
Always Have a Backup Plan: Fully Secure
SynchronousMPCwithAsynchronous Fallback

Erica Blum1(B), Chen-Da Liu-Zhang2(B), and Julian Loss1(B)

1 University of Maryland, College Park, USA
{erblum,jloss}@cs.umd.edu

2 ETH Zurich, Zürich, Switzerland
lichen@inf.ethz.ch

Abstract. Protocols for secure Multi-Party Computation (MPC) can be
classified according to the underlying communication model. Two promi-
nent communication models considered in the literature are the syn-
chronous and asynchronous models, which considerably differ in terms
of the achievable security guarantees. Synchronous MPC protocols can
achieve the optimal corruption threshold n/2 and allow every party to give
input, but become completely insecure when synchrony assumptions are
violated. On the other hand, asynchronous MPC protocols remain secure
under arbitrary network conditions, but can tolerate only n/3 corruptions
and parties with slow connections unavoidably cannot give input.

A natural question is whether there exists a protocol for MPC that
can tolerate up to ts < n/2 corruptions under a synchronous network and
ta < n/3 corruptions even when the network is asynchronous. We answer
this question by showing tight feasibility and impossibility results. More
specifically, we show that such a protocol exists if and only if ta+2ts < n
and the number of inputs taken into account under an asynchronous net-
work is at most n − ts.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties P = {P1, . . . , Pn}
to compute an arbitrary function of their private inputs, even if an adversary
corrupts some of the parties. Intuitively, security in MPC means that the parties’
inputs remain secret (apart from what is revealed by the computed output), and
that the computed output is correct.

One can classify the results in MPC according to the underlying communi-
cation model. The synchronous model assumes that there is some parameter Δ
known to all parties such that whenever a party sends a message, the recipient
is guaranteed to receive it within time at most Δ. It is possible to achieve very
strong security guarantees in this model; for example, prior work has shown how
to achieve MPC with full security, where parties are guaranteed to obtain the
correct output, for up to ts < n

2 corruptions [2,3,6,15,20–22,24,27,30,31,33,46].
However, one can argue that the synchrony assumption is too strong: if an hon-
est party P doesn’t manage to send a message within Δ delay, it is considered
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-56880-1 25) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12171, pp. 707–731, 2020.
https://doi.org/10.1007/978-3-030-56880-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56880-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1007/978-3-030-56880-1_25
https://doi.org/10.1007/978-3-030-56880-1_25

708 E. Blum et al.

dishonest in the synchronous model. As a consequence, synchronous protocols
generally lose all security guarantees (e.g., parties can jointly reconstruct P ’s
secret-shared input) if the network delays are greater than expected. This is of
particular concern in real-world deployments, where it may not be possible to
guarantee ideal network conditions at all times.

In the asynchronous model, the assumption of a known upper bound on
network delay is dropped, so that the network delay can be arbitrarily large.
The asynchronous model is therefore a safe choice for modeling even the most
unpredictable real-world networks; however, prior work has shown that optimal
security guarantees in this model are necessarily weaker than in the synchronous
model: MPC can be achieved in the asynchronous model only for ta < n

3 cor-
ruptions, and the output is not guaranteed to take into account all inputs into
the computation [4,7,17,19,34].

In this paper, we investigate MPC protocols that keep strong security guar-
antees under both communication models. More specifically, let ta < n

3 and
ts < n

2 . We ask the following question:

Is there a protocol for MPC that is secure under ts corruptions under a syn-
chronous network, and ta corruptions under an asynchronous network?

We completely answer this question by showing tight feasibility and impos-
sibility results:

Feasibility Result. We give an MPC protocol that is fully secure up to ts
corruptions under a synchronous network and up to ta corruptions under an
asynchronous network, as long as ta + 2ts < n. The number of inputs taken into
account in the latter case is n − ts.

Optimality of Our Protocol. We show that our protocol is tight with respect
to both the threshold tradeoffs ta and ts, and also the number of inputs taken
into account. More concretely, we show:

– For any ts, any MPC protocol which achieves full security up to ts cor-
ruptions under a synchronous network cannot take into account more than
n − ts inputs when run over an asynchronous network, even if all parties are
guaranteed to be honest in this case.

– For any ta + 2ts ≥ n, there is no MPC protocol which gives full security up
to ts corruptions under a synchronous network, and where all parties output
the same value up to ta corruptions under an asynchronous network.

1.1 Technical Overview

In this section, we briefly sketch our protocol for MPC that achieves full security
up to ts corruptions under a synchronous network and up to ta corruptions
under an asynchronous network, for any 0 ≤ ta < n

3 ≤ ts < n
2 satisfying ta +

2ts < n. Note that we impose ts ≥ n
3 , because otherwise one can use existing

asynchronous MPC protocols (e.g. [34]), which already achieve such security
guarantees, i.e., are fully secure under an asynchronous network (and hence also

Always Have a Backup Plan: Fully Secure Synchronous MPC 709

a synchronous network), and moreover take into account all inputs when given
some initial synchronous rounds.

At a very high level, we run two sub-protocols Πsmpc and Πampc one after
the other, where Πsmpc is a ts-secure synchronous protocol and Πampc is a ta-
secure asynchronous protocol (e.g. [7,17,34]). Conceptually, a key challenge is
that parties are not able to obtain output in both protocols, as this would violate
privacy. Thus, parties need to agree on whether to run the second sub-protocol.
For that, the key is that the protocol Πsmpc gives guarantees even when the
network is asynchronous. More concretely, Πsmpc achieves unanimous output
up to ta corruptions under an asynchronous network. Intuitively, this means that
the protocol is secure, except the fact that either all parties learn the correct
output, or all parties obtain ⊥ as the output.

When the network is synchronous, security of the overall protocol is inher-
ited from the first sub-protocol. In the case where the network is asynchronous,
parties either learn the correct output from the first sub-protocol or all parties
obtain ⊥ and can safely execute the second sub-protocol.

Synchronous MPC with Asynchronous Unanimous Output. In order to
construct the first sub-protocol, we modify a synchronous MPC protocol that
uses threshold homomorphic encryption [22,27]. The original protocol provides
full security up to ts < n

2 corruptions in a synchronous network.
Let us briefly recall the high-level structure of the original protocol [22,27].

The protocol is based on a threshold version of the Paillier cryptosystem [43].
For a plaintext a, let us denote a an encryption of a. The cryptosystem is homo-
morphic: given encryptions a, b, one can compute an encryption of a + b, which
we denote a � b. Similarly, from a constant plaintext α and an encryption a one
can compute an encryption of αa, which we denote α � a.

The protocol starts by having each party publish encryptions of its input
values, as well as zero-knowledge proofs that it knows these values. Then, parties
compute addition and multiplication gates to obtain a common ciphertext, which
they jointly decrypt using threshold decryption. Any linear operation (addition
or multiplication by a constant) can be performed non-interactively, due to the
homomorphism property of the threshold encryption scheme. Given encryptions
a, b of input values to a multiplication gate, parties can compute an encryption
of c = ab as follows:

1. Each Pi chooses a random di ∈ Zn and uses a byzantine broadcast protocol
to distribute encryptions di and dib.

2. Parties prove (in zero-knowledge) knowledge of the plaintext di and that dib
encrypts the correct value. Let S be the subset of parties succeeding in both
proofs.

3. Parties compute a � (�i∈Sdi) and decrypt it using a threshold decryption.
4. Parties set c = (a +

∑
i∈S di) � b � ((�i∈Sdib)).

Intuitively, the protocol works because 1) honest parties have agreement on
the ciphertext to decrypt after evaluating the circuit, and 2) only ciphertexts or
random values are revealed.

710 E. Blum et al.

When the above protocol is executed over an asynchronous network, all se-
curity guarantees are lost. This is because synchronous broadcast protocols do
not necessarily give any guarantees when run over an asynchronous network. As
a result, parties lose agreement in critical points in the protocol. For example,
parties can receive different sets of encrypted inputs during input distribution,
which can lead to privacy violations if the mismatching inputs are decrypted.
Moreover, parties must reach agreement on S, and S must contain at least one
honest party contributing to the reconstructed random value to ensure that the
value is random and unknown to the adversary. For this, it is essential that
parties have agreement on whether a zero-knowledge proof was successful or
not. Finally, parties need to reach agreement on which ciphertext to decrypt, or
whether to decrypt at all.

To solve the problems above, we replace the problematic sub-protocols with
versions that achieve certain guarantees even when the network is asynchronous.
More concretely, we will make use of broadcast, byzantine agreement and asyn-
chronous common subset sub-protocols. The broadcast protocol will ensure that
encrypted inputs from honest parties can only lead to correct ciphertexts. When
used with the byzantine agreement protocol proposed in [8], it will allow parties
to reach agreement on the set S for the multiplication gates. Finally, we make
use of the enhanced asynchronous common subset sub-protocol in [9] at the end
of the circuit computation to decide whether or not parties should proceed to
decrypt a ciphertext, or output ⊥.

1.2 Related Work

Despite being a very natural direction of research, protocols resilient to both
synchronous and asynchronous networks have only begun to be studied in rela-
tively recent works. The closest related work is the recent work by Blum et al. [8]
which considers the problem of byzantine agreement in a ‘hybrid’ network model.
The authors prove that byzantine agreement ts-secure under a synchronous net-
work and ta-secure under an asynchronous network is possible if and only if
ta + 2ts < n. The work was recently further extended to the problem of state-
machine replication [9]. Our work extends both above works to the problem
of secure multi-party computation, and in particular, introduces techniques to
protect privacy of inputs in the hybrid network setting.

Another close related work is the work by Guo et al. [32], which considers
a weakened variant of the classical synchronous model. Here, an attacker can
temporarily disconnect a subset of parties from the rest of the network. Guo et
al. gave byzantine agreement and multi-party computation protocols tolerating
the optimal corruption threshold in this model, and Abraham et al. [1] achieve
similar guarantees for state-machine replication. The main difference between
these works and ours is that their protocols need to assume synchrony in part
of the network. In contrast, our protocols give guarantees even if the network is
fully asynchronous.

Further related work for the problem of byzantine agreement protocols
include the work by Malkhi et al. [41] which considers protocols that provide

Always Have a Backup Plan: Fully Secure Synchronous MPC 711

guarantees when run in synchronous or partially synchronous networks, and the
work by Liu et al. [38] which designs protocols resilient to malicious corrup-
tions in a synchronous network, and fail-stop corruptions in an asynchronous
network. Kursawe [37] shows a protocol for asynchronous byzantine agreement
that reaches agreement more quickly in case the network is synchronous.

A line of works [39,40,44,45] has recently investigated protocols that achieve
responsiveness. These protocols operate under a synchronous network, but in
addition give the guarantee that parties obtain output as fast as the actual
network delay allows. None of these works provide security guarantees when the
network is not synchronous.

2 Model

Our protocols are proven secure in the universally composable (UC) framework
[13] (see Section A for a summary).

2.1 Setup

We consider a setting with n parties P = {P1, . . . , Pn}. We denote κ the security
parameter.

Common Reference String. We assume that the parties have a common ref-
erence string (CRS). The CRS is used to realize the bilateral zero-knowledge UC
functionalities.

Digital Signatures. We assume that parties have a public-key infrastructure
available, i.e., all parties hold the same vector of public keys (pk1, . . . , pkn), and
each party Pi holds the secret key ski associated with pki. This allows parties
to sign values.

Definition 1. A digital signature scheme is a tuple of algorithms (Gen,Sign,Ver)
such that:

– Key generation: On input 1κ, the key generation algorithm outputs (pk, sk) =
Gen(1κ) a pair of public and secret key.

– Signature: Given a secret key sk and a message x, the signing algorithm
outputs σ = Signsk(x) a signature of message x.

– Verification: Given a public key pk, a message x and a signature σ, the verifi-
cation algorithm outputs Verpk(x, σ) = 1 if and only if σ is a correct signature
of x.

We require that the signature scheme is correct and unforgeable against cho-
sen message attacks.

Threshold Encryption. We assume that parties have a threshold additively
homomorphic encryption setup available. That is, it provides to each party Pi a
global public key ek and a private key share dki.

712 E. Blum et al.

Definition 2. A threshold homomorphic encryption scheme is a public-key en-
cryption scheme which has the following properties:

– Key generation: The key generation algorithm is parameterized by (t, n) and
outputs (ek, dk) = Gen(t,n)(1κ), where ek is the public key, and dk = (dk1,
. . . , dkn) is the list of private keys.

– Encryption: Given ek and a plaintext a one can compute an encryption a =
Encek(a) of a.

– Decryption: Given a ciphertext c and a secret key share dki, there is an
algorithm that outputs di = DecSharedki(c), such that (d1, . . . , dn) forms a
t-out-of-n sharing of the plaintext m = Decdk(c). Moreover, with t decryption
shares {di}, one can reconstruct the plaintext m = Rec({di}).

– Additively homomorphic: Given ek and two encryptions a ∈ Encek(a) and
b ∈ Encek(b), one can efficiently compute an encryption a + b ∈ Encek(a + b).
We write a + b = a + b.

– Multiplication by constant: Given ek, a plaintext α and an encryption a ∈
Encek(a), one can efficiently compute a random encryption αa ∈ Encek(αa).
We write αa = α � a.

Such a threshold encryption scheme can be based on, for example, the Paillier
cryptosystem [43] (see Section B). We use the threshold encryption scheme as a
basic tool in the MPC protocol, following the approach in [22,27].

2.2 Communication Network and Adversary

We consider a complete network of authenticated channels. Our protocols oper-
ate in two possible settings: synchronous or asynchronous.

In the synchronous setting, all parties have access to synchronized clocks and
all messages are guaranteed to be delivered within some known upper bound
delay Δ. Within Δ, the adversary can schedule the messages arbitrarily. In
particular, the adversary is rushing, i.e., within the same round, the adversary is
allowed to send its messages after seeing the honest parties’ messages. Sometimes
it is convenient to describe a protocol in rounds, where each round r refers to
the interval of time (r − 1)Δ to rΔ. In such case, we say that a party receives a
message in round r if it receives the message within that time interval. Moreover,
we say a party sends a message in round r when it sends the message at the
beginning of the round, i.e., at time (r − 1)Δ.

In the asynchronous setting, both assumptions above are removed. That is,
parties do not have access to synchronized clocks, and the adversary is allowed
to arbitrarily schedule the delivery of the messages. However, we assume that
all messages are eventually delivered (i.e., the adversary cannot drop messages).

We consider a static adversary who corrupts parties in an arbitrary manner
at the beginning of the protocol.

Always Have a Backup Plan: Fully Secure Synchronous MPC 713

3 Definitions

3.1 Broadcast

Broadcast allows a designated party called the sender to consistently distribute
a message among a set of parties.

Definition 3 (Broadcast). Let Π be a protocol executed by parties P1, . . . , Pn,
where a designated sender Ps initially holds an input v, and parties terminate
upon generating output.

– Validity: Π is t-valid if the following holds whenever up to t parties are
corrupted: if Ps is honest, then every honest party which outputs, outputs v.

– Weak-validity: Π is t-weakly valid if the following holds whenever up to t
parties are corrupted: if Ps is honest, then every honest party which outputs,
outputs v or ⊥.

– Consistency: Π is t-consistent if the following holds whenever up to t parties
are corrupted: every honest party which outputs, outputs the same value.

– Liveness: Π is t-live if the following holds whenever up to t parties are cor-
rupted: every honest party outputs a value.

If Π is t-valid, t-consistent and t-live, we say that it is t-secure.

In the asynchronous setting, one can formally prove that the strong broadcast
guarantees as in Definition 3 cannot be achieved [10,11]. Intuitively, the reason is
that one cannot distinguish between a dishonest sender not sending messages, or
an honest sender’s messages being delayed. Hence, a useful primitive is a reliable
broadcast protocol, which achieves the same guarantees as a broadcast protocol,
except that the liveness property is relaxed and divided into two properties.

Definition 4 (Reliable Broadcast). Let Π be a protocol executed by parties P1,
. . . , Pn, where a designated sender Ps initially holds an input v, and parties
terminate upon generating output.

– Validity: Π is t-valid if the following holds whenever up to t parties are cor-
rupted: if Ps is honest, then every honest party outputs v.

– Consistency: Π is t-consistent if the following holds whenever up to t parties
are corrupted: either no honest party terminates, or else all honest parties
output the same value.

Observe that, in contrast to Definition 3, when the sender is dishonest, it is
allowed that no honest party terminates.

3.2 Byzantine Agreement

In a byzantine agreement protocol, each party Pi starts with a value vi. The
protocol allows the set of parties to agree on a common value. The achieved
guarantees are the same as in broadcast (see Definition 3), except that validity
is adapted accordingly.

714 E. Blum et al.

Definition 5 (Byzantine Agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi initially holds an input vi, and parties terminate
upon generating output.

– Validity: Π is t-valid if the following holds whenever up to t parties are cor-
rupted: if every honest party has the same input value v, then every honest
party that outputs, outputs v.

– Consistency: Π is t-consistent if the following holds whenever up to t parties
are corrupted: every honest party which outputs, outputs the same value.

– Liveness: Π is t-live if the following holds whenever up to t parties are cor-
rupted: every honest party outputs a value.

If Π is t-valid, t-consistent and t-live, we say that it is t-secure.

3.3 Asynchronous Common Subset

A protocol for the asynchronous common subset (ACS) problem [7,9,12,42]
allows n parties, each with an initial input, to agree on a subset of the inputs. For
this primitive, we do not assume that parties terminate upon generating output,
that is, even after generating output parties are allowed to keep participating in
the protocol indefinitely.

Definition 6 (ACS). Let Π be a protocol executed by parties P1, . . . , Pn, where
each party initially holds an input v, and parties output sets of size at most n.

– Validity: Π is t-valid if the following holds whenever up to t parties are cor-
rupted: if all honest parties start with the same input v, then every honest
party which outputs, outputs {v}.

– Consistency: Π is t-consistent if the following holds whenever up to t parties
are corrupted: every honest party which outputs, outputs the same set.

– Liveness: Π is t-live if the following holds whenever up to t parties are cor-
rupted: every honest party outputs.

– Validity liveness: Π is t-live valid if the following holds whenever up to t
parties are corrupted: If all honest parties start with the same input, then
every honest party outputs.

– Set quality: Π has (t, h)-set quality if the following holds whenever up to t
parties are corrupted: if an honest party outputs a set, it contains the inputs
of at least h honest parties.

3.4 Multi-Party Computation

At a high level, a protocol for multi-party computation (MPC) allows n parties
P1, . . . , Pn, where each party Pi has an initial input xi, to jointly compute a
function over the inputs f(x1, . . . , xn) in such a way that nothing beyond the
output is revealed.

We consider different types of security guarantees for our MPC protocols.
The first one is the strongest guarantee that an MPC protocol can offer: MPC

Always Have a Backup Plan: Fully Secure Synchronous MPC 715

with guaranteed output delivery, or full security (cf. [3,6,15,22,31,46]). Here,
honest parties are guaranteed to obtain the correct output. Formally, in UC this
is modeled as the protocol realizing the ideal functionality where each party Pi

inputs xi to the functionality, and it then outputs f(x1, . . . , xn) to the parties.
When the network is asynchronous, it is provably impossible that the com-

puted function takes into account all inputs from honest parties [4,7,17,19,34].
The reason is that one cannot distinguish between a dishonest party not send-
ing its input, or an honest party’s input being delayed. Hence, we say that a
protocol achieves L-output quality, if the output to be computed contains the
inputs from at least L parties. Traditional asynchronous protocols in the litera-
ture (e.g. [5,7,34]) achieve (n − t)-output quality under t corruptions, since the
computed output ignores up to t inputs. Formally this is modelled in the ideal
functionality as allowing the ideal adversary to choose a subset S of L parties.
The functionality then computes f(x1, . . . , xn), where xi = vi is the input of Pi

in the case that Pi ∈ S, and otherwise xi = ⊥.

Functionality Fsec,L
sfe

Fsfe is parameterized by a set P of n parties and a function f : ({0, 1}∗∪{⊥})n →
({0, 1}∗)n. For each Pi ∈ P, initialize the variables xi = yi = ⊥. Set S = P.

1: On input (Input, v) from Pi ∈ P, if Pi ∈ S, set xi = v and send a message
(Input, Pi) to the adversary.

2: On input (OutputSet, S′) from the ideal adversary, where S′ ⊆ P and
|S′| = L, set S = S′ and xi = ⊥ for each Pi /∈ S.

3: Once all inputs from honest parties in S have been input, set each yi =
f(x1, . . . , xn).

4: On input (GetOutput) from Pi, output (Output, yi, sid) to Pi.

In addition to MPC with full security, we also consider weaker notions of
security. In MPC with selective output [18,35], the ideal world adversary can
choose any subset of parties to receive ⊥, instead of the correct output. The
last type of security we consider is called MPC with unanimous output [29,31].
Under this definition, the adversary is permitted to choose whether all honest
parties receive the correct output or all honest parties receive ⊥ as output; as
such it is slightly stronger than MPC with selective output, but weaker than full
security.

Let us denote the functionality Fsout,L
sfe (resp. Fuout,L

sfe), the above function-
ality, where the adversary can selectively choose any subset of parties to obtain
⊥ as the output (resp. choose that either all honest parties receive f(x1, . . . , xn)
or ⊥).

Definition 7. A protocol π achieves full security (resp. selective output; unan-
imous output) with L output-quality if it UC-realizes functionality Fsec,L

sfe

(Fsout,L
sfe ; Fuout,L

sfe).

716 E. Blum et al.

Since protocols run in a synchronous network typically achieve n-output
quality, we implicitly assume that all synchronous protocols discussed achieve
n-output quality (unless otherwise specified).

Weak Termination. In general, traditional protocols for MPC require that the
protocol terminates (halts). In this paper, we capture a slightly weaker version
as a property of a protocol: we say that a protocol has weak termination, if
parties are guaranteed to terminate upon receiving an output different than ⊥,
but do not necessarily terminate if the output is ⊥.

4 Synchronous MPC with Asynchronous Unanimous
Output and Weak Termination

In this section, we show a protocol Πts,ta
smpc that achieves full security up to ts

corruptions when the network is synchronous, and achieves unanimous output
with weak termination up to ta corruptions when the network is asynchronous,
for any 0 ≤ ta < n

3 ≤ ts < n
2 satisfying ta + 2ts < n. The protocol relies on a

number of primitives:

– Πts,ta
bc is a broadcast protocol that is ts-secure when run in a synchronous

network, and is ta-weakly valid and ta-live when run in an asynchronous
network.

– Πts,ta
ba is a byzantine agreement protocol that is ts-secure when run in a

synchronous network, and is ta-secure when run in an asynchronous network.
– Πts,ta

acs is an asynchronous common subset protocol that is ts-valid and ts-live
valid when run in a synchronous network, and is ta-consistent, ta-live and has
(ta, 1)-set quality when run in an asynchronous network.

– Πts,ta
zk is a multi-party zero-knowledge protocol that allows a party Pi to prove

knowledge of a witness w for a statement x satisfying a certain relation R
towards all parties. The protocol achieves full security up to ts corruptions
when the network is synchronous, and achieves security with selective abort
up to ta corruptions when the network is asynchronous.

In the following, we show instantiations for each of the sub-protocols.

4.1 Broadcast

We use the Dolev-Strong protocol [8,28] to achieve a broadcast protocol that
is ts-secure when run in a synchronous network, and is ta-weakly valid and ta-
live when run in an asynchronous network. The idea is quite simple: we run
the Dolev-Strong protocol for ts + 1 rounds and output v if v is the only value
accepted, and otherwise ⊥. In the protocol, we say that a message (v,Σ) at
round r is valid if Σ contains r signatures, where one of them is from the sender
and the other r − 1 from distinct additional parties.

Always Have a Backup Plan: Fully Secure Synchronous MPC 717

Protocol Πts,ta
bc

Sender Ps has input v. Each party Pi keeps local variables Σi, Ωi := ∅.

Round 1. Ps signs its input v to obtain a signature σs, and sends (v, {σs}) to all
parties.

Round 1 ≤ r ≤ ts. Each Pi does: Upon receiving a valid message (v, Σ), add v
to Ωi. Compute a signature σi on v and let Σi := Σi ∪ {σi}. Send (v, Σi) to
all parties in the next round.

Output determination

Round ts +1. Each Pi does: Upon receiving a valid message (v, Σ), add v to Ωi.
Then, if Ωi contains exactly one value v′, output v′ and terminate. Otherwise,
output ⊥ and terminate.

Lemma 1. Let n, ts, ta be such that ta, ts < n. Πts,ta
bc is a broadcast protocol

that is ts-secure when run in a synchronous network, and is ta-weakly valid and
ta-live when run in an asynchronous network.

Proof. Security under a synchronous network is achieved via the standard anal-
ysis of the Dolev-Strong protocol: If the sender is honest, each honest party Pi

adds the sender’s input v to Ωi, and no honest party adds any other value.
Moreover, if an honest Pi adds v to Ω at round r ≤ ts, every honest Pj adds v
at round r +1. And if Pi adds v at round ts +1, then there are ts +1 signatures
on v and hence an honest Pk added v at some round r′ ≤ ts and every honest
party added v at round r′ + 1. If the network is asynchronous, ta-liveness is
trivial, since every honest party outputs at (local) time (ts + 1)Δ. The protocol
is also ta-weakly valid because the adversary cannot forge signatures from the
sender Ps.

��

4.2 Byzantine Agreement

In [8], the authors show a byzantine agreement protocol that is ts-secure when
run in a synchronous network, and is ta-secure when run in an asynchronous
network. We briefly sketch the construction here.

At a high level, their protocol consists of two phases: a round-based BA
followed by an event-based BA. An honest party Pi with input vi uses vi as
their input for the round-based phase. If the round-based phase terminates with
output v′ ∈ {0, 1} within some (local) time limit, Pi uses v′ as input for the event-
based phase. (The timeout is chosen such that the honest parties are guaranteed
to receive output from the round-based BA before the timeout when the network
is synchronous and at most ts parties are corrupted.) Otherwise, if the round-
based phase times out without producing boolean output, Pi proceeds directly
to the event-based phase, using their original input vi as their input. Pi then
outputs the output they receive from the event-based phase.

718 E. Blum et al.

Intuitively, when the network is synchronous and there are ts corruptions,
the security guarantees for the full protocol are primarily inherited from the
round-based BA sub-protocol (with the caveat that the event-based BA sub-
protocol guarantees ts-validity and therefore preserves the results of the first
phase). When the network is asynchronous and there are ta corruptions, the
round-based BA protocol need only be ta-weakly valid, after which the desired
security guarantees follow from the security properties of the event-based BA
sub-protocol. We state the following lemma. The proof can be found in [8].

Lemma 2. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2ts < n.
There is a protocol Πts,ta

ba satisfying the following properties:

1. When run in a synchronous network, it is ts-secure.
2. When run in an asynchronous network, it is ta-secure.

4.3 Asynchronous Common Subset

We describe the protocol Πts,ta
acs presented in [9], which is an asynchronous com-

mon subset protocol that is ts-valid and ts-live valid when run in a synchronous
network, and is ta-consistent, ta-live and has (ta, 1)-set quality when run in an
asynchronous network.

The protocol is based on previous asynchronous common subset protocols
[7,12,42], but the output decision differs. The general idea is that parties run n
executions of Bracha’s reliable broadcast protocol [10], where each party Pi acts
as the sender in each execution, followed by n executions of byzantine agreement
to agree on a subset of parties that finished the reliable broadcast protocol. If a
party sees n − ts broadcasts terminate on the same value, it outputs this value.
Otherwise, it waits until all byzantine agreement protocols have terminated and
then outputs based on the set C of senders for whom the corresponding BA
output 1: If there is a majority v of broadcasted values from parties in C, output
v, and otherwise output the union of all broadcasted values from parties in C.

In order to achieve the guarantees described above, the protocol needs a reli-
able broadcast protocol which, under an asynchronous network, achieves validity
up to ts corruptions, and consistency up to ta corruptions. Let us denote RBCi the
reliable broadcast protocol where Pi acts as the sender, and BAi the byzantine
agreement protocol which outputs whether RBCi has terminated or not.

Protocol Πts,ta
acs (Pi)

1: Participate in each protocol RBCj , j �= i, as the receiver, and participate in
RBCi as the sender.

2: On output from RBCj , if an input has not yet been provided to BAj , then input
1 to BAj .

3: When n − ta of the protocols BAj have output 1, provide input 0 to each
instance BAj that has not yet been provided input.

Output determination

Always Have a Backup Plan: Fully Secure Synchronous MPC 719

1: if at least n − ts executions of RBCj output a value v then
2: Output {v}.
3: else
4: let C := {j | BAj output 1}. Once all instances BAj have been completed

and |C| ≥ n − ta, wait for the output vj of each RBCj , j ∈ C.
5: if A majority of the executions {RBCj}j∈C output a value v then
6: Output {v}.
7: else
8: Output

⋃
j∈C{vj}.

9: end if
10: end if

We state the following lemma. The proof can be found in [9].

Lemma 3. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2ts < n.
Protocol Πts,ta

acs satisfies the following properties:

1. When run in a synchronous network, it is ts-valid and ts-live valid.
2. When run in an asynchronous network, it is ta-consistent, ta-live and has

(ta, 1)-set quality.

4.4 Zero-Knowledge

Let us assume a binary relation R, consisting of pairs (x,w), where x is the
statement, and w is a witness to the statement. A zero-knowledge proof allows a
prover P to prove to a verifier V knowledge of w such that R(x,w) = 1. We are
interested in zero-knowledge proofs for three types of relations, parameterized
by a threshold encryption scheme with public encryption key ek:

1. Proof of Plaintext Knowledge: The statement consists of ek, and a ciphertext
c. The witness consists of a plaintext m and randomness r such that c =
Encek(m, r).

2. Proof of Correct Multiplication: The statement consists of ek, and ciphertexts
c1, c2 and c3. The witness consists of a plaintext m1 and randomness r1, r3
such that c1 = Encek(m1, r1) and c3 = m1 · c2 + Encek(0; r3).

3. Proof of Correct Decryption: The statement consists of ek, a ciphertext c,
and a decryption share d. The witness consists of a decryption key share dki,
such that d = Decdki(c).

Examples of bilateral zero-knowledge proofs of knowledge can be found for
example in [22,23]. The bilateral UC zero-knowledge functionality Fzk for a rela-
tion R and a pair prover P and a verifier V is defined as follows: P inputs a
pair (x,w) instance-witness, and the functionality outputs (x, b) to the verifier,
where b = 1 if and only if R(x,w) = 1. It is known that assuming a CRS, one
can realize a bilateral UC zero-knowledge functionality Fzk [14,17,26].

Multi-party zero-knowledge protocols. A multi-party zero-knowledge pro-
tocol allows a prover P to prove towards all parties knowledge of a witness w

720 E. Blum et al.

for a statement x such that R(x,w) = 1. The ideal functionality can be seen as
a special case of secure function evaluation, where the prover inputs (x,w), and
the parties obtain the statement x and 1 if and only if R(x,w) = 1.

Assuming a bilateral UC zero-knowledge functionality Fzk, one can con-
struct a UC multi-party zero-knowledge functionality Fmzk using so-called certifi-
cates [34] as follows: The prover bilaterally performs the zero-knowledge proofs
towards each of the recipients, who upon a successful proof, send a signature
that the proof was correct. Once the prover collects a list L of ts + 1 signatures,
the list works as a certificate that proves non-interactively that at least one hon-
est party accepted the proof. The prover can hence broadcast the list L to let
all honest parties know that the proof is correct. If the last broadcast is exe-
cuted with the protocol Πts,ta

bc , it is easy to see that under ts corruptions and a
synchronous network the multi-party zero-knowledge functionality achieves full
security. Moreover, if there are up to ta corruptions and an asynchronous net-
work, broadcast guarantees weak validity, so the protocol achieves security with
selective abort (in the last step, if the prover has a certificate, it is guaranteed
that parties receive the certificate or ⊥, and a dishonest party who did not collect
such certificate cannot make the parties accept the proof).

Protocol Πts,ta
zk

Prover P proves knowledge of a witness w for a statement x satisfying a certain
relation R towards all parties.

1: P inputs (x, w) to each bilateral Fzk.
2: Each Pi does: Upon a successful proof, compute σi = Signski

(x) and send σi

to P .
3: P collects a list L of ts + 1 signatures and broadcasts using protocol Πts,ta

bc

the list L.
4: Each Pi does: Upon receiving a list L as output of the broadcast protocol,

if L contains ts + 1 signatures on the same instance x, output (x, 1). In any
other case, output ⊥.

Lemma 4. Let R be a relation. Let n, ts, ta be such that ta, ts < n. Πts,ta
zk realizes

the multi-party zero-knowledge functionality for P as prover with the following
guarantees:

1. When run in a synchronous network, it achieves full security up to ts corrup-
tions.

2. When run in an asynchronous network, it achieves security with selective
abort up to ta corruptions.

Proof. We prove each of the cases separately. We simulate in the hybrid where
there is a trusted setup generating the keys in the real world. In the ideal world,
the simulator S generates the PKI keys, and outputs the public keys to the
adversary along with its secret keys.

Synchronous network and up to ts corruptions. We describe the simu-
lator S for the case where the network is synchronous and there are up to ts
corruptions. Let us first consider the case where the prover P is honest.

Always Have a Backup Plan: Fully Secure Synchronous MPC 721

– S forwards the result from Fmzk to the adversary. If the result is positive, gen-
erate a signature σi on behalf of each honest party. Let L be list of signatures.

– On input correct signatures from the dishonest parties, it adds it to L.
– S emulates the messages of the broadcast protocol.

Now assume that P is dishonest.

– S gets the instance-witness pairs that P inputs to prove to each party. To the
dishonest parties, output the instance and the bit 1 if and only if the witness
is correct.

– For each of the pairs, forward a signature on behalf of the honest party if the
witness is a correct witness to the corresponding instance.

– S receives a list L of ts+1 signatures on the same instance: input the instance
and the witness to Fmzk.

Asynchronous network and up to ta corruptions. The only difference with
respect to the case where the network is synchronous, is that the protocol Πts,ta

bc

only provides weak-validity. In the simulation, it implies that the simulator will
also need to simulate the ⊥ messages from the broadcast protocols.

It is easy to see that the simulation goes through. In the case of a synchronous
network and ts corruptions, an honest prover collects at least ts + 1 signatures
and every honest receiver outputs 1. In the case the prover is dishonest, it cannot
collect ts + 1 signatures for an instance without having succeeded in one of the
proofs, and hence each honest party outputs ⊥. If the network is asynchronous,
when the prover is honest, every honest party outputs 1 or ⊥, where the set
of parties that output ⊥ is chosen by the adversary. In the case the prover is
dishonest, the case is analogous as the synchronous case and every honest party
outputs ⊥.

��

4.5 Description of the Synchronous MPC Protocol

We start from the MPC protocol that uses homomorphic encryption presented
in [22,27]. The protocol was originally designed for the synchronous setting and
guarantees full security up to ts < n

2 corruptions. We modify the protocol to
also achieve unanimous output up to ta corruptions even when the network is
asynchronous, as long as 0 ≤ ta < n

3 ≤ ts < n
2 satisfies ta + 2ts < n.

We assume that the computation is specified as a circuit with addition and
multiplication gates. We assume that the plaintext space does not contain a
special symbol ⊥. For example, we can assume that the plaintext space is ZN

for some RSA modulus N and that we use a threshold version of the Paillier
cryptosystem (see Section B).

When the network is synchronous, we need to ensure that parties start si-
multaneously in each of the sub-protocols in order to ensure that the security
guarantees are preserved. For example, in Πts,ta

ba there is a timeout chosen such

722 E. Blum et al.

that honest parties are guaranteed to receive output when the network is syn-
chronous. As a consequence, if parties start at different times, we lose the security
guarantees in the synchronous case. In order to solve this, we wait at least for
an upper bound on the running time of each sub-protocol. This allows parties to
simultaneously start at each sub-protocol when the network is synchronous. Let
us denote Tbc, Tzk, Tba, Tdec upper bounds on the running time of Πts,ta

bc , Πts,ta
zk ,

n parallel executions of Πts,ta
ba , and the Threshold Decryption sub-protocols

respectively, in the case the network is synchronous.

Protocol Πts,ta
smpc (Pi)

Let xi denote the input value of party Pi. Let abort = 0.

Input Distribution

1: Pi computes xi and broadcasts using Πts,ta
bc the ciphertext xi and uses the

multi-party zero-knowledge functionality Fmzk to prove knowledge of the
plaintext of xi towards all parties. Wait until max{Tbc, Tzk} clock ticks passed.

2: If there is a broadcast or zero-knowledge proof that has not terminated, or
the number of correct encryptions received is less than n − ts inputs, set
abort = 1. Continue participating in the sub-protocols, but do not compute
any ciphertext.

Addition Gates Input: a, b. Output: c.

1: Pi locally computes c = a � b.

Multiplication Gates Input: a, b. Output: c.

1: Pi chooses a random plaintext di and broadcasts using Πts,ta
bc the ciphertexts

di and dib and uses the multi-party zero-knowledge functionality Fmzk to prove
knowledge of di and that dib is a correct encryption of the multiplication. Wait
for max{Tbc, Tzk}.

2: Let Si be the subset of the parties succeeding with both proofs. Run n times
the protocol Πts,ta

ba , each one to decide for each party Pj ’s proof. Input 1 to
party j’s BA if and only if j ∈ Si. Wait for Tba. // Crucial to agree on the
same S, otherwise privacy breaks.

3: Let S be the subset of the parties for which Πts,ta
ba outputs 1.

4: if |S| > ts then
5: Pi computes a �

(
�i∈Sdi

)
. Pi executes the Threshold Decryption sub-

protocol on this ciphertext. Wait for Tdec.
6: Pi learns a +

∑
i∈S di and computes c =

(
a +

∑
i∈S di

)
� b �

(
�i∈Sdib

)
.

7: else
8: Set abort = 1.
9: end if

Output Determination Input x, where x = ci is the output ciphertext of the

circuit if abort = 0, and otherwise x = ⊥.

1: Pi executes the protocol Πts,ta
acs with x as input. Let Si be the output of the

protocol.
2: if Si = {c} then
3: Execute the Threshold Decryption sub-protocol on c.

Always Have a Backup Plan: Fully Secure Synchronous MPC 723

4: After an output is given, terminate.
5: else
6: Output ⊥. // Observe that parties do not terminate, since Πts,ta

acs does
not guarantee termination.

7: end if

Threshold Decryption Input: ciphertext c.

1: Pi computes its decryption share si sends it to every other party.
2: Pi proves that the value si is a correct decryption share of c bilaterally.
3: Once ts+1 correct decryption shares are collected, send the list to every party

and output the corresponding plaintext.

Theorem 1. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2ts < n.
Protocol Πts,ta

smpc satisfies the following properties:

1. When run in a synchronous network, it achieves full security up to ts corrup-
tions.

2. When run in an asynchronous network, it achieves unanimous output with
weak termination up to ta corruptions and has n − ts output quality.

Proof. We prove each of the cases individually. We simulate in the hybrid where
there is a trusted setup generating the keys for the PKI, the threshold encryp-
tion scheme and the CRS in the real world. In the ideal world, the simulator S
generates the PKI keys, threshold encryption keys and CRS, and outputs the
corresponding public keys and CRS to the adversary along with its secret keys.

Case 1: Synchronous Network. We describe the simulator S for the case
where the network is synchronous and there are up to ts corruptions.

– Input Distribution: Emulate the messages of the broadcast protocol. This
means that, on behalf of each honest party, emulate the broadcast protocol
using an encryption of 0 as the input. Also, emulate the Fmzk functionality by
outputting 1 on behalf of each honest parties, and from each corrupted party,
on input (c, (x, r)) check that c = Encek(x, r) and output 1 to the adversary
and 0 otherwise. The simulator waits for max{Tbc, Tzk}. For each honest party
Pi, it keeps track of the correct encrypted inputs Ii that Pi received. If the
number of correct ciphertexts is less than n − ts, the simulator does not
compute on its ciphertexts on his behalf and sets a local variable aborti = 1.

– Addition Gates: S simply adds the corresponding ciphertexts locally.
– Multiplication Gates: S emulates the broadcast protocols on random encryp-

tions, and outputs 1 when emulating Fmzk on behalf of them. For each honest
party Pi, keep track of the set of parties Si succeeding in the proofs. The
simulator waits for max{Tbc, Tzk}. Then, emulate the messages in the byzan-
tine agreement protocols and compute the set S. Then it waits for waits for
Tba. If the set S is greater than ts, it computes a �

(
�i∈Sdi

)
and emulates

the threshold decryption sub-protocol. After waiting for Tdec, it computes the
output ciphertext of the multiplication gate. Otherwise, it sets aborti = 1.

724 E. Blum et al.

– Output Determination: For each party Pi, emulate the messages in the asyn-
chronous common subset protocol with the corresponding input (either a ci-
phertext, which is the result of the computation, or ⊥ in the case aborti = 1).
If the output is a single ciphertext c, emulate the threshold decryption sub-
protocol.

– Threshold Decryption: In a multiplication gate, simply compute the decryp-
tion shares and emulate the sending messages. In the Output Determination
stage, S obtains the output y of the computation, and adjusts the shares such
that the shares decrypt to y. In both cases, the simulator always outputs 1 on
behalf of the honest parties indicating that the proofs of correct decryptions
are correct.

Case 2: Asynchronous Network. The only difference with respect to the
case where the network is synchronous, is that the protocol Πts,ta

bc only provides
weak-validity. In the simulation, it implies that the simulator will also need to
simulate the ⊥ messages from the broadcast protocols, and not simulate on
behalf of the honest parties which stop participating in the protocol after they
aborted.

We define a series of hybrids to argue that no environment can distinguish
between the real world and the ideal world.

Hybrids and security proof

Hybrid 1. This corresponds to the real world execution. Here, the simulator
knows the inputs and keys of all honest parties.
Hybrid 2. We modify the real-world execution in the zero-knowledge proofs. In
the case of a synchronous network, when a corrupted party requests a proof of
any kind from an honest party, the simulator simply gives a valid response with-
out checking the witness from the honest party. In the case of an asynchronous
network, the simulator is allowed to set outputs to ⊥ as the real-world adversary.
Hybrid 3. This is similar to Hybrid 2, but the computation of the decryp-
tion shares is different. Here, the simulator obtains the output y from the ideal
functionality, and if it is not ⊥, it computes the decryption shares of corrupted
parties, and then adjusts the decryption shares of honest parties such that the
decryption shares (d1, . . . , dn) form a secret sharing of the output value y.
Hybrid 4. We modify the previous hybrid in the Input Stage. Here, the hon-
est parties, instead of sending an encryption of the actual input, they send an
encryption of 0.
Hybrid 5. This corresponds to the ideal world execution.

In order to prove that no environment can distinguish between the real world
and the ideal world, we prove that no environment can distinguish between any
two consecutive hybrids.
Claim 1. No efficient environment can distinguish between Hybrid 1 and
Hybrid 2.
Proof: This follows trivially, since the honest parties always send a valid witness
to Fmzk in the case of a synchronous network. In the case of an asynchronous

Always Have a Backup Plan: Fully Secure Synchronous MPC 725

network, the simulator chooses the set of parties that get ⊥ as the real-world
adversary. �
Claim 2. No efficient environment can distinguish between Hybrid 2 and
Hybrid 3.
Proof: This follows from properties of a secret sharing scheme and the security of
the threshold encryption scheme. Given that the threshold is ts +1, any number
corrupted decryption shares below ts + 1 does not reveal anything about the
output y. Moreover, one can find shares for honest parties such that (d1, . . . , dn)
is a sharing of y. �
Claim 4. No efficient environment can distinguish between Hybrid 3 and
Hybrid 4.
Proof: This follows from the semantic security of the used threshold encryption
scheme. �
Claim 5. No efficient environment can distinguish between Hybrid 4 and
Hybrid 5.
Proof: The simulator in the ideal world and the simulator in Hybrid 4 emulate
the joint behavior of the ideal functionalities exactly in the same way. �

We conclude that the real world and the ideal world are indistinguishable.
Finally, let us argue why the protocol has weak termination. Observe that when
the protocol outputs ⊥, parties do not terminate. This is because the protocol
Πts,ta

acs does not guarantee termination, i.e. might need to run forever (see [9]).
However, when parties have agreement on a ciphertext to decrypt (in particular,
this is the case when the network is synchronous), the threshold decryption sub-
protocol ensures that honest parties can jointly collect ts + 1 ≤ n − ts ≤ n − ta
decryption shares, decrypt the ciphertext and terminate.

��

5 Main Protocol

In this section, we present the protocol Πts,ta
mpc for secure function evaluation

which tolerates up to ts (resp. ta) corruptions when the network is synchronous
(resp. asynchronous), for any 0 ≤ ta < n

3 ≤ ts < n
2 satisfying ta + 2ts < n. The

protocol is based on two sub-protocols:

– Πts,ta
smpc is a secure function evaluation protocol which gives full security up to

ts corruptions when run in a synchronous network, and achieves unanimous
output with weak termination up to ta corruptions and has n − ts output
quality when run in an asynchronous network.

– Πta
ampc is a secure function evaluation protocol which gives full security up to

ta corruptions and has n − ta output quality when run in an asynchronous
network.

726 E. Blum et al.

Protocol Πts,ta
mpc (Pi)

Let xi denote the input value of party Pi.

1: Run Πts,ta
smpc using xi as input. Let yi be the output of Pi.

2: If yi �= ⊥, output yi and terminate. Otherwise, run Πta
ampc using xi as input,

output the result and terminate.

Theorem 2. Let n, ts, ta be such that 0 ≤ ta < n
3 ≤ ts < n

2 and ta + 2ts < n.
Protocol Πts,ta

mpc satisfies the following properties:

1. When run in a synchronous network, it achieves full security up to ts corrup-
tions.

2. When run in an asynchronous network, it achieves full security up to ta cor-
ruptions and has n − ts output quality.

Proof. The case where the network is synchronous and there are up to ts cor-
ruptions is trivial, since Πts,ta

smpc is guaranteed to provide full security, and Πta
ampc is

never executed. In the other case where the network is asynchronous and there
are up to ta corruptions, observe that after Πts,ta

smpc gives output (which is guaran-
teed to happen), in the case where there is a non-⊥ output, every honest party
is guaranteed to get this output (which take into account at least n − ts inputs)
and also terminate. If the output is ⊥, the adversary learned no information
so far about the inputs, so it is safe to execute Πta

ampc. In this case, since Πta
ampc

has output quality n − ta, the overall protocol also has n − ts ≤ n − ta output
quality. Observe that in this case the honest parties terminate as soon as Πta

ampc

terminates, since Πta
ampc guarantees termination.

��

6 Impossibility Proof

We now discuss two lower bounds in this setting. Our first result shows that
our feasibility result in Sect. 5 is tight with respect to the output quality. More
concretely, we show that there are basic functions for which it is impossible to
achieve both (1) full security up to t corruptions in a synchronous network and
(2) (n−t+1)-output quality for even 0 corruptions in an asynchronous network.
Put simply, a protocol secure against t corruptions cannot rely on receiving more
than n − t inputs, even in executions in which all participants happen to be
honest.

Our second result shows that the construction presented in Sect. 5 is tight
with respect to the corruption thresholds. That is, we show that there is no
protocol for secure function evaluation achieving the guarantees of Theorem2
when ta + 2 · ts ≥ n. As an example, we show that the majority function cannot
be computed with full security up to ts corruptions in a synchronous network as
well as security up to ta corruptions in an asynchronous network (in fact, in an
asynchronous network, it cannot be computed even if we require only unanimous
output).

Always Have a Backup Plan: Fully Secure Synchronous MPC 727

Theorem 3. Fix any t. There is no protocol Π for MPC with the following
properties:

– When run in a synchronous network, it achieves full security up to t
corruptions.

– When run in an asynchronous network, it achieves (n − t + 1)-output quality
when every party is honest.

Proof. We show the proof for the case of the OR function. More concretely,
the function computes the OR of all the inputs that are received by the ideal
functionality (i.e. all inputs that are not ⊥).

We partition the n parties into two sets St, Sn−t, where |St| = t and |Sn−t| =
n − t. Consider an execution of Π in a synchronous network where parties in
St are corrupted and abort, and parties in Sn−t input 0. In this case, since the
protocol achieves full security, all honest parties obtain 0 as output and terminate
by some time T .

Next consider an execution of Π in an asynchronous network where all parties
are honest, parties in St have input 1, and parties in Sn−t have input 0. All
communication between St and Sn−t is delayed for more than T clock ticks.
Since the view of the parties in Sn−t is exactly the same, these parties output
0. This contradicts the fact that Π achieves (n − t + 1)-output quality.

��
Theorem 4. Fix any ta, ts such that ta + 2 · ts ≥ n. There is no protocol Π for
MPC with the following properties:

– When run in a synchronous network, it achieves full security up to ts corrup-
tions.

– When run in an asynchronous network, it achieves unanimous output up to
ta corruptions.

Proof. Case 1: ts ≥ n/2 or ta ≥ n/3. These bounds follow from classical impos-
sibility results for synchronous and asynchronous MPC protocols with full secu-
rity (c.f. [7,16]).

Case 2: ts < n/2, ta < n/3, and ta + 2 · ts ≥ n.
Assume without loss of generality that ta + 2 · ts = n. We prove the impos-

sibility for the case of the majority function. Partition the n parties into three
sets, S0

ts , S1
ts , and Sta , where |S0

ts | = |S1
ts | = ts and |Sta | = ta.

First, consider an execution of Π in which the network is synchronous and
the ts parties in S1

ts are corrupted and crash, and furthermore the honest parties
all input 0. Since ts is less than n/2, the protocol must output 0.

Next, consider an execution of Π in which the network is asynchronous, the
ta parties in Sta are corrupted, and the parties in S0

ts and S1
ts input 0 and 1,

respectively. In the real world, the adversary can use the following attack: block
all messages between S0

ts and S1
ts throughout, and have all corrupted parties

simulate an honest protocol execution with input b ∈ {0, 1} with the parties

728 E. Blum et al.

in Sb
ts . A party in S0

ts cannot distinguish between this execution and the first
execution, and thus the protocol outputs 0; for the same reason a party in S1

ts
outputs 1. By contrast, in the ideal world, the output will of course be the same
for all parties. This proves that there is no protocol for the majority function Π
that achieves both properties.

References

1. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple
and practical synchronous state machine replication. Cryptology ePrint Archive,
Report 2019/270 (2019). https://eprint.iacr.org/2019/270

2. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Rudnicki, P. (ed.) 8th ACM PODC, pp. 201–
209. ACM, August 1989

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Simple and efficient perfectly-secure asyn-
chronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
376–392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 23

5. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: 25th
ACM STOC, pp. 52–61. ACM Press, May 1993

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

7. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Anderson, J., Toueg, S. (ed.) 13th ACM
PODC, pp. 183–192. ACM, August 1994

8. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous
fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 131–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 6

9. Blum, E., Katz, J., Loss, J.: Network-agnostic state machine replication. Cryptol-
ogy ePrint Archive, Report 2020/142 (2020). https://eprint.iacr.org/2020/142

10. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987)

11. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
(JACM) 32(4), 824–840 (1985)

12. Canetti, R.: Studies in secure multiparty computation and applications, pp. 73–79,
March 1996

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

14. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 2

15. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

https://eprint.iacr.org/2019/270
https://doi.org/10.1007/978-3-540-76900-2_23
https://doi.org/10.1007/978-3-540-76900-2_23
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-36030-6_6
https://eprint.iacr.org/2020/142
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2

Always Have a Backup Plan: Fully Secure Synchronous MPC 729

16. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: 18th ACM STOC, pp. 364–369. ACM Press, May 1986

17. Cohen, R.: Asynchronous secure multiparty computation in constant time. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS,
vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 8

18. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multi-
party computation. J. Cryptol. 30(4), 1157–1186 (2017). https://doi.org/10.1007/
s00145-016-9245-5

19. Coretti, S., Garay, J.A., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 33

20. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X 22

21. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

22. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

23. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

24. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

25. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

26. Damg̊ard, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 37

27. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 15

28. Dolev, D., Raymond Strong, H.: Authenticated algorithms for Byzantine agree-
ment. SIAM J. Comput. 12(4), 656–666 (1983)

29. Fitzi, M., Gottesman, D., Hirt, M., Holenstein, T., Smith, A.: Detectable Byzan-
tine agreement secure against faulty majorities. In: Ricciardi, A. (ed.) 21st ACM
PODC, pp. 118–126. ACM, July 2002

30. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055724

https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/s00145-016-9245-5
https://doi.org/10.1007/s00145-016-9245-5
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/BFb0055724

730 E. Blum et al.

31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, S. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

32. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

33. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 6

34. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 19

35. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1 21

36. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

37. Kursawe, K.: Optimistic Byzantine agreement. In: 2002 Proceedings of the 21st
IEEE Symposium on Reliable Distributed Systems, pp. 262–267. IEEE (2002)

38. Liu, S., Viotti, P., Cachin, C., Quéma, V., Vukolić, M.: XFT: practical fault toler-
ance beyond crashes. In: 12th USENIX Symposium on Operating Systems Design
and Implementation, pp. 485–500 (2016)

39. Liu-Zhang, C.-D., Loss, J., Maurer, U., Moran, T., Tschudi, D.: Robust MPC:
asynchronous responsiveness yet synchronous security. Cryptology ePrint Archive,
Report 2019/159 (2019). https://eprint.iacr.org/2019/159

40. Loss, J., Moran, T.: Combining asynchronous and synchronous byzantine agree-
ment: the best of both worlds. Cryptology ePrint Archive, Report 2018/235 (2018).
https://eprint.iacr.org/2018/235

41. Malkhi, D., Nayak, K., Ren, L.:. Flexible Byzantine fault tolerance. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1041–1053 (2019)

42. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT
protocols. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, p. 31–42. ACM Press, October 2016

43. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

44. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless
model. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 91. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

45. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

46. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/3-540-44647-8_6
https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-642-36594-2_27
https://eprint.iacr.org/2019/159
https://eprint.iacr.org/2018/235
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-319-78375-8_1

Always Have a Backup Plan: Fully Secure Synchronous MPC 731

47. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15

	Always Have a Backup Plan: Fully Secure SynchronousMPCwithAsynchronousFallback*-1.5pc
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Model
	2.1 Setup
	2.2 Communication Network and Adversary

	3 Definitions
	3.1 Broadcast
	3.2 Byzantine Agreement
	3.3 Asynchronous Common Subset
	3.4 Multi-Party Computation

	4 Synchronous MPC with Asynchronous Unanimous Output and Weak Termination
	4.1 Broadcast
	4.2 Byzantine Agreement
	4.3 Asynchronous Common Subset
	4.4 Zero-Knowledge
	4.5 Description of the Synchronous MPC Protocol

	5 Main Protocol
	6 Impossibility Proof
	References

