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Chapter 1
Introduction: An Overview of Host- 
Directed Therapies for Tuberculosis

Daniel J. Frank and Robert N. Mahon

 Host-Directed Therapy: Purpose and History

Despite the widescale success of the antibiotic era in mitigating a plethora of bacte-
rial infectious diseases, tuberculosis (TB) “the white death” remains a public health 
scourge claiming approximately 1.3 million lives annually, with estimates of nearly 
a third of the world’s population infected with its causative agent Mycobacterium 
tuberculosis (Mtb) [1]. While the first antibiotics, sulfonamides and penicillin, 
proved to be ineffective at controlling Mtb infection, the advent of streptomycin in 
1943 created chemotherapeutic treatment options for this disease. Streptomycin and 
para-aminosalicyclic acid, the two effective anti-TB chemotherapeutic drugs, rap-
idly induced resistance by Mtb when either agent was given alone [2], a harbinger 
of the multidrug-resistant (MDR) TB strains that would eventually develop. 
Isoniazid (INH), developed a few years later, was a much more potent and caused 
fewer toxic side effects. The development of drug resistance is a recurring problem 
in TB treatment, as Mtb has developed ways to circumvent nearly every antibiotic.

 Host-directed therapy (HDT) offers the potential to combat these drug resistance 
issues. First, by focusing on host, rather than bacterial targets, to empower the 
immune system to clear the mycobacterial infection, the agents do not directly 
apply selective pressure on the bacteria. Second, HDT agents may be employed in 
combination with standard anti-mycobacterial therapy potentially shortening treat-
ment, and thereby improving adherence and limiting the emergence of resistance 
arising due to incomplete treatment. An added benefit of many of these HDT agents 
is they also have anti-inflammatory effects that ameliorate the lifelong inflammatory 
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pulmonary tissue damage caused by active TB infection, improving the quality of 
life and possibly long-term survival, for cured patients [3–6].

HDT has its roots as some of the oldest TB therapy. Prior to the chemotherapeu-
tic era, all TB treatments by necessity were “host directed.” Ascertaining the impact 
on patients is difficult because no adequate comparison has ever been performed 
[7]. A systematic review of 564 patients admitted to New York State sanatoria found 
[8] a mortality rate of 37%, an improvement over models indicating a mortality rate 
between 53% and 86% [9] for TB cases not in sanatoria. The effect may be due to 
the host-directed benefits of a healthy diet, proper rest, mild exercise regimen, and 
sunlight often included in the sanatoria setting [10]. Indeed, evidence suggests that 
reclining in a supine position reduced Mtb bacilli growth [11].

 The Antibiotic Era

By the mid-1950s, the development of effective TB drugs, like INH and PAS, the 
focus on the host diminished, and the sanatoria quickly closed. New classes of anti-
 TB drugs were discovered, and combination treatment regimens employed to 
impede the emergence of drug-resistant TB. However, increasingly drug-resistant 
TB remained a problem. By 2006, the first reports of extensively drug-resistant 
(XDR) TB appeared, revealing strains resistant to the two major first line TB drugs, 
INH and rifampicin, as well as aminoglycosides and quinolones [12, 13], highlight-
ing the need for alternative treatment strategies for TB.

Complicating progress is a lack of funding for TB drug development, with the 
World Health Organization estimating $3.5 billion shortfall for TB implementation 
in 2018, and as much as a $2 billion per year research shortfall as well as limited 
profit motivation for pharmaceutical companies [14]. HDT strategies can take 
advantage of investments in other fields, such as in oncology and autoimmune dis-
eases, to re-purpose drugs already in use or in development that may modulate the 
immune system to improve TB outcomes [15]. Therapies already proven safe and 
effective for other disorders have a streamlined and more cost-effective pathway to 
approval for TB clinical use. Understanding how Mtb dysregulates the host immune 
system to create a hospitable environment, and how HDT agents may improve 
immune functions to more rapidly cure TB and decrease excess tissue damage is the 
key to developing clinically impactful HDT.

 Host Response to Mtb

The growth of Mtb in the lung has long been tied into the state of the immune 
response [16]. After the first few weeks of infection, as Mtb rapidly replicates within 
macrophages, its growth substantially decreases upon the arrival of T cells. A func-
tional immune response controls, but does not eradicate Mtb, leading to a latent 

D. J. Frank and R. N. Mahon



5

infection classically defined by the formation of a granuloma and tuberculin reactiv-
ity. Active disease occurs when immunity is unable to control Mtb growth, either 
soon after infection, or after immunity is compromised during latency, leading to 
granuloma breakdown and bacterial proliferation in tissues [16]. While no proven 
HDT targets have been identified, many potential targets within several subsets of 
immune cells have either been proposed or are being tested. From these results, we 
can begin to home in on specific cellular pathway targets for optimal therapeutic 
benefit from HDTs.

T cells are vitally important to the control of Mtb pathogenesis, although the 
exact mechanisms remain unclear. While IFN-γ production was thought to be of 
primary importance in T cell functionality [17], recent studies have suggested that 
it is not required and likely detrimental to control Mtb growth within the lung [18]. 
Without a deeper understanding of how T cells control TB, knowing how to target 
them with HDTs is difficult. Immunomodulatory agents used to treat autoimmune 
disorders are well known to increase the risk of reactivation in latently infected TB 
patients. Work with the immune checkpoint inhibitor PD-1 has also shown that 
immune activating agents can lead to detrimental results during TB disease [19, 20]. 
Initial murine studies utilizing PD-1 knockout mice showed significantly increased 
lethality during Mtb infection. Knockout mice had increased cytokine levels and 
inflammatory cells present in the lung, indicating that maintaining balanced nega-
tive regulation of T cell immunity is essential to control TB. TB reactivation has 
been subsequently reported in several cancer patients being treated with a PD-1 
checkpoint inhibitor [21]. Further supporting the role of the T cell response during 
TB disease is a recent study that reported harmful effects when T cell metabolism 
was modulated [22]. Initially thought to be an ameliorative HDT target due to its 
role in Mtb-induced necrosis in macrophages [23], knockout studies of the mito-
chondrial matrix protein cyclophilin D, had heightened T cell responses that 
increased cytokine levels without a change in Mtb burden, and led to the death of 
most of the mice within 3 months of Mtb challenge.

 The Inflammatory Response

One of the drivers of utilizing HDTs is a desire to lessen the inflammatory and tissue 
damaging effects caused by active TB on the host. Even after successful TB treat-
ment, Mtb infected patients are at an increased risk to develop chronic pulmonary 
dysfunctions (COPD) [24] making immuno-modulatory agents candidates for HDT 
development. Corticosteroids were one of the first agents evaluated as an HDT for 
TB. While benefits have been observed as an adjunctive therapy for tuberculous 
meningitis, non-physiological concentrations were required for an effect on pulmo-
nary TB with serious adverse events reported at lower concentrations [25]. Several 
non-steroidal anti-inflammatory drugs have been, or are currently, being tested as 
potential HDTs ranging from over the counter drugs (e.g. aspirin or ibuprofen) to 
prescription arthritis medications [5]. While targeting acute inflammation mediators 
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has been therapeutically beneficial for some autoimmune disorders, there is an open 
question on whether stopping inflammation is the best course of action in infectious 
disease induced inflammatory situations as these interventions may not have favor-
able effects in treatment of infections. The inflammatory process has three stages: 
onset, resolution, and post-resolution [26]. The resolution phase occurs after the 
onset of acute inflammation when apoptosis of inflammatory cells occurs, cytokines 
and other mediators are removed from the extracellular environment through decoy 
receptors, pro-inflammatory signaling pathways are turned off, and macrophages 
are reprogrammed to produce anti-inflammatory cytokines and pro-resolution 
mediators. Instead of only inhibiting inflammation, an alternative course of action 
could be enhancing resolution. For example, eicosanoids, including prostaglandins 
and resolvins, promote resolution by suppressing TLR and NF-κB signaling [27]. 
Prostaglandins are specifically involved in the cross-regulation of IL-1 and Type I 
interferon during TB disease. Prostaglandins are synthesized from arachidonic acid 
via cyclo-oxygenase (COX) that competes with 5-lipoxygenase (5-LO) for avail-
able arachoidonic acid. Zileuton, an inhibitor of 5-LO, increases prostaglandins 
synthesis and when administered 1 month after Mtb infection, when the onset of 
inflammation has likely dissipated, can significantly increase survival in mice [28]. 
A key factor for the development of HDTs is timing: a therapeutic agent that has 
beneficial affects during the early stages of Mtb infection may have no benefit, or 
even be harmful, during latency or late stages of infection.

A key component of resolution is the induction of apoptosis and the clearance of 
dead cells. Neutrophils, primary drivers during the onset of inflammation, are 
induced to go through apoptosis by a series of pro-apoptotic factors and then phago-
cytosed by macrophages by efferocytosis [29]. When this process is perturbed dur-
ing uncontrolled inflammation, neutrophils instead go through necrosis, a poorly 
regulated form of cell death. Necrotic cells release damage-associated molecular 
patterns (DAMPs) and other pro-inflammatory molecules that further exacerbate 
pathogenesis. Mtb actively induces necrosis of infected cells and blocks apoptosis. 
Several studies have shown that infected apoptotic neutrophils activate macrophages 
leading to phagosomal maturation and significantly decreased Mtb burden [30, 31]. 
Mtb, by way of ESAT-6 and its secretion system ESX-1, instead induces necrosis of 
neutrophils, releasing viable Mtb into the extracellular environment where it can be 
phagocytosed by neighboring macrophages. An attenuated strain of Mtb lacking 
ESX-1 secretion system stays within the apoptotic neutrophil as it phagocytosed by 
the macrophage unable to block phagosome maturation [31]. Better understanding 
the mechanisms of Mtb-induced necrosis in order to identify potential HDT targets 
is a priority. Two that have been identified are reactive oxygen species (ROS) that 
are required for Mtb induced necrosis in neutrophils, and peroxisome proliferator- 
activated receptor (PPAR)γ a nuclear receptor known to be necessary for Mtb patho-
genesis by limiting apoptosis. Early in vitro studies of inhibitors of ROS and Mcl-1, 
a downstream effector of PPARγ, in macrophages have decreased Mtb levels com-
pared to untreated controls [31, 32].
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 Immunosupression

An important question needing to be addressed by HDT is whether negative regula-
tory immune cells and pathways utilized by Mtb to subvert host immunity and by 
the host to protect against deleterious inflammatory responses can be targeted thera-
peutically. As highlighted above, blocking or removing brakes, “checkpoint inhibi-
tion”- on T cell responses has had no beneficial effect on Mtb burden, but increases 
inflammation and tissue damage in the lung [19, 20, 22]. The concept of “disease 
tolerance” whereby the host dampens the inflammatory and adaptive immune 
response to the presence of a persistent infectious pathogen so as to protect against 
tissue damage has started to be explored in the context of TB [33]. Utilizing HDTs 
that are meant to induce host immunity in this context may have deleterious effects, 
particularly in the absence of an effective antimicrobial agent. An example of this is 
a recent study testing a matrix metalloproteinase (MMP) inhibitor as a single ther-
apy HDT for TB [34]. Expecting to observe decreased pulmonary cavitation, the 
authors instead reported an increased cavitation, heightened immunopathology, and 
decreased survival. A second study that used other MMP inhibitors and included 
antibiotics was able to show a significant decrease in bacterial burden in mice given 
antibiotics with MMP inhibitors compared to antibiotics alone [35]. Thus, the con-
text of when and how an HDT is used is an essential component of their development.

Myeloid-derived suppressor cells (MDSCs) are a regulatory cell population that 
acts to resolve inflammation and return to homeostasis [36]. They produce anti- 
inflammatory cytokines (e.g. IL-10), generate ROS and nitric oxide, suppress T cell 
proliferation by removing arginine from the extracellular environment, and recruit 
Tregs. The cancer field has been at the forefront of MDSC research, identifying new 
phenotypic markers, describing cellular functions, and identifying ways that they 
are used by tumors to grow and metastasize [37]. Initial observations during Mtb 
infection have found that MDSC levels rise in the blood during active disease and 
decrease after successful therapy [38]. Intriguingly, Mtb may be phagocytosed by 
MDSCs and can evade host immunity within these cells [39]. As a potential HDT 
target, all-trans retinoic acid (ATRA) differentiates MDSCs into mature macro-
phages, DCs, and neutrophils, decreased Mtb burden, and improved lung function 
in mice. While extensive research is needed to characterize the role of MDSCs at 
different stages of infection, exploring them as a potential HDT target has a strong 
rationale.

 Immunometabolism

All cells require energy to function and replicate and immune cells are no exception. 
Over the past few years, there has been a renewed interest and appreciation in the 
metabolic activity of immune cells and how its directly intertwined with their func-
tionality [40, 41]. A naïve T cell upon activation requires the energy and biosynthetic 
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molecules needed for proliferation, while a long-term resident memory T cell lives in 
a more quiescent state with energy requirements focused on long-term metabolic 
stability. Proliferating T cells utilize aerobic glycolysis for their energy needs that is 
an inefficient source of ATP but allows for the synthesis of needed biomolecules (e.g. 
amino acids, fatty acids). Memory cells use the more efficient oxidative phosphoryla-
tion as their energy source. Other immune cells, including macrophages and dendritic 
cells, go through similar metabolic reprogramming in response to immune function 
changes. Primary drivers of this metabolic programming are the signaling molecules 
mTOR and AMPK. Signaling through mTOR places the cell in an anabolic state, 
while AMPK alerts the cell to low ATP levels and reprograms the cell into a catabolic 
state [42]. The role of these signaling molecules, and their potential as HDT targets, 
is currently being studied with both an mTOR inhibitor targeting drug (everolimus) 
and metformin a drug with several reported mechanisms including AMPK activation.

Additional aspects of immunometabolism are also being tested as HDT targets. 
Tryptophan is an essential amino acid that humans obtain through diet and is needed 
by proliferating T cells [43]. To suppress T cell activity tryptophan can be removed 
and metabolized by neighboring cells. Tryptophan deprivation has been proposed as 
a driver of immune suppression in the tumor microenvironment. Indoleamine-2,3- 
dioxygenase (IDO) produces kyneurenine among other metabolites from trypto-
phan and has become the focus of therapeutically targeting tryptophan metabolism 
[43]. In Mtb granulomas, IDO levels are elevated, and studies have indicated a link 
between bacterial burden and IDO levels [44]. In macaques, the use of the IDO 
inhibitor 1-methyl-tryptophan resulted in decreased Mtb growth, improved pulmo-
nary pathology, and increased T cell numbers [45]. Also, granulomas were reorga-
nized, allowing for T cells to migrate into the granuloma. The results suggest that 
HDTs that allow for improved penetration into granulomas may be promising agents.

How the metabolic activity of an immune cell correlates with its functionality is 
an open and important question for immunometabolism, although the mitochondria 
and the generation of ROS are known to be involved [46]. Some metabolites may 
also directly signal within the cell. For example, the TCA metabolite itaconate 
inhibits the release of both IL-1β and Type I Interferons linking itaconate to the 
known role of the two cytokines in the regulation of inflammation during TB [47]. 
Studies with immune-responsive gene 1(Irg1), a mitochondrial enzyme that pro-
duces itaconate, indicate that in the absence of itaconate mice quickly succumb to 
Mtb infection with increased levels of inflammation and pathology [48].

 The Modern HDT Clinical Pipeline

For an HDT agent to go into clinical development, animal data showing an improve-
ment in bacterial load, immunopathology, and overall survival should be necessary. 
The question of exactly which animal model(s) are most appropriate is an open 
debate. The vast majority of in vivo HDT research has been done in small animal 
models, particularly murine. Imatinib, statins, metformin, MMP inhibitors, --the 
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phosphodiesterase-4 (PDE-4) inhibitor CC-3052, and zileuton have all been studied 
in mice with some also tested in guinea pigs. Only a few potential HDTs have been 
studied in non-human primates (NHPs) while several have gone on to clinical devel-
opment without NHP data. Furthermore, the zebrafish model has also identified a 
few potential HDTs [49, 50]. None of the models produce an infection identical to 
what is observed in human tuberculosis, thus determining what type of animal stud-
ies should be necessary for further development as an HDT is difficult. Many ques-
tions remain unanswered. If a potential HDT does not show a benefit in small animal 
models, should the agent not be studied in the costlier NHP model? What criteria 
should be used to advance agents to clinical studies? As research into HDTs devel-
ops and allows correlation of findings from clinical trials with animal models, we 
will be better able to answer these questions.

The current pipeline of HDT development has three segments. Agents (a) in 
clinical development (b) being tested in small vertebrate animals and monkeys or 
(c) being tested in vitro. The HDTs in some form of clinical development include 
statins, imatinib, metformin, everolimus, and CC-3052. How this group was first 
identified and tested is enlightening for how future HDTs may be developed. 
Metformin was originally identified based off an in vitro screen of 13 autophagy and 
AMPK-activating drugs in BCG challenged THP-1s, a human macrophage cell line. 
While metformin was not the only drug screened found to have an ameliorative 
effect on bacterial burden, it has been in wide clinical use for decades, so it was 
selected for further development [51]. Statins were initially tested in human PBMCs 
and macrophages and then in mice because of the known role of host cholesterol in 
Mtb pathogenesis, and statins immunomodulatory capabilities [52]. Imatinib was 
identified through a focused analysis of the role of receptor tyrosine kinases in TB 
[53]. As a well described targeted anti-inflammatory, CC-3502 was tested in vivo in 
the presence of INH [54]. Everolimus was also initially tested as a well-established 
anti-inflammatory and inducer of autophagy [55]. Clinical evaluation of these drugs 
for TB treatment is ongoing, thus extrapolating on their ultimate effectiveness as 
HDTs is not possible. However, these studies have laid a foundation for how poten-
tial HDTs can be identified and developed for clinical testing.

Most of the current HDTs in clinical development were chosen from an in vitro 
testing, either as a targeted study of a specific drug or class, or from a screening of 
several drug classes. These studies usually utilize either monocyte-derived macro-
phages from humans or mice, or a macrophage cell line, primarily human (e.g. 
THP-1s). While these assays have resulted in identification of promising candidates, 
several have produced false positive results (23). Reliance on monocellular in vitro 
assays to establish initial evidence on the potential of HDT is problematic and 
should be replaced with multicellular assays. Several in vitro human granuloma 
models have been developed and are starting to be used to test antibiotics and HDTs 
[56]. While these assays do not completely recapitulate the in vivo human granu-
loma environment, they do provide additional complexity over standard in vitro 
models through the addition of multiple types of human immune cells, and fibro-
blasts. Thus, making them an extremely useful model for HDT development. They 
may aid in improving the translational quality of in vitro discoveries.
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When to stop developing a potential HDT is a pertinent question for determining 
the progression of drug candidates into clinical development. Selecting agents 
approved as safe for use for other diseases will help mitigate risk. However, under-
standing the impact of drug-drug interactions between the HDT agent and TB and 
HIV treatment drugs is also critical. Positive or negative results for an HDT agent 
given without concomitant TB treatment should not be used to make critical deci-
sions concerning further evaluation.

 Conclusion

Mtb actively disrupts host immune cellular pathways to create a favorable environ-
mental niche as it establishes infection. The overarching goal of HDT is to reverse 
or compensate for this immune dysregulation to allow the host immune system to 
improve TB treatment outcomes. As you will read throughout this book, HDT can-
didates represent a broad spectrum of agents targeting a variety of cells and path-
ways, complicating their clinical development and direct comparison. They all are 
intended to restore balanced regulation among immune cell metabolic pathways, 
between pro- and anti-inflammatory pathways, necrosis and apoptosis, and activa-
tion and inhibition of specific immune cell populations. Achieving such balance is 
the key to harnessing the potential of HDT for infectious diseases.
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