some examples of fourth order bi-rationalmapswith two invari-
ants possessing interesting degree growth properties. These examples come from our
classification of all the fourth-order autonomous recurrence relations possessing two
invariants in a given class of degree patterns (Gubbiotti et al. 2020).

The first pair of bi-rational maps is given by the map (P.i) and its dual (Q.i)
and consists of integrable maps with cubic growth. The interest in maps with cubic
growth arises from geometrical considerations: maps with polynomial but higher
than quadratic growth, can arise only in dimension greater than two (Diller and Favre
2001) and prove, in the case of superintegrable maps, the existence of non-elliptic
fibrations of invariant varieties (Bellon and Viallet 1999). The interest in maps with
this type of growth arose recently following the examples given in Joshi and Viallet
(2018) and we expect them to lead to many new and interesting geometric structures.

The second pair of fourth order bi-rational maps, given by the map (P.ii) and
its dual (Q.ii), consists of non-integrable maps with exponential growth. There are
various possible reasons why the map (P.ii) is non-integrable despite possessing
two invariants. To claim integrability with two invariants according to the discrete
Liouville theorem (Maeda 1987; Bruschi et al. 1991; Veselov 1991) we need to prove
that the map has a symplectic structure and that the two invariants commute with
respect to this symplectic structure. Hence, either the map (P.ii) does not admit any
symplectic structure, or the map (P.ii) admits only symplectic structures such that
the two invariants (45) do not commute. Since, usually, from a set of non-commuting
invariants it is possible to find a set of functionally independent commuting invariants
we conjecture that Eq. (P.ii) is devoid of a non-degenerate Poisson structure.

Work is in progress to characterize the surfaces generated by the invariants in
both integrable and non-integrable cases. We expect this to give new results in the
geometric theory of integrable systems.
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A Non-linear Relation for Certain
Hypergeometric Functions

Gerd Schmalz and Vladimir Ezhov

Abstract We describe a family of Gaussian hypergeometric functions that satisfy a
nonlinear differential identity.

Keywords Heisenberg sphere · Essential symmetry · Gaussian hypergeometric
function · Shear symmetry

The family of hypergeometric functions we are presenting in this article has its
origin in the phenomenon of non-linearisable symmetries of CR manifolds, which is
a special instance of essential symmetries in parabolic geometry (see e.g. Casey et al.
2013, Kruglikov and The 2017, 2018). Roughly speaking, an essential symmetry is
a local diffeomorphism (or infinitesimal automorphism) that preserves the relevant
geometric data and that is not determined by (a certain part of) its 1-jet. The absence
of essential symmetries for non-spherical hypersurface type CR manifolds has been
established by Kruzhilin and Loboda (1983) and Ezhov (1985):

Theorem 1 Let M be a Levi non-degenerate real-analytic hypersurface in C
n

(n ≥ 2) and let p ∈ M. Then either there is a biholomorphic mapping in some neigh-
bourhood U of p that maps M ∩ U onto a piece of the Heisenberg sphere Imw = |z|2
or any biholomorphic mapping that locally maps M to M and preserves p can be
linearised in suitable coordinates.

Notice that the Heisenberg sphere has the automorphisms
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z′ = z + aw

1 − 2iāz − (r + i|a|2)w ,

w′ = w

1 − 2iāz − (r + i|a|2)w ,

which are non-linearisable when the parameters a ∈ C and r ∈ R do not both vanish.
In other words, essential symmetries are usually a privilege of the one most sym-

metric manifold within the particular geometry. In (Ezhov and Schmalz, 2005, 2007)
the authors describe a counterexample to this principle in the class of so-called
torsion-free elliptic CR manifolds of codimension 2 in C

4. Such manifolds can be
given by a complex equation

w1 − w̄2

2i
= f (z1, z̄2, w1 + w̄2). (1)

The most symmetric object in this class is the CR manifold given by

w1 − w̄2

2i
= z1 z̄2, (2)

with symmetry group SL(3,C). The geometry of torsion-free elliptic CR manifolds
turns out to be equivalent to the geometry of complex second order ODE’s with
respect to holomorphic point transformations. Indeed, Eq. (1) can be interpreted as
the family of solutions

y = a + 2i f (x, b)

of an ODE y′′ = B(y′, y, x) with parameters a, b, where y = w1, x = z1, a = w̄2,
b = z̄2. The model CR manifold (2) corresponds to the ODE y′′ = 0 with solutions
y = a + bx .

The (linear) point symmetry

X = y
∂

∂x
(3)

extends to the contact 1-jet-bundle with vertical coordinate p = dy
dx as

X̃ = y
∂

∂x
− p2 ∂

∂p
.

The symmetry X̃ is not linearisable by point transformations. The authors have
proved the following theorem in Ezhov and Schmalz (2005).

Theorem 2 A second order ODE admits the shear symmetry (3) if and only if it has
the form

y′′ = f0(y)(y − xy′)3 + f1(y)(y − xy′)2y′ + f2(y)(y − xy′)(y′)2 + f3(y)(y′)3,
(4)
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where f0, f1, f2, f3 are arbitrary functions. By suitable point transformations these
ODE’s can be reduced to

y′′ = f̃0(y)(y − xy′)3 + f̃1(y)(y − xy′)2y′. (5)

The solution manifolds of the ODE’s in the theorem above give rise to torsion-free
elliptic CR manifolds that have an essential symmetry, without being equivalent to
the model (2).

In this article we consider the more special family

y′′ = yk(y − xy′)3, (6)

where k ∈ C. They feature the additional symmetry

Y = x
∂

∂x
− 2y

k + 2

∂

∂y
.

Therefore the ODE’s (6) are completely integrable. We will show that the solutions
of these ODE’s (after some point transformation) yield a class of hypergeometric
functions with a remarkable non-linear symmetry.

The involutive point transformation

x = y∗, y = x∗, p = 1

p∗

takes the ODE’s (6) to
y′′ = xk(y − xy′)3 (7)

with symmetries

X∗ = x
∂

∂y
, Y ∗ = x

∂

∂x
− k + 2

2
y

∂

∂y
. (8)

The solutions have the form

y(x) = −x
∫ √

k + 2 dx

x2
√
2xk+2 + K

=
√

k + 2√
K

Fk

(
−2xk+2

K

)
+ Cx .

With s = 1
k+2 the functions

Fk(u) = us
∫

du

u1+s
√
1 − u

= hypergeom

(
1

2
,−s; 1 − s, u

)

are theGaussian hypergeometric functionswith the indicated parameters. Let K = 2,
C = 0 and −xk+2 = u. Then
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w(u) = y(x)|xk+2=u =
√

− 1

2s
us

∫
du

u1+s
√
1 − u

.

Theorem 3 The function

w(u) =
√

− 1

2s
us

∫
du

u1+s
√
1 − u

(9)

satisfies the hypergeometric differential equation

u(1 − u)
d2w

du2
+

(
1 − s +

(
s − 3

2

)
u

)
dw

du
+ s

2
w = 0 (10)

and the non-linear identity

u
d2w

du2
= s2

(
w − u

s

dw

du

)3

+ (s − 1)
dw

du
, (11)

which is equivalent to

(
w − u

s

dw

du

)′
= −s

(
w − u

s

dw

du

)3

. (12)

Proof Since the hypergeometric differential equation is linearwemay drop the factor√− s
2 for the verification of the first claim, which readily follows by plugging

w(u) = us
∫

du

u1+s
√
1 − u

,

w′(u) = sus−1
∫

du

u1+s
√
1 − u

+ 1

u
√
1 − u

,

w′′(u) = s(s − 1)us−2
∫

du

u1+s
√
1 − u

− 1 − s + (s − 3
2 )u

u2
√

(1 − u)3

into (10).
We show that the differential equation (11) is equivalent to (7) by substituting

x = us . Then w(u) = y(x)|x=us satisfies (11) because y(x) satisfies (7). Indeed,

y′′ = u2−2s

s2
w′′ + 1

s

(
1

s
− 1

)
u1−2sw′,

xk(y − xy′)3 = u1−2s
(
w − u

s
w′

)3
,
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which yields (11) from (7). �
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An Algebraically Stable Variety for a
Four-Dimensional Dynamical System
Reduced from the Lattice Super-KdV
Equation

Adrian Stefan Carstea and Tomoyuki Takenawa

Abstract In a prior paper the authors obtained a four-dimensional discrete inte-
grable dynamical system by the traveling wave reduction from the lattice super-KdV
equation in a case of finitely generated Grassmann algebra. The system is a coupling
of a Quispel-Roberts-Thompson map and a linear map but does not satisfy the sin-
gularity confinement criterion. It was conjectured that the dynamical degree of this
system grows quadratically. In this paper, constructing a rational variety where the
system is lifted to an algebraically stable map and using the action of the map on the
Picard lattice, we prove this conjecture. We also show that invariants can be found
through the same technique.

Keywords Dynamical systems · Algebraic geometry · Integrable systems

1 Introduction

In a prior paper (Carstea and Takenawa 2019b), applying the traveling wave reduc-
tion to the lattice super-KdV equation (Carstea 2015; Xue et al. 2013) in a case
of finitely generated Grassmann algebra, the authors obtained a four-dimensional
discrete integrable dynamical system
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ϕ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̄0 = x2
x̄1 = x3

x̄2 = −x2 − x0 + hx2
1 − x2

x̄3 = −x1 − x3 + 2 − x2 + hx3
(1 − x2)2

. (1)

This system is a Quispel-Roberts-Thompson (QRT) map, a two dimensional map
generating an automorphism of a rational elliptic surface (Quispel et al. 1989), for
variables x0, x2 coupled with linear equations for variables x1, x3 with coefficients
depending on x2. This system has two invariants

I1 = − hx20 − hx0x2 + h2x0x2 + hx20 x2 − hx22 + hx0x
2
2 , (2)

I2 =2hx0 + x20 − 2hx0x1 + 2hx2 + x0x2 − hx1x2 + h2x1x2 + 2hx0x1x2

+ x22 + hx1x
2
2 − hx0x3 + h2x0x3 + hx20 x3 − 2hx2x3 + 2hx0x2x3, (3)

but does not satisfy the singularity confinement criterion proposed by Grammaticos-
Ramani and their collaborators (Grammaticos et al. 1991; Ramani et al. 1991). The
example of this criterion is given in the next section.

In the same paper it is observed that the dynamical degree of (1) grows quadrati-
cally. This phenomena is rather unusual, since as reported in Lafortune et al. (2001),
Gubbiotti (2018), the dynamical degree grows in the fourth order for generic coupled
systems in the form

⎧
⎪⎪⎨

⎪⎪⎩

x̄0 = f0(x0, x1)
x̄1 = f1(x0, x1)
x̄2 = f2(x0, x1, x2)
x̄3 = f3(x0, x1, x2, x3)

,

where the system is a QRT map for variables x0 and x1, and x̄2 (resp. x̄3) depends
on x2 (resp. x3) linearly with coefficients depending on “x0 and x1” (resp. “x0, x1
and x2”). This type of systems is also constructed by generalising the QRTmaps and
referred to as “triangular” in Fordy and Kassotakis (2006).

In this paper, constructing a rational variety where System (1) is lifted to an
algebraically stable map and using the action of the map on the Picard lattice, we
prove the above conjecture. We also show that one can find invariants also using the
action on the Picard group.

In the two-dimensional case, it is known that an autonomous dynamical system
defined by a birational map on a projective rational variety (or more generally Kähler
manifold) can be lifted to either an automorphism or an algebraically stable map on
a rational variety by successive blow-ups (Diller and Fravre 2001). Here, a birational
map ϕ from an N -dimensional rational variety X to itself is said to be algebraically
stable if (ϕ∗)n(D) = (ϕn)∗(D) holds for any divisor class D on X and an arbitrary
positive integer n (Bedford and Kim 2008). These notions are closely related to
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the notion of singularity confinement criterion. While a dynamical system that can
be lifted to automorphisms satisfies singularity confinement criterion (i.e. all the
singularities are confined), a dynamical system that can be lifted only to algebraically
stable map does not satisfy the criterion (i.e. there exists a singularity that is not
confined).

In studies of higher dimensional dynamical systems, the role of automorphisms is
replaced by pseudo-automorphisms, i.e. automorphisms except finite number of sub-
varieties of codimension at least two (Dolgachev andOrtland 1988). In the last decade
a few authors studied how to construct algebraic varieties on the level of pseudo-
automorphisms (Bedford and Kim 2008; Tsuda and Takenawa 2009; Carstea and
Takenawa 2019a). However, since System (1) does not satisfy the singularity con-
finement criterion, it is not expected that it could be lifted to a pseudo-automorphism.
To authors’ knowledge there are no studies (except Sect. 7 of Bedford and Kim
2008, which studies a kind of generalisation of standard Cremona transformation)
on construction of an algebraic variety, in which the original system is lifted not to
a pseudo-automorphism, but rather to an algebraically stable map using blow-ups
along sub-varieties of positive dimensions. Since the varieties obtained by blow-ups
possibly infinitely near depend on the order of blow-ups, this is not a straightforward
but a challenging problem.

Since I2 is degree (1, 1) for x1, x3, we can restrict the phase space into 3-
dimensional one as

ψ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x2
x1 = (

I2 − (x20 + x0x2 + x22 ) − 2h(x0 − x0x1 + x2)
−hx1x2(2x0 + x2 − 1 + h)

)

(
h(−x0 + hx0 + x20 − 2x2 + 2x0x2)

)−1

x2 = −x2 − x0 + hx2
1 − x2

. (4)

We also show that the degree of this 3-dimensional system grows quadratically as
well.

2 Algebraically Stable Space for the 4D System

Let us consider System (1) on the projective space (P1)4. In the following, we aim
to obtain a four-dimensional rational variety by blowing-up procedure such that the
birational map (1) is lifted to an algebraically stable map on the variety.

Let I (ϕ) denote the indeterminacy set of ϕ. It is known that the mapping ϕ is
algebraically stable if and only if there does not exist a positive integer k and a
divisor D on X such that

ϕ(D \ I (ϕ)) ⊂ I (ϕk), (5)



46 A. S. Carstea and T. Takenawa

i.e. the image of the generic part of a divisor by ϕ is included in the indeterminate
set of ϕk (Bedford and Kim 2008; Bayraktar 2013, Proposition 2.3 of Carstea and
Takenawa 2019a). See Sect. 2 of Carstea and Takenawa (2019a) for notations and
related theories used here.

The notion of singularity series of dynamics studied byGrammaticos-Ramani and
their collaborators is closely related to our procedure. Let us start with a hyper-plane
x2 = 1 + ε, where ε is a small parameter for considering Laurent series expression,
and apply ϕ, then we have a “confined” sequence of Laurent series:

· · · →(x (0)
0 , x (0)

1 , 1 + ε, x (0)
3 ) → (1, x (0)

3 ,−hε−1, (1 + hx (0)
3 )ε−2)

→(−hε−1, (1 + hx (0)
3 )ε−2, hε−1,−(1 + hx (0)

3 )ε−2)

→(hε−1,−(1 + hx (0)
3 )ε−2, 1, x (3)

4 ) → (1, x (4)
1 , x (0)

0 , x (4)
3 ) → · · · , (6)

where x (k)
i ’s are complex constants and only the principal term is written for each

entry and a hyper-surface x2 = 0 is contracted to lower-dimensional varieties and
returned to a hyper-surface x0 = 1 after 4 steps. We can also find a cyclic sequence:

(x (0)
0 , x (0)

1 , ε−1, x (0)
3 ) → (ε−1, x (0)

3 ,−ε−1,−x (0)
1 − x (0)

3 )

→(ε−1,−x (0)
1 − x (0)

3 , x (0)
0 , x (0)

1 ) → (x (0)
0 , x (0)

1 , ε−1, x (3)
3 ): returned, (7)

where a hyper-surface x2 = ∞ is contracted to lower-dimensional varieties and
returned to the original hyper-surface after 3 steps, and an “anti-confined” sequence:

· · · →
((

−1 + h

(x (0)
0 − 1)2

)

ε−1, x (−1)
1 , x (−1)

2 , ε−1

)

→(x (0)
0 , ε−1, x (0)

2 , x (0)
3 ) → (x (0)

2 , x (0)
3 , x (1)

2 , ε−1)

→
(

x (1)
2 , ε−1, x (2)

2 ,

(

−1 + h

(x (0)
2 − 1)2

)

ε−1

)

→ · · · , (8)

where a lower dimensional variety is blown-up to a hyper-surface x1 = ∞ and con-
tracted to a lower dimensional variety after 3 steps.

In the following, in order to avoid anti-confined patterns, we consider P2 × P
2

instead of (P1)4. Although there is a possibility that the anti-confined pattern can be
resoluted by some blowing-down procedure, it is not easy to find the actual procedure
on the level of coordinates.

The coordinate system of P2 × P
2 is (x0 : x1 : 1, x2 : x3 : 1), and thus the local

coordinate systems essentially consist of 3 × 3 = 9 charts:

(x0, x1, x2, x3), (y0, y1, x2, x3), (z0, z1, x2, x3),

(x0, x1, y2, y3), (y0, y1, y2, y3), (z0, z1, y2, y3),

(x0, x1, z2, z3), (y0, y1, z2, z3), (z0, z1, z2, z3),
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where yi ’s and zi ’s are

(yi , yi+1) = (x−1
i , x−1

i xi+1) and (zi , zi+1) = (xi x
−1
i+1, x

−1
i+1)

for i = 0, 2. Then, both the cyclic Sequence (7); and the anti-confined Sequence (8)
starting with x (0)

i = ε−1 do not appear, but another cyclic sequence

(x (0)
0 , x (0)

1 , ε−1, c(0)ε−1) → (ε−1, c(0)ε−1,−ε−1,−c(0)ε−1)

→(−ε−1,−c(0)ε−1, x (0)
0 , x (0)

1 ) → (x (0)
0 , x (0)

1 , ε−1, c(0)ε−1): returned (9)

appears, where c(0) is also a complex constant.
In order to resolute the singularity appeared in Sequences (6) and (9), we blow

up the rational variety along the sub-varieties to which some divisor is contracted to.
For Sequence (6), we have three such sub-varieties whose parametric expressions
are

V1 :(x0, x1, z2, z3) = (P, 1, 0, 0),

V2 :(z0, z1, z2, z3) = (0, 0, 0, 0),

V3 :(z0, z1, x2, x3) = (0, 0, P, 1),

where P is a C-valued parameter (independent to another sub-variety), while for
Sequence (9) we have a sub-variety

V4 :(z0, z1, z2, z3) = (P, 0, P, 0).

That is, the subvarietyV1 is theZariski closure of {(x0, x1, x2, x3) = (P, 1, 0, 0) | P ∈
C} and V4 is that of {(x0, x1, x2, x3) = (P, 0, P, 0) | P ∈ C} and so forth.

Since V4 includes V2, we have the option of blowing-up order. In the two dimen-
sional case, resolution is unique and the order is not a matter. But in the higher
dimensional case, it affects sensitively to the resulting varieties. Since we only care
on the level of codimension one, the order of blow-ups does not affect the alge-
braical stability in some cases. However, the following results were obtained not in
a straightforward manner but by trial and error.

We can resolute the singularity around V1 by the following five blowups:

C1 :(x0, x1, z2, z3) = (1, P, 0, 0)

← (s1, t1, u1, v1) := (x0 − 1, x1, z2(x0 − 1)−1, z3(x0 − 1)−1),

C2 :(s1, t1, u1, v1) = (0, P, Q, 0)

← (s2, t2, u2, v2) := (s1, t1, u1, v1s
−1
1 ),

C3 :(s2, t2, u2, v2) = (0, P,−h(1 + hP)−1, Q)

← (s3, t3, u3, v3) := (s2, t2, (u2 + h(1 + ht2)
−1)s−1

2 , v2),
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C4 :(s3, t3, u3, v3) = (0, P, Q, (1 + hP)−1)

← (s4, t4, u4, v4) := (s3, t3, u3, (v3 − (1 + ht3)
−1)s−1

3 ),

C5 :(s4, t4, u4, v4) = (0, P, Q, (1 + hP)−2)

← (s5, t5, u5, v5) := (s4, t4, u4, (v4 − (1 + ht4)
−2)s−1

4 ),

where only one of the coordinate systems is written for each blowup. Similarly, we
can resolute the singularity around V3 by the following five blowups:

C6 :(z0, z1, x2, x3) = (0, 0, 1, P)

← (s6, t6, u6, v6) := (x2 − 1, x3, z0(x2 − 1)−1, z1(x2 − 1)−1),

C7 :(s6, t6, u6, v6) = (0, P, Q, 0)

← (s7, t7, u7, v7) := (s6, t6, u6, v6s
−1
6 ),

C8 :(s7, t7, u7, v7) = (0, P,−h(1 + hP)−1, Q)

← (s8, t8, u8, v8) := (s7, t7, (u7 + h(1 + ht7)
−1)s−1

7 , v7),

C9 :(s8, t8, u8, v8) = (0, P, Q, (1 + hP)−1)

← (s9, t9, u9, v9) := (s8, t8, u8, (v8 − (1 + ht8)
−1)s−1

8 ),

C10 :(s9, t9, u9, v9) = (0, P, Q, (1 + hP)−2)

← (s10, t10, u10, v10) := (s9, t9, u9, (v9 − (1 + ht9)
−2)s−1

9 ).

We need three blowups for V4:

C11 :(z0, z1, z2, z3) = (0, 0, 0, 0)

← (s11, t11, u11, v11) := (z0, z1z
−1
0 , z2z

−1
0 , z3z

−1
0 ),

C12 :(s11, t11, u11, v11) = (P, 0, 1, 0)

← (s12, t12, u12, v12) := (s11, t11, (u11 − 1)t−1
11 , v11t

−1
11 ),

C13 :(s12, t12, u12, v12) = (P, 0, Q,−1)

← (s13, t13, u13, v13) := (s12, t12, u12, (v12 + 1)t−1
12 ),

whereC11 correspond to V2, whileC12 andC13 correspond to V4. We need additional
four blowups for V2:
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C14 :(s13, t13, u13, v13) = (0, 0, 1 + h, 0)

← (s14, t14, u14, v14) := (s13t
−1
13 , t13, (u13 − 1 − h)t−1

13 , v13t
−1
13 ),

C15 :(s14, t14, u14, v14) = (P, 0,−2Q − Ph−1, Q)

← (s15, t15, u15, v15) := (s14, t14, v14, (u14 + 2v14 + s14h
−1)t−1

14 ),

C16 :(s15, t15, u15, v15) = (P, 0,−Ph−1, Q)

← (s16, t16, u16, v16) := (s15, t15, (u15 + s15h
−1)t−1

15 , v15),

C17 :(s16, t16, u16, v16) = (P, 0, Q, 2−1Q + (1 + h)h−1P)

← (s17, t17, u17, v17) := (s16, t16, u16, (v16 − 2−1u16 − (1 + h)h−1s16)t
−1
16 ).

The (total transform of) exceptional divisor Ei of i-th blowup is described in the
local chart as

Ei : si = 0, (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14),

Ei : ti = 0, (i = 12, 13, 15, 16, 17).

Let us denote the total transform (with respect to blowups) of the divisors (hyper-
surfaces) c0x0 + c1x1 + a = 0 and c2x2 + c3x3 + b = 0 by Ha and Hb respectively,
where (c0 : c1 : a) and (c2 : c3 : b) are constant P2 vectors. Let us write the classes
of Ha , Hb and Ei modulo linear equivalence as Ha , Hb and Ei . Then, the Picard
group of this variety X becomes a Z-module:

Pic(X ) =ZHa ⊕ ZHb ⊕
17⊕

i=1

ZEi . (10)

Theorem 1 The map (1) is lifted to an algebraically stable map on the rational
variety obtained by blow-ups along Ci , i = 1, 2, . . . , 17, from P

2 × P
2.

Proof The algebraic stability can be checked as follows. In the present case, the
indeterminate set I (ϕ) is given by

I (ϕ) = ϕ−1(E6 − E7) ⊂ E11,

while the condition that the dimension of ϕ(D \ I (ϕ)) is at most two implies D =
E1 − E2 and ϕ(D \ I (ϕ)) = ϕ(E1 − E2) ⊂ E11. It can be checked that ϕ(E1 − E2)

and I (ϕk), k = 1, 2, 3, . . . , are different two-dimensional subvarieties in E11, and
hence (5) can not occur.

The class of proper transform of Ei is

Ei − Ei+1 (i = 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16),

Ei (i = 5, 10, 17), E11 − E15.
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Since the defining function of the hyper-surface z1 = 0 takes zero with multiplicities
0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2 on Ei (i = 1, . . . , 17), it is decomposed
as

Ha =Proper transform

+ (E6 − E7) + 2(E7 − E8) + 2(E8 − E9) + 2(E9 − E10) + 2E10
+ (E11 − E14) + (E12 − E13) + (E13 − E14) + 2(E14 − E15)
+ 2(E15 − E16) + 2(E16 − E17) + 2E17,

where each class enclosed in parentheses determines a prime divisor uniquely (we
called such a class deterministic Carstea et al. 2017). Hence the class of its proper
transform isHa − E6 − E7 − E11 − E12. Similarly, the defining function of the hyper-
surface x2 − 1 = 0 takes zero with multiplicities 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1 on Ei , and therefore the class of its proper transform isHb − E1 − E6 − E11.
Along the same line, the proper transform of z3 = 0 can be computed asHb − E1 −
E2 − E11 − E12.

Using these data, we can compute the pull-back action of Mapping ϕ (1) on the
Picard group. For example, the pull-back of E1 is (x̄1, z̄2, z̄3) = (0, 0, 0), whose
“common factor” on each local coordinate system is x2 − 1, s6, s7, s8 or s9. Thus,
we have

ϕ(E1) =(H2 − E1 − E6 − E11) +
9∑

i=6

(Ei − Ei+1)

=H2 − E1 − E10 − E11.

Along the same line, we have the following proposition.

Proposition 1 The pull-back ϕ∗ of Mapping (1) is a linear action on the Picard
group given by

Ha → Hb,

Hb → Ha + 3Hb − 2E1 − 3E11 − E6,7,9,10,12,13,14,
E1 → Hb − E1,10,11, E2 → Hb − E1,9,11, E3 → Hb − E1,7,9,11 + E8,
E4 → Hb − E1,7,11, E5 → Hb − E1,6,11,
E6 → E14, E7 → E14, E8 → E15, E9 → E16, E10 → E17,
E11 → E1,11 − E14, E12 → Hb − E1,11,13, E13 → Hb − E1,11,12,
E14 → E2, E15 → E3, E16 → E4, E17 → E5,

where Ei1,...,ik denotes Ei1 + · · · + Eik . The Jordan blocks of the corresponding matrix
are
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1, −1, 1
1
3 (3 × 3 blocks),

⎡

⎣
1 1 0
0 1 1
0 0 1

⎤

⎦ ,

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

In particular, the degree of the mapping ϕn grows quadratically with respect to n.

Corollary 1 The degree ofψn for the 3-dimensional mapψ (4) also grows quadrat-
ically with respect to n.

Proof 1Let us denote the initial values as (x0, x1, x2, x3) = (x (0)
0 , x (0)

1 , x (0)
2 , x (0)

3 ).
Mapψn is obtained by substituting x3 = h(x0, x1, x2) to ϕn : x (n)

i = f (n)
i (x0, x1, x2,

x3), i = 0, 1, 2, where h and fi ’s are some rational functions. Hence the degrees
of x (n)

i ’s with respect to x0, x1, x2 are bounded from the above by (degree of h) ×
(degree of f (n)

i ). Since the degrees of f (n)
i ’s are quadraticwith respect ton, the degrees

of x (n)
i ’s are at most quadratic. On the other hand, sinceψ is a QRTmap with respect

to x0 and x2, its degreewith regarding x1 as a constant grows quadratically (Takenawa
2001), hence the degrees of x (n)

i ’s are at least quadratic.

The proper transforms of the conserved quantities I1 and I2 are

I1 : 2Ha + 2Hb − 2E1 − 2E6 − 4E11 − E2,4,7,9,12,13,14,16,
I2 : 2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17,

which are preserved by ϕ∗.
We can consider the inverse problem.

Proposition 2 Hyper-surfaces whose class is 2Ha + 2Hb − 2E1 − 2E6 − 4E11 −
E2,4,7,9,12,13,14,16 are given by C0 + C1 I1 = 0 with (C0 : C1) ∈ P

1 and C1 	= 0.
Hyper-surfaces whose class is 2Ha + 2Hb − 3E11 − E1,2,4,5,6,7,9,10,12,13,14,16,17 are
given by C0 + C1 I1 + C2 I2 = 0 with (C0 : C1 : C2) ∈ P

2 and C2 	= 0.

Thus, we can compute invariants by using the action of the system ϕ on the Picard
group.

Proof The proof is straightforward but tedious. For example, the defining polyno-
mials of a curve of the class 2Ha + 2Hb − 2E1 − 2E6 − 4E11 − E2,4,7,9,12,13,14,16 can
be written as

1This kind of argument is not original. More general results can be found in Mase (2016), where it
is shown that all the reduced systems from classical KP or BKP equation have the quadratic degree
growth.
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f (x0, x1, x2, x3) :=
∑

i0, i1, i2, i3 ≥ 0
i0 + i1 + i2 + i3 ≤ 2

ai0i1i2i3x
i0
0 x

i1
1 x

i2
2 x

i3
3 ,

z22 f (x0, x1, z2z
−1
3 , z−1

3 ) around E1,

z20 f (z0z
−1
1 , z−1

1 , x2, x3) around E5,

z20z
2
2 f (z0z

−1
1 , z−1

1 , z2z
−1
3 , z−1

3 ) around E11.

The coefficients are determined so that defining polynomial takes zero with mul-
tiplicity 2, 3, 3, 4, 4, 2, 3, 3, 4, 4, 4, 1, 2, 7, 7, 8, 8 on Ei ’s; which verifies the
claim.
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Opers for Higher States of the Quantum
Boussinesq Model

Davide Masoero and Andrea Raimondo

Abstract We study the ODE/IM correspondence for all the states of the quantum
Boussinesq model. We consider a particular class of third order linear ordinary dif-
ferential operators and show that the generalised monodromy data of such operators
provide solutions to the Bethe Ansatz equations of the Quantum Boussinesq model.

Keywords ODE/IM correspondence · Quantum Boussinesq · Opers · Bethe
Ansatz

1 Introduction

The quantumBoussinesq model (Bazhanov et al. 2002) is a 2 dimensional conformal
field theory with a W3 symmetry, and it can be exactly solved via the Bethe Ansatz
equations. This model can be realised as the quantisation of a sl3 Drinfeld-Sokolov
hierarchy, or as the continuum limit of a sl3 XXZ chain. It belongs to a large family of
theories which are known as g-quantum KdV models; they exist for any Kac Moody
algebra g (Feigin and Frenkel 1996) (in the present case g = ̂sl3), and in the simplest
case, namely g = ̂sl2, the Hamiltonian structure of such a theory is the quantisation
of the second Poisson structure of the classical KdV equation (Bazhanov et al. 1996).

According to the celebrated ODE/IM correspondence (Dorey and Tateo 1999,
2000; Bazhanov et al. 2001, 2004; Dorey et al. 2007; Feigin and Frenkel 2011;

D. Masoero (B)
Grupo de Física Matemática da Universidade de Lisboa, Campo Grande, Edifício C6,
1749-016 Lisboa, Portugal
e-mail: dmasoero@gmail.com

Faculdade de Ciências da Universidade de Lisboa, Campo Grande,
1749-016 Lisbon, Portugal

A. Raimondo
Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca,
Via Roberto Cozzi 55, 20125 Milano, Italy
e-mail: andrea.raimondo@unimib.it

© Springer Nature Switzerland AG 2020
F. Nijhoff et al. (eds.), Asymptotic, Algebraic and Geometric Aspects
of Integrable Systems, Springer Proceedings in Mathematics & Statistics 338,
https://doi.org/10.1007/978-3-030-57000-2_5

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-57000-2_5&domain=pdf
mailto:dmasoero@gmail.com
mailto:andrea.raimondo@unimib.it
https://doi.org/10.1007/978-3-030-57000-2_5


56 D. Masoero and A. Raimondo

Masoero et al. 2016, 2017; Masoero and Raimondo 2020; Kotousov and Lukyanov
2019) to every state of the g quantumKdVmodel there corresponds a unique gL oper
(here gL is the Langlands dual of g) whose generalised monodromy data provide the
solution of the Bethe Ansatz equations of that state.

In our previous paper (Masoero and Raimondo 2020) we constructed the opers
corresponding to higher states of the g quantum KdV model, for any g untwisted
affinization of a simply laced Lie algebra. This was done by following the definition
given in Feigin and Frenkel (2011); solutions to the Bethe Ansatz were obtained
based on our previous works (Masoero et al. 2016, 2017).

In this note we provide explicit and simpler formulas for opers corresponding
to higher states of the quantum Boussinesq model, by specialising the results of
Masoero and Raimondo (2020) to the case g = ̂sl3. This serves two purposes: we
illustrate the general theory and its somehow heavy machinery in terms of familiar
and simple objects, and we find formulas which are much closer to the original work
on higher states opers of thêsl2-quantum KdV model (Bazhanov et al. 2004), where
higher states are conjectured to correspond to Schrödinger operators with a monster
potential.

As the result of the present paper, we conjecture that the level N states of the quan-
tum Boussinesq model correspond to the following third order differential operators:

L = ∂3
z −
⎛

⎝

N
∑

j=1

(

3

(z − w j )2
+ k

z(z − w j )

)

+ r̄1

z2

⎞

⎠ ∂z

+
N
∑

j=1

(

3

(z − w j )3
+ a j

z(z − w j )2
+ 2(k + 3)a j − k2

3z2(z − w j )

)

+ r̄2

z3
+ 1

z2
+ λzk, (1)

where −3 < k < −2, and r̄1, r̄2 ∈ C, and where the 2N complex variables
{a�, w�}�=1,...,N , satisfy the following system of 2N algebraic equations

a2� − ka� + k2 + 3k − 3r̄1 =
∑

j=1,...,N
j �=�

(

9w2
�

(w� − w j )2
+ 3kw�

w� − w j

)

, (2a)

Aa� + B − 9(k + 2)w� =
N
∑

j=1
j �=�

(

18(k − a� − a j )w
3
�

(w� − w j )
3 + (12k + 9k2 − (63 + 6k)a j − 9ka�)w

2
�

(w� − w j )
2

+ (9k + 16k2 + 6(k2 + 10k + 6)a j − 5ka�)w�

w� − w j

)

. (2b)

The parameters A, B are given by
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A = 14k2 + 50k − 8r̄1 + 45,

B = 27(r̄1 − r̄2) − k(7k2 + 7k + 9r̄2 − 13r̄1 + 9),

and the additional singularities w j , j = 1 . . . , N are assumed to be pairwise distinct
and nonzero. The system of algebraic equation (2) is equivalent to the requirement
that the monodromy around the singular point z = w j is trivial for all j = 1 . . . N ,
independently on the parameter λ.

The correspondence among the free parameters λ, r̄1, r̄2, k of the above equations
and the free parameters c, (Δ2,Δ3),μ (respectively the central charge, the highest
weight, the spectral parameter) of the Quantum Boussinesq model, as constructed in
Bazhanov et al. (2002) (more about this below), goes as follows:

c = −3(4k + 9)(3k + 5)

k + 3
, (3a)

Δ2 = (r̄1 − 8)k2 + 6(r̄1 − 5)k + 9r̄1 − 27

9(k + 3)
, (3b)

Δ3 = (k + 3)3/2

27
(r̄1 − r̄2), (3c)

λ = −i Γ (−k − 2)3μ3, (3d)

where Γ (s) denotes the Γ function with argument s. Moreover the integer N , which
is the number of additional regular singularities in (1), coincides with the level of
the state. Hence, system (2) is expected to possess p2(N ) solutions, where p2(N ) is
the number of bi-coloured partitions of N .

The paper is organised as follows. In Sect. 2 we introduce the quantum KdV
opers, following (Masoero and Raimondo 2020) (which in turns builds on Feigin
and Frenkel 2011), and derive from the general theory of the formulas (1) and (2). In
Sect. 3 we review the construction of solutions of the Bethe Ansatz equations as gen-
eralised monodromy data, following Masoero et al. (2016), Masoero and Raimondo
(2020). Finally, in Sect. 4 we briefly summarise the construction of the quantum
Boussinesq model provided in Bazhanov et al. (2002).

This work deals with differential equations and representation theory. We omit
many proofs of the analytic results, which can be found in greater generality in
Masoero and Raimondo (2020). However, we do provide all details of the algebraic
calculations.

2 Quantum KdV Opers

In this sectionwe introduce theQuantumKdVopers, as defined in Feigin and Frenkel
(2011), in the special case g = ̂sl3, and derive the third order scalar differential oper-
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ator (1). The reader should refer to Masoero and Raimondo (2020), and references
therein for more details.

We begin by introducing some theory of the algebra sl3(C),1 which we realise as
the Lie algebra of traceless 3 by 3 matrices (in such a way that it coincides with its
first fundamental representation, also known as standard representation). The algebra
has the decomposition n− ⊕ h ⊕ n+, where n− are lower diagonal matrices, h is the
Cartan subalgebra of traceless diagonalmatrices, and n+ are upper diagonalmatrices.
The subalgebra b+ := h ⊕ n+ is called the Borel subalgebra. We provide an explicit
basis of b+ as follows

h1 =
⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ , h2 =
⎛

⎝

0 0 0
0 1 0
0 0 −1

⎞

⎠ , (4)

e1 =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ , e2 =
⎛

⎝

0 0 0
0 0 1
0 0 0

⎞

⎠ , eθ =
⎛

⎝

0 0 1
0 0 0
0 0 0

⎞

⎠ . (5)

We introduce three further elements, the sum of the negative Chevalley generators
of the Lie algebra f ∈ n− (principal nilpotent element), the dual of the Weyl vector
ρ∨ ∈ h, and the dual of the highest root θ∨ ∈ h. We have:

f =
⎛

⎝

0 0 0
1 0 0
0 1 0

⎞

⎠ , ρ∨ = θ∨ =
⎛

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎠ . (6)

The unipotent group N = {exp y, y ∈ n+} acts on sl3 via the formula

exp y.g = g +
∑

k≥1

(ady)
k .g

k! , ady .g := [y, g],

and the affine subspace f + b+ is preserved by the action. Following Kostant (1978),
and given a vector subspace s ⊂ n+, we say that the affine subspace f + s is a
transversal space if

1. The orbit of f + s under the action of N coincides with f + b+.
2. For each s ∈ s, then exp y.( f + s) /∈ f + s unless y = 0.

The subspace s = Ce1 ⊕ Ceθ satisfies the above hypotheses2 and the transversal
space f + s is the space of companion matrices:

1For sake of simplicity we prefer to work with sl3-opers, instead of ̂sl3-opers. We do that by
considering the loop algebra variable λ as a free complex parameter. More about this in Masoero
and Raimondo (2020), Sect. 4.
2As an example, the Cartan subalgebra h satisfies the first but not the second hypothesis above.
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f + s =
⎧

⎨

⎩

⎛

⎝

0 a b
1 0 0
0 1 0

⎞

⎠ | a, b ∈ C

⎫

⎬

⎭

.

We fix this choice for the rest of the paper.

2.1 Opers

We denote by K the field of rational functions in the variable z, and we define

1. g(K ), b+(K ), n+(K ) the Lie algebras of rational functions with values in
g, b+, n+ respectively.

2. The space of (global meromorphic) g-valued connections conn(K ) = {∂z +
g, g ∈ g(K )}.

3. The subset op(K ) = {L = ∂z + f + b, b ∈ b+(K )} ⊂ conn(K ).
4. The group of unipotentGauge transformationsN (K ) = {exp y, y ∈ n+(K )}, act-

ing on conn(K ) via the formula

exp y.(∂z + g) = ∂z −
∑

k≥0

1

(k + 1)! (ady)
k dy

dz
+ exp y.g. (7)

Note that the above action preserves the subset op(K ).
5. The space of sl3 opers as Op(K ) = op(K )/N (K ).

The space of opers Op(K ) admits a very explicit description once a transversal space
f + s is fixed: any element in op(K ) is Gauge equivalent to a unique connection of
the form ∂z + f + s, s ∈ s(K ). Hence we have a bijection

Op(K ) ∼= {∂z + f + s, s ∈ s(K )}.

We call ∂z + f + s the canonical form of any oper Gauge equivalent to it.

2.2 Opers and Scalar ODEs

It is a standard and elementary result that the space of sl3 opers coincides with the
space of third order linear scalar differential operators (with principal symbol equal
to 1 and vanishing sub-principal symbol). Indeed, for what we have said so far, any
oper has a unique representative of the form

L = ∂z + f + v1(z)e1 + v2(z)eθ,



60 D. Masoero and A. Raimondo

where v1, v2 are a pair of (arbitrary) rational functions. In the first fundamental
representation, this oper takes the form

L = ∂z +
⎛

⎝

0 v1(z) v2(z)
1 0 0
0 1 0

⎞

⎠ . (8)

If {ε1, ε2, ε3} is the standard basis of C3, and given ψ = C → C
3, with ψ(z) =

ψ1(z)ε1 + ψ2(z)ε2 + ψ3(z)ε3, then the matrix first order equation

Lψ(z) = 0,

is easily seen to be equivalent to the following scalar ODE for the third coefficient
Ψ := ψ3

(∂3
z − v1∂z + v2)Ψ (z) = 0. (9)

We will use this scalar representation in the rest of the paper.

2.3 (Ir)Regular Singularities

Let L be an oper in the canonical form (8), and w ∈ C a pole of v1 or v2, so that

v1 = s̄1(z − w)−δ1 + o((z − w)−δ1),

v2 = s̄2(z − w)−δ2 + o((z − w)−δ2)

for some s̄1, s̄2 �= 0 and some δ1, δ2 ∈ Z. We define (Masoero and Raimondo 2020)

– The slope of the singular point w ∈ C as

μ = max

{

1,max

{

δ1

2
,
δ2

3

}}

∈ Q.

– The principal coefficient of the singular point w as

f − ρ∨ + s̄1e1 + s̄2e2 =
⎛

⎝

−1 s̄1 s̄2

1 0 0
0 1 1

⎞

⎠ if μ = 1,

and

f + s̄1e1 + s̄2e2 =
⎛

⎝

0 s̄1 s̄2

1 0 0
0 1 0

⎞

⎠ if μ > 1.
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As proved in Masoero and Raimondo (2020), the singularity is regular (in the sense
of linear connections) if μ = 1 and irregular if μ > 1.

Remark 1 In the case when w = ∞, we write v1 = zδ1 + o(zδ1), and v2 = s̄2zδ2 +
o(zδ2) for some s̄1, s̄2 �= 0, and δ1, δ2 ∈ Z, and define the slope of w = ∞ as μ =
max{1,max{ δ1

2 , δ2
3 } + 2}. The principal coefficient is defined as above.

2.4 sl3-Quantum KdV Opers

We define sl3-quantum KdV opers following Feigin and Frenkel (2011). To this aim
we fix −3 < k < −2 and r̄1, r̄2 ∈ C and write

L(z,λ) = LG,s(z,λ) + s(z), s ∈ K (s) . (10)

Here LG,s is the ground state oper

LG,s(z,λ) = ∂z +
⎛

⎝

0 r̄1/z2 r̄2/z3 + z−2 + λzk

1 0 0
0 1 0

⎞

⎠ . (11)

We notice that LG,s(z,λ) has two singular points: z = 0 is a regular singularity with
principal coefficient

⎛

⎝

−1 r̄1 r̄2

1 0 0
0 1 1

⎞

⎠ ,

while z = ∞ is an irregular singularity, with slope μ = 4
3 and principal coefficient

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠ .

As it will be reviewed in the next section, one can obtain solutions of theBetheAnsatz
equations by considering the differential equation LG,sψ = 0: more precisely these
are obtained as coefficients of the expansion of the subdominant solution at +∞ in
terms of a distinguished basis of solutions defined at z = 0.

In Bazhanov et al. (2004), Bazhanov, Lukyanov and Zamolodchikov proved that
in the case g = ̂sl2, the ground state oper could be modified without altering the
above global structure, so that the modified equations yield (different) solutions of
the same Bethe Ansatz equations (as coefficients of the same expansion). Feigin and
Frenkel (2011) extended these idea to the case of a general Kac-Moody algebra,
and conjectured that the higher level opers could be uniquely specified by imposing
on the s-valued function s the 4 conditions below. These conditions were shown
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to sufficient (Masoero and Raimondo 2020), and are expected to be necessary for
generic values of the parameters k̂, r̄1, r̄2 (Feigin and Frenkel 2011). We say that the
oper L(z,λ) of the form (10) is a sl3-quantum KdV oper if it satisfies the following
4 assumptions:

Assumption 1 The slope and principal coefficient at 0 do not depend on s.

Assumption 2 The slope and principal coefficient at ∞ do not depend on s.

Assumption 3 All additional singular points are regular and the corresponding prin-
cipal coefficients are conjugated to the element f − ρ∨ − θ∨ ∈ f + h.

Assumption 4 All additional singular points have trivial monodromy for every λ ∈
C.

The following proposition, which is Proposition 4.7 in Masoero and Raimondo
(2020) specialised to the case of g = sl3, is a first characterisation of the Quantum
KdV opers; it shows that they have the form (1).

Proposition 1 An operator L(z,λ) of the form (10) satisfies the first three Assump-
tions if and only if there exists a (possibly empty) arbitrary finite collection of non-
zero mutually distinct complex numbers {w j } j∈J ⊂ C

× and a collection of numbers

{a( j)
11 , a( j)

21 , a( j)
22 } j∈J ⊂ C, such that L(z,λ) has the form

L(z,λ) = ∂z +
⎛

⎝

0 W1 W2

1 0 0
0 1 0

⎞

⎠ , (12)

where

W1(z) = r̄1

z2
+
∑

j∈J

(

3

(z − w j )2
+ a( j)

11

z(z − w j )

)

, (13a)

W2(z,λ) = r̄2

z3
+ 1

z2
+ λzk +

∑

j∈J

(

3

(z − w j )3
+ a( j)

21

z(z − w j )2
+ a( j)

22

z2(z − w j )

)

.

(13b)

Note that when J is empty then (12) reduces to the ground state oper (11). If J is not
empty, then we set J = {1, . . . , N }, for some N ∈ Z+. In order to fully characterise
the sl3-quantum KdV opers, we must impose the fourth and last Assumption on
the opers of the form (12), namely the triviality of the monodromy about all the
additional singularities w j , j = 1 . . . N . We notice that the opers of the form (12)
depend on the 4N complex parameters {a( j)

11 , a( j)
21 , a( j)

22 , w j } j∈1...N . We will show in
the following subsection that the trivial monodromy conditions are equivalent to
a complete system of 4N algebraic equations, which in turn are equivalent to (1)
and (2).
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2.5 Trivial Monodromy Conditions

We fix � ∈ 1 . . . N and study under which conditions the oper L(z,λ) of the form
(12) has trivial monodromy about w�. As we showed in Masoero and Raimondo
(2020), Assumption 3 (more precisely, the fact that θ∨ is a co-root) implies that the
monodromy about w� is trivial if and only if it is trivial in at least one irreducible
(nontrivial) representation. In other words, it is necessary and sufficient that the
monodromy at z = w� is trivial for the solutions of the equation L(z,λ)Ψ = 0 in
the standard representation.

To this aim we write the above equation in the scalar form

(∂3
z − W1∂z + W2)Φ(z) = 0 , (14)

and use the method of the Frobenius expansion, that is we look for solutions of the
form

Φ(β)(z) =
∑

m≥0

Φm(z − w�)
β+m . (15)

Writing the Laurent expansion of (14) at w� as

W1(z) =
+∞
∑

m=0

q(�)
1m (z − w�)

m−2, q(�)
10 = 3, (16a)

W2(z) =
+∞
∑

m=0

q(�)
2m(z − w�)

m−3, q(�)
20 = 3, (16b)

expanding the Eq. (15) in powers of z − w�, and equating to zero term-by-term we
obtain

Φ
(β)

0 P(β) = 0,

P(β + r)Φ(β)
r =

r
∑

m=1

(

(β + r − m)q(�)
1m − q(�)

2m

)

Φ
(β)
r−m, (17)

where the indicial polynomial P(β) = (β − 3)(β − 1)(β + 1). The roots of the indi-
cial polynomial, β = −1, 1, 3, are known as indices. Since the indices are integers,
the monodromy matrix has a unique eigenvalue, 1, with algebraic multiplicity 3,
and the monodromy is trivial if and only if the recursion (17) has a solution for
all the indices. Indeed, in such a case, Φβ(e2πi z) = Φβ(z) for β = −1, 1, 3; other-
wise logarithmic terms must be added to the series (15) and the monodromy is not
diagonalizable (Wasow 2018).

We analyse the recursion (17) separately for the three indices.
The recursion (17) for the index β = 3 admits always a unique solution, since

P(3 + r) �= 0,∀r ≥ 1.
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In the case β = 1, we have that P(β + r) = 0, r ≥ 1 if and only if r = 2. Hence
the recursion is over-determined. Computing the first two terms we obtain

−3Φ(1)
1 =

(

q(�)
11 − q(�)

21

)

Φ
(1)
0 ,

0 × Φ
(1)
2 =

(

2q(�)
11 − q(�)

21

)

Φ
(1)
1 +

(

q(�)
12 − q(�)

22

)

Φ
(1)
0 .

It follows that the recursion for the index β = 1 has at least one solution if and only
if

q(�)
12 − q(�)

22 = 2

3

(

q(�)
11

)2 − q(�)
11 q

(�)
21 + 1

3

(

q(�)
21

)2
. (18)

Finally, the Frobenius method for the index β2 = −1 gives

3Φ(−1)
1 = −

(

q(�)
11 + q(�)

21

)

Φ
(−1)
0 ,

0 × Φ
(−1)
2 = −q(�)

21 Φ
(−1)
1 −

(

q(�)
12 + q(�)

22

)

Φ
(−1)
0 ,

−3Φ(−1)
3 =

(

q(�)
11 − q(�)

21

)

Φ
(−1)
2 − q(�)

22 Φ
(−1)
1 −

(

q(�)
13 + q(�)

23

)

Φ
(−1)
0 ,

0 × Φ
(−1)
4 =

(

2q(�)
11 − q(�)

21

)

Φ
(−1)
3 +

(

q(�)
12 − q(�)

22

)

Φ
(−1)
2 − q(�)

23 Φ
(−1)
1 −

(

q(�)
14 + q(�)

24

)

Φ
(−1)
0 ,

and we obtain the following constraints

q(�)
12 + q(�)

22 = 1

3
q(�)
21 q

(�)
11 + 1

3

(

q(�)
21

)2
,

q(�)
14 + q(�)

24 = (2q(�)
11 − q(�)

21 )

(

−1

9
q(�)
22 (q(�)

11 + q(�)
21 ) + 1

3
(q(�)

13 + q(�)
23 )

)

+ 1

3
q(�)
23 (q(�)

11 + q(�)
21 ).

Combining these with (18) we obtain the following characterisation: themonodromy
about w� is trivial if and only if the following system of 3 equations

q(�)
12 =1

3

(

(

q(�)
11

)2 − q(�)
11 q

(�)
21 +

(

q(�)
21

)2
)

, (19)

q(�)
22 =1

3
q(�)
11

(

2q(�)
21 − q(�)

11

)

, (20)

q(�)
14 + q(�)

24 =1

3
q(�)
13

(

2q(�)
11 − q(�)

21

)

+ q(�)
11 q

(�)
23

+ 1

27
q(�)
11

(

2q(�)
11 − q(�)

21

) (

q(�)
11 − 2q(�)

21

) (

q(�)
11 + q(�)

21

)

. (21)

In order to proceed further we write explicitly the coefficients q’s, which appear
in the above equations, in terms of the parameters of the opers (12)
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q�
10 = 3, q�

20 = 3, q(�)
11 = a(�)

11
w�

, q(�)
21 = a(�)

21
w�

,

q(�)
12 = r̄1 − a(�)

11

w2
�

+
N
∑

j=1
j �=�

(

3

(w� − w j )
2 + a( j)

11
w�(w� − w j )

)

, q(�)
22 = a(�)

22 − a(�)
21

w2
�

,

q(�)
13 = a(�)

11 − 2r̄1

w3
�

−
N
∑

j=1
j �=�

(

6

(w� − w j )
3 + a( j)

11
w�(w� − w j )

2 + a( j)
11

w2
�
(w� − w j )

)

,

q(�)
23 = r̄2 + a(�)

21 − 2a(�)
22 + w�

w3
�

+ λwk
� +

N
∑

j=1
j �=�

(

3

(w� − w j )
3 + a( j)

21
w�(w� − w j )

2 + a( j)
22

w2
�
(w� − w j )

)

,

q(�)
14 = 3r̄1 − a(�)

11

w4
�

+
N
∑

j=1
j �=�

(

9

(w� − w j )
4 + a j

11
w�(w� − w j )

3 + a j
11

w2
�
(w� − w j )

2
+ a j

11

w3
�
(w� − w j )

)

,

q(�)
24 = 3a(�)

22 − a(�)
21 − 3r̄2 − 2w�

w4
�

+ λkwk−1
�

−
N
∑

j=1
j �=�

(

9

(w� − w j )
4 + 2a(�)

21
w�(w� − w j )

3 + a(�)
21 + a(�)

22

w2
�
(w� − w j )

2
+ 2a(�)

22

w3
�
(w� − w j )

)

.

We notice that while Eqs. (19) and (20) do not depend on λ, Eq. (21) is a first-
order polynomial in λ. Since the trivial monodromy conditions must hold for any λ,
Eq. (21) consists of a pair of independent constraints: both the constant part in λ and
the linear part in λ are required to vanish independently. The vanishing of the part
of (21) which is linear in λ reads:

q(�)
11 wk

� − kwk−1
� = 0, or q(�)

11 = k

w�

,

from which we obtain
a(�)
11 = k, � = 1, . . . , N . (22)

Making use of the explicit expression of the q ′s in terms of the a′s, as given above,
and denoting

a� = a(�)
21 , � = 1, . . . , N , (23)

from (20) we obtain

a(�)
22 = 2

3
(k + 3)a� − k2

3
, � = 1, . . . , N . (24)

Substituting (22) and (24) into the expression for the q’s found above, then from
(19) we obtain (2a), while the vanishing of the constant (in λ) coefficient of (21) is
equivalent to (2b).
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We have thus arrived to the following result: an sl3 Quantum KdV oper is equiva-
lent to a scalar third order differential operator of the form (1) such that its coefficients
satisfy the system of algebraic equations (2).

2.6 The Dual Representation. Formal Adjoint Operator

Before we proceed further with our analysis, and we construct solutions to the Bethe
Ansatz equations, we introduce a second representation of the algebra sl3. This is
called the second fundamental representation or dual representation, andwe denote it
byC3∗. If {ε1, ε2, ε3} is the standard basis ofC3 as above,we denote by {ε∗

1, ε
∗
2, ε

∗
3}, the

corresponding dual basis in C3∗ such that 〈ε∗
i , ε j 〉 = δi j . In these basis, the matrices

representing the elements h1, h2, θ∨, ρ∨, e1, e2, eθ, f read

h1 =
⎛

⎝

0 0 0
0 1 0
0 0 −1

⎞

⎠ , h2 =
⎛

⎝

1 0 0
0 −1 0
0 0 0

⎞

⎠ , ρ∨ = θ∨ =
⎛

⎝

1 0 0
0 0 0
0 0 −1

⎞

⎠ ,

e1 =
⎛

⎝

0 0 0
0 0 1
0 0 0

⎞

⎠ , e2 =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ , eθ =
⎛

⎝

0 0 −1
0 0 0
0 0 0

⎞

⎠ , f =
⎛

⎝

0 0 0
1 0 0
0 1 0

⎞

⎠ .

Aswe have discussed before, the general sl3 oper can bewritten the canonical form as
the connection L = ∂z + f + v1e1 + v2eθ, for an arbitrary pair of rational functions
v1, v2 ∈ K . In the dual representation, we thus have

L = ∂z +
⎛

⎝

0 0 −v2
1 0 v1
0 1 0

⎞

⎠ .

Weshowed that in the standard representationC3 the connectionL is equivalent to the
scalar third order operator (9). In the dual representation the same oper is equivalent
to a different scalar operator, namely to its formal adjoint. Let ψ∗ =: C → C

3∗, with
ψ∗(z) = ψ∗

1(z)ε
∗
1 + ψ∗

2(z)ε
∗
2 + ψ∗

3(z)ε
∗
3, satisfy Lψ∗ = 0 in the dual representation.

Then Ψ ∗(z) := ψ∗
3(z) satisfies the scalar ODE

(−∂3
z + v1∂z + (v2 + v′

1))Ψ
∗(z) = 0 , (25)

which is the formal adjoint of the Eq. (9).

The following standard isomorphisms (of sl3-modules) will be needed later to
derive the Bethe Ansatz equations:

∧2
C

3 ∼= C
3∗ and

∧2
C

3∗ ∼= C
3. Explicitly,
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ı(ε1 ∧ ε2) = ε∗
1, ı(ε1 ∧ ε3) = ε∗

2, ı(ε2 ∧ ε3) = ε∗
3, (26)

ı(ε∗
1 ∧ ε∗

2) = ε1, ı(ε∗
1 ∧ ε∗

3) = ε2, ı(ε∗
2 ∧ ε∗

3) = ε3. (27)

The above isomorphisms imply that if ψ(z),φ(z) are solutions of Lψ(z) = 0, for
ψ : C → C

3 in the standard representation then ı
(

ψ(z) ∧ φ(z)
)

is a solution of the
dual equation Lψ∗(z) = 0, with ψ∗ : C → C

3∗; and conversely.
In the present paper we prefer to work with solutions of the equations in the

scalar form (9) and (25). Recall that the solution of the equations in the scalar
form is just the third component of the solution of the vector equation. If ψ(z) =
ψ1(z)ε1 + ψ2(z)ε2 + ψ3(z)ε3 and φ(z) = φ1(z)ε1 + φ2(z)ε2 + φ3(z)ε3, then a sim-
ple calculation shows that

〈ı(ψ ∧ φ), ε3〉 = Wr [ψ3,φ3]

where Wr [·, ·] denotes the usual Wronskian Wr [ f (z), g(z)] = f (z)g′(z) −
f ′(z)g(z). Similarly, for ψ∗(z) = ψ∗

1(z)ε
∗
1 + ψ∗

2(z)ε
∗
2 + ψ∗

3(z)ε
∗
3 and φ∗(z) =

φ∗
1(z)ε

∗
1 + φ∗

2(z)ε
∗
2 + φ∗

3(z)ε
∗
3 we have

〈ε∗
3, ı(ψ

∗ ∧ φ∗)〉 = Wr [ψ∗
3 ,φ

∗
3].

To prove the above relations, it is sufficient to note that from the matrix first order
equations Lψ(z) = 0,Lψ∗(z) = 0 we obtain the identities ψ2(z) = −ψ′

3(z) and
ψ∗
2 = −ψ∗

3
′(z). We have thus shown that the Wronskian of two solutions of (9)

satisfies (25), and conversely the Wronskian of two solutions of (25) satisfies (9).

2.7 Relation with Previous Works

The ground state sl3-quantum KdV oper, given by Eq. (11), was also considered –
in the scalar form – by Dorey and Tateo (2000), and by Bazhanov et al. (2002), who
wrote the following third order scalar operator

˜L(x, E) = ∂3
x + w̃1

x2
∂x + w̃2

x3
+ x3M − E, (28)

with w̃1 = �̃1�̃2 + �̃1�̃3 + �̃2�̃3 − 2, w̃2 = −�̃1�̃2�̃3 andwhere the �̃i ’s are constrained
by the equation �̃1 + �̃2 + �̃3 = 3. In addition, in our previous paper (Masoero et al.
2016) we considered the ground state oper in the following form

L(x, E) = ∂x +
⎛

⎝

�1/x 0 x3M − E
1 (�2 − �1)/x 0
0 1 −�2/x

⎞

⎠ (29)
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for arbitrary �1, �2 ∈ C and M > 0. We now show that the differential operators
(11), (28), and (29) are equivalent under appropriate change of coordinates and
Gauge transformations, once the parameters are correctly identified. To show that
the differential operators (28) and (29) are equivalent, we write the operator (28) in
the oper form

∂x +
⎛

⎝

0 −w̃1/x2 w̃2/x3 + x3M − E
1 0 0
0 1 0

⎞

⎠ . (30)

It is then a simple computation to show that (30) and (29) are Gauge equivalent if
we set �̃1 = −�1 + 2, �̃2 = �1 − �2 + 1 and �̃3 = �2.

Next we show the equivalence between (29) and (11). As observed in Feigin and
Frenkel (2011), after the change of variable

z = ϕ(x) =
(

k + 3

3

)3

x
3

k+3 , k = −3M + 2

1 + M
, (31)

the operator (29) reads

LG(z,λ) = ∂z +
⎛

⎝

r1/z 0 z−2 + λzk

1 (r2 − r1)/z 0
0 1 −r2/z

⎞

⎠ , (32)

where λ ∈ C and r1, r2 ∈ C are defined by the relations

E = −
(

k + 3

3

)3(k+2)

λ, �i = 3

k + 3
(ri − 1) + 1, i = 1, 2. (33)

It is again a simple computation to show that the opers (32) and (11) are Gauge
equivalent provided the coefficients r1, r2, r̄1, r̄2 satisfy the following relations

{

r̄1 = (r1)2 − r1r2 + (r2)2 − r1 − r2,

r̄2 = r1r2(r1 − r2) + r2(2r2 − r1 − 2).
(34)

2.8 Weyl Group Symmetry

The parametrisation (34) of r̄1, r̄2 in terms of r1 and r2 will be very convenient when
discussing the behaviour of solutions of L(z,λ)ψ = 0 in a neighbourhood of z = 0.
The Weyl group of sl3 – which is isomorphic to the group of permutations of three
elements, S3 – is a symmetry of themap (34), once its action on the parameters r1, r2,
which is called the dot action, is properly defined:
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σ ·
(

r1

r2

)

=
(−r2 + 2

−r1 + 2

)

, τ ·
(

r1

r2

)

=
( −r2 + 2
r1−r2 + 1

)

. (35)

We let the reader verify that σ, τ generate the group S3 (in particular σ2 = 1, τ 3 = 1)
and that the above action is a symmetry of (34). This phenomenon is studied in great
detail and generality in Masoero and Raimondo (2020), Sect. 5.

3 The Bethe Ansatz Equations

In this section we construct solutions of the Bethe Ansatz equations as generalised
monodromy data of Quantum KdV opers, L(z,λ). As proved in Sect. 2, these are
opers of the form

L(z,λ) = ∂z +
⎛

⎝

0 W1 W2

1 0 0
0 1 0

⎞

⎠ , (36)

where

W1(z) = r̄1

z2
+
∑

j∈J

(

3

(z − w j )
2 + k

z(z − w j )

)

, (37a)

W2(z,λ) = r̄2

z3
+ 1

z2
+ λzk +

∑

j∈J

(

3

(z − w j )
3 + a j

z(z − w j )
2 + 2(k + 3)a j − k2

3z2(z − w j )

)

,

(37b)

and where {a j , w j } j=1,...,N satisfy the system of equations (2). We follow Masoero
et al. (2016), Masoero and Raimondo (2020) closely and the reader should refer to
these papers for all missing proofs. Any finite dimensional representation V of sl3
defines the ODE

L(z,λ)ψ = 0, Ψ : C → V .

Since the monodromy of L(z,λ) about w j is trivial for any j , then the solutions of
the above equation are, for fixed λ, analytic functions on the universal cover of C∗,
minus the lift of the pointsw j , j ∈ 1 . . . N . We denote such a domain bŷC. As it was
originally observedbyDorey andTateo, the appearance of theBetheAnsatz equations
is due to a discrete symmetry which acts on both the variable z and the parameter λ.
It is therefore necessary to consider solutions ψ(z,λ) as analytic functions of both
variables z and λ. More precisely for our purpose ψ(z, ·) is assumed to be an entire
function of λ. We thus define a solution to be an analytic mapψ : ̂C × C → V which
satisfies the equation L(z,λ)ψ(z,λ) = 0 for every (z,λ).

The space of solutions, whichwe denote by V (λ), is an infinite dimensional vector
space which, as we showed in Masoero and Raimondo (2020), is simply isomorphic
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to V ⊗ Oλ, where Oλ is the ring of entire functions of the variable λ. This means
that an Oλ-basis of the space of solutions has cardinality dim V .

3.1 Twisted Opers

Let k̂ = −k − 2, so that 0 < k̂ < 1. For any t ∈ R we define the twisted operator
and twisted solution:

Lt (z,λ) := L(e2iπt z, e2iπt k̂λ), (38)

ψt (z,λ) = e2iπtρ
∨
ψ(e2πi t z, e2πi t k̂λ). (39)

Taking into account the oper change of variables (Masoero and Raimondo 2020),
then from (36) we explicitly have

Lt (z,λ) = ∂z + f + e4πi tW1(e
2πi t z)e1 + e6πi tW2(e

2πi t z, e2πi t k̂λ)eθ,

and one easily see that the function ψt (z,λ) satisfiesLt (z,λ)ψt (z,λ) = 0. A crucial
property of the oper (36) is the following Dorey-Tateo discrete symmetry:

Lt=1(z,λ) = L(z,λ) , (40)

which leads us to consider the following (Oλ-linear) monodromy operator

M : V (λ) → V (λ), M(ψ(z,λ)) = e2iπρ∨
ψ(e2πi z, e2πi k̂λ) . (41)

In the case sl3, we just need to consider the equations Lt (z,λ)ψ = 0 for the
standard representation and its dual. More precisely, the standard representation at 0
twist, and the dual representation at twist t = 1

2

L(z,λ)ψ(z,λ) = 0, ψ : ̂C × C → C
3, (42)

L 1
2 (z,λ)ψ∗(z,λ) = 0, ψ∗ : ̂C × C → C

3∗
. (43)

By a slight abuse of notation we denote C
3(λ) the space of solutions of the first

equation, and by C3∗
(λ) the space of solutions of the latter equations, as well as the

solutions of the same equations in the equivalent scalar form

(

∂3
z − W1(z)∂z + W2(z,λ)

)

Ψ (z,λ) = 0, (44)
(

∂3
z − W1(−z)∂z + W2(−z, eπi k̂λ) − W ′

1(−z)
)

Ψ ∗(z,λ) = 0. (45)
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Since the solution of the equations in the scalar form is the third component of a
solution of the equation in the matrix form, and since ρ∨ε3 = −ε3, ρ

∨ε∗
3 = −ε∗

3, the
twist for solutions of the above scalar ODEs is defined as follows

Ψt (z,λ) = e−2iπtΨ (e2πi t z, e2πi t k̂λ) , Ψ ∗
t (z,λ) = e−2iπtΨ ∗(e2πi t z, e2πi t k̂λ).

Equation (45) is the adjoint equation to (44) twisted by t = 1
2 ; and conversely, Eq. (44)

is the adjoint equation to (45) twisted by t = 1
2 . As we recalled in Sect. 2.6, the

Wronskian of two solutions of a scalar ODE solves the adjoint equation. It follows
that

1. If Ψ (z,λ),Φ(z,λ) ∈ C
3(λ) then

Wr [Ψ− 1
2
(z,λ),Φ 1

2
(z,λ)] ∈ C

3∗
(λ),

2. If Ψ ∗(z,λ),Φ∗(z,λ) ∈ C
3∗

(λ), then

Wr [Ψ ∗
− 1

2
(z,λ),Φ∗

1
2
(z,λ)] ∈ C

3(λ).

3.2 The Eigenbasis of the Monodromy Operator. Expansion
at z = 0

The point z = 0 is a regular singularity for the Eqs. (44) and (45), but it is also
a branch point of the potential W2, because of the term λzk . It follows that the
standard Frobenius series cannot provide solution of the above equations at z = 0.
A generalised Frobenius series, introduced in Masoero and Raimondo (2020), does
however the job. The latter is defined as

Φ(β)(z,λ) = zβ
∑

m≥n≥0

cm,nz
mζn , c0,0 = 1 , ζ = λz−k̂ , (46)

where the indicesβ are computed as in the standard Frobeniusmethod: if the equation
reads

(

∂3
z + a + o(1)

z2
∂z + b + o(1)

z3

)

Ψ (z) = 0,

the indices are the roots of the indicial polynomial P(β) = β3 − 3β2 + (2 + a)β +
b. The following facts are proved in Masoero and Raimondo (2020), Proposition
5.1. For every finite dimensional representation V of sl3, and under some genericity
assumptions 3 on the triple (k̂, r̄1, r̄2), we have:

3The genericity assumptions imply that the monodromy operator M is diagonal and no logarithmic
terms appear in the generalised Frobenius series.
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1. The series (46) converges to a solution Φ(β)(z,λ) ∈ V (λ).
2. MΦ(β)(z,λ) = e2πiβΦ(β)(z,λ), where M is the monodromy operator defined in

(41).
3. The collection of the solutions Φ(β)(z,λ) for all indices β forms an Oλ-basis of

V (λ).

In the cases under our study, namely Eqs. (44) and (45), the indicial polynomials
are, respectively, given by

P(β) = β3 − 3β2 + (2 − r̄1)β + r̄2,

P∗(β) = β3 − 3β2 + (2 − r̄1) + 2r̄1 − r̄2.

Using (34), then we obtain the factorizations

P(β) = (β − r2)(β − 1 + r2 − r1)(β − 2 + r1),

P∗(β) = (β − r1)(β − 1 + r1 − r2)(β − 2 + r2),

so that the indices are given by

β1 = r2, β2 = r1 − r2 + 1, β3 = −r1 + 2, (47a)

β∗
1 = −r2 + 2, β∗

2 = r2 − r1 + 1, β∗
3 = r1. (47b)

We denote by

{Φ(β1)(z,λ),Φ(β2)(z,λ),Φ(β3)(z,λ)}, (48a)

{Φ(β∗
1 )(z,λ),Φ(β∗

2 )(z,λ),Φ(β∗
3 )(z,λ)}, (48b)

the corresponding solutions of (44) and (45) respectively. Recall that theWeyl group
acting by the dot action (35) on r1, r2, provides a group of symmetries of r̄1, r̄2, hence
it leaves the indicial polynomial invariant, permuting its roots.4 The (induced) action
of the generators σ, τ of the Weyl group, see (35), on the indices (47) is provided by
the following permutations:

σ(βi ) = βσ(i), τ (βi ) = βτ (i), i = 1, 2, 3, (49a)

σ(β∗
i ) = β∗

σ(i), τ (β∗
i ) = βτ (i), i = 1, 2, 3, (49b)

where
σ(1, 2, 3) := (3, 2, 1), τ (1, 2, 3) := (2, 3, 1). (50)

Comparing the asymptotic behaviour at z = 0, we deduce the following 6 quadratic
identities among the (properly normalised) Φ(β)’s and Φ(β∗)’s. Let s ∈ S3, then (we

4Many authors fix r1, r2 by imposing the conditions �β1 > �β2 > �β3, or equivalently �β∗
3 >

�β∗
2 > �β∗

1 (Bazhanov et al. 2002; Dorey et al. 2007; Masoero et al. 2016).
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can find a normalisation of the solutions Φ(βi ), Φ(β∗
i ) such that):

Wr [Φ(βs(1))

∓ 1
2

, Φ
(βs(2))

± 1
2

] = (−1)p(s)e±iπs(γ)Φ(β∗
s(3)), (51a)

Wr [Φ(β∗
s(3))

∓ 1
2

, Φ
(β∗

s(2))

± 1
2

] = (−1)p(s)e±iπs(γ∗)Φ(βs(1)), (51b)

where p(s) is the parity of s ∈ S3, and where

s(γ) = βs(2) − βs(1), s(γ∗) = β∗
s(2) − β∗

s(3), (52)

with the βs(i) and β∗
s(i) defined by the relations (47) and (49).

3.3 Sibuya Solutions. Expansion at z = ∞

We let q(z,λ) be the Puiseaux series of
(

z−2(1 + λz−k̂)
) 1

3 truncated after terms of
z−1, and S(z,λ) be its primitive

q(z,λ) = z
−2
3
(

1 +
� 1
3k̂

�
∑

l=0

clλ
l z−lk̂

)

, S(z,λ) =
∫ z

q(y,λ)dy, (53)

where cl are the coefficients of Taylor series expansion at y = 0 of (1 − y)
1
3 , and

∫ z yldl = zl+1

l+1 , l �= −1,
∫ z 1

y = log z.
The Sibuya, or subdominant, solution of the Eqs. (44) and (45) is uniquely defined

by the following asymptotics

Ψ (z,λ) = z
2
3 e−S(z,λ)

(

1 + o(1)
)

, as z → +∞, (54a)

Ψ ∗(z,λ) = z
2
3 e−S(z,λ)

(

1 + o(1)
)

, as z → +∞. (54b)

Moreover we have that

Ψ ′(z,λ) = −e−S(z,λ)
(

1 + o(1)
)

, as z → +∞, (55a)

Ψ ∗′
(z,λ) = −e−S(z,λ)

(

1 + o(1)
)

, as z → +∞. (55b)

The Sibuya solutions Ψ,Ψ ∗ satisfy the following properties

– It is the solution (unique up to a multiplicative constant) with the fastest decrease
as z → +∞.

– The asymptotic formulas (54) hold true on the sector | arg z| ≤ π + ε, for some ε >

0 (Masoero et al. 2016). In other words, if we continue analytically Ψ (z,λ), Ψ ∗
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(z,λ) as well as the functions q(z,λ) and S(z,λ) past the negative real semi-axis,
the asymptotic formulas still hold.

– The solutions Ψ (z,λ), Ψ ∗(z,λ) are entire functions of λ, i.e. Ψ (z,λ) ∈ C
3(λ)

and Ψ ∗(z,λ) ∈ C
3∗

(λ).
– Finally, andmost importantly, the solutionsΨ (z,λ), Ψ ∗(z,λ) satisfy the so-called

Ψ -system

Wr [Ψ− 1
2
(z,λ), Ψ 1

2
(z,λ)]) = Ψ ∗(z,λ), (56a)

Wr [Ψ ∗
− 1

2
(z,λ), Ψ ∗

1
2
(z,λ)]) = Ψ (z,λ). (56b)

The latter identities can be checked by comparing the asymptotic expansion of the
left and right hand side as z → +∞.

The Ψ -system is the last necessary ingredient to construct solutions of the Bethe
Ansatz equations.

3.4 Q˜Q System and the Bethe Ansatz

As we have shown, the solutions {Φ(β1)(z,λ),Φ(β2)(z,λ), Φ(β3)(z,λ)} obtained in
(48a) provide an Oλ basis of C3(λ), and the Sibuya solution Ψ (z,λ) belongs to the
same space. It follows that there exists a unique triplet of entire functionsQi (λ) ∈ Oλ,
for i = 1, 2, 3, such that

Ψ (z,λ) = Q1(λ)Φ(β1)(z,λ) + Q2(λ)Φ(β2)(z,λ) + Q3(λ)Φ(β3)(z,λ) . (57a)

Similarly, we have that

Ψ ∗(z,λ) = Q∗
1(λ)Φ(β∗

1 )(z,λ) + Q∗
2(λ)Φ(β∗

2 )(z,λ) + Q∗
3(λ)Φ(β∗

3 )(z,λ) , (57b)

for a unique triplet of entire functions Q∗
i (λ) ∈ Oλ, with i = 1, 2, 3. Substituting

the expansions (57) in the Ψ -system (56) and making use of the relations (51) we
obtain the following quadratic relations among the coefficients Q’s and Q∗’s, which
is known as Q˜Q-system. For each s ∈ S3 we have

(−1)p(s)Q∗
s(3)(λ) = eiπs(γ)Qs(1)(e

−iπk̂λ)Qs(2)(e
iπk̂λ)

− e−iπs(γ)Qs(1)(e
iπk̂λ)Qs(2)(e

−iπk̂λ), (58a)

(−1)p(s)Qs(3)(λ) = eiπs(γ
∗)Q∗

s(1)(e
−iπk̂λ)Qs(2)(e

iπk̂λ)

− e−iπs(γ∗)Q∗
s(1)(e

iπk̂λ)Q∗
s(2)(e

−iπk̂λ), (58b)

where p(s) is the parity of s, and the phases s(γ), s(γ∗) are defined in (52).
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Remark 2 System (58) was shown by Frenkel and Hernandez (2018) to be a univer-
sal system of relations in the commutative Grothendieck ring K0(O) of the category
O of representations of the Borel subalgebra of the quantum affine algebra Uq(̂sl3).

Finally, the Bethe Ansatz equations is a pair of functional relations for each one
of the six pairs of Q functions of the form {Qs(1)Q∗

s(3)}, s ∈ S3. Let λs denote an
arbitrary zero of the function Qs(1),and λ∗

s an arbitrary zero of Q
∗
s(3). Evaluating the

above relations at e±iπk̂λs we obtain the Bethe Ansatz equations

− e2iπs(γ) Qs(1)(e2iπk̂λs)

Qs(1)(e−2iπk̂λs)
= Q∗

s(3)(e
iπk̂λs)

Q∗
s(3)(e

iπk̂λs)
,

− e2iπs(γ
∗) Q∗

s(3)(e
2iπk̂λ∗

s )

Q∗
s(3)(e

−2iπk̂λ∗
s )

= Qs(1)(eiπk̂λ∗
s )

Qs(1)(e−iπk̂λ∗
s )

.

It is believed that each one of the 6 Bethe Ansatz equations is strong enough to
characterise all of the Q’s and Q∗’s, by means of the so-called Destri-De Vega
equations.

4 Quantum Boussinesq Model

The quantum Boussinesq model has been described in great detail by Bazhanov
et al. (2002), from which the notation of the present section is taken and to which
we refer for further details. The model is defined by considering a highest weight
representation VΔ2,Δ3 of the Zamolodchikov’s W3-algebra (Zamolodchikov 1985),
and it is characterized by 4 parameters: the central charge −∞ < c < 2, the high-
est weight (Δ2,Δ3) ∈ C

2, and the spectral parameter μ ∈ C. For generic values of
c,Δ2,Δ3, the representation VΔ2,Δ3 is irreducible, a condition we assume from now
on. Let Ln,Wn , n ∈ Z, denote the generators of theW3 algebra as in Bazhanov et al.
(2002), Sect. 2. The highest weight fixes a ground state |Δ2,Δ3〉 ∈ VΔ2,Δ3 , satisfying
Ln|Δ2,Δ3〉 = Wn|Δ2,Δ3〉 = 0 for n > 0, and

L0|Δ2,Δ3〉 = Δ2|Δ2,Δ3〉 W0|Δ2,Δ3〉 = Δ3|Δ2,Δ3〉.

The W3-module VΔ2,Δ3 admits the level decomposition

VΔ2,Δ3 =
∞
⊕

N=0

V (N )
Δ2,Δ3

, L0V (N )
Δ2,Δ3

= (Δ2 + N )V (N )
Δ2,Δ3

.

The ground state |Δ2,Δ3〉 has level zero, the higher states are obtained by the
action of products of the lowering operators Ln,Wn , n < 0. More precisely, let
{ν1 . . . , νl , ν̄1 . . . , ν̄k},withν j , ν̄ j ∈ N, be a bicoloured integer partition of the integer
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N , namely ν j ≤ ν j+1, ν̄ j ≤ ν̄ j+1 and
∑

j ν j +∑ j ν̄ j = N ; to any such a partition
one associates a state of level N by the formula

∏

j L−ν j

∏

j W−ν̄ j |0〉.
The integrable structure of the quantum Boussinesq model can be conveniently

encoded in the so-called Q-operators (Bazhanov et al. 2002, Sect. 2), from which
the quantum integrals of motion of the model can be obtained. The Q-operators are
more precisely operator-valued functionsQi (t),Qi (t), i = 1, 2, 3, depending on the
parameter t = μ3, where μ is the spectral parameter of the quantum model.5 The
level subspaces V (N )

Δ2,Δ3
are invariant with respect to the action of the Q-operators,

Qi (t) : V (N )
Δ2,Δ3

→ V (N )
Δ2,Δ3

, Qi (t) : V (N )
Δ2,Δ3

→ V (N )
Δ2,Δ3

,

and in particular (for N = 0), the ground state |Δ2,Δ3〉 is an eigenvector for the
Q-operators:

Qi (t)|Δ2,Δ3〉 = P (vac)
i (t)|Δ2,Δ3〉,

Qi (t)|Δ2,Δ3〉 = P
(vac)
i (t)|Δ2,Δ3〉.

As proved in Bazhanov et al. (2002), Sect. 5, the Q-operators (and therefore their
eigenvalues) satisfy the system of quadratic relations

c1Q1(t) = Q2(qt)Q3(q
−1t) − Q3(qt)Q2(q

−1t), (59a)

c1Q1(t) = Q3(qt)Q2(q
−1t) − Q2(qt)Q3(q

−1t), (59b)

c2Q2(t) = Q3(qt)Q1(q
−1t) − Q1(qt)Q3(q

−1t), (59c)

c2Q2(t) = Q1(qt)Q3(q
−1t) − Q3(qt)Q1(q

−1t), (59d)

c3Q3(t) = Q1(qt)Q2(q
−1t) − Q2(qt)Q1(q

−1t), (59e)

c3Q3(t) = Q2(qt)Q1(q
−1t) − Q1(qt)Q2(q

−1t), (59f)

where

q = eiπg, (60a)

c1 = eiπ(p1−
√
3p2) − e−iπ(p1−

√
3p2), (60b)

c2 = e−2iπ p1 − e2iπ p1 , (60c)

c3 = eiπ(p1+
√
3p2) − e−iπ(p1+

√
3p2), (60d)

and the parameter g, p1, p2 are related to c,Δ2,Δ3 by the identities (Bazhanov et al.
2002, Sect. 3)

c = 50 − 24(g + g−1), Δ2 = p21 + p22
g

+ c − 2

24
, Δ3 = 2p2(p22 − 3p21)

(3g)3/2
. (61)

5The spectral parameter μ is denoted λ in Bazhanov et al. (2002).



Opers for Higher States of the Quantum Boussinesq Model 77

4.1 From (58) to (59)

We now prove that the Q˜Q system (58) and the system (59) are equivalent. As a
by-product we deduce the explicit relations (3) among the parameters of the opers,
r̄1, r̄2, k,λ, and the parameters of the quantum theory, c,Δ2,Δ3,μ. More precisely,
we derive (3a), (3b) and (3c) while (3d) can be found in Bazhanov et al. (2002).

Let Qi , Q∗
i . i = 1, 2, 3 be the functions defined by the expansions (57), satisfying

the Q˜Q-system (58). Assume that Qi (0) �= 0 and Q∗
i (0) �= 0, i = 1, 2, 3. Recall the

definition of the indices βi , β∗
i , i = 1, 2, 3 as given in (47). Then, a direct calculation

shows that the functions

Pi (t) = tβi
Qi (t)

Qi (0)
, P∗

i (t) = tβ
∗
i
Q∗

i (t)

Q∗
i (0)

, i = 1, 2, 3

satisfy (59), with the parameters g, p1, p2 appearing in (60) related to the parameters
k̂, r1, r2 by the relations

g = 1 − k̂ = k + 3, p1 = r1

2
+ r2

2
− 1, p2 =

√
3

2
(r1 − r2). (62)

Substituting the above equation into (61) and using (34) we obtain (3a)–(3c).

Acknowledgements The authors are partially supported by the FCT Project PTDC/MAT-PUR/
30234/2017 ‘Irregular connections on algebraic curves and Quantum Field Theory’. D. M. is sup-
ported by the FCT Investigator grant IF/00069/2015 ‘A mathematical framework for the ODE/IM
correspondence’. The authors thank Dipartimento di Matematica dell’Università degli studi di Gen-
ova for the kind hospitality.

References

Bazhanov, V.V., Hibberd, A., Khoroshkin, S.: Integrable structure of W3 conformal field theory,
quantum Boussinesq theory and boundary affine Toda theory. Nucl. Phys. B 622(3), 475–547
(2002)

Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field
theory, quantum KdV theory and thermodynamic Bethe ansatz. Commun. Math. Phys. 177(2)
(1996)

Bazhanov,V.V., Lukyanov, S.L., Zamolodchikov,A.B.: Spectral determinants for Schrodinger equa-
tion and Q operators of conformal field theory. J. Statist. Phys. 102, 567–576 (2001)

Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Higher-level eigenvalues of Q-operators
and Schroedinger equation. Adv. Theor. Math. Phys. 7, 711 (2004)

Dorey, P., Dunning, C., Masoero, D., Suzuki, J., Tateo, R.: Pseudo-differential equations, and the
Bethe ansatz for the classical Lie algebras. Nucl. Phys. B 772(3), 249–289 (2007)

Dorey, P., Dunning, C., Tateo, R.: The ODE/IM correspondence. J. Phys. A. Math. Theor. 40(32)
(2007)

Dorey, P., Tateo,R.:Anharmonic oscillators, the thermodynamicBethe ansatz, andnonlinear integral
equations. J. Phys. A 32, L419–L425 (1999)



78 D. Masoero and A. Raimondo

Dorey, Patrick, Tateo, Roberto: Differential equations and integrable models: the SU(3) case. Nucl.
Phys. B 571(3), 583–606 (2000)

Feigin, B., Frenkel, E.: Integrals ofmotion and quantum groups. In: Integrable systems and quantum
groups, pp. 349–418. Springer (1996)

Feigin, B., Frenkel, E.: Quantization of soliton systems and Langlands duality. In: Exploring new
structures and natural constructions in mathematical physics. Adv. Stud. Pure Math., vol. 61, pp.
185–274. Math. Soc. Japan, Tokyo (2011)

Frenkel, E., Hernandez, D.: Spectra of quantum Kdv hamiltonians, Langlands duality, and affine
opers. Commun. Math. Phys. 362(2), 361–414 (2018)

Kostant, Bertram: On whittaker vectors and representation theory. Inventiones mathematicae 48,
101–184 (1978)

Kotousov, G.A., Lukyanov, S.L.: Bethe state norms for the heisenberg spin chain in the scaling limit
(2019). arXiv:1906.07081

Masoero, D., Raimondo, A.: Opers for higher states of quantum KdV models. Commun. Math.
Phys. 378, 1–74 (2020)

Masoero, D., Raimondo, A., Valeri, D.: Bethe ansatz and the spectral theory of affine lie algebra-
valued connections I. The simply-laced case. Comm. Math. Phys. 344(3), 719–750 (2016)

Masoero, D., Raimondo, A., Valeri, D.: Bethe ansatz and the spectral theory of affine lie algebra-
valued connections II: the non simply-laced case. Comm.Math. Phys. 349(3), 1063–1105 (2017)

Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Courier Dover Publica-
tions (2018)

Zamolodchikov,A.B.: Infinite extra symmetries in two-dimensional conformal quantumfield theory.
Teoret. Mat. Fiz. 65(3), 347–359 (1985)

http://arxiv.org/abs/1906.07081


Nonsingular Rational Solutions to
Integrable Models
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Abstract In the literature, there have been considerable interests in the study of
nonsingular rational solutions for nonlinear integrable models. These nonsingular
rational solutions have appeared with different names in a variety of nonlinear sys-
tems, say, algebraic solitons, algebraic solitrary waves and lump solutions etc. More
importantly, these nonsingular rational solutions have played a key role in the study
of rogue waves. In the paper, we will develop a new procedure to generate lump solu-
tions via Bäcklund transformations and nonlinear superposition formulae for some
integrable models. It is shown that our procedure can be utilized to somewell-studied
equations such as KPI equation, elliptic Toda equation and BKP equation, but also to
comparatively less-studied DJKM equation, Novikov-Veselov equation and negative
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1 Introduction

The theory of modern integrable systems originated from the work on the celebrated
Korteweg-de Vries (KdV) equation. It is a prototype water wave model involving a
broad variety of mathematical methods. This theory allows one to study a wide range
of phenomena and problems arising from physics, biology, and pure and applied
mathematics. The special significance of integrable systems is that they combine
tractability with nonlinearity. Hence, these systems enable one to explore nonlinear
phenomena while working with explicit solutions. One of the interesting explicit
solutions in nonlinear dynamics is that of solitons. Kruskal and Zabusky first discov-
ered solitons in the mid-1960s when they worked on the KdV equation. A soliton
is essentially a localized object that may be found in diverse areas of physics, such
as gravitation and field theory, plasma and solid state physics, and hydrodynamics.
The importance of solitons stems from the exhibition of particle-type interactions
and the characterization of the long time asymptotic behavior of the solution.

There are some other types of explicit solutions available in the literature. One
of them is so-called rational solutions, which is important to be found for integrable
equations. It provides us a criterion for integrability as the existence of an infinite
sequence of rational solutions appears to be equivalent to the Painlevé property
(Newell 1987), and the rational solutions are of, at least, potential value in physi-
cal applications. In this regard, of particularly interesting are an important class of
what we called nonsingular rational solutions. To the best of our knowledge, the
study of nonsingular rational solutions to integrable equations can be traced back
to Ames (1967) where N.J. Zabusky found simplest nonsingular rational solution
u = − 4q

1+4q2x2 to the Gardner equation

ut + 12quux + 6u2ux + uxxx = 0.

In the literature, there are three types of nonsingular rational solutions: (1) Alge-
braic solitons; (2) Lump solutions; (3) Rogue wave solutions. There are some exam-
ples which exhibit nonsingular rational solutions. In the case of algebraic solitons, a
typical example is the Benjamin-Ono (BO) equation

ut + 4uux + Huxx = 0, Hu(x, t) ≡ 1

π
PV

∫ ∞

−∞
u(y, t)

y − x
dy. (1)

In Ono (1975), Ono obtained 1-soliton solution u = a
a2(x−at−x0)2+1 . Some further

results about the algebraic solitons of the BO equation could be found in Matsuno
(1982a, b), Case (1979). The second example of algebraic solitons is the mKdV
equation vt + 6v2vx + vxxx = 0,whose simplest algebraic solutionwas also given by
Ono (1976) v = v0 − 4v0

4v20 (x−6v20 t)
2+1

. Furthermore, N-algebraic solitonswere found in
Ablowitz and Satsuma (1978). As for lump solutions, the result can be traced toMan-
akov et al. (1977) where Manakov et al. gave lump solutions to the KPI equation. In
particular, in Ablowitz and Satsuma (1978); Satsuma and Ablowitz (1979), Ablowitz
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and Satsuma developed a newmethod to seek lump solutions to the KPI equation and
DSI equation by taking the “long-wave” limit of the soliton solutions and there have
been many results about this topic; please see Feng et al. (1999), Grammaticos et al.
(2007), Ablowitz et al. (2000), Villarroel and Ablowitz (1999), Ma (2015), Villarroel
and Ablowitz (1994), Gilson and Nimmo (1990), Hu and Willox (1996). The third
line of research about nonsingular rational solutions is rogue wave solutions, which
is of physical significance. As is known, the NLS equation iut + uxx + 2|u|2u = 0

admits the following rogue wave solution u =
(
1 − 4(1+4i t)

1+4x2+16t2

)
e2i t . Obviously, by

taking u −→ ue−2i t , we may get a nonsingular rational solution of the equation

iut + uxx + 2(|u|2 − 1)u = 0.

For more examples, please see, e.g., Kharif et al. (2009), Solli et al. (2007), Peregrine
(1983), Dubard et al. (2010), Dubard andMatveev (2011), Gaillard (2011), Guo et al.
(2012), Ohta and Yang (2012), Li et al. (2013), Ohta and Yang (2012, 2013) and
references therein.

The purpose of this paper is to develop a new procedure to generate lump solutions
to several integrable models. Different from those by Ablowitz and Satsuma by
taking the “long-wave” limit of the soliton solutions obtained and those by Ablowitz
and Villarroel based on inverse scattering transform, the technique we develop here
is via Bäcklund transformations and nonlinear superposition formulae in Hirota’s
bilinear formalism (Hirota and Satsuma 1978). We will apply our procedure to the
some known examples such as KPI equation, two-dimensional Toda equation, BKP
equation to show how it works and further to the DJKM equation, Novikov-Veselov
equation and negative flow of BKP equation to show its effectiveness.

2 The Lump Solutions of KP Equation

The KP equation takes the form

(ut + 6uux + uxxx )x + αuyy = 0. (2)

Traditionally, the Eq. (2) with α = −1 is called KPI, and the one for α = 1 is KPII.
The KPI equation does not have stable soliton solutions but has localized solutions
that decay algebraically as x2 + y2 → ∞ and are called lumps. The lump solutions
of KPI have been first obtained by Manakov et al. (1977) and also by Ablowitz and
Satsuma (1978). Subsequently, Ablowitz and Satsuma derived the determinant form
of the N-lump solution for the KPI equation by taking limits of the corresponding
soliton solutions in Satsuma and Ablowitz (1979). In the following, we will use the
bilinear Bäcklund transformation and the nonlinear superposition formula to rederive
the N-lump solutions of KPI equation.
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Through the dependent variable transformation u = 2(ln f )xx , the Eq. (2) can be
written in bilinear form

(Dx Dt + D4
x + αD2

y) f · f = 0, (3)

where the bilinear operator Dm
x D

k
t is defined by Hirota (2004)

Dm
x D

k
t a · b ≡

(
∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)k

a(x, t)b(x ′, t ′)

∣∣∣∣∣
x ′=x,t ′=t

.

A bilinear Bäcklund transformation for Eq. (3) is given by Nakamura (1981), Hu
(1997)

(aDy + D2
x + λDx) f · f ′ = 0, (4)

(Dt + D3
x − 3aλDy − 3aDx Dy) f · f ′ = 0, (5)

where a2 = 1
3α and λ is an arbitrary constant. We represent (4)–(5) symbolically by

f
λ−→ f ′. The associated nonlinear superposition formula for the Eq. (3) is stated in

the following proposition (Nakamura 1981; Hu 1997).

Proposition 1 Let f0 be a nonzero solution of (3) and suppose that f1 and f2 are

solutions of (3) such that f0
λi−→ fi (i = 1, 2). Then f12 defined by

f0 f12 = c[Dx + 1

2
(λ2 − λ1)] f1 · f2, c is a nonzero real constant (6)

is a new solution to (3) which is related to f1 and f2 under bilinear BT (4)–(5) with
parameters λ2 and λ1 respectively, i.e.

f0

f1

f12

f2

λ1

λ2

λ2

λ1

In Hu (1997), it has been shown if we choose θi = x + pi y − αp2i t , then the

Bäcklund transformation tells us 1
λi=−api−→ fi = θi + βi (where βi is a constant). By

using proposition 1, we can obtain the following solution to the KP equation

f12 = 2

a(p1 − p2)
[ f1x f2 − f1 f2x + 1

2
(λ2 − λ1) f1 f2] =

θ1θ2 + (β1 + 2

a(p1 − p2)
)θ2 + (β2 − 2

a(p1 − p2)
)θ1 + β1β2 + 2(β2 − β1)

a(p1 − p2)
,

(7)
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by taking c = 2
a(p1−p2)

in (6). If α = −1, p2 = p∗
1, β1 = − 2

a(p1−p2)
, β2 = 2

a(p1−p2)
in

(7), then we obtain the 1-lump solution

f12 = θ1θ
∗
1 − 12

(p1 − p∗
1)

2
> 0.

Furthermore, we can obtain an N-lump solution of the KP equation by using the
nonlinear superposition formula repeatedly. For this purpose, we have the following
proposition.

Proposition 2

FN = cN

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fN
(−∂x + λ1

2 ) f1 (−∂x + λ2
2 ) f2 · · · (−∂x + λN

2 ) fN
...

...
...

(−∂x + λ1
2 )N−1 f1 (−∂x + λ2

2 )N−1 f2 · · · (−∂x + λN
2 )N−1 fN

∣∣∣∣∣∣∣∣∣
(8)

is a determinant solution to the KP equation (3), where fi (i = 1, 2, . . . , N ) is
obtained from the seed solution f0 by using Bäcklund transformation (4) and (5),

i.e. f0
λi−→ fi .

In order to obtain the N-lump solution, we take fi = θi + βi , θi = x + pi y −
αp2i t, λi = −api , βi = ∑

j �=i

2
λi−λ j

for i = 1, 2, . . . , N and cN = ∏
1≤i< j≤N

2
λ j−λi

. In this

case, from (8), we have

FN = cN

∣∣∣∣∣∣∣∣∣∣∣

θ1 + β1 · · · θN + βN

−1 + λ1
2 (θ1 + β1) · · · −1 + λN

2 (θN + βN )

.

.

.

.

.

.

(−N + 1)(
λ1
2 )N−2 + (

λ1
2 )N−1(θ1 + β1) · · · (−N + 1)(

λN
N )N−2 + (

λN
2 )N−1(θN + βN )

∣∣∣∣∣∣∣∣∣∣∣
.

It can be verified that the above determinant can be written as the product of the
determinants

∣∣∣∣∣∣∣∣∣

1 λ1
2 · · · ( λ1

2 )N−1

1 λ2
2 · · · ( λ2

2 )N−1

...
...

...

1 λN
2 · · · ( λN

2 )N−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣

θ1
2

λ1−λ2
· · · 2

λ1−λN− 2
λ1−λ2

θ2 · · · 2
λ2−λN

...
...

...
...

− 2
λ1−λN

− 2
λ2−λN

· · · θN

∣∣∣∣∣∣∣∣∣
.

By using the basic property of Vandermonde determinant, we know
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FN =

∣∣∣∣∣∣∣∣∣

θ1
2

λ1−λ2
· · · 2

λ1−λN− 2
λ1−λ2

θ2 · · · 2
λ2−λN

...
...

...
...

− 2
λ1−λN

− 2
λ2−λN

· · · θN

∣∣∣∣∣∣∣∣∣
. (9)

If we choose N = 2M, pM+i = (pi )∗(i = 1, 2, . . . , M), then FN gives the M-lump
solutions of KPI equation which coincides with those obtained in Satsuma and
Ablowitz (1979). The positivity of (9) could be found in Ohta and Yang (2013)
for an affirmative answer.

3 The Lump Solutions of the DJKM Equation

The second equation of the KP hierarchy is the DJKM equation which is written as

wxxxxy + 2wxxxwy + 4wxxywx + 6wxywxx − wyyy − 2wxxt = 0. (10)

Through the dependent variable transformation w = 2(ln f )x , the Eq. (10) can be
transformed into the multilinear form

Dx [(D3
x Dy − Dx Dt ) f · f ] · f 2 + 1

2
Dy[(D4

x − 3D2
y) f · f ] · f 2 = 0. (11)

A bilinear Bäcklund transformation for Eq. (11) is given by

(D2
x + i Dy + λ + μDx ) f · f ′ = 0, (12a)

(i Dt + 3

2
λDy − 1

2
D2

y − i

2
μ2Dy − i

2
μDx Dy − i

2
D2

x Dy) f · f ′ = 0, (12b)

where λ,μ are arbitrary constants. If we take λ = 0 for simplicity, then Bäcklund
transformation (12a) and (12b) can be symbolically written as f

μ−→ f ′. The asso-
ciated nonlinear superposition formula for the Eq. (11) is stated in the following
proposition.

Proposition 3 Let f0 be a nonzero solution of (11) and suppose that f1 and f2 are

solutions of (11) such that f0
μi−→ fi (i = 1, 2). Then f12 defined by

f0 f12 = c[Dx + 1

2
(μ2 − μ1)] f1 · f2, (13)

is a new solution to (11) which is related to f1 and f2 under bilinear BT with
parameters μ2 and μ1 respectively. Here c is a nonzero real constant.

Similar with the KP case, we obtain the 1-lump solution to the DJKM equation
by using the Bäcklund transformation and nonlinear superposition formula. By set-
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ting θi = x + pi y − 1
2 p

3
i t , then from bilinear BT, one obtains 1

μi=−i pi−→ fi = θi + βi

(where βi is a constant). Now from the nonlinear superposition formula (13), we
obtain the following solution of the DJKM equation

f12 = 2

μ2 − μ1
[ f1x f2 − f1 f2x + 1

2
(μ2 − μ1) f1 f2] =

θ1θ2 + (β1 + 2

μ2 − μ1)
)θ2 + (β2 − 2

μ2 − μ1
)θ1 + [β1β2 + 2(β2 − β1)

μ2 − μ1
] (14)

by taking c = 2
μ2−μ1

in (13). If we choose p2 = p∗
1, β1 = 2

μ1−μ2
, β2 = 2

μ2−μ1
in (14),

then we obtain μ2 = −μ∗
1, θ2 = θ∗

1 and the 1-lump solution

f12 = θ1θ
∗
1 + 4

(μ1 + μ∗
1)

2
= |θ1|2 + 4

(μ1 + μ∗
1)

2
> 0. (15)

The N-lump solution could be found by using the nonlinear superposition formula
repeatedly.

Proposition 4

FN = cN

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fN
(−∂x + μ1

2 ) f1 (−∂x + μ2

2 ) f2 · · · (−∂x + μN

2 ) fN
...

...
...

...

(−∂x + μ1

2 )N−1 f1 (−∂x + μ2

2 )N−1 f2 · · · (−∂x + μN

2 )N−1 fN

∣∣∣∣∣∣∣∣∣
is a determinant solution to the DJKM equation (11), where fi (i = 1, 2, . . . , N ) are

obtained from seed solution f0 by using BT (12a)–(12b) f0
μi−→ fi .

In order to obtain the multi-lump solution, we take fi = θi + βi , θi = x + pi y −
1
2 p

3
i t, μi = −i pi , βi = ∑

j �=i

2
μi−μ j

for i = 1, 2, . . . , N . After the proper choices of

parameters, the determinant FN could be written as

FN = cN

∣∣∣∣∣∣∣∣

θ1 + β1 · · · θN + βN
.
.
.

.

.

.

(−N + 1)(
μ1
2 )N−2 + (

μ1
2 )N−1(θ1 + β1) · · · (−N + 1)(

μN
N )N−2 + (

μN
2 )N−1(θN + βN )

∣∣∣∣∣∣∣∣
.

It can be verified that the above determinant is also a product of determinants

∣∣∣∣∣∣∣∣∣

1 μ1

2 · · · (
μ1

2 )N−1

1 μ2

2 · · · (
μ2

2 )N−1

...
...

...
...

1 μN

2 · · · (
μN

2 )N−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

θ1
2

μ1−μ2
· · · 2

μ1−μN− 2
μ1−μ2

θ2 · · · 2
μ2−μN

...
...

...
...

− 2
μ1−μN

− 2
μ2−μN

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (16)
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The choice of cN = ∏
1≤i< j≤N

2
μ j−μi

gives us

FN =

∣∣∣∣∣∣∣∣∣∣

θ1
2

μ1−μ2
· · · 2

μ1−μN− 2
μ1−μ2

θ2 · · · 2
μ2−μN

...
...

...
...

− 2
μ1−μN

− 2
μ2−μN

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (17)

For N = 2M and pM+i = (pi )∗ (i = 1, 2, . . . , M), we could find that θM+i =
(θi )

∗, μM+i = −(μi )
∗ and the positivity of FN is the same with KP case. There-

fore, in this case, FN is the M-lump solution of the DJKM equation.

4 The Lump Solutions of the Elliptic Toda Equation

We now consider the so-called elliptic Toda equation

(
∂2

∂x2
+ ∂2

∂ y2
)(log un) = un+1 − 2un + un−1.

This equation has been studied in Villarroel (1998); Villarroel and Ablowitz (1994),
where the inverse scattering method was applied to obtain lump solutions. By the use
of variable transformation un = fn+1 fn−1

f 2n
, we can obtain the following bilinear form

(D2
x + D2

y) fn · fn = (2eDn − 2) fn · fn (18)

which admits a Bäcklund transformation as follows

(Dx + i Dy + λ−1e−Dn + μ) f · g = 0, (19a)

((Dx − i Dy)e
− 1

2 Dn − λe
1
2 Dn + γ e− 1

2 Dn ) f · g = 0. (19b)

Furthermore, from the Bäcklund transformation, we may get the following superpo-
sition formula.

Proposition 5 Let f0(n) be a nonzero solution of Eq. (18) and suppose that f1(n)

and f2(n) are solutions of (18) such that f0(n)
λi−→ fi (n) (i = 1, 2), then there exists

the following nonlinear superposition formula

e− 1
2 Dn f0 · f12 = c(λ1e

− 1
2 Dn − λ2e

1
2 Dn ) f1 · f2 (20)

where f12 is a new solution of (18) related to f1 and f2 with parameters λ2 and λ1

respectively. Here c is a nonzero constant.
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In order to get the lump solution,we choose f0 = 1 and fi (i = 1, 2) as linear func-

tionswith respect to x, y and n, i.e. 1
λi−→ fi = θi + βi = n + pi x + qi y + βi . Then

from the Bäcklund transformation (19a) and (19b), we may getμi = −λ−1
i , γi = λi ,

p j = 1
2 (λ

−1
j + λ j ) and q j = 1

2i (λ
−1
j − λ j ). Therefore, we get the seed function of

the lump solutions

θ j = n + 1

2
(λ−1

j + λ j )x + 1

2i
(λ−1

j − λ j )y, j = 1, 2.

Therefore the nonlinear superposition formula (20) becomes

f12(n) = c(λ1 f1(n − 1) f2(n) − λ2 f1(n) f2(n − 1)). (21)

In this case, if we take c = 1
λ1−λ2

and fi = θi + βi , then (21) can be written as

f12(n) = θ1θ2 + 1

λ1 − λ2
(λ1β2 − λ2(β2 − 1))θ1

+ 1

λ1 − λ2
(λ1(β1 − 1) − λ2β1)θ2 + β1β2 + 1

λ1 − λ2
(λ2β1 − λ1β2). (22)

Furthermore, if we take β1 = λ1
λ1−λ2

, β2 = − λ2
λ1−λ2

, then we have:

f12(n) = θ1θ2 + A, (23)

where A = λ1λ2
(λ1−λ2)2

. Obviously, if we choose λ1 �= λ2, then θ1 = θ∗
2 , A > 0, and

therefore we get 1-lump solution of the elliptic Toda equation which is shown in
Fig. 1.

Proposition 6 The elliptic Toda equation admits the general nonlinear superposi-
tion formula

e− 1
2 Dn FN−1 · FN+1 = c(λNe

− 1
2 Dn − λN+1e

1
2 Dn )FN · F̂N , (24)

Fig. 1 1-lump solution of the elliptic Toda equation
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where

FN (n) =

∣∣∣∣∣∣∣

f1(n) · · · fN (n)
...

...

(−λ1)
N−1 f1(n − N + 1) · · · (−λN )N−1 fN (n − N + 1)

∣∣∣∣∣∣∣
:= |1(n), . . . , N (n)|.

F̂N (n) = |1(n), . . . , N − 1(n), N + 1(n)| .

Here { f j (n, x, y), j = 1, 2, . . . , N + 1} are the seed functions f j (n, x, y) = n +
1
2 (λ

−1
j + λ j )x + 1

2i (λ
−1
j − λ j )y + β j .

Proof It is noted that (24) can be alternatively written as:

FN−1(n − 1)FN+1(n) = (λN FN (n − 1)F̂N (n) − λN+1FN (n)F̂N (n − 1)) (25)

and

FN−1(n − 1) = |1(n − 1), . . . , N − 1(n − 1)| =
N−1∏
i=1

(−λi )D

[
1
N

]

where the determinant D means FN (n) and D

[
j
k

]
means the (N − 1)-th minor of

D whose j-th row and k-th column are deleted. By taking the explicit forms of F
and F̂ into the Eq. (25), we may see the nonlinear superposition formula is a Jacobi
identity.

Inspired by the 1-lump solution, we now choose f j (n) = θ j (n) + β j = n +
1
2 (λ

−1
j + λ j )x + 1

2i (λ
−1
j − λ j )y + β j , and therefore the solution FN (n) can be writ-

ten as

FN (n) =

∣∣∣∣∣∣∣∣∣

θ1 + β1 · · · θN + βN

−λ1(θ1 + β1 − 1) · · · −λN (θN + βN − 1)
...

...

(−λ1)
N−1(θ1 + β1 − N + 1) · · · (−λN )N−1(θN + βN − N + 1)

∣∣∣∣∣∣∣∣∣
,

from which we see that if and only if we take βi = λi
∑
j �=i

1
λi−λ j

, we can get F2M

without the odd term. On the other hand, from the determinant identity, we may get

FN (n) =

∣∣∣∣∣∣∣∣∣

1 −λ1 · · · (−λ1)
N−1

1 −λ2 · · · (−λ2)
N−1

...
...

...

1 −λN · · · (−λN )N−1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣∣

θ1
−λ1

λ1−λ2
· · · −λ1

λ1−λN−λ2
λ2−λ1

θ2 · · · −λ2
λ2−λN

...
...

. . .
...

−λN
λN−λ1

−λN
λN−λ2

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (26)
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In this case, we have the following determinant solution

FN (n) =

∣∣∣∣∣∣∣∣∣∣

θ1
−λ1

λ1−λ2
· · · −λ1

λ1−λN−λ2
λ2−λ1

θ2 · · · −λ2
λ2−λN

...
...

. . .
...

−λN
λN−λ1

−λN
λN−λ2

· · · θN

∣∣∣∣∣∣∣∣∣∣
. (27)

In the following,wewant to construct lump solutions from (27).Herewe just consider
the case of N = 4, and set the parameters as λ3 = 1

λ∗
1
, λ4 = 1

λ∗
2
. In this case, we have

F4 = θ1θ
∗
1 θ2θ

∗
2 + λ1λ2

(λ1 − λ2)2
θ∗
1 θ∗

2 + c.c + λ∗
1λ2

(λ∗
1λ2 − 1)2

θ1θ
∗
2 + c.c

+ λ1λ
∗
1

(λ1λ
∗
1 − 1)2

θ2θ
∗
2 + λ2λ

∗
2

(λ2λ
∗
2 − 1)2

θ1θ
∗
1 + A,

where c.c means the complex conjugate and A is greater than zero. It means F4 is
2-lump solution of the Toda equation and Fig. 2 shows 2-lump solution of the Toda
equation.

In general, Villarroel has shown in Villarroel (1998) that the F2N given by (27) is
always greater than 0 if λN+iλ

∗
i = 1 and {λi , 1 ≤ i ≤ 2N } are off the unit circle.

Fig. 2 The interaction of 2-lumps of the Toda equation
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5 The Lump Solution of the BKP Equation

In Gilson and Nimmo (1990), the lump solution of the BKP equation has been
considered by Claire Gilson and Jon Nimmo. In this part, we would like to show the
Bäcklund transformation and nonlinear superposition formula can also provide us a
Pfaffian form to the lump solution of BKP, which indicates this technique could also
be used for the B∞-type equations and Pfaffian forms.

Consider the BKP equation

(ut + 15uu3x + 15u3x − 15uxuy + u5x )x + 5u3x,y − 5uyy = 0.

Through the bilinear transformation u = 2(log f )x , we obtain the bilinear form for
the BKP equation

(D6
x − 5D3

x Dy − 5D2
y + 9Dx Dt ) f · f = 0, (28)

whose Bäcklund transformation is indicated as follows (Hirota 2004)

(D3
x − Dy − 3kD2

x + 3k2Dx) f · g = 0, (29a)

(−D5
x − 5D2

x Dy + 5kD4
x + 5k2D3

x − 10k2Dy + 10kDx Dy + 6Dt ) f · g = 0.
(29b)

Furthermore, we have the following nonlinear superposition formula.

Proposition 7 Let f0 be a nonzero solution of Eq. (28) and suppose that f1 and f2
are solutions such that f0

λi−→ fi (i = 1, 2), then there exists the following nonlinear
superposition formula

[Dx − (k1 + k2)] f0 · f12 = c[Dx + (k1 − k2)] f1 · f2 (30)

where f12 is a new solution related to f1 and f2 with parameters λ2 and λ1 respec-
tively. Here c is a nonzero constant.

For the Bäcklund transformation (29a) and (29b), if we take f0 = 1 and fi (i = 1, 2)
as the linear functions, then fi = θi + βi = x + 3k2i y + 5k4i t + βi , i = 1, 2. In this
case, the nonlinear superposition formula becomes

− d

dx
f12 − (k1 + k2) f12 = f2 − f1 + (k1 − k2) f1 · f2. (31)

By solving this ordinary differential equation, wemay obtain the solution of the BKP
equation
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Fig. 3 The figure of 1-lump solution of the BKP equation

f12 = k2 − k1
k1 + k2

f1 f2 + 2k1
(k1 + k2)2

f1 − 2k2
(k1 + k2)2

f2 + 2
k2 − k1

(k1 + k2)3

= k2 − k1
k1 + k2

θ1θ2 + (k22 − k21)β2 + 2k1
(k1 + k2)2

θ1 + (k22 − k21)β1 − 2k2
(k1 + k2)2

θ2 + A,

where A = k2−k1
k1+k2

β1β2 + β1−β2

k1+k2
− k2−k1

(k1+k2)2
(β1 + β2) + 2 k2−k1

(k1+k2)3
. It can be verified that

if we take β1 = −2k2
k21−k22

, β2 = 2k1
k21−k22

, k2 = k∗
1 and |Imk1| > |Rek1|, then the 1-lump

solution could be obtained.

Remark 1 Notice that the first order ordinary differential equation (31) may have a
general solution, however, in the lump-solution case, we just consider the polynomial
solution of f , hence this solution is unique in this sense.

In Fig. 3, the 1-lump solution of the BKP equation is drawn for a particular choice
of the parameters.

Proposition 8 BKP equation has a general nonlinear superposition formula as fol-
lows

[Dx − (k2n+1 + k2n+2)]F2n · F2n+2 = [Dx + (k2n+1 − k2n+2)]F̂2n+1 · F2n+1. (32)

In particular, the solution F2n, F2n+1 and F̂2n+1 have the Pfaffian forms

F2n = (1, . . . , 2n), F2n+1 = (d0, 1, . . . , 2n + 1), F̂2n+1 = (d0, 1, . . . , 2n, 2n + 2),
(33)

in which the Pfaff element satisfies the following relationship

(d0, i) = fi = θi + βi = x + 3k2i y + 5k4i t + βi ,

(d1, i) = d

dx
(d0, i) + ki (d0, i) = 1 + ki fi , (34)

d

dx
(i, j) + (ki + k j )(i, j) = (d0, d1, i, j), (d0, d1) = 0.
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In order to prove the proposition, we need following lemmas.

Lemma 1 Under the assumption of the Pfaff element (33), we have

d

dx
(1, . . . , 2n) + (

2n∑
i=1

ki )(1, . . . , 2n) = (d0, d1, 1, . . . , 2n). (35)

Proof We will prove this conclusion by induction. For n=1, it is just the assumption
we set in (33). By assumption, it is known that

d

dx
(2, . . . , ĵ, . . . , 2n + 2) +

2n+2∑
i=2,i �= j

ki (2, . . . , ĵ, . . . , 2n + 2) = (d0, d1, 2, . . . , ĵ, . . . , 2n + 2)

holds for Pfaffian of order n. Then for Pfaffian of order n + 1, we have

(d0, d1, 1, . . . , 2n + 2)

=
2n+2∑
j=2

(−1) j [(d0, d1, 1, j)(2, . . . , ĵ, . . . , 2n + 2) + (1, j)(d0, d1, 2, . . . , ĵ, . . . , 2n + 2)]

=
2n+2∑
j=2

(−1) j {[ d

dx
(1, j) + (k1 + k j )(1, j)](2, . . . , ĵ, . . . , 2n + 2)

+ (1, j)[ d

dx
(2, . . . , ĵ, . . . , 2n + 2) +

∑
i �= j

ki (2, . . . , ĵ, . . . , 2n + 2)]}

= d

dx
(1, . . . , 2n + 2) +

2n+2∑
i=1

ki (1, . . . , 2n + 2),

which completes the proof.

Lemma 2 Under the assumption of the Pfaffian element (33), we also have

(d1, 1, . . . , 2n + 1) = d

dx
(d0, 1, . . . , 2n + 1) + (

2n+1∑
i=1

ki )(d0, 1, . . . , 2n + 1), (36a)

(d1, 1, . . . , 2n, 2n + 2) = d

dx
(d0, 1, . . . , 2n, 2n + 2) + (

∑
i �=2n+1

ki )(d0, 1, . . . , 2n, 2n + 2).

(36b)

Proof We just prove the first equation, and the second one can be verified in a similar
way. By expansion of Pfaffian, one has
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(d1, 1, . . . , 2n + 1)

=
2n+1∑
j=1

(−1) j (d1, j)(1, . . . , ĵ, 2n + 1)

=
2n+1∑
j=1

(−1) j−1[ d

dx
(d0, j) + k j (d0, j)](1, . . . , ĵ, . . . , 2n + 1)

= d

dx
(d0, 1, . . . , 2n + 1) +

2n+1∑
j=1

(−1) j−1k j (d0, j)(1, . . . , ĵ, . . . , 2n + 1)

−
2n+1∑
j=1

(−1) j−1(d0, j)[(d0, d1, 1, . . . , ĵ, . . . , 2n + 1) − (

2n+1∑
i=1,i �= j

ki )(1, . . . , ĵ, . . . , 2n + 1)]

= d

dx
(d0, 1, . . . , 2n + 1) + (

2n+1∑
i=1

ki )(d0, . . . , 2n + 1),

and the equation is verified.

The Lemma 1 tells us the left side of the nonlinear superposition formula can be
written as

(d0, d1, 1, . . . , 2n)(1, . . . , 2n + 2) − (1, . . . , 2n)(d0, d1, 1, . . . , 2n + 2), (37)

while the Lemma 2 shows the right side can be written as

− (d1, 1, . . . , 2n + 1)(d0, 1, . . . , 2n, 2n + 2) + (d0, 1, . . . , 2n + 1)(d1, 1, . . . , 2n, 2n + 2).
(38)

Therefore, under these two lemmas, we find that the nonlinear superposition formula
of BKP equation (30) can be written as

(d0, d1, 1, . . . , 2n)(1, . . . , 2n + 2) − (1, . . . , 2n)(d0, d1, 1, . . . , 2n + 2) =
−(d1, 1, . . . , 2n + 1)(d0, 1, . . . , 2n, 2n + 2) + (d0, 1, . . . , 2n + 1)(d1, 1, . . . , 2n, 2n + 2),

which is the Pfaffian identity (Hirota 2004).
And then we would like to prove the F2n given in (33) is always positive or

always negative under some constrains. Following the method mentioned in Gilson
and Nimmo (1990), we first consider the determinant of 2n × 2n skew-symmetric
matrix A = (ai, j )1≤i, j≤2n which can be represented as the square of Pfaffian given
in (33):

F2
2n = (1, 2, . . . , 2n)2 = det A. (39)

Applying Eqs. (33) and (39), we can derive:
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ai, j = ki − k j

ki + k j
[( fi + 2k j

k2i − k2j
)( f j − 2ki

k2i − k2j
) + 2(k2i + k2j )

(k2i − k2j )
2
]. (40)

If we set ki = k∗
n+i , βi = β∗

n+i and |Imki | > |Reki |, then the determinant of A can
be written as the following form:

det A = det

∣∣∣∣ C B
−B∗ C∗

∣∣∣∣ , (41)

which is always positive. In Eq. (41), B = (bi, j )1≤i, j≤n , C = (ci, j )1≤i, j≤n are two
n × n matrices, whose element bi, j , ci, j are given by:

bi, j = ki − k	
j

ki + k	
j

[( fi + 2k	
j

k2i − k	2
j

)( f 	
j − 2ki

k2i − k	2
j

) + 2(k2i + k	2
j )

(k2i − k	2
j )2

],

ci, j = ki − k j

ki + k j
[( fi + 2k j

k2i − k2j
)( f j − 2ki

k2i − k2j
) + 2(k2i + k2j )

(k2i − k2j )
2
].

Since F2
2n > 0 by taking ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki | in F2n , and the

lump solution is a continuous function, so the F2n is always positive or always
negative. Therefore, the solution F2n with ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki |

is the nonsingular rational solution of the BKP equation.

6 The Lump Solutions of the Novikov-Veselov Equation

In this part, we want to discuss the lump solution of the Novikov-Veselov equation

2ut + uxxx + uyyy + 3(u∂−1
y ux )x + 3(u∂−1

x uy)y = 0, (42)

which can be viewed as an extension the KdV equation in two spatial dimensions
and one temporal dimension. Bäcklund Transformation and nonlinear superposition
formula and 1,2-lump solutions have been studied in Hu and Willox (1996). Here
we revisited some important facts.

Under the dependent variable transformation u = u0 + 2(log f )xy with u0 a con-
stant, the Eq. (42) can be transformed into the multilinear form and enjoys the fol-
lowing Bäcklund transformation

(Dx Dy − μDx − λDy + λμ + u0) f · f ′ = 0, (43a)

(2Dt + D3
x + D3

y + 3λ2Dx − 3λD2
x + 3μ2Dy − 3μD2

y) f · f ′ = 0, (43b)

where λ and μ are arbitrary constants. The nonlinear superposition formula can be
stated as follows.
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Fig. 4 1-lump solution of the Novikov-Veselov equation

Proposition 9 Let f0 be a nonzero solution of (42) and suppose that f1 and f2 are

solutions of (42) such that f0
μi−→ fi (i = 1, 2). Then f12 defined by

[Dx − (k1 + k2)] f0 · f12 = c[Dx + (k1 − k2)] f1 · f2 (44)

is a new solution to (42) which is related to f1 and f2 under bilinear BT (43a) and
(43b) with parameters k2 and k1 respectively. Here c is a nonzero real constant.

To obtain the lump solutions, we have to take f0 = 1 and fi = θi + βi = k2i x +
u0y − 3

2(k4i +u30/k
2
i )
t + βi . For 1-lump solution, if we set k2 = k∗

1 , β1 = β∗
2 and Imki >

Reki , (i = 1, 2), then

f12 = (θ1 + 2k21k2
k21 − k22

) × c.c. + 2
k21k

2
2(k

2
1 + k22)

(k21 − k22)
2

,

where c.c. means the complex conjugate. Obviously, f12 is positive and it is a 1-lump
solution. We depict the 1-lump solution of the Novikov-Veselov equation in Fig. 4.

Noticing that the nonlinear superposition formula of the Novikov-Veselov equa-
tion (44) is the same as the BKP equation (30), the Novikov-Veselov equation (44)
possesses the same structure of solution as theBKPequation except the seed function.
Hence we have the following proposition.

Proposition 10 Novikov-Veselov equation owns a general nonlinear superposition
formula

[Dx − (k2n+1 + k2n+2)]F2n · F2n+2 = [Dx + (k2n+1 − k2n+2)]F̂2n+1 · F2n+1, (45)

where

F2n = (1, . . . , 2n), F2n+1 = (d0, 1, . . . , 2n + 1), F̂2n+1 = (d0, 1, . . . , 2n, 2n + 2),
(46)

where the Pfaffian elements satisfy the following relationships
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(d0, i) = fi = θi + βi = k2i x + u0y − 3

2(k4i + u30/k
2
i )
t + βi ,

(d1, i) = d

dx
(d0, i) + ki (d0, i),

d

dx
(i, j) + (ki + k j )(i, j) = (d0, d1, i, j), (d0, d1) = 0. (47)

Since the proof of this proposition is similar to that of BKP equation, we omit it here.
If we set ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki |, then we can show in a similar

way in Sect. 5 that F2n is always positive or always negative. Therefore, we get the
N-lump solution of the Novikov-Veselov equation, which has the representation of
(46) with ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki |.

7 The Lump Solutions for Negative Flow of BKP Equation

InHirota (2004), Sect. 3.3, the author proposed another shallowwave equation, called
the negative flow of BKP equation

uyt − uxxxy − 3(uxuy)x + 3uxx = 0. (48)

By the dependent variable transformation u = 2(log f )x , it can be transformed into
a bilinear form

[(Dt − D3
x )Dy + 3D2

x ] f · f = 0,

which possesses the following Bäcklund transformation

(Dx Dy + λ−1Dx + λDy) f · f ′ = 0, (49a)

(D3
x + 3λD2

x + 3λ2Dx − Dt ) f · f ′ = 0. (49b)

Furthermore, we have the following result.

Proposition 11 Let f0 be a nonzero solution of Eq. (48) and suppose that f1 and

f2 are solutions of (48) such that f0
λi−→ fi (i = 1, 2), then there exists a following

nonlinear superposition formula

(Dx + (k1 − k2)) f0 · f12 = c(Dx − (k1 − k2)) f1 · f2, (50)

where f12 is a new solution of (48) related to f1 and f2 under bilinear BT (49a) and
(49b) with parameters k2 and k1 respectively. Here c is a nonzero constant.

A 1-lump solution of the negative flow for BKP equation is derived in the follow-
ing. Starting with f0 = 1, fi = x − k2i y + 3k2i t + βi (i = 1, 2), we may obtain the
following solution
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f12 = k2 − k1
k1 + k2

f1 f2 + 2k1
(k1 + k2)2

f1 − 2k2
(k1 + k2)2

f2 + 2
k2 − k1

(k1 + k2)3

= k2 − k1
k1 + k2

θ1θ2 + (k22 − k21)β2 + 2k1
(k1 + k2)2

θ1 + (k22 − k21)β1 − 2k2
(k1 + k2)2

θ2 + A,

where A = k2−k1
k1+k2

β1β2 + β1−β2

k1+k2
− k2−k1

(k1+k2)2
(β1 + β2) + 2 k2−k1

(k1+k2)3
. If we take β1 =

−2k2
k21−k22

, β2 = 2k1
k21−k22

, k2 = k∗
1 and |Imk1| > |Rek1|, we get the 1-lump solution.

In order to obtain N-lump solutions, we need to establish a general nonlinear
superposition formula for the negative flow BKP equation.

Proposition 12 The negative flow BKP equation owns a general nonlinear super-
position formula

[Dx − (k2n+1 + k2n+2)]F2n · F2n+2 = [Dx + (k2n+1 − k2n+2)]F̂2n+1 · F2n+1 (51)

and the solutions F2n, F2n+1 and F̂2n+1 are expressed as Pfaffians

F2n = (1, . . . , 2n), F2n+1 = (d0, 1, . . . , 2n + 1), F̂2n+1 = (d0, 1, . . . , 2n, 2n + 2),
(52)

where the Pfaff elements satisfy the following relations

(d0, i) = fi = θi + βi = x − k2i y + 3k2i t + βi ,

(d1, i) = d

dx
(d0, i) + ki (d0, i),

d

dx
(i, j) + (ki + k j )(i, j) = (d0, d1, i, j), (d0, d1) = 0. (53)

The proof of Proposition 12 is similar to the case of BKP equation, so we omit it
here. Furthermore, we can show in a similar way in Sect. 5 that F2n in (52) with
ki = k∗

n+i , βi = β∗
n+i and |Imki | > |Reki | gives the N-lump solution of the negative

flow of BKP equation.

8 Conclusion

It is truly remarkable that the lump solutions of several integrable models could be
obtained by Bäcklund transformations and nonlinear superposition formulae and the
effectiveness presents itself in this paper. It is natural to expect that this technique
can be applied to more equations in AKP and BKP type, also for CKP and DKP type
equations. The lack of the bilinear Bäcklund transformation of CKP equation brings
us essential difficulty to construct the nonlinear superposition formula, as well as
the lump solution. In particular, we also expect to develop the similar technique to
generate the lump solutions for the discrete integrable lattices.
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Stokes Phenomenon Arising in the
Confluence of the Gauss Hypergeometric
Equation

Calum Horrobin and Marta Mazzocco

Abstract In this paper we study the Gauss and Kummer hypergeometric equations
in-depth. In particular, we focus on the confluence of two regular singularities of
the Gauss hypergeometric equation to produce the Kummer hypergeometric equa-
tion with an irregular singularity at infinity. We show how to pass from solutions
with power-like behaviour which are analytic in disks, to solutions with exponential
behaviour which are analytic in sectors and have divergent asymptotics. We explic-
itly calculate the Stokes matrices of the confluent system in terms of the monodromy
data, specifically the connection matrices, of the original system around the merging
singularities.

Keywords Hypergeometric differential equations · Asymptotic expansions ·
Confluence · Monodromy data

1 Introduction

This paper studies the Gauss hypergeometric differential equation,

x(1 − x)
d2y

dx2
+ (γ − (α + β + 1)x)

dy

dx
− αβ y = 0, (1.1)

where x ∈ C, and the Kummer confluent hypergeometric differential equation,

z
d2 ỹ

dz2
+ (γ − z)

d ỹ

dz
− β ỹ = 0, (1.2)

where z ∈ C.
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For brevity, in this paper, these equations are simply called Gauss equation and
Kummer equation respectively.

The aim of the paper is to give rigour to the confluence of two regular singularities
of the Gauss equation to produce the Kummer equation with an irregular singularity
at infinity. In particular, the monodromy data of the confluent equation (Kummer),
including Stokes data, are produced as limits of the monodromy data of the original
equation (Gauss) using explicit formulae.

One of the main difficulties addressed in this paper is how to make sense of the
confluence limits by understanding how to pass from the solutions of the original
system to the solutions of the confluent system. This is a non-trivial question because
it involves passing from a solution with power-like behaviour which converges in
a disk to solutions with exponential behaviour which are analytic in a sector and
asymptotic to a divergent series.

The procedure of this paper is based on an existence theorem by Glutsyuk (1999).
Essentially, this states that there exist certain diagonal matrices Kε and K−ε such
that the limit,

lim
ε→0

K −1
−ε C Kε,

where C is the connection matrix between the merging simple poles of the original
system, exists. Moreover, this limit gives one of the Stokes matrices if ε → 0 is
taken along a certain ray. However, this existence theorem does not prescribe how
to calculate the diagonal matrices Kε and K−ε. The main result of this paper is to
calculate such diagonal matrices and thus produce both the Stokes matrices in terms
of limits of the connection matrix of the original equation explicitly. In particular
calculate how one Stokes matrix is produced as limit along a certain ray and the other
one by the limit along the opposite ray.

Despite the fact that the analytic theory of the Gauss and Kummer equations has
been developed more than a hundred years ago, the question of producing the Stokes
data of the Kummer equation in terms of limits of monodromy data of the Gauss one
has only been approached rather recently (Lambert and Rousseau 2008; Watanabe
2007). In particular, in Watanabe (2007), the Mellin-Barnes integral representations
of the solutions of Kummer equation are produced as limits of the ones for the Gauss
equation, and then the Stokes data are deduced from the Mellin-Barnes integral rep-
resentations (this last calculation is reported here in Appendix B for completeness).
In Lambert and Rousseau (2008), the confluence problem is solved by observing that
one of the Fuchsian singularities remains Fuchsian under the confluence, so that the
corresponding local fundamental matrix of the Gauss equation admits an analytic
limit under the confluence, thus allowing to compute explicitly the monodromy of
the Kummer equation around 0. The Stokes matrices are then determined by the fact
that loops around 0 are homotopic to loops around ∞ in the Riemann sphere with
two punctures.

The approach of the current paper does not require closed form expressions such
as Mellin-Barnes integrals. Indeed, in Horrobin et al. (2020), we use this procedure
to calculate the Stokes matrices of the linear problem associated to the fifth Painlevé
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equation (and its higher order analogues) in terms of limits of the connection matrix
between 1 and ∞ in the linear problem associated to the sixth Painlevé equation
(and its higher order analogues) for which closed form fundamental matrices are
unknown.

Another advantage of the procedure of the current paper is that it does not rely on
the existence of an additional simple pole which survives the confluence limit, and
therefore it can be applied to the confluence from the Bessel differential equation to
the Airy one for example, or even more ambitiously, in the confluence from the fifth
to the third Painlevé equation—this challenging work is postponed to subsequent
publications.

This paper is organised as follows: In Sects. 2 and 3, the authors remind some
background on theGauss andKummer hypergeometric differential equations respec-
tively. In Sect. 4 the confluence procedure is explained, and the main result of this
paper, Theorem 4.9 is proved. In Appendices A and B, the classical derivation of the
monodromy data for the Gauss and Kummer hypergeometric differential equations
respectively are derived using Mellin-Barnes integrals.

This paper is inspired by some of the facets of Nalini’s mathematical taste and
style because to tackle a seemingly simple problem it requires an unexpected depth
that opens a Pandora’s box of beautiful mathematical problems. For this reason, we
wish to dedicate this paper to her. [Calum Horrobin and Marta Mazzocco]

I wish to thank Nalini for her friendship of more than twenty years. Throughout
her career, Nalini has mentored, supported and sponsored a huge number of early
career mathematicians, some formally as her PhD students and post docs, others
informally, like myself and many others. [Marta Mazzocco]

2 Gauss Hypergeometric Differential Equation

Throughout the paper we work in the non-resonance assumption: γ, γ − α − β,
α − β /∈ Z.

To define monodromy data, it is easier to deal with a system of first order ODEs
by using the following trivial lemma:

Lemma 2.1 Under the assumptions α �= 0, γ �= β �= 1 and α �= β − 1, the matrix

Y (x) =
(

y1(x) y2(x)

�
(
y1, y′

1; x
)

�
(
y2, y′

2; x
)) , (2.1)

where

�
(
yk, y′

k; x
) = α (β − γ + (α + 1 − β)x) yk(x) + x(x − 1)(α + 1 − β)y′

k(x)

α(β − 1)(β − γ)
,

(2.2)
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Fig. 1 Chosen disks with
branch cuts. Note that �∞ is
a disk in the complement of
�0 ∪ �1

is a fundamental solution of the equation

dY

dx
=
(

A0

x
+ A1

x − 1

)
Y, (2.3)

A0 = 1
α+1−β

(
α(β − γ) α(1 − β)(β − γ)

α + 1 − γ (1 − β)(α + 1 − γ)

)
,

A1 = 1
α+1−β

(
α(γ − α − 1) α(β − 1)(β − γ)

γ − α − 1 (β − 1)(β − γ)

)
,

if and only if y1(x) and y2(x) are linearly independent solutions of Gauss hyperge-
ometric equation (1.1).

So, from now on, we stick to the system of first order ODEs (2.3).
We define the following disks with chosen branches, as illustrated in Fig. 1:

�0 = {x : |x | < 1, −π ≤ arg(x) < π} ,

�1 = {x : |x − 1| < 1, −π ≤ arg(1 − x) < π} ,

�∞ = {x : |x | > 1, −π ≤ arg(−x) < π} ,

It is well-known that the solutions of Eq. (1.1) are expressible in terms of Gauss
hypergeometric 2F1 series, in particular the following three pairs of linearly inde-
pendent local solutions y(k)

1 (x) and y(k)
2 (x) of (1.1) defined in the neighbourhoods

�k form a basis around each singular point:

y(0)
1 (x) = x1−γ

2F1

(
α + 1 − γ, β + 1 − γ

2 − γ
; x

)
,

y(0)
2 (x) = 2F1

(
α, β

γ
; x

)
,

x ∈ �0, (2.4)

y(1)
1 (x) = (1 − x)γ−α−β

2F1

(
γ − α, γ − β
γ + 1 − α − β

; 1 − x

)
,

y(1)
2 (x) = 2F1

(
α, β

α + β + 1 − γ
; 1 − x

)
,

x ∈ �1, (2.5)
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y(∞)
1 (x) = (−x)−α

2F1

(
α, α + 1 − γ

α + 1 − β
; x−1

)
,

y(∞)
2 (x) = (−x)−β

2F1

(
β, β + 1 − γ
β + 1 − α

; x−1

)
,

x ∈ �∞. (2.6)

Lemma 2.2 The following local fundamental solutions of the matrix hypergeometric
equation (2.3) have the following form

Y (0)(x) = R0G0(x)x�0 , x ∈ �0, (2.7)

Y (1)(x) = R1G1(x)(1 − x)�1 , x ∈ �1, (2.8)

Y (∞)(x) = R∞G∞(x)(−x)−�∞ , x ∈ �∞, (2.9)

where Rk and �k are the following matrices:

R0 =
(

1 1
α+1−γ
α(β−γ)

1
β−1

)
, R1 =

(
1 1
1
α

α+1−γ
(β−1)(β−γ)

)
, R∞ =

(
1 0
0 (β−α)(α+1−β)

α(β−1)(β−γ)

)
,

�0 =
(
1 − γ 0
0 0

)
, �1 =

(
γ − α − β 0

0 0

)
, �∞ =

(
α 0
0 β − 1

)
,

which satisfy R−1
k Ak Rk = �k , and Gk(x) are the following series:

G0(x) =

⎛
⎜⎜⎝

2F1

(
α + 1 − γ, β − γ

1 − γ
; x

)
,

x(α+1−γ)(1−β)

(1−γ)(2−γ) 2F1

(
α + 2 − γ, β + 1 − γ

3 − γ
; x

)
,

xα(γ−β)

γ(γ−1) 2F1

(
α + 1, β

γ + 1
; x

)

2F1

(
α, β − 1

γ − 1
; x

)
⎞
⎟⎟⎠ ,

G1(x) =

⎛
⎜⎜⎝

2F1

(
γ − α − 1, γ − β

γ − α − β
; 1 − x

)
,

(1−x)(β−1)(β−γ)

(α+β−γ−1)(α+β−γ) 2F1

(
γ − α, γ + 1 − β
γ + 2 − α − β

; 1 − x

)
,
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(1−x)α(α+1−γ)

(α+β−γ)(α+β+1−γ) 2F1

(
α + 1, β

α + β + 2 − γ
; 1 − x

)

2F1

(
α, β − 1
α + β − γ

; 1 − x

)
⎞
⎟⎟⎠ ,

G∞(x) =

⎛
⎜⎜⎝

2F1

(
α, α + 1 − γ

α + 1 − β
; x−1

)
,

α(β−1)(β−γ)(γ−α−1)
(α−β)(α+1−β)2(α+2−β)

1
x 2F1

(
α + 1, α + 2 − γ

α + 3 − β
; x−1

)
,

− 1
x 2F1

(
β, β + 1 − γ
β + 1 − α

; x−1

)

2F1

(
β − 1, β − γ
β − α − 1

; x−1

)
⎞
⎟⎟⎠ .

Proof This result can be proved in twoways: either by reducing Eq. (2.3) to Birkhoff
normal form near each singularity and computing the corresponding gauge transfor-
mations R0G0(x), R1G1(x) and G∞(x) recursively or by direct substitution of the
local solutions (2.4)–(2.6) into expression (2.1) and usingGauss contiguous relations.
�

Remark 1 The matrices Rk , k = 0, 1 and ∞, in the above solutions (2.7), (2.8) and
(2.9) have been chosen to satisfy R−1

k Ak Rk = �k , where A∞ := −A0 − A1. The
matrices G0, G1, G∞ have leading term given by the identity.

We now define the monodromy data of Gauss hypergeometric equation (1.1) and
recall how to express them in explicit form (Bateman and Erdélyi 2020; Whittaker
and Watson 1979). In Appendix A we derive these classical formulae by following
the approach of representing solutions using Mellin-Barnes integrals.

When defining local solutions, we have been specific about identifying which
sheet of the Riemann surface of the logarithm we are restricting our local solutions
to at each singular point. We may extend the definitions of our local fundamental
solutions Y (k)(x) to other sheets e2mπi�k , k = 0, 1,∞, by analytically continuing
along a closed loop encircling the singularity x = 0, 1,∞. This action simply means
that our solution becomes multiplied by the corresponding exponent e2mπi�k , for
k = 0, 1 and ∞, m ∈ Z. Note that, for k = 0 and 1, the analytic continuation of
Y (k)(x) around its singularity in the positive direction means m > 0 in the previous
sentence; while, for k = ∞, it means m < 0. The diagonal matrices e2πi�k are called
the local monodromy exponents of the singularities.

We proceed with the global analysis of solutions. Let Y (0)(x), Y (1)(x) and
Y (∞)(x) be the fundamental solutions of the hypergeometric equation as defined
in the previous section. Denote by γ j,k

[
Y ( j)

]
(x) the analytic continuation of Y ( j)(x)

along an orientable curve γ j,k : [0, 1] → C with γ j,k(0) ∈ � j and γ j,k(1) ∈ �k , for
j, k = 0, 1,∞. We have the following connection formulae (see Appendix A for the
detailed derivation of these):
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Fig. 2 Curves defining the
monodromy matrices Mk of
Gauss hypergeometric
differential equation

γ j,k
[
Y ( j)

]
(x) = Y (k)(x)Ck j , (2.10)

where:

C0∞ =
(

eiπ(γ−1) �(α+1−β)�(γ−1)
�(α)�(γ−β)

eiπ(γ−1) �(β+1−α)�(γ−1)
�(β)�(γ−α)

�(α+1−β)�(1−γ)

�(1−β)�(α+1−γ)

�(β+1−α)�(1−γ)

�(1−α)�(β+1−γ)

)
, (2.11)

C1∞ =
(

eiπ(γ−β) �(α+1−β)�(α+β−γ)

�(α)�(α+1−γ)
eiπ(γ−α) �(β+1−α)�(α+β−γ)

�(β)�(β+1−γ)

eiπα �(α+1−β)�(γ−α−β)

�(1−β)�(γ−β)
eiπβ �(β+1−α)�(γ−α−β)

�(1−α)�(γ−α)

)
, (2.12)

C01 =
( �(γ+1−α−β)�(γ−1)

�(γ−α)�(γ−β)

�(α+β+1−γ)�(γ−1)
�(α)�(β)

�(γ+1−α−β)�(1−γ)

�(1−α)�(1−β)

�(α+β+1−γ)�(1−γ)

�(α+1−γ)�(β+1−γ)

)
. (2.13)

We choose to normalise the monodromy data of Gauss hypergeometric equa-
tion with the fundamental solution Y (∞)(x). Denote by γk

[
Y (∞)

]
(x) the analytic

continuation of Y (∞)(x) along an orientable, closed curve γk : [0, 1] → C with
γk(0) = γk(1) ∈ �∞, k = 0, 1, which encircles the singularity x = 0, 1 respectively
in the positive (anti-clockwise) direction. The curvesγ0 andγ1 are illustrated in Fig. 2,
note that γ∞ := γ−1

1 γ−1
0 . We have:

γk
[
Y (∞)

]
(x) = Y (k)(x)Mk, k = 0, 1,∞,

where,

M0 = (C0∞)−1
e2πi�0C0∞, M1 = (C1∞)−1

e2πi�1C1∞, M∞ = e2πi�∞ .

(2.14)

These matrices satisfy the cyclic relation,

M∞M1M0 = I. (2.15)
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Definition 2.1 We define the monodromy data of Gauss hypergeometric equation
(1.1) as the set,

M :=
{
(M0, M1, M∞) ∈ (GL2(C))3

∣∣∣∣M∞M1M0 = I, M∞ = e2πi�∞

eigenv(Mk) = e2πi�k , k=0,1

}
/GL2(C)

(2.16)

where eigenv(Mk) = e2πi�k means that the eigenvalues of Mk are given as the ele-
ments of the diagonal matrix e2πi�k and the quotient is by global conjugation by a
diagonal matrix.

3 Kummer Confluent Hypergeometric Equation

We use z as the variable of Kummer confluent hypergeometric equation, we also
write tilde above some of the functions and parameters to distinguish from the Gauss
hypergeometric equation. We recall the following,

Lemma 3.1 Under the assumption (β − 1)(β − γ) �= 0, the matrix

Ỹ (z) =
(

ỹ1(z) ỹ2(z)
�̃
(
ỹ1, ỹ′

1; z
)

�̃
(
ỹ2, ỹ′

2; z
)) , (3.1)

where,

�̃
(
ỹk, ỹ′

k; z
) = (z + β − γ) ỹk(z) − z ỹ′

k(z)

(β − 1)(β − γ)
,

is a fundamental solution of the equation

∂Ỹ

∂z
=
((

1 0
0 0

)
+ Ã0

z

)
Ỹ , where Ã0 =

(
β − γ (1 − β)(β − γ)

1 1 − β

)
, (3.2)

if and only if ỹ1(z) and ỹ2(z) are linearly independent solutions of Kummer confluent
hypergeometric equation (1.2),

z ỹ′′ + (γ − z) ỹ′ − β ỹ = 0.

Kummer confluent hypergeometric equation (1.2) has one Fuchsian singularity at
z = 0, since γ−z

z and −β
z have simple poles at z = 0, and an irregular singularity at

z = ∞ of Poincaré rank one. The exponents of the singularity z = 0 are 1 − γ and 0
and at z = ∞ are γ − β and β − 1. We make the non-resonance assumption γ /∈ Z.



Stokes Phenomenon Arising in the Confluence of the Gauss … 109

3.1 Local Behaviour of the Solutions

Kummer confluent hypergeometric equation has an irregular singularity at z = ∞
of Poincaré rank one and, as such, solutions around this point exhibit Stokes phe-
nomenon. In this sub-section, we will state some definitions and theorems which
precisely describe fundamental solutions of Kummer equation at the irregular point
and the monodromy data, including Stokes matrices.

We first fix the pair of linearly independent local solutions of (1.2) as follows:

ỹ(0)
1 (z) = z1−γ

1F1

(
β + 1 − γ
2 − γ

; z

)
,

ỹ(0)
2 (z) = 1F1

(
β
γ

; z

)
,

z ∈ �̃0. (3.3)

where

�̃0 :=
{

z : −3

2
π ≤ arg(z) <

π

2

}
,

is a punctured disk around 0 with branch cut along the positive imaginary axis.
In terms of the linear system (3.1), these solutions correspond to the following

local fundamental solution of the matrix hypergeometric equation (3.2):

Ỹ (0)(z) = R̃0H0(z)z
�̃0 , z ∈ �̃0, (3.4)

where R̃0 and �̃0 are the following matrices:

R̃0 =
(

1 1
1

β−γ
1

β−1

)
and �̃0 =

(
1 − γ 0
0 0

)
,

which satisfy R̃−1
0 Ã0 R̃0 = �̃0, and H0(z) is the following series:

H0(z) =

⎛
⎜⎜⎜⎜⎝

1F1

(
β − γ
1 − γ

; z

)
z(γ−β)

γ(γ−1) 1F1

(
β

γ + 1
; z

)

z(1−β)

(1−γ)(2−γ) 1F1

(
β + 1 − γ
3 − γ

; z

)
1F1

(
β − 1
γ − 1

; z

)

⎞
⎟⎟⎟⎟⎠ .

We now turn our attention to the irregular singularity z = ∞.

Definition 3.1 The rays {z : Re(z) = 0, Im(z) > 0} and {z : Re(z) = 0, Im(z) <

0} are called the Stokes rays of Kummer equation (1.2).

Wenote that these rays constitute the borderlinewhere the behaviour of ez changes,
as z → ∞; that is to say, on one side of each of these rays we have ez → 0, whereas
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on the other side of each ray we have ez → ∞. This is a key aspect of Stokes
phenomenon and plays a role in understanding the following classical theorem.

Theorem 3.2 Let

�̃k =
{

z : −π

2
< arg(z) − kπ <

3π

2

}
.

For all k ∈ Z, there exists a solution Ỹ (∞,k)(z) of Eq. (3.2) analytic in the sector �̃k

such that,

Ỹ (∞,k)(z) ∼ R̃∞

( ∞∑
n=0

hn,∞z−n

)(
ezzβ−γ 0

0 z1−β

)
, as z → ∞, z ∈ �̃k, (3.5)

where R̃∞ is the following matrix,

R̃∞ =
(
1 0
0 −1

(β−1)(β−γ)

)
,

and H∞(z) is the following series

H∞(z) =
⎛
⎝ 2F0

(
1 − β, γ − β; z−1

) −1
z 2F0

(
β,β + 1 − γ; −z−1

)
(1−β)(β−γ)

z 2F0
(
2 − β, γ + 1 − β; z−1

)
2F0

(
β − 1, β − γ; −z−1

)
⎞
⎠ .

Moreover, each solution Ỹ (∞,k)(z) is uniquely specified by the relation (3.5).

Proof Aproof of the existence of fundamental solutions Ỹ (∞,k)(z)which are analytic
on sectors �̃k may be found in Balser et al. (1979). To find the asymptotic behaviour
(3.5), we make the following ansatz

Ỹ (∞,k)(z) ∼ R̃∞ H∞(z)exp

(∫ z

−∞

(
�0 + �1

z′

)
dz′
)

, as z → ∞, z ∈ �̃k,

where,

R̃∞ =
(
1 0
0 −1

(β−1)(β−γ)

)
,

�0 and �1 are constant, diagonal matrices to be determined and H∞(z) is a formal
series

H∞(z) =
∞∑

n=0

hn,∞z−n.

where the coefficients hn,∞ are to be determined.
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By substitution in the Eq. (3.2), we obtain

−
∞∑

n=1

nhn,∞z−n−1 +
( ∞∑

n=0

hn,∞z−n

)(
�0 + �1

z

)

= R̃−1
∞

((
1 0
0 0

)
+ Ã0

z

)
R̃∞

( ∞∑
n=0

hn,∞z−n

)
.

By setting h0,∞ = I and equating powers of z−n in this equation, for n = 0 and 1,
we find:

�0 =
(
1 0
0 0

)
and �1 =

(
β − γ 0
0 1 − β

)
,

and, for n ≥ 1, we find the recursion equation,

[
hn,∞,

(
1 0
0 0

)]
= (n − 1)hn−1,∞ + hn−1,∞

(
γ − β 0
0 β − 1

)
+ R̃−1

∞ Ã0 R̃∞hn−1,∞.

It can be verified that the general solution of this equation is,

hn,∞ =
(

(1−β)n(γ−β)n

n!
(β)n−1(β+1−γ)n−1

(−1)n(n−1)!
(1−β)(β−γ)(2−β)n−1(γ+1−β)n−1

(n−1)!
(β−1)n(β−γ)n

(−1)nn!

)
, (3.6)

which are indeed the coefficients in the asymptotic series given.
To prove uniqueness of solutions, let Ŷ (∞,k)(z) denote another fundamental solu-

tion of Eq. (3.2) which is analytic on the sector �̃k and has the correct asymptotic
behavior, namely,

Ŷ (∞,k)(z) ∼ R̃∞

( ∞∑
n=0

hn,∞z−n

)(
ezzβ−γ 0

0 z1−β

)
, as z → ∞, z ∈ �̃k . (3.7)

Since Ỹ (∞,k)(z) and Ŷ (∞,k)(z) are fundamental solutions defined on the same sector,
there exists a constant matrix C ∈ GL2(C) such that,

Ỹ (∞,k)(z) = Ŷ (∞,k)(z)C, z ∈ �̃k .

Using the asymptotic relations (3.5) and (3.7), we deduce the following,

(
ezzβ−γ 0

0 z1−β

)
C

(
e−z zγ−β 0

0 zβ−1

)
∼ I, as z → ∞, z ∈ �̃k .

From this relation, we immediately see that (C)1,1 = (C)2,2 = 1. Moreover, since
there exists rays belonging to �̃k along which each exponential, ez and e−z , explodes
as z → ∞, we conclude that (C)1,2 = (C)2,1 = 0. �
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Remark 2 The matrices R̃0 and R̃∞ in the above solutions (3.4) and (3.5) have been
chosen to satisfy R̃−1

0 Ã0 R̃0 = �̃0 and,

[
R̃∞,

(
1 0
0 0

)]
= 0.

We denote the asymptotic behaviour of true solutions at infinity as in (3.5) by,

Ỹ (∞)
f (z) =

( ∞∑
n=0

hn,∞z−n

)(
ezzβ−γ 0

0 z1−β

)
, z ∈ �̃k .

The series H∞(z) =∑∞
n=0 hn,∞z−n defines a formal gauge transformation which

maps equation (3.2) to,

∂

∂z
Ŷ (z) =

((
1 0
0 0

)
+ 1

z

(
β − γ 0
0 1 − β

))
Ŷ , (3.8)

via the transformation Ỹ (z) = R̃∞ H∞(z)Ŷ (z). We define the coefficient of 1
z in the

new equation to be −�̃∞, namely,

�̃∞ :=
(

γ − β 0
0 β − 1

)
≡ −diag

(
Ã0
)
.

In the generic case a, b /∈ Z
≤0, d’Alembert’s ratio test shows that the series

2F0(a, b; z−1) diverges for all z ∈ C. In this sense, the asymptotic behaviour Ỹ (∞)
f (z)

is a formal fundamental solution.

Remark 3 Using expression (3.1) in Lemma 3.1, the formal fundamental solution
Ỹ (∞)

f of (3.2) corresponds to the following standard formal basis of solutions of (1.2),

ỹ(∞)
1, f (z) = ezzβ−γ

2F0
(
γ − β, 1 − β; z−1

)
,

ỹ(∞)
2, f (z) = −z−β

2F0
(
β, β + 1 − γ;−z−1

)
.

(3.9)

3.2 Monodromy Data

We now define the monodromy data, including Stokes data, of Kummer equation
(1.2) and recall how to express them in explicit form (Bateman and Erdélyi 2020;
Whittaker and Watson 1979). In Appendix B, we derive these classical formulae by
representing solutions using Mellin-Barnes integrals.

Definition 3.2 Let Ỹ (∞,k)(z) be the fundamental solutions given in Theorem 3.2 and
define sectors,
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Fig. 3 Sectors �̃0, �̃−1, �̃0
and �̃−1 projected onto the
plane C\{0}. The positive
and negative imaginary axes
are Stokes rays

�̃k := �̃k ∩ �̃k+1 ≡
{

z : |z| > 0,
π

2
< arg(z) − kπ <

3π

2

}
,

as illustrated in Fig. 3. We define Stokes matrices S̃k ∈ SL2(C) as follows,

Ỹ (∞,k+1)(z) = Ỹ (∞,k)(z)S̃k, z ∈ �̃k . (3.10)

From the asymptotic relation (3.5), it is clear that

Ỹ (∞,k+2)(z) = Ỹ (∞,k)
(
ze−2πi

)
e−2πi�̃∞ , z ∈ �̃k+2. (3.11)

due to the fact that these two solutions have the same asymptotic behaviour as z → ∞
in the sector z ∈ �̃k+2. Therefore all solutions Ỹ (∞,k)(z) are categorised into two
fundamentally distinct cases, namely, when k is even and when k is odd. Combining
Definition 3.2 with the relation (3.11), one can show that

e−2πi�̃∞ S̃k+1 = S̃k−1e−2πi�̃∞ ,

which shows that Kummer equation has only two types of Stokes matrices S̃k which
are fundamentally different: one with k odd and the other with k even.

Herewe select toworkwith the fundamental solutions Ỹ (∞,−1)(z) in the sector �̃−1

and Ỹ (∞,0)(z) in the sector �̃0 and with the Stokes matrices S̃0 and S̃−1. The explicit
form of the Stokes matrices are derived in the Appendix B where the following
Lemma is proved:

Lemma 3.3 We have the following classical formulae:

S̃0 =
(
1 2πi

�(β)�(β+1−γ)
eiπ(γ−2β)

0 1

)
and S̃−1 =

(
1 0
2πi

�(1−β)�(γ−β)
1

)
. (3.12)
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Fig. 4 Curves defining the
monodromy matrices M̃k of
Kummer hypergeometric
differential equation

We choose to normalise our monodromy data with respect to the fundamental
solution Ỹ (∞,0)(z). Denote by γ∞,0

[
Ỹ (∞,0)

]
(z) the analytic continuation of Ỹ (∞,0)(z)

along an orientable curve γ∞,0 : [0, 1] → C with γ∞,0(0) ∈ �̃0 and γ∞,0(1) ∈ �̃0.
We have,

γ∞0
[
Ỹ (∞,0)

]
(z) = Ỹ (0)(z)C̃0∞,

where,

C̃0∞ =
(

eiπ(β−1) �(γ−1)
�(γ−β)

−�(γ−1)
�(β)

eiπ(β−γ) �(1−γ)

�(1−β)
− �(1−γ)

�(β+1−γ)

)
. (3.13)

Denote by γ0
[
Ỹ (∞,0)

]
(z) the analytic continuation of Ỹ (∞,0)(z) along an ori-

entable, closed curve γ0 : [0, 1] → C with γ0(0) = γ0(1) ∈ �̃0 which encircles the
singularity z = 0 in the positive (anti-clockwise) direction. The curve γ0 is illustrated
below, note that γ∞ := γ−1

0 (Fig. 4).
We have,

γk
[
Ỹ (∞,0)

]
(z) = Y (∞,k)(z)M̃k, k = 0,∞,

where,

M̃0 = (C̃0∞)−1
e2πi�̃0 C̃0∞ and M̃∞ = S̃0e2πi�̃∞ S̃−1. (3.14)

These matrices satisfy the cyclic relation,

M̃∞M̃0 = I. (3.15)

Definition 3.3 We define the monodromy data of Kummer hypergeometric differ-
ential equation (1.2) as the set,
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M̃ :=

⎧⎪⎪⎨
⎪⎪⎩

[r ] (M̃0, S̃0, S̃−1
)

∈ (GL2(C))3

∣∣∣∣∣∣∣∣

S̃0 unipotent, upper triangular,
S̃−1unipotent, lower triangular,

S̃0e2πi�̃∞ S̃−1M̃0 = I,
eigenv

(
M̃0
) = e2πi�̃0

⎫⎪⎪⎬
⎪⎪⎭

/GL2(C)

(3.16)

where eigenv(M̃0) = e2πi�̃0 means that the eigenvalues of M̃0 are given as the ele-
ments of the diagonal matrix e2πi�̃0 and the quotient is by global conjugation by a
diagonal matrix.

4 Confluence from Gauss to Kummer Equation

In this Section we analyse the confluence procedure from Gauss equation (1.1) to
Kummer equation (1.2). We are primarily concerned with understanding how to
produce the monodromy data of the Kummer equation, as defined in Sect. 3.2, from
the connection matrices of the Gauss equation (see Sect. 2), under the confluence
procedure.

We first explain how the confluence procedure works intuitively. By the substitu-
tion x = z

α
, on the Gauss equation (1.1)

x(1 − x) y′′(x) + (γ − (α + β + 1)x) y′(x) − αβ y(x) = 0,

⇔ z

α

(
α − z

α

)
α2 yzz +

(
γ − (α + β + 1)

z

α

)
α yz − αβ y = 0,

⇔ z yzz + (γ − z) yz − β y − 1

α

(
z2yzz + (β + 1)yz

) = 0.

we produce an differential equation with three Fuchsian singularities at z = 0,α and
∞ respectively.

As a heuristic argument, one can see that the final equation becomes Kummer
equation (1.2) as α → ∞ so that a double pole is created at z = ∞ as the two simple
poles z = α and ∞ merge. This derivation does not explain how of obtain solutions
of the Kummer equation by taking limits as α → ∞ of certain solutions of Gauss
equation under the substitution x = z

α
. To understand this, we need to use a result by

Glutsyuk (1999), which deals with limits of solutions at merging simple poles under
a generic confluence procedure. This is explained in the next sub-section.

4.1 A Result by Glutsyuk

Consider the following differential equation,
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Fig. 5 An illustration of the
neighbourhoods �±ε with
branch cuts in which we
define the fundamental
solutions Y (±ε)(λ)

∂Y

∂λ
= A(λ, ε)

(λ − ε)(λ + ε)
Y, A(λ, ε) ∈ GL2(C), (4.1)

with A(λ, ε) a holomorphic matrix about λ = ±ε such that A(±ε, ε) �= 0 for suffi-
ciently small ε ≥ 0 satisfying the following limit,

lim
ε→0

A(λ, ε) = A(λ, 0).

Hence, the non-perturbed, or confluent, equation,

∂Y

∂λ
= A(λ, 0)

λ2
Y, (4.2)

has an irregular singularity at λ = 0 of Poincaré rank one. Moreover, it is assumed
that the eigenvalues of the residue matrices A(±ε, ε) of at λ = ±ε are non resonant
and that the eigenvalues of the leading matrix of A(λ, 0) at λ = 0 are distinct.

We first deal with the perturbed equation (4.1). We define neighbourhoods �±ε

of the points λ = ±ε respectively whose radii are less than 2|ε| and with branch cuts
made along the straight line passing through the points λ = −ε, 0, ε, as illustrated
in Fig. 5. Equation (4.1) has fundamental solutions Y (±ε)(λ) which are analytic in
the cut disks �±(ε) of the following form,

Y (±ε)(λ) =
( ∞∑

n=0

Gn,±ε(λ ∓ ε)n

)
(λ ∓ ε)�±ε , λ ∈ �±ε,

where G0,±ε are fixed matrices which diagonalise the residue matrices A(±ε, ε) and
all other terms of the series are determined by certain recursion formulae.
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Fig. 6 An illustration of the
Stokes rays ri, j and sectors
S0 and S1

We now turn our attention to the confluent equation (4.2). Denote by μ1 and μ2

the eigenvalues of the leading matrix of A(λ, 0) at λ = 0 (by assumption, μ1 �= μ2)
and let,

ri, j =
{
λ : Re

(
μi − μ j

λ

)
= 0, Im

(
μi − μ j

λ

)
> 0

}
, i, j ∈ {1, 2},

be the Stokes rays.We denote byS0 andS1 open sectors whose union is a punctured
neighbourhood of λ = 0, each of which: has an opening greater than π; contains
only one Stokes ray and does not contain the other Stokes ray at its boundary. An
illustration of such Stokes rays and sectors is given below (Fig. 6).

We can cover all of the sheets of the Riemann surface of the logarithm at λ = 0
by extending the notation as follows,

λ ∈ Sk+2 ⇔ λe−2πi ∈ Sk .

From the standard theory of linear systems of ordinary differential equations, there
exists a number R sufficiently large such that, for all k ∈ Z, there exist fundamental
solutions Y (0,k)(λ) of the non-perturbed equation (4.2) analytic in the sectors Sk

such that,

Y (0,k)(λ) ∼
( ∞∑

n=0

Hnλ
n

)
λ�0exp

(
λ−1

(
μ1 0
0 μ2

))
, as λ → 0, λ ∈ Sk,

where H0 is a fixed matrix which diagonalises the leading term of A(λ, 0) at λ = 0,
all other terms of the series and the diagonal matrix � are uniquely determined by
certain recursion relations. Each solution Y (0,k)(λ) is uniquely specified by the above
asymptotic relation.

We define open sectors σ±ε(ε) ⊂ �± with base points at λ = ±ε respectively
whose openings do not contain the branch cut between −ε and ε as illustrated in
Fig. 7.
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Fig. 7 An illustration of the
sectors σ±ε(ε)

We impose the condition that, as ε → 0 along a ray, the sector σε(ε) (resp. σ−ε(ε))
is translated along a ray to zero and becomes in agreement with the sectorSk+1 (resp.
Sk), for some k ∈ Z. We write this condition as follows,

lim
ε→0

σε(ε) = Sk+1 and lim
ε→0

σ−ε(ε) = Sk . (4.3)

Theorem 4.1 Let the fundamental solutions Y (ε)(λ), Y (−ε)(λ) and Y (0,k)(λ) and the
sectors σε(ε), σ−ε(ε) and Sk be defined as above. There exist diagonal matrices Kε

and K−ε such that we have the following limits,

lim
ε→0

Y (ε)(λ)
∣∣
λ∈σε(ε)

Kε = Y (0,k+1)(λ),

lim
ε→0

Y (−ε)(λ)
∣∣
λ∈σ−ε(ε)

K−ε = Y (0,k)(λ),

uniformly for λ ∈ Sk+1, Sk respectively, as ε belongs to a fixed ray.

Remark 4 It iswell-known that, when solving a linear ordinary differential equation
around a Fuchsian singular point, the maximal radius we may take for the neigh-
bourhood on which we can define an analytic solution is the distance to the nearest
singularity. For the perturbed equation (4.1), as ε becomes arbitrarily small it is clear
from the hypotheses on A(λ, ε) that the closest singularity to λ = ±εwill be λ = ∓ε
respectively. We have illustrated the domains �±ε in Fig. 5 with the maximal radii
for which it is possible to define analytic solutions. Observe that the neighbourhoods
of analyticity of the fundamental solutions diminish as ε → 0. The intelligent part
of restricting the fundamental solutions Y (±ε)(λ) to the sectors σ±ε(ε) as drawn in
Fig. 7, rather than the neighbourhoods �±ε, is that the radii of these sectors need not
be restricted to the distance to the nearest singularity. Indeed, by construction, the
singularity λ = ±ε will not be inside the sector σ∓ε(ε) respectively. In particular,
this means that the radii of these sectors need not vanish.

By the same reasoning as in the previous remark, it is without loss of generality
thatwemay assumeσε(ε) ∩ σ−ε(ε) �= ∅ for ε sufficiently close to zero.Accordingly,
since we have two fundamental solutions defined on this intersection, they must be
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related by multiplication by a constant invertible matrix on the right, namely,

Y (ε)(λ) = Y (−ε)(λ)C, λ ∈ σε(ε) ∩ σ−ε(ε), (4.4)

for some connection matrix C ∈ GL2(C). Similarly, the two fundamental solutions
Y (0,0)(λ) and Y (0,1)(λ) of the confluent equation must be related to each other by
multiplication by a constant invertible matrix on the right on the intersectionS0 and
S1, namely,

Y (0,1)(λ) = Y (0,0)(λ)S, λ ∈ S0 ∩ S1, (4.5)

for some Stokes matrix S ∈ GL2(C).

Corollary 4.2 Let the fundamental solutions Y (ε)(λ), Y (−ε)(λ) and Y (0,k)(λ) and
the sectors σε(ε), σ−ε(ε) and Sk be defined as above; let K±ε be matrices satisfying
Theorem 4.1 and let C and S be the matrices defined by (4.4) and (4.5) respectively.
We have the following limit,

lim
ε→0

K −1
−ε C Kε = S, (4.6)

as ε belongs to a fixed ray.

In (4.6) it is clear how to obtain one of the Stokes matrices at the point λ = 0 of
the confluent equation. In order to obtain the second Stokes matrix we take ε → 0
along the opposite ray to the one already considered. Rather than having the limits
in (4.3), we would now have, for example, that σε(ε) tends to Sk and σ−ε(ε) tends
to Sk−1. In this way, we use the limit in (4.6) to produce the other Stokes matrix.
We will explain all of these details and calculate everything explicitly for each of the
cases we consider.

4.2 Limits of Solutions

As outlined above, our confluence procedure is to introduce the new variable z by
the substitution x = z

α
and take the limit α → ∞. For the remainder of this chapter

we must be careful in which way we are taking α to infinity, for example it would be
inconvenient for us if α spiralled towards infinity. We will consider two limits along
fixed rays: one with arg(α) = π

2 and the other with arg(α) = − π
2 .

4.2.1 Obtaining the Solutions ˜Y (∞,k)(z)

Wenow turn our attention to themain problemof how to obtain fundamental solutions
at the double pole of the confluent equation fromsolutions at themerging simple poles
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of the original equation. We first examine the behaviour of the fundamental solutions
at x = ∞, as given in (2.6). Observe that these solutions are expressed using the
Gauss 2F1 series in the variable x−1 ≡ α

z , which diverge for |x−1| > 1 ⇔ |z| < |α|.
In this case, we clearly do not have uniform convergence with respect to α and we
need to use Glutsyuk’s Theorem 4.1.

The fundamental set of solutions (2.6) are written in canonical form. However,
we will rewrite the solution y(∞)

1 (x) using one of Kummer relations as follows,

y(∞)
1 (x) = (−x)−α

2F1

(
α, α + 1 − γ

α + 1 − β
; x−1

)
, x ∈ �∞,

= (−x)β−γ(1 − x)γ−α−β
2F1

(
1 − β, γ − β
α + 1 − β

; x−1

)
, x ∈ �̂∞, (4.7)

where the new domain �̂∞ is defined as,

�̂∞ = {x : |x | > 1, −π ≤ arg(−x) < π, −π ≤ arg(1 − x) < π} .

There is no need to rewrite the solution y(∞)
2 (x) as given in (2.6) as it is already in

a suitable form, this is explained in Lemma 4.3 below. We note that the above two
forms of the solution y(∞)

1 (x) are equivalent on the domain�∞ ∩ �̂∞. The condition
imposed on arg(1 − x) in �̂∞ is only necessary to deal with the term (1 − x)γ−α−β .
After making the substitution x = z

α
and taking the limit α → ∞we have

(
1 − z

α

)γ−α−β = exp
(
(γ − α − β) log

(
1 − z

α

))
,

= exp
(
(γ − α − β)

(
− z

α
+ O (α−2

)))
,

= ez
(
1 + O (α−1

))
. (4.8)

This computation shows how to asymptotically pass from power-like behaviour to
exponential behaviour as α → ∞. Moreover, with this new form of y(∞)

1 (x) we are
ready to state the following lemma.

Lemma 4.3 Let y(∞)
2 (x) be given by (2.6) and y(∞)

1 (x) be given in its new form by
(4.7). After the substitution x = z

α
, the terms of these series tend to the terms in the

formal series solutions ỹ(∞)
1, f (z) and ỹ(∞)

2, f (z) as given by (3.9), namely we have the
following limits:

lim
α→∞

(1 − β)n(γ − β)nα
n

(α + 1 − β)nn!zn
= (γ − β)n(1 − β)n

n!zn
,

lim
α→∞

(β)n(β + 1 − γ)nα
n

(β + 1 − α)nn!zn
= (−1)n (β)n(β + 1 − γ)n

n!zn
.

Proof By direct computation, using



Stokes Phenomenon Arising in the Confluence of the Gauss … 121

αn

(α + 1 − β)n
= 1 + O (α−1) and

αn

(β + 1 − α)n
= (−1)n + O (α−1) .

�

Remark 5 Lemma 4.3 is stated in terms of the solutions of the scalar hypergeo-
metric equations (1.1) and (1.2). From the viewpoint of working with the (2 × 2)
equations (2.3) and (3.2), we rewrite the solution Y (∞)(x), as given in (2.9), as fol-
lows,

Y (∞)(x) = R∞
∞∑

n=0

gn,∞x−n(−x)−�∞ , x ∈ �∞,

= R∞
∞∑

n=0

ĝn,∞x−n(−x)−�∞−�1(1 − x)�1 , x ∈ �̂∞, (4.9)

where ĝ0,∞ = I and we find all other coefficients ĝn,∞, n ≥ 1, from the recursive
relation,

nĝn,∞ + [ĝn,∞,�∞Y
] = −R−1

∞Y A1Y R∞Y

n−1∑
l=0

ĝl,∞ +
n−1∑
l=0

ĝl,∞�1.

This recursion equation only differs from that for gn,∞, given in the proof of Lemma
2.2, by the final summation term. We find the solution to this equation is,

ĝn,∞ =
(

(1−β)n(γ−β)n

(α+1−β)nn! − (β)n−1(β+1−γ)n−1

(β+1−α)n−1(n−1)!
α(1−β)(β−γ)(α+1−γ)

(α−β)(α+1−β)2(α+2−β)

(2−β)n−1(γ+1−β)n−1

(α+3−β)n−1(n−1)!
(β−1)n(β−γ)n

(β−α−1)nn!

)
. (4.10)

The transformation (4.9) is analogous to Kummer relation (4.7). We note that,

Y (∞)
( z

α

)
= R∞

∞∑
n=0

ĝn,∞αnz−n

(
(−α)γ−βzβ−γ

(
1 − z

α

)γ−α−β
0

0 (−α)β−1z1−β

)
,

≡ R∞
(
1 0
0 α−1

)(
1 0
0 α

) ∞∑
n=0

ĝn,∞αnz−n

(
1 0
0 α−1

)

(
zβ−γ

(
1 − z

α

)γ−α−β
0

0 z1−β

)(
(−α)γ−β 0

0 −(−α)β

)
.

The limits analogous to those in Lemma (4.3) are stated as follows: we have the
following limit of the leading matrix,
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lim
α→∞ R∞

(
1 0
0 α−1

)
= lim

α→∞

(
1 0
0 (β−α)(α+1−β)

α(β−1)(β−γ)

)(
1 0
0 α−1

)
,

=
(
1 0
0 −1

(β−1)(β−γ)

)
= R̃∞,

and for the terms of the new series,

lim
α→∞

(
1 0
0 α

)
αn ĝn,∞

(
1 0
0 α−1

)
= hn,∞,

where ĝn,∞ and hn,∞ are given by (4.10) and (3.6) respectively.Hence,we understand
that a term-by-term limit of the solution,

Y (∞)
( z

α

) (
(−α)β−γ 0

0 −(−α)−β

)
,

produces the formal solution Ỹ (∞)
f (z), which is analogous to (3.7).

We now turn our attention to the fundamental solutions at x = 1, as given in
canonical form in (2.5). Observe that these solutions are expressed using Gauss
hypergeometric 2F1 series in the variable (1 − x) ≡ (1 − z

α
), which diverge for |1 −

x | > 1 ⇔ |z − α| > |α|. As with the fundamental solutions at x = ∞, we do not
have uniform convergencewith respect toα here. Rather than keeping these solutions
in canonical form, we use two more of Kummer relations to rewrite them as follows,

y(1)
1 (x) = (1 − x)γ−α−β

2F1

(
γ − α, γ − β
γ + 1 − α − β

; 1 − x

)
x ∈ �1,

= xβ−γ(1 − x)γ−α−β
2F1

(
γ − β, 1 − β
γ + 1 − α − β

; 1 − x−1

)
, x ∈ �̂1, (4.11)

y(1)
2 (x) = 2F1

(
α, β

α + β + 1 − γ
; 1 − x

)
x ∈ �1,

= x−β
2F1

(
β + 1 − γ, β
α + β + 1 − γ

; 1 − x−1

)
, x ∈ �̂1, (4.12)

where the new domain �̂1 is defined as,

�̂1 = {x : ∣∣1 − x−1
∣∣ < 1, −π ≤ arg(x) < π, −π ≤ arg(1 − x) < π

}
.

We note that the two forms of these solutions are equivalent on the domain �1 ∩
�̂1. There is a very simple philosophical reason why we rewrite the series in these
solutions with (1 − x−1)n , rather than (1 − x)n: after the change of variable x = z

α
,

we want to produce a formal series in z−n . Similarly as before, the computations
ending in (4.8) show how the solution y(1)

1 (x) asymptotically passes from power-like
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behaviour to exponential behaviour as α → ∞. Moreover, the terms of the series in
these new forms of y(1)

1 (x) and y(1)
2 (x) satisfy the lemma below.

Lemma 4.4 Let y(1)
1 (x) and y(1)

2 (x) be given in their new forms by (4.11) and (4.12)
respectively. After the substitution x = z

α
, the terms of these series tend to the terms

in the formal series solutions ỹ(∞)
1, f (z) and ỹ(∞)

2, f (z) as given by (3.9), namely we have
the following limits:

lim
α→∞

(γ − β)n(1 − β)n(z − α)n

(γ + 1 − α − β)nn!zn
= (γ − β)n(1 − β)n

n!zn
,

lim
α→∞

(β + 1 − γ)n(β)n(z − α)n

(α + β + 1 − γ)nn!zn
= (−1)n (β)n(β + 1 − γ)n

n!zn
.

Proof By direct computation, after expanding the powers of (z − α) and the
Pochhammer symbols to find,

(z − α)n

(γ + 1 − α − β)n
= 1 + O (α−1) and

(z − α)n

(α + β + 1 − γ)n
= (−1)n + O (α−1) .

�
This lemma shows that term-by-term limits of the solutions,

y(1)
1 (zα−1) αβ−γ and − y(1)

2 (zα−1) α−β, (4.13)

produce the formal solutions,

ỹ(∞)
1, f (z) and ỹ(∞)

2, f (z),

respectively. The factors αβ−γ and α−β in (4.13) are necessary because of the terms,

xβ−γ ≡ zβ−γαγ−β and x−β ≡ z−βαβ,

in the solutions y(1)
1 (x) and y(1)

2 (x) respectively. We note that the direction in which
α → ∞ is not yet important for this lemma. The importance of this lemma is shown
in the proof of our Main Theorem 4.5.

Remark 6 Similarly as in Remark 5, we may consider the viewpoint of working
with the (2 × 2) equations (2.3) and (3.2) and rewrite the solution Y (1)(x), as given
in (2.8), as follows,

Y (1)(x) = R1

∞∑
n=0

gn,1(1 − x)n(1 − x)�1 , x ∈ �1,

= R1

∞∑
n=0

ĝn,1
(
1 − x−1

)n
x−�∞−�1(1 − x)�1 , x ∈ �̂1, (4.14)
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where ĝ0,1 = I and we find all other coefficients ĝn,1, n ≥ 1, from the recursive
equation,

[
ĝn,1,�1

]+ nĝn,1 = (n − 1)ĝn−1,1 + ĝn−1,1(�1 + �∞) + R−1
1 A0R1ĝn−1,1.

This recursion equation differs quite significantly from that for gn,1, given in the
proof of Lemma 2.2. We find the solution to this equation is,

ĝn,1 =
⎛
⎝ (1−β)n (γ−β)n

(γ+1−α−β)nn!
(β)n(β+1−γ)n
(α+β+1−γ)nn! − (β)n−1(β+1−γ)n−1

(α+β+1−γ)n−1(n−1)!
1
α

(
(2−β)n (γ+1−β)n
(γ+1−α−β)nn! − (2−β)n−1(γ+1−β)n−1

(γ+1−α−β)n−1(n−1)!
)

α+1−γ
(β−1)(β−γ)

(β−1)n(β−γ)n
(α+β+1−γ)nn!

⎞
⎠ .

(4.15)

The transformation (4.14) is analogous to Kummer relations (4.11) and (4.12). We
note that,

Y (1)
( z

α

)
= R1

∞∑
n=0

ĝn,1

(
1 − α

z

)n (
αγ−βzβ−γ

(
1 − z

α

)γ−α−β
0

0 αβ−1z1−β

)
,

≡ R1

(
1 0
0 −α−1

)(
1 0
0 −α

)
,

∞∑
n=0

ĝn,1

(
1 − α

z

)n (
1 0
0 −α−1

)

(
zβ−γ

(
1 − z

α

)γ−α−β
0

0 z1−β

)(
αγ−β 0
0 −αβ

)
.

The limits analogous to those in Lemma 4.4 are stated as follows: we have the
following limit of the leading matrix,

lim
α→∞ R1

(
1 0
0 −α−1

)
= lim

α→∞

(
1 1
1
α

α+1−γ
(β−1)(β−γ)

)(
1 0
0 −α−1

)
,

=
(
1 0
0 −1

(β−1)(β−γ)

)
= R̃∞,

and for the terms of the new series,

lim
α→∞

(
1 0
0 −α

)
(−α)n ĝn,1

(
1 0
0 −α−1

)
= hn,∞,

where ĝn,1 and hn,∞ are given by (4.15) and (3.6) respectively. Hence, we understand
that a term-by-term limit of the solution,

Y (1)
( z

α

) (αβ−γ 0
0 −α−β

)
,

produces the formal solution Ỹ (∞)
f (z), which is analogous to (4.13).
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Fig. 8 Sectors σα(α) and
σ∞(α)

Having understood how to take term-by-term limits of the series solutions of
Gauss equation around x = 1 and ∞ to produce the formal solutions of Kummer
equation around z = ∞, we now show how to apply Glutsyuk’s Theorem 4.1 to
Gauss hypergeometric equation. Let η ∈ (0, π

2

)
be some fixed value. We define the

following sectors,

S̃k :=
{

z : arg(z) − kπ ∈
(

η − π

2
,
3π

2
− η

)}
, (4.16)

we note that if z ∈ S̃k then z ∈ �̃k . The presence of η is to ensure that the boundaries
of the sectors S̃k do not contain a Stokes ray, as is necessary in the hypothesis of
Glutsyuk’s Theorem 4.1. We note that this condition is not satisfied by the sectors
�̃k defined in Theorem 3.2, which are the maximal sectors on which we can define
single-valued analytic fundamental solutions.

We also define the following sectors,

σα(α) :=
{

z :
∣∣1 − α

z

∣∣ < |α|2, arg
(

z
α

) ∈ (η − π,π − η),

arg
(
1 − z

α

) ∈ (η − π,π − η)

}
, (4.17)

σ∞(α) :=
{

z : arg
(−zα−1

) ∈ (η − π,π − η),

arg
(
1 − z

α

) ∈ (η − π,π − η)

}
. (4.18)

We note that if z is sufficiently close to α with z ∈ σα(α) then x = z
α

∈ �̂1 and if
z is sufficiently large with z ∈ σ∞(α) then x = z

α
∈ �̂∞. These sectors will be the

new domains of our solutions y(1)
1 (zα−1), y(1)

2 (zα−1) and y(∞)
1 (zα−1), y(∞)

2 (zα−1)

respectively, they are illustrated below.
Compared with the domains �̂1 and �̂∞, which are disks with branch cuts, the

sectors σα(α) and σ∞(α) have larger radii and do not contain any part of the branch
cut between α and ∞. We can analytically extend our solutions y(1)

k (zα−1) and
y(∞)

k (zα−1), k = 1, 2, to these larger domains because the singularity z = ∞ (resp.
z = α) can never lie inside the sector σα(α) (resp. σ∞(α)) or on its boundary. That
is the key reason to restrict our solutions to sectors rather than disks.

We examine the sector σα(α) more closely. From the first condition,

∣∣∣∣1 − α

z

∣∣∣∣ < |α|2 ⇔
∣∣∣∣ 1α − 1

z

∣∣∣∣ < |α|,
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Fig. 9 As α → ∞ along a
ray, the sector σα(α) is
translated along the branch
cut and becomes in
agreement with the sector
	̃ := {z : ∣∣arg ( z

α

)∣∣ <
π − η}

observe that as α → ∞ the radius of this sector becomes infinite, indeed the above
inequality becomes simply |z| > 0. Furthermore, as α → ∞ along a ray, the base
point of the sector σα(α) is translated along that ray, tending to infinity. We illustrate
this phenomenon in Fig. 9.

In the two limit directions we are concerned with, for arg(α) = ±π
2 , we have,

arg
( z

α

)
∈ (η − π,π − η) ⇔ arg(z) ∈

(
η − π ± π

2
,π ± π

2
− η
)

,

for the sector σ∞(α), whose base point is already fixed at infinity, we have,

arg
(
− z

α

)
∈ (η − π,π − η) ⇔ arg(z) ∈

(
η ± π

2
, 2π ± π

2
− η
)

,

recall from (4.8) that the condition on arg
(
1 − z

α

)
in σ∞(α) does not play a role after

taking the limit. With these considerations in mind, we write,

lim
α→∞

arg(α)=− π
2

σα(α) = S̃−1, lim
α→∞

arg(α)=− π
2

σ∞(α) = S̃0,

lim
α→∞

arg(α)= π
2

σα(α) = S̃0, lim
α→∞

arg(α)= π
2

σ∞(α) = S̃1.

We now apply Glutsyuk’s Theorem 4.1 with the (2 × 2) hypergeometric equation
(2.3) in place of the perturbed equation and the confluent hypergeometric equation
(3.2) in place of the non-perturbed equation. Glutsyuk’s theorem asserts the existence
of invertible diagonal matrices K ±∞(α) and K ±

1 (α) such that:

lim
α→∞

arg(α)=− π
2

Y (1)
(
zα−1

)∣∣
z∈σα(α)

K −
1 (α) = Ỹ (∞,−1)(z), (4.19)

lim
α→∞

arg(α)=− π
2

Y (∞)
(
zα−1

)∣∣
z∈σ∞(α)

K −
∞(α) = Ỹ (∞,0)(z), (4.20)
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uniformly for z ∈ S̃−1 and z ∈ S̃0 respectively, and:

lim
α→∞

arg(α)= π
2

Y (1)
(
zα−1

)∣∣
z∈σα(α)

K +
1 (α) = Ỹ (∞,0)(z), (4.21)

lim
α→∞

arg(α)= π
2

Y (∞)
(
zα−1

)∣∣
z∈σ∞(α)

K +
∞(α) = Ỹ (∞,1)(z), (4.22)

uniformly for z ∈ S̃0 and z ∈ S̃1 respectively.We note that since we are considering
two limits, namely onewith arg(α) = π

2 and another with arg(α) = − π
2 , we have dis-

tinguished the diagonal matrices in each case with a superscript + or − respectively.
Due to the asymptotics of the fundamental solutions of Kummer equation as given
in Theorem 3.2, each of these four limits is asymptotic to the formal fundamental
solution Ỹ (∞)

f (z) as z → ∞ with z belonging to the corresponding sector.
Equivalently, from the viewpoint of studying the classical scalar hypergeometric

equations (1.1) and (1.2), Glutsyuk’s Theorem 4.1 asserts the existence of scalars
k±
1,∞(α), k±

2,∞(α), k±
1,1(α) and k±

2,1(α) such that, for j ∈ {1, 2}:

lim
α→∞

arg(α)=− π
2

y(1)
j (zα−1)

∣∣∣
z∈σα(α)

k−
j,1(α) = ỹ(∞,−1)

j (z), (4.23)

lim
α→∞

arg(α)=− π
2

y(∞)
j (zα−1)

∣∣∣
z∈σ∞(α)

k−
j,∞(α) = ỹ(∞,0)

j (z), (4.24)

uniformly for z ∈ S̃−1 and S̃0 respectively, and:

lim
α→∞

arg(α)= π
2

y(1)
j (zα−1)

∣∣∣
z∈σα(α)

k+
j,1(α) = ỹ(∞,0)

j (z), (4.25)

lim
α→∞

arg(α)= π
2

y(∞)
j (zα−1)

∣∣∣
z∈σ∞(α)

k+
j,∞(α) = ỹ(∞,1)

j (z), (4.26)

uniformly z ∈ S̃0 and S̃1 respectively.
Having appliedGlutsyuk’s theorem to our confluence of the hypergeometric equa-

tion, we now focus on understandingwhat we can deduce about these scalars k±
j,∞(α)

and k±
j,1(α), j = 1, 2. We are ready to state our first main theorem.

Theorem 4.5 If k±
j,∞(α) and k±

j,1(α) are scalars satisfying (4.23)–(4.26), then these
numbers satisfy the following limits,

lim
α→∞

arg(α)=± π
2

k±
1,∞(α) (−α)γ−β = 1, (4.27)

lim
α→∞

arg(α)=± π
2

−k±
2,∞(α) (−α)β = 1, (4.28)
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lim
α→∞

arg(α)=± π
2

k±
1,1(α) αγ−β = 1, (4.29)

lim
α→∞

arg(α)=± π
2

−k±
2,1(α) αβ = 1. (4.30)

Proof In either case arg(α) = π
2 or − π

2 , letS
∗ be a closed, proper subsector of S̃1

or S̃0 respectively. Combining the statements (4.24) and (4.26), together with the
asymptotic behaviour (3.5), we have,

lim
α→∞

arg(α)=± π
2

y(∞)
1 (zα−1)

∣∣∣
z∈σ∞(α)

k±
1,∞(α) ∼ ỹ(∞)

1, f (z), as z → ∞, z ∈ S ∗. (4.31)

We now re-write y(∞)
1 (zα−1) using Kummer transformation as in (4.7),

y(∞)
1

(
zα−1

)∣∣∣
z∈σ∞(α)

= zβ−γ(−α)γ−β
(
1 − z

α

)γ−α−β
∞∑

n=0

(1 − β)n(γ − β)nαn

(α + 1 − β)nn!zn

∣∣∣∣∣
z∈σ∞(α)

.

We therefore deduce,

lim
α→∞

arg(α)=± π
2

zβ−γ(−α)γ−β
(
1 − z

α

)γ−α−β
∞∑

n=0

(1 − β)n(γ − β)nα
n

(α + 1 − β)nn!zn

∣∣∣∣∣
z∈σ∞(α)

k±
1,∞(α)

= lim
α→∞

arg(α)=± π
2

zβ−γ(−α)γ−βez
∞∑

n=0

(1 − β)n(γ − β)nα
n

(α + 1 − β)nn!zn

∣∣∣∣∣
z∈σ∞(α)

k±
1,∞(α).

Combining this with (4.31) and writing ỹ(∞)
1, f (z) as in (3.9), we have,

lim
α→∞

arg(α)=± π
2

∞∑
n=0

(1 − β)n(γ − β)nα
n

(α + 1 − β)nn!zn

∣∣∣∣∣
z∈σ∞(α)

(−α)γ−βk±
1,∞ ∼

∞∑
n=0

(γ − β)n(1 − β)n

n!zn
,

as z → ∞ for z ∈ S ∗.

Wenowdefinew = z−1 so thatw → 0 ⇔ z → ∞ andwe can apply the following
classical result (Wasow 1965):

Lemma 4.6 Let f (w) be holomorphic in an open sector σ at w = 0 and let σ∗ be
a closed, proper sub-sector of σ. If,

f (w) ∼
∞∑

n=0

anw
n, as w → 0, w ∈ σ,

then:
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an = 1

n! lim
w→0
w∈σ∗

f (n)(z),

where f (n)(w) denotes the nth derivative of f (w),

to find,

(γ − β)n(1 − β)n

n! =
1

n! lim
w→0

w−1∈S ∗

dn

dwn
lim

α→∞
arg(α)=± π

2

∞∑
l=0

(1 − β)l(γ − β)lα
lwl

(α + 1 − β)l l!

∣∣∣∣∣
w−1∈σ∞(α)

(−α)γ−βk±
1,∞(α).

We proceed to treat the limits on the right hand side with special care. We first note
that, due to the uniformity of the limits (4.24) and (4.26), we may interchange the
limit in α with the derivative and the limit in w as follows,

(γ − β)n(1 − β)n

n! =
1

n! lim
α→∞ lim

w→0
w−1∈S ∗

dn

dwn

∞∑
l=0

(1 − β)l(γ − β)lα
lwl

(α + 1 − β)l l!

∣∣∣∣∣
w−1∈σ∞(α)

(−α)γ−βk±
1,∞(α).

The next step is to notice that the series inside the limits on the right hand side
represents an analytic function (or at least its analytic extension to the sector σ∞(ε)
does). We may therefore interchange the derivative and series as follows,

(γ − β)n(1 − β)n

n! =
1

n! lim
α→∞

arg(α)=± π
2

lim
w→0

w−1∈S ∗

∞∑
l=0

dn

dwn

(1 − β)l (γ − β)lα
lwl

(α + 1 − β)l l!

∣∣∣∣∣
w−1∈σ∞(α)

(−α)γ−βk±
1,∞(α) =

1

n! lim
α→∞

arg(α)=± π
2

lim
w→0

w−1∈S ∗

∞∑
l=0

(l + n)!
l!

(1 − β)l+n(γ − β)l+nαl+nwl

(α + 1 − β)l+n(l + n)!

∣∣∣∣∣
w−1∈σ∞(α)

(−α)γ−βk±
1,∞(α).

Furthermore, due to the analyticity of the series on the right hand side, its limit as
w → 0 certainly exists and is simply equal to the first term of the series. We finally
deduce,

(γ − β)n(1 − β)n

n! = 1

n! lim
α→∞

arg(α)=± π
2

n! (1 − β)n(γ − β)nα
n

(α + 1 − β)nn! (−α)γ−βk±
1,∞(α).

(4.32)

Therefore
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lim
α→∞

arg(α)=± π
2

(1 − β)n(γ − β)nα
n

(α + 1 − β)nn! (−α)γ−βk±
1,∞(α)

= (1 − β)n(γ − β)n

n! lim
α→∞

arg(α)=± π
2

(−α)γ−βk±
1,∞(α).

Comparing with the left hand side of (4.32) we deduce the desired result (4.27). The
limit (4.28) can be proved by using y(∞)

2 (zα−1) as given by (2.6). The limits (4.29)
and (4.30) can be proved using y(1)

1 (zα−1) and y(1)
2 (zα−1) as given by (4.11) and

(4.12) and using Lemma 4.4 in place of Lemma 4.3. �

Remark 7 Returning to the point of view of studying the hypergeometric equations
as the (2 × 2) equations (2.3) and (3.2), our Main Theorem 4.5 may be equivalently
stated as follows. If K ±

1 (α) and K ±∞(α) are diagonal matrices satisfying (4.19)–
(4.22), then they satisfy the following:

lim
α→∞

arg(α)=± π
2

K ±
∞(α)

(
(−α)γ−β 0

0 −(−α)β

)
= I, (4.33)

lim
α→∞

arg(α)=± π
2

K ±
1 (α)

(
αγ−β 0
0 −αβ

)
= I. (4.34)

These limits can be proved in an analogous way to the limits in our Main Theorem
4.5 by using Remarks 5 and 6 in place of Lemmas 4.3 and 4.4 respectively.

4.2.2 Obtaining ˜Y (0)(z) from Y (0)(z)

Since the substitution x = z
α
and limit α → ∞ do not interfere with the nature of

the Fuchsian singularity x = 0, corresponding to z = 0, this limit is much easier.
We will only consider the limit along arg(α) = −π

2 , the other case is completely
analogous even though it requires to change the branch cut in �̃0.

Lemma 4.7 We have the following limit,

lim
α→∞ 2F1

(
α, β

γ
; z

α

)
= 1F1

(
β
γ

; z

)
.

Proof By taking the term by term limit in the series for 2F1 we obtain a uniformly
convergent series that coincides with 1F1. We conclude by uniqueness of Taylor
series expansion for analytic functions. �

Theorem 4.8 Let y(0)
k (x) and ỹ(0)

k (z), k = 1, 2, be defined as in (2.4) and (3.3)
respectively. For arg(α) = −π

2 , we have the following limits,
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lim
α→∞

z∈ω0(α)

y(0)
1

(
zα−1

)
α1−γ = ỹ(0)

1 (z),

lim
α→∞

z∈ω0(α)

y(0)
2

(
zα−1

) = ỹ(0)
2 (z),

z ∈ �̃0. (4.35)

where

ω0(α) =
{

z : |z| < |α|, −3

2
π ≤ arg(z) <

π

2

}
.

Proof Notice that for arg(α) = π
2 , x ∈ �0 ⇔ z ∈ ω0(α). Since the radius of this

neighbourhood clearly becomes infinite as α → ∞, if z ∈ ω0(α) for all |α| suffi-
ciently large, then the domain ω0 tends to the domain �̃0 (i.e. the domain in our
definition of the fundamental solutions of Kummer equation around z = 0 as given
in Sect. 3.1).

Using Lemma 4.7, we compute the limits as follows,

lim
α→∞ y(0)

1

(
zα−1

)
α1−γ = lim

α→∞ z1−γ
2F1

(
α + 1 − γ, β + 1 − γ

2 − γ
; z

α

)

= z1−γ
1F1

(
β + 1 − γ
2 − γ

; z

)
= ỹ(0)

1 (z), z ∈ �̃0,

and lim
α→∞ y(0)

2

(
zα−1

) = lim
α→∞ 2F1

(
α, β

γ
; z

α

)

= 1F1

(
β
γ

; z

)
= ỹ(0)

2 (z), z ∈ �̃0,

as required. �
Remark 8 The factor α1−γ in the first limit of Theorem 4.8 is necessary because of
the term,

x1−γ ≡ z1−γαγ−1,

in the solution y(0)
1 (x), as given in (2.4).

Remark 9 We have stated Theorem 4.8 in terms of the solutions of the scalar
hypergeometric equations (1.1) and (1.2). The limits (4.35) can be equivalently stated
in terms of the solutions of the (2 × 2) equations (2.3) and (3.2): for arg(α) = ±π

2 ,

lim
α→∞

z∈ω0(α)

Y (0)
( z

α

)
α�0 = Ỹ (0)(z), z ∈ �̃0. (4.36)

To see how this is equivalent to (4.35), we observe that for the diagonalising matrices
we have

lim
α→∞ R0 = lim

α→∞

(
1 1

α+1−γ
α(β−γ)

1
β−1

)
=
(

1 1
1

β−γ
1

β−1

)
= R̃0,
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and for the series, using Lemma 4.7,

lim
α→∞ G0

(
zα−1

) = lim
α→∞

⎛
⎜⎜⎝

2F1

(
α + 1 − γ, β − γ

1 − γ
; z

α

)
,

z(α+1−γ)(1−β)

α(1−γ)(2−γ) 2F1

(
α + 2 − γ, β + 1 − γ

3 − γ
; z

α

)
,

z(γ−β)

γ(γ−1) 2F1

(
α + 1, β

γ + 1
; z

α

)

2F1

(
α, β − 1

γ − 1
; z

α

)
⎞
⎟⎟⎠ ,

=

⎛
⎜⎜⎝

1F1

(
β − γ
1 − γ

; z

)
, z(γ−β)

γ(γ−1) 1F1

(
β

γ + 1
; z

)

z(1−β)

(1−γ)(2−γ) 1F1

(
β + 1 − γ
3 − γ

; z

)
, 1F1

(
β − 1
γ − 1

; z

)
⎞
⎟⎟⎠ = H0(z).

4.3 Limits of Monodromy Data

Summarising the results so far, in Sect. 4.2 we showed how term-by-term limits of the
solutions of Gauss equation around x = ∞ and x = 1 produce the formal solutions
of Kummer equation around z = ∞. We then explained how Glutsyuk’s Theorem
4.1 asserts the existence of certain scalars which multiply Gauss solutions so that
their true limits exist and are equal to the solutions of Kummer equation analytic in
sectors at z = ∞. We have also proved our Main Theorem 4.5, which establishes
some important limits which these factors must satisfy. We now bring these results
together to prove our second main theorem, concerned with explicitly producing the
set of monodromy data M̃ from the set M.

Theorem 4.9 Define the monodromy data of Gauss equation as given in (2.11)–
(2.16) and of Kummer equation as in (3.12)–(3.16). We have the following limits,

lim
α→∞

arg(α)= π
2

(
αγ−β 0
0 −αβ

)
C1∞

(
(−α)β−γ 0

0 −(−α)−β

)
= S̃0, (4.37)

lim
α→∞

arg(α)=− π
2

(
αγ−β 0
0 −αβ

)
C1∞

(
(−α)β−γ 0

0 −(−α)−β

)
= S̃−1, (4.38)

lim
α→∞

arg(α)=− π
2

(
αγ−1 0
0 1

)
C0∞

(
(−α)β−γ 0

0 −(−α)−β

)
= C̃0∞ (4.39)

Furthermore, as immediate consequences of the above limits of connection matrices,
we have the following limits of monodromy matrices,
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lim
α→∞

arg(α)=− π
2

(
(−α)γ−β 0

0 −(−α)β

)
M0

(
(−α)β−γ 0

0 −(−α)−β

)
= M̃0, (4.40)

lim
α→∞

arg(α)=− π
2

(
(−α)γ−β 0

0 −(−α)β

)
M∞M1

(
(−α)β−γ 0

0 −(−α)−β

)
= M̃∞. (4.41)

Proof As part of the proof of this theorem, we will use the following elementary
lemma.

Lemma 4.10 Let f (α) and g(α) be matrices such that limα→∞ f (α)g(α) exists.
(i) If limα→∞ det( f (α)) exists and is non-zero and det( f (α)) �= 0 for all α suf-
ficiently large and if the limit limα→∞ f (α) exists and is invertible, then the limit
limα→∞ g(α) exists.
(ii) If limα→∞ det(g(α)) exists and is non-zero and det(g(α)) �= 0 for all α suffi-
ciently large and if the limit limα→∞ g(α) exists, then the limit limα→∞ f (α) exists.

Let σα(α) and σ∞(α) be the sectors defined in (4.17) and (4.18) respectively.
As mentioned previously, if z ∈ σα(α) then x ∈ �1 and if z ∈ σ∞(α) then x ∈ �∞,
so that the connection matrix C1∞ remains valid for the solutions Y (1)(zα−1) and
Y (∞)(zα−1) restricted to the sectors σα(α) and σ∞(α) respectively. Since the radii
of these sectors do not diminish as α → ∞, for |α| sufficiently large we must have,

σα(α) ∩ σ∞(α) �= ∅,

recall Fig. 8. Therefore, for |α| sufficiently large, we have,

Y (∞)
(
zα−1

) = Y (1)
(
zα−1

)
C1∞, z ∈ σα(α) ∩ σ∞(α). (4.42)

Let S̃k be the sectors defined in (4.16). To prove the first limit (4.37), we first give a
proof of Glutsyuk’s Corollary 4.2 in our case. We multiply by the matrices K +∞(α)

and K +
1 (α) and take the limit α → ∞, with arg(α) = π

2 , so that (4.42) becomes,

lim
α→∞

arg(α)= π
2

Y (∞)(zα−1)
∣∣
z∈σ∞(α)

K +
∞(α)

= lim
α→∞

arg(α)= π
2

Y (1)(zα−1)
∣∣
z∈σα(α)

K +
1 (α)

(
K +

1 (α)
)−1

C1∞K +
∞(α), (4.43)

for z ∈ S̃0 ∩ S̃1. We apply Lemma 4.10 (i) with,

f (α) = Y (1)(zα−1)
∣∣
z∈σα(α)

K +
1 (α) and g(α) = (K +

1 (α)
)−1

C1∞K +
∞(α).

Observe that the hypotheses of Lemma 4.10 hold: the limit,

lim
α→∞

arg(α)= π
2

f (α)g(α),
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exists and equals Ỹ (∞,1)(z), by (4.22), and the limit,

lim
α→∞

arg(α)= π
2

f (α),

exists and equals Ỹ (∞,0)(z), by (4.21), which is clearly invertible because it is a funda-
mental solution. For all α, f (α) is also clearly invertible because it is a fundamental
solution. The limit,

lim
α→∞

arg(α)= π
2

g(α) = lim
α→∞

arg(α)= π
2

(
K +

1 (α)
)−1

C1∞K +
∞(α),

therefore exists and, from (4.43),

Ỹ (∞,1)(z) = Ỹ (∞,0)(z) lim
α→∞

arg(α)= π
2

(
K +

1 (α)
)−1

C1∞K +
∞(α), z ∈ S̃0 ∩ S̃1.

Recall that if z ∈ S̃k then z ∈ �̃k and recall Definition 3.2 of Stokesmatrices, namely
we have,

Ỹ (∞,1)(z) = Ỹ (∞,0)(z)S̃0, z ∈ �̃0 ∩ �̃1.

We conclude that,
lim

α→∞
arg(α)= π

2

(
K +

1 (α)
)−1

C1∞K +
∞(α) = S̃0,

which is precisely Glutsyuk’s Corollary 4.2 in our case. Combining this with (4.33)
and (4.34), we compute,

S̃0 = lim
α→∞

arg(α)= π
2

(
K +

1 (α)
)−1

C1∞K +
∞(α),

= lim
α→∞

arg(α)= π
2

(
K +

1 (α)

(
αγ−β 0
0 −αβ

)(
αβ−γ 0
0 −α−β

))−1

C1∞K +
∞(α)

(
(−α)γ−β 0

0 −(−α)β

)(
(−α)β−γ 0

0 −(−α)−β

)
,

= lim
α→∞

arg(α)= π
2

(
αγ−β 0
0 −αβ

)
C1∞

(
(−α)β−γ 0

0 −(−α)−β

)
,

where we have implicitly used Lemma 4.10 again, this proves the first limit (4.37) of
the theorem. To prove the second limit (4.38), we multiply by the matrices K −∞(α)

and K −
1 (α) and take the limit α → ∞, with arg(α) = −π

2 , so that (4.42) becomes,
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lim
α→∞

arg(α)=− π
2

Y (∞)(zα−1)
∣∣
z∈σ∞(α)

K −
∞(α)

= lim
α→∞

arg(α)=− π
2

Y (1)(zα−1)
∣∣
z∈σα(α)

K −
1 (α)

(
K −

1 (α)
)−1

C1∞K −
∞(α), (4.44)

for z ∈ S̃−1 ∩ S̃0. By following a similar procedure as above, using Lemma 4.10
and the relations (4.19) and (4.20), we deduce,

lim
α→∞

arg(α)=− π
2

(
K −

1 (α)
)−1

C1∞K −
∞(α) = S̃−1.

Combining this with (4.33) and (4.34), we compute,

S̃−1 = lim
α→∞

arg(α)=− π
2

(
K −

1 (α)
)−1

C1∞K −
∞(α),

= lim
α→∞

arg(α)=− π
2

(
K −

1 (α)

(
αγ−β 0
0 −αβ

)(
αβ−γ 0
0 −α−β

))−1

C1∞K −
∞(α)

(
(−α)γ−β 0

0 −(−α)β

)(
(−α)β−γ 0

0 −(−α)−β

)
,

= lim
α→∞

arg(α)=− π
2

(
αγ−β 0
0 −αβ

)
C1∞

(
(−α)β−γ 0

0 −(−α)−β

)
,

where we have implicitly used Lemma 4.10, this proves the second limit (4.38) of
the theorem.

To prove the third limit (4.39) we first note that the curve γ∞0 which defines
the connection matrix C0∞ survives the confluence limit. In other words, after the
substitution x = z

α
, the curve does not diminish or become broken under the limit

α → ∞. This fact is expressed as follows,

lim
α→∞

arg(α)=− π
2

γ∞0
[
Y (∞)K −

∞(α)
] (

zα−1
) = γ∞0

[
Ỹ (∞,0)

]
(z),

or equivalently, using the domainsω−
0 (α) and �̃−

0 defined in Sects. 4.2 and 3.1 respec-
tively,

lim
α→∞

arg(α)=− π
2

Y (0) (zα−1)∣∣
z∈ω−

0 (α)
C0∞ (C1∞)−1

K −
∞(α) = Ỹ (0)(z)C̃0∞, z ∈ �̃−

0 .

Combining this with the limits (4.36) and (4.33), we deduce the required result (4.39)
as follows,
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lim
α→∞

arg(α)=− π
2

Y (0)
(

zα−1
)∣∣∣

z∈ω−
0 (α)

(
α1−γ 0
0 1

)(
αγ−1 0
0 1

)
C0∞

K −∞(α)

(
(−α)γ−β 0

0 −(−α)β

)(
(−α)β−γ 0

0 −(−α)−β

)

= Ỹ (0)(z) lim
α→∞

arg(α)=− π
2

(
αγ−1 0
0 1

)
C0∞

(
(−α)β−γ 0

0 −(−α)−β

)
, z ∈ �̃−

0 ,

= Ỹ (0)(z)C̃0∞, z ∈ �̃−
0 ,

⇔ lim
α→∞

arg(α)=− π
2

(
αγ−1 0
0 1

)
C0∞

(
(−α)β−γ 0

0 −(−α)−β

)
= C̃0∞,

where we have implicitly used Lemma 4.10.
Having deduced the limit (4.39) of the connection matrix, the limit (4.40) follows

directly since M0 = (C0∞)−1
e2πi�0C0∞ and �0 ≡ �̃0. For (4.40), we have,

lim
α→∞

arg(α)=− π
2

(
(−α)γ−β 0

0 −(−α)β

)
M0

(
(−α)β−γ 0

0 −(−α)−β

)

= lim
α→∞

arg(α)=− π
2

(
(−α)γ−β 0

0 −(−α)β

) (
C0∞)−1

e2πi�0C0∞
(

(−α)β−γ 0
0 −(−α)−β

)
,

= lim
α→∞

arg(α)=− π
2

(
(−α)γ−β 0

0 −(−α)β

) (
C0∞)−1

(
αγ−1 0
0 1

)
e2πi�0

(
α1−γ 0
0 1

)
C0∞

(
(−α)β−γ 0

0 −(−α)−β

)
,

= (C̃0∞)−1
e2πi�̃0 C̃0∞ = M̃0,

as required. �

4.3.1 Explicit Computations of Limits of Monodromy Data

Here we apply Theorem 4.9 to calculate explicitly the Stokes’ matrices. We will use
the following classical facts:

lim
α→∞ ac−b �(a + b)

�(a + c)
= 1, as a → ∞, |arg(a)| < π, (4.45)

�(a) ≡ π

sin(πa)�(1 − a)
, (4.46)

lim
a→∞ eiπa csc(πa) = 2i for Im(a) < 0. (4.47)
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The proof of (4.47) is elementary, the proofs of (4.45) and (4.46) can be found in
Whittaker and Watson (1979) and Bateman and Erdélyi (2020).

Let C1∞ be given by (2.12). Using (−α) ≡ αeiπ , we calculate,

(
αγ−β 0
0 −α−β

)
C1∞

(
(−α)β−γ 0

0 −(−α)β

)

=
(

αγ−β 0
0 −α−β

)

(
eiπ(γ−β) �(α+1−β)�(α+β−γ)

�(α)�(α+1−γ)
eiπ(γ−α) �(β+1−α)�(α+β−γ)

�(β)�(β+1−γ)

eiπα �(α+1−β)�(γ−α−β)
�(1−β)�(γ−β)

eiπβ �(β+1−α)�(γ−α−β)
�(1−α)�(γ−α)

)(
(−α)β−γ 0

0 −(−α)β

)
,

=
(

�(α+1−β)�(α+β−γ)
�(α)�(α+1−γ)

−eπi(γ−α−β)αγ−2β �(β+1−α)�(α+β−γ)
�(β)�(β+1−γ)

−eπi(α+β−γ)α2β−γ �(α+1−β)�(γ−α−β)
�(1−β)�(γ−β)

�(β+1−α)�(γ−α−β)
�(1−α)�(γ−α)

)
.

Using (4.45), we find for the (1,1) and (2,2) elements:

lim
α→∞

arg(α)=± π
2

�(α + 1 − β)�(α + β − γ)

�(α)�(α + 1 − γ)
= 1,

and lim
α→∞

arg(α)=± π
2

�(β + 1 − α)�(γ − α − β)

�(1 − α)�(γ − α)
= 1,

respectively, as required. We rewrite the (1,2) and (2,1) elements using (4.46) as
follows:

−eπi(γ−α−β)αγ−2β �(β + 1 − α)�(α + β − γ)

�(β)�(β + 1 − γ)

= −eiπ(γ−α−β)

sin(π(α + β − γ))
αγ−2β �(β + 1 − α)

�(γ + 1 − α − β)

π

�(β)�(β + 1 − γ)
,

and,

−eiπ(α+β−γ)α2β−γ �(α + 1 − β)�(γ − α − β)

�(1 − β)�(γ − β)

= −eiπ(α+β−γ)

sin(π(γ − α − β))
α2β−γ �(α + 1 − β)

�(α + β + 1 − γ)

π

�(1 − β)�(γ − β)
,

respectively. As α → ∞, the dominant terms in these expressions are e∓iπα respec-
tively; observe that, if arg(α) = ±π

2 then e±iπα → 0 asα → ∞, as required. Finally,
for the most important computations, we have:
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lim
α→∞

arg(α)=− π
2

−eiπ(α+β−γ)

sin(π(γ − α − β))︸ ︷︷ ︸
→2i by (4.47)

α2β−γ �(α + 1 − β)

�(α + β + 1 − γ)︸ ︷︷ ︸
→1 by (4.45)

π

�(1 − β)�(γ − β)
,

= 2πi

�(1 − β)�(γ − β)
≡ (S−1)2,1 ,

and,

lim
α→∞

arg(α)= π
2

−eiπ(γ−α−β)

sin(π(α + β − γ))︸ ︷︷ ︸
→2i by (4.47)

αγ−2β �(β + 1 − α)

�(γ + 1 − α − β)︸ ︷︷ ︸
→eiπ(γ−2β) by (4.45)

π

�(β)�(β + 1 − γ)
,

= 2πieiπ(γ−2β)

�(β)�(β + 1 − γ)
≡ (S0)1,2 ,

as required by formulae (3.12).
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Appendix A: Gauss Monodromy Data and Mellin-Barnes
Integral

Here, following Bateman and Erdélyi (2020), Whittaker and Watson (1979) and
Andrews et al. (1999), we re-derive the classical formulae (2.11)–(2.13). This is a
worthwhile exercise as it gives a greater understandingof how to analytically continue
solutions and compute their monodromy data.

We will work with the following Mellin-Barnes integral,

1

2πi

∫ +i∞

−i∞
I (s, x) ds where I (s, x) = �(α + s)�(β + s)�(−s)

�(c + s)
(−x)s,

(A.48)

with |arg(−x)| < π and whose path of integration is along the imaginary axis with
indentations as necessary so that the poles of �(α + s)�(β + s) lie on its left and the
poles of �(−s) lie on its right, as shown in Fig. 10. It is always possible to construct
such a path as long as α and β /∈ Z

≤0, which is a general assumption since the case
in which α or β ∈ Z

≤0 corresponds to some of the solutions in (2.4)–(2.6) being
polynomials.

We will prove the following proposition, which is sufficient to derive the connec-
tion formulae (2.11)–(2.13).
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Fig. 10 Path of integration
with indentations as in
(A.48)

Proposition A.11 The integral as given by (A.48) satisfies the following properties:

1. for |arg(−x)| < π,
1

2πi

∫ +i∞

−i∞
I (s, x) ds,

defines an analytic function of x;
2. for |arg(−x)| < π and |x | < 1,

1

2πi

∫ +i∞

−i∞
I (s, x) ds = �(α)�(β)

�(γ)
y(0)
2 (x),

where y(0)
2 (x) is the solution of Gauss equation as given by (2.4).

3. for |arg(−x)| < π and |x | > 1,

1

2πi

∫ +i∞

−i∞
I (s, x) ds = �(α)�(β − α)

�(γ − α)
y(∞)
1 (x) + �(β)�(α − β)

�(γ − β)
y(∞)
2 (x),

where y(∞)
1 (x) and y(∞)

2 (x) are the solutions of Gauss equation as given by (2.6).

Proof This proof is organised into three parts to prove each statement consecutively.
We start by proving the analyticity of the integral. We use Euler’s reflection

formula �(−s)�(s + 1) = −π csc(πs) to re-write the integrand,

I (s, x) = −�(α + s)�(β + s)

�(c + s)�(s + 1)

π

sin(πs)
(−x)s . (A.49)

Using the following asymptotic expansion of the Gamma function (Whittaker and
Watson 1979) Sect. 13.6,
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�(s + a) = ss+a− 1
2 e−s

√
2π(1 + o(1)), with |s|, (A.50)

which is valid for |arg(s + a)| < π, we deduce,

�(α + s)�(β + s)

�(c + s)�(s + 1)
= O (|s|α+β−γ−1

)
, as |s| → ∞. (A.51)

Writing sin(πs) = 1
2i (e

iπs − e−iπs) we also deduce,

sin(πs) = O (e|s|π) , as |s| → ∞, (A.52)

along the contour of integration (the imaginary axis). Combining (A.51) and (A.52),
the integrand has the following asymptotic behavior,

I (s, x) = O (|s|α+β−γ−1e−|s|π(−x)s
)
, as |s| → ∞,

along the contour of integration, we therefore need only consider the analyticity of
the following integral,

∫ +i∞

−i∞
e−|s|π(−x)s ds

≡ i
∫ ∞

0
e−σπeiσ(log |x |+iarg(−x)) dσ − i

∫ ∞

0
e−σπe−iσ(log |x |+iarg(−x)) dσ. (A.53)

We recall the following lemma, see for instance Whittaker and Watson (1979)
Sect. 5.32.

Lemma A.12 If f : R → R is a continuous function such that | f (t)| ≤ K ert for
constants K and r, then the integral

∫∞
0 f (t)e−λt dt defines an analytic function of

λ for r < Re(λ).

Applying this lemma to the first integral in (A.53), with r = −π, K = 1 and
λ = arg(−x), we find an analytic function for −π < arg(−x). Applying this lemma
to the second integral in (A.53), with r = −π, K = 1 and λ = −arg(−x), we find an
analytic function for arg(−x) < π. This concludes the proof that the integral (A.48)
defines an analytic function for −π < arg(−x) < π.

We now represent y(0)
2 (x) using a Mellin-Barnes integral. We write I (s, x) as in

(A.49) and consider the following integral,

1

2πi

∫
CN

I (s, x) ds,

for N ∈ N
≥0, where CN is the following semicircle,

CN =
{

s =
(

N + 1

2

)
eiθ : θ ∈

[
−π

2
,
π

2

]}
.
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Let s ∈ CN , using formula (A.50) from above, we deduce the following asymptotic
behavior,

�(α + s)�(β + s)

�(γ + s)�(s + 1)
= O (Nα+β−γ−1

)
, as N → ∞, (A.54)

and, using sin(πs) = 1
2i (e

iπs − e−iπs),

(−x)s

sin(πs)
= O

(
e(N+ 1

2 )(cos(θ) log |x |−sin(θ)arg(−x)−π| sin(θ)|)
)

, as N → ∞. (A.55)

Since |arg(−x)| < π, we write |arg(−x)| ≤ π − δ for some δ > 0, so that,

± arg(−x) + π ≥ δ ⇔ sin(θ)arg(−x) + | sin(θ)|π ≥ | sin(θ)|δ,
⇔ e− sin(θ)arg(−x)−π| sin(θ)| ≤ e−| sin(θ)|δ. (A.56)

Combining (A.54)–(A.56), the integrand has the following asymptotic behaviour for
s ∈ CN ,

I (s, x) = O
(

Nα+β−γ−1e(N+ 1
2 )(cos(θ) log |x |−| sin(θ)|δ)

)
, as N → ∞.

Since cos(θ) and | sin(θ)| are even functions, we need only consider θ ∈ [0, π
2

]
. For

θ ∈ [0, π
4

]
, cos(θ) ≥ 1√

2
and for θ ∈ [ π

4 , π
2

]
, sin(θ) ≥ 1√

2
. Henceforth, we impose

the condition that |x | < 1, or equivalently log |x | < 0. For s ∈ CN we deduce:

I (s, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
(

Nα+β−γ−1e(N+ 1
2 )

1√
2
log |x |)

, θ ∈ [0, π
4

)
,

O
(

Nα+β−γ−1e(N+ 1
2 )

1√
2
(log |x |−δ)

)
, θ = π

4 ,

O
(

Nα+β−γ−1e−(N+ 1
2 )

1√
2
δ
)

, θ ∈ ( π
4 , π

2

]
,

as N → ∞. This shows that the integral of I (s, x) along the semicircle CN tends to
zero as N tends to infinity, for |x | < 1 and |arg(−x)| < π. Due to Cauchy’s theorem,
we have,

1

2πi

(∫ +i∞

−i∞
−
∫ +i∞

(N+ 1
2 )i

−
∫

CN

−
∫ −(N+ 1

2 )i

−i∞

)
I (s, x) ds = −

N∑
n=0

Res
s=n

I (s, x).

(A.57)

We note that there is a minus sign since the path of integration is a contour oriented
clockwise, see Fig. 11.

Using Res
λ=−n

�(λ) = (−1)n

n! , for n ≥ 0, we compute the residues to find,
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Fig. 11 Paths of integration
along the imaginary axis and
the semicircle CN as in
(A.57)

1

2πi

∫ +i∞

−i∞
I (s, x) ds = lim

N→∞

N∑
n=0

�(α + n)�(β + n)

�(γ + n)�(n + 1)
xn,

for |x | < 1 and |arg(−x)| < π and the desired result is proved after noting �(α+n)

�(α)
≡

(α)n .
Finally,we carry out the analytic continuation of y(0)

2 (x) for |x | > 1.The technique
to derive the connection formulae is similar to that already used in the second part
of this proof, the main difference being that we will now consider taking an integral
on the left hand side of the imaginary axis. For N ∈ N consider the integral,

1

2πi

∫
C ′

N

I (s, x) ds,

where C ′
N is the semicircle,

C ′
N =

{
s = Neiθ : θ ∈

[
−3π

2
,−π

2

]}
.

We summarise the results, following a similar procedure as before. Using (A.50) we
deduce,

�(α + s)�(β + s)�(−s)

�(γ + s)
= O (Nα+β−γ−1e−Nπ| sin(θ)|) ,
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for s ∈ C ′
N as N → ∞, and hence,

I (s, x) = O (Nα+β−γ−1eN (cos(θ) log |x |−sin(θ)arg(−x)−π| sin(θ)|)) ,
= O (Nα+β−γ−1eN (cos(θ) log |x |−| sin(θ)|δ)) ,

where δ is a small positive number such that |arg(−x)| ≤ π − δ. Clearly cos(θ)
and −| sin(θ)| are both non-positive for θ ∈ [− 3π

2 ,− π
2

]
and they are never both

simultaneously zero. Furthermore, for |x | > 1wehave log |x | > 0, so that the integral
of I (s, x) along the semicircle C ′

N tends to zero as N tends to infinity, for |x | > 1
and |arg(−x)| < π. Due to Cauchy’s theorem, we have,

1

2πi

(∫ +i∞

−i∞
−
∫ +i∞

Ni
−
∫

C ′
N

−
∫ −Ni

−i∞

)
I (s, x) ds

=
M1(N )∑
n=0

Res
s=α−n

I (s, x) +
M2(N )∑
n=0

Res
s=β−n

I (s, x), (A.58)

where M1(N ) and M2(N ) are the number of poles−α,−α − 1, . . . and−β,−β − 1,
. . . which lie to the right of the semicircle respectively. Clearly M1(N ) and M2(N )

become infinite as N tends to infinity, see Fig. 12.
We compute the residues to find,

1

2πi

∫ +i∞

−i∞
I (s, x) ds = �(α)�(β − α)

�(γ − α)
(−x)−α lim

N→∞

M1(N )∑
n=0

(α)n(α + 1 − γ)n

(α + 1 − β)nn!xn

+ �(β)�(α − β)

�(γ − β)
(−x)−β lim

N→∞

M2(N )∑
n=0

(β)n(β + 1 − γ)n

(β + 1 − α)nn!xn
,

for |x | > 1 and |arg(−x)| < π and the desired result is proved. �
We conclude these computations by explaining how Proposition A.11 leads to

the formulae (2.11)–(2.13). Let γ j,k be a curve as described at the beginning of this
subsection. The second statement in proposition A.11 shows how to represent Gauss
2F1 series using a Mellin-Barnes integral. Due to the analyticity of this integral, as
shown in the first statement, the third statement provides the formula for the analytic
continuation of Gauss hypergeometric series beyond its radius of convergence. That
is to say,

γ0,∞
[

y(0)
2

]
(x) = �(α − β)�(γ)

�(α − γ)�(β)
y(∞)
1 (x) + �(β − α)�(γ)

�(β − γ)�(α)
y(∞)
2 (x).

By manipulating the parameters as follows: α �→ α + 1 − γ, β �→ β + 1 − γ, γ �→
2 − γ and multiplying through by x1−γ we also deduce,
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Fig. 12 Paths of integration along the imaginary axis and the semicircle C ′
N as in (A.58)

γ0,∞
[

y(0)
1

]
(x) = −e−iπγ �(β − α)�(2 − γ)

�(1 − α)�(β + 1 − γ)
y(∞)
1 (x)

− e−iπγ �(α − β)�(2 − γ)

�(1 − β)�(α + 1 − γ)
y(∞)
2 (x),

recall that we have selected a branch of log(x) in the definition of our solutions
(2.4) around zero so x1−γ is well-defined. These factors constitute the entries of the
connection matrix,

(
γ0,∞

[
y(0)
1

]
(x), γ0,∞

[
y(0)
2

]
(x)
)

=
(

y(∞)
1 (x), y(∞)

2 (x)
)

C∞0,

where,

C∞0 =
(

−e−iπγ �(β−α)�(2−γ)

�(1−α)�(β+1−γ)

�(α−β)�(γ)

�(α−γ)�(β)

−e−iπγ �(α−β)�(2−γ)

�(1−β)�(α+1−γ)

�(β−α)�(γ)

�(β−γ)�(α)

)
,

which is indeed the inverse of the connection matrix C0∞ as given by (2.11). To find
the analytic continuation of the solutions around x = 1 we manipulate the variable x
as well as the parameters. From the transformations α �→ α, β �→ β, γ �→ α + β +
1 − γ and x �→ 1 − x , we have,
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γ1,∞
[

y(1)
2

]
(x) =

e−iπα �(β − α)�(α + β + 1 − γ)

�(β)�(β + 1 − γ)
(1 − x)−α

2F1

(
α, γ − β
α + 1 − β

; (1 − x)−1

)

+ e−iπβ �(α − β)�(α + β + 1 − γ)

�(α)�(α + 1 − γ)
(1 − x)−β

2F1

(
β, γ − α
β + 1 − α

; (1 − x)−1

)
,

and from the transformations α �→ γ − α, β �→ γ − β, γ �→ γ + 1 − α − β and
x �→ 1 − x ,

γ1,∞
[

y(1)
1

]
(x) =

eiπ(β−γ) �(β − α)�(γ + 1 − α − β)

�(1 − α)�(γ − α)
(1 − x)−α

2F1

(
α, γ − β
α + 1 − β

; (1 − x)−1
)

+ eiπ(α−γ) �(α − β)�(γ + 1 − α − β)

�(1 − β)�(γ − β)
(1 − x)−β

2F1

(
β, γ − α
β + 1 − α

; (1 − x)−1
)

,

both for |arg(x − 1)| < π and |x − 1| > 1. After applying Kummer transformation,

(1 − x)−a
2F1

(
a, c − b

a + 1 − b
; (1 − x)−1

)
= (−x)−a

2F1

(
a, a + 1 − c

a + 1 − b
; x−1

)
,

which is valid for |arg(x − 1)| < π, |arg(−x)| < π, |x − 1| > 1 and |x | > 1, we
deduce the connection matrix,

(
γ0,∞

[
y(1)
1

]
(x), γ0,∞

[
y(1)
2

]
(x)
)

=
(

y(∞)
1 (x), y(∞)

2 (x)
)

C∞1,

where,

C∞1 =
(

eiπ(β−γ) �(β−α)�(γ+1−α−β)

�(1−α)�(γ−α)
e−iπα �(β−α)�(α+β+1−γ)

�(β)�(β+1−γ)

eiπ(α−γ) �(α−β)�(γ+1−α−β)

�(1−β)�(γ−β)
e−iπβ �(α−β)�(α+β+1−γ)

�(α)�(α+1−γ)

)
,

which is indeed the inverse of the connection matrix C1∞ as given by (2.12). The
connection matrix C01 as in (2.13) can be deduced from the relation,

C01 = C∞1C0∞.

Appendix B: Mellin-Barnes Integral for Kummer Equation

In Appendix B, we follow the classical approach to show that these solutions can
be expressed in closed form by certain Mellin-Barnes integrals and thus derive the
connection matrices. This analysis allows us to explicitly compute the monodromy
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data, including Stokes matrices, of Kummer equation in the following section and
thus obtain a richer understanding of Stokes phenomenon.

The remainder of this subsection is dedicated to deriving the classical formulae
(3.12)–(3.13). This is a valuable exercise in its own right as it gives us a richer
understanding of Stokes phenomenon using a concrete example. Our approach is
to use Mellin-Barnes integrals to represent the fundamental solutions Ỹ (∞,k)(z), as
defined inTheorem3.2, forwhichwe are able to compute their analytic continuations.
Our analysis of Mellin-Barnes integrals is based on Whittaker and Watson’s (1979)
Sect. 16, who study a different form of the confluent hypergeometric differential
equation but is equivalent to ours using analytic transformations.

Define the following functions,

ỹ(∞,−1)
1 (z) = e−iπ(β−γ)ezϕ

(
γ − β, γ; eiπz

)
,

ỹ(∞,−1)
2 (z) = −ϕ(β, γ; z),

z ∈ �̃−1, (B.59)

ỹ(∞,0)
1 (z) = eiπ(β−γ)ezϕ

(
γ − β, γ; e−iπz

)
,

ỹ(∞,0)
2 (z) = −ϕ(β, γ; z),

z ∈ �̃0, (B.60)

where ϕ is the Mellin-Barnes integral,

ϕ(β, γ; z) = 1

2πi

∫ +i∞

−i∞
�(s)�(β − s)�(β + 1 − γ − s)

�(β)�(β + 1 − γ)
zs−β ds, (B.61)

whose path of integration is along the imaginary axis with indentations as necessary
so that the poles of �(s) lie on its left and the poles of �(β − s)�(β + 1 − γ − s) lie
on its right, as shown in Fig. 13. When dealing with ϕ(β, γ; z) it is to be understood
that arg(z) belongs to an interval of length at most 2π, as in (B.59) and (B.60), so
that we have a well-defined function.

Proposition B.13 Let Ỹ (∞,k)(z) be the fundamental solutions defined in Theorem
3.2. Also let ỹ(∞,k)

1 (z) and ỹ(∞,k)
2 (z), k = −1, 0, be the functions defined in (B.59)

and (B.60) and denote by Ỹ (ỹ1, ỹ2; z) the matrix function given by (3.1). We have,

Ỹ
(

ỹ(∞,k)
1 , ỹ(∞,k)

2 ; z
)

= Ỹ (∞,k)(z), z ∈ �̃k, (B.62)

for k = −1, 0.

Proof We prove this proposition in three steps: we first show that the functions
ỹ(∞,k)
1 (z) and ỹ(∞,k)

2 (z) are analytic on their respective sectors; using this fact, we
secondly show that these functions satisfy Kummer equation (1.2); finally, we show
that these functions have the correct asymptotic behaviour (3.5). By the uniqueness
statement of Theorem 3.2, these conditions are sufficient to conclude (B.62).

First step: analyticity of ỹ(∞,k)
1 (z) and ỹ(∞,k)

2 (z).
We require formula (A.50) and Lemma A.12, as used in the derivation of Gauss

monodromy data formulae. Using (A.50), we have the following behaviour in the
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Fig. 13 Path of integration
in the Mellin-Barnes integral
ϕ(β, γ; z), the dots represent
the poles of the integrand

integrand of ϕ(a, c; z),

�(s)�(β − s)�(β + 1 − γ − s) = O
(

e− 3π
2 |s||s|2β−γ− 1

2

)
, as |s| → ∞ (B.63)

along the contour of integration. We therefore need only consider the analyticity of
the following integral,

∫ +i∞

−i∞
e− 3π

2 |s|zs−β ds

≡ i
∫ ∞

0
e− 3π

2 |σ|z−βeiσ(log |z|+iarg(z)) dσ − i
∫ ∞

0
e− 3π

2 |σ|z−βe−iσ(log |z|+iarg(z)) dσ.

Applying Lemma A.12 to the first integral, with r = − 3π
2 , K = 1 and λ = arg(z),

we find an analytic function for − 3π
2 < arg(z). Applying Lemma A.12 to the second

integral, with r = − 3π
2 , K = 1 and λ = −arg(z), we find an analytic function for

arg(z) < 3π
2 . We conclude that ϕ(β, γ; z) defines analytic functions ỹ(∞,−1)

2 (z) and

ỹ(∞,0)
2 (z) on their respective sectors �̃−1 and �̃0. It therefore follows that ỹ(∞,−1)

1 (z)
and ỹ(∞,0)

1 (z) are also analytic functions, since ϕ
(
γ − β − 1, γ; eiπz

)
must be ana-

lytic on z ∈ �̃−1 and ϕ
(
γ − β − 1, γ; e−iπz

)
must be analytic on z ∈ �̃0.

Second step: Showing ỹ(∞,k)
1 (z) and ỹ(∞,k)

2 (z) satisfy the Kummer equation (1.2).
We will now substitute ϕ(β, γ; z) for ỹ(z) into the left hand side of Kummer

equation (1.2) and show that the result is zero. Having established the analyticity



148 C. Horrobin and M. Mazzocco

of ϕ(β, γ; z) on the sectors �̃−1 and �̃0, we can compute the derivatives of this
integral by taking the derivatives inside the integral. After multiplying through by
2πi�(β)�(β + 1 − γ) to cancel all multiplicative constant terms, we find,

(
z ϕ′′(β, γ; z) + (γ − z) ϕ′(β, γ; z) − β ϕ(β, γ; z)

)
2πi�(β)�(β + 1 − γ)

=
∫ +i∞

−i∞
�(s)�(β + 2 − s)�(β + 1 − γ − s)zs−β−1 ds

−
∫ +i∞

−i∞
γ�(s)�(β + 1 − s)�(β + 1 − γ − s)zs−β−1 ds

+
∫ +∞

−∞
�(s)�(β + 1 − s)�(β + 1 − γ − s)zs−β ds

−
∫ +∞

−∞
(β)�(s)�(β − s)�(β + 1 − γ − s)zs−β ds

=
∫ −1+i∞

−1−i∞
�(s + 1)�(β − γ − s)zs−β (�(β + 1 − s) − γ�(β − s)) ds

−
∫ +i∞

−i∞
�(s)�(β + 1 − γ − s)zs−β ((β)�(β − s) − �(β + 1 − s)) ds

=
(∫ −1+i∞

−1−i∞
−
∫ +i∞

−i∞

)
�(s + 1)�(β − s)�(β + 1 − γ − s)zs−β ds. (B.64)

Due to the choice of the path of integration, the final integrand has no poles between
the contours of integration, see Fig. 14. Therefore, due to Cauchy’s theorem, the
expression equals zero andwe have shown thatϕ(β, γ; z) satisfiesKummer confluent
hypergeometric equation (1.2) on z ∈ �̃−1 and �̃0.

Observe the following differential identity,

z
d2

dz2
(
ez f (−z)

)+ (γ − z)
d

dz

(
ez f (−z)

)− β ez f (−z)

≡ ez

(
z

d2

dz2
f (z) − (γ − (−z))

d

dz
f (z) − (γ − β) f (z)

)
.

Given that ϕ(β, γ; z) satisfies Kummer equation (1.2), it follows that the right hand
side of this identity equals zero for f (−z) = ϕ(γ − β, γ;−z). Looking at the left
hand side of the identity, we deduce that ezϕ(γ − β, γ;−z) also satisfies Eq. (1.2).

Third step: Asymptotic behaviour of ỹ(∞,k)
1 (z) and ỹ(∞,k)

2 (z) for large |z|.
Recalling the formal solutions given in Remark 3, we will deduce the following

asymptotics, for j ∈ {0,−1}:

y(∞, j)
1 (z) ∼ ezzβ−γ

2F0
(
γ − β, 1 − β; z−1) , as z → ∞, z ∈ �̃ j , (B.65)

y(∞, j)
2 (z) ∼ −z−β

2F0
(
β, β + 1 − γ;−z−1

)
, as z → ∞, z ∈ �̃ j . (B.66)
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Fig. 14 Paths of integration
in (B.64), the dots represent
poles of the integrand. Note
the crucial detail that s = 0
is not a pole of the integrand,
so there are no singularities
between the two paths

Denote the integrand of ϕ(β, γ; z) by,

I (s, z) = �(s)�(β − s)�(β + 1 − γ − s)

�(β)�(β + 1 − γ)
zs−β, (B.67)

and let τ be a large, positive real number. For N ≥ 0, consider the path of integration
along the rectangle R with vertices at ±iτ and −N − 1

2 ± iτ , with indentations so
that the poles of the integrand are separated as usual and with a positive orientation
as shown in Fig. 15.

By Cauchy’s theorem, we have,

1

2πi

∫
R

I (s, z) ds = 1

2πi

(∫ −iτ

−N− 1
2−iτ

+
∫ +iτ

−iτ
+
∫ −N− 1

2+iτ

+iτ
+
∫ −N− 1

2−iτ

−N− 1
2+iτ

)
I (s, z) ds.

=
N∑

n=0

Res
s=−n

I (s, z),

We examine these integrals in the limit τ → ∞+ one-by-one, using the asymptotics
(A.50) of the Gamma function:

1. By writing s = x − iτ in the first integral we obtain,

eτ(arg(z)− 3π
2 )
∫ 0

−N− 1
2

O
(
|z|xτRe(2β−γ)−x− 1

2

)
dx,
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Fig. 15 Path of integration around the rectangle R, the dots represent the poles of the integrand of
ϕ(β, γ; z)

which tends to zero as τ → ∞+, thanks to arg(z) < 3π
2 .

2. In the limit τ → ∞+, the second integral becomes ϕ(β, γ; z), by definition.

3. Similarly to the first integral, bywriting s = x + iτ in the third integral, we obtain,

e−τ(arg(z)+ 3π
2 )
∫ −N− 1

2

0
O
(
|z|xτRe(2β−γ)−x− 1

2

)
dx,

which also tends to zero as τ → ∞+, thanks to arg(z) > − 3π
2 .

4. We write s = −N − 1
2 + iy in the fourth integral to obtain,

∫ −N− 1
2 −iτ

−N− 1
2 +iτ

I (s, z) ds = i

(∫ −τ

0
+
∫ 0

τ

)
I

(
−N − 1

2
+ iy, z

)
dy

= i z−N− 1
2 −β

(∫ τ

0
O
(
|y|N+Re(2β−γ)−1e−y( 3π

2 −arg(z))
)

dy

−
∫ τ

0
O
(
|y|N+Re(2β−γ)−1e−y(arg(z)+ 3π

2 )
)

dy

)
. (B.68)

Using the fact that limτ→∞+
∫ τ

0 e−ky dy for k > 0 exists, the limit as τ → ∞+ of

the fourth integral exists and is of order O
(
|z|−N− 1

2 −β
)
as τ → ∞+, thanks to

|arg(z)| < 3π
2 .
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Summarising the above analysis, we have shown that for large τ ,

ϕ(β, γ; z) =
N∑

n=0

Res
s=−n

I (s, z) + O
(
|z|−N− 1

2 −β
)

, (B.69)

= z−β
N∑

n=0

(β)n(β + 1 − γ)n

(−z)nn! + O
(
|z|−N− 1

2 −β
)

,

where we have used the formula Res
λ=−n

�(λ) = (−1)n

n! , for n ≥ 0, to calculate the

residues. This proves (B.66). Moreover, for N ≥ 0, we can immediately deduce,

e∓iπ(β−γ)ezϕ
(
γ − β, γ; e±iπz

)
= ez zβ−γ

N∑
n=0

(γ − β)n(1 − β)n

znn! + O
(

ez |z|−N− 1
2+β−γ

)
,

which proves (B.65). �

Remark 10 The expression (B.69) is valid for all finite N . In order to take the limit
as N → ∞ it is important to understand that (B.69) becomes an asymptotic result.
This is because the integrals in (B.68) depend on N and, in particular, they diverge
as N → ∞+, hence the interchange between limits limN→∞+ and limτ→∞+ is not
justified here.

Having established how to represent the fundamental solutions Ỹ (∞,k)(z) using
Mellin-Barnes integrals, we now show how to analytically continue them to z = 0.
Wewill prove the followingproposition,which is sufficient to deduce themonodromy
data formulae (3.12)–(3.13).

Proposition B.14 Let ỹ(0)
1 (z) and ỹ(0)

2 (z) be the solutions as given in (3.3). For
−π ± π

2 < arg(z) < π ± π
2 , the integral as given by (B.61) satisfies,

ϕ(β, γ; z) = �(γ − 1)

�(β)
ỹ(0)
1 (z) + �(1 − γ)

�(β + 1 − γ)
ỹ(0)
2 (z).

Proof Let I (s, z) be the integrand of ϕ(β, γ; z) as given by (B.67). For large τ > 0
and an integer N > 0, we now consider the integral around the rectangle R′ with
vertices ±iτ and N + 1

2 ± iτ , with indentations along the imaginary axis as usual
and with a negative orientation as shown in Fig. 16. Our analysis of this integral is
analogous to that of the integral around the rectangle R, which lies to the left of the
imaginary axis.

By Cauchy’s theorem, we have,
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Fig. 16 Path of integration around the rectangle R′, the dots represent the poles of the integrand
of ϕ(β, γ; z)

1

2πi

∫
R′

I (s, z) ds ≡ 1

2πi

(∫ −iτ

N+ 1
2 −iτ

+
∫ iτ

−iτ
+
∫ N+ 1

2 +iτ

iτ
+
∫ N+ 1

2 −iτ

N+ 1
2 +iτ

)
I (s, z) ds

= −
M1(N )∑
n=0

Res
s=β+1−γ+n

I (s, z) −
M2(N )∑
n=0

Res
s=β+n

I (s, z)

where M1(N ) and M2(N ) are the number of poles β + 1 − γ, β + 2 − γ, . . . and
β, β + 1, . . . which lie inside the rectangle respectively. We examine these integrals
under the limit τ → ∞+ one-by-one, using the asymptotics (A.50) of the Gamma
function:

1. By writing s = x − iτ in the first integral we obtain,

eτ(arg(z)− 3π
2 )
∫ 0

N+ 1
2

O
(
|z|xτRe(2β−γ)−x− 1

2

)
dx,

which tends to zero as τ → ∞+, thanks to arg(z) < 3π
2 .

2. In the limit τ → ∞+, the second integral becomes ϕ(β, γ; z), by definition.

3. Similarly to the first integral, bywriting s = x + iτ in the third integral, we obtain,

e−τ(arg(z)+ 3π
2 )
∫ N+ 1

2 +iτ

iτ
O
(
|z|xτRe(2β−γ)−x− 1

2

)
dx,
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which also tends to zero as τ → ∞+, thanks to arg(z) > − 3π
2 .

4. We write s = N + 1
2 + iy in the fourth integral, to obtain,

∫ N+ 1
2 −iτ

N+ 1
2 +iτ

I (s, z) ds = i

(∫ −τ

0
+
∫ 0

τ

)
I

(
N + 1

2
+ iy, z

)
dy

= i zN+ 1
2 −β

(∫ τ

0
O
(
|y|−N+Re(2β−γ)−2e−y( 3π

2 −arg(z))
)

dy

−
∫ τ

0
O
(
|y|−N+Re(2β−γ)−2e−y(arg(z)+ 3π

2 )
)

dy

)
. (B.70)

Using the fact that limτ→∞+
∫ τ

0 e−ky dy for k > 0 exists, the limit as τ → ∞+

of fourth integral exists, thanks to |arg(z)| < 3π
2 . Moreover, for |z| sufficiently

small, this limit exists uniformly with respect to large N , due to the minus sign
in the exponent of |y|. In particular, for |z| sufficiently small,

lim
N→∞+

∫ N+ 1
2 −iτ

N+ 1
2 −iτ

I (s, z) ds = 0.

Summarising the above analysis, we have shown the following,

ϕ(β, γ; z) = −
M1(N )∑

n=0

Res
s=β+1−γ−n

I (s, z) −
M2(N )∑

n=0

Res
s=β−n

I (s, z) + lim
τ→∞+

∫ N+ 1
2+iτ

N+ 1
2−iτ

I (s, z) ds,

where the convergence of the limit of this integral is uniform with respect to N →
∞+. As such, we may interchange the limits limτ→∞+ and limN→∞+ as follows,

ϕ(β, γ; z) = − lim
N→∞+

M1(N )∑
n=0

Res
s=β+1−γ+n

I (s, z) − lim
N→∞+

M2(N )∑
n=0

Res
s=β+n

I (s, z)

+ lim
N→∞+

lim
τ→∞+

∫ N+ 1
2 +iτ

N+ 1
2 −iτ

I (s, z) ds,

= −
∞∑

n=0

Res
s=β+1−γ+n

I (s, z) −
∞∑

n=0

Res
s=β+n

I (s, z)

+ lim
τ→∞+

lim
N→∞+

∫ N+ 1
2 +iτ

N+ 1
2 −iτ

I (s, z) ds,

= −
∞∑

n=0

Res
s=β+1−γ+n

I (s, z) −
∞∑

n=0

Res
s=β+n

I (s, z) + lim
τ→∞+

0.
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We compute the residues to find,

ϕ(β, γ; z) = �(γ − 1)

�(β)
z1−γ

∞∑
n=0

(β + 1 − γ)nzn

(2 − γ)nn! + �(1 − γ)

�(β + 1 − γ)

∞∑
n=0

(β)nzn

(γ)nn! ,

for z ∈ �̃−1 and �̃0 and the desired result is proved. �

Remark 11 Continuing with the issue raised in Remark 10, the fact is that integrat-
ing along the rectangle R to the left of the imaginary axis is only able to produce an
asymptotic result because we do not have uniform convergence with respect to N in
the integrals (B.68). This is to be expected, since we know ϕ(β, γ; z) is analytic on
sectors �̃−1 and �̃0, it certainly cannot be equal to a divergent 2F0 series. However,
when integrating along the rectangle R′ to the right of the imaginary axis we produce
an equality with a linear combination of convergent series, namely this is the analytic
continuation of the solutions at z = ∞ to z = 0. This is shown in (B.70), because
the integrals here converge as τ → ∞+ uniformly with respect to large N .

We conclude these computations by using Proposition B.14 to prove the formulae
(3.12)–(3.13) of Lemma 3.3.

Proof of Lemma 3.3 Recall from the definitions (B.59) and (B.60) of solutions,

ỹ(∞,0)
2 (z) = −ϕ(β, γ; z) and ỹ(∞,0)

1 (z) = eiπ(β−γ)ezϕ
(
γ − β, γ; e−iπz

)
, z ∈ �̃0.

Let γ∞,0 be a curve as described at the beginning of this subsection. Proposition B.13
shows how to represent the solutions of Kummer equation (1.2) around z = ∞ using
a Mellin-Barnes integral. Due to the analyticity of this integral, as shown in the first
part of the proof of Proposition B.13, Proposition B.14 provides the formula for the
analytic continuation of these solutions to z = 0. That is to say,

γ∞,0

[
ỹ(∞,0)
2

]
(z) = −�(γ − 1)

�(β)
ỹ(0)
1 (z) − �(1 − γ)

�(β + 1 − γ)
ỹ(0)
2 (z).

By manipulating the parameters and variable as follows: β �→ γ − β, γ �→ γ, z �→
eiπz, we also deduce,

γ∞,0

[
ỹ(∞,0)
1

]
(z) = eiπ(β−γ) �(γ − 1)

�(γ − β)
e−iπ(1−γ)z1−γez

1F1

(
1 − β
2 − γ

;−z

)

+ eiπ(β−γ) �(1 − γ)

�(1 − β)
ez

1F1

(
γ − β

γ
;−z

)
.

After applying Kummer transformation,
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ez
1F1

(
a
c
;−z

)
≡ 1F1

(
c − a

c
; z

)
,

we deduce the connection matrix as given in (3.13), namely,

(
γ∞,0

[
ỹ(∞,0)
1

]
(z), γ∞,0

[
ỹ(∞,0)
2

]
(z)
)

=
(

ỹ(0)
1 (z), ỹ(0)

2 (z)
)

C̃0∞,

where,

C̃0∞ =
(

eiπ(β−1) �(γ−1)
�(γ−β)

−�(γ−1)
�(β)

eiπ(β−γ) �(1−γ)

�(1−β)
− �(1−γ)

�(β+1−γ)

)
.

We now turn our attention to proving the formulae (3.12) for Stokes matrices. By
Definition 3.2 of the Stokes matrices S̃k and by the asymptotic behaviour (3.5) of the
fundamental solutions Ỹ (∞,k)(z), we have,

(
zβ−γez 0

0 z1−β

)
S̃k

(
zγ−βe−z 0

0 zβ−1

)
∼ I, as z → ∞, arg(z) − kπ ∈

(
π

2
,
3π

2

)
.

From this relation we easily deduce that S̃−1 is lower triangular and S̃0 is upper trian-
gular, both with unit diagonals. Denote by s̃−1 and s̃0 the (2, 1) and (1, 2) elements of
the matrices S̃−1 and S̃0 respectively. With the knowledge of the connection matrix
C̃0∞, we use the cyclic relation (3.15) as follows,

C̃∞0e2πi�̃0 C̃0∞ = (S̃−1
)−1

e−2πi�̃∞
(
S̃0
)−1

,

⇔
(

e2πi(β−γ) −2πie−iπγ

�(β)�(β+1−γ)
−2πie2πi(β−γ)

�(1−β)�(γ−β)
1 − e2πi(β−γ) + e2πi(1−γ)

)

=
(

1 0
−s̃−1 0

)(
e2πi(β−γ) 0

0 e2πi(1−β)

)(
1 −s̃0
0 1

)
,

⇔
{

s̃−1 = 2πi
�(1−β)�(γ−β)

,

s̃0 = 2πi
�(β)�(β+1−γ)

eiπ(γ−2β),
(B.71)

which are indeed the Stokes multipliers found in the formulae (3.12) for the Stokes
matrices.

Remark 12 Ifwehad chosen to normalise themonodromydata ofKummer equation
with respect to the fundamental solution Ỹ (∞,−1)(z) then the signs of the exponents in
C̃0∞ would be inverted. Furthermore, the monodromy matrix around infinity would
change as M̃∞ �→ S̃−1

0 M̃∞ S̃0.
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B.1 Gevrey Asymptotics and a Result of Ramis and Martinet

We close this subsection about Kummer confluent hypergeometric differential equa-
tion by examining Gevrey asymptotics and stating a result of Ramis and Martinet
(1989). This also gives us the opportunity to show a contemporary approach to the
theory of Stokes phenomenon, which we have learned from Balser (1994), Put et al.
(2003). The contents of this additional subsection will not be necessary for our main
theorems in Sect. 4, we include it for the curiosity of the reader.

We recall some definitions and facts regarding asymptotic theory. In the following,
keep in mind that the role of the letter k will mirror the concept of a linear differential
equation having a pole of Poincaré rank k, so that for Kummer equation we are
specifically concerned with k = 1. Denote by C[[z−1]] the field of formal series in
z−1.

Definition 4.1 Let f be a function analytic in a sector �̃. We say that f has the
series f̂ =∑∞

n=0 fnz−n ∈ C[[z−1]] as its Gevrey asymptotic expansion of order k−1

as z → ∞, z ∈ �̃, denoted f � 1
k

f̂ , if for every closed subsector σ of �̃, there exists
a constant K > 0 such that, for all N ∈ N and z ∈ σ,

∣∣∣∣∣zN

(
f (z) −

N−1∑
n=0

fnz−n

)∣∣∣∣∣ ≤ K N �

(
1 + N

k

)
. (B.72)

We denote byA 1
k
(�̃) the set of analytic functions on �̃ which have a Gevrey asymp-

totic expansion of order k−1.

Gevrey asymptotics is a stronger definition than the usual one of Poincaré because it
specifies how the right hand side of the inequality (B.72) depends on N . In Poincaré’s
definition of an asymptotic series the precise dependence on N is not relevant. If we
denote byA(�̃) the set of analytic functions on a sector �̃ which admit an asymptotic
expansion then we have,

A(�̃) ⊃ A1(�̃) ⊃ A 1
2
(�̃) ⊃ A 1

3
(�̃) ⊃ . . . , (B.73)

since the asymptotic expansion (A.50) of the Gamma function implies:

�
(
1 + N

k+1

)
�
(
1 + N

k

) → 0 as N → ∞.

We note that, if f ∈ A 1
k
(�̃), with f � 1

k

∑∞
n=0 fnz−n , then these coefficients sat-

isfy | fn| < K n�
(
1 + n

k

)
, for some positive constant K and n ≥ 1. To see this, we

add the following inequalities:
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∣∣∣∣∣ f (z) −
N−1∑
n=0

fnz−n

∣∣∣∣∣ ≤ |z|−N K N �

(
1 + N

k

)
,

∣∣∣∣∣ f (z) −
N∑

n=0

fnz−n

∣∣∣∣∣ ≤ |z|−N−1K N+1�

(
1 + N + 1

k

)
,

to obtain the following inequality for fN ,

| fN | ≤ K N �

(
1 + N

k

)
+ |z|−1K N+1�

(
1 + N + 1

k

)
,

from which we immediately find the claimed property by taking the limit z → ∞.
This motivates the following definition.

Definition 4.2 We call a series f̂ =∑∞
n=0 fnz−n ∈ C[[z]] a Gevrey series of order

k−1 if there exists a positive constant K such that, | fn| < K n�
(
1 + n

k

)
for all n ≥ 1.

We denote by C[[z]] 1
k
the set of all Gevrey series of order k−1.

Consider the map J : A 1
k
(�̃) → C[[z]] 1

k
which maps an analytic function f on the

sector �̃ to its Gevrey asymptotic expansion of order k−1. We recall the following
result, see for instance Balser (1994), Put et al. (2003).

Theorem B.15 Assume k > 1
2 . The set A 1

k
(�̃) is a differential algebra and the map

J is a homomorphism. Moreover, if the sector �̃ has an opening less than π
k , then J

is surjective, otherwise, if �̃ has an opening greater than π
k , then J is injective.

This remarkable theorem draws the connection between Gevrey asymptotics and
Stokes phenomenon. Given a formal Gevrey series of order k−1, this theorem shows
that there is a unique analytic function on a sector of opening greater than π

k which
has that series as its Gevrey asymptotic expansion of order k−1. Observe that this is
exactly parallel to the theory of Stokes phenomenon: given a differential equation
with a pole of Poincaré rank k and a formal fundamental series solution at that point,
there are unique analytic fundamental solutions on a sectors of openings greater than
π
k with the prescribed formal series as their asymptotic expansions.

Let ϕ(β, γ; z) be defined as in (B.61). Ramis and Martinet prove the following
result.

Theorem B.16 The function zaϕ(a, c; z)has 2F0
(
a, a + 1 − c;−z−1

)
as its Gevrey

asymptotic expansion of order one as z → ∞ with |arg(z)| < 3π
2 . Similarly, (−z)c−a

ϕ(c − a, c;−z) has 2F0
(
c − a, 1 − a; z−1

)
as its Gevrey asymptotic expansion of

order one with |arg(−z)| < 3π
2 .

We have seen in the first part of the proof of Proposition B.13 that ϕ(a, c; z)
and ϕ(c − a, c;−z) are analytic in the sectors �̃−1 and �̃0. In particular, since
these sectors have openings greater than π, Theorem B.15 states that the map J :
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A1
(
�̃+
)→ C[[z]]1 is injective. In other words, there are unique analytic functions

on these sectors which have the formal series solutions,

z−a
2F0

(
a, a + 1 − c;−z−1

)
and (−z)a−cez

2F0
(
c − a, 1 − a; z−1

)
, (B.74)

as their Gevrey asymptotic expansions of order 1. Since we have seen that Gevrey
asymptotics imply asymptotics in the usual sense, recall (B.73), this implies that
such analytic functions on these sectors are in fact solutions to Kummer equation
(1.2), by the uniqueness statement in Theorem 3.2. Since the formal series solutions
(B.74) are clearly linearly independent, Ramis and Martinet’s Theorem shows that
the functions,

ϕ(a, c; z) and ezϕ(c − a, c;−z),

constitute a fundamental set of solutions of Kummer equation. Compared with our
proof of this fact, stated as Proposition B.13, it is satisfying to deduce this from a
different perspective.
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Periodic Trajectories of Ellipsoidal
Billiards in the 3-Dimensional Minkowski
Space

Vladimir Dragović and Milena Radnović

Abstract In this paper,we give detailed analysis and description of periodic trajecto-
ries of the billiard system within an ellipsoid in the 3-dimensional Minkowski space,
taking into account all possibilities for the caustics. The conditions for periodicity
are derived in algebro-geometric, analytic, and polynomial form.

Keywords Ellipsoidal billiards · Periodic trajectories · Poncelet theorem ·
Pseudo-Euclidean spaces · Hyper-elliptic curves · Pell’s equation

1 Introduction

Discrete integrable systems occupy an important part of the scientific activity and
legacy of Professor Nalini Joshi. There are several recent monographs related to
discrete integrability as intensively developed field of pure and applied mathematics
(see Duistermaat (2010), Bobenko and Suris (2008), Hietarinta et al. (2016), Joshi
(2019)). Integrable billiards (see Kozlov and Treshchëv (1991), Dragović and Rad-
nović (2011)) form an important class of discrete integrable systems. This paper is
devoted to integrable billiards in the 3-dimensional Minkowski space, merging two
lines of our previous studies.

Wewill derive here the periodicity conditions for such billiards in different forms:
in algebro-geometric terms and in terms of polynomial functional equations. More
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about extremal polynomials and related Pell’s equations one can find in Akhiezer
(1990), Bogatyrev (2012) and references therein. Following Birkhoff and Mor-
ris (1962), Khesin and Tabachnikov (2009), we introduced notions of relativistic
quadrics and applied them to billiards in the pseudo-Euclidean spaces in Dragović
and Radnović (2012). In a more recent paper Dragović and Radnović (2019b), we
established a fundamental relationship between periodic integrable billiards in the
Euclidean spaces of arbitrary dimension and extremal polynomials and Pell’s equa-
tions. We applied these ideas in more detail in the basic, planar cases in Dragović
and Radnović (2019a) for the Euclidean metrics and in Adabrah et al. (2019) for
the Minkowski metric. In this work, we deal with the three-dimensional Minkowski
space, as a gateway to the study of billiards in higher-dimensional pseudo-Euclidean
spaces. The results of this paper may provide an approach to the solution to a known
open problem, Problem 5.2 from Genin et al. (2007), which is also Problem 7 from
Tabachnikov (2015). See Remark 4 for more details.

The organization of the paper is as follows. Section 2 introduces basic notation.
Section 3 is devoted to algebro-geometric formulation of periodicity conditions,
while Sect. 4 derives the conditions of periodicity in terms of Pell’s equations and
related polynomial functional equations.

2 Confocal Families of Quadrics and Billiards

In this section, we recall necessary notions and properties related to confocal fam-
ilies of quadrics and billiards within ellipsoids in the Minkowski space. A more
detailed account can be found inGenin et al. (2007), Khesin and Tabachnikov (2009),
Dragović and Radnović (2012).

The Minkowski space E2,1 is R3 with the Minkowski scalar product: 〈X, Y 〉 =
X1Y1 + X2Y2 − X3Y3.

The Minkowski distance between points X , Y is

dist(X, Y ) = √〈X − Y, X − Y 〉.

Since the scalar product can be negative, notice that the Minkowski distance can
have imaginary values as well.

Let � be a line in the Minkowski space, and v its vector. The line � is called space-
like if 〈v, v〉 > 0; time-like if 〈v, v〉 < 0; and light-like if 〈v, v〉 = 0. Two vectors x ,
y are orthogonal in the Minkowski space if 〈x, y〉 = 0. Note that a light-like vector
is orthogonal to itself.

Confocal families. Denote by

E : x2
1

a1
+ x2

2

a2
+ x2

3

a3
= 1, (1)
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Fig. 1 Confocal quadrics in
the three-dimensional
Minkowski space

with a1 > a2, a3 > 0, an ellipsoid. Let us remark that equation of any ellipsoid in the
Minkowski space can be brought into the canonical form (1) using transformations
that preserve the scalar product.

The family of quadrics confocal with E is:

Qλ : x2
1

a1 − λ
+ x2

2

a2 − λ
+ x2

3

a3 + λ
= 1, λ ∈ R. (2)

The family (2) contains four geometrical types of quadrics:

– 1-sheeted hyperboloids oriented along x3-axis, for λ ∈ (−∞,−a3);
– ellipsoids, corresponding to λ ∈ (−a3, a2);
– 1-sheeted hyperboloids oriented along x2-axis, for λ ∈ (a2, a1);
– 2-sheeted hyperboloids, for λ ∈ (a,+∞) – these hyperboloids are oriented along

x3-axis.

In Fig. 1, one non-degenerate quadric of each geometric type is shown. In addition,
there are four degenerated quadrics: Qa1 , Qa2 , Q−a3 , Q∞, that is planes x1 = 0,
x2 = 0, x3 = 0, and the plane at the infinity respectively.

The following theorem consists of a generalisation of the Chasles theorem to the
Minkowski space and the additional conditions on the parameters of the quadrics
touching a given line. The corresponding generalisation of the Chasles theorem was
first obtained in Khesin and Tabachnikov (2009), while the classification of the types
of confocal quadrics touching a given line for the 3-dimensional Minkowski space
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was considered in Genin et al. (2007), regarding the geodesics on an ellipsoid, and
in Dragović and Radnović (2012) regarding billiards within ellipsoids in the pseudo-
Euclidean space of arbitrary dimension.

Theorem 1 In the Minkowski space E2,1 consider a line intersecting ellipsoid E (1).
Then this line is touching two quadrics from (2). If we denote their parameters by
γ1, γ2 and take:

{b1, . . . , bp, c1, . . . , cq} = {a1, a2,−a3, γ1, γ2},
cq ≤ · · · ≤ c1 < 0 < b1 ≤ · · · ≤ bp, p + q = 5,

we will additionally have:

– if the line is space-like, then p = 3, q = 2, a1 = b3, γ1 ∈ {b1, b2} for 1 ≤ i ≤
k − 1, and γ2 ∈ {c1, c2};

– if the line is time-like, then p = 4, q = 1, c1 = −a3, γ1 ∈ {b1, b2}, γ2 ∈ {b3, b4};
– if the line is light-like, then p = 4, q = 1, b4 = ∞ = γ2, b3 = a1, γ1 ∈ {b1, b2},

and c1 = −a3.

Moreover, for each point on � inside E , there are exactly 3 distinct quadrics from
(2) containing it. More precisely, there is exactly one parameter of these quadrics in
each of the intervals:

[c1, 0), (0, b1], [b2, b3].

Remark 1 Since [c1, b1] ⊂ [−a3, a2] and [b2, b3] ⊂ [a2, a1], any given pointwithin
E lies at the intersection of two ellipsoids and one 1-sheeted hyperboloid oriented
along x2-axis.

For each quadric, its tropic curves are the sets of points where the induced metric
on the tangent plane is degenerate. An ellipsoid is divided by its tropic curves into
three connected components: two of them are “polar caps” mutually symmetric with
respect to the x1x2-plane, while the third one is the “equatorial” annulus placed
between them, see Fig. 2. Notice that the induced metric within each “polar cap” is
Reimannian, while it is Lorentzian in the annulus between the tropic curves Genin
et al. (2007).

Remark 2 From Theorem 1 and Remark 1, we have that a given point M within E
lies at the intersection of three quadricsQλ1 ,Qλ2 ,Qλ3 , λ1 < λ2 < λ3. It is proved in
Dragović and Radnović (2012) that M will belong to a “polar cap” of ellipsoidQλ1 ,
and to the “equatorial belt” annulus of ellipsoid Qλ2 , with −c ≤ λ1 < 0 < λ2 ≤ b.

The triple (λ1,λ2,λ3) represents generalised elliptic coordinates of M .

Billiards in the Minkowski space. Let v be a vector and γ a hyper-plane in the
Minkowski space. Decompose vector v into the sum v = a + nγ of a vector nγ

orthogonal toγ anda belonging toγ. Thenvectorv′ = a − nγ is the billiard reflection
of v on γ. It is easy to see that then v is also the billiard reflection of v′ with respect
to γ.
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Fig. 2 Tropic curves on ellipsoid

Note that v = v′ if v is contained in γ and v′ = −v if it is orthogonal to γ. If nγ

is light-like, which means that it belongs to γ, then the reflection is not defined.
Line �′ is a billiard reflection of � off a smooth surface S if their intersection point

� ∩ �′ belongs to S and the vectors of �, �′ are reflections of each other with respect
to the tangent plane of S at this point.

Remark 3 It can be seen directly from the definition of reflection that the type of line
is preserved by the billiard reflection. Thus, the lines containing segments of a given
billiard trajectory within S are all of the same type: they are all either space-like,
time-like, or light-like.

If S is an ellipsoid, then it is possible to extend the reflection mapping to those
points where the tangent planes contain the orthogonal vectors. At such points, a
vector reflects into the opposite one, i.e. v′ = −v and �′ = �. For the explanation,
see Khesin and Tabachnikov (2009). As follows from the explanation given there, it
is natural to consider each such reflection as two reflections: one reflection off the
“polar cap” and one off the “equatorial belt”.

The following version of the Chasles’ theorem holds for billiards within ellipsoids
in the Minkowski space:

Theorem 2 (Khesin and Tabachnikov (2009)) In the Minkowski space E2,1, con-
sider a billiard trajectory within ellipsoid E . Then each segment of that trajectory is
touching the same pair of quadrics confocal with E .

The two quadrics from Theorem 2 are called the caustics of the trajectory.

3 Periodic Trajectories

We will prove now the generalisation of the Poncelet theorem for the 3-dimensional
Minkowski space. This proof is in the spirit of classical works of Jacobi and Darboux
(see, for example Jacobi (1884), Darboux (1870)), and also resembles the proof of a
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Poncelet theorem for light-like geodesics on a quadric in the Minkowski space from
Genin et al. (2007).

Theorem 3 In the Minkowski space E2,1, consider an n-periodic billiard trajectory
within ellipsoid E . Denote n = m1 + n1, where m1 is the total number of reflections
off the “polar caps”, and n1 the number of reflections off the “equatorial belt” of
E along the trajectory. Then each billiard trajectory within E sharing the same pair
of caustics is also n-periodic, with m1 and n1 reflections off the “polar caps” and
“equatorial belt” respectively.

Proof The differential equations in the elliptic coordinates of the lines touching two
given quadrics Qγ1 and Qγ2 from (2) are:

3∑

i=1

dλi√
P(λi )

= 0,
3∑

i=1

λi dλi√
P(λi )

= 0,

with

P(x) = ε(a1 − x)(a2 − x)(a3 + x)(γ1 − x)(γ2 − x), ε = sign (γ1γ2). (3)

Introduce constants b1, …, bp, c1, …, cq as in Theorem 1.
Along billiard trajectory, each of the elliptic coordinates λ1, λ2, λ3 takes values

in segments [c1, 0], [0, b1], [b2, b3] respectively, with local extrema being only the
end-points of the segments.

The value λ1 = 0 corresponds to the reflection off a “polar cap” of E , and λ2 = 0
to the reflection off the “equatorial belt”. If λ1 = λ2 = 0, then that corresponds to
hitting the tropic curve, which will be counted as two reflections – one off the “polar
cap” and one off the “equatorial belt”. Whenever one of the elliptic coordinates takes
value a1, a2,−a3, the particle is crossing the coordinate plane x1 = 0, x2 = 0, x3 = 0
respectively. Values γ1, γ2 correspond to touching points with the caustics.

Similarly as in Darboux (1914), see also Dragović and Radnović (2004), integrat-
ing along the periodic trajectory gives:

m1

∫ c1

0

λk
1dλ1√
P(λ1)

+ n1

∫ b1

0

λk
2dλ2√
P(λ2)

− n2

∫ b3

b2

λk
3dλ3√
P(λ3)

= 0, k ∈ {0, 1}, (4)

where n2 is the number of times λ3 traced the segment [b2, b3] along the trajectory.
Since these relations do not depend on the initial point, each trajectory with the same
caustics will become closed after λ1, λ2, λ3 traced the corresponding segments m1,
n1, n2 times respectively.

We will denote the underlying hyper-elliptic curve as:

C : y2 = P(x), (5)
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withP(x)givenby (3). TheWeierstrass point onC corresponding to the value x = ξ,
ξ ∈ {γ1, γ2, a1, a2,−a3,∞} will be denoted by Pξ . One of the points corresponding
to x = 0 will be denoted by P0.

We note that relation (4) implies the following equivalence on the Jacobian of the
hyper-elliptic curve C :

m1(P0 − Pc1) + n1(P0 − Pb1) + n2(Pb2 − Pb3) ∼ 0. (6)

In the following theorem,wepresent a detailed algebro-geometric characterisation
of periodic trajectories whenever the curve C is non-singular.

Theorem 4 (Algebro-geometric conditions for periodicity) Consider a billiard tra-
jectory within ellipsoid E in the Minkowski space E2,1, with non-degenerate distinct
caustics by Qγ1 and Qγ2 . Then the trajectory is n-periodic if and only if one of the
following is satisfied:

– The trajectory is space-like, and

(S1) both caustics are ellipsoids and either:

* n is even, and the divisor n P0 equivalent to one of n P∞, (n − 2)P∞ +
Pγ1 + Pγ2 on the Jacobian of the curve C ; or
* n is odd, and the divisor n P0 equivalent to one of (n − 1)P∞ + Pγ1 , (n −
1)P∞ + Pγ2 .

(S2) Qγ1 is ellipsoid, Qγ2 1-sheeted hyperboloid along x3-axis, and either:

* n is even and n P0 ∼ n P∞; or
* n is odd and n P0 ∼ (n − 1)P∞ + Pγ1 .

(S3) one caustic is a 1-sheeted hyperboloid oriented along x3-axis, the other a
1-sheeted hyperboloid oriented along x2-axis, n is even, and n P0 ∼ n P∞.
(S4) Qγ1 is ellipsoid, Qγ2 1-sheeted hyperboloid oriented along x2-axis, and
either:

* n is even and n P0 ∼ n P∞; or
* n is odd and n P0 ∼ (n − 1)P∞ + Pγ2 .

– The trajectory is time-like, and

(T1) Qγ1 is ellipsoid, Qγ2 1-sheeted hyperboloid oriented along x2-axis, and
either:

* n is even and n P0 ∼ n P∞; or
* n is odd and n P0 ∼ (n − 1)P∞ + Pγ1 .

(T2) Qγ1 is ellipsoid, Qγ2 2-sheeted hyperboloid along x3-axis, and either:

* n is even and n P0 ∼ n P∞; or
* n is odd and n P0 ∼ (n − 1)P∞ + Pγ1 .
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(T3) both caustics are 1-sheeted hyperboloids oriented along x2-axis, n is even,
and the divisor n P0 is equivalent to either n P∞ or (n − 2)P∞ + Pγ1 + Pγ2 .
(T4) one caustic is 1-sheeted hyperboloid oriented along x2-axis, the other 2-
sheeted hyperboloid oriented along x3-axis, n is even, and n P0 ∼ n P∞.

Proof For a space-like trajectory, according to Theorem 1, we have γ2 < 0 < γ1 <

a1, γ2 ∈ {c1, c2}, γ1 ∈ {b1, b2}. Thus, there are four possibilities of the types of the
caustics.

Case S1 (γ2 = c1, γ1 = b1): Both caustics are ellipsoids, −a3 < γ2 < 0 < γ1 <

a2 < a1.
The algebro-geometric condition (6) in this case is:

m1(P0 − Pγ1) + n1(P0 − Pγ2) + n2(Pa2 − Pa1) ∼ 0.

n2 is even, since it is the number of times the particle crossed the plane x2 = 0 along
the closed trajectory, so the condition is equivalent to:

n P0 − m1Pγ1 − n1Pγ2 ∼ 0.

From there:

n P0 ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n P∞, if m1 and n1 are even;
(n − 2)P∞ + Pγ1 + Pγ2 , if m1 and n1 are odd;
(n − 1)P∞ + Pγ1 , if m1 is odd and n1 even;
(n − 1)P∞ + Pγ2 , if m1 is even and n1 odd.

Case S2 (γ2 = c2, γ1 = b1): One caustic is an ellipsoid, and the other 1-sheeted
hyperboloid along x3-axis, γ2 < −a3 < 0 < γ1 < a2 < a1.

The algebro geometric condition (6) for n-periodicity is:

m1(P0 − P−a3) + n1(P0 − Pγ1) + n2(Pa2 − Pa1) ∼ 0.

In this case, m1 and n2 must be even, so n and n1 are of the same parity. Thus

n P0 ∼
{

n P∞, if n is even;
(n − 1)P∞ + Pγ1 , if n is odd.

Case S3 (γ2 = c2, γ1 = b2):One caustic is a 1-sheeted hyperboloid oriented along
x3-axis, and the other a 1-sheeted hyperboloid oriented along x2-axis: γ2 < −a3 <

0 < a2 < γ1 < a1.
The algebro geometric condition for n-periodicity is:

m1(P0 − P−a3) + n1(P0 − Pa2) + n2(Pγ1 − Pa1) ∼ 0,
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where m1, n1, n2 are all even, which implies n P0 ∼ n P∞.
Case S4 (γ2 = c1, γ1 = b2): The caustics are a 1-sheeted hyperboloid oriented

along x2-axis and an ellipsoid: −a3 < γ2 < 0 < a2 < γ1 < a1.
The algebro geometric condition for n-periodicity is:

m1(P0 − Pγ2) + n1(P0 − Pa2) + n2(Pγ1 − Pa1) ∼ 0,

with even n1, n2, so n and m1 are of the same parity. From there we get:

n P0 ∼
{

n P∞, if n is even;
(n − 1)P∞ + Pγ2 , if n is odd.

For a time-like trajectory, Theorem 1 gives 0 < γ1 < γ2, γ1 ∈ {b1, b2}, γ2 ∈
{b3, b4}. Again, there are four possibilities for the types of the caustics.

Case T1 (γ1 = b1, γ2 = b3): One caustic is ellipsoid, the other is 1-sheeted hyper-
boloid oriented along x2-axis, −a3 < 0 < γ1 < a2 < γ2 < a1.

The algebro geometric condition for n-periodicity is:

m1(P0 − P−a3) + n1(P0 − Pγ1) + n2(Pa2 − Pγ2) ∼ 0,

where m1 and n2 must be even, so n and n1 are of the same parity. Thus this is
equivalent to n P0 − n1Pγ1 − n2Pγ2 ∼ 0, i.e.

n P0 ∼
{

n P∞, if n is even;
(n − 1)P∞ + Pγ1 , if n is odd.

Case T2 (γ1 = b1, γ2 = b4): The caustics are an ellipsoid and a 2-sheeted hyper-
boloid along x3-axis, −a3 < 0 < γ1 < a2 < a1 < γ2. This case is done identically
as Case T1.

Case T3:Both caustics are 1-sheeted hyperboloids along y-axis:γ1 = b2,γ2 = b3.
Here −a3 < 0 < a2 < γ1 < γ2 < a1.

The algebro geometric condition for n-periodicity is:

m1(P0 − P−a3) + n1(P0 − Pa2) + n2(Pγ1 − Pγ2) ∼ 0,

where n1, m1 are both even, so n is also even. We get:

n P0 ∼
{

n P∞, if n2 is even;
(n − 2)P∞ + Pγ1 + Pγ2 , if n2 is odd.

Case T4 (γ1 = b2, γ2 = b4): The caustics are a 1-sheeted hyperboloid along x2-
axis and a 2-sheeted hyperboloid along x3-axis, −a3 < 0 < a2 < γ1 < a1 < γ2.

The algebro geometric condition for n-periodicity is:
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m1(P0 − P−a3) + n1(P0 − Pa2) + n2(Pγ1 − Pa1) ∼ 0,

where m1, n1, n2 are all even, which than gives n P0 ∼ n P∞.

The analytic Cayley-type conditions for periodic trajectories can be derived from
Theorem 4 using the next Lemma.

Lemma 1 Consider a non-singular curve C (5). Then:

– n P0 ∼ n P∞ for n even if and only if n ≥ 6 and

rank

⎛

⎜⎜
⎝

A4 A5 . . . Am+1

A5 A6 . . . Am+2

. . .

Am+2 Am+3 . . . A2m−1

⎞

⎟⎟
⎠ < m − 2, n = 2m,

with
√
P(x) = A0 + A1x + A2x2 + . . . ;

– n P0 ∼ (n − 2)P∞ + Pγ1 + Pγ2 for n even if and only if n ≥ 4 and

rank

⎛

⎜⎜
⎝

B2 B3 . . . Bm

B3 B4 . . . Bm+1

. . .

Bm+1 Bm+2 . . . B2m−1

⎞

⎟⎟
⎠ < m − 1, n = 2m,

with

√
P(x)

(x − γ1)(x − γ2)
= B0 + B1x + B2x2 + . . . ;

– n P0 ∼ (n − 1)P∞ + Pγ1 for n odd if and only if n ≥ 5 and

rank

⎛

⎜⎜
⎝

C3 C4 . . . Cm+1

C4 C5 . . . Cm+2

. . .

Cm+2 Cm+3 . . . C2m

⎞

⎟⎟
⎠ < m − 1, n = 2m + 1,

with

√
P(x)

x − γ1
= C0 + C1x + C2x2 + . . . ;

– n P0 ∼ (n − 1)P∞ + Pγ2 for n odd if and only if n ≥ 5 and

rank

⎛

⎜⎜
⎝

D3 D4 . . . Dm+1

D4 D5 . . . Dm+2

. . .

Dm+2 Dm+3 . . . D2m

⎞

⎟⎟
⎠ < m − 1, n = 2m + 1,

with

√
P(x)

x − γ2
= D0 + D1x + D2x2 + . . . .

Proof When n = 2m is even, the basis for L (n P∞) is:
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{1, x, x2, . . . , xm, y, xy, . . . , xm−3y},

whileL ((n − 2)P∞ + Pγ1 + Pγ2) has basis

{

1, x, x2, . . . , xm−1,
y

(x − γ1)(x − γ2)
,

xy

(x − γ1)(x − γ2)
, . . . ,

xm−2y

(x − γ1)(x − γ2)

}

.

When n = 2m + 1, the basis forL
(
(n − 1)P∞ + Pγ1

)
is:

{
1, x, x2, . . . , xm,

y

x − γ1
,

xy

x − γ1
, . . . ,

xm−2y

x − γ1

}
.

In each case, the condition for the divisors equivalence is that there is a linear
combination of the basis with a zero of order n at x = 0, which gives n linear
equations for the coefficients. In order to get a non-trivial solutions, the rank of
the system cannot be maximal, which gives the stated conditions, as it was done in
Griffiths and Harris (1978), Dragović and Radnović (2011).

Next, we will consider the case when the two caustics coincide: γ1 = γ2. Then,
the segments of a billiard trajectory within E are generatrices of the double caustic,
which must be a 1-sheeted hyperboloid oriented along x2-axis. Such a situation can
be considered as a limit of the case T3 from Theorem 4, when γ2 → γ1. The Cayley-
type condition for periodicity is thus obtained by taking the limit of the corresponding
analytic condition from Lemma 1.

Proposition 1 A billiard trajectory withinE with segments on1-sheeted hyperboloid
Qγ1 , which is oriented along x2-axis, is n periodic if and only if n is even and either

–

rank

⎛

⎜⎜
⎝

A4 A5 . . . Am+1

A5 A6 . . . Am+2

. . .

Am+2 Am+3 . . . A2m−1

⎞

⎟⎟
⎠ < m − 2, n = 2m ≥ 6,

with (γ1 − x)
√

(a1 − x)(a2 − x)(a3 + x) = A0 + A1x + A2x2 + . . . ; or
–

rank

⎛

⎜⎜
⎝

B2 B3 . . . Bm

B3 B4 . . . Bm+1

. . .

Bm+1 Bm+2 . . . B2m−1

⎞

⎟⎟
⎠ < m − 1, n = 2m ≥ 4,

with

√
(a1 − x)(a2 − x)(a3 + x)

γ1 − x
= B0 + B1x + B2x2 + . . . .

Finally,wewill consider light-like trajectories. Such trajectories can be considered
as a limit of Cases S2 and S3 from Theorem 4, when γ2 → −∞, or a limit of Cases



170 V. Dragović and M. Radnović

T2 and T4, with γ2 → +∞. The analytic conditions are obtained as the limit of the
corresponding conditions from Lemma 1.

Proposition 2 A light-like billiard trajectory within E , with non-degenerate caustic
Qγ1 , is n-periodic if and only if

– n is even, n ≥ 6, and

rank

⎛

⎜⎜
⎝

A4 A5 . . . Am+1

A5 A6 . . . Am+2

. . .

Am+2 Am+3 . . . A2m−1

⎞

⎟⎟
⎠ < m − 2, n = 2m,

with
√

(a1 − x)(a2 − x)(a3 + x)(γ1 − x) = A0 + A1x + A2x2 + . . . ; or
– Qγ1 is an ellipsoid, n is odd, n ≥ 5, and

rank

⎛

⎜⎜
⎝

B3 B4 . . . Bm+1

B4 B5 . . . Bm+2

. . .

Bm+2 Bm+3 . . . B2m

⎞

⎟⎟
⎠ < m − 1, n = 2m + 1,

with

√
(a1 − x)(a2 − x)(a3 + x)

γ1 − x
= B0 + B1x + B2x2 + . . . .

4 Polynomial Equations

In this section, we express the periodicity conditions as polynomial functional equa-
tions.

Lemma 2 Consider a non-singular curve C (5). Then:

– n P0 ∼ n P∞ for n = 2m if and only if n ≥ 6 and there are real polynomials pm(s)
and qm−3(s) of degrees m and m − 3 respectively such that

p2
m(s) − s

(
s − 1

a1

) (
s − 1

a2

) (
s + 1

a3

) (
s − 1

γ1

) (
s − 1

γ2

)
q2

m−3(s) = 1;

– n P0 ∼ (n − 2)P∞ + Pγ1 + Pγ2 for n = 2m even if and only if n ≥ 4 and there are
real polynomials pm−1(s) and qm−2(s) of degrees m − 1 and m − 2 respectively
such that
(

s − 1

γ1

)(
s − 1

γ2

)
p2

m−1(s) − s

(
s − 1

a1

)(
s − 1

a2

)(
s + 1

a3

)
q2

m−2(s) = ε,

with ε = sign (γ1γ2);
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– n P0 ∼ (n − 1)P∞ + Pγ1 for n = 2m + 1 odd and γ1 > 0 if and only if n ≥ 5 and
there are real polynomials pm(s) and qm−2(s) of degrees m and m − 2 respectively
such that
(

s − 1

γ1

)
p2

m(s) − s

(
s − 1

a1

) (
s − 1

a2

) (
s + 1

a3

) (
s − 1

γ2

)
q2

m−2(s) = −1;

– n P0 ∼ (n − 1)P∞ + Pγ2 for n = 2m + 1 odd and γ2 < 0 if and only if n ≥ 5 and
there are real polynomials pm(s) and qm−2(s) of degrees m and m − 2 respectively
such that
(

s − 1

γ2

)
p2

m(s) − s

(
s − 1

a1

) (
s − 1

a2

) (
s + 1

a3

) (
s − 1

γ1

)
q2

m−2(s) = 1.

Proof It is clear from the proof of Lemma 1 that the relation 2m P0 ∼ 2m P∞ is
satisfied if and only if there are real polynomials p∗

m(x) and q∗
m−3(x) such that

p∗
m(x) + q∗

m−3(x)
√
P(x) has a zero of multiplicity 2m at x = 0. Multiplying that

expression by p∗
m(x) − q∗

m−3(x)
√
P(x), we get that the polynomial (p∗

m(x))2 −
P(x)(q∗

m−3(x))2, which is of degree 2m, has a zero of order 2m at x = 0. Assuming
that p∗

m is monic, we have:

(p∗
m(x))2 − P(x)(q∗

m−3(x))2 = x2m .

Dividing by x2m and introducing s = 1/x , we get the needed relation.
The relation 2m P0 ∼ (2m − 2)P∞ + Pγ1 + Pγ2 is satisfied if and only if there are

real polynomials p∗
m−1(x) and q∗

m−2(x) of degrees m − 1 and m − 2 such that

p∗
m−1(x) + q∗

m−2(x)

√
P(x)

(γ1 − x)(γ2 − x)

has a zero of order 2m at x = 0. Multiplying by:

ε(γ1 − x)(γ2 − x)

(
p∗

m−1(x) − q∗
m−2(x)

√
P(x)

(γ1 − x)(γ2 − x)

)
,

we get that the polynomial:

ε(γ1 − x)(γ2 − x)(p∗
m−1(x))2 − (a1 − x)(a2 − x)(a3 + x)(q∗

m−2(x))2,

which is of degree 2m, has a zero of order 2m at x = 0. Thus, it equals εx2m . Dividing
by x2m and introducing s = 1/x , we get the stated polynomial relation.

The relation (2m + 1)P0 ∼ 2m P∞ + Pγ1 is satisfied if and only if there are real
polynomials p∗

m(x) and q∗
m−2(x) of degrees m and m − 2 respectively such that

p∗
m(x) + q∗

m−2(x)

√
P(x)

γ1 − x
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has a zero of order 2m + 1 at x = 0. Multiplying by:

(γ1 − x)

(
p∗

m(x) − q∗
m−2(x)

√
P(x)

γ1 − x

)
,

we get that the polynomial:

(γ1 − x)(p∗
m(x))2 − ε(a1 − x)(a2 − x)(a3 + x)(γ2 − x)(q∗

m−2(x))2,

which is of degree 2m + 1, has a zero of order 2m + 1 at x = 0. Assuming that p∗
m(x)

is monic, we get that the last expression equals−x2m+1. Note that ε = sign (γ1γ2) =
sign (γ2). Dividing by x2m+1, introducing s = 1/x , we get the stated relation.

The relation (2m + 1)P0 ∼ 2m P∞ + Pγ2 is satisfied if and only if there are real
polynomials p∗

m(x) and q∗
m−2(x) of degrees m and m − 2 respectively such that

p∗
m(x) + q∗

m−2(x)

√
P(x)

γ2 − x

has a zero of order 2m + 1 at x = 0. Multiplying by:

(γ2 − x)

(
p∗

m(x) − q∗
m−2(x)

√
P(x)

γ2 − x

)
,

we get that the polynomial:

(γ2 − x)(p∗
m(x))2 − ε(a1 − x)(a2 − x)(a3 + x)(γ1 − x)(q∗

m−2(x))2,

which is of degree 2m + 1, has a zero of order 2m + 1 at x = 0. Assuming that p∗
m(x)

is monic, we get that the last expression equals−x2m+1. Note that ε = sign (γ1γ2) =
−sign (γ1). Dividing by −x2m+1, introducing s = 1/x , we get the stated relation.

By taking the appropriate limits, we get the polynomial conditions for the case of
a double caustic and the case of light-like trajectories:

Proposition 3 (a) A billiard trajectory within E with segments on 1-sheeted hyper-
boloid Qγ1 , which is oriented along x2-axis, is n periodic if and only if n = 2m is
even and either:

– n ≥ 6 and there are real polynomials pm(s) and qm−3(s) of degrees m and m − 3
respectively such that

p2
m(s) − s

(
s − 1

a1

) (
s − 1

a2

) (
s + 1

a3

) (
s − 1

γ1

)2

q2
m−3(s) = 1;

– n ≥ 4 and there are real polynomials pm−1(s) and qm−2(s) of degrees m − 1 and
m − 2 respectively such that
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(
s − 1

γ1

)2

p2
m−1(s) − s

(
s − 1

a1

) (
s − 1

a2

) (
s + 1

a3

)
q2

m−2(s) = 1.

(b) A light-like billiard trajectory within E , with non-degenerate caustic Qγ1 , is
n-periodic if and only if

– n = 2m is even, n ≥ 6, Qγ1 is an ellipsoid or a 1-sheeted hyperboloid oriented
along x2-axis, and there are real polynomials pm(s) and qm−3(s) of degrees m and
m − 3 respectively such that

p2
m(s) − s2

(
s − 1

a1

)(
s − 1

a2

)(
s + 1

a3

) (
s − 1

γ1

)
q2

m−3(s) = 1;

– n = 2m + 1 is odd, n ≥ 5, Qγ1 is an ellipsoid, and there are real polynomials
pm(s) and qm−2(s) of degrees m and m − 2 respectively such that

(
s − 1

γ1

)
p2

m(s) − s2
(

s − 1

a1

) (
s − 1

a2

) (
s + 1

a3

)
q2

m−2(s) = −1.

Corollary 1 If the billiard trajectories within E with caustics Qγ1 and Qγ2 are
n-periodic, then there exist real polynomials p̂n and q̂n−3 of degrees n and n − 3
respectively, which satisfy the Pell equation:

p̂2
n(s) − s

(
s − 1

a1

)(
s − 1

a2

)(
s + 1

a3

) (
s − 1

γ1

) (
s − 1

γ2

)
q̂2

n−3(s) = 1.

Proof If n = 2m, we know that one of the first two cases of Lemma 2 is satisfied. In
the first case, take p̂n = 2p2

m − 1 and q̂n−3 = 2pmqm−3. In the second case, we set:

p̂n(s) = 2

(
s − 1

γ1

) (
s − 1

γ2

)
p2

m−1(s) − ε, q̂n−3 = 2pm−1qm−2.

If n = 2m + 1, one of the last two cases of Lemma 2 holds. In the third case, we set:

p̂n(s) = 2

(
s − 1

γ1

)
p2

m(s) + 1, q̂n−3 = 2pmqm−2,

and in the fourth one:

p̂n(s) = 2

(
s − 1

γ2

)
p2

m(s) − 1, q̂n−3 = 2pmqm−2.

Remark 4 By considering light-like trajectories with an ellipsoid as caustic, and
taking the limit when parameter of the caustic approaches zero, we get the light-like
geodesics on the ellipsoid E . Applying the appropriate limit to the analytic conditions
for periodicity obtained in this work, may indicate the approach to the conditions
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for periodicity for the Poncelet-style closure theorem for light-like geodesics in the
equatorial belt from Genin et al. (2007) can be obtained, thus solving the Problem
5.2 from that paper, see also Problem 7 from Tabachnikov (2015).
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Analogues of Kahan’s Method for Higher
Order Equations of Higher Degree

A. N. W. Hone and G. R. W. Quispel

Abstract Kahan introduced an explicit method of discretization for systems of first
order differential equations with nonlinearities of degree at most two (quadratic
vector fields). Kahan’s method has attracted much interest due to the fact that it
preserves many of the geometrical properties of the original continuous system. In
particular, a large number of Hamiltonian systems of quadratic vector fields are
known for which their Kahan discretization is a discrete integrable system. In this
note, we introduce a special class of explicit order-preserving discretization schemes
that are appropriate for certain systems of ordinary differential equations of higher
order and higher degree.

Keywords Discretization · Kahan’s method · Symplectic integrator

1 Introduction

Kahan’smethod is a special discretization scheme that provides an explicitmethod for
integrating quadratic vector fields, given by systems of first order ordinary differential
equations (ODEs) of the form

dxi
dt

= fi (x1, . . . , xN ), i = 1, . . . , N , (1)
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where each function fi is a polynomial of total degree two in the independent vari-
ables x1, . . . , xN (see Kahan (1993) or Kahan and Li (1997)). In order to specify
Kahan’s method, one should replace each derivative on the left-hand side of (1) by
the forward difference, so that

dxi
dt

→ Δxi := xi − xi
h

,

while terms of degrees two, one and zero appearing in each fi on the right-hand side
are replaced according to the rules

x j xk → 1

2
(x j xk + x j xk), x j → 1

2
(x j + x j ), c → c, (2)

where h is the time step and xi denotes the approximation to xi (t + h).
Itwas noticed some time ago thatKahan’smethodprovides an effective integration

scheme for the classic two-species Lotka-Volterra model

dx

dt
= αx(1 − y),

dy

dt
= y(x − 1) (3)

(with α > 0 being an arbitrary parameter), retaining the qualitative features of the
orbits of the continuous system, namely the stability of orbits around the elliptic
fixed point at (x, y) = (1, 1). This was subsequently explained by the fact that the
Kahan discretization of (3), given by

(x − x)/h = α
2

(
x(1 − y) + x(1 − y)

)
,

(y − y)/h = 1
2

(
y(x − 1) + y(x − 1)

)
,

preserves the same symplectic form

ω = dx ∧ dy

xy

as the original Hamiltonian system (Sanz-Serna 1994). In the context of Lotka-
Volterra models, a variant of Kahan’s method with similar properties was discovered
byMickens (2003), who had previously considered various examples of nonstandard
discretizationmethods (Mickens 1994), but amore rapid growthof interest inKahan’s
method began when Hirota and Kimura independently proposed the rules (2) for the
discretization of the Euler equations for rigid body motion, finding that the resulting
discrete system is also completely integrable (Hirota and Kimura 2000), and this
has led to the search for other discrete integrable systems arising in this way (Hone
and Petrera 2009), with a survey of several results given in Petrera et al. (2011), and
some more recent examples in Petrera and Zander (2017) and Petrera et al. (2019),
for instance.
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Many of the geometrical properties of Kahan’s method for quadratic vector fields
are based on the polarization identity for quadratic forms (Celledoni et al. 2013), and
recently this has led to a generalization of Kahan’s method that can cope with vector
fields of degree three or more, by using higher degree analogues of polarization
(Celledoni et al. 2015). One disadvantage of the latter method for higher degree
vector fields is that, in common with multistep methods in numerical analysis, one
must use extra grid points for the discretization, so the original ODE system does not
provide enough initial values to start the iteration of the discrete version. However,
if one is looking for a discretization scheme that preserves integrability or other
geometric properties of ODEs, then it is desirable for the initial value space of the
discrete system to have the same dimension as that of the continuous one. Here we
would like to suggest a discretization scheme with the latter property, which is a
natural generalization of Kahan’s method to higher order and higher degree.

The idea is to consider a system of ODEs of order n ≥ 1, with the right-hand sides
being functions of the coordinates x1, . . . , xN only, of the form

dnxi
dtn

= fi (x1, . . . , xN ), i = 1, . . . , N , (4)

where each function fi is a polynomial of maximal degree n + 1. For n = 1 this is
a quadratic vector field, which one can discretize using Kahan’s method. In the next
section, we present an explicit discretization scheme for systems of the form (4),
valid for any n ≥ 1, which reduces to Kahan’s method when n = 1. The first new
case is n = 2, corresponding to systems of Newton equations, which are relevant
in many applications. We illustrate this in Sect. 3 by considering the discretization
of the motion of a single particle moving in a quartic potential. The latter is one of
the simplest examples of an integrable Hamiltonian system, and it turns out that the
discrete version produced by the method is also integrable, with a conserved quantity
and an invariant symplectic form. In Sect. 4, we consider a different example of fourth
order, namely a nonlinear beam equation, and briefly compare the discretization
obtained by the new method with another discretization obtained by applying an
approach similar to Kahan’s directly to the Lagrangian of the continuous system.

2 A Higher Order Version of Kahan’s Method

For n = 2, (4) becomes a system of Newton equations, assumed to have polynomial
forces of degree at most three, which can be conveniently written as

d2xi
dt2

=
∑

0≤ j1≤ j2≤ j3≤N

ci, j1, j2, j3 x j1x j2x j3 , i = 1, . . . , N , (5)
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where ci jk� are arbitrary coefficients, and we have included an additional dummy
variable x0 = 1 to allow terms of degree less than three to be included within the
same summation. Then to discretize (5) we propose the following:

xi − 2xi + xi
h2

= 1

6

∑
σ∈S3

∑
0≤ j1≤ j2≤ j3≤N

ci, j1, j2, j3 x jσ(1)
x jσ(2)x jσ(3) , (6)

for i = 1, . . . , N ; the first summation is over permutations σ in S3, the symmetric
group on three symbols, and xi = x (1), xi = x (−1) are the approximations to xi (t ±
h), with time step h. For terms of degree three, with each variable x j appearing at the
three adjacent lattice points x j = x (−1)

j , x j = x (0)
j , x j = x (1)

j , the replacement rule
is described explicitly by

x j xk x� → 1

6

(
x j xk x� + x j xk x� + x j xk x� + x j xk x� + x j xk x� + x j xk x�

)
, (7)

while for terms of degree two the rule is obtained by setting � = 0, so that x� →
x0 = 1 in the above, and for the linear terms one can set k = � = 0, so that the rule
for terms of degree less than three is

x j xk → 1
6

(
x j xk + x j xk + x j xk + x j xk + x j xk + x j xk

)
,

x j → 1
3

(
x j + x j + x j

)
, c → c.

(8)

Following the approach of Celledoni et al. (2015), a second order system of
equations can be written in vector form as

d2x
dt2

= f(x), (9)

where each component of the vector of functions f = ( f1, f2, . . . , fN )T is a polyno-
mial of degree at most three, and then the replacement rules (7) and (8) are equivalent
to the formula

1
h2

(
x − 2x + x

)
= 9

2 f
(
x+x+x

3

)
− 4

3

(
f
(
x+x
2

)
+ f

(
x+x
2

)
+ f

(
x+x
2

))

+ 1
6

(
f(x) + f(x) + f(x)

)
.

(10)

Proposition 1 The discretization (10) commutes with affine transformations

y �→ x = Ay + b, (11)

where A ∈ GL(N ,R) is a constant matrix and b ∈ R
N is a vector of constants.
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Proof Under the transformation (11), f(·) in (9) is replaced by A−1f(A · +b). Upon
substituting (11) and its shifted versions into (10), it is not hard to check that the
same occurs for each appearance of f on the right-hand side. �

The symmetric replacement rules above generalize to any order n ≥ 1, so that
for a system of nth order ODEs (4) with right-hand sides all of degree n + 1 the
discretization becomes

Δnxi = 1

(n + 1)!
∑

σ∈Sn+1

∑
jk≤ jk+1

ci, j1,..., jn+1 x jσ(1)x
(1)
jσ(2)

x (2)
jσ(3)

· · · x (n)
jσ(n+1)

, (12)

for i = 1, . . . , N , with x (1)
i = xi , x

(2)
i = xi , . . . , x

(n)
j corresponding to shifts by steps

of h, 2h, . . . , nh, and the interior summation being for 0 ≤ j1 ≤ · · · ≤ jn+1 ≤ N .
On the left-hand side of (12) we have replaced the nth derivative by the nth power of
the forward difference operator, and for convenience we have written everything on
the right-hand side in terms of forward shifts of the variables x j . The discretization
(12) reduces to Kahan’s method when n = 1, and to (6) when n = 2, modulo shifting
the lattice points −1, 0, 1 in the latter up to 0, 1, 2.

Clearly there are other choices of discrete nth derivative that one could take, and
other affine combinations of terms with the same homogeneous degree could be cho-
senwhile preserving the continuum limit.Wehave taken themost symmetrical choice
in (12), because it is manifestly linear in each of the highest shifts x (n)

1 , x (n)
2 . . . , x (n)

N ,
so it can be explicitly solved for each of these quantities to yield rational functions
of all the lower shifts. It is also linear in each of the lowest shifts xi = x (0)

i for
i = 1, . . . , N , so it can be explicitly solved for these as well. Thus (12) is an implicit
way ofwriting an explicit birationalmap in dimension nN , corresponding toX �→ X̄,
where

X = (x (0)
1 , . . . , x (0)

N , x (1)
1 , . . . , x (1)

N , . . . , x (n−1)
1 , . . . , x (n−1)

N ),

X̄ = (x (1)
1 , . . . , x (1)

N , x (2)
1 , . . . , x (2)

N , . . . , x (n)
1 , . . . , x (n)

N ).

3 Discretization of a Quartic Oscillator

To see why it might be worth investigating these higher Kahan-like schemes, we start
by presenting the following example: n = 2 with a cubic force on a particle in one
dimension, generated by a natural Hamiltonian with a quartic potential, that is

H = 1

2
p2 + 1

4
ax4 + 1

3
bx3 + 1

2
cx2 + dx,

which yields the Newton equation

ẍ = −ax3 − bx2 − cx − d. (13)
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This is an integrable system par excellence, and the generic level sets H = const are
quartic curves of genus one in the (x, p) plane. The discretization (6) applied to (13)
produces a difference equation of second order, given by

x = (3 − γ )x − δ − (βx + γ )x

βx + γ + (αx + β)x
, (14)

where

α = ah2, β = bh2

3
, γ = 1 + ch2

3
, δ = dh2.

Themap (14) is an example of a QRTmap (Quispel et al. 1988), but let us suppose
that we do not know the geometric properties of this map. To find these properties,
such as the existence of a preserved measure, and first and second integrals of the
map (14), we will look for preserved Darboux polynomials, as detailed in our recent
work Celledoni et al. (2019) and Celledoni et al. (2020). To this end, we write the
second order equation (14) as two first order ones, namely

x = y, y = (3 − γ )y − δ − (βy + γ )x

βy + γ + (αy + β)x
, (15)

and look for polynomials P satisfying

P(x, y) = J (x, y)P(x, y), (16)

where J is the Jacobian determinant of the map (15), i.e.

J (x, y) =
(βy + γ )2 + (αy + β)

(
(3 − γ )y − δ

)

(αxy + β(x + y) + γ )2
. (17)

Substituting (17) into (16), and looking for polynomials up to total degree four in x
and y, we find two linearly independent solutions, given by

P1 = αxy + β(x + y) + γ,

P2 = (αγ − β2)x2y2 + εxy(x + y) + ζ(x2 + y2) − (3 − γ )2xy + (3 − γ )δ(x + y) − δ2,

with
ε = αδ + β(3 − γ ), ζ = βδ + γ (3 − γ ).

It follows that the map (14) is measure-preserving, with the invariant symplectic
form

dx ∧ dy

P1
= dx ∧ dy

αxy + β(x + y) + γ
, (18)
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and the first integral

I = P2
P1

(19)

given by

(αγ − β2)x2y2 + εxy(x + y) + ζ(x2 + y2) − (3 − γ )2xy + (3 − γ )δ(x + y) − δ2

αxy + β(x + y) + γ
.

Hence the integrability is preserved by the discretization in this case, and we recover
the standard property of a QRT map, that it preserves a pencil of biquadratic curves,
here given by

λP1(x, y) + P2(x, y) = 0.

Moreover, in the continuum limit h → 0, the standard area form dx ∧ dy and the
Hamiltonian H are recovered from (18) and (19) respectively, since from y = x +
hp + O(h2) we find

P1 = 1 + O(h2), P2 = 4Hh2 + O(h3).

The Eq. (13) includes Duffing’s equation, which is the case b = d = 0, and also
the second order ODE for the Weierstrass ℘ function, which arises when a = c = 0.
In Potts (1982), another replacement rule is used for the cubic and linear terms in
Duffing’s equation, somewhat less symmetrical than the one defined by (7), and it
is shown that if the coefficients and denominator in the second difference operator
are replaced by suitable functions of the parameters and the time step h then this
alternative rule results in a discretization that is exact, in the sense that the iterates
of the difference equation interpolate the solution of the original ODE. Similarly,
in Potts (1987) an exact discretization is obtained for the case corresponding to the
Weierstrass ℘ function, with only quadratic and constant terms on the right-hand
side. However, in the latter case, the exact discretization (derived from the addition
formula for the ℘ function) requires not only a different replacement rule for the
quadratic terms compared with (8), but also extra cubic and linear terms that must
be included, with a coefficient which is O(h2). When a = c = 0, the Eq. (13) can be
rewritten as a quadratic vector field, namely

dx

dt
= p,

dp

dt
= −bx2 − d,

so that Kahan’s method can be applied, as in Petrera et al. (2011), resulting in a first
order discrete system which is equivalent to a second order difference equation for
x , namely

x + x = 4x − 2δ

3βx + 2
(20)
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(where we set β = bh2/3, δ = dh2 as before). The Eq. (20) is a QRTmap in additive
form, clearly of a different type to (14), which becomes

x = 2x − δ − (βx + 1)x

β(x + x) + 1

when α = 0, γ = 1. To see that they are really different QRT maps, in the sense that
they are not related to one another via so-called curve-dependent McMillan maps
(Iatrou and Roberts 2001), observe that the pencil of invariant biquadratic curves
corresponding to (20) is

λ − β2x2y2 + 4

3
βxy(x + y) + 4

3
(x2 + y2) − 2

3
(4 + βδ)xy + 4

3
δ(x + y) = 0,

whereas when α = 0, γ = 1 the pencil λP1(x, y) + P2(x, y) = 0 for (14) reduces
to one of a different type, namely

λ
(
1 + β(x + y)

)
− β2x2y2 + 2βxy(x + y) + (βδ + 2)(x2 + y2) − 4xy + 2δ(x + y) − δ2 = 0.

4 Two Discretizations of a Nonlinear Beam Equation

Vibrating beams were considered by Leonardo da Vinci (1493), but the traditional
theory of vibrations of a beam is usually attributed to Euler and Bernoulli (Han et al.
1999), being described by a partial differential equation (PDE) of fourth order, which
in dimensionless form is given by

∂2w

∂t2
+ ∂4w

∂x4
= Q.

For the case of a static beam, the equation has the form

d4w

dx4
= Q, (21)

where w = w(x) is the vertical deflection of the beam, which lies horizontally along
the x-axis. The standard beam model is linear, with the distributed load Q on the
right-hand size being a constant (or more generally, a function of x , the independent
variable). However, here we consider a more general nonlinear version of the model,
derived from a second order Lagrangian of the form
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L = 1

2

(
d2w

dx2

)2

− V (w), (22)

which gives a nonlinear load function

Q(w) = dV

dw
.

In the linear case, the model was considered recently from the viewpoint of a
Hamilton-Jacobi approach to higher order implicit systems (Esen et al. 2020), while
a coupled PDE system of beam equations with cubic nonlinearity was analysed in
Shi and Xu (2020). From the second order Lagrangian (21), we can introduce the
Ostrogradsky variables (see Błaszak (1998), for instance), given by

q1 = w, q2 = w′, p1 = ∂L

∂w′ − d

dx

(
∂L

∂w′′

)
= −w′′′, p2 = ∂L

∂w′′ = w′′,

where the primes denote derivatives with respect to the independent variable x . Then
(q1, p1), (q2, p2) provide two pairs of canonically conjugate positions and momenta,
and the Euler-Lagrange equation

d2

dx2

(
∂L

∂w′′

)
− d

dx

(
∂L

∂w′

)
+ ∂L

∂w
= 0, (23)

which for the Lagrangian (22) is given by (21) with Q = dV/dw, is equivalent to
Hamilton’s equations for the Hamiltonian function

H = 1

2
(p2)

2 + q2 p1 + V (q1).

For the sake of concreteness, we consider the case of an odd potential

V (w) = a

5
w5 + b

3
w3 + cw,

so that the nonlinear beam equation is given by

w′′′′ = aw4 + bw2 + c. (24)

To begin with, we consider the result of applying the discretization rule (12) to
the nonlinear beam equation (24), which produces a difference equation of fourth
order, of the form

Δ4w = F(w(0), w(1), w(2), w(3), w(4)) (25)

for a function F that is a sum of terms of total degree four, two and zero. This can
be written more symmetrically by shifting down by two steps, to yield
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w(−2) − 4w(−1) + 6w(0) − 4w(1) + w(2)

h4
= F4 + F2 + c, (26)

where the quartic terms are specified by

5
a F4 = w(−2)w(−1)w(0)w(1) + w(−2)w(−1)w(0)w(2) + w(−2)w(−1)w(1)w(2)

+w(−2)w(0)w(1)w(2) + w(−1)w(0)w(1)w(2),
(27)

and the quadratic terms are given by

10
b F2 = w(−2)w(−1) + w(−2)w(0) + w(−2)w(1) + w(−2)w(2) + w(−1)w(0)

+w(−1)w(1) + w(−1)w(2) + w(0)w(1) + w(0)w(2) + w(1)w(2).
(28)

It turns out that the birational map defined by (26) is measure-preserving. This is a
consequence of the fact that the formula for the right-hand side of (25) is both linear
and symmetric in its arguments, so that the derivatives with respect to the highest
and lowest shifts, namely

∂F

∂w(0)
= G(w(1), w(2), w(3), w(4)),

∂F

∂w(4)
= H(w(0), w(1), w(2), w(3)), (29)

are very closely related to one another.

Proposition 2 The discretization (26) preserves the volume form

Ω = 1

1 − h2H(w(−2), w(−1), w(0), w(1))
dw(−2) ∧ dw(−1) ∧ dw(0) ∧ dw(1),

where H is defined by (29).

Proof Upon taking the differential of both sides of (26), we obtain the equation

(
1 − h2G(w(−1), w(0), w(1), w(2))

)
dw(−2)

+
(
1 − h2 H(w(−2), w(−1), w(0), w(1))

)
dw(2) + · · · = 0,

where the ellipsis denotes terms that are linear in dw(−1), dw(0) and dw(1). The result
then follows from taking the wedge product of the equation above with dw(−1) ∧
dw(0) ∧ dw(1), and noting the identity

G(w(−1), w(0), w(1), w(2)) = H(w(−1), w(0), w(1), w(2)),

which follows from the symmetry of F . �

When a, b are not both zero, so that the nonlinear terms are present, the above
discretization of (24) cannot be obtained from a second order discrete Lagrangian of
the form
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L = L(w(n), w(n+1), w(n+2)),

since the discrete Euler-Lagrange equations

2∑
i=0

∂

∂w(n)
L(w(n−i), w(n+1−i), w(n+2−i)) = 0 (30)

do not generate terms containing products w( j)wk) with | j − k| > 2. In order to
obtain a discretization with a Lagrangian structure, we fix n = 0 and take a discrete
Lagrangian of the form

L(w(0), w(1), w(2)) = T − V,

where the discrete fourth derivative is generated by the term

T = 1

2h4

(
2(w(0) − w(1))2 − (w(0) − w(2))2 + 2(w(1) − w(2))2

)
,

and the other terms are specified by

V = V5 + V3 + c

3

(
w(0) + w(1) + w(2)

)

with

5
aV5 = α0w

(0)(w(1))3w(2) + 1
2α1

(
(w(0))2(w(1))3 + (w(1))2(w(2))3

)

+ 1
2α2

(
(w(1))2(w(0))3 + (w(2))2(w(1))3

)

+ 1
2α3

(
w(0)(w(1))4 + w(1)(w(2))4

)

+ 1
2α4

(
w(1)(w(0))4 + w(2)(w(1))4

)

+ 1
3α5

(
(w(0))5 + (w(1))5 + (w(2))5

)
,

(31)

and
3
bV3 = β0w

(0)w(1)w(2) + 1
2β1

(
w(0)(w(1))2 + w(1)(w(2))2

)

+ 1
2β2

(
w(1)(w(0))2 + w(2)(w(1))2

)

+ 1
3β3

(
(w(0))3 + (w(1))3 + (w(2))3

)
,

(32)

where, in (31) and (32) we have taken affine combinations, so that the coefficients
are required to satisfy

5∑
j=0

α j = 1 =
3∑
j=0

β j
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in order to ensure the correct continuum limit, andwe have included all possible terms
of degrees 5 and 3, respectively, except those whose discrete variational derivative
produces expressions of degree greater than one in w(−2) or w(2) (we have also
grouped together terms having the same variational derivative). Hence we arrive at
a discretization of (24) which is explicit and birational, being given by

w(−2) − 4w(−1) + 6w(0) − 4w(1) + w(2)

h4
= F̂4 + F̂2 + c, (33)

where the quartic and quadratic terms are given by

5
a F̂4 = α0

(
w(−2)(w(−1))3 + 3w(−1)(w(0))2w(1) + (w(1))3w(2)

)

+α1

(
3(w(−1))2(w(0))2 + 2w(0)(w(1))3

)

+α2

(
2(w(−1))3w(0) + 3(w(0))2(w(1))2

)

+α3

(
4w(−1)(w(0))3 + (w(1))4

)
+ α4

(
(w(−1))4 + 4(w(0))3w(1)

)

+5α5(w
(0))4,

(34)

3
b F̂2 = β0

(
w(−2)w(−1) + w(−1)w(1) + w(1)w(2)

)

+β1

(
2w(−1)w(0) + (w(1))2

)

+β2

(
(w(−1))2 + 2w(0)w(1)

)
+ 3β3(w

(0))2,

(35)

respectively. A general approach to Lagrangian fourth-order difference equations
and their continuum limits appears in the recent paper Gubbiotti (2020).

An advantage of using the Lagrangian discretization (33) is that it is symplectic; so
it is a birational symplectic integrator. This can be seen from the discrete analogue of
the Ostrogradsky transformation, introduced in Bruschi et al. (1991), which provides
canonical variables q1, p1, q2, p2 via the formulae

q1 = w(0), p1 = L1(w
(−1), w(0), w(1)) + L2(w

(−2), w(1), w(0)),

q2 = w(1), p2 = L2(w
(−1), w(0), w(1)),

(36)

where

L j = ∂L
∂w( j)

(w(0), w(1), w(2)), j = 0, 1, 2.

In terms of these variables, the four-dimensional map defined by (33) preserves the
canonical symplectic form

ω = dp1 ∧ dq1 + dp2 ∧ dq2,

and this immediately implies that it preserves the volume formω ∧ ω, so it ismeasure-
preserving.
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Qualitatively it appears that the approximate solutions of (24) provided by these
two discretizations are somewhat similar. To see this, one can consider solutions in
the neighbourhood of a fixed point. If ab 	= 0 then, by scalingw and x , the parameters
can be taken as

a = 1, b = −2ε, c = 1 − δ,

with ε2 = 1 and δ arbitrary. Then (24) has fixed points at w = ±
√

ε ± √
δ, so that

δ ≥ 0 is a necessary condition for reality, and then generically there are either four,
two or zero real fixed points depending on the choice of ε = ±1 and the value of δ.
In particular, let us take the case

ε = 1, 0 < δ < 1

when there are four real fixed points, one of which is at w = w∗, where

w∗ =
√
1 + √

δ.

The eigenvalues of the linearization of (24) around this point consist of a real pair
±γ and an imaginary pair ±iγ , for γ = (4w∗√δ)1/4, corresponding to one stable
direction, one unstable direction, and a two-dimensional centre manifold. The dis-
cretizations (26) and (33) both have the same fixed points as the original differential
equation, and using the fact that (26) is reversible, and that (33) is symplectic (and also
reversible), togetherwith standard facts about linear stability of reversible/symplectic
maps (see Howard and Mackay (1987) or Lahiri et al. (1995)), in each case the char-
acteristic polynomial of the linearization around a fixed point is palindromic (equiv-
alently, λ is a root if and only if λ−1 is). If we consider the linearization around w∗,
then in both cases we find two real eigenvalues that are reciprocals of one another,
corresponding to the stable and unstable directions, together with a complex conju-
gate pair of eigenvalues of modulus one, giving a two-dimensional centre manifold,
just as for the differential equation; and similar considerations apply to the other
fixed points. Thus, to a first approximation, the qualitative behaviour of the two
discretizations is the same.

5 Conclusions

We have found that the higher order analogue of Kahan’s method proposed here
preserves integrability in the second order example of the quartic oscillator (13) that
we have considered, while in the case of a nonlinear beam equation of fourth order
the resulting discretization (26) is measure-preserving, and its qualitative behaviour
looks similar to that of the Lagrangian discretization (33). In future work we would
like to apply this discretization method to other ODE systems of higher order, as well
as looking for first integrals of the particular fourth order maps (26) and (33) using
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the method of discrete Darboux polynomials as described in Celledoni et al. (2019)
and Celledoni et al. (2020).
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On Some Explicit Representations of the
Elliptic Painlevé Equation

Masatoshi Noumi

Abstract We explain some details of the derivation of explicit representations for
the elliptic Painlevé equation in the P

1 × P
1 picture. We also discuss possibility of

expressing the elliptic Painlevé equation in the factorized form. This paper is intended
to be a supplement to the topical review Geometric aspects of Painlevé equations
(Kajiwara et al. 2017).

Keywords Elliptic Painlevé equation · τ Function · Affine Weyl group

1 Introduction

This paper is intended to be a supplement to Sect. 5 of the topical review Geometric
aspects of Painlevé equations (Kajiwara et al. 2017) by K. Kajiwara, Y. Yamada and
the author. As explained in Kajiwara et al. (2017), the discrete Painlevé equations
with affineWeyl group symmetries can be formulated in terms of point configurations
in the product P

1 × P
1 of two copies of the projective line. In this introduction, we

briefly recall some basic facts concerning the elliptic Painlevé equation with affine
Weyl group symmetry of type E (1)

8 in the P
1 × P

1 picture. We explain in the next
section some details of the derivation of explicit representations as proposed in Kaji-
wara et al. (2017), for the elliptic Painlevé equation with respect to the translation by
α1 = Hx − Hy . We also discuss possibility of expressing the elliptic Painlevé equa-
tion in the factorized form. For various approaches to the elliptic Painlevé equations,
we refer the reader to Ohta-Ramani-Grammaticos (2001), Sakai (2001), Kajiwara
et al. (2006), Noumi-Tsujimoto-Yamada (2013) and Noumi (2018).
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1.1 Affine Weyl Group W(E(1)
8 ) and Kac Translations

We consider the free Z-module of rank 10

L = ZHx ⊕ ZHy ⊕ ZE1 ⊕ · · · ⊕ ZE8 (1)

endowed with the scalar product (non-degenerate symmetric bilinear form) ( | ) :
L × L → Z such that

(Hx | Hx ) = (
Hy | Hy

) = 0,
(
Hx | Hy

) = (
Hy | Hx

) = −1,
(
Ei | E j

) = δi, j (i, j = 1, . . . , 8),
(
Hx | E j

) = (
E j | Hx

) = 0,
(
Hy | E j

) = (
E j | Hy

) = 0 ( j = 1, . . . , 8).

(2)

In geometric terms, L is the Picard lattice associated with the blowup of P
1 × P

1

at generic eight points p1, p2, . . . , p8, and ( | ) denotes the intersection number of
divisor classes multiplied by −1. In the inhomogeneous coordinates (x, y) of P

1 ×
P
1, Hx and Hy represent the classes of lines x = const. and y = const. respectively,

and each E j corresponds to the exceptional divisor attached to p j for j = 1, . . . , 8.
In this paper we use the notation Hx , Hy instead of H1, H2 in Kajiwara et al. (2017).
We denote h = L ⊗Z C the complexification of L , and naturally extend the scalar
product ( | ) on L to a symmetric C-bilinear form on h. We realize the simple roots
α0,α1, . . . ,α8 of type E (1)

8 in the Picard lattice L as

α0 = E1 − E2, α1 = Hx − Hy, α2 = Hy − E1 − E2,

α j = E j−1 − E j ( j = 3, 4, . . . , 8).
(3)

They satisfy

(αi | αi ) = 2 (0 ≤ i ≤ 8),

(α0 | α3) = −1,
(
α0 | α j

) = 0 (1 ≤ j ≤ 8; j �= 3),

(αi | αi+1) = −1 (1 ≤ i ≤ 7),
(
αi | α j

) = 0 (1 ≤ i, j ≤ 8; | j − i | ≥ 2).

(4)

In terms of the Dynkin diagram

� � � � � � � �

�

1 2 3 4 5 6 7 8

0

(5)

(αi | αi ) = 2 for each index i , and
(
αi | α j

) = −1 or 0 for distinct indices i, j , accord-
ing as the corresponding nodes are connected by an edge or not. We denote by
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Q = Q(E (1)
8 ) = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα8 ⊂ L (6)

the root lattice of type E (1)
8 . This Q contains a special element

δ = 2Hx + 2Hy − E1 − · · · − E8

= 3α0 + 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 + α8,
(7)

called the null root. It satisfies
(
δ | α j

) = 0 ( j = 0, 1, . . . , 8), and hence (δ | δ) = 0.
We remark that α0,α1, . . . ,α7 are the simple roots of the E8 root system. Note also
that

Q(E (1)
8 ) = Q(E8) ⊕ Zδ, Q(E8) = Zα0 ⊕ Zα1 ⊕ · · · ⊕ Zα7. (8)

We denote by W = W (E (1)
8 ) = 〈s0, s1, . . . , s8〉 the affineWeyl group of type E (1)

8 .
By definition this group is generated by the simple reflections s j ( j = 0, 1, . . . , 8)
subject to the fundamental relations

s2i = 1 (0 ≤ i ≤ 8),

s0s3s0 = s3s0s3, s0s j = s j s0 (1 ≤ j ≤ 8; j �= 3),

si si+1si = si+1si si+1 (1 ≤ i ≤ 7),

si s j = s j si (1 ≤ i, j ≤ 8; | j − i | ≥ 2).

(9)

Namely, s2i = 1 for each index i ; for distinct indices i, j , si and s j satisfy the braid
relation si s j si = si s j si if the two nodes are connected by an edge, and they commute
otherwise. For eachα ∈ hwith (α | α) �= 0, we define the reflection rα : h → hwith
respect to α by

rα(h) = h − (
h | α∨)

α (h ∈ h), (10)

where α∨ = 2α/ (α | α). Note that rα is a C-linear isometry:
(
rα(h) | rα(h′)

) =(
h | h′) for any h, h′ ∈ h. In this setting, the reflections s j = rα j : h → h ( j =
0, 1, . . . , 8) by the simple roots satisfy the fundamental relations (9). In fact it is
known that the Weyl group W = 〈s0, s1, . . . , s8〉 is isomorphic to the subgroup of
GL(h) generated by s j = rα j ( j = 0, 1, . . . , 8). We remark that each w ∈ W defines

an isometry w : h ∼→h; in other words, the scalar product ( | ) : h × h → C is W -
invariant. This action of W on h stabilizes the Picard lattice L , as well as the root
lattice Q = Q(E (1)

8 ). Since
(
δ | α j

) = 0 ( j = 0, 1, . . . , 8), the null root δ is invariant
under the action of W . The simple reflections si (i = 0, 1, . . . , 8) act on Hx , Hy and
E j ( j = 1, . . . , 8) as follows:
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s0(Hx ) = Hx , s0(Hy) = Hy, s0(E j ) = E(12) j , ( j = 1, 2, . . . , 8),

s1(Hx ) = Hy, s1(Hy) = Hx , s1(E j ) = E j ( j = 1, 2, . . . , 8),

s2(Hx ) = Hx + Hy − E1 − E2, s2(Hy) = Hy,

s2(E1) = Hy − E2, s2(E2) = Hy − E1, s2(E j ) = E j ( j = 3, 4, . . . , 8),
(11)

and for i = 3, 4, . . . , 8,

si (Hx ) = Hx , si (Hy) = Hy, si (E j ) = E(i−1,i) j , ( j = 1, 2, . . . , 8), (12)

where (i, j) denotes the transposition of i and j . For example,

α8 = E7 − E8
s8s7−→ α7 = E6 − E7

s7s6−→ · · · s4s3−→ α3 = E2 − E3
s0s3−→ α0 = E1 − E2,

α3 = E2 − E3
s3s2−→ α2 = Hy − E1 − E2

s2s1−→ α1 = Hx − Hy .
(13)

We denote by Δre = W.α8 = W. {α0,α1, . . . ,α8} ⊂ Q the set of real roots of type
E (1)
8 , which is the W -orbit of simple roots in Q. Since (αi | αi ) = 2 for all i =

0, 1, . . . , 8, all the real roots α ∈ Δre satisfy (α | α) = 2 in this root system. We list
here some typical real roots:

Hx − Hy, Ei − E j (1 ≤ i < j ≤ 8),

Hx − Ei − E j , Hy − Ei − E j (1 ≤ i < j ≤ 8),

Hx + Hy − E j1 − E j2 − E j3 − E j4 (1 ≤ j1 < j2 < j3 < j4 ≤ 8).

(14)

For instance, for 2 ≤ j ≤ 8

Hy − E1 − E j = w(Hy − E1 − E2), Hx − E1 − E j = s1w(Hy − E1 − E2)

(15)
with w = s j s j−1 · · · s3, and for 2 ≤ i < j ≤ 8 we have

Hy − Ei − E j = w(Hy − E1 − E2), Hx − Ei − E j = s1w(Hy − E1 − E2)

(16)

with w = si si−1 · · · s3s0s j s j−1 · · · s3. If α,β ∈ Δre and w(α) = β for some w ∈ W ,
then wrαw−1 = rβ . This implies that the reflections rα for all real roots are con-
tained in W = 〈s0, s1, s2, . . . , s8〉. We remark that the affine Weyl group W =
W (E (1)

8 ) = 〈s0, s1, . . . , s8〉 contains the symmetric group S8 = 〈s0, s3, s4, . . . , s8〉
of degree 8 which permutes E j ( j = 1, . . . , 8). It also contains the finite Weyl
group W (E8) = 〈s0, s1, s2, . . . , s7〉 of type E8. The set of E8 roots is denoted by
Δ(E8) = W (E8).α7 = W (E8) {α0,α1, . . . ,α7} ⊂ Q(E8). The element

φ = δ − α8 = 3α0 + 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 3α6 + 2α7 ∈ Δ(E8)

(17)
is called the highest root of type E8.
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Setting h0 = {h ∈ h | (δ | h) = 0}, for each α ∈ h with (δ | α) = 0, we define the
Kac translation Tα : h → h by

Tα(h) = h + (δ | h)α − (
1
2 (α | α) (δ | h) + (α | h)

)
δ (h ∈ h). (18)

These linear transformations Tα ∈ GL(h) (α ∈ h0) satisfy

(1)
(
Tα(h) | Tα(h′)

) = (
h | h′) (α ∈ h0; h, h′ ∈ h),

(2) TαTβ = TβTα = Tα+β (α,β ∈ h0); Tkδ = 1 (k ∈ Z),

(3) wTαw−1 = Tw(α) (α ∈ h0;w ∈ W ),

(4) α ∈ h0, (α | α) �= 0 =⇒ Tα = rδ−α∨rα∨ .

(19)

Applying (4) to α = φ and δ − α = α8, we have Tφ = rδ−φrφ ∈ W . This implies
Tα ∈ W for allα ∈ Δre, and hence for allα ∈ Q. Noting that Tkδ = 1 (k ∈ Z), we see
thatW = W (E (1)

8 ) contains the commutative subgroupT (Q(E8)) = {Tα | α ∈ Q(E8)}
of Kac translations. Furthermore, it decomposes into the semi-direct product
W (E (1)

8 ) = T (Q(E8)) � W (E8); this means that any w ∈ W (E (1)
8 ) is uniquely

expressed in the form w = Tαv, where α ∈ Q(E8) and v ∈ W (E8).
The C-vector space h = L ⊗Z C can regarded as the Cartan subalgebra of the

affine Lie algebra of type E (1)
8 . We also consider the dual space

h∗ = HomC(h, C) = Chx ⊕ Chy ⊕ Ce1 ⊕ · · · ⊕ Ce8 (20)

of h with the basis defined by the linear functions hx = (Hx | ·), hy = (
Hy | ·) and

e j = (
E j | ·) ( j = 1, . . . , 8). We remark that the C-isomorphism

ι : h
∼→ h∗, ι(h)(h′) = (

h | h′) (h, h′ ∈ h) (21)

induced by the scalar product is in fact a W -isomorphism; namely, W acts on the
linear functions hx , hy, e j ( j = 1, . . . , 8) in the same way as it does on Hx , Hy, E j

( j = 1, . . . , 8). As to the null root, we use the same symbol δ = 2hx + 2hy − e1 −
· · · − e8, regarding it as a constant. This δ plays the role of the unit length of difference
equations.

In the following, we regard (hx , hy, e1, . . . , e8) as a coordinate system of the
10-dimensional C-vector space h. We denote by M(h) the field of meromorphic
functions on h. Then the affine Weyl group W = 〈s0, s1, . . . , s8〉 acts naturally on
M(h); for each ϕ ∈ M(h), w(ϕ)(h) = ϕ(w.h) for generic h ∈ h.

1.2 Reference Curve of Bidegree (2, 2) in P
1 × P

1

We fix an additive subgroup Ω = Zω1 ⊕ Zω2 ⊂ C of rank 2, generated by nonzero
complex numbers ω1,ω2 ∈ C such that Im(ω2/ω1) > 0. In the following, we denote
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by

σ(u) = σ(u|Ω) = u
∏

ω∈Ω; ω �=0

(
1 − u

ω

)
eu2/2ω2+u/ω (u ∈ C) (22)

the Weierstrass sigma function associated with the period lattice Ω . It is an odd
entire function and has a simple zero at each point ω ∈ Ω; σ(u) is normalized by
the condition σ(u) = u + O(u5) as u → 0. With the notation e(u) = e2π

√−1u , σ(u)

satisfies quasi-periodicity of the form

σ(u + ω) = εωe
(
λω(u + ω

2 )
)
σ(u) (ω ∈ Ω), (23)

where εω = +1 or −1 according as ω ∈ 2Ω or /∈ 2Ω , and λω ∈ C are complex con-
stants depending additively on ω ∈ Ω . Note also that λω1ω2 − λω2ω1 = 1 (Legendre
relation).

For n ∈ Z≥0 and μ ∈ C, we denote byO(C; n,μ) the C-vector space of all holo-
morphic functions f (u) satisfying the quasi-periodicity of type (n,μ) in the sense
that

f (u + ω) = (εω)ne
(
λω(n(u + ω

2 ) − μ)
)

f (u) (ω ∈ Ω). (24)

A typical quasi-periodic function of type (n,μ) is given by

f (u) = const. σ(u − a1)σ(u − a2) · · · σ(u − an), a1 + · · · + an = μ. (25)

We remark that dimC O(C; n,μ) = n for n > 0. In fact, if we take an ntuple of
generic points b1, . . . , bn ∈ C, then any f (u) ∈ O(C; n,μ) is expressed as

f (u) =
n∑

i=1

f (bi )
σ(u − bi + ν − μ)

σ(ν − μ)

∏

j �=i

σ(u − b j )

σ(bi − b j )
, (26)

where ν = b1 + · · · + bn . This Lagrange interpolation formula at u = b1, . . . , bn is
equivalent to the partial fraction decomposition

f (u)
∏n

j=1 σ(u − b j )
=

n∑

i=1

σ(u − bi + ν − μ)

σ(u − bi )σ(ν − μ)

f (bi )∏
j �=i σ(bi − b j )

. (27)

Note also that dimC O(C; 0,μ) = 1 or 0, according asμ ∈ Ω or /∈ Ω; ifμ = m1ω1 +
m2ω2 ∈ Ω , then O(C; 0,μ) = C e(−αu) where α = m1λω1 + m2λω2 .

In the following, we denote by (ξ, η) homogeneous coordinates ofP
1 × P

1, where
ξ = (ξ1 : ξ2) and η = (η1 : η2). Among the coordinates hx , hy, e1, e2, . . . , e8 of h,
we use four parameters hx , hy, e1, e2 to define a curve C0 ⊂ P

1 × P
1 of bidegree

(2, 2), which we call the reference curve. By the parameters hx , hy ∈ C, we define
two functions
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ϕ(t, u) = σ(t − u)σ(hx − t − u), ψ(t, u) = σ(t − u)σ(hy − t − u) (28)

in (t, u) ∈ C × C. Regarded as functions in u, ϕ(t, u) and ψ(t, u) are quasi-periodic
functions of type (2, hx ) and of type (2, hy), respectively. Also, note that ϕ(u, t) =
−ϕ(t, u),ϕ(t, t) = 0 andψ(u, t) = −ψ(t, u),ψ(t, t) = 0. A characteristic property
of ϕ(t, u), as well as ψ(t, u), is the three-term relation (of Hirota type)

ϕ(a, u)ϕ(b, c) + ϕ(b, u)ϕ(c, a) + ϕ(c, u)ϕ(a, b) = 0, (29)

or equivalently,

ϕ(c; u) = 1

ϕ(a, b)
(ϕ(b, u)ϕ(a, c) − ϕ(b, c)ϕ(a, u)) . (30)

Since dimC O(C; 2, hx ) = 2, three functions ϕ(a, u), ϕ(b, u), ϕ(c, u) in this vector
space should satisfy a nontrivial linear relation. Formula (30) is a special case of (26)
where f (u) = ϕ(c, u) and b1 = a, b2 = b. When we specialize t to ei , we write

ϕi (u) = ϕ(ei , u), ψi (u) = ψ(ei , u) (i = 1, . . . , 8) (31)

for short. With the parameters e1, e2 ∈ C, we consider the holomorphic mapping
p : C → P

1 × P
1 specified as

p(u) = (ϕ(u),ψ(u)), ϕ(u) = (ϕ1(u) : ϕ2(u)), ψ(u) = (ψ1(u) : ψ2(u)), (32)

by the substitution ξi = ϕi (u), ηi = ψi (u) (i = 1, 2), and setC0 = p(C) ⊂ P
1 × P

1.
In terms of the inhomogeneous coordinates (x, y) of P

1 × P
1 such that x = ξ2/ξ1,

y = η2/η1, we are considering the reference curve C0 ⊂ P
1 × P

1 defined by the
parametrization

C0 :

⎧
⎪⎪⎨

⎪⎪⎩

x = ϕ2(u)

ϕ1(u)
= σ(e2 − u)σ(hx − e2 − u)

σ(e1 − u)σ(hx − e1 − u)
,

y = ψ2(u)

ψ1(u)
= σ(e2 − u)σ(hy − e2 − u)

σ(e1 − u)σ(hy − e1 − u)
.

(33)

Note that this curve passes through p1 = p(e1) = (∞,∞) and p2 = p(e2) = (0, 0).
For generic hx , hy, e1, e2 ∈ C, one can verify that the mapping p : C → P

1 × P
1

induces the isomorphism EΩ = C/Ω
∼→ C0 of elliptic curves.

This reference curveC0 ⊂ P
1 × P

1 is expressed as the zero locus of a homogenous
polynomial P(ξ, η) in ξ and η of bidegree (2, 2). Under the substitution ξ = ϕ(u),
η = ψ(u), as functions in u, the monomials

ξ2−i
1 ξi

2η
2− j
1 η

j
2 = ϕ1(u)2−iϕ2(u)iψ1(u)2− jψ2(u) j (i, j = 0, 1, 2) (34)
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of bidegree (2, 2) are quasi-periodic of type (8, 2hx + 2hy). Since dimC

O(C; 8, 2hx + 2hy) = 8, the nine functions in (34) are subject to a nontrivial linear
relation of the form

P(ξ, η) =
2∑

i, j=0

ci, j ξ2−i
1 ξi

2η
2− j
1 η

j
2 = 0. (35)

For generic hx , hy, e1, e2, the coefficients (ci, j )
2
i, j=0 are determined as follows

uniquely up to a multiplicative constant:

c0,0 = 0, c0,1 = − σ(hx − 2e2)

σ(hx − e1 − e2)
, c0,2 = σ(hx − hy + e1 − e2)

σ(hx − hy)
,

c1,0 = σ(hy − 2e2)

σ(hy − e1 − e2)
, c1,2 = − σ(hy − 2e1)

σ(hy − e1 − e2)
,

c2,0 = −σ(hx − hy − e1 + e2)

σ(hx − hy)
, c2,1 = σ(hx − 2e1)

σ(hx − e1 − e2)
, c2,2 = 0.

(36)

and c1,1 is expressed as

c1,1 = −
∑

(i, j)�=(1,1)

ci jϕ1(t)
1−iϕ2(t)

i−1ψ1(t)
1− jψ2(t)

j−1, (37)

for a generic t ∈ C; the right-hand side of (37) does not depend on the choice of t .
From the condition that C0 passes through p1 = (∞,∞) and p2 = (0, 0), it follows
that c2,2 = 0 and c0,0 = 0. In terms of the inhomogeneous coordinates (x, y), Eq. (35)
is then written as

F(x, y) = c0,1x−1 + c0,2x−1y + c1,0y−1 + c1,1 + c1,2y + c2,0xy−1 + c2,1x = 0.
(38)

If we set G(x, y) = F(x, y) − c1,1, G(x, y) should be constant after the substitu-
tion x = ϕ(u) = ϕ2(u)/ϕ1(u), y = ψ(u) = ψ2(u)/ψ1(u). By the condition for the
residues of G(ϕ(u),ψ(u)) at the six points u = ei , hx − ei , hy − ei (i = 1, 2) to be
zero, the constants ci, j except c1,1 are determined as (36). Then G(x, y) is given
explicitly by

G(x, y)

= − σ(hx − 2e2)

σ(hx − e1 − e2)
x−1 + σ(hx − hy + e1 − e2)

σ(hx − hy)
x−1y − σ(hy − 2e1)

σ(hy − e1 − e2)
y

+ σ(hy − 2e2)

σ(hy − e1 − e2)
y−1 − σ(hx − hy − e1 + e2)

σ(hx − hy)
xy−1 + σ(hx − 2e1)

σ(hx − e1 − e2)
x,

(39)

and the defining equation of the reference curve C0 is expressed as G(x, y) = const.
We remark that, setting
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x = ϕ2(e3)

ϕ1(e3)
f, y = ψ2(e3)

ψ1(e3)
g, (40)

one can pass to the original inhomogeneous coordinates ( f, g) of Kajiwara et al.
(2017) in which p1 = (∞,∞), p2 = (0, 0) and p3 = p(e3) = (1, 1).

1.3 Homogeneous Coordinates and τ -Functions

In the following we use the parameters (hx , hy, e1, . . . , e8) as the coordinate system
of the C-vector space h. Keeping the notations

ϕ(t, u) = σ(t − u)σ(hx − t − u) ∈ O(C; 2, hx ),

ψ(t, u) = σ(t − u)σ(hy − t − u) ∈ O(C; 2, hy),
(41)

we set
ϕi (u) = ϕ(ei , u), ψi (u) = ψ(ei , u) (i = 1, 2, . . . , 8). (42)

Also, we define the reference curve p : EΩ = C/Ω → P
1 × P

1 by

C0 : ξi = ϕi (u), ηi = ψi (u) (u ∈ C; i = 1, 2). (43)

We simply express this parametrization as ξ = ϕ(u), η = ψ(u). Also, for a homo-
geneous polynomial P = P(ξ, η) in ξ and η, we denote this substitution by

P
∣∣
C0

= P(ξ, η)
∣∣
ξ=ϕ(u),η=ψ(u)

= P(ϕ(u),ψ(u)) (u ∈ C). (44)

Wedefine eight points p1, . . . , p8 ∈ C0 by p j = p(e j ) = (ϕ(e j ),ψ(e j )) ( j = 1, . . . , 8).
We denote by

K = C(σ(α);α ∈ Δre) ⊂ M(h) (45)

the field of meromorphic functions generated by σ(α) = σ((α | ·)) (α ∈ Δre). Note
that the affine Weyl group W = 〈s0, s1, . . . , s8〉 acts naturally on K as a group of
C-automorphism such that w(σ(α)) = σ(w.α).

LetK = K(ξ1, ξ2, η1, η2; τ1, . . . , τ8)be thefield of rational functions in the homo-
geneous coordinates ξi , ηi (i = 1, 2) and τ variables τ j ( j = 1, 2, . . . , 8) with coef-
ficients in K. We extend the action of si (i = 0, 1, . . . , 8) on K toK = K(ξ, η; τ ) as
follows:
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s0(ξ1) = ξ2, s0(ξ2) = ξ1, s0(η1) = η2, s0(η2) = η1, s0(τ j ) = τ(1,2) j ,

s1(ξ1) = η1, s1(ξ2) = η2, s1(η1) = ξ2, s1(η2) = ξ1, s1(τ j ) = τ j ,

s2(ξ1) = ξ1η2

τ1τ2
, s2(ξ2) = ξ2η1

τ1τ2
, s2(η1) = η2, s2(η2) = η1,

s2(τ1) = η2

τ2
, s2(τ2) = η1

τ1
, s2(τ j ) = τ j ( j = 3, 4, . . . , 8),

s3(ξ1) = ξ1, s3(ξ2) = ξ3, s3(η1) = η1, s3(η2) = η2, s3(τ j ) = τ(2,3) j ,

(46)

and for i = 4, 5, . . . , 8,

si (ξ1) = ξ1, si (ξ2) = ξ2, si (η1) = η2, si (η2) = η2, si (τ j ) = τ(i−1,i) j .

(47)
In the definition of s3, we have used the notation of linear functions

ξi = ϕ(e1, ei )ξ2 − ϕ(e2, ei )ξ1

ϕ(e1, e2)
, ηi = ψ(e1, ei )η2 − ψ(e2, ei )η1

ψ(e1, e2)
(48)

for i = 1, 2, . . . , 8. Note that, when restricted to the reference curve C0, ξi and ηi

give

ξi

∣∣
C0

= ϕ(e1, ei )ϕ(e2, u) − ϕ(e2, ei )ϕ(e1, u)

ϕ(e1, e2)
= ϕ(ei , u) = ϕi (u),

ηi

∣∣
C0

= ψ(e1, ei )ψ(e2, u) − ψ(e2, ei )ψ(e1, u)

ψ(e1, e2)
= ψ(ei , u) = ψi (u).

(49)

In particular, the linear functions ξi and ηi vanish at pi .

Theorem 1 The automorphisms si : K → K (i = 0, 1, . . . , 8) defined as above sat-
isfy the fundamental relations (9) for the simple reflections of the affine Weyl group
W = W (E (1)

8 ). Furthermore, this W action on K = K(ξ, η; τ ) is compatible with
the restriction to the reference curve C0 defined by

ξi = ϕi (u), ηi = ψi (u) (i = 1, 2); τ j = σ(e j − u) ( j = 1, . . . , 8). (50)

By the “compatibility with the restriction to C0”, we mean: For any rational function
R(ξ, η, τ ) ∈ K(ξ, η; τ ), and for any w ∈ W , we have

(w.R(ξ, η; τ ))
∣
∣
ξ=ϕ(u),η=ψ(u),τ=σ(e−u)

= w.R(ϕ(u),ψ(u);σ(e − u)), (51)

where σ(e − u) = (σ(e1 − u), . . . ,σ(e8 − u)). Here we understand that the param-
eter u is invariant under the action of W .

Besides the linear functions ξi , ηi , it is convenient to introduce linear functions
ξ(t), η(t) depending on a parameter t ∈ C as follows:

ξ(t) = ϕ(e1, t)ξ2 − ϕ(e2, t)ξ1
ϕ(e1, e2)

, η(t) = ψ(e1, t)η2 − ψ(e2, t)η1
ψ(e1, e2)

(52)
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so that ξ(ei ) = ξi , η(ei ) = ηi (i = 1, 2, . . . , 8). On the reference curve C0, they are
expressed as

ξ(t)|C0 = ϕ(t, u), η(t)|C0 = ψ(t, u), (53)

and hence, ξ(t) and η(t) vanish at p(t) = (ϕ(t),ψ(t)). These functions also satisfy
the three-term relations

ξ(a)ϕ(b, c) + ξ(b)ϕ(c, a) + ξ(c)ϕ(a, b) = 0,

η(a)ϕ(b, c) + η(b)ϕ(c, a) + η(c)ϕ(a, b) = 0.
(54)

In particular we have

ξi ϕ(e j , ek) + ξ j ϕ(ek, ei ) + ξk ϕ(ei , e j ) = 0,

ηi ψ(e j , ek) + η j ψ(ek, ei ) + ηk ψ(ei , e j ) = 0
(55)

for i, j, k = 1, . . . , 8. Note that the three-term relations in (54) reduce to those of
ϕ(t, u) and ψ(t, u) when restricted to the reference curve C0.

For each element

Λ = dx Hx + dy Hy − m1E1 − · · · − m8E8 ∈ L (dx , dy ∈ Z, m j ∈ Z) (56)

of the Picard lattice, we denote by L(Λ) the K-vector space of all polynomials
P(ξ, η) ∈ K[ξ, η], homogenous in ξ and η of bidegree (dx , dy), satisfying the van-
ishing condition ordp j P(ξ, η) ≥ m j at p j = (ϕ(e j ),ψ(e j )) ( j = 1, 2, . . . , 8). For
a homogeneous polynomial P(ξ, η) of bidegree (dx , dy), and a point p = (a, b) ∈
P
1 × P

1, a = (a1 : a2), b = (b1 : b2), the condition ordp P(ξ, η) ≥ m means that,
after the substitution ξi = ai + ui , ηi = bi + vi (i = 1, 2,), P(a + u, b + v) is
expressed as a sum of homogeneous polynomials in (u, v) = (u1, u2, v1, v2) of total
degree ≥ m. We also set

L(Λ) = L(Λ)τΛ, τΛ = τ−m1
1 · · · τ−m8

8 . (57)

Here we understand the superscript notation τΛ by τ Hx = τ Hy = 1 and τ Ei = τi .
Note that

L(Hx ) = Kξ1 ⊕ Kξ2, L(Hy) = Kη1 ⊕ Kη2,

L(E j ) = Kτ j , ( j = 1, 2, . . . , 8).

L(Hx − E j ) = K ξ jτ
−1
j , L(Hy − E j ) = K η jτ

−1
j ( j = 1, 2, . . . , 8).

(58)

Theorem 2 Each element w ∈ W = W (E (1)
8 ) induces C-isomorphisms w.L(Λ)

∼→
L(w.Λ) for all Λ ∈ L. Furthermore, dimK L(Λ) = dimK L(w.Λ) for all Λ ∈ L.

This theorem is the key for computing the action of the affine Weyl group W on
K = K(ξ, η; τ ); it can be proved by the argument of Kajiwara et al. (2017, Sect. 5.1).
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We denote by
M = W {E1, . . . , E8} = W E8 ⊂ L (59)

the W -orbit of E1, . . . , E8 in L . This set can also be characterized as

M = {Λ ∈ L | (δ | Λ) = −1, (Λ | Λ) = 1} . (60)

Since E8 ∈ L is W (E8)-invariant, the correspondence α → Tα.E8 gives a bijection
Q(E8)

∼→ M . For eachΛ ∈ M , take an elementw ∈ W such thatw.E8 = Λ. Noting
thatL(E8) = K τ8, andw : L(E8)

∼→ L(w.E8) = L(Λ), we set τ (Λ) = w.τ8.From
the fact that the stabilizer of E8 in W coincides with W (E8), and that τ8 is W (E8)-
invariant, it follows that this definition of τ (Λ) ∈ L(Λ) does not depend on the
choice ofw ∈ W such thatw.E8 = Λ. In this way, we obtain a family of τ -functions
{τ (Λ) | Λ ∈ M} such that

τ (E j ) = τ j ( j = 1, . . . , 8), w(τ (Λ)) = τ (w.Λ) (w ∈ W,Λ ∈ M). (61)

For each Λ = dx Hx + dy Hy − m1E1 − · · · − m8E8 ∈ M , τ (Λ) ∈ L(Λ), it is
expressed as

τ (Λ) = φΛ(ξ, η)τ−m1
1 · · · τ−m8

8 , φΛ(ξ, η) ∈ L(Λ), (62)

where φΛ(ξ, η) is a homogeneous polynomial in ξ and η of bidegree (dx , dy) sat-
isfying the condition ordp j φΛ(ξ, η) ≥ m j for j = 1, . . . , 8. Since dimK L(Λ) = 1,
such a polynomial is determined up to a constant multiple. However, this ambiguity
can be fixed by the compatibility of the W action and the restriction to the reference
curve C0. In fact

τ (Λ)
∣∣
C0

= w(τ8
∣∣C0) = w(σ(e8 − u)) = σ(λ − u), (63)

where λ = w(e8) = dx hx + dyhy − m1e1 − · · · − m8e8. On the other hand,

φΛ(ξ, η)τ−m1
1 · · · τ−m8

8

∣∣
C0

= φΛ(ϕ(u),ψ(u))σ(e1 − u)−m1 · · · σ(e8 − u)−m8 . (64)

Hence we have

φΛ(ϕ(u),ψ(u)) = σ(λ − u)σ(e1 − u)m1 · · · σ(e8 − u)m8 . (65)

If this formula is valid, φΛ(ξ, η) manifestly satisfies the vanishing condition. To
summarize,

Theorem 3 For each Λ ∈ M = W.E8 as in (56), the τ function τ (Λ) is expressed
as

τ (Λ) = φΛ(ξ, η)τ−m1
1 · · · τ−m8

8 , (66)
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where φΛ(ξ, η) is characterized as the unique homogeneous polynomial in ξ and η
of bidegree (dx , dy) satisfying the restriction formula (65) on the reference curve C0.

In terms of the τ functions τ (Λ) (Λ ∈ M), the homogenous coordinates ξi , ηi and
τ variables τi are expressed as

ξi = τ (Ei )τ (Hx − Ei ), ηi = τ (Ei )τ (Hy − Ei ), τi = τ (Ei ) (67)

for i = 1, . . . , 8. From the three-term relation of (55), we obtain

ϕ(e j , ek)τ (Ei )τ (Hx − Ei ) + ϕ(ek, ei )τ (E j )τ (Hx − E j )

+ ϕ(ei , e j )τ (Ek)τ (Hx − Ek) = 0,

ψ(e j , ek)τ (Ei )τ (Hy − Ei ) + ψ(ek, ei )τ (E j )τ (Hy − E j )

+ ψ(ei , e j )τ (Ek)τ (Hy − Ek) = 0.

(68)

These are the fundamental bilinear equations for the τ functions of the elliptic
Painlevé equation.

Applying w ∈ W to (67), we obtain

w(ξi ) = w.τ (Ei )w.τ (Hx − Ei ) = τ (w.Ei )τ (w.(Hx − Ei ))

= φw.Ei (ξ, η)τw.Ei φw.(Hx −Ei )(ξ, η)τw.(Hx −Ei ).
(69)

Hence we have
w(ξi ) = φw.Ei (ξ, η)φw.(Hx −Ei )(ξ, η) τw.Hx ,

w(ηi ) = φw.Ei (ξ, η)φw.(Hy−Ei )(ξ, η) τw.Hy
(70)

for i = 1, . . . , 8. In particular, w ∈ W acts on the inhomogeneous coordinates x =
ξ2/ξ1, y = η2/η1 by the formulas

w(x) = φw.E2(x, y)φw.(Hx −E2)(x, y)

φw.E1(x, y)φw.(Hx −E1)(x, y)
,

w(y) = φw.E2(x, y)φw.(Hy−E2)(x, y)

φw.E1(x, y)φw.(Hy−E1)(x, y)
.

(71)

Here we used the notation φΛ(x, y) to refer to the polynomial in the inhomogeneous
coordinates (x, y) obtained from φΛ(ξ, η) by the substitution ξ = (1 : x), η = (1 : y).
Note that, since w.ξ1, w.ξ2 ∈ L(w.Hx ), the two polynomials φw.E1(ξ, η)φw.(Hx −E1)

(ξ, η) and φw.E2(ξ, η)φw.(Hx −E2)(ξ, η) have the same bidegree. In particular, for each
α ∈ Q(E8), we have

Tα(x) = φTα.E2(x, y)φTα.(Hx −E2)(x, y)

φTα.E1(x, y)φTα.(Hx −E1)(x, y)
,

Tα(y) = φTα.E2(x, y)φTα.(Hy−E2)(x, y)

φTα.E1(x, y)φTα.(Hy−E1)(x, y)
.

(72)
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This is the elliptic Painlevé equation with respect to the translation by α ∈ Q(E8) in
the inhomogeneous coordinates.

2 Explicit Representations of the Elliptic Painlevé Equation

One can apply previous discussions for determining explicit expression for the Kac
translations Tα (α ∈ Q(E8)). We consider exclusively the case of the translation
by the simple root α1 = Hx − Hy , which can be regarded as the non-autonomous
version of the QRT mapping.

2.1 Action of the Kac Translation Tα1

Our goal is to find an explicit representation for the action of the translation Tα1

with respect to the simple root α1 = Hx − Hy . This translation is decomposed into
the product Tα1 = wywx of two involutions wx and wy , called the horizontal and
vertical flips, where

wx = wx
12w

x
34w

x
56w

x
78, wx

i j = rEi −E j rHx −Ei −E j (i �= j),

wy = w
y
12w

y
34w

y
56w

y
78, w

y
i j = rEi −E j rHy−Ei −E j (i �= j).

(73)

These wx , wy act on the Picard lattice by

wx .Hx = Hx , wx .Hy = 4Hx + Hy − E1 − · · · − E8,

wx .E j = Hx − E j ( j = 1, . . . , 8),

wy .Hx = Hx + 4Hy − E1 − · · · − E8, wy .Hy = Hy,

wy .E j = Hy − E j ( j = 1, . . . , 8).

(74)

Since
ξi = τ (Ei )τ (Hx − Ei ), ηi = τ (Ei )τ (Hy − Ei ), (75)

we have
wx (ξi ) = ξi , wy(ηi ) = ηi (i = 1, . . . , 8). (76)

This implies

Tα1(ξi ) = wy(ξi ), T −1
α1

(ηi ) = wx (ηi ) (i = 1, . . . , 8). (77)

We first investigate wy(ξi ). By (70),
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wy(ξi ) = φwy .Ei (ξ, η)φwy .(Hx −Ei )(ξ, η) τwy .Hx . (78)

Note that wy .Ei = Hy − Ei and τ (Hy − Ei ) = ηiτ
−1
i , and hence, φw.Ei (ξ, η) = ηi .

On the other hand,

wy .(Hx ) = Hx + 4Hy − ∑
1≤ j≤8E j = δ − Hx + 2Hy,

wy .(Hx − Ei ) = Hx + 3Hy − ∑
1≤ j≤8; j �=i E j = δ − Hx + Hy + Ei .

(79)

Hence φwy .(Hx −Ei )(ξ, η) is characterized as the unique homogeneous polynomial of
bidegree (1, 3) such that

φwy .(Hx −Ei )(ξ, η)
∣∣
C0

= σ(δ − hx + hy + ei − u)
∏

1≤ j≤8; j �=i

σ(e j − u). (80)

Similarly, we have φwx .Ei (ξ, η) = ξi , and φwx .(Hy−Ei )(ξ, η) is characterized as the
unique homogeneous polynomial of bidegree (3, 1) such that

φwx .(Hy−Ei )(ξ, η)
∣
∣
C0

= σ(δ + hx − hy + ei − u)
∏

1≤ j≤8; j �=i

σ(e j − u). (81)

Putting Pi (ξ, η) = φwy .(Hx −Ei )(ξ, η) and Qi (ξ, η) = φwx .(Hy−Ei )(ξ, η), we obtain the
following description of the Kac translation by α1.

Lemma 1 For each i = 1, . . . , 8, there exist unique polynomial Pi (ξ, η) and
Qi (ξ, η), homogeneous in ξ and η of bidegree (1, 3) and of bidegree (3, 1), respec-
tively, such that

Pi (ϕ(u),ψ(u)) = σ(δ − hx + hy + ei − u)
∏

1≤ j≤8; j �=iσ(e j − u),

Qi (ϕ(u),ψ(u)) = σ(δ + hx − hy + ei − u)
∏

1≤ j≤8; j �=iσ(e j − u).
(82)

The Kac translation with respect to the simple root α1 = Hx − Hy is given by

Tα1(τi ) = Pi (ξ, η)τi (τ1 · · · τ8)−1, T −1
α1

(τi ) = Qi (ξ, η)τi (τ
−1
1 · · · τ8)−1 (83)

and

Tα1(ξi ) = ηi Pi (ξ, η)(τ1 · · · τ8)−1, T −1
α1

(ηi ) = ξi Qi (ξ, η)(τ1 · · · τ8)−1. (84)

In terms of the inhomogeneous coordinates (x, y) of P
1 × P

1 such that x = ξ2/ξ1
and y = η2/η1,

Tα1(x) = y
P2(x, y)

P1(x, y)
, T −1

α1
(y) = x

Q2(x, y)

Q1(x, y)
. (85)

for i = 1, . . . , 8.
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We remark that this type of representation of the elliptic Painlevé equation was first
proposed by Murata (2004).1 A geometric interpretation to this expression is also
given by Carstea-Dzhamay-Takenawa (2017).

In order towrite down Pi (ξ, η) and Qi (ξ, η), it is convenient to divide the indexing
set {1, . . . , 8} into two parts {1, 2, 3, 4} and {5, 6, 7, 8}. Then, for i = 1, 2, 3, 4, we
have

Pi (ξ, η) =
8∑

k=5

σ(hx − ei − ek − δ)

σ(hx − hy)

∏
1≤ j≤4; j �=i σ(hy − ek − e j )
∏

5≤ j≤8; j �=k σ(ek − e j )
ξk

∏

5≤ j≤8; j �=k

η j ,

Qi (ξ, η) =
8∑

k=5

σ(hy − ei − ek − δ)

σ(hy − hx )

∏
1≤ j≤4; j �=i σ(hx − ek − e j )
∏

5≤ j≤8; j �=k σ(ek − e j )
ηk

∏

5≤ j≤8; j �=k

ξ j .

(86)

We explain below how to derive these explicit formulas, taking P1(ξ, η) as an exam-
ple. In this case, P1(ξ, η) is of bidegree (1, 3) and the curve P1(ξ, η) = 0 passes
through p2, p3, . . . , p8. Note that K-vector space of homogeneous polynomials in
η of degree 3 has dimension 4. Choosing three out of the four homogeneous linear
functions η5, η6, η7, η8, we can take

η6η7η8, η5η7η8, η5η6η8, η5η6η7 (87)

for a basis of this vector space. The polynomial P1(ξ, η) of bidegree (1, 3) is then
expressed as

P1(ξ, η) = a5(ξ)η6η7η8 + a6(ξ)η5η7η8 + a7(ξ)η5η6η8 + a8(ξ)η5η6η7, (88)

where a j (ξ) ( j = 5, 6, 7, 8) are homogeneous of degree 1. By the condition
P1(ξ, η) = 0 passes through p5, p6, p7, p8, we see that a j (ξ) = c jξ j , c j ∈ K for
j = 5, 6, 7, 8. Hence we have

P1(ξ, η) = c5ξ5η6η7η8 + c6ξ6η5η7η8 + c7ξ7η5η6η8 + c8ξ8η5η6η7

=
(

c5
ξ5

η5
+ c6

ξ6

η6
+ c7

ξ7

η7
+ c8

ξ8

η8

)
η5η6η7η8.

(89)

We fix the constants c5, c6, c7, c8 so that the restriction formula

P1(ϕ(u),ψ(u)) = σ(δ − hx + hy + e1 − u)

8∏

j=2

σ(e j − u) (90)

holds. Note that (89) implies

1The author is grateful to the referee for directing his attention to this work.
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P1(ξ, η)

η5η6η7η8
=

8∑

k=5

ck
ξk

ηk
. (91)

By the restriction to C0 we obtain

σ(δ − hx + hy + e1 − u)
∏8

j=2 σ(e j − u)
∏8

j=5 ψ j (u)
=

8∑

k=5

ck
ϕk(u)

ψk(u)
, (92)

and hence

σ(δ − hx + hy + e1 − u)
∏4

j=2 σ(e j − u)
∏8

j=5 σ(hy − e j − u)
=

8∑

k=5

ck
σ(hx − ek − u)

σ(hy − ek − u)
. (93)

This is an identity of quasi-periodicmeromorphic functions of type (0, hx − hy)with
simple poles at u = hy − e j ( j = 5, 6, 7, 8). Comparing the residues at these poles,
we have

ck = −σ(δ − hx + e1 + ek)

σ(hx − hy)

∏4
j=2 σ(hy − ek − e j )

∏
5≤ j≤8; j �=k σ(ek − e j )

(94)

for i = 5, 6, 7, 8. Finally we obtain

P1(ξ, η) = η5η6η7η8

8∑

k=5

σ(hx − e1 − ek − δ)

σ(hx − hy)

∏4
j=2 σ(hy − ek − e j )

∏
5≤ j≤8; j �=k σ(ek − e j )

ξk

ηk

=
8∑

k=5

σ(hx − e1 − ek − δ)

σ(hx − hy)

∏4
j=2 σ(hy − ek − e j )

∏
5≤ j≤8; j �=k σ(ek − e j )

ξk

∏

5≤ j≤8; j �=k

η j .

(95)

2.2 Coordinates Depending on a Parameter

Fixing a generic (W -invariant) constant t ∈ C, we consider the action of Tα1 on

ξ(t) = ϕ(e1, t)ξ2 − ϕ(e2, t)ξ1
ϕ(e1, e2)

, η(t) = ψ(e1, t)η2 − ψ(e2, t)η1
ψ(e1, e2)

. (96)

Since wxϕ(ei , t) = ϕ(ei , t) and wxϕ(ei , e j ) = ϕ(ei , e j ), we have wxξ(t) = ξ(t),
and Tα1ξ(t) = wyξ(t). Since wy induces a C-isomorphism

wy : L(Hx )
∼→ L(Hx + 4Hy − E1 − E2 − . . . − E8), (97)

wy(ξ(t)) is expressed as
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wy(ξ(t)) = Φ(ξ, η; t)(τ1 · · · τ8)−1, (98)

with a homogeneous polynomial Φ(ξ, η; t) ∈ K[ξ, η] of bidegree (1, 4). By the
restriction to C0, from

ξ(t)|C0 = ϕ(t, u) = σ(t − u)σ(hx − t − u) (99)

we obtain

wy(ξ(t))|C0 = σ(t − u)σ(hx + 4hy − e1 − · · · − e8 − t − u)

= σ(δ − hx + 2hy − t − u).
(100)

Hence we have

σ(t − u)σ(δ − hx + 2hy − t − u) = Φ(ϕ(u),ψ(u); t)
8∏

j=1

σ(e j − u)−1, (101)

in other words,

Φ(ϕ(u),ψ(u); t) = σ(δ − hx + 2hy − t − u)σ(t − u)

8∏

j=1

σ(e j − u). (102)

This means that the curve Φ(ξ, η) = 0 of bidegree (1, 4) passes through the 9 points
p j = p(e j ) ( j = 1, . . . , 8) together with p(t); from now on, we set

e9 = t, p9 = p(t), ξ9 = ξ(t), η9 = η(t). (103)

Noting that the vector space of homogeneous polynomials in η of degree 4 has 5
dimension, we take the 5 homogeneous linear functions

η5 · · · η̂k · · · η9 (k = 5, 6, 7, 8, 9). (104)

Then, we can express Φ(ξ, η; t) in the form

Φ(ξ, η; t) =
9∑

k=5

ak(ξ)η5 · · · η̂k · · · η9 =
9∑

k=5

ckξkη5 · · · η̂k · · · η9 (105)

since Φ(ξ, η; t) = 0 passes through p5, p6, . . . , p9. As before, rewriting this in the
form

Φ(ξ, η; t)
∏9

j=5 η j

=
9∑

k=5

ck
ξk

ηk
, (106)

by the restriction to C0 we obtain
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σ(δ − hx + 2hy − e9 − u)
∏4

j=1 σ(e j − u)
∏9

j=5 σ(hy − e j − u)
=

9∑

k=5

ck
σ(hx − ek − u)

σ(hy − ek − u)
. (107)

Taking the residues at u = hy − ek (k = 5, 6, . . . , 9), we can determine the constants
ck as

ck = σ(δ − hx + hy − e9 + ek)
∏4

j=1 σ(hy − ek − e j )

σ(hx − hy)
∏

5≤ j≤9; j �=k σ(ek − e j )
. (108)

Hence we have

Φ(ξ, η; t) =
9∑

k=5

σ(δ − hx + hy − e9 + ek)
∏4

j=1 σ(hy − ek − e j )

σ(hx − hy)
∏

5≤ j≤9; j �=k σ(ek − e j )
ξkη5 · · · η̂k · · · η9.

(109)

Replacing e9 by t , we obtain the following expression for the Kac translation of ξ(t)
and η(t) with respect to α1 = Hx − Hy .

Lemma 2 As to the Kac translation Tα1 = wywx of

ξ(t) = ϕ(e1, t)ξ2 − ϕ(e2, t)ξ1
ϕ(e1, e2)

, η(t) = ψ(e1, t)η2 − ψ(e2, t)η1
ψ(e1, e2)

(110)

by α1 = Hx − Hy, we have

Tα1(ξ(t)) = wy(ξ(t)) = Φ(ξ, η; t)(τ1 · · · τ8)−1,

T −1
α1

(η(t)) = wx (η(t)) = Ψ (ξ, η; t)(τ1 · · · τ8)−1 (111)

where

Φ(ξ, η; t)

= σ(δ − hx + hy)
∏4

j=1 σ(hy − e j − t)

σ(hx − hy)
∏8

j=5 σ(e j − t)
ξ(t)η5η6η7η8

+
8∑

k=5

σ(δ − hx + hy + ek − t)
∏4

j=1 σ(hy − ek − e j )

σ(hx − hy)σ(ek − t)
∏

5≤ j≤8; j �=k σ(ek − e j )
ξkη5 · · · η̂k · · · η8η(t),

Ψ (ξ, η; t)

= σ(δ − hy + hx )
∏4

j=1 σ(hx − e j − t)

σ(hy − hx )
∏8

j=5 σ(e j − t)
ξ5ξ6ξ7ξ8η(t)

+
8∑

k=5

σ(δ − hy + hx + ek − t)
∏4

j=1 σ(hx − ek − e j )

σ(hy − hx )σ(ek − t)
∏

5≤ j≤8; j �=k σ(ek − e j )
ξ5 · · · ξ̂k · · · ξ8ξ(t)ηk .

(112)

From this lemma, we have
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Tα1

(
ξ(t2)

ξ(t1)

)
= Φ(ξ, η; t2)

Φ(ξ, η; t1)
, T −1

α1

(
η(t2)

η(t1)

)
= Ψ (ξ, η; t2)

Ψ (ξ, η; t1)
(113)

for generic W -invariant parameters t1, t2 ∈ C. In the following we use the notation
Tα1( f ) = f and T −1

α1
( f ) = f for simplicity, so that

ξ(t2)

ξ(t1)
= Φ(ξ, η; t2)

Φ(ξ, η; t1)
,

η(t2)

η(t1)
= Ψ (ξ, η; t2)

Ψ (ξ, η; t1)
, (114)

where

ξ(t) = ϕ1(t)ξ2 − ϕ2(t)ξ1
ϕ(e1, e2)

, η(t) = ψ
1
(t)η

2
− ψ

2
(t)η

1

ψ(e1, e2)
,

ϕi (t) = σ(ei − t)σ(hx − ei − t) = σ(ei − hx + hy + δ − t)σ(hy − ei − t),

ψ
i
(t) = σ(ei − t)σ(hy − ei − t) = σ(ei + hx − hy + δ − t)σ(hx − ei − t).

(115)

Note that η(t) = (ψ1(t)η2 − ψ2(t)η1)/ψ(e1, e2) vanishes when we specialize the
η coordinate by η = ψ(t), namely ηi = ψi (t) (i = 1, 2). Hence, by the substitution
η = ψ(t), Φ(ξ, η; t) simplifies to a single term:

Φ(ξ,ψ(t); t) = σ(δ − hx + hy)
∏4

j=1 σ(hy − e j − t)

σ(hx − hy)
∏8

j=5 σ(e j − t)
ξ(t)

8∏

j=5

ψ j (t)

= σ(δ − hx + hy)
∏8

j=1 σ(hy − e j − t)

σ(hx − hy)
ξ(t).

(116)

We use a new parameter v ∈ C for this specialization of η assuming that wy(v) = v.
Since ψi (v) = ψi (hy − v), we have

Φ(ξ,ψ(v); v) = σ(δ − hx + hy)
∏8

j=1 σ(hy − e j − v)

σ(hx − hy)
ξ(v),

Φ(ξ,ψ(v); hy − v) = σ(δ − hx + hy)
∏8

j=1 σ(e j − v)

σ(hx − hy)
ξ(hy − v),

(117)

and hence
Φ(ξ,ψ(v); hy − v)

Φ(ξ,ψ(v); v)
= ξ(hy − v)

ξ(v)

8∏

j=1

σ(e j − v)

σ(hy − e j − v)
. (118)

This implies

ξ(hy − v)

ξ(v)
= ξ(hy − v)

ξ(v)

8∏

j=1

σ(e j − v)

σ(hy − e j − v)
(119)
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with the parameter v such that η = ψ(v). Similarly, we use a parameter u ∈ C for
the specialization ξ = ϕ(u) assuming that wx (u) = u. Then we have

η(hx − u)

η(u)
= η(hx − u)

η(u)

8∏

j=1

σ(e j − u)

σ(hx − e j − u)
(120)

with the parameter u such that ξ = ϕ(u). This system of equations (119), (120)
is the explicit representation of the elliptic Painlevé equation proposed in Noumi-
Tsujimoto-Yamada (2013) and Kajiwara-Noumi-Yamada (2017, Sect. 5.5, (5.82),
(5.83)).

Finally, we comment on specializing ξ = ϕ(u) and η = ψ(v)with two parameters
u, v, simultaneously. In geometric terms, this is equivalent to considering the covering

π : EΩ × EΩ → P
1 × P

1 : π(u, v) = (ϕ(u),ψ(v)) ((u, v) ∈ EΩ × EΩ).

(121)
In the inhomogeneous coordinates (x, y) ∈ P

1 × P
1, this covering is defined by

x = σ(e2 − u)σ(hx − e2 − u)

σ(e1 − u)σ(hx − e1 − u)
, y = σ(e2 − v)σ(hy − e2 − v)

σ(e1 − v)σ(hy − e1 − v)
. (122)

Under this parametrization, ξ(v) and η(u) are expressed as

ξ(v) = ϕ1(v)ξ2 − ϕ2(v)ξ1

ϕ1(e2)
= ϕ1(v)ϕ2(u) − ϕ2(v)ϕ1(u)

ϕ1(e2)
= −ϕ(u, v),

η(u) = ψ1(u)η2 − ψ2(u)η1

ψ1(e2)
= ψ1(u)ψ2(v) − ψ2(u)ψ1(v)

ψ1(e2)
= ψ(u, v).

(123)

Hence, Eqs. (119) and (120) lifted to EΩ × EΩ should be written as

ϕ(u, hy − v)

ϕ(u, v)
= ϕ(u, hy − v)

ϕ(u, v)

8∏

j=1

σ(e j − v)

σ(hy − e j − v)
,

ψ(hx − u, v)

ψ(u, v)
= ψ(hx − u, v)

ψ(u, v)

8∏

j=1

σ(e j − u)

σ(hx − e j − u)

(124)

in an implicit factorized form. This system of equations is still somewhat ambiguous
in the point how one should understand the evolutions ϕ and ψ. A possible idea
would be to set

ϕ(u, v) = σ(u − v)σ(hx − u − v), hx = δ − hx + 2hy,

ψ(u, v) = σ(u − v)σ(hy − u − v), hy = δ + 2hx − hy,
(125)
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using sigma functions σ(u) = σ(u|Ω), σ(u) = σ(u|Ω) associated with appropri-
ately evolved period lattices Ω , Ω . It would be an intriguing problem to pursuit the
idea of modulation of the elliptic nome in the elliptic Painlevé equation. We expect
that such an approach could also provide a method for constructing generic solutions
to this equation in the geometric terms of plane curves.
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On the Lattice Potential KP Equation

Cewen Cao, Xiaoxue Xu, and Da-jun Zhang

Abstract The paper presents an approach to derive finite genus solutions to the
lattice potential Kadomtsev-Petviashvili (lpKP) equation introduced by F.W.Nijhoff,
et al. This equation is rederived from compatible conditions of three replicas of
the discrete ZS-AKNS spectral problem, which is a Darboux transformation of the
continuous ZS-AKNS spectral problem.With the help of these links and bymeans of
the so called nonlinearization technique andLiouville platform, finite genus solutions
of the lpKP equation are derived. Semi-discrete potential KP equations with one and
two discrete arguments, respectively, are also discussed.

Keywords Lattice potential KP equation · Finite genus solutions ·
Nonlinearization · ZS-AKNS spectral problem · Liouville platform

1 Introduction

Discrete integrable systems and the problem of integrable discretization of given
soliton equations have attracted more and more attention in recent years (Grammati-
cos et al. 2004; Hietarinta et al. 2016; Suris 2003). The main purpose of this paper
is to investigate the lattice potential Kadomtsev-Petviashvili (lpKP) equation
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Ξ
lpKP
(β1,β2,β3)

≡ (β1 − W̃ )(β2 − β3 + ˆ̃W − ¯̃W ) + (β2 − W̄ )(β3 − β1 + ˜̄W − ˆ̄W )

+(β3 − Ŵ )(β1 − β2 + ¯̂W − ˜̂W ) = 0, (1)

and present an approach to construct finite genus solutions to 3D integrable lattice
equations. This equation is first discovered by Nijhoff, Capel, Wiersma and Quispel
by using theBäcklund transformation approach, and later derived through an analysis
of the Cauchy matrix (Nijhoff et al. 1984; Hietarinta et al. 2016).

To build the integrability of the lpKP equation (1) and calculate its finite genus
solutions, we will introduce Lax triads from the ZS-AKNS spectral problem. Com-
patibility of these triads, respectively, give rise to the lattice potential KP equations
with 3, 2 and 1 discrete arguments, as (see Sect. 2 for the derivation)

Ξ(0,3) ≡ 1

2
[(W̃ − W̄ )

¯̃W + (W̄ − Ŵ ) ˆ̄W + (Ŵ − W̃ )
˜̂W ]

+γ1(
¯̃W − ˆ̃W − W̄ + Ŵ ) + γ2(

ˆ̄W − ˜̄W − Ŵ + W̃ )

+γ3(
˜̂W − ¯̂W − W̃ + W̄ ) = 0, (2)

Ξ(1,2) ≡ (W̃ − W̄ )x −
[
1

2
(W̃ − W̄ ) + γ1 − γ2

]
(

¯̃W − W̃ − W̄ + W ) = 0, (3)

Ξ(2,1) ≡ (W̃ − W )y −
[
(W̃ + W )x + 2γ1(W̃ − W ) + 1

2
(W̃ − W )2

]
x

= 0. (4)

Note that (2) is equivalent to the lpKP equation (1) with βk = −2γk, k = 1, 2, 3, as
Ξ

lpKP
(−2γ1,−2γ2,−2γ3)

= 2Ξ(0,3). It also turns out that all these equations have the same
potential KP (pKP) equation,

Ξ(3,0) ≡ Wxt − 1

4
(Wxxx + 3W 2

x )x − 3

4
Wyy = 0, (5)

as their continuum limits (see Proposition 4).
Themethod of finite-gap integration originated in solving the periodic initial prob-

lem of the Korteweg-de Vries (KdV) equation (cf.Matveev (2008) and the references
therein). Recently, an approach to deriving finite genus solutions for 2D discrete inte-
grable systems, the lattice potential KdV equation (Cao and Xu 2012) and the lattice
nonlinear Schrödinger (lNLS) model (Cao and Zhang 2012) were developed. In this
paper, just as in the 2D case, explicit analytic solutions of the lattice pKP equa-
tions (2, 3, 4), together with the pKP equation (5), will be calculated by means of the
finite-dimensional integrable flows of continuous and discrete types, i.e. Hamiltonian
phase flows and integrable symplectic maps. These flows are constructed through
nonlinearization of the continuous and discrete spectral problems (see Sects. 3, 4).
It is surprising that they share same Liouville integrals, same Lax matrix L(λ; p, q)

and same algebraic curveR. Thus the calculations can be done on the same Liouville
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platform. The Abel-Jacobi variable �φ in the Jacobian variety J (R) straightens out
both the Hj - and the Sγk -flow with the velocities �� j and ��γk , respectively. As a
result, we have a clear evolution picture for the lattice pKP equations as well as for
the pKP equation, as the following,

Ξ(0,3) : �φ ≡ �φ0 + m1 ��γ1 + m2 ��γ2 + m3 ��γ3 , (modT ),

Ξ(1,2) : �φ ≡ �φ0 + x ��1 + m1 ��γ1 + m2 ��γ2 , (modT ),

Ξ(2,1) : �φ ≡ �φ0 + x ��1 + y ��2 + m1 ��γ1 , (modT ),

Ξ(3,0) : �φ ≡ �φ0 + x ��1 + y ��2 + t ��3, (modT ),

which will provide the basic part of the explicit analytic solutions (see Sect. 5, 6).
The paper is organized as follows. Section2 shows that how the lattice pKP equa-

tions (2), (3) and (4) arise from their Lax triads. Continuum limits of these lattice
pKP equations give rise to the same pKP equation. In Sect. 3, a finite-dimensional
integrable Hamiltonian system related to the ZS-AKNS spectral problem is intro-
duced to provide integrals, spectral curve and Abel-Jacobi variables. In Sect. 4 we
construct an integrable symplectic map Sγ in tilde direction, develop an algebro-
difference analogue of the Burchnall-Chaundy’s theory on commuting differential
operators by which we express the potential functions in terms of theta function.
This allows us to derive finite genus solutions for the lpKP equation in Sect. 5 and
for other two semi-discrete and one continuous pKP equations in Sect. 6. Finally,
concluding remarks are given in the last Section.

2 The Discretized pKP Equations

2.1 The KP Equation

In order to find the suitable discrete spectral problems for (1), let us first recall the
usual continuous KP equation,

wt = 1

4
(wxx + 3w2)x + 3

4
∂−1
x wyy . (6)

It is well-known that the KP equation has a close relation with the ZS-AKNS spectral
problem (U1) (Cao et al. 1999; Konopelchenko et al. 1991),

∂xχ = U1χ =
(

λ/2 u
v −λ/2

)
χ. (7)

In fact, there is a hierarchy of isospectral equations (Xk) related to (7),
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∂τk (u, v) = Xk, (k = 2, 3, . . .), (8)

in which the first two nonlinear members, (y = τ2, t = τ3), the NLS equation and
the modified KdV (mKdV) equation, respectively, are

∂y(u, v) = X2 = (uxx − 2u2v, −vxx + 2uv2), (9a)

∂t (u, v) = X3 = (uxxx − 6uvux , vxxx − 6uvvx ). (9b)

Corresponding to the hierarchy (8), there exist a series of linear spectral problems
(Uk),

∂τkχ = Ukχ, (k = 1, 2, . . .), (10)

where, apart from Eq. (7)|x=τ1 , we also have (with y = τ2, t = τ3)

∂yχ = U2χ =
(

λ2/2 − uv λu + ux

λv − vx −λ2/2 + uv

)
χ, (11a)

∂tχ = U3χ =
(

λ3/2 − λuv − uxv + uvx λ2u + λux + uxx − 2u2v
λ2v − λvx + vxx − 2uv2 −λ3/2 + λuv + uxv − uvx

)
χ.

(11b)

The Lax pair for (Xk) is composed of (U1) and (Uk). It is found that if (u, v) is a
compatible solution of (X2) and (X3), then w = −2uv solves the KP equation (6)
(Cao et al. 1999; Konopelchenko et al. 1991). Thus the compatible conditions of
(U1), (U2) and (U3) implies the KP equation. In other words, (U1,U2,U3) is the Lax
triad for the KP equation and hence for the pKP equation via w = Wx .

2.2 The Discrete pKP Equations

The above facts of the KP equation lead us to consider discretization of the ZS-
AKNS problem (7), by which we hope to find the Lax representation for the lpKP
equation (1). One discretization of (7) is known as the Ablowitz-Ladik spectral
problem (Ablowitz and Ladik 1975, 1976), which leads to a spatially discretized
NLS equation. In this paper, we employ the following linear problem, (D(γ)), adopted
in Cao and Zhang (2012),

χ̃ = D(γ)χ, D(γ)(λ, a, b) =
(

λ − γ + ab a
b 1

)
, (12)

which provides a second discretization for (7) (Merola et al. 1994) but is different
from Ablowitz-Ladik’s spectral problem (cf. Chen et al. (2017)). Note that (12) is
also known as a Darboux transformation of the ZS-AKNS spectral problems (10)
(Adler and Yamilov 1994). Here, for the above notation, let T1 be shift operator along
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the m1 direction, defined for any function f : Z3 → R as

(T1 f )(m1,m2,m3) = f̃ (m1,m2,m3) = f (m1 + 1,m2,m3).

Similarly, T2 f = f̄ , T3 f = f̂ are shifts along them2 andm3 direction, respectively.
Two basic relations,

(a, b) = (u, ṽ), (uṽ)x = ũṽ − uv, (13)

are derived from the compatibility condition of equations (7) and (12) (see Cao
and Zhang (2012)). The former bridges their potential functions, while the latter
suggests the setting of difference relation W̃ − W = −2uṽ as Wx = w = −2uv.
These facts lead to the consideration of three replicas of Eq. (12) with distinct non-
zero parameters γ = γ1, γ2, γ3,

T1χ ≡ χ̃ = D(γ1)(λ, u, ṽ)χ, (14a)

T2χ ≡ χ̄ = D(γ2)(λ, u, v̄)χ, (14b)

T3χ ≡ χ̂ = D(γ3)(λ, u, v̂)χ, (14c)

which are denoted by (D(γk )), k = 1, 2, 3, respectively, for short. Besides, auxiliary
equations will be assigned for each special occasion from the following list,

W̃ − W = −2uṽ, (15a)

W̄ − W = −2uv̄, (15b)

Ŵ − W = −2uv̂, (15c)

∂xW = −2uv. (15d)

At first glance, these equations seem fairly hard to deal with. Here we remark that on
the platform of Liouville integrability, a pair of functions (u, v) of discrete arguments
m1, m2, m3 can be constructed, which are finite genus potential for each of the
discrete spectral problems (14a, 14b, 14c); and W can be solved with the help of
the theta function and meromorphic differentials on the associated Riemann surface.
This will lead to explicit analytic solutions to the lpKP equation (see Sect. 5). The
approach can also be extended to the semi-discrete and purely continuous cases (see
Sect. 6).

To derive the discrete pKP equations (2), (3) and (4), we replace (Uj ) in the Lax
triad (U1,U2,U3) successively by (D(γk )), and then we come to the following new
Lax triads,

(D(γ1), D(γ2), D(γ3)), (U1, D
(γ1), D(γ2)), (U1,U2, D

(γ1)). (16)
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With the auxiliary relations (14), the compatibility of these triads lead to the dis-
crete pKP equations (2), (3) and (4). We present the procedure of derivation via the
following lemmas and propositions.

Lemma 1 Let (u, v) : Z2 → R
2 be a pair of functions such that (i) Eqs. (14a, 14b)

have compatible solution χ for one value of the spectral parameter λ; (i i) the system
(15a, 15b) has a solution W. Then (u, v) solve the lNLS equation (Cao and Zhang
2012; Konopelchenko 1982)

Ξ
(0,2)
1 ≡ (ũ − ū)(u ¯̃v + 1) + (γ1 − γ2)u = 0, (17a)

Ξ
(0,2)
2 ≡ (ṽ − v̄)(u ¯̃v + 1) − (γ1 − γ2) ¯̃v = 0, (17b)

and W, u, v satisfy the relation

Y (γ1, γ2) ≡ 2
(
ṽ Ξ

(0,2)
1 (γ1, γ2) + ū Ξ

(0,2)
2 (γ1, γ2)

)

=
[1
2
(W̃ − W̄ ) + γ1 − γ2

]
(

¯̃W − W̃ − W̄ + W ) + 2(ũṽ − ūv̄), (18)

which is equal to zero due to Eqs. (17).

Proof By direct calculations we see that the cross action (T1T2 − T2T1)χ is equal to

(D̃(γ2)D(γ1) − D̄(γ1)D(γ2))χ =
(

Υ11 Ξ
(0,2)
1

Ξ
(0,2)
2 0

) (
χ(1)

χ(2)

)
, (19)

where

Υ11 = λ

γ1 − γ2
[(ṽ − v̄)Ξ

(0,2)
1 − (ũ − ū)Ξ

(0,2)
2 ]

+ 1

γ1 − γ2
[(γ1v̄ − γ2ṽ)Ξ

(0,2)
1 − (γ2ū − γ1ũ)Ξ

(0,2)
2 ].

With (14a, 14b) one can rewrite (T1T2 − T2T1)χ in the form

1

γ1 − γ2

(
(γ1 − λ)χ̄(2) − (γ2 − λ)χ̃(2) [(γ1 − λ)ũ − (γ2 − λ)ū]χ(1)

0 (γ1 − γ2)χ
(1)

) (
Ξ

(0,2)
1

Ξ
(0,2)
2

)
.

(20)

Usually the coefficient determinant is not zero. Since (T1T2 − T2T1)χ = 0, we have
Ξ(0,i) = 0. Further, in light of Eqs. (15a, 15b), the left-hand side of Eq. (17) can be
written as
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Ξ
(0,2)
1 = (ũ − ū) +

[
1

2
(W̃ − W̄ ) + γ1 − γ2

]
u,

Ξ
(0,2)
2 = (ṽ − v̄) −

[
1

2
(W̃ − W̄ ) + γ1 − γ2

]
¯̃v,

which imply Eq. (18) by direct calculations.

Proposition 1 Let (u, v) : Z3 → R
2 be a pair of functions such that (i) Eqs. (14a,

14b, 14c) have compatible solution χ for one value of λ; (i i) the system (15a, 15b,
15c) has a solution W. Then W solves Eq. (2), i.e. Ξ(0,3) = 0.

Proof Consider three replicas of (18) with parameters (γ1, γ2), (γ2, γ3), (γ3, γ1),
respectively. Adding them together we have

Ξ(0,3) = Y (γ1, γ2) + Y (γ2, γ3) + Y (γ3, γ1), (21)

where the terms containing u, v are canceled. This yields Eq. (2).

Proposition 2 Let (u, v) : R × Z
2 → R

2 be a pair of functions such that
(i) Eqs. (14a, 14b) have compatible solution χ for one value of λ; (i i) the system of
Eqs. (15a, 15b) and (15d) has a solution W. Then W solves Eq. (3), i.e. Ξ(1,2) = 0.

Proof In light of (15d), the last term in (18) is equal to −(W̃ − W̄ )x . Thus the proof
is completed since Ξ(1,2) = −Y (γ1, γ2).

Proposition 3 Let (u, v) : R2 × Z → R
2 beapair of functions such that (i)Eqs. (7),

(11a) and (14a) have compatible solution χ for one value of λ; (i i) the system of
Eqs. (15a, 15d) has a solution W. Then W solves Eq. (4), i.e. Ξ(2,1) = 0.

Proof The compatibility condition ∂y∂xχ = ∂x∂yχ gives rise to the NLS equations
(9a), rewritten as

Ξ
(2,0)
1 ≡ uy − uxx + 2u2v = 0, (22a)

Ξ
(2,0)
2 ≡ vy + vxx − 2uv2 = 0. (22b)

In fact,

(∂y∂x − ∂x∂y)χ = (U1,y −U2,x + [U1,U2])χ

=
(

0 Ξ
(2.0)
1

Ξ
(2.0)
2 0

) (
χ(1)

χ(2)

)
=

(
χ(2) 0
0 χ(1)

) (
Ξ

(2,0)
1

Ξ
(2,0)
2

)
. (23)

Further, the compatibility condition ∂x T1χ = T1∂xχ yields the semi-discrete NLS
equations

Ξ
(1,1)
1 ≡ ux − ũ − γ1u + u2ṽ = 0, (24a)

Ξ
(1,1)
2 ≡ ṽx + v + γ1ṽ − uṽ2 = 0, (24b)
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since the cross action leads to

(∂x T1 − T1∂x )χ = (D(γ1)
x − Ũ1D

(γ1) + D(γ1)U1)χ

=
(

κ11 Ξ
(1,1)
1

Ξ
(1,1)
2 0

) (
χ(1)

χ(2)

)
=

(
χ̃(2) uχ(1)

0 χ(1)

) (
Ξ

(1,1)
1

Ξ
(1,1)
2

)
, (25)

where κ11 = (uṽ)x − ũṽ + uv = ṽΞ
(1,1)
1 + uΞ

(1,1)
2 , and the relation χ̃(2) = ṽχ(1) +

χ(2) has been used. By calculation we have

ṽΞ
(2,0)
1 + uΞ̃

(2,0)
2 = (uṽ)y − (ux ṽ − uṽx )x − 2uṽ(ũṽ − uv),

(ṽΞ
(1,1)
1 − uΞ

(1,1)
2 )x = (ux ṽ − uṽx )x − (ũṽ + uv + 2γ1uṽ − 2u2ṽ2)x .

Adding them together we arrive at

Ξ(2,1) = −2(ṽΞ
(2,0)
1 + uΞ̃

(2,0)
2 ) − 2(ṽΞ

(1,1)
1 − uΞ

(1,1)
2 )x , (26)

where the term (ux ṽ − uṽx )x is canceled and the variable W is introduced by
Eqs. (15a, 15d). Thus Ξ(2,1) = 0.

Let us back to the Eqs. (2), (3) and (4). We have seen that (2) is nothing but the
lpKP equation (1). Besides, Eqs. (3) and (4) have close relations with the (N-2) and
(N-3) models that were discovered by Date, Jimbo and Miwa Date et al. (1982),
which are

ΞN2 ≡ (Ṽ − V̄ )x − (e
¯̃V − eṼ − eV̄ + eV ) = 0, (27)

ΞN3 ≡ Δ(Vy + 2

h
Vx − 2VVx ) − (Δ + 2)Vxx = 0, (28)

where Δ f = f̃ − f for arbitrary function f . In fact, for (3), introducing

V = ln[(W̃ − W̄ )/2 + γ1 − γ2], (29)

and then using (3), one finds

Vx = (W̃ − W̄ )x/2

(W̃ − W̄ )/2 + γ1 − γ2
= 1

2
(

¯̃W − W̃ − W̄ + W ).

It then follows that (Ṽ − V̄ )x is equal to the second part in Eq. (27). HenceΞN2 = 0.
Thus, for any solutionW of the Eq. (3), V defined by (29) provides a special solution
for (27). For the Eq. (4), if W is a solution, then

V = (W̃ − W )/2 (30)
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solves the (N-3) Eq. (28). Actually, it is easy to find (with γ1 = 1/h)

1

2
Ξ(2,1) =

(
Vy + 2

h
Vx − 2VVx

)
− (V + W )xx ,

which impliesΞN3 = ΔΞ(2,1)/2 = 0. In this sense, Eq. (4) is the potential version of
(N-3). Note that (N-3) model was also derived by Kanaga Vel and Tamizhmani, with
the help of quasi-difference operators (Kanaga Vel and Tamizhmani 1997), known
as the DΔKP equation there. Besides, some properties of the DΔKP hierarchy,
including symmetries,Hamiltonian structures and continuum limit,were investigated
in Fu et al. (2013).

At the end of this subsection, we consider continuum limits of Eqs. (2, 3, 4). Let
γk = −1/εk , εk = ckε, (k = 1, 2, 3), where c1, c2, c3 are arbitrary distinct non-zero
constants. For any smooth function W (x, y, t), define

TkW = W (x + ckε, y − c2kε
2/2, t + c3kε

3/3), (k = 1, 2, 3). (31)

Denote T1W = W̃ , T2W = W̄ , T3W = Ŵ for short. By straightforward calcula-
tions we have the following.

Proposition 4 Under the Ansatz (31), in the neighborhood of ε ∼ 0, the following
Taylor expansions hold for any smooth function W (x, y, t),

Ξ(2,1) = Ξ(3,0) 2c
2
1

3
ε2 + O(ε3), (32a)

Ξ(1,2) = Ξ(3,0) c1c2(c1 − c2)

3
ε3 + O(ε4), (32b)

Ξ(0,3) = Ξ(3,0) 1

3
[c1c2(c2 − c1) + c2c3(c3 − c2) + c3c1(c1 − c3)]ε3 + O(ε4).

(32c)

Thus, all the continuum limits of the lattice pKP equations (2), (3) and (4) give rise
to the same pKP equation (5). The Ansatz (31) is crucial, which is proposed based
on comparing the velocities of the Abel-Jacobi variable �φ along the discrete Sγk -flow
and the continuous Hj -flow (see Appendix A).

3 The Integrable Hamiltonian System (H1)

In Cao et al. (1999), Cao and Zhang (2012) an integrable Hamiltonian system is
constructed from the ZS-AKNS spectral problem,
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∂x

(
p j

q j

)
=

(−∂H1/∂q j

∂H1/∂ p j

)
=

(
α j/2 − < p, p >

< q, q > −α j/2

)(
p j

q j

)
, (33a)

H1(p, q) = −1

2
< Ap, q > +1

2
< p, p >< q, q > . (33b)

where A = diag(α1, . . . ,αN ), < ξ, η >= ∑N
j=1 ξ jη j . It can be regarded as N repli-

cas of Eq. (7) with eigenvalues α1, . . . ,αN , respectively, under the constraint

(u, v) = fU1(p, q) = (− < p, p >,< q, q >). (34)

The integrability requires enough number of involutive integrals. In deriving them,
we use the Lax equation

∂x L(λ) = [U1(λ), L(λ)], (35)

which has a solution, the Lax matrix (Cao et al. 1999; Cao and Zhang 2012)

L(λ; p, q) =
(
1/2 + Qλ(p, q) −Qλ(p, p)

Qλ(q, q) −1/2 − Qλ(p, q)

)
, (36)

where Qλ(ξ, η) =< (λI − A)−1ξ, η >. By Eq. (35), F(λ) = detL(λ) is indepen-
dent of the argument x . Three sets of integrals are derived from the expansions

F(λ) = −1

4
+

N∑
k=1

Ek

λ − αk
= −1

4
+

∞∑
j=0

Fjλ
− j−1, (37a)

H(λ) = √−F(λ) = 1

2
− 2

∞∑
k=0

Hkλ
−k−1, (37b)

with F0 = − < p, q >, H0 = − < p, q > /2, H1 exactly the same as in Eq. (33b),
and

Ek = −pkqk +
∑

1≤ j≤N ; j �=k

(p jqk − pkq j )
2

αk − α j
, (38a)

Fk = − < Ak p, q > +
∑

i + j = k − 1;
i, j ≥ 0

(< Ai p, p >< A jq, q > − < Ai p, q >< A j p, q >),

(38b)

Hk = 1

2
Fk + 2

∑
i + j = k − 1;

i, j ≥ 0

Hi Hj . (38c)

The functions {Ek} are called confocal polynomials, satisfying
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N∑
k=1

α
j
k Ek = Fj ,

N∑
k=1

Ek = F0 = − < p, q > . (39)

Further, we have the Lax equation along the F(λ)-flow,

d

dtλ
L(μ) = {L(μ), F(λ)} = 2

λ − μ
[L(λ), L(μ)], (40)

which can be verified directly. It implies {F(μ), F(λ)} = ∂tλdetL(μ) = 0. Here
{A, B} is the usual Poisson bracket defined as

{A, B} =
N∑

k=1

(
∂A

∂qk

∂B

∂ pk
− ∂A

∂ pk

∂B

∂qk

)
.

As a corollary we have

Lemma 2 The members in the set {E j , Fk, Hl} are involutive in pairs.
ByCao et al. (1999), there is an inner relation between the integral Hk and (Xk), the

AKNS equation (8). The involutivity {H1, Hk} = 0 implies the commutativity of the
Hamiltonian phase flows gxH1

, gτk
Hk
. This yields a compatible solution for (H1), (Hk),

and hence a solution to equation (Xk), respectively, as

(p(x, τk), q(x, τk)) = gxH1
gτk
Hk

(p0, q0), (41a)

(u(x, τk), v(x, τk)) = fU1(p, q) = (− < p, p >,< q, q >). (41b)

Let α(λ) = �N
k=1(λ − αk). By Cao et al. (1999), Cao and Zhang (2012), a

curve R : ξ2 = R(λ), with genus g = N − 1, is constructed by the factorization of
F(λ) = −�(λ)/[4α(λ)], with R(λ) = �(λ)α(λ). For non-branching λ, there are
two points p(λ), τp(λ) onR, with τ : R → R the map of changing sheets. Consider
two objects on the curve, the canonical basis a1, . . . , ag, b1, . . . , bg of homology
group of contours, and the basis of holomorphic differentials, written in the vec-
tor form as �ω′ = (ω′

1, . . . ,ω
′
g)

T , ω′
j = λg− jdλ/(2ξ). It is normalized into �ω = C �ω′,

where C = (a jk)
−1
g×g , with a jk the integral of ω′

j along ak . Near the infinities, the
local expansions have simple relation as

�ω =
{+( ��1 + ��2z + ��3z2 + · · · )dz, near ∞+,

−( ��1 + ��2z + ��3z2 + · · · )dz, near ∞−.
(42)

Periodic vectors �δk and �Bk are defined as integrals of �ω along ak and bk , respectively.
They span a latticeT , which defines the Jacobian variety J (R) = C

g/T . The Abel
map A (p) is given as the integral of �ω from the fixed point p0 to p. The matrix B,
with �Bk as columns, is used to construct the theta function θ(�z, B).
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The elliptic variables μ j , ν j are given by the roots of the off-diagonal entries of
the Lax matrix,

L12(λ) = − < p, p >
m(λ)

α(λ)
, m(λ) = �

g
j=1(λ − μ j ), (43a)

L21(λ) =< q, q >
n(λ)

α(λ)
, n(λ) = �

g
j=1(λ − ν j ). (43b)

They define the quasi-Abel-Jacobi and Abel-Jacobi variables, respectively, as

�ψ′ =
g∑

k=1

∫ p(μk )

p0

�ω′, �ψ = C �ψ′ = A

(
g∑

k=1

p(μk)

)
, (44a)

�φ′ =
g∑

k=1

∫ p(νk )

p0

�ω′, �φ = C �φ′ = A

(
g∑

k=1

p(νk)

)
. (44b)

The evolution of these two variables along the F(λ)-flow is obtained by Eq. (40).
Actually, in the component equation for L21(μ), by letting μ → νk , we calculate

1

2
√
R(νk)

dνk
dtλ

= −n(λ)

α(λ)(λ − νk)n′(νk)
, (45a)

{φ′
s, F(λ)} = dφ′

s

dtλ
=

g∑
k=1

ν
g−s
k

2
√
R(νk)

dνk
dtλ

= −λg−s

α(λ)
, (45b)

where �φ′ = (φ′
1, . . . ,φ

′
g). By the partial fraction expansion (37a), we get

{φ′
s, Ek} = −α

g−s
k /α′(αk), (k = 1, . . . , N ), (46a)

{φ′
s, E1 + · · · + EN } = {φ′

s, F0} = 0. (46b)

Proposition 5 Each Hamiltonian system (Hk), k = 1, 2, . . ., is integrable in Liou-
ville sense, sharing the same integrals E1, . . . , EN , which are involutive in pairs and
functionally independent in R2N − {0}.
Proof According to Lemma 2, it only needs to prove the functional independence
of the confocal polynomials. Suppose

∑N
k=1 ckdEk = 0. Then

∑N
k=1 ck{φ′

s, Ek} = 0.
By Eq. (46b), we have

g∑
k=1

(ck − cN ){φ′
s, Ek} = 0, (1 ≤ s ≤ g).

The coefficient matrix is non-degenerate since by Eq. (46a) it is of Vandermonde
type. Hence we have ck − cN = 0 and cN

∑N
k=1 dEk = 0. This implies cN = 0 since
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N∑
k=1

dEk = −d < p, q >= −
N∑
j=1

(q jdp j + p jdq j ) �= 0.

Lemma 3 The Abel-Jacobi variables straighten out the H(λ)-flow as

{ �φ, H(λ)dλ} = 2�ω. (47)

Proof Since F(λ) = −H 2(λ), Eq. (45b) is transformed into the following formula,
which, by multiplied the matrix C , leads to Eq. (47),

{φ′
s, H(λ)dλ} = λg−sdλ

2H(λ)α(λ)
= λg−sdλ√

R(λ)
= 2ω′

s .

Proposition 6 The Abel-Jacobi variables straighten out the Hk-flow, as { �φ, H0} = 0
and

d �φ
dτk

= { �φ, Hk} = ��k, (k = 1, 2, . . .), (48a)

�φ(τk) ≡ �φ(0) + τk ��k, (modT ). (48b)

Proof By the Eqs. (37b) and (42), we have an expansion of Eq. (47) near ∞+. Equa-
tion (48a) is then obtained as its coefficient.

For another Abel-Jacobi variable, by the Eq. (3.25) in Cao and Zhang (2012), we
have

�ψ + �η+ ≡ �φ + �η−, (modT ), (49a)

�η± =
∫ p0

∞±
�ω, ��D = �η+ − �η− =

∫ ∞−

∞+
�ω, (49b)

�ψ(τk) ≡ �φ(τk) − ��D ≡ �ψ(0) + τk ��k, (modT ). (49c)

4 The Integrable Map Sγ

In Cao and Zhang (2012), an integrable symplectic map Sγ : R2N → R
2N , (p, q) �→

( p̃, q̃), is constructedwith the help of N replicas of discrete ZS-AKNS equation (12),

(
p̃ j

q̃ j

)
= (α j − γ)−1/2D(γ)(α j ; a, b)

(
p j

q j

)
, (1 ≤ j ≤ N ), (50)

under the discrete constraint (a, b) = fγ(p, q),
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a = − < p, p >, b = 1

Qγ(p, p)

(
− 1

2
− Qγ(p, q) ±

√
R(γ)

2α(γ)

)
. (51)

It can be derived from the continuous constraint (34) through the relation a = u, b =
ṽ in (13). In fact,

ṽ − b =< q̃, q̃ > −b =< (A − γ I )−1(bp + q), bp + q > −b

= b2L12(γ) − 2bL11(γ) − L21(γ) ≡ P (γ)(b).

Thus P (γ)(b) = 0, whose roots lead to Eq. (51). The factor (α j − γ)− 1
2 in Eq. (50)

is introduced so that the coefficient determinant equals to unity, which is necessary
for making the resulting map Sγ symplectic.

As in the continuous case, theLiouville integrability of themap Sγ requires enough
number of involutive integrals. Similarly, the discrete Lax equation, given as follows,
plays a central role,

L(λ; p̃, q̃)D(γ)(λ; a, b) = D(γ)(λ; a, b)L(λ; p, q). (52)

By Cao and Zhang (2012), under the constraint (51), it has the same Lax matrix,
given by Eq. (36), as its solution. Immediately we have F(λ; p̃, q̃) = F(λ; p, q) by
taking the determinant of (52). Thus F(λ), together with H(λ), E j , Fk, Hl , are all
invariant under the action of the map Sγ .

Proposition 7 Cao and Zhang (2012) The map Sγ is symplectic and integrable, pos-
sessing F(λ), {Fj }, {Hl} and the confocal polynomials E1, . . . , EN , as its integrals.

Construct a discrete flow

(p(m), q(m)) = Smγ (p0, q0) (53)

by iteration. It generates the finite genus potential functions for Eq. (12),

(am, bm) = (um, vm+1) = (− < p, p >,< q̃, q̃ >). (54)

Define Lm(λ) = L(λ; p(m), q(m)), D(γ)
m (λ) = D(γ)(λ; um, vm+1). Rewrite Eq. (52)

as
Lm+1(λ)D(γ)

m (λ) = D(γ)
m (λ)Lm(λ). (55)

Consider the discrete ZS-AKNS problem (12) with finite genus potential functions
as

h(m + 1,λ) = D(γ)
m (λ)h(m,λ). (56)

The solution space Eλ is invariant under the action of Lm(λ) due to the commutativity
relation (55). The linear operator Lm(λ) has eigenvalues ±H(λ), with associated
eigenvectors h± in Eλ, satisfying
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Lm(λ)h±(m,λ) = ±H(λ)h±(m,λ), (57a)

h±(m + 1,λ) = D(γ)
m (λ)h±(m,λ). (57b)

Roughly speaking, the situation can be regarded as an algebro-difference analogue
of the Burchnall-Chaundy’s theory on commuting differential operators (Burch-
nall and Chaundy 1923, 1928). Actually, let L(λ) = 2α(λ)L(λ). Then detL(λ) =
−R(λ) is a polynomial rather than a rational function. The commutativity relation
(55) is rewritten as Lm+1D

(γ)
m = D(γ)

m Lm . The algebraic spectral problem (57a) is
revised as Lmh± = ξh±, with ξ = ±√

R(λ). The algebraic problem and the differ-
ence problem share common eigenvectors h±, with eigenvalues satisfying the alge-
braic relation, ξ2 = R(λ), exactly the same as the affine equation of the algebraic
curve R.

Let M(m,λ) be fundamental solution matrix of Eq. (56). Under the normalization
condition h(2)

± (0,λ) = 1, the eigenvectors are determined uniquely as

h±(m,λ) =
(
h(1)

± (m,λ)

h(2)
± (m,λ)

)
= M(m,λ)

(
c±
λ

1

)
, (58a)

c±
λ = L11

0 (λ) ± H(λ)

L21
0 (λ)

= −L12
0 (λ)

L11
0 (λ) ∓ H(λ)

. (58b)

Two meromorphic functions, the Baker functions, h(κ)(m, p), p ∈ R, κ = 1, 2, are
defined as

h(κ)(m, p(λ)) = h(κ)
+ (m,λ), h(κ)(m, τp(λ)) = h(κ)

− (m,λ). (59)

The commutativity relation (55) implies formulas of Dubrovin-Novikov’s type (Cao
and Zhang 2012). They are applied to calculate the divisors of the Baker functions.
This leads to the straightening out of the flow Smγ on the Jacobian variety as Cao et al.
(1999)

�ψ(m) ≡ �φ(0) + m ��γ − ��D, (modT ), (60a)

�φ(m) ≡ �φ(0) + m ��γ, (modT ), (60b)

��γ =
∫ ∞+

p(γ)

�ω, ��D =
∫ ∞−

∞+
�ω, (60c)

where the Abel-Jacobi variables are given by (44) as

�ψ(m) = A
( g∑

j=1

p(μ j (m))
)
, �φ(m) = A

( g∑
j=1

p(ν j (m))
)
.

For any two distinct points q, r ∈ R, there exists a dipole ω[q, r], an Abel differential
of the third kind, with residues 1 and −1 at the poles q, r, respectively, satisfying
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(Toda 1981)

∫
a j

ω[q, r] = 0,
∫
b j

ω[q, r] =
∫ q

r

ω j , ( j = 1, . . . , g). (61)

With the help of these dipoles, the Baker functions can be reconstructed as Cao and
Zhang (2012)

h(1)(m, p) = d(1)
m

θ[−A (p) + �ψ(m) + �K ]
θ[−A (p) + �φ(0) + �K ] e

∫ p
p0

mω[p(γ),∞+]+ω[∞−,∞+]
, (62a)

h(2)(m, p) = d(2)
m

θ[−A (p) + �φ(m) + �K ]
θ[−A (p) + �φ(0) + �K ] e

∫ p
p0

mω[p(γ),∞+]
, (62b)

where d(1)
m , d(2)

m and �K are constants, independent of p ∈ R.
With these results in hand, we start to derive an explicit formula for the function

uṽ. To this end we consider the local expression of the dipole near ∞+, ( z = λ−1 ),

ω[p(γ),∞+] = [−z−1 + ϕ(z)]dz, (63)

with ϕ(z) holomorphic near z ∼ 0. A simple calculation yields

∂zlog(z exp
∫ p

p0

ω[p(γ),∞+]) = ϕ(z). (64)

Recalling Eq. (42), we have

− A (p) = �η+ − ��1z + O(z2), �η+ =
∫ p0

∞+
�ω. (65)

Then, from (62a) we get

zh̃(1)
+

h(1)
+

= dm+1

dm

θ[− ��1z + O(z2) + �η+ + �ψ(m + 1) + �K ]
θ[− ��1z + O(z2) + �η+ + �ψ(m) + �K ] · ze

∫ p
p0

ω[p(γ),∞+]
, (66a)

∂z log
zh̃(1)

+
h(1)

+
= ∂zlog

θ[− ��1z + O(z2) + �η+ + �ψ(m + 1) + �K ]
θ[− ��1z + O(z2) + �η+ + �ψ(m) + �K ] + ϕ(z). (66b)

On the other hand, since h± = (h(1)
± , h(2)

± )T satisfies Eq. (57b), we have

zh̃(1)
+

h(1)
+

= 1 + (uṽ − γ)z + uh(2)
+

h(1)
+

z = 1 + (uṽ − γ)z + O(z2), (67)

where the following estimation is used,
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uh(2)
+

h(1)
+

= L11(λ) − H(λ)

−L12(λ)
=< q, q > λ−1[1 + O(λ−1)] = O(z).

Now, taking derivative of the Eq. (67) with respect to z and comparing it with (66b)
at z = 0, with the help of the relation �ψ + �η+ ≡ �φ + �η− in Eq. (49a), we obtain the
following.

Proposition 8 Let (a, b) = (u, ṽ) be finite genus potential functions of Eq. (12),
defined by Eq. (54). Then we have

uṽ = −∂z|z=0log
θ[ ��1z + �φ(m + 1) + �η− + �K ]

θ[ ��1z + �φ(m) + �η− + �K ] + [γ + ϕ(0)]. (68)

5 Finite Genus Solutions to the lpKP

Let γ = γ1, γ2, γ3 be distinct and non-zero. We can apply the same theory we
developed in Sect. 4 to the three corresponding cases, respectively. The resulting
integrable maps Sγ1 , Sγ2 , Sγ3 commute in pairs since they share the same integrals
E1, . . . , EN (see Appendix in Cao and Zhang (2012)). By iteration we have discrete
flows Sm1

γ1
, Sm2

γ2
, Sm3

γ3
, and hence well-defined functions from any starting point

(p(m1,m2,m3), q(m1,m2,m3)) = Sm1
γ1

Sm2
γ2

Sm3
γ3

(p0, q0), (69a)

(u(m1,m2,m3), v(m1,m2,m3)) = (− < p, p >,< q, q >)|(m1,m2,m3). (69b)

Define a = u, and let b take ṽ = T1v, v̄ = T2v, v̂ = T3v, respectively. By the com-
mutativity of the flows, one can present the functions given by Eq. (69a) in three
ways, respectively as

(p(mk), q(mk)) = Smk
γk

(p(k)
0 , q(k)

0 ), (k = 1, 2, 3). (70)

Thus, from Eq. (50) in the three special cases, the j-th component satisfies three
equations simultaneously with λ = α j ,

Tk

(
p j

q j

)
= (α j − γk)

−1/2D(γk )(α j ; u, Tkv)

(
p j

q j

)
, (k = 1, 2, 3). (71)

Introducing

χ = (α j − γ1)
m1/2(α j − γ2)

m2/2(α j − γ3)
m3/2

(
p j

q j

)
, (72)

we then have
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Tkχ = D(γk )(α j ; u, Tkv)χ, (k = 1, 2, 3). (73)

In other words, the overdetermined system of equations (14a–14c) has a compatible
solution χ for the parameter λ = α j . Now, for the lpKP equation (2), recalling
Proposition 1, we arrive at the following.

Proposition 9 The lpKP equation (2), Ξ(0,3) = 0, has a special solution

W (m1,m2,m3) =2∂z|z=0log
θ[z ��1 + �φ(m1,m2,m3) + �η− + �K ]

θ[z ��1 + �φ(0, 0, 0) + �η− + �K ]

− 2
3∑

s=1

ms[γs + ϕs(0)] + W (0, 0, 0), (74)

where

�φ(m1,m2,m3) =
3∑

s=1

ms ��γs + �φ(0, 0, 0), (75)

and ϕs(z) is defined by Eq. (63) in the case of γ = γs .

Proof We have (k = 1, 2, 3)

TkW − W = 2∂z|z=0log
θ[z ��1 + Tk �φ(m1,m2,m3) + �η− + �K ]
θ[z ��1 + �φ(m1,m2,m3) + �η− + �K ] − 2[γk + ϕk(0)].

It is equal to −2u(Tkv) by Eq. (68). Thus W solves (15a–15c) simultaneously.
According to Proposition 1, W solves Eq. (2).

6 Solutions of Other Equations

In solving pKP equationΞ( j,k) = 0 that contains at least one continuous argument x ,
we will derive an explicit analytic expression for uv, which is similar to (68) and also
meets the auxiliary Eq. (15d). This can be done on the Liouville integrable platform
as well, like in the discrete case. We list the main steps as follows.

Consider (p(x), q(x)) = gxH1
(p0, q0). Hence (u(x), v(x)) = (− < p, p >,

< q, q >) provide the finite genus potential functions. For the ZS-AKNS equa-
tion (7) with these potential functions, the solution space Eλ is invariant under the
action of L(λ) due to the commutativity relation (35). The linear operator L(λ) has
eigenvalues ±H(λ), with associated eigenvectors h± in Eλ, satisfying

L(λ)h±(x,λ) = ±H(λ)h±(x,λ), (76a)

∂xh±(x,λ) = U1(λ; u(x), v(x))h±(x,λ). (76b)
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Let M(x,λ) be basic solution matrix of Eq. (76b). The eigenvectors are uniquely
determined under the normalized condition h(2)

± (0,λ) = 1 and can be expressed as

h±(x,λ) =
(
h(1)

± (x,λ)

h(2)
± (x,λ)

)
= M(x,λ)

(
c±
λ

1

)
, (77a)

c±
λ = L11(0,λ) ± H(λ)

L21(0,λ)
. (77b)

Two meromorphic functions h(κ)(x, p), κ = 1, 2, are defined inR − {∞+, ∞−} by

h(κ)(x, p(λ)) = h(κ)
+ (x,λ), h(κ)(x, τp(λ)) = h(κ)

− (x,λ).

A formula of Dubrovin-Novikov’s type is derived from the commutativity relation
(35). It is used to calculate thedivisor ofh(2)(x, p),which is equal to

∑g
j=1[p(ν j (x)) −

p(ν j (0))]. By Eqs. (44b) and (48b), we have

�φ(x) = A
( g∑

j=1

p(ν j (x))
)

≡ x ��1 + �φ(0), (modT ). (78)

On the two-sheeted Riemann surfaceR, an Abel differential, ω(1)[∞−,∞+], of the
third kind is constructed, having only poles at ∞−, ∞+ with

ω(1)[∞−,∞+] =
{ [ − z−2 − a(1)(z)]dz, near ∞+,

[ + z−2 + a(1)(z)]dz, near ∞−,
(79)

wherea(1)(z) is holomorphic near z ∼ 0.Without loss of generality, it can be arranged
to satisfy the condition

∫
a j

ω(1) = 0,
∫
b j

ω(1) = −4πi� j
1, (1 ≤ j ≤ g), (80)

where ��1 = (�1
1, . . . , �

g
1)

T . Actually, by adding a linear combination of holomor-
phic differentials ω1, . . . ,ωg to ω(1), we can make the former formula in Eq. (80)
valid. The latter is a corollary of the former, which can be verified by using the
canonical representation of the Riemann surface R (Farkas and Kra 1992; Toda
1981). The form of local expressions (79) is invariant with adjusted a(1)(z). We
adopt the same symbol, for short. Through a usual analysis we reconstruct (Arnold
and Novikov 1990; Toda 1981)

h(2)(x, p) = c(2)(x)
θ[−A (p) + �φ(x) + �K ]
θ[−A (p) + �φ(0) + �K ] · exp

( x
2

∫ p

p0

ω(1)[∞−,∞+]
)
, (81)
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where c(2) is independent of p ∈ R. Equations (80) are used to cancel the extra factors
caused by the uncertain linear combination of the contours a1, . . . , ag, b1, . . . , bg in
the integration route from the point p0 to p, both inA (p) and in the integral of ω(1).

By Eq. (42), near ∞− we have (z = λ−1 ∼ 0)

−A (p) = �η− + ��1z + O(z2), �η− =
∫ p0

∞−
�ω.

Exerting action ∂z∂x log on Eq. (81), we obtain ∂z∂x logh
(2)
− , which is equal to

∂z∂x logθ[ ��1z + O(z2) + �φ(x) + �η− + �K ] + 1

2
[z−2 + a(1)(z)]. (82)

On the other hand, by Eq. (76a) we estimate

v
h(1)

−
h(2)

−
= v

L11(λ) − H(λ)

L21(λ)
= −uvλ−1 + O(λ−2), (83)

where the following estimations are employed,

L11(λ) = 1

2
+ < p, q > z+ < Ap, q > z2 + O(z3),

L21(λ) =< q, q > z + O(z2),

H(λ) = 1

2
− 2H0z − 2H1z

2 + O(z3).

From Eq. (76b) and the estimation (83), we have

∂x logh
(2)
− = −λ

2
+ v

h(1)
−

h(2)
−

= −1

2
z−1 − uvz + O(z2), (84a)

∂z∂x logh
(2)
− = z−2/2 − uv + O(z). (84b)

Then, equating Eq. (82) with (84b) to cancel the singular term z−2/2, we obtain the
following.

Proposition 10 Let (u, v) be finite genus potential functions for Eq. (7). Then

− 2uv = 2∂z|z=0∂x log θ[ ��1z + �φ(x) + �η− + �K ] + a(1)(0). (85)

Next, we can recover W for the pKP equations with continuous arguments. In
order to solve Ξ(1,2) = 0, we consider the integrable maps Sγ1, Sγ2 and gxH1

, which
commute in pairs since they share the same integrals {E j } (cf. Cao andZhang (2012)).
Well-defined functions are constructed as
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(p(x,m1,m2), q(x,m1,m2)) = gxH1
Sm1

γ1
Sm2

γ2
(p0, q0), (86a)

(u(x,m1,m2), v(x,m1,m2)) = (− < p, p >,< q, q >)|(x,m1,m2). (86b)

By the commutativity of the flows, the functions in Eq. (86a) can be presented in
three ways, respectively, as

(p(x), q(x)) = gxH1
(p′

0, q
′
0), (87a)

(p(mk), q(mk)) = Smk
γk

(p(k)
0 , q(k)

0 ), (k = 1, 2). (87b)

Thus the j-th component satisfies three equations simultaneously with λ = α j ,

∂x

(
p j

q j

)
= U1(α j ; u, v)

(
p j

q j ,

)
, (88a)

Tk

(
p j

q j

)
= (α j − γk)

−1/2D(γk )(α j ; u, Tkv)

(
p j

q j

)
, (k = 1, 2). (88b)

Introducing χ = (α j − γ1)
m1/2(α j − γ2)

m2/2(p j q j )
T , we have

∂xχ = U1(α j ; u, v)χ, (89a)

Tkχ = D(γk )(α j ; u, Tkv)χ, (k = 1, 2). (89b)

Thus Eqs. (7) and (14a, 14b) have a compatible solution χ for the parameter λ = α j .

Proposition 11 The semi-discrete pKP equation (3), i.e. Ξ(1,2) = 0, has a solution

W (x,m1,m2) =2∂z|z=0log
θ[z ��1 + �φ(x,m1,m2) + �η− + �K ]

θ[z ��1 + �φ(0, 0, 0) + �η− + �K ]

− 2
2∑

s=1

ms[γs + ϕs(0)] + a(1)(0)x + W (0, 0, 0), (90)

where �φ(x,m1,m2) = x ��1 + ∑2
s=1 ms ��γs + �φ(0, 0, 0), ϕs(z) defined by Eq. (63)

with γ = γs , and a(1)(z) given by Eq. (79).

Proof From (90) we have (k = 1, 2)

∂xW = 2∂z|z=0∂x logθ[z ��1 + �φ(x,m1,m2) + �η− + �K ] + a(1)(0),

TkW − W = 2∂z|z=0log
θ[z ��1 + Tk �φ(x,m1,m2) + �η− + �K ]
θ[z ��1 + �φ(x,m1,m2) + �η− + �K ] − 2[γk + ϕk(0)],

which are equal to−2uv and−2u(Tkv) according to Eqs. (85) and (68), respectively.
Recalling Proposition 2, W solves Eq. (3).

By similar analysis we have the following.
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Proposition 12 The semi-discrete pKP equation (4), i.e. Ξ(2,1) = 0, has a solution

W (x, y,m1) =2∂z|z=0log
θ[z ��1 + �φ(x, y,m1) + �η− + �K ]
θ[z ��1 + �φ(0, 0, 0) + �η− + �K ]

− 2m1[γ1 + ϕ1(0)] + a(1)(0)x + W (0, 0, 0), (91)

where �φ(x, y,m1) = x ��1 + y ��2 + m1 ��γ1 + �φ(0, 0, 0).

Proposition 13 The pKP equation (5), i.e. Ξ(3,0) = 0, is solved by

W (x, y, t) =2∂z|z=0log
θ[z ��1 + �φ(x, y, t) + �η− + �K ]
θ[z ��1 + �φ(0, 0, 0) + �η− + �K ]

+ a(1)(0)x + W (0, 0, 0), (92)

where �φ(x, y, t) = x ��1 + y ��2 + t ��3 + �φ(0, 0, 0).

7 Concluding Remarks

In this paper we have shown that the lpKP equation, semi-discrete pKP equations
and continuous pKP equation can be derived as compatibilities of Lax triads that
originate from the ZS-AKNS spectral problems. The approach to constructing finite
genus solutions for 2D lattice equations (Cao and Xu 2012; Cao and Zhang 2012)
was extended to 3D cases. As a result, we obtained finite genus solutions for the
discrete, semi-discrete and continuous pKP equations. Note that these solutions are
different from the elliptic solitons that are genus-one solutions obtained by Nijhoff,
et al. in Nijhoff and Atkinson (2010), Yoo-Kong and Nijhoff (2013).

In deriving those pKP equations, we employed the auxiliary relations (15). We
note that usually W in (15) can not be exactly solved out for all arbitrarily given
(u, v); therefore it is hard to say when Lax triads provide strict integrability for 3D
equations in some cases (cf. Levi et al. (1994)). However, as for the case of finite
genus solutions, since the finite-dimensional integrable flows g

τ j

Hj
and Smk

γk
share same

Liouville integrals, same Lax matrix and same algebraic curve, it enables us to treat
(15) on the same Liouville platform and obtain explicit expressions forW from (15)
by algebro-geometric integration.

The lpKP equation is one of the five octahedron-type equations with 4D con-
sistency (Adler et al. 2012). We believe our approach can be extended to other
octahedron-type integrable equations. This will be a part of our future work.
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Appendices

A An Heuristic Deduction of Ansatz (31)

TheAbel-Jacobi variable �φ in the Jacobian variety J (R) provides a favorablewindow
to observe the evolution of the discrete symplectic flow Smk

γk
aswell as theHamiltonian

flow g
τ j

Hj
. The discrete velocity ��γk of �φ is given by Eq. (60c), while the continuous

velocity �� j is calculated by Eq. (42) and (48a). They are bridged by the normalized
basis �ω of holomorphic differentials. Let the parameter γ = γk tend to be infinity in
the way as γk = −1/εk , with εk = ckε, ε → 0. By the local expression of �ω near
∞+ given by Eq. (42), we have

��γk =
∫ ∞+

p(γk )

�ω = εk ��1 − ε2k
2

��2 + ε3k
3

��3 + O(ε4).

Substituting this into Eq. (75), we obtain

�φ − �φ0 =
3∑

k=1

mk
(
εk ��1 − ε2k

2
��2 + ε3k

3
��3

) + O(ε4).

On the other hand, by Eq. (92), the 3D continuous evolution of �φ reads

�φ − �φ0 = (x − x0) ��1 + (y − y0) ��2 + (t − t0) ��3.

Thus, up to O(ε4), we have

x − x0 =
3∑

s=1

mkεk, y − y0 = −
3∑

s=1

mk
ε2k
2

, t − t0 =
3∑

s=1

mk
ε3k
3

,

Tkx = x + εk, Tk y = y − ε2k
2

, Tkt = t + ε3k
3

.

By substituting them into TkW = W (Tkx, Tk y, Tkt), we obtain Ansatz (31).

B Continuum Limit of the lNLS

The lNLS equation (17), i.e.Ξ(0,2) = 0, is first obtained byKonopelchenko (1982). It
is solved in Cao and Zhang (2012). At first glance, its relation with the NLS equation
(22), Ξ(2,0) = 0, is not clear. It turns out that there is a transformation of Nijhoff’s
type,

u = (−γ1)
m1(−γ2)

m2u′, v = (−γ1)
−m1(−γ2)

−m2v′,
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which reduces the lNLS equation into an equation of (u′, v′),

(Ξ ′)(0,2)1 ≡ (γ1γ2)
−1(γ1ũ

′ − γ2ū
′)u′ ¯̃v′ + γ1(ũ

′ − u′) − γ2(ū
′ − u′) = 0,

(Ξ ′)(0,2)2 ≡ (γ1γ2)
−1(γ2ṽ

′ − γ1v̄
′)u′ ¯̃v′ + γ1( ˜̄v′ − v̄′) − γ2( ¯̃v′ − ṽ′) = 0.

Let −γ−1
k = εk = ckε, ( k = 1, 2 ), where c1, c2 are distinct non-zero constants. For

any smooth functions u′(x, y), v′(x, y), define

ũ′ = u′(x + ε1, y − ε21/2), ū′ = u′(x + ε2, y − ε22/2),

¯̃u′ = u′(x + ε1 + ε2, y − ε21/2 − ε22/2),

and similar expressions for ṽ′, v̄′, ¯̃v′. Then, as ε ∼ 0, we have the following Taylor
expansion which confirms that the continuum limit of the lNLS is NLS up to a
Nijhoff’s type transformation,

(Ξ ′)(0,2) =
(
u′
y − u′

xx + 2(u′)2v′

v′
y + v′

xx − 2u′(v′)2

)
c1 − c2

2
ε + O(ε2).

Similarly, the semi-discrete NLS equation (24), Ξ(1,1) = 0, is transformed as

(Ξ ′)(1,1) ≡
(
u′
x + γ1(ũ′ − u′) − γ−1

1 (u′)2ṽ′

ṽ′
x + γ1(ṽ′ − v′) + γ−1

1 u′(ṽ′)2

)
= 0,

by the transformation of Nijhoff’s type, u = (−γ1)
m1u′, v = (−γ1)

−m1v′ . Let

ũ′ = u′(x + ε1, y − ε21/2), ṽ′ = v′(x + ε1, y − ε21/2).

Then, as ε ∼ 0, we have the following Taylor expansion, which confirms that the
continuum limit of the time-discrete NLS equation (24) is the NLS equation up to a
Nijhoff’s type transformation,

(Ξ ′)(1,1) =
(
u′
y − u′

xx + 2(u′)2v′

v′
y + v′

xx − 2u′(v′)2

)
c1
2

ε + O(ε2).
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