
Spartan: Efficient and General-Purpose
zkSNARKs Without Trusted Setup

Srinath Setty(B)

Microsoft Research, Redmond, USA
srinath@microsoft.com

Abstract. This paper introduces Spartan, a new family of zero-
knowledge succinct non-interactive arguments of knowledge (zkSNARKs)
for the rank-1 constraint satisfiability (R1CS), an NP-complete language
that generalizes arithmetic circuit satisfiability. A distinctive feature of
Spartan is that it offers the first zkSNARKs without trusted setup (i.e.,
transparent zkSNARKs) for NP where verifying a proof incurs sub-linear
costs—without requiring uniformity in the NP statement’s structure. Fur-
thermore, Spartan offers zkSNARKs with a time-optimal prover, a prop-
erty that has remained elusive for nearly all zkSNARKs in the literature.

To achieve these results, we introduce new techniques that we com-
pose with the sum-check protocol, a seminal interactive proof protocol: (1)
computation commitments, a primitive to create a succinct commitment
to a description of a computation; this technique is crucial for a verifier
to achieve sub-linear costs after investing a one-time, public computation
to preprocess a given NP statement; (2) spark, a cryptographic compiler
to transform any existing extractable polynomial commitment scheme for
multilinear polynomials to one that efficiently handles sparse multilinear
polynomials; this technique is critical for achieving a time-optimal prover;
and (3) a compact encoding of an R1CS instance as a low-degree polyno-
mial.The end result is apublic-coin succinct interactive argumentof knowl-
edge forNP (which canbe viewedas a succinct variant of the sum-check pro-
tocol); we transform it into a zkSNARK using prior techniques. By apply-
ing spark to different commitment schemes, we obtain several zkSNARKs
where the verifier’s costs and the proof size range from O(log2 n) to O(

√
n)

depending on the underlying commitment scheme (n denotes the size of
the NP statement). These schemes do not require a trusted setup except
for one that requires a universal trusted setup.

We implement Spartan as a library in about 8,000 lines of Rust. We
use the library to build a transparent zkSNARK in the random oracle
model where security holds under the discrete logarithm assumption. We
experimentally evaluate it and compare with recent zkSNARKs for R1CS
instance sizes up to 220 constraints. Among schemes without trusted setup,
Spartan offers the fastest prover with speedups of 36–152× depending on
the baseline, produces proofs that are shorter by 1.2–416×, and incurs the
lowest verification times with speedups of 3.6–1326×. When compared to
the state-of-the-art zkSNARK with trusted setup, Spartan’s prover is 2×
faster for arbitrary R1CS instances and 16× faster for data-parallel work-
loads.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 704–737, 2020.
https://doi.org/10.1007/978-3-030-56877-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_25

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 705

1 Introduction

We revisit the problem of designing zero-knowledge succinct non-interactive
arguments of knowledge (zkSNARKs) [22,48] for the complexity class NP: they
enable a computationally-bounded prover to convince the membership of a
problem instance in an NP language by producing a proof—without reveal-
ing anything besides the validity of the statement. Furthermore, the proof
size and the verifier’s costs are sub-linear in the size of the statement. We
are motivated to design zkSNARKs because they enable many applications
that involve various forms of delegation of computation for scalability or pri-
vacy [12,26,29,31,38,39,41,46,59,61,70,73–79,87].

Specifically, we are interested in zkSNARKs that prove the satisfiability of
R1CS instances over a finite field F (an NP-complete language that generalizes
arithmetic circuit satisfiability; see Sect. 2.1 for details): given a problem instance
x = (F , A,B,C, io,m, n), we desire a proof that demonstrates the knowledge of a
witness w such that SatR1CS(x, w) = 1.1 We desire zkSNARKs for R1CS because
there exist efficient toolchains to transform high-level applications of interest to
R1CS [13,15,18,31,60,70,73,77,83].

There are many approaches to construct such arguments in the literature,
starting with the work of Kilian [58] who provided the first construction of a
succinct interactive argument protocol by employing probabilistically checkable
proofs (PCPs) [5–7,42,44,54] in conjunction with Merkle trees [67]. Micali [68]
made a similar protocol non-interactive in the random oracle model, thereby
obtaining the first zkSNARK. Unfortunately, the underlying PCP machinery
remains extremely expensive for the prover and the verifier—despite founda-
tional advances [14,19–21].

Thus, the first works with an explicit motivation to make proof sys-
tems practical [38,74,76,77,79] refine and implement interactive protocols of
Ishai et al. [55] and Goldwasser et al. [49], which do not require asymptotically-
efficient PCPs. The principal downside is that they achieve practicality for only
a restricted class of NP statements.

Gennaro, Gentry, Parno, and Raykova (GGPR) [47] address the above issue
with a new characterization of NP called quadratic arithmetic programs (QAPs).
By building on the work of Ishai et al. [55], Groth [50], and Lipmaa [65], GGPR
construct a zkSNARK for R1CS in which the prover’s running time is O(n log n),
the size of a proof is O(1), and the verifier incurs O(|io|) computation to verify
a proof, where n is the size of the statement, and io denotes the public input
and output. Unfortunately, GGPR’s zkSNARK requires a per-statement trusted
setup that produces an Oλ(n)-sized structured common reference string and the
trapdoor used in the setup process must be kept secret to ensure soundness.
Relying on such a trusted setup is often infeasible, especially for applications
that do not have trusted authorities. There exist several advances atop GGPR,
but they retain a trusted setup [15,18,23,51,52,70], or require interaction [75].

1 Although we use the word “proof”, we mean proofs that are computationally
sound [30].

706 S. Setty

The above state of affairs has motivated another class of works, called trans-
parent zkSNARKs, that aim to eliminate the requirement of a trusted setup.
They prove security in the random oracle model, which is acceptable in practice.
First, Hyrax [84] extends a line of work [38,78–82] that refines the doubly-efficient
interactive proofs (IPs) of Goldwasser et al. [49]. Second, STARK [10] and
Aurora [16] build on interactive oracle proofs (IOPs) [17,71]. Third, Ligero [3]
builds on the “MPC in the head” paradigm [56]. Fourth, Bulletproofs [32] builds
on the work of Bootle et al. [27].

Unfortunately, they face the following problems.

• The computational model of Hyrax [83] is layered arithmetic circuits, where
the verifier’s costs and the proof sizes scale linearly in the depth of the cir-
cuit. Converting an arbitrary circuit into a layered form can increase its
size quadratically [49],2 so Hyrax is restricted to low-depth circuits. Also,
Hyrax [83] achieves sub-linear verification costs only for circuits with a uni-
form structure (e.g., data-parallel circuits).

• STARK [10] requires circuits with a sequence of identical sub-circuits, oth-
erwise it does not achieve sub-linear verification costs. Any circuit can be
converted to this form [13,15], but the transformation increases circuit sizes
by 10–1000×, which translates to a similar factor increase in the prover’s
costs [83].

• Ligero [3], Bulletproofs [33], and Aurora [16] incur O(n) verification costs.

Our work addresses these problems.

1.1 Summary of Contributions

This paper presents a new family of zkSNARKs, which we call Spartan, for prov-
ing the satisfiability of NP statements expressed in R1CS. Spartan offers the first
transparent zkSNARK that achieves sub-linear verification costs for arbitrary
NP statements.3 Spartan also offers zkSNARKs with a time-optimal prover, a
property that has remained difficult to achieve in nearly all prior zkSNARKs.

In a nutshell, Spartan introduces a new public-coin succinct interactive argu-
ment of knowledge where the verifier incurs sub-linear costs for arbitrary R1CS
instances by employing computation commitments (which we describe below).
Our argument makes a black box use of an extractable polynomial commitment
scheme in conjunction with an information-theoretic protocol, so its soundness
holds under the assumptions needed by the polynomial commitment scheme
(there exist many polynomial commitment schemes that can be instantiated
under standard cryptographic assumptions [32,84,86]). The interactive argument
is public-coin, so we add zero-knowledge using existing compilers [84,85,88],
2 For a depth-d circuit, converting to a layered form increases the circuit size by a

factor of O(d).
3 To our knowledge, short PCP-based transparent zkSNARKs [58,68] do not achieve

sub-linear verification costs unless one uses uniform circuits, which is undesirable as
noted above.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 707

which themselves build on prior theory [9,35,40]. We then make the result-
ing zero-knowledge argument of knowledge non-interactive in the random ora-
cle model using the Fiat-Shamir transform [45]. Since our interactive argument
employs a polynomial commitment scheme as a black box, we obtain a family
of zkSNARKs where each variant employs a different polynomial commitment
scheme.

In more detail, Spartan makes the following contributions.

(1) A new family of public-coin succinct interactive arguments
of knowledge. Our core insight is that the sum-check protocol [66], a sem-
inal interactive proof protocol (where soundness holds unconditionally), when
applied to a suitably-constructed low-degree polynomial yields a powerful—but
highly inefficient—interactive proof protocol, but the inefficiency can be tamed
with new techniques. Specifically, we introduce three techniques (Fig. 1 offers a
visual depiction of how these techniques work together):

Theorem
4.1

R1CS
instance

A degree-3
multivariate
polynomial

Theorem
5.1

PolyCommit (§2.3)

A public-coin,
succinct interactive

argument of
knowledge

Existing
compilers

A proof-succinct
NIZK

SPARK
(§7)

PolyCommit for
sparse multilinear

polynomials

Computation
commitments (§6)

zkSNARKs

Fig. 1. Overview of our techniques for constructing zkSNARKs.

(i) Computation commitments, a primitive for creating succinct cryptographic
commitments to a mathematical description of an NP statement, which is
critical for achieving sub-linear verification costs.
Achieving sub-linear verification costs appears fundamentally unrealizable
because the verifier must process an NP statement for which the proof is
produced before it can verify a purported proof. Our observation is that this
cost can be made sub-linear in the size of an NP statement by introducing
a public preprocessing step.
Specifically, our observation is that when verifying a proof under our inter-
active argument, the verifier must evaluate a low-degree polynomial that
encodes the NP statement, which incurs O(n) costs to the verifier. Our prim-
itive, computation commitments, enables verifiably delegating the necessary
polynomial evaluations to the prover. Specifically, in Spartan, the verifier
reads an R1CS instance (without the io component) for which the proof is
produced and retains a short cryptographic commitment to a set of sparse
multilinear polynomials that encode the R1CS structure. Later, when pro-
ducing a proof, the prover evaluates the necessary polynomials and proves
that the sparse polynomial evaluations are consistent with the commitment
retained by the verifier. While the verifier incurs O(n) cost to compute a

708 S. Setty

computation commitment, the cost is amortized over all future proofs pro-
duced for all R1CS instances with the same structure. This amortization
is similar to that of GGPR [47]. However, unlike GGPR’s trusted setup,
creating a computation commitment does not involve any secret trapdoors.
Section 6 provides details.

(ii) spark, a cryptographic compiler to transform any existing extractable
polynomial commitment scheme for multilinear polynomials to one that
efficiently handles sparse multilinear polynomials. Using the compiler, we
obtain schemes with time-optimal costs for both creating commitments
to sparse multilinear polynomials and to produce proofs of evaluations
of the committed polynomials. This compiler is crucial for achieving a
time-optimal prover in Spartan. In more detail, spark employs an existing
extractable polynomial commitment scheme as a black box, and uses it in
conjunction with a special-purpose zkSNARK and a carefully-constructed
circuit (that employs offline memory checking techniques [4,24,37,43,73])
to efficiently prove evaluations of sparse multilinear polynomials. Section 7
provides details.

(iii) A compact encoding of an R1CS instance as a degree-3 multivariate polyno-
mial that can be decomposed into four multilinear polynomials. The decom-
position into multilinear polynomials is critical for achieving a time-optimal
prover in the sum-check protocol by employing prior ideas [78,85]. Section 4
provides details.

(2) An optimized implementation and experimental evaluation. We
implement Spartan as a library in about 8,000 lines of Rust. We use the library to
build a transparent zkSNARK that employs an extractable polynomial commit-
ment scheme due to Wahby et al. [84] where soundness holds under the hardness
of computing discrete logarithms. Our experimental evaluation demonstrates
that, among schemes without trusted setup, Spartan offers the fastest prover
with speedups of 36–152× depending on the baseline, produces proofs that are
shorter by 1.2–416×, and incurs the lowest verification times with speedups
of 3.6–1326×. When compared to the state-of-the-art zkSNARK with trusted
setup, Spartan’s prover is 2× faster for arbitrary R1CS instances and 16× faster
for data-parallel workloads.

(3) A unified understanding of different strands of theory. Spartan
exposes inter-connections among different lines of work on probabilistic proofs—
from the perspective of zkSNARKs—including doubly-efficient IPs, MIPs, and
short PCPs [72, §3.2].

(4) Improvements in zkSNARKs with universal setup. While our focus
is transparent zkSNARKs, Spartan improves on prior zkSNARKs with universal
trusted setup.

By employing a different polynomial commitment scheme [69,87], which
requires q-type, knowledge of exponent assumptions, in spark, Spartan offers
an alternative to Libra [85]; we refer to this variant as Spartanke. Compared to
Libra, Spartanke supports arbitrary R1CS instances instead of layered arithmetic

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 709

circuits. Furthermore, unlike Libra, the proof sizes and the verifier’s running
times in Spartanke do not scale linearly with the circuit depth. Finally, Libra
achieves sub-linear verification costs only for low-depth uniform circuits whereas
Spartanke achieves sub-linear verification costs for arbitrary R1CS instances via
computation commitments.

Fig. 2. A comparison of prior and recent zkSNARKs, where n denotes the size of the NP
statement. For Hyrax [84], we assume a layered arithmetic circuit C of depth d, width
g, and β copies (i.e., n = d ·g ·β); w denotes the size of a witness to C; and m = d · log g.
Hyrax and Spartandl can achieve sub-sqrt proofs at the cost of increasing V’s time.
For Libra and Virgo, we assume a depth-d layered uniform circuit. The verifier incurs
O(|io|) additional cost in all schemes where io denotes the public inputs and outputs
of the NP relation being proved. Furthermore, all transparent zkSNARKs achieve non-
interactivity in the random oracle model using the Fiat-Shamir heuristic [45]. Private�

means that the trusted setup is universal. Ligero, Virgo, STARK, Aurora, Fractal,
and Spartanro are plausibly post-quantum secure. Finally, Spartancl applies spark to
the commitment scheme of Bünz et al. [32], but the commitment scheme requires an
adaptation (Sect. 5.1).

1.2 Additional Related Work

Figure 2 compares the asymptotic costs of Spartan-based zkSNARKs with other
schemes.

Recent schemes. Following our preprint, there are three transparent
zkSNARKs: Fractal [36], SuperSonic [32], and Virgo [86]. Virgo’s model of com-
putation is same as Hyrax’s, so it achieves sub-linear verification costs only for
low-depth, uniform circuits.

710 S. Setty

Fractal and SuperSonic achieve sub-linear verification costs for arbitrary
NP statements. In these schemes, the verifier preprocesses an NP statement—
without secret trapdoors—to create a commitment to the structure of the state-
ment. In other words, they instantiate the computation commitments primitive.
Unfortunately, both schemes incur orders of magnitude higher expense than
Spartan (Sect. 9).

2 Preliminaries

We use F to denote a finite field (e.g., the prime field Fp for a large prime p)
and λ to denote the security parameter. We use negl(λ) to denote a negligible
function in λ. Throughout the paper, the depicted asymptotics depend on λ,
but we elide this for brevity. We use “PPT algorithms” to refer to probabilistic
polynomial time algorithms.

2.1 Problem Instances in R1CS

Recall that for any problem instance x, if x is in an NP language L, there exists
a witness w and a deterministic algorithm Sat such that:

SatL(x, w) =

{
1 if x ∈ L
0 otherwise

Alternatively, the set of tuples of the form 〈x, w〉 form a set of NP relations.
The subset of those for which SatL(x, w) = 1 are called satisfiable instances,
which we denote as: RL = {〈x, w〉 : SatL(x, w) = 1}.

As an NP-complete language, we focus on the rank-1 constraint satisfiabil-
ity (R1CS). As noted earlier, R1CS is a popular target for compiler toolchains
that accept applications expressed in high-level languages [70,75,77,83]. R1CS
is implicit in the QAPs of GGPR [47], but it is used with (and without) QAPs
in subsequent works [16,64,75].

Definition 2.1 (R1CS instance). An R1CS instance is a tuple (F , A,B,C,
io,m, n), where io denotes the public input and output of the instance, A,B,C ∈
Fm×m, where m ≥ |io|+1 and there are at most n non-zero entries in each matrix.

Note that matrices A,B,C are defined to be square matrices for conceptual
simplicity. Below, we use the notation z = (x, y, z) (where each of x, y, z is a
vector over F) to mean that z is a vector that concatenates the three vectors in
a natural way. WLOG, we assume that n = O(m) throughout the paper.

Definition 2.2 (R1CS). An R1CS instance (F , A,B,C, io,m, n) is said to be
satisfiable if there exists a witness w ∈ Fm−|io|−1 such that (A·z)◦(B ·z) = (C ·z),
where z = (io, 1, w), · is the matrix-vector product, and ◦ is the Hadamard
(entry-wise) product.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 711

Note that R1CS generalizes arithmetic circuit satisfiability because the
entries in matrices A,B,C can be used to encode addition and multiplication
gates over F . Furthermore, they can be used to encode a class of degree-2 con-
straints of the form L(z) · R(z) = O(z), where L,R,O are degree-1 polynomials
over variables that take values specified by z = (io, 1, w). In other words, R1CS
supports arbitrary fan-in addition gates, and multiplication gates that verify
arbitrary bilinear relations over the entire z.

Definition 2.3. For an R1CS instance x = (F , A,B,C, io,m, n) and a pur-
ported witness w ∈ Fm−|io|−1, we define:

SatR1CS(x, w) =

{
1 (A · (io, 1, w) ◦ (B · (io, 1, w)) = (C · (io, 1, w))
0 otherwise

The set of satisfiable R1CS instances can be denoted as:

RR1CS = {〈(F , A,B,C, io,m, n), w〉 : SatR1CS((F , A,B,C, io,m, n), w) = 1}
Definition 2.4. For a given R1CS instance x = (F , A,B,C, io,m, n), the NP
statement that x is satisfiable (i.e., x ∈ RR1CS) is of size O(n).

2.2 Polynomials and Low-Degree Extensions

Definition 2.5 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 2.6 (Low-degree polynomial). A multivariate polynomial G over a
finite field F is called low-degree polynomial if the degree of G in each variable
is exponentially smaller than |F |.

Low-degree extensions (LDEs). Suppose g : {0, 1}m → F is a function that
maps m-bit elements into an element of F . A polynomial extension of g is a
low-degree m-variate polynomial g̃(·) such that g̃(x) = g(x) for all x ∈ {0, 1}m.

A multilinear polynomial extension (or simply, a multilinear extension, or
MLE) is a low-degree polynomial extension where the extension is a multilinear
polynomial (i.e., the degree of each variable in g̃(·) is at most one). Given a func-
tion Z : {0, 1}m → F , the multilinear extension of Z(·) is the unique multilinear
polynomial Z̃ : Fm → F . It can be computed as follows.

Z̃(x1, . . . , xm) =
∑

e∈{0,1}m

Z(e) ·
m∏

i=1

(xi · ei + (1 − xi) · (1 − ei))

=
∑

e∈{0,1}m

Z(e) · ẽq(x, e)

= 〈(Z(0), . . . , Z(2m − 1)), (ẽq(x, 0), . . . , ẽq(x, 2m − 1)〉

712 S. Setty

Note that ẽq(x, e) =
∏m

i=1(ei · xi + (1 − ei) · (1 − xi)), which is the MLE of
the following function:

eq(x, e) =

{
1 if x = e

0 otherwise

For any r ∈ Fm, Z̃(r) can be computed in O(2m) operations in F [78,80].

Dense representation for multilinear polynomials. Since the MLE of a
function is unique, it offers the following method to represent any multilinear
polynomial. Given a multilinear polynomial G(·) : Fm → F , it can be represented
uniquely by the list of evaluations of G(·) over the Boolean hypercube {0, 1}m

(i.e., a function that maps {0, 1}m → F). We denote such a representation of G
as DenseRepr(G).

Definition 2.7. A multilinear polynomial G : Fm → F is a sparse multilinear
polynomial if |DenseRepr(G)| is sub-linear in O(2m). Otherwise, it is a dense
multilinear polynomial.

2.3 A Polynomial Commitment Scheme for Multilinear Polynomials

We adopt our definitions from Bünz et al. [32] where they generalize the defi-
nition of Kate et al. [57] to allow interactive evaluation proofs. We also borrow
their notation: in a list of arguments or returned tuples, variables before the
semicolon are public and the ones after are secret; when there is no secret infor-
mation, semicolon is omitted.

WLOG, below, when algorithms accept as input a multilinear polynomial,
they use the dense representation of multilinear polynomials (Sect. 2.2).

A polynomial commitment scheme for multilinear polynomials is a tuple of
four protocols PC = (Setup,Commit,Open,Eval):

• pp ← Setup(1λ, μ): takes as input μ (the number of variables in a multilinear
polynomial); produces public parameters pp.

• (C; S) ← Commit(pp; G): takes as input a μ-variate multilinear polynomial
over a finite field G ∈ F [μ]; produces a public commitment C and a secret
opening hint S.

• b ← Open(pp, C,G,S): verifies the opening of commitment C to the μ-variate
multilinear polynomial G ∈ F [μ] with the opening hint S; outputs a b ∈ {0, 1}.

• b ← Eval(pp, C, r, v, μ; G,S) is an interactive public-coin protocol between a
PPT prover P and verifier V. Both V and P hold a commitment C, the number
of variables μ, a scalar v ∈ F , and r ∈ F μ. P additionally knows a μ-variate
multilinear polynomial G ∈ F [μ] and its secret opening hint S. P attempts to
convince V that G(r) = v. At the end of the protocol, V outputs b ∈ {0, 1}.

Definitions of properties of polynomial commitments as well as definitions of
interactive arguments of knowledge are in an extended report [72].

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 713

3 The Sum-Check Protocol: Opportunities and
Challenges

An interactive proof is an interactive argument, where the soundness holds
unconditionally. We now describe a seminal interactive proof protocol that we
employ in Spartan, called the sum-check protocol [66]. Suppose there is an μ-
variate low-degree polynomial, G : F μ → F where the degree of each variable in
G is at most �. Suppose that a verifier VSC is interested in checking a claim of
the following form by an untrusted prover PSC :

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xµ∈{0,1}
G(x1, x2, . . . , xμ)

Of course, given G(·), VSC can deterministically evaluate the above sum and
verify whether the sum is T . But, this computation takes time exponential in μ.

Lund et al. [66] describe the sum-check protocol that requires far less compu-
tation on VSC ’s behalf, but provides a probabilistic guarantee. In the protocol,
VSC interacts with PSC over a sequence of μ rounds. At the end of this inter-
action, VSC outputs b ∈ {0, 1}. The principal cost to VSC is to evaluate G at
a random point in its domain r ∈ F μ. We denote the sum-check protocol as
b ← 〈PSC ,VSC(r)〉(G, μ, �, T). For any μ-variate polynomial G with degree at
most � in each variable, the following properties hold.

• Completeness. If T =
∑

x∈{0,1}µ G(x), then for a correct PSC and for all
r ∈ {0, 1}∗, Pr{〈PSC(G),VSC(r)〉(μ, �, T) = 1} = 1.

• Soundness. If T 	= ∑
x∈{0,1}µ G(x), then for any P�

SC and for all r ∈ {0, 1}∗,
Prr{〈P�

SC(G),VSC(r)〉(μ, �, T) = 1} ≤ � · μ/|F |.
• Succinctness. The communication between PSC and VSC is O(μ·�) elements

of F .

An alternate formulation. In the rest of the paper, it is natural to
view the sum-check protocol as a mechanism to reduce a claim of the form∑

x∈{0,1}m G(x) ?= T to the claim G(r) ?= e. This is because in most cases, the
verifier uses an auxiliary protocol to verify the latter claim, so this formulation
makes it easy to describe our end-to-end protocols. We denote this reduction
protocol with e ← 〈PSC(G),VSC(r)〉(μ, �, T).

3.1 Challenges with Using the Sum-Check Protocol for Succinct
Arguments

To build a succinct interactive argument of knowledge for R1CS, we need an
interactive protocol for the verifier V to check if the prover P knows a witness w
to a given R1CS instance x = (F , A,B,C, io,m, n) such that SatR1CS(x, w) = 1.

At first glance, the sum-check protocol [66] seems to offer the necessary build-
ing block (it is public-coin, incurs succinct communication, etc.). However, to
build a succinct interactive argument of knowledge (that can in turn be compiled
into a zkSNARK), we must solve the following sub-problems:

714 S. Setty

1. Encode R1CS instances as sum-check instances. For any R1CS
instance x = (F , A,B,C, io,m, n), we must devise a degree-�, μ-variate poly-
nomial that sums to a specific value T over {0, 1}μ if and only if there exists
a witness w such that SatR1CS(x, w) = 1, where μ = O(log m) and � is a
small constant (e.g., 3).

2. Achieve communication-succinctness. Although the sum-check protocol
offers succinctness (if the first sub-problem is solved with constraints on μ
and � noted above), building a succinct interactive argument is non-trivial.
This is because after the sum-check reduction, V must verify G(r) ?= e. Unfor-
tunately, G(r) depends on the P’s witness w to x. Thus, a naive evaluation
of G(r) requires O(m) communication to transmit w. Transmitting w is also
incompatible with zero-knowledge.

3. Achieve verifier-succinctness. To compile an interactive argument to a
zkSNARK, V’s costs must be sub-linear in the size of an NP statement, but
evaluating G(r) requires O(n) computation if the statement has no structure
(e.g., data-parallelism). A potential way around this fundamental issue is for
V to preprocess the structure of the R1CS instance to accelerate all future
verification of proofs for different R1CS instances with the same structure.
However, to avoid any form of trusted setup, the preprocessing must not
involve secret trapdoors.

We describe prior solutions to the three sub-problems in an extended
report [72].

4 An Encoding of R1CS Instances as Low-Degree
Polynomials

This section describes a compact encoding of an R1CS instance as a degree-3
multivariate polynomial. The following theorem summarizes our result, which
we prove below.

Theorem 4.1. For any R1CS instance x = (F , A,B,C, io,m, n), there exists a
degree-3 log m-variate polynomial G such that

∑
x∈{0,1}log m G(x) = 0 if and only

if there exists a witness w such that SatR1CS(x, w) = 1 (except for a soundness
error that is negligible in λ) under the assumption that |F | is exponential in λ
and m = O(λ).

For a given R1CS instance x = (F , A,B,C, io,m, n), let s = �log m�. Thus,
we can view matrices A,B,C ∈ Fm×m as functions with the following signature:
{0, 1}s × {0, 1}s → F . Specifically, any entry in them can be accessed with a 2s-
bit identifier (or two s-bit identifiers). Furthermore, given a purported witness
w to x, let Z = (io, 1, w). It is natural to interpret Z as a function with the
following signature: {0, 1}s → F , so any element of Z can be accessed with an
s-bit identifier.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 715

We now describe a function Fio(·) that can be used to encode w such that
Fio(·) exhibits a desirable behavior if and only if SatR1CS(x, w) = 1.

Fio(x) =

⎛
⎝ ∑

y∈{0,1}s

A(x, y) · Z(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B(x, y) · Z(y)

⎞
⎠ −

∑
y∈{0,1}s

C(x, y) · Z(y)

Lemma 4.1. ∀x ∈ {0, 1}s, Fio(x) = 0 if and only if SatR1CS(x, w) = 1.

Proof. This follows from the definition of SatR1CS(x, w) (Sect. 2.1) and of
Z(·). ��

Unfortunately Fio(·) is a function, not a polynomial, so it cannot be directly
used in the sum-check protocol. But, consider its polynomial extension F̃io :
F s → F .

F̃io(x) =

⎛
⎝ ∑

y∈{0,1}s

Ã(x, y) · Z̃(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B̃(x, y) · Z̃(y)

⎞
⎠ −

∑
y∈{0,1}s

C̃(x, y) · Z̃(y)

Lemma 4.2. ∀x ∈ {0, 1}s, F̃io(x) = 0 if and only if SatR1CS(x, w) = 1.

Proof. For any x ∈ {0, 1}s, F̃io(x) = Fio(x), so the result follows from
Lemma 4.1. ��

Since F̃io(·) is a low-degree multivariate polynomial over F in s variables, a
verifier V could check if

∑
x∈{0,1}s F̃io(x) = 0 using the sum-check protocol with

a prover P. But, this is insufficient:
∑

x∈{0,1}s F̃io(x) = 0 does not imply that
Fio(x) is zero ∀x ∈ {0, 1}s. This is because the 2s terms in the sum might cancel
each other making the final sum zero—even when some of the individual terms
are not zero.

We addresses the above issue using a prior idea [8,25,34]. Consider:

Qio(t) =
∑

x∈{0,1}s

F̃io(x) · ẽq(t, x),

where ẽq(t, x) =
∏s

i=1(ti · xi + (1 − ti) · (1 − xi)).
Observe that Qio(·) is a multivariate polynomial such that Qio(t) = F̃io(t)

for all t ∈ {0, 1}s. Thus, Qio(·) is a zero-polynomial (i.e., it evaluates to zero for
all points in its domain) if and only if F̃io(·) evaluates to zero at all points in
the s-dimensional Boolean hypercube (and hence if and only if F̃io(·) encodes a
witness w such that SatR1CS(x, w) = 1). To check if Qio(·) is a zero-polynomial,
it suffices to check if Qio(τ) = 0 where τ ∈R F s. This introduces a soundness
error, which we quantify below.

Lemma 4.3. Prτ{Qio(τ) = 0|∃x ∈ {0, 1}s s.t. F̃io(x) 	= 0} ≤ log m/|F |

716 S. Setty

Proof. If ∃x ∈ {0, 1}s such that F̃io(x) 	= 0, then Qio(t) is not a zero-polynomial.
By the Schwartz-Zippel lemma, Qio(t) = 0 for at most d/|F | values of t in the
domain of Qio(·), where d is the degree of Qio(·). Here, d = s = log m. ��

Proof of Theorem 4.1. For a given R1CS instance x = (F , A,B,C, io,m, n),
define, Gio,τ (x) = F̃io(x) · ẽq(τ, x), so Qio(τ) =

∑
x∈{0,1}s Gio,τ (x). Observe that

Gio,τ (·) is a degree-3 s-variate polynomial if multilinear extensions of A,B,C, and
Z are used in F̃io(·). In the terminology of the sum-check protocol, T = 0, μ =
s = log m, and � = 3. Furthermore, if τ ∈R F s,

∑
x∈{0,1}s Gio,τ (x) = 0 if and

only F̃io(x) = 0 ∀x ∈ {0, 1}s—except for soundness error that is negligible in λ
under the assumptions noted above (Lemma4.3). This combined with Lemma 4.2
implies the desired result.

5 A Family of NIZKs with Succinct Proofs for R1CS

We first design an interactive argument with succinct communication costs and
then compile it into a family of NIZKs in the random oracle model using prior
transformations.

5.1 A New Public-Coin Succinct Interactive Argument of
Knowledge

The following theorem summarizes our result in this section.

Theorem 5.1. Given an extractable polynomial commitment scheme for mul-
tilinear polynomials, there exists a public-coin succinct interactive argument of
knowledge where security holds under the assumptions needed for the polynomial
commitment scheme and assuming |F | is exponential in λ and the size parameter
of R1CS instance n = O(λ).

To prove the above theorem, we first provide a construction of a public-coin
succinct interactive argument of knowledge, and then analyze its costs and secu-
rity. The proof of Theorem4.1 established that for V to verify if an R1CS instance
x = (F , A,B,C, io,m, n) is satisfiable, it can check if

∑
x∈{0,1}s Gio,τ (x) = 0.

By using the sum-check protocol, we can reduce the claim about the sum to
ex

?= Gio,τ (rx) where rx ∈ F s, so V needs a mechanism to evaluate Gio,τ (rx)—
without incurring O(m) communication from P to V.

Recall that Gio,τ (x) = F̃io(x) · ẽq(τ, x). Thus, to evaluate Gio,τ (rx), V must
evaluate F̃io(rx) and ẽq(τ, rx). The latter can be evaluated in O(log m) time.
Furthermore, recall:

F̃io(rx) =

⎛
⎝ ∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B̃(rx, y) · Z̃(y)

⎞
⎠ −

∑
y∈{0,1}s

C̃(rx, y) · Z̃(y)

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 717

To evaluate F̃io(rx), V needs to evaluate the following ∀y ∈ {0, 1}s: Ã(rx, y),
B̃(rx, y), C̃(rx, y), and Z̃(y). However, the evaluations of Z̃(y) for all y ∈ {0, 1}s

is the same as (io, 1, w), so the communication from P to V is ≥ O(|w|). We now
address this issue.

Our solution is a combination of three protocols: the sum-check protocol,
a randomized mini protocol, and a polynomial commitment scheme. Our first
observation is that the structure of the individual terms in Fx,y(·) evaluated at
rx are in a form suitable for the application of a second instance of the sum-check
protocol. Specifically, let F̃io(rx) = A(rx) · B(rx) − C(rx), where

A(rx) =
∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

B(rx) =
∑

y∈{0,1}s

B̃(rx, y) · Z̃(y)

C(rx) =
∑

y∈{0,1}s

C̃(rx, y) · Z̃(y)

This observation opens up the following solution: the prover can make three
separate claims to V, say that A(rx) = vA, B(rx) = vB , and C(rx) = vC . Then,
V can evaluate:

Gio,τ (rx) = (vA · vB − vC) · ẽq(rx, τ),

which in turn enables V to verify Gio,τ (rx) ?= ex. Of course, V must still verify

three new claims from P: A(rx) ?= vA, B(rx) ?= vB, and C(rx) ?= vC . To do so, V
and P can run three independent instances of the sum-check protocol to verify
these claims. Instead, we use a prior idea [35,84] to combine three claims into a
single claim:

• V samples rA, rB , rC ∈R F and computes c = rA · vA + rB · vB + rC · vC .

• V uses the sum-check protocol with P to verify rA ·A(rx)+rB ·B(rx)+rC ·C(rx)
?
= c.

In more detail, let L(rx) = rA · A(rx) + rB · B(rx) + rC · C(rx).

L(rx) =
∑

y∈{0,1}s

rA · Ã(rx, y) · Z̃(y) + rB · B̃(rx, y) · Z̃(y) + rC · C̃(rx, y) · Z̃(y)

=
∑

y∈{0,1}s

Mrx (y)

Mrx (y) is an s-variate polynomial with degree at most 2 in each variable. In the
terminology of the sum-check protocol, μ = s, � = 2, and T = c.

Lemma 5.1. PrrA,rB ,rC
{rA · A(rx) + rB · B(rx) + rC · C(rx) = c|A(rx) 	= vA ∨

B(rx) 	= vB ∨ C(rx) 	= vC} ≤ 1/|F |, where c = rA · vA + ry · vB + rC · vC .

718 S. Setty

Proof. The LHS is a polynomial in rA, rB , rC of total degree 1; the same holds
for the RHS. So, the desired result follows from the Schwartz-Zippel lemma. ��

V is not out of the woods. At the end of the second instance of the sum-check
protocol, V must evaluate Mrx

(ry) for ry ∈ F s:

Mrx
(ry) = rA · Ã(rx, ry) · Z̃(ry) + rB · B̃(rx, ry) · Z̃(ry) + rC · C̃(rx, ry) · Z̃(ry)

= (rA · Ã(rx, ry) + rB · C̃(rx, ry) + rC · C̃(rx, ry)) · Z̃(ry)

Observe that the only term in Mrx
(ry) that depends on the prover’s witness is

Z̃(ry). This is because all other terms in the above expression can be computed
locally by V using x = (F , A,B,C, io,m, n) in O(n) time (Sect. 6 discusses how to
reduce the cost of those evaluations to be sub-linear in n). Our second observation
is that to evaluate Z̃(ry) without incurring O(|w|) communication from P to V,
we can employ an extractable polynomial commitment scheme for multilinear
polynomials (Sect. 2.3). A similar observation was made by Zhang et al. [87] in
a different context.

In more detail, P sends a commitment to w̃(·) (i.e., a multilinear extension
of its purported witness) to V before the first instance of the sum-check protocol
begins using an extractable polynomial commitment scheme for multilinear poly-
nomials. To evaluate Z̃(ry), V does the following. WLOG, assume |w| = |io|+1.
Thus, by the closed form expression of multilinear polynomial evaluations, we
have:

Z̃(ry) = (1 − ry[0]) · w̃(ry[1..]) + ry[0] · ˜(io, 1)(ry[1..]),

where ry[1..] refers to a slice of ry that excludes the the first element.

Putting things together. We assume that there exists an extractable poly-
nomial commitment scheme for multilinear polynomials PC = (Setup,Commit,
Open,Eval).

• pp ← Setup(1λ): Invoke pp ← PC.Setup(1λ, logm); output pp.
• b ← 〈P(w), V(r)〉(F , A, B, C, io, m, n):

1. P : (C, S) ← PC.Commit(pp, w̃) and send C to V.
2. V : τ ∈R F log m and send τ to P.
3. Let T1 = 0, μ1 = logm, �1 = 3.
4. V : Sample rx ∈R Fμ1

5. Sum-check#1. ex ← 〈PSC(Gio,τ), VSC(rx)〉(μ1, �1, T1)
6. P: Compute vA = A(rx), vB = B(rx), vC = C(rx); send (vA, vB , vC) to V.
7. V : Abort with b = 0 if ex �= (vA · vB − vC) · ẽq(rx, τ).
8. V: Sample rA, rB , rC ∈R F and send (rA, rB , rC) to P.
9. Let T2 = rA · vA + rB · vB + rC · vC , μ2 = logm, �2 = 2.

10. V : Sample ry ∈R Fμ2

11. Sum-check#2. ey ← 〈PSC(Mrx), VSC(ry)〉(μ2, �2, T2)
12. P: v ← w̃(ry [1..]) and send v to V.
13. be ← 〈PPC.Eval(w̃, S), VPC.Eval(r)〉(pp, C, ry , v, μ2)
14. V: Abort with b = 0 if be == 0.

15. V : vZ ← (1 − ry [0]) · w̃(ry [1..]) + ry [0] · ˜(io, 1)(ry [1..])
16. V : v1 ← Ã(rx, ry), v2 ← B̃(rx, ry), v3 ← C̃(rx, ry)
17. V : Abort with b = 0 if ey �= (rA · v1 + rB · v2 + rC · v3) · vZ .
18. V : Output b = 1.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 719

Choice of a polynomial commitment scheme. There exist many extractable
polynomial commitment schemes for multilinear polynomials [69,84,86,87] that
suffice for our purposes. The particular choice impacts the costs of our protocol as
well as assumptions, so we review prior commitment schemes’ costs and assump-
tions (Fig. 3). An additional choice here is the scheme of Bünz et al [32] instan-
tiated with class groups, but it requires a modification for our setting where we
represent multilinear polynomials using their evaluations over a Boolean hyper-
cube (Sects. 2.2, 2.3).

Fig. 3. A comparison of candidate extractable polynomial commitment schemes for
multilinear polynomials. Here, Γ = 2μ where μ is the number of variables in the mul-
tilinear polynomial. Hyrax-PC refers to the scheme of Wahby et al. [84], which also
supports shorter commitments at the cost of increasing the verifier’s time. vSQL-VPD
refers to the zero-knowledge variant [88] of the scheme of Zhang et al. [87]. Virgo-VPD
refers to the scheme of Zhang et al. [86]. The communication column refers to the
amount of communication required in the interactive argument for PC.Eval.

Analysis of costs. Note that the polynomials over which the sum-check proto-
col is run in our interactive argument decompose into several multilinear poly-
nomials (four in the first sum-check protocol and two in the second sum-check
protocol), so by employing prior ideas [78,82,85] to implement a linear-time
prover for the sum-check protocol, the costs of our interactive argument are as
follows.

• P incurs: (1) O(n) costs to participate in the sum-check instances; (2) the cost
of PC.Commit and PC.Eval for a log m-variate multilinear polynomial w̃(·).

• V incurs: (1) O(log m) costs for the sum-check instances; (2) the cost of
PC.Eval for a log m-variate multilinear polynomial; and (3) O(n) costs to
evaluate Ã(·), B̃(·), C̃(·).

• The amount of communication is: (1) O(log m) in the sum-check instances;
(2) the size of the commitment to w̃(·) and the communication in PC.Eval for
w̃(·).

Proof of Theorem 5.1. The desired completeness of our interactive argument
of knowledge follows from the completeness of the sum-check protocol and of
the underlying polynomial commitment scheme. Furthermore, in all the four
candidate constructions for polynomial commitment schemes, the communica-
tion from P to V is sub-linear in m (Fig. 4), which satisfies succinctness. Thus,
we are left with proving witness-extended emulation, which we prove in the full
version of the paper [72].

720 S. Setty

Fig. 4. Costs of our public-coin succinct interactive argument of knowledge instantiated
with different polynomial commitment schemes. The depicted costs are for an R1CS
instance x = (F , A, B, C, io, m, n).

5.2 A Family of NIZKs with Succinct Proofs for R1CS

The interactive argument from the prior subsection is public coin, so we add
zero-knowledge using prior techniques [9,40]. There are two compilers that are
particularly efficient: (1) the one employed by Hyrax [84], which relies on a zero-
knowledge argument protocol for proving dot-product relationships and other
relationships in zero-knowledge (e.g., products); and (2) the compiler employed
by Libra [85] and Virgo [86], which relies on an extractable polynomial commit-
ment scheme. This transformation does not change asymptotics of P, V, or of
the amount of communication (Fig. 4).

Finally, since our protocol is public coin, it can be made non-interactive in the
random oracle model using the Fiat-Shamir transform [45], thereby obtaining a
family of NIZKs with succinct proofs for R1CS.

6 Computation Commitments: zkSNARKs for R1CS
from NIZK

The previous section constructed a family of NIZKs but not zkSNARKs. This is
because the verifier incurs costs linear in the size of the R1CS instance to evaluate
Ã, B̃, C̃ at (rx, ry). We now discuss how to achieve sub-linear verification costs.
At first blush, this appears impossible: The verifier incurs O(n) costs to evaluate
Ã, B̃, C̃ at (rx, ry) (step 16, Sect. 5.1), which is time-optimal [78,80] if x has no
structure (e.g., uniformity). We get around this impossibility by introducing a
preprocessing step for V. In an offline phase, V with access to non-io portions
of an R1CS instance x = (F , A,B,C, io,m, n) executes the following, where
ppcc ← PC.Setup(1λ, 2 log m) and PC is an extractable polynomial commitment
scheme for multilinear polynomials.

Encode(ppcc, (A, B, C)):

• (CA, SA) ← PC.Commit(ppcc, ˜A)

• (CB , SB) ← PC.Commit(ppcc, ˜B)

• (CC , SC) ← PC.Commit(ppcc, ˜C)
• Output (CA, CB , CC)

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 721

V retains commitments output by Encode (which need not hide the underly-
ing polynomials, so in practice SA = SB = SC = ⊥). The interactive argument
proceeds as in the prior section except that at step 16, instead of V evaluating
Ã, B̃, C̃, we have:

• P : v1 ← ˜A(rx, ry), v2 ← ˜B(rx, ry), v3 ← ˜C(rx, ry). Send (v1, v2, v3) to V.

• b1 ← 〈PPC.Eval(˜A, ⊥), VPC.Eval(r)〉(ppcc, CA, (rx, ry), v1, 2 log m)

• b2 ← 〈PPC.Eval(˜B, ⊥), VPC.Eval(r)〉(ppcc, CB , (rx, ry), v2, 2 log m)

• b3 ← 〈PPC.Eval(˜C, ⊥), VPC.Eval(r)〉(ppcc, CC , (rx, ry), v3, 2 log m)
• V: Abort with b = 0 if b1 = 0 ∨ b2 = 0 ∨ b3 = 0.

Lemma 6.1. The interactive argument from Sect. 5.1 where step 16 is replaced
with the above protocol is a public-coin succinct interactive argument of knowl-
edge assuming PC is an extractable polynomial commitment scheme for multi-
linear polynomials.

Proof. The result follows from the knowledge soundness property satisfied by
PC scheme used in the Encode algorithm. ��

If V’s costs to verify the three evaluations and the added communication are
sub-linear in O(n), the modified interactive argument leads to a zkSNARK (if
we add zero-knowledge and non-interactivity as before).

Unfortunately, existing polynomial commitment schemes do not satisfy the
desired efficiency properties: (1) to participate in Eval for any of Ã, B̃, C̃, P incurs
at least quadratic costs i.e., O(m2); and (2) in some schemes (e.g., Hyrax-PC),
the modified interactive argument does not offer improved asymptotics for the
verifier.

The next section describes a scheme that meets our efficiency requirements
and leads to asymptotics noted in Fig. 2.

7 The SPARK Compiler

This section describes spark, a new cryptographic compiler to transform an
existing extractable polynomial commitment scheme for dense multilinear poly-
nomials to one that can efficiently handle sparse multilinear polynomials.

For ease of exposition, we focus on describing spark that applies to 2 log m-
variate sparse polynomials Ã, B̃, C̃ (where their dense representation is of size
≤ n) from Sect. 5.1, but our result generalizes to other sparse multilinear poly-
nomials.

7.1 SPARK-naive: A Straw-Man Solution

To present our solution, we describe a straw-man that helps introduce the nec-
essary building blocks as well as articulate difficulties addressed by spark. We

722 S. Setty

recall Hyrax [84], a zkSNARK that achieves sub-linear verification costs for uni-
form circuits, specifically data-parallel circuits. The prover’s costs in Hyrax can
be made linear in the circuit size using subsequent ideas [85]. Furthermore, the
verifier’s costs are O(d log n + e) where d is the depth of the circuit and e is
the cost to the verifier to participate in PC.Eval to evaluate a log |w|-variate
multilinear polynomial where w is a witness to the circuit.

Details. Let M denote one of {A,B,C} and let s = log m, so μ = 2s. Recall
the closed-form expression for multilinear polynomial evaluations at r ∈ F μ.

M̃(r) =
∑

i∈{0,1}µ ::M(i) �=0

M(i) · ẽq(i, r) (1)

The above sum has at most n terms since M(i) 	= 0 for at most n values
of i. Also, each entry in the sum can be computed with O(μ) multiplications.
Consider the following circuit to evaluate M̃(r).

A O(log μ)-depth circuit with O(n · μ) gates that:

• Takes as witness the list of n tuples of the form (i, M(i))::M(i) �= 0, where
each i is represented with a vector of μ elements of F , so each entry in the list
is μ + 1 elements of F (in other words, the witness is a log(n · (μ + 1))-variate
multilinear polynomial whose dense representation is the above list of tuples);

• Takes as public input r ∈ F μ;
• Asserts that in each of the n tuples, the first μ elements are either 0 or 1.
• Computes v ← ˜M(r) using Equation 1;
• Outputs v

Note that the above circuit is uniform: there are n identical copies of a sub-
circuit, where each sub-circuit computes O(μ) multiplications; the outputs of
these sub-circuits is fed into a binary tree of addition gates to compute the final
sum. Furthermore, there is no sharing of witness elements across data-parallel
units, so it truly data-parallel.

Construction. Given an extractable polynomial commitment scheme PC for
multilinear polynomials, we build a scheme for sparse multilinear polynomials
as follows.

PCnaive:

• pp ← Setup(1λ, μ, n): PC.Setup(1λ, log((μ + 1) · n))

• (C; S) ← Commit(pp; ˜M): PC.Commit(pp, D), where D is the unique log((μ +
1) · n)-variate multilinear polynomial whose dense representation is the list of
tuples (i, M(i))::M(i) �= 0 and each entry is (μ + 1) elements of F .

• b ← Open(pp, C, ˜M, S): PC.Open(pp, C, D, S), where D is defined as above.

• b ← Eval(pp, C, r, v, μ, n; ˜M, S): P and V use Hyrax to verify the claim that
˜M(r) = v using the circuit described above.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 723

Analysis of costs. Recall that computing M̃(r) for M ∈ {A,B,C} and r ∈ F μ

takes O(n) costs. The principal downside of PCnaive is it imposes an asymptotic
overhead over its underlying commitment scheme for dense multilinear polyno-
mials.

For example, with Hyrax-PC as the underlying commitment scheme, the
prover with PCnaive incurs O(n log n) costs to prove an evaluation of a com-
mitted sparse multilinear polynomial. This is because the prover must prove
the satisfiability of a circuit of size O(n · μ) as well as prove the evaluations
of a constant number of (log (n · (μ + 1)))-variate multilinear polynomials. This
slowdown is also significant in practice (Sect. 8).

Lemma 7.1. PCnaive is a polynomial commitment scheme for multilinear poly-
nomials with the costs noted above.

Proof. Completeness follows from the completeness of PC and Hyrax. Binding
follows from the uniqueness of the dense representation of a sparse multilinear
polynomial. Knowledge soundness follows from the witness-extended emulation
offered by Hyrax and PC.Eval. The claimed prover’s slowdown follows from the
costs of Hyrax and PC applied to a constant number of (log (n · (μ + 1)))-variate
multilinear polynomials. ��

7.2 Eliminating Asymptotic Overheads by Leveraging Memory
Checking

We now improve on the straw-man scheme by devising an O(n)-sized circuit
for sparse polynomial evaluation. Naturally, the size of the witness to the cir-
cuit is also of size O(n). This allows spark to achieve a linear-time prover if
the underlying polynomial commitment scheme offers linear-time costs for the
prover [69,84]. More generally, when transforming an existing polynomial com-
mitment scheme that meets our requirements (Sect. 2.3), spark does not add
asymptotic overheads to the prover for proving the evaluations of committed
sparse multilinear polynomials.

Observe that for M ∈ {A,B,C}, M ∈ Fm×m and any r ∈ F μ, we can rewrite
the evaluation of M̃(r) as follows. In our context μ = 2 log m, interpret r as a
tuple (rx, ry) where rx, ry ∈ F s and s = log m = μ/2. Thus, we can rewrite Eq. 1
as:

M̃(rx, ry) =
∑

(i,j)∈({0,1}s,{0,1}s) ::M(i,j) �=0

M(i, j) · ẽq(i, rx) · ẽq(j, ry)

In our context, the above sum still contains n terms. Also, computing each
entry in the sum still requires (μ + 1) multiplications over F . However, it is
possible to compute a table of evaluations of ẽq(i, rx) for all i ∈ {0, 1}s in
O(2s) = O(m) time. Similarly, it is possible to compute evaluations of ẽq(j, ry)
for all j ∈ {0, 1}s in O(m) time.

Unfortunately, this observation is insufficient: even though these tables can be
computed in O(m) time, the sum is taken over the list of (i, j) ∈ ({0, 1}s, {0, 1}s)

724 S. Setty

where M(i, j) 	= 0 and for an arbitrary 2s-variate sparse multilinear polynomial,
such a list has no structure, so computing the sum requires n random accesses
into two tables each with m entries. We could attempt to build a circuit that
supports RAM operations. Unfortunately, existing techniques to encode RAM
in circuits incur a logarithmic blowup or constants that in practice are larger
than a logarithmic blowup.

For m RAM operations over a memory of size m,

• Pantry [31], using Merkle trees, trees [24,67], offers a circuit of size
O(m log m).

• Buffet [83], using permutation networks [13], offers a circuit of size O(m log m)
with constants smaller than the ones in Pantry.

• vRAM [89] offers an O(m)-sized circuit with a constant of log |F | (to encode
consistency checks over a memory transcript), so, in practice, this does not
improve on the straw-man. Other downsides: (1) it only supports 32-bit sized
memory cells, whereas we need a memory over elements of F ; (2) nearly all
of the circuit’s non-deterministic witness must be committed by P during
circuit evaluation.

Our solution specializes and improves upon a recent implementation of
offline memory checking techniques [24] in Spice [73], which builds circuits to
encode operations on persistent storage with serializable transactions. The stor-
age abstraction can be used as a memory abstraction where for m operations, the
circuit is of size O(m), but the constants are worse than those of VRAM: ≥ 1000
(to encode an elliptic-curve based multiset collision-resistant hash function for
each memory operation). We get around this issue by designing an offline mem-
ory checking primitive via a new randomized check that only uses public coins.
Furthermore, unlike a vRAM-based solution, most of the non-deterministic wit-
ness needed by the circuit can be created by PC.Commit (i.e., by the Encode
algorithm in the context of computation commitments).

7.2.1 An O(n)-sized Circuit for Evaluating M̃

We now describe an O(n)-sized circuit to compute an evaluation of M̃ . We prove
that the circuit indeed computes the correct evaluation of the sparse polynomial
in Lemma 7.5. In the description of the circuit, we assume hash functions H and
H, which are defined below (Eqs. 2 and 3). Before we describe the circuit for
polynomial evaluation, we specify an encoding of sparse polynomials that our
circuit leverages.

Encoding sparse polynomials. Given a sparse polynomial M̃ (e.g., M̃ ∈
{Ã, B̃, C̃}), we encode it using three vectors of size n as follows. Since M̃ is
represented by n tuples of the form (i, j,M(i, j)), where each tuple has 3 elements
of F such that M(i, j) 	= 0. Note that this encoding differs from the encoding in
the straw-man where each i and j were encoded using a vector of s elements of
{0, 1} ∈ F . The encoding here essentially packs s bits in i (or j) into a single
element of F in the obvious way, which works because s < log |F |. In some

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 725

canonical order, let row, col, val be three vectors that encode the above n tuples
such that for k ∈ [0, n − 1] row(k) = i, col(k) = j, val(k) = M(i, j).

Encoding metadata for memory checking: “Memory in the head”. The
circuit below takes as witness additional metadata about M̃ (besides row, col, val
introduced above). This metadata accelerates memory checking during the eval-
uation of M̃(r).

The metadata is in the form of six vectors: read-tsrow ∈ F n, write-tsrow ∈ F n,
audit-tsrow ∈ Fm, read-tscol ∈ F n, write-tscol ∈ F n, and audit-tscol ∈ Fm. We
specify how these are computed below with pseudocode. Note that comput-
ing this metadata only needs the following parameters: memory size (which
is determined by 2s = m) and the sequence of addresses at which the mem-
ory is accessed (which are provided by row and col). In a nutshell, read-tsrow

and write-tsrow denote the timestamps associated with read and write oper-
ations, and audit-tsrow denotes the final timestamps of memory cells in the
offline memory checking primitive [24, §4.1] for the address sequence specified
by row over a memory of size m = O(2s). Similarly, read-tscol, write-tscol, and
audit-tscol ∈ Fm denote timestamps for the address sequence specified by col.
They are computed as follows (vec! uses Rust notation).

MemoryInTheHead(m, n, addrs):

• read-ts ← vec![n; 0]; write-ts ← vec![n; 0]; audit-ts ← vec![m; 0]; ts ← 0
• for i in (0..addrs.len()):

• addr ← addrs[i]
• r-ts ← audit-ts[i]
• ts ← max(ts, r-ts) + 1
• read-ts[i] ← r-ts
• write-ts[i] ← ts
• audit-ts[addr] ← ts

• return (read-ts, write-ts, audit-ts)

Circuit description. The circuit below evaluates a sparse polynomial using
the encoding and preprocessed metadata described above. It relies multiset hash
functions, which we now define. Unlike ECC-based multiset hash functions in
Spice [73], we employ a public-coin hash function that verifies the desired multi-
set relationship. Specifically, we define two hash functions: (1) hγ : F 3 → F ; and
(2) Hγ : F ∗ → F , where F ∗ denotes a multiset with elements from F and γ ∈R F .

hγ(a, v, t) = a · γ2 + v · γ + t (2)

Hγ(M) = Πe∈M(e − γ) (3)

Given (A, V, T) ∈ (F �, F �, F �) for � > 0, we define a map Hγ : (F �, F �, F �) →
F �:

Hγ(A, V, T) = [hγ(A[0], V [0], T [0]), . . . , hγ(A[� − 1], V [� − 1], T [� − 1])]

726 S. Setty

We capture the soundness errors of these hash functions in Lemma 7.2 and
Lemma 7.3.

An O(n)-sized, O(log n)-depth circuit (Circuiteval-opt).

• Takes as witness the following lists (Hyrax can accept witness in separate
lists).

1. a succinct description of ˜M : three lists row, col, val, where each list has
n entries.

2. two lists erow, ecol, where each list contains n elements of F .
3. six lists: read-tsrow,read-tscol,write-tsrow, write-tscol,audit-tsrow, and

audit-tscol. The first four are of size n and the last two are of size m;
each entry is an element of F .

4. two challenges γ1, γ2 ∈ F .
• Takes as public input r = (rx, ry) ∈ F μ;

• Output ˜M(r) using v ← ∑n−1
k=0 val[k] · erow[k] · ecol[k].

• Memory checking for erow:
• memrow ← [ẽq(0, rx), . . . , ẽq(m − 1, rx)] ∈ Fm

• Initrow ← Hγ1([0, . . . , m − 1], memrow, [0, . . . , 0]) ∈ Fm

• RSrow ← Hγ1(row, erow, read-tsrow) ∈ Fn

• WSrow ← Hγ1(row, erow, write-tsrow) ∈ Fn

• Auditrow ← Hγ1([0, . . . , m − 1], memrow, audit-tsrow) ∈ Fm

• Assert Hγ2(Initrow) · Hγ2(WSrow) = Hγ2(RSrow) · Hγ2(Auditrow)
• Memory checking for ecol:

• memcol ← [ẽq(0, ry), . . . , ẽq(m − 1, ry)] ∈ Fm

• Let Initcol ← Hγ1([0, . . . , m − 1], memcol, [0, . . . , 0]) ∈ Fm

• Let RScol ← Hγ1(col, ecol, read-tscol) ∈ Fn

• Let WScol ← Hγ1(col, ecol, write-tscol) ∈ Fn

• Let Auditcol ← Hγ1([0, . . . , m − 1], memcol, audit-tscol) ∈ Fm

• Assert Hγ2(Initcol) · Hγ2(WScol) = Hγ2(RScol) · Hγ2(Auditcol)

Lemma 7.2. For any two pairs (a1, v1, t1) ∈ F 3 and (a2, v2, t2) ∈ F 3,
Prγ{hγ(a1, v1, t1) = hγ(a2, v2, t2)|(a1, v1, t1) 	= (a2, v2, t2)} ≤ 3/|F |.
Proof. This follows from the Schwartz-Zippel lemma. ��
Lemma 7.3. For any � > 0, (A1, V1, T1) ∈ (F �, F �, F �) and (A2, V2, T2) ∈
(F �, F �, F �) Prγ{∃i :: Hγ(A1, V1, T1)[i] = Hγ(A2, V2, T2)[i]|(A1, V1, T1) 	=
(A2, V2, T2)} ≤ 3 · �/|F |.
Proof. This follows from a standard union bound with the result of the
Lemma 7.2. ��
Lemma 7.4. For any two multisets M1,M2 of size � over F ,

Pr
γ

{Hγ(M1) = Hγ(M2)|M1 	= M2} ≤ �/|F |

Proof. This follows from the Schwartz-Zippel lemma. ��

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 727

Lemma 7.5. Assuming that |F | is exponential in λ and n = O(λ), for any
2 log m-variate multilinear polynomial M̃ whose dense representation is of size
at most n and for any given erow, ecol ∈ F n,

Pr
γ1,γ2

{Circuiteval-opt(w, (γ1, γ2), r) = v|M̃(r) 	= v} ≤ negl(λ),

where w = (row, col, val, erow, ecol,MemoryInTheHead(m,n, row),
MemoryInTheHead(m,n, col)) and (row, col, val) denotes the dense representa-
tion of M̃ .

Proof. This follows from the soundness of the memory checking primitive [24]
and the collision-resistance of the underlying hash functions used (Lemmas 7.4
and 7.3). ��

7.2.2 Construction of a Polynomial Commitment Scheme
Given an extractable polynomial commitment scheme PC for multilinear poly-
nomials, we build a scheme for sparse multilinear polynomials as follows.

Note that our focus is on designing a polynomial commitment scheme for
efficiently realizing computation commitments (Sect. 6). For this purpose, the
Spartan verifier runs the Commit algorithm (of the sparse polynomial commit-
ment scheme) as part of the Encode algorithm, so unlike the general setup of
polynomial commitments, the entity creating a commitment is the verifier itself
(not an untrusted entity). As a result, the additional memory-checking meta-
data about the sparse polynomial as part of Commit is created by the verifier,
so we do not need to verify that the timestamps are well-formed according to
its specification in the MemoryInTheHead procedure as required by Lemma7.5.
This is only an optimization and not a limitation. In the general setting where
Commit (of the sparse polynomial commitment scheme) is run by an untrusted
entity, we can require it to additionally produce a proof that proves that time-
stamps are well-formed. In the description below, given our focus on computation
commitments, we omit those proofs.

PCspark:

• pp ← Setup(1λ, μ, n): (PC.Setup(1λ, μ)),PC.Setup(1λ, log(n)))

• (C; S) ← Commit(pp; M̃):
• Let (ppm, ppn) ← pp

• Let (row, col, val) denote the dense representation of M̃ as described in text.
– (Crow, Srow) ← PC.Commit(ppn, r̃ow)

– (Ccol, Scol) ← PC.Commit(ppn, c̃ol)

– (Cval, Sval) ← PC.Commit(ppn, ṽal)
• Let (read-tsrow, write-tsrow, audit-tsrow) ← MemoryInTheHead(2μ/2, n, row)

– (Cread-tsrow , Sread-tsrow) ← PC.Commit(ppn, ˜read-tsrow)

– (Cwrite-tsrow , Swrite-tsrow) ← PC.Commit(ppn, ˜write-tsrow)

– (Caudit-tsrow , Saudit-tsrow) ← PC.Commit(ppm, ˜audit-tsrow)
• Let (read-tscol, write-tscol, audit-tscol) ← MemoryInTheHead(2μ/2, n, col)

728 S. Setty

– (Cread-tscol , Sread-tscol) ← PC.Commit(ppn, ˜read-tscol)

– (Cwrite-tscol , Swrite-tscol) ← PC.Commit(ppn, ˜write-tscol)

– (Caudit-tscol , Saudit-tscol) ← PC.Commit(ppm, ˜audit-tscol)
• Let C ← (Crow, Ccol, Cval, Cread-tsrow , Cwrite-tsrow , Caudit-tsrow , Cread-tscol ,

Cwrite-tscol , Caudit-tscol)

• Let S ← (Srow, Scol, Sval, Sread-tsrow , Swrite-tsrow , Saudit-tsrow , Sread-tscol ,
Swrite-tscol , Saudit-tscol)

• Output (C, S)

• b ← Open(pp, C, M̃ , S):
• Let (ppm, ppn) ← pp.

• Let row, col, val denote dense representation of M̃ as defined above.
• Output PC.Open(ppn, C.Crow, r̃ow, S.Srow) ∧ PC.Open(ppn, C.Ccol, c̃ol, S.Scol) ∧

PC.Open(ppn, C, Cval, ṽal, S.Sval)

• b ← Eval(pp, C, r, v, μ, n; M̃, S):
• Let (ppm, ppn) ← pp and let (rx, ry) = r, where rx, ry ∈ Fμ/2.

• Let row, col, val denote dense representation of M̃ as defined above.
• P :

– Compute erow and ecol with 2n lookups over a table of size m =
2μ/2. That is, erow = [ẽq(row(0), rx), . . . , ẽq(row(n − 1), rx)]; let ecol =
[ẽq(col(0), ry), . . . , ẽq(col(n − 1), ry)].

– (Cerow , Serow) ← PC.Commit(ppn, ẽrow); send Cerow to V.
– (Cecol , Secol) ← PC.Commit(ppn, ẽcol); send Cecol to V.

• V : (γ1, γ2) ∈R F 2. Send (γ1, γ2) to P.
• P and V use Hyrax (with PC as the extractable polynomial commitment scheme)

to verify the claim that M̃(r) = v using Circuiteval-opt.

Analysis of costs. Circuiteval-opt is uniform because computing H using a
binary tree of multiplications [78] constitutes nearly all of the work in the above
circuit. Figure 5 depicts the costs of PCspark with different choices for PC.

Fig. 5. Costs of PCspark with different choices for PC. Here, n is number of entries in
the dense representation of the multilinear polynomial.

Lemma 7.6. Assuming that PCspark.Commit is run by an honest entity, then
PCspark is a polynomial commitment scheme for multilinear polynomials with the
costs noted.

Proof. Completeness follows from the completeness of PC, Hyrax, and
Circuiteval-opt. Binding follows from the uniqueness of the dense representation

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 729

of the sparse multilinear polynomial as (row, col, val). Knowledge soundness fol-
lows from the witness-extended emulation offered by Hyrax and PC, and from
the negligible soundness error of Circuiteval-opt (Lemma 7.5). Finally, the claimed
costs follow from the cost model of Hyrax and of PC applied to a constant number
of O(log n)-variate multilinear polynomials. ��

7.2.3 Optimizations
We now describe many optimizations to spark to reduce constants.

1. Instead of using Hyrax as a black box, we tailor it for Circuiteval-opt using
prior ideas [78]. This reduces overall costs significantly. We also do not need
Hyrax’s zero-knowledge compiler for computation commitments.

2. For computation commitments, we build a single circuit that produces evalua-
tions of Ã, B̃, C̃ at (rx, ry). This enables reusing parts of the memory checking
circuit (related to the state of the memory) across evaluations.

3. In our particular context, we can set ∀0 ≤ i < n: write-tsrow[i] =
read-tsrow[i]+1 and write-tscol[i] = read-tsread[i]+1. This is because unlike
the traditional setting of offline memory checking, the read timestamps are
not untrusted. This avoids having to commit to ˜write-tsrow and ˜write-tscol.

4. During PCspark.Eval, at the witness layer in Hyrax, V needs to evaluate a num-
ber of multilinear polynomials at either rrow, rcol ∈ F log n or rmem ∈ F log m.
We avoid having to commit to them by leveraging their succinct representa-
tions.

• V can compute m̃emrow(rrow) and m̃emcol(rcol) in O(log m) as follows:

m̃emrow(rrow) ← ẽq(rrow, rx)

m̃emcol(rcol) ← ẽq(rcol, ry)

• We leverage the following facts: (1) ˜(0, 1, . . . ,m − 1)(rmem) =∑log m
i=0 2i · rmem[i]; (2) ˜(0, 0, . . . , 0)(rmem) = 0.

5. It is possible to combine k μ-variate multilinear polynomials into a single
multilinear polynomial over μ + log k variables. We employ this technique to
reduce the number of committed multilinear polynomials from 23 to 3.

8 Implementation and Optimizations

We implement Spartan as a modular library in about 8,000 lines of Rust includ-
ing optimizations listed throughout the paper as well as optimizations from prior
work [78,80,82,84,85]. We find that the prover under spark outperforms the
prover under spark-naive by >10× for R1CS instances with 220 constraints. We
also implement spark with and without our optimizations. At 220 constraints,
our optimizations reduce proof lengths from 3.1 MB to 138.4 KB, a improvement
of 23×; our optimizations also improve prover and verification times by about
10×.

730 S. Setty

In the next section, we present results from spark instantiated with Hyrax-
PC [84] i.e., we evaluate a zkSNARK whose security holds under the discrete
logarithm problem. For curve arithmetic, we use curve25519-dalek [1], which
offers an efficient implementation of a prime-order Ristretto group [2,53] called
ristretto255. The scalar arithmetic in the library is however slow since it
represents the underlying scalar elements as byte strings for fast curve arithmetic.
To cope with this, we optimize the underlying scalar arithmetic by ≈10× by
adapting other code [28].

9 Experimental Evaluation

This section experimentally evaluates our implementation of Spartan and com-
pares it with state-of-the-art zkSNARKs and proof-succinct NIZKs.

9.1 Metrics, Methodology, and Testbed

Our principal evaluation metrics are: (1) P’s costs to produce a proof; (2) V’s
costs to preprocess an R1CS instance; (3) V’s costs to verify a proof; and (4) the
size of a proof. We measure P’s and V’s costs using a real-time clock and the
size of proofs in bytes by serializing proof data structures. For Spartan, we use
cargo bench to run experiments, and for baselines, we use profilers provided
with their code.

We experiment with Spartan and several baselines (listed below) using a
Microsoft Surface Laptop 3 on a single CPU core of Intel Core i7-1065G7 with
16 GB RAM running Ubuntu 20.04 atop Windows 10. We report results from a
single-threaded configuration since not all our baselines leverage multiple cores.
As with prior work [16], we vary the size of the R1CS instance by varying the
number of constraints and variables m and maintain the ratio n/m to approxi-
mately 1. In all Spartan experiments |io| = 10.

Baselines. We compare Spartan with the following zkSNARKs and NIZKs.

1. Groth16 [51], the most efficient zkSNARK with trusted setup based on
GGPR [47].

2. Ligero [3], a prior proof-succinct NIZK with a light-weight prover.
3. Hyrax [84], a prior transparent zkSNARK that achieves sub-linear verification

costs for data-parallel computations.
4. Aurora [16], a prior proof-succinct NIZK.
5. Fractal [36], a recent transparent zkSNARK that instantiates computation

commitments to achieve sub-linear verification costs.

We provide a comparison with additional baselines in an extended report [72].

Methodology and parameters. For Spartandl, we report results from two
variants: Spartansnark (which incurs sub-linear verification) and Spartannizk
(which incurs linear-time verification). This is because several baselines offer only
a linear-time verifier. Also, for data-parallel workloads, the NIZK variant depicts

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 731

the performance that Spartansnark can achieve for the prover and proof sizes
since Spartansnark can amortize the costs of computation commitments across
data-parallel units.

For Groth16, we benchmark its implementation from libsnark with bn128
curve [64].

For Hyrax, we use its reference implementation with curve25519 [62]. To
compare Spartan with Hyrax, we transform R1CS instances to depth-1 arith-
metic circuits where the circuit evaluates constraints in the R1CS instance, and
outputs a vector of zeros when all constraints are satisfied. For an arbitrary
R1CS instance, this circuit has no structure, and hence Hyrax incurs linear-time
verification costs.

For Ligero, Aurora, and Fractal, we use their implementations from libiop
with a prime field of size ≈ 2256 [63]. The implementations of Aurora and Fractal
support two sets of parameters: proven and non-proven (also known as heuristic).
The default choice in their code is the heuristic parameters, which rely on non-
standard conjectures related to Reed-Solomon codes (e.g., in the FRI protocol)
for soundness [10, Appendix B]. Concretely, the heuristic parameters use ≈10×
fewer query repetitions of FRI compared to the proven parameters. As expected,
the heuristic versions achieve ≈10× lower verification costs and proof sizes than
the corresponding provable versions. Note that very recent work makes progress
toward proving some of these heuristics [11].

9.2 Performance Results

Prover. Figure 6 depicts the prover’s costs under Spartan and its baselines.
Spartan outperforms all its baselines. When compared to the most closely related
system, Spartansnark is 36× faster than Fractal at 218 constraints.4 When we
compare Ligero, Aurora, and Hyrax with Spartannizk (since all of them are
proof-succinct NIZKs and incur linear-time verification costs), Spartannizk is
24× faster than Ligero, 152× faster than Aurora, and 99× faster than Hyrax
at 220 instance sizes. Finally, compared to Groth16, Spartansnark is 2× faster
and Spartannizk is 16× faster for 220 constraints.

Proof sizes. Figure 7 depicts proof sizes under Spartan and its baselines.
Although Spartansnark’s proofs are asymptotically larger than Fractal (Fig. 2),
Spartansnark offers ≈23× shorter proofs at 218 constraints. When we com-
pare the proof-succinct NIZKs, Spartannizk offers proofs that are 1.2–416×
shorter than its baselines. All transparent zkSNARKs produce orders of magni-
tude longer proofs than Groth16.

4 Unfortunately, we could not run Fractal at 219 or 220 constraints because it crashes
by running out of memory.

732 S. Setty

Fig. 6. Prover’s performance (in seconds) for varying R1CS instance sizes under dif-
ferent schemes.

Fig. 7. Proof sizes in KBs for various zkSNARKs. Entries with “M” are in megabytes.
The proof sizes under Groth16 [51] is 128 bytes for all instance sizes.

Verifier. Figure 8 depicts the verifier times under different schemes. Groth16
offers the fastest verifier, but it requires a trusted setup. Among schemes with-
out trusted setup, Spartan offers the fastest verifier. Specifically, Spartansnark’s
verifier is 3.6× faster than Fractal (at the largest instance size Fractal can
run), and at 220 constraints, it is 1326× faster than Aurora, 383× faster than
Ligero, and 80× faster than Hyrax. This type of performance is expected
because Aurora, Ligero, and Hyrax incur linear costs for the verifier whereas
Spartansnark (and Fractal) incur sub-linear verification costs due to the use
of computation commitments, which requires preprocessing the non-io compo-
nent of an R1CS instance (we quantify the costs of that process below). Among
proof-succinct NIZKs, Spartannizk is 22× faster than Hyrax, 363× faster than
Aurora, and 105× faster than Ligero at 220 constraints.

Encoder. Figure 9 depicts the cost to the verifier to preprocess an R1CS instance
(without the io component) under Spartansnark, Fractal [36], and Groth16 [51].
We do not depict other baselines because they do not require any preprocessing.
Spartansnark’s encoder is up to 52× faster than Fractal’s encoder and about
4.7× faster than the trusted setup for Groth16 at the largest instance sizes.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 733

Fig. 8. Verifier’s performance (in ms) under different schemes. Entries with “s” are in
seconds. The verifier under Groth16 [51] takes ≈ 2ms at all instance sizes.

Fig. 9. Encoder’s performance (in seconds) for varying R1CS instance sizes under
different schemes.

Acknowledgment. Comments from Sebastian Angel, Melissa Chase, Ben Fisch, Esha
Ghosh, Abhiram Kothapalli, Satya Lokam, Bryan Parno, Ioanna Tzialla, Ramarathnam
Venkatesan, and the CRYPTO reviewers helped improve this paper. Special thanks to
Justin Thaler, Riad Wahby, and Michael Walfish for their detailed attention and thor-
ough comments, which helped clarify several aspects of this work. We thank Jonathan
Lee for insightful discussions on various topics covered in this work.

References

1. A pure-Rust implementation of group operations on Ristretto and Curve25519.
https://github.com/dalek-cryptography/curve25519-dalek

2. The Ristretto group. https://ristretto.group/
3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-

linear arguments without a trusted setup. In: CCS (2017)
4. Arasu, A., et al.: Concerto: a high concurrency key-value store with integrity. In:

SIGMOD (2017)
5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)
6. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.

J. ACM 45(1), 70–122 (1998)
7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: STOC (1991)
8. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-

prover interactive protocols. Comput. Complex. 2(4), 374 (1992)

https://github.com/dalek-cryptography/curve25519-dalek
https://ristretto.group/

734 S. Setty

9. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 4

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. ePrint Report 2018/046 (2018)

11. Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for
Reed-Solomon codes. Cryptology ePrint Archive, Report 2020/654 (2020)

12. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: S&P (2014)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to
delegatable succinct constraint satisfaction problems: extended abstract. In: ITCS
(2013)

14. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: STOC, pp. 585–594 (2013)

15. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

16. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

17. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

18. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security (2014)

19. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: Computational Complexity (2005)

20. Ben-Sasson, E., Sudan, M.: Simple PCPs with poly-log rate and query complexity.
In: STOC, pp. 266–275 (2005)

21. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

22. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
(2012)

23. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

24. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. In: FOCS (1991)

25. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. ePrint Report 2014/846 (2014)

26. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. ePrint Report 2019/188 (2019)

27. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 735

28. Bowe, S.: A BLS12-381 implementation. https://github.com/zkcrypto/bls12 381
29. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling

decentralized private computation. ePrint Report 2018/962 (2018)
30. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.

J. Comput. Syst. Sci. 37(2), 156–189 (1988)
31. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying

computations with state. In: SOSP (2013)
32. Bunz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.

ePrint Report 2019/1229 (2019)
33. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:

short proofs for confidential transactions and more. In: S&P (2018)
34. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and compo-

sition of succinct zero-knowledge proofs. ePrint Report 2019/142 (2019)
35. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-

cations. CoRR, abs/1704.02086 (2017)
36. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive

proofs from holography. ePrint Report 2019/1076 (2019)
37. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental mul-

tiset hash functions and their application to memory integrity checking. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 188–207. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 12

38. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (2012)

39. Costello, C., et al.: Geppetto: versatile verifiable computation. In: S&P, May 2015
40. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:

can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

41. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: turning
shabby X.509 certificates into elegant anonymous credentials with the magic of
verifiable computation. In: S&P (2016)

42. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3) (2007)
43. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can

memory checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–
520. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 30

44. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

45. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

46. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: CCS
(2016)

47. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

48. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108 (2011)

49. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC (2008)

https://github.com/zkcrypto/bls12_381
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-642-00457-5_30
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

736 S. Setty

50. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

51. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

52. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

53. Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 705–723.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 34

54. H̊astad, J.: Some optimal inapproximability results. In: STOC, pp. 1–10 (1997)
55. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.

In: Computational Complexity (2007)
56. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure

multiparty computation. In: STOC, pp. 21–30 (2007)
57. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-

mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

58. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

59. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: S&P (2016)

60. Kosba, A., Papamanthou, C., Shi, E.: xJsnark: a framework for efficient verifiable
computation. In: S&P (2018)

61. Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated execu-
tion. In: S&P (2020)

62. libfennel. Hyrax reference implementation. https://github.com/hyraxZK/fennel
63. libiop. A C++ library for IOP-based zkSNARK. https://github.com/scipr-lab/

libiop
64. libsnark. A C++ library for zkSNARK proofs. https://github.com/scipr-lab/

libsnark
65. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-

knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

66. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: FOCS, October 1990

67. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

68. Micali, S.: CS proofs. In: FOCS (1994)
69. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:

Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

70. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: S&P, May 2013

71. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: STOC, pp. 49–62 (2016)

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-662-47989-6_34
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://github.com/hyraxZK/fennel
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-642-36594-2_13

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 737

72. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
ePrint Report 2019/550 (2019)

73. Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent
services in zero-knowledge. In: OSDI, October 2018

74. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifi-
cation of remote computations. In: HotOS, May 2011

75. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: EuroSys,
April 2013

76. Setty, S., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS, February 2012

77. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: USENIX
Security, August 2012

78. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

79. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with
massively parallel interactive proofs. In: HotCloud (2012)

80. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for verifiable
computation. In: S&P (2013)

81. Wahby, R.S., Howald, M., Garg, S., Shelat, A., Walfish, M.: Verifiable ASICs. In:
S&P (2016)

82. Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: CCS (2017)
83. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and

control flow in verifiable outsourced computation. In: NDSS (2015)
84. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient

zkSNARKs without trusted setup. In: S&P (2018)
85. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-

knowledge proofs with optimal prover computation. ePrint Report 2019/317 (2019)
86. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and

its applications to zero knowledge proof. In: S&P (2020)
87. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-

ifying arbitrary SQL queries over dynamic outsourced databases. In: S&P (2017)
88. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-

knowledge version of vSQL. ePrint Report 2017/1146 (2017)
89. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:

faster verifiable RAM with program-independent preprocessing. In: S&P (2018)

https://doi.org/10.1007/978-3-642-40084-1_5

	Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup
	1 Introduction
	1.1 Summary of Contributions
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Problem Instances in R1CS
	2.2 Polynomials and Low-Degree Extensions
	2.3 A Polynomial Commitment Scheme for Multilinear Polynomials

	3 The Sum-Check Protocol: Opportunities and Challenges
	3.1 Challenges with Using the Sum-Check Protocol for Succinct Arguments

	4 An Encoding of R1CS Instances as Low-Degree Polynomials
	5 A Family of NIZKs with Succinct Proofs for R1CS
	5.1 A New Public-Coin Succinct Interactive Argument of Knowledge
	5.2 A Family of NIZKs with Succinct Proofs for R1CS

	6 Computation Commitments: zkSNARKs for R1CS from NIZK
	7 The SPARK Compiler
	7.1 SPARK-naive: A Straw-Man Solution
	7.2 Eliminating Asymptotic Overheads by Leveraging Memory Checking

	8 Implementation and Optimizations
	9 Experimental Evaluation
	9.1 Metrics, Methodology, and Testbed
	9.2 Performance Results

	References

