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Abstract. Inserting backdoors in encryption algorithms has long seemed
like a very interesting, yet difficult problem. Most attempts have been
unsuccessful for symmetric-key primitives so far and it remains an open
problem how to build such ciphers.

In this work, we propose the MALICIOUS framework, a new method
to build tweakable block ciphers that have backdoors hidden which allows
to retrieve the secret key. Our backdoor is differential in nature: a specific
related-tweak differential path with high probability is hidden during the
design phase of the cipher. We explain how any entity knowing the back-
door can practically recover the secret key of a user and we also argue why
even knowing the presence of the backdoor and the workings of the cipher
will not permit to retrieve the backdoor for an external user. We analyze
the security of our construction in the classical black-box model and we
show that retrieving the backdoor (the hidden high-probability differen-
tial path) is very difficult.

We instantiate our framework by proposing the LowMC-M construc-
tion, a new family of tweakable block ciphers based on instances of
the LowMC cipher, which allow such backdoor embedding. Generating
LowMC-M instances is trivial and the LowMC-M family has basically the
same efficiency as the LowMC instances it is based on.

Keywords: Tweakable block cipher · Backdoor · Differential
cryptanalysis · LowMC-M

1 Introduction

A backdoor in an encryption algorithm enables an entity who knows it to cir-
cumvent the security guarantees so that he can obtain the secret information
more efficiently than with a generic black-box attack. There are two categories
of backdoors. The first one is the backdoor implemented in a security product at
the protocol or key-management level, which is generally considered in practice.

In this article, we focus on the second type: a cryptographic backdoor.
A cryptographic backdoor is embedded directly during the design phase of a
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cryptographic primitive and renders the cipher susceptible to some dedicated
cryptanalysis. Cryptographic backdoors have been extensively studied by Young
and Yung, introducing the term “Kleptography” [41,44]. However, despite some
interest from the academic community about this topic, there are very few pub-
licly known backdoored primitives. A concrete example is the pseudorandom
number generator Dual EC DBRG [8] designed by NSA, whose backdoor was
revealed by Edward Snowden in 2013 and also in some research works [10,37].

Embedding backdoors into block ciphers is a challenging problem since block
ciphers are deterministic and thus it is complex to exploit randomness in com-
putations. Young and Yung have designed several backdoors in secret block
ciphers [42,43,45], where it is assumed that the cipher specifications are unknown
to the adversary. In this work, we will not make such assumption and we will
consider the specifications of the cipher to be fully public.

A backdoor should be computationally difficult to retrieve, even if its general
form is known. More concretely, the backdoor security (the cost of retrieving the
backdoor) should be the same as the security generically provided by the cipher
(otherwise the backdoor would naturally reduce the security of the block cipher).
Besides, the backdoor should ideally lead to a practical key recovery attack, or
at least reduce the brute force search cost for the adversary. For example, if
a backdoor could reduce the security of AES-256 to 2128, it would be a great
theoretical advance, but would be unusable in practice. Last but not least, the
resulting block cipher also has to be secure in the classical sense, that is, it is
able to resist state-of-the-art cryptanalysis techniques.

There have been only limited works focusing on this direction and to the best
of the authors’ knowledge there is no such design satisfying the above require-
ments simultaneously. In 1997, Rijmen and Preneel proposed a special Sbox
design strategy which was used to hide a high-probability linear approximation
in an Sbox [35]. The knowledge of this backdoor leads to an efficient key recov-
ery attack based on linear cryptanalysis, but only a part of the key information
can be obtained. They presented concrete instantiations by applying the Sbox
design to CAST and LOKI91 ciphers and claimed that the embedded backdoors
are undetectable even if the general form of the backdoor is known. However,
this design was broken subsequently in 1998 [39] by Wu et al. who found a way
to easily recover the backdoor and showed that the security and practicability
of the backdoor can’t be guaranteed at the same time. Later in 1999, Paterson
suggested that if the group generated by round functions acts imprimitively on
the message group, then it is possible to create a backdoor in the cipher [31].
Built upon this mechanism, he introduced a DES-like cipher which allows an
entity knowing the backdoor to retrieve the key with 241 computations. How-
ever, as mentioned by the author, the backdoor is detectable and the cipher
is vulnerable to differential attacks. Following on this idea, a backdoor based
on partitioning cryptanalysis was studied in [5] and a concrete instance of an
AES-like cipher called BEA-1 was later proposed in [6], but no explicit back-
door security was provided. One can also mention the work from Patarin and
Goubin [29,30] who proposed “2R–schemes”, basically Sbox-based asymmetric
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schemes secretly consisting of a 2-round secret Substitution-Permutation Net-
work (SPN) but publicly represented as its corresponding algebraic equations.
However, this research direction also suffered from attacks [12,40]. Two more
backdoor designs [4,13] have been introduced, but neither of them provide solid
proof for the backdoor security and even the security of the cipher itself is ques-
tionable. Lastly, in a different setting, a backdoored version of the SHA-1 hash
function was proposed in [1], where the attacker is allowed to pre-choose the
constants used in the design, so he can prepare in advance some specific collision
messages for that particular instance.

Apart from these public researches, one can naturally question if there are
some public block ciphers that might contain backdoors not claimed by the
designers. In particular, primitives whose detailed design rationale is not pro-
vided are naturally more suspicious, especially when the ciphers have been
designed by governmental agencies (as can be seen by the difficulties encoun-
tered by the NSA lightweight block ciphers SIMON and SPECK [9] to become
ISO standards). For example, Perrin found a very strong algebraic structure [32]
that is hidden inside the Sbox employed in both the block cipher Kuznyechik [36]
and the hash function Streebog [27], both primitives being selected as Russian
standards (GOST). Even though there is currently no attack based on this result,
it illustrates the issue of potential backdoor in foreign encryption algorithms and
more research is required to better understand the possibilities and implications
of cryptographic backdoor.

We emphasize that inserting backdoors in an encryption algorithm itself is
very different from inserting backdoors in an implementations, being in software
or in hardware (like hardware trojans).

Our Contributions. In this paper, we propose a new method to generate back-
door encryption algorithms. We bring together tweakable block ciphers (TBC)
and Extendable-Output Function (XOF) in a common framework called MALI-
CIOUS, which enables the designer to embed backdoors into the TBC. The gen-
eral representation of our construction is similar to that of the TWEAKEY
framework [22], but the tweak is handled separately by a XOF and the round
function has to be partially non-linear.

Our backdoor is based on differential cryptanalysis: due to the partial non-
linear layer, the designer can embed related-tweak differential characteristics
with probability 1 over many rounds. In particular, the sub-tweak difference
employed in an embedded differential characteristic is generated from a specific
tweak pair that is chosen in advance by the designer. This malicious tweak
pair is the backdoor, and the XOF applied in the tweak schedule is used to
protect the malicious tweak pair: even knowing the high-probability related-
tweak differential characteristic, it will remain computationally difficult to find
a tweak pair that triggers it. More importantly, the backdoor security is ensured
by the target-difference resistance ability of the chosen XOF. An attacker with
the knowledge of the backdoor is able to retrieve the full key with negligible
effort under the chosen-tweak scenario.
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Based on the MALICIOUS framework, we also propose a concrete instantia-
tion that we call LowMC-M. Our family of TBC LowMC-M is created based on
some instances of the block cipher LowMC [2]. Compared to LowMC, our proposal
LowMC-M has an additional sub-tweak addition in each round and the tweak
schedule is a XOF, but the other parts of the round function and the number
of rounds remain unchanged. Apart from its backdoor security that is naturally
inherited from the MALICIOUS framework, we claim that its classical black-box
security against state-of-the-art cryptanalysis is the same as the corresponding
LowMC variants.

We believe this work is a first step in a new direction for the study of back-
doors in encryption algorithms. We are confident that more exotic (based on
other types of cryptanalysis techniques than plain differential cryptanalysis) and
potentially more efficient instances following the MALICIOUS would be possible.

Paper Organization. In Sect. 2, we present the attacking scenario and some
security notions for backdooring cryptographic primitives. In Sect. 3 the MALI-
CIOUS framework is described and its backdoor security and design rationale
are explained. We introduce a concrete instantiation of MALICIOUS (so-called
LowMC-M) in Sect. 4. We then analyze LowMC-M with respect to the backdoor
security and the classical black-box security in Sect. 5 and Sect. 6 respectively.
Finally, we present our conclusions in Sect. 7.

2 Preliminaries

2.1 Attacking Scenario

For classical (tweakable) block ciphers, the attacking scenario considers only two
entities: the user (or pair of users) who owns the secret key and the attacker who
tries to break the cryptosystem, i.e., to find out the secret key. For (tweakable)
block ciphers with a backdoor, another entity has to be involved in the attacking
scenario: the designer, who inserts the backdoor into the primitive. Thus, we have
in total three entities: the designer (knows the backdoor, but not the secret key),
the user (knows the secret key, but not the backdoor) and the attacker (neither
backdoor nor key is known).

One can see that both the user and the attacker have some motivation to
find out what is the backdoor. More importantly, in our model the backdoor is
independent of the secret key, and therefore the user and the attacker possess
the same capability in trying to uncover the backdoor (the cipher specifications
are public known, so they can test the cipher with any chosen key they want).
For the rest of this article, when considering the recovery of the backdoor, we
will simply refer to both of them as the attacker.

2.2 Security Notions and More

We introduce below various notions regarding the security and the practicability
of a backdoor:
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– Undetectability: this security notion represents the inability for an external
entity to realize the existence of the hidden backdoor.

– Undiscoverability: it represents the inability for an attacker to find the hidden
backdoor, even if the general form of the backdoor is known.

– Untraceability: it states that an attack based on the backdoor should not
reveal any information about the backdoor itself.

– Practicability: this usability notion stipulates that the backdoor is practical,
in the sense that it is easy to recover the secret key once the backdoor is
known.

If a cipher is publicly claimed as potentially backdoored, it will naturally
increase the watchfulness of users, even if they do not know whether there is
indeed backdoored or not embedded in the primitive. In this scenario, the unde-
tectability notion models the incapacity of a user to find any hard evidence that
a backdoor indeed exists.

For our proposal LowMC-M, the backdoor is claimed to be undetectable,
undiscoverable and practicable, but not untraceable.

2.3 Notations

Given a bit string x, we will denote by x[i] its i-th bit, counting from the least
significant bit (LSB). Given two bit strings x and y, x||y will represent the
concatenation of x and y. Finally, we denote by kj (respectively by tj) the sub-
key (respectively sub-tweak) incorporated during the j-th round of the cipher,
while k0 and t0 are added in as whitening material.

3 The MALICIOUS Framework

In this section, we introduce the MALICIOUS framework which allows to generate
tweakable block ciphers that are embedded with hidden high-probability differ-
ential characteristics. This framework is based on partial non-linear layers for
the internal state transformation and a tweak schedule based on an extendable-
output function (XOF).

3.1 Block Ciphers with Partial Non-linear Layers

SPN-based block ciphers are usually designed to apply linear layers (Li) and non-
linear layers (Si) to the entire state at every round i. In 2013, an irregular design
was suggested by Gérard et al. [18], where the non-linear layer is only applied
to a subpart of the state at each round. We consider such design with block size
n bits and partial non-linear layers of size s (< n) bits. Assume, without loss of
generality, that the non-linear layer is always applied before the linear layer at
every round. Then, we can write fi(x) = Li(Si(x(0))||x(1)) the round function
fi that transforms the state x at round i, the state being partitioned into two
parts where the non-linear layer only operates on the part x(0) and not on the
part x(1).
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Such design allows efficient masking and thus can improve security against
side-channel attacks. A concrete instantiation of this methodology named
ZORRO was then proposed [18]. Even though ZORRO was rapidly broken
[7,20,33,38], the general design strategy continued to attract interest from the
research community: in 2015, another such design LowMC was proposed [2]. Its
aim was to minimize the multiplicative complexity and depth of the cipher in
order to have performance advantages in certain applications, including multi-
party computation (MPC), fully homomorphic encryption (FHE) and zero-
knowledge proofs (ZK). After a few tweaks due to security concerns, the cur-
rent version v3 of LowMC remains solid after the several third party analy-
sis [15,16,34].

Compared to a full non-linear layer, a partial non-linear layer inevitably
weakens the security of a cipher. One notable property is that there will exist
non-trivial differential characteristics that will not activate any Sboxes over one
or more rounds of the cipher. In a single round, by setting the difference on
x(0) to be 0, there are 2n−s differences of x that do not differentially activate
any Sboxes. Assuming a well designed linear layer with good mixing properties,
one can still expect around 2n−2s differences that will also not differentially
activate any Sboxes in the second round. This reasoning can be continued until
no difference survives and thus the maximal expected number of rounds that a
deterministic differential characteristic can cover is �n

s �. Note that this number
would of course vary depending on the specificities of the linear layers.

3.2 Tweakable Block Ciphers

The first formal treatment of tweakable block ciphers (TBC) was proposed by
Liskov, Rivest and Wagner in [25,26]. The signature of a conventional block
cipher can be described as E : {0, 1}k × {0, 1}n → {0, 1}n where an n-bit plain-
text is encrypted to an n-bit ciphertext using a k-bit secret key. A tweakable
block cipher accepts an additional t-bit public input called tweak, its signature
thus being E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n. The introduction of a tweak
input provides the ability for the user to select a permutation among a family
of permutations even when the key is fixed.

Due to this extra degree of freedom that can potentially be leveraged by the
attacker, designing a TBC is not straightforward. Block cipher-based TBC con-
structions have been studied, but comes with a non-negligible efficiency penalty.
We can mention the TWEAKEY framework, a recent design strategy to build
ad-hoc TBCs, that was proposed at ASIACRYPT 2014 by Jean et al. [22]. In
this framework, the key and tweak inputs are treated equivalently in terms of
design and this material is called tweakey: the tweakey input can be used as key
or tweak value, which is up to the choice of the user.

Unlike the key input, the tweak does not need to be kept secret and therefore
one should assume that an adversary has full control over it. Thus, besides
the attack models of single-key (no difference in the key or tweak), related-key
(difference in the key, but no difference in the tweak), related-tweak (no difference
in the key, but difference in the tweak) and related-tweakey (difference in both
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the key and tweak), it is reasonable to consider the chosen-tweak model as a
meaningful model in practice.

3.3 Extendable-Output Function

An extendable-output function (XOF) is a generalization of a hash function,
where the output can be extended to any desired length. Similar to a hash
function, it should be collision, preimage and second-preimage resistant. A XOF
is a natural choice when an application requires a hash function to have non-
standard digest length. Technically, it is also possible to use a XOF as a generic
hash function by setting the output length fixed. Besides, it has some other
applications, such as key derivation functions and stream ciphers.

Currently, there are many instances of XOF, such as SHAKE128 and
SHAKE256 (defined in SHA-3 standard [17]) and the more efficient variant Kan-
garooTwelve [11].

3.4 The MALICIOUS Construction

Motivation. Differential and linear cryptanalysis are among the most efficient
and well-understood attacks against block ciphers, both in theory and in prac-
tice. Thus, it seems natural to try creating backdoors using these techniques.
Yet, there have been only a few works focusing on this research direction. For
example, [3] and [28] explored backdoors in hash functions based on differential
cryptanalysis. As for block ciphers, to the best of our knowledge, there is only
one work from 1997 [35] using linear cryptanalysis. In that paper, special Sboxes
are designed to hide high-probability linear approximations, which then enable
a practical linear cryptanalysis. However, this construction was easily broken by
Wu et al. in the subsequent year [39]. The attack against this cipher shows that
the higher the probability of the embedded linear approximation, the weaker the
backdoor security. Consequently, the authors claimed that it is infeasible for such
a cipher to build a practical backdoor while keeping acceptable backdoor secu-
rity. They further noted that “it seems that hiding differentials is more difficult
than hiding linear relations”.

Even though other block ciphers embedding backdoors have been pro-
posed [4–6,13,31], their design methodologies are usually very dedicated. On
the other hand, as the topic of backdoor ciphers has not drawn much attention
from the cryptography community, the backdoor security of these ciphers has
not been well analyzed yet.

Considering the above facts, we introduce the MALICIOUS framework which
allows to build efficient backdoors based on differential cryptanalysis. Moreover,
we will show that the backdoor security can be reduced to a variation of the
collision resistance notion of the XOF used in the tweak schedule.

The Construction. MALICIOUS is a framework to build a tweakable block
cipher with n-bit blocksize, k-bit key and tweak of arbitrary size. It consists of
three components:
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– a round function fi with partial non-linear layer, which can be expressed as
fi(x) = Li(Si(x(0))||x(1)),

– a tweak schedule based on a XOF,
– a key schedule.

The sub-tweak and sub-key values are XORed only to the non-linear part of
the state, but are XORed to full state at the whitening stage1. The cipher is
composed of r consecutive rounds. The framework is depicted in Fig. 1.

Fig. 1. The MALICIOUS framework

The backdoor introduced by MALICIOUS are related-tweak differential char-
acteristics with probability 1 (deterministic). With the knowledge of this back-
door, a key recovery attack can be performed using various methods of differ-
ential cryptanalysis. It is to be noted that the attack is under the chosen-tweak
model: both the designer and the attacker have complete freedom over the tweak
values. This model is classical for TBC and realistic in practice.

We now describe how the backdoor can be embedded in the cipher. The core
idea is that the sub-tweak difference of the backdoor chosen tweaks is used to
cancel the difference of the non-linear part of the state in each round, so that
the resulting differential characteristics will have no differentially active Sbox (as
illustrated in Fig. 2). In Algorithm 1, we present the general steps to construct
a MALICIOUS instance, in which a deterministic differential characteristic over
r0 (≤ r) rounds is embedded.

The key of the backdoor is the tweak pair generating these particular sub-
tweak differences and the plaintext difference used in the embedded differential
characteristic. We will use the prefix malicious to denote them. We also note that

1 This is equivalent to a full state addition for all rounds, see Sect. 4.2 for details.
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Fig. 2. Transitions of state difference in the embedded related-tweak differential char-
acteristic. The differences of the hashed blocks can be zero or non-zero, while the
differences of the white blocks are necessarily zero.

Algorithm 1: Constructing a MALICIOUS instance with an embedded
deterministic differential characteristic over r0 rounds

Select a XOF as the tweak schedule.

Choose uniformly at random a pair of tweak values (T1, T2) of arbitrary length.

Compute t10|| . . . ||t1r ← XOF(T1) and t20|| . . . ||t2r ← XOF(T2).

Evaluate the differences Δti = t1i ⊕ t2i for all i ∈ [0, . . . , r].

Randomly select a plaintext difference ΔP = Δx0 for the linear part x
(1)
0 and

set Δx
(0)
0 = Δt

(0)
0 .

for i from 1 to r do
Determine a round function fi with partial non-linear layers such that:
if i < r0 then

Given the input difference (Δxi−1 ⊕ Δti−1), the output difference after

fi has to satisfy Δx
(0)
i = Δti.

end

end
Output the cipher description and the r0-round related-tweak differential
characteristic that is embedded into it (with related tweaks T1 and T2).

it is possible to embed multiple differential characteristics simultaneously. Then,
the key recovery complexity will depend on the number of embedded differential
characteristics and the cryptanalysis method.

We emphasize that the framework only focuses on the requirements of the
cipher to embed a backdoor. However, a concrete instantiation would also have
to take into account many other design principles so that the cipher could
resist all state-of-the-art cryptanalysis as well as the attack against the back-
door described in the following section.
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3.5 The Backdoor Security

In this section, we will evaluate two particular aspects of the backdoor security:
(1) the complexity for the attacker to find the embedded differential character-
istics, (2) whether additional backdoors exist in the resulting primitives, and if
so, what is the complexity to find them.

Firstly, we will discuss the relation between the malicious tweak pair and
its corresponding plaintext difference. We consider in this article that the num-
ber of rounds for the embedded differential characteristic is publicly known.
On the one hand, if the malicious tweak pair is known to the attacker, then
the corresponding sub-tweak differences can of course be computed. From these
sub-tweak differences, he can obtain partial information about the state differ-
ences expected during the differential characteristic. Note that the embedded
differential characteristic being deterministic indicates that the transformations
of state differences are linear. Hence, by reversing the linear transformations, the
malicious plaintext difference can eventually be recovered. That is, the leakage
of the malicious tweak pair reveals the malicious plaintext difference.

On the other hand, if the malicious plaintext difference is known to the
attacker, he can compute its transformation through the linear layer and obtain
the required value for the sub-tweak difference such that it cancels the non-
linear layer difference (since the sub-tweak is only XORed to the non-linear part,
there is only one such candidate), and continue this process in the following
rounds. Eventually, the embedded differential characteristic will be revealed.
However, it remains difficult to recover the actual malicious tweak pair due to
the XOF-based tweak schedule: given the embedded related-tweak differential
characteristic, finding a tweak pair that leads to it through the XOF will be
difficult. We define this new security notion as target-difference resistance:

Definition 1 (Target-difference resistance). A hash function H is target-
difference resistant if it is hard to find two inputs x and y such that H(x) ⊕
H(y) = Δ, where Δ is a given non-zero constant.

To better understand target-difference resistance, we introduce the limited-
birthday problem, which was first proposed in [19]:

Definition 2 (The limited-birthday problem [21]). Let H be an n-bit out-
put hash function that can be randomized by some input (IV or tweak or etc.)
and that processes any input message of fixed size m bits, where m > n. Let IN
be a set of admissible input differences and OUT be a set of admissible output
differences, with the property that IN and OUT are closed sets with respect to
⊕ operation. Then, for the limited-birthday problem, the goal of the adversary is
to generate a message pair (x, y) such that x⊕y ∈ IN and H(x)⊕H(y) ∈ OUT
for a randomly chosen instance of H.

Let 2I and 2O denote the sizes of IN and OUT respectively. The lower bound
on the time complexity to find a solution for the limited-birthday problem is
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max(2
n−O+1

2 , 2n−I−O+1)2. If I is small, the complexity is 2n−I−O+1. However,
even if I is very big, the complexity cannot be below 2

n−O+1
2 .

Target-difference resistance can be seen as a special case of the limited-
birthday problem (as well as a generalisation of the classical collision resistance)
where OUT is limited to a single value (2O = 1) and IN is the full input space.
Therefore, target-difference resistance has the same generic complexity as the
classical collision resistance notion, that is the birthday bound O(2n/2).

More generally, instead of the exact malicious tweak pair, the attacker could
try to find another tweak pair whose sub-tweak differences are also the desired
ones for the embedded differential characteristic. Yet, its complexity is still cov-
ered by the expected target-difference resistance of the XOF.

The above attack can possibly be applied to other plaintext differences.
According to the construction of the MALICIOUS framework, the size of the
input (tweak) to the XOF can be arbitrary long and thus any output of the
XOF can potentially be obtained. For instance, if SHAKE128 is used as XOF, it
can produce at most 2b output streams (b being the state size between absorbing
and squeezing phases in the sponge construction). Hence the number of possi-
ble sub-tweaks values is bounded by 2b, no matter how many rounds it covers,
and the number of sub-tweak differences is accordingly bounded by a greater
value N (≥ 2b). Thus, given a random plaintext difference and a certain number
of rounds, if the size of the required sub-tweak differences for the deterministic
related-tweak differential characteristic does not exceed log N , then there will be
a tweak pair matching the differential characteristic. We summarize this finding
as follows:

Property 1. In addition to the embedded differential characteristics, there might
exist other deterministic differential characteristics that would threaten the
cipher security.

Consequently, we have to evaluate the security of the cipher with respect to all
the potential deterministic differential characteristics, not only the planned ones.
We consider a MALICIOUS instance that has a key size of 128 bits and employs
SHAKE128 as tweak schedule. The security strength of SHAKE128 against colli-
sion attack is min(l/2, 128) bits, where l is the output length (or the length of the
colliding part). In order to recover an r0-round deterministic differential charac-
teristic, the attacker has to find a tweak pair whose sub-tweak differences are the
desired ones. The total size of these sub-tweak differences is n + s · (r0 − 1) bits
and thus the generic attack complexity is 2min((n+s·(r0−1))/2,128), which becomes
2128 when (n + s · (r0 − 1))/2 ≥ 128. The analysis is similar for the case where
the key size is 256 bits and SHAKE256 is employed. We define r′ to represent
the value of r0 that turns this inequality into an equality:

(n + s · (r′ − 1))/2 = k (1)

All the deterministic related-tweak differential characteristics smaller than r′

rounds can be recovered with a complexity smaller than the actual key size.
2 The success probability here is about 0.63.
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Therefore, in order to prevent these differential characteristics to weaken the
cipher, r′ must be taken into consideration when determining the number of
rounds of the MALICIOUS instance. Actually, these related-tweak differential
characteristics will decay exponentially in the remaining rounds as the corre-
sponding sub-tweak differences are basically random.

3.6 Rationale Underlying the MALICIOUS Construction

When designing a backdoor for block ciphers, the first question that comes into
mind is probably what type of backdoor should be used? While some existing
backdoor designs directly insert a backdoor inside Sboxes or some other parts
of the round function, we found out that the additional input tweak capability
of a tweakable block cipher could be a perfect carrier of the backdoor. Suppose
that a tweakable block cipher has a special property only when it is initiated
with very specific tweak values, while it performs normally for all the other
tweak values, then this property could be used as a backdoor. Moreover, if the
tweak size is large enough, finding these special tweak values could be as hard
as finding the secret key in the ideal case. One straightforward example of the
special property is to build related-tweak differential characteristics using these
tweaks. In the following, we provide more in-depth explanations on the design
choices in MALICIOUS.

Components Rationale. When instantiating the MALICIOUS framework,
some (security) notions have to be taken into account. The first and most impor-
tant one is the undiscoverability: an entity who does not know the backdoor
should not have increased chances to break the cipher. This requires that the
backdoor security has to be as high as the cipher security. Thus, the MALICIOUS
framework should provide a valid and solid security evaluation for the backdoor.

Another important notion is the practicability of the backdoor, and we will
aim to make it as efficient as possible.

We detail in the following how the components of the MALICIOUS framework
do follow these principles.

Tweak Schedule Based on XOF. As the malicious tweak values are the
backdoor, the main task of the tweak schedule is to protect the malicious tweaks.
According to the security analysis from Sect. 3.5, the backdoor security relies on
the target-difference problem, where the attacker tries to find a tweak pair whose
sub-tweak differences are the desired ones. This notion is simply a variation
of the classical collision resistance for a hash function, so we expect a good
cryptographic hash function to naturally provide this resistance.

Since MALICIOUS is a generalized framework, the total number of rounds
will vary according to the different instantiations, so does the length of the sub-
tweaks. Hence, the output length of the tweak schedule is expected to be flexible.
Besides, if the tweak schedule was designed specifically for each MALICIOUS
instantiation, it will render the backdoor evaluation much more difficult. Thus,
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for sake of simplicity of the analysis, it seems a better idea to make the tweak
schedule uniform in the framework.

For all these reasons, a XOF seemed to be the best choice for our tweak
schedule. The security of actual XOF functions such as SHAKE128 or SHAKE256
is rather well-analyzed and it can provide many choices in terms of security level.

Partial Non-linear Layers. The probability of a differential characteristic
is determined by the number of differentially active Sboxes. Hence, in order to
embed an efficient backdoor based on a differential characteristic, the best case
is that the differential characteristic activates no Sbox at all. This is obviously
very unlikely to happen in the MALICIOUS framework if the round functions
are fully non-linear layers. Indeed, unless the related-key model is considered,
a non-zero difference inserted in the plaintext would have to be cancelled by
the first sub-tweak difference. However, when inserting differences in the tweak
input, as the sub-tweak differences produced by the XOF will be random, they
will force many active Sboxes in the subsequent rounds. Thus, it is unlikely
for the MALICIOUS framework to be able to embed a deterministic related-
tweak differential characteristic that covers more than a few rounds if full non-
linear layers are utilized. Of course, it is possible to construct a differential
characteristic with limited number of active Sboxes, but this is not the efficiency
we are targeting.

We have also tried to modify the framework such that the sub-tweak addition
is not performed every round. For example, an r rounds deterministic related-
tweak differential characteristic can be realized by applying the tweak addition
only once at the beginning, see Fig. 3. This way, the sub-tweak difference Δt0
could neutralize the plaintext input difference Δx0 and the resulting zero differ-
ence would get through the r rounds with probability 1. However, this candidate
has an obvious fatal flaw: for any tweak pair the attacker can always set the
plaintext input difference to be equal to Δt0.

Fig. 3. A defective variant of the MALICIOUS framework. Key addition is omitted.

The above analysis shows that full non-linear layers seem not suitable for the
MALICIOUS framework. On the contrary, partial non-linear layers satisfy our
requirements. As in that case the Sbox only applies to a part of the internal
state, the round function is able to map a non-zero input difference to a non-
zero output difference while no active Sbox is activated. In term of building
deterministic differential characteristics, we only have to set the difference of the
non-linear part of the internal state to be zero rather than the full state. This
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allows to choose the linear transformation so that the output difference could
satisfy the requirements from Algorithm 1.

4 Instantiating the MALICIOUS Framework with LowMC

In this section, we introduce a concrete instantiation of the MALICIOUS frame-
work, called LowMC-M, which is based on the family of block ciphers LowMC.

4.1 LowMC

LowMC [2] is a family of block ciphers based on SPN structure with partial non-
linear layers. The parameters are flexible and we denote the block size by n, the
key size by k, the number of Sboxes applied each round by m and the maximum
allowed data complexity by d (d is the log2 of the allowable data complexity
up to which the cipher is expected to give the claimed security). In order to
reach the security claims, the number of rounds r is then derived from all these
parameters using a round formula, the latest version being given in [34].

At the beginning of the encryption process, a key whitening is performed.
The round function at round i consists of four operations in the following order:

– SboxLayer. A 3-bit Sbox is applied in parallel on the s = 3m LSBs of the
state, while the transformation for the remaining n − s bits is the identity.

– LinearLayer(i). The state is multiplied in GF(2) with an invertible n × n
binary matrix Li which is chosen independently and uniformly at random.

– ConstantAddition(i). The state is XORed with an n-bit round constant Ci

which is chosen independently and uniformly at random.
– KeyAddition(i). The state is XORed with an n-bit round key ki. To generate

ki, the master key K is multiplied in GF(2) with an n × k binary matrix
KLi. This matrix is chosen independently and uniformly at random with
rank min(n, k).

4.2 Equivalent Representation of LowMC

As discussed in [14,23,34], round keys and constants in LowMC can be com-
pressed due to the fact that the non-linear layer is partial.

In the round function, it is possible to exchange the order of consecutive linear
operations. We swap the order of LinearLayer and KeyAddition operations
while keeping ConstantAddition as the last step in round i. Then, the equivalent
round key can be written as k′

i = L−1
i (ki). We observe that the Sbox only

operates on the first s bits of the state and does not change the rest of the n− s

bits. Thus, we split k′
i into k

′(0)
i and k

′(1)
i , and we can move the addition of k

′(1)
i

to the beginning of the round. Next, we observe that k
′(1)
i can move further

up to be combined with ki−1 in the previous round. The procedure is illustrated
in Fig. 4. In general, if we start from the last round and iterate this procedure
recursively until all the additions to the linear part have been moved to the
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beginning of the algorithm, we will end up with an equivalent representation
where all the round keys are reduced to s bits apart from the whitening key. We
remark that the same reasoning can be applied to the round constants.

This optimized representation can also reduce the implementation cost of the
key schedule. Since all transformations performed during the optimization are
linear and since the key schedule is itself linear, these transformations can be
composed with the key schedule in order to compute the new 3m-bit round keys
directly. We refer to [14] for details.

Fig. 4. Simplified representation of LowMC.

4.3 LowMC-M

We will directly use the simplified representation of LowMC as a starting point in
our design, with a further modification: we move LinearLayer behind SboxLayer
in every round3.

LowMC-M is a family of tweakable block ciphers built upon LowMC with an
additional transformation in each round:

– TweakAddition(i). The non-linear part of the state is XORed with an s-bit
sub-tweak ti just after KeyAddition. ti is generated from a XOF whose input
is the original tweak value T .

The XOF is based on SHAKE128 or SHAKE256, depending on the key size. All
the other transformations of the round function are the same as for LowMC. The
round function is finally composed of the following operations (Fig. 5):

TweakAddition(i) ◦ KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

The encryption starts with a key and tweak whitening and the sizes of k0 and
t0 are both n. The derivation formula for the number of rounds r is the same as
for LowMC.
3 The resulting primitive is an equivalent representation of a LowMC instantiation with

different linear layers, key schedule and round constants, because these components
are chosen randomly.
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Fig. 5. A single round of LowMC-M.

Notations for LowMC-M. During a differential cryptanalysis, we denote by Xi

the i-th round state difference before the LinearLayer transformation. Given
a matrix Li, we denote its j-th row by Li[j, ∗], and partition Li into four sub-
matrices:

Li =
[

L00
i L01

i

L10
i L11

i

]

where L00
i ∈ GF(2)s×s, L01

i ∈ GF(2)s×(n−s), L10
i ∈ GF(2)(n−s)×s, L11

i ∈
GF(2)(n−s)×(n−s). With this notation, L00

i and L01
i will map X

(0)
i and X

(1)
i

to the non-linear part of the state, respectively. And L10
i and L11

i will map X
(0)
i

and X
(1)
i to the linear part of the state, respectively.

4.4 Embedding a Backdoor into LowMC-M

There are many forms of differential cryptanalysis that can perform a key recov-
ery attack, such as the impossible differential attack, the boomerang attack, etc.
For LowMC-M, we use the plain version where the attacker can deduce full or
partial information about the r-th round key from a differential characteristic
over r − 1 rounds.

Since an (r−1)-round deterministic differential characteristic can only reveal
the s-bit sub-key kr of the r-th round, more deterministic differential character-
istics should be added in order to eventually recover the full key. After kr has
been retrieved, the cipher can be reduced to r −1 rounds and thus another s-bit
sub-key kr−1 can be recovered from an (r − 2)-round deterministic differential
characteristic. Finally, assume that there are a total of a such deterministic dif-
ferential characteristics embedded in LowMC-M (one on r − 1 rounds, one on
r − 2 rounds, etc., see Fig. 6), then a · s sub-key bits can be recovered. As the
key schedule is fully linear and each matrix inside the key schedule is generated
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independently and uniformly at random, it implies that one will recover a ·s bits
of information about the key by solving a system of linear equations. Therefore,
at most a = �k/s� deterministic differential characteristics are needed to recover
the full key.

Fig. 6. The deterministic differential characteristics embedded into LowMC-M.

Now, we explain how to embed such differential characteristics into an instan-
tiation of LowMC-M. The general procedure is given in Algorithm 1. The a
malicious tweak pairs are chosen by the designer at the very beginning and
the corresponding sub-tweak differences are computed. Then, the linear layer
matrix Li is generated along with the generation of the deterministic differential
characteristics, round by round.

Firstly, we explain how to generate the linear layer matrices. Note that in
order to have a deterministic differential characteristic over i rounds, only the
linear layer matrices of the first i − 1 rounds have to be specifically designed
as the matrix Li has no impact on the differences of the i-th round Sboxes.
Assuming we have already embedded a deterministic differential characteristics
over i rounds, then all the linear layer matrices of the first i − 1 rounds of
LowMC-M have been fixed accordingly. If we plan to extend b (b ≤ a) of the a
deterministic differential characteristics by one more round, the matrix Li should
be specified. Denote by SXi the set of X

(1)
i of those deterministic differential

characteristics that will be extended in the next round. Here, SXi refers to the
b differential characteristics. Since the non-linear state difference X

(0)
i equals

to zero for all the b differential characteristics, the set SXi will determine the
differential in the following round. Given the difference set SXi, the output
differences after the multiplication by the matrix L01

i should cancel the following
sub-tweak differences so that the b differential characteristics will activate no
Sbox in round i + 1. We detail the generation of Li in Algorithm 2.

Denote the b × (n − s) matrix in Equation (2) by MXi. We emphasize that
the rank of MXi should be min(b, n−s), otherwise Equation (2) is likely to have
no solution. In practice, b is always smaller than n − s for a normal parameters
set of LowMC-M. Thus, this requirement also means that the binary vectors of
X

(1)
i in SXi should be linearly independent.
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Algorithm 2: Generate linear layer matrix Li.

Input : The set SXi = (X
(1)
i,1 , X

(1)
i,2 , · · · , X

(1)
i,b ) and the sub-tweak differences

(Δt1i , Δt2i , · · · , Δtbi ) for the b differential characteristics.
Output: Matrix Li

while True do
for j from 1 to s do

Solve the following system of linear equations and randomly pick one
solution of x = (x1, x2, ..., xn) as L01

i [j, ∗].

⎛
⎜⎜⎜⎜⎝

X
(1)
i,1 [1] X

(1)
i,1 [2] ... X

(1)
i,1 [n − s]

X
(1)
i,2 [1] X

(1)
i,2 [2] ... X

(1)
i,2 [n − s]

...

X
(1)
i,b [1] X

(1)
i,b [2] ... X

(1)
i,b [n − s]

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

x1

x2

...
xn−s

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Δt1i [j]
Δt2i [j]

...

Δtbi [j]

⎞
⎟⎟⎟⎠ (2)

end
Randomly select the sub-matrices L00

i , L10
i and L11

i .
if Li is full rank then

return Li

end

end

The whole process of generating an instance of LowMC-M is given here:

1. Select a different pairs of tweaks of any desired length and compute the
corresponding sub-tweak differences in all rounds for each pair of tweaks.

2. For each tweak pair, choose an n-bit value of the plaintext difference ΔP as
the input difference for the embedded differential characteristic, while setting
the first s bits of ΔP to be equal to Δt

(0)
0 .

3. For the a differential characteristics, compute X
(1)
1 = ΔP (1) ⊕ Δt

(1)
0 and if

the binary vectors of SX1 are not linearly independent, then go back to step
2.

4. For round i from 1 to r − 2:
• Generate the matrix Li using Algorithm 2 with SXi and the correspond-

ing sub-tweak differences as inputs4.
• Except for the last loop, compute the set of SXi+1 through the matrix

multiplication of Li. If the binary vectors of SXi+1 are not linearly inde-
pendent, repeat this loop.

5. Choose Lr−1 and Lr independently and uniformly at random from all invert-
ible n × n binary matrices.

6. For all rounds i, choose KLi independently and uniformly at random from
all n × k binary matrices of rank min(n, k) and the round constants Ci as
well.

4 Starting from round r−a+1, the number of deterministic differential characteristics
decrements by 1 at every loop.
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Recovering the Secret Key With the Backdoor. The backdoor is the a
malicious tweak pairs and the corresponding plaintext differences. With the
knowledge of these related-tweak differential characteristics, the designer can
recover the full key in a very short time. To create the a plaintext differences,
the designer can firstly choose a random P , then compute Pi = P ⊕ ΔPi for
i ∈ {1, · · · , a}. We note the fact that for any non-zero probability differential
(Δ1,Δ2) of LowMC-M Sbox, where Δ1 
= 0 and Δ2 
= 0, there is only one
unordered pair of inputs/outputs of the Sbox satisfying the differential. If each
plaintext difference is used only once in the attack, then two sub-key candi-
dates will remain for each Sbox as we cannot determine which order of the
input/output pair of the targeted Sbox should be in the attack. The wrong
sub-key candidate can be filtered by repeating the attack with another pair of
plaintexts of the same difference. By doing so, a · s bits of information of the key
can be retrieved in the end. Later, the remaining (k−a ·s) key bits, if they exist,
can be brute forced. Finally, the key recovery requires 2(a+1)+max(k −a ·s, 0)
encryptions and the data complexity is 2(a + 1).

Note that the bit length of X
(1)
i is n − s. In order to ensure that Equa-

tion (2) is solvable, the number of differential characteristics that are embedded
in LowMC-M should not be higher than n − s. Generally, this bound is much
higher than the number of differential characteristics that is actually needed in
a concrete instantiation. Last but not least, one may wonder why we chose dif-
ferent malicious tweak pairs for the a related-tweak differential characteristics
(indeed using a single malicious tweak pair would work), but we recommend
doing so for security reasons as we will explain in Sect. 5.1.

4.5 Parameters

The design goal of LowMC-M is to keep the backdoor and the cipher secure,
but also to ensure the efficiency of the key recovery using the backdoor. Based
on these principles, we selected some instantiation parameters5 and we present
them in Table 1. The security analysis is given in Sect. 5 and Sect. 6.

Regarding the performances, we evaluated the corresponding LowMC used
in the LowMC-M instances. The LowMC implementations we benchmarked are
optimized for AVX2 instructions. Measurements were performed on an AMD
EPYC 7401 running Ubuntu 18.04. We tested several instances and we observed
that a single encryption generally costs around 10000 to 30000 cycles depending
on the parameters, the block size (= key size) ranging from 128 to 256 bits.

5 The reference code of LowMC-M generation can be found at https://github.com/
MaliciousLowmc/LowMC-M.

https://github.com/MaliciousLowmc/LowMC-M
https://github.com/MaliciousLowmc/LowMC-M
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Table 1. A range of different parameters sets of LowMC-M instantiations. For each
instantiation, the malicious tweak pair that triggers each embedded differential char-
acteristic is unique. d is the log2 of the allowed data complexity, a is the number of
differential characteristics embedded.

block size
n

non-linear
s

key size
k

data
d

rounds
r

#differentials
a

XOF

128

3 128 64 208 43 SHAKE128

6 128 64 104 21 SHAKE128

9 128 64 70 14 SHAKE128

30 128 64 23 5 SHAKE128

90 128 64 14 2 SHAKE128

256

3 256 64 384 85 SHAKE256

9 256 64 129 28 SHAKE256

60 256 64 21 5 SHAKE256

120 256 64 14 3 SHAKE256

5 Backdoor Security

In this section, we will discuss the backdoor security of LowMC-M with respect
to the notions mentioned in Sect. 2.2: undetectability, undiscoverability, untrace-
ability and practicability.

5.1 Undetectability

In this subsection, we discuss whether a LowMC-M instance containing a back-
door is distinguishable from a random LowMC-M with no backdoor embedded.
Since the only difference between these two cases lies in the way the linear layer
matrices are generated, we will investigate the properties of these matrices.

We now would like to show that all embedded differential characteristics
must use distinct tweak pairs in order to maintain undetectability. Assuming
there is a backdoored LowMC-M instance that is generated following the steps
described in Sect. 4.4 and a total of a deterministic related-tweak differential
characteristics are embedded, while only a′ (< a) different tweak pairs are used
during the generation phase. Let cj denote the number of embedded differential
characteristics triggered by the same tweak pair, with j ∈ {1, . . . , a′}. We will
show that some dependency will exist in the linear layer matrices for the first
i (≤ r − a) rounds, consequently some additional deterministic related-tweak
differential characteristics over the first i rounds can be recovered.
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Definition 3. For a LowMC-M instance, Ai is the matrix of dimension (i · s)×
(n − s) defined as:

⎛
⎜⎜⎜⎜⎜⎝

L01
1

L01
2 · L11

1

L01
3 · L11

2 · L11
1

...
L01

i · L11
i−1 · ... · L11

1

⎞
⎟⎟⎟⎟⎟⎠

We remark that a malicious plaintext difference ΔP can be retrieved if the
corresponding malicious tweak pair is provided: in order to have a deterministic
differential characteristic all Sboxes must be differentially inactive (i.e., the input
difference of each Sbox should be zero) and thus for a malicious tweak pair that
takes any of the a′ different values, recovering ΔP (0) (the non-linear part of ΔP )
is straightforward as it is equal to the sub-tweak difference Δt

(0)
0 . After that, one

just needs to retrieve the remaining part ΔP (1). In order to have a deterministic
differential characteristic over the first two rounds, L01

1 (X(1)
1 ) should be equal

to Δt1, where X
(1)
1 = ΔP (1) ⊕ Δt

(1)
0 . To extend the differential characteristic to

the third round, L01
2 ·L11

1 (X(1)
1 ) should be equal to Δt2. Continuing this process

until the i-th round, we can create a system of linear equations with n−s binary
variables:

⎛
⎜⎜⎜⎜⎜⎝

L01
1

L01
2 · L11

1

L01
3 · L11

2 · L11
1

...
L01

i−1 · L11
i−2 · ... · L11

1

⎞
⎟⎟⎟⎟⎟⎠

· (X(1)
1 ) = Ai−1 · (X(1)

1 ) =

⎛
⎜⎜⎜⎜⎜⎝

Δt1
Δt2
Δt3

...
Δti−1

⎞
⎟⎟⎟⎟⎟⎠

(3)

Solving Eq. (3) will output the solution of X
(1)
1 , then the remaining part

ΔP (1) can be recovered naturally. However, there may be more solutions as the
number of solutions is determined by the rank of Ai−1.

In cases where the number of rounds i is large enough such that (i − 1) · s �
(n−s), if all the linear layer matrices are chosen independently and uniformly at
random, the rank of Ai−1 will be n − s with very high probability. However, for
a LowMC-M instance with backdoor embedded, since the linear layer matrices
are specially designed, the rank of Ai−1 can not be determined similarly.

Determining the Rank of Ai−1. We first introduce the following definition.

Definition 4. If M is an n × m binary matrix and v is an n-bit vector, the
solution space sol(M,v) is defined as: sol(M,v) = {xT ∈ {0, 1}m : Mx = v}.

Assume that a special LowMC-M instance is generated with c related-tweak
deterministic differential characteristics over i rounds while only one malicious
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tweak pair is used. During the generation of L01
j , j ∈ {1, . . . , i−1}, Equation (2)

could be simplified as:

MXj · x = 1 or MXj · x = 0 (4)

where 0 and 1 are c-bit vectors full of zeros and ones, respectively.
Denote by V the union of sol(MX1,1) and sol(MX1,0), the rows of L01

1 are
chosen from V . Since the dimensions of sol(MX1,1) and sol(MX1,0) are both
n − s − c, then the dimension of V is n − s − c + 1. When j = 2, Eqs. (4) can be
represented by:

MX1 · (L11
1 )T · x = 1 or MX1 · (L11

1 )T · x = 0

because X
(1)
2 = L11

1 ·X(1)
1 . The rows of L01

2 are chosen from sol(MX1 · (L11
1 )T ,1)

or sol(MX1 · (L11
1 )T ,0). Before we continue, we will use the following lemma.

Lemma 1. Let M1 and M2 be two binary matrices of dimension (n × m) and
(m × m) respectively. If x ∈ sol(M1 · M2, v), then x · MT

2 ∈ sol(M1, v) for any
n-bit vector v.

Proof. For any x ∈ sol(M1 · M2, v), we have (M1 · M2) · xT = v. It can be
represented by M1 · (M2 · xT ) = v, thus (M2 · xT )T = x · MT

2 ∈ sol(M1, v). �

According to Lemma 1, if x ∈ sol(MX1·(L11
1 )T ,1), then x·L11

1 ∈ sol(MX1,1)
and also if x ∈ sol(MX1 · (L11

1 )T ,0), then x · L11
1 ∈ sol(MX1,0). Thus, all the

rows of L01
2 · L11

1 are in the space V . Similarly, we can get the same results for
L01
3 ·L11

2 ·L11
1 , · · · , L01

i−1 ·L11
i−2 · ... ·L11

1 . To summarize, all the rows of Ai−1 for this
special LowMC-M instance are chosen from the space V of dimension n−s−c+1.
Thus, the rank of Ai−1 is n − s − c + 1.

Let us return back to the previous LowMC-M instance mentioned at the
beginning of this subsection. We can divide the a differential characteristics into
a′ sub-groups where each sub-group includes cj differential characteristics that
are triggered with the same tweak pair, j ∈ {1, . . . , a′}. Then, the space V will
be the intersection of all the spaces that are determined by the a′ sub-groups.
We summarize the result as follows.

Proposition 1. If there is a total of a′ different malicious tweak pairs and each
of them is used to build cj deterministic differential characteristics over i rounds
in an instance of LowMC-M, with (i − 1) · s � (n − s), then the rank of Ai−1

will be n − s − ∑a′

j=1(cj − 1).

As a result, the rank of Ai−1 is n−s−∑a′

j=1(cj −1) and a total of 2
∑a′

j=1(cj−1)

deterministic differential characteristics for each of the a′ tweak pairs can be
recovered by the designer. Note that the rank of Ai−1 can be easily computed
by any entity. Compared to the full rank Ai−1 for a random LowMC-M with no
backdoor embedded, the unusual property of Ai−1 for the backdoored LowMC-M
will uncover the existence of the backdoor if a′ < a. However, if a′ = a, that is,
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cj = 1 for all j ∈ {1, . . . , a′}, then Ai−1 will be full rank. Therefore, in order
to keep the backdoor of LowMC-M undetectable, we recommend to not use the
same tweak pair for building more than one differential characteristics in the
generation phase.

5.2 Undiscoverability

In this subsection, we discuss whether the backdoor from a LowMC-M instance
can be efficiently recovered by an attacker. Recall that some unknown deter-
ministic related-tweak differential characteristics potentially exist in LowMC-M,
according to Property 1. Instead of considering the embedded backdoor exclu-
sively, we evaluate the complexity of finding any useful deterministic related-
tweak differential characteristics for an attacker. Basically, the complexity is
based on the XOF security properties.

We simply adopt the security analysis for the general MALICIOUS framework
in Sect. 3.5. For any LowMC-M instance, the bound r′ derived from Formula 1
is much smaller compared to the total number of rounds, which poses no threat
to the backdoor. We list the evaluation for some instances in Table 2.

We can examine the undiscoverability security from another perspective.
Note that deterministic related-tweak differential characteristics can be derived
as long as Eq. (3) is solvable. The requirement for the equation to be solvable
is that the ranks of the coefficient matrix Ai−1 and the augmented matrix of
Eq. (3) are equal, which means that the vector on the right side of the equation,
denoted as v, has to be a combination of the columns of Ai−1. Observe that
the number of such combinations is 2α, α being the rank of Ai−1 and it can be
computed according to Proposition 1. As for vector v, it is random due to the
XOF and its size is s · (i − 1). In conclusion, Eq. (3) is solvable with probability
2α−s·(i−1), that is, the complexity of finding an i-round deterministic related-
tweak differential characteristic is 2s·(i−1)−α. We define r′′ to represent the value
of i that turns the complexity to be equal to the key space size

r′′ =
k + α

s
+ 1 (5)

The maximal value is r′′ = k+n
s when Ai−1 is full rank of n− s. Still, r′′ is much

smaller than the number of rounds of any LowMC-M instance, see examples in
Table 2.

To summarize, the backdoor and the other potential deterministic related-
tweak differential characteristics of the same length are fully protected by the
XOF, and its recovery is as hard as brute forcing the key.
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Table 2. Backdoor security evaluation for LowMC-M-n/s with block size n, key size n,
non-linear layer size s and log2 data complexity 64. r is the actual number of rounds
of the instance, r′ and r′′ are defined in Formulas 1 and 5 respectively.

Parameters r r′ r′′

LowMC-M-128/3 208 44 86

LowMC-M-128/6 104 23 43

LowMC-M-128/9 70 16 29

LowMC-M-128/30 23 6 9

LowMC-M-128/90 14 3 3

LowMC-M-256/3 384 87 170

LowMC-M-256/9 129 30 57

LowMC-M-256/60 21 6 9

LowMC-M-256/120 14 4 5

5.3 Untraceability and Practicability

As for practicability, only negligible data and computation are required to launch
a full key recovery attack with the knowledge of the backdoor, as explained in
Sect. 4.4. Thus, the full key can be recovered within seconds.

Since the usage of the backdoor requires chosen tweaks, the malicious tweaks
can be detected by the user once the designer makes queries to attack him, which
means the backdoor is traceable. Besides, as only a few queries are needed to
launch an attack with the knowledge of the backdoor, the user is able to quickly
brute force the queries to find out the malicious tweak pairs.

6 Cipher Security

In this section, we study the security of LowMC-M as a tweakable block cipher.

6.1 Attacks Based on Tweak

In comparison to LowMC, an additional tweak addition is introduced in LowMC-
M. Theoretically, this feature will provide extra degrees of freedom for the
attacker and might naturally weaken LowMC-M when compared to LowMC. How-
ever, since the tweak schedule is an XOF, the attacker cannot control its output.
Even if the attacker could brute force some structures on the sub-tweaks for a
few rounds, this will result in the remaining rounds containing completely ran-
dom structure, which consequently prevent the attacker utilizing these remaining
rounds for what should have been the best attack on LowMC. Hence, we believe
that the extra degrees of freedom provided by the tweak is not easily usable and
will not lead to any important improvement over classical attack, including the
existing cryptanalysis [15,16,34] on LowMC.
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6.2 Attacks Without Tweak

All the current attacks [15,16,34] on LowMC have been conducted under the
assumption that the linear layer matrices of LowMC are chosen independently
and uniformly at random. Except the tweak addition, LowMC-M has the equiv-
alent specification to LowMC. The only difference lies in the way the linear layer
matrices Li are chosen during the generation phase. In order to prove that the
security of LowMC-M is on par with that of LowMC, we need to show that the
linear layer matrices of LowMC-M are indistinguishable from those of LowMC-M
from the perspective of the attacker. We will evaluate this with respect to the
randomness and independence.

Randomness of Linear Layer Matrices. The randomness of the linear layer
matrix Li is analyzed by scrutinizing its four sub-matrices one by one.

L00
i and L10

i . As described in Algorithm 2, the two sub-matrices L00
i and L10

i

of Li are chosen independently and uniformly at random for each round.

L11
i . Even though L11

i is chosen randomly in Algorithm 2, there is a supple-
mentary requirement during the generation phase. That is, the binary vectors of
SXi+1 have to be linearly independent, which adds an extra constraint to L11

i

since each binary vector of SXi+1 is obtained by:

X
(1)
i+1 = L11

i · X
(1)
i (6)

and thus the transformation of L11
i should map a set of linearly independent

vectors to another set of linearly independent vectors. Since L11
i is chosen ran-

domly and all the X
(1)
i involved are linearly independent, every X

(1)
i+1 in SXi+1

produced by Formula 6 can be regarded as random binary vectors and are inde-
pendent from each other. On the other hand, note that at most a = �k/s�
differential characteristics are embedded in LowMC-M, which means that the
size of SXi+1 is �k/s� at most. For any reasonable parameter set, we will have
�k/s� � (n−s). Based on Lemma 2 below, we can compute the probability that
the set SXi+1 is linearly independent. As a result, the probability is almost 1,
which is also verified from our experiments.

Hence, the constraint on L11
i is very loose. The final selection of L11

i will not
introduce any special property.

Lemma 2. [24, adapted] For m random n-bit vectors over F2 (m � n), the
probability that they are linearly independent is p(m) =

∏m−1
k=0 (1 − 2k−n). In

particular, p(n) > 0.2887.

L01
i . L01

i is the essential part for embedding backdoors, and thus it is the one
specially designed. The row length of L01

i is n − s bits, while in the generation
phase each row is chosen from a sub-space of dimension n − s − b which is
determined by the corresponding Equation (2), b being the size of SXi. However,
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we will show that for the attacker this special chosen L01
i is still indistinguishable

from a randomly chosen one.
Observe that both MXi and the sub-tweak difference vector in Equation (2)

are unknown for the attacker, thus the solution space is unidentified. Moreover,
the solution space for each row of L01

i could be different due to the sub-tweak
difference. Therefore, it is impossible for the attacker to trace some rows of L01

i

to the targeted hidden sub-space.
To summarize, the four sub-matrices are indistinguishable from random

matrices for the attacker. The only connection between these four sub-matrices
is that the combined matrix Li should be invertible, which is also the same for
LowMC, so it reveals no additional information. Hence, we conclude that for the
attacker the matrix Li is indistinguishable from a random matrix.

Independence Between Linear Layer Matrices. The definition of Ar cap-
tures partial information of the matrices that includes L10

i and L11
i over r consec-

utive rounds. If the linear layer matrices are chosen independently and uniformly
at random, the resultant Ar should be random, thus the rank of Ar will be n−s
when r ·s � (n−s). If the rank for a LowMC-M instance is smaller than n−s, it
will imply a connection between these matrices. As suggested in Proposition 1,
the rank of Ar can be computed by n − s − ∑a′

i=1(ci − 1). In order to eliminate
the connections, each ci should equal to 1, that is, different malicious tweak pairs
should be used to build different differential characteristics during the generation
phase.

The two sub-matrices L00
i and L10

i are chosen randomly and independently,
so it will not impose any connection between the matrices.

We remark that even if there is some dependence existing between the linear
layer matrices, the cipher security is still unlikely to be threatened. Yet, we
conservatively recommend to avoid such dependency in a LowMC-M instance.

7 Conclusion

In this article, we proposed the MALICIOUS framework for embedding backdoors
into tweakable block ciphers. The backdoor is a set of related-tweak differential
characteristics with probability 1, from which the secret key can be recovered
fully and efficiently. Besides, the backdoor security of our proposal is reduced
to the target-difference resistance (a variant of the classical collision resistance,
with the same generic complexity) of the XOF employed in the cipher. We also
proposed several concrete instances LowMC-M, which are directly inspired from
the block cipher LowMC.

We have proved that it is possible to build a secure and efficient backdoor
into tweakable block ciphers. Third party analysis is of course required to fully
understand its security, but our proposal could be a new interesting direction
towards building backdoors in symmetric-key primitives.

Not only this result will increase the community’s awareness to potential
backdoors in symmetric-key primitives, but it can also lead to new applications.
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It has been shown in [35] that a backdoored block cipher is equivalent to a public
key encryption where the backdoor is regarded as the secret key. Even though our
proposal does not yet reach the usability of a public encryption scheme, building
public-key primitives out of symmetric-key ones has been a long standing open
problem.

We envision several future works after this first step. Other cryptanalysis
techniques than just a plain differential attack (such as impossible differential
attacks, boomerang attacks, integral attacks, etc.) might also be used to build
backdoors and could allow us to build more efficient or more usable designs. It
would also be interesting to build other types of backdoored primitives, such as
Message Authentication Codes (MAC), Authenticated Encryption (AE), etc.
which might require totally different design strategies. Finally, our proposal
remains somewhat traceable (once the backdoor used against him, a user could
try to check all of its tweak values queried and check which tweaks pair leads
to a related-tweak differential with a very good probability) and it would be
interesting to study new techniques or protocols to reduce this detection surface
as much as possible.
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