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Abbreviations

3D  Three dimensional
ADSC Adipose-derived stem cell
AMI  Acute myocardial infarction
Ang-1α Angiopoietin-1α
BM  Bone marrow
BM-MNC Bone marrow-derived mononuclear cell
BM-SC Bone marrow stem cells
CABG Coronary artery bypass grafting
CDC  Cardiosphere-derived cells
CSC  Cardiac stem cell
CVD  Cardiovascular disease
ECM  Extracellular matrix
EDV  End-diastolic volume
EF  Ejection fraction
EHT  Engineered heart tissue
EPC  Endothelial progenitor cell
ESC  Embryonic stem cell
ESV  End-systolic volume
FGF  Fibroblast growth factor
Flk1  Fetal liver kinase 1
GCP  Glycolytic cardiac progenitor
GCSF Granulocyte colony-stimulating factor
HF  Heart failure
HGF  Hepatocyte growth factor
IC  Intracoronary
IGF  Insulin-like growth factor
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ILK  Integrin-linked kinase
IM  Intramyocardial
iPSC  Induced pluripotent stem cell
Isl1  Insulin gene enhancer protein-1
IV  Intravenous injection
LV  Left ventricular
LVEDV Left ventricular end-diastolic volume
LVEF Left ventricular ejection fraction
LVESV Left ventricular end-systolic volume
MI  Myocardial infarction
MMP Matrix metalloproteinase
MSC  Mesenchymal stem cell
NSTEMI Non-ST segment elevation myocardial infarction
PCI  Percutaneous coronary intervention
PEU  Polyester urethane
PEUU Polyester urethane urea
PGS  Polyglycerol sebacate
PU  Polyurethane
SC  Stem cell
Sca1  Stem cell antigen-1
SDF1 Stromal cell-derived factor 1
SMC  Skeletal myoblast cell
SP  Side population
SSEA Stage-specific embryonic antigen 1
STEMI ST-segment elevation myocardial infarction
VEGF Vascular endothelial growth factor

14.1  Introduction

14.1.1  General Considerations for Myocardial Infarction

Ischemic heart disease remains the leading cause of death worldwide [1]. According 
to the American Heart Association, 720,000 Americans experienced a new coro-
nary artery event in 2018, with the median survival after a first myocardial infarc-
tion (MI) being 8.4, 5.6, 7, and 5.5  years, respectively, for white males, white 
females, Black males, and Black females [2]. The burden of cardiovascular disease 
(CVD) and MI affects low- and middle-income countries disproportionately, 
where 80% of CVD-related deaths occur [3]. While a large majority of the risk 
factors associated with ischemic heart disease such as high serum cholesterol, 
hypertension, diabetes, obesity, and smoking are modifiable, family history, age, 
male sex, and female sex associated with postmenopausal status cannot be 
altered [4].
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Myocardial infarction is broadly defined as myocardial death secondary to pro-
longed ischemia and can result from multiple etiologies including coronary artery 
occlusion, supply/demand imbalance, MI related to percutaneous coronary inter-
vention (PCI), stent thrombosis, MI associated with coronary artery bypass grafting 
(CABG), and others [5]. Rupture or erosion of an atherosclerotic coronary plaque, 
with resultant exposure of highly thrombogenic material, is the most common incit-
ing factor for coronary occlusion [6]. While a completely occlusive thrombus in the 
coronary circulation results in an ST-segment elevation MI (STEMI), incomplete 
thrombosis, or occlusion in the presence of well-established collaterals, results in a 
non-ST elevation MI (NSTEMI) or unstable angina [7, 8].

14.1.2  Current Myocardial Infarction Standard of Care

Patients with a suspected acute coronary syndrome should be immediately evalu-
ated with an electrocardiogram and cardiac troponin testing. These diagnostic tests, 
along with history of symptoms, group patients into those suffering from STEMI, 
NSTEMI, or nonischemic chest pain, distinctions that dictate further care [7, 8]. 
Initial medical care of patients with STEMI and NSTEMI includes oxygen, analge-
sics, nitrates, beta-blockers, antiplatelet, and anticoagulation therapy [7, 8]. Urgent 
reperfusion of ischemic myocardium is the primary therapeutic goal in both groups. 
All patients with a STEMI should undergo percutaneous coronary intervention 
within 90 minutes of presentation, while those suffering from NSTEMI undergo 
immediate, early, and elective PCI depending on time of symptom onset [7, 8]. 
Diagnostic angiography delineates the extent of disease and dictates reperfusion 
strategies including stenting, fibrinolysis, or CABG.

Despite urgent reperfusion, life-threatening post-MI complications arise depend-
ing on the amount and location of lost myocardium. These complications can be 
grouped into five subtypes including ischemic, mechanical, arrhythmic, embolic, 
and inflammatory [9]. Coronary artery disease, including MI, is the number one 
cause for development of heart failure (HF) in the United States [10]. With improved 
medical and interventional care, patients are living longer post MI, resulting in a 
projected increase of HF from six to over eight million by 2030 [11].

14.1.3  Post-Myocardial Infarction Cardiac Remodeling

Following an MI, the injured myocardium and surrounding tissue undergo a 
series of early and late remodeling changes in an attempt to compensate for the 
ischemia- induced damage [12]. The early remodeling phase occurs hours to days 
post MI and includes myonecrosis-induced inflammation, matrix metalloprotein-
ase (MMP)-driven collagen matrix breakdown, thinning and dilation of ventricu-
lar walls, as well as fibroblast-induced scar formation [13, 14]. Over the 
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subsequent weeks to months, uninjured myocardium hypertrophies eccentrically 
overcompensate for increased stress, further contributing to ventricular dilation. 
As preload increases without resultant change in ventricular contractility, the 
ejection fraction (EF) decreases, and dilated cardiomyopathy and resultant HF 
ensue, worsened by the adult myocardium’s limited ability to recover after isch-
emia [15].

Unfortunately, current therapies aimed at decreasing pathologic post-MI remod-
eling and HF are limited and include pharmacological treatments to decrease scar-
ring and tissue ischemia, devices and implants aimed at restoring heart function, as 
well as transplantation [16]. Mammalian myocardium has traditionally been viewed 
as a non-regenerative organ, and although resident cardiac stem cells (CSC) contrib-
ute to cardiac regeneration and some evidence of mammalian heart regeneration 
exists in animal models, resident stem cells lack the capacity to regenerate all of the 
myocardium lost after an MI [17, 18]. Furthermore, the contribution of CSC to car-
diac regeneration remains highly controversial. Reports of cardiomyocyte exchange 
in humans range from 50 to 100% during a normal life span, with many such reports 
having been retracted secondary to lack of reproducibility [19, 20]. Delivery of 
endogenous and exogenous cardiac progenitor cells to increase myocardial regen-
eration post MI and in ischemic cardiomyopathy has recently been explored in ani-
mal and human studies, with promising results [21].

14.2  Stem Cells in Cardiac Regeneration

14.2.1  Exogenous Cellular Sources

Although cellular transfer for treatment of ischemic heart disease is a relatively new 
field, with the first clinical trial occurring in 2000, a multitude of cellular sources 
have been trialed to date in preclinical and clinical models of MI and HF, with rela-
tively few cellular types remaining unexplored [22].

Exogenous cardiac progenitor and stem cells of clinical interest include skeletal 
myoblast cells (SMC), bone marrow-derived mononuclear cells (BM-MNC), bone 
marrow-derived populations including lin-c-kit+, CD133+, CD133-/CD34+, c-kit+, 
and Sca1+, mesenchymal stem cells (MSC), adipose-derived stem cells (ADSC), 
endothelial progenitor cells (EPC), induced pluripotent stem cells (iPSC), as well 
as embryonic stem cells (ESC) including early cardiovascular (Isl1+/SSEA1+) 
cells. Although exogenous stem cell therapy demonstrates some improvement of 
cardiac function post MI, direct cardiomyogenic differentiation from these cells is 
rare [23].

Non-satellite CD34-/CD45-/Sca1- stem cells isolated from skeletal muscle have 
demonstrated rhythmic beating similar to cardiomyocytes and when transplanted 
into adult mice differentiate into cardiac tissue, while C-kit+Sca1- cells improved 
survival, enhanced cardiac function, reduced regional strain, and attenuated remod-
eling in mice [24].
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In rodent studies, embryonic stem cell-derived cardiomyocytes attenuated pro-
gression of HF after acute myocardial infarction (AMI) by reducing ventricular 
dilation and improving global left ventricular (LV) function. Subsequent studies 
established that human embryonic cell cardiomyocytes can limit AMI size and pre-
serve LV contractility [25]. Further, xenotransplantation of cardiac-committed 
mouse embryonic cells into ovine models has shown that ESC are immune privi-
leged and cardiomyocytes from human ESC are capable of repopulating rat 
hearts [24].

MSC can be derived from adult peripheral blood, adipose tissue, bone marrow, 
and neonatal umbilical cord, amnion, cord blood, and placenta [26]. They are potent 
stimulators of angiogenesis and cardiac regeneration and have been shown to be 
superior than hematopoietic stem cells in rodent post-MI models [27, 28]. Although 
they improve tissue regeneration predominantly via paracrine mechanisms, some 
porcine studies have shown that MSC injected intramyocardially can differentiate 
into vascular smooth muscle or endothelial cells. Furthermore, human umbilical 
cord blood-derived MSC preconditioned with 5-aza transdifferentiated into cardio-
myocytes, when transplanted into mouse models of MI, preventing infarct expan-
sion and improving heart function [24].

The groundbreaking discovery of iPSC generation via in vitro reprogramming of 
adult cells into a pluripotent state, and subsequent differentiation into any lineage, 
transformed the field of regenerative medicine [29]. Although their use in humans 
remains limited, cardiomyocytes, endothelial cells, and smooth muscle cells derived 
from iPSC have been tested on porcine infarct models with resultant reduction in 
infarct size, ventricular wall stress, and apoptosis [30].

14.2.2  Endogenous Cellular Sources

The concept of resident cardiac stem cells is not very well established, with reports 
quoting vastly different cardiomyocyte renewal capacity [19, 20]. At best, CSC 
account for approximately 1/30,000 cells in the human heart, although this number 
increases post injury, likely secondary to migration from bone marrow [31]. The 
hallmark of CSC is their ability to differentiate into every cardiac lineage including 
myocytes, fibroblasts, smooth muscle, and endothelial cells. Multiple previous stud-
ies have shown their contribution to cardiac regeneration [18, 32]. Specific subtypes 
of CSC implicated in cardiac regeneration include cardiosphere-derived cells, 
c-Kit+ cells, insulin gene enhancer protein 1 (Isl1+) progenitor cells, fetal liver 
kinase 1 (Flk1+) progenitor cells, glycolytic cardiac progenitors (GCP), stage- 
specific embryonic antigen1 (SSEA1+) progenitors, side population (SP) progeni-
tors, as well as stem cell antigen-1 (Sca1+) progenitors [21]. CSC are localized 
mainly in the atria of the heart, including the right atrial appendage, and are more 
numerous in the subepicardium compared to the myocardium [33].

CSC have greater potential to differentiate into cardiomyocytes compared to 
MSC and in animal studies show potential to reduce post-MI scar size and vascular 
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overload [18, 34]. Other studies have shown their ability to engraft in the myocar-
dium, recruit endogenous stem cells, and attenuate myocyte apoptosis, via release 
of growth factors and promotion of angiogenesis [25]. Lastly, administration of 
human W8B2+ CSC into rat hearts 1 week post MI improved cardiac function and 
reduced scar tissue formation [35].

SP progenitor cells differentiate into cells expressing sarcomeric proteins includ-
ing troponin and cardiac α-actinin [36]. Flk-1+ cells can give rise to myocardial, 
endothelial, and smooth muscle lineages, and their concentration in the circulation 
increases in humans during an MI [37, 38]. Although Isl1+ cells are capable of dif-
ferentiating into mature cardiomyocytes, they can only be extracted from neonatal 
tissue [39]. C-kit+ cells migrate through infarcted myocardium, give rise to cardio-
myocytes, and reduce oxidative stress and apoptosis in cardiac and noncardiac cell 
populations [40, 41]. Sca1+ progenitors are found in myocardial stromal tissue, can 
be differentiated into myocardium, smooth muscle, and endothelial cells, and their 
absence leads to myocardial contractile dysfunction in rodents [42–44]. Rodent 
SSEA+ cells express surface markers which signal cardiomyogenic differentiation 
potential, form beating colonies when co-cultured with primary cardiomyocytes, 
and induce myocardial regeneration and functional improvement post MI in animal 
studies [45]. GCP are isolated from the epicardial/subepicardial hypoxic environ-
ment; they express all cardiac stem cells markers and differentiate into endothelial, 
smooth muscle, and cardiac lineages [46].

In the clinics, skeletal myoblasts were the first cell type to be transferred to 
human hearts. Early clinical trials focused mainly on bone marrow-derived cells 
including unselected progenitor/stromal/hematopoietic cells, with a gradual transi-
tion to more specific cellular populations including hematopoietic stem and pro-
genitor (CD34+, CD133+) cells and later MSC. More recently, the focus of trials 
has shifted to various cardiac-committed cell types, including C-kit+ and 
cardiosphere- derived cells, especially given their increased preclinical success. 
Embryonic-derived early cardiovascular cells are the most recent cellular type to be 
examined, and the first trial using iPSC-derived cardiomyocytes is in the early plan-
ning phase [22, 47]. Treatment and delivery models for post-acute MI myocardial 
salvage and ischemic cardiomyopathy regeneration overlap, mononuclear cells 
have seen a larger success in post-MI studies, while CSC and embryonic-derived 
early myocardial progenitors have been more extensively studied in ischemic car-
diomyopathy trials. This chapter will focus on the specific results of clinical trials in 
early post-MI patients.

14.2.3  Paracrine Factors, Exosomes, and Direct 
Cellular Reprogramming

Despite showing some clinical efficacy, stem cell therapy is associated with several 
important limitations including immune rejection, tumorigenicity, and arrhythmoge-
nicity. In addition, few cells survive after transplantation despite improved 
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myocardial function, suggesting that the mechanism of their action is predominantly 
paracrine in nature [48]. A recent study of ischemia/reperfusion injury in rodents 
showed that intracardiac injection of two separate adult-derived stem cells improved 
cardiac function without altering the number of new cardiomyocytes. The proposed 
mechanism for this improvement was selective induction of CCR2+ and CX3CR1+ 
macrophages, resulting in altered fibroblast activity, extracellular matrix (ECM) con-
tent, and enhanced mechanical properties [49]. In order to circumvent these obsta-
cles, researchers have begun to study stem cell-derived paracrine factors, exosomes, 
and cells directly reprogrammed into cardiac progenitors, although no such studies 
have yet entered clinical trials, despite animal studies showing promising results.

MSC-derived growth factors and cytokines derived from cell culture superna-
tants have been shown to decrease inflammation, decrease myocyte apoptosis, 
recruit endogenous stem cells, and decrease infarct size [25]. In further animal and 
in vitro studies, MSC-conditioned medium increased neovascularization and fibro-
sis while improving cardiomyocyte contractility [50].

Exosomes are 40–100-micron vesicles released from cells by fusion with cellu-
lar membranes and carry mRNA, miRNA, as well as antiapoptotic and proangio-
genic proteins. Exosomes are involved in cell signaling, mediate stem cell paracrine 
effects, and improve resident cardiac stem cell function without the downsides asso-
ciated with direct cellular use [48]. In murine models, ESC-derived exosomes 
increased cardiomyocyte proliferation, upregulated the number of cardiac progeni-
tor cells, and increased cardiac repair following ischemic injury. MSC-derived exo-
somes also reduced the size of postischemic infarcts, in animal models, via increased 
cardiac progenitor cell proliferation and decreased fibroblast proliferation [51, 52]. 
In addition, MSC-derived exosomal miRNA upregulated angiogenesis in post- 
infarct ischemia [48].

One of the major challenges associated with iPSC use in clinical trials include 
their tumorigenic potential in an undifferentiated state. Accordingly, new protocols 
have been designed to directly reprogram cells via induction of lineage-specific fac-
tors, without passage through a pluripotent and tumorigenic state [53]. For example, 
three factors including Gata4, Mef2c, and Tbx5 reprogram cardiac fibroblasts into 
induced cardiomyocytes. Further addition or modification of reprogramming fac-
tors microRNAs has been shown to promote reprogramming efficiency and matura-
tion [54]. In vivo reprogramming of cells following acute MI in animal models has 
been reported and resulted in improved cardiac function and reduced fibrosis [55]. 
Most recently, direct in vivo reprogramming has been achieved without genomic 
integration of viral DNA with the use of a Sendai virus vector, which remains out-
side of the nucleus [56].

14.2.4  Lineage-Specific Considerations

The advantages and drawbacks of specific cellular subtypes in post-MI regenerative 
therapy are summarized in Table 14.1. Skeletal muscle cells are easier to obtain 
although likely only provide structural benefits, as opposed to forming new cardiac 
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tissue, secondary to lack of transdifferentiation. In addition, 90% of injected cells 
die within a few days, and higher cellular counts are arrhythmogenic [24].

Stem cell sources can be divided into three main groups: embryonic, induced, 
and adult. Embryonic stem cells are pluripotent and can differentiate into all three 
germ layers and have genomic stability and good differentiation and proliferative 
capacity [57]. They are, however, derived from human blastocysts and require the 
destruction of embryos to attain, raising ethical dilemmas, in addition to having 
tumorigenic and immunogenic potential [58, 59]. In human and rodent studies, it 
was noted that transplanted embryonic stem cells generated small numbers of car-
diomyocytes [60]. As they are reprogrammed in vitro from adult cells, iPSC avoid 
the ethical dilemmas associated with embryonic stem cells. Differentiation of iPSC 

Table 14.1 Advantages and drawbacks of lineage-specific cell therapy in myocardial regeneration

Cellular Source Advantages Disadvantages

Skeletal muscle 
cells

1. Less invasive harvest
2. Large source pool
3. Provide structural support

1. No transdifferentiation into 
cardiomyocytes
2. Low survival
3. Arrhythmogenic in large 
quantities

MSC 1. Minimally invasive harvest
2. Multiple source pools
3. Differentiation into osteoblasts, 
chondrocytes, myocytes, and 
adipocytes
4. High self-renewal, proliferative, and 
differentiation capacity
5. Beneficial paracrine signaling
6. Immunomodulatory

1. Relatively low yield in peripheral 
blood and bone marrow
2. Source-dependent variation in 
quality and yield

Hematopoietic
stem cells

1. Minimally invasive harvest
2. Multiple source pools
3. Differentiation into cardiomyocytes 
and endothelial cells
4. Simultaneously capable of 
myogenesis and angiogenesis

1. Relatively low yield
2. Difficult in vitro maintenance
3. Unknown signaling pathways

Embryonic stem 
cells

1. Pluripotent
2. Genomic stability
3. Large differentiation and 
proliferation potential

1. Derived from human blastocysts, 
ethical dilemmas
2. Tumorigenic when 
undifferentiated
3. Immunogenic

iPSC 1. Pluripotent
2. In vitro reprogramming from adult 
cells
3. Minimally invasive harvest
4. No ethical dilemmas

1. Inefficient differentiation
2. Tumorigenic when 
undifferentiated
3. Often require viral transfection 
resulting in genomic instability

Adult-derived
stem cells

1. No ethical dilemmas
2. Low risk of immune rejection

1. Limited source
2. Invasive harvesting technique
3. Unclear regeneration potential

Summary of advantages and drawbacks of specific cells used in post-MI regenerative therapy
MSC mesenchymal stem cells, iPSC induced pluripotent stem cells
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into adult cells is at times inefficient, and they are teratogenic in their undifferenti-
ated states. Furthermore, cells that are derived via viral transfection suffer from 
genomic instability [61]. Adult-derived cardiac stem cells also avoid ethical dilem-
mas associated with embryonic stem cells, and they carry a lower risk of immune 
rejection. However, they are obtained via invasive techniques and have a limited 
regeneration potential [62].

Mesenchymal stem cells are adult fibroblast-like cells and can differentiate into 
osteoblasts, adipocytes, and cardiomyocytes, among others [63]. Mesenchymal 
stem cells can be extracted from peripheral blood, bone marrow, dental pulp, pla-
centa, umbilical cord, or adipose tissue with minimally invasive biopsy. They can 
self-renew, proliferate, and differentiate, as well as promote growth of adjacent tis-
sue via strong paracrine signaling pathways [64]. MSC have immunosuppressive 
properties; they decrease the immune response by inhibiting T-cell proliferation and 
cytotoxicity while increasing the production of regulatory T cells. Drawbacks of 
MSC include small number in bone marrow and blood, as well as source-dependent 
variation [25].

Hematopoietic stem cells are multipotent cells, with capacity to differentiate into 
multiple lineages including cardiomyocytes and endothelial cells [65]. Although 
they can be harvested from peripheral blood and bone marrow, bone marrow yields 
are higher [66]. Hematopoietic stem cells are perfect regenerative candidates as they 
can achieve myogenesis and angiogenesis concomitantly, although their low num-
bers, difficult in vitro maintenance, and unknown signaling pathways need to be 
improved [66]. Endothelial progenitor cells are also found in the bone marrow and 
peripheral blood although in very low concentrations. They can differentiate into 
endothelial cells and participate in angiogenesis [67]. The number of circulating 
EPC increases with myocardial ischemia and cytokine release, infiltrating the 
injured myocardium and possibly differentiating into myocytes [68, 69].

14.3  Stem Cell Delivery Methods

14.3.1  Delivery Methods in Humans

The ideal delivery platform for stem cell therapy in cardiac regeneration should use 
a noninvasive technique that directly delivers cells to the site of infarct, to prevent 
cellular loss via aberrant homing. The carrier vehicle for cells should promote sur-
vival in the ischemic environment, facilitate retention and promote stem cell dif-
ferentiation, augment paracrine effects, and protect native myocardium from 
scarring and arrhythmias [70]. Despite continued studies predominantly in animal 
studies, no such vehicle exists for use in clinical trials. At present, stem cell delivery 
can be accomplished via intravenous injection, intracoronary infusion, direct epi-
cardial and endocardial injection, as well as topical application at the time of sur-
gery [24]. Peripheral intravenous (IV) injection is by far the least invasive, though 
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studies examining homing of radioactively labeled bone marrow cells into infarcted 
myocardium did not reveal any signal in the heart [71]. Intracoronary and intramyo-
cardial delivery is by far the most commonly used methods reported in clinical trials 
[72]. Intracoronary (IC) infusion is less invasive than intramyocardial injection and 
can be achieved in an antegrade or retrograde fashion. IC delivery is also less 
arrhythmogenic and has been associated with a modest improvement in EF and 
infarcted area size [72]. Despite these benefits, IC delivery results in delivery of 
only 1.3–2.6% of cells into the infarcted myocardium, with the majority of cells 
circulating to the liver or spleen [71]. In addition, IC injection depends on patency 
of coronary arteries and is associated with a small risk of embolization [73, 74]. 
Intramyocardial delivery (IM) of cells facilitates their delivery to target tissues and 
can be accomplished via transepicardial, transendocardial, or transcoronary routes 
[57]. Transepicardial injection requires direct exposure of the heart, and all intra-
muscular injections are associated with ventricular arrhythmias [75].

14.3.2  Implantable and Injectable Systems

Cellular scaffolds and hydrogels enhance stem cell survival, and while hydrogels 
can retain cells at desired locations, scaffolds provide mechanical support to adja-
cent structures; unfortunately, both require invasive topical application [76, 77]. In 
rodent studies, human bone marrow CD133+ cells delivered in collagen patches 
increased local angiogenesis, though the cells themselves failed to differentiate into 
cardiomyocytes [78]. In addition to collagen, multiple other substrates mimic the 
ECM of the heart, including polyurethane (PU), poly(ester urethane) (PEU), poly-
ester urethane urea (PEUU), and poly(glycerol sebacate) (PGS) [24]. Animal stud-
ies of biodegradable PU patches promoted the contractile phenotype of smooth 
muscle cells and improved cardiac remodeling [79].

Hydrogels composed of materials such as fibrin, Matrigel, alginate, and polyeth-
ylene glycol can all be modified to resemble the physical properties of cardiac tissue 
[24]. ECM and collagen containing hydrogels allowed for differentiation of human 
ESC into functional cardiomyocytes in vitro, and cell-impregnated alginate hydro-
gels delivered to murine hearts reduced left ventricular remodeling [80, 81]. 
Engineered heart tissue (EHT) has been developed from type I collagen and neona-
tal heart tissue. When sutured onto rat hearts in vivo, this tissue becomes electrically 
integrated and perfused [82, 83]. Finally, engineered heart muscle has been devel-
oped by ESC-derived cardiomyocytes onto EHT [84].

To overcome the invasive methods required for scaffold and hydrogel delivery, 
gelling systems based on materials including fibrin glue, collagen, Matrigel, hyal-
uronic acid, and alginate have been developed that undergo a fluid-to-solid transi-
tion when in vivo, allowing catheter-based delivery [24]. Self-assembling RAD16-II 
scaffolds induced angiogenesis, retained myocytes, and promoted ESC differentia-
tion into MHC-positive cells [85]. Catheter-delivered, collagen-encapsulated bone 
marrow cells showed improved LV function, and vascularization and 
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self-assembling peptides loaded with insulin-like growth factor (IGF) allowed for 
sustained release of paracrine factors [86, 87]. Acellular alginate is undergoing clin-
ical trials to prevent ventricular remodeling [24].

14.4  Clinical Trials of Post-MI Regeneration

14.4.1  Trial Design

A query of completed clinical trials in post-acute MI stem cell therapy shows that 
approximately 28 studies have been completed thus far (Table 14.2) [88–119]. The 
number of patients randomized varied from 20 to 250 in each trial. The intracoro-
nary route of cell delivery after initial diagnostic and therapeutic PCI, used in 25 out 
of 29 trials, was the most widely used method of cell delivery. One study delivered 
cells both via the intracoronary and intramyocardial routes concomitantly, one study 
injected cells intramyocardially at the time of CABG, and two studies delivered 
cells peripherally via intravenous injection.

Autologous, rather than allogenic, cells were most commonly used, with just 
five studies employing allogenic sources (Table 14.2). Autologous bone marrow 
(BM)-derived mononuclear cells were the most commonly studied, followed by 
autologous bone marrow-derived unselected progenitor cells. Several studies fur-
ther sorted out autologous bone marrow-derived hematopoietic, endothelial, endo-
thelial/cardiac, and early progenitor cells based on differential expression of various 
combinations of cell surface markers including CD34, CD45, CD133, CXCR4, 
among others. Less common cell sources included autologous bone marrow-
derived MSC from commercially available products, allogenic Wharton’s jelly-
derived MSC, and autologous peripheral blood stem cells. Although more 
extensively studied in the context of heart failure, as compared with acute MI, 
autologous cardiosphere- derived stem cells and allogenic cardiac stem cells have 
also been examined.

The timing of cell delivery and number of cells varied widely across studies. 
Despite all being acute post-MI models, therapy was delivered anywhere from 
less than 24 hours to several months post-initial therapeutic PCI. Although the 
ideal timing of cell delivery has not yet been standardized, the majority of studies 
implemented the therapeutic intervention within 10 days of PCI. Comparison of 
early (3–6 weeks) versus late (3–4 months) delivery did not change the primary 
outcome, increased left ventricular ejection fraction (LVEF), and decreased infarct 
size [94]. Final cell count delivered differed significantly between and often 
within studies; all studies used a magnitude of cells on the order of millions, in the 
range of 1.9–1300 million cells. Although the majority of studies used a fixed 
number across participants, several studies used weight-based dosing of 0.5–five 
million cells/kg. In preparations containing mixed cell subtypes, such as nucle-
ated and mononuclear cells, the percentage of cells between subjects varied to a 
small degree.
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14.4.2  Trial Outcomes

Comparison of outcomes across studies is difficult due to the lack of standardization 
of timing, inclusion criteria, cell number, and type. Despite these limitations, a gen-
eralization can be made that stem cell treatment is associated with only a modest 
improvement in outcome, as only 64% of the studies examined showed efficacy. 
Autologous bone marrow-derived mononuclear cells, although most studied, were 
associated with the least favorable outcomes. Six out of 12 patient cohorts treated 
with mononuclear cells did not have any significant improvement in any outcome. 
Three studies showed improvement in LVEF. One study showed decreased left ven-
tricular end-diastolic volume (LVEDV), and one study showed reduced infarct size. 
Mononuclear cell treatment was also associated with decreased infarct size regard-
less of treatment timing (3–6 weeks versus 3–4 months) in one study and decreased 
systolic wall thickening in another. LVEF improved in one study only in a subset of 
patients with initial EF < 37%.

Autologous BM-derived stem cells, including hematopoietic, endothelial, car-
diac/hematopoietic, and early progenitor cells, showed by far the highest efficacy 
rates with 90% of studies showing a significant increase in various outcome param-
eters. Six studies reported increased LVEF, up to as much as 18 months after treat-
ment. Perhaps most notably, treatment with a combination of CD34+/CD45+ and 
CD34+/CD133+/CD45+ cells reduced combined death, recurrent MI, and any 
revascularization procedures at 1 year. Other outcomes associated with BM-derived 
stem cell treatment included reduced myocardial infarct size, recovery of regional 
systolic function and myocardial deformation, improved perfusion, decrease in end- 
systolic volume (ESV), improved myocardial salvage index, decreased systolic wall 
thickening and nonviable segments, as well as increased LVEF in patients with 
baseline EF < 37%.

Autologous BM-MSC improved LVEF in two studies, while allogenic 
BM-MSC were only efficacious 50% of the time, though they were only used in 
two studies. They increased LVEF and global symptom score in patients at 
6 months in one cohort, although no change in LVEF or perfusion was observed in 
another study at the same time point. Wharton’s jelly-derived MSC were associ-
ated with a higher absolute increase in myocardial viability and perfusion at 
4  months, as well as increased LVEF and decreased end-systolic and diastolic 
volumes at 18 months.

Autologous cardiosphere-derived stem cells reduced scar mass and increased 
viable heart mass, regional contractility, and regional systolic wall thickening, 
though there was no appreciable change in LVEF at 12 months. Interestingly, allo-
genic cardiac stem cells were not associated with a change in infarct size or LV 
remodeling. Peripheral blood stem cells mobilized with granulocyte colony- 
stimulating factor (GCSF) increased exercise capacity, myocardial perfusion, and 
systolic function, although the use of GCSF was associated with a higher rate of 
in-stent stenosis at 6 months. Beneficial effects based on cellular type are summa-
rized in Table 14.3 and Fig. 14.1.
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14.4.3  Stem Cell Therapy in Ischemic Cardiomyopathy

Although the primary focus of stem cell therapy remains to prevent myocardial loss 
and allow for regeneration of tissue immediately after an MI, clinical trials are also 
underway to evaluate the ability of stem cells to remuscularize and reactivate innate 

Table 14.3 Benefits after acute MI-based on cell type

Cellular subtype Improvements seen

Autologous BM-MNC Increased LVEF
Decreased LVEDV
Decreased infarct size
Decreased systolic wall thickening

Autologous CD133+ cells Increased LVEF
Decreased nonviable segments
Decreased systolic wall thickening

Autologous CD34+/CXCR4+ cells Increased LVEF in patients with EF < 37%
Autologous BM-SC Increased LVEF

Reduced myocardial infarct size
Improved recovery of regional function
Reduced combined death, recurrence of MI, and need 
for revascularization
Improved myocardial salvage index
Improved regional myocardial deformation

Autologous BM-CD34+ cells Reduced infarct size
Improved perfusion

Autologous BM-CD34+/CD45+ cells Increased LVEF
Decreased ESV

Autologous circulating peripheral 
blood stem cells

Increased LVEF
Decreased ESV
Increased exercise capacity
Improved myocardial perfusion
Improved systolic function

Autologous BM-MSC Increased LVEF
Allogenic BM-MSC Improved LVEF

Improved global symptoms score
Allogenic Wharton’s jelly MSC Increased LVEF

Improved infarct perfusion
Increased myocardial viability
Decreased ESV/EDV

Autologous CDSC Reduced scar mass
Increased viable heart mass
Increased regional contractility
Increased regional systolic wall thickening

Summary of advantageous post-acute MI outcomes based on cell source
BM-MNC bone marrow-derived mononuclear cell, LVEF left ventricular ejection fraction, LVEDV 
left ventricular end-diastolic volume, EF ejection fraction, BM-SC bone marrow-derived stem 
cells, MI myocardial infarction, ESV end-systolic volume, BM-MSC bone marrow mesenchymal 
stem cells, MSC mesenchymal stem cell, EDV end-diastolic volume, CDSC cardiosphere-derived 
stem cell
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cardiac regeneration pathways in models of heart failure secondary to chronic car-
diomyopathy [22]. Similar to studies targeting treatment of acute MI, cells evalu-
ated in ischemic cardiomyopathy include skeletal myoblasts, bone marrow-derived 
unselected and selected stem cells, MSC, embryonic stem cells, and cardiac- 
committed progenitor cells [22].

Skeletal myoblasts do not appear to improve LVEF [120]. Unselected bone mar-
row stem cells are less commonly used in HF models although appear to have as 
little efficacy as when used in acute MI trials [121–125]. Bone marrow-derived 
hematopoietic stem and progenitor cells appear to improve unstable angina, but 
their efficacy in HF is less established [126–129]. Similar to post-MI studies, MSC 
appear to be among the most efficacious in HF models [130–133]. Cardiac stem 
cells including KIT+ and cardiosphere-derived cells (CDC) both appear to show 
some efficacy in clinical trials [134, 135]. Transplantation of embryonic stem cell-
derived cardiac progenitor cells appears to confer a symptomatic benefit, although a 
very small number of patients have been evaluated thus far, necessitating further 
trials [136]. Analysis of completed clinical trials in chronic HF suggests MSC and 
CSC as the most promising cell types, and although some efficacy has been estab-
lished, many more clinical trials and optimal delivery vehicles are needed before 
stem cell therapy becomes standard of care.

Autologous 

MNCUNSELECTED SC HEMATOPOIETIC SC MSC

CDSC

Endogenous

Peripheral blood Bone marrow Placenta Bone marrow 

Allogenic

Increased LVEF 
Decreased LVEDV 

Decreased infarct size 
Decreased systolic 

wall thickening

Reduced scar mass
Increased viable heart mass
Increased regional contractility
Increased regional systolic wall 
thickening

Increased LVEF
Reduced infarct size

Improved regional 
function/deformation 

Reduced 
death/MI/revascularization 

Improved salvage index
Decreased ESV

Increased exercise
Improved perfusion 

Increased LVEF
Decreased non viable segments 
Decreased systolic wall 
thickening 
Reduced infarct size
Improved perfusion 
Decreased ESV

Increased LVEF 
Improved symptoms score
Improved infarct perfusion
Increased myocardial 
viability 
Decreased ESV/EDV

Fig. 14.1 Stem cell types and benefits in treatment after MI. SC, stem cell; MNC, mononuclear 
cell; MSC, mesenchymal stem cell; LVEF, left ventricular ejection fraction; MI, myocardial infarc-
tion; ESV, end-systolic volume; LVEDV, left ventricular end-diastolic volume; EDV, end diastolic 
volume; CDSC, cardiosphere-derived stem cell
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14.5  Limitations of Stem Cells Therapy

A substantial limitation of stem cell therapy post-MI is the low homing, retention, 
and differentiation rate of cells in the ischemic microenvironment of the infarcted 
heart [137]. Human studies have shown a 39% cellular retention rate just 1 hour 
following transplantation that is attributable to high rates of apoptosis [71]. The 
high rate of cell death after transplantation can be attributed to inflammation, 
mechanical injury, hypoxia, and reperfusion injury [138]. Furthermore, loss of 
matrix attachment during cell preparation and following injection contributes to 
programmed cell death [139]. Ischemia is a major hurdle for stem cell populations 
to differentiate into cardiomyocytes, particularly ones that become electromechani-
cally integrated [24].

Although most clinical trials demonstrate safety following stem cell transfer, 
with only a few complications reported, animal studies have shown increased risk 
of ventricular arrhythmias following human cardiomyocyte transfer into guinea 
pigs and nonhuman primates [140, 141]. In addition, isolation of adequate quantity 
of stem cells, expansion, and optimal delivery methods that allow for cell retention 
and differentiation are lacking [28]. Although peripheral and bone marrow stem 
cells are easier to harvest, attaining adequate number of organ-derived cells, such as 
cardiac stem cells, is invasive and often low yield [28]. Several clinical trials have 
also shown that transplanted cells may not be capable of integration and electro-
chemical coupling, suggesting that their effects are predominantly paracrine in 
nature and may not add directly to myocyte mass [142].

Meaningful decisions and meta-analyses of clinical trial data are difficult to 
interpret and synthesize in light of heterogeneity of trial design and reporting. 
Clinical trials completed thus far have varying, though usually low, number of par-
ticipants. Primary outcomes measured vary from study to study, and some lack 
diverse clinical assessment tools. Inclusion criteria, stem cell type and number, 
delivery methods, and timing vary greatly across trials. Some studies lack placebo 
groups, making them prone to observation bias, while others evaluate safety only 
without efficacy. Variable outcomes across studies can easily be attributed to the 
heterogeneous number and quality of cells used [143].

14.5.1  Modifications to Enhance Cell Function

Multiple strategies including in vitro cellular preconditioning or reprogramming via 
environmental, pharmacological, and genetic means have been explored in order to 
increase in vivo cell survival [137]. These strategies include culturing cells under 
ischemic conditions, supplementing culture medium with growth factors, as well as 
transfecting cells with proangiogenic and anti-apoptotic factors [57]. Culturing 
MSC in low oxygen conditions prior to transplant activates survival pathways, 
upregulates pro-survival genes, increases anti-apoptotic genes including Akt and 
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eNOS, and upregulates pro-angiogenic cytokines including vascular endothelial 
growth factor (VEGF) [144]. Additionally, hypoxia allows cells to preserve stem-
ness and promote differentiation and proliferation in vivo [145]. In vitro burst expo-
sure of cells to low levels of oxidative stress and thermal shock treatment also 
improves cell viability and functional outcomes [146, 147].

Preconditioning of cells with several therapeutic drugs increased secretion of 
growth factors, including vascular endothelial growth factor (VEGF), angiopoietin-1α 
(Ang-1α), stromal cell-derived factor-1 (SDF-1), hepatocyte growth factor (HGF), 
and IGF [148]. Several mitochondrial potassium channel opening drugs, including 
pinacidil and diazoxide, suppress apoptosis and increase cell survival in ischemic 
conditions [149, 150]. In one study, treatment of cardiac stem cells with hydrogen 
peroxide increased endothelial and vascular smooth muscle gene expression and 
angiogenesis [25]. In vivo treatment with statins increased cell survival and differ-
entiation, while in vitro treatment improved function of endothelial progenitor cells 
[151, 152]. Pre-treatment of several cell lines with oxytocin improves their response 
to oxidative stress and differentiation into cardiomyocytes and vascular cells [153, 
154]. Multiple other drug classes including trimetazine, β-mercaptoethanol, caspase 
inhibitors, 5-Azacytidine, and the kinase inhibitor Imatinib have been used in vitro 
to increase cell viability, confer resistance to oxidative injury, increase cellular 
engraftment, and prime cellular differentiation toward a cardiac fate, respectively 
[155–157].

Genetic manipulation of stem cells prior to transfer is another strategy used to 
improve efficacy, as transgenes can be targeted to release pro-angiogenic and che-
moattractant factors, as well as anti-apoptotic proteins. For example, insertion of the 
pro-survival gene Pim-1 kinase into cardiac stem cells decreased infarct scar mass 
in a pig model [25]. Transformation of stem cells with IGF-1, which induces expres-
sion of survival genes, enhanced survival, engraftment, and differentiation [158]. 
IGF-1-transformed MSC showed efficacy in improving ejection fraction in animal 
studies. Overexpression of Ang-1, HGF, VEGF, and MyoD in post-MI studies have 
consistently shown improved cellular retention, likely secondary to increased angio-
genic potential of pre-treated cells [159–161]. Akt-modified bone marrow-derived 
MSC survival is upregulated via secretion of numerous growth factors, including 
bFGF, HGF, IFG-1, and VEGF [162].

Because adhesion to an extracellular matrix is important for the survival of sev-
eral stem cells, notably MSC, injection of cells and lack of healthy ECM in infarcted 
hearts potentiate apoptosis. To address this, overexpression of tissue transglutamin-
ase in MSC increased survival leading to improved restoration of cardiac function 
[163]. Transfection of integrin-linked kinase (ILK), which contributed to cell adhe-
sion and ECM assembly, improves cellular survival in hypoxic conditions and 
reduces infarct size in animal studies [164].

Resident stem cells become senescent and lose their regenerative capacity with 
age, resulting in reduced proliferation, differentiation, and metabolic activity [165]. 
These changes are driven by telomere shortening and upregulation of p53 genes 
[166]. For example, MSC derived from older patients are not as efficacious in post-
 MI models as those derived from younger patients [167]. Strategies to combat 
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senescence have been examined and include modification of human cardiac pro-
genitor cells with Pim-1 and upregulation of the WNT/β-catenin signaling pathway, 
both of which result in improved cellular function [168, 169].

14.6  Future Directions

Although stem cell therapy after MI is gaining momentum with promising initial 
results, multiple limitations must be overcome to realize the full potential that cel-
lular therapy has to offer. The optimal cell source for use in clinical trials must be 
determined. Although embryonic stem cells confer immune privilege, they are asso-
ciated with ethical dilemmas and are teratogenic in undifferentiated forms. While 
embryonic stem cell-derived cardiac precursors eliminate teratogenic potential, 
their differentiation protocols currently produce low yields and must be improved. 
Resident cardiac stem cells are difficult to harvest and are low in number. Bioreactors 
and devices to standardize and improve differentiation yields are on the horizon, 
although further research needs to be accomplished [170].

iPSC are an ideal cell candidate for clinical translation since they are derived 
from adult somatic cells via noninvasive techniques and can repopulate any cardiac 
lineage. Although the first iPSC clinical trial is currently being planned, nonviral 
transfection protocols to derive iPSC cells must be optimized to prevent genomic 
instability. Furthermore, differentiation protocols and elimination of undifferenti-
ated cells via induced cell apoptosis must ensure patient safety. Paracrine effects of 
cell therapy must be defined more clearly, and the potential of exosomes must be 
studied, as use of exosomes alone without cellular transfer could realize the full 
potential of iPSC cells.

Cell survival and homing, particularly with intravenous and intracoronary routes, 
are extremely low, with cell loss being exacerbated by the ischemic post-infarct 
environment. Preconditioning of cells prior to transfer via genetic modifications and 
drug treatments, as well as improved homing mechanisms, must be developed to 
improve the number of cells participating in repair. In addition, methods of prevent-
ing resident stem cell senescence and improve mobilization must be elucidated.

Optimal delivery methods for stem cell treatment must be redesigned. Although 
intramyocardial injections deliver cells directly to infarcted areas, they are invasive 
and associated with generating pro-arrhythmogenic foci. Intracoronary and intrave-
nous injections suffer from poor cellular homing. While patches and scaffolds afford 
the added benefit of maintaining an optimal scaffold, they can only be delivered at 
the time of surgery. Gelling systems loaded with cytokines and pro-survival proteins 
must be refined to allow for noninvasive delivery. In addition, three-dimensional 
(3D) and bioprinted cellularized vascular constructs are currently being developed.

Currently, protocols for clinical trials of stem cell therapy vary greatly and lack 
standardization. In order to make meaningful comparisons and interpretations 
across trials cell type, delivery methods and timing, as well as measured outcomes, 
must be standardized.
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14.7  Conclusion

Myocardial infarction and ischemic cardiomyopathy confer significant morbidity 
and mortality, yet despite best medical care, many patients who suffer from an MI 
go on to develop heart failure, secondary to myocardial necrosis and pathologic 
myocardial remodeling. The population of resident cardiac stem cells available to 
replenish lost cells is low and easily overwhelmed by ischemia. Although the 
design of clinical trials is not uniform, and comparisons cannot be easily made, 
delivery of both endogenous and exogenous stem cells to ischemic myocardium 
has shown some efficacy at reducing infarct size and improving long-term 
function.

Several issues are currently being addressed in order to optimize stem cell effi-
cacy. In addition to standardizing cellular type, delivery method, and timing, clini-
cal trials must focus on similar outcomes. The optimal cell type and differentiation 
methods are being determined, with iPSC and exosomes holding great promise. The 
most direct, least invasive delivery method and improvement of cell homing and 
survival are yet to be overcome. Despite all of these obstacles, stem cell therapy 
holds great promise in post-MI regeneration.
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