Daniele Micciancio
Thomas Ristenpart (Eds.)

Advances in Cryptology -
CRYPTO 2020

40th Annual International Cryptology Conference, CRYPTO 2020
Santa Barbara, CA, USA, August 17-21, 2020
Proceedings, Part Il

3’art 1]

LNCS 12172

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

12172

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Daniele Micciancio - Thomas Ristenpart (Eds.)

Advances in Cryptology —
CRYPTO 2020

40th Annual International Cryptology Conference, CRYPTO 2020
Santa Barbara, CA, USA, August 17-21, 2020
Proceedings, Part III

@ Springer

Editors

Daniele Micciancio Thomas Ristenpart

UC San Diego Cornell Tech

La Jolla, CA, USA New York, NY, USA
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-56876-4 ISBN 978-3-030-56877-1 (eBook)

https://doi.org/10.1007/978-3-030-56877-1
LNCS Sublibrary: SL4 — Security and Cryptology

© International Association for Cryptologic Research 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3323-9985
https://orcid.org/0000-0002-8642-9558
https://doi.org/10.1007/978-3-030-56877-1

Preface

The 40th International Cryptology Conference (Crypto 2020), sponsored by the
International Association of Cryptologic Research (IACR), was exceptional in many
ways. The COVID-19 pandemic meant that for the first time in the conference’s
40-year history, Crypto was not held at the University of California, Santa Barbara.
Safety mandated that we shift to an online-only virtual conference.

Crypto 2020 received 371 submissions. Review occurred during what, for many
countries, was the height thus far of pandemic spread and lockdowns. We thank the 54
person Program Committee (PC) and the 286 external reviewers for their efforts to
ensure that, in the face of challenging work environments, illness, and death, we
nevertheless were able to perform a standard double-blind review process in which
papers received multiple independent reviews, authors were allowed a rebuttal, and
papers were subsequently further reviewed and discussed. The two program chairs
were not allowed to submit a paper, and PC members were limited to two submissions
each. The PC ultimately selected 85 papers for acceptance, a record number for Crypto.

The PC selected four papers to receive recognition via awards, via a voting-based
process that took into account conflicts of interest (including for the program chairs).
Three papers were selected to receive a Best Paper award and were invited to the
Journal of Cryptology: “Improved Differential-Linear Attacks with Applications to
ARX Ciphers” by Christof Beierle, Gregor Leander, and Yosuke Todo; “Breaking the
Decisional Diffie-Hellman Problem for Class Group Actions using Genus Theory” by
Wouter Castryck, Jana Sotdkova, and Frederik Vercauteren; and “Chosen Ciphertext
Security from Injective Trapdoor Functions” by Susan Hohenberger, Venkata Koppula,
and Brent Waters. One paper was selected to receive the Best Paper by Early Career
Researchers award: “Handling Adaptive Compromise for Practical Encryption
Schemes” by Joseph Jaeger and Nirvan Tyagi.

In addition to the regular program, Crypto 2020 included the IACR Distinguished
Lecture by Silvio Micali on “Our Models and Us” and an invited talk by Seny Kamara
on “Crypto for the People”. Crypto 2020 carried forward the long-standing tradition of
having a rump session, this year organized in a virtual format by Antigoni Polychro-
niadou, Bertram Poettering, and Martijn Stam.

The chairs would also like to thank the many people whose hard work helped ensure
Crypto 2020 was a success:

— Leonid Reyzin (Boston University) — Crypto 2020 general chair.

— Sophia Yakoubov for helping with general chair duties, and Muthuramakrishnan
Venkitasubramaniam, Tal Rabin, and Fabrice Benhamouda for providing valuable
advice to the general chair.

— Carmit Hazay (Bar Ilan University) — Crypto 2020 workshop chair.

— Antigoni Polychroniadou, Bertram Poettering, and Martijn Stam — Crypto 2020
rump session chairs.

Vi

Preface

Chris Peikert for his role in overseeing reviews and the Best Paper by Early Career
Researchers award selection for which the program chairs were conflicted.

Kevin McCurley and Christian Cachin for their critical assistance in setting up
and managing a (new for Crypto) paper submission and review system.

Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic
team for their work in designing and running the virtual format.

Whitney Morris and Eriko Macdonald from UCSB event services for their help
navigating the COVID-19 shutdown logistics.

Anna Kramer and her colleagues at Springer.

July 2020 Daniele Micciancio

Thomas Ristenpart

General Chair

Leonid Reyzin

Organization

Boston University, USA

Program Committee Chairs

Daniele Micciancio
Thomas Ristenpart

Program Committee

Adi Akavia
Martin Albrecht
Roberto Avanzi
Lejla Batina
Jeremiah Blocki
David Cash
Melissa Chase
Hao Chen

Ilaria Chillotti
Henry Corrigan-Gibbs
Craig Costello
Joan Daemen
Thomas Eisenbarth
Pooya Farshim
Sanjam Garg
Daniel Genkin
Steven Goldfeder
Shay Gueron
Felix Giinther
Tetsu Iwata
Tibor Jager
Antoine Joux

Jonathan Katz

Eike Kiltz

Elena Kirshanova
Venkata Koppula

Anna Lysyanskaya
Vadim Lyubashevsky
Mohammad Mahmoody

UC San Diego, USA
Cornell Tech, USA

University of Haifa, Israel

Royal Holloway, University of London, UK

ARM, Germany

Radboud University, The Netherlands

Purdue University, USA

University of Chicago, USA

Microsoft Research, USA

Microsoft Research, USA

KU Leuven, Zama, Belgium

EPFL, Switzerland, and MIT CSAIL, USA

Microsoft Research, USA

Radboud University, The Netherlands

University of Liibeck, Germany

University of York, UK

UC Berkeley, USA

University of Michigan, USA

Cornell Tech, USA

University of Haifa, Israel, and AWS, USA

ETH Zurich, Switzerland

Nagoya University, Japan

Bergische Universitaet, Germany

CISPA — Helmholtz Center for Information Security,
Germany

George Mason Univeristy, USA

Ruhr University Bochum, Germany

[.Kant Baltic Federal University, Russia

Weizmann Institute of Science, Isarel

Brown University, USA

IBM Research Zurich, Switzerland

University of Virginia, USA

viii Organization

Giulio Malavolta
Florian Mendel
Maria Naya-Plasencia
Adam O’Neill

Olya Ohrimenko
Claudio Orlandi
Elisabeth Oswald
Chris Peikert
Bertram Poettering
Antigoni Polychroniadou
Ananth Raghunathan
Mariana Raykova
Christian Rechberger
Alon Rosen

Mike Rosulek
Alessandra Scafuro
Dominique Schroeder
Thomas Shrimpton
Fang Song

Marc Stevens
Dominique Unruh
Michael Walter
David Wu

Additional Reviewers

Masayuki Abe
Shweta Agrawal
Shashank Agrawal
Shweta Agrawal
Gorjan Alagic
Navid Alamati
Greg Alpar

Joel Alwen

Elena Andreeva
Gilad Asharov
Thomas Attema
Saikrishna Badrinarayanan
Shi Bai

Foteini Baldimtsi
Marshall Ball
James Bartusek
Carsten Baum
Asli Bay

Mihir Bellare

Carnegie Mellon University and UC Berkeley, USA

Infineon Technologies, Germany
Inria, France

University of Massachusetts, USA
The University of Melbourne, Australia
Aarhus University, Denmark
University of Klagenfurt, Austria
University of Michigan, USA
IBM Research Zurich, Switzerland
JP Morgan Al Research, USA
Google, USA

Google, USA

TU Graz, Austria

IDC, Israel

Oregon State University, USA

NC State University, USA

Florida Atlantic University, USA
University of Florida, USA

Texas A&M University, USA
CWI Amsterdam, The Netherlands
University of Tartu, Estonia

IST, Austria

University of Virginia, USA

Fabrice Benhamouda
Sebastian Berndt
Ward Beullens
Ritam Bhaumik
Nina Bindel

Alex Block

Xavier Bonnetain
Charlotte Bonte

Carl Bootland
Jonathan Bootle
Raphael Bost
Christina Boura
Elette Boyle

Zvika Brakerski
Benedikt Biinz
Matteo Campanelli
Anne Canteaut
André Chailloux
Suvradip Chakraborty

Yilei Chen

Jie Chen

Nai-Hui Chia

Arka Rai Choudhuri
Kai-Min Chung
Michele Ciampi
Carlos Cid

Michael Clear

Ran Cohen

Kelong Cong
Aisling Connolly
Sandro Coretti
Daniele Cozzo
Tingting Cui
Benjamin Curtis

Jan Czajkowski
Dana Dachman-Soled
Alex Davidson

Leo De Castro

Luca De Feo
Thomas Debris

Jean Paul Degabriele
Cyprien Delpech de Saint Guilhem
Patrick Derbez
Apoorvaa Deshpande
Benjamin Diamond
Christoph Dobraunig
Nico Doettling
Benjamin Dowling
Yfke Dulek

Stefan Dziembowski
Christoph Egger
Maria Eichlseder
Daniel Escudero
Saba Eskandarian
Serge Fehr

Rex Fernando

Dario Fiore

Ben Fisch

Wieland Fischer
Nils Fleischhacker
Daniele Friolo
Georg Fuchsbauer
Tommaso Gagliardoni
Juan Garay

Romain Gay

Organization

Nicholas Genise
Rosario Gennaro
Marios Georgiou
Riddhi Ghosal
Satrajit Ghosh
Esha Ghosh
Koustabh Ghosh
Irene Giacomelli
Andras Gilyen

S. Dov Gordon
Rishab Goyal
Lorenzo Grassi
Matthew Green
Hannes Gross
Aldo Gunsing

Tim Giineysu
Mohammad Hajiabadi
Shai Halevi

Koki Hamada
Dominik Hartmann
Eduard Hauck
Carmit Hazay
Alexander Helm
Lukas Helminger
Julia Hesse

Dennis Hofheinz
Alex Hoover
Akinori Hosoyamada
Kathrin Hévelmanns
Andreas Hiilsing
Ilia Iliashenko
Gorka Irazoqui
Joseph Jaeger

Eli Jaffe

Abhishek Jain
Aayush Jain
Samuel Jaques
Stanislaw Jarecki
Zhengfeng Ji
Zhengzhong Jin
Saqib Kakvi
Daniel Kales
Chethan Kamath
Akinori Kawachi
Mahimna Kelkar
Hamidreza Khoshakhlagh

ix

X Organization

Dakshita Khurana
Sam Kim

Michael Kim
Susumu Kiyoshima
Karen Klein
Dmitry Kogan
Markulf Kohlweiss
Ilan Komargodski
Daniel Kuijsters
Mukul Kulkarni
Ashutosh Kumar
Stefan Kolbl

Thijs Laarhoven
Russell W. F. Lai
Kim Laine
Virginie Lallemand
Changmin Lee
Tancrede Lepoint
Antonin Leroux
Gaétan Leurent
Kevin Lewi

Baiyu Li

Xin Li

Xiao Liang
Feng-Hao Liu
Alex Lombardi
Julian Loss

Ji Luo

Fermi Ma
Bernardo Magri
Urmila Mahadev
Christian Majenz
Eleftheria Makri
Nathan Manohar
Sai Krishna Deepak Maram
Daniel Masny
Eleanor McMurtry
Sarah Meiklejohn
Bart Mennink
Peihan Miao

Tarik Moataz
Esfandiar Mohammadi
Hart Montgomery
Tal Moran

Andrew Morgan
Fabrice Mouhartem

Pratyay Mukherjee
Michael Naehrig
Samuel Neves
Ruth Francis Ng
Ngoc Khanh Nguyen
Valeria Nikolaenko
Ryo Nishimaki
Satoshi Obana
Sabine Oechsner
Jiaxin Pan

Omer Paneth
Lorenz Panny
Sunoo Park

Alain Passelegue
Valerio Pastro
Jacques Patarin
Kenneth Paterson
Alice Pellet-Mary
Zack Pepin
Ludovic Perret

Léo Perrin

Peter Pessl

Jeroen Pijnenburg
Benny Pinkas
Rachel Player
Oxana Poburinnaya
Eamonn Postlethwaite
Robert Primas
Willy Quach

Rahul Rachuri
Ahmadreza Rahimi
Divya Ravi

Ling Ren

Joost Renes

M. Sadegh Riazi
Jodo L. Ribeiro
Silas Richelson
Doreen Riepel
Dragos Rotaru

Ron Rothblum
Adeline Roux-Langlois
Arnab Roy

Carla Rafols

Paul Roésler
Simona Samardjiska
Yu Sasaki

John Schanck

Patrick Schaumont
Martin Schlaffer

Jonas Schneider-Bensch
Peter Scholl

André Schrottenloher
Sven Schige

Adam Sealfon

Gil Segev

Gregor Seiler

Okan Seker

Nicolas Sendrier
Sacha Servan-Schreiber
Karn Seth

Yannick Seurin
Siamak Shahandashti
Devika Sharma

Sina Shiehian

Omer Shlomovits
Omri Shmueli

Mark Simkin

Boris Skori¢

Yongsoo Song

Pratik Soni

Florian Speelman
Nicholas Spooner
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé

Noah Stephens-Davidowitz
Younes Talibi Alaoui
Titouan Tanguy
Stefano Tessaro
Aravind Thyagarajan
Radu Titiu

Yosuke Todo

Organization

Ni Trieu

Rotem Tsabary

Daniel Tschudi

Vinod Vaikuntanathan

Thyla van der Merwe

Prashant Vasudevan

Marloes Venema

Muthuramakrishnan
Venkitasubramaniam

Damien Vergnaud

Thomas Vidick

Fernando Virdia

Ivan Visconti

Satyanarayana Vusirikala

Riad Wahby

Xiao Wang

Brent Waters

Hoeteck Wee

Christian Weinert

Weigiang Wen

Erich Wenger

Daniel Wichs

Luca Wilke

Keita Xagawa

Min Xu

Sophia Yakoubov

Rupeng Yang

Eylon Yogev

Yu Yu

Greg Zaverucha

Mark Zhandry

Tina Zhang

Fan Zhang

Yupeng Zhang

Vassilis Zikas

xi

Contents — Part II1

Multi-party Computation

Two-Sided Malicious Security for Private Intersection-Sum

with Cardinality 3
Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth,
and Moti Yung

Private Set Intersection in the Internet Setting from Lightweight
Oblivious PRF 34
Melissa Chase and Peihan Miao

Multiparty Generation of an RSA Modulus 64
Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and Abhi Shelat

Secret Sharing

Non-malleability Against Polynomial Tampering. 97
Marshall Ball, Eshan Chattopadhyay, Jyun-Jie Liao, Tal Malkin,
and Li-Yang Tan

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks

in the Plain Model 127
Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin,
and Daniele Venturi

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 156
Pasin Manurangsi, Akshayaram Srinivasan,
and Prashant Nalini Vasudevan

Cryptanalysis

Cryptanalytic Extraction of Neural Network Models 189
Nicholas Carlini, Matthew Jagielski, and Ilya Mironov

Automatic Verification of Differential Characteristics: Application
to Reduced Gimli 219
Fukang Liu, Takanori Isobe, and Willi Meier

The MALICIOUS Framework: Embedding Backdoors into Tweakable
Block Ciphers. 249
Thomas Peyrin and Haoyang Wang

X1v Contents — Part III

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 279
Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang

Out of Oddity — New Cryptanalytic Techniques Against Symmetric

Primitives Optimized for Integrity Proof Systems 299
Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder,
Gregor Leander, Gaétan Leurent, Maria Naya-Plasencia, Léo Perrin,
Yu Sasaki, Yosuke Todo, and Friedrich Wiemer

Improved Differential-Linear Attacks with Applications to ARX Ciphers. ... 329
Christof Beierle, Gregor Leander, and Yosuke Todo

Cryptanalysis Results on Spook: Bringing Full-Round Shadow-512

tothe Light 359
Patrick Derbez, Paul Huynh, Virginie Lallemand,
Maria Naya-Plasencia, Léo Perrin, and André Schrottenloher

Cryptanalysis of LEDAcrypt. 389
Daniel Apon, Ray Perlner, Angela Robinson, and Paolo Santini

Alzette: A 64-Bit ARX-box: (Feat. CRAX and TRAX) 419
Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos,
Johann Grofischddl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov,
and Qingju Wang

Delay Functions

Order-Fairness for Byzantine Consensus 451
Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels

Generically Speeding-Up Repeated Squaring Is Equivalent to Factoring:
Sharp Thresholds for All Generic-Ring Delay Functions 481
Lior Rotem and Gil Segev

Zero Knowledge

Compressed 2-Protocol Theory and Practical Application
to Plug & Play Secure Algorithmics 513
Thomas Attema and Ronald Cramer

A Tight Parallel Repetition Theorem for Partially Simulatable Interactive
Arguments via Smooth KL-Divergence 544
Itay Berman, Iftach Haitner, and Eliad Tsfadia

Interactive Proofs for Social Graphs 574
Liran Katzir, Clara Shikhelman, and Eylon Yogev

Contents — Part III XV

The Measure-and-Reprogram Technique 2.0: Multi-round Fiat-Shamir
and MOTe. 602
Jelle Don, Serge Fehr, and Christian Majenz

Fiat-Shamir for Repeated Squaring with Applications to PPAD-Hardness
and VDFs 632
Alex Lombardi and Vinod Vaikuntanathan

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 652
Yael Tauman Kalai, Omer Paneth, and Lisa Yang

New Techniques for Zero-Knowledge: Leveraging Inefficient Provers
to Reduce Assumptions, Interaction, and Trust 674
Marshall Ball, Dana Dachman-Soled, and Mukul Kulkarni

Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup.o 704
Srinath Setty

NIZK from LPN and Trapdoor Hash via Correlation Intractability
for Approximable Relations 738
Zvika Brakerski, Venkata Koppula, and Tamer Mour

Shorter Non-interactive Zero-Knowledge Arguments and ZAPs
for Algebraic Languages 768
Geoffroy Couteau and Dominik Hartmann

Non-interactive Zero-Knowledge Arguments for QMA,
with Preprocessing 799
Andrea Coladangelo, Thomas Vidick, and Tina Zhang

Author Index 829

Multi-party Computation

®

Check for
updates

Two-Sided Malicious Security for Private
Intersection-Sum with Cardinality

Peihan Miao?(®) | Sarvar Patel', Mariana Raykova', Karn Seth!®),
and Moti Yung!

! Google LLC, Mountain View, USA
sarvar@google.com, marianar@google.com,
karn@google.com, moti@google.com
2 Visa Research, Palo Alto, USA
pemiao@visa.com

Abstract. Private intersection-sum with cardinality allows two parties,
where each party holds a private set and one of the parties additionally
holds a private integer value associated with each element in her set, to
jointly compute the cardinality of the intersection of the two sets as well
as the sum of the associated integer values for all the elements in the
intersection, and nothing beyond that.

We present a new construction for private intersection sum with car-
dinality that provides malicious security with abort and guarantees that
both parties receive the output upon successful completion of the proto-
col. A central building block for our constructions is a primitive called
shuffled distributed oblivious PRF (DOPRF), which is a PRF that offers
oblivious evaluation using a secret key shared between two parties, and
in addition to this allows obliviously permuting the PRF outputs of sev-
eral parallel oblivious evaluations. We present the first construction for
shuffled DOPRF with malicious security. We further present several new
sigma proof protocols for relations across Pedersen commitments, ElGa-
mal encryptions, and Camenisch-Shoup encryptions that we use in our
main construction, for which we develop new batching techniques to
reduce communication.

We implement and evaluate the efficiency of our protocol and show
that we can achieve communication cost that is only 4—5X% greater than
the most efficient semi-honest protocol. When measuring monetary cost
of executing the protocol in the cloud, our protocol is 25x more expensive
than the semi-honest protocol. Our construction also allows for different
parameter regimes that enable trade-offs between communication and
computation.

1 Introduction

Private Set Intersection. A private set intersection (PSI) protocol enables
two parties, each with a private input set, to compute the intersection of the
two sets while revealing nothing more than the intersection itself. Despite the

P. Miao—Part of work done while interning at Google LLC.

© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 3-33, 2020.
https://doi.org/10.1007/978-3-030-56877-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_1

4 P. Miao et al.

simplicity of the functionality, PSI has found many applications in privacy-
preserving location sharing [50], testing of fully sequenced human genomes [3],
collaborative botnet detection [48], data mining [2], social networks [45,49],
online gaming [10], measuring ads conversion rates [39], and so on. Due to its
importance and wide applications, PSI has been extensively studied in a long
sequence of works [17,21,22,24,25,27,31,37,38,42,44,54,56,58-62].

Enhanced Functionality. While the PSI functionality models successfully
the confidentiality requirements in several application scenarios, there are
information-sharing settings where revealing the whole intersection is unaccept-
able and instead a more fine-grained privacy preserving computation is needed.
In particular different aggregated computations over the intersection set model
a wide range of applications with restricted privacy leakage. PSI-cardinality is
one example of such an aggregated functionality that limits the two parties to
learning only the cardinality (or size) of the intersection [1,20,31,38,41,51,63].

The private intersection-sum functionality introduced by Ton et al. [39] is
another example of an aggregate functionality where one of the input sets has
integer values associated with the elements in the set and the two parties compute
the cardinality of the intersection as well as the aggregate of the integer values
associated with the intersection set. This primitive models many applications in
practice. These include settings where one party holds private statistics about a
set of people and another party has information about the membership of the
people in a particular group, and the two parties want to compute an aggregate
of the statistics over the members of the set. A particular instantiation of this
scenario was consider by Nagu et al. [49] in the context of social networks where
a user has knowledge of weights associated with each of her friends and wants
to compute the total (or average) weight of the friends that she has in common
with another user. In measuring ads conversion rates [39], an advertiser may
know the purchase amount for every customer, and the advertiser and an ads
publisher can jointly compute the total number and total purchase amount of
the customers who have seen the ads from the publisher and end up buying the
product.

Existing solutions for private intersection-sum [39] provide security only in
the semi-honest case where each party is assumed to follow the protocol honestly.
While this level of security might be sufficient in settings where the interacting
parties have external incentives (e.g. legal agreements) to follow the protocol,
this level of security is not sufficient for a broad set of scenarios where the
adversary could deviate arbitrarily from the protocol. In the setting of malicious
security we have protocols that achieve only the PSI functionality, however,
constructions with competitive efficiency [30,60,61] have a major shortcoming
that they support only one-sided output, where in many settings both parties
need to obtains the output of the computation. Upgrading these protocols to
achieve two-sided output in a non-trivial task. For example, as explained by
Rindal et al. [61], the output recipient from the one-sided protocol will need to
prove that it executed the last step of the protocol honestly. We do not have
tailored constructions for this task and applying generic approaches comes with
a high price.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 5

In this work we consider the problem of private intersection sum with cardi-
nality in the malicious setting which provides protection against such adversaries.
We require that either both parties receive the output of the computation or they
abort. Our focus is on optimizing the communication efficiency of the protocol
since as discussed in the work of Ton et al. [39] this is the most significant cost
in practice.

Our Contributions. We present a new protocol for private intersection-sum
with cardinality which achieves malicious security with abort, which guarantees
that both parties receive the intersection sum if the protocol does not abort.
Our protocol provides two-sided output, which is already an improvement even
if we restrict our attention only to the PSI functionality since existing malicious
PSI protocols [30,60,61] are restricted to a single output recipient.

Our construction is the first construction for private intersection-sum with
cardinality with malicious security to achieve linear communication and com-
putation overhead in the size n of the sets. This improves significantly over the
only other existing approach [37] that can be used to solve this problem, which
uses existing generic MPC techniques with malicious security, and as we discuss
in the related work, incurs at least a factor of Alogn multiplicative overhead
assuming a security parameter . As can be seen in Table 6, these generic tech-
niques incur 250x higher communication and 65x higher monetary cost than
our protocol on inputs of size 22°.

Our construction can also be instantiated such that the overhead required to
achieve malicious security over the semi-honest version requires sublinear com-
munication O(y/n) with computation O(nlogn), which would be advantageous
in setting where communication is much more expensive that computation.

Our construction adopts the general approach from the work of Ton et al. [39],
which leverages an oblivious pseudorandom function (PRF) with a shared key,
which can be evaluated in a distributed way to permute and map the input set
values to a pseudorandom space that enables the computation of the intersection,
and homomorphic encryption, which allows to pair the associated values during
the PRF evaluation and then evaluate the intersection sum. In order to upgrade
this general approach to malicious security we develop several new techniques,
which can be of independent interest.

New Distributed OPRF. A central building block for our solution is a dis-
tributed oblivious PRF with malicious security. In order to achieve distributed
oblivious evaluation with malicious security we leverage a PRF construction due
to Dodis and Yampolskiy [23], for which we can construct proofs for honest
evaluation with respect to a committed PRF key. An issue that we need to deal
with is the fact that this PRF was proven secure only for polynomial domains.
To circumvent this problem we introduce a weaker selective security notion for
the PRF, which is satisfied by the construction with exponential domain, and
we show that this property suffices for our PSI-sum with cardinality protocol.

Verifiable Parameter Generation. We construct a distributed PRF evaluation
protocol, which uses several times evaluations on committed and encrypted val-
ues. Thus, in order to achieve malicious security for this protocol we use proofs

6 P. Miao et al.

for relations among encrypted and committed values, which crucially rely on the
assumption that the parameters for these schemes were generated honestly. Since
we do not want to assume any trusted setup, we present protocols for verifiable
generation of parameters for Pedersen commitments, Camenish-Shoup (CS) and
ElGamal encryption with shared key.

Range Proofs with Slack. The final extension to the distributed OPRF is to
enable a shuffle of the oblivious evaluations on multiple inputs that are executed
in parallel, which hides the mapping to the original inputs and is required in
order to hide what elements are in the intersection. In order to enable that we
develop a proof protocol for shuffle decryption of Camenisch-Shoup encryptions.
We leverage the Bayer-Groth shuffle proof [5], which allows to prove that two sets
of cipheretexts encrypt the same set of plaintexts up to a permutation. In order
to enable proving knowledge of exponents in this step, the prover needs to switch
from Camenisch-Shoup encryption to ElGamal encryption, which have different
domains. We introduce a proof technique for consistency of values encrypted
under CS and ElGamal encryptions that uses range proofs with a slack.

Our construction leverages heavily sigma proof protocols [18] in several places
including the proofs for evaluation of the DOPRF, the re-encryption step for
shuffling, the re-randomization for intersection-sum.

Batching for Range Proofs. We introduce new batching techniques for range
proofs based on sigma protocols. While existing efficient batch proofs that do not
work with the bit level representation of the values operate in a group of unknown
order [9,13], batching techniques for sigma protocols have been constructed only
in the case of a known order group [33]. We show how to batch range proof over
groups of unknown order while avoiding a large blowup in the slack of the range
proof which is incurred if we adapt directly the batching approach for known
group order to hidden order by providing sufficient space to avoid the need for
modulus reduction.

Batching Proofs for CS and ElGamal Encryptions. We also use batching
techniques for commitments and develop batching approaches for Camenisch-
Shoup encryptions. We leverage multi-exponentiation arguments from the work
of Bayer and Groth [5] in a new way to batch proofs for relations among ElGa-
mal ciphertexts for which prover does not know the encryption randomness.
Since we need an additively homomorphic encryption scheme that has a prov-
able threshold decryption, we use exponential ElGamal to encrypt associated
values. This means that our construction supports evaluations for which the
final intersection-sum is within a polynomial domain where discrete log can be
computed for decryption.

Implementation and Fvaluation. We implemented our malicious secure private
intersection-sum protocol and evaluated its performance on large-scale datasets.
Our experiments show that, when we set parameters to minimize communica-
tion overhead, our protocol performs with communication cost approximately
4x greater than the most communication-efficient semi-honest protocol based
on DDH. A less aggressive choice of parameters leads to about 7x expansion
over the semi-honest DDH-based protocol, with a much improved computational

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 7

efficiency. We also estimate the monetary cost of running our protocols using the
pricing for Google Cloud and obtain that executing our PSI-Sum protocols on
inputs of size 220 costs 13 cents. The monetary cost is about 25x more than
that of the semihonest protocol, which we believe is a reasonable cost for the
much stronger security guarantees. We present our experimental measurements in
Sect. 6. Our costs give a large improvement in monetary cost over existing generic
approaches for private intersection sum with cardinality. Our monetary costs are
also within a factor of 2 of the most efficient protocols for Malicious PSI [61], which
we note only provide one-sided output and are not compatible with computing
functions on the intersection.

Related Work. Before presenting the technical overview of our construction,
we overview existing PSI solutions in the malicious setting [11,15,17,21,30,35,
36,40,41,60,61] and discuss the challenges in extending the approaches from
these works to the private intersection-sum problem. We restrict our discussion
to constructions that provide linear communication complexity as our major
goal is communication efficiency.

The work of De Cristofaro et al. [21] presents a PSI protocol, where only one
party (P,) learns the PSI output and nothing is revealed to the other party (P;).
Our goal is to obtain a protocol where both parties receive the output, and next
we explain the challenges for achieving this functionality here. At a high level
the protocol works as follows. First, the two parties jointly evaluate an oblivi-
ous pseudorandom function (OPRF) on every element of P, where P; holds the
OPRF key k and only P, obtains the OPRF values. Second, P, computes the
OPRF values on its own elements using the key £ and sends to P,. Finally, P,
computes the intersection of the OPRF values and the corresponding set inter-
section. The protocol used an OPRF defined as Fy(x) = Ho(z||Hy(x)||Hy(z)F),
where H;(-), H2(-) are hash functions modeled as random oracles [7]. In the
OPREF protocol, P, learns H;(x)¥ without revealing any information about z to
Py, and finally computes Ho(z||Hy(x)||Hy(z)"). Since we want both parties to
learn the PSI output, one natural idea is to let Py send back its OPRF values
to Pp, but P, has to prove that Hs(-) is computed correctly on desired inputs
without revealing any information about x, which is a challenge. Another idea is
to run the protocol twice with alternative roles, where the parties have to prove
input consistency during the two executions. In other words, P, should prove
in zero knowledge that its inputs to Fi(-) in the first execution are consistent
with its inputs to the OPRF in the second execution, which is also challeng-
ing. More importantly, it is hard to extend this protocol to PSI-cardinality or
private intersection-sum. In the last step of their OPRF protocol, P, computes
Hy on z||H(x)||H{(x)* for each of its element z. It is crucial that P» knows
the inputs to Hy to compute the OPRF value. Therefore, the elements in the
intersection must be known to P», making it hard to extend the protocol to even
PSI-cardinality.

The PSI protocol of Jarecki and Liu [40] is also based on an OPRF pro-
tocol similarly as above, but the parties can prove consistency of their inputs
to the OPRF with previously committed values. Therefore, the two parties can

8 P. Miao et al.

first commit to their inputs and then run the above protocol in both direc-
tions so that both parties learn the PSI output. However, the protocol has some
limitations. First, their security proof requires the domain of the elements to be
restricted to polynomial in the security parameter. Besides, the protocol requires
a Common Reference String (CRS), where the CRS includes a safe RSA mod-
ulus that must be generated by a trusted third party, which is something we
would like to avoid. To extend this protocol to PSI-cardinality, the receiver (Pz)
of the OPRF protocol should learn the OPRF values without learning the cor-
respondence between its elements {z},cx and OPRF values {Fj(x)}zex, which
requires shuffling techniques that we develop in this work. More ingredients and
techniques are needed for extending the protocol to private intersection-sum as
well as removing the above restrictions.

The idea in the protocol of Freedman et al. [30] to achieve malicious security
is to require one party (P;) to redo the other party’s (P2’s) computation on the
elements in the intersection and verify consistency. This is achieved as follows:
P, generates a polynomial Q(-) of degree m, with roots set to the m elements
of P;’s set, and sends the homomorphically encrypted coefficients of Q(-) to Ps.
Then for each element x in Py’s set, P replies with an encryption of r- Q(z) + s
for random r and s. Importantly, the randomness used in this computation is
taken from H(s) where H(-) is a hash function modeled as a random oracle. If
x is in the intersection, then P; can learn s and verify P»’s computation on x;
otherwise nothing about x is revealed to P;. This protocol crucially needs P; to
learn the elements in the intersection, therefore extending the protocol to even
PSI-cardinality seems to require innovative ideas. Moreover, the techniques of
hashing into bins are leveraged in the protocol for achieving linear computational
complexity. Computing PSI for each bin is sufficient for the PSI problem, however
revealing intersection-cardinality or intersection-sum for each bin compromises
security in the problem of PSI-cardinality or private intersection-sum.

Another option for constructing a private intersection-sum protocol with
malicious security is to apply directly malicious two-party computation pro-
tocols to our functionality. Such protocols use the circuit representation of the
evaluated functionality. The most efficient way to compute the intersection of two
sets of size O(n) uses oblivious sorting which reduces the number of needed com-
parisons from O(n?) to O(nlogn). In our construction, in contrast, we aim for
linear dependence on the number of inputs. Further, circuit solutions are bound
to incur additional security factor multiplicative overhead since they need to
operate with the bit-level representation of the set values. In the case of gar-
bled circuit-based solutions this is inherent in the constructions, and in the
case of solutions using arithmetic circuits the need for using the bit represen-
tation comes from the fact that we will be computing comparisons over these
values and the most efficient way to do this is using the binary representation
of the values. The recent circuit-based PSI protocols [16,28,56,57] only provide
security in the semi-honest setting and it is nontrivial to extend them to the
malicious setting due to their use of specific primitives such as Cuckoo hash-
ing. Moreover, their protocols require super-linear communication. The work of

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 9

Pinkas et al. [57] presents a semi-honest circuit-based PSI construction that
achieves linear communication, however, this construction achieves only linear
number of comparison in the circuit by using oblivious programmable PRF tech-
niques [43] and Cuckoo hashing [52]. Generalizing these techniques to the mali-
cious setting presents many challenges. Our construction presents an approach
to obtain oblivious PRF evaluation in the malicious setting.

2 Technical Overview

In this section we give a technical overview of our malicious secure pri-
vate intersection-sum protocol. Our starting point is the semi-honest private
intersection-sum protocol [39]. We identify the technical challenges to obtain
malicious security from the semi-honest version and then present our approach
to addressing them.

Semi-honest Private Intersection-Sum. The semi-honest protocol of Ton et
al. [39] leverages a cryptographic primitive called distributed oblivious pseudo-
random function (DOPRF), which enables the following functionality. The key &
of a DOPRF is shared between two parties, where each party can generate inde-
pendently their share. The DOPRF has an oblivious evaluation functionality,
which is a 2-party computation protocol, which the two parties jointly evaluate
the PRF F, under key k, on an input z, held by one of the parties who receives
the PRF output Fj(x) and nothing more is revealed to either party.

The DOPRF functionality suffices to construct a PSI protocol as follows.
First, the two parties generate independently key shares of the DOPRF key.
Then, they use the oblivious evaluation protocol to evaluate the DOPRF on
each of Pi’s input elements z;, from which P, learns Fj(z;) and then sends
it back to P;. Similarly, they evaluate the DOPRF on P,’s input elements y;
to obtain Fj(y;). Computing the intersection of the resulting two sets of PRF
values enables both parties to compute the PSI since each party has the mapping
from the intersecting PRF values to their corresponding input elements.

The above PSI protocol can be extended to obtain PSI-cardinality and private
intersection-sum protocols. To achieve PSI-cardinality, it suffices to construct a
shufled DOPRF protocol, which allows n parallel executions of the oblivious
PRF evaluation where the PRF value that one of the parties receives are ran-
domly shuffled with a permutation selected by the other party. The party who
receives the PRF values can still compute the intersection between the two sets
of PRF values but no longer has a mapping between the intersecting PRF values
and the inputs to which they correspond. Thus, the only thing this party can
learn is the cardinality of the intersection. We can extend this idea to further
obtain private intersection-sum in the setting where one party (say P;) has asso-
ciated integer values with its set elements. In this setting, the two parties first run
the shufled DOPRF for Py’s input set. For P;’s input set, the two parties eval-
uate the DOPRF on each of P;’s inputs z;. In addition, P; attaches an encryp-
tion of x;’s associated integer v; under re-randomizable additive-homomorphic

10 P. Miao et al.

encryption for which P; holds the secret key. This allows P to learn an (Fy(x;),
Encpy (v;))-pair for each z;, so it can compute the set intersection from the two
sets of PRF values and then homomorphically add up the corresponding cipher-
texts. The resulting ciphertext is then re-randomized and sent back to P;, who
has the decryption key to recover the intersection-sum.

The primitives and protocols described above are only secure against semi-
honest adversaries. In order to construct a private intersection-sum protocol that
provides malicious security, we design malicious counterparts of these tools.

Malicious DOPRF. The semi-honest intersection-sum protocol of Ion et al.
[39] uses the following Diffie-Hellman-based PRF construction, which is defined
as Fj(z) = H(x)*, where the hash function H(-) is modeled as a random ora-
cle [7]. Tt can be instantiated as a DOPRF by sharing the PRF key as k = kjko.
Specifically, the two parties can independently generate key shares ki and k.
To evaluate the DOPRF on P;’s input x, P sends y = H(x)** to P, and then
P, can compute the PRF output z = y*2. When we switch to the malicious
setting, a malicious P, may send § = H(x)"* to P, for an arbitrary » and
obtain Z = H(z)"**2 from which P, can learn the PRF output by raising Z to
the power »~!. In order to upgrade this DOPRF protocol to the malicious set-
ting especially with simulation-based security, P; needs to prove that the hash
function H(-) was properly applied or equivalently prove the knowledge of a
preimage for a hash value, which is a challenge.

In view of the above difficulties associated with the use of the DH-based
DOPRF in the malicious setting, we choose to use a different PRF as a starting
point for a new DOPRF construction, for which correct evaluation can be proven.
We use the function Fi(z) = gk}r*r, which is defined on a group (g) of prime order.
This function was originally introduced as a weak signature in the work of Boneh-
Boyen [8], and subsequently was proven to be a pseudorandom function under
the decisional ¢-Diffie Hellman Inversion (¢-DHI) assumption [47] by Dodis-
Yampolskiy [23]. We combine ideas from Belenkiy et al. [6] and Jarecki-Liu [40]
to construct a distributed oblivious evaluation protocol for this PRF and prove
its security in the malicious setting.

We start with a description of a distributed evaluation protocol for the above
PRF that provides semi-honest security. We refer to the two parties as a sender
and a receiver, where the party holding the input x is called the sender and the
party obtaining the PRF output is called the receiver. For the distributed key
generation the two parties randomly pick secret key shares ks and k., such that
the PRF key k is set as k = kg + k,.. The starting point for our distributed
evaluation protocol is the following idea. The receiver encrypts its key share k,.
using an additive-homomorphic public-key encryption scheme for which it holds
the secret key, and sends the encryption Enc,(k,) to the sender. The sender then
homomorphically computes Enc, (ks + k- +x) and sends it back to the receiver.
The receiver can decrypt the ciphertext to obtain ks + k. + x and compute the
PRF output gm

In the above protocol the receiver learns information beyond the PRF output,
which consists of the value ks + k. + x. To remove this leakage we introduce

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 11

a random multiplicative mask a on the sender’s side. That is, the encrypted
value that the receiver obtains is a(ks + k, + x). We remove this mask during
exponentiation by having the sender also send g* to the receiver and letting the
receiver compute (g“)m In fact, this randomization does not suffice for a
simulation proof. Since a(ks+k,+2z) is homomorphically computed by the sender
who cannot take modulo operation under the homomorphic encryption, the value
a(ks+k,+x) learned by the receiver may still leak information about ks + k. +x.
That is why we further modify the randomization to a(ks+k, +x)+bg where b is
random and ¢ is the order of the group (g). This randomization guarantees that
the value obtained by the receiver is simulatable and at the same time correct
since the order of the group is gq.

To obtain malicious security in the above protocol, the sender needs to prove
the correctness of the homomorphic encryption and the consistency of a in the
new ciphertext and in ¢g%. To achieve this we use Camenisch-Shoup encryp-
tion [13], for which we can use sigma protocols to provide zero-knowledge proofs
for these operations.

Exponential Domain for Dodis-Yampolskiy PRF. The work of Dodis and
Yampolsky [23] proved adaptive security for the PRF construction that we dis-
cussed above but only in the setting of polynomial size domains. However, this
is not true for the inputs used in many real-world applications. Therefore, we
revisit the security proof for this construction and show that for exponential
size domains the PRF satisfies a weaker notion of selective security, where the
inputs to the PRF are chosen by the adversary in advance in the security game,
under the ¢-DHI assumption. Furthermore, this level of security for the PRF is
sufficient for the security of our private intersection-sum protocol for the follow-
ing reason. At a high level, we make the two parties first commit to their own
input along with a zero-knowledge proof of knowledge and then jointly decide the
PRF parameters. In the simulation-based proof, the simulator can first extract
the adversary’s input and then reduce to the security game of the PRF, where
selective security suffices for our purpose.

Malicious PSI. As we discussed for the semi-honest setting, a secure DOPRF
protocol suffices for a PSI protocol. In the malicious setting, to construct a
malicious PSI protocol from the above malicious DOPRF protocol, the receiver
should send back the PRF values to the sender and prove correctness of its
computation (g“)m with respect to g® and the ciphertext Enc,i(a(ks+
kr + x) + bg), in a zero-knowledge fashion. This can also be achieved by sigma
protocols.

Malicious Shuffled DOPRF. To extend the malicious PSI protocol to mali-
cious PSI-cardinality, we need to additionally enable the shuffled DOPRF func-
tionality that provides all the PRF outputs to the sender in a randomly shuffled
(permuted) order determined by the receiver. While our malicious DOPRF pro-
tocol provides the receiver with the leverage to shuffle the PRF outputs before

12 P. Miao et al.

sending back to the sender, we still need a way to prove the correctness of the
shuffle.

While it is possible to try to leverage generic zero-knowledge protocols to
prove directly the correctness of the shuffled outputs, we choose to use a shuffle-
and-decrypt protocol by Bayer-Groth [5], which can efficiently prove in zero-
knowledge that given a set of ciphertexts and a set of plaintexts, the plaintexts
correspond to the decryption of some permutation of the ciphertexts. To incor-
porate this shuffle proof in our protocol, the receiver no longer just sends the
PRF outputs back to the sender after the DOPRF evaluation, but rather sends
encryptions of these outputs together with proofs that each of them encrypts
the correctly computed value (g“)m In addition to this the receiver
sends the PRF outputs in the clear in a shuffled order together with a Bayer-
Groth shuffle proof that they are consistent with the decryption of the above
ciphertexts in some permuted order.

In the above construction which we design in order to leverage an efficient
shuffle proof, let 8 := a(ks + k» + x) + bq. The prover needs to switch from
Camenisch-Shoup encryption to ElGaml encryption because § was encrypted
in Camenisch-Shoup encryption while the value to encrypt in this step is ¢ =
(g“)ﬁ_1 and what the prover needs to prove knowledge about is 3; ! instead of
o. Encrypting o using ElGamal in the group (g) enables proof of knowledge in
the exponent. However, the prover needs to provide a proof that the Camenish-
Shoup ciphertext, which has plaintext domain Zy, and the ElGamal cipheretext,
which has plaintext domain Z, where ¢ < N, encrypt consistent values § and
B~L. To achieve this we observe that it suffices to prove the consistency of the
two encrypted values in their respective domains (i.e., z mod N = 2/ mod q)
and in addition to this prove that 2’ < ¢. For the later since ¢ < N, it suffices to
use range proofs that have slack for sigma protocols, which can only guarantee
that =’ < ¢ - r. This completes a malicious DOPRF protocol with randomly
shuffled PRF outputs.

From Shuffled DOPRF to Intersection-Sum. The shuffled DOPRF proto-
col suffices to obtain PSI-cardinality in the semi-honest setting by running two
shuffled DOPRF with the same key, where in one protocol P; holds the input
and acts as the sender while in the other protocol their roles are reversed. In the
malicious setting when the two protocols are executed in parallel, we have to
additionally make sure the two parties are using consistent DOPRF key shares.
Each party will first commit to their DOPRF key shares and then prove con-
sistency of their key shares used in the two protocols, which can be done using
sigma protocols.

To further achieve private intersection-sum, similar to the semi-honest set-
ting, we encrypt the integer values associated with one of the sets using addi-
tive homomorphic encryption. The secret key for this encryption is now shared
between the two parties, which will be important for preserving the secrecy
guarantees of the shuffle proof. The sender appends these encryptions to the
corresponding inputs in the malicious shuffled DOPRF evaluation. Now the re-
ceiver that applies the shuffle in this protocol additionally needs to re-randomize

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 13

the encryptions of the associated values and provides a proof that the shuffle
applied to these encryptions is the same as the shuffle on the PRF values. This can
be achieved in the Bayer-Groth shuffle proof because in their protocol the prover
commits to the permutation and we can use the same commitment through the
two shuffle proofs. Different from the semi-honest setting, now both parties can
compute the intersection of the two sets of PRF values and homomorphically add
up the corresponding re-randomized ciphertexts. To jointly decrypt the resulting
ciphertext, each party partially decrypts the ciphertext using their own key share
and sends to the other party. They also have to prove the correctness of their par-
tial decryption, again by sigma protocols.

Batching Protocol Components. In our construction outlined above we use
sigma style protocols to provide proofs for the correctness of DOPRF evaluation,
re-encryption for shuffling, and re-randomization for intersection-sum. In order
to optimize the communication efficiency of such protocols, we utilize various
techniques to batch components of the protocol. At a high level there are three
types of batching we use: batching Pedersen commitments, batching Camenisch-
Shoup encryptions, and batching sigma protocols.

These batching techniques are described in Sect.5. Further care needs to
be taken to ensure the compatibility between different batching techniques. We
describe the detailed composition of these techniques in the full version of our
paper.

We believe that these batching techniques may be of independent interest.
For example, our batched sigma protocols include tighter bounds on proofs of
ranges than known techniques, and our batched Camenisch-Shoup encryption
enables batched proofs of decryption, which brings asymptotic efficiency gains.

Organization. We introduce our notations, security assumptions, impor-
tant definitions and cryptographic schemes in Sect.3 and present our private
intersection-sum protocol in Sect.4. Our batching techniques are described in
Sect. 5. For the detailed malicious security proof of our protocol, concrete sigma
protocols, and the selective security proof of the PRF used in our protocol, refer
to the full version of our paper [46].

3 Preliminaries

3.1 Notation

We use A to denote the security parameter. Let Z,, be the set {0,1,2,...,n—1}.
77 is defined as Z := {z € Z,|gcd(x,n) = 1}. We use [n] to denote the set
{1,2,...,n}. We use ord(G) to denote the order of a group G. By negl(\) we
denote a negligible function, i.e., a function f such that f(\) < 1/p(A) holds for
any polynomial p(-) and sufficiently large A.

14 P. Miao et al.
3.2 Computational Assumptions

Decisional g-Diffie-Hellman Inversion (g-DHI) Assumption [47]. The
computational ¢-DHI problem in a group G with generator g and order p is to
compute ¢!/ given the tuple (9,9%, ... ,gaq) for random « in Zj. We define the
hardness of the decisional version of this problem for any fixed constant ¢ as
follows. Let gGen be an algorithm which on input a security parameter 1* picks
a modulus p and a generator g of a multiplicative group G of order p. We say
that the Decisional qg-DHI Assumption holds on group (family) G if for every
efficient algorithm A,

‘Pr [A(g,ga, g™ gty = 1‘(g,p) — gGen(1?); o0 — Z;}

—Pr [A(g,g“, g h) = 1’(g,p) — gGen(1*); v — Z7; b G} ’ < negl(\).

Strong RSA Assumption [4,32]. The strong RSA assumption states that
given an RSA modulus N of unknown factorization and a random element g €
ZYy, it is computationally hard to find any pair of h € Z}; and e > 1 such that
h® =g mod N.

3.3 Cryptographic Tools

We introduce some cryptographic tools in this section. See the full version of the
paper for descriptions of Pedersen commitment [53], Camenisch-Shoup encryp-
tion [13], ElGamal encryption [26], and 2-out-of-2 threshold encryption.

Zero-Knowledge Argument of Knowledge. We use the notation introduced
in [14] for the various zero-knowledge argument of knowledge of discrete loga-
rithms and arguments of the validity of statements about discrete logarithms.
The following example is taken verbatim from [13].

ZK-AoK{(a,b,c) :y = g*h* A p=g"h° A (v<a<u)}

denotes a “zero-knowledge argument of knowledge of integers a, b, and c¢ such
that y = g®h® and v = g*h° hold, where v < a < u,” in which y, g, h,y,g,b are
elements of some groups G = (g) = (h) and & = (g) = (h). The convention is
that the elements listed in the round brackets denote quantities the knowledge
of which is being proved (and are in general not known to the verifier), while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details.
We use similar notations for zero-knowledge proofs. As an example,

ZK{3z : h=¢"}

denotes a zero-knowledge proof that there exists x such that h = g*.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 15

In our protocol we instantiate this form of zero-knowledge arguments of
knowledge and zero-knowledge proofs by sigma protocols. We elaborate how this
can be done and how batching techniques work for sigma protocols in Sect. 5.
The concrete sigma protocols used in our construction are presented in our full
version.

Fiat-Shamir Heuristic. All the sigma protocols are interactive and public-
coin, where the messages from the verifier are all chosen uniformly at random
and independently of the messages sent by the prover. We only prove they are
honest-verifier zero-knowledge. By the Fiat-Shamir heuristic [29], these proto-
cols can be turned into a non-interactive proof or argument where the prover
computes the public-coin challenges with a cryptographic hash function instead
of interacting with a verifier, which reduces rounds of communication as well as
total communication cost. Furthermore, the resulting non-interactive protocol
can be proved malicious secure in the random oracle model.

Shuffle Proof. Bayer-Groth [5] proposed a zero-knowledge argument of knowl-
edge for the correctness of re-randomized and shuffied of homomorphic encryp-
tions, which achieves sublinear communication complexity. More specifically,
given the public key p€ of the homomorphic encryption, original ciphertexts
{cti}icn), a permutation m over [n], re-randomized and shuffled ciphertexts
{et ;) biep) where ct]) = ct; - Encpe(1;7;). The following ZK-AOK

ZK-AoK { (7, {ri}icpn) : cti - Encpe(Lm5) Vi € [n]}

can be prove with communication complexity O(y/n). In addition, two state-
ments can be proved to use the same permutation 1. The protocol is interactive
with public-coins, hence it can be turned into a non-interactive malicious secure
one using the Fiat-Shamir heuristic.

3.4 Security Model

We define security of a private intersection-sum protocol against malicious adver-
saries in the ideal/real world paradigm. The definition compares the output of
a real-world execution to the output of an ideal-world execution involving a
trusted third party, which we call an ideal functionality. The ideal functionality
F, defined in Fig. 1, receives the two parties’ inputs, computes the intersection-
sum and returns the output to both parties. Loosely speaking, the protocol IT
is secure if the output of the adversary in the real-world execution is compu-
tationally indistinguishable from the output of the adversary in the ideal-world
execution, which means that a real-world execution of the protocol does not
leak any more information than the ideal-world execution. Hence, the parties
can only learn what they can infer from their inputs and the output.

Formally, we say a private intersection-sum protocol is secure against mali-
cious adversaries if for every PPT adversary A in the real world, there exists a
PPT adversary S in the ideal world such that for any input (X, V) and Y,

Real; 4((X,V),Y) = ldealr s((X,V),Y),

16 P. Miao et al.

Public Parameters: P;’s set size n1 and P»’s set size no.

Inputs: Party P; inputs a set of identifiers along with associated integer values
(X, V) = {(wi,vi) }icn,, Party Ps inputs a set of identifiers Y = {yi }ic[no)]-

Output: Upon receiving the inputs from both parties, the ideal functionality F com-
putes the intersection / = X NY and intersection-sum S = Zi::cze] v; and outputs the
intersection-cardinality || and intersection-sum S first to the corrupted party, then to
the honest party.

Corrupted Party: The corrupted party may deviate from its input, may abort the
procedure at any time by sending abort to the ideal functionality, and may decide the
time of message delivery.

Fig. 1. Ideal functionality of malicious secure private intersection-sum.

where Realz, 4((X,V),Y) denotes the output of A in the real-world execution of
protocol II, and Idealz s((X,V),Y) denotes the output of S in the ideal-world
execution.

4 Protocol Description

Our constructions consists of two phases. The first one is an offline setup where
the two parties jointly decide parameters for the cryptographic primitives, which
will be used in the online computation. Note that we do not assume trusted setup
for any of the primitives and provide secure two party computation protocols
for those. The second phase is the online computation that is dependent on the
input sets and uses the parameters from the setup. The main building block for
our online phase is a shuffled distributed oblivious PRF (DOPRF') construction,
which is a primitive of independent interest and other potential applications.
Thus, we present the shuffled DOPRF construction separately.

Offline Setup. In our malicious secure private intersection-sum protocol, the
two parties first run a (one-time) offline setup to generate the parameters for
encryption and commitment schemes. The two parties first agree on a group G
where max(ny,n2)-DHI assumption holds. This group will be the group where
they compute DOPRF on. Each party generates parameters for Camenisch-
Shoup encryption, ElGamal encryption and Pedersen commitments, and sends
the public parts to the other party with corresponding proofs for correct genera-
tion (which is discussed in our full version). The two parties generate parameters
for the 2-out-of-2 threshold ElGamal encryption, which can be done by each
party generating locally ElGamal parameters and setting the shared secret key
to be the sum of the two local secret keys, and computing the corresponding
public key. The detailed protocol is described in Fig. 2.

Online Phase. After the one-time offline setup, for each private intersection-
sum instance, the two parties run an online protocol described in Fig. 3.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 17

0. P and P» agree on a group G of order ¢ with a generator g for which the
max(n1,n2)-DHI assumption holds.

1. Each party P, generates (pk,,sk;) < CS_Gen(1*) where g, = (r4)?" for a random
element 7, € Zyz2, pk, = (Nb, s, gb, y») and Ny > 2322, sk, = x. Party Py sends
pk, to the other party along with a ZK-proof that IV, is a product of two large safe
primes and that y is correctly formed:

ZK {Hwb sy = (gp)** mod Nb2} .

2. Each party P, generates Pedersen commitment parameters (gp, h) for the large
subgroup of Zjy, and sends (gp,hs) to the other party together with a zero-
knowledge proof that g, € (hp):

ZK-AoK {3ry, : go = (hs)"™} .

3. Each party P, generates (tpk,,tsky) < EG_Gen(1*) for the 2-out-of-2 threshold
encryption scheme on the group G with generator g and sends tpk, to the other
party along with a ZK-AOK of tsky:

ZK-AoK{tsk, : tpk, = (3)=}.
Both parties compute the public key tpk = tpk; - tpk,.

4. Each party P, generates an ElGamal key pair (pt,,st,) for the group G with
generator g and sends p, to the other party with a proof:

Fig. 2. One-time offline setup of the malicious secure private intersection-sum protocol.

The inputs for the two parties are as follows: P; has an input set of elements
X = {&}ie[n,) with associated integer values V' = {v;};c[n,], while P, has only
a set of elements Y = {y;}ie[n,). The output of the protocol is that either both
parties abort, or both parties obtain the intersection sum),y v;.

At a high level this protocol uses the shufled DOPRF to enable both parties
to obtain shuffled PRF evaluations for the values in X and Y, where the PRF
values from X are paired with ElGamal encryptions of the corresponding integer
values from V', which are encrypted under the 2-out-of-2 threshold ElGamal.
Afterwards, the two parties compute independently the ElGamal encryption of
the intersection sum since they can compute the intersection on the PRF values
and then sum the encryptions of the integer values. At that point, the two
ciphertexts held by the parties should be identical. Now each party verifiably
half-decrypts the ciphertexts it has obtained and sends the resulting verifiable
partial decryption to the other party. Then both parties can half-decrypt the
partial decryption they received to obtain the output.

Shuffled DOPRF Protocol. We describe our malicious secure shuffled
DOPRF construction as a stand-alone primitive in Fig.4. For the purposes of
the following discussion P; is the party that holds input elements {x;};c[n,]
and P, and P» jointly evaluate the shuffled DOPRF on these elements. First,

18 P. Miao et al.

1. Each party P, samples a random PRF key share k; & [q]-
2. P computes Cy,; < comyg, p, (x;) for all ¢ € [n1], sends C,,; with ZK-AOK to P:

ZK-AOK {(4,71) : Ca, = (32)" - (52)""
P, computes Cy, < comyg, n, (y;) for all i € [na], sends Cy, with ZK-AOK to Pi:
ZK-AoK {(yi, s:) : Cy; = (g1)"" - (h1)™'}.

P, and P, jointly decide on a random generator g for the group G.
4. P; and P, run two shuffled DOPRF protocols described in Figure 4 in parallel,
one with P; holding the input and the other with P> holding the input:

— Shuffled DOPRF 1: P; and P, perform the shuffled DOPRF protocol on
P’sinput X = {&;}ic[n,]- The output PRF values are denoted as {0 ;) yic[n,]-
In parallel to this protocol, they do the following:

e Round 2: Pi computes ct,, < Exp-EG_Enc,, (v;) for each i € [n1] and
sends {cty, }ic[n,] to Po.

e Round 3: P, re-randomizes {cty, };c[n,) to obtain {ct,, }ic[n,], and then
uses the permutation 7 (same as in the shuffled DOPRF protocol) to

w

shuffle the re-randomized ciphertexts to obtain {ct;m_)} . P> sends
} i€[ny

{ctin } . 1o Pi along with a ZK-AOK:
i€[ny

ZK-AoK {(7r7 {ritiein,) ct;ﬂ” = cty,; - Exp_EG_Ency, (1;7:) Vi€ [nl]}

— Shuffled DOPRF 2: P; and P> perform the shuffled DOPRF protocol, with
roles reversed, on P’s input Y = {¥i }icin,]- We denote the set of PRF values
as Fi(Y).

5. Each party P, determines the intersection set I := {t: o4 € F(Y)} and computes
ctg = Htel ct,',)t. P, verifiably half-decrypts cts using tsk, and sends to the other
party.

6. Each party half-decrypts the ciphertext half-decrypted by the other party, and
outputs the intersection sum S.

Fig. 3. Online phase of the malicious secure private intersection-sum protocol.

P, commits to its PRF key share ks and also sends a Camenisch-Shoup encryp-
tion of it under its own key to P; together with a proof that the encrypted
and the committed values are the same. P; can then homomorphically com-
pute CS_Encpy, (k1 + ko + ;) for each of its element z;. To mask the value
ki1 + ko + x;, P; chooses randomizing values a; and b; and compute ctg, =
CS_Encpy, (a; - (k1 + ko + ;) + b; - q) and g; = g*. Pp also commits to the
values a;,b;,; = a; - (k1 + x;) together with proofs that these commitments
and encryptions use consistent values. P, verifies the correctness of the proofs,
decrypts ctg, to obtain 5; = a; - (k1 + k2 + x;) + b; - ¢ and computes the PRF
—1

1
evaluation o; = giﬂi = gFitk2tei | Then, P, computes an ElGamal encryption

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 19

Round 1. Party P> computes ctx, < CS_Encp, (k2) and Ci, < comyg, 4, (k2). Recall
that pk, = (N2, g2, y2). P2 sends ctg, = (u,e) and Ci, to Pi along with a ZK-AOK

ZK—AoK{(kz,rl,rg) cu=git A e=(1+N)"2 .yt A
Chy = (82)" - ()™ A k2 < Q'QQHI}'

Round 2. For each input x; where i € [n1], party P; does the following:

(a) Choose a random a; & [q] and b; & [¢-2%]. Compute g; = g*.

(b) Compute a; = a; - (k1 + x;) and commitments C,; «— comg, g, (ai), Cp,
comg, i, (b:), Ca; = comg, p, ().

(c) Let Bi = a; - (ki + k2 +xs) +bi - ¢ = a; - k2 + a; + b; - ¢ and compute ctg, —
(ctry)® - CS_Encpk, () - (CS_Encpk, (b))

(d) Send (Cq;,Cs,,Cay,cts,, g:i) to Po, together with a ZK-AOK

ZK‘AOK{(ai7bi7ai,7'1,7'2,7‘3,7“4,7“5,7'6) :
Ca; = (g2)" - (h2)™ A a;i < q- 2221 A
oo = (82)" - (h2)" A b < -2 A
Ca; = (92)" - (h2)" A Ca, = (Cry - Ce,)™ - (h2)™ A s <q- 222 A
ctg, = (ctiy)* - CS_Encpu, (au;7s) - (CS-Encpu, (bi;76)) A
gi=9"}

Note that C,, was sent by P; in Step 2 of the online phase, and Ci, was sent by
P1 in Round 1 of the other shuffled DOPRF protocol where P> holds the input.

Round 3. Party P> does the following:

(a) Verify all the ZK-AOKSs received from Pi; otherwise abort.

(b) Foreach ¢ € [n1], compute 8; < CS_Decq, (ctg,) and Cg, < comyg, p, (3;). Compute
vi = ﬁ[l mod ¢q and o; = g;*. Compute ct,, — EG_Encye, (0;).

(c) Verify that {o:}ic[n,) are all distinct; otherwise abort.

(d) For each i € [n1], send (Cg,, cts;) to P2 together with a ZK-AOK

ZK-AoK{(skg, Bi,r1,7m2) + Bi = CS_Deca, (cts,) A
Coo = (@) - (h)™ A B <g* - 22T A
-1
cto, = EG_Encye, ((gi)gi ;7’2) }

(e) Re-randomize {cto,; }ic[n,] to obtain {ct;, };cn,) with randomness 0. Pick a random
permutation 7 over [n1] and send {ctﬁ,wm} to P; together with a ZK-AOK:

i€[n1]

ZK-AoK {(7‘(’, {ritiepn,) s ct = cto; - EG_Encpe, (1;73) Vi€ [nl]}

/
T (i)

! .
As {thwm }iE[nl] has randomness 0, P, obtains {J“(l)}ie[m]‘

Output. P, verifies all the ZK-AOKs received from P> and aborts otherwise. Both
parties obtain {0 () }ic[n,]-

Fig. 4. Malicious secure shufled DOPRF protocol where P; holds the input.

20 P. Miao et al.

EG_Encpe,(0;) and a commitment Cg, and sends them to P; together with a
proof that these values encrypt and commit to the decryption of ctg;, which
Py verifies. In addition P, re-randomizes and shuffles values ct,, with output
{ct, o }icin,]» and sends these values together with a proof of shuffling. Finally,
ox(s) are revealed to Py if P re-randomizes the ciphertexts using randomness 0.
Py verifies the proofs and accepts the values oy ;) as its output PRF values. In
this step, P, switches from Camenisch—Shloup encryption to ElGaml encryption
because the value to encrypt is o; = g;@ “ and what P, needs to prove knowl-
edge about is 3, Y instead of ¢;. Encrypting o; using ElGamal in the group G
enables this proof of knowledge. If the verification of any of the proofs during
the execution so the protocol fails, then the parties abort.

Additionally, during the execution of the DOPRF on the inputs of Py, the
parties run the following additional steps in parallel with the DOPRF evaluation
in order to facilitate keeping the values v; paired with the appropriate PRF
evaluations. In Round 2 of the DOPRF protocol, P; encrypts the v; values using
the ElGamal encryption parameters where the secret key is shared between the
two parties. P; sends these encryptions paired with the partial PRF evaluations
on its elements x;. When P, returns the completed DOPRF evaluations in a
permuted order, it also sends the re-randomized encryptions of the values v;
permuted in the same order along with a proof that these two sets were shuffled
with the same permutation.

Enabling Batching. So far we described our shuffled DOPRF construction for
each element z; and the ZK-AOKSs in the protocol are all sigma protocols for
single statements. To reduce communication of the protocol we utilize various
batching techniques which we describe in Sect.5. The concrete instantiation of
our private intersection-sum protocol does not use the shufied DOPRF in a
completely non-black box way, which we discuss in the following.

In Step 2 of the online phase, P; will commit implicitly to its inputs by
committing to the values a; and a; = a;(k; + x;) and P, will implicitly commit
to its inputs similarly. These values can be batched and the sigma protocols
for the batched commitments can also be batched. In addition each party will
commit to their DOPRF key share in this step. This change does not affect our
security guarantee because the commitments of a; and «; suffice to extract the
set elements in the simulation proofs before the PRF parameters are generated
and hence security can still be reduced to the weaker selective security notion for
the underlying PRF. Looking ahead, the commitments of a;, a; and k; will be
used directly later in Round 2 of the DOPRF protocol for further computation
avoiding the need to prove the consistency of z;,a; and «a; in batched C,, and
batched C,,, which would have been the case if the parties commit only to their
elements before the PRF parameter generation.

To enable batching the first component of the Camenisch-Shoup cipher-
texts, every batched Camenisch-Shoup ciphertext has ¢ slots. In Round 1 of
the DOPRF protocol, P, will encrypt ¢ copies of ko, where the i-th copy of ks
is encrypted in the i-th slot and the other slots are all 0. These encryptions will

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 21

be used later in Round 2 of the shuffled DOPRF protocol to enable batching
Camenisch-Shoup encryptions of f3;.

Finally, in Round 2 of the DOPRF protocol, P, can make use of previ-
ously committed a;, o;, k1 along with encryption of ks to batch Camenisch-Shoup
encryptions and Pedersen commitments of 3;. The sigma protocols in this step
can also be batched. The details of batching each sigma protocol are presented
in the full version of the paper.

5 Batching Techniques

In this section we discuss batching techniques in various parts of our protocol.
These techniques have a significant effect on our protocol’s communication cost
and may be of independent interest.

5.1 Batching Pedersen Commitments

As mentioned in Sect. 3.3, Pedersen commitments can be genenralized to allow
committing to vectors of values. For batched commitments of vectors of length
t, the parameters are group generators g, ..., gt, h € G such that log, h is hard
to compute for each ¢, and log,, g; is hard to compute for any pair ¢,j. The

commitment to a vector © = (x1,...,2¢) is ¢ =[][;_, g;* - h" where r is selected

at random 7 < ord(G).

Batched Pedersen commitments are also compatible with sigma protocols of
the knowledge and equality of exponents. To do so, the prover simply proves
knowledge of all exponents simultneously. Furthermore, if the group G is one
in which the Strong RSA assumption holds, then the following generalization of
Theorem 3 from [13] holds: given randomly chosen gi,...,g: h € G, it is hard
to find w € G and (ay, ..., at, b, ¢) such that

t
we=]]g -0
=1

Unless ¢ | a; for all ¢ € [t], and also ¢ | b. The proof of this generalization closely
follows from the proofs of Theorems 2 and 3 from [13].

Given these properties, we can replace most commitments in our protocols
with batched commitments, that is, we commit to t values together. To enable
this, each of our sigma protocols will commit to and prove statements about ¢
messages simultaneously. Note that this reduces the number of commitments we
send by a factor of ¢, but we still need to send one element per committed value
in the last step of each sigma protocol. At first this does not seem to lead to a
significant gain in efficiency. However, sigma protocols for batched commitments
can also be batched, enabling the prover to send a single set of ¢ elements in the
last step to verify ¢ sigma protocols simultaneously. Combining the two forms
of batching by setting ¢ and ¢ to approximately /n, we can reduce the overall

22 P. Miao et al.

communication cost of the sigma protocols to be sublinear. We will discuss how
to batch sigma protocols in Sect. 5.3, and we refer the reader to the full version
of the our paper for a concrete example of batching sigma protocols for batched
commitments.

5.2 Batching Camenisch-Shoup Encryption

We notice that Camenisch Shoup encryption introduces a 4Xx expansion in the
ciphertext as compared to the plaintext. This is due to the fact that a ciphertext
contains 2 elements mod N2 of total length 4n bits (where n = log N), while the
ciphertext can only hold a message of |n| bits. This causes a significant constant
expansion to our protocol messages.

We describe various types of batching that enable reducing the expansion of
Camenisch-Shoup encryption to be as close to 1x as desired.

5.2.1 Computing Mod N5+1
Analogous to the Damgard-Jurik extension to the Paillier cryptosystem [19], one
can generalize the Camenisch-Shoup cryptosystem to compute modulo N**+!. In
more detail, the public key in this generalization consists of (N, g,y, s) where N
is generated same as before, g is a random 2N*-th residue modulo N*t!, and
y =¢* mod N**t! for a random z € Z|ny4), and T is the secret key.

Similarly to the Damgard-Jurik extension, this generalization of Camenisch-
Shoup encryption enables encrypting messages of size up to N°. Concretely, given
m € Zys, it would be encrypted as ct = (¢" mod N*+! (14 N)™y" mod N*+1),

where r & Z|ny4)- Decryption is slightly more involved. To decrypt ct = (u,e),
one must compute e/(u*) mod N*t! and then perform a recursive decoding to
recover m, exactly as described in Sect. 3 of [19].

Additionally, similar to the proof of Theorem 1 in [19], the security of the gen-
eralized Camenisch-Shoup scheme follows from the Decisional Composite Resid-
uousity Assumption.

We note that, with this generalization, one can encrypt a message of length
n-s using a ciphertext of size 2-n - (s+ 1), meaning that the expansion factor is
reduced from 4x to 261 x, which becomes arbitrarily close to 2x as s grows.

S

5.2.2 Sharing the First Ciphertext Component

A remaining source of ciphertext expansion is that each ciphertext has 2 com-
ponents, (u,e). One way to reduce this type of expansion is to have multiple
components e that all share the first component u.

More concretely, we modify the scheme so that the public key consists of
(N,g.{yi}i—1), where y; = g® mod N? for random x; € Z|yy4. The secret key
becomes {z;}_;.

This scheme allows encrypting ¢ messages by ¢ + 1 components. Specifically,

to encrypt messages {m;}!_,, one computes u = ¢g" mod N2 for r & Z\nya)s

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 23

and e; = (1 + N)™i -y’ mod N? for each i € [t], and sets ct = (u, {e;}_;).
To decrypt a particular ciphertext, one simply decrypts each piece, computing

o — (1) mod 7

This scher]nve is also entry-wise additively homomorphic. Given ct = (u, {e; }!_,)
encrypting {m;}!_, and ct’ = («,{e}}l_,) encrypting {m/}!_,, the ciphertext
Ctsum = (u - v/ mod N2 {e - €, mod N?}!_,) is an encryption of {m; + m/ mod
N} _,. One can also homomorphically multiply each underlying m; with a sin-
gle scalar a by computing ct® = (u® mod N2, {(e;)® mod N?}!_,), which is an
encryption of {a - m; mod N}_;.

This optimization enables ¢ messages of size n bits to be encrypted using a

ciphertext of size (t 4+ 1) - 2n bits, which corresponds to an expansion factor of
2(t41)

tThe two optimizations can be combined, meaning that for any choice s and
t, we can encrypt t messages each of size n - s bits using a ciphertext of size
(s+1)-(t+1)-n bits. This means the ciphertext has an expansion of % X.
As t and s grow, this means we can make the ciphertext expansion as close to 1

as we like.

5.2.3 Encrypting Multiple Messages in a Single Ciphertext

Utilizing the batching techniques in the previous two subsections, one can reduce
the ciphertext expansion of the Camenisch-Shoup encryption scheme, but the
plaintext space becomes as large as N°. We now describe how the plaintext space
can be decomposed into slots of size B each. More concretely, each ciphertext
can be viewed as having ¢ - s’ “slots” of messages < B, where s’ = L%j Recall
that ¢t comes from the fact that we encrypt ¢ messages each of size up to N?
with shared first component. The s’ component comes from the fact that the
message space N® is now divided into s’ slots of size B each. Specifically, given
t - s’ messages {m;;}ticpy,jes] in Zp, we compute m; = Z;J:l m; ;- B~ for
each i € [t] and then encrypt the ¢ messages {m;}!_,. (Note that each m; < N*.)
Given a public key (g, {y:}ic) the ciphertext is computed as follows:

u=(9)" / v
er = (1+]\7)2;:1““4'3]71 - (h1)"

ct

i = (14 N)Z5=mes B0y

o= (14 M)ZTa B

We observe that the resulting encryption is slot-wise additively homomorphic
as long as the sum in each slot never exceeds B. In addition, all the slots can
be homomorphically multiplied by a single scalar simultaneously as long as the
resulting value in each slot does not exceed B.

24 P. Miao et al.

These slotted encryptions are compatible with all the other pieces of our
protocol. In particular the following needed properties of the Camenisch-Shoup
encryption scheme can be extended to the slotted encryptions (including in com-
bination):

1. Proof that the value encrypted in a ciphertext is identical to the value under-
lying another commitment.

2. Proof that a ciphertext decrypts to a value underlying another commitment.

3. Proof that a ciphertext was produced by homomorphically adding a commit-
ted value to another ciphertext, and rerandomizing.

4. Proof that a ciphertext was produced by homomorphically scalar-multiplying
a committed value to another ciphertext and rerandomizing.

5.2.4 Batching Commitments of Decrypted Values

In our protocol, we need to commit to a set of values {3;} that are decrypted
from the batched Camenisch-Shoup ciphertexts and prove consistency between
the committed values and decrypted values. We can batch the commitments as
described in Sect. 5.1, and prove consistency between batched commitments with
batched decryption. The high-level idea is the following. Given a set of commit-
ments and ciphertexts, the verifier first picks a set of random coefficients {¢;}.
Then both parties can compute a single commitment and a single encryption
of a random linear combination of the underlying values, namely > ¢; ;. After
that, the prover simply proves consistency between the resulting commitment
and encryption. Our batched proof for this step has sublinear communication
complexity.

5.3 Batching Sigma Protocols

In certain circumstances, it is possible to batch a set of ¢ sigma protocols that
prove similar statements, such that the batched protocol has communication
cost similar to a single sigma protocol. Batching sigma protocols is well-known
in the literature [33,34]. In this section we describe a variant that is compatible
with range proofs, and in particular, induces much less slack in the range-proof
bound.

We describe the technique by an example. Let g be a generator of a group G
of order ¢, and let {y; = g% };c|¢, where each z; € [g]. We give a batched sigma
protocol in Fig.5 for the following ZK-AOK:

ZK-AoK {{zi}icjg 1 yi = g™ Vie [(}.

We can see in the figure that the prover sends a single group element in its first
message (as opposed to £ group elements in an unbatched execution) and a single
element in its response to the verifier (as opposed to ¢ elements in an unbatched
execution). The verifier sends ¢ challenges instead of one, but the communication
cost of these can be ignored if we use the Fiat-Shamir heuristic to make the
protocol non-interactive. This means that the communication cost is essentially

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 25

Prover samples T & [¢] and sends § = ¢° to Verifier.

Verifier chooses random challenges ¢; & {0,1}* for i € [¢], and sends to Prover.
Prover computes 7 = 7 + Zle ¢; - x; mod ¢, and sends T to Verifier.
Verifier verifies that ¢* = 3 - [['_, (y:)%.

- W =

Fig. 5. Example for batching sigma protocols.

the same as a single unbatched sigma-protocol execution. Completeness of the
protocol is straightforward. Next we prove its soundness and zero-knowledge

property.

Soundness and Extraction. We construct a PPT extractor that interacts
with a cheating prover and extracts valid witnesses {z;};clg. The extractor
first executes the protocol honestly with the prover and obtains a transcript
(¥, {ci}ieq, @) such that g* =7 - Hle Y5t

Now the extractor rewinds the protocol to Step 2 and sends a different ran-
dom challenge ¢} while keeping all the other challenges the same, and obtains z’
such that g% =7- (yl)cll Hf:2(yi)°i. Combining the two equations, the extractor
gets g% = y¢ where AZ = 7 — 2’ and Ac = ¢; — ¢;. Now the extractor can
compute 71 = AZ - (Ac)~! mod q. This process can be repeated for all i € [{] to
extract all ;.

Zero-Knowledge. We prove this protocol is honest-verifier zero-knowledge by
constructing a PPT simulator that does the following. First it samples ¢; &
{0,1}* for all i € [¢] and 7 < [¢], and then computes § = ¢/ TT'_, (y:)*. Finally
it outputs the transcript (7, {c;}ic[s), Z). The simulated transcript is statistically
identical to the real protocol.

This batching technique extends naturally to more complex sigma protocols
that prove relations between multiple elements and consistency between expo-
nents. Concrete examples of the batched sigma protocols we use in our protocol
can be found in our full version.

Effect of Batching on Range Proofs. Batching has a small effect on the
slack of range proofs that we consider. Recall that the size bound on a particular
exponent x is related to the size of , that is, the part of the prover’s response
related to that element. Batching ¢ sigma protocols increases the size of each
element of the prover’s response by a factor of £. This is because the value needs
to be big enough to statistically mask Zle ¢; - T, which is £ times larger than
the unbatched case. Therefore, batching introduces an additional factor of ¢ to
the proved range.

26 P. Miao et al.

5.4 Multi-exponentiation Argument

In our protocol, we will need to batch a set of arguments that an ElGamal
ciphertext ct] is a re-randomization of another ciphertext ct; raised to a hidden
committed value ;. Our idea is to first take a random linear combination of
these equations and then prove an ElGamal ciphertext ct is the product of a
set of known ciphertexts {&,} raised to a set of hidden committed values {£;},
where the commitments are batched as described in Sect. 5.1. We notice that this
can be achieved by a multi-exponentiation argument from the work of Bayer
and Groth [5], which has sublinear communication complexity. One subtlety
is that the values {f;} are committed in the group of the Camenisch-Shoup
encryption for proving consistency with the decrypted values, but to the apply
multi-exponentiation argument, they must be committed in the group of the
ElGamal encryption. Therefore, we commit to {3;} in both groups and prove
consistency between the commitments. Since all the commitments and sigma
protocols can be batched, the overall communication complexity is sublinear.

6 Communication, Computation and Monetary Costs

In this section, we present the communication, computation and monetary costs
of our protocol. The offline phase for generating parameters for the different
primitive we will use has a fixed cost, which includes four ZK-AoK of exponent
per party plus one proof that a modulus N is a product of safe primes [12], which
requires O(x%log N) communication and computation where x is the security
parameter for the soundness of the last proof.

For our online phase, we have several batching optimizations described in
Sect. 5 that allow us to achieve different trade-offs between communication and
computation. Thus, we state our efficiency estimates parameterized with the
different batching parameters presented in Table1 that we apply for the com-
mitments and encryptions. Our shufled DOPRF has 3 rounds, each of which
has an associated sigma protocol. Wherever the sigma protocols can be batched,
we batch them into a single execution, and this is reflected in the costs. The
specifics of the batching can be found in our the version of the paper.

In Table 2 we present the computation and communication cost estimates for
the different phases of out protocol. There are three different types of compu-
tational operations we perform in the protocol, namely group operations in G,
exponentiations mod N (for commitments), and exponentiations mod N$cam*1
for Camenisch-Shoup encryption. There are also 4 types of elements we commu-
nicate: group elements in G, elements modulo N, elements modulo N**!, and
sigma protocol response messages from the prover. The entries of Table 2 reflect
counts of each of these types of operations and elements transferred.

We will compare our protocol’s cost against the baseline, namely the semi-
honest Diffie-Hellman based intersection-sum protocol [39]. In our concerete
instantiation, we use safe RSA moduli of length 1536 bits. We use NIST curve
prime256v1 as our group G.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 27
Table 1. Parameter notation

Notation Parameter Meaning

n number of inputs in each set

G group for OPRF

sizeg size of elements in G

N RSA modulus

A security parameter for sigma protocol soundness and hiding

Scam modulus parameter for CS encryptions, their modulus will be NScam+1

Séam number of plaintexts that fit in the message space NScam+1

team number of components e; per CS encryption that share the first component u

Necam total number of CS ciphertexts ((n/(s'cam “team)])

Sped number of values committed in a Pedersen vector commitment in DOPRF round 2

Nped number of Pedersen vector commitments in DOPRF round 2 ([n/speql)

n/cam number of batched CS ciphertexts per batched Pedersen commitment]—spﬁd/(s/cam “team)]

Mypultiezp|dimension m to use in the multiexponentation proof from Bayer et al. [5] in DOPRF Round 3.

Table 2. Counts of various operations performed in each step of the DOPRF protocol,
and corresponding communication cost.

Computation

Communication

DOPRF Round 1

Messages

2 exp mod N +tcam - (feam + 1) exp mod NeamTT

INT- (1 + tcam - (team +1) - (Scam + 1))

Sigma Protocol

5 exp mod N +3tcam * (tcam + 1) exp mod NScam¥FT

[N (team + 3 + team - (team + 1) - (Scam + 1))

DOPRF Round 2

Messages

(n+ Tcam) - (fcam + 1) exp mod Ncam T
+(3n + 3n,eq) exp mod N + n exp in G

(ncam * (team + 1)(Scam + 1) - [N]))
+n - sizeg + 3npea - | N|

Sigma Protocol

2 (Ncam + Sped) - Nsig(team + 1) exp mod NSeam™T
(108peq + 10) + 5npeq exp mod N + (28peq + 1) exp in G

INT- neam((Scam + 1) - (beamt1) + 10g npea + k)
+(55ped + 8) - [N| + Sped - Sizeg

DOPRF Round 3

Messages

1/ Skam exp mod N¥*m T 4 (0 4 n,.q) exp mod N
+4n + npeq exp in G

(31 + npea) - sizeg + npea| N|

Sigma Protocol 1

(2+ npea) - (Neam + 1) - (feam + 1) exp mod N¥eamTT
+2(Sped + 1) + npeq exp mod N
+2(Sped + 1) + Npeq exp in G

(ncam + 1)+ (Scam + 1) * (tecam + 1)|N|
+(IN| + k)tcam
+Sped - (3k + 2sizeg)

Sigma Protocol 2

2n(Mmutticap + 6 - [0 Mpmuiticsp| + exp in G

(5Mmuttiexp + [N Mmutticap| +10) - sizeg

To minimize communication costs, in the first and seconds rounds of the
shufled DOPRF protocol, we set speq = /n and batch /n sigma protocols
together. We further set team = 8. Scam = 4, Sham = 8 and Muuitieap = 8. We
compare costs with the DDH-based shuffled DOPRF with semi-honest security.
The measurements appear in Table 3.

We briefly discuss how we choose our parameters. First we discuss our choice
of speq. In Round 2 of the DOPRF, batching Pedersen commitments allows us
to send 1 element mod NN instead of spq elements in the Round 2 messages.
However, each sigma protocol statement in this round now also grows to be of
length spcq, since we must prove knowledge of all values contained in a commit-
ment together. Since each sigma protocol is of size s,¢4 individually, the batched
sigma protocol is also be of length s,cq. In order to minimize both the number of
commitments sent and the size of the batched sigma protocol, we set speq = /7,
and bg;g = /1.

We note that generating the messages of the DOPRF Round 2 constitutes
the computation bottleneck of the protocol. In this round, for each entry in the
Receiver’s set, the Receiver has to perform a homomorphic Camenisch-Shoup

28 P. Miao et al.

Table 3. Comparison of communication and computation costs between our shuffled
DOPREF protocol with parameters set to minimize communication, and the baseline
protocol, namely the semi-honest DDH-based shufied DOPRF.

Our Protocol DDH-based
Input size | Comm. (KB) | Comp. (s) | Comm. (KB) | Comp. (s) | Comm. Expansion
212 1,287 1,150 256 0.71 5.03 x
216 17,716 17,865 4,096 11.39 4.325 x
220 275,675 | 284,075 65,536 182.29 4.21 x

scalar multiplication with the encrypted key, and homomorphically add it to its
encrypted and masked entry. In fact, the overall computation scales with t.qm,
the number of components in the Camenisch-Shoup ciphertext. This means that
if we increase the number of components of the Camenisch-Shoup ciphertexts, we
end up greatly increasing the computation. Furthermore, when we increase the
parameter Scq.m,, we are performing operations in the substantially larger group
nseem 1 which induces non-linearly increasing computation cost. In Table 4, we
attempt to minimize computation, by reducing teqm t0 2, Scam to 1 and s.,,, to

2. In this case, communication cost increases by about 60%, but computation
cost drops by about 90%.

Table 4. Comparison of communication and computation costs between our shuf-
fled DOPRF protocol when we set parameters to minimize computational cost. These
parameters also minimize monetary cost.

Our Protocol DDH-based
Input size | Comm(KB) | Comp(s) | Cost(c) | Comm(KB) | Comp(s) | Cost(c) | Cost Increase
212 1,893 141 | 0.053 256 0.71| 0.002 24.9%
216 28,289 2,215 | 0.831 4,096 11.39 | 0.034 24.2%
220 436,719 35,583 13.1 65,536 182.29 0.551 24.00x

To compare monetary costs, we use the costs from Google Cloud Platform.!
The costs are given in Table 5. For computation, we use the price for pre-emptible
virtual CPUs, which correspond to machines with an Intel Xeon E5 processor
and 3.75 GB of memory, which matches the machines we used for benchmarking.
We consider pre-emptible computation to capture the offline batch-processing
scenario described by works that deploy PSI in practice [39]. We also use the
cheapest tier of network cost, considering the cost for internet egress, since that
captures the scenario of the two parties being in different datacenters or clouds.
We note that, at the time of publication, all the major cloud providers have costs
that are within a tight range.

! See https://cloud.google.com/compute/network-pricing/ for the network cost and
https://cloud.google.com/compute/vm-instance-pricing for the computation cost.

https://cloud.google.com/compute/network-pricing/
https://cloud.google.com/compute/vm-instance-pricing

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 29

Table 5. Costs for network and computation on Google Cloud Platform.

Network cost(USD per GB) | Computational cost (USD per CPU-hour)
$0.08 0.01

Table 6. Comparison of computation, communication and monetary costs of our pro-
tocols compared to related works. Monetary costs use the values in Table 5. Commu-
nication cost is in KB, Time is in seconds, and Cost is in cents (USD).

Input size 212 Input size 216 Input size 220
Comm | Comp | Cost| Comm |Comp | Cost Comm | Comp| Cost
DDH-DOPRF (semihonest) 256 0.710.002 4096 | 11.39|0.034 65536 | 182.29| 0.55

Sort-Compare-Shuffle [37] 209920| 0.61| 1.60|4941824 | 12.65| 37.7|108691456 | 235.3|829.3
EC-ROM (one-sided PSI) [61] | 4915.2| 0.19/0.037 80896 | 0.94| 0.61 1353728 12.6| 10.3

DE-ROM (one-sided PSI) [61] 3584 0.23]0.027 62464 1.3| 0.47 1118208 18| 8.53
Our SDOPRF (low comm.) 1287 | 1150|0.329 17716 | 17865| 5.09 275675284075 |81.01
Our SDOPRF (low comp.) 1893 141| 0.05 28289 | 2215 0.83 436719 | 35583|13.21

Comparison with Existing Works. In Table 6, we compare concrete costs of
our protocol against existing works that achieve security against malicious adver-
saries. The key comparison is against the Sort-Compare-Shuffle (SCS) approach
of Huang et al [37], which is the only existing work that is compatible with mali-
cious security, two sided output, and computing a function on associated values
in the intersection. We note that both our SDOPRFs have significantly lower
communication, and crucially, lower concrete monetary cost. In particular, the
“Low Computation” variant of our SDOPRF has monetary cost 30x less for 2!2
entries, and 64x less for 220 entries. We note that the SCS approach has lower
computation costs and end-to-end running time, but that in the batch-processing
setting, the computation cost is less of a factor than concrete monetary costs,
since responses are not needed in real time.

We also compare against the most efficient one-sided malicious PSI works of
Rindal et al. [61], and show that our protocols are in the same ballpark of total
monetary cost. In particular, the “Low Computation” variant of our SDOPRF
has monetary cost about 1.5% that of the DE-ROM variant of [61]. We note that
[61] do not easily support two sided output or computing over the intersection.
We believe the modest increased cost of our protocol is reasonable in order to
support these additional functionalities.?

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (2003)

2 Concurrent to our work, Pinkas at el. [55] present a new one-sided malicious PSI
that achieves better efficiency than [61], but we note that their protocol also does
not easily support our two-sided functionality.

30

10.

11.

12.

13.

14.

15.

16.

P. Miao et al.

Applebaum, B., Ringberg, H., Freedman, M.J., Caesar, M., Rexford, J.: Collab-
orative, privacy-preserving data aggregation at scale. In: Atallah, M.J., Hopper,
N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 56—74. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14527-8 4

Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: ACM
CCS (2011)

Barié¢, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480-494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0-33

Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263-280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4.17

Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108-125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_7

Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS (1993)

Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56-73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431-444. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6_31

Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: OpenConflict: preventing
real time map hacks in online games. In: IEEE Symposium on Security and Privacy
(2011)

Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196-214. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_12

Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107-122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 8
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126-144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8
Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410-424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108-127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_7

Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035,
pp. 464-482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-
0-25

https://doi.org/10.1007/978-3-642-14527-8_4
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/978-3-642-00468-1_12
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-642-03549-4_7
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 31

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125-142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9_8

Damgard, I.: On X-protocols (2002). http://www.cs.au.dk/~ivan/Sigma.pdf
Damgard, 1., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119-136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2_9

De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218-231. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35404-5_17

De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS,
vol. 6477, pp. 213-231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8-13

Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp.
209-226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_12
Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416-431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28

Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM CCS (2013)

Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately
computing set-union and set-intersection cardinality via bloom filters. In: Foo, E.,
Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413-430. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19962-7_24

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469-472 (1985)

Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions (2018)

Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions. In: WPESQCCS (2019)

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29, 115-155 (2016)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1-19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3-1

Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16-30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/BFb0052225

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

P. Miao et al.

Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: Lee, P.J. (ed.) ASTACRYPT 2004. LNCS,
vol. 3329, pp. 276-292. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30539-2_20

Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192-208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8_12

Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155-175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8_10

Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312-331. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
719

Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: ACM Conference on Electronic Commerce (1999)

Ton, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738 (2017).
https://eprint.iacr.org/2017/738

Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577-594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5_34

Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241-257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218_15

Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: ACM CCS (2016)
Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: ACM CCS (2017)
Lambeak, M.: Breaking and fixing private set intersection protocols. Cryptology
ePrint Archive, Report 2016/665 (2016). https://eprint.iacr.org/2016 /665

Li, M., Cao, N., Yu, S., Lou, W.: FindU: privacy-preserving personal profile match-
ing in mobile social networks. In: IEEE INFOCOM (2011)

Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security
for private intersection-sum with cardinality. Cryptology ePrint Archive, Report
2020/385 (2020). https://eprint.iacr.org/2020/385

Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85, 481-484 (2002)

Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: BotGrep: finding
P2P bots with structured graph analysis. In: USENIX Security (2010)

Nagy, M., De Cristofaro, E., Dmitrienko, A., Asokan, N., Sadeghi, A.R.: Do i
know you?: efficient and privacy-preserving common friend-finder protocols and
applications. In: ACSAC (2013)

Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D., et al.:
Location privacy via private proximity testing. In: NDSS, vol. 11 (2011)

https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
https://eprint.iacr.org/2017/738
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/11535218_15
https://eprint.iacr.org/2016/665
https://eprint.iacr.org/2020/385

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 33

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Narayanan, G.S., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A., Rangan,
C.P.: Multi party distributed private matching, set disjointness and cardinality of
set intersection with information theoretic security. In: Garay, J.A., Miyaji, A.,
Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 21-40. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6_2

Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms (2004)

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401-431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8_13

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739-767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2_25

Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX Security (2015)

Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122-153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4_5

Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125-157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7_5

Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security (2014)

Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235-259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_-9
Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: ACM CCS (2017)

Segal, A., Ford, B., Feigenbaum, J.: Catching bandits and only bandits: privacy-
preserving intersection warrants for lawful surveillance. In: FOCI (2014)

Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to asso-
ciation rule mining. J. Comput. Secur. 13, 593-622 (2005)

https://doi.org/10.1007/978-3-642-10433-6_2
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9

l‘)

Check for
updates

Private Set Intersection in the Internet
Setting from Lightweight Oblivious PRF

Melissa Chase!®) and Peihan Miao2(&)

! Microsoft Research, Redmond, USA
melissac@microsoft.com
2 Visa Research, Palo Alto, USA

pemiao@visa.com

Abstract. We present a new protocol for two-party private set inter-
section (PSI) with semi-honest security in the plain model and one-sided
malicious security in the random oracle model. Our protocol achieves a
better balance between computation and communication than existing
PSI protocols. Specifically, our protocol is the fastest in networks with
moderate bandwidth (e.g., 30-100 Mbps). Considering the monetary cost
(proposed by Pinkas et al. in CRYPTO 2019) to run the protocol on a
cloud computing service, our protocol also compares favorably.

Underlying our PSI protocol is a new lightweight multi-point oblivi-
ous pesudorandom function (OPRF) protocol based on oblivious trans-
fer (OT) extension. We believe this new protocol may be of independent
interest.

1 Introduction

Private set intersection (PSI) enables two parties, each holding a private set of el-
ements, to compute the intersection of the two sets while revealing nothing
more than the intersection itself. PSI has found many applications including
privacy-preserving location sharing [NTL+11], private contact discovery [CLR17,
RA17,DRRT18], DNA testing and pattern matching [TPKCO07], testing of
fully sequenced human genomes [BBDC+11], collaborative botnet detection
[NMH+10], and measuring the effectiveness of online advertising [[KN+17]. In the
past several years PSI has been extensively studied and has become truly prac-
tical with extremely fast implementations [HFH99, FNP04, DSMRY09, DCKT10,
ADCT11,DCGT12,HEK12,DCW13,PSZ14,PSSZ15, KKRT16,RR17a,RR17b,
CLR17,RA17,DRRT18,FNO18, PSWW18,GN19,PRTY19,PRTY20].

When measuring the efficiency of a PSI protocol, there are two major
aspects usually considered. First, the computation cost, which is the amount
of computing time necessary to run the protocol. Optimizing the computa-
tion cost is especially important in practice because of limited computational
resources. The state-of-the-art computationally efficient semi-honest PSI proto-
col [KKRT16] uses only oblivious transfer (OT) [Rab05], a cryptographic hash

P. Miao—Part of the work done while visiting Microsoft Research.

© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 34-63, 2020.
https://doi.org/10.1007/978-3-030-56877-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_2

PSI in the Internet Setting from Lightweight Oblivious PRF 35

function, symmetric-key cryptographic operations, and bitwise operations. It can
privately compute the intersection of two million-size sets in about 4s. This is
because OT itself has been heavily optimized, and in particular because of work
on OT extension [IKNP03, ALSZ13], which allows many oblivious transfers to be
performed using only a small number of public key operations and a combination
of symmetric primitives (hash functions/AES) and bitwise operations.

The second aspect in the measurement is the communication cost, which
refers to the total amount of communication in the protocol. Minimizing the
communication cost is also crucial in practice due to limited network bandwidth,
which is often a shared resource for multiple applications. The communication-
optimal PSI protocol [ADCT11] requires communication that is only marginally
more than a naive and insecure protocol (where one party simply sends hash of its
elements to the other party), but the protocol is computationally too expensive
to be adopted in practice.

On the more practical side, Pinkas et al. [PRTY19] achieve communication
that is half that of [KKRT16] and roughly 8 times the naive approach at the
cost of more expensive operations based on finite field arithmetic.® The result
is roughly a 6-7 times overhead compared to [KKRT16]. This leaves open the
question of whether reducing the communication cost of [KKRT16] requires more
expensive computational tools, or whether it could be achieved with significantly
lower computational overhead.

Can we achieve the best of both computation and communication?

When we look at tradeoffs between communication and computation, one
valuable metric is the total running time of the protocol, which includes both the
computation time and the time to transmit and receive the necessary messages.
Of course this time will vary depending on the network bandwidth, and different
protocols may perform better in different network settings. Viewed in this light,
[KKRT16] can be viewed as a protocol optimized for the LAN setting, where
bandwidth is not a bottleneck, while [PRTY19] is targeted at very low bandwidth
settings. However, we argue that it is valuable to design optimized protocols for
the full range of settings, and that the middle range (e.g. 30-100 Mbps) is in
fact very important. During Q2—-Q3 2018, the average download speed over fixed
broadband in the U.S. was 95.25 Mbps and average upload speed was 32.88 Mbps
[LLC18]. For example, the Comcast Standard business internet package includes
75 Mbps; larger businesses might have higher bandwidth but would not want to
devote all of it to a single protocol. Thus, this seems like a very valuable range
to consider.

In the work of Pinkas et al. [PRTY19], they propose an alternative efficiency
metric—the monetary cost to run the protocol on a cloud computing service.
This new metric takes both computation cost and communication cost into

! The work [PRTY19] describes two protocols, one optimized for speed (spot-fast) and
one optimized for communication cost (spot-low). Here the comparison is for their
fast protocol because the communication optimized one is significantly slower.

36 M. Chase and P. Miao

consideration. The PSI protocols proposed in [PRTY19] have much less com-
munication compared to the computation-optimized protocol [KKRT16] and
much faster running time compared to the communication-optimized proto-
col [ADCT11]. As a result, they achieve a better balance between computa-
tion and communication and have the least monetary cost. We can ask though,
whether they achieve the best balance.

1.1 Owur Contribution

In this work, we make positive progress on the aforementioned questions by pre-
senting a new PSI protocol that achieves a better balance between computation
and communication.

A New PSI. We present a new PSI construction which we believe achieves
better computation/communication tradeoffs. This protocol is based only on
oblivious transfer, hashing, symmetric-key and bitwise operations, and as such
it has favorable computation; at the same time its communication is almost as
small as [PRTY19]. In particular, our protocol is 2.53-3.65x faster than spot-
fast and 19.4-28.7x faster than spot-low [PRTY19] in computation and requires
1.46-1.69x lower communication than [KKRT16]. Overall, our protocol is the
fastest in a network with moderate bandwidth (e.g., 30-100 Mbps). In addition,
we theoretically and experimentally analyze the monetary cost according to the
metric from [PRTY19] and show that it compares very favorably.

Efficient Multi-point OPRF. The PSI protocol of [PRTY19] is based on a
multi-point oblivious PRF (OPRF) protocol that requires polynomial interpo-
lation over a large field, which is computationally significantly more expensive
than the symmetric-key and bitwise operations in the single-point OPRF of
[KKRT16]. We propose a new multi-point OPRF protocol that is based on OT
extension that again relies only on symmetric-key and bitwise operations and
hashing. It is conceptually very simple to understand and easy to implement.
Additionally, our protocol is more flexible in that it allows for tuning parameters
to achieve better computation or better communication. We believe this protocol
may be of independent interest.

Security Against Malicious Sender. In most of this work, we focus on the
semi-honest security model, where both parties follow the PSI protocol descrip-
tion honestly while trying to extract more information about the other party’s
input set, and aim to achieve the optimal practical efficiency. However, we can
show that our protocol also achieves security in the random oracle model when
one of the parties is malicious, in particular if we refer to the parties as sender
and receiver where the receiver is the party who receives the output, then we
protect against the malicious sender. In the previous work [KKRT16,PRTY19],
only the spot-low variant of [PRTY19] achieves one-sided malicious security. As
will be shown in Sect. 5, our protocol is much more efficient in running time and
cheaper in monetary cost than spot-low.

PSI in the Internet Setting from Lightweight Oblivious PRF 37

We note that this sort of asymmetric guarantee is very appropriate in settings
where the computation is between a large established company and a small
business or a consumer. A large company may have a reputation to maintain
and more policies and procedures in place to protect against misbehaviour, so
assuming semi-honest security may be more reasonable. On the other hand, if
the protocol is run with many different consumers or small businesses it may be
hard to ensure that all of them are sufficiently trustworthy to assume semi-honest
security.

In light of this, when we consider our efficiency metrics we also consider an
asymmetric setting where the sender runs on a cloud service like AWS while
the receiver has its own internet service; this should capture the example of a
small business who does not have its own dedicated servers but would instead
outsource its computations to the cloud. We see that in this setting our protocol
is even more advantageous, achieving 5.01-6.48 x lower monetary cost than spot-
low [PRTY19] in all of the settings we consider.

1.2 Technical Overview

Conceptually speaking, our PSI protocol leverages a primitive called an oblivious
pseudorandom function (OPRF) [FIPRO5], which allows a sender to learn a PRF
key k and a receiver to learn the PRF output OPRFg(y1),..., OPRF(y,) on
its inputs y1,...,yn, € Y. Nothing about the receiver’s inputs is revealed to the
sender and nothing more about the key & is revealed to the receiver. If the sender
additionally computes OPRF(z1), ..., OPRFg(x,) on its inputs x1,...,x, € X
and sends them to the receiver, then the receiver can identify the intersecting
PRF values and the corresponding set intersection. In this section we describe
how to construct an efficient OPRF protocol based on OT extension.

Our starting point is the computationally most efficient PSI proto-
col [KKRT16], which can be conceptually viewed as evaluating n single-point
OPRF's, where the sender learns a PRF key k while the receiver can only oblivi-
ously evaluate on a single input y. We first describe their protocol at a high level
and then elaborate how to extend the single-point OPRF to a multi-point OPRF
while still only using the efficient OT extension and symmetric-key operations.

Single-Point OPRF. The single-point OPRF realized in [KKRT16] is evalu-
ated as follows. Let the PRF key k consist of two bit-strings ¢, s € {0,1}*. Let
F(-) be a pseudorandom code that produces a pseudorandom string and let H
be a hash function. The pseudorandom function is computed as

OPRFy(z) = H(q @ [F(x) - s]),

where - denotes bitwise-AND and & denotes bitwise-XOR. For a randomly gen-
erated s, if F(z) has enough Hamming weight then the function OPRFy(z) is
pseudorandom assuming the hash function H is correlation robust.

To evaluate this single-point OPRF on the receiver’s input y, the receiver

first samples a random string 7 & {0,1}* and computes r; = 79 © F(y). The

38 M. Chase and P. Miao

sender also samples a random string s & {0,1}*. Then the two parties execute
A oblivious transfers where the sender acts as a receiver in the OT and inputs
A choice bits s[1],s[2], ..., s[A] while the receiver acts as a sender in the OT and
inputs A pairs of messages {ro[i], 71[i]};c[,) (each message is a single bit). At the
end of the OT, the sender receives A bits {r,;[i]}icx. Now the sender simply
sets ¢ = 75y [1]]| . . . [[7sp[A] and lets the PRF key be k = (¢, s). The PRF value
on y learned by the receiver is H (rg). Correctness can easily be checked, namely
gD [F(z) -s]=rgifx=y.

PSI From Single-Point OPRF. Given the above construction of single-point
OPRF, [KKRT16] built a PSI protocol as follows. They first use Cuckoo hash-
ing [PRO4] to assign the receiver’s elements into b bins such that each bin contains
at most one element. Then the sender and receiver run the single-point OPRF
for each bin so that the sender obtains b PRF keys and the receiver learns b PRF
values. Now for each bin, the sender computes the PRF for that bin on all the
possible elements in that bin, and sends all the PRF values to the receiver.

In the above single-point OPRF, the only heavy cryptographic tool needed
is OT, which requires public-key operations. Since the same choice bits can be
used for all the n instances of OPRF, all the OTs can be done via A instances
of string OTs, which can be efficiently instantiated by OT extension.

In this protocol, each element on the sender’s side is evaluated on multiple
PRFs (the number of hash functions plus the stash size in Cuckoo hashing),
which incurs a constant overhead in communication from the sender to the
receiver. We get rid of this overhead by constructing a multi-point ORPF so
that every element is only evaluated once.

Extending to Multi-point OPRF. In the single-point OPRF construction,
there are 2* possible choices of s and different resulting PRF keys k that the
sender will receive. However, no matter which s is chosen, OPRF(y) = ro. We
extend this idea to multi-point OPRF.

Our new PRF key contains a matrix M of size m x w. To evaluate the PRF
on input x, we again need a hash function H, and we evaluate a pseudorandom
code F(z) which produces a vector in v € [m]*. Let M; denote the i-th column
of M. The pseudorandom function is computed as

OPRF s (x) = H (My[v[L]]] ... | M [v[w]) -

The sender picks a random string s € {0,1}*. The receiver prepares two sets
of column vectors Ay,..., A, € {0,1}™ and By,...,B, € {0,1}". The two
parties run w number of OTs where the sender behaves as a receiver and the
receiver behaves as the sender. At the end of the protocol, the sender obtains
w column vectors, which will form the PRF key M. On the other hand, the
receiver forms an m x w matrix A = [4; ... A,] and computes the OPRF on its
values by OPRF 4(y). At a high level, the receiver prepares the two sets of column
vectors {A1,..., Ay} and {By,..., By} such that no matter what s is chosen,
OPRF s (2) = OPRF4(x) for every x € Y. The parameters m,w are carefully
chosen such that OPRF,;(x) is pseudorandom to the receiver for every = ¢ Y.

PSI in the Internet Setting from Lightweight Oblivious PRF 39

Preparing the column vectors takes the receiver linear time in n and only involves
cheap symmetric-key and bitwise operations. The OTs can be instantiated by
the efficient OT extension.

Multi-point OPRF From [PRTY19]. We note that [PRTY19] takes a different
approach to achieving multi-point OPRF by high-degree polynomial interpola-
tion and evaluation over a large field. Their computation complexity is asymp-
totically O(nlog® n) while ours is O(n). For concrete efficiency, our protocol only
relies on efficient OT extension and AES operations. More details on performance
comparison can be found in Sect. 5.

One-Sided Malicious Security. We further prove our protocol is secure
against a malicious sender. We note that [PRTY19] also proves one-sided mali-
cious security for spot-low. In their security proof, a pseudorandom function used
in their protocol is modeled as a random oracle. Since the malicious party knows
the PRF key, the PRF cannot be instantiated by efficient block ciphers like AES.
Instantiating it using a hash function makes the protocol much less efficient than
the semi-honest secure protocol. In our protocol, the pseudorandom code F'(+) is
instantiated by a pseudorandom function F(-) and both parties know the PRF
key, hence the same problem arises. In order to achieve the best efficiency, we
only model hash functions as random oracles and assume F' is a PRF, which
makes our security proof more involved.

1.3 Related Work

In this work we primarily compare with [KKRT16] and [PRTY19] since as dis-
cussed above they currently provide the best tradeoffs between computation
and communication. [PSZ14,PSSZ15] provide a good overview and performance
comparison of a variety of approaches to PSI. To briefly mention a few, generic
MPC based PSI [HEK12] incurs higher communication and computation costs,
and Diffie-Hellman based PSI (e.g. [IKN+17]) has relatively small communi-
cation (comparable to [PRTY19]) but incurs significantly higher computation
costs. There are protocols based on garbled circuit-based OPRFs which can be
competitive when the set sizes are very unequal [KRS+19]. There have also
been other works based on OT extension [PSSZ15,PSZ18], which can achieves
the best performance for very short elements and small set sizes.

There have also been several other works which followed up on the [KKRT16]
approach, notably [FNO18]. They describe a scheme which replaces the Cuckoo
hash table with another algorithm for assigning elements to table rows which is
more complex to compute but allows for a slightly smaller table and removes the
stash. They do not provide an implementation, but they claim that for most set
sizes their scheme achieves a 10-15% improvement in communication costs over
[KKRT16] whereas we achieve a 30-40% improvement in communication with
what we would expect to be much lighter computational overhead.

40 M. Chase and P. Miao

2 Preliminaries

2.1 Notation

We use A\, o to denote the computational and statistical security parameters,
respectively. We use [n] to denote the set {1,2,...,n}. For a vector v of length ¢,
we use v[i] to denote the i-th element of the vector. For a matrix M of dimension
n x m, we use M; to denote its i-th column vector (i € [n]). We use ||z|/n to
denote the hamming weight of a binary string . By negl(\) we denote a negligible
function, i.e., a function f such that f(A) < 1/p(A) holds for any polynomial
p(+) and sufficiently large A.

2.2 Security Model

Private Set Intersection (PSI) is a special case of secure two-party computation.
We follow the standard security definitions for secure two-party computation in
this work. The ideal functionality of PSI is defined in Fig. 1.

Parameters: P;’s input set size n; and P»’s input set size na.

Inputs: Party Pi inputs a set of elements X = {x1,...,xy,, } where x; € {0,1}". Party
P, inputs a set of elements Y = {y1,...,yn, } where y; € {0,1}".

Output: Party P> receives the set intersection I = X NY.

Fig. 1. Ideal functionality for PSI Fpg).

Semi-honest Security. Let view!' (X,Y) and view!' (X,Y) be the view of P,
and P, in the protocol IT, respectively. Let out’! (X, Y) be the output of P, in
the protocol. Let f(X,Y) be the output of P, in the ideal functionality. The
protocol IT is semi-honest secure if there exists PPT simulators S; and Sy such
that for all inputs X,Y,

(view{j(X, Y),OUtH(X, Y)) é (81(1n7X7 n2)7f(X? Y)))
viewl (X, V) = (1", Y, n1, f(X,Y)).

Malicious Security Against P;. The protocol I1 is secure against a malicious
P, if for any PPT adversary A in the real world (acting as P;) that could
arbitrarily deviate from the protocol, there exists a PPT adversary S in the
ideal world (acting as P;) that could change its input to the ideal functionality
and abort the output, such that for all inputs X,Y,

Real (X,Y) ~ Ideal% (X, Y),

where Real{ (X,Y) is the output of A and P, in the real world, ldeal% (X, Y) is
the output of S and P in the ideal world.

PSI in the Internet Setting from Lightweight Oblivious PRF 41

2.3 Oblivious Transfer

Oblivious Transfer (OT), introduced by Rabin [Rab05], is a central cryptographic
primitive in the area of secure computation. 1-out-of-2 OT refers to the setting
where a sender has two input strings (mg,m;) and a receiver has an input
choice bit b € {0,1}. As the result of the OT protocol, the receiver learns my,
without learning anything about mi_; while the sender learns nothing about
b. This primitive requires expensive public-key operations. Ishai et al. [IKNP03]
introduced a technique called OT extension that allows for a large number of OT
executions at the cost of computing a small number of public-key operations.
In Random OT (ROT), the sender’s OT inputs (mg,m;) are randomly chosen,
which allows the protocol itself to produce these random values. Hence a random
OT protocol requires much less communication especially from the sender to the
receiver. In this work we only need the weaker primitive of random OT, whose
functionality is defined in Fig. 2.

Parameters: Message length L.

Inputs: The receiver inputs a choice bit b € {0, 1} and the sender inputs nothing.

Output: Sample mo, m1 & {0,1}F. Output (mo,m1) to the sender and my to the
receiver.

Fig. 2. Ideal functionality for Random Oblivious Transfer Frort.

2.4 Correlation Robustness

Our PSI construction is proven secure under a correlation robustness assumption
on the on the underlying hash function, which was introduced for OT exten-
sion [IKNPO3] and later generalized in [KK13, KKRT16,PRTY19] to the version
we use in this work.

Definition 1 (Hamming Correlation Robustness). Let H be a hash func-
tion with input length n. Then H is d-Hamming correlation robust if, for any
A1y ey Uy b1y .o by € {0, 13" with ||billn > d for each i € [m], the follow-
ing distribution, induced by random sampling of s S {0,1}™, is pseudorandom.
Namely,

(H(al@[bl’S])a'“aH(am@[bm's]))é(F(G‘l@[bl'5])3"~7F(am@[bm'5]))a

where - denotes bitwise-AND and & denotes bitwise-XOR, F is a random func-
tion.

The IKNP protocol uses this assumption with n = d = A. In that case,
the only valid choice for b; is 1* and the distribution simplifies to H(a; @
8)y...y H(am @ s). In our case, we use n > d = A, so other choices for the
b; values are possible.

42 M. Chase and P. Miao

3 Our PSI Protocol

In this section we describe our protocol and prove its semi-honest security in the
plain model and malicious security against P; in the random oracle model.

3.1 Construction

We describe our PSI protocol in Fig. 3. During the protocol in Step 2 the two
parties need to run an OT protocol. Since the matrix A is randomly sampled by
P,, this step can be instantiated efficiently using random OT as shown in Fig. 4.

At a high level, P, constructs two matrices A and B of special form from
its input elements. Note that for each y € Y, let v = Fi(H1(y)), the matrices
A and B are constructed such that D;[v[i]] = 0 for all ¢ € [w], and hence
A;[vli]] = B;[v[i]] = C;[v[i]] for all ¢ € [w]. That means, if P;’s element = = y
for some y € Y (i.e., x is in the intersection), then its input to the hash function
in Step 3 will be the same as y’s input to the hash function. On the other
hand, if = is not in the intersection, then its input to the hash function would
be significantly different from any y’s input to the hash function, and the PRF
output would be pseudorandom to P,. Note that the hash function Hi(+) is not
necessary for semi-honest security, but is applied for extracting P;’s inputs in
the malicious case.

The parameters m, w in our protocol are chosen such that if F' is a random
function and H;(z) is different for each x € X UY, then for each x € X \ I
and v = F(Hy(z)), there are at least d 1’s in D1 [v[1]], ..., Dy [v[w]] with all but
negligible probability. We discuss how to choose these parameters in Sect. 3.3.

3.2 Security Proof

Theorem 1. If F is a PRF, Hy is a collision resistant hash function, and Hy
is a d-Hamming correlation robust hash function, then the protocol in Fig. 3
securely realizes Fps) in the semi-honest model when parameters m,w, {1, s are
chosen as described in Sect. 3.3.

Security Against Corrupt P;. We construct S; as follows. It is given P;’s
input set X. &1 runs the honest P, protocol to generate its view with the fol-
lowing exceptions: For the oblivious transfer, S; generates P;’s random string
s & {0, 1}* honestly and chooses a random matrix C' € {0,1}™**, and runs the
OT simulator to simulate the view for an OT receiver with inputs s[1],. .., s[w]
and outputs Ci,...,Cy. In Step 3a S; sends a uniformly random PRF key k
to P;. Finally S; outputs P;’s view. We prove (viewf(X,Y),outH(X, Y)) ~
(S1(1™, X, na), f(X,Y)) via the following hybrid argument:

Hyb, Pi’s view and P»’s output in the real protocol.

PSI in the Internet Setting from Lightweight Oblivious PRF 43

0. P1 and P, agree on security parameters A, o, protocol parameters m,w, £1, 2, two
hash functions H; : {0,1}* — {0,1}** and Hs : {0,1}* — {0,1}*2, pseudorandom
function F : {0,1}* x {0,1}* — [m]“.

1. Precomputation

— P1 samples a random string s & {0,1}*.
— P, does the following:
(a) Initialize an m X w binary matrix D to all 1’s. Denote its column vectors
by Di,...,Dy. Then Dy = --- = D, = 1™.
(b) Sample a uniformly random PRF key k & {0,1}*.
(c¢) For each y € Y, compute v = Fi,(H1(y)). Set D;[v[i]] = 0 for all i € [w].

2. Oblivious Transfer

(a) P> randomly samples an m X w binary matrix A & {0,1}**. Compute
matrix B=A® D.

(b) P and P> run w oblivious transfers where P, is the sender with inputs
{Ai,Bi}iciw) and Py is the receiver with inputs s[1],..., s[w]. As a result Py
obtains w number of m-bit strings as the column vectors of matrix C' (with
dimension m x w).

3. OPRF Evaluation
(a) P> sends the PRF key k to P;.
(b) For each z € X, Pi computes v = Fy(Hi(z)) and its OPRF value ¢ =

Hy(Ci[[1]]]] ... ||Cwlv[w]]) and sends ¢ to Ps.

(c) Let ¥ be the set of OPRF values received from P;. For each y € Y, P> computes
v = Fr(y) and its OPRF value ¢ = Ha(A1[v[1]]||...||Aw[v[w]]) and outputs y
iff p € ¥.

Fig. 3. Our private set intersection protocol.

Hyb, Same as Hyb, except that on P»’s side, for each i € [w], if s[i] = 0,
then sample A; & {0,1}™ and compute B; = A; @& D;; otherwise sample
B; & {0,1}™ and compute A; = B; & D;. This hybrid is identical to Hyb,.

Hyb, Same as Hyb, except that S; (instead of P3) chooses the random PRF key
k. This hybrid is statistically identical to Hyb;.

Hyb; Same as Hyb, but the protocol aborts if there exists z,y € X UY,x # y
such that Hi(x) = H;(y). The aborting probability is negligible because Hy
is collision resistant.

Hyb, Same as Hybs but the protocol also aborts if there exists z € X \ I such
that, for v = Fy(Hq(x)), there are fewer than d 1’s in Dy [v[1]],. .., Dy[v[w]].
The parameters m,w are chosen such that if F' is a random function and
H,(z) is different for each x € X UY, then the aborting probability is neg-
ligible. If the aborting probability in Hyb, is non-negligible, then we can
construct a PPT adversary A to break the security of PRF. In particular,
given the sets X and Y, A constructs the matrix D as in Hyb, except that

44

M. Chase and P. Miao

2. P does the following;:

3. Pi computes the matrix C as follows: if s[i] = 0 then set C; = r;; otherwise set

1. P; and P> perform w random OTs with message length m, where P; is the re-

ceiver with inputs choice bits s[1],. .., s[w]. As a result, P» gets w pairs of random
(sli)

i

messages {rz(.o),rz(.l)}ie[w] and Pi gets w messages {7 };c[w) Where r; =7

(a) Let {TE())}iE[w] form the column vectors of the matrix A and compute the
matrix B =A@ D.
(b) Compute A; = B; ® rgl) for all ¢ € [w] and send to P;.

Ci =17 @ A;.

Fig. 4. Step 2 of our PSI protocol instantiated using random OT.

whenever it needs to compute Fj, A queries the PRF challenger for the
output. Finally, if there exists € X\ such that, for v = Fj(Hy(z)), there are
fewer than d 1’s in Dy [v[1]],..., Dy[v[w]], namely the protocol aborts, then
A guesses PRF, otherwise A guesses random function. .4 guesses correctly
with probability % + non-negl. Therefore, the protocol aborts with negligible
probability in Hyb,.

Hyb; Same as Hyb, but party P»’s output is replaced by f(X,Y) (i.e., the inter-

section I = X NY). This hybrid changes P»’s output if and only if there
exists x € X,y € Y,z # y such that, for v = F(H1(2)),u = Fi(H1(y)),
Hy(Civ[1]]]] ... |Cw[v[w]]) = Ha(Ar[u[1]]]| - - . || Aw[u[w]]). This happens with
negligible probability as Ho(C1[v[1]]]| ... ||Cw[v[w]]) is pseudorandom by the
correlation robustness of Hs, so for sufficiently large /o this probability will
be negligible.

Specifically, for each x; € X \ I, let v; = Fp(H1(2)), a; = A1v[1]]]l--.
| Awlvi[w]], and b; = Dy[v;[1]]]] ... || Dwvi[w]]. Then x;’s input to the hash
function Hy is Ci[v;[1]]|] ... ||Cwlvi[w]], which is a; ® [b; - s]. Additionally
we have the guarantee that ||b;||n > d. Since s is randomly sampled, by
the d-Hamming correlation robustness of Hs, the outputs of Ha(Cy[v;[1]]] - ..
| Cow[vi[w]]) are pseudorandom.

If the outputs of Ho(Ch[v;[1]]||- .. ||Cwlvi[w]]) are truly random, then a col-
lision of Hay(Ci[v[1]]]] ... ||Cw[v[w]]) = Ha2(A1[u[l]]]]...||Aw[u[w]]) happens
with negligible probability. If the collision in this hybrid happens with non-
negligible probability, then we can construct a PPT adversary A to break the
correlation robustness of Hy. In particular, given the sets X and Y, A con-

structs the matrix A as in this hybrid and Ha(Aq[u;[1]]]l ... ||Aw[ui[w]]) for
each y; € Y. A can also compute the matrix D as in this hybrid and (a;, b;)
for each x; € X \ I. As we explained above, Ha(Cy[v;[1]]]| ... [|Cwlvi[w]]) =

Hy(a; @ [b; - s]). A queries the oracle for the outputs of Ha(a; @ [b; - s]). If a
collision happens, then A guesses the hash function; otherwise A guesses ran-
dom function. A guesses correctly with probability % + non-negl. Therefore,
the probability of collision is negligible by our choice of {5 for semi-honest
security in Sect. 3.3.

PSI in the Internet Setting from Lightweight Oblivious PRF 45

Hybg Same as Hyby but the protocol does not abort. The indistinguishability of
Hybg and Hyb; follows from the collision resistance of H; and the pseudoran-
domness of Fj by the same arguments as above.

Hyb, The simulated view of Sy and f(X,Y’). The only difference from Hyby is
that &1 samples the matrix C' and runs the OT simulator to simulate the view
of an OT receiver for P;. This hybrid is computationally indistinguishable
from Hybg by security of the OT protocol.

Security Against Corrupt P,. We construct S, as follows. It is given as
input Py’s set Y, the size of P;’s set n1, and the intersection I = f(X,Y). Sy
runs the honest P, protocol with the following exceptions: For the oblivious
transfer, So computes the matrices A and B honestly and run the OT simulator
to produce a simulated view for the OT sender. For each x € I, it computes
v = Fi,(H1(z)) and the OPRF value ¢ = Ha(Ai[v[1]]]] ... ||Aw[v[w]]). Let this
set of OPRF values be ¥r. Choose ny — |I| random fa-bit strings and let this
set be Wyang. Send ¥ = ¥ UW,,,q to P in Step 3b. Finally S; outputs Py’s view
in this invocation. We argue views' (X,Y) ~ S2(1™,Y,ny, f(X,Y)) through the
following hybrids:

Hyby P»’s view in the real protocol.

Hyb,; Same as Hyb, but the protocol aborts if there exists z,y € X UY,z # y
such that Hj(x) = Hy(y). The aborting probability is negligible because H;
is collision resistant for sufficiently large ¢; chosen in Sect. 3.3.

Hyb, Same as Hyb; except that the protocol aborts if there exists 2z € X \ I such
that, for v = Fj,(Hj(x)), there are fewer than d 1’s in Dy [v[1]], ..., Dy[v[w]].
The parameters m,w are chosen such that if F' is a random function and
Hy(x) is different for each x € X UY, then the aborting probability is
negligible. If the aborting probability in Hyb, is non-negligible, then we can
construct a PPT adversary A to break the security of PRF. In particular,
given the sets X and Y, A constructs the matrix D as in Hyb, except that
whenever it needs to compute Fj, A queries the PRF challenger for the
output. Finally, if there exists x € X \ I such that, for v = Fi(H(x)),
there are fewer than d 1’s in Dj[v[l]],..., Dy[v[w]], namely the protocol
aborts, then A guesses PRF, otherwise A guesses random function. A guesses
correctly with probability % + non-negl. Therefore, the protocol aborts with
negligible probability in Hyb,.

Hyb; Same as Hyb, except that Sy runs the OT simulator to produce a simulated
view of an OT sender for P,. This hybrid is computationally indistinguishable
to Hyb, by security of the OT protocol.

Hyb, Same as Hyb; except that we replace the OPRF values for x € X \ I
by random /¢5-bit strings. Hyb, is computationally indistinguishable from
Hyb; because of the d-Hamming correlation robustness of Hy. Specifically,
for each ©; € X \ I, let v; = Fip(Hi(x)), a; = Ai[v[1]]]| - || Aw]vi[w]],
and b; = Dy[v;[1]]|| ... ||Dwlvilw]]. Then z;’s input to the hash function
Hy is Ci[v;[1]]]] - - - |Cowlvi[w]], which is a; & [b; - s]. Additionally we have

46 M. Chase and P. Miao

the guarantee that ||b;||y > d. Since s is randomly sampled and unknown
to the P,, by the d-Hamming correlation robustness of Hs, the outputs of
Hy(Cilv[1]]]] - - . |Cwlvi[w]]), i-e., the OPRF values for x; € X \ I, are pseu-
dorandom by the choice of ¢5 for semi-honest security in Sect. 3.3.

Hyb; Same as Hyb, except that the protocol does not abort. The indistinguisha-
bility of Hyb, and Hyby follows from the collision resistance of H; and the
pseudorandomness of F' by the same arguments as above. The hybrid is the
view output by Ss.

Theorem 2. If F is a PRF, Hy and Hy are modeled as random oracles, and the
underlying OT protocol is secure against a malicious receiver, then the protocol
in Fig. 3 is secure against malicious Py when parameters m,w, 1,0y are chosen
as described in Sect. 3.3.

We construct S that interacts with the malicious P; as follows. S samples
a random matrix C € {0,1}"**, and runs the malicious OT simulator on P;
with output Cq,...,Cy. S honestly chooses the random PRF key k and sends
k to P; in Step 3a. On P;’s query x to the random oracle Hy, S records the
pair (z, Hi(x)) in a table T}, which was initialized empty. On P;’s query z to
the random oracle Ha, S records the pair (z, H2(2)) in a table T, which was
initialized empty. In Step 3b when P; sends OPRF values ¥, S finds all the values
1 € ¥ such that ¢ = Hs(z) for some z in Ty, and z = Cy[v[1]]] ... || Cw[v[w]]
where v = Fj(Hi(x)) for some x in T;. Then S sends these x’s to the ideal
functionality. Finally S outputs whatever P; outputs.

Let 91, Q2 be the set of queries P; makes to Hi, Ho respectively, and let
Q1 =191], Q2 = |Q2|. We will abuse notation, and for m x w bit-matrix C' and
vector u € [m]Y, we write C[v] to mean Ci[v[1]]]...[|Cw[v[w]]. Similarly, for a
set V' of vectors in [m]", we use C[V] to denote the set {C[v]|v € V}.

We prove Real’{ (X,Y) ~ IdealZ (X,Y) via the following hybrid argument:

Hyb, The outputs of P; and P in the real world.

Hyb, Same as Hyb, except that S runs the OT simulator on P; to extract s,
lets C; = A; if s[i] = 0 and C; = B; otherwise, gives C,...,C, to the OT
simulator as output. This hybrid is computationally indistinguishable from
Hyb, because of OT security against a malicious receiver.

Hyb, Same as Hyb; but the protocol aborts if there exists z,y € Q1 UY,x # y
such that Hy(z) = Hy(y). The aborting probability is negligible because H; is
a random oracle, hence also collision resistant for sufficiently large ¢; chosen
in Sect. 3.3.

Hyb; Same as Hyb, but in Step 3c, for each OPRF value v sent by P, if ¢ ¢
H5(Q5), then P, ignores ¢ when computing the set intersection. This hybrid
changes P»’s output with negligible probability because Hs is a random oracle
with output length at least £2 (see Sect. 3.3 for the choice of ¢5 in the malicious
case). Specifically, the probability that ¢ equals the output of Hy on one of
Py’s elements is negligible.

PSI in the Internet Setting from Lightweight Oblivious PRF 47

Hyb, Same as Hybs but the protocol aborts if in Step 3c, there exists z € Qa, 2" €
AlF(H1(Y))] with z # 2" and Ha(z) = Ha(2'). If this happens, then we find
a collision of Hs, which happens with negligible probability because Hs is a
random oracle with sufficiently large output length ¢5 chosen in Sect. 3.3 for
malicious security.

Hybs Same as Hyb, but in Step 3c, for each OPRF value 9 sent by P;, P» ignores
1) when computing the set intersection if » = Hy(z) for some z € Qs where
z & C[Fp(H1(Q1))]-

This hybrid changes P,’s output only if there exists y € Y such that ¢ =
Hy(A[F,(H1(y))]), which implies z = A[F},(H1(y))] by the abort condition
added in Hyb,.

First, note that if y € Oy, then we have z = A[Fy,(H1(y))] = C[Fr(H1(y))] €
C[Fx(H1(Q1))] where the second equality follows from construction of the
matrix D. Thus, we need only consider y € Y \ Q;. Also note that for all
y €Y, A[F(H1(y))] = C[F(H1(y))], so we can say that the hybrid output
changes only if there exists y € Y\ Q1,2 € Qg such that z = C[Fy,(H1(y))].
Suppose there is a PPT adversary 4 that with non-negligible probability
produces Q1, 9s,Y such that there exist z € Qa,y € Y\ Q; such that z =
C[Fx(H1(y))]. Then we show we can break security of the PRF.

To see this, consider the following experiment:

1. Pick random outputs to be used for Hy(Q1).

2. Pick random C, simulate the OTs with A, responding to its H; queries
using the pre-chosen outputs, and responding to its Hs queries using
random function table T filled in on demand, and abort if any of the
abort conditions are triggered.

3. Send a random k to A in Step 3a and continue to respond to oracle queries
the same way.

4. A sends V.

5. Pick random outputs to be used for Hy(Y \ Q1), and output 1 if there
exist z € Qg,y € Y\ Q; such that z = C[F(H1(y))].

Observe that if A succeeds in distinguishing the two hybrids, then this exper-
iment outputs 1 with non-negligible probability. The intuition is that A fixes

Qs before we choose H1(Y \ Q1), so if the game succeeds then the PRF must

be very biased, to the point where it is straightforwardly detectable.

To make this more formal, consider the following PRF adversary B. B will
choose random C, then sample 2 sets of |Y| random values each, £, L. Call
the PRF challenger to obtain F'(£), F'(£’). Output PRF if C[F(L)|NC[F(L)]
is non-empty.

If F' is a PRF: Define P, as the probability of the above experiment out-
putting 1 conditioned on (C, k). Note that we are assuming for the sake of
contradiction that the experiment outputs 1 with non-negligible probabil-
ity e. Hence there must exist at least e fraction of (C,k) pairs such that
Pc ;. > e. Conditioned on (C,k), let W be the set of Ha queries that
maximizes the probability that the experiment outputs 1. Then we know
that if Po > €, then the probability that for random choice of £ we get

48

M. Chase and P. Miao

Wer NC[Fi(L)] # 0 is at least e. That means that there exists zc € We i
such that the probability over random choice of £ that z € C[Fg(L)] is at
least €/Q2. And for such zc, if we pick 2 random sets £, L', the prob-
ability that we get zo, € C[Fi(L)] and zcr € C[Fi(L')] and therefore
C[Fu(L)]NC[Fx(L')] # 0 is at least €2/Q%. Thus, the overall probability that
B outputs PRF is at least ¢3/Q%, which is non-negligible.

If F is random function: First, note that with all but negligible probability,
L, L are disjoint sets with no repeated elements, so computing F'(L), F(L")
is equivalent to choosing 2|Y '\ Q;| random values W, W’. Now, for any pair of
J,j" and any column 4, the probability that C;[W;[i]] = C;[W;[t]], taken over
the choice of W, W', C'is: Pr[W;[i] = Wy [i]] + PrW;[i] # Wy [i]]- 3 = 3+ 5,
and these probabilities are independent across columns. Thus, the probabil-
ity that C[W;] = C[Wy]is (3 + ﬁ)w, which is negligible by our choice of
parameters m,w in Sect. 3.3.

Hybg Same as Hyb; but the protocol also aborts if there exists z € Q1,y € YV

such that, z = C[F(Hy(x))] = A[Fx(H1(y))] but x # y. We argue that this
abort happens with negligible probability by security of the PRF.

Suppose that there exists a PPT adversary A who can cause this abort to
happen with non-negligible probability. Let () be a polynomial upper bound
on the number of H; queries made by the adversary. Then we build the fol-
lowing algorithm B to break security of the PRF. B will first choose @ + |Y|
random outputs to Hy. B will then choose random C and use the OT simu-
lator to extract s from the OTs. If A makes H; queries during this process
it will use the pre-chosen outputs. Then B computes the matrix D using the
appropriate H; outputs and using its oracle to compute F. From C, D and
s it will compute the matrix A. Finally, it will output PRF if there exist
a pair of outputs h,h’ in its pre-chosen random H; output set for which
CIF (k)] = A[F())

Clearly this game outputs PRF with non-negligible probability in the PRF
case if the abort in Hybg happens with non-negligible probability. Now we will
argue that in the random function case it outputs PRF with only negligible
probability.

Consider the following game, which produces outputs identical to the above
experiment with B in random function case: We first pick the random func-
tion F' and the H; outputs. Then compute D. Then extract s from the OTs
and choose random C'. Finally, compute the corresponding A, and output
PRF as above if there exist a pair of outputs hq, hy in its pre-chosen random
H, output set for which C[F(h1)] = A[F(h2)].

Now we evaluate the probability of producing PRF in this game. First con-
sider the probability that for a particular pair of H; outputs h,h’ we obtain
C[F(h)] = A[F(})]. Consider the step where we choose random C' and com-
pute A. Let w = F(h) and v = F(h'). Since C' is chosen at random, if s; A
D;[v;] = 0, then we have Pr[C;[u;] = A;[v;] = Pr[Ci[u;] = Ci[vi]] = § + 7=
and if ;A D[u;] = 1, then Pr[Cifus] = Aifwi]] = Pr(Cilus] # Cifui]] = £ — ooy
and these probabilities are independent for different i’s. Thus even in the

PSI in the Internet Setting from Lightweight Oblivious PRF 49

worst case we have that the probability that C[F(h)] = A[F(h/)] is at most
(% + ﬁ)w, which for our choice of parameters in Sect. 3.3 is negligible.

Hyb, Same as Hybs except that party P»’s output is replaced by its out-
put in the ideal world. This hybrid changes P,’s output if and only if
there exists an OPRF value 1 sent by P, and considered by P, such that,
Y = Ho(C[Fy(H1(z))]) for some z € Qq, and ¢ = Ha(A[Fx(H1(y))]) for
some y € Y,y # x. We already know that C[Fy(Hi(x))] # A[Fk(H1(y))]
by the abort condition introduced in Hybg, hence we find a collision of Hs,
which happens with negligible probability because Hs is a random oracle with
sufficiently large output length £5 chosen in Sect. 3.3 for malicious security.

Hybg Same as Hyb, but the protocol does not abort. Hybg and Hyb; are compu-
tationally indistinguishable because H; and Hy are random oracles and Fj, is
a PRF by the same arguments as above.

Hyby The outputs of S and P, in the ideal world. The only difference of this
hybrid from Hybg is that S (instead of P;) samples the random matrix C,
which is identically distributed.

3.3 Parameter Analysis

Choice of m, w. The parameters m, w in our PSI protocol are chosen such that
if F'is a random function and H () is different for each z € XUY', then for each
x € X\ I and v = F(Hy(x)), there are at least d 1’s in Dy[v[1]],..., Dy[v[w]]
with all but negligible probability. We now discuss how to choose the parameters.
We first fix m and then decide on w as follows.

Consider each column D;, initialized as 1. Then for each y € Y, P, computes
v = F(H;(y)) and sets D;[v[i]] = 0. Since H;(y) is different for each y € Y and
F is a random function, v is random and independent for each y € Y. The
probability Pr[D;[j] = 1] is the same for all j € [m]. In particular,

Pr[D;]j] = 1] = (1 - 1)n2 .

m

Let p= (1 —)" . For any x € X \ I, let v = F(H;(x)), then Pr[D;[v[i]] =
1] = p and the probability is independent for all ¢ € [w]. Hence the probability
that there are k 1’s in Dq[v[1]],. .., Dy [v[w]] is

()t

We want there to be at least d 1’s for each € X \ I with all but negligible
probability. By the union bound, it is sufficient for the following probability to

be negligible:
d—1
w _
ey (k)p’%l ~)" < negl(0).
k=0

50 M. Chase and P. Miao

From this we can derive a proper w.

In our security proof against malicious P;, we further require that
(% + ﬁ)w < negl(\). For all the concrete parameters we choose in Sect. 4.1,
this requirement is also satisfied.

Choice of £;. The parameter ¢; is the output length of the hash function H;.
For security parameter \, we need to set /1 = 2\ to guarantee collision resistance
against the birthday attack.

Choice of £5. The parameter 5 is the output length of the hash function Hs,
which controls the collision probability of the PSI protocol. For semi-honest
security, it can be computed as ¢5 = o + log(ninsg), similarly as in [KKRT16,
PRTY19]. For security against malicious Py, it can be computed similarly as
Ly = o +10g(Q2 - ng) where Q2 is the maximum number of queries the adversary
can make to Hs.

4 Implementation Details

We implement our PSI protocol in C++. In this section we discuss the concrete
parameters used in our implementation and how we instantiate all the crypto-
graphic primitives. Our implementation is available on GitHub: https://github.
com/peihanmiao/OPRF-PSI.

4.1 Parameters

Our computational security parameter is set to A = 128 and statistical security
parameter is 0 = 40. We also set d to be 128. We focus on the setting where
n1 = ny = n, i.e., the two parties have sets of equal size. The other parameters
are

— m: the number of rows (or height) of the matrix D.

— w: the number of columns (or width) of the matrix D.

— {7: the output length in bits of the hash function Hy, set as 256.
— {5: the output length in bits of the hash function Hs.

Our protocol is flexible in that we can set these parameters differently to
trade-off between computation and communication. Specifically, once we fix n
and m, we can compute w as in Sect. 3.3. Intuitively, for a fixed set size n, if
we set a bigger m, then we will get a bigger fraction of 1’s in each column of
the matrix D, which leads to a smaller w and requires less computation of the
pseudorandom function F' in the PSI protocol. To guarantee collision resistance
of Hy, the parameter ¢, is set to be 256. For security against malicious P;, we
assume the maximum number of queries the adversary can make to Hy is 264
We list different choices of the other parameters in Table 1. In our experiment,
we will set m = n for all settings as it achieves nearly optimal communication
among all choices of m and allows for optimal computation.

https://github.com/peihanmiao/OPRF-PSI
https://github.com/peihanmiao/OPRF-PSI

PSI in the Internet Setting from Lightweight Oblivious PRF 51

Table 1. Parameters for set size n, matrix height m, matrix width w, and output
length ¢> in bits of the hash function Hs for semi-honest and malicious security.

n |m |w |f2 (semi-honest) | f2 (malicious) ‘
216 1 n 1609 |72 120
218 | 161576 122
220 | 162180 124
222 |p 62784 126
224 |p 163388 128
22410.9n | 717 |88 128
224 1.1n | 571 |88 128
224 12n [349 88 128

4.2 Instantiation of Cryptographic Primitives
Our PSI protocol requires the following cryptographic primitives:

— F': a pseudorandom function.

— Hj: a collision-resistant hash function.

— Hj: a Hamming correlation robust hash function.
Base OTs for OT extension.

In our implementation, H; and Hy are instantiated using BLAKE2 [BLA].
Base OTs are instantiated using Naor-Pinkas OT [NP99]. We use the implemen-
tation of base OTs from the 1ibOTe library [Rin].

Instantiation of F'. We would like to instantiate F' using AES, but note that
the input and output length of AES is 128 bits. Recall that in our protocol, we
require F : {0,1}* x {0,1}* — [m]", where the input length is ¢; = 256 and
output length is w - logm.

One way to instantiate F' is to apply a pseudorandom generator (PRG) on top
of cipher block chaining message authentication code (CBC-MAC). In particular,
let G : {0,1}* x {0,1}* — {0,1}* be a pseudorandom function (instantiated by
AES) and PRG : {0,1}* — {0,1}*"* be a PRG (instantiated by AES CTR mode),
where t = fwb%l Let & = x|z be the input where zg,z; € {0,1}*. Then
we instantiate F' by

F(z) := PRG(Gk(G(zo) ® z1))-

By the security of CBC-MAC [BKR00] and PRG, F is still a PRF. In this
construction, G(-) is parallelizable for multiple inputs and can be efficiently

52 M. Chase and P. Miao

instantiated by AES ECB mode. However, PRG has to be computed on each
element and cannot be parallelized for multiple elements.

To achieve better concrete efficiency, we try to parallelize the computa-
tion over multiple elements as much as possible so as to make best use of
the hardware optimized AES ECB mode implementation. In particular, let
G :{0,1}*x{0,1}* — {0,1}* be a pseudorandom function and PRG : {0,1}* —
{0,1}#+DA be a PRG where t = [“I98™]. On a key k and input z = x|z,
we construct F' as

Fy(2) = Gi, (Gro(20) © 21) |Gy (G (20) D 1) |- |G, (G (0) © 1),

where kol|k1]| ... ||kt — PRG(k). Now PRG (instantiated by AES CTR mode) is
only applied once on the key k, and Gy, () are all parallelizable by AES ECB
mode. The security proof of F'is deferred to Appendix A.

In our implementation, the PRF key k is sent right after the base OT instead
of after the entire OT extension. This allows both parties to run PRF evaluations
in parallel and does not hurt malicious security because P; does not send any
message in the OT extension after the base OT.

5 Performance Evaluation

We implement our PSI protocol and report on its performance in comparison
with the state-of-the-art OT-extension-based protocols:

— KKRT: the computation-optimized protocol [KKRT16].

— SpOT-Light: the communication-optimized protocol [PRTY19]. They have
two variants of the protocol, a speed-optimized variant (spot-fast) and a
communication-optimized variant (spot-low). We compare our protocol with
both variants.

In this section, we only report the performance with semi-honest security for
comparison with KKRT and SpOT-Light. To achieve security against malicious
Py, our protocol requires the same amount of computation cost and 5-7% more
communication cost (because ¢ is bigger as shown in Table 1).

5.1 Benchmark Comparison

Our benchmarks are implemented on two Microsoft Azure virtual machines with
Intel(R) Xeon(R) 2.40 GHz CPU and 140 GB RAM. The two machines are con-
nected in a LAN network with 20 Gbps bandwidth and 0.1 ms RTT latency.
We simulate the WAN connection between the two machines using the Linux tc
command. In the WAN setting, the average RTT is set to be 80 ms and we test
on various network bandwidths. All of our experiments use a single thread for
each party. A detailed benchmark for set sizes 2'—22% and controlled network
configurations is presented in Table 2.

PSI in the Internet Setting from Lightweight Oblivious PRF 53

Table 2. Communication cost (in MB) and running time (in seconds) comparing our
protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each party holds n elements.
The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All the other
network settings have 80 ms RT'T. Communication cost of P, (b = 1,2) indicates the
outgoing communication from P, to the other party. Cells with “~” denote settings
where the programs run out of memory.

n |Protocol Comm. (MB) Total running time (s)
Py | P, [Totall LAN| 150Mbps| 100Mbps| 80Mbps| 50Mbps| 30Mbps| 10Mbps| 1Mbps
KKRT [3.95/4.82[8.77]0.34] 1.94 2.01 2.22 | 262 | 354 | 841 [774
j16 spot-fast1.143.47[4.61/2.08 | 2.97 2.99 2.99 | 3.03 | 312 @ 4.86 | 40.9
spot-low|0.53/3.38[3.91| 12.2] 13.5 13.6 13.6 13.6 13.7 | 145 | 41.2
Ours 0.58/4.76|5.34|0.63| 1.71 1.78 1.87 2.14 2.66 | 553 | 47.4
KKRT [17.5/19.2[36.7]/1.08| 3.98 4.71 5.44 | 7.79 120 | 332 | 323
g18 sPot-fastl5.0213.9/18.9/8.24 | 9.45 9.49 951 | 9.84 | 10.6 = 17.5 | 166
spot-low|2.06/ 13.5|15.6 | 57.1 | 58.8 59.2 59.4 | 59.7 | 60.3 | 64.9 | 167
Ours [2.52(19.2]21.7/2.26 | 3.01 3.34 | 3.77 5.08 7.53 | 20.0 | 192
KKRT [60.0/76.8| 137 |4.58| 10.8 14.7 175 | 26.5 | 425 122 | 1,204
520 SPOt-fasti20.0 56.4|76.4| 28.9 | 30.9 31.5 31.6 | 33.1 358 69.3 | 676
spot-low[8.18/55.0|63.2| 271 | 276 275 277 279 282 301 731
Ours [10.0/77.6/87.6|9.44| 10.4 10.8 11.5 16.9 | 27.1 | 782 | 772
KKRT [264] 307 [571 [18.4] 42.3 58.8 71.2 108 175 509 | 5,027
g22 spot-fast88.0 226 [314 | 117 | 123 125 126 133 146 283 | 2,773
spot-low|32.7 220 | 253 [1,291] 1,303 1,305 | 1,311 | 1,315 | 1,331 | 1,406 | 3,311
Ours 44.1/ 314 | 358 [46.3| 49.2 50.6 | 51.1 65.5 107 317 | 3,152
KKRT [880(1,2292,109/67.9| 157 219 264 403 648 | 1,882 [18,562
o214 spot-fast|352] 919 [1,271 537 | 559 567 566 598 647 | 1,149 11,231
spot-low| — | — - - - - - - - - -
Ours |176[1,266/1,442| 190 | 200 216 234 289 431 | 1,277 |12,717

Communication Improvement. The total communication cost of our pro-
tocol is 1.46-1.69x smaller than that of KKRT. For example, to compute the
set intersection of size n = 22°, our protocol requires 87.6 MB communication,
which is a 1.56x improvement of KKRT that requires 137 MB communication.

Computation Improvement. In the LAN network where the running time is
dominated by computation, our protocol achieves a 2.53-3.65x speedup compar-
ing to spot-fast and a 19.4-28.7x speedup comparing to spot-low. For example,
to compute the set intersection of size n = 220, our protocol runs in 9.44 s, which
is 3.06 x faster than spot-fast that runs in 28.9s and 28.7x faster than spot-low
that runs in 271s.

Overall Improvement. In the WAN setting, we plot in Fig.5 the running
time growth with decreasing network bandwidth for our protocol comparing to
KKRT, spot-fast, and spot-low for set sizes n = 220 and n = 224. Note that
spot-low runs out of memory for set size n = 224, so we do not include it in
the comparison for n = 22*. As shown in the figure, with moderate bandwidth
(in particular, 30-100 Mbps), our protocol is faster than all the other protocols
because we have lower communication than KKRT and faster computation than
spot-fast and spot-low. For example, in the 50 Mpbs network, for set size n = 229,

54 M. Chase and P. Miao

T T T T
—+— KKRT —+— KKRT
10% E —a— spot-fast 10 || —*— spot-fast
- [| —— spot-low = f|—e— Ours
o [|—e— Ours e
g g
50 50
8 k=
g g ;
3 ERENT
5 I+
1] =
£ L L L L L L 1 102 = i L i L L S
150 130 100 70 50 30 10 1 150 130 100 70 50 30 10 1
Network bandwidth (Mbps) Network bandwidth (Mbps)

Fig. 5. Growth of total running time (in seconds) on decreasing network bandwidth for
our protocol compared with [KKRT16], spot-fast and spot-low [PRTY19]. The y-axis
is in log scale. The network latency is 80 ms RTT for all settings. The figure on the
left is for set size n = 22° and the figure on the right is for set size n = 2?*. Note that
since spot-low runs out of memory for n = 224, it is not included in the right figure.

our protocols takes 16.9s to run, which is a 1.57x speedup to KKRT that takes
26.5s, a 1.96x speedup to spot-fast that takes 33.1s, and a 16.5x speedup to
spot-low that takes 279s.

5.2 Monetary Cost

We follow the same method as [PRTY19] to evaluate the real-world monetary
cost of running our protocol on the Amazon Web Services (AWS) Elastic Com-
pute Cloud (EC2). In this section we give both theoretical analysis and experi-
mental comparison in various settings.

5.2.1 Pricing Scheme
The price for a protocol consists of two parts—machine cost and communication
cost.? We elaborate each cost in the following.

Machine Cost. The machine cost is charged proportional to the total time an
instance is launched. The unit machine cost varies for different types of instances
and also depends on the specific region. Generally speaking, an instance with
more computation power and more memory would have higher cost per hour.
The same type of instance costs in the Asia Pacific than in the US and Europe.

In our experiment we choose the general purpose virtual machine type mb.large
with Intel(R) Xeon(R) 2.50 GHz CPU and 8 GB RAM, which is the same as
in [PRTY19]. The machine cost per hour (in USD) for m5.large is 0.096 (US),
0.112 (Paris), 0.12 (Sydney). For example, if we choose the machine type

2 The pricing scheme can be found here: https://aws.amazon.com/ec2/pricing/on-
demand/.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

PSI in the Internet Setting from Lightweight Oblivious PRF 55

8,000
600 - B —— KKRT
—— spot-fast

g — KKRT 6,000 | —— Ows
%’ —— spot-fast

JQ-E; 400 (- — spotfl.ow

g —— Owus 4,000

2,000

Theoretical monetary cost

n =220 T

200
2,000 R

Bandwidth 20 Gbps (LAN) Bandwidth 20 Gbps (LAN)
L L Il L Il Il L
00 1 2 3 4 OU 1 2 3 4
Unit communication/computation cost ratio Unit communication/computation cost ratio
8,000 T
600 - B — KKRT
= —— spot-fast
7 S
— KKRT £ 6,000 Ours 1
= spot-fast Z
3 3
£ 400 H spot-low k3]
g —— Ours 5
g - £ 4,000 .|
3 3
S S
g
o
5]
=
3

0 1 2 3 4 0 1 2 3 4
Unit communication/computation cost ratio Unit communication/computation cost ratio
8,000 T
600 - B —— KKRT
—— spot-fast
7 z Ours
5] —— KKRT S 6,000 |- urs i
%’ —— spot-fast ;
4;-:; 400 [—— spot-low 'i:
S —— Ours S
g £ 4,000 |- -
3
S
°
200 B g
£ 2000} 1
=
0 I I 1 0 I I
1 2 3 4 0 1 2
Unit communication/computation cost ratio Unit communication/computation cost ratio

Fig. 6. Growth of monetary cost on increasing unit communication/machine cost ratio
(namely y/x — communication cost per MB/computation cost per second) for our
protocol compared with [KKRT16], spot-fast and spot-low [PRTY19]. (For some real
world y/x values, see Table 3.) The network latency is 80 ms RTT for all settings. The
figures on the left are for set size n = 22° and the ones on the right are for set size
n = 224, The network bandwidth is indicated in each individual figure. Note that since
spot-low runs out of memory for n = 2%, it is not included in the right figures.

56 M. Chase and P. Miao

mb5.4xlarge with 64 GB RAM, then the cost per hour (in USD) is 0.768 (US), 0.896
(Paris), 0.96 (Sydney).

Communication Cost. The communication cost is charged proportional to the
amount of data transfer. The unit data transfer cost varies depending on whether
both endpoints are within AWS or only one party is in AWS. It also depends on
the specific region of the endpoints. Generally speaking, data transfer from AWS
to the Internet is more expensive than data transfer within AWS; data transfer
from the Asia Pacific costs more than from the US or Europe. Specially:

— Data transfer in from the Internet to EC2 is free.

— Data transfer out from EC2 to the Internet is charged depending on the region
of the EC2 instance. Cost per GB (in USD) is 0.09 (US), 0.09 (Paris), 0.114
(Sydney).

— Data transfer from one EC2 instance to another EC2 instance is charged
depending on both endpoints’ regions. Cost per GB (in USD) is 0.01 (Virginia-
to-Ohio), 0.02 (US-to-Paris), 0.02 (US-to-Sydney), 0.02 (Paris-to-US), 0.02
(Paris-to-Sydney), 0.14 (Sydney-to-US), 0.14 (Sydney-to-Paris).

— Additionally, using a public IP address costs 0.01 USD/GB for all regions.

Network Settings. We consider the two network settings proposed in
[PRTY19]. In a business-to-business (B2B) setting, two organizations want to
regularly perform PSI on their dynamic data, where both endpoints may be
within the AWS network. In an Internet setting, one organization wants to reg-
ularly perform PSI with a dynamically changing partner, where only one party
may be within the AWS network. As the communication cost from P to P, is
much less than the cost from P, to P; for all the PSI protocols we consider, in
our experiment we let P; be the party within the AWS network.

5.2.2 Theoretical Analysis

Internet Setting. In the Internet setting where only one party (P;) runs on an
AWS EC2 instance, our protocol costs the least compared to all the other three
protocols. At a high level, since our protocol takes less time to run on networks
with moderate bandwidth (see Table 2), the machine cost for our protocol is the
lowest among the three protocols. In addition, the communication from P; to
P, in our protocol is lower than KKRT and spot-fast and almost the same as
spot-low. Therefore, overall our protocol is the cheapest to run in all the settings,
as we will see in the experimental results.

B2B Setting. In the B2B setting where we run each party of the PSI pro-
tocol on an AWS EC2 instance, there is a trade-off between computation and
communication. At a high level, since spot-fast and spot-low have lower com-
munication than KKRT and our protocol, the communication cost for them is
lower. However, the total running time of our protocol is the shortest among
all the protocols on networks with moderate bandwidth (see Table 2), hence the

PSI in the Internet Setting from Lightweight Oblivious PRF 57

machine cost for our protocol is the lowest among all the protocols. The total
monetary cost is a combination of the machine and communication costs, and
which protocol costs the least depends on the ratio of unit communication cost
to unit machine cost.

More specifically, suppose the total running time is 7" seconds and the total
data transfer between them is C' MB. Assume the machine cost of an AWS
EC2 instance is « per second and the communication cost is y per MB in both
directions. Then the total cost in this setting is 2-7T-x+ C'-y. For a fixed set size
n and fixed network setting, the running time 7" and communication complexity
C for each protocol is fixed, hence which protocol costs the least only depends
on the ratio of y/x.

In Fig.6 we plot the theoretical monetary cost of our protocol compared
with KKRT, spot-fast, and spot-low in various network settings and for set sizes
n = 220 and n = 2%%. As we can see in all the figures, our protocol costs the
least when the ratio of unit communication cost to unit machine cost (namely,
y/z) is within a certain range. More concretely, for set size n = 220, our protocol
costs the least when 0.20 < y/x < 3.48 for LAN networks, when y/z < 3.66 for
networks with bandwidth 150 Mbps, and when y/x < 1.55 for networks with
bandwidth 30 Mbps. On the other hand, if y/« is sufficiently large, meaning that
the unit communication cost is much higher than unit machine cost, then spot-
fast achieves the lowest cost for all settings because of their lower communication.

5.2.3 Experimental Results

u (USD)

un (USD)

cost in the B2B setting per 1000 r
net setting per 1000 ru

netary
Monetary cost in the Inter

Moy

0 0
Ohio-Virginia Oregon-Virginia Paris-Oregon Sydney-Oregon Sydney-Paris Ohio-Virginia Oregon-Virginia Paris-Oregon Sydney-Oregon Sydney-Paris

Fig. 7. Monetary cost per 1000 runs in the B2B setting (left) and Internet setting
(right) comparing our protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each
party holds n = 2%° elements and locates in different regions.

We plot the experimental monetary cost of our protocol compared with
KKRT, spot-fast, and spot-low in both B2B and Internet settings in Fig.7.

58 M. Chase and P. Miao

Table 3. Total monetary cost (in USD) per 1000 runs in the B2B and Internet settings
comparing our protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each party
holds n = 2%° elements and locates in different regions. The network bandwidth, RTT
latency, and y/x ratio (communication cost per MB/computation cost per second) for
each setting are indicated in the table.

Regions ‘Bandwidth‘Latency‘ y/x ‘Protocol‘Runtime‘BQB Cost‘Internet Cost‘

KKRT | 5.15 2.95 6.00
Ohio-Virginia |1.09 Gbps | 12 ms | 0.73 spot-fast) 279 2.98 2.70
spot-low| 251 14.6 7.50
Ours 8.17 2.15 1.20
KKRT | 10.1 4.55 6.13
-f: 29. . 2.
Oregon-Virginia 170 Mbps 74 ms | 1.10 SPoUtast 299 | 3.83 £
spot-low| 254 15.4 7.57
Ours 9.23 3.06 1.23
KKRT 17.7 5.03 6.41
Paris-Oregon |75.6 Mbps| 167 ms| 1.01 spot-fast) 31.0 4.03 2.92
spot-low| 256 16.6 8.75
Ours 12.0 3.26 1.35
KKRT 16.3 12.0 7.81
t-fast . A4 4
Sydney-Oregon |85.0 Mbps| 143 ms | 2.69 spot-fast) 30.7 6.43 345
spot-low| 257 18.2 9.55
Ours 10.8 4.39 1.57
KKRT 29.9 13.0 8.26
-f: 4.2 . .
Sydney-Paris [40.5 Mbps| 286 ms| 2.50 spot-fast 3 6.79 3.57
spot-low| 261 19.6 9.68
Ours 21.3 5.12 1.93

The concrete running time and network bandwidth and latency are presented
in Table 3. We also list the y/z ratio (communication cost per MB/computation
cost per second) for each setting in the table. We see that our protocol is the
cheapest in all the settings we consider. This result aligns with our theoretical
analysis in Sect.5.2.2. We only show the results for set size n = 220 while our
protocol is the cheapest for other set sizes as well. In the B2B setting, our proto-
col is 1.37-2.73x cheaper than KKRT, 1.24-1.46x cheaper than spot-fast, and
3.75—6.80x cheaper than spot-low. In the Internet setting, our protocol is 4.28—
5.00x cheaper than KKRT, 1.85-2.25% cheaper than spot-fast, and 5.01-6.48 x
cheaper than spot-low.

PSI in the Internet Setting from Lightweight Oblivious PRF 59

A Security Proof of PRF F

Theorem 3. Let G : {0,1}* x {0,1}* — {0,1}* be a pseudorandom function.
Let PRG : {0,1}* — {0,1}¢+D)* be g pseudorandom generator. Define F :
{0,1}* x {0,1}** — {0,1}** as follows. On a key k and input x = x¢|xy where
k,xo,z; € {0,1}*,

Fiy(2) = Gy (Gro (20) © 21)[|Gry (Gro (20) ® 1) - - [|Gr, (G (20) © 21),
where ko|lk1|| ... ||k: < PRG(k). Then F is also a pseudorandom function.

Proof. We show that any PPT adversary A cannot distinguish F' from a random
function via a sequence of hybrids:

Hyb, The adversary A has access to F.
Hyb, The adversary A has access to the following function

Gy (G (0) ® 21)[| Gy (G (w0) D 21)[- |G (Gro (20) © 1),

where ko, k1, ..., ki & {0,1}* are sampled uniformly at random.
If A can distinguish between Hyb, and Hyb;, then we can construct another
PPT adversary 55 that breaks the security of PRG. In particular, B first gets
kol|k1l| .- - ||k: from the PRG challenger. On query x = xgljz; from A, B
responds with G, (Gk, (z0) @ x1)|| - - . ||Gk, (Gk, (o) @ x1). Finally B outputs
whatever A outputs.
If the PRG challenger generates ko||k1|| - .. ||k: from PRG, then A is accessing
Hyb,; otherwise, the challenger generates kgl|k1]| . . . ||k+ uniformly at random,
then A is accessing Hyb,. Hence, if A can distinguish between Hyb, and Hyb,,
then B can break the PRG security.

Hyb, The adversary .4 has access to the following function

G1(Gro(20) ® 1)l - . - |G(Gro (0) & 1),

where kg & {0,1}* is sampled uniformly at random, and G1,...,G; are
all independent random functions. We argue that Hyb, is computationally
indistinguishable from Hyb, via a sequence of hybrids, where Hyb, o = Hyb,
and Hyb, , = Hyb,:

Hyb, ; The adversary A has access to the following function

G1(Gro(z0) @ x1)l - - - [|Gi(Grg (o) @ 21)IGkyy 4 (Grg (T0) ® z1)| - - - |Giy (Gig (o) & #1),

where ko, kit1,. .., kt & {0,1}* are sampled uniformly at random, and
G1, ..., G are independent random functions. Note that Hyb, ; = Hyb,.
If A can distinguish between Hyb, ; ; and Hyb, ; for any 1 <4 < ¢, then
we can construct another PPT adversary B that breaks the PRF security

of G;. In particular, B first randomly samples ko, ki1, .., ki & {0,1}*,

60

M. Chase and P. Miao

and then starts the experiment with A. On query zy|/z; from A, B com-
putes z = Gy, (o) ® z1 and Gy, (2)| ... |Gk, (2). B also randomly sam-
ples the outputs of G1(z), ..., G;—1(2). Note that if z already appears as an
input to G1, . ..,G;_1 before, B uses the previous outputs. Then B queries
the PRF challenger on input z for an output ¢, and sends the following back
to A:

G- [Gi ()G ()] |G (2)

Finally B outputs whatever A outputs.

If the PRF challenger chooses a PRF, then A is accessing Hyb, ; ;; oth-
erwise A is accessing Hyb, ;. Hence, if A can distinguish between Hyb, ; ;
and Hyb, ;, then B can distinguish PRF from a random function.

Hyb; The adversary 4 has access to the following function

G1(Go(zo) & x1)]| ... |Ge(Go(wo) © 21),

where Gy, ..., G; are all independent random functions.

If A can distinguish between Hyb, and Hyb,, then we can construct another
PPT adversary B that breaks the PRF security of Gy,. B first starts the
experiment with A. On query zg|/z; from A, B queries the PRF challenger
on zg for an output y. Then B computes z = y @ x; and randomly sam-
ples the outputs of G1(z),...,G¢(z). Note that if z already appears as an
input to Gy, ..., G, before, B uses the previous outputs. Afterwards B sends
G1(2)|| ... ||Gk,(2) back to A. Finally B outputs whatever A outputs.

If the PRF challenger chooses a PRF, then A is accessing Hyb,; otherwise A
is accessing Hybs. Hence, if A can distinguish between Hyb, and Hybs, then
B can distinguish PRF from a random function.

Hyb, The adversary A has access to a random function F'(xg||x1). Let the queries

from A be zj||lzi,..., 28|z}, and assume WLOG that they are all distinct
queries. We argue that Hyb, is computationally indistinguishable from Hyb,
via a sequence of hybrids, where Hyb, , = Hyb; and Hyb, ,, = Hyb,:
Hyb, ; For the first i queries xj||x], ..., zf||z} from A, choose the outputs
r!,...,r" independently at random. For each j € [i], internally also choose
a random Go(z). Let 27 = Go(z)) @z, then also store the implied table
for Gi,...,Gy, namely store G1(z7)||...||G(27) = ri. If there is any
collision in this table (i.e. Go(z}') @ x]' = Go(x?) ® 24> within the first ¢
queries), record Gy (27)]|. .. ||G¢(27) = 77 for the first queried @ ||z]. After
the first ¢ queries, compute the output according to this G, ..., G;.
The hybrid Hyb, ; is identical to Hyb, ; ; unless the i-th query from A
collides with Go(x)) @ 2 for a previous query z||z}. However, note that
when A makes the i-th query, it has seen no information on Gy. So the
probability that .4 can find such a collision is negligible (in particular,

i/2*).

PSI in the Internet Setting from Lightweight Oblivious PRF 61

References

[ADCT11]

[ALSZ13]

[BBDC+11]

[BKROO]

[BLA]

[CLR17]

[DCGT12]

[DCKT10]

[DCW13]

[DRRT18]

[DSMRY09]

[FIPROS5]

[FNO18]

[FNP04]

Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding
private set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156-173. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8_10

Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer and extensions for faster secure computation. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, 4-8 November 2013, pp. 535-548 (2013)

Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Coun-
tering GATTACA: efficient and secure testing of fully-sequenced human
genomes. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, pp. 691-702. ACM (2011)

Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci. 61, 362-399
(2000)

BLAKE2 - fast secure hashing. https://blake2.net/. Accessed 24 Jan 2020
Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homo-
morphic encryption. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1243-1255. ACM
(2017)

De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of
cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R.,
Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218-231. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_17

De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set
intersection protocols secure in malicious model. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 213-231. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8_13

Dong, C., Chen, L., Wen, Z.: When private set intersection meets big
data: an efficient and scalable protocol. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 789—
800. ACM (2013)

Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private
contact discovery. Proc. Priv. Enhanc. Technol. 2018(4), 159-178 (2018)
Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust
private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125-142. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_8
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 303-324. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30576-7_17

Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with lin-
ear communication from general assumptions. JACR Cryptology ePrint
Archive, 2018:238 (2018)

Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 1-19. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3_1

https://doi.org/10.1007/978-3-642-19379-8_10
https://blake2.net/
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1

62 M. Chase and P. Miao

[GN19]

[HEK12]
[HFHY9]

[TKN+17]

[TKNPO3]

[KK13]

[KKRT16]

[KRS+19]

[LLC18

[NMH+10]

[NP99]

[NTL+11]

[PRO4]

[PRTY19)

[PRTY?20]

[PSSZ15]

Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure pri-
vate set intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 154-185. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4_6

Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled cir-
cuits better than custom protocols? In: NDSS (2012)

Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in
electronic communities. In: EC 1999, pp. 78-86 (1999)

Ton, M., et al.: Private intersection-sum protocol with applications to
attributing aggregate ad conversions. TACR Cryptology ePrint Archive,
2017:738 (2017)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 145-161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4-9

Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 54-70. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1_4

Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 818-829. ACM (2016)

Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile
private contact discovery at scale. In: 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, 14-16 August 2019, pp.
1447-1464 (2019)

Ookla LLC. 2018 United States speedtest market report (2018). https://
www.speedtest.net/reports/united-states/2018 /#fixed

Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep:
finding P2P bots with structured graph analysis. In: USENIX Security
Symposium 2010, pp. 95-110 (2010)

Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, pp. 245-254. ACM (1999)

Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.,
et al.: Location privacy via private proximity testing. In: NDSS, vol. 11
2011

](?agh,) R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122-144
(2004)

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight pri-
vate set intersection from sparse OT extension. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401-431. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_13

Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, mali-
cious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 739-767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2_25

Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set
intersection using permutation-based hashing. In: 24th USENIX Security
Symposium, pp. 515-530 (2015)

https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://www.speedtest.net/reports/united-states/2018/#fixed
https://www.speedtest.net/reports/united-states/2018/#fixed
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25

[PSWW18]

[PSZ14]

[PSZ18]
[RA17]
[Rab05]
[Rin]

[RR17a]

[RR17b]

[TPKCO7]

PSI in the Internet Setting from Lightweight Oblivious PRF 63

Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 125-157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7_5

Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd
USENIX Security Symposium, pp. 797-812 (2014)

Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection
based on OT extension. ACM Trans. Priv. Secur. 21(2), 7:1-7:35 (2018)
Resende, A.C.D., Aranha, D.F.: Unbalanced approximate private set
intersection. IACR, Cryptology ePrint Archive, 2017:677 (2017)

Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR
Cryptology ePrint Archive, 2005:187 (2005)

Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Trans-
fer Library. https://github.com/osu-crypto/libOTe

Rindal, P., Rosulek, M.: Improved private set intersection against mali-
cious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 235-259. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56620-7_9

Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 1229-1242. ACM (2017)
Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving
error resilient DNA searching through oblivious automata. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security,
pp. 519-528. ACM (2007)

https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9

q

Check for
updates

Multiparty Generation of an RSA
Modulus

Megan Chen®, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and Abhi Shelat

Northeastern University, Boston, MA, USA
meganchen@gmail.com

Abstract. We present a new multiparty protocol for the distributed
generation of biprime RSA moduli, with security against any subset of
maliciously colluding parties assuming oblivious transfer and the hard-
ness of factoring.

Our protocol is highly modular, and its uppermost layer can be viewed
as a template that generalizes the structure of prior works and leads to a
simpler security proof. We introduce a combined sampling-and-sieving
technique that eliminates both the inherent leakage in the approach
of Frederiksen et al. (Crypto’l8), and the dependence upon additively
homomorphic encryption in the approach of Hazay et al. (JCrypt’19). We
combine this technique with an efficient, privacy-free check to detect mali-
cious behavior retroactively when a sampled candidate is not a biprime,
and thereby overcome covert rejection-sampling attacks and achieve both
asymptotic and concrete efficiency improvements over the previous state
of the art.

1 Introduction

A biprime is a number N of the form N = p - ¢ where p and ¢ are primes.
Such numbers are used as a component of the public key (i.e., the modulus)
in the RSA cryptosystem [33], with the factorization being a component of the
secret key. A long line of research has studied methods for sampling biprimes
efficiently; in the early days, the task required specialized hardware and was not
considered generally practical [31,32]. In subsequent years, advances in compu-
tational power brought RSA into the realm of practicality, and then ubiquity.
Given a security parameter s, the de facto standard method for sampling RSA
biprimes involves choosing random k-bit numbers and subjecting them to the
Miller-Rabin primality test [27,30] until two primes are found; these primes are
then multiplied to form a 2x-bit modulus. This method suffices when a single
party wishes to generate a modulus, and is permitted to know the associated
factorization.

The full version [7] of this work is available at http://ia.cr/2020/370.

© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 64-93, 2020.
https://doi.org/10.1007/978-3-030-56877-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_3&domain=pdf
http://ia.cr/2020/370
https://doi.org/10.1007/978-3-030-56877-1_3

Multiparty Generation of an RSA Modulus 65

Boneh and Franklin [3,4] initiated the study of distributed RSA modulus
generation.! This problem involves a set of parties who wish to jointly sample a
biprime in such a way that no corrupt and colluding subset (below some defined
threshold size) can learn the biprime’s factorization.

It is clear that applying generic multiparty computation (MPC) techniques
to the standard sampling algorithm yields an impractical solution: implement-
ing the Miller-Rabin primality test requires repeatedly computing a?~! mod p,
where p is (in this case) secret, and so such an approach would require the generic
protocol to evaluate a circuit containing many modular exponentiations over x
bits each. Instead, Boneh and Franklin [3,4] constructed a new biprimality test
that generalizes Miller-Rabin and avoids computing modular exponentiations
with secret moduli. Their test carries out all exponentiations modulo the pub-
lic biprime N, and this allows the exponentiations to be performed locally by
the parties. Furthermore, they introduced a three-phase structure for the overall
sampling protocol, which subsequent works have embraced:

1. Prime Candidate Sieving: candidate values for p and ¢ are sampled jointly
in secret-shared form, and a weak-but-cheap form of trial division sieves them,
culling candidates with small factors.

2. Modulus Reconstruction: N := p- q is securely computed and revealed.

3. Biprimality Testing: using a distributed protocol, N is tested for biprimal-
ity. If IV is not a biprime, then the process is repeated.

The seminal work of Boneh and Franklin considered the semi-honest n-party
setting with an honest majority of participants. Many extensions and improve-
ments followed (as detailed in Sect. 1.3), the most notable of which (for our pur-
poses) are two recent works that achieve malicious security against a dishonest
majority. In the first, Hazay et al. [19,20] proposed an n-party protocol in which
both sieving and modulus reconstruction are achieved via additively homomor-
phic encryption. Specifically, they rely upon both ElGamal and Paillier encryp-
tion, and in order to achieve malicious security, they use zero-knowledge proofs
for a variety of relations over the ciphertexts. Thus, their protocol represents
a substantial advancement in terms of its security guarantee, but this comes at
the cost of additional complexity assumptions and an intricate proof, and also at
substantial concrete cost, due to the use of many custom zero-knowledge proofs.

The subsequent protocol of Frederiksen et al. [16] (the second recent work of
note) relies mainly on oblivious transfer (OT), which they use to perform both
sieving and, via Gilboa’s classic multiplication protocol [17], modulus reconstruc-
tion. They achieved malicious security using the folklore technique in which a
“Proof of Honesty” is evaluated as the last step and demonstrated practicality

! Prior works generally consider RSA key generation and include steps for generating
shares of e and d such that e-d =1 (mod ¢(N)). This work focuses only on the task
of sampling the RSA modulus N. Prior techniques can be applied to sample (e, d)
after sampling N, and the distributed generation of an RSA modulus has standalone
applications, such as for generating the trusted setup required by verifiable delay
functions [28,35]; consequently, we omit further discussion of e and d.

66 M. Chen et al.

by implementing their protocol; however, it is not clear how to extend their
approach to more than two parties in a straightforward way. Moreover, their
approach to sieving admits selective-failure attacks, for which they account by
including some leakage in the functionality. It also permits a malicious adver-
sary to selectively and covertly induce false negatives (i.e., force the rejection
of true biprimes after the sieving stage), a property that is again modeled in
their functionality. In conjunction, these attributes degrade security, because the
adversary can rejection-sample biprimes based on the additional leaked informa-
tion, and efficiency, because ruling out malicious false-negatives involves running
sufficiently many instances to make the probability of statistical failure in all
instances negligible.

Thus, given the current state of the art, it remains unclear whether one
can sample an RSA modulus among two parties (one being malicious) with-
out leaking additional information or permitting covert rejection sampling, or
whether one can sample an RSA modulus among many parties (all but one being
malicious) without involving heavy cryptographic primitives such as additively
homomorphic encryption, and their associated performance penalties. In this
work, we present a protocol which efficiently achieves both tasks.

1.1 Results and Contributions

A Clean Functionality. We define Frsacen, @ simple, natural functionality
for sampling biprimes from the same well-known distribution used by prior
works [4,16,20], with no leakage or conflation of sampling failures with adversar-
ial behavior.

A Modular Protocol, with Natural Assumptions. We present a protocol mrsaGen
in the (FaugMul, FBiprime)-hybrid model, where Faygmul is an augmented multiplier
functionality and Fgiprime is a biprimality-testing functionality, and prove that it
UC-realizes Frsagen in the malicious setting, assuming the hardness of factoring.
More specifically, we prove:

Theorem 1.1. (Main Security Theorem, Informal). In the presence of a PPT
malicious adversary corrupting any subset of parties, Frsagen can be securely
computed with abort in the (Faugmul, Fgiprime)-hybrid model, assuming the hard-
ness of factoring.

Additionally, because our security proof relies upon the hardness of factoring
only when the adversary cheats, we find to our surprise that our protocol achieves
perfect security against semi-honest adversaries.

Theorem 1.2. (Semi-Honest Security Theorem, Informal). In the presence of
a computationally unbounded semi-honest adversary corrupting any subset of
parties, Frsacen can be computed with perfect security in the (Faugmul; Fgiprime)-
hybrid model.

Multiparty Generation of an RSA Modulus 67

Supporting Functionalities and Protocols. We define Fgiprime, a simple, natural
functionality for biprimality testing, and show that it is UC-realized in the semi-
honest setting by a well known protocol of Boneh and Franklin [4], and in the
malicious setting by a derivative of the protocol of Frederiksen et al. [16]. We
believe this dramatically simplifies the composition of these two protocols, and
as a consequence, leads to a simpler analysis. Either protocol can be based
exclusively upon oblivious transfer.

We also define Faugmul, & functionality for sampling and multiplying secret-
shared values in a special form derived from the Chinese Remainder Theorem.
In the context of mrsaGen, this functionality allows us to efficiently sample num-
bers in a specific range, with no small factors, and then compute their product.
We prove that it can be UC-realized exclusively from oblivious transfer, using
derivatives of well-known multiplication protocols [13,14].

Asymptotic Efficiency. We perform an asymptotic analysis of our composed
protocols and find that our semi-honest protocol is a factor of x/logx more
bandwidth-efficient than that of Frederiksen et al. [16]. Our malicious protocol
is a factor of k/s more efficient than theirs in the optimistic case (when parties
follow the protocol), and a factor of k more efficient when parties deviate from
the protocol. Recall that k is the bit-length of the primes p and ¢, and s is a
statistical security parameter. Frederiksen et al. claim in turn that their protocol
is strictly superior to the protocol of Hazay et al. [20] with respect to asymptotic
bandwidth performance.

Concrete Efficiency. We perform a closed-form concrete analysis of our protocol
(with some optimizations, including the use of random oracles), and find that in
terms of communication, it outperforms the protocol of Frederiksen et al. (the
most efficient prior work) by a factor of roughly five in the presence of worst-
case malicious adversaries, and by a factor of eighty or more in the semi-honest
setting.

1.2 Overview of Techniques

Constructive Sampling and Efficient Modulus Reconstruction. Most prior works
use rejection sampling to generate a pair of candidate primes, and then multiply
those primes together in a separate step. Specifically, they sample a shared value
p < [0,2%) uniformly, and then run a trial-division protocol repeatedly, discard-
ing both the value and the work that has gone into testing it if trial division
fails. This represents a substantial amount of wasted work in expectation. Fur-
thermore, Frederiksen et al. [16] report that multiplication of candidates after
sieving accounts for two thirds of their concrete cost.

We propose a different approach that leverages the Chinese Remainder The-
orem (CRT) to constructively sample a pair of candidate primes and multiply
them together efficiently. A similar sieving approach (in spirit) was initially for-
mulated as an optimization in a different setting by Malkin et al. [26]. The CRT
implies an isomorphism between a set of values, each in a field modulo a distinct

68 M. Chen et al.

prime, and a single value in a ring modulo the product of those primes (i.e.,
Ly X« oo X Ly ™2 Loy -.....m,)- We refer to the set of values as the CRT form or
CRT representation of the single value to which they are isomorphic. We formu-
late a sampling mechanism based on this isomorphism as follows: for each of the
first O(k/logk) odd primes, the parties jointly (and efficiently) sample shares
of a value that is nonzero modulo that prime. These values are the shared CRT
form of a single k-bit value that is guaranteed to be indivisible by any prime in
the set sampled against. For technical reasons, we sample two such candidates
simultaneously.

Rather than converting pairs of candidate primes from CRT form to standard
form, and then multiplying them, we instead multiply them component-wise in
CRT form, and then convert the product to standard form to complete the
protocol. This effectively replaces a single “full-width” multiplication of size
k with O(k/log k) individual multiplications, each of size O(log). We intend
to perform multiplication via an OT-based protocol, and the computation and
communication complexity of such protocols grows at least with the square of
their input length, even in the semi-honest case [17]. Thus in the semi-honest
case, our approach yields an overall complexity of O(klogk), as compared to
O(k?) for a single full-width multiplication. In the malicious case, combining the
best known multiplier construction [13,14] with the most efficient known OT
extension scheme [5] yields a complexity that also grows with the product of
the input length and a statistical parameter s, and so our approach achieves an
overall complexity of O(klog s + k - 5), as compared to O(k? + k - s) for a single
full-width malicious multiplication. Via closed-form analysis, we show that this
asymptotic improvement is also reflected concretely.

Achieving Security with Abort Efficiently. The fact that we sample primes in
CRT form also plays a crucial role in our security analysis. Unlike the work of
Frederiksen et al. [16], our protocol achieves the standard, intuitive notion of
security with abort: the adversary can instruct the functionality to abort regard-
less of whether a biprime is successfully sampled, and the honest parties are
always made aware of such adversarial aborts. There is, in other words, abso-
lutely no conflation of sampling failures with adversarial behavior. For the sake
of efficiency, our protocol permits the adversary to cheat prior to biprimality
testing, and then rules out such cheats retroactively using one of two strategies.
In the case that a biprime is successfully sampled, adversarial behavior is ruled
out retroactively in a privacy-preserving fashion using well-known but moder-
ately expensive techniques, which is tolerable only because it need not be done
more than once. In the case that a sampled value is not a biprime, however, the
inputs to the sampling protocol are revealed to all parties, and the retroactive
check is carried out in the clear. Proving the latter approach secure turns out to
be surprisingly subtle.

The challenge arises from the fact that the simulator must simulate the pro-
tocol transcript for the OT-multipliers on behalf of the honest parties without
knowing their inputs. Later, if the sampling-protocol inputs are revealed, the sim-
ulator must “explain” how the simulated transcript is consistent with the true

Multiparty Generation of an RSA Modulus 69

inputs of the honest parties. Specifically, in maliciously secure OT-multipliers of
the sort we use [13,14], the OT receiver (Bob) uses a high-entropy encoding of
his input, and the sender (Alice) can, by cheating, learn a one-bit predicate of
this encoding. Before Bob’s true input is known to the simulator, it must pick
an encoding at random. When Bob’s input is revealed, the simulator must find
an encoding of his input which is consistent with the predicate on the random
encoding that Alice has learned. This task closely resembles solving a random
instance of subset sum.

We are able to overcome this difficulty because our multiplications are
performed component-wise over CRT-form representations of their operands.
Because each component is of size O(log k) bits, the simulator can simply guess
random encodings until it finds one that matches the required constraints. We
show that this strategy succeeds in strict polynomial time, and that it induces
a distribution statistically close to that of the real execution.

This form of “privacy-free” malicious security (wherein honest behavior is
verified at the cost of sacrificing privacy) leads to considerable efficiency gains in
our case: it is up to a multiplicative factor of s (the statistical parameter) cheaper
than the privacy-preserving check used in the case that a candidate passes the
biprimality test (and the one used in prior OT-multipliers [13,14]). Since most
candidates fail the biprimality test, using the privacy-free check to verify that
they were generated honestly results in substantial savings.

Biprimality Testing as a Black Box. We specify a functionality for biprimality
testing, and prove that it can be realized by a maliciously secure version of the
Boneh-Franklin biprimality test. Our functionality has a clean interface and does
not, for example, require its inputs to be authenticated to ensure that they were
actually generated by the sampling phase of the protocol. The key insight that
allows us to achieve this level of modularity is a reduction to factoring: if an
adversary is able to cheat by supplying incorrect inputs to the biprimality test,
relative to a candidate biprime N, and the biprimality test succeeds, then we
show that the adversary can be used to factor biprimes. We are careful to rely
on this reduction only in the case that NN is actually a biprime, and to prevent
the adversary from influencing the distribution of candidates.

The Benefits of Modularity. We claim as a contribution the fact that modularity
has yielded both a simpler protocol description and a reasonably simple proof
of security. We believe that this approach will lead to derivatives of our work
with stronger security properties or with security against stronger adversaries.
As a first example, we prove that a semi-honest version of our protocol (differing
only in that it omits the retroactive consistency check in the protocol’s final
step) achieves perfect security. We furthermore observe that in the malicious set-
ting, instantiating Fgiprime and Faugmul With security against adaptive adversaries
yields an RSA modulus sampling protocol that is adaptively secure.

Similarly, only minor adjustments to the main protocol are required to
achieve security with identifiable abort [11,22]. If we assume that the underlying
functionalities Faugmul and Fagiprime are instantiated with identifiable abort, then

70 M. Chen et al.

it remains only to ensure the use of consistent inputs across these functionalities,
and to detect which party has provided inconsistent inputs if an abort occurs.
This can be accomplished by augmenting Fgiprime With an additional interface for
revealing the input values provided by all the parties upon global request (e.g.,
when the candidate NV is not a biprime). Given identifiable abort, it is possible to
guarantee output delivery in the presence of up to n—1 corruptions via standard
techniques, although the functionality must be weakened to allow the adversary
to reject one biprime per corrupt party.? A proof of this extension is beyond the
scope of this work; we focus instead on the advancements our framework yields
in the setting of security with abort.

1.3 Additional Related Work

Frankel, MacKenzie, and Yung [15] adjusted the protocol of Boneh and
Franklin [3] to achieve security against malicious adversaries in the honest-
majority setting. Their main contribution was the introduction of a method
for robust distributed multiplication over the integers. Cocks [8] proposed a
method for multiparty RSA key generation under heuristic assumptions, and
later attacks by Coppersmith (see [9]) and Joye and Pinch [23] suggest this
method may be insecure. Poupard and Stern [29] presented a maliciously secure
two-party protocol based on oblivious transfer. Gilboa [17] achieved improved
efficiency in the semi-honest two-party model, and introduced a novel method for
multiplication from oblivious transfer, from which our own multipliers ultimately
derive.

Malkin, Wu, and Boneh [26] implemented the protocol of Boneh and Franklin
and introduced an optimized sieving method similar in spirit to ours. In partic-
ular, their protocol generates sharings of random values in Z}, (where M is a
primorial modulus) during the sieving phase, instead of naive random candidates
for primes p and gq. However, their method produces multiplicative sharings of p
and ¢, which are converted into additive sharings for biprimality testing via an
honest-majority, semi-honest protocol. This conversion requires rounds linear in
the party count, and it is unclear how to adapt it to tolerate a malicious majority
of parties without a significant performance penalty.

Algesheimer, Camenish, and Shoup [1] described a method to compute a
distributed version of the Miller-Rabin test: they used secret-sharing conversion
techniques reliant on approximations of 1/p to compute exponentiations modulo
a shared p. However, each invocation of their Miller-Rabin test still has com-
plexity in O(k®) per party, and their overall protocol has communication com-
plexity in O(k?/log? k), with ©(k) rounds of interaction. Concretely, Damgérd
and Mikkelsen [12] estimate that 10000 rounds are required to sample a 2000-bit
biprime using this method. Damgard and Mikkelsen also extended their work to

2 The folklore technique involves invoking the protocol iteratively, each iteration elimi-
nating one corrupt party until a success occurs. For a constant fraction of corruptions,
the implied linear round complexity overhead can be reduced to super-constant (e.g.,
log™ n) [10].

Multiparty Generation of an RSA Modulus 71

improve both its communication and round complexity by several orders of mag-
nitude, and to achieve malicious security in the honest-majority setting. Their
protocol is at least a factor of O(k) better than that of Algesheimer, Camenish,
and Shoup, but it still requires hundreds of rounds. We were not able to compute
an explicit complexity analysis of their approach.

1.4 Organization

Basic notation and background information are given in Sect.2. Our ideal
biprime-sampling functionality is defined in Sect. 3, and we give a protocol that
realizes it in Sect. 4. In Sect. 5, we present our biprimality-testing protocol. In the
full version [7] of this work, we give an efficiency analysis, full proofs of security,
and the details of our multiplication protocol.

2 Preliminaries

Notation. We use = for equality, := for assignment, < for sampling from a
distribution, = for congruence, =, for computational indistinguishability, and
~ for statistical indistinguishability. In general, single-letter variables are set in
italic font, multi-letter variables and function names are set in sans-serif font,
and string literals are set in slab-serif font. We use mod to indicate the mod-
ulus operator, while (mod m) at the end of a line indicates that all equivalence
relations on that line are to be taken over the integers modulo m. By convention,
we parameterize computational security by the bit-length of each prime in an
RSA biprime; we denote this length by x throughout. We use s to represent
the statistical parameter. Where concrete efficiency is concerned, we introduce
a second computational security parameter, A, which represents the length of a
symmetric key of equivalent strength to a biprime of length 2x.% x and A must
vary together, and a recommendation for the relationship between them has been
laid down by NIST [2].

Vectors and arrays are given in bold and indexed by subscripts; thus x; is the
i*? element of the vector x, which is distinct from the scalar variable z. When we
wish to select a row or column from a two-dimensional array, we place a x in the
dimension along which we are not selecting. Thus y. ; is the 4t column of matrix
y, and y; 4 is the 4t row. We use P; to denote the party with index i, and when
only two parties are present, we refer to them as Alice and Bob. Variables may
often be subscripted with an index to indicate that they belong to a particular
party. When arrays are owned by a party, the party index always comes first. We
use |z| to denote the bit-length of x, and |y| to denote the number of elements
in the vector y.

3 In other words, a biprime of length 2k provides X bits of security.

72 M. Chen et al.

Universal Composability. We prove our protocols secure in the Universal Com-
posability (UC) framework, and use standard UC notation. We refer the reader
to Canetti [6] for further details. In functionality descriptions, we leave some
standard bookkeeping elements implicit. For example, we assume that the func-
tionality aborts if a party tries to reuse a session identifier inappropriately, send
messages out of order, etc. For convenience, we provide a function GenSID, which
takes any number of arguments and deterministically derives a unique Session
ID from those arguments.

Chinese Remainder Theorem. The Chinese Remainder Theorem (CRT) defines
an isomorphism between a set of residues modulo a set of respective coprime
values and a single value modulo the product of the same set of coprime values.
This forms the basis of our sampling procedure.

Theorem 2.1. (CRT). Let m be a vector of coprime positive integers and let
x be a vector of numbers such that |m| = |x| = £ and 0 < x; < m; for all
j € [€], and finally let M :=][, m;. Under these conditions there exists a
unique value y such that 0 <y < M and y = x; (mod my;) for every j € [£].

We refer to x as the CRT form of y with respect to m. For completeness, we
give the CRTRecon algorithm, which finds the unique y given m and x.
Algorithm 2.2. CRTRecon(m, x)

1. With £ := |m]|, compute M = [];c,y m

2. For j € [{], compute a; := M/m,; and find b; satisfying a; - b; =1
(mod m;) using the Extended Euclidean Algorithm (see Knuth [25]).

3. Output y := Zje[é] a;-b; - x; mod M.

3 Assumptions and Ideal Functionality

We begin this section by discussing the distribution of biprimes from which we
sample, and thus the precise factoring assumption that we make, and then we
give an efficient sampling algorithm and an ideal functionality that computes it.

3.1 Factoring Assumptions

The standard factoring experiment (Experiment 3.1) as formalized by Katz and
Lindell [24] is parametrized by an adversary .4 and a biprime-sampling algorithm
GenModulus. On input 1%, this algorithm returns (N, p, ¢), where N = p- ¢, and
p and ¢ are k-bit primes.*

4 Technically, Katz and Lindell specify that sampling failures are permitted with negli-
gible probability, and require GenModulus to run in strict polynomial time. We elide
this detail.

Multiparty Generation of an RSA Modulus 73

Experiment 3.1 Factor 4 GenModulus()

1. Run (N,p,q) < GenModulus(1%).
2. Send N to A, and receive p’, ¢’ > 1 in return.
3. Output 1 if and only if p’ - ¢’ = N.

In many cryptographic applications, GenModulus(1*) is defined to sample p and
q uniformly from the set of primes in the range [2°~1, 2%) [18], and the factoring
assumption with respect to this common GenModulus function states that for
every PPT adversary A there exists a negligible function negl such that

Pr [Factor 4 GenModulus(©) = 1] < negl(k).

Because efficiently sampling according to this uniform biprime distribution
is difficult in a multiparty context, most prior works sample according to a
different distribution, and thus using the moduli they produce requires a slightly
different factoring assumption than the traditional one. In particular, several
recent works use a distribution originally proposed by Boneh and Franklin [4],
which is well-adapted to multiparty sampling. Our work follows this pattern.
Boneh and Franklin’s distribution is defined by the sampling algorithm
BFGM, which takes as an additional parameter the number of parties n. The
algorithm samples n integer shares, each in the range [0,2%7!°8") and sums
these shares to arrive at a candidate prime. This does not induce a uniform dis-
tribution on the set of k-bit primes. Furthermore, BFGM only samples individual
primes p or ¢ that have p = ¢ = 3 (mod 4), in order to facilitate efficient dis-
tributed primality testing, and it filters out the subset of otherwise-valid moduli
N =p-qthat have p=1 (mod ¢q) or ¢ =1 (mod p).?
Algorithm 3.2. BFGM(x,n)
1. For i € [n], sample p; «— [O,?“‘log”) and ¢; «— [0,2“_1°g") subject to
p1=¢q1 =3 (mod 4) and p; = ¢; =0 (mod 4) for j € [2,n].
2. Compute

p==2pi and q:=2qi and N:=p-q
i€[n]

1€[n]

3. If ged(N,p+ ¢ — 1) = 1, and both p and ¢ are primes, then output
(N, {(pi»ai)}icin))- Otherwise, repeat this procedure from Step 1.

Any protocol whose security depends upon the hardness of factoring mod-
uli output by our protocol (including our protocol itself) must rely upon the
assumption that for every PPT adversary A,

Pr [Factor 4 grem (%, n) = 1] < negl(x)

5 Boneh and Franklin actually propose two variations, one of which has no false nega-
tives; we choose the other variation, as it leads to a more efficient sampling protocol.

74 M. Chen et al.

3.2 The Distributed Biprime-Sampling Functionality

Unfortunately, our ideal modulus-sampling functionality cannot merely call
BFGM; we wish our functionality to run in strict polynomial time, whereas
the running time of BFGM is only expected polynomial. Thus, we define a new
sampling algorithm, CRTSample, which might fail, but conditioned on success
outputs samples statistically close to BFGM.® Furthermore, we give CRTSample
a specific distribution of failures that is tied to the design of our protocol. As
a second concession to our protocol design (and following Hazay et al. [20]),
CRTSample takes as input up to n— 1 integer shares of p and ¢, arbitrarily deter-
mined by the adversary, while the remaining shares are sampled randomly. We
begin with a few useful notions.

Definition 3.3. (Primorial Number). The i*® primorial number is defined to
be the product of the first ¢ prime numbers.

Definition 3.4. ((k,n)-Near-Primorial Vector). Let ¢ be the largest number
such that the £*" primorial number is less than 2%71967=1 and let m be a vector
of length ¢ such that m; = 4 and ms,,...,my are the odd factors of the ¢!
primorial number, in ascending order. m is the unique (k,n)-near-primorial
vector.

Definition 3.5. (m-Coprimality). Let m be a vector of integers. An integer x
is m-coprime if and only if it is not divisible by any m; for 7 € [|m]].

Algorithm 3.6. CRTSample(x,n, {(p:, ¢;) }icp*)

1. Let m be the (k,n)-near-primorial vector, with length ¢, and let M be
the product of m.
2. For i € [n] \ P*, sample p; — [0, M) and ¢; < [0, M) subject to

3 (mod 4) ifi=1
pi=qi=

0 (mod 4) ifi#1

and subject to p and ¢ being m-coprime, where
p=3Y_p and g=) g
i€[n] i€[n]

are computed over the integers.
3. If ged(p-q,p+q—1) = 1, and if both p and ¢ are primes, and if p=¢ =3
(mod 4), then output (success,p, q); otherwise, output (failure,p,q).

5 CRTSample never outputs biprimes with factors smaller than s, whereas BFGM
outputs such biprimes with negligible probability. The discrepancy of share ranges
can be remedied by using non-integer values of x with BFGM.

Multiparty Generation of an RSA Modulus 75

Boneh and Franklin [4, Lemma 2.1] showed that knowledge of n — 1 integer
shares of the factors p and ¢ does not give the adversary any meaningful advan-
tage in factoring biprimes from the distribution produced by BFGM and, by
extension, CRTSample. Hazay et al. [20, Lemma 4.1] extended this argument to
the malicious setting, wherein the adversary is allowed to choose its own shares.

Lemma 3.7. ([4,20]). Let n < & and let (A;,.A5) be a pair of PPT algorithms.
For (state, {(pi, ¢i) }ien—1)) < A1(1%,1"), let N be a biprime sampled by run-
ning CRTSample(x,n, {(pi, @) }icn—1])- If As(state, N) outputs the factors of
N with probability at least 1/k%, then there exists an expected-polynomial-
time algorithm B that succeeds with probability 1/2*n3x? in the experiment

FaCtorB,BFGM(n,n) .

Multiparty Functionality. Our ideal functionality Frsacgen is a natural embedding
of CRTSample in a multiparty functionality: it receives inputs {(p;, ¢;) }iep~ from
the adversary and runs a single iteration of CRTSample with these inputs when
invoked. It either outputs the corresponding modulus N := p - ¢ if it is valid,
or indicates that a sampling failure has occurred. Running a single iteration
of CRTSample per invocation of Frsagen €nables significant freedom in the use
of Frsagen, because it can be composed in different ways to tune the trade-off
between resource usage and execution time. It also simplifies the analysis of the
protocol mrsagen that realizes Frsacen, because the analysis is made independent
of the success rate of the sampling procedure.

The functionality may not deliver N to the honest parties for one of two
reasons: either CRTSample failed to sample a biprime, or the adversary caused
the computation to abort. In either case, the honest parties are informed of the
cause of the failure, and consequently the adversary is unable to conflate the two
cases. This is essentially the standard notion of security with abort, applied to
the multiparty computation of the CRTSample algorithm. In both cases, the p
and ¢ output by CRTSample are given to the adversary. This leakage simplifies
our proof considerably, and we consider it benign, since the honest parties never
receive (and therefore cannot possibly use) N.

Functionality 3.8. Frsagen(k,n). Distributed Biprime Sampling

This n-party functionality attempts to sample an RSA modulus with prime
length x, and interacts directly with an ideal adversary S who corrupts the
parties indexed by P*. Let M be the largest number such that M/2 is a
primorial number and M < 2r~1os7,

Sampling: On receiving (sample,sid) from each party P; for i € [n] \ P*

and (adv-sample,sid, i, p;,¢;) from S for i € P* if 0 < p; < M and 0 <

q; < M for all i € P*, then run CRTSample(k,n, {(p:, ¢;) }icp+), and receive

as a result either (success,p,q) or (failure,p,q).

—If p £ 3 (mod 4) or ¢ # 3 (mod 4), then send (factors,sid,p,q) to S
and abort, informing all parties in an adversarially delayed fashion.

- If p = g = 3 (mod4), and the result was failure, then store
(non-biprime,sid, p, ¢) in memory and send (factors,sid, p,q) to S.

76 M. Chen et al.

-If p = ¢ = 3 (mod4), and the result was success, then com-
pute N :=p-q, store (biprime,sid, N,p,q) in memory, and send
(biprime,sid, N) to S.

Output: On receiving either (proceed,sid) or (cheat,sid) from S, if

(biprime,sid, N,p,q) or (non-biprime,sid,p,q) exists in memory,

— If proceed was received, then send either (biprime,sid, N) or
(non-biprime,sid) to all parties as adversarially delayed output, as appro-
priate. Terminate successfully.

— If cheat was received, then abort, notifying all parties in an adversarially
delayed fashion, and send (factors,sid, p, ¢) directly to S.

Regardless, ignore all further instructions with this sid.

4 The Distributed Biprime-Sampling Protocol

In this section, we present the distributed biprime-sampling protocol mrsaGen,
with which we realize Frsagen- We begin with a high-level overview, and then in
Sect. 4.2, we formally define the two ideal functionalities on which our protocol
relies, after which in Sect. 4.3 we give the protocol itself. In Sect. 4.4, we present
proof sketches of semi-honest and malicious security.

4.1 High-Level Overview

As described in the Introduction, our protocol derives from that of Boneh
and Franklin [4], the main technical differences relative to other recent Boneh-
Franklin derivatives [16,20] being the modularity with which it is described and
proven, and the use of CRT-based sampling. Our protocol has three main phases,
which we now describe in sequence.

Candidate Sieving. In the first phase of our protocol, the parties jointly sample
two k-bit candidate primes p and ¢ without any small factors, and multiply
them to learn their product N. Our protocol achieves these tasks in a unified,
integrated way, thanks to the Chinese Remainder Theorem.

Consider a prime m and a set of shares z; for i € [n] over the field Z,,. As in
the description of CRTRecon, let a and b be defined such that a¢-b =1 (mod m),
and let M be an integer. Observe that if m divides M, then

szﬁéo (mod m) = Za-bwv,mnodM;‘éO (mod m) (1)
i€[n] i€[n]

Now consider a vector of coprime integers m of length ¢, and let M be their
product. Let x be a vector, each element secret shared over the fields defined
by the corresponding element of m, and let a and b be defined as in CRTRecon

Multiparty Generation of an RSA Modulus 7

(i.e., a; := M/m; and a; - b; =1 (mod m;)). We can see that for any k, j € [{]
such that k # j,

a; =0 (modmy) = Z aj-bj-x;;mod M =0 (modmyg) (2)

i€[n]

and the conjunction of Egs. 1 and 2 gives us

ZZa] b; - x;; mod M = Zsz (mod my,)

JEll] i€[n] i€[n]

for all k € [¢]. Observe that this holds regardless of which order we perform the
sums in, and regardless of whether the mod M operation is done at the end, or
between the two sums, or not at all.

It follows then that we can sample n shares for an additive secret sharing over
the integers of a k-bit value z (distributed between 0 and n - M) by choosing m
to be the (k, n)-near-primorial vector (per Definition 3.4), instructing each party
P; for i € [n] to pick x; ; locally for j € [€] such that 0 < x; ; < m;, and then
instructing each party to locally reconstruct x; := CRTRecon(m, x;), its share
of x. It furthermore follows that if the parties can contrive to ensure that

Z x;,; Z0 (mod m;) (3)

i1€[n]

for j € [¢], then 2 will not be divisible by any prime in m.

Observe next that if the parties sample two shared vectors p and q as above
(corresponding to the candidate primes p and ¢) and compute a shared vector
N of identical dimension such that

szj quj—ZNZJ mOdmj) (4)

[n] i€[n] i€[n]

for all j € [¢], then it follows that

Z CRTRecon(m, p; ») - Z CRTRecon(m, q;) = Z CRTRecon(m, N; ,.)
i€[n] 1€[n] 1€[n]

and from this it follows that the parties can calculate integer shares of N =p-q
by multiplying p and q together element-wise using a modular-multiplication
protocol for linear secret shares, and then locally running CRTRecon on the
output to reconstruct N. In fact, our sampling protocol makes use of a special
functionality Faugmu, which samples p, q, and N simultaneously such that the
conditions in Eqgs. 3 and 4 hold.

There remains one problem: our vector m was chosen for sampling integer-
shared values between 0 and n - M (with each share no larger than M), but N
might be as large as n? - M?2. In order to avoid wrapping during reconstruction
of N, we must reconstruct with respect to a larger vector of primes (while
continuing to sample with respect to a smaller one). Let m now be of length ¢,

78 M. Chen et al.

and let ¢ continue to denote the length of the prefix of m with respect to which
sampling is performed. After sampling the initial vectors p, q, and N, each party
P; for i € [n] must extend p; . locally to ¢ elements, by computing

pi,; == CRTRecon ({mj’}j/EV] 7{Pj/}j/€m) mod m;

for j € [¢ 4+ 1,¢], and then likewise for q; .. Finally, the parties must use a
modular-multiplication protocol to compute the appropriate extension of N;
from this extended N, they can reconstruct shares of N = p-q. They swap
these shares, and thus each party ends the Sieving phase of our protocol with a
candidate biprime N and an integer share of each of its factors, p; and g;.

Each party completes the first phase by performing a local trial division to
check if N is divisible by any prime smaller than some bound B (which is a
parameter of the protocol). The purpose of this step is to reduce the number of
calls to Fgiprime and thus improve efliciency.

Biprimality Test. The parties jointly execute a biprimality test, where every
party inputs the candidate N and its shares p; and ¢;, and receives back a bipri-
mality indicator. This phase essentially comprises a single call to a functionality
FBiprime, Which allows an adversary to force spurious negative results, but never
returns false positive results. Though this phase is simple, much of the subtlety
of our proof concentrates here: we show via a reduction to factoring that cheat-
ing parties have a negligible chance to pass the biprimality test if they provide
wrong inputs. This eliminates the need to authenticate the inputs in any way.

Consistency Check. To achieve malicious security, the parties must ensure that
none among them cheated during the previous stages in a way that might influ-
ence the result of the computation. This is what we have previously termed the
retroactive consistency check. If the biprimality test indicated that N is not a
biprime, then the parties use a special interface of Faugmul to reveal the shares
they used during the protocol, and then they verify locally and independently
that p and ¢ are not both primes. If the biprimality test indicated that N is
a biprime, then the parties run a secure test (again via a special interface of
FaugMul) to ensure that length extensions of p and q were performed honestly.
To achieve semi-honest security, this phase is unnecessary, and the protocol can
end with the biprimality test.

4.2 1Ideal Functionalities Used in the Protocol

Augmented Multiparty Multiplier. The augmented multiplier functionality
Favgmul (Functionality 4.1) is a reactive functionality that operates in multiple
phases and stores an internal state across calls. It is meant to help in manipu-
lating CRT-form secret shares. It contains five basic interfaces.

— The sample interface allows the parties to sample shares of non-zero multipli-
cation triplets over small primes. That is, given a prime m, the functionality

Multiparty Generation of an RSA Modulus 79

receives a triplet (x;,y;, 2;) from every corrupted party P;, and then samples
a triplet (z;,y;,2;) < Z3, for every honest P; conditioned on

ZziEin-Zyiy‘éO (mod m)

1€[n] i€[n] i€[n]

In the context of mrsaGen, this is used to sample CRT-shares of p and q.

— The input and multiply interfaces, taken together, allow the parties to load
shares (with respect to some small prime modulus m) into the functionality’s
memory, and later perform modular multiplication on two sets of shares that
are associated with the same modulus. That is, given a prime m, each party
P; inputs x; and, independently, y;, and when the parties request a product,
with each corrupt party P; also supplying its own an output share z;, the
functionality samples a share of z from Z,, for each honest party subject to

ZziEZa?i-Zyi (mod m)

1€[n] 1€[n] i€[n]

In the context of mrsaGen, this interface is used to perform length-extension
on CRT-shares of p and q.

— The check interface allows the parties to securely compute a predicate over
the set of stored values. In the context of mrsagen, this is used to check that
the CRT-share extension of p and ¢ has been performed correctly, when N is
a biprime.

— The open interface allows the parties to retroactively reveal their inputs to
one another. In the context of mrsaGen, this is used to verify the sampling
procedure and biprimality test when N is not a biprime.

These five interfaces suffice for the malicious version of the protocol, and the
first three alone suffice for the semi-honest version. We make a final adjustment,
which leads to a substantial efficiency improvement in the protocol with which
we realize Faugmu (Which we describe in the full version of this paper [7]). Specif-
ically, we give the adversary an interface by which it can request that any stored
value be leaked to itself, and by which it can (arbitrarily) determine the output
of any call to the sample or multiply interfaces. However, if the adversary uses
this interface, the functionality remembers, and informs the honest parties by
aborting when the check or open interfaces is used.

Functionality 4.1. Faygmu(n). Augmented n-Party Multiplication

This functionality is parametrized by the party count n. In addition to
the parties it interacts with an ideal adversary & who corrupts the parties
indexed by P*. The remaining honest parties are indexed by P* := [n] \ P*.

Cheater Activation: Upon receiving (cheat,sid) from S, store
(cheater,sid) in memory and send every record of the form
(value,sid, i, 2;,m) to S. For the purposes of this functionality, we will
consider session IDs to be fresh even when a cheater record already exists
in memory.

80

M. Chen et al.

Sampling: Upon receiving (sample,sids,sids, m) from each party P; for
i € P* and (adv-sample,sidy, sida, 25, ¥i, 2;,m) from S for i € P*.@ if sid;
and sids are fresh, agreed-upon values and if m is an agreed-upon prime,
and if neither (cheater,sid;) nor (cheater,sids) exists in memory, then

sample (x;,;, z;) «— Z3, uniformly for each i € P* subject to

ZZZEZ$12y1$O (mod m)

i€[n] i€[n] i€[n]

If the previous conditions hold, but (cheater,sid;) or (cheater, sids) exists
in memory, then send (cheat-sample, sidy, sidz) to S and in response receive
(cheat-samples, sidy, sida, { (4, Yi, 2i) };cp=) Where 0 < x4, 14, 2; < m for all

1 and where
Z z; 0 (mod m)
i€[n]

(if these conditions are violated, then ignore the response from S). Regard-
less, store (value,sidy,i,z;,m) and (value,sids,i,y;,m) in memory for
i € [n], and then send (sampled-product,sidy,sida, x;, ¥, 2;) to each party
P; as adversarially delayed private output.

Input: Upon receiving (input,sid, z;, m) from each party P;, where i € [n]:
if sid is a fresh, agreed-upon value and if m is an agreed-upon prime, and
if 0 < x; < m for all i € [n], then store (value,sid,,z;,m) in memory for
each ¢ € [n] and send (value-loaded,sid) to all parties. If (cheater,sid)
exists in memory, then send (value,sid,i,2;,m) to S for each i € [n].

Multiplication: Upon receiving (multiply,sidy,sids,sids) from each
party P; for i € P* and (adv-multiply,sidy, sids, sids, i, 2;) from S for each
i € P*,* if all three session IDs are agreed upon and sids is fresh, and if no
record of the form (cheater,sid;) or (cheater,sidy) exists in memory, and
if records of the form (value,sidy, i, x;,m1) and (value,sids, i, y;, ma) exist
in memory for all i € [n] such that m; = mg, then sample z, «— Z,,, for
i € P* subject to

Z%E le Zy,» (mod my)
i€[n] i€[n] 1€[n]

If the previous conditions hold, but (cheater,sid;) or (cheater,sids) exists
in memory, then send (cheat-multiply,sidy,sids,sids) to S and in response
receive (cheat-product,sids, {z;};.p=) where 0 < z; < m; for all i. Regard-
less, send (product,sids, z;) to each party P; for ¢ € [n] as adversarially
delayed private output. Note that this procedure only permits multiplica-
tions of values associated with the same modulus.

Predicate Cheater Check: Upon receiving (check,sids, f) from all
parties, where f is the description of a predicate over the set of stored
values associated with the vector of session IDs sids, if f is not agreed upon,

Multiparty Generation of an RSA Modulus 81

or if any record (cheater,sid) exists in memory such that sid € sids, then
abort, informing all parties in an adversarially delayed fashion. Otherwise,
let x be the vector of stored values associated with sids, or in other words,
let it be a vector such that for all j € [|x|] and i € [n], records of the form
(value,sids;, i, y;, m) exist in memory such that

0<x;<m and ijZyi (mod m)
1€[n]

Send (predicate-result,sids, f(x)) to all parties as adversarially delayed
private output, and refuse all future messages with any session ID in sids.

Input Revelation: Upon receiving (open, sid) from all parties, if a record
of the form (cheater,sid) exists in memory, then abort, informing all par-
ties in an adversarially delayed fashion. Otherwise, for each record of the
form (value,sid,,z;) in memory, send (opening,sid,i,x;) to all parties
as adversarially delayed output. Refuse all future messages with this sid.

%In the semi-honest setting, the adversary does not send these values to
the functionality; instead the functionality samples the shares for corrupt
parties just as it does for honest parties.

Biprimality Test. The biprimality-test functionality Fagiprime (Functionality 4.2)
abstracts the behavior of the biprimality test of Boneh and Franklin [4]. The
functionality receives from each party a candidate biprime N, along with shares
of its factors p and q. It checks whether p and ¢ are primes and whether N =
p - q. The adversary is given an additional interface, by which it can ask the
functionality to leak the honest parties’ inputs, but when this interface is used
then the functionality reports to the honest parties that IV is not a biprime, even
if it is one.

Functionality 4.2. Fgiprime(M, n). Distributed Biprimality Test

This functionality is parametrized by the integer M and the party-count n.
In addition to the parties it interacts with an ideal adversary S.

Biprimality Test:

1. Wait to receive (check-biprimality,sid, N,p;,q;) from each party P;
for i € [n], where sid is a fresh, agreed-upon value.

2. Over the integers, compute

p=>Y p and g¢= ¢ and N =p-q
i€[n] i€[n]

3. If all parties agreed on the value of N in Step 1, and N = N’, and both p
and g are primes, and p Z 1 (mod ¢),and ¢ Z 1 (mod p),and0 <p < M
and 0 < g < M, then send a message (biprime,sid) to S. If S responds
with (proceed,sid), then output (biprime,sid) to all parties as adversar-

82 M. Chen et al.

ially delayed output. If S responds with (cheat,sid)?, or if any of the pre-
vious predicates is false, then output (leaked-shares,sid, {(p:,) }icn))
directly to S, and output (not-biprime,sid) to all parties as adversari-
ally delayed output.

“Semi-honest adversaries are forbidden to send the cheat instruction.

Realizations. In the full version of this paper [7], we discuss a protocol to realize
Fauvgmul, and in Sect. 5, we propose a protocol to realize Fgjprime. Both make use
of generic MPC, but in such a way that no generic MPC is required unless N is
a biprime.

4.3 The Protocol Itself

We refer the reader back to Sect.4.1 for an overview of our protocol. We have
mentioned that it requires a vector of coprime values, which is prefixed by the
(k, n)-near-primorial vector. We now give this vector a precise definition. Note
that the efficiency of our protocol relies upon this vector, because we use its
contents to sieve candidate primes. Since smaller numbers are more likely to
be factors for the candidate primes, we choose the largest allowable set of the
smallest sequential primes.

Definition 4.3. ((k,n)-Compatible Parameter Set). Let £’ be the smallest num-
ber such that the ¢/ primorial number is greater than 22¢~!, and let m be a
vector of length ¢’ such that m; = 4 and my, ..., my are the odd factors of the
¢th primorial number, in ascending order. (m, ¢, ¢, M) is the (k,n)-compatible
parameter set if £ < £’ and the prefix of m of length £ is the (k, n)-near-primorial
vector per Definition 3.4, and if M is the product of this prefix.

Protocol 4.4. mrsagen (s, n, B). Distributed Biprime Sampling

This protocol is parametrized by the RSA prime length x, the number of
parties n, and the trial-division bound B. Let (m, ¢ ¢, M) be the (k,n)-
compatible parameter set, per Definition 4.3. In this protocol the parties
have access to the functionalities Faugmul and Fgiprime-

Candidate Sieving:

1. Upon receiving input (sample,sid) from the environment, the parties
begin the protocol. Every party P; for ¢ € [n] computes three vectors of
session 1Ds

psids := {GenSID(sid, j,p)} e (e
gsids := {GenSID(sid, j,q) } je[¢]
Nsids = {GenSID(sid, j, N)} e

and sends (sample,psidsj7qsidsj,mj) to Faugmu(n) for every j €
[2,/], and receives (sampled-product,psids,,qsids;,p; ;,q;;,N; ;) in

Multiparty Generation of an RSA Modulus 83

response. The parties also set p1,1 :=q1,1 =3 and py/ 1 :=qy,1 =0 for
i’ € [2,n].
2. Each party P; for i € [n] computes

p; = CRTRecon <{mj}je[£] ’{pi»j}jem)
¢; == CRTRecon ({mj}je[é] ’{qi:j}je[e])
and then, for j € [¢ + 1, ¢'], P; computes
Pi; = p; mod m; and q;,j = ¢; mod m;
Note that each party P; is now in possession of a pair of vectors
Piyx € Ly X ... X L, and Qix € Ly X .. X Ln,,

3. For j € [¢+1,¢'], every party P; for i € [n] sends the following sequence
of messages to Faugmul (1), waiting for confirmation after each:
(a) (input,psids;, p; ;, m;)
(b) (input, qSidea Qi 55 mj)
(¢) (multiply, psids;, gsids;, Nsids;)
and at the end of this sequence, each party P; receives
(product, Nsids;, N; ;) from Faugmul(n) in response. Note that each party
P; is now in possession of a vector Nj » € Zm, X ... X Zm,, .

4. For j € [2,/'], each party P; for i € [n] broadcasts N; ;. Once all parties
have received shares from all other parties, they compute

N := CRTRecon | m, Z Ny ; mod m;

i/ €[n] jele]

5. Each party P; performs a local trial division on N by all primes less
than B. If N is divisible by some prime, then the parties skip directly to
Step 7, and take the privacy-free branch.

Biprimality Test:

6. Each party P; for i € [n] sends (check-biprimality,sid, N,p;,q;) to
Fiprime (M, n) and waits for either (biprime,sid) or (not-biprime,sid)
in response.

Consistency Check: ¢
7. Let f be the predicate that is defined to compute

pir = CRTRecon (m, p;/) and gir = CRTRecon (m, q;)

84 M. Chen et al.

for all i’ € [n] and to return 1 if and only if

V=Y Y w
]

i'€[n] i'€ln
AN O0<pr<M AN 0<qr<M for all i’ € [n)

where the sums and product are taken over the integers.

— If biprime is received from Fgiprime(M,n), then N is a biprime,
and a privacy-preserving check must be performed. Each party
sends (check, psids||gsids, f) to Faugmu(n). If Faugmu returns
(predicate-result, psids|/gsids, 1) then the parties halt successfully
and output (biprime,sid, N) to the environment; otherwise, they
abort.

— If not-biprime is received from Fgiprime (M, 1), then either N is not a
biprime or some party has cheated; consequently, a privacy-free check
is performed.

(a) For j € [2,/'], each party P; for i € [n] sends (open, psids;) and
(open, gsids;) to Faugmul(n). If P; observes Faugmul(n) to abort in
response to any of these queries, then P; itself aborts. Otherwise,
P; receives (opening, psids;,p:s ;) and (opening, gsids;, q;/ ;) for
each i’ € [n] and j € [2,¢'].

(b) The parties individually check that the predicate f holds over the
vectors of shares which they now all possess. If this predicate holds
and p and ¢ are not both prime, then all parties halt successfully
and output (non-biprime,sid) to the environment. Otherwise, a
party has cheated, and they abort.

¢If only security against semi-honest adversaries is required, the protocol
can terminate after the Biprimality-Test phase, and these checks are unnec-
essary.

4.4 Security Sketches

We now informally argue that mrsagen realizes Frsagen in the semi-honest and
malicious settings. We give a full proof for the malicious setting in the full version
of this paper [7].

Theorem 4.5. Trsagen UC-realizes Frsagen With perfect security in the
(FaugMut, Faiprime)-hybrid model against a static, semi-honest adversary that cor-
rupts up to n — 1 parties.

Proof Sketch. In lieu of arguing for the correctness of our protocol, we refer
the reader to the explanation in Sect.4.1, and focus here on the strategy of a
simulator S against a semi-honest adversary A who corrupts the parties indexed
by P*. S forwards all messages between A and the environment faithfully.

Multiparty Generation of an RSA Modulus 85

In Step 1 of mrsaGen, for each j € [2,4], S receives the sample instruction
with modulus m; on behalf of Faygmu from all parties indexed by P*. For each
Jj it then samples (p; j, di ;, Ni ;) ZSmi uniformly for ¢ € P*, and returns each
triple to the appropriate party.

Step 2 involves no interaction on the part of the parties, but it is at this point
that S computes p; and g; for i € P*| in the same way that the parties themselves
do. Note that since p.,; and q,,; are deterministically chosen, they are known
to §. The simulator then sends these shares to Frsagen Vvia the functionality’s
adv-input interface, and receives in return either a biprime N, or two factors p
and ¢ such that N := p- ¢ is not a biprime. Regardless, it instructs Frsagen t0
proceed.

In Step 3 of mrsaGen, S receives two input instructions from each corrupted
party for each j € [¢+1,¢'] on behalf of Faugmul, and confirms receipt as Faugmul
would. Subsequently, for each j € [¢ + 1,¢'], the corrupt parties all send a
multiply instruction, and then & samples N; j « Zp,, for i € [n] subject to

Z Ni7j =N (mod mj)

1€[n]

and returns each share to the matching corrupt party.

In Step 4 of TrsaGen, for every j € [¢'], every corrupt party P;s for i’ € P*,
and every honest party P; for i € [n] \ P*, S sends N, ; to Py on behalf of P;,
and receives Ny ; (which it already knows) in reply.

To simulate the final steps of mrsagen, S tries to divide N by all primes smaller
than B. If it succeeds, then the protocol is complete. Otherwise, it receives
check-biprimality from all of the corrupt parties on behalf of Fgiprime, and
replies with biprime or not-biprime as appropriate. It can be verified by inspec-
tion that the view of the environment is identically distributed in the ideal-world
experiment containing S and honest parties that interact with Frsagen, and the
real-world experiment containing A and parties running mrsaGen- O

Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then mrsaGen
UC-realizes Frsagen in the (Faugmul; FBiprime)-hybrid model against a static, mali-
cious PPT adversary that corrupts up to n — 1 parties.

Proof Sketch. We observe that if the adversary simply follows the specification
of the protocol and does not cheat in its inputs to Faugmu O FBiprime, then
the simulator can follow the same strategy as in the semi-honest case. At any
point if the adversary deviates from the protocol, the simulator requests Frsagen
to reveal all honest parties’ shares, and thereafter the simulator uses them by
effectively running the code of the honest parties. This matches the adversary’s
view in the real protocol as far as the distribution of the honest parties’ shares
is concerned.

It remains to be argued that any deviation from the protocol specification will
also result in an abort in the real world with honest parties, and will additionally
be recognized by the honest parties as an adversarially induced cheat (as opposed
to a statistical sampling failure). Note that the honest parties must only detect

86 M. Chen et al.

cheating when NV is truly a biprime and the adversary has sabotaged a successful
candidate; if IV is not a biprime and would have been rejected anyway, then cheat-
detection is unimportant. We analyze all possible cases where the adversary
deviates from the protocol below. Let N be defined as the value implied by
parties’ sampled shares in Step 1 of TrsaGen-

Case 1: N is a non-biprime and reconstructed correctly. In this case, Fgiprime Will
always reject N as there exist no satisfying inputs (i.e., there are no two prime
factors p, g such that p- g = N).

Case 2: N is a non-biprime and reconstructed incorrectly as N'. If by fluke N’
happens to be a biprime then the incorrect reconstruction will be caught by the
explicit secure predicate check during the consistency-check phase. If N’ is a
non-biprime then the argument from the previous case applies.

Case 3: N is a biprime and reconstructed correctly. If consistent inputs are
used for the biprimality test and nobody cheats, the candidate N is successfully
accepted (this case essentially corresponds to the semi-honest case). Otherwise,
if inconsistent inputs are used for the biprimality test, one of the following events
will occur:

— Fiprime Tejects this candidate. In this case, all parties reveal their shares of
p and ¢ to one another (with guaranteed correctness via fAugMu|) and locally
test their primality. This will reveal that N was a biprime, and that Fgiprime
must have been supplied with inconsistent inputs, implying that some party
has cheated.

— FBiprime accepts this candidate. This case occurs with negligible probability
(assuming factoring is hard). Because N only has two factors, there is exactly
one pair of inputs that the adversary can supply to Fgiprime to induce this
scenario, apart from the pair specified by the protocol. In our full proof (see
the full version [7] of this paper) we show that finding this alternative pair of
satisfying inputs implies factoring N. We are careful to rely on the hardness
of factoring only in this case, where by premise N is a biprime with x-bit
factors (i.e., an instance of the factoring problem).

Case 4: N is a biprime and reconstructed incorrectly as N'. If N’ is a biprime
then the incorrect reconstruction will be caught during the consistency-check
phase, just as when N is a biprime. If N’ is a non-biprime then it will by
rejected by Fgiprime, inducing all parties to reveal their shares and find that their
shares do not in fact reconstruct to N/, with the implication that some party
has cheated.

Thus the adversary is always caught when trying to sabotage a true biprime,
and it can never sneak a non-biprime past the consistency check. Because the
real-world protocol always aborts in the case of cheating, it is indistinguishable
from the simulation described above, assuming that factoring is hard. O

Multiparty Generation of an RSA Modulus 87

5 Distributed Biprimality Testing

In the semi-honest setting, Fgiprime can be realized by the biprimality-testing
protocol of Boneh and Franklin [4]. We discuss this in the full version [7] of this
paper. The following lemma follows immediately from their work.

Lemma 5.1. The biprimality-testing protocol described by Boneh and
Franklin [4] UC-realizes Fgiprime With statistical security in the FcomCompute-
hybrid model against a static, semi-honest adversary who corrupts up to n — 1
parties.

5.1 The Malicious Setting

Unlike a semi-honest adversary, we permit a malicious adversary to force a true
biprime to fail our biprimality test, and detect such behavior using independent
mechanisms in the mrsagen protocol. However, we must ensure that a non-biprime
can never pass the test with more than negligible probability. To achieve this, we
use a derivative of the biprimality-testing protocol of Frederiksen et al. [16]; rel-
ative to their protocol, ours is simpler, and we prove that it UC-realizes Fgiprime-

The protocol essentially comprises a randomized version of the semi-honest
Boneh-Franklin test described previously, followed by a Schnorr-like protocol to
verify that the test was performed correctly. The soundness error of the under-
lying biprimality test is compounded by the Schnorr-like protocol’s soundness
error to yield a combined error of 3/4; this necessitates an increase in the num-
ber of iterations by a factor of logy/3(2) < 2.5. While this is sufficient to ensure
the test itself is carried out honestly, it does not ensure the correct inputs are
used. Consequently, generic MPC is used to verify the relationship between the
messages involved in the Schnorr-like protocol and the true candidate given by
N and shares of its factors. As a side effect, this generic computation samples
r «— Zy and outputs z = r- (p + ¢ — 1) mod N so that the GCD test can
afterward be run locally by each party.

Our protocol makes use of a number of subfunctionalities, all of which are
standard and described in the full version of this paper [7]. Namely, we use
a coin-tossing functionality Fct to uniformly sample an element from some set,
the one-to-many commitment functionality Fcom, the generic MPC functionality
over committed inputs Fcomcompute; and the integer-sharing-of-zero functionality
Fzero- In addition, the protocol uses the algorithm VerifyBiprime (Algorithm 5.3).

Protocol 5.2. mgiprime(M,). Distributed Biprimality Testing

This protocol is parametrized by an integer M and the number of parties
n. In addition, there is a statistical parameter s. The parties have access to
the Fct, Fcom, FComCompute; and Fzero functionalities.

Input Commitment:
1. Upon receiving input (check-biprimality,sid, N,p;,q;) from the envi-
ronment, each party P; for i € [n] samples 7; ; « Zps.9s+1 for j € [2.55]

88

M. Chen et al.

and commits to these values, along with its shares of p and ¢, by sending
(commit, (:‘l(EHSlD(Sid7 i)7 (pi, qis Ti7*)) to fComCompute(n)~

Boneh-Franklin Test:

2.

3.

Each party P; for i € [n] sends (sample,sid) to Fzero(n,22"T%) and
receives (zero-share,sid, r;) in response.

For j € [2.5s], the parties invoke Fct(n,Jn), where Ju is the subdomain
of Z}; that contains only values with Jacobi symbol 1. The parties define
vector 7y that contains the 2.5s sampled values.

For every j € [2.5s], party P; computes®

Xuy = A0 o Y

and every other party P; for i € [2,n] computes

Xij = ,y;i*(PiJrQi)/ﬁl mod N

Every P; for i € [n] sends (commit, GenSID(sid, %), Xi «, [n]) to Fcom(n).
After being notified that all other parties are committed, each party P;
for i € [n] sends (decommit, GenSID(sid,)) to Fcom(n), and in response
receives Xy . from Feom(n) for i’ € [n] \ {i}.

The parties output (not-biprime,sid) to the environment and halt if
there exists j € [2.5s] such that

fyj(.N75)/4 . H X’L,j 7_é +1 (mod N)

i€[n]

Consistency Check and GCD Test:

8.

9.

10.

11.

12.

For j € [2.5s], each party P; for i € [n] computes «; ; := 'y;-i‘j mod N.
The parties all broadcast the values they have computed to one another.
The parties all send (£1ip, sid) to Fcr(n,{0,1}%%%) to obtain an agreed-
upon random bit vector c of length 2.5s.

For j € [2.5s], party P computes (i ; := 71 ; —¢; - (p1 +¢1)/4, and every
other party P; for i € [2,n] computes (;; == 7 ; —¢; - (pi + ¢ — 6)/4.
They all broadcast the values they have computed to one another.

The parties halt and output (not-biprime,sid) if there exists any j €
[2.5s] such that

IT % 2 II s X (mod N)
i€[n] i€[n]

Let C be a circuit computing VerifyBiprime(N, M,c,{-,-,-, i« }icm));
that is, let it be a circuit representation of Algorithm 5.3 with

Multiparty Generation of an RSA Modulus 89

the public values N, M, ¢, and (hardcoded. The parties send
(compute, sid, {GenSID(sid, i) }ic[n], C) t0 FcomCompute(12), and in response
they all receive (result,sid, z). If z = L, or if FcomCompute (1) aborts, then
the parties halt and output (not-biprime,sid).

13. The parties halt and output (biprime,sid) to the environment if
ged(z, N) =1, or halt and output (not-biprime,sid) otherwise.

“Recall that py = ¢ = 3 (mod 4), and so subtracting 6 from their sum
ensures that division by 4 can be performed without computing a modular
multiplicative inverse in Z3;,. We compensate for this offset using another
offset in Step 7.

Below we present the algorithm VerifyBiprime that is used for the GCD test.
The inputs are the candidate biprime N, an integer M (the bound on the shares’
size), a bit-vector ¢ of length 2.5s, and for each i € [n] a tuple consisting of
the shares p; and ¢; with the Schnorr-like messages 7; . and (; . generated by
P;. The algorithm verifies that all input values are compatible, and returns
z=r-(p+¢—1)mod N for a random r.

Algorithm 5.3. VerifyBiprime(N, M, ¢, {(ps, Gi, Ti,«» Gix) Fic[n])
1. Sample r «+ Zpy and compute

zzzr-<—1—|— Z(pi—kqi)) mod N

1€[n]

2. Return z if and only if it holds that

N:Zpi'th

1€[n] 1€[n]
AN O0<p<M AN 0<qg<M for all i € [n]
AN T =C +¢ (P +aq —6)/4 for all j € [2.55]
AN Tig=Gjtci (pi+aq)/4 for all ¢ € [2,n] and j € [2.55]

If any part of the above predicate does not hold, output L.

Theorem 5.4. 7Tgiprime UC-realizes Fgiprime in the (Fcom, FComCompute; FCT;
FZzero)-hybrid model with statistical security against a static, malicious adver-
sary that corrupts up to n — 1 parties.

Proof Sketch. Our simulator S for Fgiprime receives N as common input. Let
P* and P* be vectors indexing the corrupt and honest parties, respectively. To
simulate Steps 1 through 3 of 7giprime, S simply behaves as Fct, Fzero, and
FcomCompute Would in its interactions with the corrupt parties on their behalf,
remembering the values received and transmitted. Before continuing, & submits
the corrupted parties’ shares of p and ¢ to Fgiprime On their behalf. In response,
Fiprime €ither informs S that NV is a biprime, or leaks the honest parties’ shares.

90 M. Chen et al.

In Step 4, S again behaves exactly as Fcom would. During the remainder of the
protocol, the simulator must follow one of two different strategies, conditioned
on whether or not N is a biprime. We will show that both strategies lead to a
simulation that is statistically indistinguishable from the real-world experiment.

— If Fhiprime reported that N is a biprime, then we know by the specification
of Faiprime that the corrupt parties committed to correct shares of p and ¢ in
Step 1 of Tgjprime. Boneh and Franklin [4] showed that the value (i.e., sign) of
the right-hand side of the equality in Step 7 is predictable and related to the
value of 7;. We refer to them for a precise description and proof. If without
loss of generality we take that value to be 1, then S can simulate iteration
j of Steps 6 and 7 as follows. First, S computes x; ; for ¢ € P* to be the
corrupt parties’ ideal values of x; ; as defined in Step 4 of 7giprime. Then, S
samples x; ; < Z4 uniformly for i € P* subject to

”Y(S_N)/4

H Xij = 71_[— (mod N)

ieP* icP* Xisj
and simulates Step 6 by releasing x; ; for i € P* to the corrupt parties on
behalf of Fcom. These values are statistically close to their counterparts in
the real protocol. Finally, & simulates Step 7 by running the test for itself
and sending the cheat command to Fgjprime On failure.
Given the information now known to &, Steps 8 through 11 of mgiprime can be
simulated in a manner similar to the simulation of a common Schnorr protocol:
S simply chooses (; . < Z275.,: uniformly for i € P+, fixes ¢ « {0,1}>7*
ahead of time, and then works backwards via the equation in Step 11 to
compute the values of «; , for i € P+ that it must send on behalf of the honest
parties in Step 8. These values are statistically close to their counterparts in
the real protocol.
S finally simulates the remaining steps of mgiprime by checking the VerifyBiprime
predicate itself (since the final GCD test is purely local, no action need be
taken by S). If at any point after Step 4 the corrupt parties have cheated
(i.e., sent an unexpected value or violated the VerifyBiprime predicate), then
S sends the cheat command to Fgjprime. Otherwise, it sends the proceed
command to Fgiprime, completing the simulation.

— If Faiprime reported that N is not a biprime (which may indicate that the
corrupt parties supplied incorrect shares of p or ¢), then it also leaked the
honest parties’ shares of p and ¢ to S. Thus, S can simulate Steps 4 through 13
of TRiprime by running the honest parties’ code on their behalf. In all instances
of the ideal-world experiment, the honest parties report to the environment
that N is a non-biprime. Thus, we need only prove that there is no strategy
by which the corrupt parties can successfully convince the honest parties that
N is a biprime in the real world.

In order to get away with such a real-world cheat, the adversary must cheat
in every iteration j of Steps 4 through 6 for which

’yj(-prfq)M Z 41 (mod N)

Multiparty Generation of an RSA Modulus 91

Specifically, in every such iteration j, the corrupt parties must contrive to
send values x; ; for i € P* such that

7§N_5)/4 . H Xij =N TPTOMTAL = 41 (mod N)
i€[n]

for some nonzero offset value A; ;. We can define a similar offset Ay ; for
the corrupt parties’ transmitted values of «; ;, relative to the values of 7; ;
committed in Step 1:

Az — Tij
vy H Q;j = H ; (mod N)
i€[n] 1€[n]

Since we have presupposed that the protocol outputs biprime, we know that
the corrupt parties must transmit correctly calculated values of (; , in Step 10
of TRiprime, OF else Step 12 would output non-biprime when these values are
checked by the VerifyBiprime predicate. It follows from this fact and from the
equation in Step 11 that Ay ; =c¢; - A1 ; (mod ¢(N)), where ¢(-) is Euler’s
totient function. However, both A; , and Ag . are fixed before c is revealed
to the corrupt parties, and so the adversary can succeed in this cheat with
probability at most 1/2 for any individual iteration j.

Per Boneh and Franklin [4, Lemma 4.1], a particular iteration j of Steps 4
through 6 of mgjprime Produces a false positive result with probability at most
1/2 if the adversary behaves honestly. If we assume that the adversary cheats
always and only when a false positive would not have been produced by honest
behavior, then the total probability of an adversary producing a positive
outcome in the j'" iteration of Steps 4 through 6 is upper-bounded by 3/4.
The probability that an adversary succeeds over all 2.5s iterations is therefore
at most (3/4)%:5% < 275, Thus, the adversary has a negligible chance to force
the acceptance of a non-biprime in the real world, and the distribution of
outcomes produced by § is statistically indistinguishable from the real-world
distribution. O

Acknowledgements. The authors thank Muthuramakrishnan Venkitasubramaniam
for the useful conversations and insights he provided, Tore Frederiksen for reviewing
and confirming our cost analysis of his protocol [16], and Xiao Wang and Peter Scholl
for providing detailed cost analyses of their respective protocols [21,34].

This research was supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Project Activity (IARPA) under
contract number 2019-19-020700009 (ACHILLES).

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of ODNI, IARPA, Dol/NBC, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

92

M. Chen et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared

secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417-432. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9_27

. Barker, E.: NIST special publication 800-57, part 1, revision 4 (2016). https://doi.

org/10.6028 /NIST.SP.800-57pt1r4

. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. In: Kaliski,

B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425-439. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052253

. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),

702-722 (2001)

. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure

computation. In: ACM CCS, pp. 291-308 (2019)

. Canetti, R.: Universally composable security: a new paradigm for cryptographic

protocols. In: FOCS, pp. 136-145 (2001)

. Chen, M., et al.: Muliparty generation of an RSA modulus (2020). http://eprint.

iacr.org/2020/370

. Cocks, C.: Split knowledge generation of RSA parameters. In: Darnell, M. (ed.)

Cryptography and Coding 1997. LNCS, vol. 1355, pp. 89-95. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0024452

. Cocks, C.: Split generation of RSA parameters with multiple participants (1998).

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600

Cohen, R., Haitner, 1., Omri, E., Rotem, L.: From fairness to full security in mul-
tiparty computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol.
11035, pp. 216-234. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98113-0_12

Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multi-
party computation. JCRYPT 30(4), 1157-1186 (2017)

Damgard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed
RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 183—
200. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_12
Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: S&P, pp. 980-997 (2018)

Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: S&P (2019)

Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA-key
generation. In: PODC, p. 320 (1998)

Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331-361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0_12

Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116-129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1_8

Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press (2001)

https://doi.org/10.1007/3-540-45708-9_27
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.1007/BFb0052253
http://eprint.iacr.org/2020/370
http://eprint.iacr.org/2020/370
https://doi.org/10.1007/BFb0024452
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600
https://doi.org/10.1007/978-3-319-98113-0_12
https://doi.org/10.1007/978-3-319-98113-0_12
https://doi.org/10.1007/978-3-642-11799-2_12
https://doi.org/10.1007/978-3-319-96881-0_12
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Multiparty Generation of an RSA Modulus 93

Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation
and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 313-331. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27954-6_20

Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold paillier in the two-party setting. JCRYPT 32(2), 265-323
(2019)

Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASTACRYPT 2017.
LNCS, vol. 10624, pp. 598-628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8_21

Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifi-
able abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369-386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
121

Joye, M., Pinch, R.: Cheating in split-knowledge RSA parameter generation. In:
Workshop on Coding and Cryptography, pp. 157-163 (1999)

Katz, J., Lindell, Y.: Digital signature schemes. In: Introduction to Modern Cryp-
tography, 2nd edn, pp. 443-486. Chapman & Hall/CRC (2015)

Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms (1969)

Malkin, M., Wu, T., Boneh, D.: Experimenting with shared RSA key generation.
In: NDSS, pp. 43-56 (1999)

Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13(3), 300-317 (1976)

Pietrzak, K.: Simple verifiable delay functions. In: ITCS, pp. 60:1-60:15 (2019)
Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In: Ohta, K.,
Pei, D. (eds.) ASTACRYPT 1998. LNCS, vol. 1514, pp. 11-24. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-49649-1_2

Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory
12(1), 128-138 (1980)

Rivest, R.L.: A description of a single-chip implementation of the RSA cipher
(1980)

Rivest, R.L.: RSA chips (past/present/future). In: Beth, T., Cot, N., Ingemarsson,
I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 159-165. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39757-4_16

Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120-126 (1978)

Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS, pp. 39-56 (2017)

Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379-407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4_13

https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/3-540-49649-1_2
https://doi.org/10.1007/3-540-39757-4_16
https://doi.org/10.1007/978-3-030-17659-4_13

Secret Sharing

®

Check for
updates

Non-malleability Against Polynomial
Tampering

Marshall Ball'®) Eshan Chattopadhyay?, Jyun-Jie Liao?, Tal Malkin',
and Li-Yang Tan®

L Columbia University, New York, USA
{marshall,tal}@cs.columbia.edu
2 Cornell University, Ithaca, USA
{eshanc, j13825}@cornell.edu
3 Stanford University, Stanford, USA
liyang@cs.stanford.edu

Abstract. We present the first explicit construction of a non-malleable
code that can handle tampering functions that are bounded-degree poly-
nomials. Prior to our work, this was only known for degree-1 polynomials
(affine tampering functions), due to Chattopadhyay and Li (STOC 2017).
As a direct corollary, we obtain an explicit non-malleable code that is
secure against tampering by bounded-size arithmetic circuits.

We show applications of our non-malleable code in constructing non-
malleable secret sharing schemes that are robust against bounded-degree
polynomial tampering. In fact our result is stronger: we can handle adver-
saries that can adaptively choose the polynomial tampering function
based on initial leakage of a bounded number of shares.

Our results are derived from explicit constructions of seedless non-
malleable extractors that can handle bounded-degree polynomial tam-
pering functions. Prior to our work, no such result was known even for
degree-2 (quadratic) polynomials.

1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [33]
as a natural and useful modification of error correcting codes, which can handle
stronger forms of adversarial tampering attacks (including ones that can change
all symbols of the codeword), while still providing meaningful guarantees. Infor-
mally, a non-malleable code is a pair of algorithms (Enc, Dec), and it is secure
against a tampering function family F if for every tampering function f € F,
the decoding of a tampered codeword, namely Dec(f(Enc(s))) for an arbitrary
message s, will either be the original message s, or a value completely unrelated
to s. (See Sect. 3.3 for a formal definition).

As an example of an application of non-malleable codes, one can consider s
as being the signing key of a digital signature scheme, and is stored as Enc(s) in

© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 97-126, 2020.
https://doi.org/10.1007/978-3-030-56877-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_4

98 M. Ball et al.

memory. The non-malleability guarantee ensures that for any tampering attack
which turns Enc(s) into f(Enc(s)), the tampered signature is signed under
either s or a completely unrelated key. In both cases the tampered signature
does not help the adversary learn how to forge a valid signatures on its own.

Non-malleable codes have also found other useful applications in cryptogra-
phy, such as in constructing non-malleable commitments [37], public-key encryp-
tion systems [25], and, as we discuss in Sect. 1.2, non-malleable secret sharing
[1,6,35,306].

Dziembowski et al. [33] observed that some restrictions on the tampering
function family is necessary. Indeed, it is impossible to achieve non-malleability
if the adversary is able to decode the codeword, tamper the message, and then
re-encode the tampered message. In the last 10 years, non-malleable codes have
been shown to exist for numerous rich tampering function families and in various
settings. In this work we focus on explicit, information-theoretic constructions.

A successful line of work focused on split-state tampering functions, where
the codeword is broken into several disjoint parts and the adversary can tamper
each part arbitrarily but independently [2-4,16,19,21,32,38,41,42,44,45]. This
line of work has culminated in the construction of near-optimal codes in this
setting.

Recently there has been significant interest and progress on constructing
non-malleable codes in a more general setting, where the tampering functions
are not restricted to fixed partitions, and can act globally on the codeword.
Global tampering classes that have been studied include permutations and bit
flipping [5], local functions [9], affine functions over Fy [17], small-depth circuits
[8,17], and small-depth decision trees [10]. Our work fits into this line of research.

Our Results. We consider the tampering class of bounded-degree polynomials.
This is a natural class of tampering functions, and significantly generalizes the
class of affine tampering functions (i.e. degree-1 polynomials) studied in [17].
We define the setting more precisely as follows. Let ¢ be a prime, and Poly,, . 4
denote the family of n-variate polynomials over F, of degree at most d. We are
interested in the following family of tampering functions:

]:n,q,d = {(p17 s ap’fl) Vi€ [n]’pi € POlyn,q,d}'
For P = (p1,.--,Pn) € Fnqd, and x € Fy, define P(z) := (p1(),...,pn(z)).
The following is our main result.

Theorem 1 (NMCs for bounded-degree polynomials). There ezists a
constant C > 0 such that for all integers n,d,m, any € > 0 and any prime
q > (Cn2d*m2?™ /c2) - log(nd/e), there exists a non-malleable code on alphabet
[q], with block length n, message length m, relative rate £2(m/nlogq) and error
e, with respect to the family Fp, q.q-

Prior to our work, no explicit construction of a non-malleable code was known
even for quadratic polynomials (d = 2).

To prove Theorem 1, we construct new explicit seedless non-malleable extrac-
tors that can handle the tampering class F, 4 4. A similar strategy was adopted

Non-malleability Against Polynomial Tampering 99

in [17], where they constructed seedless non-malleable extractors against affine
tampering functions (i.e, F, 4,1). However, their construction of such extractors
heavily exploit the linearity of the tampering functions and explicit construc-
tions of extractors that are linear, and their techniques seem to break down
even against quadratic tampering functions. We introduce a completely differ-
ent approach to construct seedless non-malleable extractors against higher degree
polynomial tampering. We discuss this in detail in Sect. 1.3.

We use Theorem 1 to derive a non-malleable code that is secure against tam-
pering by arithmetic circuits. Consider the following family of tampering func-
tions:

Enygs :=1{(e1,...,en) : € is an n-variate size-s arithmetic circuit over F}.
For E = (e1,...,en) € Enq,s and z € Fy, we define E(x) := (e1(z),...,en(x)).

Corollary 1 (NMCs for arithmetic circuits). There exists a constant
C > 0 such that for all integers n,s,m, any € > 0 and any prime q >
(Cn2sm21st2m /22 . log(n/e), there exists a non-malleable code on alphabet [q],
with block length n, message length m, relative rate 2(m/nlogq) and error e,
with respect to the family &£, 4 ..

To our knowledge, this is the first explicit construction of a non-malleable
code that can handle tampering by arithmetic circuits.

Corollary 1 follows as a straightfoward consequence of Theorem 1, using the
fact that a size-s arithmetic circuit computes a polynomial of degree at most 2°.

1.2 Non-malleable Secret Sharing

A t-out-of-n secret sharing scheme [13,55] allows a dealer to share a secret s €
{0,1}™ among n parties such that any t parties can collectively recover the
secret, and yet any colluding (¢ — 1) parties learn nothing about the secret.
Recently, Goyal and Kumar [35] initiated the study of the more robust notion
of non-malleable secret sharing. A non-malleable secret sharing scheme further
requires the shares to be non-malleable against a family of tampering functions
F. That is, when the shares are tampered by any function f € F, for any ¢ parties
the reconstructed secret should be either s or a value completely unrelated to s.

Similar to non-malleable codes, non-malleable secret sharing schemes aim to
provide protection against tampering attacks, and there are strong connections
between non-malleable secret sharing schemes and non-malleable codes. In fact,
it can be shown that non-malleable codes in the 2-split-state model are 2-out-of-2
secret sharing schemes. In [35], the authors constructed ¢-out-of-n non-malleable
secret sharing schemes in different tampering models. A detailed comparison of
these models and references to other related work can be found in [1]. These
models have in common that the tampering functions are “compartmentalized”,
applying the function independently to different disjoint parts.

A natural direction of investigation is to construct non-malleable secret
sharing against tampering functions that are not compartmentalized. Recently,

100 M. Ball et al.

Lin et al. [46] construct a t-out-of-n secret sharing against affine tampering
for every t and large enough n, and Chattopadhyay and Li [18] construct a
non-malleable ramp secret sharing against affine tampering composed with joint
tampering.

Our Results. We construct a non-malleable secret sharing scheme that is secure
against the class of polynomial tampering functions. Prior to our work, no such
explicit construction was known even against the tampering class of quadratic
polynomials. The following is an informal version of our result:

Theorem 2 (NM secret sharing for polynomial tampering). For all inte-
gers n,d,r, any prime q¢ > poly(2™,n,d) and 1 < r < n, there exists an r-out-
of-n non-malleable secret sharing scheme with respect to polynomial tampering
Fn,q,a for m-bit secrets.

In fact our construction is stronger and can handle an adaptive tampering
adversary who chooses the polynomial tampering function f € Fy, q.q4 depending
on any r — 1 of the shares.

As in the case of non-malleable codes, the above theorem directly yields
explicit non-malleable secret sharing schemes that are secure against the tam-
pering class of bounded-size arithmetic circuits.

1.3 Seedless Non-malleable Extractors

Informally, a randomness extractor is a deterministic algorithm that produces
nearly uniform bits of randomness from defective sources of randomness. The
study of randomness extractors is motivated by the fact that many applications
in computer science require high-quality random bits, whereas most naturally
occurring sources of randomness are of much lower quality. Before defining a
randomness extractor formally, we first define the notion of min-entropy that is
typically used as a measure of the quality of a source:

Definition 1 (Min-entropy and (n,k)-sources). Let X be a distribu-
tion on {0,1}™. The min-entropy of X, denoted by Ho(X), is defined as
min, (log(1/ Pr[X = z])).

An (n, k)-source is a distribution on {0,1}"™ with min-entropy at least k.

For two distributions D; and Dy on the same universe {2, we use |D; — Ds|
to denote the statistical distance between them. We are now ready to define a
randomness extractor for a class of sources.

Definition 2 (Extractor). Let X' be a family of sources on {0,1}™. A function
Ext : {0,1}™ — {0,1}™ is called an extractor for the family X with error e if
forany X € X,

|Ext(X) —Up| <e,

where Uy, is the uniform distribution over {0,1}™.

Non-malleability Against Polynomial Tampering 101

It turns out that there cannot exist an extractor that works for the family of
distributions on {0,1}" with min-entropy at least n — 1. To circumvent this
difficulty, a long line of work has focused on extracting from a weak source X
assuming access to a short independent seed Y. Such extractors are called seeded
extractors [48] and we now have almost optimal constructions of such extractors
[31,39]. Another successful line of research focused on extracting random bits
assuming more structure on the source X. Such extractors are called as seedless
extractors. Examples include assuming that the weak source consists of multiple
independent sources [11,14,20,23], assuming that the source is supported on
an affine subspace [15,34] or an algebraic variety [29], or even simply assuming
that there are some unknown coordinates of the source that are uniform and
independent [24]. Explicit constructions of seeded and seedless extractors have
found numerous applications in complexity theory [60], coding theory [57] and
cryptography [12,47].

Recently, several works studied a more robust notion of a randomness extrac-
tor called non-malleable extractor. The main motivations for studying this
stronger variant is from applications in cryptography. Surprisingly, explicit con-
structions of non-malleable extractors have led to improved constructions of
standard extractors. As in the case of standard extractors, there are seeded non-
malleable extractors and seedless non-malleable extractors. The seeded variant
was introduced by Dodis and Wichs [27] with applications to the problem of
privacy application [12]. The seedless variant of non-malleable extractors was
introduced by Cheraghchi and Guruswami [21] with applications to construc-
tions of non-malleable codes.

We focus on the seedless variant of non-malleable extractors. For the sake of
simplicity, we define seedless non-malleable extractors in slightly less generality
and refer the reader to Sect. 3.3 for the more general definition.

Definition 3 (Seedless non-malleable extractor). Let X be a family of
sources on {0,1}™ and F be a class of tampering functions acting on {0,1}™.
Further assume that all f € F does not have any fized points. A function
nmExt : {0,1}™ — {0,1}™ is defined to be a non-malleable extractor with respect
to X and F with error ¢ if the following hold: for any X € X and f € F, we
have

|(nmExt(X), nmExt(f(X))) — (Up,, nmExt(f(X)))] < e.

An informal way of interpreting the above definition is as follows. Let X be a
source from the family X'. The distribution X’ = f(X) represents the tampered
distribution, where f € F (note that X’ # X). The task of the non-malleable
extractor nmExt is to remove the correlation between the random variables X
and X’ (which are clearly dependent).

Chattopadhyay and Zuckerman [19] gave explicit constructions of seedless
non-malleable extractors assuming X consists of 10 independent sources, and
each source is arbitrarily tampered. This was improved by Chattopadhyay, Goyal
and Li [16] to construct seedless non-malleable extractors for 2 independent
sources. Chattopadhyay and Li [17] constructed a seedless non-malleable extrac-
tor against the class of affine functions. In another work, Chattopadhyay and

102 M. Ball et al.

Li [18] constructed seedless non-malleable extractors when the source X con-
sists of 2 independent sources that are interleaved in an unknown way. They
also consider some generalizations such as composition of linear tampering and
partitioned tampering.

Our Results. We give a seedless non-malleable extractor that can handle polyno-
mial tampering. Prior to our work, Chattopadhyay and Li [17] handled the spe-
cial case of affine tampering. Their construction heavily relied on linearity of the
tampering functions and linearity properties of extractors, and their techniques
do not seem to extend even to the case tampering functions that are quadratic
polynomials. While a seedless non-malleable extractor for uniform source is suf-
ficient for the reduction in [21], we show that our non-malleable extractor in fact
works for skew affine source defined below. This generality is useful in our con-
struction of non-malleable secret sharing schemes that are robust to polynomial
tampering.

Definition 4. LetF, be a finite field, and let X = (X1, ..., X,) be a distribution
on Fy. We say X is an affine source if X is uniform over an affine subspace
W C Fy. We define the dimension of X to be the dimension of W. We say X
is a skew affine source if X is an affine source and for every i € [n], X; has
support size greater than 1.

We are now ready to state our result on explicit non-malleable extractors
against polynomial tampering.

Theorem 3. There exists a constant C > 0 such that for all integers n,d, m,
any prime q and any € > 0 such that ¢ > (Cn?d*m?22™ /c?) - log(nd/¢), there
exists an explicit function nmExt : Fy — {0,1}™, that is a seedless non-malleable
extractor with respect to the family of sources

X ={X: Xis a skew affine source on ¥y of dimension > 1}

and the tampering family F, 4.4

Prior to our work, no explicit construction of a seedless non-malleable extrac-
tor was known against even quadratic polynomials (d = 2).

We use the above theorem to derive a non-malleable extractor against arith-
metic circuits.

Corollary 2. There exists a constant C' > 0 such that for all integers n,s,m,
any prime q and any € > 0 such that ¢ > (Cn?sm2*+2™ /£2) . log(n/e), there
exists an explicit function nmExt : Fy — {0, 1}™, that is a seedless non-malleable
extractor with respect to the

X ={X: Xis a skew affine source on Fy of dimension > 1}

and the tampering family &, 4 s.

Non-malleability Against Polynomial Tampering 103

To the best of our knowledge, this is the first explicit construction of a non-
malleable extractor that can handle tampering by arithmetic circuits.

We in fact show that the non-malleable extractors constructed are efficiently
invertible, i.e, given any output z, there exists an efficient sampling algorithm
that produces a sample from a distribution that is close to uniform on the set
nmExt~!(z). We discuss the sampling algorithm in Sect.5. We then use the
connection established in [21] (see Sect.3.4) to derive the explicit non-malleable
codes with respect to polynomials (Theorem 1) and arithmetic circuits (Corol-
lary 2).

Organization. We give an overview of our techniques in Sect. 2. We discuss some
preliminaries in Sect. 3. In Sect. 4, we explicitly construct a non-malleable extrac-
tor against polynomial tampering functions. In Sect. 5, we present efficient sam-
pling algorithms necessary to construct efficient non-malleable codes. We use
Sect. 6 to construct a non-malleable secret sharing scheme that can handle poly-
nomial tampering.

2 Overview of Techniques

In this section we discuss the main ideas that are used in our explicit con-
structions of non-malleable codes, non-malleable extractors, and non-malleable
secret sharing schemes. We start by discussing the explicit non-malleable extrac-
tor against polynomial tampering (Theorem 3). We then discuss ideas that go
into using this construction to construct efficient non-malleable codes and non-
malleable secret sharing schemes that are robust to polynomial tampering.

Seedless Non-malleable Extractors Against Polynomials. We discuss the main
ideas behind the construction of the non-malleable extractor from Theorem 3.
We consider the simpler setting and assume the source is uniform (instead of
being a skew affine source as in Theorem 3). This setting cleanly captures our
main ideas. The setup is as follows:

Let n,d be arbitrary integers, and fix any € > 0. Let ¢ = poly(n,d,1/¢) be
a large enough prime (for exact details, see the statement of Theorem 3). Let
X be the uniform distribution on Fy. Our goal is to construct a polynomial
time function nmExt : F) — {0,1}" such that for any tampering function
P = (p1,...,pn) from the class F, 4.4, such that there exits ¢ € [n| for which
pi(x) # x;, we have

|(nmExt(X), nmExt(P(X))) — (Uy,, nmExt(P(X)))| < e.

The high level idea of our construction is to observe that we can express X
as a convex combination of distributions that are flat' on lines in Fy, and then
design a non-malleable extractor for such line sources. We note that Gabizon

! We say a distribution is flat if it is uniformly distributed on its support.

104 M. Ball et al.

and Raz [34] used such an approach for constructing affine extractors on large
fields.

We now describe our approach more precisely. Our plan is to construct a
low-degree multivariate polynomial h : Fy — Fy such that the following hold:
for all 3 € F,, the polynomial

g9s = h(z) + fh(P(x))

is non-constant. (We stress that the choice of h cannot depend on P.) Now, for
a suitable choice of m (we pick m = vlogq for some small enough v), we claim
that for such an h, defining

nmExt(z) = h(z) (mod 2™)

would satisfy the conclusion of Theorem 3.

Before constructing such an h, we first discuss why this is indeed enough. For
any a € Iy, b € Fyy\{0"}, define the line L, ;, = {(a1+tb1,...,a,+1tb,) : t € Fy}.
We abuse notation, also use L, to denote the flat distribution on L, 3. Then
clearly, X can be sampled by first uniformly sampling a, b (from their respective
domains), and then sampling from L p.

The first observation is the following: let D = deg(gg), and let gg.q,5(t) be
the univariate restriction of gg to the line L, ;. We note that the coefficient
of tP is gz(b). Appealing to the fact that a low degree polynomial has few
roots (Lemma4), it follows that with high probability (over sampling a,b), the
univariate polynomial gg,(t) is a non-constant polynomial of degree D. Fix
such vectors a, b so that gg 4,5 is a non-constant polynomial. We now use a deep
result from algebraic geometry known as the Weil bound (see Theorem4) to
conclude that for any non-trivial character? x of F,, we have

Bk, X (98,06 < D/ V3.

Roughly, this asserts the fact that the non-trivial Fourier coefficients of the
distribution gg’a’b(U]pq) are bounded, where Up, denotes the uniform distribu-
tion on F,. Such a bound can be now be translated into statistical closeness
of the distribution (nmExt(Lg), nmExt(P(Lyp))) to (U, nmExt(P(Lgsp)))
using known XOR lemmas (see Lemmal, Lemma2). To conclude that
(nmExt(X), nmExt(P(X))) is close to (Uy,, nmExt(P(X))), we combine the fact
that X is a convex combination of the flat sources L, 3, and that for most a, b,
we have (nmExt(L,), nmExt(P(Lyp))) is close to (U, nmExt(P(Lgyp)))-

Given the above discussion, all that remains to construct the required non-
malleable extractor is to find such an h. We recall the guarantee we need from
h for convenience of the reader:

— for all § € F, and P = (p1,...,pn) € Fn qa satisfying that for some ¢ €
[n] pi(z) # z;, the polynomial gs(z) = h(z) + Bh(P(z)) is a non-constant
polynomial.

2 See Sect. 3 for a quick recap of characters of finite fields.

Non-malleability Against Polynomial Tampering 105

— h must a low degree polynomial. In particular, we require deg(h) < ¢'/2.

An initial attempt to construct such an h could be to use a polynomial similar
to the one used by Gabizon and Raz [34] in their affine extractor construction
and define

h(x1, 2o, ..., xn) =2 + 22 + ... + 27,
where ci1,co,...,c, are arbitrary distinct positive integer. It is not hard to see
that this does not work as follows. It is always possible to find 5, v1,72,..., 7 €
[y such that v;* = —p~1 for every i and «; # 1 for at least one i. Now defining
P = (y121,...,nxy,) gives the desired counterexample since for this choice of 3
and P, h(z) + Bh(P(zx)) is identically the zero polynomial.
We avoid the above counterexample as follows: Pick ¢y, co,. .., co, from an

arithmetic progression such that the common difference is co-prime with ¢ — 1,
and define

n
h(l’l,(L'Q, . ,.’[n) = Z (:L.;:Qifl + .’[fh) .
i=1
For this choice of h, it is not hard to prove that if each p;(x) = ~v;x; (for
some y; € Fy), and g(x) is a constant polynomial, it must be that each v; is
1, and 0 = —1. However this contradicts our assumption on P that for some 1,
pi(x) # x;. Thus we avoid the counterexample discussed above.
We in fact prove that this choice of h works for all P € F,, 4.4\ {(z1,...,2n)}
To prove this, we rely on a result (Lemma3) which shows that for such a choice
of ¢;’s, for any distinct 1,42 € [n], deg(pglil) is well separated from deg(pzz).
With a careful case analysis, we use this to show that some monomial (of degree
at least 1) in g(x) survives. We provide the details in Sect. 4.

Non-malleable Extractors for Skew Affine Sources Against Polynomial Tamper-
ing. In the previous paragraph we sketched how to construct a non-malleable
extractor against polynomial tampering assuming access to a uniform source on
Fy. In Sect. 4, we actually show that the non-malleable extractor works for any
affine source which is non-constant on every coordinate. We call such source a
skew affine source. In other words, our non-malleable extractor is resilient to
affine leakage which does not reveal any single coordinate in the source. We will
see the application of this property in non-malleable secret sharing.

To prove this stronger property of the non-malleable extractor, recall that
in previous section we defined a polynomial gs(z) = h(z) + Bh(P(z)), and its
restriction to the line L, p, denoted by gg,q,5(t). We then sketched a proof that
93.a,p 1s non-constant if gg(b) # 0, which happens with high probability over b.
In Sect. 4, we actually show the following stronger result: Vi, b; # 0 is a sufficient
condition for gg q to be non-constant. In fact, it is also a necessary condition. If
there exists ¢ such that b; = 0, the adversary can set p;(z) = x; for every j # ¢
and p;(z) = ¢ for a constant ¢ # a;. One can verify that g_1 4 is a constant in
this case.

The proof idea is that a similar case analysis as sketched in the previous
section also works for gg qp if b; # 0 for every i. We then show that every skew

106 M. Ball et al.

affine source is a convex combination of line source L, where b; # 0 for every
i (Lemma7) to finish the proof.

Non-malleable Codes Against Polynomial Tampering. We now turn to crypto-
graphic applications of our non-malleable extractors. To build a non-malleable
code against polynomial tampering, we use the connection between non-
malleable code and non-malleable extractor established in [21]. To apply the
reduction in [21], we need an efficient algorithm which samples almost uniformly
from a pre-image of our non-malleable extractor on any output.

Recall that our non-malleable extractor is of the form nmExt(x) = o(h(z)),
where o is modulo 2™ and h is a bounded-degree polynomial. Inverting o is
easy, and there exists an algorithm by Cheraghchi and Shokrollahi [22] which
almost-uniformly samples a pre-image of bounded-degree polynomial (over any
large enough prime field). An initial attempt to sample from nmExt ™ (z) would
be first sample y € o0~1(2) and then sample from h~!(y). However this does
not work since h~!(y) might have different size for different y € F,. So we need
to sample y € 0~1(z) with probability proportional to |h=*(y)|. A possible way
to perform such weighted sampling from o~1(z) is to do a rejection sampling
which samples y € 071(2) uniformly in each round and accept with probability
proportional to |h~!(y)|. However, we need to (approximately) count |h~1(y)|
in this approach, which is difficult in general.

Chattopadhyay and Zuckerman [19] handled a similar sampling task while
constructing efficient non-malleable codes in the split-state model, with the cru-
cial difference being that they were dealing with polynomials on a constant
number of variables. In [19], they adopted a similar sampling strategy as the
one sketched above, and they count |h~1(y)| with an algorithm from [40], which
has running time doubly exponential in the number of variables (which, in their
case, still takes constant time).

To get around this difficulty, we observe that the algorithm in [22] is actually
a rejection sampling which has accepting probability proportional to |h~!(y)| in
each round. Therefore, we can embed an uniform sampling of y in each round
of [22] and bypass the computation of |h~!(y)|. We provide the details of our
sampling algorithm in Sect. 5.

Non-malleable Secret Sharing Against Polynomial Tampering. As another appli-
cation of our non-malleable extractor, we build a non-malleable secret shar-
ing that can handle polynomial tampeering. We obtain this by plugging in our
extractor into a scheme by Lin, Cheraghchi, Guruswami, Safavi-Naini and Wang
[46]. In this scheme, they take an efficiently invertible non-malleable extractor
nmExt and a linear erasure code (Enc,Dec), then define the sharing function
to be Enc o nmExt ™! and the reconstruction function to be nmExt o Dec. If
in the erasure code (Enc,Dec), Dec only needs r symbols in the codeword to
reconstruct the original message, then so does nmExt o Dec in the secret sharing
scheme. Therefore the correctness holds as long as there is an efficient inverter
for nmExt which succeeds with high probability.

Non-malleability Against Polynomial Tampering 107

To prove privacy and non-malleability we need the following guarantee on
nmExt. To guarantee non-malleability, for every tampering function f, nmExt
should be non-malleable against the composed tampering function Deco f o Enc.
For polynomial tampering, taking the erasure code to be a linear code over F,
naturally satisfies this requirement. To guarantee privacy, given a uniform source
X, nmExt(X) should be uniform conditioned on that some symbols of Enc(X)
is leaked to the adversary. When (Enc, Dec) is a linear code, this means nmExt
should be an affine extractor. This is also true for our extractor (see Appendix
A in the online version of this paper [7]).

We in fact achieve a stronger result and construct a non-malleable secret shar-
ing scheme where the adversary can choose the polynomial tampering function
based on some of the shares. If given a secret the adversary can learn a symbol
of nmExt™*(s) from their shares, the secret sharing scheme sketched above will
become malleable. We show that we can avoid this problem by taking Enc to be
a “truncated systematic MDS code”. That is, we take a MDS (maximum dis-
tance separable) code for which the encoding is in the form f(z) = (z, f'()),?
then we discard = and only keep f'(x). For x € [y, we can prove that given any
r — 1 symbols in f’(x), it is not possible to recover any symbol in z. Roughly
speaking, if given r — 1 symbols in f’(x) it is possible to recover a symbol z;,
then these symbols together with x; form a collection of r» symbols which con-
tain “redundant information”. This violates the property of MDS codes that the
original message can be recovered with any r symbols in the codeword. This is
conceptually similar to Shamir’s secret sharing scheme, and the only difference
is we want to hide every single symbol in the message while Shamir’s secret shar-
ing is only hiding the first symbol because the others are random. Because our
extractor is non-malleable given any other form of affine leakage (using the fact
that our non-malleable extractor works for any skew affine source of dimension
at least 1), we can conclude that the corresponding r-out-of-n secret sharing is
non-malleable even if the adversary choose their tampering function based on
7 — 1 shares. We provide more details of our non-malleable secret sharing scheme
in Sect. 6.

3 Preliminaries

Define e(z) = €2™® where i = /—1.

For any distribution D, let D(x) denote Pr[D = z], and let Supp(D) denote
the support of D.

Let U, denote the uniform distribution over m bits. Let Uy denote the
uniform distribution over the finite set X

For two distributions D and D5 on the same universe, we use |D; — Ds] to
denote the statistical distance. We use Dq =, D5 to denote the fact that D; and
D5 are e-close in statistical distance.

3 The definition of MDS codes and the construction of systematic MDS codes can be
found in Sect. 3.5.

108 M. Ball et al.

For non-negative integers Ai,..., A, that sum to 1, and arbitrary distribu-
tions Dy, ..., Dy, we use). A\;D; to denote the distribution that places weight
>-; AiDi(x) at the point .

For n € N, we use [n] to denote the set {1,2,...,n}. For non-negative integer
k, we use ([Z]) denote the set of all subsets of [n] of size k. Let X be a set of
symbol. For sequence X = (z1,...,2,) € XY™ and S = {i1,...,9} C [n] such
that ip < ig < ... < iy, we use Xg to denote the sequence (x;,, Zi,, ..., i,).

3.1 Characters Sums over Finite Fields

Let ¢ be a prime. The additive characters of Fy are of the form x;(z) = e(zj/q),
for j = 0,1,...,9g — 1. xo is called the trivial character, and the others are
called as non-trivial characters of ;. We now recall a deep result from algebraic
geometry that has found various applications in pseudorandomness.

Theorem 4 (Weil bound [58]). Let p be a non-constant univariate polynomial
of degree d < q over Fq. For any non-trivial additive character x of Fy, we have

> xw)| < dva.

y€Fq

We record a couple of XOR lemmas that lets us translate bounds on expec-
tations of characters under a distribution D, to the closeness of D in statistical
distance to the uniform distribution.

Lemma 1 ([50]). For every prime q, there exists an efficiently computable map
o : Fy — {0,1}™ such that if Y is a distribution on F, such that for every
non-trivial additive character x of Fg,

then it is the case that

where £ = 62"/ + O(2™ /q).
Lemma 2 ([26,50]). For every prime q, there exists an efficiently computable
map o : Fq — {0,1}™ such that if (Y,Y") is a distribution on Fq x Fy where for
all additive characters x, ¢ of Fy, where x is non-trivial,
Elx(Y)o(Y")] < 4,
then it is the case that
‘(O—(Y)7U(Y/)) - (Um7 U(YI>)‘ <k,

where e = 62™ + 0(2™/q).

Non-malleability Against Polynomial Tampering 109

3.2 Useful Lemmas About Polynomials
We recall a useful result from [30] (Lemma 4.2).

Lemma 3. Let n,r,d,\ be arbitrary positive integers, and q be a prime. Let
pi1(z),...,pr(z) € Poly, ,, be non-constant polynomials. Suppose that d; =
deg(p;). Define ¢; = A(2dr + 1) + Xi. Then, for all 1 < i< j <r, we have

|deg(pi*) — deg(py)| = |ei - di — cj - dj| > \.
We also record the Schwartz-Zippel Lemma.

Lemma 4 ([54,59]). Let p(x) € Poly, , 4 be a non-zero polynomial. Then,

Pr [p(x) = 0] < d/q.

z€Fy

3.3 Non-malleable Codes and Seedless Non-malleable Extractors

Definition 5 (Coding schemes). Let X' be a finite alphabet set. A pair of
functions (Enc, Dec), where Enc : {0,1}* — X" is a randomized function and
Dec : ¥ — {0,1}* U {L} is a deterministic function, is defined to be a cod-
ing scheme with block length n and message length k if for all z € {0,1}%,
Pr[Dec(Enc(s)) = s] = 1.

Definition 6 (Tampering functions). Let X' be a finite alphabet set. For any
n > 0, let Hx, denote the set of all functions h : X" — X". Any subset
G C Hxn is a family of tampering functions.

For simplicity, we sometimes do not specify the domain of tampering functions
when it is clear from the context. We define a function that will be useful in
defining non-malleable codes:

x if z # same

y if x = same.

Definition 7 (Non-malleable codes). Let X' be a finite alphabet set. A coding
scheme (Enc, Dec) on alphabet X with block length n and message length k is a
non-malleable code with respect to a tampering family G C Hx ,, and error € if
for every g € G there is a random variable D, supported on {0,1}* U {same}
that is independent of the randomness in Enc, and any message z € {0,1}*, we
have

[Dec(f(Enc(z))) — copy(Dy, 2)| < &

k

We define the rate of a non-malleable code C to be the quantity e (5T

110 M. Ball et al.

Definition 8 (Seedless non-malleable extractors). Let X be a finite alpha-
bet set, G be a class of tampering functions X — X" and X be a class of
distribution over X™. A function nmExt : X" — {0,1}™ is called a seedless
non-malleable extractor that works for X with respect to G with error € if for
every distribution X € X and every tampering function g € G, there exists a
random variable Dy on {0,1}™ U {same} that is independent of X, such that

|(nmExt(X), nmExt(g(X))) — (Up, copy(Dg, Un))| < e.

3.4 Non-malleable Codes via Seedless Non-malleable Extractors

Cheraghchi and Guruswami [21] established the following connection between
non-malleable codes and seedless non-malleable extractors.

Theorem 5. Let X be some finite alphabet set. Let nmExt : X" — {0,1}™
be a polynomial time computable seedless non-malleable extractor that works for
uniform distribution with respect to a class of tampering functions G acting on
X", Suppose there is a sampling algorithm Samp that on any input z € {0,1}™
runs in time poly(n,log|X|) and samples from a distribution that is 0-close to
uniform on the pre-image set nmExt ™' (s).

Then there exists an efficient construction of a non-malleable code on alphabet
X with block length n, relative rate =, error 2™e+0d with respect to the tampering

family G.

Given such an invertible non-malleable extractor, the non-malleable code for
G is defined as follows: Any message v € {0,1}™ is encoded as Samp(v). The
decoding of a codeword ¢ € X" is nmExt(c) € {0,1}™.

3.5 MDS Code

Definition 9. Let C C FZL be a linear subspace of dimension k where Fy is the
finite field with q elements. We say C is a [n,k,d]; code if every two distinct
codewords c1, ¢z € C coincide in at most n—d coordinates. We say C' is a [n, k|,
MDS (maximum distance separable) code if C' is a [n,k,n — k + 1] code, i.e. C
matches Singleton bound [56].

Definition 10. Let C be a [n,k,d], code and Enc be a bijective linear mapping
from IE"; to C. We say Enc is systematic encoding of C if there exists a function
Enc' : F} — F~" such that for every x € Fk, Enc(z) = (x,Enc’(z)).

The distance property of a [n,k], MDS code guarantees that the codewords
remain distinct even when restricted to only k out of n symbols. Moreover, it is
well-known that Reed-Solomon code [51] is a MDS code, and every linear code
has a systematic encoding. (For example, see [43] for a systematic encoding of
Reed-Solomon code.) Therefore we have the following lemma.

Non-malleability Against Polynomial Tampering 111

Lemma 5. For every finite field F, of g element, and every integer k,n such that
k <n <gq, there exists a [n, k], MDS code C' C Fy and an efficient systematic
encoding Enc : Ff — C. Moreover, for every R C [n] of size |R| = k, there exists
an efficient decoding algorithm Decpg : IE"; —]F’; such that for every x € F’;,
Decgr(Enc(z)r) = x, where Enc(z)r denote the restriction of Enc(x) on the
coordinates specified by R.

3.6 Other Useful Lemmas

We will also use the following lemma for statistical distance in [46] (Lemma 13).

Lemma 6. Let V, W be finite sets, and let (V, W), (V',W') be joint distribution
onV x W. Let € > 0 be real number such that

(V.W) me (V/, W).
Then for every event £ C Supp(W) N Supp(W'),

/ / €
(VIweeé) - (V' |W 65)|§m-

4 Non-malleable Extractors Against Polynomials

We present the proof of Theorem 3 in this section. On a high level, our idea is to
express X as a convex combination of sources on lines in Fy, and design a non-
malleable extractor for such line sources. We note that Gabizon and Raz [34]
adopted such an approach for constructing affine extractors over large fields.
First we show that a skew affine source is a convex combination of skew line
source.

Lemma 7. Let q be a prime, n < q be a integer and X € Fy be a skew affine
source of dimension k. Then there exists a distribution A € Fy and a vector
b e (F,\{0})™ such that X = A+ Tb, where T is uniform over F,. In other
word,

X = Z Pr[A =da] - Lay,

a€Fy

where Lg, is the uniform distribution over the line {a +tb:t € Fy}.

Proof. Suppose X is uniform over the affine subspace W + z where W is a linear
subspace of Fy and z € Fy is a fixed vector. Our goal is to find a vector b € W
s.t. b; # 0 for every i € [n]. Given such b we can set A = X, and the lemma
holds because tb € W for every t € Fy, and X +w = X for every w € W.

Fix a basis {w1,...,wi} of the linear subspace W. For every ¢ € [k], define
S; ={j € [n]: (w;); # 0} (i.e. the indices of the non-zero coordinates of w;) and
Si = U;‘:l S;. Note that S = [n] because W + 2 does not have any constant

112 M. Ball et al.

coordinate. We will prove by induction that for every i € [k] there exists v; €
span(ws, ..., w;) s.t. (v;); # 0 for every j € S;. Assume that there exists v;_1
which satisfies the induction hypothesis. (Note that vg = 0.) Consider the set of ¢
distinct vectors L; = {v;_1 + tw; : t € Fy} C span(ws,...,w;). Observe that for
every j € S;, there exists at most one vector u; € L; satisfying that (u;); = 0.
Since n < ¢, there must exist u* € L; s.t. (u*); # 0 for every j € S;. Moreover,
for every j € S;\S; C Si—1, (u*); = (vi—1); # 0. Therefore (u*); # 0 for
every j € S;. By mathematical induction theorem, our claim is true for every
i € [k]. Finally observe that v is a valid choice of b because S = [n] and
span(wy, ..., wg) = W.

Next we present the extractor construction and prove correctness. Let B be
the smallest integer greater than 3 such that ged(B,q — 1) = 1. Note that B
must be a prime. We can deduce an upper bound on B as follows. Define the
primorial function v(¢) as the product of the first ¢ primes. It is known that
v(f) = el+e)los(®) [98] Further, it is known that the £’th smallest prime
number is at most O(¢log(¢)) [52,53]. Hence, it must be that B < plogg, for
some large enough constant . We can thus find such a B efficiently.

For i € [2n], define ¢; = B(4dn + 1) + Bi. Define the function h : F} — [, as

n

h(.’IIh . ,{En) = Z(,’E?Zi71 + 117527)

=1

Let o : F; — {0,1}™ be the mapping from Lemma?2. We now define the
non-malleable extractor:
nmExt(z) = o(h(x)).

For any a € Fy and b € Fy \ {0"}, define the line L, = {a+tb:t € F;}. We
overload notation, and also use L, ; to denote the flat source on this line. We
will show that nmExt is a non-malleable extractor against Poly, . ; for every
skew line source. Theorem 3 then follows using Lemma 7.

Lemma 8. Let a € Fy,b € (F,\{0})". For every tampering function P €
Poly,, , 4 which is not identity on Loy,

(nmExt(Lgp), nmExt(P(Lyp))) e (Up,, nmExt(P(Lqp))),

2™ d%n log q
where e = O | =784
(Va

The following bound is the key ingredient. Indeed, Lemma8 then follows
using Lemma 2.

Lemma 9. Let x, ¢ be additive characters of F, such that x is non-trivial. Then,

[EX(A(La,p))(h(P(Lap)))]| < O((d*nlogq)/\/q)-

4 That is, there exists © € Lap s.t. P(z) # .

Non-malleability Against Polynomial Tampering 113

Let x(y) = e2™¥/4 and ¢(y) = €2™*'v/4. Since y is non-trivial, we know that
a # 0. Let = o'/a. Define the polynomial

g95(x) = h(z) + fh(P(x)).

We note that

agp(X)
)P < [B |e (224X)]
Let gg,q,5(t) be the univariate polynomial obtained by restricting g(z) to the
line Ly . The following two claims directly yields Lemma9.

Lemma 10. Suppose for some a,b € Fy, ggap is a non-constant polynomial.
Then,

- ggap(t
B, o (2 2280)]| < oantog o))
Lemma 11. For every a € Fy, b € (F,\{0})", gp.ap is a constant polynomial
only if P is identity on Lqy.

Lemma 10 is indeed simple to obtain using the Weil bound.

Proof (Proof of Lemma 10). Follows directly from Theorem 4 using the fact that
deg(gp.a.6(t)) < O(d*nlogq).

Now we prove Lemma 11.

Proof (Proof of Lemma 11). For every i € [n], define the polynomial ¢;(t) =
pi(a + tb). Since a + tb is an affine function, deg(q;) < deg(p;) < d. Let d; =
deg(q;). For every i € [n], define

wi(t) = (a; + b)) + (a; + tb;) + Bq; (t)>~* + Bgi ().

Recall that
9p.an(t) = > wi(t).

First we prove that deg(w;) € {0,ca;d;, 2, C2—1,02; — 1}. Moreover,
deg(w;) = 0 if and ounly if 8 = —1 and ¢;(¢t) = a; + tb;. (In other word, w;
is constant if and only if 8 = —1 and p;(x) = x; for every x € Ly .) To prove
this statement, first we consider the case deg(g;) > 2. Suppose that the leading
coefficient in ¢; is s; # 0. If 8 # 0, the coefficient of t°2i% in w; is Bs{> # 0.
Therefore deg(w;) = coid;. If 3 = 0, the coefficient of ¢°2¢ in w; is b** # 0.
Therefore deg(w;) = co;. Next consider the case deg(g;) = 0. With an argument
similar to the case 8 = 0, we also have deg(w;) = cg;. Finally consider the case
deg(q;) = 1. Suppose ¢;(t) = r; +ts;. Observe that the coefficient of ¢° in w; is
b5 + Bs$?* and the coefficient of t°21~! in w; is CQi(Qib?Qi_l + 57@8?2"'_1). In this
case either deg(w;) € {ca;,co; — 1} or

bi?t = —(3s:? and aibfz"71 = —ﬁrisf“*l.

114 M. Ball et al.

The equations hold only when there exists k € IF; s.t.
ri = ka;, s; = kb; and k° = -~ L.

If such k exists, we can write w;(t) = (1 — k= B(a; + tb;)?-1. If B = —1, we
have k = 1, w;(t) = 0 and ¢;(t) = a; + tb;. If B # —1, then k # 1, which implies
(1 — k=B) # 0 because ged(B, q — 1) = 1. Therefore w; contains a monomial of
degree cg; 1 with coefficient (1 — k~5B)b*~* £ 0, and hence deg(w;) = c2;_1.
Now we show that gg,(t) is a constant polynomial only if 3 = —1 and
qi(t) = a; + tb; for every i € [n]. Consider the set of index I = {i € [n] :
deg(w;) > 0}. Then for every i € I, deg(w;) € {d;ca;, 2, C2i—1,¢2; — 1} if d; > 0,
or deg(w;) € {cai,coi—1,c2;— 1} if d; = 0. By Lemma 3, for every pair i,j € I s.t.
i # j, we have deg(w;) # deg(w;). Therefore deg(gg,q,p) > 0 if I is non-empty.
If gg,4.b is a constant polynomial, it must be the case that deg(w;) = 0 for every
¢ € [n]. This only happens when § = —1 and ¢;(t) = a; + tb; for every i € [n],
i.e. 8= —1and P(z) =z for every « € Ly . Lemma 11 then follows directly.

Finally we prove Theorem 3 formally.

Theorem 6 (Theorem 3, restated). There exists a constant C' > 0 such that
for every integers n,m,d, any € > 0, any prime q such that ¢ > Cn?d*m22™ -
log(nd/e), any skew affine source X € By of dimension > 1 and any tampering
function f € Poly, , 4, there exists a distribution Dy on {0,1}"™ U {same} that
1s independent of X, such that

|(nmExt(X), nmExt(f(X))) — (Up, copy(Dy, Un))| <e.

Proof. By Lemma 7, there exists a distribution A on Fy and vector b such that
X =3 ,Pr[A=a]- Ly Define I = {a € Fy : f is identity on L, }. For every
a € I, define (Dy), = same. For every a ¢ I define (D), = nmExt(f(Lap)).
Then we claim that Dy = > Pr[A = a] - (Dy), satisfies the requirement:

nmExt(X), nmExt(f (X)) — Uy, copy(Dy, Up,)|
< ZPr =a] - nmExt(Lq), nmExt(f(Lap)) — U, copy((Df)a, Um)|

= ZPr] - [nmExt(Lqyp), nmExt(Lg 3) — Uy, Upy |
acl

+ Y Pr[A =a] - [nmExt(Ly), nmExt(f (Lay)) — U, nmExt(f (Lay))|
agl

SZPr[A:a] -5+ZPr[A:a] €
acl adl

=€

The first inequality is by the convexity of statistical distance, and the second
inequality is by Lemma 8.

Non-malleability Against Polynomial Tampering 115

5 Efficient Sampling

Recall that to construct efficient non-malleable codes using the connection estab-
lished in [21], we need to efficiently sample from the pre-image of any given
output of the non-malleable extractor constructed in the previous section. (We
discuss this connection in Sect.3.4.) In this section we show how to construct
such a sampler for the non-malleable extractor constructed in Theorem 3. Note
that Theorem 2 uses the same non-malleable extractors.

Theorem 7. Let nmExt : Fy — {0,1} be the non-malleable extractor
against F, q4.a tampering in Theorem 3. Then there exists a randomized algo-

rithm nmExt ™" such that for every z € {0,1}" the distribution of nmExt™!(z2)

is e-close to uniform distribution on nmExt_l(z). The running time of nmExt ™"
is bounded by poly(n,d,logq,log(1/¢)).

Our starting point to prove Theorem7 is a sampling algorithm from [19],
which has running time O(d”o(n) (log ¢)°W)) and error O(d°™") /. /q). We will
show how to modify this algorithm and get an improved running time of
poly(n, d,log ¢,log(1/¢)) for arbitrarily small error e.

Let nmExt be the non-malleable extractor from Theorem 3. Recall that
nmExt = ¢ o h where ¢ : F;, — {0,1}™ is defined as o(z) = (mod 2™) and
h:Fy — F, is a multivariate polynomial of degree d over F,. Given z € {0,1}™,
the pre-image of z under nmExt is

nmExt~!(z) = U = (y),

yeo—1(2)

and our goal is to sample from nmExtfl(z) almost uniformly. The sampling
algorithm in [19] is based on the following rejection sampling strategy.
Let M > max, |h~*(y)|.

1. Sample y € 0~ 1(z) uniformly at random.

2. Compute |h~Y(y)| (approximately), and accept y with probability
|h=Y(y)|/M. If y is rejected, go back to step 1.

3. Output an (almost) uniform sample from h~1(y).

In [19], the second step is achieved by an algorithm from [40] that has running
time O(d"o(n)(klog q)°M).
The third step is based on the following algorithm in [22].

Lemma 12 ([22]). Let ¢ be a sufficiently large prime, f € Fylz1,...,x,] be
polynomials of total degree bounded by d, and each polynomial has at most ¢
monomials. Let S C Fy be the set of common zeroes of f. There exists a ran-
domized algorithm which takes f as input (as a list of monomials) and outputs
a random value X € Fy such that the distribution of X is 0(d°M /q)-close
to uniform distribution on S. The worst-case running time of this algorithm is

poly(log q,d,n, ?).

116 M. Ball et al.

Thus the bottleneck in achieving a polynomial time sampling algorithm is Step
(2) which takes time that is doubly exponential in n. We get around this difficulty
as follows: first note that the rejection sampling in Step (2) is to ensure that the
subset h~1(y) is selected with probability proportional to |h=1(y)|. Our crucial
observation is that the algorithm in Lemma 12 is actually a rejection sampling
which accepts an output with probability proportional to |h~!(y)| in each round.
Therefore we can actually combine the rejection sampling in Step 2 and 3, and
bypass the computation of |[h=1(y)]|.

First we explain the relation between the algorithm in Lemma 12 and rejec-
tion sampling. A naive way to sample from the variety h=1(y) is to repeatedly
sample a point x € I}’ and verify if h(x) = y. However, the success probability
of the naive rejection sampling is only |h=1(y)|/q"™, which is too small. The idea
in [22] is that the space Fy can be split into lines, and the variety S is split
into many “slices” by these lines. The naive rejection sampling is equivalent to
first sampling a line and then sampling a point from this line. Since each line
has ¢ points, the probability of a certain point in the variety being chosen is
still 1/¢"~1-1/q. However, if we choose a good direction to split the space, each
slice of the variety only has at most d points where d < ¢, and these points
can be enumerated efficiently. Therefore instead of sampling every point in this
subspace with equal probability we can sample only from the slice of variety
instead. This allows us to increase the accepting probability in each round to
|h=1(y)|/dq™~, which is high enough and still proportional to |h~1(y)|. With
the ideas above we get the following lemma.

Lemma 13. Let h: Fj — F, be a n-variate polynomial of degree d < q/2 with ¢
monomials, and o : Fg — {0,1}™ be any function. Suppose we have access to an
oracle Samp, which takes input z and outputs a sample from o= (z) uniformly
at random. Then for every € > 0, there exists a randomized algorithm A such
that for every z € {0,1}™, the algorithm either outputs a uniformly random
sample from (o oh)~Y(z) or output L. The probability that the algorithm outputs
L is at most €.

Moreover, the expected running time of A on z is T - poly(loggq,n,d, ?) plus
T oracle calls to Samp,., where

B qn_1~d-|0'_1(2’)| .
TO(@oh) 1) 1g(1/5)>'

Before we formally prove Lemma 13, first we show how to prove Theo-
rem 7 based on Lemma 13. The following corollary shows that the algorithm
in Lemma 13 is efficient when o o h is an “extractor for uniform distribution”
and o does not concentrate on certain output.

Corollary 3. Suppose that o(h(Ugn)) ~1jomi1 U, and |07 (2)] < Cg/2™
for every z. Then the running time of the algorithm in Lemmal3 is
C'log(1/e)poly(n, ¥, logq,d).

Non-malleability Against Polynomial Tampering 117

Proof. The number of rounds of rejection sampling in the algorithm from
n—1 g4 |,-1
Lemmal3is T = O (W 10g(1/5)>.

Observe that
(00 h) ™1 (2)| = ¢" - Prlo(h(Usy)) = 2] = ¢" - (1/27 — 1/27+1) = g7 /27,

Plugging this in, and the upper on o=1(2), we have T' = O(dlog(1/¢)). The
corollary now follows directly from Lemma 13.

Proof (Proof of Theorem 7). To prove Theorem 7 we only need to show that
our non-malleable extractor satisfies the condition in Corollary 3. The fact that
o(h(Ury)) is close to U, follows from Theorem 3, and the second condition is

also true because o(x) = z mod 2™, which satisfies |0 ~1(2)| < [¢/2™] for every
e {0,1}™.

We now prove Lemma 13. First we need the following lemma which is analogous
to Proposition 4.3 in [22]. Note that we slightly tweak the lemma to make the
sampling algorithm able to handle arbitrarily small error. The lemma says a
random direction is a good direction to split the space with high probability.

Lemma 14. Let h: Fj — F, be a n-variate polynomial of degree at most d, and
let b= (b1,...,bn) be uniformly random samples from Fq. Then with probability
at least 1 —d/q, hap(t) = h(ar +bit, ..., an + byt) is a non-constant polynomial
of t for every a = (ay,...,a,) € Fy.

Proof. Let g be the highest-degree homogeneous part of h. Then observe that
hap(t) has degree at most d, and its coefficient of t¢ equals to g(b1,...,by,).
By Lemmad4, the probability that g(by,...,b,) is non-zero is at least 1 — d/q.
Therefore with probability 1 — d/q over b, hq 5(t) has degree exactly d for every
a€ly.

Proof (Proof of Lemma 13). In algorithm A, first we repeatedly sample b € Fy
uniformly at random until we find b which satisfies the condition in Lemma 14.
If we fail to find such b in log(1/¢) 4+ 1 rounds, abort and output L. Then repeat
the following steps for at most T rounds:

Sample y € o~ !(z) with oracle Samp,, and sample a = (a1, ..., a,) uniformly
at random. Compute the restriction of h(x) = y on the line Loy = {(a1 +
bit,...,an +bpt) : b € Fy}, ie. hqp(t) =y where hop(t) = h(ar + bit, ... an +
byt). Note that h,p is a non-constant polynomial of degree at most d. Then we
run Berlekamp-Rabin algorithm [49] to enumerate all the roots of hyp in Fy,
denoted by t1,...,tr where k < d. Now pick a number ¢ € [d] uniformly at
random. If ¢ < k, the algorithm succeeds, and we will return (a; + b1t;,...,a, +
bnt;). Otherwise sample y and a again and repeat. If no value is returned after
all T' rounds, return L.

To prove the correctness of A, first we compute the distribution A(z) con-
ditioned on that the algorithm succeeds. Observe that A(z) never returns an

118 M. Ball et al.

element which is not in (o o h)~!(z). Moreover, for every v € (o o h)~%(z), in
each round the probability that A(z) outputs v is

1 1
-

The first factor is the probability that y = h(v), the second factor is the proba-
bility that L, 3 v, and the third factor is the probability that v is chosen from
the list of roots of h, 1. Since this formula does not depend on v, we can conclude
that A(z) is a uniform distribution on (¢ o h)~!(z), conditioned on A(z) # L.

Now we compute the probability that A fails. Assuming ¢ > 2d, the proba-
bility that we fail to find a b satisfying the condition in Lemma 14 in log(1/e) +1
rounds is at most (d/q)°8(1/9)+1 < £/2. If we find such b successfully, observe
that A successfully returns a sample with probability

(o0)7 (2)]
o @

in one round. Now define
C'log(1/e)
T =)
p
for a large enough constant C'. Then the probability that A does not output any
element after T rounds is at most (1 —p)? < £/2. Therefore Pra[A(z) = 1] <e.
Finally we analyze the running time of A. Finding a vector b which satis-
fies Lemma 14 (or abort and output L) takes at most log(1/e)poly(n,¥,logq,d)
steps. After finding b, we run at most T rounds of rejection sampling, where in
each round we first make an oracle call to Samp,, sample a and compute the
polynomial h,; which takes poly(n,¢,logq,d) steps, and run Berlekamp-Rabin
which takes expected poly(n, ¢,log g, d) steps. Therefore the total expected run-
ning time is as claimed.

Remark 1. While we only show the expected running time in Lemma 13, it is
possible to bound the worst-case running time by introducing a small error to the
output distribution. That is, we can let the algorithm “time out” and output L
when the running time is too long. A full explanation can be found in the online
version [7, Remark 1].

6 Non-malleable Secret Sharing

In this section we construct a non-malleable secret sharing scheme that is non-
malleable against polynomial tampering. This extends a recent work of Lin et
al. [46] where they could handle affine tampering functions. We use the frame-
work that was introduced in [46] to derive our secret sharing scheme. In short,
the framework in [46] takes a linear erasure code (Enc,Dec) and an invertible
affine extractor Ext, and define the share function to be Enc(Ext™'). If Ext is
non-malleable against a class of tampering function F which is closed under

Non-malleability Against Polynomial Tampering 119

composition with linear function, the non-malleability will be inherited by the
secret sharing scheme. We show that the non-malleable extractor in Theorem 3
is also an extractor for arbitrary affine source (see Appendix A in the online
version [7]). Thus the framework in [46] directly gives a non-malleable secret
sharing against polynomial tampering.

Besides the direct application, we further show how to construct a r-out-of-n
secret sharing which is non-malleable against adversaries who can (adaptively)
corrupt (r—1) shares and choose the polynomial tampering functions based on the
corrupted shares. To handle such adaptive adversary, we cannot directly plug our
extractor into the framework in [46] because our extractor is non-malleable only
for skew affine source. Nevertheless, we will show that non-malleablility for skew
affine source is sufficient if we choose a proper erasure code in the [46] scheme.
In short, the erasure code we choose has the property that no single symbol in
the message can be determined by (r—1) symbols in the codeword. The property
above ensures that when a uniformly random secret S is distributed using the
scheme Enc(Ext™*(S)) and (r — 1) shares are revealed to the adversary, none
of the symbol in Ext™*(S) is constant in the adversary’s view, which means
Ext™!(S) is a skew affine source in the adversary’s view. Since our extractor is
non-malleable for skew affine source, we can prove our claim above following a
similar path to the proof in [46].

Before we state our theorem and proof, first we formally define the non-
malleable secret sharing.

Definition 11 (Adaptive adversary). Let X' denote a set of symbols. We say
A X" — X% s a (n,k)-adaptive adversary if A(x1,...,7,) = (Tsy,-- -, Ts,)
for indices s1, ..., s, defined as follows.

- 81 is fized.
— For every i, there exists a function f; : X' — |[n] such that s;4; =

fi(mslw-')msi)‘

Definition 12 (Non-malleable secret sharing). Let X be a finite alphabet
set. Let Share : {0,1}™ — X" be a randomized algorithm mapping m bits to
into n shares, each being an alphabet from Y. Let F : X — X" be a family of
tampering function. We say Share is a r-out-of-n e-non-malleable secret sharing
with respect to F if the following properties hold.

— Correctness. For every authorized set R C [n] of size |R| = r, there exists
a deterministic algorithm Recr : X" — {0,1}™ such that for every secret
se€{0,1}™,

Pr[Recg(Share(s)g) = s] > 1 — ¢,

where Share(s)r denotes the r shares in Share(s) identified by the set R.
- Privacy. For every (n,r—1)-adaptive adversary A and every pair of secret
a,be {0,1}™,
A (Share(a)) ~. A (Share(b)) .

120 M. Ball et al.

~ Non-malleability. For every (n,r—1)-adaptive adversary A, every recon-
struction strategy R : Y71 — ([Z]), every secret s € {0,1}™ and every
tampering strateqy p : "1 — F, define the tampering experiment

share « Share(s)
v« A(share)
[pv)
R — R(v)

share — f(share)

e
Il

Output : RecR(mR)

which is a random variable over the randomness of Share. Then there exists
a distribution D g, on {0,1}™ U {same} which does not depend on s such
that 3

S e copy(Dar,p, S)-

As observed in [46], since the tampering function f can be based on the view
of adversary, the adversary can jointly tamper (r—1) adaptively chosen shares
arbitrarily. The tampering on shares which the adversary cannot see depends on
how strong F is. In our construction F would be bounded-degree polynomials.
With the non-malleable extractor in Theorem 3, we show the following.

Theorem 8. There exists a constant C' > 0 such that for all integers n,d,r, any
prime q and any € > 0 such that ¢ > (C2™n%d*/e?) - log(nd/e) and 1 <r < mn,
there exists a r-out-of-n e-non-malleable secret sharing scheme with respect to
polynomial tampering Fy, g4 for m-bit secret.

Proof. First we specify the construction. Let nmExt : Fj — {0,1}" be the non-
malleable extractor with respect to F,. 4 with error £/2™%2 in Theorem 3. Let
Enc(z) = (z,Enc(z)) be the systematic encoding of a [n + r,7], MDS code
in Lemma5. Let nmExt ™! be the sampling algorithm in Theorem 7 with error
£/2™*2. Then we define

Share(s) = Enc’(nmExt ! (m)),

where nmExt ™! is the almost-uniform inverter of nmExt in Sect.4. Next we
prove the three properties in Definition 12. The proof basically follows [46], but
additionally we need to show that the decoded shares is a skew affine source
conditioned on adversary view.

— Correctness. For every authorized set R C [n] of size |R| = 7, let Decg
denote the decoding function of Enc’ specified by R in Lemma5. Then we
define

Recg(v) = nmExt(Decg(v)).

Rec is a correct reconstruction because for every secret s,

Pr[Recr(Share(s)r) = s] = PrlnmExt (DecR (Enc(nmExt_l(s))R)) =s|>1—c¢

Non-malleability Against Polynomial Tampering 121

Note that the correctness is not perfect because nmExt ™' (z) does not always
output a pre-image of x.

Privacy. Let S = nmExt(Ug;), and define X = nmExt~!(9). Fix any (n,r—
1)-adaptive adversary A : Fy —]Fg’l. Since nmExt ! is an inverter of nmExt
with error £/2™%2 we have (X, 9) Roe/gm+2 (UFZ’ S), which implies

(A (Enc' (X)) , S) ~eppss (A (End'(Uy)) nmExt(Ug;))

Define V.= A (Enc/(U[FZ)) We claim that for every v € F;~1, Y, = (Upr |
V =) is a skew affine source with positive min-entropy. Observe that there
exists a set T, € (T[ﬁ]l) uniquely determined by v such that A (Enc/(UF;)> =
Enc’(UFQ)Tv. Since Enc’ is a linear mapping, V' = v corresponds to r—1 linear
constraints for Y,,. Therefore Y,, is an affine source with positive min-entropy.
Now assume for contradiction that Y, is not skew. Then there exists i € [r]
such that (Y,); is a constant. Since Y,, is not a constant, there exist two dis-
tinct value yi,y2 € Supp(Y,). Observe that Enc’(y;)r, = v = Enc'(y2)r, and

(y1)i = (y2)i- Then Enc(y;) := (y1,Enc’(y1)) and Enc(ys) := (y2, Enc’(y2))
coincide on (r—1) + 1 coordinates, which contradicts to the fact that Enc is

a MDS code. Therefore Y, is skew. By Theorem 3,
(A (Bnc'(Us;)) , nmExt(Us;)) = jzrse (A (Ene'(Usy)) , Un)
By triangle inequality we have
(A (Enc'(X)) , 8) meppsr (A (End'(Ugy)) ,Un)
which by Lemma 6 implies
(A (End'(X)) | S = a) ~eja (A (Bnc(Usy)) ~po (A (Enc'(X)) | S =)

for every a,b € Supp(S). Finally, observe that Supp(S) = {0,1}™ because S
is £/2m%2 < 1/2™ close to uniform. Therefore for every a,b € {0,1}™,

A (Enc/ (nmExt_l(a))) ~. A (Enc' (nmExt_l(b))) .

Non-malleability. Let S = nmExt(Uy;), and define X = nmExt ™" (S). Fix
any (n,7—1)-adaptive adversary A : Fp — IFgfl, any reconstruction strategy
R : IFZ_l — ([Z]) and any tampering strategy p : Fz_l — Fn,q.d- Recall the
tampering experiment

share «— Enc’(X)

V — A(share)

= fe=nV)

S = /__]E — R(V)

share «— f(share)

Output : Recgr(sharer)

122 M. Ball et al.

Note that this tampering experiment is equivalent to applying the tampering
experiment in Definition 12 on S. Now define

share’ «— Enc(UFZIL)
V' — A(share’)

= fe=nV)

S = R« R(V)

share’ — f(share’)

Output : Recr(sharer)

Since nmExt™' is an inverter of nmExt with error £/2™%2 we have
(8, X) ~jgm+2 (S, Urn) which implies

(S,8) = jgm2 (S, 5).

For every v € F;~!, define Y, = (Ug; | V/ = v). With the same proof in
the privacy part, we can show that Y, is a skew affine source with positive
min-entropy. Now define f, = u(v), R, = R(v) and g, : F;, — Fy to be
gv(z) := Decg, (fo(Enc’(z))r,). Since both Enc’ and Decg, are linear and
fo € Fn,q,4, we have g, € Fy 4 4. By Theorem 3, there exists a distribution
D, on {0,1}™ U {same} such that

(mExt(Ug,), nmExt(g, (s,)) | V7 =) &z sz (Ui, copy(Dy, s Un))-
Define Dy, = ., Pr[V/ =] - D,,. By convexity of statistical distance,
(8,9) = (nmExt(Ug;), §') & oz (U, copy(Daru Um)),
which by triangle inequality implies
(5,8) ~ejgmer (U, copy(Dar. s Um)))-

Finally by Lemma6 and the fact that Supp(S) = {0,1}™ we can conclude
that for every s € {0,1}™,

(S | S = S) e COPY(DA,R,M73)~

7 Open Questions

Obvious questions that arise from our work include improving the parameters
(such as rate and error) of our non-malleable code against polynomials, and
similarly obtaining seedless non-malleable extractors against polynomials with
smaller error.

Another interesting direction is to construct such non-malleable codes and
extractors against polynomials over smaller fields. In particular, over Fy would
be the most interesting. We expect this to require significantly different ideas

Non-malleability Against Polynomial Tampering 123

from our construction: we crucially rely on exponential sum estimates for our
non-malleable extractor construction, and such estimates are not available over
smaller fields.

More broadly, we believe it to be a very interesting question to construct
non-malleable codes against other natural complexity classes (e.g., small-width
branching programs, AC? with PARITY gates, etc.).

Acknowledgements. Marshall Ball is supported by an IBM Research PhD Fellow-
ship. Tal Malkin and Marshall Ball: This work is based upon work supported in part
by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA) via Contract No. 2019-1902070006. The views
and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies, either express or implied, of
ODNI, TARPA, or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

Eshan Chattopadhyay and Jyun-Jie Liao are supported by NSF grant CCF-
1849899. Li-Yang Tan is supported by NSF grant CCF-1921795.

References

1. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-sharing
schemes for general access structures. IACR Cryptology ePrint Archive 2018, 1147
(2018)

2. Aggarwal, D.; Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, pp. 459-468. ACM (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. SIAM J. Comput. 47(2), 524-546 (2018)

4. Aggarwal, D., Obremski, M.: A constant-rate non-malleable code in the split-state
model. IACR Cryptology ePrint Archive 2019, 1299 (2019)

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and permu-
tations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
375-397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6-16

6. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. TACR
Cryptology ePrint Archive 2018, 1144 (2018)

7. Ball, M., Chattopadhyay, E., Liao, J., Malkin, T., Tan, L.: Non-malleability against
polynomial tampering. IACR Cryptology ePrint Archive 2020, 147 (2020). https://
eprint.iacr.org/2020/147

8. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 826-837. IEEE (2018)

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881-908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5_31

https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://eprint.iacr.org/2020/147
https://eprint.iacr.org/2020/147
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31

124

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. Ball et al.

Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. IACR Cryp-
tology ePrint Archive 2019, 379 (2019)

Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few inde-
pendent sources. SIAM J. Comput. 36(4), 1095-1118 (2006). https://doi.org/10.
1137/S0097539705447141

Bennett, C., Brassard, G., Robert, J.M.: Privacy amplification by public discussion.
SIAM J. Comput. 17, 210-229 (1988)

Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, pp. 313-317 (1979)

Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 01(01), 1-32 (2005). https://doi.org/10.1142/
S1793042105000108

Bourgain, J.: On the construction of affine extractors. GAFA Geom. Funct. Anal.
17(1), 33-57 (2007)

Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC (2016)

Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1171-1184. ACM (2017)
Chattopadhyay, E., Li, X.: Non-malleable codes, extractors and secret sharing for
interleaved tampering and composition of tampering. Technical report, Cryptology
ePrint Archive, Report 2018/1069, 2018 (2019)

Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: Proceedings of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 306-315 (2014)

Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. Ann. Math. 189(3), 653—-705 (2019). https://doi.org/10.4007 /annals.
2019.189.3.1

Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440-464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_19
Cheraghchi, M., Shokrollahi, A.: Almost-uniform sampling of points on high-
dimensional algebraic varieties. In: 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, Freiburg, Germany, 26-28 February
2009, Proceedings, pp. 277-288 (2009)

Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230-261 (1988)
Chor, B., Goldreich, O., Hasted, J., Freidmann, J., Rudich, S., Smolensky, R.:
The bit extraction problem or t-resilient functions. In: IEEE Symposium on Foun-
dations of Computer Science, pp. 396-407 (1985). https://doi.org/10.1109/SFCS.
1985.55

Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532-560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6_22

Dodis, Y., Li, X., Wooley, T.D., Zuckerman, D.: Privacy amplification and non-
malleable extractors via character sums. SIAM J. Comput. 43(2), 800-830 (2014)
Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: STOC, pp. 601-610 (2009)

Dusart, P.: Estimates of some functions over primes without RH. arXiv preprint
arXiv:1002.0442 (2010)

https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
http://arxiv.org/abs/1002.0442

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Non-malleability Against Polynomial Tampering 125

Dvir, Z.: Extractors for varieties. Comput. Complex. 21(4), 515-572 (2012)

Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polyno-
mial sources. Comput. Complex. 18(1), 1-58 (2009)

Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of mul-
tiplicities, with applications to Kakeya sets and mergers. In: Proceedings of the
50th Annual IEEE Symposium on Foundations of Computer Science, pp. 181-190
2009

](Dzierr)lbowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239-257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1.14

Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1-20:32 (2018). https://doi.org/10.1145/3178432

Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.
Combinatorica 28(4), 415-440 (2008)

Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 685-698. ACM
2018

E}oyal), V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
501-530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_17
Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Comput-
ing, pp. 1128-1141. ACM (2016)

Gupta, D., Maji, H.K., Wang, M.: Constant-rate non-malleable codes in the split-
state model. Technical report, Technical Report Report 2017/1048, Cryptology
ePrint Archive (2018)

Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM 56(4), 1-34 (2009)

Huang, M.-D., Wong, Y.-C.: An algorithm for approximate counting of points on
algebraic sets over finite fields. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 514-527. Springer, Heidelberg (1998). https://doi.org/10.1007 /BFb0054889
Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 344-375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3-11

Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 589-617. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7_19

Lacan, J., Fimes, J.: Systematic MDS erasure codes based on vandermonde matri-
ces. IEEE Commun. Lett. 8(9), 570-572 (2004). https://doi.org/10.1109/LCOMM.
2004.833807

Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pp. 1144-1156 (2017)

Li, X.: Non-malleable extractors and non-malleable codes: partially optimal con-
structions. In: 34th Computational Complexity Conference, CCC 2019, New
Brunswick, NJ, USA, 18-20 July 2019, pp. 28:1-28:49 (2019)

Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable
secret sharing against affine tampering. arXiv preprint arXiv:1902.06195 (2019)

https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1145/3178432
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/BFb0054889
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1109/LCOMM.2004.833807
https://doi.org/10.1109/LCOMM.2004.833807
http://arxiv.org/abs/1902.06195

126

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

M. Ball et al.

Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong
extractors. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 257-271.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_17

Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43-52 (1996). https://doi.org/10.1006/jcss.1996.0004

Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273—
280 (1980). https://doi.org/10.1137/0209024

Rao, A.: An exposition of Bourgain’s 2-source extractor. In: Electronic Colloquium
on Computational Complexity (ECCC), vol. 14 (2007)

Reed, L.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300-304 (1960)

Robin, G.: Permanence de relations de récurrence dans certains développements
asymptotiques. Pub. Inst. Math. Beograd 43(57), 17-25 (1988)

Rosser, B.: The n-th prime is greater than nlogn. Proc. Lond. Math. Soc. 2(1),
21-44 (1939)

Schwartz, J.T.: Probabilistic algorithms for verification of polynomial identities. In:
Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 200-215.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_72

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Singleton, R.C.: Maximum distance g-nary codes. IEEE Trans. Inf. Theory 10(2),
116-118 (1964). https://doi.org/10.1109/TIT.1964.1053661

Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Trans. Inf. Theory 50(12),
3015-3025 (2004)

Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. U.S.A. 34(5), 204
(1948)

Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E-W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216-226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5_73

Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, pp. 681-690 (2006)

https://doi.org/10.1007/3-540-45708-9_17
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1137/0209024
https://doi.org/10.1007/3-540-09519-5_72
https://doi.org/10.1109/TIT.1964.1053661
https://doi.org/10.1007/3-540-09519-5_73

®

Check for
updates

Non-malleable Secret Sharing Against
Bounded Joint-Tampering Attacks in the
Plain Model

Gianluca Brian'®) | Antonio Faonio?, Maciej Obremski®, Mark Simkin?,
and Daniele Venturi'

! Sapienza University of Rome, Rome, Italy
brian@di.uniromal.it
2 IMDEA Software Institute, Madrid, Spain
3 National University of Singapore, Singapore, Singapore
4 Aarhus University, Aarhus, Denmark

Abstract. Secret sharing enables a dealer to split a secret into a set of
shares, in such a way that certain authorized subsets of share holders can
reconstruct the secret, whereas all unauthorized subsets cannot. Non-
malleable secret sharing (Goyal and Kumar, STOC 2018) additionally
requires that, even if the shares have been tampered with, the recon-
structed secret is either the original or a completely unrelated one.

In this work, we construct non-malleable secret sharing tolerating p-
time joint-tampering attacks in the plain model (in the computational
setting), where the latter means that, for any p > 0 fixed a priori, the
attacker can tamper with the same target secret sharing up to p times.
In particular, assuming one-to-one one-way functions, we obtain:

— A secret sharing scheme for threshold access structures which toler-
ates joint p-time tampering with subsets of the shares of maximal
size (i.e., matching the privacy threshold of the scheme). This holds
in a model where the attacker commits to a partition of the shares
into non-overlapping subsets, and keeps tampering jointly with the
shares within such a partition (so-called selective partitioning).

— A secret sharing scheme for general access structures which tolerates
joint p-time tampering with subsets of the shares of size O(y/logn),
where n is the number of parties. This holds in a stronger model
where the attacker is allowed to adaptively change the partition

A. Faonio—Supported by the Spanish Government under projects SCUM (ref.
RTI2018-102043-B-100), CRYPTOEPIC (ref. EUR2019-103816), and SECURITAS (ref.
RED2018-102321-T), by the Madrid Regional Government under project BLOQUES
(ref. S2018/TCS-4339).

M. Obremski—Supported by MOE2019-T2-1-145 Foundations of quantum-safe
cryptography.

M. Simkin—Supported by the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agree-
ment No 669255 (MPCPRO), grant agreement No 803096 (SPEC), Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC), and the Concordium Block-
hain Research Center.

© International Association for Cryptologic Research 2020

D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 127-155, 2020.
https://doi.org/10.1007/978-3-030-56877-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_5

128 @G. Brian et al.

within each tampering query, under the restriction that once a subset
of the shares has been tampered with jointly, that subset is always
either tampered jointly or not modified by other tampering queries
(so-called semi-adaptive partitioning).
At the heart of our result for selective partitioning lies a new technique
showing that every one-time statistically non-malleable secret sharing
against joint tampering is in fact leakage-resilient non-malleable (i.e., the
attacker can leak jointly from the shares prior to tampering). We believe
this may be of independent interest, and in fact we show it implies lower
bounds on the share size and randomness complexity of statistically non-
malleable secret sharing against independent tampering.

Keywords: Secret sharing - Non-malleability - Joint tampering

1 Introduction

In the past 40 years, secret sharing [9,32] became one of the most fundamental
cryptographic primitives. Secret sharing schemes allow a trusted dealer to split
a message m into shares si1,...,s, and distribute them among n participants,
such that only certain authorized subsets of share holders are allowed to recover
m. The collection A of authorized subsets is called the access structure. The
most basic security guarantee is that any unauthorized subset outside A collec-
tively has no information about the shared message. Shamir [32] and Blakley [9]
showed how to construct secret sharing schemes with information-theoretic secu-
rity, and Krawczyk [25] presented the first computationally-secure construction
with improved efficiency parameters.

Non-malleable Secret Sharing. A long line of research [2,8,11,12,14,21,23,24,26,
31,33] has focused on different settings with active adversaries that were allowed
to tamper with the shares in one or another way. In verifiable secret sharing [31]
the dealer is considered to be untrusted and the share holders want to ensure
they hold shares of a consistent secret. In robust secret sharing [12] some parties
may act maliciously and try to prevent the correct reconstruction of the shared
secret by providing incorrect shares. It is well known that robust secret sharing
is impossible when more than half of the parties are malicious.

A recent line of works considers an adversary that has some form of re-
stricted access to all shares. In non-malleable secret sharing [23] the adversary
can partition the shares in disjoint sets and can then independently tamper
with each set of shares. Security guarantees that whatever is reconstructed
from the tampered shares is either the original secret, or a completely unre-
lated value. Most previous works have focused on the setting of indepen-
dent tampering [2,8,11,21,23,24,26,33], where the adversary is only allowed to
tamper with each share independently. Only a few papers [11,14,23,24] have
considered the stronger setting where the adversary is allowed to tamper with
subsets of shares jointly.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 129

Continuous Non-malleability. The first notions of non-malleability only focused
on security against a single round of tampering. A natural extension of this
setting is to consider adversaries that may perform several rounds of tamper-
ing attacks on a secret sharing scheme. Badrinarayanan and Srinivasan [8] and
Aggarwal et al. [2] considered p-time tampering attacks in the information-
theoretic setting, where p must be a-priori bounded. The works of Faonio and
Venturi [21] and Brian, Faonio and Venturi [11] considered continuous, i.e., poly-
many tampering attacks in the computational setting. It is well known that
cryptographic assumptions are inherent in the latter case [8,21,22].

An important limitation of all works mentioned above is that, with the excep-
tion of [11], they only consider the setting of independent tampering. Brian
Faonio, and Venturi [11] achieve continuous non-malleability against joint tam-
pering, where each tampering function can tamper with O(logn)-large sets of
shares assuming a trusted setup in the form of a common reference string. This
leads to the following question:

Can we obtain continuously non-malleable secret sharing against joint
tampering in the plain model?

1.1 Owur Contributions

In this work, we make progress towards answering the above question. Our
main contribution is a general framework for reducing computational p-time
non-malleability against joint tampering to statistical one-time non-malleability
against joint tampering. Our framework encompasses the following models:

— Selective partitioning. Here, the adversary has to initially fix any k-sized
partition' of the n shares, at the beginning of the experiment. Afterwards, the
adversary can tamper p times with the shares within each subset in a joint
manner. We call this notion k-joint p-time non-malleability under selective
partitioning.

— Semi-adaptive partitioning. In this setting, the adversary can adaptively
choose different k-sized partitions for each tampering query. However, once
a subset of the shares has been tampered with jointly, that subset is always
either tampered jointly or not modified by other tampering queries. We call
this notion k-joint p-time non-malleability under semi-adaptive partitioning.

Combining known constructions of one-time statistically non-malleable secret
sharing schemes against joint tampering [14,23,24] with a new secret sharing
scheme that we present in this work, we obtain the following result:

Theorem 1 (Main Theorem, Informal). Assuming the existence of one-to-
one one-way functions, there exist:

! This a sequence of non-overlapping subsets By, ..., B; covering [n], such that each
B; has size at most k.

130 @G. Brian et al.

(i) A T-out-of-n secret sharing scheme satisfying k-joint p-time non-malleabil-
ity under selective partitioning,? for any 7 <n, k<71 —1, and p > 0.

(ii) An (n,7)-ramp® secret sharing scheme with binary shares satisfying k-joint
p-time non-malleability under selective partitioning, for 7 = n —nP, k <
T—1,0<1, and p € O(\/n).

(iti) A secret sharing scheme satisfying k-joint p-time non-malleability under
semi-adaptive partitioning, for k € O(y/logn) and p > 0, and for any
access structure that can be described by a polynomial-size monotone span
program for which authorized sets have size greater than k.

1.2 Technical Overview

Our initial observation is that a slight variant of a transformation by Ostrovsky
et al. [30] allows to turn a bounded leakage-resilient, statistically one-time non-
malleable secret sharing Y into a bounded-time non-malleable secret sharing X*
against joint tampering. Bounded leakage resilience here means that, prior to
tampering, the attacker may also repeatedly leak information jointly from the
shares of X', as long as the overall leakage is bounded.

In the setting of joint tampering under selective partitioning, the leakage
resilience property of X has to hold w.r.t. the same partition used for tampering.
For joint tampering under semi-adaptive partitioning, we need X to be leakage-
resilient under a semi-adaptive choice of the partitions too. A nice feature of this
transformation is that it only requires perfectly binding commitments, which
can be built from injective one-way functions. Moreover, it preserves the access
structure of the underlying secret sharing scheme X

Given the above result, we can focus on the simpler task of constructing
bounded leakage-resilient, statistically one-time non-malleable secret sharing,
instead of directly attempting to construct their multi-time counterparts. We
show different ways of doing that for both settings of selective and semi-adaptive
partitioning.

Selective Partitioning. First, we show that every statistically one-time non-
malleable secret sharing scheme X' is also resilient to bounded leakage under
selective partitioning. Let ¢ be an upper bound on the total bit-length of the
leakage over all shares. We use an argument reminiscent to standard complexity
leveraging to prove that every one-time non-malleable secret sharing scheme with
statistical security ¢ € [0,1) is also f-bounded leakage-resilient one-time non-
malleable under selective partitioning with statistical security ¢/2¢. The proof
roughly works as follows. Given an unbounded attacker A breaking the leakage-
resilient one-time non-malleability of X', we construct an unbounded attacker A
against one-time non-malleability of X' (without leakage). The challenge is how

2 Here, we inherit a few restrictions from [23]. Namely, the attacker is allowed to
tamper jointly using a partition of a minimal reconstruction set in subsets of differ-
ent sizes. We can remove these restrictions relying on the scheme from [24], which
however only works for the n-out-of-n access structure.

3 This means privacy holds with threshold 7, but all of the n shares are required to
reconstruct the message.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 131

A can answer the leakage queries done by A. Our strategy is to simply guess
the overall leakage A by sampling it uniformly at random, and use this guess to
answer all of A’s leakage queries.

The problem with this approach is that, whenever our guess was incorrect,
the attacker A may notice that it is being used in a simulation and start behaving
arbitrarily. We solve this issue with the help of A’s final tampering query. Recall
that in the model of selective partitioning, all leakage queries and the tamper-
ing query, act on the same arbitrary but fixed subsets Bi,...,B; of a k-sized
partition of the shares. Hence, when A outputs its tampermg query (fi,..., ft),
the reduction A defines a modified tampering query (f1, cee ft) that first checks
whether the guessed leakage from each subset B; was correct; if not, the tam-
pering function sets* the modified shares within B; to L, else it acts identically
to f;. This strategy ensures that our reduction either performs a correct simula-
tion or destroys the secret. In turn, destroying the secret whenever we guessed
incorrectly implies that the success probability of A is exactly that of A times
the probability of guessing the leakage correctly, which is 2.

By plugging the schemes from [23, Thm. 2], [24, Thm. 6], and [14, Thm. 3],
together with our refined analysis of the transformation by Ostrovsky et al. [30],
the above insights directly imply items i and ii of Theorem 1.

Semi-adaptive Partitioning. Unfortunately, the argument for showing that one-
time non-malleability implies bounded leakage resilience breaks in the setting of
adaptive (or even semi-adaptive) partitioning. Intuitively, the problem is that
the adversary can leak jointly from adaptively chosen partitions, and thus it is
unclear how the reduction can check whether the simulated leakage was correct
using a single tampering query.

Hence, we take a different approach. We directly construct a bounded leakage-
resilient, statistically one-time non-malleable secret sharing scheme for general
access structures. Our construction X' combines a 2-out-of-2 non-malleable secret
sharing scheme Y5 with two auxiliary leakage-resilient secret sharing schemes X
and X realizing different access structures. When taking Xy to be the secret
sharing scheme from [26, Thm. 1], our construction achieves k-joint bounded
leakage-resilient statistical one-time non-malleability under semi-adaptive par-
titioning for k£ € O(y/logn). This implies item iii of Theorem 1. We refer the
reader directly to Sect.5 for a thorough description of our new secret sharing
scheme and its security analysis.

Lower Bounds. Our complexity leveraging argument implies that every statisti-
cally one-time non-malleable secret sharing scheme against independent tamper-
ing with the shares is also statistically bounded leakage resilient against inde-
pendent leakage (and no tampering).

By invoking a recent result of Nielsen and Simkin [29], we immediately obtain
lower bounds on the share size and randomness complexity of any statistically
one-time non-malleable secret sharing scheme against independent tampering.

1 We assume that the reconstruction algorithm outputs L whenever one of the input
shares is set to L. As we will see later, this is without loss of generality.

132 @G. Brian et al.

1.3 Related Works

Non-malleable secret sharing is intimately related to non-malleable codes [19].
The difference between the two lies in the privacy property: While any non-
malleable code in the split-state model [1,3,5-7,13,15-17,19,20,22,27,28,30] is
also a 2-out-of-2 secret sharing [17], for any n > 3 there are n-split-state non-
malleable codes that are not private.

Continuously non-malleable codes in the n-split-state model are currently
known for n = 8 [4] (with statistical security), and for n = 2 [16,20,22,30] (with
computational security).

Non-malleable secret sharing schemes have useful cryptographic applications,
such as non-malleable message transmission [23] and continuously non-malleable
threshold signatures [2,21].

1.4 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, we recall a few standard
definitions. In Sect.3, we define our model of k-joint non-malleability under
selective and semi-adaptive partitioning.

In Sect.4 and Sect.5, we describe our constructions of bounded leakage-
resilient statistically one-time non-malleable secret sharing schemes under selec-
tive and semi-adaptive partitioning. The lower bounds for non-malleable secret
sharing, and the compiler for achieving p-time non-malleability against joint
tampering are presented in Sect.6. Finally, in Sect.7, we conclude the paper
with a list of open problems for further research.

2 Preliminaries

2.1 Standard Notation

For a string = € {0, 1}*, we denote its length by |z|; if X is a set, |X| represents
the number of elements in X'. We denote by [n] the set {1,...,n}. For a set of
indices Z = (iy,...,4;) and a vector x = (x1,...,%,), we write 7 to denote the
vector (x4, ...,x;,). When z is chosen randomly in X, we write « «—s X'. When
A is a randomized algorithm, we write y «<—s A(z) to denote a run of A on input
z (and implicit random coins r) and output y; the value y is a random variable
and A(x;r) denotes a run of A on input z and randomness r. An algorithm
A is probabilistic polynomial-time (PPT for short) if A is randomized and for
any input z,r € {0,1}*, the computation of A(x;r) terminates in a polynomial
number of steps (in the size of the input).

Negligible Functions. We denote with A € N the security parameter. A function
p is polynomial (in the security parameter), denoted p € poly(A), if p(A\) €
O(X°) for some constant ¢ > 0. A function v : N — [0,1] is negligible (in the
security parameter) if it vanishes faster than the inverse of any polynomial in A,
i.e. v(A) € O(1/p(N\)) for all positive polynomials p(\). We often write v(\) €

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 133

negl (A) to denote that v()) is negligible. Unless stated otherwise, throughout
the paper, we implicitly assume that the security parameter is given as input (in
unary) to all algorithms.

Random Variables. For a random variable X, we write P[X = z] for the proba-
bility that X takes on a particular value x € X, with X being the set where X
is defined. The statistical distance between two random variables X and Y over
the same set X is defined as

AX,Y) = % > IPX =a] - P[Y =a1]|.
reX

Given two ensembles X = {X)}iey and Y = {Ya}ren, we write X = Y to
denote that they are identically distributed, X 2 Y to denote that they are

statistically close, i.e. A(Xx,Yy) € negl(\), and X A~ Y to denote that they are
computationally indistinguishable, i.e. for all PPT distinguishers D:

[B[D(X) = 1] = B[D(Y) = 1]| € negl(A).

Sometimes we explicitly denote by X 2. Y the fact that A(Xy, Yy < e for
a parameter € = €(\). We also extend the notion of computational indistin-
guishability to the case of interactive experiments (a.k.a. games) featuring an
adversary A. In particular, let Ga(\) be the random variable corresponding to
the output of A at the end of the experiment, where wlog. we may assume A
outputs a decision bit. Given two experiments Ga(A,0) and Ga(A, 1), we write

{Ga(X,0)}ren ~ {Ga(\, 1)} ren as a shorthand for
PGA(L0) = 1] - P[GA(\ 1) = 1]] € negl ().

The above naturally generalizes to statistical distance, which we denote by
A(Ga(A,0), Ga(N, 1)), in case of unbounded adversaries.
We recall a lemma from Dziembowski and Pietrzak [18]:

Lemma 1. Let X and Y be two independent random variables, and Oeax(-,*)
be an oracle that upon input arbitrary functions (go, g1) returns (go(X), g1(Y)).
Then, for any adversary A outputting Z «—s A=~ it holds that the random
variables X|Z and Y|Z are independent.

2.2 Secret Sharing Schemes

An n-party secret sharing scheme X consists of polynomial-time algorithms
(Share, Rec) specified as follows. The randomized sharing algorithm Share takes
a message m € M as input and outputs n shares s1,...,s,, where each s; € S;.
The deterministic algorithm Rec takes some number of shares as input and out-
puts a value in MU {L}. We define p := log | M| and o; := log|S;| respectively,
to be the bit length of the message and of the ith share.

Which subsets of shares are authorized to reconstruct the secret and which
are not is defined via an access structure, which is the set of all authorized
subsets.

134 @G. Brian et al.

Definition 1 (Access structure). We say that A is an access structure for n
parties if A is a monotone class of subsets of [n], i.e., if Iy € A and Iy C T,
then Iy € A. We call authorized or qualified any set T € A, and unauthorized
or unqualified any other set. We say that an authorized set T € A is minimal if
any proper subset of T is unauthorized, i.e., if U C I, thenU ¢ A.

Intuitively, a perfectly secure secret sharing scheme must be such that all
qualified subsets of players can efficiently reconstruct the secret, whereas all
unqualified subsets have no information (possibly in a computational sense)
about the secret.

Definition 2 (Secret sharing scheme). Let n € N and A be an access struc-
ture for n parties. We say that ¥ = (Share, Rec) is a secret sharing scheme real-
izing access structure A with message space M and share space S = S1 X ... XS,
if it is an n-party secret sharing with the following properties.

(i) Correctness: For all A € N, all messages m € M and all authorized subsets
T € A, we have that Rec((Share(m))z) = m with overwhelming probability
over the randomness of the sharing algorithm.

(ii) Privacy: For all PPT adversaries A, all pairs of messages mg,m; € M
and all unauthorized subsets U ¢ A, we have that

{(Share(1*, mg))u }ren ~ {(Share(1*, m1))u bren-

If the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) privacy.

2.3 Non-interactive Commitments

A non-interactive commitment scheme Commit is a randomized algorithm taking
as input a message m € M and outputting a value ¢ = Commit(m;r) called
commitment, using random coins r € R. The pair (m,r) is called the opening.

Intuitively, a secure commitment satisfies two properties called binding and
hiding. The first property says that it is hard to open a commitment in two
different ways. The second property says that a commitment hides the underlying
message. The formal definition follows.

Definition 3 (Binding). We say that a non-interactive commitment scheme
Commit s computationally binding if for all PPT adversaries A, all messages
m € M, and all random coins r € R, the following probability is negligible:

P[m’ #m A Commit(m/; ') = Commit(m;r) : (m/,7") s A(m,r)].

If the above holds even in the case of unbounded adversaries, we say that Commit
is statistically binding. Finally, if the above probability is exactly 0 for all adver-
saries (i.e., each commitment can be opened to at most a single message), then
we say that Commit is perfectly binding.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 135

Definition 4 (Hiding). We say that a non-interactive commitment scheme
Commit is computationally hiding if, for all mg, m; € M, it holds that

{Commit(1*;mg)}, g & {Commit(1*;mq)}, -

In case the above ensembles are statistically close (resp. identically distributed),
we say that Commit is statistically (resp. perfectly) hiding.

3 Our Leakage and Tampering Model

In this section we define various notions of non-malleability against joint tam-
pering and leakage for secret sharing. Very roughly, in our model the attacker is
allowed to partition the set of share holders into ¢ (non-overlapping) blocks with
size at most k, covering the entire set [n]. This is formalized through the notion
of a k-sized partition.

Definition 5 (k-sized partition). Let n,k,t € N. We call B= (By,...,B:) a
k-sized partition of [n] when: (i) Ui_, Bi = [n]; (i) Viy, iz € [t] such that iy # is,
Bil ﬂBiz = @,’ (ZZZ) Vi € [t], |Bz‘ <k.

Let B = (By,...,B:) be a k-sized partition of [n]. To define non-malleability,
we consider an adversary A interacting with a target secret sharing s =
(s1,-..,8n) via the following queries:

— Leakage queries. For each i € [t], the attacker can leak jointly from the
shares sg,. This can be done repeatedly and in an adaptive® fashion, as long
as the total number of bits that the adversary leaks from each share does not
exceed ¢ € N.

— Tampering queries. For each i € [t], the attacker can tamper jointly with
the shares sp,. Each such query yields mauled shares (51,...,3§,), for which
the adversary is allowed to see the corresponding reconstructed message w.r.t.
a reconstruction set 7 € A of his choice. This can be done for at most p € N
times, and in an adaptive fashion.

Depending on the partition B being fixed, or chosen adaptively with each leak-
age/tampering query, we obtain two different flavors of non-malleability, as
defined in the following subsections.

3.1 Selective Partitioning

Here, we restrict the adversary to jointly leak from and tamper with subsets of
shares belonging to a fixed partition of [n].

5 This means that the choice of the next leakage query depends on the overall leakage
so far.

136 @G. Brian et al.

Definition 6 (Selective bounded-leakage and tampering admissible
adversary). Let n,k,t,¢,p € N, and fix an arbitrary message space M, sharing
space § = 81 X+ - xSy, and access structure A for n parties. We say that a (pos-
sibly unbounded) adversary A is selective k-joint £-bounded leakage p-tampering
admissible (selective (k,£,p)-BLTA for short) if, for every fived k-sized partition
(By,...,B:) of [n], A satisfies the following conditions:

- A outputs a sequence of poly-many leakage queries (g§Q), . ,gt(q)), such that
for all ¢ € poly(X\) and all i € [t],

(q)
ggq) : X Sj - {071}51')
JEB;

where qu) is the length of the output AEQ) of gi(Q). The only restriction is that
|[A| < £, where A is the string containing the total leakage performed (over all
queries).

— A outputs a sequence of tampering queries (T(D, (fl(Q), ce t(Q))), such that,
for all q € [p], and for all i € [t], it holds that

fi(q) . X Sj N >< Sj and T A B; #0,

JEB; JEB;

and moreover T'D € A is a minimal authorized subset.

— All queries performed by A are chosen adaptively, i.e. each query may depend
on the information obtained from all the previous queries.

— If p > 0, the last query performed by A is a tampering query.

Note that A can choose a different reconstruction set 74 with each tam-
pering query, in a fully adaptive manner. This feature is known as adaptive
reconstruction [21]. However, we consider the following two restrictions (that
were not present in previous works): (i) Each set 7(9 must be minimal and
contain at least one mauled share from each subset B;; (ii) The last query asked
by A is a tampering query. Looking ahead, these technical conditions are needed
for the complexity leveraging argument used in Theorem 3. Note that the above
restrictions are still meaningful, as they allow, e.g., to capture the setting in
which the attacker first leaks from all the shares and then tampers with the
shares in a minimal authorized subset.

3.2 Semi-adaptive Partitioning

Next, we generalize the above definition to the stronger setting in which the
adversary is allowed to change the k-sized partition with each leakage and tam-
pering query. Here, we do not consider the restriction (i) mentioned above as it
is not needed for the analysis of our secret sharing scheme in Sect. 5; yet we still
consider the restriction (ii), and we will need to restrict the way in which the
attacker specifies the partitions corresponding to each leakage and tampering
query. For this reason, we refer to our model as semi-adaptive partitioning.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 137

Definition 7 (Semi-adaptive bounded-leakage and tampering admissi-
ble adversary). Let n,k,¢,p € N and M, S, A as in Definition 6. We say that
a (possibly unbounded) adversary A is semi-adaptive k-joint (-bounded leakage
p-tampering admissible (semi-adaptive (k,¢,p)-BLTA for short) if it satisfies the
following conditions:

~ A outputs a sequence of poly-many leakage queries (B(9), (ggq), ... ,gf?q))), cho-

sen adaptively, such that, for all ¢ € poly(\), and for all i € [t\D], it holds

that B® = (B, ... B

1)) 15 a k-sized partition of [n] and

(a)
gl(q) ¢ X S — {071}4)
jGBEq)

where 4(1) is the length of the output. The only restriction is that |A] < ¢,
where A = (AN, A?)) is the total leakage (over all queries).

— A outputs a sequence of p tampering queries (B, T(®) (fl(q), R ft(q))), cho-
sen adaptively, such that, for all q € [p], and for all i € [t(D], it holds that
B9 is a k-sized partition of [n] and

7 X §— X S

jeB® jEBD

— All queries performed by A are chosen adaptively, i.e. each query may depend
on the information obtained from all the previous queries.

— If p >0, the last query performed by A is a tampering query.

- Given a tampering query (B, T, f), let T ={04,...,0:} for 7 € N. We write
(i) for the index such that 3; € Be(;); namely, the i-th share used in the
reconstruction is tampered by the £(i)-th tampering function. Then:

(i) For all leakage queries (B, g) and all tampering queries (B',T', '), where
B = (By,...,B)) and B = (B},...,B}), the following holds: for all
indices i € [t], either there exists j € T' such that B; C By, or for
all j € T' we have B; ﬂBg(]) =

(i) For any pair of tampering queries (B',T',f") and (B",T", "), where
B = {Bi,...,B.} and B" = {BY,.. Bt,/}, the following holds: for all
1eT’, ezther there exists j € T" such that B) € BE() or forall j € T
we have By, N B ;) = 0.

Intuitively, condition (i) means that whenever the attacker leaks jointly from
the shares within a subset B;, then for any tampering query the adversary must
either tamper jointly with the shares within B;, or do not modify those shares at
all. Condition (ii) is the same translated to the partitions corresponding to dif-
ferent tampering queries. Looking ahead, condition (i) is needed for the proof in
Sect. 5.3, whereas condition (ii) is needed for the proof in Sect. 6.2. Note that the
above restrictions are still meaningful, as they allow, e.g., to capture the setting

138 @G. Brian et al.

JSTamperg’f:O’ml (A, b): Oracle Onmss(s, B, 7T, (f1,..., f+)):
: If stop = true
= ..., Sn Sh P
s:=(s1,...,8n) < Share(my) Roturn |

stop « false

e . Else
Return AOnmss(S,Ba 1), Oleak (8,8,+) 1>\ A)
() Vi € [t] 1 8B, = fi(SBL')
JAT{:lmperg"A‘m1 (A 0): §=(51,...,3n)

m = Rec(57)

s:=(81,...,5n) <s Share(my) If m € {mo,m1}

StOP «— false Return o

Return Aonmss(s,-,-,»),Omak(svv)(1A) Ifm =1
Return L

Oracle Oeak(s, B, (91, - - -, gt)): stop « true
Return g1 (ss,), ..., g:(s5,) Else return m

Fig. 1. Experiments defining selective (JSTamper) and adaptive (JATamper) joint
leakage-resilient (continuously) non-malleable secret sharing. The oracle Onmss is implic-
itly parameterized by the flag stop.

in which the attacker defines two non-overlapping® subsets of [n] and then per-
forms joint leakage under adaptive partitioning within the first subset and joint
leakage/tampering under selective partitioning within the second subset.

3.3 The Definition

Very roughly, leakage-resilient non-malleability states that no admissible adver-
sary, as defined above, can distinguish whether it is interacting with a secret
sharing of mg or of m;.

Definition 8 (Leakage-resilient non-malleability). Let n,k,{,p € N and
€ € [0,1] be parameters, and A be an access structure for n parties. We say that
XY = (Share,Rec) is a k-joint £-bounded leakage-resilient p-time e-non-malleable
secret sharing scheme realizing A, shortened (k,{,p,e)-BLR-NMSS, if it is an
n-party secret sharing scheme realizing A, and additionally, for all pairs of mes-
sages mg,my € M, we have one of the following:

— For all selective (k, ¢, p)-BLTA adversaries A, and for all k-sized partitions B
of [n],

{JSTamperg’fZ\“’’m1 (A, 0)}>\€N 2, {JSTamperg’;'\“’’m1 (A, 1)} (1)

AEN

In this case, we speak of (k,¢,p,€)-BLR-NMSS under selective partitioning.
— For all semi-adaptive (k, ¢, p)-BLTA adversaries A,

{JATampergoAml()\,O)}A . ~ {JATamperggAml()\, 1)} (2)
: c :

AEN

5 In fact, the two subsets do not need to be fixed a priori.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 139

In this case, we speak of (k,¢,p,€e)-BLR-NMSS under semi-adaptive parti-
tioning.

Experiments JSTamperB A" (A D) and JATampery ™ (\,b), for b €
{0,1}, are depicted in Fig. 1.

In case there exists € = ¢(\) € negl(A) such that indistinguishability still
holds computationally in the above definitions for any p = p()\) € poly()\), and
any PPT adversaries A, we call X~ bounded leakage-resilient continuously non-
malleable, shortened (k,¢)-BLR-CNMSS, under selective/semi-adaptive parti-
tioning.

Non-malleable Secret Sharing. When no leakage is allowed (i.e., £ = 0), we
obtain the notion of non-malleable secret sharing as a special case. In particular,
an adversary is k-joint p-time tampering admissible, shortened (k, p)-TA, if it is
(k,0,p)-BLTA. Furthermore, we say that X' is a k-joint p-time e-non-malleable
secret sharing, shortened (k, p, €)-NMSS, if X' is a (k, 0, p, €)-BLR-NMSS scheme.

Leakage-Resilient Secret Sharing. When no tampering is allowed (i.e., p = 0),
we obtain the notion of leakage-resilient secret sharing as a special case. In
particular, an adversary is k-joint ¢-bounded leakage admissible, shortened (k, £)-
BLA, if it is (k, ¢,0)-BLTA. Furthermore, we say that X is a k-joint ¢-bounded
e-leakage-resilient secret sharing, shortened (k, ¢, ¢)-BLRSS, if X' is a (k, 4,0, ¢€)-
BLR-NMSS scheme.

Finally, we denote by JSLeak’ 2™ (\,b) and JALeaky %™ (A, D) the
experiments in Definition 8 defining leakage resilience against selective and semi-
adaptive partitioning respectively. However, note that when no tampering hap-
pens the conditions (i) and (ii) of Definition 7 are irrelevant, and thus we simply
speak of (k, ¥, €)-BLRSS under adaptive partitioning.

Augmented Leakage Resilience. We also define a seemingly stronger variant of
leakage-resilient secret sharing, in which A is allowed to obtain the shares within
a subset of the partition B (in the case of selective partitioning, or any unau-
thorized subset of at most k shares in the case of adaptive partitioning) at the
end of the experiment. In particular, in the case of selective partitioning, an
augmented admissible adversary is an attacker A* = (AT, AJ) such that:

— AT is an admissible adversary in the sense of Definition 6, the only difference
being that A outputs a tuple (a,i*), where « is an auxiliary state, and
e t];

— A2+ takes as input « and all the shares sp,., and outputs a decision bit.

In case of adaptive partitioning, the definition changes as follows: the adversary
A} is admissible in the sense of Definition 7 and outputs an unauthorized subset
U ¢ A of size at most k instead of the index i*, and AJ takes as input the shares
sy instead of the shares sg.. .

This flavor of security is called augmented leakage resilience. The theorem
below, which was established by [11,26] for the case of independent leakage,

140 @G. Brian et al.

shows that any joint LRSS is also an augmented LRSS at the cost of an extra
bit of leakage.

Theorem 2. Let X be a (k,¢+ 1,€)-BLRSS realizing access structure A under
selective/adaptive partitioning. Then, X is an augmented (k,£,€)-BLRSS real-
izing A under selective/adaptive partitioning.

Proof. By reduction to non-augmented leakage resilience. Let AT = (Af, /—\;“) be
a (k,¢,e)-BLA adversary violating augmented leakage-resilience; we construct
an adversary A breaking the non-augmented variant of leakage resilience. Fix
mo,m; € M and a k-sized partition B = (By,...,B;). Attacker A works as
follows.

— Run Af and, upon input a leakage query (g1, ..., g:), forward the same query
to the target leakage oracle and return the answer to Af.

n

— Let (o, i*) be the final output of Af". Define the leakage function g;i’Az which
hard-wires a and a description of A;r, takes as input the shares ss,. and
returns the decision bit b’ «s AJ (a, sp...).

+

— Forward (e, ..., ¢, g;i"‘z ,E,...,€) to the target leakage oracle, obtaining a bit
b.

— Output ¥'.

The statement follows by observing that A’s simulation to A™’s leakage queries

is perfect, thus A and AT have the same advantage, and moreover A leaks a total
of at most ¢ + 1 bits. O

4 Selective Partitioning

In this section, we construct bounded leakage-resilient, statistically one-time
non-malleable secret sharing under selective partitioning. We achieve this in two
steps. First, in Sect. 4.1, we prove that every statistically one-time non-malleable
secret sharing is in fact bounded leakage-resilient, statistically one-time non-
malleable under selective partitioning at the price of a security loss exponential
in the size of the leakage. Then, in Sect. 4.2, we provide concrete instantiations
using known results from the literature.

4.1 Non-malleability Implies Bounded Leakage Resilience

Theorem 3. Let X = (Share,Rec) be a (k,1,¢/2%)-NMSS realizing A. Then,
is also a (k,¢,1,€)-BLR-NMSS realizing A under selective partitioning.

Proof. By contradiction, assume that there exist a pair of messages mg, m; € M,
a k-partition B = (By,...,B:) of [n], and a (k,¢,1)-BLTA unbounded adversary
A such that

‘]P’ {JSTamperg’fZO’ml(/\, 0) = 1] [JSTamperB WA L) = 1} ‘ > €.

Consider the following unbounded reduction A trying to break (k, 0, 1, ¢/2¢)-non-
malleability using the same partition B, and the same messages mq, m.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 141

1. Run A(1?%).

2. Upon input the ¢-th leakage query ¢(@ = (g@, . giq)) generate a uniformly
random string A(@ = (qu), e ,qu)) compatible with the range of ¢(?), and
output 4@ to A.

3. Upon input the final tamperlng query f=(f1,..., ft), construct the following
tampering function f = (fl, ce ft)

— The function hard-wires (a description of) all the leakage functions g(@,
the tampering query f, and the guess on the leakage A = AM||AP)||....
— Upon input the shares (s;);ep,, the function fl checks that the guess on
the leakage was correct, i.e. g(q)((sj)jegi) = AEQ) for all q. If the guess
was correct, compute and output f;((s;)jen,); else, output L.
4. Send f to the tampering oracle and pass the answer m € MU {0, L} to A.
5. Output the same guessing bit as A.

