
Daniele Micciancio
Thomas Ristenpart (Eds.)

LN
CS

 1
21

72

40th Annual International Cryptology Conference, CRYPTO 2020
Santa Barbara, CA, USA, August 17–21, 2020
Proceedings, Part III

Advances in Cryptology –
CRYPTO 2020

Lecture Notes in Computer Science 12172

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Daniele Micciancio • Thomas Ristenpart (Eds.)

Advances in Cryptology –

CRYPTO 2020
40th Annual International Cryptology Conference, CRYPTO 2020
Santa Barbara, CA, USA, August 17–21, 2020
Proceedings, Part III

123

Editors
Daniele Micciancio
UC San Diego
La Jolla, CA, USA

Thomas Ristenpart
Cornell Tech
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-56876-4 ISBN 978-3-030-56877-1 (eBook)
https://doi.org/10.1007/978-3-030-56877-1

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3323-9985
https://orcid.org/0000-0002-8642-9558
https://doi.org/10.1007/978-3-030-56877-1

Preface

The 40th International Cryptology Conference (Crypto 2020), sponsored by the
International Association of Cryptologic Research (IACR), was exceptional in many
ways. The COVID-19 pandemic meant that for the first time in the conference’s
40-year history, Crypto was not held at the University of California, Santa Barbara.
Safety mandated that we shift to an online-only virtual conference.

Crypto 2020 received 371 submissions. Review occurred during what, for many
countries, was the height thus far of pandemic spread and lockdowns. We thank the 54
person Program Committee (PC) and the 286 external reviewers for their efforts to
ensure that, in the face of challenging work environments, illness, and death, we
nevertheless were able to perform a standard double-blind review process in which
papers received multiple independent reviews, authors were allowed a rebuttal, and
papers were subsequently further reviewed and discussed. The two program chairs
were not allowed to submit a paper, and PC members were limited to two submissions
each. The PC ultimately selected 85 papers for acceptance, a record number for Crypto.

The PC selected four papers to receive recognition via awards, via a voting-based
process that took into account conflicts of interest (including for the program chairs).
Three papers were selected to receive a Best Paper award and were invited to the
Journal of Cryptology: “Improved Differential-Linear Attacks with Applications to
ARX Ciphers” by Christof Beierle, Gregor Leander, and Yosuke Todo; “Breaking the
Decisional Diffie-Hellman Problem for Class Group Actions using Genus Theory” by
Wouter Castryck, Jana Sotáková, and Frederik Vercauteren; and “Chosen Ciphertext
Security from Injective Trapdoor Functions” by Susan Hohenberger, Venkata Koppula,
and Brent Waters. One paper was selected to receive the Best Paper by Early Career
Researchers award: “Handling Adaptive Compromise for Practical Encryption
Schemes” by Joseph Jaeger and Nirvan Tyagi.

In addition to the regular program, Crypto 2020 included the IACR Distinguished
Lecture by Silvio Micali on “Our Models and Us” and an invited talk by Seny Kamara
on “Crypto for the People”. Crypto 2020 carried forward the long-standing tradition of
having a rump session, this year organized in a virtual format by Antigoni Polychro-
niadou, Bertram Poettering, and Martijn Stam.

The chairs would also like to thank the many people whose hard work helped ensure
Crypto 2020 was a success:

– Leonid Reyzin (Boston University) – Crypto 2020 general chair.
– Sophia Yakoubov for helping with general chair duties, and Muthuramakrishnan

Venkitasubramaniam, Tal Rabin, and Fabrice Benhamouda for providing valuable
advice to the general chair.

– Carmit Hazay (Bar Ilan University) – Crypto 2020 workshop chair.
– Antigoni Polychroniadou, Bertram Poettering, and Martijn Stam – Crypto 2020

rump session chairs.

– Chris Peikert for his role in overseeing reviews and the Best Paper by Early Career
Researchers award selection for which the program chairs were conflicted.

– Kevin McCurley and Christian Cachin for their critical assistance in setting up
and managing a (new for Crypto) paper submission and review system.

– Kevin McCurley, Kay McKelly, and members of the IACR’s emergency pandemic
team for their work in designing and running the virtual format.

– Whitney Morris and Eriko Macdonald from UCSB event services for their help
navigating the COVID-19 shutdown logistics.

– Anna Kramer and her colleagues at Springer.

July 2020 Daniele Micciancio
Thomas Ristenpart

vi Preface

Organization

General Chair

Leonid Reyzin Boston University, USA

Program Committee Chairs

Daniele Micciancio UC San Diego, USA
Thomas Ristenpart Cornell Tech, USA

Program Committee

Adi Akavia University of Haifa, Israel
Martin Albrecht Royal Holloway, University of London, UK
Roberto Avanzi ARM, Germany
Lejla Batina Radboud University, The Netherlands
Jeremiah Blocki Purdue University, USA
David Cash University of Chicago, USA
Melissa Chase Microsoft Research, USA
Hao Chen Microsoft Research, USA
Ilaria Chillotti KU Leuven, Zama, Belgium
Henry Corrigan-Gibbs EPFL, Switzerland, and MIT CSAIL, USA
Craig Costello Microsoft Research, USA
Joan Daemen Radboud University, The Netherlands
Thomas Eisenbarth University of Lübeck, Germany
Pooya Farshim University of York, UK
Sanjam Garg UC Berkeley, USA
Daniel Genkin University of Michigan, USA
Steven Goldfeder Cornell Tech, USA
Shay Gueron University of Haifa, Israel, and AWS, USA
Felix Günther ETH Zurich, Switzerland
Tetsu Iwata Nagoya University, Japan
Tibor Jager Bergische Universitaet, Germany
Antoine Joux CISPA – Helmholtz Center for Information Security,

Germany
Jonathan Katz George Mason Univeristy, USA
Eike Kiltz Ruhr University Bochum, Germany
Elena Kirshanova I.Kant Baltic Federal University, Russia
Venkata Koppula Weizmann Institute of Science, Isarel
Anna Lysyanskaya Brown University, USA
Vadim Lyubashevsky IBM Research Zurich, Switzerland
Mohammad Mahmoody University of Virginia, USA

Giulio Malavolta Carnegie Mellon University and UC Berkeley, USA
Florian Mendel Infineon Technologies, Germany
María Naya-Plasencia Inria, France
Adam O’Neill University of Massachusetts, USA
Olya Ohrimenko The University of Melbourne, Australia
Claudio Orlandi Aarhus University, Denmark
Elisabeth Oswald University of Klagenfurt, Austria
Chris Peikert University of Michigan, USA
Bertram Poettering IBM Research Zurich, Switzerland
Antigoni Polychroniadou JP Morgan AI Research, USA
Ananth Raghunathan Google, USA
Mariana Raykova Google, USA
Christian Rechberger TU Graz, Austria
Alon Rosen IDC, Israel
Mike Rosulek Oregon State University, USA
Alessandra Scafuro NC State University, USA
Dominique Schroeder Florida Atlantic University, USA
Thomas Shrimpton University of Florida, USA
Fang Song Texas A&M University, USA
Marc Stevens CWI Amsterdam, The Netherlands
Dominique Unruh University of Tartu, Estonia
Michael Walter IST, Austria
David Wu University of Virginia, USA

Additional Reviewers

Masayuki Abe
Shweta Agrawal
Shashank Agrawal
Shweta Agrawal
Gorjan Alagic
Navid Alamati
Greg Alpar
Joel Alwen
Elena Andreeva
Gilad Asharov
Thomas Attema
Saikrishna Badrinarayanan
Shi Bai
Foteini Baldimtsi
Marshall Ball
James Bartusek
Carsten Baum
Asli Bay
Mihir Bellare

Fabrice Benhamouda
Sebastian Berndt
Ward Beullens
Ritam Bhaumik
Nina Bindel
Alex Block
Xavier Bonnetain
Charlotte Bonte
Carl Bootland
Jonathan Bootle
Raphael Bost
Christina Boura
Elette Boyle
Zvika Brakerski
Benedikt Bünz
Matteo Campanelli
Anne Canteaut
André Chailloux
Suvradip Chakraborty

viii Organization

Yilei Chen
Jie Chen
Nai-Hui Chia
Arka Rai Choudhuri
Kai-Min Chung
Michele Ciampi
Carlos Cid
Michael Clear
Ran Cohen
Kelong Cong
Aisling Connolly
Sandro Coretti
Daniele Cozzo
Tingting Cui
Benjamin Curtis
Jan Czajkowski
Dana Dachman-Soled
Alex Davidson
Leo De Castro
Luca De Feo
Thomas Debris
Jean Paul Degabriele
Cyprien Delpech de Saint Guilhem
Patrick Derbez
Apoorvaa Deshpande
Benjamin Diamond
Christoph Dobraunig
Nico Doettling
Benjamin Dowling
Yfke Dulek
Stefan Dziembowski
Christoph Egger
Maria Eichlseder
Daniel Escudero
Saba Eskandarian
Serge Fehr
Rex Fernando
Dario Fiore
Ben Fisch
Wieland Fischer
Nils Fleischhacker
Daniele Friolo
Georg Fuchsbauer
Tommaso Gagliardoni
Juan Garay
Romain Gay

Nicholas Genise
Rosario Gennaro
Marios Georgiou
Riddhi Ghosal
Satrajit Ghosh
Esha Ghosh
Koustabh Ghosh
Irene Giacomelli
Andras Gilyen
S. Dov Gordon
Rishab Goyal
Lorenzo Grassi
Matthew Green
Hannes Gross
Aldo Gunsing
Tim Güneysu
Mohammad Hajiabadi
Shai Halevi
Koki Hamada
Dominik Hartmann
Eduard Hauck
Carmit Hazay
Alexander Helm
Lukas Helminger
Julia Hesse
Dennis Hofheinz
Alex Hoover
Akinori Hosoyamada
Kathrin Hövelmanns
Andreas Hülsing
Ilia Iliashenko
Gorka Irazoqui
Joseph Jaeger
Eli Jaffe
Abhishek Jain
Aayush Jain
Samuel Jaques
Stanislaw Jarecki
Zhengfeng Ji
Zhengzhong Jin
Saqib Kakvi
Daniel Kales
Chethan Kamath
Akinori Kawachi
Mahimna Kelkar
Hamidreza Khoshakhlagh

Organization ix

Dakshita Khurana
Sam Kim
Michael Kim
Susumu Kiyoshima
Karen Klein
Dmitry Kogan
Markulf Kohlweiss
Ilan Komargodski
Daniel Kuijsters
Mukul Kulkarni
Ashutosh Kumar
Stefan Kölbl
Thijs Laarhoven
Russell W. F. Lai
Kim Laine
Virginie Lallemand
Changmin Lee
Tancrede Lepoint
Antonin Leroux
Gaëtan Leurent
Kevin Lewi
Baiyu Li
Xin Li
Xiao Liang
Feng-Hao Liu
Alex Lombardi
Julian Loss
Ji Luo
Fermi Ma
Bernardo Magri
Urmila Mahadev
Christian Majenz
Eleftheria Makri
Nathan Manohar
Sai Krishna Deepak Maram
Daniel Masny
Eleanor McMurtry
Sarah Meiklejohn
Bart Mennink
Peihan Miao
Tarik Moataz
Esfandiar Mohammadi
Hart Montgomery
Tal Moran
Andrew Morgan
Fabrice Mouhartem

Pratyay Mukherjee
Michael Naehrig
Samuel Neves
Ruth Francis Ng
Ngoc Khanh Nguyen
Valeria Nikolaenko
Ryo Nishimaki
Satoshi Obana
Sabine Oechsner
Jiaxin Pan
Omer Paneth
Lorenz Panny
Sunoo Park
Alain Passelègue
Valerio Pastro
Jacques Patarin
Kenneth Paterson
Alice Pellet–Mary
Zack Pepin
Ludovic Perret
Léo Perrin
Peter Pessl
Jeroen Pijnenburg
Benny Pinkas
Rachel Player
Oxana Poburinnaya
Eamonn Postlethwaite
Robert Primas
Willy Quach
Rahul Rachuri
Ahmadreza Rahimi
Divya Ravi
Ling Ren
Joost Renes
M. Sadegh Riazi
João L. Ribeiro
Silas Richelson
Doreen Riepel
Dragos Rotaru
Ron Rothblum
Adeline Roux-Langlois
Arnab Roy
Carla Ràfols
Paul Rösler
Simona Samardjiska
Yu Sasaki

x Organization

John Schanck
Patrick Schaumont
Martin Schläffer
Jonas Schneider-Bensch
Peter Scholl
André Schrottenloher
Sven Schäge
Adam Sealfon
Gil Segev
Gregor Seiler
Okan Seker
Nicolas Sendrier
Sacha Servan-Schreiber
Karn Seth
Yannick Seurin
Siamak Shahandashti
Devika Sharma
Sina Shiehian
Omer Shlomovits
Omri Shmueli
Mark Simkin
Boris Škorić
Yongsoo Song
Pratik Soni
Florian Speelman
Nicholas Spooner
Akshayaram Srinivasan
Douglas Stebila
Damien Stehlé
Noah Stephens-Davidowitz
Younes Talibi Alaoui
Titouan Tanguy
Stefano Tessaro
Aravind Thyagarajan
Radu Titiu
Yosuke Todo

Ni Trieu
Rotem Tsabary
Daniel Tschudi
Vinod Vaikuntanathan
Thyla van der Merwe
Prashant Vasudevan
Marloes Venema
Muthuramakrishnan

Venkitasubramaniam
Damien Vergnaud
Thomas Vidick
Fernando Virdia
Ivan Visconti
Satyanarayana Vusirikala
Riad Wahby
Xiao Wang
Brent Waters
Hoeteck Wee
Christian Weinert
Weiqiang Wen
Erich Wenger
Daniel Wichs
Luca Wilke
Keita Xagawa
Min Xu
Sophia Yakoubov
Rupeng Yang
Eylon Yogev
Yu Yu
Greg Zaverucha
Mark Zhandry
Tina Zhang
Fan Zhang
Yupeng Zhang
Vassilis Zikas

Organization xi

Contents – Part III

Multi-party Computation

Two-Sided Malicious Security for Private Intersection-Sum
with Cardinality . 3

Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth,
and Moti Yung

Private Set Intersection in the Internet Setting from Lightweight
Oblivious PRF . 34

Melissa Chase and Peihan Miao

Multiparty Generation of an RSA Modulus . 64
Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and Abhi Shelat

Secret Sharing

Non-malleability Against Polynomial Tampering. 97
Marshall Ball, Eshan Chattopadhyay, Jyun-Jie Liao, Tal Malkin,
and Li-Yang Tan

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks
in the Plain Model . 127

Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin,
and Daniele Venturi

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 156
Pasin Manurangsi, Akshayaram Srinivasan,
and Prashant Nalini Vasudevan

Cryptanalysis

Cryptanalytic Extraction of Neural Network Models 189
Nicholas Carlini, Matthew Jagielski, and Ilya Mironov

Automatic Verification of Differential Characteristics: Application
to Reduced Gimli . 219

Fukang Liu, Takanori Isobe, and Willi Meier

The MALICIOUS Framework: Embedding Backdoors into Tweakable
Block Ciphers. 249

Thomas Peyrin and Haoyang Wang

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 279
Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang

Out of Oddity – New Cryptanalytic Techniques Against Symmetric
Primitives Optimized for Integrity Proof Systems . 299

Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder,
Gregor Leander, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin,
Yu Sasaki, Yosuke Todo, and Friedrich Wiemer

Improved Differential-Linear Attacks with Applications to ARX Ciphers 329
Christof Beierle, Gregor Leander, and Yosuke Todo

Cryptanalysis Results on Spook: Bringing Full-Round Shadow-512
to the Light . 359

Patrick Derbez, Paul Huynh, Virginie Lallemand,
María Naya-Plasencia, Léo Perrin, and André Schrottenloher

Cryptanalysis of LEDAcrypt. 389
Daniel Apon, Ray Perlner, Angela Robinson, and Paolo Santini

Alzette: A 64-Bit ARX-box: (Feat. CRAX and TRAX) 419
Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos,
Johann Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov,
and Qingju Wang

Delay Functions

Order-Fairness for Byzantine Consensus . 451
Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels

Generically Speeding-Up Repeated Squaring Is Equivalent to Factoring:
Sharp Thresholds for All Generic-Ring Delay Functions 481

Lior Rotem and Gil Segev

Zero Knowledge

Compressed R-Protocol Theory and Practical Application
to Plug & Play Secure Algorithmics . 513

Thomas Attema and Ronald Cramer

A Tight Parallel Repetition Theorem for Partially Simulatable Interactive
Arguments via Smooth KL-Divergence . 544

Itay Berman, Iftach Haitner, and Eliad Tsfadia

Interactive Proofs for Social Graphs . 574
Liran Katzir, Clara Shikhelman, and Eylon Yogev

xiv Contents – Part III

The Measure-and-Reprogram Technique 2.0: Multi-round Fiat-Shamir
and More . 602

Jelle Don, Serge Fehr, and Christian Majenz

Fiat-Shamir for Repeated Squaring with Applications to PPAD-Hardness
and VDFs . 632

Alex Lombardi and Vinod Vaikuntanathan

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 652
Yael Tauman Kalai, Omer Paneth, and Lisa Yang

New Techniques for Zero-Knowledge: Leveraging Inefficient Provers
to Reduce Assumptions, Interaction, and Trust . 674

Marshall Ball, Dana Dachman-Soled, and Mukul Kulkarni

Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup . 704

Srinath Setty

NIZK from LPN and Trapdoor Hash via Correlation Intractability
for Approximable Relations . 738

Zvika Brakerski, Venkata Koppula, and Tamer Mour

Shorter Non-interactive Zero-Knowledge Arguments and ZAPs
for Algebraic Languages . 768

Geoffroy Couteau and Dominik Hartmann

Non-interactive Zero-Knowledge Arguments for QMA,
with Preprocessing . 799

Andrea Coladangelo, Thomas Vidick, and Tina Zhang

Author Index . 829

Contents – Part III xv

Multi-party Computation

Two-Sided Malicious Security for Private
Intersection-Sum with Cardinality

Peihan Miao2(B), Sarvar Patel1, Mariana Raykova1, Karn Seth1(B),
and Moti Yung1

1 Google LLC, Mountain View, USA
sarvar@google.com, marianar@google.com,

karn@google.com, moti@google.com
2 Visa Research, Palo Alto, USA

pemiao@visa.com

Abstract. Private intersection-sum with cardinality allows two parties,
where each party holds a private set and one of the parties additionally
holds a private integer value associated with each element in her set, to
jointly compute the cardinality of the intersection of the two sets as well
as the sum of the associated integer values for all the elements in the
intersection, and nothing beyond that.

We present a new construction for private intersection sum with car-
dinality that provides malicious security with abort and guarantees that
both parties receive the output upon successful completion of the proto-
col. A central building block for our constructions is a primitive called
shuffled distributed oblivious PRF (DOPRF), which is a PRF that offers
oblivious evaluation using a secret key shared between two parties, and
in addition to this allows obliviously permuting the PRF outputs of sev-
eral parallel oblivious evaluations. We present the first construction for
shuffled DOPRF with malicious security. We further present several new
sigma proof protocols for relations across Pedersen commitments, ElGa-
mal encryptions, and Camenisch-Shoup encryptions that we use in our
main construction, for which we develop new batching techniques to
reduce communication.

We implement and evaluate the efficiency of our protocol and show
that we can achieve communication cost that is only 4−5× greater than
the most efficient semi-honest protocol. When measuring monetary cost
of executing the protocol in the cloud, our protocol is 25× more expensive
than the semi-honest protocol. Our construction also allows for different
parameter regimes that enable trade-offs between communication and
computation.

1 Introduction

Private Set Intersection. A private set intersection (PSI) protocol enables
two parties, each with a private input set, to compute the intersection of the
two sets while revealing nothing more than the intersection itself. Despite the

P. Miao—Part of work done while interning at Google LLC.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 3–33, 2020.
https://doi.org/10.1007/978-3-030-56877-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_1

4 P. Miao et al.

simplicity of the functionality, PSI has found many applications in privacy-
preserving location sharing [50], testing of fully sequenced human genomes [3],
collaborative botnet detection [48], data mining [2], social networks [45,49],
online gaming [10], measuring ads conversion rates [39], and so on. Due to its
importance and wide applications, PSI has been extensively studied in a long
sequence of works [17,21,22,24,25,27,31,37,38,42,44,54,56,58–62].

Enhanced Functionality. While the PSI functionality models successfully
the confidentiality requirements in several application scenarios, there are
information-sharing settings where revealing the whole intersection is unaccept-
able and instead a more fine-grained privacy preserving computation is needed.
In particular different aggregated computations over the intersection set model
a wide range of applications with restricted privacy leakage. PSI-cardinality is
one example of such an aggregated functionality that limits the two parties to
learning only the cardinality (or size) of the intersection [1,20,31,38,41,51,63].

The private intersection-sum functionality introduced by Ion et al. [39] is
another example of an aggregate functionality where one of the input sets has
integer values associated with the elements in the set and the two parties compute
the cardinality of the intersection as well as the aggregate of the integer values
associated with the intersection set. This primitive models many applications in
practice. These include settings where one party holds private statistics about a
set of people and another party has information about the membership of the
people in a particular group, and the two parties want to compute an aggregate
of the statistics over the members of the set. A particular instantiation of this
scenario was consider by Nagu et al. [49] in the context of social networks where
a user has knowledge of weights associated with each of her friends and wants
to compute the total (or average) weight of the friends that she has in common
with another user. In measuring ads conversion rates [39], an advertiser may
know the purchase amount for every customer, and the advertiser and an ads
publisher can jointly compute the total number and total purchase amount of
the customers who have seen the ads from the publisher and end up buying the
product.

Existing solutions for private intersection-sum [39] provide security only in
the semi-honest case where each party is assumed to follow the protocol honestly.
While this level of security might be sufficient in settings where the interacting
parties have external incentives (e.g. legal agreements) to follow the protocol,
this level of security is not sufficient for a broad set of scenarios where the
adversary could deviate arbitrarily from the protocol. In the setting of malicious
security we have protocols that achieve only the PSI functionality, however,
constructions with competitive efficiency [30,60,61] have a major shortcoming
that they support only one-sided output, where in many settings both parties
need to obtains the output of the computation. Upgrading these protocols to
achieve two-sided output in a non-trivial task. For example, as explained by
Rindal et al. [61], the output recipient from the one-sided protocol will need to
prove that it executed the last step of the protocol honestly. We do not have
tailored constructions for this task and applying generic approaches comes with
a high price.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 5

In this work we consider the problem of private intersection sum with cardi-
nality in the malicious setting which provides protection against such adversaries.
We require that either both parties receive the output of the computation or they
abort. Our focus is on optimizing the communication efficiency of the protocol
since as discussed in the work of Ion et al. [39] this is the most significant cost
in practice.

Our Contributions. We present a new protocol for private intersection-sum
with cardinality which achieves malicious security with abort, which guarantees
that both parties receive the intersection sum if the protocol does not abort.
Our protocol provides two-sided output, which is already an improvement even
if we restrict our attention only to the PSI functionality since existing malicious
PSI protocols [30,60,61] are restricted to a single output recipient.

Our construction is the first construction for private intersection-sum with
cardinality with malicious security to achieve linear communication and com-
putation overhead in the size n of the sets. This improves significantly over the
only other existing approach [37] that can be used to solve this problem, which
uses existing generic MPC techniques with malicious security, and as we discuss
in the related work, incurs at least a factor of λ log n multiplicative overhead
assuming a security parameter λ. As can be seen in Table 6, these generic tech-
niques incur 250× higher communication and 65× higher monetary cost than
our protocol on inputs of size 220.

Our construction can also be instantiated such that the overhead required to
achieve malicious security over the semi-honest version requires sublinear com-
munication O(

√
n) with computation O(n log n), which would be advantageous

in setting where communication is much more expensive that computation.
Our construction adopts the general approach from the work of Ion et al. [39],

which leverages an oblivious pseudorandom function (PRF) with a shared key,
which can be evaluated in a distributed way to permute and map the input set
values to a pseudorandom space that enables the computation of the intersection,
and homomorphic encryption, which allows to pair the associated values during
the PRF evaluation and then evaluate the intersection sum. In order to upgrade
this general approach to malicious security we develop several new techniques,
which can be of independent interest.

New Distributed OPRF. A central building block for our solution is a dis-
tributed oblivious PRF with malicious security. In order to achieve distributed
oblivious evaluation with malicious security we leverage a PRF construction due
to Dodis and Yampolskiy [23], for which we can construct proofs for honest
evaluation with respect to a committed PRF key. An issue that we need to deal
with is the fact that this PRF was proven secure only for polynomial domains.
To circumvent this problem we introduce a weaker selective security notion for
the PRF, which is satisfied by the construction with exponential domain, and
we show that this property suffices for our PSI-sum with cardinality protocol.

Verifiable Parameter Generation. We construct a distributed PRF evaluation
protocol, which uses several times evaluations on committed and encrypted val-
ues. Thus, in order to achieve malicious security for this protocol we use proofs

6 P. Miao et al.

for relations among encrypted and committed values, which crucially rely on the
assumption that the parameters for these schemes were generated honestly. Since
we do not want to assume any trusted setup, we present protocols for verifiable
generation of parameters for Pedersen commitments, Camenish-Shoup (CS) and
ElGamal encryption with shared key.

Range Proofs with Slack. The final extension to the distributed OPRF is to
enable a shuffle of the oblivious evaluations on multiple inputs that are executed
in parallel, which hides the mapping to the original inputs and is required in
order to hide what elements are in the intersection. In order to enable that we
develop a proof protocol for shuffle decryption of Camenisch-Shoup encryptions.
We leverage the Bayer-Groth shuffle proof [5], which allows to prove that two sets
of cipheretexts encrypt the same set of plaintexts up to a permutation. In order
to enable proving knowledge of exponents in this step, the prover needs to switch
from Camenisch-Shoup encryption to ElGamal encryption, which have different
domains. We introduce a proof technique for consistency of values encrypted
under CS and ElGamal encryptions that uses range proofs with a slack.

Our construction leverages heavily sigma proof protocols [18] in several places
including the proofs for evaluation of the DOPRF, the re-encryption step for
shuffling, the re-randomization for intersection-sum.

Batching for Range Proofs. We introduce new batching techniques for range
proofs based on sigma protocols. While existing efficient batch proofs that do not
work with the bit level representation of the values operate in a group of unknown
order [9,13], batching techniques for sigma protocols have been constructed only
in the case of a known order group [33]. We show how to batch range proof over
groups of unknown order while avoiding a large blowup in the slack of the range
proof which is incurred if we adapt directly the batching approach for known
group order to hidden order by providing sufficient space to avoid the need for
modulus reduction.

Batching Proofs for CS and ElGamal Encryptions. We also use batching
techniques for commitments and develop batching approaches for Camenisch-
Shoup encryptions. We leverage multi-exponentiation arguments from the work
of Bayer and Groth [5] in a new way to batch proofs for relations among ElGa-
mal ciphertexts for which prover does not know the encryption randomness.
Since we need an additively homomorphic encryption scheme that has a prov-
able threshold decryption, we use exponential ElGamal to encrypt associated
values. This means that our construction supports evaluations for which the
final intersection-sum is within a polynomial domain where discrete log can be
computed for decryption.

Implementation and Evaluation.We implemented our malicious secure private
intersection-sum protocol and evaluated its performance on large-scale datasets.
Our experiments show that, when we set parameters to minimize communica-
tion overhead, our protocol performs with communication cost approximately
4× greater than the most communication-efficient semi-honest protocol based
on DDH. A less aggressive choice of parameters leads to about 7× expansion
over the semi-honest DDH-based protocol, with a much improved computational

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 7

efficiency. We also estimate the monetary cost of running our protocols using the
pricing for Google Cloud and obtain that executing our PSI-Sum protocols on
inputs of size 220 costs 13 cents. The monetary cost is about 25× more than
that of the semihonest protocol, which we believe is a reasonable cost for the
much stronger security guarantees. We present our experimental measurements in
Sect. 6. Our costs give a large improvement in monetary cost over existing generic
approaches for private intersection sum with cardinality. Our monetary costs are
also within a factor of 2 of the most efficient protocols for Malicious PSI [61], which
we note only provide one-sided output and are not compatible with computing
functions on the intersection.

Related Work. Before presenting the technical overview of our construction,
we overview existing PSI solutions in the malicious setting [11,15,17,21,30,35,
36,40,41,60,61] and discuss the challenges in extending the approaches from
these works to the private intersection-sum problem. We restrict our discussion
to constructions that provide linear communication complexity as our major
goal is communication efficiency.

The work of De Cristofaro et al. [21] presents a PSI protocol, where only one
party (P2) learns the PSI output and nothing is revealed to the other party (P1).
Our goal is to obtain a protocol where both parties receive the output, and next
we explain the challenges for achieving this functionality here. At a high level
the protocol works as follows. First, the two parties jointly evaluate an oblivi-
ous pseudorandom function (OPRF) on every element of P2 where P1 holds the
OPRF key k and only P2 obtains the OPRF values. Second, P1 computes the
OPRF values on its own elements using the key k and sends to P2. Finally, P2

computes the intersection of the OPRF values and the corresponding set inter-
section. The protocol used an OPRF defined as Fk(x) = H2(x||H1(x)||H1(x)k),
where H1(·),H2(·) are hash functions modeled as random oracles [7]. In the
OPRF protocol, P2 learns H1(x)k without revealing any information about x to
P1, and finally computes H2(x||H1(x)||H1(x)k). Since we want both parties to
learn the PSI output, one natural idea is to let P2 send back its OPRF values
to P1, but P2 has to prove that H2(·) is computed correctly on desired inputs
without revealing any information about x, which is a challenge. Another idea is
to run the protocol twice with alternative roles, where the parties have to prove
input consistency during the two executions. In other words, P1 should prove
in zero knowledge that its inputs to Fk(·) in the first execution are consistent
with its inputs to the OPRF in the second execution, which is also challeng-
ing. More importantly, it is hard to extend this protocol to PSI-cardinality or
private intersection-sum. In the last step of their OPRF protocol, P2 computes
H2 on x||H1(x)||H1(x)k for each of its element x. It is crucial that P2 knows
the inputs to H2 to compute the OPRF value. Therefore, the elements in the
intersection must be known to P2, making it hard to extend the protocol to even
PSI-cardinality.

The PSI protocol of Jarecki and Liu [40] is also based on an OPRF pro-
tocol similarly as above, but the parties can prove consistency of their inputs
to the OPRF with previously committed values. Therefore, the two parties can

8 P. Miao et al.

first commit to their inputs and then run the above protocol in both direc-
tions so that both parties learn the PSI output. However, the protocol has some
limitations. First, their security proof requires the domain of the elements to be
restricted to polynomial in the security parameter. Besides, the protocol requires
a Common Reference String (CRS), where the CRS includes a safe RSA mod-
ulus that must be generated by a trusted third party, which is something we
would like to avoid. To extend this protocol to PSI-cardinality, the receiver (P2)
of the OPRF protocol should learn the OPRF values without learning the cor-
respondence between its elements {x}x∈X and OPRF values {Fk(x)}x∈X , which
requires shuffling techniques that we develop in this work. More ingredients and
techniques are needed for extending the protocol to private intersection-sum as
well as removing the above restrictions.

The idea in the protocol of Freedman et al. [30] to achieve malicious security
is to require one party (P1) to redo the other party’s (P2’s) computation on the
elements in the intersection and verify consistency. This is achieved as follows:
P1 generates a polynomial Q(·) of degree m, with roots set to the m elements
of P1’s set, and sends the homomorphically encrypted coefficients of Q(·) to P2.
Then for each element x in P2’s set, P2 replies with an encryption of r ·Q(x)+ s
for random r and s. Importantly, the randomness used in this computation is
taken from H(s) where H(·) is a hash function modeled as a random oracle. If
x is in the intersection, then P1 can learn s and verify P2’s computation on x;
otherwise nothing about x is revealed to P1. This protocol crucially needs P1 to
learn the elements in the intersection, therefore extending the protocol to even
PSI-cardinality seems to require innovative ideas. Moreover, the techniques of
hashing into bins are leveraged in the protocol for achieving linear computational
complexity. Computing PSI for each bin is sufficient for the PSI problem, however
revealing intersection-cardinality or intersection-sum for each bin compromises
security in the problem of PSI-cardinality or private intersection-sum.

Another option for constructing a private intersection-sum protocol with
malicious security is to apply directly malicious two-party computation pro-
tocols to our functionality. Such protocols use the circuit representation of the
evaluated functionality. The most efficient way to compute the intersection of two
sets of size O(n) uses oblivious sorting which reduces the number of needed com-
parisons from O(n2) to O(n log n). In our construction, in contrast, we aim for
linear dependence on the number of inputs. Further, circuit solutions are bound
to incur additional security factor multiplicative overhead since they need to
operate with the bit-level representation of the set values. In the case of gar-
bled circuit-based solutions this is inherent in the constructions, and in the
case of solutions using arithmetic circuits the need for using the bit represen-
tation comes from the fact that we will be computing comparisons over these
values and the most efficient way to do this is using the binary representation
of the values. The recent circuit-based PSI protocols [16,28,56,57] only provide
security in the semi-honest setting and it is nontrivial to extend them to the
malicious setting due to their use of specific primitives such as Cuckoo hash-
ing. Moreover, their protocols require super-linear communication. The work of

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 9

Pinkas et al. [57] presents a semi-honest circuit-based PSI construction that
achieves linear communication, however, this construction achieves only linear
number of comparison in the circuit by using oblivious programmable PRF tech-
niques [43] and Cuckoo hashing [52]. Generalizing these techniques to the mali-
cious setting presents many challenges. Our construction presents an approach
to obtain oblivious PRF evaluation in the malicious setting.

2 Technical Overview

In this section we give a technical overview of our malicious secure pri-
vate intersection-sum protocol. Our starting point is the semi-honest private
intersection-sum protocol [39]. We identify the technical challenges to obtain
malicious security from the semi-honest version and then present our approach
to addressing them.

Semi-honest Private Intersection-Sum. The semi-honest protocol of Ion et
al. [39] leverages a cryptographic primitive called distributed oblivious pseudo-
random function (DOPRF), which enables the following functionality. The key k
of a DOPRF is shared between two parties, where each party can generate inde-
pendently their share. The DOPRF has an oblivious evaluation functionality,
which is a 2-party computation protocol, which the two parties jointly evaluate
the PRF F , under key k, on an input x, held by one of the parties who receives
the PRF output Fk(x) and nothing more is revealed to either party.

The DOPRF functionality suffices to construct a PSI protocol as follows.
First, the two parties generate independently key shares of the DOPRF key.
Then, they use the oblivious evaluation protocol to evaluate the DOPRF on
each of P1’s input elements xi, from which P2 learns Fk(xi) and then sends
it back to P1. Similarly, they evaluate the DOPRF on P2’s input elements yj

to obtain Fk(yj). Computing the intersection of the resulting two sets of PRF
values enables both parties to compute the PSI since each party has the mapping
from the intersecting PRF values to their corresponding input elements.

The above PSI protocol can be extended to obtain PSI-cardinality and private
intersection-sum protocols. To achieve PSI-cardinality, it suffices to construct a
shuffled DOPRF protocol, which allows n parallel executions of the oblivious
PRF evaluation where the PRF value that one of the parties receives are ran-
domly shuffled with a permutation selected by the other party. The party who
receives the PRF values can still compute the intersection between the two sets
of PRF values but no longer has a mapping between the intersecting PRF values
and the inputs to which they correspond. Thus, the only thing this party can
learn is the cardinality of the intersection. We can extend this idea to further
obtain private intersection-sum in the setting where one party (say P1) has asso-
ciated integer values with its set elements. In this setting, the two parties first run
the shuffled DOPRF for P2’s input set. For P1’s input set, the two parties eval-
uate the DOPRF on each of P1’s inputs xi. In addition, P1 attaches an encryp-
tion of xi’s associated integer vi under re-randomizable additive-homomorphic

10 P. Miao et al.

encryption for which P1 holds the secret key. This allows P2 to learn an (Fk(xi),
Encpk(vi))-pair for each xi, so it can compute the set intersection from the two
sets of PRF values and then homomorphically add up the corresponding cipher-
texts. The resulting ciphertext is then re-randomized and sent back to P1, who
has the decryption key to recover the intersection-sum.

The primitives and protocols described above are only secure against semi-
honest adversaries. In order to construct a private intersection-sum protocol that
provides malicious security, we design malicious counterparts of these tools.

Malicious DOPRF. The semi-honest intersection-sum protocol of Ion et al.
[39] uses the following Diffie-Hellman-based PRF construction, which is defined
as Fk(x) = H(x)k, where the hash function H(·) is modeled as a random ora-
cle [7]. It can be instantiated as a DOPRF by sharing the PRF key as k = k1k2.
Specifically, the two parties can independently generate key shares k1 and k2.
To evaluate the DOPRF on P1’s input x, P1 sends y = H(x)k1 to P2 and then
P2 can compute the PRF output z = yk2 . When we switch to the malicious
setting, a malicious P1 may send ỹ = H(x)r·k1 to P2 for an arbitrary r and
obtain z̃ = H(x)r·k1k2 , from which P2 can learn the PRF output by raising z̃ to
the power r−1. In order to upgrade this DOPRF protocol to the malicious set-
ting especially with simulation-based security, P1 needs to prove that the hash
function H(·) was properly applied or equivalently prove the knowledge of a
preimage for a hash value, which is a challenge.

In view of the above difficulties associated with the use of the DH-based
DOPRF in the malicious setting, we choose to use a different PRF as a starting
point for a new DOPRF construction, for which correct evaluation can be proven.
We use the function Fk(x) = g

1
k+x , which is defined on a group 〈g〉 of prime order.

This function was originally introduced as a weak signature in the work of Boneh-
Boyen [8], and subsequently was proven to be a pseudorandom function under
the decisional q-Diffie Hellman Inversion (q-DHI) assumption [47] by Dodis-
Yampolskiy [23]. We combine ideas from Belenkiy et al. [6] and Jarecki-Liu [40]
to construct a distributed oblivious evaluation protocol for this PRF and prove
its security in the malicious setting.

We start with a description of a distributed evaluation protocol for the above
PRF that provides semi-honest security. We refer to the two parties as a sender
and a receiver, where the party holding the input x is called the sender and the
party obtaining the PRF output is called the receiver. For the distributed key
generation the two parties randomly pick secret key shares ks and kr such that
the PRF key k is set as k = ks + kr. The starting point for our distributed
evaluation protocol is the following idea. The receiver encrypts its key share kr

using an additive-homomorphic public-key encryption scheme for which it holds
the secret key, and sends the encryption Encpk(kr) to the sender. The sender then
homomorphically computes Encpk(ks +kr +x) and sends it back to the receiver.
The receiver can decrypt the ciphertext to obtain ks + kr + x and compute the
PRF output g

1
ks+kr+x .

In the above protocol the receiver learns information beyond the PRF output,
which consists of the value ks + kr + x. To remove this leakage we introduce

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 11

a random multiplicative mask a on the sender’s side. That is, the encrypted
value that the receiver obtains is a(ks + kr + x). We remove this mask during
exponentiation by having the sender also send ga to the receiver and letting the
receiver compute (ga)

1
a(ks+kr+x) . In fact, this randomization does not suffice for a

simulation proof. Since a(ks+kr+x) is homomorphically computed by the sender
who cannot take modulo operation under the homomorphic encryption, the value
a(ks+kr +x) learned by the receiver may still leak information about ks+kr +x.
That is why we further modify the randomization to a(ks+kr +x)+bq where b is
random and q is the order of the group 〈g〉. This randomization guarantees that
the value obtained by the receiver is simulatable and at the same time correct
since the order of the group is q.

To obtain malicious security in the above protocol, the sender needs to prove
the correctness of the homomorphic encryption and the consistency of a in the
new ciphertext and in ga. To achieve this we use Camenisch-Shoup encryp-
tion [13], for which we can use sigma protocols to provide zero-knowledge proofs
for these operations.

Exponential Domain for Dodis-Yampolskiy PRF. The work of Dodis and
Yampolsky [23] proved adaptive security for the PRF construction that we dis-
cussed above but only in the setting of polynomial size domains. However, this
is not true for the inputs used in many real-world applications. Therefore, we
revisit the security proof for this construction and show that for exponential
size domains the PRF satisfies a weaker notion of selective security, where the
inputs to the PRF are chosen by the adversary in advance in the security game,
under the q-DHI assumption. Furthermore, this level of security for the PRF is
sufficient for the security of our private intersection-sum protocol for the follow-
ing reason. At a high level, we make the two parties first commit to their own
input along with a zero-knowledge proof of knowledge and then jointly decide the
PRF parameters. In the simulation-based proof, the simulator can first extract
the adversary’s input and then reduce to the security game of the PRF, where
selective security suffices for our purpose.

Malicious PSI. As we discussed for the semi-honest setting, a secure DOPRF
protocol suffices for a PSI protocol. In the malicious setting, to construct a
malicious PSI protocol from the above malicious DOPRF protocol, the receiver
should send back the PRF values to the sender and prove correctness of its
computation (ga)

1
a(ks+kr+x)+bq with respect to ga and the ciphertext Encpk(a(ks+

kr + x) + bq), in a zero-knowledge fashion. This can also be achieved by sigma
protocols.

Malicious Shuffled DOPRF. To extend the malicious PSI protocol to mali-
cious PSI-cardinality, we need to additionally enable the shuffled DOPRF func-
tionality that provides all the PRF outputs to the sender in a randomly shuffled
(permuted) order determined by the receiver. While our malicious DOPRF pro-
tocol provides the receiver with the leverage to shuffle the PRF outputs before

12 P. Miao et al.

sending back to the sender, we still need a way to prove the correctness of the
shuffle.

While it is possible to try to leverage generic zero-knowledge protocols to
prove directly the correctness of the shuffled outputs, we choose to use a shuffle-
and-decrypt protocol by Bayer-Groth [5], which can efficiently prove in zero-
knowledge that given a set of ciphertexts and a set of plaintexts, the plaintexts
correspond to the decryption of some permutation of the ciphertexts. To incor-
porate this shuffle proof in our protocol, the receiver no longer just sends the
PRF outputs back to the sender after the DOPRF evaluation, but rather sends
encryptions of these outputs together with proofs that each of them encrypts
the correctly computed value (ga)

1
a(ks+kr+x)+bq . In addition to this the receiver

sends the PRF outputs in the clear in a shuffled order together with a Bayer-
Groth shuffle proof that they are consistent with the decryption of the above
ciphertexts in some permuted order.

In the above construction which we design in order to leverage an efficient
shuffle proof, let β := a(ks + kr + x) + bq. The prover needs to switch from
Camenisch-Shoup encryption to ElGaml encryption because β was encrypted
in Camenisch-Shoup encryption while the value to encrypt in this step is σ =
(ga)β−1

and what the prover needs to prove knowledge about is β−1
i instead of

σ. Encrypting σ using ElGamal in the group 〈g〉 enables proof of knowledge in
the exponent. However, the prover needs to provide a proof that the Camenish-
Shoup ciphertext, which has plaintext domain ZN , and the ElGamal cipheretext,
which has plaintext domain Zq where q � N , encrypt consistent values β and
β−1. To achieve this we observe that it suffices to prove the consistency of the
two encrypted values in their respective domains (i.e., x mod N = x′ mod q)
and in addition to this prove that x′ < q. For the later since q � N , it suffices to
use range proofs that have slack for sigma protocols, which can only guarantee
that x′ < q · r. This completes a malicious DOPRF protocol with randomly
shuffled PRF outputs.

From Shuffled DOPRF to Intersection-Sum. The shuffled DOPRF proto-
col suffices to obtain PSI-cardinality in the semi-honest setting by running two
shuffled DOPRF with the same key, where in one protocol P1 holds the input
and acts as the sender while in the other protocol their roles are reversed. In the
malicious setting when the two protocols are executed in parallel, we have to
additionally make sure the two parties are using consistent DOPRF key shares.
Each party will first commit to their DOPRF key shares and then prove con-
sistency of their key shares used in the two protocols, which can be done using
sigma protocols.

To further achieve private intersection-sum, similar to the semi-honest set-
ting, we encrypt the integer values associated with one of the sets using addi-
tive homomorphic encryption. The secret key for this encryption is now shared
between the two parties, which will be important for preserving the secrecy
guarantees of the shuffle proof. The sender appends these encryptions to the
corresponding inputs in the malicious shuffled DOPRF evaluation. Now the re-
ceiver that applies the shuffle in this protocol additionally needs to re-randomize

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 13

the encryptions of the associated values and provides a proof that the shuffle
applied to these encryptions is the same as the shuffle on the PRF values. This can
be achieved in the Bayer-Groth shuffle proof because in their protocol the prover
commits to the permutation and we can use the same commitment through the
two shuffle proofs. Different from the semi-honest setting, now both parties can
compute the intersection of the two sets of PRF values and homomorphically add
up the corresponding re-randomized ciphertexts. To jointly decrypt the resulting
ciphertext, each party partially decrypts the ciphertext using their own key share
and sends to the other party. They also have to prove the correctness of their par-
tial decryption, again by sigma protocols.

Batching Protocol Components. In our construction outlined above we use
sigma style protocols to provide proofs for the correctness of DOPRF evaluation,
re-encryption for shuffling, and re-randomization for intersection-sum. In order
to optimize the communication efficiency of such protocols, we utilize various
techniques to batch components of the protocol. At a high level there are three
types of batching we use: batching Pedersen commitments, batching Camenisch-
Shoup encryptions, and batching sigma protocols.

These batching techniques are described in Sect. 5. Further care needs to
be taken to ensure the compatibility between different batching techniques. We
describe the detailed composition of these techniques in the full version of our
paper.

We believe that these batching techniques may be of independent interest.
For example, our batched sigma protocols include tighter bounds on proofs of
ranges than known techniques, and our batched Camenisch-Shoup encryption
enables batched proofs of decryption, which brings asymptotic efficiency gains.

Organization. We introduce our notations, security assumptions, impor-
tant definitions and cryptographic schemes in Sect. 3 and present our private
intersection-sum protocol in Sect. 4. Our batching techniques are described in
Sect. 5. For the detailed malicious security proof of our protocol, concrete sigma
protocols, and the selective security proof of the PRF used in our protocol, refer
to the full version of our paper [46].

3 Preliminaries

3.1 Notation

We use λ to denote the security parameter. Let Zn be the set {0, 1, 2, . . . , n−1}.
Z

∗
n is defined as Z

∗
n := {x ∈ Zn| gcd(x, n) = 1}. We use [n] to denote the set

{1, 2, . . . , n}. We use ord(G) to denote the order of a group G. By negl(λ) we
denote a negligible function, i.e., a function f such that f(λ) < 1/p(λ) holds for
any polynomial p(·) and sufficiently large λ.

14 P. Miao et al.

3.2 Computational Assumptions

Decisional q-Diffie-Hellman Inversion (q-DHI) Assumption [47]. The
computational q-DHI problem in a group G with generator g and order p is to
compute g1/α given the tuple (g, gα, . . . , gαq

) for random α in Z
∗
p. We define the

hardness of the decisional version of this problem for any fixed constant q as
follows. Let gGen be an algorithm which on input a security parameter 1λ picks
a modulus p and a generator g of a multiplicative group G of order p. We say
that the Decisional q-DHI Assumption holds on group (family) G if for every
efficient algorithm A,
∣

∣

∣

∣

Pr
[

A(g, gα, . . . , gαq

, g1/α) = 1
∣

∣

∣(g, p) ← gGen(1λ);α ← Z
∗
p

]

− Pr
[

A(g, gα, . . . , gαq

, h) = 1
∣

∣

∣(g, p) ← gGen(1λ);α ← Z
∗
p;h ← G

]

∣

∣

∣

∣

≤ negl(λ).

Strong RSA Assumption [4,32]. The strong RSA assumption states that
given an RSA modulus N of unknown factorization and a random element g ∈
Z

∗
N , it is computationally hard to find any pair of h ∈ Z

∗
N and e > 1 such that

he = g mod N .

3.3 Cryptographic Tools

We introduce some cryptographic tools in this section. See the full version of the
paper for descriptions of Pedersen commitment [53], Camenisch-Shoup encryp-
tion [13], ElGamal encryption [26], and 2-out-of-2 threshold encryption.

Zero-Knowledge Argument of Knowledge. We use the notation introduced
in [14] for the various zero-knowledge argument of knowledge of discrete loga-
rithms and arguments of the validity of statements about discrete logarithms.
The following example is taken verbatim from [13].

ZK-AoK{(a, b, c) : y = gahb ∧ y = gahc ∧ (v < a < u)}

denotes a “zero-knowledge argument of knowledge of integers a, b, and c such
that y = gahb and y = gahc hold, where v < a < u,” in which y, g, h, y, g, h are
elements of some groups G = 〈g〉 = 〈h〉 and G = 〈g〉 = 〈h〉. The convention is
that the elements listed in the round brackets denote quantities the knowledge
of which is being proved (and are in general not known to the verifier), while all
other parameters are known to the verifier. Using this notation, a proof-protocol
can be described by just pointing out its aim while hiding all details.

We use similar notations for zero-knowledge proofs. As an example,

ZK{∃x : h = gx}

denotes a zero-knowledge proof that there exists x such that h = gx.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 15

In our protocol we instantiate this form of zero-knowledge arguments of
knowledge and zero-knowledge proofs by sigma protocols. We elaborate how this
can be done and how batching techniques work for sigma protocols in Sect. 5.
The concrete sigma protocols used in our construction are presented in our full
version.

Fiat-Shamir Heuristic. All the sigma protocols are interactive and public-
coin, where the messages from the verifier are all chosen uniformly at random
and independently of the messages sent by the prover. We only prove they are
honest-verifier zero-knowledge. By the Fiat-Shamir heuristic [29], these proto-
cols can be turned into a non-interactive proof or argument where the prover
computes the public-coin challenges with a cryptographic hash function instead
of interacting with a verifier, which reduces rounds of communication as well as
total communication cost. Furthermore, the resulting non-interactive protocol
can be proved malicious secure in the random oracle model.

Shuffle Proof. Bayer-Groth [5] proposed a zero-knowledge argument of knowl-
edge for the correctness of re-randomized and shuffled of homomorphic encryp-
tions, which achieves sublinear communication complexity. More specifically,
given the public key pk of the homomorphic encryption, original ciphertexts
{cti}i∈[n], a permutation π over [n], re-randomized and shuffled ciphertexts
{ct′π(i)}i∈[n] where ct′π(i) = cti · Encpk(1; ri). The following ZK-AOK

ZK-AoK
{

(π, {ri}i∈[n]) : cti · Encpk(1; ri) ∀i ∈ [n]
}

can be prove with communication complexity O(
√

n). In addition, two state-
ments can be proved to use the same permutation π. The protocol is interactive
with public-coins, hence it can be turned into a non-interactive malicious secure
one using the Fiat-Shamir heuristic.

3.4 Security Model

We define security of a private intersection-sum protocol against malicious adver-
saries in the ideal/real world paradigm. The definition compares the output of
a real-world execution to the output of an ideal-world execution involving a
trusted third party, which we call an ideal functionality. The ideal functionality
F , defined in Fig. 1, receives the two parties’ inputs, computes the intersection-
sum and returns the output to both parties. Loosely speaking, the protocol Π
is secure if the output of the adversary in the real-world execution is compu-
tationally indistinguishable from the output of the adversary in the ideal-world
execution, which means that a real-world execution of the protocol does not
leak any more information than the ideal-world execution. Hence, the parties
can only learn what they can infer from their inputs and the output.

Formally, we say a private intersection-sum protocol is secure against mali-
cious adversaries if for every PPT adversary A in the real world, there exists a
PPT adversary S in the ideal world such that for any input (X,V) and Y ,

RealΠ,A((X,V), Y)
c≈ IdealF,S((X,V), Y),

16 P. Miao et al.

Public Parameters: P1’s set size n1 and P2’s set size n2.

Inputs: Party P1 inputs a set of identifiers along with associated integer values
(X, V) = {(xi, vi)}i∈[n1], Party P2 inputs a set of identifiers Y = {yi}i∈[n2].

Output: Upon receiving the inputs from both parties, the ideal functionality F com-
putes the intersection I = X ∩ Y and intersection-sum S =

∑
i:xi∈I vi and outputs the

intersection-cardinality |I| and intersection-sum S first to the corrupted party, then to
the honest party.

Corrupted Party: The corrupted party may deviate from its input, may abort the
procedure at any time by sending abort to the ideal functionality, and may decide the
time of message delivery.

Fig. 1. Ideal functionality of malicious secure private intersection-sum.

where RealΠ,A((X,V), Y) denotes the output of A in the real-world execution of
protocol Π, and IdealF,S((X,V), Y) denotes the output of S in the ideal-world
execution.

4 Protocol Description

Our constructions consists of two phases. The first one is an offline setup where
the two parties jointly decide parameters for the cryptographic primitives, which
will be used in the online computation. Note that we do not assume trusted setup
for any of the primitives and provide secure two party computation protocols
for those. The second phase is the online computation that is dependent on the
input sets and uses the parameters from the setup. The main building block for
our online phase is a shuffled distributed oblivious PRF (DOPRF) construction,
which is a primitive of independent interest and other potential applications.
Thus, we present the shuffled DOPRF construction separately.

Offline Setup. In our malicious secure private intersection-sum protocol, the
two parties first run a (one-time) offline setup to generate the parameters for
encryption and commitment schemes. The two parties first agree on a group G

where max(n1, n2)-DHI assumption holds. This group will be the group where
they compute DOPRF on. Each party generates parameters for Camenisch-
Shoup encryption, ElGamal encryption and Pedersen commitments, and sends
the public parts to the other party with corresponding proofs for correct genera-
tion (which is discussed in our full version). The two parties generate parameters
for the 2-out-of-2 threshold ElGamal encryption, which can be done by each
party generating locally ElGamal parameters and setting the shared secret key
to be the sum of the two local secret keys, and computing the corresponding
public key. The detailed protocol is described in Fig. 2.

Online Phase. After the one-time offline setup, for each private intersection-
sum instance, the two parties run an online protocol described in Fig. 3.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 17

0. P1 and P2 agree on a group G of order q with a generator g̃ for which the
max(n1, n2)-DHI assumption holds.

1. Each party Pb generates (pkb, skb) ← CS Gen(1λ) where gb = (rb)2N for a random
element rb ∈ ZN2 , pkb = (Nb, rb, gb, yb) and Nb ≥ 23λq2, skb = xb. Party Pb sends
pkb to the other party along with a ZK-proof that Nb is a product of two large safe
primes and that yb is correctly formed:

ZK
{∃xb : yb = (gb)xb mod N2

b

}
.

2. Each party Pb generates Pedersen commitment parameters (gb, hb) for the large
subgroup of Z

∗
Nb

and sends (gb, hb) to the other party together with a zero-
knowledge proof that gb ∈ 〈hb〉:

ZK-AoK {∃rb : gb = (hb)rb} .

3. Each party Pb generates (tpkb, tskb) ← EG Gen(1λ) for the 2-out-of-2 threshold
encryption scheme on the group G with generator g̃ and sends tpkb to the other
party along with a ZK-AOK of tskb:

ZK-AoK{tskb : tpkb = (g̃)tskb}.

Both parties compute the public key tpk = tpk1 · tpk2.
4. Each party Pb generates an ElGamal key pair (pkb, skb) for the group G with

generator g̃ and sends pkb to the other party with a proof:

Fig. 2. One-time offline setup of the malicious secure private intersection-sum protocol.

The inputs for the two parties are as follows: P1 has an input set of elements
X = {xi}i∈[n1] with associated integer values V = {vi}i∈[n1], while P2 has only
a set of elements Y = {yi}i∈[n2]. The output of the protocol is that either both
parties abort, or both parties obtain the intersection sum

∑

i:xi∈Y vi.
At a high level this protocol uses the shuffled DOPRF to enable both parties

to obtain shuffled PRF evaluations for the values in X and Y , where the PRF
values from X are paired with ElGamal encryptions of the corresponding integer
values from V , which are encrypted under the 2-out-of-2 threshold ElGamal.
Afterwards, the two parties compute independently the ElGamal encryption of
the intersection sum since they can compute the intersection on the PRF values
and then sum the encryptions of the integer values. At that point, the two
ciphertexts held by the parties should be identical. Now each party verifiably
half-decrypts the ciphertexts it has obtained and sends the resulting verifiable
partial decryption to the other party. Then both parties can half-decrypt the
partial decryption they received to obtain the output.

Shuffled DOPRF Protocol. We describe our malicious secure shuffled
DOPRF construction as a stand-alone primitive in Fig. 4. For the purposes of
the following discussion P1 is the party that holds input elements {xi}i∈[n1],
and P1 and P2 jointly evaluate the shuffled DOPRF on these elements. First,

18 P. Miao et al.

1. Each party Pb samples a random PRF key share kb
$← [q].

2. P1 computes Cxi ← comg2,h2(xi) for all i ∈ [n1], sends Cxi with ZK-AOK to P2:

ZK-AoK {(xi, ri) : Cxi = (g2)xi · (h2)ri} .

P2 computes Cyi ← comg1,h1(yi) for all i ∈ [n2], sends Cyi with ZK-AOK to P1:

ZK-AoK {(yi, si) : Cyi = (g1)yi · (h1)si} .

3. P1 and P2 jointly decide on a random generator g for the group G.
4. P1 and P2 run two shuffled DOPRF protocols described in Figure 4 in parallel,

one with P1 holding the input and the other with P2 holding the input:
– Shuffled DOPRF 1: P1 and P2 perform the shuffled DOPRF protocol on

P1’s input X = {xi}i∈[n1]. The output PRF values are denoted as {σπ(i)}i∈[n1].
In parallel to this protocol, they do the following:

• Round 2: P1 computes ctvi ← Exp EG Enctpk(vi) for each i ∈ [n1] and
sends {ctvi}i∈[n1] to P2.

• Round 3: P2 re-randomizes {ctvi}i∈[n1] to obtain {ct′vi
}i∈[n1], and then

uses the permutation π (same as in the shuffled DOPRF protocol) to
shuffle the re-randomized ciphertexts to obtain

{
ct′vπ(i)

}
i∈[n1]

. P2 sends{
ct′vπ(i)

}
i∈[n1]

to P1 along with a ZK-AOK:

ZK-AoK
{

(π, {ri}i∈[n1) : ct′vπ(i)
= ctvi · Exp EG Enctpk(1; ri) ∀i ∈ [n1]

}

– Shuffled DOPRF 2: P1 and P2 perform the shuffled DOPRF protocol, with
roles reversed, on P2’s input Y = {yi}i∈[n2]. We denote the set of PRF values
as Fk(Y).

5. Each party Pb determines the intersection set I := {t : σt ∈ Fk(Y)} and computes
ctS =

∏
t∈I ct

′
vt

. Pb verifiably half-decrypts ctS using tskb and sends to the other
party.

6. Each party half-decrypts the ciphertext half-decrypted by the other party, and
outputs the intersection sum S.

Fig. 3. Online phase of the malicious secure private intersection-sum protocol.

P2 commits to its PRF key share k2 and also sends a Camenisch-Shoup encryp-
tion of it under its own key to P1 together with a proof that the encrypted
and the committed values are the same. P1 can then homomorphically com-
pute CS Encpk2(k1 + k2 + xi) for each of its element xi. To mask the value
k1 + k2 + xi, P1 chooses randomizing values ai and bi and compute ctβi

=
CS Encpk2(ai · (k1 + k2 + xi) + bi · q) and gi = gai . P1 also commits to the
values ai, bi, αi = ai · (k1 + xi) together with proofs that these commitments
and encryptions use consistent values. P2 verifies the correctness of the proofs,
decrypts ctβi

to obtain βi = ai · (k1 + k2 + xi) + bi · q and computes the PRF

evaluation σi = g
β−1
i

i = g
1

k1+k2+xi . Then, P2 computes an ElGamal encryption

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 19

Round 1. Party P2 computes ctk2 ← CS Encpk2(k2) and Ck2 ← comg1,h1(k2). Recall
that pk2 = (N2, g2, y2). P2 sends ctk2 = (u, e) and Ck2 to P1 along with a ZK-AOK

ZK-AoK
{

(k2, r1, r2) : u = gr1
2 ∧ e = (1 + N2)k2 · yr1

2 ∧

Ck2 = (g1)k2 · (h1)r2 ∧ k2 ≤ q · 22λ+1
}

.

Round 2. For each input xi where i ∈ [n1], party P1 does the following:

(a) Choose a random ai
$← [q] and bi

$← [q · 2λ]. Compute gi = gai .
(b) Compute αi = ai · (k1 + xi) and commitments Cai ← comg2,h2(ai), Cbi ←

comg2,h2(bi), Cαi = comg2,h2(αi).
(c) Let βi = ai · (k1 + k2 + xi) + bi · q = ai · k2 + αi + bi · q and compute ctβi ←

(ctk2)
ai · CS Encpk2(αi) · (CS Encpk2(bi))q.

(d) Send (Cai ,Cbi ,Cαi , ctβi , gi) to P2, together with a ZK-AOK

ZK-AoK
{
(ai, bi, αi, r1, r2, r3, r4, r5, r6) :

Cai = (g2)ai · (h2)r1 ∧ ai ≤ q · 22λ+1 ∧
Cbi = (g2)bi · (h2)r2 ∧ bi ≤ q · 23λ+1 ∧
Cαi = (g2)αi · (h2)r3 ∧ Cαi = (Ck1 · Cxi)

ai · (h2)r4 ∧ αi ≤ q · 22λ+1 ∧
ctβi = (ctk2)

ai · CS Encpk2(αi; r5) · (CS Encpk2(bi; r6))q∧
gi = gai

}
.

Note that Cxi was sent by P1 in Step 2 of the online phase, and Ck1 was sent by
P1 in Round 1 of the other shuffled DOPRF protocol where P2 holds the input.

Round 3. Party P2 does the following:
(a) Verify all the ZK-AOKs received from P1; otherwise abort.
(b) For each i ∈ [n1], compute βi ← CS Decsk2(ctβi) and Cβi ← comg1,h1(βi). Compute

γi = β−1
i mod q and σi = gγi

i . Compute ctσi ← EG Encpk2(σi).
(c) Verify that {σi}i∈[n1] are all distinct; otherwise abort.
(d) For each i ∈ [n1], send (Cβi , ctσi) to P2 together with a ZK-AOK

ZK-AoK
{

(sk2, βi, r1, r2) : βi = CS Decsk2(ctβi) ∧
Cβi = (g1)βi · (h1)r1 ∧ βi ≤ q2 · 23λ+1 ∧
ctσi = EG Encpk2

(
(gi)β−1

i ; r2
) }

.

(e) Re-randomize {ctσi}i∈[n1] to obtain {ct′σi
}i∈[n1] with randomness 0. Pick a random

permutation π over [n1] and send
{
ct′σπ(i)

}
i∈[n1]

to P1 together with a ZK-AOK:

ZK-AoK
{

(π, {ri}i∈[n1) : ct′σπ(i)
= ctσi · EG Encpk2(1; ri) ∀i ∈ [n1]

}
.

As
{
ct′σπ(i)

}
i∈[n1]

has randomness 0, P1 obtains
{
σπ(i)

}
i∈[n1]

.

Output. P1 verifies all the ZK-AOKs received from P2 and aborts otherwise. Both
parties obtain {σπ(i)}i∈[n1].

Fig. 4. Malicious secure shuffled DOPRF protocol where P1 holds the input.

20 P. Miao et al.

EG Encpk2(σi) and a commitment Cβi
and sends them to P1 together with a

proof that these values encrypt and commit to the decryption of ctβi
, which

P1 verifies. In addition P2 re-randomizes and shuffles values ctσi
with output

{ct′σπ(i)
}i∈[n1], and sends these values together with a proof of shuffling. Finally,

σπ(i) are revealed to P1 if P2 re-randomizes the ciphertexts using randomness 0.
P1 verifies the proofs and accepts the values σπ(i) as its output PRF values. In
this step, P2 switches from Camenisch-Shoup encryption to ElGaml encryption

because the value to encrypt is σi = g
β−1
i

i and what P2 needs to prove knowl-
edge about is β−1

i instead of σi. Encrypting σi using ElGamal in the group G

enables this proof of knowledge. If the verification of any of the proofs during
the execution so the protocol fails, then the parties abort.

Additionally, during the execution of the DOPRF on the inputs of P1, the
parties run the following additional steps in parallel with the DOPRF evaluation
in order to facilitate keeping the values vi paired with the appropriate PRF
evaluations. In Round 2 of the DOPRF protocol, P1 encrypts the vi values using
the ElGamal encryption parameters where the secret key is shared between the
two parties. P1 sends these encryptions paired with the partial PRF evaluations
on its elements xi. When P2 returns the completed DOPRF evaluations in a
permuted order, it also sends the re-randomized encryptions of the values vi

permuted in the same order along with a proof that these two sets were shuffled
with the same permutation.

Enabling Batching. So far we described our shuffled DOPRF construction for
each element xi and the ZK-AOKs in the protocol are all sigma protocols for
single statements. To reduce communication of the protocol we utilize various
batching techniques which we describe in Sect. 5. The concrete instantiation of
our private intersection-sum protocol does not use the shuffled DOPRF in a
completely non-black box way, which we discuss in the following.

In Step 2 of the online phase, P1 will commit implicitly to its inputs by
committing to the values ai and αi = ai(k1 + xi) and P2 will implicitly commit
to its inputs similarly. These values can be batched and the sigma protocols
for the batched commitments can also be batched. In addition each party will
commit to their DOPRF key share in this step. This change does not affect our
security guarantee because the commitments of ai and αi suffice to extract the
set elements in the simulation proofs before the PRF parameters are generated
and hence security can still be reduced to the weaker selective security notion for
the underlying PRF. Looking ahead, the commitments of ai, αi and kb will be
used directly later in Round 2 of the DOPRF protocol for further computation
avoiding the need to prove the consistency of xi, ai and αi in batched Cxi

and
batched Cαi

, which would have been the case if the parties commit only to their
elements before the PRF parameter generation.

To enable batching the first component of the Camenisch-Shoup cipher-
texts, every batched Camenisch-Shoup ciphertext has t slots. In Round 1 of
the DOPRF protocol, P2 will encrypt t copies of k2, where the i-th copy of k2
is encrypted in the i-th slot and the other slots are all 0. These encryptions will

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 21

be used later in Round 2 of the shuffled DOPRF protocol to enable batching
Camenisch-Shoup encryptions of βi.

Finally, in Round 2 of the DOPRF protocol, P1 can make use of previ-
ously committed ai, αi, k1 along with encryption of k2 to batch Camenisch-Shoup
encryptions and Pedersen commitments of βi. The sigma protocols in this step
can also be batched. The details of batching each sigma protocol are presented
in the full version of the paper.

5 Batching Techniques

In this section we discuss batching techniques in various parts of our protocol.
These techniques have a significant effect on our protocol’s communication cost
and may be of independent interest.

5.1 Batching Pedersen Commitments

As mentioned in Sect. 3.3, Pedersen commitments can be genenralized to allow
committing to vectors of values. For batched commitments of vectors of length
t, the parameters are group generators g1, . . . , gt, h ∈ G such that loggi

h is hard
to compute for each i, and loggi

gj is hard to compute for any pair i, j. The
commitment to a vector x = (x1, . . . , xt) is c =

∏t
i=1 gxi

i · hr where r is selected

at random r
$← ord(G).

Batched Pedersen commitments are also compatible with sigma protocols of
the knowledge and equality of exponents. To do so, the prover simply proves
knowledge of all exponents simultneously. Furthermore, if the group G is one
in which the Strong RSA assumption holds, then the following generalization of
Theorem 3 from [13] holds: given randomly chosen g1, . . . , gt, h ∈ G, it is hard
to find w ∈ G and (a1, ..., at, b, c) such that

wc =
t

∏

i=1

gai
i · hb

Unless c | ai for all i ∈ [t], and also c | b. The proof of this generalization closely
follows from the proofs of Theorems 2 and 3 from [13].

Given these properties, we can replace most commitments in our protocols
with batched commitments, that is, we commit to t values together. To enable
this, each of our sigma protocols will commit to and prove statements about t
messages simultaneously. Note that this reduces the number of commitments we
send by a factor of t, but we still need to send one element per committed value
in the last step of each sigma protocol. At first this does not seem to lead to a
significant gain in efficiency. However, sigma protocols for batched commitments
can also be batched, enabling the prover to send a single set of t elements in the
last step to verify � sigma protocols simultaneously. Combining the two forms
of batching by setting t and � to approximately

√
n, we can reduce the overall

22 P. Miao et al.

communication cost of the sigma protocols to be sublinear. We will discuss how
to batch sigma protocols in Sect. 5.3, and we refer the reader to the full version
of the our paper for a concrete example of batching sigma protocols for batched
commitments.

5.2 Batching Camenisch-Shoup Encryption

We notice that Camenisch Shoup encryption introduces a 4× expansion in the
ciphertext as compared to the plaintext. This is due to the fact that a ciphertext
contains 2 elements mod N2 of total length 4n bits (where n = log N), while the
ciphertext can only hold a message of |n| bits. This causes a significant constant
expansion to our protocol messages.

We describe various types of batching that enable reducing the expansion of
Camenisch-Shoup encryption to be as close to 1× as desired.

5.2.1 Computing Mod Ns+1

Analogous to the Damg̊ard-Jurik extension to the Paillier cryptosystem [19], one
can generalize the Camenisch-Shoup cryptosystem to compute modulo Ns+1. In
more detail, the public key in this generalization consists of (N, g, y, s) where N
is generated same as before, g is a random 2Ns-th residue modulo Ns+1, and
y = gx mod Ns+1 for a random x ∈ Z�N/4�, and x is the secret key.

Similarly to the Damg̊ard-Jurik extension, this generalization of Camenisch-
Shoup encryption enables encrypting messages of size up to Ns. Concretely, given
m ∈ ZNs , it would be encrypted as ct = (gr mod Ns+1, (1+N)myr mod Ns+1),

where r
$← Z�N/4�. Decryption is slightly more involved. To decrypt ct = (u, e),

one must compute e/(ux) mod Ns+1 and then perform a recursive decoding to
recover m, exactly as described in Sect. 3 of [19].

Additionally, similar to the proof of Theorem 1 in [19], the security of the gen-
eralized Camenisch-Shoup scheme follows from the Decisional Composite Resid-
uousity Assumption.

We note that, with this generalization, one can encrypt a message of length
n · s using a ciphertext of size 2 ·n · (s+1), meaning that the expansion factor is
reduced from 4× to 2(s+1)

s ×, which becomes arbitrarily close to 2× as s grows.

5.2.2 Sharing the First Ciphertext Component
A remaining source of ciphertext expansion is that each ciphertext has 2 com-
ponents, (u, e). One way to reduce this type of expansion is to have multiple
components e that all share the first component u.

More concretely, we modify the scheme so that the public key consists of
(N, g, {yi}t

i=1), where yi = gxi mod N2 for random xi ∈ Z�N/4�. The secret key
becomes {xi}t

i=1.
This scheme allows encrypting t messages by t + 1 components. Specifically,

to encrypt messages {mi}t
i=1, one computes u = gr mod N2 for r

$← Z�N/4�,

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 23

and ei = (1 + N)mi · yr
i mod N2 for each i ∈ [t], and sets ct = (u, {ei}t

i=1).
To decrypt a particular ciphertext, one simply decrypts each piece, computing

mi = (ei
uxi

−1) mod N2

N .
This scheme is also entry-wise additively homomorphic. Given ct= (u, {ei}t

i=1)
encrypting {mi}t

i=1 and ct′ = (u′, {e′
i}t

i=1) encrypting {m′
i}t

i=1, the ciphertext
ctsum = (u · u′ mod N2, {e · e′

i mod N2}t
i=1) is an encryption of {mi + m′

i mod
N}t

i=1. One can also homomorphically multiply each underlying mi with a sin-
gle scalar a by computing cta = (ua mod N2, {(ei)a mod N2}t

i=1), which is an
encryption of {a · mi mod N}t

i=1.
This optimization enables t messages of size n bits to be encrypted using a

ciphertext of size (t + 1) · 2n bits, which corresponds to an expansion factor of
2(t+1)

t .
The two optimizations can be combined, meaning that for any choice s and

t, we can encrypt t messages each of size n · s bits using a ciphertext of size
(s+1)·(t+1)·n bits. This means the ciphertext has an expansion of (s+1)·(t+1)

s·t ×.
As t and s grow, this means we can make the ciphertext expansion as close to 1
as we like.

5.2.3 Encrypting Multiple Messages in a Single Ciphertext
Utilizing the batching techniques in the previous two subsections, one can reduce
the ciphertext expansion of the Camenisch-Shoup encryption scheme, but the
plaintext space becomes as large as Ns. We now describe how the plaintext space
can be decomposed into slots of size B each. More concretely, each ciphertext
can be viewed as having t · s′ “slots” of messages ≤ B, where s′ = Ns

B �. Recall
that t comes from the fact that we encrypt t messages each of size up to Ns

with shared first component. The s′ component comes from the fact that the
message space Ns is now divided into s′ slots of size B each. Specifically, given
t · s′ messages {mi,j}i∈[t],j∈[s′] in ZB , we compute mi =

∑s′

j=1 mi,j · Bj−1 for
each i ∈ [t] and then encrypt the t messages {mi}t

i=1. (Note that each mi ≤ Ns.)
Given a public key (g, {yi}i∈[t]) the ciphertext is computed as follows:

ct =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u = (g)r

e1 = (1 + N)
∑s′

j=1 m1,j ·Bj−1 · (h1)r

...

ei = (1 + N)
∑s′

j=1 mi,j ·Bj−1 · (hi)r

...

et = (1 + N)
∑s′

j=1 mt,j ·Bj−1 · (ht)r

We observe that the resulting encryption is slot-wise additively homomorphic
as long as the sum in each slot never exceeds B. In addition, all the slots can
be homomorphically multiplied by a single scalar simultaneously as long as the
resulting value in each slot does not exceed B.

24 P. Miao et al.

These slotted encryptions are compatible with all the other pieces of our
protocol. In particular the following needed properties of the Camenisch-Shoup
encryption scheme can be extended to the slotted encryptions (including in com-
bination):

1. Proof that the value encrypted in a ciphertext is identical to the value under-
lying another commitment.

2. Proof that a ciphertext decrypts to a value underlying another commitment.
3. Proof that a ciphertext was produced by homomorphically adding a commit-

ted value to another ciphertext, and rerandomizing.
4. Proof that a ciphertext was produced by homomorphically scalar-multiplying

a committed value to another ciphertext and rerandomizing.

5.2.4 Batching Commitments of Decrypted Values
In our protocol, we need to commit to a set of values {βi} that are decrypted
from the batched Camenisch-Shoup ciphertexts and prove consistency between
the committed values and decrypted values. We can batch the commitments as
described in Sect. 5.1, and prove consistency between batched commitments with
batched decryption. The high-level idea is the following. Given a set of commit-
ments and ciphertexts, the verifier first picks a set of random coefficients {ci}.
Then both parties can compute a single commitment and a single encryption
of a random linear combination of the underlying values, namely

∑

ciβi. After
that, the prover simply proves consistency between the resulting commitment
and encryption. Our batched proof for this step has sublinear communication
complexity.

5.3 Batching Sigma Protocols

In certain circumstances, it is possible to batch a set of � sigma protocols that
prove similar statements, such that the batched protocol has communication
cost similar to a single sigma protocol. Batching sigma protocols is well-known
in the literature [33,34]. In this section we describe a variant that is compatible
with range proofs, and in particular, induces much less slack in the range-proof
bound.

We describe the technique by an example. Let g be a generator of a group G

of order q, and let {yi = gxi}i∈[�], where each xi ∈ [q]. We give a batched sigma
protocol in Fig. 5 for the following ZK-AOK:

ZK-AoK
{{xi}i∈[�] : yi = gxi ∀i ∈ [�]

}

.

We can see in the figure that the prover sends a single group element in its first
message (as opposed to � group elements in an unbatched execution) and a single
element in its response to the verifier (as opposed to � elements in an unbatched
execution). The verifier sends � challenges instead of one, but the communication
cost of these can be ignored if we use the Fiat-Shamir heuristic to make the
protocol non-interactive. This means that the communication cost is essentially

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 25

1. Prover samples x̃
$← [q] and sends ỹ = gx̃ to Verifier.

2. Verifier chooses random challenges ci
$← {0, 1}λ for i ∈ [�], and sends to Prover.

3. Prover computes x̂ = x̃ +
∑�

i=1 ci · xi mod q, and sends x̂ to Verifier.
4. Verifier verifies that gx̂ = ỹ · ∏�

i=1(yi)ci .

Fig. 5. Example for batching sigma protocols.

the same as a single unbatched sigma-protocol execution. Completeness of the
protocol is straightforward. Next we prove its soundness and zero-knowledge
property.

Soundness and Extraction. We construct a PPT extractor that interacts
with a cheating prover and extracts valid witnesses {xi}i∈[�]. The extractor
first executes the protocol honestly with the prover and obtains a transcript
(ỹ, {ci}i∈[�], x̂) such that gx̂ = ỹ · ∏�

i=1 yci
i .

Now the extractor rewinds the protocol to Step 2 and sends a different ran-
dom challenge c′

1 while keeping all the other challenges the same, and obtains x̂′

such that gx̂′
= ỹ ·(y1)c′

1
∏�

i=2(yi)ci . Combining the two equations, the extractor
gets gΔx̂ = yΔc

1 where Δx̂ = x̂ − x̂′ and Δc = c1 − c′
1. Now the extractor can

compute x1 = Δx̂ · (Δc)−1 mod q. This process can be repeated for all i ∈ [�] to
extract all xi.

Zero-Knowledge. We prove this protocol is honest-verifier zero-knowledge by
constructing a PPT simulator that does the following. First it samples ci

$←
{0, 1}λ for all i ∈ [�] and x̂

$← [q], and then computes ỹ = gx̂/
∏�

i=1(yi)ci . Finally
it outputs the transcript (x̃, {ci}i∈[�], x̂). The simulated transcript is statistically
identical to the real protocol.

This batching technique extends naturally to more complex sigma protocols
that prove relations between multiple elements and consistency between expo-
nents. Concrete examples of the batched sigma protocols we use in our protocol
can be found in our full version.

Effect of Batching on Range Proofs. Batching has a small effect on the
slack of range proofs that we consider. Recall that the size bound on a particular
exponent x is related to the size of x̂, that is, the part of the prover’s response
related to that element. Batching � sigma protocols increases the size of each
element of the prover’s response by a factor of �. This is because the value needs
to be big enough to statistically mask

∑�
i=1 ci · xi, which is � times larger than

the unbatched case. Therefore, batching introduces an additional factor of � to
the proved range.

26 P. Miao et al.

5.4 Multi-exponentiation Argument

In our protocol, we will need to batch a set of arguments that an ElGamal
ciphertext ct′i is a re-randomization of another ciphertext cti raised to a hidden
committed value βi. Our idea is to first take a random linear combination of
these equations and then prove an ElGamal ciphertext ˜ct is the product of a
set of known ciphertexts

{

˜cti
}

raised to a set of hidden committed values {βi},
where the commitments are batched as described in Sect. 5.1. We notice that this
can be achieved by a multi-exponentiation argument from the work of Bayer
and Groth [5], which has sublinear communication complexity. One subtlety
is that the values {βi} are committed in the group of the Camenisch-Shoup
encryption for proving consistency with the decrypted values, but to the apply
multi-exponentiation argument, they must be committed in the group of the
ElGamal encryption. Therefore, we commit to {βi} in both groups and prove
consistency between the commitments. Since all the commitments and sigma
protocols can be batched, the overall communication complexity is sublinear.

6 Communication, Computation and Monetary Costs

In this section, we present the communication, computation and monetary costs
of our protocol. The offline phase for generating parameters for the different
primitive we will use has a fixed cost, which includes four ZK-AoK of exponent
per party plus one proof that a modulus N is a product of safe primes [12], which
requires O(κ2 log N) communication and computation where κ is the security
parameter for the soundness of the last proof.

For our online phase, we have several batching optimizations described in
Sect. 5 that allow us to achieve different trade-offs between communication and
computation. Thus, we state our efficiency estimates parameterized with the
different batching parameters presented in Table 1 that we apply for the com-
mitments and encryptions. Our shuffled DOPRF has 3 rounds, each of which
has an associated sigma protocol. Wherever the sigma protocols can be batched,
we batch them into a single execution, and this is reflected in the costs. The
specifics of the batching can be found in our the version of the paper.

In Table 2 we present the computation and communication cost estimates for
the different phases of out protocol. There are three different types of compu-
tational operations we perform in the protocol, namely group operations in G,
exponentiations mod N (for commitments), and exponentiations mod Nscam+1

for Camenisch-Shoup encryption. There are also 4 types of elements we commu-
nicate: group elements in G, elements modulo N , elements modulo Ns+1, and
sigma protocol response messages from the prover. The entries of Table 2 reflect
counts of each of these types of operations and elements transferred.

We will compare our protocol’s cost against the baseline, namely the semi-
honest Diffie-Hellman based intersection-sum protocol [39]. In our concerete
instantiation, we use safe RSA moduli of length 1536 bits. We use NIST curve
prime256v1 as our group G.

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 27

Table 1. Parameter notation

Notation Parameter Meaning

n number of inputs in each set

G group for OPRF

sizeG size of elements in G

N RSA modulus

λ security parameter for sigma protocol soundness and hiding

scam modulus parameter for CS encryptions, their modulus will be Nscam+1

s′
cam number of plaintexts that fit in the message space Nscam+1

tcam number of components ei per CS encryption that share the first component u

Ncam total number of CS ciphertexts (�n/(s′
cam · tcam)�)

sped number of values committed in a Pedersen vector commitment in DOPRF round 2

nped number of Pedersen vector commitments in DOPRF round 2 (�n/sped�)
n′
cam number of batched CS ciphertexts per batched Pedersen commitment �sped/(s′

cam · tcam)�
mmultiexp dimension m to use in the multiexponentation proof from Bayer et al. [5] in DOPRF Round 3.

Table 2. Counts of various operations performed in each step of the DOPRF protocol,
and corresponding communication cost.

Computation Communication

DOPRF Round 1
Messages 2 exp mod N +tcam · (tcam + 1) exp mod Nscam+1 |N | · (1 + tcam · (tcam + 1) · (scam + 1))

Sigma Protocol 5 exp mod N +3tcam · (tcam + 1) exp mod Nscam+1 |N | · (tcam + 3 + tcam · (tcam + 1) · (scam + 1))

DOPRF Round 2
Messages (n + ncam) · (tcam + 1) exp mod Nscam+1 (ncam · (tcam + 1)(scam + 1) · |N |))

+(3n + 3nped) exp mod N + n exp in G +n · sizeG + 3nped · |N |
Sigma Protocol 2 · (ncam + sped) · nsig(tcam + 1) exp mod Nscam+1 |N | · n′

cam((scam + 1) · (tcam+1) + log nped + k)
(10sped + 10) + 5nped exp mod N + (2sped + n) exp in G +(5sped + 8) · |N | + sped · sizeG

DOPRF Round 3
Messages n/s′

cam exp mod Nscam+1 + (n + nped) exp mod N (3n + nped) · sizeG + nped|N |
+4n + nped exp in G

Sigma Protocol 1 (2 + nped) · (ncam + 1) · (tcam + 1) exp mod Nscam+1 (ncam + 1) · (scam + 1) · (tcam + 1)|N |
+2(sped + 1) + nped exp mod N +(|N | + k)tcam

+2(sped + 1) + nped exp in G +sped · (3k + 2sizeG)
Sigma Protocol 2 2n(mmultiexp + 6 · �n mmultiexp + exp in G (5mmultiexp + �n mmultiexp + 10) · sizeG

To minimize communication costs, in the first and seconds rounds of the
shuffled DOPRF protocol, we set sped =

√
n and batch

√
n sigma protocols

together. We further set tcam = 8. scam = 4, s′
cam = 8 and mmultiexp = 8. We

compare costs with the DDH-based shuffled DOPRF with semi-honest security.
The measurements appear in Table 3.

We briefly discuss how we choose our parameters. First we discuss our choice
of sped. In Round 2 of the DOPRF, batching Pedersen commitments allows us
to send 1 element mod N instead of sped elements in the Round 2 messages.
However, each sigma protocol statement in this round now also grows to be of
length sped, since we must prove knowledge of all values contained in a commit-
ment together. Since each sigma protocol is of size sped individually, the batched
sigma protocol is also be of length sped. In order to minimize both the number of
commitments sent and the size of the batched sigma protocol, we set sped =

√
n,

and bsig =
√

n.
We note that generating the messages of the DOPRF Round 2 constitutes

the computation bottleneck of the protocol. In this round, for each entry in the
Receiver’s set, the Receiver has to perform a homomorphic Camenisch-Shoup

28 P. Miao et al.

Table 3. Comparison of communication and computation costs between our shuffled
DOPRF protocol with parameters set to minimize communication, and the baseline
protocol, namely the semi-honest DDH-based shuffled DOPRF.

Our Protocol DDH-based

Input size Comm. (KB) Comp. (s) Comm. (KB) Comp. (s) Comm. Expansion

212 1,287 1,150 256 0.71 5.03 ×
216 17,716 17,865 4,096 11.39 4.325 ×
220 275,675 284,075 65,536 182.29 4.21 ×

scalar multiplication with the encrypted key, and homomorphically add it to its
encrypted and masked entry. In fact, the overall computation scales with tcam,
the number of components in the Camenisch-Shoup ciphertext. This means that
if we increase the number of components of the Camenisch-Shoup ciphertexts, we
end up greatly increasing the computation. Furthermore, when we increase the
parameter scam, we are performing operations in the substantially larger group
nscam+1, which induces non-linearly increasing computation cost. In Table 4, we
attempt to minimize computation, by reducing tcam to 2, scam to 1 and s′

cam to
2. In this case, communication cost increases by about 60%, but computation
cost drops by about 90%.

Table 4. Comparison of communication and computation costs between our shuf-
fled DOPRF protocol when we set parameters to minimize computational cost. These
parameters also minimize monetary cost.

Our Protocol DDH-based

Input size Comm(KB) Comp(s) Cost(c) Comm(KB) Comp(s) Cost(c) Cost Increase

212 1,893 141 0.053 256 0.71 0.002 24.9×
216 28,289 2,215 0.831 4,096 11.39 0.034 24.2×
220 436,719 35,583 13.1 65,536 182.29 0.551 24.00×

To compare monetary costs, we use the costs from Google Cloud Platform.1

The costs are given in Table 5. For computation, we use the price for pre-emptible
virtual CPUs, which correspond to machines with an Intel Xeon E5 processor
and 3.75 GB of memory, which matches the machines we used for benchmarking.
We consider pre-emptible computation to capture the offline batch-processing
scenario described by works that deploy PSI in practice [39]. We also use the
cheapest tier of network cost, considering the cost for internet egress, since that
captures the scenario of the two parties being in different datacenters or clouds.
We note that, at the time of publication, all the major cloud providers have costs
that are within a tight range.

1 See https://cloud.google.com/compute/network-pricing/ for the network cost and
https://cloud.google.com/compute/vm-instance-pricing for the computation cost.

https://cloud.google.com/compute/network-pricing/
https://cloud.google.com/compute/vm-instance-pricing

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 29

Table 5. Costs for network and computation on Google Cloud Platform.

Network cost(USD per GB) Computational cost (USD per CPU-hour)

$0.08 0.01

Table 6. Comparison of computation, communication and monetary costs of our pro-
tocols compared to related works. Monetary costs use the values in Table 5. Commu-
nication cost is in KB, Time is in seconds, and Cost is in cents (USD).

Input size 212 Input size 216 Input size 220

Comm Comp Cost Comm Comp Cost Comm Comp Cost

DDH-DOPRF (semihonest) 256 0.71 0.002 4096 11.39 0.034 65536 182.29 0.55

Sort-Compare-Shuffle [37] 209920 0.61 1.60 4941824 12.65 37.7 108691456 235.3 829.3

EC-ROM (one-sided PSI) [61] 4915.2 0.19 0.037 80896 0.94 0.61 1353728 12.6 10.3

DE-ROM (one-sided PSI) [61] 3584 0.23 0.027 62464 1.3 0.47 1118208 18 8.53

Our SDOPRF (low comm.) 1287 1150 0.329 17716 17865 5.09 275675 284075 81.01

Our SDOPRF (low comp.) 1893 141 0.05 28289 2215 0.83 436719 35583 13.21

Comparison with Existing Works. In Table 6, we compare concrete costs of
our protocol against existing works that achieve security against malicious adver-
saries. The key comparison is against the Sort-Compare-Shuffle (SCS) approach
of Huang et al [37], which is the only existing work that is compatible with mali-
cious security, two sided output, and computing a function on associated values
in the intersection. We note that both our SDOPRFs have significantly lower
communication, and crucially, lower concrete monetary cost. In particular, the
“Low Computation” variant of our SDOPRF has monetary cost 30× less for 212

entries, and 64× less for 220 entries. We note that the SCS approach has lower
computation costs and end-to-end running time, but that in the batch-processing
setting, the computation cost is less of a factor than concrete monetary costs,
since responses are not needed in real time.

We also compare against the most efficient one-sided malicious PSI works of
Rindal et al. [61], and show that our protocols are in the same ballpark of total
monetary cost. In particular, the “Low Computation” variant of our SDOPRF
has monetary cost about 1.5× that of the DE-ROM variant of [61]. We note that
[61] do not easily support two sided output or computing over the intersection.
We believe the modest increased cost of our protocol is reasonable in order to
support these additional functionalities.2

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data (2003)

2 Concurrent to our work, Pinkas at el. [55] present a new one-sided malicious PSI
that achieves better efficiency than [61], but we note that their protocol also does
not easily support our two-sided functionality.

30 P. Miao et al.

2. Applebaum, B., Ringberg, H., Freedman, M.J., Caesar, M., Rexford, J.: Collab-
orative, privacy-preserving data aggregation at scale. In: Atallah, M.J., Hopper,
N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 56–74. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14527-8 4

3. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: ACM
CCS (2011)

4. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 17

6. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS (1993)

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

9. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45539-6 31

10. Bursztein, E., Hamburg, M., Lagarenne, J., Boneh, D.: OpenConflict: preventing
real time map hacks in online games. In: IEEE Symposium on Security and Privacy
(2011)

11. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and anonymous identity-
based encryption and authorised private searches on public key encrypted data. In:
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1 12

12. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the prod-
uct of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp.
107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 8

13. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

15. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 7

16. Ciampi, M., Orlandi, C.: Combining private set-intersection with secure two-party
computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035,
pp. 464–482. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-
0 25

https://doi.org/10.1007/978-3-642-14527-8_4
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-45539-6_31
https://doi.org/10.1007/978-3-642-00468-1_12
https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-642-03549-4_7
https://doi.org/10.1007/978-3-319-98113-0_25
https://doi.org/10.1007/978-3-319-98113-0_25

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 31

17. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set
intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01957-9 8

18. Damgard, I.: On Σ-protocols (2002). http://www.cs.au.dk/∼ivan/Sigma.pdf
19. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications

of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

20. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35404-5 17

21. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 13

22. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality
using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp.
209–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 12

23. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 28

24. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM CCS (2013)

25. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately
computing set-union and set-intersection cardinality via bloom filters. In: Foo, E.,
Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413–430. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19962-7 24

26. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

27. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions (2018)

28. Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with linear commu-
nication from general assumptions. In: WPES@CCS (2019)

29. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

30. Freedman, M.J., Hazay, C., Nissim, K., Pinkas, B.: Efficient set intersection with
simulation-based security. J. Cryptol. 29, 115–155 (2016)

31. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24676-3 1

32. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-642-01957-9_8
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-319-23318-5_12
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-319-19962-7_24
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/BFb0052225

32 P. Miao et al.

33. Gennaro, R., Leigh, D., Sundaram, R., Yerazunis, W.: Batching schnorr iden-
tification scheme with applications to privacy-preserving authorization and low-
bandwidth communication devices. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 276–292. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30539-2 20

34. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 12

35. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 10

36. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adver-
saries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 19

37. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

38. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic
communities. In: ACM Conference on Electronic Commerce (1999)

39. Ion, M., et al.: Private intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive, Report 2017/738 (2017).
https://eprint.iacr.org/2017/738

40. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00457-5 34

41. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

42. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: ACM CCS (2016)

43. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: ACM CCS (2017)

44. Lambæk, M.: Breaking and fixing private set intersection protocols. Cryptology
ePrint Archive, Report 2016/665 (2016). https://eprint.iacr.org/2016/665

45. Li, M., Cao, N., Yu, S., Lou, W.: FindU: privacy-preserving personal profile match-
ing in mobile social networks. In: IEEE INFOCOM (2011)

46. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security
for private intersection-sum with cardinality. Cryptology ePrint Archive, Report
2020/385 (2020). https://eprint.iacr.org/2020/385

47. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85, 481–484 (2002)

48. Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: BotGrep: finding
P2P bots with structured graph analysis. In: USENIX Security (2010)

49. Nagy, M., De Cristofaro, E., Dmitrienko, A., Asokan, N., Sadeghi, A.R.: Do i
know you?: efficient and privacy-preserving common friend-finder protocols and
applications. In: ACSAC (2013)

50. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D., et al.:
Location privacy via private proximity testing. In: NDSS, vol. 11 (2011)

https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-540-30539-2_20
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
https://eprint.iacr.org/2017/738
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/978-3-642-00457-5_34
https://doi.org/10.1007/11535218_15
https://eprint.iacr.org/2016/665
https://eprint.iacr.org/2020/385

Two-Sided Malicious Security for Private Intersection-Sum with Cardinality 33

51. Narayanan, G.S., Aishwarya, T., Agrawal, A., Patra, A., Choudhary, A., Rangan,
C.P.: Multi party distributed private matching, set disjointness and cardinality of
set intersection with information theoretic security. In: Garay, J.A., Miyaji, A.,
Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 21–40. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 2

52. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms (2004)
53. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

54. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight private set
intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26954-8 13

55. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious
private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45724-2 25

56. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection
using permutation-based hashing. In: USENIX Security (2015)

57. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI
with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17659-4 5

58. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

59. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: USENIX Security (2014)

60. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adver-
saries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210,
pp. 235–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 9

61. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: ACM CCS (2017)

62. Segal, A., Ford, B., Feigenbaum, J.: Catching bandits and only bandits: privacy-
preserving intersection warrants for lawful surveillance. In: FOCI (2014)

63. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to asso-
ciation rule mining. J. Comput. Secur. 13, 593–622 (2005)

https://doi.org/10.1007/978-3-642-10433-6_2
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-56620-7_9

Private Set Intersection in the Internet
Setting from Lightweight Oblivious PRF

Melissa Chase1(B) and Peihan Miao2(B)

1 Microsoft Research, Redmond, USA
melissac@microsoft.com

2 Visa Research, Palo Alto, USA
pemiao@visa.com

Abstract. We present a new protocol for two-party private set inter-
section (PSI) with semi-honest security in the plain model and one-sided
malicious security in the random oracle model. Our protocol achieves a
better balance between computation and communication than existing
PSI protocols. Specifically, our protocol is the fastest in networks with
moderate bandwidth (e.g., 30–100Mbps). Considering the monetary cost
(proposed by Pinkas et al. in CRYPTO 2019) to run the protocol on a
cloud computing service, our protocol also compares favorably.

Underlying our PSI protocol is a new lightweight multi-point oblivi-
ous pesudorandom function (OPRF) protocol based on oblivious trans-
fer (OT) extension. We believe this new protocol may be of independent
interest.

1 Introduction

Private set intersection (PSI) enables two parties, each holding a private set of el-
ements, to compute the intersection of the two sets while revealing nothing
more than the intersection itself. PSI has found many applications including
privacy-preserving location sharing [NTL+11], private contact discovery [CLR17,
RA17,DRRT18], DNA testing and pattern matching [TPKC07], testing of
fully sequenced human genomes [BBDC+11], collaborative botnet detection
[NMH+10], and measuring the effectiveness of online advertising [IKN+17]. In the
past several years PSI has been extensively studied and has become truly prac-
tical with extremely fast implementations [HFH99,FNP04,DSMRY09,DCKT10,
ADCT11,DCGT12,HEK12,DCW13,PSZ14,PSSZ15,KKRT16,RR17a,RR17b,
CLR17,RA17,DRRT18,FNO18,PSWW18,GN19,PRTY19,PRTY20].

When measuring the efficiency of a PSI protocol, there are two major
aspects usually considered. First, the computation cost, which is the amount
of computing time necessary to run the protocol. Optimizing the computa-
tion cost is especially important in practice because of limited computational
resources. The state-of-the-art computationally efficient semi-honest PSI proto-
col [KKRT16] uses only oblivious transfer (OT) [Rab05], a cryptographic hash

P. Miao—Part of the work done while visiting Microsoft Research.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 34–63, 2020.
https://doi.org/10.1007/978-3-030-56877-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_2

PSI in the Internet Setting from Lightweight Oblivious PRF 35

function, symmetric-key cryptographic operations, and bitwise operations. It can
privately compute the intersection of two million-size sets in about 4 s. This is
because OT itself has been heavily optimized, and in particular because of work
on OT extension [IKNP03,ALSZ13], which allows many oblivious transfers to be
performed using only a small number of public key operations and a combination
of symmetric primitives (hash functions/AES) and bitwise operations.

The second aspect in the measurement is the communication cost, which
refers to the total amount of communication in the protocol. Minimizing the
communication cost is also crucial in practice due to limited network bandwidth,
which is often a shared resource for multiple applications. The communication-
optimal PSI protocol [ADCT11] requires communication that is only marginally
more than a näıve and insecure protocol (where one party simply sends hash of its
elements to the other party), but the protocol is computationally too expensive
to be adopted in practice.

On the more practical side, Pinkas et al. [PRTY19] achieve communication
that is half that of [KKRT16] and roughly 8 times the näıve approach at the
cost of more expensive operations based on finite field arithmetic.1 The result
is roughly a 6–7 times overhead compared to [KKRT16]. This leaves open the
question of whether reducing the communication cost of [KKRT16] requires more
expensive computational tools, or whether it could be achieved with significantly
lower computational overhead.

Can we achieve the best of both computation and communication?

When we look at tradeoffs between communication and computation, one
valuable metric is the total running time of the protocol, which includes both the
computation time and the time to transmit and receive the necessary messages.
Of course this time will vary depending on the network bandwidth, and different
protocols may perform better in different network settings. Viewed in this light,
[KKRT16] can be viewed as a protocol optimized for the LAN setting, where
bandwidth is not a bottleneck, while [PRTY19] is targeted at very low bandwidth
settings. However, we argue that it is valuable to design optimized protocols for
the full range of settings, and that the middle range (e.g. 30–100 Mbps) is in
fact very important. During Q2–Q3 2018, the average download speed over fixed
broadband in the U.S. was 95.25 Mbps and average upload speed was 32.88 Mbps
[LLC18]. For example, the Comcast Standard business internet package includes
75 Mbps; larger businesses might have higher bandwidth but would not want to
devote all of it to a single protocol. Thus, this seems like a very valuable range
to consider.

In the work of Pinkas et al. [PRTY19], they propose an alternative efficiency
metric—the monetary cost to run the protocol on a cloud computing service.
This new metric takes both computation cost and communication cost into

1 The work [PRTY19] describes two protocols, one optimized for speed (spot-fast) and
one optimized for communication cost (spot-low). Here the comparison is for their
fast protocol because the communication optimized one is significantly slower.

36 M. Chase and P. Miao

consideration. The PSI protocols proposed in [PRTY19] have much less com-
munication compared to the computation-optimized protocol [KKRT16] and
much faster running time compared to the communication-optimized proto-
col [ADCT11]. As a result, they achieve a better balance between computa-
tion and communication and have the least monetary cost. We can ask though,
whether they achieve the best balance.

1.1 Our Contribution

In this work, we make positive progress on the aforementioned questions by pre-
senting a new PSI protocol that achieves a better balance between computation
and communication.

A New PSI. We present a new PSI construction which we believe achieves
better computation/communication tradeoffs. This protocol is based only on
oblivious transfer, hashing, symmetric-key and bitwise operations, and as such
it has favorable computation; at the same time its communication is almost as
small as [PRTY19]. In particular, our protocol is 2.53–3.65× faster than spot-
fast and 19.4–28.7× faster than spot-low [PRTY19] in computation and requires
1.46–1.69× lower communication than [KKRT16]. Overall, our protocol is the
fastest in a network with moderate bandwidth (e.g., 30–100 Mbps). In addition,
we theoretically and experimentally analyze the monetary cost according to the
metric from [PRTY19] and show that it compares very favorably.

Efficient Multi-point OPRF. The PSI protocol of [PRTY19] is based on a
multi-point oblivious PRF (OPRF) protocol that requires polynomial interpo-
lation over a large field, which is computationally significantly more expensive
than the symmetric-key and bitwise operations in the single-point OPRF of
[KKRT16]. We propose a new multi-point OPRF protocol that is based on OT
extension that again relies only on symmetric-key and bitwise operations and
hashing. It is conceptually very simple to understand and easy to implement.
Additionally, our protocol is more flexible in that it allows for tuning parameters
to achieve better computation or better communication. We believe this protocol
may be of independent interest.

Security Against Malicious Sender. In most of this work, we focus on the
semi-honest security model, where both parties follow the PSI protocol descrip-
tion honestly while trying to extract more information about the other party’s
input set, and aim to achieve the optimal practical efficiency. However, we can
show that our protocol also achieves security in the random oracle model when
one of the parties is malicious, in particular if we refer to the parties as sender
and receiver where the receiver is the party who receives the output, then we
protect against the malicious sender. In the previous work [KKRT16,PRTY19],
only the spot-low variant of [PRTY19] achieves one-sided malicious security. As
will be shown in Sect. 5, our protocol is much more efficient in running time and
cheaper in monetary cost than spot-low.

PSI in the Internet Setting from Lightweight Oblivious PRF 37

We note that this sort of asymmetric guarantee is very appropriate in settings
where the computation is between a large established company and a small
business or a consumer. A large company may have a reputation to maintain
and more policies and procedures in place to protect against misbehaviour, so
assuming semi-honest security may be more reasonable. On the other hand, if
the protocol is run with many different consumers or small businesses it may be
hard to ensure that all of them are sufficiently trustworthy to assume semi-honest
security.

In light of this, when we consider our efficiency metrics we also consider an
asymmetric setting where the sender runs on a cloud service like AWS while
the receiver has its own internet service; this should capture the example of a
small business who does not have its own dedicated servers but would instead
outsource its computations to the cloud. We see that in this setting our protocol
is even more advantageous, achieving 5.01–6.48× lower monetary cost than spot-
low [PRTY19] in all of the settings we consider.

1.2 Technical Overview

Conceptually speaking, our PSI protocol leverages a primitive called an oblivious
pseudorandom function (OPRF) [FIPR05], which allows a sender to learn a PRF
key k and a receiver to learn the PRF output OPRFk(y1), . . . ,OPRFk(yn) on
its inputs y1, . . . , yn ∈ Y . Nothing about the receiver’s inputs is revealed to the
sender and nothing more about the key k is revealed to the receiver. If the sender
additionally computes OPRFk(x1), . . . ,OPRFk(xn) on its inputs x1, . . . , xn ∈ X
and sends them to the receiver, then the receiver can identify the intersecting
PRF values and the corresponding set intersection. In this section we describe
how to construct an efficient OPRF protocol based on OT extension.

Our starting point is the computationally most efficient PSI proto-
col [KKRT16], which can be conceptually viewed as evaluating n single-point
OPRFs, where the sender learns a PRF key k while the receiver can only oblivi-
ously evaluate on a single input y. We first describe their protocol at a high level
and then elaborate how to extend the single-point OPRF to a multi-point OPRF
while still only using the efficient OT extension and symmetric-key operations.

Single-Point OPRF. The single-point OPRF realized in [KKRT16] is evalu-
ated as follows. Let the PRF key k consist of two bit-strings q, s ∈ {0, 1}λ. Let
F (·) be a pseudorandom code that produces a pseudorandom string and let H
be a hash function. The pseudorandom function is computed as

OPRFk(x) = H(q ⊕ [F (x) · s]),

where · denotes bitwise-AND and ⊕ denotes bitwise-XOR. For a randomly gen-
erated s, if F (x) has enough Hamming weight then the function OPRFk(x) is
pseudorandom assuming the hash function H is correlation robust.

To evaluate this single-point OPRF on the receiver’s input y, the receiver
first samples a random string r0

$← {0, 1}λ and computes r1 = r0 ⊕ F (y). The

38 M. Chase and P. Miao

sender also samples a random string s
$← {0, 1}λ. Then the two parties execute

λ oblivious transfers where the sender acts as a receiver in the OT and inputs
λ choice bits s[1], s[2], . . . , s[λ] while the receiver acts as a sender in the OT and
inputs λ pairs of messages {r0[i], r1[i]}i∈[λ] (each message is a single bit). At the
end of the OT, the sender receives λ bits {rs[i][i]}i∈λ. Now the sender simply
sets q = rs[1][1]‖ . . . ‖rs[λ][λ] and lets the PRF key be k = (q, s). The PRF value
on y learned by the receiver is H(r0). Correctness can easily be checked, namely
q ⊕ [F (x) · s] = r0 if x = y.

PSI From Single-Point OPRF. Given the above construction of single-point
OPRF, [KKRT16] built a PSI protocol as follows. They first use Cuckoo hash-
ing [PR04] to assign the receiver’s elements into b bins such that each bin contains
at most one element. Then the sender and receiver run the single-point OPRF
for each bin so that the sender obtains b PRF keys and the receiver learns b PRF
values. Now for each bin, the sender computes the PRF for that bin on all the
possible elements in that bin, and sends all the PRF values to the receiver.

In the above single-point OPRF, the only heavy cryptographic tool needed
is OT, which requires public-key operations. Since the same choice bits can be
used for all the n instances of OPRF, all the OTs can be done via λ instances
of string OTs, which can be efficiently instantiated by OT extension.

In this protocol, each element on the sender’s side is evaluated on multiple
PRFs (the number of hash functions plus the stash size in Cuckoo hashing),
which incurs a constant overhead in communication from the sender to the
receiver. We get rid of this overhead by constructing a multi-point ORPF so
that every element is only evaluated once.

Extending to Multi-point OPRF. In the single-point OPRF construction,
there are 2λ possible choices of s and different resulting PRF keys k that the
sender will receive. However, no matter which s is chosen, OPRFk(y) = r0. We
extend this idea to multi-point OPRF.

Our new PRF key contains a matrix M of size m × w. To evaluate the PRF
on input x, we again need a hash function H, and we evaluate a pseudorandom
code F (x) which produces a vector in v ∈ [m]w. Let Mi denote the i-th column
of M . The pseudorandom function is computed as

OPRFM (x) = H (M1[v[1]]‖ . . . ‖Mw[v[w]]) .

The sender picks a random string s ∈ {0, 1}w. The receiver prepares two sets
of column vectors A1, . . . , Aw ∈ {0, 1}m and B1, . . . , Bw ∈ {0, 1}m. The two
parties run w number of OTs where the sender behaves as a receiver and the
receiver behaves as the sender. At the end of the protocol, the sender obtains
w column vectors, which will form the PRF key M . On the other hand, the
receiver forms an m × w matrix A = [A1 . . . Aw] and computes the OPRF on its
values by OPRFA(y). At a high level, the receiver prepares the two sets of column
vectors {A1, . . . , Aw} and {B1, . . . , Bw} such that no matter what s is chosen,
OPRFM (x) = OPRFA(x) for every x ∈ Y . The parameters m,w are carefully
chosen such that OPRFM (x) is pseudorandom to the receiver for every x /∈ Y .

PSI in the Internet Setting from Lightweight Oblivious PRF 39

Preparing the column vectors takes the receiver linear time in n and only involves
cheap symmetric-key and bitwise operations. The OTs can be instantiated by
the efficient OT extension.

Multi-point OPRF From [PRTY19]. We note that [PRTY19] takes a different
approach to achieving multi-point OPRF by high-degree polynomial interpola-
tion and evaluation over a large field. Their computation complexity is asymp-
totically O(n log2 n) while ours is O(n). For concrete efficiency, our protocol only
relies on efficient OT extension and AES operations. More details on performance
comparison can be found in Sect. 5.

One-Sided Malicious Security. We further prove our protocol is secure
against a malicious sender. We note that [PRTY19] also proves one-sided mali-
cious security for spot-low. In their security proof, a pseudorandom function used
in their protocol is modeled as a random oracle. Since the malicious party knows
the PRF key, the PRF cannot be instantiated by efficient block ciphers like AES.
Instantiating it using a hash function makes the protocol much less efficient than
the semi-honest secure protocol. In our protocol, the pseudorandom code F (·) is
instantiated by a pseudorandom function Fk(·) and both parties know the PRF
key, hence the same problem arises. In order to achieve the best efficiency, we
only model hash functions as random oracles and assume F is a PRF, which
makes our security proof more involved.

1.3 Related Work

In this work we primarily compare with [KKRT16] and [PRTY19] since as dis-
cussed above they currently provide the best tradeoffs between computation
and communication. [PSZ14,PSSZ15] provide a good overview and performance
comparison of a variety of approaches to PSI. To briefly mention a few, generic
MPC based PSI [HEK12] incurs higher communication and computation costs,
and Diffie-Hellman based PSI (e.g. [IKN+17]) has relatively small communi-
cation (comparable to [PRTY19]) but incurs significantly higher computation
costs. There are protocols based on garbled circuit-based OPRFs which can be
competitive when the set sizes are very unequal [KRS+19]. There have also
been other works based on OT extension [PSSZ15,PSZ18], which can achieves
the best performance for very short elements and small set sizes.

There have also been several other works which followed up on the [KKRT16]
approach, notably [FNO18]. They describe a scheme which replaces the Cuckoo
hash table with another algorithm for assigning elements to table rows which is
more complex to compute but allows for a slightly smaller table and removes the
stash. They do not provide an implementation, but they claim that for most set
sizes their scheme achieves a 10–15% improvement in communication costs over
[KKRT16] whereas we achieve a 30–40% improvement in communication with
what we would expect to be much lighter computational overhead.

40 M. Chase and P. Miao

2 Preliminaries

2.1 Notation

We use λ, σ to denote the computational and statistical security parameters,
respectively. We use [n] to denote the set {1, 2, . . . , n}. For a vector v of length �,
we use v[i] to denote the i-th element of the vector. For a matrix M of dimension
n × m, we use Mi to denote its i-th column vector (i ∈ [n]). We use ‖x‖H to
denote the hamming weight of a binary string x. By negl(λ) we denote a negligible
function, i.e., a function f such that f(λ) < 1/p(λ) holds for any polynomial
p(·) and sufficiently large λ.

2.2 Security Model

Private Set Intersection (PSI) is a special case of secure two-party computation.
We follow the standard security definitions for secure two-party computation in
this work. The ideal functionality of PSI is defined in Fig. 1.

Parameters: P1’s input set size n1 and P2’s input set size n2.

Inputs: Party P1 inputs a set of elements X = {x1, . . . , xn1} where xi ∈ {0, 1}∗. Party
P2 inputs a set of elements Y = {y1, . . . , yn2} where yi ∈ {0, 1}∗.

Output: Party P2 receives the set intersection I = X ∩ Y .

Fig. 1. Ideal functionality for PSI FPSI.

Semi-honest Security. Let viewΠ
1 (X,Y) and viewΠ

2 (X,Y) be the view of P1

and P2 in the protocol Π, respectively. Let outΠ(X,Y) be the output of P2 in
the protocol. Let f(X,Y) be the output of P2 in the ideal functionality. The
protocol Π is semi-honest secure if there exists PPT simulators S1 and S2 such
that for all inputs X,Y ,

(
viewΠ

1 (X,Y), outΠ(X,Y)
) c≈ (S1(1n,X, n2), f(X,Y)) ;

viewΠ
2 (X,Y)

c≈ S2(1n, Y, n1, f(X,Y)).

Malicious Security Against P1. The protocol Π is secure against a malicious
P1 if for any PPT adversary A in the real world (acting as P1) that could
arbitrarily deviate from the protocol, there exists a PPT adversary S in the
ideal world (acting as P1) that could change its input to the ideal functionality
and abort the output, such that for all inputs X,Y ,

RealΠA(X,Y)
c≈ IdealFS (X,Y),

where RealΠA(X,Y) is the output of A and P2 in the real world, IdealFS (X,Y) is
the output of S and P2 in the ideal world.

PSI in the Internet Setting from Lightweight Oblivious PRF 41

2.3 Oblivious Transfer

Oblivious Transfer (OT), introduced by Rabin [Rab05], is a central cryptographic
primitive in the area of secure computation. 1-out-of-2 OT refers to the setting
where a sender has two input strings (m0,m1) and a receiver has an input
choice bit b ∈ {0, 1}. As the result of the OT protocol, the receiver learns mb

without learning anything about m1−b while the sender learns nothing about
b. This primitive requires expensive public-key operations. Ishai et al. [IKNP03]
introduced a technique called OT extension that allows for a large number of OT
executions at the cost of computing a small number of public-key operations.
In Random OT (ROT), the sender’s OT inputs (m0,m1) are randomly chosen,
which allows the protocol itself to produce these random values. Hence a random
OT protocol requires much less communication especially from the sender to the
receiver. In this work we only need the weaker primitive of random OT, whose
functionality is defined in Fig. 2.

Parameters: Message length L.

Inputs: The receiver inputs a choice bit b ∈ {0, 1} and the sender inputs nothing.

Output: Sample m0, m1
$← {0, 1}L. Output (m0, m1) to the sender and mb to the

receiver.

Fig. 2. Ideal functionality for Random Oblivious Transfer FROT.

2.4 Correlation Robustness

Our PSI construction is proven secure under a correlation robustness assumption
on the on the underlying hash function, which was introduced for OT exten-
sion [IKNP03] and later generalized in [KK13,KKRT16,PRTY19] to the version
we use in this work.

Definition 1 (Hamming Correlation Robustness). Let H be a hash func-
tion with input length n. Then H is d-Hamming correlation robust if, for any
a1, . . . , am, b1, . . . , bm ∈ {0, 1}n with ‖bi‖H ≥ d for each i ∈ [m], the follow-

ing distribution, induced by random sampling of s
$← {0, 1}n, is pseudorandom.

Namely,

(H(a1 ⊕ [b1 · s]), . . . , H(am ⊕ [bm · s]))
c≈ (F (a1 ⊕ [b1 · s]), . . . , F (am ⊕ [bm · s])) ,

where · denotes bitwise-AND and ⊕ denotes bitwise-XOR, F is a random func-
tion.

The IKNP protocol uses this assumption with n = d = λ. In that case,
the only valid choice for bi is 1λ and the distribution simplifies to H(a1 ⊕
s), . . . , H(am ⊕ s). In our case, we use n > d = λ, so other choices for the
bi values are possible.

42 M. Chase and P. Miao

3 Our PSI Protocol

In this section we describe our protocol and prove its semi-honest security in the
plain model and malicious security against P1 in the random oracle model.

3.1 Construction

We describe our PSI protocol in Fig. 3. During the protocol in Step 2 the two
parties need to run an OT protocol. Since the matrix A is randomly sampled by
P2, this step can be instantiated efficiently using random OT as shown in Fig. 4.

At a high level, P2 constructs two matrices A and B of special form from
its input elements. Note that for each y ∈ Y , let v = Fk(H1(y)), the matrices
A and B are constructed such that Di[v[i]] = 0 for all i ∈ [w], and hence
Ai[v[i]] = Bi[v[i]] = Ci[v[i]] for all i ∈ [w]. That means, if P1’s element x = y
for some y ∈ Y (i.e., x is in the intersection), then its input to the hash function
in Step 3 will be the same as y’s input to the hash function. On the other
hand, if x is not in the intersection, then its input to the hash function would
be significantly different from any y’s input to the hash function, and the PRF
output would be pseudorandom to P2. Note that the hash function H1(·) is not
necessary for semi-honest security, but is applied for extracting P1’s inputs in
the malicious case.

The parameters m,w in our protocol are chosen such that if F is a random
function and H1(x) is different for each x ∈ X ∪ Y , then for each x ∈ X \ I
and v = F (H1(x)), there are at least d 1’s in D1[v[1]], . . . , Dw[v[w]] with all but
negligible probability. We discuss how to choose these parameters in Sect. 3.3.

3.2 Security Proof

Theorem 1. If F is a PRF, H1 is a collision resistant hash function, and H2

is a d-Hamming correlation robust hash function, then the protocol in Fig. 3
securely realizes FPSI in the semi-honest model when parameters m,w, �1, �2 are
chosen as described in Sect. 3.3.

Security Against Corrupt P1. We construct S1 as follows. It is given P1’s
input set X. S1 runs the honest P1 protocol to generate its view with the fol-
lowing exceptions: For the oblivious transfer, S1 generates P1’s random string
s

$← {0, 1}w honestly and chooses a random matrix C ∈ {0, 1}m×w, and runs the
OT simulator to simulate the view for an OT receiver with inputs s[1], . . . , s[w]
and outputs C1, . . . , Cw. In Step 3a S1 sends a uniformly random PRF key k

to P1. Finally S1 outputs P1’s view. We prove
(
viewΠ

1 (X,Y), outΠ(X,Y)
) c≈

(S1(1n,X, n2), f(X,Y)) via the following hybrid argument:

Hyb0 P1’s view and P2’s output in the real protocol.

PSI in the Internet Setting from Lightweight Oblivious PRF 43

0. P1 and P2 agree on security parameters λ, σ, protocol parameters m, w, �1, �2, two
hash functions H1 : {0, 1}∗ → {0, 1}�1 and H2 : {0, 1}w → {0, 1}�2 , pseudorandom
function F : {0, 1}λ × {0, 1}�1 → [m]w.

1. Precomputation
– P1 samples a random string s

$← {0, 1}w.

– P2 does the following:
(a) Initialize an m × w binary matrix D to all 1’s. Denote its column vectors

by D1, . . . , Dw. Then D1 = · · · = Dw = 1m.

(b) Sample a uniformly random PRF key k
$← {0, 1}λ.

(c) For each y ∈ Y , compute v = Fk(H1(y)). Set Di[v[i]] = 0 for all i ∈ [w].

2. Oblivious Transfer
(a) P2 randomly samples an m × w binary matrix A

$← {0, 1}m×w. Compute
matrix B = A ⊕ D.

(b) P1 and P2 run w oblivious transfers where P2 is the sender with inputs
{Ai, Bi}i∈[w] and P1 is the receiver with inputs s[1], . . . , s[w]. As a result P1

obtains w number of m-bit strings as the column vectors of matrix C (with
dimension m × w).

3. OPRF Evaluation
(a) P2 sends the PRF key k to P1.

(b) For each x ∈ X, P1 computes v = Fk(H1(x)) and its OPRF value ψ =
H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) and sends ψ to P2.

(c) Let Ψ be the set of OPRF values received from P1. For each y ∈ Y , P2 computes
v = Fk(y) and its OPRF value ψ = H2(A1[v[1]]‖ . . . ‖Aw[v[w]]) and outputs y
iff ψ ∈ Ψ .

Fig. 3. Our private set intersection protocol.

Hyb1 Same as Hyb0 except that on P2’s side, for each i ∈ [w], if s[i] = 0,

then sample Ai
$← {0, 1}m and compute Bi = Ai ⊕ Di; otherwise sample

Bi
$← {0, 1}m and compute Ai = Bi ⊕ Di. This hybrid is identical to Hyb0.

Hyb2 Same as Hyb1 except that S1 (instead of P2) chooses the random PRF key
k. This hybrid is statistically identical to Hyb1.

Hyb3 Same as Hyb2 but the protocol aborts if there exists x, y ∈ X ∪ Y, x 	= y
such that H1(x) = H1(y). The aborting probability is negligible because H1

is collision resistant.
Hyb4 Same as Hyb3 but the protocol also aborts if there exists x ∈ X \ I such

that, for v = Fk(H1(x)), there are fewer than d 1’s in D1[v[1]], . . . ,Dw[v[w]].
The parameters m,w are chosen such that if F is a random function and
H1(x) is different for each x ∈ X ∪ Y , then the aborting probability is neg-
ligible. If the aborting probability in Hyb4 is non-negligible, then we can
construct a PPT adversary A to break the security of PRF. In particular,
given the sets X and Y , A constructs the matrix D as in Hyb4 except that

44 M. Chase and P. Miao

1. P1 and P2 perform w random OTs with message length m, where P1 is the re-
ceiver with inputs choice bits s[1], . . . , s[w]. As a result, P2 gets w pairs of random

messages {r
(0)
i , r

(1)
i }i∈[w] and P1 gets w messages {ri}i∈[w] where ri = r

(s[i])
i .

2. P2 does the following:
(a) Let {r

(0)
i }i∈[w] form the column vectors of the matrix A and compute the

matrix B = A ⊕ D.

(b) Compute Δi = Bi ⊕ r
(1)
i for all i ∈ [w] and send to P1.

3. P1 computes the matrix C as follows: if s[i] = 0 then set Ci = ri; otherwise set
Ci = ri ⊕ Δi.

Fig. 4. Step 2 of our PSI protocol instantiated using random OT.

whenever it needs to compute Fk, A queries the PRF challenger for the
output. Finally, if there exists x ∈ X\I such that, for v = Fk(H1(x)), there are
fewer than d 1’s in D1[v[1]], . . . ,Dw[v[w]], namely the protocol aborts, then
A guesses PRF, otherwise A guesses random function. A guesses correctly
with probability 1

2 + non-negl. Therefore, the protocol aborts with negligible
probability in Hyb4.

Hyb5 Same as Hyb4 but party P2’s output is replaced by f(X,Y) (i.e., the inter-
section I = X ∩ Y). This hybrid changes P2’s output if and only if there
exists x ∈ X, y ∈ Y, x 	= y such that, for v = Fk(H1(x)), u = Fk(H1(y)),
H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) = H2(A1[u[1]]‖ . . . ‖Aw[u[w]]). This happens with
negligible probability as H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) is pseudorandom by the
correlation robustness of H2, so for sufficiently large �2 this probability will
be negligible.
Specifically, for each xi ∈ X \ I, let vi = Fk(H1(x)), ai = A1[vi[1]]‖ . . .
‖Aw[vi[w]], and bi = D1[vi[1]]‖ . . . ‖Dw[vi[w]]. Then xi’s input to the hash
function H2 is C1[vi[1]]‖ . . . ‖Cw[vi[w]], which is ai ⊕ [bi · s]. Additionally
we have the guarantee that ‖bi‖H ≥ d. Since s is randomly sampled, by
the d-Hamming correlation robustness of H2, the outputs of H2(C1[vi[1]]‖ . . .
‖Cw[vi[w]]) are pseudorandom.
If the outputs of H2(C1[vi[1]]‖ . . . ‖Cw[vi[w]]) are truly random, then a col-
lision of H2(C1[v[1]]‖ . . . ‖Cw[v[w]]) = H2(A1[u[1]]‖ . . . ‖Aw[u[w]]) happens
with negligible probability. If the collision in this hybrid happens with non-
negligible probability, then we can construct a PPT adversary A to break the
correlation robustness of H2. In particular, given the sets X and Y , A con-
structs the matrix A as in this hybrid and H2(A1[ui[1]]‖ . . . ‖Aw[ui[w]]) for
each yi ∈ Y . A can also compute the matrix D as in this hybrid and (ai, bi)
for each xi ∈ X \ I. As we explained above, H2(C1[vi[1]]‖ . . . ‖Cw[vi[w]]) =
H2(ai ⊕ [bi · s]). A queries the oracle for the outputs of H2(ai ⊕ [bi · s]). If a
collision happens, then A guesses the hash function; otherwise A guesses ran-
dom function. A guesses correctly with probability 1

2 + non-negl. Therefore,
the probability of collision is negligible by our choice of �2 for semi-honest
security in Sect. 3.3.

PSI in the Internet Setting from Lightweight Oblivious PRF 45

Hyb6 Same as Hyb5 but the protocol does not abort. The indistinguishability of
Hyb6 and Hyb5 follows from the collision resistance of H1 and the pseudoran-
domness of Fk by the same arguments as above.

Hyb7 The simulated view of S1 and f(X,Y). The only difference from Hyb6 is
that S1 samples the matrix C and runs the OT simulator to simulate the view
of an OT receiver for P1. This hybrid is computationally indistinguishable
from Hyb6 by security of the OT protocol.

Security Against Corrupt P2. We construct S2 as follows. It is given as
input P2’s set Y , the size of P1’s set n1, and the intersection I = f(X,Y). S2

runs the honest P2 protocol with the following exceptions: For the oblivious
transfer, S2 computes the matrices A and B honestly and run the OT simulator
to produce a simulated view for the OT sender. For each x ∈ I, it computes
v = Fk(H1(x)) and the OPRF value ψ = H2(A1[v[1]]‖ . . . ‖Aw[v[w]]). Let this
set of OPRF values be ΨI . Choose n1 − |I| random �2-bit strings and let this
set be Ψrand. Send Ψ = ΨI ∪ Ψrand to P2 in Step 3b. Finally S2 outputs P2’s view
in this invocation. We argue viewΠ

2 (X,Y)
c≈ S2(1n, Y, n1, f(X,Y)) through the

following hybrids:

Hyb0 P2’s view in the real protocol.
Hyb1 Same as Hyb0 but the protocol aborts if there exists x, y ∈ X ∪ Y, x 	= y

such that H1(x) = H1(y). The aborting probability is negligible because H1

is collision resistant for sufficiently large �1 chosen in Sect. 3.3.
Hyb2 Same as Hyb1 except that the protocol aborts if there exists x ∈ X \I such

that, for v = Fk(H1(x)), there are fewer than d 1’s in D1[v[1]], . . . ,Dw[v[w]].
The parameters m,w are chosen such that if F is a random function and
H1(x) is different for each x ∈ X ∪ Y , then the aborting probability is
negligible. If the aborting probability in Hyb2 is non-negligible, then we can
construct a PPT adversary A to break the security of PRF. In particular,
given the sets X and Y , A constructs the matrix D as in Hyb2 except that
whenever it needs to compute Fk, A queries the PRF challenger for the
output. Finally, if there exists x ∈ X \ I such that, for v = Fk(H1(x)),
there are fewer than d 1’s in D1[v[1]], . . . , Dw[v[w]], namely the protocol
aborts, then A guesses PRF, otherwise A guesses random function. A guesses
correctly with probability 1

2 + non-negl. Therefore, the protocol aborts with
negligible probability in Hyb2.

Hyb3 Same as Hyb2 except that S2 runs the OT simulator to produce a simulated
view of an OT sender for P2. This hybrid is computationally indistinguishable
to Hyb2 by security of the OT protocol.

Hyb4 Same as Hyb3 except that we replace the OPRF values for x ∈ X \ I
by random �2-bit strings. Hyb4 is computationally indistinguishable from
Hyb3 because of the d-Hamming correlation robustness of H2. Specifically,
for each xi ∈ X \ I, let vi = Fk(H1(x)), ai = A1[vi[1]]‖ . . . ‖Aw[vi[w]],
and bi = D1[vi[1]]‖ . . . ‖Dw[vi[w]]. Then xi’s input to the hash function
H2 is C1[vi[1]]‖ . . . ‖Cw[vi[w]], which is ai ⊕ [bi · s]. Additionally we have

46 M. Chase and P. Miao

the guarantee that ‖bi‖H ≥ d. Since s is randomly sampled and unknown
to the P2, by the d-Hamming correlation robustness of H2, the outputs of
H2(C1[vi[1]]‖ . . . ‖Cw[vi[w]]), i.e., the OPRF values for xi ∈ X \ I, are pseu-
dorandom by the choice of �2 for semi-honest security in Sect. 3.3.

Hyb5 Same as Hyb4 except that the protocol does not abort. The indistinguisha-
bility of Hyb4 and Hyb5 follows from the collision resistance of H1 and the
pseudorandomness of F by the same arguments as above. The hybrid is the
view output by S2.

Theorem 2. If F is a PRF, H1 and H2 are modeled as random oracles, and the
underlying OT protocol is secure against a malicious receiver, then the protocol
in Fig. 3 is secure against malicious P1 when parameters m,w, �1, �2 are chosen
as described in Sect. 3.3.

We construct S that interacts with the malicious P1 as follows. S samples
a random matrix C ∈ {0, 1}m×w, and runs the malicious OT simulator on P1

with output C1, . . . , Cw. S honestly chooses the random PRF key k and sends
k to P1 in Step 3a. On P1’s query x to the random oracle H1, S records the
pair (x,H1(x)) in a table T1, which was initialized empty. On P1’s query z to
the random oracle H2, S records the pair (z,H2(z)) in a table T2, which was
initialized empty. In Step 3b when P1 sends OPRF values Ψ , S finds all the values
ψ ∈ Ψ such that ψ = H2(z) for some z in T2, and z = C1[v[1]]‖ . . . ‖Cw[v[w]]
where v = Fk(H1(x)) for some x in T1. Then S sends these x’s to the ideal
functionality. Finally S outputs whatever P1 outputs.

Let Q1,Q2 be the set of queries P1 makes to H1,H2 respectively, and let
Q1 = |Q1|, Q2 = |Q2|. We will abuse notation, and for m × w bit-matrix C and
vector u ∈ [m]w, we write C[v] to mean C1[v[1]]‖ . . . ‖Cw[v[w]]. Similarly, for a
set V of vectors in [m]w, we use C[V] to denote the set {C[v]|v ∈ V }.

We prove RealΠA(X,Y)
c≈ IdealFS (X,Y) via the following hybrid argument:

Hyb0 The outputs of P1 and P2 in the real world.
Hyb1 Same as Hyb0 except that S runs the OT simulator on P1 to extract s,

lets Ci = Ai if s[i] = 0 and Ci = Bi otherwise, gives C1, . . . , Cw to the OT
simulator as output. This hybrid is computationally indistinguishable from
Hyb0 because of OT security against a malicious receiver.

Hyb2 Same as Hyb1 but the protocol aborts if there exists x, y ∈ Q1 ∪ Y, x 	= y
such that H1(x) = H1(y). The aborting probability is negligible because H1 is
a random oracle, hence also collision resistant for sufficiently large �1 chosen
in Sect. 3.3.

Hyb3 Same as Hyb2 but in Step 3c, for each OPRF value ψ sent by P1, if ψ /∈
H2(Q2), then P2 ignores ψ when computing the set intersection. This hybrid
changes P2’s output with negligible probability because H2 is a random oracle
with output length at least �2 (see Sect. 3.3 for the choice of �2 in the malicious
case). Specifically, the probability that ψ equals the output of H2 on one of
P2’s elements is negligible.

PSI in the Internet Setting from Lightweight Oblivious PRF 47

Hyb4 Same as Hyb3 but the protocol aborts if in Step 3c, there exists z ∈ Q2, z
′ ∈

A[Fk(H1(Y))] with z 	= z′ and H2(z) = H2(z′). If this happens, then we find
a collision of H2, which happens with negligible probability because H2 is a
random oracle with sufficiently large output length �2 chosen in Sect. 3.3 for
malicious security.

Hyb5 Same as Hyb4 but in Step 3c, for each OPRF value ψ sent by P1, P2 ignores
ψ when computing the set intersection if ψ = H2(z) for some z ∈ Q2 where
z /∈ C[Fk(H1(Q1))].
This hybrid changes P2’s output only if there exists y ∈ Y such that ψ =
H2(A[Fk(H1(y))]), which implies z = A[Fk(H1(y))] by the abort condition
added in Hyb4.
First, note that if y ∈ Q1, then we have z = A[Fk(H1(y))] = C[Fk(H1(y))] ∈
C[Fk(H1(Q1))] where the second equality follows from construction of the
matrix D. Thus, we need only consider y ∈ Y \ Q1. Also note that for all
y ∈ Y , A[Fk(H1(y))] = C[Fk(H1(y))], so we can say that the hybrid output
changes only if there exists y ∈ Y \ Q1, z ∈ Q2 such that z = C[Fk(H1(y))].
Suppose there is a PPT adversary A that with non-negligible probability
produces Q1,Q2, Y such that there exist z ∈ Q2, y ∈ Y \ Q1 such that z =
C[Fk(H1(y))]. Then we show we can break security of the PRF.
To see this, consider the following experiment:
1. Pick random outputs to be used for H1(Q1).
2. Pick random C, simulate the OTs with A, responding to its H1 queries

using the pre-chosen outputs, and responding to its H2 queries using
random function table T2 filled in on demand, and abort if any of the
abort conditions are triggered.

3. Send a random k to A in Step 3a and continue to respond to oracle queries
the same way.

4. A sends Ψ .
5. Pick random outputs to be used for H1(Y \ Q1), and output 1 if there

exist z ∈ Q2, y ∈ Y \ Q1 such that z = C[Fk(H1(y))].
Observe that if A succeeds in distinguishing the two hybrids, then this exper-
iment outputs 1 with non-negligible probability. The intuition is that A fixes
Q2 before we choose H1(Y \Q1), so if the game succeeds then the PRF must
be very biased, to the point where it is straightforwardly detectable.
To make this more formal, consider the following PRF adversary B. B will
choose random C, then sample 2 sets of |Y | random values each, L,L′. Call
the PRF challenger to obtain F (L), F (L′). Output PRF if C[F (L)]∩C[F (L′)]
is non-empty.
If F is a PRF: Define PC,k as the probability of the above experiment out-
putting 1 conditioned on (C, k). Note that we are assuming for the sake of
contradiction that the experiment outputs 1 with non-negligible probabil-
ity ε. Hence there must exist at least ε fraction of (C, k) pairs such that
PC,k > ε. Conditioned on (C, k), let WC,k be the set of H2 queries that
maximizes the probability that the experiment outputs 1. Then we know
that if PC,k > ε, then the probability that for random choice of L we get

48 M. Chase and P. Miao

WC,k ∩ C[Fk(L)] 	= ∅ is at least ε. That means that there exists zC,k ∈ WC,k

such that the probability over random choice of L that z ∈ C[Fk(L)] is at
least ε/Q2. And for such zC,k, if we pick 2 random sets L,L′, the prob-
ability that we get zC,k ∈ C[Fk(L)] and zC,k ∈ C[Fk(L′)] and therefore
C[Fk(L)]∩C[Fk(L′)] 	= ∅ is at least ε2/Q2

2. Thus, the overall probability that
B outputs PRF is at least ε3/Q2

2, which is non-negligible.
If F is random function: First, note that with all but negligible probability,
L,L′ are disjoint sets with no repeated elements, so computing F (L), F (L′)
is equivalent to choosing 2|Y \Q1| random values W,W ′. Now, for any pair of
j, j′ and any column i, the probability that Ci[Wj [i]] = Ci[Wj′ [i]], taken over
the choice of W,W ′, C is: Pr[Wj [i] = Wj′ [i]]+Pr[Wj [i] 	= Wj′ [i]]· 12 = 1

2 + 1
2m ,

and these probabilities are independent across columns. Thus, the probabil-
ity that C[Wj] = C[Wj′] is

(
1
2 + 1

2m

)w, which is negligible by our choice of
parameters m,w in Sect. 3.3.

Hyb6 Same as Hyb5 but the protocol also aborts if there exists x ∈ Q1, y ∈ Y
such that, z = C[Fk(H1(x))] = A[Fk(H1(y))] but x 	= y. We argue that this
abort happens with negligible probability by security of the PRF.
Suppose that there exists a PPT adversary A who can cause this abort to
happen with non-negligible probability. Let Q be a polynomial upper bound
on the number of H1 queries made by the adversary. Then we build the fol-
lowing algorithm B to break security of the PRF. B will first choose Q + |Y |
random outputs to H1. B will then choose random C and use the OT simu-
lator to extract s from the OTs. If A makes H1 queries during this process
it will use the pre-chosen outputs. Then B computes the matrix D using the
appropriate H1 outputs and using its oracle to compute F . From C,D and
s it will compute the matrix A. Finally, it will output PRF if there exist
a pair of outputs h, h′ in its pre-chosen random H1 output set for which
C[F (h)] = A[F (h′)].
Clearly this game outputs PRF with non-negligible probability in the PRF
case if the abort in Hyb6 happens with non-negligible probability. Now we will
argue that in the random function case it outputs PRF with only negligible
probability.
Consider the following game, which produces outputs identical to the above
experiment with B in random function case: We first pick the random func-
tion F and the H1 outputs. Then compute D. Then extract s from the OTs
and choose random C. Finally, compute the corresponding A, and output
PRF as above if there exist a pair of outputs h1, h2 in its pre-chosen random
H1 output set for which C[F (h1)] = A[F (h2)].
Now we evaluate the probability of producing PRF in this game. First con-
sider the probability that for a particular pair of H1 outputs h, h′ we obtain
C[F (h)] = A[F (h′)]. Consider the step where we choose random C and com-
pute A. Let u = F (h) and v = F (h′). Since C is chosen at random, if si ∧
Di[vi] = 0, then we have Pr[Ci[ui] = Ai[vi]] = Pr[Ci[ui] = Ci[vi]] = 1

2 + 1
2m

and if si ∧Di[vi] = 1, then Pr[Ci[ui] = Ai[vi]] = Pr[Ci[ui] 	= Ci[vi]] = 1
2 − 1

2m ,
and these probabilities are independent for different i’s. Thus even in the

PSI in the Internet Setting from Lightweight Oblivious PRF 49

worst case we have that the probability that C[F (h)] = A[F (h′)] is at most(
1
2 + 1

2m

)w, which for our choice of parameters in Sect. 3.3 is negligible.
Hyb7 Same as Hyb6 except that party P2’s output is replaced by its out-

put in the ideal world. This hybrid changes P2’s output if and only if
there exists an OPRF value ψ sent by P1 and considered by P2 such that,
ψ = H2(C[Fk(H1(x))]) for some x ∈ Q1, and ψ = H2(A[Fk(H1(y))]) for
some y ∈ Y, y 	= x. We already know that C[Fk(H1(x))] 	= A[Fk(H1(y))]
by the abort condition introduced in Hyb6, hence we find a collision of H2,
which happens with negligible probability because H2 is a random oracle with
sufficiently large output length �2 chosen in Sect. 3.3 for malicious security.

Hyb8 Same as Hyb7 but the protocol does not abort. Hyb8 and Hyb7 are compu-
tationally indistinguishable because H1 and H2 are random oracles and Fk is
a PRF by the same arguments as above.

Hyb9 The outputs of S and P2 in the ideal world. The only difference of this
hybrid from Hyb8 is that S (instead of P2) samples the random matrix C,
which is identically distributed.

3.3 Parameter Analysis

Choice of m, w. The parameters m,w in our PSI protocol are chosen such that
if F is a random function and H1(x) is different for each x ∈ X∪Y , then for each
x ∈ X \ I and v = F (H1(x)), there are at least d 1’s in D1[v[1]], . . . , Dw[v[w]]
with all but negligible probability. We now discuss how to choose the parameters.
We first fix m and then decide on w as follows.

Consider each column Di, initialized as 1m. Then for each y ∈ Y , P2 computes
v = F (H1(y)) and sets Di[v[i]] = 0. Since H1(y) is different for each y ∈ Y and
F is a random function, v is random and independent for each y ∈ Y . The
probability Pr[Di[j] = 1] is the same for all j ∈ [m]. In particular,

Pr[Di[j] = 1] =
(

1 − 1
m

)n2

.

Let p =
(
1 − 1

m

)n2 . For any x ∈ X \ I, let v = F (H1(x)), then Pr[Di[v[i]] =
1] = p and the probability is independent for all i ∈ [w]. Hence the probability
that there are k 1’s in D1[v[1]], . . . ,Dw[v[w]] is

(
w

k

)
pk(1 − p)w−k.

We want there to be at least d 1’s for each x ∈ X \ I with all but negligible
probability. By the union bound, it is sufficient for the following probability to
be negligible:

n1 ·
d−1∑

k=0

(
w

k

)
pk(1 − p)w−k ≤ negl(σ).

50 M. Chase and P. Miao

From this we can derive a proper w.
In our security proof against malicious P1, we further require that(

1
2 + 1

2m

)w ≤ negl(λ). For all the concrete parameters we choose in Sect. 4.1,
this requirement is also satisfied.

Choice of �1. The parameter �1 is the output length of the hash function H1.
For security parameter λ, we need to set �1 = 2λ to guarantee collision resistance
against the birthday attack.

Choice of �2. The parameter �2 is the output length of the hash function H2,
which controls the collision probability of the PSI protocol. For semi-honest
security, it can be computed as �2 = σ + log(n1n2), similarly as in [KKRT16,
PRTY19]. For security against malicious P2, it can be computed similarly as
�2 = σ +log(Q2 ·n2) where Q2 is the maximum number of queries the adversary
can make to H2.

4 Implementation Details

We implement our PSI protocol in C++. In this section we discuss the concrete
parameters used in our implementation and how we instantiate all the crypto-
graphic primitives. Our implementation is available on GitHub: https://github.
com/peihanmiao/OPRF-PSI.

4.1 Parameters

Our computational security parameter is set to λ = 128 and statistical security
parameter is σ = 40. We also set d to be 128. We focus on the setting where
n1 = n2 = n, i.e., the two parties have sets of equal size. The other parameters
are

– m: the number of rows (or height) of the matrix D.
– w: the number of columns (or width) of the matrix D.
– �1: the output length in bits of the hash function H1, set as 256.
– �2: the output length in bits of the hash function H2.

Our protocol is flexible in that we can set these parameters differently to
trade-off between computation and communication. Specifically, once we fix n
and m, we can compute w as in Sect. 3.3. Intuitively, for a fixed set size n, if
we set a bigger m, then we will get a bigger fraction of 1’s in each column of
the matrix D, which leads to a smaller w and requires less computation of the
pseudorandom function F in the PSI protocol. To guarantee collision resistance
of H1, the parameter �1 is set to be 256. For security against malicious P1, we
assume the maximum number of queries the adversary can make to H2 is 264.
We list different choices of the other parameters in Table 1. In our experiment,
we will set m = n for all settings as it achieves nearly optimal communication
among all choices of m and allows for optimal computation.

https://github.com/peihanmiao/OPRF-PSI
https://github.com/peihanmiao/OPRF-PSI

PSI in the Internet Setting from Lightweight Oblivious PRF 51

Table 1. Parameters for set size n, matrix height m, matrix width w, and output
length �2 in bits of the hash function H2 for semi-honest and malicious security.

n m w �2 (semi-honest) �2 (malicious)

216 n 609 72 120

218 n 615 76 122

220 n 621 80 124

222 n 627 84 126

224 n 633 88 128

224 0.9n 717 88 128

224 1.1n 571 88 128

224 2n 349 88 128

4.2 Instantiation of Cryptographic Primitives

Our PSI protocol requires the following cryptographic primitives:

– F : a pseudorandom function.
– H1: a collision-resistant hash function.
– H2: a Hamming correlation robust hash function.
– Base OTs for OT extension.

In our implementation, H1 and H2 are instantiated using BLAKE2 [BLA].
Base OTs are instantiated using Naor-Pinkas OT [NP99]. We use the implemen-
tation of base OTs from the libOTe library [Rin].

Instantiation of F . We would like to instantiate F using AES, but note that
the input and output length of AES is 128 bits. Recall that in our protocol, we
require F : {0, 1}λ × {0, 1}�1 → [m]w, where the input length is �1 = 256 and
output length is w · log m.

One way to instantiate F is to apply a pseudorandom generator (PRG) on top
of cipher block chaining message authentication code (CBC-MAC). In particular,
let G : {0, 1}λ × {0, 1}λ → {0, 1}λ be a pseudorandom function (instantiated by
AES) and PRG : {0, 1}λ → {0, 1}t·λ be a PRG (instantiated by AES CTR mode),
where t = �w·log m

λ �. Let x = x0‖x1 be the input where x0, x1 ∈ {0, 1}λ. Then
we instantiate F by

Fk(x) := PRG(Gk(Gk(x0) ⊕ x1)).

By the security of CBC-MAC [BKR00] and PRG, F is still a PRF. In this
construction, Gk(·) is parallelizable for multiple inputs and can be efficiently

52 M. Chase and P. Miao

instantiated by AES ECB mode. However, PRG has to be computed on each
element and cannot be parallelized for multiple elements.

To achieve better concrete efficiency, we try to parallelize the computa-
tion over multiple elements as much as possible so as to make best use of
the hardware optimized AES ECB mode implementation. In particular, let
G : {0, 1}λ×{0, 1}λ → {0, 1}λ be a pseudorandom function and PRG : {0, 1}λ →
{0, 1}(t+1)·λ be a PRG where t = �w·log m

λ �. On a key k and input x = x0‖x1,
we construct F as

Fk(x) = Gk1(Gk0(x0) ⊕ x1)‖Gk2(Gk0(x0) ⊕ x1)‖ . . . ‖Gkt
(Gk0(x0) ⊕ x1),

where k0‖k1‖ . . . ‖kt ← PRG(k). Now PRG (instantiated by AES CTR mode) is
only applied once on the key k, and Gki

(·) are all parallelizable by AES ECB
mode. The security proof of F is deferred to AppendixA.

In our implementation, the PRF key k is sent right after the base OT instead
of after the entire OT extension. This allows both parties to run PRF evaluations
in parallel and does not hurt malicious security because P1 does not send any
message in the OT extension after the base OT.

5 Performance Evaluation

We implement our PSI protocol and report on its performance in comparison
with the state-of-the-art OT-extension-based protocols:

– KKRT: the computation-optimized protocol [KKRT16].
– SpOT-Light: the communication-optimized protocol [PRTY19]. They have

two variants of the protocol, a speed-optimized variant (spot-fast) and a
communication-optimized variant (spot-low). We compare our protocol with
both variants.

In this section, we only report the performance with semi-honest security for
comparison with KKRT and SpOT-Light. To achieve security against malicious
P1, our protocol requires the same amount of computation cost and 5–7% more
communication cost (because �2 is bigger as shown in Table 1).

5.1 Benchmark Comparison

Our benchmarks are implemented on two Microsoft Azure virtual machines with
Intel(R) Xeon(R) 2.40 GHz CPU and 140 GB RAM. The two machines are con-
nected in a LAN network with 20 Gbps bandwidth and 0.1 ms RTT latency.
We simulate the WAN connection between the two machines using the Linux tc
command. In the WAN setting, the average RTT is set to be 80 ms and we test
on various network bandwidths. All of our experiments use a single thread for
each party. A detailed benchmark for set sizes 216−224 and controlled network
configurations is presented in Table 2.

PSI in the Internet Setting from Lightweight Oblivious PRF 53

Table 2. Communication cost (in MB) and running time (in seconds) comparing our
protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each party holds n elements.
The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All the other
network settings have 80 ms RTT. Communication cost of Pb (b = 1, 2) indicates the
outgoing communication from Pb to the other party. Cells with “–” denote settings
where the programs run out of memory.

n Protocol
Comm. (MB) Total running time (s)

P1 P2 Total LAN 150Mbps 100Mbps 80Mbps 50Mbps 30Mbps 10Mbps 1Mbps

216

KKRT 3.95 4.82 8.77 0.34 1.94 2.01 2.22 2.62 3.54 8.41 77.4

spot-fast1.14 3.47 4.61 2.08 2.97 2.99 2.99 3.03 3.12 4.86 40.9

spot-low0.53 3.38 3.91 12.2 13.5 13.6 13.6 13.6 13.7 14.5 41.2

Ours 0.58 4.76 5.34 0.63 1.71 1.78 1.87 2.14 2.66 5.53 47.4

218

KKRT 17.5 19.2 36.7 1.08 3.98 4.71 5.44 7.79 12.0 33.2 323

spot-fast5.02 13.9 18.9 8.24 9.45 9.49 9.51 9.84 10.6 17.5 166

spot-low2.06 13.5 15.6 57.1 58.8 59.2 59.4 59.7 60.3 64.9 167

Ours 2.52 19.2 21.7 2.26 3.01 3.34 3.77 5.08 7.53 20.0 192

220

KKRT 60.0 76.8 137 4.58 10.8 14.7 17.5 26.5 42.5 122 1,204

spot-fast20.0 56.4 76.4 28.9 30.9 31.5 31.6 33.1 35.8 69.3 676

spot-low8.18 55.0 63.2 271 276 275 277 279 282 301 731

Ours 10.0 77.6 87.6 9.44 10.4 10.8 11.5 16.9 27.1 78.2 772

222

KKRT 264 307 571 18.4 42.3 58.8 71.2 108 175 509 5,027

spot-fast88.0 226 314 117 123 125 126 133 146 283 2,773

spot-low32.7 220 253 1,291 1,303 1,305 1,311 1,315 1,331 1,406 3,311

Ours 44.1 314 358 46.3 49.2 50.6 51.1 65.5 107 317 3,152

224

KKRT 880 1,2292,109 67.9 157 219 264 403 648 1,882 18,562

spot-fast 352 919 1,271 537 559 567 566 598 647 1,149 11,231

spot-low – – – – – – – – – – –

Ours 176 1,2661,442 190 200 216 234 289 431 1,277 12,717

Communication Improvement. The total communication cost of our pro-
tocol is 1.46–1.69× smaller than that of KKRT. For example, to compute the
set intersection of size n = 220, our protocol requires 87.6 MB communication,
which is a 1.56× improvement of KKRT that requires 137 MB communication.

Computation Improvement. In the LAN network where the running time is
dominated by computation, our protocol achieves a 2.53–3.65× speedup compar-
ing to spot-fast and a 19.4–28.7× speedup comparing to spot-low. For example,
to compute the set intersection of size n = 220, our protocol runs in 9.44 s, which
is 3.06× faster than spot-fast that runs in 28.9 s and 28.7× faster than spot-low
that runs in 271 s.

Overall Improvement. In the WAN setting, we plot in Fig. 5 the running
time growth with decreasing network bandwidth for our protocol comparing to
KKRT, spot-fast, and spot-low for set sizes n = 220 and n = 224. Note that
spot-low runs out of memory for set size n = 224, so we do not include it in
the comparison for n = 224. As shown in the figure, with moderate bandwidth
(in particular, 30–100 Mbps), our protocol is faster than all the other protocols
because we have lower communication than KKRT and faster computation than
spot-fast and spot-low. For example, in the 50 Mpbs network, for set size n = 220,

54 M. Chase and P. Miao

150 130 100 70 50 30 10 1

101

102

103

Network bandwidth (Mbps)

T
o
ta

l
ru

n
n
in

g
ti

m
e

(s
)

KKRT

spot-fast

spot-low

Ours

150 130 100 70 50 30 10 1
102

103

104

Network bandwidth (Mbps)

T
o
ta

l
ru

n
n
in

g
ti

m
e

(s
)

KKRT

spot-fast

Ours

Fig. 5. Growth of total running time (in seconds) on decreasing network bandwidth for
our protocol compared with [KKRT16], spot-fast and spot-low [PRTY19]. The y-axis
is in log scale. The network latency is 80 ms RTT for all settings. The figure on the
left is for set size n = 220 and the figure on the right is for set size n = 224. Note that
since spot-low runs out of memory for n = 224, it is not included in the right figure.

our protocols takes 16.9 s to run, which is a 1.57× speedup to KKRT that takes
26.5 s, a 1.96× speedup to spot-fast that takes 33.1 s, and a 16.5× speedup to
spot-low that takes 279 s.

5.2 Monetary Cost

We follow the same method as [PRTY19] to evaluate the real-world monetary
cost of running our protocol on the Amazon Web Services (AWS) Elastic Com-
pute Cloud (EC2). In this section we give both theoretical analysis and experi-
mental comparison in various settings.

5.2.1 Pricing Scheme
The price for a protocol consists of two parts—machine cost and communication
cost.2 We elaborate each cost in the following.

Machine Cost. The machine cost is charged proportional to the total time an
instance is launched. The unit machine cost varies for different types of instances
and also depends on the specific region. Generally speaking, an instance with
more computation power and more memory would have higher cost per hour.
The same type of instance costs in the Asia Pacific than in the US and Europe.

In our experiment we choose the general purpose virtual machine typem5.large
with Intel(R) Xeon(R) 2.50 GHz CPU and 8 GB RAM, which is the same as
in [PRTY19]. The machine cost per hour (in USD) for m5.large is 0.096 (US),
0.112 (Paris), 0.12 (Sydney). For example, if we choose the machine type

2 The pricing scheme can be found here: https://aws.amazon.com/ec2/pricing/on-
demand/.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

PSI in the Internet Setting from Lightweight Oblivious PRF 55

0 1 2 3 4
0

200

400

600

n = 220

Bandwidth 20 Gbps (LAN)

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l
m

o
n
et

a
ry

co
st

KKRT

spot-fast

spot-low

Ours

0 1 2 3 4
0

2,000

4,000

6,000

8,000

n = 224

Bandwidth 20 Gbps (LAN)

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l
m

o
n
et

a
ry

co
st

KKRT

spot-fast

Ours

0 1 2 3 4
0

200

400

600

n = 220

Bandwidth 150 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l
m

o
n
et

a
ry

co
st

KKRT

spot-fast

spot-low

Ours

0 1 2 3 4
0

2,000

4,000

6,000

8,000

n = 224

Bandwidth 150 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l
m

o
n
et

a
ry

co
st

KKRT

spot-fast

Ours

0 1 2 3 4
0

200

400

600

n = 220

Bandwidth 30 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l
m

o
n
et

a
ry

co
st

KKRT

spot-fast

spot-low

Ours

0 1 2 3 4
0

2,000

4,000

6,000

8,000

n = 224

Bandwidth 30 Mbps

Unit communication/computation cost ratio

T
h
eo

re
ti

ca
l
m

o
n
et

a
ry

co
st

KKRT

spot-fast

Ours

Fig. 6. Growth of monetary cost on increasing unit communication/machine cost ratio
(namely y/x – communication cost per MB/computation cost per second) for our
protocol compared with [KKRT16], spot-fast and spot-low [PRTY19]. (For some real
world y/x values, see Table 3.) The network latency is 80 ms RTT for all settings. The
figures on the left are for set size n = 220 and the ones on the right are for set size
n = 224. The network bandwidth is indicated in each individual figure. Note that since
spot-low runs out of memory for n = 224, it is not included in the right figures.

56 M. Chase and P. Miao

m5.4xlarge with 64 GB RAM, then the cost per hour (in USD) is 0.768 (US), 0.896
(Paris), 0.96 (Sydney).

Communication Cost. The communication cost is charged proportional to the
amount of data transfer. The unit data transfer cost varies depending on whether
both endpoints are within AWS or only one party is in AWS. It also depends on
the specific region of the endpoints. Generally speaking, data transfer from AWS
to the Internet is more expensive than data transfer within AWS; data transfer
from the Asia Pacific costs more than from the US or Europe. Specially:

– Data transfer in from the Internet to EC2 is free.
– Data transfer out from EC2 to the Internet is charged depending on the region

of the EC2 instance. Cost per GB (in USD) is 0.09 (US), 0.09 (Paris), 0.114
(Sydney).

– Data transfer from one EC2 instance to another EC2 instance is charged
depending on both endpoints’ regions. Cost per GB (in USD) is 0.01 (Virginia-
to-Ohio), 0.02 (US-to-Paris), 0.02 (US-to-Sydney), 0.02 (Paris-to-US), 0.02
(Paris-to-Sydney), 0.14 (Sydney-to-US), 0.14 (Sydney-to-Paris).

– Additionally, using a public IP address costs 0.01 USD/GB for all regions.

Network Settings. We consider the two network settings proposed in
[PRTY19]. In a business-to-business (B2B) setting, two organizations want to
regularly perform PSI on their dynamic data, where both endpoints may be
within the AWS network. In an Internet setting, one organization wants to reg-
ularly perform PSI with a dynamically changing partner, where only one party
may be within the AWS network. As the communication cost from P1 to P2 is
much less than the cost from P2 to P1 for all the PSI protocols we consider, in
our experiment we let P1 be the party within the AWS network.

5.2.2 Theoretical Analysis

Internet Setting. In the Internet setting where only one party (P1) runs on an
AWS EC2 instance, our protocol costs the least compared to all the other three
protocols. At a high level, since our protocol takes less time to run on networks
with moderate bandwidth (see Table 2), the machine cost for our protocol is the
lowest among the three protocols. In addition, the communication from P1 to
P2 in our protocol is lower than KKRT and spot-fast and almost the same as
spot-low. Therefore, overall our protocol is the cheapest to run in all the settings,
as we will see in the experimental results.

B2B Setting. In the B2B setting where we run each party of the PSI pro-
tocol on an AWS EC2 instance, there is a trade-off between computation and
communication. At a high level, since spot-fast and spot-low have lower com-
munication than KKRT and our protocol, the communication cost for them is
lower. However, the total running time of our protocol is the shortest among
all the protocols on networks with moderate bandwidth (see Table 2), hence the

PSI in the Internet Setting from Lightweight Oblivious PRF 57

machine cost for our protocol is the lowest among all the protocols. The total
monetary cost is a combination of the machine and communication costs, and
which protocol costs the least depends on the ratio of unit communication cost
to unit machine cost.

More specifically, suppose the total running time is T seconds and the total
data transfer between them is C MB. Assume the machine cost of an AWS
EC2 instance is x per second and the communication cost is y per MB in both
directions. Then the total cost in this setting is 2 ·T ·x+C ·y. For a fixed set size
n and fixed network setting, the running time T and communication complexity
C for each protocol is fixed, hence which protocol costs the least only depends
on the ratio of y/x.

In Fig. 6 we plot the theoretical monetary cost of our protocol compared
with KKRT, spot-fast, and spot-low in various network settings and for set sizes
n = 220 and n = 224. As we can see in all the figures, our protocol costs the
least when the ratio of unit communication cost to unit machine cost (namely,
y/x) is within a certain range. More concretely, for set size n = 220, our protocol
costs the least when 0.20 ≤ y/x ≤ 3.48 for LAN networks, when y/x ≤ 3.66 for
networks with bandwidth 150 Mbps, and when y/x ≤ 1.55 for networks with
bandwidth 30 Mbps. On the other hand, if y/x is sufficiently large, meaning that
the unit communication cost is much higher than unit machine cost, then spot-
fast achieves the lowest cost for all settings because of their lower communication.

5.2.3 Experimental Results

Ohio-Virginia Oregon-Virginia Paris-Oregon Sydney-Oregon Sydney-Paris
0

2

4

6

8

10

12

14

16

18

20

M
o
n
et

a
ry

co
st

in
th

e
B

2
B

se
tt

in
g

p
er

1
0
0
0

ru
n

(U
S
D

)

KKRT

spot-fast

spot-low

Ours

Ohio-Virginia Oregon-Virginia Paris-Oregon Sydney-Oregon Sydney-Paris
0

1

2

3

4

5

6

7

8

9

10

M
o
n
et

a
ry

co
st

in
th

e
In

te
rn

et
se

tt
in

g
p
er

1
0
0
0

ru
n

(U
S
D

) KKRT

spot-fast

spot-low

Ours

Fig. 7. Monetary cost per 1000 runs in the B2B setting (left) and Internet setting
(right) comparing our protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each
party holds n = 220 elements and locates in different regions.

We plot the experimental monetary cost of our protocol compared with
KKRT, spot-fast, and spot-low in both B2B and Internet settings in Fig. 7.

58 M. Chase and P. Miao

Table 3. Total monetary cost (in USD) per 1000 runs in the B2B and Internet settings
comparing our protocol to [KKRT16], spot-fast and spot-low [PRTY19]. Each party
holds n = 220 elements and locates in different regions. The network bandwidth, RTT
latency, and y/x ratio (communication cost per MB/computation cost per second) for
each setting are indicated in the table.

Regions BandwidthLatency y/x Protocol RuntimeB2B Cost Internet Cost

Ohio-Virginia 1.09 Gbps 12 ms 0.73

KKRT 5.15 2.95 6.00

spot-fast 27.9 2.98 2.70

spot-low 251 14.6 7.50

Ours 8.17 2.15 1.20

Oregon-Virginia 170 Mbps 74 ms 1.10

KKRT 10.1 4.55 6.13

spot-fast 29.9 3.83 2.75

spot-low 254 15.4 7.57

Ours 9.23 3.06 1.23

Paris-Oregon 75.6 Mbps 167 ms 1.01

KKRT 17.7 5.03 6.41

spot-fast 31.0 4.03 2.92

spot-low 256 16.6 8.75

Ours 12.0 3.26 1.35

Sydney-Oregon 85.0 Mbps 143 ms 2.69

KKRT 16.3 12.0 7.81

spot-fast 30.7 6.43 3.45

spot-low 257 18.2 9.55

Ours 10.8 4.39 1.57

Sydney-Paris 40.5 Mbps 286 ms 2.50

KKRT 29.9 13.0 8.26

spot-fast 34.2 6.79 3.57

spot-low 261 19.6 9.68

Ours 21.3 5.12 1.93

The concrete running time and network bandwidth and latency are presented
in Table 3. We also list the y/x ratio (communication cost per MB/computation
cost per second) for each setting in the table. We see that our protocol is the
cheapest in all the settings we consider. This result aligns with our theoretical
analysis in Sect. 5.2.2. We only show the results for set size n = 220 while our
protocol is the cheapest for other set sizes as well. In the B2B setting, our proto-
col is 1.37–2.73× cheaper than KKRT, 1.24–1.46× cheaper than spot-fast, and
3.75–6.80× cheaper than spot-low. In the Internet setting, our protocol is 4.28–
5.00× cheaper than KKRT, 1.85–2.25× cheaper than spot-fast, and 5.01–6.48×
cheaper than spot-low.

PSI in the Internet Setting from Lightweight Oblivious PRF 59

A Security Proof of PRF F

Theorem 3. Let G : {0, 1}λ × {0, 1}λ → {0, 1}λ be a pseudorandom function.
Let PRG : {0, 1}λ → {0, 1}(t+1)·λ be a pseudorandom generator. Define F :
{0, 1}λ × {0, 1}2λ → {0, 1}t·λ as follows. On a key k and input x = x0‖x1 where
k, x0, x1 ∈ {0, 1}λ,

Fk(x) = Gk1(Gk0(x0) ⊕ x1)‖Gk2(Gk0(x0) ⊕ x1)‖ . . . ‖Gkt
(Gk0(x0) ⊕ x1),

where k0‖k1‖ . . . ‖kt ← PRG(k). Then F is also a pseudorandom function.

Proof. We show that any PPT adversary A cannot distinguish F from a random
function via a sequence of hybrids:

Hyb0 The adversary A has access to F .
Hyb1 The adversary A has access to the following function

Gk1(Gk0(x0) ⊕ x1)‖Gk2(Gk0(x0) ⊕ x1)‖ . . . ‖Gkt
(Gk0(x0) ⊕ x1),

where k0, k1, . . . , kt
$← {0, 1}λ are sampled uniformly at random.

If A can distinguish between Hyb0 and Hyb1, then we can construct another
PPT adversary B that breaks the security of PRG. In particular, B first gets
k0‖k1‖ . . . ‖kt from the PRG challenger. On query x = x0‖x1 from A, B
responds with Gk1(Gk0(x0) ⊕ x1)‖ . . . ‖Gkt

(Gk0(x0) ⊕ x1). Finally B outputs
whatever A outputs.
If the PRG challenger generates k0‖k1‖ . . . ‖kt from PRG, then A is accessing
Hyb0; otherwise, the challenger generates k0‖k1‖ . . . ‖kt uniformly at random,
then A is accessing Hyb1. Hence, if A can distinguish between Hyb0 and Hyb1,
then B can break the PRG security.

Hyb2 The adversary A has access to the following function

G1(Gk0(x0) ⊕ x1)‖ . . . ‖Gt(Gk0(x0) ⊕ x1),

where k0
$← {0, 1}λ is sampled uniformly at random, and G1, . . . , Gt are

all independent random functions. We argue that Hyb2 is computationally
indistinguishable from Hyb1 via a sequence of hybrids, where Hyb2,0 = Hyb1
and Hyb2,t = Hyb2:
Hyb2,i The adversary A has access to the following function

G1(Gk0 (x0) ⊕ x1)‖ . . . ‖Gi(Gk0 (x0) ⊕ x1)‖Gki+1 (Gk0 (x0) ⊕ x1)‖ . . . ‖Gkt (Gk0 (x0) ⊕ x1),

where k0, ki+1, . . . , kt
$← {0, 1}λ are sampled uniformly at random, and

G1, . . . , Gi are independent random functions. Note that Hyb2,0 = Hyb1.
If A can distinguish between Hyb2,i−1 and Hyb2,i for any 1 ≤ i ≤ t, then
we can construct another PPT adversary B that breaks the PRF security
of Gi. In particular, B first randomly samples k0, ki+1, . . . , kt

$← {0, 1}λ,

60 M. Chase and P. Miao

and then starts the experiment with A. On query x0‖x1 from A, B com-
putes z = Gk0(x0) ⊕ x1 and Gki+1(z)‖ . . . ‖Gkt

(z). B also randomly sam-
ples the outputs of G1(z), . . . , Gi−1(z). Note that if z already appears as an
input to G1, . . . , Gi−1 before, B uses the previous outputs. Then B queries
the PRF challenger on input z for an output t, and sends the following back
to A:

G1(z)‖ . . . ‖Gi−1(z)‖t‖Gki+1(z)‖ . . . ‖Gkt
(z).

Finally B outputs whatever A outputs.
If the PRF challenger chooses a PRF, then A is accessing Hyb2,i−1; oth-
erwise A is accessing Hyb2,i. Hence, if A can distinguish between Hyb2,i−1

and Hyb2,i, then B can distinguish PRF from a random function.
Hyb3 The adversary A has access to the following function

G1(G0(x0) ⊕ x1)‖ . . . ‖Gt(G0(x0) ⊕ x1),

where G0, . . . , Gt are all independent random functions.
If A can distinguish between Hyb2 and Hyb3, then we can construct another
PPT adversary B that breaks the PRF security of Gk0 . B first starts the
experiment with A. On query x0‖x1 from A, B queries the PRF challenger
on x0 for an output y. Then B computes z = y ⊕ x1 and randomly sam-
ples the outputs of G1(z), . . . , Gt(z). Note that if z already appears as an
input to G1, . . . , Gt before, B uses the previous outputs. Afterwards B sends
G1(z)‖ . . . ‖Gkt

(z) back to A. Finally B outputs whatever A outputs.
If the PRF challenger chooses a PRF, then A is accessing Hyb2; otherwise A
is accessing Hyb3. Hence, if A can distinguish between Hyb2 and Hyb3, then
B can distinguish PRF from a random function.

Hyb4 The adversary A has access to a random function F (x0‖x1). Let the queries
from A be x1

0‖x1
1, . . . , x

n
0‖xn

1 , and assume WLOG that they are all distinct
queries. We argue that Hyb3 is computationally indistinguishable from Hyb4
via a sequence of hybrids, where Hyb4,0 = Hyb3 and Hyb4,n = Hyb4:
Hyb4,i For the first i queries x1

0‖x1
1, . . . , x

i
0‖xi

1 from A, choose the outputs
r1, . . . , ri independently at random. For each j ∈ [i], internally also choose
a random G0(x

j
0). Let zj = G0(x

j
0)⊕xj

1, then also store the implied table
for G1, . . . , Gt, namely store G1(zj)‖ . . . ‖Gt(zj) = rj . If there is any
collision in this table (i.e. G0(x

j1
0)⊕xj1

1 = G0(x
j2
0)⊕xj2

1 within the first i

queries), record G1(zj)‖ . . . ‖Gt(zj) = rj for the first queried xj
0‖xj

1. After
the first i queries, compute the output according to this G0, . . . , Gt.
The hybrid Hyb4,i is identical to Hyb4,i−1 unless the i-th query from A
collides with G0(x

j
0) ⊕ xj

1 for a previous query xj
0‖xj

1. However, note that
when A makes the i-th query, it has seen no information on G0. So the
probability that A can find such a collision is negligible (in particular,
i/2λ).

PSI in the Internet Setting from Lightweight Oblivious PRF 61

References

[ADCT11] Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding
private set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 10

[ALSZ13] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer and extensions for faster secure computation. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, 4–8 November 2013, pp. 535–548 (2013)

[BBDC+11] Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Coun-
tering GATTACA: efficient and secure testing of fully-sequenced human
genomes. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security, pp. 691–702. ACM (2011)

[BKR00] Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block
chaining message authentication code. J. Comput. Syst. Sci. 61, 362–399
(2000)

[BLA] BLAKE2 - fast secure hashing. https://blake2.net/. Accessed 24 Jan 2020
[CLR17] Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homo-

morphic encryption. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1243–1255. ACM
(2017)

[DCGT12] De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of
cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R.,
Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5 17

[DCKT10] De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set
intersection protocols secure in malicious model. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 13

[DCW13] Dong, C., Chen, L., Wen, Z.: When private set intersection meets big
data: an efficient and scalable protocol. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pp. 789–
800. ACM (2013)

[DRRT18] Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private
contact discovery. Proc. Priv. Enhanc. Technol. 2018(4), 159–178 (2018)

[DSMRY09] Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust
private set intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A.,
Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9 8

[FIPR05] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and
oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30576-7 17

[FNO18] Falk, B.H., Noble, D., Ostrovsky, R.: Private set intersection with lin-
ear communication from general assumptions. IACR Cryptology ePrint
Archive, 2018:238 (2018)

[FNP04] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 1

https://doi.org/10.1007/978-3-642-19379-8_10
https://blake2.net/
https://doi.org/10.1007/978-3-642-35404-5_17
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-01957-9_8
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1

62 M. Chase and P. Miao

[GN19] Ghosh, S., Nilges, T.: An algebraic approach to maliciously secure pri-
vate set intersection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11478, pp. 154–185. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17659-4 6

[HEK12] Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled cir-
cuits better than custom protocols? In: NDSS (2012)

[HFH99] Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in
electronic communities. In: EC 1999, pp. 78–86 (1999)

[IKN+17] Ion, M., et al.: Private intersection-sum protocol with applications to
attributing aggregate ad conversions. IACR Cryptology ePrint Archive,
2017:738 (2017)

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 9

[KK13] Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring
short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 4

[KKRT16] Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 818–829. ACM (2016)

[KRS+19] Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile
private contact discovery at scale. In: 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, 14–16 August 2019, pp.
1447–1464 (2019)

[LLC18] Ookla LLC. 2018 United States speedtest market report (2018). https://
www.speedtest.net/reports/united-states/2018/#fixed

[NMH+10] Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep:
finding P2P bots with structured graph analysis. In: USENIX Security
Symposium 2010, pp. 95–110 (2010)

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In:
Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, pp. 245–254. ACM (1999)

[NTL+11] Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D.,
et al.: Location privacy via private proximity testing. In: NDSS, vol. 11
(2011)

[PR04] Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144
(2004)

[PRTY19] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight pri-
vate set intersection from sparse OT extension. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 13

[PRTY20] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, mali-
cious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 25

[PSSZ15] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set
intersection using permutation-based hashing. In: 24th USENIX Security
Symposium, pp. 515–530 (2015)

https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-030-17659-4_6
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-40084-1_4
https://www.speedtest.net/reports/united-states/2018/#fixed
https://www.speedtest.net/reports/united-states/2018/#fixed
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25

PSI in the Internet Setting from Lightweight Oblivious PRF 63

[PSWW18] Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
PSI via cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 5

[PSZ14] Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: Fu, K., Jung, J. (eds.) Proceedings of the 23rd
USENIX Security Symposium, pp. 797–812 (2014)

[PSZ18] Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection
based on OT extension. ACM Trans. Priv. Secur. 21(2), 7:1–7:35 (2018)

[RA17] Resende, A.C.D., Aranha, D.F.: Unbalanced approximate private set
intersection. IACR Cryptology ePrint Archive, 2017:677 (2017)

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR
Cryptology ePrint Archive, 2005:187 (2005)

[Rin] Rindal, P.: libOTe: an efficient, portable, and easy to use Oblivious Trans-
fer Library. https://github.com/osu-crypto/libOTe

[RR17a] Rindal, P., Rosulek, M.: Improved private set intersection against mali-
cious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56620-7 9

[RR17b] Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual
execution. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 1229–1242. ACM (2017)

[TPKC07] Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving
error resilient DNA searching through oblivious automata. In: Proceedings
of the 14th ACM Conference on Computer and Communications Security,
pp. 519–528. ACM (2007)

https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://github.com/osu-crypto/libOTe
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9

Multiparty Generation of an RSA
Modulus

Megan Chen(B), Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and Abhi Shelat

Northeastern University, Boston, MA, USA
meganchen@gmail.com

Abstract. We present a new multiparty protocol for the distributed
generation of biprime RSA moduli, with security against any subset of
maliciously colluding parties assuming oblivious transfer and the hard-
ness of factoring.

Our protocol is highly modular, and its uppermost layer can be viewed
as a template that generalizes the structure of prior works and leads to a
simpler security proof. We introduce a combined sampling-and-sieving
technique that eliminates both the inherent leakage in the approach
of Frederiksen et al. (Crypto’18), and the dependence upon additively
homomorphic encryption in the approach of Hazay et al. (JCrypt’19). We
combine this technique with an efficient, privacy-free check to detect mali-
cious behavior retroactively when a sampled candidate is not a biprime,
and thereby overcome covert rejection-sampling attacks and achieve both
asymptotic and concrete efficiency improvements over the previous state
of the art.

1 Introduction

A biprime is a number N of the form N = p · q where p and q are primes.
Such numbers are used as a component of the public key (i.e., the modulus)
in the RSA cryptosystem [33], with the factorization being a component of the
secret key. A long line of research has studied methods for sampling biprimes
efficiently; in the early days, the task required specialized hardware and was not
considered generally practical [31,32]. In subsequent years, advances in compu-
tational power brought RSA into the realm of practicality, and then ubiquity.
Given a security parameter κ, the de facto standard method for sampling RSA
biprimes involves choosing random κ-bit numbers and subjecting them to the
Miller-Rabin primality test [27,30] until two primes are found; these primes are
then multiplied to form a 2κ-bit modulus. This method suffices when a single
party wishes to generate a modulus, and is permitted to know the associated
factorization.

The full version [7] of this work is available at http://ia.cr/2020/370.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 64–93, 2020.
https://doi.org/10.1007/978-3-030-56877-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_3&domain=pdf
http://ia.cr/2020/370
https://doi.org/10.1007/978-3-030-56877-1_3

Multiparty Generation of an RSA Modulus 65

Boneh and Franklin [3,4] initiated the study of distributed RSA modulus
generation.1 This problem involves a set of parties who wish to jointly sample a
biprime in such a way that no corrupt and colluding subset (below some defined
threshold size) can learn the biprime’s factorization.

It is clear that applying generic multiparty computation (MPC) techniques
to the standard sampling algorithm yields an impractical solution: implement-
ing the Miller-Rabin primality test requires repeatedly computing ap−1 mod p,
where p is (in this case) secret, and so such an approach would require the generic
protocol to evaluate a circuit containing many modular exponentiations over κ
bits each. Instead, Boneh and Franklin [3,4] constructed a new biprimality test
that generalizes Miller-Rabin and avoids computing modular exponentiations
with secret moduli. Their test carries out all exponentiations modulo the pub-
lic biprime N , and this allows the exponentiations to be performed locally by
the parties. Furthermore, they introduced a three-phase structure for the overall
sampling protocol, which subsequent works have embraced:

1. Prime Candidate Sieving: candidate values for p and q are sampled jointly
in secret-shared form, and a weak-but-cheap form of trial division sieves them,
culling candidates with small factors.

2. Modulus Reconstruction: N ..= p · q is securely computed and revealed.
3. Biprimality Testing: using a distributed protocol, N is tested for biprimal-

ity. If N is not a biprime, then the process is repeated.

The seminal work of Boneh and Franklin considered the semi-honest n-party
setting with an honest majority of participants. Many extensions and improve-
ments followed (as detailed in Sect. 1.3), the most notable of which (for our pur-
poses) are two recent works that achieve malicious security against a dishonest
majority. In the first, Hazay et al. [19,20] proposed an n-party protocol in which
both sieving and modulus reconstruction are achieved via additively homomor-
phic encryption. Specifically, they rely upon both ElGamal and Paillier encryp-
tion, and in order to achieve malicious security, they use zero-knowledge proofs
for a variety of relations over the ciphertexts. Thus, their protocol represents
a substantial advancement in terms of its security guarantee, but this comes at
the cost of additional complexity assumptions and an intricate proof, and also at
substantial concrete cost, due to the use of many custom zero-knowledge proofs.

The subsequent protocol of Frederiksen et al. [16] (the second recent work of
note) relies mainly on oblivious transfer (OT), which they use to perform both
sieving and, via Gilboa’s classic multiplication protocol [17], modulus reconstruc-
tion. They achieved malicious security using the folklore technique in which a
“Proof of Honesty” is evaluated as the last step and demonstrated practicality

1 Prior works generally consider RSA key generation and include steps for generating
shares of e and d such that e ·d ≡ 1 (mod ϕ(N)). This work focuses only on the task
of sampling the RSA modulus N . Prior techniques can be applied to sample (e, d)
after sampling N , and the distributed generation of an RSA modulus has standalone
applications, such as for generating the trusted setup required by verifiable delay
functions [28,35]; consequently, we omit further discussion of e and d.

66 M. Chen et al.

by implementing their protocol; however, it is not clear how to extend their
approach to more than two parties in a straightforward way. Moreover, their
approach to sieving admits selective-failure attacks, for which they account by
including some leakage in the functionality. It also permits a malicious adver-
sary to selectively and covertly induce false negatives (i.e., force the rejection
of true biprimes after the sieving stage), a property that is again modeled in
their functionality. In conjunction, these attributes degrade security, because the
adversary can rejection-sample biprimes based on the additional leaked informa-
tion, and efficiency, because ruling out malicious false-negatives involves running
sufficiently many instances to make the probability of statistical failure in all
instances negligible.

Thus, given the current state of the art, it remains unclear whether one
can sample an RSA modulus among two parties (one being malicious) with-
out leaking additional information or permitting covert rejection sampling, or
whether one can sample an RSA modulus among many parties (all but one being
malicious) without involving heavy cryptographic primitives such as additively
homomorphic encryption, and their associated performance penalties. In this
work, we present a protocol which efficiently achieves both tasks.

1.1 Results and Contributions

A Clean Functionality. We define FRSAGen, a simple, natural functionality
for sampling biprimes from the same well-known distribution used by prior
works [4,16,20], with no leakage or conflation of sampling failures with adversar-
ial behavior.

A Modular Protocol, with Natural Assumptions. We present a protocol πRSAGen

in the (FAugMul, FBiprime)-hybrid model, where FAugMul is an augmented multiplier
functionality and FBiprime is a biprimality-testing functionality, and prove that it
UC-realizes FRSAGen in the malicious setting, assuming the hardness of factoring.
More specifically, we prove:

Theorem 1.1. (Main Security Theorem, Informal). In the presence of a PPT
malicious adversary corrupting any subset of parties, FRSAGen can be securely
computed with abort in the (FAugMul, FBiprime)-hybrid model, assuming the hard-
ness of factoring.

Additionally, because our security proof relies upon the hardness of factoring
only when the adversary cheats, we find to our surprise that our protocol achieves
perfect security against semi-honest adversaries.

Theorem 1.2. (Semi-Honest Security Theorem, Informal). In the presence of
a computationally unbounded semi-honest adversary corrupting any subset of
parties, FRSAGen can be computed with perfect security in the (FAugMul, FBiprime)-
hybrid model.

Multiparty Generation of an RSA Modulus 67

Supporting Functionalities and Protocols. We define FBiprime, a simple, natural
functionality for biprimality testing, and show that it is UC-realized in the semi-
honest setting by a well known protocol of Boneh and Franklin [4], and in the
malicious setting by a derivative of the protocol of Frederiksen et al. [16]. We
believe this dramatically simplifies the composition of these two protocols, and
as a consequence, leads to a simpler analysis. Either protocol can be based
exclusively upon oblivious transfer.

We also define FAugMul, a functionality for sampling and multiplying secret-
shared values in a special form derived from the Chinese Remainder Theorem.
In the context of πRSAGen, this functionality allows us to efficiently sample num-
bers in a specific range, with no small factors, and then compute their product.
We prove that it can be UC-realized exclusively from oblivious transfer, using
derivatives of well-known multiplication protocols [13,14].

Asymptotic Efficiency. We perform an asymptotic analysis of our composed
protocols and find that our semi-honest protocol is a factor of κ/ log κ more
bandwidth-efficient than that of Frederiksen et al. [16]. Our malicious protocol
is a factor of κ/s more efficient than theirs in the optimistic case (when parties
follow the protocol), and a factor of κ more efficient when parties deviate from
the protocol. Recall that κ is the bit-length of the primes p and q, and s is a
statistical security parameter. Frederiksen et al. claim in turn that their protocol
is strictly superior to the protocol of Hazay et al. [20] with respect to asymptotic
bandwidth performance.

Concrete Efficiency. We perform a closed-form concrete analysis of our protocol
(with some optimizations, including the use of random oracles), and find that in
terms of communication, it outperforms the protocol of Frederiksen et al. (the
most efficient prior work) by a factor of roughly five in the presence of worst-
case malicious adversaries, and by a factor of eighty or more in the semi-honest
setting.

1.2 Overview of Techniques

Constructive Sampling and Efficient Modulus Reconstruction. Most prior works
use rejection sampling to generate a pair of candidate primes, and then multiply
those primes together in a separate step. Specifically, they sample a shared value
p ← [0, 2κ) uniformly, and then run a trial-division protocol repeatedly, discard-
ing both the value and the work that has gone into testing it if trial division
fails. This represents a substantial amount of wasted work in expectation. Fur-
thermore, Frederiksen et al. [16] report that multiplication of candidates after
sieving accounts for two thirds of their concrete cost.

We propose a different approach that leverages the Chinese Remainder The-
orem (CRT) to constructively sample a pair of candidate primes and multiply
them together efficiently. A similar sieving approach (in spirit) was initially for-
mulated as an optimization in a different setting by Malkin et al. [26]. The CRT
implies an isomorphism between a set of values, each in a field modulo a distinct

68 M. Chen et al.

prime, and a single value in a ring modulo the product of those primes (i.e.,
Zm1 × . . . ×Zm�

� Zm1·...·m�
). We refer to the set of values as the CRT form or

CRT representation of the single value to which they are isomorphic. We formu-
late a sampling mechanism based on this isomorphism as follows: for each of the
first O(κ/ log κ) odd primes, the parties jointly (and efficiently) sample shares
of a value that is nonzero modulo that prime. These values are the shared CRT
form of a single κ-bit value that is guaranteed to be indivisible by any prime in
the set sampled against. For technical reasons, we sample two such candidates
simultaneously.

Rather than converting pairs of candidate primes from CRT form to standard
form, and then multiplying them, we instead multiply them component-wise in
CRT form, and then convert the product to standard form to complete the
protocol. This effectively replaces a single “full-width” multiplication of size
κ with O(κ/ log κ) individual multiplications, each of size O(log κ). We intend
to perform multiplication via an OT-based protocol, and the computation and
communication complexity of such protocols grows at least with the square of
their input length, even in the semi-honest case [17]. Thus in the semi-honest
case, our approach yields an overall complexity of O(κ log κ), as compared to
O(κ2) for a single full-width multiplication. In the malicious case, combining the
best known multiplier construction [13,14] with the most efficient known OT
extension scheme [5] yields a complexity that also grows with the product of
the input length and a statistical parameter s, and so our approach achieves an
overall complexity of O(κ log κ + κ · s), as compared to O(κ2 + κ · s) for a single
full-width malicious multiplication. Via closed-form analysis, we show that this
asymptotic improvement is also reflected concretely.

Achieving Security with Abort Efficiently. The fact that we sample primes in
CRT form also plays a crucial role in our security analysis. Unlike the work of
Frederiksen et al. [16], our protocol achieves the standard, intuitive notion of
security with abort: the adversary can instruct the functionality to abort regard-
less of whether a biprime is successfully sampled, and the honest parties are
always made aware of such adversarial aborts. There is, in other words, abso-
lutely no conflation of sampling failures with adversarial behavior. For the sake
of efficiency, our protocol permits the adversary to cheat prior to biprimality
testing, and then rules out such cheats retroactively using one of two strategies.
In the case that a biprime is successfully sampled, adversarial behavior is ruled
out retroactively in a privacy-preserving fashion using well-known but moder-
ately expensive techniques, which is tolerable only because it need not be done
more than once. In the case that a sampled value is not a biprime, however, the
inputs to the sampling protocol are revealed to all parties, and the retroactive
check is carried out in the clear. Proving the latter approach secure turns out to
be surprisingly subtle.

The challenge arises from the fact that the simulator must simulate the pro-
tocol transcript for the OT-multipliers on behalf of the honest parties without
knowing their inputs. Later, if the sampling-protocol inputs are revealed, the sim-
ulator must “explain” how the simulated transcript is consistent with the true

Multiparty Generation of an RSA Modulus 69

inputs of the honest parties. Specifically, in maliciously secure OT-multipliers of
the sort we use [13,14], the OT receiver (Bob) uses a high-entropy encoding of
his input, and the sender (Alice) can, by cheating, learn a one-bit predicate of
this encoding. Before Bob’s true input is known to the simulator, it must pick
an encoding at random. When Bob’s input is revealed, the simulator must find
an encoding of his input which is consistent with the predicate on the random
encoding that Alice has learned. This task closely resembles solving a random
instance of subset sum.

We are able to overcome this difficulty because our multiplications are
performed component-wise over CRT-form representations of their operands.
Because each component is of size O(log κ) bits, the simulator can simply guess
random encodings until it finds one that matches the required constraints. We
show that this strategy succeeds in strict polynomial time, and that it induces
a distribution statistically close to that of the real execution.

This form of “privacy-free” malicious security (wherein honest behavior is
verified at the cost of sacrificing privacy) leads to considerable efficiency gains in
our case: it is up to a multiplicative factor of s (the statistical parameter) cheaper
than the privacy-preserving check used in the case that a candidate passes the
biprimality test (and the one used in prior OT-multipliers [13,14]). Since most
candidates fail the biprimality test, using the privacy-free check to verify that
they were generated honestly results in substantial savings.

Biprimality Testing as a Black Box. We specify a functionality for biprimality
testing, and prove that it can be realized by a maliciously secure version of the
Boneh-Franklin biprimality test. Our functionality has a clean interface and does
not, for example, require its inputs to be authenticated to ensure that they were
actually generated by the sampling phase of the protocol. The key insight that
allows us to achieve this level of modularity is a reduction to factoring: if an
adversary is able to cheat by supplying incorrect inputs to the biprimality test,
relative to a candidate biprime N , and the biprimality test succeeds, then we
show that the adversary can be used to factor biprimes. We are careful to rely
on this reduction only in the case that N is actually a biprime, and to prevent
the adversary from influencing the distribution of candidates.

The Benefits of Modularity. We claim as a contribution the fact that modularity
has yielded both a simpler protocol description and a reasonably simple proof
of security. We believe that this approach will lead to derivatives of our work
with stronger security properties or with security against stronger adversaries.
As a first example, we prove that a semi-honest version of our protocol (differing
only in that it omits the retroactive consistency check in the protocol’s final
step) achieves perfect security. We furthermore observe that in the malicious set-
ting, instantiating FBiprime and FAugMul with security against adaptive adversaries
yields an RSA modulus sampling protocol that is adaptively secure.

Similarly, only minor adjustments to the main protocol are required to
achieve security with identifiable abort [11,22]. If we assume that the underlying
functionalities FAugMul and FBiprime are instantiated with identifiable abort, then

70 M. Chen et al.

it remains only to ensure the use of consistent inputs across these functionalities,
and to detect which party has provided inconsistent inputs if an abort occurs.
This can be accomplished by augmenting FBiprime with an additional interface for
revealing the input values provided by all the parties upon global request (e.g.,
when the candidate N is not a biprime). Given identifiable abort, it is possible to
guarantee output delivery in the presence of up to n−1 corruptions via standard
techniques, although the functionality must be weakened to allow the adversary
to reject one biprime per corrupt party.2 A proof of this extension is beyond the
scope of this work; we focus instead on the advancements our framework yields
in the setting of security with abort.

1.3 Additional Related Work

Frankel, MacKenzie, and Yung [15] adjusted the protocol of Boneh and
Franklin [3] to achieve security against malicious adversaries in the honest-
majority setting. Their main contribution was the introduction of a method
for robust distributed multiplication over the integers. Cocks [8] proposed a
method for multiparty RSA key generation under heuristic assumptions, and
later attacks by Coppersmith (see [9]) and Joye and Pinch [23] suggest this
method may be insecure. Poupard and Stern [29] presented a maliciously secure
two-party protocol based on oblivious transfer. Gilboa [17] achieved improved
efficiency in the semi-honest two-party model, and introduced a novel method for
multiplication from oblivious transfer, from which our own multipliers ultimately
derive.

Malkin, Wu, and Boneh [26] implemented the protocol of Boneh and Franklin
and introduced an optimized sieving method similar in spirit to ours. In partic-
ular, their protocol generates sharings of random values in Z

∗
M (where M is a

primorial modulus) during the sieving phase, instead of näıve random candidates
for primes p and q. However, their method produces multiplicative sharings of p
and q, which are converted into additive sharings for biprimality testing via an
honest-majority, semi-honest protocol. This conversion requires rounds linear in
the party count, and it is unclear how to adapt it to tolerate a malicious majority
of parties without a significant performance penalty.

Algesheimer, Camenish, and Shoup [1] described a method to compute a
distributed version of the Miller-Rabin test: they used secret-sharing conversion
techniques reliant on approximations of 1/p to compute exponentiations modulo
a shared p. However, each invocation of their Miller-Rabin test still has com-
plexity in O(κ3) per party, and their overall protocol has communication com-
plexity in O(κ5/ log2 κ), with Θ(κ) rounds of interaction. Concretely, Damg̊ard
and Mikkelsen [12] estimate that 10000 rounds are required to sample a 2000-bit
biprime using this method. Damg̊ard and Mikkelsen also extended their work to

2 The folklore technique involves invoking the protocol iteratively, each iteration elimi-
nating one corrupt party until a success occurs. For a constant fraction of corruptions,
the implied linear round complexity overhead can be reduced to super-constant (e.g.,
log∗ n) [10].

Multiparty Generation of an RSA Modulus 71

improve both its communication and round complexity by several orders of mag-
nitude, and to achieve malicious security in the honest-majority setting. Their
protocol is at least a factor of O(κ) better than that of Algesheimer, Camenish,
and Shoup, but it still requires hundreds of rounds. We were not able to compute
an explicit complexity analysis of their approach.

1.4 Organization

Basic notation and background information are given in Sect. 2. Our ideal
biprime-sampling functionality is defined in Sect. 3, and we give a protocol that
realizes it in Sect. 4. In Sect. 5, we present our biprimality-testing protocol. In the
full version [7] of this work, we give an efficiency analysis, full proofs of security,
and the details of our multiplication protocol.

2 Preliminaries

Notation. We use = for equality, ..= for assignment, ← for sampling from a
distribution, ≡ for congruence, ≈c for computational indistinguishability, and
≈s for statistical indistinguishability. In general, single-letter variables are set in
italic font, multi-letter variables and function names are set in sans-serif font,
and string literals are set in slab-serif font. We use mod to indicate the mod-
ulus operator, while (mod m) at the end of a line indicates that all equivalence
relations on that line are to be taken over the integers modulo m. By convention,
we parameterize computational security by the bit-length of each prime in an
RSA biprime; we denote this length by κ throughout. We use s to represent
the statistical parameter. Where concrete efficiency is concerned, we introduce
a second computational security parameter, λ, which represents the length of a
symmetric key of equivalent strength to a biprime of length 2κ.3 κ and λ must
vary together, and a recommendation for the relationship between them has been
laid down by NIST [2].

Vectors and arrays are given in bold and indexed by subscripts; thus xi is the
ith element of the vector x, which is distinct from the scalar variable x. When we
wish to select a row or column from a two-dimensional array, we place a ∗ in the
dimension along which we are not selecting. Thus y∗,j is the jth column of matrix
y, and yj,∗ is the jth row. We use Pi to denote the party with index i, and when
only two parties are present, we refer to them as Alice and Bob. Variables may
often be subscripted with an index to indicate that they belong to a particular
party. When arrays are owned by a party, the party index always comes first. We
use |x| to denote the bit-length of x, and |y| to denote the number of elements
in the vector y.

3 In other words, a biprime of length 2κ provides λ bits of security.

72 M. Chen et al.

Universal Composability. We prove our protocols secure in the Universal Com-
posability (UC) framework, and use standard UC notation. We refer the reader
to Canetti [6] for further details. In functionality descriptions, we leave some
standard bookkeeping elements implicit. For example, we assume that the func-
tionality aborts if a party tries to reuse a session identifier inappropriately, send
messages out of order, etc. For convenience, we provide a function GenSID, which
takes any number of arguments and deterministically derives a unique Session
ID from those arguments.

Chinese Remainder Theorem. The Chinese Remainder Theorem (CRT) defines
an isomorphism between a set of residues modulo a set of respective coprime
values and a single value modulo the product of the same set of coprime values.
This forms the basis of our sampling procedure.

Theorem 2.1. (CRT). Let m be a vector of coprime positive integers and let
x be a vector of numbers such that |m| = |x| = � and 0 ≤ xj < mj for all
j ∈ [�], and finally let M ..=

∏
j∈[�] mj . Under these conditions there exists a

unique value y such that 0 ≤ y < M and y ≡ xj (mod mj) for every j ∈ [�].

We refer to x as the CRT form of y with respect to m. For completeness, we
give the CRTRecon algorithm, which finds the unique y given m and x.

Algorithm 2.2. CRTRecon(m,x)
1. With � ..= |m|, compute M =

∏
j∈[�] mj .

2. For j ∈ [�], compute aj
..= M/mj and find bj satisfying aj · bj ≡ 1

(mod mj) using the Extended Euclidean Algorithm (see Knuth [25]).
3. Output y ..=

∑
j∈[�] aj · bj · xj mod M .

3 Assumptions and Ideal Functionality

We begin this section by discussing the distribution of biprimes from which we
sample, and thus the precise factoring assumption that we make, and then we
give an efficient sampling algorithm and an ideal functionality that computes it.

3.1 Factoring Assumptions

The standard factoring experiment (Experiment 3.1) as formalized by Katz and
Lindell [24] is parametrized by an adversary A and a biprime-sampling algorithm
GenModulus. On input 1κ, this algorithm returns (N, p, q), where N = p · q, and
p and q are κ-bit primes.4

4 Technically, Katz and Lindell specify that sampling failures are permitted with negli-
gible probability, and require GenModulus to run in strict polynomial time. We elide
this detail.

Multiparty Generation of an RSA Modulus 73

Experiment 3.1 FactorA,GenModulus(κ)
1. Run (N, p, q) ← GenModulus(1κ).
2. Send N to A, and receive p′, q′ > 1 in return.
3. Output 1 if and only if p′ · q′ = N .

In many cryptographic applications, GenModulus(1κ) is defined to sample p and
q uniformly from the set of primes in the range [2κ−1, 2κ) [18], and the factoring
assumption with respect to this common GenModulus function states that for
every PPT adversary A there exists a negligible function negl such that

Pr [FactorA,GenModulus(κ) = 1] ≤ negl(κ).

Because efficiently sampling according to this uniform biprime distribution
is difficult in a multiparty context, most prior works sample according to a
different distribution, and thus using the moduli they produce requires a slightly
different factoring assumption than the traditional one. In particular, several
recent works use a distribution originally proposed by Boneh and Franklin [4],
which is well-adapted to multiparty sampling. Our work follows this pattern.

Boneh and Franklin’s distribution is defined by the sampling algorithm
BFGM, which takes as an additional parameter the number of parties n. The
algorithm samples n integer shares, each in the range [0, 2κ−log n), and sums
these shares to arrive at a candidate prime. This does not induce a uniform dis-
tribution on the set of κ-bit primes. Furthermore, BFGM only samples individual
primes p or q that have p ≡ q ≡ 3 (mod 4), in order to facilitate efficient dis-
tributed primality testing, and it filters out the subset of otherwise-valid moduli
N = p · q that have p ≡ 1 (mod q) or q ≡ 1 (mod p).5

Algorithm 3.2. BFGM(κ, n)

1. For i ∈ [n], sample pi ← [
0, 2κ−log n

)
and qi ← [

0, 2κ−log n
)

subject to
p1 ≡ q1 ≡ 3 (mod 4) and pj ≡ qj ≡ 0 (mod 4) for j ∈ [2, n].

2. Compute

p ..=
∑

i∈[n]

pi and q ..=
∑

i∈[n]

qi and N ..= p · q

3. If gcd(N, p + q − 1) = 1, and both p and q are primes, then output
(N, {(pi, qi)}i∈[n]). Otherwise, repeat this procedure from Step 1.

Any protocol whose security depends upon the hardness of factoring mod-
uli output by our protocol (including our protocol itself) must rely upon the
assumption that for every PPT adversary A,

Pr [FactorA,BFGM(κ, n) = 1] ≤ negl(κ)

5 Boneh and Franklin actually propose two variations, one of which has no false nega-
tives; we choose the other variation, as it leads to a more efficient sampling protocol.

74 M. Chen et al.

3.2 The Distributed Biprime-Sampling Functionality

Unfortunately, our ideal modulus-sampling functionality cannot merely call
BFGM; we wish our functionality to run in strict polynomial time, whereas
the running time of BFGM is only expected polynomial. Thus, we define a new
sampling algorithm, CRTSample, which might fail, but conditioned on success
outputs samples statistically close to BFGM.6 Furthermore, we give CRTSample
a specific distribution of failures that is tied to the design of our protocol. As
a second concession to our protocol design (and following Hazay et al. [20]),
CRTSample takes as input up to n−1 integer shares of p and q, arbitrarily deter-
mined by the adversary, while the remaining shares are sampled randomly. We
begin with a few useful notions.

Definition 3.3. (Primorial Number). The ith primorial number is defined to
be the product of the first i prime numbers.

Definition 3.4. ((κ, n)-Near-Primorial Vector). Let � be the largest number
such that the �th primorial number is less than 2κ−log n−1, and let m be a vector
of length � such that m1 = 4 and m2, . . . ,m� are the odd factors of the �th

primorial number, in ascending order. m is the unique (κ, n)-near-primorial
vector.

Definition 3.5. (m-Coprimality). Let m be a vector of integers. An integer x
is m-coprime if and only if it is not divisible by any mi for i ∈ [|m|].

Algorithm 3.6. CRTSample(κ, n, {(pi, qi)}i∈P∗)
1. Let m be the (κ, n)-near-primorial vector, with length �, and let M be

the product of m.
2. For i ∈ [n] \ P∗, sample pi ← [0,M) and qi ← [0,M) subject to

pi ≡ qi ≡
{

3 (mod 4) if i = 1
0 (mod 4) if i 	= 1

and subject to p and q being m-coprime, where

p ..=
∑

i∈[n]

pi and q ..=
∑

i∈[n]

qi

are computed over the integers.
3. If gcd(p ·q, p+q−1) = 1, and if both p and q are primes, and if p ≡ q ≡ 3

(mod 4), then output (success, p, q); otherwise, output (failure, p, q).

6 CRTSample never outputs biprimes with factors smaller than κ, whereas BFGM
outputs such biprimes with negligible probability. The discrepancy of share ranges
can be remedied by using non-integer values of κ with BFGM.

Multiparty Generation of an RSA Modulus 75

Boneh and Franklin [4, Lemma 2.1] showed that knowledge of n − 1 integer
shares of the factors p and q does not give the adversary any meaningful advan-
tage in factoring biprimes from the distribution produced by BFGM and, by
extension, CRTSample. Hazay et al. [20, Lemma 4.1] extended this argument to
the malicious setting, wherein the adversary is allowed to choose its own shares.

Lemma 3.7. ([4,20]). Let n < κ and let (A1,A2) be a pair of PPT algorithms.
For (state, {(pi, qi)}i∈[n−1]) ← A1(1κ, 1n), let N be a biprime sampled by run-
ning CRTSample(κ, n, {(pi, qi)}i∈[n−1]). If A2(state, N) outputs the factors of
N with probability at least 1/κd, then there exists an expected-polynomial-
time algorithm B that succeeds with probability 1/24n3κd in the experiment
FactorB,BFGM(κ,n).

Multiparty Functionality. Our ideal functionality FRSAGen is a natural embedding
of CRTSample in a multiparty functionality: it receives inputs {(pi, qi)}i∈P∗ from
the adversary and runs a single iteration of CRTSample with these inputs when
invoked. It either outputs the corresponding modulus N ..= p · q if it is valid,
or indicates that a sampling failure has occurred. Running a single iteration
of CRTSample per invocation of FRSAGen enables significant freedom in the use
of FRSAGen, because it can be composed in different ways to tune the trade-off
between resource usage and execution time. It also simplifies the analysis of the
protocol πRSAGen that realizes FRSAGen, because the analysis is made independent
of the success rate of the sampling procedure.

The functionality may not deliver N to the honest parties for one of two
reasons: either CRTSample failed to sample a biprime, or the adversary caused
the computation to abort. In either case, the honest parties are informed of the
cause of the failure, and consequently the adversary is unable to conflate the two
cases. This is essentially the standard notion of security with abort, applied to
the multiparty computation of the CRTSample algorithm. In both cases, the p
and q output by CRTSample are given to the adversary. This leakage simplifies
our proof considerably, and we consider it benign, since the honest parties never
receive (and therefore cannot possibly use) N .

Functionality 3.8. FRSAGen(κ, n). Distributed Biprime Sampling
This n-party functionality attempts to sample an RSA modulus with prime
length κ, and interacts directly with an ideal adversary S who corrupts the
parties indexed by P∗. Let M be the largest number such that M/2 is a
primorial number and M < 2κ−log n.

Sampling: On receiving (sample, sid) from each party Pi for i ∈ [n] \ P∗

and (adv-sample, sid, i, pi, qi) from S for i ∈ P∗, if 0 ≤ pi < M and 0 ≤
qi < M for all i ∈ P∗, then run CRTSample(κ, n, {(pi, qi)}i∈P∗), and receive
as a result either (success, p, q) or (failure, p, q).
– If p 	≡ 3 (mod 4) or q 	≡ 3 (mod 4), then send (factors, sid, p, q) to S

and abort, informing all parties in an adversarially delayed fashion.
– If p ≡ q ≡ 3 (mod 4), and the result was failure, then store

(non-biprime, sid, p, q) in memory and send (factors, sid, p, q) to S.

76 M. Chen et al.

– If p ≡ q ≡ 3 (mod 4), and the result was success, then com-
pute N ..= p · q, store (biprime, sid, N, p, q) in memory, and send
(biprime, sid, N) to S.

Output: On receiving either (proceed, sid) or (cheat, sid) from S, if
(biprime, sid, N, p, q) or (non-biprime, sid, p, q) exists in memory,

– If proceed was received, then send either (biprime, sid, N) or
(non-biprime, sid) to all parties as adversarially delayed output, as appro-
priate. Terminate successfully.

– If cheat was received, then abort, notifying all parties in an adversarially
delayed fashion, and send (factors, sid, p, q) directly to S.

Regardless, ignore all further instructions with this sid.

4 The Distributed Biprime-Sampling Protocol

In this section, we present the distributed biprime-sampling protocol πRSAGen,
with which we realize FRSAGen. We begin with a high-level overview, and then in
Sect. 4.2, we formally define the two ideal functionalities on which our protocol
relies, after which in Sect. 4.3 we give the protocol itself. In Sect. 4.4, we present
proof sketches of semi-honest and malicious security.

4.1 High-Level Overview

As described in the Introduction, our protocol derives from that of Boneh
and Franklin [4], the main technical differences relative to other recent Boneh-
Franklin derivatives [16,20] being the modularity with which it is described and
proven, and the use of CRT-based sampling. Our protocol has three main phases,
which we now describe in sequence.

Candidate Sieving. In the first phase of our protocol, the parties jointly sample
two κ-bit candidate primes p and q without any small factors, and multiply
them to learn their product N . Our protocol achieves these tasks in a unified,
integrated way, thanks to the Chinese Remainder Theorem.

Consider a prime m and a set of shares xi for i ∈ [n] over the field Zm. As in
the description of CRTRecon, let a and b be defined such that a · b ≡ 1 (mod m),
and let M be an integer. Observe that if m divides M , then

∑

i∈[n]

xi 	≡ 0 (mod m) =⇒
∑

i∈[n]

a · b · xi mod M 	≡ 0 (mod m) (1)

Now consider a vector of coprime integers m of length �, and let M be their
product. Let x be a vector, each element secret shared over the fields defined
by the corresponding element of m, and let a and b be defined as in CRTRecon

Multiparty Generation of an RSA Modulus 77

(i.e., aj
..= M/mj and aj · bj ≡ 1 (mod mj)). We can see that for any k, j ∈ [�]

such that k 	= j,

aj ≡ 0 (mod mk) =⇒
∑

i∈[n]

aj · bj · xi,j mod M ≡ 0 (mod mk) (2)

and the conjunction of Eqs. 1 and 2 gives us
∑

j∈[�]

∑

i∈[n]

aj · bj · xi,j mod M ≡
∑

i∈[n]

xi,k (mod mk)

for all k ∈ [�]. Observe that this holds regardless of which order we perform the
sums in, and regardless of whether the mod M operation is done at the end, or
between the two sums, or not at all.

It follows then that we can sample n shares for an additive secret sharing over
the integers of a κ-bit value x (distributed between 0 and n · M) by choosing m
to be the (κ, n)-near-primorial vector (per Definition 3.4), instructing each party
Pi for i ∈ [n] to pick xi,j locally for j ∈ [�] such that 0 ≤ xi,j < mj , and then
instructing each party to locally reconstruct xi

..= CRTRecon(m,xi,∗), its share
of x. It furthermore follows that if the parties can contrive to ensure that

∑

i∈[n]

xi,j 	≡ 0 (mod mj) (3)

for j ∈ [�], then x will not be divisible by any prime in m.
Observe next that if the parties sample two shared vectors p and q as above

(corresponding to the candidate primes p and q) and compute a shared vector
N of identical dimension such that

∑

i∈[n]

pi,j ·
∑

i∈[n]

qi,j ≡
∑

i∈[n]

Ni,j (mod mj) (4)

for all j ∈ [�], then it follows that
∑

i∈[n]

CRTRecon(m,pi,∗) ·
∑

i∈[n]

CRTRecon(m,qi,∗) =
∑

i∈[n]

CRTRecon(m,Ni,∗)

and from this it follows that the parties can calculate integer shares of N = p · q
by multiplying p and q together element-wise using a modular-multiplication
protocol for linear secret shares, and then locally running CRTRecon on the
output to reconstruct N . In fact, our sampling protocol makes use of a special
functionality FAugMul, which samples p, q, and N simultaneously such that the
conditions in Eqs. 3 and 4 hold.

There remains one problem: our vector m was chosen for sampling integer-
shared values between 0 and n · M (with each share no larger than M), but N
might be as large as n2 · M2. In order to avoid wrapping during reconstruction
of N , we must reconstruct with respect to a larger vector of primes (while
continuing to sample with respect to a smaller one). Let m now be of length �′,

78 M. Chen et al.

and let � continue to denote the length of the prefix of m with respect to which
sampling is performed. After sampling the initial vectors p, q, and N, each party
Pi for i ∈ [n] must extend pi,∗ locally to �′ elements, by computing

pi,j
..= CRTRecon

(
{mj′}j′∈[�] , {pj′}j′∈[�]

)
mod mj

for j ∈ [� + 1, �′], and then likewise for qi,∗. Finally, the parties must use a
modular-multiplication protocol to compute the appropriate extension of N;
from this extended N, they can reconstruct shares of N = p · q. They swap
these shares, and thus each party ends the Sieving phase of our protocol with a
candidate biprime N and an integer share of each of its factors, pi and qi.

Each party completes the first phase by performing a local trial division to
check if N is divisible by any prime smaller than some bound B (which is a
parameter of the protocol). The purpose of this step is to reduce the number of
calls to FBiprime and thus improve efficiency.

Biprimality Test. The parties jointly execute a biprimality test, where every
party inputs the candidate N and its shares pi and qi, and receives back a bipri-
mality indicator. This phase essentially comprises a single call to a functionality
FBiprime, which allows an adversary to force spurious negative results, but never
returns false positive results. Though this phase is simple, much of the subtlety
of our proof concentrates here: we show via a reduction to factoring that cheat-
ing parties have a negligible chance to pass the biprimality test if they provide
wrong inputs. This eliminates the need to authenticate the inputs in any way.

Consistency Check. To achieve malicious security, the parties must ensure that
none among them cheated during the previous stages in a way that might influ-
ence the result of the computation. This is what we have previously termed the
retroactive consistency check. If the biprimality test indicated that N is not a
biprime, then the parties use a special interface of FAugMul to reveal the shares
they used during the protocol, and then they verify locally and independently
that p and q are not both primes. If the biprimality test indicated that N is
a biprime, then the parties run a secure test (again via a special interface of
FAugMul) to ensure that length extensions of p and q were performed honestly.
To achieve semi-honest security, this phase is unnecessary, and the protocol can
end with the biprimality test.

4.2 Ideal Functionalities Used in the Protocol

Augmented Multiparty Multiplier. The augmented multiplier functionality
FAugMul (Functionality 4.1) is a reactive functionality that operates in multiple
phases and stores an internal state across calls. It is meant to help in manipu-
lating CRT-form secret shares. It contains five basic interfaces.

– The sample interface allows the parties to sample shares of non-zero multipli-
cation triplets over small primes. That is, given a prime m, the functionality

Multiparty Generation of an RSA Modulus 79

receives a triplet (xi, yi, zi) from every corrupted party Pi, and then samples
a triplet (xj , yj , zj) ← Z

3
m for every honest Pj conditioned on

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi 	≡ 0 (mod m)

In the context of πRSAGen, this is used to sample CRT-shares of p and q.
– The input and multiply interfaces, taken together, allow the parties to load

shares (with respect to some small prime modulus m) into the functionality’s
memory, and later perform modular multiplication on two sets of shares that
are associated with the same modulus. That is, given a prime m, each party
Pi inputs xi and, independently, yi, and when the parties request a product,
with each corrupt party Pj also supplying its own an output share zj , the
functionality samples a share of z from Zm for each honest party subject to

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi (mod m)

In the context of πRSAGen, this interface is used to perform length-extension
on CRT-shares of p and q.

– The check interface allows the parties to securely compute a predicate over
the set of stored values. In the context of πRSAGen, this is used to check that
the CRT-share extension of p and q has been performed correctly, when N is
a biprime.

– The open interface allows the parties to retroactively reveal their inputs to
one another. In the context of πRSAGen, this is used to verify the sampling
procedure and biprimality test when N is not a biprime.

These five interfaces suffice for the malicious version of the protocol, and the
first three alone suffice for the semi-honest version. We make a final adjustment,
which leads to a substantial efficiency improvement in the protocol with which
we realize FAugMul (which we describe in the full version of this paper [7]). Specif-
ically, we give the adversary an interface by which it can request that any stored
value be leaked to itself, and by which it can (arbitrarily) determine the output
of any call to the sample or multiply interfaces. However, if the adversary uses
this interface, the functionality remembers, and informs the honest parties by
aborting when the check or open interfaces is used.

Functionality 4.1. FAugMul(n). Augmented n-Party Multiplication
This functionality is parametrized by the party count n. In addition to
the parties it interacts with an ideal adversary S who corrupts the parties
indexed by P∗. The remaining honest parties are indexed by P* ..= [n] \P∗.

Cheater Activation: Upon receiving (cheat, sid) from S, store
(cheater, sid) in memory and send every record of the form
(value, sid, i, xi,m) to S. For the purposes of this functionality, we will
consider session IDs to be fresh even when a cheater record already exists
in memory.

80 M. Chen et al.

Sampling: Upon receiving (sample, sid1, sid2,m) from each party Pi for
i ∈ P* and (adv-sample, sid1, sid2, xi, yi, zi,m) from S for i ∈ P∗,a if sid1
and sid2 are fresh, agreed-upon values and if m is an agreed-upon prime,
and if neither (cheater, sid1) nor (cheater, sid2) exists in memory, then
sample (xi, yi, zi) ← Z

3
m uniformly for each i ∈ P* subject to

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi 	≡ 0 (mod m)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-sample, sid1, sid2) to S and in response receive
(cheat-samples, sid1, sid2, {(xi, yi, zi)}i∈P*

) where 0 ≤ xi, yi, zi < m for all
i and where ∑

i∈[n]

zi 	≡ 0 (mod m)

(if these conditions are violated, then ignore the response from S). Regard-
less, store (value, sid1, i, xi,m) and (value, sid2, i, yi,m) in memory for
i ∈ [n], and then send (sampled-product, sid1, sid2, xi, yi, zi) to each party
Pi as adversarially delayed private output.

Input: Upon receiving (input, sid, xi,m) from each party Pi, where i ∈ [n]:
if sid is a fresh, agreed-upon value and if m is an agreed-upon prime, and
if 0 ≤ xi < m for all i ∈ [n], then store (value, sid, i, xi,m) in memory for
each i ∈ [n] and send (value-loaded, sid) to all parties. If (cheater, sid)
exists in memory, then send (value, sid, i, xi,m) to S for each i ∈ [n].

Multiplication: Upon receiving (multiply, sid1, sid2, sid3) from each
party Pi for i ∈ P* and (adv-multiply, sid1, sid2, sid3, i, zi) from S for each
i ∈ P∗,a if all three session IDs are agreed upon and sid3 is fresh, and if no
record of the form (cheater, sid1) or (cheater, sid2) exists in memory, and
if records of the form (value, sid1, i, xi,m1) and (value, sid2, i, yi,m2) exist
in memory for all i ∈ [n] such that m1 = m2, then sample zi ← Zm1 for
i ∈ P* subject to

∑

i∈[n]

zi ≡
∑

i∈[n]

xi ·
∑

i∈[n]

yi (mod m1)

If the previous conditions hold, but (cheater, sid1) or (cheater, sid2) exists
in memory, then send (cheat-multiply, sid1, sid2, sid3) to S and in response
receive (cheat-product, sid3, {zi}i∈P*

) where 0 ≤ zi < m1 for all i. Regard-
less, send (product, sid3, zi) to each party Pi for i ∈ [n] as adversarially
delayed private output. Note that this procedure only permits multiplica-
tions of values associated with the same modulus.

Predicate Cheater Check: Upon receiving (check, sids, f) from all
parties, where f is the description of a predicate over the set of stored
values associated with the vector of session IDs sids, if f is not agreed upon,

Multiparty Generation of an RSA Modulus 81

or if any record (cheater, sid) exists in memory such that sid ∈ sids, then
abort, informing all parties in an adversarially delayed fashion. Otherwise,
let x be the vector of stored values associated with sids, or in other words,
let it be a vector such that for all j ∈ [|x|] and i ∈ [n], records of the form
(value, sidsj , i, yi,m) exist in memory such that

0 ≤ xj < m and xj ≡
∑

i∈[n]

yi (mod m)

Send (predicate-result, sids, f(x)) to all parties as adversarially delayed
private output, and refuse all future messages with any session ID in sids.

Input Revelation: Upon receiving (open, sid) from all parties, if a record
of the form (cheater, sid) exists in memory, then abort, informing all par-
ties in an adversarially delayed fashion. Otherwise, for each record of the
form (value, sid, i, xi) in memory, send (opening, sid, i, xi) to all parties
as adversarially delayed output. Refuse all future messages with this sid.

aIn the semi-honest setting, the adversary does not send these values to
the functionality; instead the functionality samples the shares for corrupt
parties just as it does for honest parties.

Biprimality Test. The biprimality-test functionality FBiprime (Functionality 4.2)
abstracts the behavior of the biprimality test of Boneh and Franklin [4]. The
functionality receives from each party a candidate biprime N , along with shares
of its factors p and q. It checks whether p and q are primes and whether N =
p · q. The adversary is given an additional interface, by which it can ask the
functionality to leak the honest parties’ inputs, but when this interface is used
then the functionality reports to the honest parties that N is not a biprime, even
if it is one.

Functionality 4.2. FBiprime(M,n). Distributed Biprimality Test
This functionality is parametrized by the integer M and the party-count n.
In addition to the parties it interacts with an ideal adversary S.

Biprimality Test:
1. Wait to receive (check-biprimality, sid, N, pi, qi) from each party Pi

for i ∈ [n], where sid is a fresh, agreed-upon value.
2. Over the integers, compute

p ..=
∑

i∈[n]

pi and q ..=
∑

i∈[n]

qi and N ′ ..= p · q

3. If all parties agreed on the value of N in Step 1, and N = N ′, and both p
and q are primes, and p 	≡ 1 (mod q), and q 	≡ 1 (mod p), and 0 ≤ p < M
and 0 ≤ q < M , then send a message (biprime, sid) to S. If S responds
with (proceed, sid), then output (biprime, sid) to all parties as adversar-

82 M. Chen et al.

ially delayed output. If S responds with (cheat, sid)a, or if any of the pre-
vious predicates is false, then output (leaked-shares, sid, {(pi, qi)}i∈[n])
directly to S, and output (not-biprime, sid) to all parties as adversari-
ally delayed output.

aSemi-honest adversaries are forbidden to send the cheat instruction.

Realizations. In the full version of this paper [7], we discuss a protocol to realize
FAugMul, and in Sect. 5, we propose a protocol to realize FBiprime. Both make use
of generic MPC, but in such a way that no generic MPC is required unless N is
a biprime.

4.3 The Protocol Itself

We refer the reader back to Sect. 4.1 for an overview of our protocol. We have
mentioned that it requires a vector of coprime values, which is prefixed by the
(κ, n)-near-primorial vector. We now give this vector a precise definition. Note
that the efficiency of our protocol relies upon this vector, because we use its
contents to sieve candidate primes. Since smaller numbers are more likely to
be factors for the candidate primes, we choose the largest allowable set of the
smallest sequential primes.

Definition 4.3. ((κ, n)-Compatible Parameter Set). Let �′ be the smallest num-
ber such that the �′th primorial number is greater than 22κ−1, and let m be a
vector of length �′ such that m1 = 4 and m2, . . . ,m�′ are the odd factors of the
�′th primorial number, in ascending order. (m, �′, �,M) is the (κ, n)-compatible
parameter set if � < �′ and the prefix of m of length � is the (κ, n)-near-primorial
vector per Definition 3.4, and if M is the product of this prefix.

Protocol 4.4. πRSAGen(κ, n,B). Distributed Biprime Sampling
This protocol is parametrized by the RSA prime length κ, the number of
parties n, and the trial-division bound B. Let (m, �′, �,M) be the (κ, n)-
compatible parameter set, per Definition 4.3. In this protocol the parties
have access to the functionalities FAugMul and FBiprime.

Candidate Sieving:
1. Upon receiving input (sample, sid) from the environment, the parties

begin the protocol. Every party Pi for i ∈ [n] computes three vectors of
session IDs

psids ..= {GenSID(sid, j, p)}j∈[�′]

qsids ..= {GenSID(sid, j, q)}j∈[�′]

Nsids ..= {GenSID(sid, j, N)}j∈[�′]

and sends (sample,psidsj ,qsidsj ,mj) to FAugMul(n) for every j ∈
[2, �], and receives (sampled-product,psidsj ,qsidsj ,pi,j ,qi,j ,Ni,j) in

Multiparty Generation of an RSA Modulus 83

response. The parties also set p1,1
..= q1,1

..= 3 and pi′,1
..= qi′,1

..= 0 for
i′ ∈ [2, n].

2. Each party Pi for i ∈ [n] computes

pi
..= CRTRecon

(
{mj}j∈[�] , {pi,j}j∈[�]

)

qi
..= CRTRecon

(
{mj}j∈[�] , {qi,j}j∈[�]

)

and then, for j ∈ [� + 1, �′], Pi computes

pi,j
..= pi mod mj and qi,j

..= qi mod mj

Note that each party Pi is now in possession of a pair of vectors

pi,∗ ∈ Zm1 × . . . × Zm�′ and qi,∗ ∈ Zm1 × . . . × Zm�′

3. For j ∈ [� + 1, �′], every party Pi for i ∈ [n] sends the following sequence
of messages to FAugMul(n), waiting for confirmation after each:
(a) (input,psidsj ,pi,j ,mj)
(b) (input,qsidsj ,qi,j ,mj)
(c) (multiply,psidsj ,qsidsj ,Nsidsj)
and at the end of this sequence, each party Pi receives
(product,Nsidsj ,Ni,j) from FAugMul(n) in response. Note that each party
Pi is now in possession of a vector Ni,∗ ∈ Zm1 × . . . × Zm�′ .

4. For j ∈ [2, �′], each party Pi for i ∈ [n] broadcasts Ni,j . Once all parties
have received shares from all other parties, they compute

N ..= CRTRecon

⎛

⎜
⎝m,

⎧
⎨

⎩

∑

i′∈[n]

Ni′,j mod mj

⎫
⎬

⎭
j∈[�′]

⎞

⎟
⎠

5. Each party Pi performs a local trial division on N by all primes less
than B. If N is divisible by some prime, then the parties skip directly to
Step 7, and take the privacy-free branch.

Biprimality Test:

6. Each party Pi for i ∈ [n] sends (check-biprimality, sid, N, pi, qi) to
FBiprime(M,n) and waits for either (biprime, sid) or (not-biprime, sid)
in response.

Consistency Check: a

7. Let f be the predicate that is defined to compute

pi′ ..= CRTRecon (m,pi′,∗) and qi′ ..= CRTRecon (m,qi′,∗)

84 M. Chen et al.

for all i′ ∈ [n] and to return 1 if and only if

N =
∑

i′∈[n]

pi′ ·
∑

i′∈[n]

qi′

∧ 0 ≤ pi′ < M ∧ 0 ≤ qi′ < M for all i′ ∈ [n]

where the sums and product are taken over the integers.
– If biprime is received from FBiprime(M,n), then N is a biprime,

and a privacy-preserving check must be performed. Each party
sends (check,psids‖qsids, f) to FAugMul(n). If FAugMul returns
(predicate-result,psids‖qsids, 1) then the parties halt successfully
and output (biprime, sid, N) to the environment; otherwise, they
abort.

– If not-biprime is received from FBiprime(M,n), then either N is not a
biprime or some party has cheated; consequently, a privacy-free check
is performed.
(a) For j ∈ [2, �′], each party Pi for i ∈ [n] sends (open,psidsj) and

(open,qsidsj) to FAugMul(n). If Pi observes FAugMul(n) to abort in
response to any of these queries, then Pi itself aborts. Otherwise,
Pi receives (opening,psidsj ,pi′,j) and (opening,qsidsj ,qi′,j) for
each i′ ∈ [n] and j ∈ [2, �′].

(b) The parties individually check that the predicate f holds over the
vectors of shares which they now all possess. If this predicate holds
and p and q are not both prime, then all parties halt successfully
and output (non-biprime, sid) to the environment. Otherwise, a
party has cheated, and they abort.

aIf only security against semi-honest adversaries is required, the protocol
can terminate after the Biprimality-Test phase, and these checks are unnec-
essary.

4.4 Security Sketches

We now informally argue that πRSAGen realizes FRSAGen in the semi-honest and
malicious settings. We give a full proof for the malicious setting in the full version
of this paper [7].

Theorem 4.5. πRSAGen UC-realizes FRSAGen with perfect security in the
(FAugMul, FBiprime)-hybrid model against a static, semi-honest adversary that cor-
rupts up to n − 1 parties.

Proof Sketch. In lieu of arguing for the correctness of our protocol, we refer
the reader to the explanation in Sect. 4.1, and focus here on the strategy of a
simulator S against a semi-honest adversary A who corrupts the parties indexed
by P∗. S forwards all messages between A and the environment faithfully.

Multiparty Generation of an RSA Modulus 85

In Step 1 of πRSAGen, for each j ∈ [2, �], S receives the sample instruction
with modulus mj on behalf of FAugMul from all parties indexed by P∗. For each
j it then samples (pi,j ,qi,j ,Ni,j) ← Z

3
mj

uniformly for i ∈ P∗, and returns each
triple to the appropriate party.

Step 2 involves no interaction on the part of the parties, but it is at this point
that S computes pi and qi for i ∈ P∗, in the same way that the parties themselves
do. Note that since p∗,1 and q∗,1 are deterministically chosen, they are known
to S. The simulator then sends these shares to FRSAGen via the functionality’s
adv-input interface, and receives in return either a biprime N , or two factors p
and q such that N ..= p · q is not a biprime. Regardless, it instructs FRSAGen to
proceed.

In Step 3 of πRSAGen, S receives two input instructions from each corrupted
party for each j ∈ [�+1, �′] on behalf of FAugMul, and confirms receipt as FAugMul

would. Subsequently, for each j ∈ [� + 1, �′], the corrupt parties all send a
multiply instruction, and then S samples Ni,j ← Zmj

for i ∈ [n] subject to
∑

i∈[n]

Ni,j ≡ N (mod mj)

and returns each share to the matching corrupt party.
In Step 4 of πRSAGen, for every j ∈ [�′], every corrupt party Pi′ for i′ ∈ P∗,

and every honest party Pi for i ∈ [n] \ P∗, S sends Ni,j to Pi′ on behalf of Pi,
and receives Ni′,j (which it already knows) in reply.

To simulate the final steps of πRSAGen, S tries to divide N by all primes smaller
than B. If it succeeds, then the protocol is complete. Otherwise, it receives
check-biprimality from all of the corrupt parties on behalf of FBiprime, and
replies with biprime or not-biprime as appropriate. It can be verified by inspec-
tion that the view of the environment is identically distributed in the ideal-world
experiment containing S and honest parties that interact with FRSAGen, and the
real-world experiment containing A and parties running πRSAGen. �
Theorem 4.6. If factoring biprimes sampled by BFGM is hard, then πRSAGen

UC-realizes FRSAGen in the (FAugMul, FBiprime)-hybrid model against a static, mali-
cious PPT adversary that corrupts up to n − 1 parties.

Proof Sketch. We observe that if the adversary simply follows the specification
of the protocol and does not cheat in its inputs to FAugMul or FBiprime, then
the simulator can follow the same strategy as in the semi-honest case. At any
point if the adversary deviates from the protocol, the simulator requests FRSAGen

to reveal all honest parties’ shares, and thereafter the simulator uses them by
effectively running the code of the honest parties. This matches the adversary’s
view in the real protocol as far as the distribution of the honest parties’ shares
is concerned.

It remains to be argued that any deviation from the protocol specification will
also result in an abort in the real world with honest parties, and will additionally
be recognized by the honest parties as an adversarially induced cheat (as opposed
to a statistical sampling failure). Note that the honest parties must only detect

86 M. Chen et al.

cheating when N is truly a biprime and the adversary has sabotaged a successful
candidate; if N is not a biprime and would have been rejected anyway, then cheat-
detection is unimportant. We analyze all possible cases where the adversary
deviates from the protocol below. Let N be defined as the value implied by
parties’ sampled shares in Step 1 of πRSAGen.

Case 1: N is a non-biprime and reconstructed correctly. In this case, FBiprime will
always reject N as there exist no satisfying inputs (i.e., there are no two prime
factors p, q such that p · q = N).

Case 2: N is a non-biprime and reconstructed incorrectly as N ′. If by fluke N ′

happens to be a biprime then the incorrect reconstruction will be caught by the
explicit secure predicate check during the consistency-check phase. If N ′ is a
non-biprime then the argument from the previous case applies.

Case 3: N is a biprime and reconstructed correctly. If consistent inputs are
used for the biprimality test and nobody cheats, the candidate N is successfully
accepted (this case essentially corresponds to the semi-honest case). Otherwise,
if inconsistent inputs are used for the biprimality test, one of the following events
will occur:

– FBiprime rejects this candidate. In this case, all parties reveal their shares of
p and q to one another (with guaranteed correctness via FAugMul) and locally
test their primality. This will reveal that N was a biprime, and that FBiprime

must have been supplied with inconsistent inputs, implying that some party
has cheated.

– FBiprime accepts this candidate. This case occurs with negligible probability
(assuming factoring is hard). Because N only has two factors, there is exactly
one pair of inputs that the adversary can supply to FBiprime to induce this
scenario, apart from the pair specified by the protocol. In our full proof (see
the full version [7] of this paper) we show that finding this alternative pair of
satisfying inputs implies factoring N . We are careful to rely on the hardness
of factoring only in this case, where by premise N is a biprime with κ-bit
factors (i.e., an instance of the factoring problem).

Case 4: N is a biprime and reconstructed incorrectly as N ′. If N ′ is a biprime
then the incorrect reconstruction will be caught during the consistency-check
phase, just as when N is a biprime. If N ′ is a non-biprime then it will by
rejected by FBiprime, inducing all parties to reveal their shares and find that their
shares do not in fact reconstruct to N ′, with the implication that some party
has cheated.

Thus the adversary is always caught when trying to sabotage a true biprime,
and it can never sneak a non-biprime past the consistency check. Because the
real-world protocol always aborts in the case of cheating, it is indistinguishable
from the simulation described above, assuming that factoring is hard. �

Multiparty Generation of an RSA Modulus 87

5 Distributed Biprimality Testing

In the semi-honest setting, FBiprime can be realized by the biprimality-testing
protocol of Boneh and Franklin [4]. We discuss this in the full version [7] of this
paper. The following lemma follows immediately from their work.

Lemma 5.1. The biprimality-testing protocol described by Boneh and
Franklin [4] UC-realizes FBiprime with statistical security in the FComCompute-
hybrid model against a static, semi-honest adversary who corrupts up to n − 1
parties.

5.1 The Malicious Setting

Unlike a semi-honest adversary, we permit a malicious adversary to force a true
biprime to fail our biprimality test, and detect such behavior using independent
mechanisms in the πRSAGen protocol. However, we must ensure that a non-biprime
can never pass the test with more than negligible probability. To achieve this, we
use a derivative of the biprimality-testing protocol of Frederiksen et al. [16]; rel-
ative to their protocol, ours is simpler, and we prove that it UC-realizes FBiprime.

The protocol essentially comprises a randomized version of the semi-honest
Boneh-Franklin test described previously, followed by a Schnorr-like protocol to
verify that the test was performed correctly. The soundness error of the under-
lying biprimality test is compounded by the Schnorr-like protocol’s soundness
error to yield a combined error of 3/4; this necessitates an increase in the num-
ber of iterations by a factor of log4/3(2) < 2.5. While this is sufficient to ensure
the test itself is carried out honestly, it does not ensure the correct inputs are
used. Consequently, generic MPC is used to verify the relationship between the
messages involved in the Schnorr-like protocol and the true candidate given by
N and shares of its factors. As a side effect, this generic computation samples
r ← ZN and outputs z = r · (p + q − 1) mod N so that the GCD test can
afterward be run locally by each party.

Our protocol makes use of a number of subfunctionalities, all of which are
standard and described in the full version of this paper [7]. Namely, we use
a coin-tossing functionality FCT to uniformly sample an element from some set,
the one-to-many commitment functionality FCom, the generic MPC functionality
over committed inputs FComCompute, and the integer-sharing-of-zero functionality
FZero. In addition, the protocol uses the algorithm VerifyBiprime (Algorithm 5.3).

Protocol 5.2. πBiprime(M,n). Distributed Biprimality Testing
This protocol is parametrized by an integer M and the number of parties
n. In addition, there is a statistical parameter s. The parties have access to
the FCT, FCom, FComCompute, and FZero functionalities.

Input Commitment:
1. Upon receiving input (check-biprimality, sid, N, pi, qi) from the envi-

ronment, each party Pi for i ∈ [n] samples τi,j ← ZM ·2s+1 for j ∈ [2.5s]

88 M. Chen et al.

and commits to these values, along with its shares of p and q, by sending
(commit,GenSID(sid, i), (pi, qi, τi,∗)) to FComCompute(n).

Boneh-Franklin Test:

2. Each party Pi for i ∈ [n] sends (sample, sid) to FZero(n, 22κ+s) and
receives (zero-share, sid, ri) in response.

3. For j ∈ [2.5s], the parties invoke FCT(n, JN), where JN is the subdomain
of Z∗

N that contains only values with Jacobi symbol 1. The parties define
vector γ that contains the 2.5s sampled values.

4. For every j ∈ [2.5s], party P1 computesa

χ1,j
..= γ

r1−(p1+q1−6)/4
j mod N

and every other party Pi for i ∈ [2, n] computes

χi,j
..= γ

ri−(pi+qi)/4
j mod N

5. Every Pi for i ∈ [n] sends (commit,GenSID(sid, i), χi,∗, [n]) to FCom(n).
6. After being notified that all other parties are committed, each party Pi

for i ∈ [n] sends (decommit,GenSID(sid, i)) to FCom(n), and in response
receives χi′,∗ from FCom(n) for i′ ∈ [n] \ {i}.

7. The parties output (not-biprime, sid) to the environment and halt if
there exists j ∈ [2.5s] such that

γ
(N−5)/4
j ·

∏

i∈[n]

χi,j 	≡ ±1 (mod N)

Consistency Check and GCD Test:

8. For j ∈ [2.5s], each party Pi for i ∈ [n] computes αi,j
..= γ

τi,j

j mod N .
The parties all broadcast the values they have computed to one another.

9. The parties all send (flip, sid) to FCT(n, {0, 1}2.5s) to obtain an agreed-
upon random bit vector c of length 2.5s.

10. For j ∈ [2.5s], party P1 computes ζ1,j
..= τ1,j −cj · (p1 + q1)/4, and every

other party Pi for i ∈ [2, n] computes ζi,j
..= τi,j − cj · (pi + qi − 6)/4.

They all broadcast the values they have computed to one another.
11. The parties halt and output (not-biprime, sid) if there exists any j ∈

[2.5s] such that
∏

i∈[n]

γ
ζi,j

j 	≡
∏

i∈[n]

αi,j · χ
cj

i,j (mod N)

12. Let C be a circuit computing VerifyBiprime(N,M, c, {·, ·, ·, ζi,∗}i∈[n]);
that is, let it be a circuit representation of Algorithm 5.3 with

Multiparty Generation of an RSA Modulus 89

the public values N , M , c, and ζ hardcoded. The parties send
(compute, sid, {GenSID(sid, i)}i∈[n], C) to FComCompute(n), and in response
they all receive (result, sid, z). If z = ⊥, or if FComCompute(n) aborts, then
the parties halt and output (not-biprime, sid).

13. The parties halt and output (biprime, sid) to the environment if
gcd(z,N) = 1, or halt and output (not-biprime, sid) otherwise.

aRecall that p1 ≡ q1 ≡ 3 (mod 4), and so subtracting 6 from their sum
ensures that division by 4 can be performed without computing a modular
multiplicative inverse in Z

∗
N . We compensate for this offset using another

offset in Step 7.

Below we present the algorithm VerifyBiprime that is used for the GCD test.
The inputs are the candidate biprime N , an integer M (the bound on the shares’
size), a bit-vector c of length 2.5s, and for each i ∈ [n] a tuple consisting of
the shares pi and qi with the Schnorr-like messages τi,∗ and ζi,∗ generated by
Pi. The algorithm verifies that all input values are compatible, and returns
z = r · (p + q − 1) mod N for a random r.

Algorithm 5.3. VerifyBiprime(N,M, c, {(pi, qi, τi,∗, ζi,∗)}i∈[n])
1. Sample r ← ZN and compute

z ..= r ·
(

− 1 +
∑

i∈[n]

(pi + qi)
)

mod N

2. Return z if and only if it holds that

N =
∑

i∈[n]

pi ·
∑

i∈[n]

qi

∧ 0 ≤ pi < M ∧ 0 ≤ qi < M for all i ∈ [n]
∧ τ1,j = ζ1,j + cj · (p1 + q1 − 6)/4 for all j ∈ [2.5s]
∧ τi,j = ζi,j + cj · (pi + qi)/4 for all i ∈ [2, n] and j ∈ [2.5s]

If any part of the above predicate does not hold, output ⊥.

Theorem 5.4. πBiprime UC-realizes FBiprime in the (FCom,FComCompute,FCT,
FZero)-hybrid model with statistical security against a static, malicious adver-
sary that corrupts up to n − 1 parties.

Proof Sketch. Our simulator S for FBiprime receives N as common input. Let
P∗ and P* be vectors indexing the corrupt and honest parties, respectively. To
simulate Steps 1 through 3 of πBiprime, S simply behaves as FCT, FZero, and
FComCompute would in its interactions with the corrupt parties on their behalf,
remembering the values received and transmitted. Before continuing, S submits
the corrupted parties’ shares of p and q to FBiprime on their behalf. In response,
FBiprime either informs S that N is a biprime, or leaks the honest parties’ shares.

90 M. Chen et al.

In Step 4, S again behaves exactly as FCom would. During the remainder of the
protocol, the simulator must follow one of two different strategies, conditioned
on whether or not N is a biprime. We will show that both strategies lead to a
simulation that is statistically indistinguishable from the real-world experiment.

– If FBiprime reported that N is a biprime, then we know by the specification
of FBiprime that the corrupt parties committed to correct shares of p and q in
Step 1 of πBiprime. Boneh and Franklin [4] showed that the value (i.e., sign) of
the right-hand side of the equality in Step 7 is predictable and related to the
value of γj . We refer to them for a precise description and proof. If without
loss of generality we take that value to be 1, then S can simulate iteration
j of Steps 6 and 7 as follows. First, S computes χ̂i,j for i ∈ P∗ to be the
corrupt parties’ ideal values of χi,j as defined in Step 4 of πBiprime. Then, S
samples χi,j ← Z

∗
N uniformly for i ∈ P* subject to

∏

i∈P*

χi,j ≡ γ
(5−N)/4
j∏

i∈P∗
χ̂i,j

(mod N)

and simulates Step 6 by releasing χi,j for i ∈ P* to the corrupt parties on
behalf of FCom. These values are statistically close to their counterparts in
the real protocol. Finally, S simulates Step 7 by running the test for itself
and sending the cheat command to FBiprime on failure.
Given the information now known to S, Steps 8 through 11 of πBiprime can be
simulated in a manner similar to the simulation of a common Schnorr protocol:
S simply chooses ζi,∗ ← Z

2.5s
M ·2s+1 uniformly for i ∈ P*, fixes c ← {0, 1}2.5s

ahead of time, and then works backwards via the equation in Step 11 to
compute the values of αi,∗ for i ∈ P* that it must send on behalf of the honest
parties in Step 8. These values are statistically close to their counterparts in
the real protocol.
S finally simulates the remaining steps of πBiprime by checking the VerifyBiprime
predicate itself (since the final GCD test is purely local, no action need be
taken by S). If at any point after Step 4 the corrupt parties have cheated
(i.e., sent an unexpected value or violated the VerifyBiprime predicate), then
S sends the cheat command to FBiprime. Otherwise, it sends the proceed
command to FBiprime, completing the simulation.

– If FBiprime reported that N is not a biprime (which may indicate that the
corrupt parties supplied incorrect shares of p or q), then it also leaked the
honest parties’ shares of p and q to S. Thus, S can simulate Steps 4 through 13
of πBiprime by running the honest parties’ code on their behalf. In all instances
of the ideal-world experiment, the honest parties report to the environment
that N is a non-biprime. Thus, we need only prove that there is no strategy
by which the corrupt parties can successfully convince the honest parties that
N is a biprime in the real world.
In order to get away with such a real-world cheat, the adversary must cheat
in every iteration j of Steps 4 through 6 for which

γ
(N−p−q)/4
j 	≡ ±1 (mod N)

Multiparty Generation of an RSA Modulus 91

Specifically, in every such iteration j, the corrupt parties must contrive to
send values χi,j for i ∈ P∗ such that

γ
(N−5)/4
j ·

∏

i∈[n]

χi,j ≡ γ
(N−p−q)/4+Δ1,j

j ≡ ±1 (mod N)

for some nonzero offset value Δ1,j . We can define a similar offset Δ2,j for
the corrupt parties’ transmitted values of αi,j , relative to the values of τi,j

committed in Step 1:

γ
Δ2,j

j ·
∏

i∈[n]

αi,j ≡
∏

i∈[n]

γ
τi,j

j (mod N)

Since we have presupposed that the protocol outputs biprime, we know that
the corrupt parties must transmit correctly calculated values of ζi,∗ in Step 10
of πBiprime, or else Step 12 would output non-biprime when these values are
checked by the VerifyBiprime predicate. It follows from this fact and from the
equation in Step 11 that Δ2,j ≡ cj · Δ1,j (mod ϕ(N)), where ϕ(·) is Euler’s
totient function. However, both Δ1,∗ and Δ2,∗ are fixed before c is revealed
to the corrupt parties, and so the adversary can succeed in this cheat with
probability at most 1/2 for any individual iteration j.
Per Boneh and Franklin [4, Lemma 4.1], a particular iteration j of Steps 4
through 6 of πBiprime produces a false positive result with probability at most
1/2 if the adversary behaves honestly. If we assume that the adversary cheats
always and only when a false positive would not have been produced by honest
behavior, then the total probability of an adversary producing a positive
outcome in the jth iteration of Steps 4 through 6 is upper-bounded by 3/4.
The probability that an adversary succeeds over all 2.5s iterations is therefore
at most (3/4)2.5s < 2−s. Thus, the adversary has a negligible chance to force
the acceptance of a non-biprime in the real world, and the distribution of
outcomes produced by S is statistically indistinguishable from the real-world
distribution. �

Acknowledgements. The authors thank Muthuramakrishnan Venkitasubramaniam
for the useful conversations and insights he provided, Tore Frederiksen for reviewing
and confirming our cost analysis of his protocol [16], and Xiao Wang and Peter Scholl
for providing detailed cost analyses of their respective protocols [21,34].

This research was supported in part by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Project Activity (IARPA) under
contract number 2019-19-020700009 (ACHILLES).

The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of ODNI, IARPA, DoI/NBC, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon.

92 M. Chen et al.

References

1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 27

2. Barker, E.: NIST special publication 800–57, part 1, revision 4 (2016). https://doi.
org/10.6028/NIST.SP.800-57pt1r4

3. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052253

4. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J. ACM 48(4),
702–722 (2001)

5. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure
computation. In: ACM CCS, pp. 291–308 (2019)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

7. Chen, M., et al.: Muliparty generation of an RSA modulus (2020). http://eprint.
iacr.org/2020/370

8. Cocks, C.: Split knowledge generation of RSA parameters. In: Darnell, M. (ed.)
Cryptography and Coding 1997. LNCS, vol. 1355, pp. 89–95. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0024452

9. Cocks, C.: Split generation of RSA parameters with multiple participants (1998).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600

10. Cohen, R., Haitner, I., Omri, E., Rotem, L.: From fairness to full security in mul-
tiparty computation. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol.
11035, pp. 216–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98113-0 12

11. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multi-
party computation. JCRYPT 30(4), 1157–1186 (2017)

12. Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distributed
RSA key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 183–
200. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 12

13. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: S&P, pp. 980–997 (2018)

14. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: S&P (2019)

15. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA-key
generation. In: PODC, p. 320 (1998)

16. Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key
generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 12

17. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

18. Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press (2001)

https://doi.org/10.1007/3-540-45708-9_27
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.1007/BFb0052253
http://eprint.iacr.org/2020/370
http://eprint.iacr.org/2020/370
https://doi.org/10.1007/BFb0024452
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.177.2600
https://doi.org/10.1007/978-3-319-98113-0_12
https://doi.org/10.1007/978-3-319-98113-0_12
https://doi.org/10.1007/978-3-642-11799-2_12
https://doi.org/10.1007/978-3-319-96881-0_12
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8

Multiparty Generation of an RSA Modulus 93

19. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation
and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27954-6 20

20. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold paillier in the two-party setting. JCRYPT 32(2), 265–323
(2019)

21. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

22. Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifi-
able abort. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
369–386. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1 21

23. Joye, M., Pinch, R.: Cheating in split-knowledge RSA parameter generation. In:
Workshop on Coding and Cryptography, pp. 157–163 (1999)

24. Katz, J., Lindell, Y.: Digital signature schemes. In: Introduction to Modern Cryp-
tography, 2nd edn, pp. 443–486. Chapman & Hall/CRC (2015)

25. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms (1969)

26. Malkin, M., Wu, T., Boneh, D.: Experimenting with shared RSA key generation.
In: NDSS, pp. 43–56 (1999)

27. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13(3), 300–317 (1976)

28. Pietrzak, K.: Simple verifiable delay functions. In: ITCS, pp. 60:1–60:15 (2019)
29. Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In: Ohta, K.,

Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-49649-1 2

30. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory
12(1), 128–138 (1980)

31. Rivest, R.L.: A description of a single-chip implementation of the RSA cipher
(1980)

32. Rivest, R.L.: RSA chips (past/present/future). In: Beth, T., Cot, N., Ingemarsson,
I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 159–165. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39757-4 16

33. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

34. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
ACM CCS, pp. 39–56 (2017)

35. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/978-3-662-44381-1_21
https://doi.org/10.1007/3-540-49649-1_2
https://doi.org/10.1007/3-540-39757-4_16
https://doi.org/10.1007/978-3-030-17659-4_13

Secret Sharing

Non-malleability Against Polynomial
Tampering

Marshall Ball1(B), Eshan Chattopadhyay2, Jyun-Jie Liao2, Tal Malkin1,
and Li-Yang Tan3

1 Columbia University, New York, USA
{marshall,tal}@cs.columbia.edu
2 Cornell University, Ithaca, USA
{eshanc,jl3825}@cornell.edu

3 Stanford University, Stanford, USA
liyang@cs.stanford.edu

Abstract. We present the first explicit construction of a non-malleable
code that can handle tampering functions that are bounded-degree poly-
nomials. Prior to our work, this was only known for degree-1 polynomials
(affine tampering functions), due to Chattopadhyay and Li (STOC 2017).
As a direct corollary, we obtain an explicit non-malleable code that is
secure against tampering by bounded-size arithmetic circuits.

We show applications of our non-malleable code in constructing non-
malleable secret sharing schemes that are robust against bounded-degree
polynomial tampering. In fact our result is stronger: we can handle adver-
saries that can adaptively choose the polynomial tampering function
based on initial leakage of a bounded number of shares.

Our results are derived from explicit constructions of seedless non-
malleable extractors that can handle bounded-degree polynomial tam-
pering functions. Prior to our work, no such result was known even for
degree-2 (quadratic) polynomials.

1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [33]
as a natural and useful modification of error correcting codes, which can handle
stronger forms of adversarial tampering attacks (including ones that can change
all symbols of the codeword), while still providing meaningful guarantees. Infor-
mally, a non-malleable code is a pair of algorithms (Enc,Dec), and it is secure
against a tampering function family F if for every tampering function f ∈ F ,
the decoding of a tampered codeword, namely Dec(f(Enc(s))) for an arbitrary
message s, will either be the original message s, or a value completely unrelated
to s. (See Sect. 3.3 for a formal definition).

As an example of an application of non-malleable codes, one can consider s
as being the signing key of a digital signature scheme, and is stored as Enc(s) in
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 97–126, 2020.
https://doi.org/10.1007/978-3-030-56877-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_4

98 M. Ball et al.

memory. The non-malleability guarantee ensures that for any tampering attack
which turns Enc(s) into f(Enc(s)), the tampered signature is signed under
either s or a completely unrelated key. In both cases the tampered signature
does not help the adversary learn how to forge a valid signatures on its own.

Non-malleable codes have also found other useful applications in cryptogra-
phy, such as in constructing non-malleable commitments [37], public-key encryp-
tion systems [25], and, as we discuss in Sect. 1.2, non-malleable secret sharing
[1,6,35,36].

Dziembowski et al. [33] observed that some restrictions on the tampering
function family is necessary. Indeed, it is impossible to achieve non-malleability
if the adversary is able to decode the codeword, tamper the message, and then
re-encode the tampered message. In the last 10 years, non-malleable codes have
been shown to exist for numerous rich tampering function families and in various
settings. In this work we focus on explicit, information-theoretic constructions.

A successful line of work focused on split-state tampering functions, where
the codeword is broken into several disjoint parts and the adversary can tamper
each part arbitrarily but independently [2–4,16,19,21,32,38,41,42,44,45]. This
line of work has culminated in the construction of near-optimal codes in this
setting.

Recently there has been significant interest and progress on constructing
non-malleable codes in a more general setting, where the tampering functions
are not restricted to fixed partitions, and can act globally on the codeword.
Global tampering classes that have been studied include permutations and bit
flipping [5], local functions [9], affine functions over F2 [17], small-depth circuits
[8,17], and small-depth decision trees [10]. Our work fits into this line of research.

Our Results. We consider the tampering class of bounded-degree polynomials.
This is a natural class of tampering functions, and significantly generalizes the
class of affine tampering functions (i.e. degree-1 polynomials) studied in [17].
We define the setting more precisely as follows. Let q be a prime, and Polyn,q,d

denote the family of n-variate polynomials over Fq of degree at most d. We are
interested in the following family of tampering functions:

Fn,q,d := {(p1, . . . , pn) : ∀i ∈ [n], pi ∈ Polyn,q,d}.

For P = (p1, . . . , pn) ∈ Fn,q,d, and x ∈ F
n
q , define P (x) := (p1(x), . . . , pn(x)).

The following is our main result.

Theorem 1 (NMCs for bounded-degree polynomials). There exists a
constant C > 0 such that for all integers n, d,m, any ε > 0 and any prime
q > (Cn2d4m22m/ε2) · log(nd/ε), there exists a non-malleable code on alphabet
[q], with block length n, message length m, relative rate Ω(m/n log q) and error
ε, with respect to the family Fn,q,d.

Prior to our work, no explicit construction of a non-malleable code was known
even for quadratic polynomials (d = 2).

To prove Theorem 1, we construct new explicit seedless non-malleable extrac-
tors that can handle the tampering class Fn,q,d. A similar strategy was adopted

Non-malleability Against Polynomial Tampering 99

in [17], where they constructed seedless non-malleable extractors against affine
tampering functions (i.e, Fn,q,1). However, their construction of such extractors
heavily exploit the linearity of the tampering functions and explicit construc-
tions of extractors that are linear, and their techniques seem to break down
even against quadratic tampering functions. We introduce a completely differ-
ent approach to construct seedless non-malleable extractors against higher degree
polynomial tampering. We discuss this in detail in Sect. 1.3.

We use Theorem 1 to derive a non-malleable code that is secure against tam-
pering by arithmetic circuits. Consider the following family of tampering func-
tions:

En,q,s := {(e1, . . . , en) : ei is an n-variate size-s arithmetic circuit over Fq}.

For E = (e1, . . . , en) ∈ En,q,s and x ∈ F
n
q , we define E(x) := (e1(x), . . . , en(x)).

Corollary 1 (NMCs for arithmetic circuits). There exists a constant
C > 0 such that for all integers n, s,m, any ε > 0 and any prime q >
(Cn2sm24s+2m/ε2) · log(n/ε), there exists a non-malleable code on alphabet [q],
with block length n, message length m, relative rate Ω(m/n log q) and error ε,
with respect to the family En,q,s.

To our knowledge, this is the first explicit construction of a non-malleable
code that can handle tampering by arithmetic circuits.

Corollary 1 follows as a straightfoward consequence of Theorem 1, using the
fact that a size-s arithmetic circuit computes a polynomial of degree at most 2s.

1.2 Non-malleable Secret Sharing

A t-out-of-n secret sharing scheme [13,55] allows a dealer to share a secret s ∈
{0, 1}m among n parties such that any t parties can collectively recover the
secret, and yet any colluding (t − 1) parties learn nothing about the secret.
Recently, Goyal and Kumar [35] initiated the study of the more robust notion
of non-malleable secret sharing. A non-malleable secret sharing scheme further
requires the shares to be non-malleable against a family of tampering functions
F . That is, when the shares are tampered by any function f ∈ F , for any t parties
the reconstructed secret should be either s or a value completely unrelated to s.

Similar to non-malleable codes, non-malleable secret sharing schemes aim to
provide protection against tampering attacks, and there are strong connections
between non-malleable secret sharing schemes and non-malleable codes. In fact,
it can be shown that non-malleable codes in the 2-split-state model are 2-out-of-2
secret sharing schemes. In [35], the authors constructed t-out-of-n non-malleable
secret sharing schemes in different tampering models. A detailed comparison of
these models and references to other related work can be found in [1]. These
models have in common that the tampering functions are “compartmentalized”,
applying the function independently to different disjoint parts.

A natural direction of investigation is to construct non-malleable secret
sharing against tampering functions that are not compartmentalized. Recently,

100 M. Ball et al.

Lin et al. [46] construct a t-out-of-n secret sharing against affine tampering
for every t and large enough n, and Chattopadhyay and Li [18] construct a
non-malleable ramp secret sharing against affine tampering composed with joint
tampering.

Our Results. We construct a non-malleable secret sharing scheme that is secure
against the class of polynomial tampering functions. Prior to our work, no such
explicit construction was known even against the tampering class of quadratic
polynomials. The following is an informal version of our result:

Theorem 2 (NM secret sharing for polynomial tampering). For all inte-
gers n, d, r, any prime q > poly(2m, n, d) and 1 ≤ r ≤ n, there exists an r-out-
of-n non-malleable secret sharing scheme with respect to polynomial tampering
Fn,q,d for m-bit secrets.

In fact our construction is stronger and can handle an adaptive tampering
adversary who chooses the polynomial tampering function f ∈ Fn,q,d depending
on any r − 1 of the shares.

As in the case of non-malleable codes, the above theorem directly yields
explicit non-malleable secret sharing schemes that are secure against the tam-
pering class of bounded-size arithmetic circuits.

1.3 Seedless Non-malleable Extractors

Informally, a randomness extractor is a deterministic algorithm that produces
nearly uniform bits of randomness from defective sources of randomness. The
study of randomness extractors is motivated by the fact that many applications
in computer science require high-quality random bits, whereas most naturally
occurring sources of randomness are of much lower quality. Before defining a
randomness extractor formally, we first define the notion of min-entropy that is
typically used as a measure of the quality of a source:

Definition 1 (Min-entropy and (n, k)-sources). Let X be a distribu-
tion on {0, 1}n. The min-entropy of X, denoted by H∞(X), is defined as
minx(log(1/Pr[X = x])).

An (n, k)-source is a distribution on {0, 1}n with min-entropy at least k.

For two distributions D1 and D2 on the same universe Ω, we use |D1 − D2|
to denote the statistical distance between them. We are now ready to define a
randomness extractor for a class of sources.

Definition 2 (Extractor). Let X be a family of sources on {0, 1}n. A function
Ext : {0, 1}n → {0, 1}m is called an extractor for the family X with error ε if
for any X ∈ X ,

|Ext(X) − Um| ≤ ε,

where Um is the uniform distribution over {0, 1}m.

Non-malleability Against Polynomial Tampering 101

It turns out that there cannot exist an extractor that works for the family of
distributions on {0, 1}n with min-entropy at least n − 1. To circumvent this
difficulty, a long line of work has focused on extracting from a weak source X
assuming access to a short independent seed Y . Such extractors are called seeded
extractors [48] and we now have almost optimal constructions of such extractors
[31,39]. Another successful line of research focused on extracting random bits
assuming more structure on the source X. Such extractors are called as seedless
extractors. Examples include assuming that the weak source consists of multiple
independent sources [11,14,20,23], assuming that the source is supported on
an affine subspace [15,34] or an algebraic variety [29], or even simply assuming
that there are some unknown coordinates of the source that are uniform and
independent [24]. Explicit constructions of seeded and seedless extractors have
found numerous applications in complexity theory [60], coding theory [57] and
cryptography [12,47].

Recently, several works studied a more robust notion of a randomness extrac-
tor called non-malleable extractor. The main motivations for studying this
stronger variant is from applications in cryptography. Surprisingly, explicit con-
structions of non-malleable extractors have led to improved constructions of
standard extractors. As in the case of standard extractors, there are seeded non-
malleable extractors and seedless non-malleable extractors. The seeded variant
was introduced by Dodis and Wichs [27] with applications to the problem of
privacy application [12]. The seedless variant of non-malleable extractors was
introduced by Cheraghchi and Guruswami [21] with applications to construc-
tions of non-malleable codes.

We focus on the seedless variant of non-malleable extractors. For the sake of
simplicity, we define seedless non-malleable extractors in slightly less generality
and refer the reader to Sect. 3.3 for the more general definition.

Definition 3 (Seedless non-malleable extractor). Let X be a family of
sources on {0, 1}n and F be a class of tampering functions acting on {0, 1}n.
Further assume that all f ∈ F does not have any fixed points. A function
nmExt : {0, 1}n → {0, 1}m is defined to be a non-malleable extractor with respect
to X and F with error ε if the following hold: for any X ∈ X and f ∈ F , we
have

|(nmExt(X),nmExt(f(X))) − (Um,nmExt(f(X)))| ≤ ε.

An informal way of interpreting the above definition is as follows. Let X be a
source from the family X . The distribution X ′ = f(X) represents the tampered
distribution, where f ∈ F (note that X ′ �= X). The task of the non-malleable
extractor nmExt is to remove the correlation between the random variables X
and X ′ (which are clearly dependent).

Chattopadhyay and Zuckerman [19] gave explicit constructions of seedless
non-malleable extractors assuming X consists of 10 independent sources, and
each source is arbitrarily tampered. This was improved by Chattopadhyay, Goyal
and Li [16] to construct seedless non-malleable extractors for 2 independent
sources. Chattopadhyay and Li [17] constructed a seedless non-malleable extrac-
tor against the class of affine functions. In another work, Chattopadhyay and

102 M. Ball et al.

Li [18] constructed seedless non-malleable extractors when the source X con-
sists of 2 independent sources that are interleaved in an unknown way. They
also consider some generalizations such as composition of linear tampering and
partitioned tampering.

Our Results. We give a seedless non-malleable extractor that can handle polyno-
mial tampering. Prior to our work, Chattopadhyay and Li [17] handled the spe-
cial case of affine tampering. Their construction heavily relied on linearity of the
tampering functions and linearity properties of extractors, and their techniques
do not seem to extend even to the case tampering functions that are quadratic
polynomials. While a seedless non-malleable extractor for uniform source is suf-
ficient for the reduction in [21], we show that our non-malleable extractor in fact
works for skew affine source defined below. This generality is useful in our con-
struction of non-malleable secret sharing schemes that are robust to polynomial
tampering.

Definition 4. Let Fq be a finite field, and let X = (X1, . . . , Xn) be a distribution
on F

n
q . We say X is an affine source if X is uniform over an affine subspace

W ⊆ F
n
q . We define the dimension of X to be the dimension of W . We say X

is a skew affine source if X is an affine source and for every i ∈ [n], Xi has
support size greater than 1.

We are now ready to state our result on explicit non-malleable extractors
against polynomial tampering.

Theorem 3. There exists a constant C > 0 such that for all integers n, d,m,
any prime q and any ε > 0 such that q > (Cn2d4m22m/ε2) · log(nd/ε), there
exists an explicit function nmExt : F

n
q → {0, 1}m, that is a seedless non-malleable

extractor with respect to the family of sources

X = {X : X is a skew affine source on F
n
q of dimension ≥ 1}

and the tampering family Fn,q,d.

Prior to our work, no explicit construction of a seedless non-malleable extrac-
tor was known against even quadratic polynomials (d = 2).

We use the above theorem to derive a non-malleable extractor against arith-
metic circuits.

Corollary 2. There exists a constant C > 0 such that for all integers n, s,m,
any prime q and any ε > 0 such that q > (Cn2sm24s+2m/ε2) · log(n/ε), there
exists an explicit function nmExt : F

n
q → {0, 1}m, that is a seedless non-malleable

extractor with respect to the

X = {X : X is a skew affine source on F
n
q of dimension ≥ 1}

and the tampering family En,q,s.

Non-malleability Against Polynomial Tampering 103

To the best of our knowledge, this is the first explicit construction of a non-
malleable extractor that can handle tampering by arithmetic circuits.

We in fact show that the non-malleable extractors constructed are efficiently
invertible, i.e, given any output z, there exists an efficient sampling algorithm
that produces a sample from a distribution that is close to uniform on the set
nmExt−1(z). We discuss the sampling algorithm in Sect. 5. We then use the
connection established in [21] (see Sect. 3.4) to derive the explicit non-malleable
codes with respect to polynomials (Theorem 1) and arithmetic circuits (Corol-
lary 2).

Organization. We give an overview of our techniques in Sect. 2. We discuss some
preliminaries in Sect. 3. In Sect. 4, we explicitly construct a non-malleable extrac-
tor against polynomial tampering functions. In Sect. 5, we present efficient sam-
pling algorithms necessary to construct efficient non-malleable codes. We use
Sect. 6 to construct a non-malleable secret sharing scheme that can handle poly-
nomial tampering.

2 Overview of Techniques

In this section we discuss the main ideas that are used in our explicit con-
structions of non-malleable codes, non-malleable extractors, and non-malleable
secret sharing schemes. We start by discussing the explicit non-malleable extrac-
tor against polynomial tampering (Theorem3). We then discuss ideas that go
into using this construction to construct efficient non-malleable codes and non-
malleable secret sharing schemes that are robust to polynomial tampering.

Seedless Non-malleable Extractors Against Polynomials. We discuss the main
ideas behind the construction of the non-malleable extractor from Theorem3.
We consider the simpler setting and assume the source is uniform (instead of
being a skew affine source as in Theorem 3). This setting cleanly captures our
main ideas. The setup is as follows:

Let n, d be arbitrary integers, and fix any ε > 0. Let q = poly(n, d, 1/ε) be
a large enough prime (for exact details, see the statement of Theorem 3). Let
X be the uniform distribution on F

n
q . Our goal is to construct a polynomial

time function nmExt : F
n
q → {0, 1}m such that for any tampering function

P = (p1, . . . , pn) from the class Fn,q,d, such that there exits i ∈ [n] for which
pi(x) �= xi, we have

|(nmExt(X),nmExt(P (X))) − (Um,nmExt(P (X)))| ≤ ε.

The high level idea of our construction is to observe that we can express X
as a convex combination of distributions that are flat1 on lines in F

n
q , and then

design a non-malleable extractor for such line sources. We note that Gabizon

1 We say a distribution is flat if it is uniformly distributed on its support.

104 M. Ball et al.

and Raz [34] used such an approach for constructing affine extractors on large
fields.

We now describe our approach more precisely. Our plan is to construct a
low-degree multivariate polynomial h : F

n
q → Fq such that the following hold:

for all β ∈ Fq, the polynomial

gβ = h(x) + βh(P (x))

is non-constant. (We stress that the choice of h cannot depend on P .) Now, for
a suitable choice of m (we pick m = ν log q for some small enough ν), we claim
that for such an h, defining

nmExt(x) = h(x) (mod 2m)

would satisfy the conclusion of Theorem 3.
Before constructing such an h, we first discuss why this is indeed enough. For

any a ∈ F
n
q , b ∈ F

n
q \{0n}, define the line La,b = {(a1+tb1, . . . , an+tbn) : t ∈ Fq}.

We abuse notation, also use La,b to denote the flat distribution on La,b. Then
clearly, X can be sampled by first uniformly sampling a, b (from their respective
domains), and then sampling from La,b.

The first observation is the following: let D = deg(gβ), and let gβ,a,b(t) be
the univariate restriction of gβ to the line La,b. We note that the coefficient
of tD is gβ(b). Appealing to the fact that a low degree polynomial has few
roots (Lemma 4), it follows that with high probability (over sampling a, b), the
univariate polynomial gβ,a,b(t) is a non-constant polynomial of degree D. Fix
such vectors a, b so that gβ,a,b is a non-constant polynomial. We now use a deep
result from algebraic geometry known as the Weil bound (see Theorem4) to
conclude that for any non-trivial character2 χ of Fq, we have

|Et∼Fq
[χ(gβ,a,b(t))]| ≤ D/

√
q.

Roughly, this asserts the fact that the non-trivial Fourier coefficients of the
distribution gβ,a,b(UFq

) are bounded, where UFq
denotes the uniform distribu-

tion on Fq. Such a bound can be now be translated into statistical closeness
of the distribution (nmExt(La,b),nmExt(P (La,b))) to (Um,nmExt(P (La,b)))
using known XOR lemmas (see Lemma 1, Lemma 2). To conclude that
(nmExt(X),nmExt(P (X))) is close to (Um,nmExt(P (X))), we combine the fact
that X is a convex combination of the flat sources La,b, and that for most a, b,
we have (nmExt(La,b),nmExt(P (La,b))) is close to (Um,nmExt(P (La,b))).

Given the above discussion, all that remains to construct the required non-
malleable extractor is to find such an h. We recall the guarantee we need from
h for convenience of the reader:

– for all β ∈ Fq and P = (p1, . . . , pn) ∈ Fn,q,d satisfying that for some i ∈
[n] pi(x) �= xi, the polynomial gβ(x) = h(x) + βh(P (x)) is a non-constant
polynomial.

2 See Sect. 3 for a quick recap of characters of finite fields.

Non-malleability Against Polynomial Tampering 105

– h must a low degree polynomial. In particular, we require deg(h)
 q1/2.

An initial attempt to construct such an h could be to use a polynomial similar
to the one used by Gabizon and Raz [34] in their affine extractor construction
and define

h(x1, x2, . . . , xn) = xc1
1 + xc2

2 + . . . + xcn
n ,

where c1, c2, . . . , cn are arbitrary distinct positive integer. It is not hard to see
that this does not work as follows. It is always possible to find β, γ1, γ2, . . . , γn ∈
F

∗
q such that γci

i = −β−1 for every i and γi �= 1 for at least one i. Now defining
P = (γ1x1, . . . , γnxn) gives the desired counterexample since for this choice of β
and P , h(x) + βh(P (x)) is identically the zero polynomial.

We avoid the above counterexample as follows: Pick c1, c2, . . . , c2n from an
arithmetic progression such that the common difference is co-prime with q − 1,
and define

h(x1, x2, . . . , xn) =
n∑

i=1

(
x

c2i−1
i + xc2i

i

)
.

For this choice of h, it is not hard to prove that if each pi(x) = γixi (for
some γi ∈ Fq), and g(x) is a constant polynomial, it must be that each γi is
1, and β = −1. However this contradicts our assumption on P that for some i,
pi(x) �= xi. Thus we avoid the counterexample discussed above.

We in fact prove that this choice of h works for all P ∈ Fn,q,d\{(x1, . . . , xn)}.
To prove this, we rely on a result (Lemma 3) which shows that for such a choice
of ci’s, for any distinct i1, i2 ∈ [n], deg(pci1

i1
) is well separated from deg(pci2

i2
).

With a careful case analysis, we use this to show that some monomial (of degree
at least 1) in g(x) survives. We provide the details in Sect. 4.

Non-malleable Extractors for Skew Affine Sources Against Polynomial Tamper-
ing. In the previous paragraph we sketched how to construct a non-malleable
extractor against polynomial tampering assuming access to a uniform source on
F

n
q . In Sect. 4, we actually show that the non-malleable extractor works for any

affine source which is non-constant on every coordinate. We call such source a
skew affine source. In other words, our non-malleable extractor is resilient to
affine leakage which does not reveal any single coordinate in the source. We will
see the application of this property in non-malleable secret sharing.

To prove this stronger property of the non-malleable extractor, recall that
in previous section we defined a polynomial gβ(x) = h(x) + βh(P (x)), and its
restriction to the line La,b, denoted by gβ,a,b(t). We then sketched a proof that
gβ,a,b is non-constant if gβ(b) �= 0, which happens with high probability over b.
In Sect. 4, we actually show the following stronger result: ∀i, bi �= 0 is a sufficient
condition for gβ,a,b to be non-constant. In fact, it is also a necessary condition. If
there exists i such that bi = 0, the adversary can set pj(x) = xj for every j �= i
and pi(x) = c for a constant c �= ai. One can verify that g−1,a,b is a constant in
this case.

The proof idea is that a similar case analysis as sketched in the previous
section also works for gβ,a,b if bi �= 0 for every i. We then show that every skew

106 M. Ball et al.

affine source is a convex combination of line source La,b where bi �= 0 for every
i (Lemma 7) to finish the proof.

Non-malleable Codes Against Polynomial Tampering. We now turn to crypto-
graphic applications of our non-malleable extractors. To build a non-malleable
code against polynomial tampering, we use the connection between non-
malleable code and non-malleable extractor established in [21]. To apply the
reduction in [21], we need an efficient algorithm which samples almost uniformly
from a pre-image of our non-malleable extractor on any output.

Recall that our non-malleable extractor is of the form nmExt(x) = σ(h(x)),
where σ is modulo 2m and h is a bounded-degree polynomial. Inverting σ is
easy, and there exists an algorithm by Cheraghchi and Shokrollahi [22] which
almost-uniformly samples a pre-image of bounded-degree polynomial (over any
large enough prime field). An initial attempt to sample from nmExt−1(z) would
be first sample y ∈ σ−1(z) and then sample from h−1(y). However this does
not work since h−1(y) might have different size for different y ∈ Fq. So we need
to sample y ∈ σ−1(z) with probability proportional to |h−1(y)|. A possible way
to perform such weighted sampling from σ−1(z) is to do a rejection sampling
which samples y ∈ σ−1(z) uniformly in each round and accept with probability
proportional to |h−1(y)|. However, we need to (approximately) count |h−1(y)|
in this approach, which is difficult in general.

Chattopadhyay and Zuckerman [19] handled a similar sampling task while
constructing efficient non-malleable codes in the split-state model, with the cru-
cial difference being that they were dealing with polynomials on a constant
number of variables. In [19], they adopted a similar sampling strategy as the
one sketched above, and they count |h−1(y)| with an algorithm from [40], which
has running time doubly exponential in the number of variables (which, in their
case, still takes constant time).

To get around this difficulty, we observe that the algorithm in [22] is actually
a rejection sampling which has accepting probability proportional to |h−1(y)| in
each round. Therefore, we can embed an uniform sampling of y in each round
of [22] and bypass the computation of |h−1(y)|. We provide the details of our
sampling algorithm in Sect. 5.

Non-malleable Secret Sharing Against Polynomial Tampering. As another appli-
cation of our non-malleable extractor, we build a non-malleable secret shar-
ing that can handle polynomial tampeering. We obtain this by plugging in our
extractor into a scheme by Lin, Cheraghchi, Guruswami, Safavi-Naini and Wang
[46]. In this scheme, they take an efficiently invertible non-malleable extractor
nmExt and a linear erasure code (Enc,Dec), then define the sharing function
to be Enc ◦ nmExt−1 and the reconstruction function to be nmExt ◦ Dec. If
in the erasure code (Enc,Dec), Dec only needs r symbols in the codeword to
reconstruct the original message, then so does nmExt◦Dec in the secret sharing
scheme. Therefore the correctness holds as long as there is an efficient inverter
for nmExt which succeeds with high probability.

Non-malleability Against Polynomial Tampering 107

To prove privacy and non-malleability we need the following guarantee on
nmExt. To guarantee non-malleability, for every tampering function f , nmExt
should be non-malleable against the composed tampering function Dec◦f ◦Enc.
For polynomial tampering, taking the erasure code to be a linear code over Fq

naturally satisfies this requirement. To guarantee privacy, given a uniform source
X, nmExt(X) should be uniform conditioned on that some symbols of Enc(X)
is leaked to the adversary. When (Enc,Dec) is a linear code, this means nmExt
should be an affine extractor. This is also true for our extractor (see Appendix
A in the online version of this paper [7]).

We in fact achieve a stronger result and construct a non-malleable secret shar-
ing scheme where the adversary can choose the polynomial tampering function
based on some of the shares. If given a secret the adversary can learn a symbol
of nmExt−1(s) from their shares, the secret sharing scheme sketched above will
become malleable. We show that we can avoid this problem by taking Enc to be
a “truncated systematic MDS code”. That is, we take a MDS (maximum dis-
tance separable) code for which the encoding is in the form f(x) = (x, f ′(x)),3

then we discard x and only keep f ′(x). For x ∈ F
r
q, we can prove that given any

r − 1 symbols in f ′(x), it is not possible to recover any symbol in x. Roughly
speaking, if given r − 1 symbols in f ′(x) it is possible to recover a symbol xi,
then these symbols together with xi form a collection of r symbols which con-
tain “redundant information”. This violates the property of MDS codes that the
original message can be recovered with any r symbols in the codeword. This is
conceptually similar to Shamir’s secret sharing scheme, and the only difference
is we want to hide every single symbol in the message while Shamir’s secret shar-
ing is only hiding the first symbol because the others are random. Because our
extractor is non-malleable given any other form of affine leakage (using the fact
that our non-malleable extractor works for any skew affine source of dimension
at least 1), we can conclude that the corresponding r-out-of-n secret sharing is
non-malleable even if the adversary choose their tampering function based on
r−1 shares. We provide more details of our non-malleable secret sharing scheme
in Sect. 6.

3 Preliminaries

Define e(x) = e2πix, where i =
√−1.

For any distribution D, let D(x) denote Pr[D = x], and let Supp(D) denote
the support of D.

Let Um denote the uniform distribution over m bits. Let UΣ denote the
uniform distribution over the finite set Σ.

For two distributions D1 and D2 on the same universe, we use |D1 − D2| to
denote the statistical distance. We use D1 ≈ε D2 to denote the fact that D1 and
D2 are ε-close in statistical distance.

3 The definition of MDS codes and the construction of systematic MDS codes can be
found in Sect. 3.5.

108 M. Ball et al.

For non-negative integers λ1, . . . , λn that sum to 1, and arbitrary distribu-
tions D1, . . . , Dn, we use

∑
i λiDi to denote the distribution that places weight∑

i λiDi(x) at the point x.
For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. For non-negative integer

k, we use
(
[n]
k

)
denote the set of all subsets of [n] of size k. Let Σ be a set of

symbol. For sequence X = (x1, . . . , xn) ∈ Σn and S = {i1, . . . , ik} ⊆ [n] such
that i1 < i2 < . . . < ik, we use XS to denote the sequence (xi1 , xi2 , . . . , xik).

3.1 Characters Sums over Finite Fields

Let q be a prime. The additive characters of Fq are of the form χj(x) = e(xj/q),
for j = 0, 1, . . . , q − 1. χ0 is called the trivial character, and the others are
called as non-trivial characters of Fq. We now recall a deep result from algebraic
geometry that has found various applications in pseudorandomness.

Theorem 4 (Weil bound [58]). Let p be a non-constant univariate polynomial
of degree d < q over Fq. For any non-trivial additive character χ of Fq, we have

∣∣∣∣∣∣

∑

y∈Fq

χ(p(y))

∣∣∣∣∣∣
≤ d

√
q.

We record a couple of XOR lemmas that lets us translate bounds on expec-
tations of characters under a distribution D, to the closeness of D in statistical
distance to the uniform distribution.

Lemma 1 ([50]). For every prime q, there exists an efficiently computable map
σ : Fq → {0, 1}m such that if Y is a distribution on Fq such that for every
non-trivial additive character χ of Fq,

E[χ(Y)] ≤ δ,

then it is the case that
|σ(Y) − Um| ≤ ε,

where ε = δ2m/2 + O(2m/q).

Lemma 2 ([26,50]). For every prime q, there exists an efficiently computable
map σ : Fq → {0, 1}m such that if (Y, Y ′) is a distribution on Fq × Fq where for
all additive characters χ, φ of Fq, where χ is non-trivial,

E[χ(Y)φ(Y ′)] ≤ δ,

then it is the case that

|(σ(Y), σ(Y ′)) − (Um, σ(Y ′))| ≤ ε,

where ε = δ2m + O(2m/q).

Non-malleability Against Polynomial Tampering 109

3.2 Useful Lemmas About Polynomials

We recall a useful result from [30] (Lemma 4.2).

Lemma 3. Let n, r, d, λ be arbitrary positive integers, and q be a prime. Let
p1(x), . . . , pr(x) ∈ Polyn,q,d be non-constant polynomials. Suppose that di =
deg(pi). Define ci = λ(2dr + 1) + λi. Then, for all 1 ≤ i < j ≤ r, we have

|deg(pci
i) − deg(pcj

j)| = |ci · di − cj · dj | ≥ λ.

We also record the Schwartz-Zippel Lemma.

Lemma 4 ([54,59]). Let p(x) ∈ Polyn,q,d be a non-zero polynomial. Then,

Pr
x∈Fn

q

[p(x) = 0] ≤ d/q.

3.3 Non-malleable Codes and Seedless Non-malleable Extractors

Definition 5 (Coding schemes). Let Σ be a finite alphabet set. A pair of
functions (Enc,Dec), where Enc : {0, 1}k → Σn is a randomized function and
Dec : Σ → {0, 1}k ∪ {⊥} is a deterministic function, is defined to be a cod-
ing scheme with block length n and message length k if for all z ∈ {0, 1}k,
Pr[Dec(Enc(s)) = s] = 1.

Definition 6 (Tampering functions). Let Σ be a finite alphabet set. For any
n > 0, let HΣ,n denote the set of all functions h : Σn → Σn. Any subset
G ⊆ HΣ,n is a family of tampering functions.

For simplicity, we sometimes do not specify the domain of tampering functions
when it is clear from the context. We define a function that will be useful in
defining non-malleable codes:

copy(x, y) =

{
x if x �= same
y if x = same.

Definition 7 (Non-malleable codes). Let Σ be a finite alphabet set. A coding
scheme (Enc,Dec) on alphabet Σ with block length n and message length k is a
non-malleable code with respect to a tampering family G ⊂ HΣ,n and error ε if
for every g ∈ G there is a random variable Dg supported on {0, 1}k ∪ {same}
that is independent of the randomness in Enc, and any message z ∈ {0, 1}k, we
have

|Dec(f(Enc(z))) − copy(Dg, z)| ≤ ε

We define the rate of a non-malleable code C to be the quantity k
n log(|Σ|) .

110 M. Ball et al.

Definition 8 (Seedless non-malleable extractors). Let Σ be a finite alpha-
bet set, G be a class of tampering functions Σn → Σn and X be a class of
distribution over Σn. A function nmExt : Σn → {0, 1}m is called a seedless
non-malleable extractor that works for X with respect to G with error ε if for
every distribution X ∈ X and every tampering function g ∈ G, there exists a
random variable Dg on {0, 1}m ∪ {same} that is independent of X, such that

|(nmExt(X),nmExt(g(X))) − (Um, copy(Dg,Um))| ≤ ε.

3.4 Non-malleable Codes via Seedless Non-malleable Extractors

Cheraghchi and Guruswami [21] established the following connection between
non-malleable codes and seedless non-malleable extractors.

Theorem 5. Let Σ be some finite alphabet set. Let nmExt : Σn → {0, 1}m

be a polynomial time computable seedless non-malleable extractor that works for
uniform distribution with respect to a class of tampering functions G acting on
Σn. Suppose there is a sampling algorithm Samp that on any input z ∈ {0, 1}m

runs in time poly(n, log |Σ|) and samples from a distribution that is δ-close to
uniform on the pre-image set nmExt−1(s).

Then there exists an efficient construction of a non-malleable code on alphabet
Σ with block length n, relative rate m

n , error 2mε+δ with respect to the tampering
family G.

Given such an invertible non-malleable extractor, the non-malleable code for
G is defined as follows: Any message v ∈ {0, 1}m is encoded as Samp(v). The
decoding of a codeword c ∈ Σn is nmExt(c) ∈ {0, 1}m.

3.5 MDS Code

Definition 9. Let C ⊆ F
n
q be a linear subspace of dimension k where Fq is the

finite field with q elements. We say C is a [n, k, d]q code if every two distinct
codewords c1, c2 ∈ C coincide in at most n−d coordinates. We say C is a [n, k]q
MDS (maximum distance separable) code if C is a [n, k, n − k + 1] code, i.e. C
matches Singleton bound [56].

Definition 10. Let C be a [n, k, d]q code and Enc be a bijective linear mapping
from F

k
q to C. We say Enc is systematic encoding of C if there exists a function

Enc′ : F
k
q → F

n−k
q such that for every x ∈ F

k
q , Enc(x) = (x,Enc′(x)).

The distance property of a [n, k]q MDS code guarantees that the codewords
remain distinct even when restricted to only k out of n symbols. Moreover, it is
well-known that Reed-Solomon code [51] is a MDS code, and every linear code
has a systematic encoding. (For example, see [43] for a systematic encoding of
Reed-Solomon code.) Therefore we have the following lemma.

Non-malleability Against Polynomial Tampering 111

Lemma 5. For every finite field Fq of q element, and every integer k, n such that
k ≤ n ≤ q, there exists a [n, k]q MDS code C ⊆ F

n
q and an efficient systematic

encoding Enc : F
k
q → C. Moreover, for every R ⊆ [n] of size |R| = k, there exists

an efficient decoding algorithm DecR : F
k
q → F

k
q such that for every x ∈ F

k
q ,

DecR(Enc(x)R) = x, where Enc(x)R denote the restriction of Enc(x) on the
coordinates specified by R.

3.6 Other Useful Lemmas

We will also use the following lemma for statistical distance in [46] (Lemma 13).

Lemma 6. Let V,W be finite sets, and let (V,W), (V ′,W ′) be joint distribution
on V × W. Let ε > 0 be real number such that

(V,W) ≈ε (V ′,W ′).

Then for every event E ⊆ Supp(W) ∩ Supp(W ′),

|(V | W ∈ E) − (V ′ | W ′ ∈ E)| ≤ ε

Pr[W ∈ E]
.

4 Non-malleable Extractors Against Polynomials

We present the proof of Theorem 3 in this section. On a high level, our idea is to
express X as a convex combination of sources on lines in F

n
q , and design a non-

malleable extractor for such line sources. We note that Gabizon and Raz [34]
adopted such an approach for constructing affine extractors over large fields.
First we show that a skew affine source is a convex combination of skew line
source.

Lemma 7. Let q be a prime, n < q be a integer and X ∈ F
n
q be a skew affine

source of dimension k. Then there exists a distribution A ∈ F
n
q and a vector

b ∈ (Fq\{0})n such that X ≡ A + Tb, where T is uniform over Fq. In other
word,

X =
∑

a∈Fn
q

Pr[A = a] · La,b,

where La,b is the uniform distribution over the line {a + tb : t ∈ Fq}.
Proof. Suppose X is uniform over the affine subspace W +z where W is a linear
subspace of F

n
q and z ∈ F

n
q is a fixed vector. Our goal is to find a vector b ∈ W

s.t. bi �= 0 for every i ∈ [n]. Given such b we can set A ≡ X, and the lemma
holds because tb ∈ W for every t ∈ Fq, and X + w ≡ X for every w ∈ W .

Fix a basis {w1, . . . , wk} of the linear subspace W . For every i ∈ [k], define
Si = {j ∈ [n] : (wi)j �= 0} (i.e. the indices of the non-zero coordinates of wi) and
Si =

⋃i
j=1 Sj . Note that Sk = [n] because W + z does not have any constant

112 M. Ball et al.

coordinate. We will prove by induction that for every i ∈ [k] there exists vi ∈
span(w1, . . . , wi) s.t. (vi)j �= 0 for every j ∈ Si. Assume that there exists vi−1

which satisfies the induction hypothesis. (Note that v0 = 0.) Consider the set of q
distinct vectors Li = {vi−1 + twi : t ∈ Fq} ⊆ span(w1, . . . , wi). Observe that for
every j ∈ Si, there exists at most one vector uj ∈ Li satisfying that (uj)j = 0.
Since n < q, there must exist u∗ ∈ Li s.t. (u∗)j �= 0 for every j ∈ Si. Moreover,
for every j ∈ Si\Si ⊆ Si−1, (u∗)j = (vi−1)j �= 0. Therefore (u∗)j �= 0 for
every j ∈ Si. By mathematical induction theorem, our claim is true for every
i ∈ [k]. Finally observe that vk is a valid choice of b because Sk = [n] and
span(w1, . . . , wk) = W .

Next we present the extractor construction and prove correctness. Let B be
the smallest integer greater than 3 such that gcd(B, q − 1) = 1. Note that B
must be a prime. We can deduce an upper bound on B as follows. Define the
primorial function ν() as the product of the first primes. It is known that
ν() = e(1+o(1))� log(�) [28]. Further, it is known that the ’th smallest prime
number is at most O(log()) [52,53]. Hence, it must be that B ≤ μ log q, for
some large enough constant μ. We can thus find such a B efficiently.

For i ∈ [2n], define ci = B(4dn+1)+Bi. Define the function h : F
n
q → Fq as

h(x1, . . . , xn) =
n∑

i=1

(xc2i−1
i + xc2i

i).

Let σ : Fq → {0, 1}m be the mapping from Lemma 2. We now define the
non-malleable extractor:

nmExt(x) = σ(h(x)).

For any a ∈ F
n
q and b ∈ F

n
q \{0n}, define the line La,b = {a+ tb : t ∈ Fq}. We

overload notation, and also use La,b to denote the flat source on this line. We
will show that nmExt is a non-malleable extractor against Polyn,q,d for every
skew line source. Theorem 3 then follows using Lemma 7.

Lemma 8. Let a ∈ F
n
q , b ∈ (Fq\{0})n. For every tampering function P ∈

Polyn,q,d which is not identity on La,b,4

(nmExt(La,b),nmExt(P (La,b))) ≈ε (Um,nmExt(P (La,b))),

where ε = O
(

2md2n log q√
q

)

The following bound is the key ingredient. Indeed, Lemma8 then follows
using Lemma 2.

Lemma 9. Let χ, φ be additive characters of Fq such that χ is non-trivial. Then,

|E[χ(h(La,b))φ(h(P (La,b)))]| ≤ O((d2n log q)/
√

q).

4 That is, there exists x ∈ La,b s.t. P (x) �= x.

Non-malleability Against Polynomial Tampering 113

Let χ(y) = e2παy/q and φ(y) = e2πα′y/q. Since χ is non-trivial, we know that
α �= 0. Let β = α′/α. Define the polynomial

gβ(x) = h(x) + βh(P (x)).

We note that

|E[χ(h(X))φ(h(P (X)))]| ≤
∣∣∣∣E

[
e

(
αgβ(X)

q

)]∣∣∣∣ .

Let gβ,a,b(t) be the univariate polynomial obtained by restricting g(x) to the
line La,b. The following two claims directly yields Lemma 9.

Lemma 10. Suppose for some a, b ∈ F
n
q , gβ,a,b is a non-constant polynomial.

Then, ∣∣∣∣Et∼Fq

[
e

(
α · gβ,a,b(t)

q

)]∣∣∣∣ ≤ O((d2n log q)/
√

q).

Lemma 11. For every a ∈ F
n
q , b ∈ (Fq\{0})n, gβ,a,b is a constant polynomial

only if P is identity on La,b.

Lemma 10 is indeed simple to obtain using the Weil bound.

Proof (Proof of Lemma 10). Follows directly from Theorem 4 using the fact that
deg(gβ,a,b(t)) ≤ O(d2n log q).

Now we prove Lemma 11.

Proof (Proof of Lemma 11). For every i ∈ [n], define the polynomial qi(t) =
pi(a + tb). Since a + tb is an affine function, deg(qi) ≤ deg(pi) ≤ d. Let di =
deg(qi). For every i ∈ [n], define

wi(t) = (ai + tbi)c2i−1 + (ai + tbi)c2i + βqi(t)c2i−1 + βqi(t)c2i .

Recall that
gβ,a,b(t) =

∑

i

wi(t).

First we prove that deg(wi) ∈ {0, c2idi, c2i, c2i−1, c2i − 1}. Moreover,
deg(wi) = 0 if and only if β = −1 and qi(t) = ai + tbi. (In other word, wi

is constant if and only if β = −1 and pi(x) = xi for every x ∈ La,b.) To prove
this statement, first we consider the case deg(qi) ≥ 2. Suppose that the leading
coefficient in qi is si �= 0. If β �= 0, the coefficient of tc2idi in wi is βsc2i

i �= 0.
Therefore deg(wi) = c2idi. If β = 0, the coefficient of tc2i in wi is bc2i

i �= 0.
Therefore deg(wi) = c2i. Next consider the case deg(qi) = 0. With an argument
similar to the case β = 0, we also have deg(wi) = c2i. Finally consider the case
deg(qi) = 1. Suppose qi(t) = ri + tsi. Observe that the coefficient of tc2i in wi is
bc2i
i + βsc2i

i and the coefficient of tc2i−1 in wi is c2i(aib
c2i−1
i + βris

c2i−1
i). In this

case either deg(wi) ∈ {c2i, c2i − 1} or

bc2i
i = −βsc2i

i and aib
c2i−1
i = −βris

c2i−1
i .

114 M. Ball et al.

The equations hold only when there exists k ∈ Fq s.t.

ri = kai, si = kbi and kc2i = −β−1.

If such k exists, we can write wi(t) = (1 − k−B(ai + tbi)c2i−1 . If β = −1, we
have k = 1, wi(t) = 0 and qi(t) = ai + tbi. If β �= −1, then k �= 1, which implies
(1 − k−B) �= 0 because gcd(B, q − 1) = 1. Therefore wi contains a monomial of
degree c2i−1 with coefficient (1 − k−B)bc2i−1

i �= 0, and hence deg(wi) = c2i−1.
Now we show that gβ,a,b(t) is a constant polynomial only if β = −1 and

qi(t) = ai + tbi for every i ∈ [n]. Consider the set of index I = {i ∈ [n] :
deg(wi) > 0}. Then for every i ∈ I, deg(wi) ∈ {dic2i, c2i, c2i−1, c2i − 1} if di > 0,
or deg(wi) ∈ {c2i, c2i−1, c2i −1} if di = 0. By Lemma 3, for every pair i, j ∈ I s.t.
i �= j, we have deg(wi) �= deg(wj). Therefore deg(gβ,a,b) > 0 if I is non-empty.
If gβ,a,b is a constant polynomial, it must be the case that deg(wi) = 0 for every
i ∈ [n]. This only happens when β = −1 and qi(t) = ai + tbi for every i ∈ [n],
i.e. β = −1 and P (x) = x for every x ∈ La,b. Lemma 11 then follows directly.

Finally we prove Theorem 3 formally.

Theorem 6 (Theorem 3, restated). There exists a constant C > 0 such that
for every integers n,m, d, any ε > 0, any prime q such that q > Cn2d4m22m ·
log(nd/ε), any skew affine source X ∈ F

n
q of dimension ≥ 1 and any tampering

function f ∈ Polyn,q,d, there exists a distribution Df on {0, 1}m ∪ {same} that
is independent of X, such that

|(nmExt(X),nmExt(f(X))) − (Um, copy(Df ,Um))| ≤ ε.

Proof. By Lemma 7, there exists a distribution A on F
n
q and vector b such that

X =
∑

a Pr[A = a] · La,b. Define I = {a ∈ F
n
q : f is identity on La,b}. For every

a ∈ I, define (Df)a = same. For every a �∈ I define (Df)a = nmExt(f(La,b)).
Then we claim that Df =

∑
a Pr[A = a] · (Df)a satisfies the requirement:

|nmExt(X),nmExt(f(X)) − Um, copy(Df ,Um)|
≤

∑

a

Pr[A = a] · |nmExt(La,b),nmExt(f(La,b)) − Um, copy((Df)a,Um)|

=
∑

a∈I

Pr[A = a] · |nmExt(La,b),nmExt(La,b) − Um,Um|

+
∑

a	∈I

Pr[A = a] · |nmExt(La,b),nmExt(f(La,b)) − Um,nmExt(f(La,b))|

≤
∑

a∈I

Pr[A = a] · ε +
∑

a	∈I

Pr[A = a] · ε

= ε

The first inequality is by the convexity of statistical distance, and the second
inequality is by Lemma 8.

Non-malleability Against Polynomial Tampering 115

5 Efficient Sampling

Recall that to construct efficient non-malleable codes using the connection estab-
lished in [21], we need to efficiently sample from the pre-image of any given
output of the non-malleable extractor constructed in the previous section. (We
discuss this connection in Sect. 3.4.) In this section we show how to construct
such a sampler for the non-malleable extractor constructed in Theorem 3. Note
that Theorem 2 uses the same non-malleable extractors.

Theorem 7. Let nmExt : F
n
q → {0, 1}m be the non-malleable extractor

against Fn,q,d tampering in Theorem3. Then there exists a randomized algo-
rithm nmExt−1 such that for every z ∈ {0, 1}m the distribution of nmExt−1(z)
is ε-close to uniform distribution on nmExt−1(z). The running time of nmExt−1

is bounded by poly(n, d, log q, log(1/ε)).

Our starting point to prove Theorem7 is a sampling algorithm from [19],
which has running time O(dnO(n)

(log q)O(1)) and error O(dO(nn)/
√

q). We will
show how to modify this algorithm and get an improved running time of
poly(n, d, log q, log(1/ε)) for arbitrarily small error ε.

Let nmExt be the non-malleable extractor from Theorem 3. Recall that
nmExt = σ ◦ h where σ : Fq → {0, 1}m is defined as σ(x) = x (mod 2m) and
h : F

n
q → Fq is a multivariate polynomial of degree d over Fq. Given z ∈ {0, 1}m,

the pre-image of z under nmExt is

nmExt−1(z) =
⋃

y∈σ−1(z)

h−1(y),

and our goal is to sample from nmExt−1(z) almost uniformly. The sampling
algorithm in [19] is based on the following rejection sampling strategy.

Let M ≥ maxy |h−1(y)|.
1. Sample y ∈ σ−1(z) uniformly at random.
2. Compute |h−1(y)| (approximately), and accept y with probability

|h−1(y)|/M . If y is rejected, go back to step 1.
3. Output an (almost) uniform sample from h−1(y).

In [19], the second step is achieved by an algorithm from [40] that has running
time O(dnO(n)

(k log q)O(1)).
The third step is based on the following algorithm in [22].

Lemma 12 ([22]). Let q be a sufficiently large prime, f ∈ Fq[x1, . . . , xn] be
polynomials of total degree bounded by d, and each polynomial has at most
monomials. Let S ⊆ F

n
q be the set of common zeroes of f . There exists a ran-

domized algorithm which takes f as input (as a list of monomials) and outputs
a random value X ∈ F

n
q such that the distribution of X is O(dO(1)/q)-close

to uniform distribution on S. The worst-case running time of this algorithm is
poly(log q, d, n,).

116 M. Ball et al.

Thus the bottleneck in achieving a polynomial time sampling algorithm is Step
(2) which takes time that is doubly exponential in n. We get around this difficulty
as follows: first note that the rejection sampling in Step (2) is to ensure that the
subset h−1(y) is selected with probability proportional to |h−1(y)|. Our crucial
observation is that the algorithm in Lemma12 is actually a rejection sampling
which accepts an output with probability proportional to |h−1(y)| in each round.
Therefore we can actually combine the rejection sampling in Step 2 and 3, and
bypass the computation of |h−1(y)|.

First we explain the relation between the algorithm in Lemma12 and rejec-
tion sampling. A naive way to sample from the variety h−1(y) is to repeatedly
sample a point x ∈ F

n
q and verify if h(x) = y. However, the success probability

of the naive rejection sampling is only |h−1(y)|/qn, which is too small. The idea
in [22] is that the space F

n
q can be split into lines, and the variety S is split

into many “slices” by these lines. The naive rejection sampling is equivalent to
first sampling a line and then sampling a point from this line. Since each line
has q points, the probability of a certain point in the variety being chosen is
still 1/qn−1 · 1/q. However, if we choose a good direction to split the space, each
slice of the variety only has at most d points where d
 q, and these points
can be enumerated efficiently. Therefore instead of sampling every point in this
subspace with equal probability we can sample only from the slice of variety
instead. This allows us to increase the accepting probability in each round to
|h−1(y)|/dqn−1, which is high enough and still proportional to |h−1(y)|. With
the ideas above we get the following lemma.

Lemma 13. Let h : F
n
q → Fq be a n-variate polynomial of degree d < q/2 with

monomials, and σ : Fq → {0, 1}m be any function. Suppose we have access to an
oracle Sampσ which takes input z and outputs a sample from σ−1(z) uniformly
at random. Then for every ε > 0, there exists a randomized algorithm A such
that for every z ∈ {0, 1}m, the algorithm either outputs a uniformly random
sample from (σ ◦h)−1(z) or output ⊥. The probability that the algorithm outputs
⊥ is at most ε.

Moreover, the expected running time of A on z is T · poly(log q, n, d,) plus
T oracle calls to Sampσ, where

T = O

(
qn−1 · d · ∣∣σ−1(z)

∣∣
|(σ ◦ h)−1(z)| log(1/ε)

)
.

Before we formally prove Lemma 13, first we show how to prove Theo-
rem 7 based on Lemma 13. The following corollary shows that the algorithm
in Lemma 13 is efficient when σ ◦ h is an “extractor for uniform distribution”
and σ does not concentrate on certain output.

Corollary 3. Suppose that σ(h(UFn
q
)) ≈1/2m+1 Um, and |σ−1(z)| ≤ Cq/2m

for every z. Then the running time of the algorithm in Lemma13 is
C log(1/ε)poly(n, , log q, d).

Non-malleability Against Polynomial Tampering 117

Proof. The number of rounds of rejection sampling in the algorithm from

Lemma 13 is T = O

(
qn−1·d·|σ−1(z)|

|(σ◦h)−1(z)| log(1/ε)
)

.

Observe that
∣∣(σ ◦ h)−1(z)

∣∣ = qn · Pr[σ(h(UFn
q
)) = z] ≥ qn · (1/2m − 1/2m+1) = qn/2m+1.

Plugging this in, and the upper on σ−1(z), we have T = O(d log(1/ε)). The
corollary now follows directly from Lemma 13.

Proof (Proof of Theorem 7). To prove Theorem 7 we only need to show that
our non-malleable extractor satisfies the condition in Corollary 3. The fact that
σ(h(UFn

q
)) is close to Um follows from Theorem 3, and the second condition is

also true because σ(x) = x mod 2m, which satisfies |σ−1(z)| ≤ �q/2m� for every
z ∈ {0, 1}m.

We now prove Lemma 13. First we need the following lemma which is analogous
to Proposition 4.3 in [22]. Note that we slightly tweak the lemma to make the
sampling algorithm able to handle arbitrarily small error. The lemma says a
random direction is a good direction to split the space with high probability.

Lemma 14. Let h : F
n
q → Fq be a n-variate polynomial of degree at most d, and

let b = (b1, . . . , bn) be uniformly random samples from Fq. Then with probability
at least 1 − d/q, ha,b(t) = h(a1 + b1t, . . . , an + bnt) is a non-constant polynomial
of t for every a = (a1, . . . , an) ∈ F

n
q .

Proof. Let g be the highest-degree homogeneous part of h. Then observe that
ha,b(t) has degree at most d, and its coefficient of td equals to g(b1, . . . , bn).
By Lemma 4, the probability that g(b1, . . . , bn) is non-zero is at least 1 − d/q.
Therefore with probability 1 − d/q over b, ha,b(t) has degree exactly d for every
a ∈ F

n
q .

Proof (Proof of Lemma 13). In algorithm A, first we repeatedly sample b ∈ F
n
q

uniformly at random until we find b which satisfies the condition in Lemma14.
If we fail to find such b in log(1/ε)+1 rounds, abort and output ⊥. Then repeat
the following steps for at most T rounds:

Sample y ∈ σ−1(z) with oracle Sampσ, and sample a = (a1, . . . , an) uniformly
at random. Compute the restriction of h(x) = y on the line La,b = {(a1 +
b1t, . . . , an + bnt) : b ∈ Fq}, i.e. ha,b(t) = y where ha,b(t) = h(a1 + b1t, . . . , an +
bnt). Note that ha,b is a non-constant polynomial of degree at most d. Then we
run Berlekamp-Rabin algorithm [49] to enumerate all the roots of ha,b in Fq,
denoted by t1, . . . , tk where k ≤ d. Now pick a number i ∈ [d] uniformly at
random. If i ≤ k, the algorithm succeeds, and we will return (a1 + b1ti, . . . , an +
bnti). Otherwise sample y and a again and repeat. If no value is returned after
all T rounds, return ⊥.

To prove the correctness of A, first we compute the distribution A(z) con-
ditioned on that the algorithm succeeds. Observe that A(z) never returns an

118 M. Ball et al.

element which is not in (σ ◦ h)−1(z). Moreover, for every v ∈ (σ ◦ h)−1(z), in
each round the probability that A(z) outputs v is

1
|σ−1(z)| · 1

qn−1
· 1
d
.

The first factor is the probability that y = h(v), the second factor is the proba-
bility that La,b � v, and the third factor is the probability that v is chosen from
the list of roots of ha,b. Since this formula does not depend on v, we can conclude
that A(z) is a uniform distribution on (σ ◦ h)−1(z), conditioned on A(z) �= ⊥.

Now we compute the probability that A fails. Assuming q ≥ 2d, the proba-
bility that we fail to find a b satisfying the condition in Lemma14 in log(1/ε)+1
rounds is at most (d/q)log(1/ε)+1 ≤ ε/2. If we find such b successfully, observe
that A successfully returns a sample with probability

p =
|(σ ◦ h)−1(z)|

|σ−1(z)| · qn−1 · d

in one round. Now define

T =
C log(1/ε)

p
,

for a large enough constant C. Then the probability that A does not output any
element after T rounds is at most (1− p)T < ε/2. Therefore PrA[A(z) = ⊥] ≤ ε.

Finally we analyze the running time of A. Finding a vector b which satis-
fies Lemma 14 (or abort and output ⊥) takes at most log(1/ε)poly(n, , log q, d)
steps. After finding b, we run at most T rounds of rejection sampling, where in
each round we first make an oracle call to Sampσ, sample a and compute the
polynomial ha,b which takes poly(n, , log q, d) steps, and run Berlekamp-Rabin
which takes expected poly(n, , log q, d) steps. Therefore the total expected run-
ning time is as claimed.

Remark 1. While we only show the expected running time in Lemma 13, it is
possible to bound the worst-case running time by introducing a small error to the
output distribution. That is, we can let the algorithm “time out” and output ⊥
when the running time is too long. A full explanation can be found in the online
version [7, Remark 1].

6 Non-malleable Secret Sharing

In this section we construct a non-malleable secret sharing scheme that is non-
malleable against polynomial tampering. This extends a recent work of Lin et
al. [46] where they could handle affine tampering functions. We use the frame-
work that was introduced in [46] to derive our secret sharing scheme. In short,
the framework in [46] takes a linear erasure code (Enc,Dec) and an invertible
affine extractor Ext, and define the share function to be Enc(Ext−1). If Ext is
non-malleable against a class of tampering function F which is closed under

Non-malleability Against Polynomial Tampering 119

composition with linear function, the non-malleability will be inherited by the
secret sharing scheme. We show that the non-malleable extractor in Theorem 3
is also an extractor for arbitrary affine source (see Appendix A in the online
version [7]). Thus the framework in [46] directly gives a non-malleable secret
sharing against polynomial tampering.

Besides the direct application, we further show how to construct a r-out-of-n
secret sharing which is non-malleable against adversaries who can (adaptively)
corrupt (r−1) shares and choose the polynomial tampering functions based on the
corrupted shares. To handle such adaptive adversary, we cannot directly plug our
extractor into the framework in [46] because our extractor is non-malleable only
for skew affine source. Nevertheless, we will show that non-malleablility for skew
affine source is sufficient if we choose a proper erasure code in the [46] scheme.
In short, the erasure code we choose has the property that no single symbol in
the message can be determined by (r−1) symbols in the codeword. The property
above ensures that when a uniformly random secret S is distributed using the
scheme Enc(Ext−1(S)) and (r − 1) shares are revealed to the adversary, none
of the symbol in Ext−1(S) is constant in the adversary’s view, which means
Ext−1(S) is a skew affine source in the adversary’s view. Since our extractor is
non-malleable for skew affine source, we can prove our claim above following a
similar path to the proof in [46].

Before we state our theorem and proof, first we formally define the non-
malleable secret sharing.

Definition 11 (Adaptive adversary). Let Σ denote a set of symbols. We say
A : Σn → Σk is a (n, k)-adaptive adversary if A(x1, . . . , xn) = (xs1 , . . . , xsk

)
for indices s1, . . . , sk defined as follows.

– s1 is fixed.
– For every i, there exists a function fi : Σi → [n] such that si+1 =

fi(xs1 , . . . , xsi
).

Definition 12 (Non-malleable secret sharing). Let Σ be a finite alphabet
set. Let Share : {0, 1}m → Σn be a randomized algorithm mapping m bits to
into n shares, each being an alphabet from Σ. Let F : Σn → Σn be a family of
tampering function. We say Share is a r-out-of-n ε-non-malleable secret sharing
with respect to F if the following properties hold.

– Correctness. For every authorized set R ⊆ [n] of size |R| = r, there exists
a deterministic algorithm RecR : Σr → {0, 1}m such that for every secret
s ∈ {0, 1}m,

Pr[RecR(Share(s)R) = s] ≥ 1 − ε,

where Share(s)R denotes the r shares in Share(s) identified by the set R.
– Privacy. For every (n, r−1)-adaptive adversary A and every pair of secret

a, b ∈ {0, 1}m,
A (Share(a)) ≈ε A (Share(b)) .

120 M. Ball et al.

– Non-malleability. For every (n, r−1)-adaptive adversary A, every recon-
struction strategy R : Σr−1 → (

[n]
r

)
, every secret s ∈ {0, 1}m and every

tampering strategy μ : Σr−1 → F , define the tampering experiment

S̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

share ← Share(s)
v ← A(share)

f ← μ(v)
R ← R(v)

s̃hare ← f(share)
Output : RecR(s̃hareR)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

which is a random variable over the randomness of Share. Then there exists
a distribution DA,R,μ on {0, 1}m ∪ {same} which does not depend on s such
that

S̃ ≈ε copy(DA,R,μ, s).

As observed in [46], since the tampering function f can be based on the view
of adversary, the adversary can jointly tamper (r−1) adaptively chosen shares
arbitrarily. The tampering on shares which the adversary cannot see depends on
how strong F is. In our construction F would be bounded-degree polynomials.
With the non-malleable extractor in Theorem3, we show the following.

Theorem 8. There exists a constant C > 0 such that for all integers n, d, r, any
prime q and any ε > 0 such that q > (C2mn2d4/ε2) · log(nd/ε) and 1 ≤ r ≤ n,
there exists a r-out-of-n ε-non-malleable secret sharing scheme with respect to
polynomial tampering Fn,q,d for m-bit secret.

Proof. First we specify the construction. Let nmExt : F
r
q → {0, 1}m be the non-

malleable extractor with respect to Fr,q,d with error ε/2m+2 in Theorem 3. Let
Enc(x) = (x,Enc′(x)) be the systematic encoding of a [n + r, r]q MDS code
in Lemma 5. Let nmExt−1 be the sampling algorithm in Theorem7 with error
ε/2m+2. Then we define

Share(s) = Enc′(nmExt−1(m)),

where nmExt−1 is the almost-uniform inverter of nmExt in Sect. 4. Next we
prove the three properties in Definition 12. The proof basically follows [46], but
additionally we need to show that the decoded shares is a skew affine source
conditioned on adversary view.

– Correctness. For every authorized set R ⊆ [n] of size |R| = r, let DecR

denote the decoding function of Enc′ specified by R in Lemma 5. Then we
define

RecR(v) = nmExt(DecR(v)).

Rec is a correct reconstruction because for every secret s,

Pr[RecR(Share(s)R) = s] = Pr[nmExt
(
DecR

(
Enc(nmExt−1(s))R

))
= s] ≥ 1 − ε.

Non-malleability Against Polynomial Tampering 121

Note that the correctness is not perfect because nmExt−1(x) does not always
output a pre-image of x.

– Privacy. Let S = nmExt(UFr
q
), and define X = nmExt−1(S). Fix any (n, r−

1)-adaptive adversary A : F
n
q → F

r−1
q . Since nmExt−1 is an inverter of nmExt

with error ε/2m+2, we have (X,S) ≈ε/2m+2 (UFr
q
, S), which implies

(A (
Enc′(X)

)
, S

) ≈ε/2m+2

(
A

(
Enc′(UFr

q
)
)

,nmExt(UFr
q
)
)

.

Define V = A
(
Enc′(UFr

q
)
)
. We claim that for every v ∈ F

r−1
q , Yv = (UFr

q
|

V = v) is a skew affine source with positive min-entropy. Observe that there
exists a set Tv ∈ (

[n]
r−1

)
uniquely determined by v such that A

(
Enc′(UFr

q
)
)

=

Enc′(UFr
q
)Tv

. Since Enc′ is a linear mapping, V = v corresponds to r−1 linear
constraints for Yv. Therefore Yv is an affine source with positive min-entropy.
Now assume for contradiction that Yv is not skew. Then there exists i ∈ [r]
such that (Yv)i is a constant. Since Yv is not a constant, there exist two dis-
tinct value y1, y2 ∈ Supp(Yv). Observe that Enc′(y1)Tv

= v = Enc′(y2)Tv
and

(y1)i = (y2)i. Then Enc(y1) := (y1,Enc′(y1)) and Enc(y2) := (y2,Enc′(y2))
coincide on (r−1) + 1 coordinates, which contradicts to the fact that Enc is
a MDS code. Therefore Yv is skew. By Theorem 3,

(
A

(
Enc′(UFr

q
)
)

,nmExt(UFr
q
)
)

≈ε/2m+2

(
A

(
Enc′(UFr

q
)
)

,Um

)
.

By triangle inequality we have
(A (

Enc′(X)
)
, S

) ≈ε/2m+1

(
A

(
Enc′(UFr

q
)
)

,Um

)
,

which by Lemma 6 implies
(A (

Enc′(X)
) | S = a

) ≈ε/2

(
A

(
Enc′(UFr

q

))
≈ε/2

(A (
Enc′(X)

) | S = b
)

for every a, b ∈ Supp(S). Finally, observe that Supp(S) = {0, 1}m because S
is ε/2m+2 < 1/2m close to uniform. Therefore for every a, b ∈ {0, 1}m,

A
(
Enc′

(
nmExt−1(a)

))
≈ε A

(
Enc′

(
nmExt−1(b)

))
.

– Non-malleability. Let S = nmExt(UFr
q
), and define X = nmExt−1 (S). Fix

any (n, r−1)-adaptive adversary A : F
n
q → F

r−1
q , any reconstruction strategy

R : F
r−1
q → (

[n]
r

)
and any tampering strategy μ : F

r−1
q → Fn,q,d. Recall the

tampering experiment

S̃ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

share ← Enc′(X)
V ← A(share)

f ← μ(V)
R ← R(V)

s̃hare ← f(share)
Output : RecR(s̃hareR)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

122 M. Ball et al.

Note that this tampering experiment is equivalent to applying the tampering
experiment in Definition 12 on S. Now define

S̃′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

share′ ← Enc(UFn
q
)

V ′ ← A(share′)
f ← μ(V ′)
R ← R(V ′)

s̃hare′ ← f(share′)
Output : RecR(s̃hareR)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Since nmExt−1 is an inverter of nmExt with error ε/2m+2, we have
(S,X) ≈ε/2m+2 (S,UFn

q
) which implies

(S, S̃) ≈ε/2m+2 (S, S̃′).

For every v ∈ F
r−1
q , define Yv = (UFr

q
| V ′ = v). With the same proof in

the privacy part, we can show that Yv is a skew affine source with positive
min-entropy. Now define fv = μ(v), Rv = R(v) and gv : F

r
q → F

r
q to be

gv(x) := DecRv
(fv(Enc′(x))Rv

). Since both Enc′ and DecRv
are linear and

fv ∈ Fn,q,d, we have gv ∈ Fr,q,d. By Theorem 3, there exists a distribution
Dgv

on {0, 1}m ∪ {same} such that

(nmExt(UFr
q
),nmExt(gv(UFr

q
)) | V ′ = v) ≈ε/2m+2 (Um, copy(Dgv

,Um)).

Define DA,R,μ =
∑

v Pr[V ′ = v] · Dgv
. By convexity of statistical distance,

(S, S̃′) = (nmExt(UFr
q
), S̃′) ≈ε/2m+2 (Um, copy(DA,R,μ,Um)),

which by triangle inequality implies

(S, S̃) ≈ε/2m+1 (Um, copy(DA,R,μ,Um))).

Finally by Lemma6 and the fact that Supp(S) = {0, 1}m we can conclude
that for every s ∈ {0, 1}m,

(S̃ | S = s) ≈ε copy(DA,R,μ, s).

7 Open Questions

Obvious questions that arise from our work include improving the parameters
(such as rate and error) of our non-malleable code against polynomials, and
similarly obtaining seedless non-malleable extractors against polynomials with
smaller error.

Another interesting direction is to construct such non-malleable codes and
extractors against polynomials over smaller fields. In particular, over F2 would
be the most interesting. We expect this to require significantly different ideas

Non-malleability Against Polynomial Tampering 123

from our construction: we crucially rely on exponential sum estimates for our
non-malleable extractor construction, and such estimates are not available over
smaller fields.

More broadly, we believe it to be a very interesting question to construct
non-malleable codes against other natural complexity classes (e.g., small-width
branching programs, AC0 with PARITY gates, etc.).

Acknowledgements. Marshall Ball is supported by an IBM Research PhD Fellow-
ship. Tal Malkin and Marshall Ball: This work is based upon work supported in part
by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA) via Contract No. 2019-1902070006. The views
and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies, either express or implied, of
ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

Eshan Chattopadhyay and Jyun-Jie Liao are supported by NSF grant CCF-
1849899. Li-Yang Tan is supported by NSF grant CCF-1921795.

References

1. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-sharing
schemes for general access structures. IACR Cryptology ePrint Archive 2018, 1147
(2018)

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, pp. 459–468. ACM (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. SIAM J. Comput. 47(2), 524–546 (2018)

4. Aggarwal, D., Obremski, M.: A constant-rate non-malleable code in the split-state
model. IACR Cryptology ePrint Archive 2019, 1299 (2019)

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and permu-
tations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

6. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. IACR
Cryptology ePrint Archive 2018, 1144 (2018)

7. Ball, M., Chattopadhyay, E., Liao, J., Malkin, T., Tan, L.: Non-malleability against
polynomial tampering. IACR Cryptology ePrint Archive 2020, 147 (2020). https://
eprint.iacr.org/2020/147

8. Ball, M., Dachman-Soled, D., Guo, S., Malkin, T., Tan, L.Y.: Non-malleable codes
for small-depth circuits. In: 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 826–837. IEEE (2018)

9. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://eprint.iacr.org/2020/147
https://eprint.iacr.org/2020/147
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31

124 M. Ball et al.

10. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. IACR Cryp-
tology ePrint Archive 2019, 379 (2019)

11. Barak, B., Impagliazzo, R., Wigderson, A.: Extracting randomness using few inde-
pendent sources. SIAM J. Comput. 36(4), 1095–1118 (2006). https://doi.org/10.
1137/S0097539705447141

12. Bennett, C., Brassard, G., Robert, J.M.: Privacy amplification by public discussion.
SIAM J. Comput. 17, 210–229 (1988)

13. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, pp. 313–317 (1979)

14. Bourgain, J.: More on the sum-product phenomenon in prime fields and its appli-
cations. Int. J. Number Theory 01(01), 1–32 (2005). https://doi.org/10.1142/
S1793042105000108

15. Bourgain, J.: On the construction of affine extractors. GAFA Geom. Funct. Anal.
17(1), 33–57 (2007)

16. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: STOC (2016)

17. Chattopadhyay, E., Li, X.: Non-malleable codes and extractors for small-depth
circuits, and affine functions. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 1171–1184. ACM (2017)

18. Chattopadhyay, E., Li, X.: Non-malleable codes, extractors and secret sharing for
interleaved tampering and composition of tampering. Technical report, Cryptology
ePrint Archive, Report 2018/1069, 2018 (2019)

19. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: Proceedings of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 306–315 (2014)

20. Chattopadhyay, E., Zuckerman, D.: Explicit two-source extractors and resilient
functions. Ann. Math. 189(3), 653–705 (2019). https://doi.org/10.4007/annals.
2019.189.3.1

21. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

22. Cheraghchi, M., Shokrollahi, A.: Almost-uniform sampling of points on high-
dimensional algebraic varieties. In: 26th International Symposium on Theoretical
Aspects of Computer Science, STACS 2009, Freiburg, Germany, 26–28 February
2009, Proceedings, pp. 277–288 (2009)

23. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

24. Chor, B., Goldreich, O., Hasted, J., Freidmann, J., Rudich, S., Smolensky, R.:
The bit extraction problem or t-resilient functions. In: IEEE Symposium on Foun-
dations of Computer Science, pp. 396–407 (1985). https://doi.org/10.1109/SFCS.
1985.55

25. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

26. Dodis, Y., Li, X., Wooley, T.D., Zuckerman, D.: Privacy amplification and non-
malleable extractors via character sums. SIAM J. Comput. 43(2), 800–830 (2014)

27. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: STOC, pp. 601–610 (2009)

28. Dusart, P.: Estimates of some functions over primes without RH. arXiv preprint
arXiv:1002.0442 (2010)

https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1137/S0097539705447141
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.1142/S1793042105000108
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1109/SFCS.1985.55
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
http://arxiv.org/abs/1002.0442

Non-malleability Against Polynomial Tampering 125

29. Dvir, Z.: Extractors for varieties. Comput. Complex. 21(4), 515–572 (2012)
30. Dvir, Z., Gabizon, A., Wigderson, A.: Extractors and rank extractors for polyno-

mial sources. Comput. Complex. 18(1), 1–58 (2009)
31. Dvir, Z., Kopparty, S., Saraf, S., Sudan, M.: Extensions to the method of mul-

tiplicities, with applications to Kakeya sets and mergers. In: Proceedings of the
50th Annual IEEE Symposium on Foundations of Computer Science, pp. 181–190
(2009)

32. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

33. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4),
20:1–20:32 (2018). https://doi.org/10.1145/3178432

34. Gabizon, A., Raz, R.: Deterministic extractors for affine sources over large fields.
Combinatorica 28(4), 415–440 (2008)

35. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pp. 685–698. ACM
(2018)

36. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

37. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Comput-
ing, pp. 1128–1141. ACM (2016)

38. Gupta, D., Maji, H.K., Wang, M.: Constant-rate non-malleable codes in the split-
state model. Technical report, Technical Report Report 2017/1048, Cryptology
ePrint Archive (2018)

39. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. J. ACM 56(4), 1–34 (2009)

40. Huang, M.-D., Wong, Y.-C.: An algorithm for approximate counting of points on
algebraic sets over finite fields. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 514–527. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054889

41. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with
explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 344–375. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 11

42. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders
and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 589–617. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-78372-7 19

43. Lacan, J., Fimes, J.: Systematic MDS erasure codes based on vandermonde matri-
ces. IEEE Commun. Lett. 8(9), 570–572 (2004). https://doi.org/10.1109/LCOMM.
2004.833807

44. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2017, pp. 1144–1156 (2017)

45. Li, X.: Non-malleable extractors and non-malleable codes: partially optimal con-
structions. In: 34th Computational Complexity Conference, CCC 2019, New
Brunswick, NJ, USA, 18–20 July 2019, pp. 28:1–28:49 (2019)

46. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Non-malleable
secret sharing against affine tampering. arXiv preprint arXiv:1902.06195 (2019)

https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1145/3178432
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/BFb0054889
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1007/978-3-319-78372-7_19
https://doi.org/10.1109/LCOMM.2004.833807
https://doi.org/10.1109/LCOMM.2004.833807
http://arxiv.org/abs/1902.06195

126 M. Ball et al.

47. Lu, C.-J.: Hyper-encryption against space-bounded adversaries from on-line strong
extractors. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 257–271.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 17

48. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci.
52(1), 43–52 (1996). https://doi.org/10.1006/jcss.1996.0004

49. Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273–
280 (1980). https://doi.org/10.1137/0209024

50. Rao, A.: An exposition of Bourgain’s 2-source extractor. In: Electronic Colloquium
on Computational Complexity (ECCC), vol. 14 (2007)

51. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

52. Robin, G.: Permanence de relations de récurrence dans certains développements
asymptotiques. Pub. Inst. Math. Beograd 43(57), 17–25 (1988)

53. Rosser, B.: The n-th prime is greater than nlogn. Proc. Lond. Math. Soc. 2(1),
21–44 (1939)

54. Schwartz, J.T.: Probabilistic algorithms for verification of polynomial identities. In:
Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 200–215.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5 72

55. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
56. Singleton, R.C.: Maximum distance q-nary codes. IEEE Trans. Inf. Theory 10(2),

116–118 (1964). https://doi.org/10.1109/TIT.1964.1053661
57. Ta-Shma, A., Zuckerman, D.: Extractor codes. IEEE Trans. Inf. Theory 50(12),

3015–3025 (2004)
58. Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. U.S.A. 34(5), 204

(1948)
59. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)

Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73

60. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, pp. 681–690 (2006)

https://doi.org/10.1007/3-540-45708-9_17
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1137/0209024
https://doi.org/10.1007/3-540-09519-5_72
https://doi.org/10.1109/TIT.1964.1053661
https://doi.org/10.1007/3-540-09519-5_73

Non-malleable Secret Sharing Against
Bounded Joint-Tampering Attacks in the

Plain Model

Gianluca Brian1(B), Antonio Faonio2, Maciej Obremski3, Mark Simkin4,
and Daniele Venturi1

1 Sapienza University of Rome, Rome, Italy
brian@di.uniroma1.it

2 IMDEA Software Institute, Madrid, Spain
3 National University of Singapore, Singapore, Singapore

4 Aarhus University, Aarhus, Denmark

Abstract. Secret sharing enables a dealer to split a secret into a set of
shares, in such a way that certain authorized subsets of share holders can
reconstruct the secret, whereas all unauthorized subsets cannot. Non-
malleable secret sharing (Goyal and Kumar, STOC 2018) additionally
requires that, even if the shares have been tampered with, the recon-
structed secret is either the original or a completely unrelated one.

In this work, we construct non-malleable secret sharing tolerating p-
time joint-tampering attacks in the plain model (in the computational
setting), where the latter means that, for any p > 0 fixed a priori, the
attacker can tamper with the same target secret sharing up to p times.
In particular, assuming one-to-one one-way functions, we obtain:

– A secret sharing scheme for threshold access structures which toler-
ates joint p-time tampering with subsets of the shares of maximal
size (i.e., matching the privacy threshold of the scheme). This holds
in a model where the attacker commits to a partition of the shares
into non-overlapping subsets, and keeps tampering jointly with the
shares within such a partition (so-called selective partitioning).

– A secret sharing scheme for general access structures which tolerates
joint p-time tampering with subsets of the shares of size O(

√
log n),

where n is the number of parties. This holds in a stronger model
where the attacker is allowed to adaptively change the partition

A. Faonio—Supported by the Spanish Government under projects SCUM (ref.
RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and SECURITAS (ref.
RED2018-102321-T), by the Madrid Regional Government under project BLOQUES
(ref. S2018/TCS-4339).
M. Obremski—Supported by MOE2019-T2-1-145 Foundations of quantum-safe
cryptography.
M. Simkin—Supported by the European Research Council (ERC) under the Euro-
pean Unions’s Horizon 2020 research and innovation programme under grant agree-
ment No 669255 (MPCPRO), grant agreement No 803096 (SPEC), Danish Independent
Research Council under Grant-ID DFF-6108-00169 (FoCC), and the Concordium Block-
hain Research Center.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 127–155, 2020.
https://doi.org/10.1007/978-3-030-56877-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_5

128 G. Brian et al.

within each tampering query, under the restriction that once a subset
of the shares has been tampered with jointly, that subset is always
either tampered jointly or not modified by other tampering queries
(so-called semi-adaptive partitioning).

At the heart of our result for selective partitioning lies a new technique
showing that every one-time statistically non-malleable secret sharing
against joint tampering is in fact leakage-resilient non-malleable (i.e., the
attacker can leak jointly from the shares prior to tampering). We believe
this may be of independent interest, and in fact we show it implies lower
bounds on the share size and randomness complexity of statistically non-
malleable secret sharing against independent tampering.

Keywords: Secret sharing · Non-malleability · Joint tampering

1 Introduction

In the past 40 years, secret sharing [9,32] became one of the most fundamental
cryptographic primitives. Secret sharing schemes allow a trusted dealer to split
a message m into shares s1, . . . , sn and distribute them among n participants,
such that only certain authorized subsets of share holders are allowed to recover
m. The collection A of authorized subsets is called the access structure. The
most basic security guarantee is that any unauthorized subset outside A collec-
tively has no information about the shared message. Shamir [32] and Blakley [9]
showed how to construct secret sharing schemes with information-theoretic secu-
rity, and Krawczyk [25] presented the first computationally-secure construction
with improved efficiency parameters.

Non-malleable Secret Sharing. A long line of research [2,8,11,12,14,21,23,24,26,
31,33] has focused on different settings with active adversaries that were allowed
to tamper with the shares in one or another way. In verifiable secret sharing [31]
the dealer is considered to be untrusted and the share holders want to ensure
they hold shares of a consistent secret. In robust secret sharing [12] some parties
may act maliciously and try to prevent the correct reconstruction of the shared
secret by providing incorrect shares. It is well known that robust secret sharing
is impossible when more than half of the parties are malicious.

A recent line of works considers an adversary that has some form of re-
stricted access to all shares. In non-malleable secret sharing [23] the adversary
can partition the shares in disjoint sets and can then independently tamper
with each set of shares. Security guarantees that whatever is reconstructed
from the tampered shares is either the original secret, or a completely unre-
lated value. Most previous works have focused on the setting of indepen-
dent tampering [2,8,11,21,23,24,26,33], where the adversary is only allowed to
tamper with each share independently. Only a few papers [11,14,23,24] have
considered the stronger setting where the adversary is allowed to tamper with
subsets of shares jointly.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 129

Continuous Non-malleability. The first notions of non-malleability only focused
on security against a single round of tampering. A natural extension of this
setting is to consider adversaries that may perform several rounds of tamper-
ing attacks on a secret sharing scheme. Badrinarayanan and Srinivasan [8] and
Aggarwal et al. [2] considered p-time tampering attacks in the information-
theoretic setting, where p must be a-priori bounded. The works of Faonio and
Venturi [21] and Brian, Faonio and Venturi [11] considered continuous, i.e., poly-
many tampering attacks in the computational setting. It is well known that
cryptographic assumptions are inherent in the latter case [8,21,22].

An important limitation of all works mentioned above is that, with the excep-
tion of [11], they only consider the setting of independent tampering. Brian
Faonio, and Venturi [11] achieve continuous non-malleability against joint tam-
pering, where each tampering function can tamper with O(log n)-large sets of
shares assuming a trusted setup in the form of a common reference string. This
leads to the following question:

Can we obtain continuously non-malleable secret sharing against joint
tampering in the plain model?

1.1 Our Contributions

In this work, we make progress towards answering the above question. Our
main contribution is a general framework for reducing computational p-time
non-malleability against joint tampering to statistical one-time non-malleability
against joint tampering. Our framework encompasses the following models:

– Selective partitioning. Here, the adversary has to initially fix any k-sized
partition1 of the n shares, at the beginning of the experiment. Afterwards, the
adversary can tamper p times with the shares within each subset in a joint
manner. We call this notion k-joint p-time non-malleability under selective
partitioning.

– Semi-adaptive partitioning. In this setting, the adversary can adaptively
choose different k-sized partitions for each tampering query. However, once
a subset of the shares has been tampered with jointly, that subset is always
either tampered jointly or not modified by other tampering queries. We call
this notion k-joint p-time non-malleability under semi-adaptive partitioning.

Combining known constructions of one-time statistically non-malleable secret
sharing schemes against joint tampering [14,23,24] with a new secret sharing
scheme that we present in this work, we obtain the following result:

Theorem 1 (Main Theorem, Informal). Assuming the existence of one-to-
one one-way functions, there exist:

1 This a sequence of non-overlapping subsets B1, . . . , Bt covering [n], such that each
Bi has size at most k.

130 G. Brian et al.

(i) A τ -out-of-n secret sharing scheme satisfying k-joint p-time non-malleabil-
ity under selective partitioning,2 for any τ ≤ n, k ≤ τ − 1, and p > 0.

(ii) An (n, τ)-ramp3 secret sharing scheme with binary shares satisfying k-joint
p-time non-malleability under selective partitioning, for τ = n − nβ, k ≤
τ − 1, β < 1, and p ∈ O(

√
n).

(iii) A secret sharing scheme satisfying k-joint p-time non-malleability under
semi-adaptive partitioning, for k ∈ O(

√
log n) and p > 0, and for any

access structure that can be described by a polynomial-size monotone span
program for which authorized sets have size greater than k.

1.2 Technical Overview

Our initial observation is that a slight variant of a transformation by Ostrovsky
et al. [30] allows to turn a bounded leakage-resilient, statistically one-time non-
malleable secret sharing Σ into a bounded-time non-malleable secret sharing Σ∗

against joint tampering. Bounded leakage resilience here means that, prior to
tampering, the attacker may also repeatedly leak information jointly from the
shares of Σ, as long as the overall leakage is bounded.

In the setting of joint tampering under selective partitioning, the leakage
resilience property of Σ has to hold w.r.t. the same partition used for tampering.
For joint tampering under semi-adaptive partitioning, we need Σ to be leakage-
resilient under a semi-adaptive choice of the partitions too. A nice feature of this
transformation is that it only requires perfectly binding commitments, which
can be built from injective one-way functions. Moreover, it preserves the access
structure of the underlying secret sharing scheme Σ.

Given the above result, we can focus on the simpler task of constructing
bounded leakage-resilient, statistically one-time non-malleable secret sharing,
instead of directly attempting to construct their multi-time counterparts. We
show different ways of doing that for both settings of selective and semi-adaptive
partitioning.

Selective Partitioning. First, we show that every statistically one-time non-
malleable secret sharing scheme Σ is also resilient to bounded leakage under
selective partitioning. Let � be an upper bound on the total bit-length of the
leakage over all shares. We use an argument reminiscent to standard complexity
leveraging to prove that every one-time non-malleable secret sharing scheme with
statistical security ε ∈ [0, 1) is also �-bounded leakage-resilient one-time non-
malleable under selective partitioning with statistical security ε/2�. The proof
roughly works as follows. Given an unbounded attacker A breaking the leakage-
resilient one-time non-malleability of Σ, we construct an unbounded attacker Â
against one-time non-malleability of Σ (without leakage). The challenge is how
2 Here, we inherit a few restrictions from [23]. Namely, the attacker is allowed to

tamper jointly using a partition of a minimal reconstruction set in subsets of differ-
ent sizes. We can remove these restrictions relying on the scheme from [24], which
however only works for the n-out-of-n access structure.

3 This means privacy holds with threshold τ , but all of the n shares are required to
reconstruct the message.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 131

Â can answer the leakage queries done by A. Our strategy is to simply guess
the overall leakage Λ by sampling it uniformly at random, and use this guess to
answer all of A’s leakage queries.

The problem with this approach is that, whenever our guess was incorrect,
the attacker A may notice that it is being used in a simulation and start behaving
arbitrarily. We solve this issue with the help of Â’s final tampering query. Recall
that in the model of selective partitioning, all leakage queries and the tamper-
ing query, act on the same arbitrary but fixed subsets B1, . . . ,Bt of a k-sized
partition of the shares. Hence, when A outputs its tampering query (f1, . . . , ft),
the reduction Â defines a modified tampering query (f̂1, . . . , f̂t) that first checks
whether the guessed leakage from each subset Bi was correct; if not, the tam-
pering function sets4 the modified shares within Bi to ⊥, else it acts identically
to fi. This strategy ensures that our reduction either performs a correct simula-
tion or destroys the secret. In turn, destroying the secret whenever we guessed
incorrectly implies that the success probability of Â is exactly that of A times
the probability of guessing the leakage correctly, which is 2−�.

By plugging the schemes from [23, Thm. 2], [24, Thm. 6], and [14, Thm. 3],
together with our refined analysis of the transformation by Ostrovsky et al. [30],
the above insights directly imply items i and ii of Theorem 1.

Semi-adaptive Partitioning. Unfortunately, the argument for showing that one-
time non-malleability implies bounded leakage resilience breaks in the setting of
adaptive (or even semi-adaptive) partitioning. Intuitively, the problem is that
the adversary can leak jointly from adaptively chosen partitions, and thus it is
unclear how the reduction can check whether the simulated leakage was correct
using a single tampering query.

Hence, we take a different approach. We directly construct a bounded leakage-
resilient, statistically one-time non-malleable secret sharing scheme for general
access structures. Our construction Σ combines a 2-out-of-2 non-malleable secret
sharing scheme Σ2 with two auxiliary leakage-resilient secret sharing schemes Σ0

and Σ1 realizing different access structures. When taking Σ0 to be the secret
sharing scheme from [26, Thm. 1], our construction achieves k-joint bounded
leakage-resilient statistical one-time non-malleability under semi-adaptive par-
titioning for k ∈ O(

√
log n). This implies item iii of Theorem 1. We refer the

reader directly to Sect. 5 for a thorough description of our new secret sharing
scheme and its security analysis.

Lower Bounds. Our complexity leveraging argument implies that every statisti-
cally one-time non-malleable secret sharing scheme against independent tamper-
ing with the shares is also statistically bounded leakage resilient against inde-
pendent leakage (and no tampering).

By invoking a recent result of Nielsen and Simkin [29], we immediately obtain
lower bounds on the share size and randomness complexity of any statistically
one-time non-malleable secret sharing scheme against independent tampering.

4 We assume that the reconstruction algorithm outputs ⊥ whenever one of the input
shares is set to ⊥. As we will see later, this is without loss of generality.

132 G. Brian et al.

1.3 Related Works

Non-malleable secret sharing is intimately related to non-malleable codes [19].
The difference between the two lies in the privacy property: While any non-
malleable code in the split-state model [1,3,5–7,13,15–17,19,20,22,27,28,30] is
also a 2-out-of-2 secret sharing [17], for any n ≥ 3 there are n-split-state non-
malleable codes that are not private.

Continuously non-malleable codes in the n-split-state model are currently
known for n = 8 [4] (with statistical security), and for n = 2 [16,20,22,30] (with
computational security).

Non-malleable secret sharing schemes have useful cryptographic applications,
such as non-malleable message transmission [23] and continuously non-malleable
threshold signatures [2,21].

1.4 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, we recall a few standard
definitions. In Sect. 3, we define our model of k-joint non-malleability under
selective and semi-adaptive partitioning.

In Sect. 4 and Sect. 5, we describe our constructions of bounded leakage-
resilient statistically one-time non-malleable secret sharing schemes under selec-
tive and semi-adaptive partitioning. The lower bounds for non-malleable secret
sharing, and the compiler for achieving p-time non-malleability against joint
tampering are presented in Sect. 6. Finally, in Sect. 7, we conclude the paper
with a list of open problems for further research.

2 Preliminaries

2.1 Standard Notation

For a string x ∈ {0, 1}∗, we denote its length by |x|; if X is a set, |X | represents
the number of elements in X . We denote by [n] the set {1, . . . , n}. For a set of
indices I = (i1, . . . , it) and a vector x = (x1, . . . , xn), we write xI to denote the
vector (xi1 , . . . , xit

). When x is chosen randomly in X , we write x ←$ X . When
A is a randomized algorithm, we write y ←$ A(x) to denote a run of A on input
x (and implicit random coins r) and output y; the value y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm
A is probabilistic polynomial-time (PPT for short) if A is randomized and for
any input x, r ∈ {0, 1}∗, the computation of A(x; r) terminates in a polynomial
number of steps (in the size of the input).

Negligible Functions. We denote with λ ∈ N the security parameter. A function
p is polynomial (in the security parameter), denoted p ∈ poly (λ), if p(λ) ∈
O(λc) for some constant c > 0. A function ν : N → [0, 1] is negligible (in the
security parameter) if it vanishes faster than the inverse of any polynomial in λ,
i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ). We often write ν(λ) ∈

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 133

negl(λ) to denote that ν(λ) is negligible. Unless stated otherwise, throughout
the paper, we implicitly assume that the security parameter is given as input (in
unary) to all algorithms.

Random Variables. For a random variable X, we write P[X = x] for the proba-
bility that X takes on a particular value x ∈ X , with X being the set where X
is defined. The statistical distance between two random variables X and Y over
the same set X is defined as

Δ(X,Y) :=
1
2

∑

x∈X
|P[X = x] − P[Y = x]| .

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to
denote that they are identically distributed, X

s≈ Y to denote that they are
statistically close, i.e. Δ(Xλ,Yλ) ∈ negl(λ), and X

c≈ Y to denote that they are
computationally indistinguishable, i.e. for all PPT distinguishers D:

|P [D(Xλ) = 1] − P [D(Yλ) = 1]| ∈ negl(λ) .

Sometimes we explicitly denote by X
s≈ε Y the fact that Δ(Xλ,Yλ) ≤ ε for

a parameter ε = ε(λ). We also extend the notion of computational indistin-
guishability to the case of interactive experiments (a.k.a. games) featuring an
adversary A. In particular, let GA(λ) be the random variable corresponding to
the output of A at the end of the experiment, where wlog. we may assume A
outputs a decision bit. Given two experiments GA(λ, 0) and GA(λ, 1), we write
{GA(λ, 0)}λ∈N

c≈ {GA(λ, 1)}λ∈N as a shorthand for

|P [GA(λ, 0) = 1] − P [GA(λ, 1) = 1]| ∈ negl(λ) .

The above naturally generalizes to statistical distance, which we denote by
Δ(GA(λ, 0),GA(λ, 1)), in case of unbounded adversaries.

We recall a lemma from Dziembowski and Pietrzak [18]:

Lemma 1. Let X and Y be two independent random variables, and Oleak(·, ·)
be an oracle that upon input arbitrary functions (g0, g1) returns (g0(X), g1(Y)).
Then, for any adversary A outputting Z ←$ AOleak(·,·), it holds that the random
variables X|Z and Y|Z are independent.

2.2 Secret Sharing Schemes

An n-party secret sharing scheme Σ consists of polynomial-time algorithms
(Share,Rec) specified as follows. The randomized sharing algorithm Share takes
a message m ∈ M as input and outputs n shares s1, . . . , sn, where each si ∈ Si.
The deterministic algorithm Rec takes some number of shares as input and out-
puts a value in M ∪ {⊥}. We define μ := log |M| and σi := log |Si| respectively,
to be the bit length of the message and of the ith share.

Which subsets of shares are authorized to reconstruct the secret and which
are not is defined via an access structure, which is the set of all authorized
subsets.

134 G. Brian et al.

Definition 1 (Access structure). We say that A is an access structure for n
parties if A is a monotone class of subsets of [n], i.e., if I1 ∈ A and I1 ⊆ I2,
then I2 ∈ A. We call authorized or qualified any set I ∈ A, and unauthorized
or unqualified any other set. We say that an authorized set I ∈ A is minimal if
any proper subset of I is unauthorized, i.e., if U � I, then U /∈ A.

Intuitively, a perfectly secure secret sharing scheme must be such that all
qualified subsets of players can efficiently reconstruct the secret, whereas all
unqualified subsets have no information (possibly in a computational sense)
about the secret.

Definition 2 (Secret sharing scheme). Let n ∈ N and A be an access struc-
ture for n parties. We say that Σ = (Share,Rec) is a secret sharing scheme real-
izing access structure A with message space M and share space S = S1× . . .×Sn

if it is an n-party secret sharing with the following properties.

(i) Correctness: For all λ ∈ N, all messages m ∈ M and all authorized subsets
I ∈ A, we have that Rec((Share(m))I) = m with overwhelming probability
over the randomness of the sharing algorithm.

(ii) Privacy: For all PPT adversaries A, all pairs of messages m0,m1 ∈ M
and all unauthorized subsets U /∈ A, we have that

{(Share(1λ,m0))U}λ∈N

c≈ {(Share(1λ,m1))U}λ∈N.

If the above ensembles are statistically close (resp. identically distributed),
we speak of statistical (resp. perfect) privacy.

2.3 Non-interactive Commitments

A non-interactive commitment scheme Commit is a randomized algorithm taking
as input a message m ∈ M and outputting a value c = Commit(m; r) called
commitment, using random coins r ∈ R. The pair (m, r) is called the opening.

Intuitively, a secure commitment satisfies two properties called binding and
hiding. The first property says that it is hard to open a commitment in two
different ways. The second property says that a commitment hides the underlying
message. The formal definition follows.

Definition 3 (Binding). We say that a non-interactive commitment scheme
Commit is computationally binding if for all PPT adversaries A, all messages
m ∈ M, and all random coins r ∈ R, the following probability is negligible:

P [m′ = m ∧ Commit(m′; r′) = Commit(m; r) : (m′, r′) ←$ A(m, r)] .

If the above holds even in the case of unbounded adversaries, we say that Commit
is statistically binding. Finally, if the above probability is exactly 0 for all adver-
saries (i.e., each commitment can be opened to at most a single message), then
we say that Commit is perfectly binding.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 135

Definition 4 (Hiding). We say that a non-interactive commitment scheme
Commit is computationally hiding if, for all m0,m1 ∈ M, it holds that

{
Commit(1λ;m0)

}
λ∈N

c≈
{
Commit(1λ;m1)

}
λ∈N

.

In case the above ensembles are statistically close (resp. identically distributed),
we say that Commit is statistically (resp. perfectly) hiding.

3 Our Leakage and Tampering Model

In this section we define various notions of non-malleability against joint tam-
pering and leakage for secret sharing. Very roughly, in our model the attacker is
allowed to partition the set of share holders into t (non-overlapping) blocks with
size at most k, covering the entire set [n]. This is formalized through the notion
of a k-sized partition.

Definition 5 (k-sized partition). Let n, k, t ∈ N. We call B = (B1, . . . ,Bt) a
k-sized partition of [n] when: (i)

⋃t
i=1 Bi = [n]; (ii) ∀i1, i2 ∈ [t] such that i1 = i2,

Bi1 ∩ Bi2 = ∅; (iii) ∀i ∈ [t], |Bi| ≤ k.

Let B = (B1, . . . ,Bt) be a k-sized partition of [n]. To define non-malleability,
we consider an adversary A interacting with a target secret sharing s =
(s1, . . . , sn) via the following queries:

– Leakage queries. For each i ∈ [t], the attacker can leak jointly from the
shares sBi

. This can be done repeatedly and in an adaptive5 fashion, as long
as the total number of bits that the adversary leaks from each share does not
exceed � ∈ N.

– Tampering queries. For each i ∈ [t], the attacker can tamper jointly with
the shares sBi

. Each such query yields mauled shares (s̃1, . . . , s̃n), for which
the adversary is allowed to see the corresponding reconstructed message w.r.t.
a reconstruction set T ∈ A of his choice. This can be done for at most p ∈ N

times, and in an adaptive fashion.

Depending on the partition B being fixed, or chosen adaptively with each leak-
age/tampering query, we obtain two different flavors of non-malleability, as
defined in the following subsections.

3.1 Selective Partitioning

Here, we restrict the adversary to jointly leak from and tamper with subsets of
shares belonging to a fixed partition of [n].

5 This means that the choice of the next leakage query depends on the overall leakage
so far.

136 G. Brian et al.

Definition 6 (Selective bounded-leakage and tampering admissible
adversary). Let n, k, t, �, p ∈ N, and fix an arbitrary message space M, sharing
space S = S1×· · ·×Sn, and access structure A for n parties. We say that a (pos-
sibly unbounded) adversary A is selective k-joint �-bounded leakage p-tampering
admissible (selective (k, �, p)-BLTA for short) if, for every fixed k-sized partition
(B1, . . . ,Bt) of [n], A satisfies the following conditions:

– A outputs a sequence of poly-many leakage queries (g(q)1 , . . . , g
(q)
t), such that

for all q ∈ poly(λ) and all i ∈ [t],

g
(q)
i : ×

j∈Bi

Sj → {0, 1}�
(q)
i ,

where �
(q)
i is the length of the output Λ

(q)
i of g

(q)
i . The only restriction is that

|Λ| ≤ �, where Λ is the string containing the total leakage performed (over all
queries).

– A outputs a sequence of tampering queries (T (q), (f (q)
1 , . . . , f

(q)
t)), such that,

for all q ∈ [p], and for all i ∈ [t], it holds that

f
(q)
i : ×

j∈Bi

Sj → ×
j∈Bi

Sj and T (q) ∩ Bi = ∅,

and moreover T (q) ∈ A is a minimal authorized subset.
– All queries performed by A are chosen adaptively, i.e. each query may depend

on the information obtained from all the previous queries.
– If p > 0, the last query performed by A is a tampering query.

Note that A can choose a different reconstruction set T (q) with each tam-
pering query, in a fully adaptive manner. This feature is known as adaptive
reconstruction [21]. However, we consider the following two restrictions (that
were not present in previous works): (i) Each set T (q) must be minimal and
contain at least one mauled share from each subset Bi; (ii) The last query asked
by A is a tampering query. Looking ahead, these technical conditions are needed
for the complexity leveraging argument used in Theorem3. Note that the above
restrictions are still meaningful, as they allow, e.g., to capture the setting in
which the attacker first leaks from all the shares and then tampers with the
shares in a minimal authorized subset.

3.2 Semi-adaptive Partitioning

Next, we generalize the above definition to the stronger setting in which the
adversary is allowed to change the k-sized partition with each leakage and tam-
pering query. Here, we do not consider the restriction (i) mentioned above as it
is not needed for the analysis of our secret sharing scheme in Sect. 5; yet we still
consider the restriction (ii), and we will need to restrict the way in which the
attacker specifies the partitions corresponding to each leakage and tampering
query. For this reason, we refer to our model as semi-adaptive partitioning.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 137

Definition 7 (Semi-adaptive bounded-leakage and tampering admissi-
ble adversary). Let n, k, �, p ∈ N and M,S,A as in Definition 6. We say that
a (possibly unbounded) adversary A is semi-adaptive k-joint �-bounded leakage
p-tampering admissible (semi-adaptive (k, �, p)-BLTA for short) if it satisfies the
following conditions:

– A outputs a sequence of poly-many leakage queries (B(q), (g(q)1 , . . . , g
(q)

t(q))), cho-
sen adaptively, such that, for all q ∈ poly(λ), and for all i ∈ [t(q)], it holds
that B(q) = (B(q)

1 , . . . ,B(q)

t(q)) is a k-sized partition of [n] and

g
(q)
i : ×

j∈B(q)
i

Sj → {0, 1}�
(q)
i ,

where �
(q)
i is the length of the output. The only restriction is that |Λ| ≤ �,

where Λ = (Λ(1), Λ(2), . . .) is the total leakage (over all queries).
– A outputs a sequence of p tampering queries (B(q), T (q), (f (q)

1 , . . . , f
(q)
t)), cho-

sen adaptively, such that, for all q ∈ [p], and for all i ∈ [t(q)], it holds that
B(q) is a k-sized partition of [n] and

f
(q)
i : ×

j∈B(q)
i

Sj → ×
j∈B(q)

i

Sj .

– All queries performed by A are chosen adaptively, i.e. each query may depend
on the information obtained from all the previous queries.

– If p > 0, the last query performed by A is a tampering query.
– Given a tampering query (B, T , f), let T = {β1, . . . , βτ} for τ ∈ N. We write

ξ(i) for the index such that βi ∈ Bξ(i); namely, the i-th share used in the
reconstruction is tampered by the ξ(i)-th tampering function. Then:
(i) For all leakage queries (B, g) and all tampering queries (B′, T ′, f ′), where

B = (B1, . . . ,Bt) and B′ = (B′
1, . . . ,B′

t′), the following holds: for all
indices i ∈ [t], either there exists j ∈ T ′ such that Bi ⊆ B′

ξ(j), or for
all j ∈ T ′ we have Bi ∩ B′

ξ(j) = ∅.
(ii) For any pair of tampering queries (B′, T ′, f ′) and (B′′, T ′′, f ′′), where

B′ = {B′
1, . . . ,B′

t′} and B′′ = {B′′
1 , . . . ,B′′

t′′}, the following holds: for all
i ∈ T ′, either there exists j ∈ T ′′ such that B′

ξ(i) ⊆ B′′
ξ(j), or for all j ∈ T ′′

we have B′
ξ(i) ∩ B′′

ξ(j) = ∅.

Intuitively, condition (i) means that whenever the attacker leaks jointly from
the shares within a subset Bi, then for any tampering query the adversary must
either tamper jointly with the shares within Bi, or do not modify those shares at
all. Condition (ii) is the same translated to the partitions corresponding to dif-
ferent tampering queries. Looking ahead, condition (i) is needed for the proof in
Sect. 5.3, whereas condition (ii) is needed for the proof in Sect. 6.2. Note that the
above restrictions are still meaningful, as they allow, e.g., to capture the setting

138 G. Brian et al.

JSTamperB,m0,m1
Σ,A (λ, b):

s := (s1, . . . , sn) ←$ Share(mb)
stop ← false
Return AOnmss(s,B,·,·),Oleak(s,B,·)(1λ)

JATamperm0,m1
Σ,A (λ, b):

s := (s1, . . . , sn) ←$ Share(mb)
stop ← false
Return AOnmss(s,·,·,·),Oleak(s,·,·)(1λ)

Oracle Oleak(s, B, (g1, . . . , gt)):
Return g1(sB1), . . . , gt(sBt)

Oracle Onmss(s, B, T , (f1, . . . , ft)):
If stop = true

Return ⊥
Else

∀i ∈ [t] : s̃Bi := fi(sBi)
s̃ = (s̃1, . . . , s̃n)
m̃ = Rec(s̃T)
If m̃ ∈ {m0, m1}

Return �
If m̃ = ⊥

Return ⊥
stop ← true

Else return m̃

Fig. 1. Experiments defining selective (JSTamper) and adaptive (JATamper) joint
leakage-resilient (continuously) non-malleable secret sharing. The oracle Onmss is implic-
itly parameterized by the flag stop.

in which the attacker defines two non-overlapping6 subsets of [n] and then per-
forms joint leakage under adaptive partitioning within the first subset and joint
leakage/tampering under selective partitioning within the second subset.

3.3 The Definition

Very roughly, leakage-resilient non-malleability states that no admissible adver-
sary, as defined above, can distinguish whether it is interacting with a secret
sharing of m0 or of m1.

Definition 8 (Leakage-resilient non-malleability). Let n, k, �, p ∈ N and
ε ∈ [0, 1] be parameters, and A be an access structure for n parties. We say that
Σ = (Share,Rec) is a k-joint �-bounded leakage-resilient p-time ε-non-malleable
secret sharing scheme realizing A, shortened (k, �, p, ε)-BLR-NMSS, if it is an
n-party secret sharing scheme realizing A, and additionally, for all pairs of mes-
sages m0,m1 ∈ M, we have one of the following:

– For all selective (k, �, p)-BLTA adversaries A, and for all k-sized partitions B
of [n],

{
JSTamperB,m0,m1

Σ,A (λ, 0)
}

λ∈N

s≈ε

{
JSTamperB,m0,m1

Σ,A (λ, 1)
}

λ∈N

. (1)

In this case, we speak of (k, �, p, ε)-BLR-NMSS under selective partitioning.
– For all semi-adaptive (k, �, p)-BLTA adversaries A,

{
JATamperm0,m1

Σ,A (λ, 0)
}

λ∈N

s≈ε

{
JATamperm0,m1

Σ,A (λ, 1)
}

λ∈N

. (2)

6 In fact, the two subsets do not need to be fixed a priori.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 139

In this case, we speak of (k, �, p, ε)-BLR-NMSS under semi-adaptive parti-
tioning.

Experiments JSTamperB,m0,m1
Σ,A (λ, b) and JATamperm0,m1

Σ,A (λ, b), for b ∈
{0, 1}, are depicted in Fig. 1.

In case there exists ε = ε(λ) ∈ negl(λ) such that indistinguishability still
holds computationally in the above definitions for any p = p(λ) ∈ poly(λ), and
any PPT adversaries A, we call Σ bounded leakage-resilient continuously non-
malleable, shortened (k, �)-BLR-CNMSS, under selective/semi-adaptive parti-
tioning.

Non-malleable Secret Sharing. When no leakage is allowed (i.e., � = 0), we
obtain the notion of non-malleable secret sharing as a special case. In particular,
an adversary is k-joint p-time tampering admissible, shortened (k, p)-TA, if it is
(k, 0, p)-BLTA. Furthermore, we say that Σ is a k-joint p-time ε-non-malleable
secret sharing, shortened (k, p, ε)-NMSS, if Σ is a (k, 0, p, ε)-BLR-NMSS scheme.

Leakage-Resilient Secret Sharing. When no tampering is allowed (i.e., p = 0),
we obtain the notion of leakage-resilient secret sharing as a special case. In
particular, an adversary is k-joint �-bounded leakage admissible, shortened (k, �)-
BLA, if it is (k, �, 0)-BLTA. Furthermore, we say that Σ is a k-joint �-bounded
ε-leakage-resilient secret sharing, shortened (k, �, ε)-BLRSS, if Σ is a (k, �, 0, ε)-
BLR-NMSS scheme.

Finally, we denote by JSLeakB,m0,m1
Σ,A (λ, b) and JALeakm0,m1

Σ,A (λ, b) the
experiments in Definition 8 defining leakage resilience against selective and semi-
adaptive partitioning respectively. However, note that when no tampering hap-
pens the conditions (i) and (ii) of Definition 7 are irrelevant, and thus we simply
speak of (k, �, ε)-BLRSS under adaptive partitioning.

Augmented Leakage Resilience. We also define a seemingly stronger variant of
leakage-resilient secret sharing, in which A is allowed to obtain the shares within
a subset of the partition B (in the case of selective partitioning, or any unau-
thorized subset of at most k shares in the case of adaptive partitioning) at the
end of the experiment. In particular, in the case of selective partitioning, an
augmented admissible adversary is an attacker A+ = (A+

1 ,A+
2) such that:

– A+
1 is an admissible adversary in the sense of Definition 6, the only difference

being that A+
1 outputs a tuple (α, i∗), where α is an auxiliary state, and

i∗ ∈ [t];
– A+

2 takes as input α and all the shares sBi∗ , and outputs a decision bit.

In case of adaptive partitioning, the definition changes as follows: the adversary
A+
1 is admissible in the sense of Definition 7 and outputs an unauthorized subset

U /∈ A of size at most k instead of the index i∗, and A+
2 takes as input the shares

sU instead of the shares sBi∗ .
This flavor of security is called augmented leakage resilience. The theorem

below, which was established by [11,26] for the case of independent leakage,

140 G. Brian et al.

shows that any joint LRSS is also an augmented LRSS at the cost of an extra
bit of leakage.

Theorem 2. Let Σ be a (k, � + 1, ε)-BLRSS realizing access structure A under
selective/adaptive partitioning. Then, Σ is an augmented (k, �, ε)-BLRSS real-
izing A under selective/adaptive partitioning.

Proof. By reduction to non-augmented leakage resilience. Let A+ = (A+
1 ,A+

2) be
a (k, �, ε)-BLA adversary violating augmented leakage-resilience; we construct
an adversary A breaking the non-augmented variant of leakage resilience. Fix
m0,m1 ∈ M and a k-sized partition B = (B1, . . . ,Bt). Attacker A works as
follows.

– Run A+
1 and, upon input a leakage query (g1, . . . , gt), forward the same query

to the target leakage oracle and return the answer to A+
1 .

– Let (α, i∗) be the final output of A+
1 . Define the leakage function ĝ

α,A+
2

i∗ which
hard-wires α and a description of A+

2 , takes as input the shares sBi∗ and
returns the decision bit b′ ←$ A+

2 (α, sBi∗).

– Forward (ε, . . . , ε, ĝα,A+
2

i∗ , ε, . . . , ε) to the target leakage oracle, obtaining a bit
b′.

– Output b′.

The statement follows by observing that A’s simulation to A+’s leakage queries
is perfect, thus A and A+ have the same advantage, and moreover A leaks a total
of at most � + 1 bits. ��

4 Selective Partitioning

In this section, we construct bounded leakage-resilient, statistically one-time
non-malleable secret sharing under selective partitioning. We achieve this in two
steps. First, in Sect. 4.1, we prove that every statistically one-time non-malleable
secret sharing is in fact bounded leakage-resilient, statistically one-time non-
malleable under selective partitioning at the price of a security loss exponential
in the size of the leakage. Then, in Sect. 4.2, we provide concrete instantiations
using known results from the literature.

4.1 Non-malleability Implies Bounded Leakage Resilience

Theorem 3. Let Σ = (Share,Rec) be a (k, 1, ε/2�)-NMSS realizing A. Then, Σ
is also a (k, �, 1, ε)-BLR-NMSS realizing A under selective partitioning.

Proof. By contradiction, assume that there exist a pair of messages m0,m1 ∈ M,
a k-partition B = (B1, . . . ,Bt) of [n], and a (k, �, 1)-BLTA unbounded adversary
A such that

∣∣∣P
[
JSTamperB,m0,m1

Σ,A (λ, 0) = 1
]

− P

[
JSTamperB,m0,m1

Σ,A (λ, 1) = 1
]∣∣∣ > ε.

Consider the following unbounded reduction Â trying to break (k, 0, 1, ε/2�)-non-
malleability using the same partition B, and the same messages m0,m1.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 141

1. Run A(1λ).
2. Upon input the q-th leakage query g(q) = (g(q)1 , . . . , g

(q)
t), generate a uniformly

random string Λ(q) = (Λ(q)
1 , . . . , Λ

(q)
t) compatible with the range of g(q), and

output Λ(q) to A.
3. Upon input the final tampering query f = (f1, . . . , ft), construct the following

tampering function f̂ = (f̂1, . . . , f̂t):
– The function hard-wires (a description of) all the leakage functions g(q),

the tampering query f , and the guess on the leakage Λ = Λ(1)||Λ(2)|| · · · .
– Upon input the shares (sj)j∈Bi

, the function f̂i checks that the guess on
the leakage was correct, i.e. g

(q)
i ((sj)j∈Bi

) = Λ
(q)
i for all q. If the guess

was correct, compute and output fi((sj)j∈Bi
); else, output ⊥.

4. Send f̂ to the tampering oracle and pass the answer m̃ ∈ M ∪ {�,⊥} to A.
5. Output the same guessing bit as A.

For the analysis, we now compute the distinguishing advantage of Â. In par-
ticular, call Missb the event in which the guess on the leakage was wrong in
experiment JSTamperB,m0,m1

Σ,A (λ, b), i.e. there exists i ∈ [t] such that f̂i outputs
⊥ in step 3, and call Hitb its complementary event. We notice that the probabil-
ity of Hit0 is equal to the probability of Hit1, since the strings Λ(q) are sampled
uniformly at random:

P[Hitb] =
∑

Λ∈{0,1}�

P[U� = Λ ∧ g(Sb) = Λ] = 2−�
∑

Λ∈{0,1}�

P[g(Sb) = Λ] = 2−�,

where Sb is the random variable corresponding to Share(mb), U� is the uniform
distribution over {0, 1}�, and g is the concatenation of all the leakage functions.
Then, we can write:

∣∣∣P
[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

]
− P

[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

]∣∣∣

=
∣∣∣P [Hit0] P

[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Hit0
]

(3)

− P [Hit1] P
[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Hit1
]

+ P [Miss0] P
[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Miss0
]

− P [Miss1] P
[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Miss1
]∣∣∣

= 2−�
∣∣∣P

[
JSTamperB,m0,m1

Σ,Â
(λ, 0) = 1

∣∣∣Hit0
]

(4)

− P

[
JSTamperB,m0,m1

Σ,Â
(λ, 1) = 1

∣∣∣Hit1
]∣∣∣

= 2−�
∣∣∣P

[
JSTamperB,m0,m1

Σ,A (λ, 0) = 1
]

(5)

−P

[
JSTamperB,m0,m1

Σ,A (λ, 1) = 1
]∣∣∣ >

ε

2�
, (6)

In the above derivation, Eq. (3) follows from the law of total probability, Eq. (4)
comes from the fact that, when Miss happens, the view of A (i.e. the leakage

142 G. Brian et al.

Λ and the output of the tampering query) is independent7 of the target secret
sharing, and thus its distinguishing advantage is zero, and Eq. (5) follows because
P[Hit] = 2−� and moreover, when Hit happens, the view of A is perfectly
simulated and thus Â has the same distinguishing advantage of A, which is at
least ε by assumption.

Therefore, Â has a distinguishing advantage of at least ε/2�. Finally, note
that Â performs no leakage and uses only one tampering query, and thus Â is
(k, 1)-TA. The lemma follows. ��

4.2 Instantiations

Using known constructions of one-time non-malleable secret sharing schemes
against joint tampering, we obtain the following:

Corollary 1. For every λ, �, n ≥ 0, and every k, τ ≥ 0 such that k < τ ≤
n, there exists a τ -out-of-n secret sharing Σ that is a (k, �, 1, 2−λ)-BLR-NMSS
under selective partitioning.

Proof. Follows by combining Theorem 3 with the secret sharing scheme8 of [23,
Thm. 4], using security parameter λ′ + � and choosing λ ≥ (λ′ + �)Ω(1) − � in
order to obtain

ε = 2� · 2−(λ′+�)Ω(1) ≤ 2−λ.

��
Corollary 2. For every �, n ≥ 0, any β < 1, and every k, τ ≥ 0 such that k <

τ ≤ n, there exists an (n, τ)-ramp secret sharing Σ that is a (k, �, 1, 2� ·2−nΩ(1)
)-

BLR-NMSS under selective partitioning with binary shares.

Proof. Follows by combining Theorem 3 with the secret sharing scheme of [14,
Thm. 4.1].

5 Semi-adaptive Partitioning

As mentioned in the introduction, the proof of Theorem3 breaks in the setting of
semi-adaptive partitioning. To overcome this issue, in Sect. 5.1, we give a direct
construction of a bounded leakage-resilient, one-time statistically non-malleable
secret sharing (for general access structures) under semi-adaptive partitioning.
We explain the main intuition behind our design in Sect. 5.2, and formally prove
security in Sect. 5.3. Finally, in Sect. 5.4, we explain how to instantiate our con-
struction using known results from the literature.
7 Here is where we use the restriction that the reconstruction set T must be minimal

and contain at least one share from each subset Bi; otherwise, we cannot argue that
the output of the tampering query is ⊥, and thus independent of the target.

8 The construction in [23, Thm. 4] actually only achieves security against joint tam-
pering within a partition B of the reconstruction set T (rather than the entire set
[n]). Accordingly, in this case we can only tolerate joint leakage from the shares
within the same partition B.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 143

5.1 Our New Secret Sharing Scheme

Let Σ0 be a secret sharing realizing access structure A, let Σ1 be a k1-out-of-n
secret sharing, and let Σ2 be a 2-out-of-2 secret sharing. Consider the following
scheme Σ = (Share,Rec):

– Algorithm Share: Upon input m, first compute (s0, s1) ←$ Share2(m),
(s0,1, . . . , s0,n) ←$ Share0(s0), and (s1,1, . . . , s1,n) ←$ Share1(s1). Then set
si := (s0,i, s1,i) for all i ∈ [n], and output (s1, . . . , sn).

– Algorithm Rec: Upon input (si)i∈I , parse si = (s0,i, s1,i) and I =
{i1, . . . , i|I|}, and define I|k1

:= {i1, . . . , ik1}; compute s1 = Rec1((s1,i)i∈I|k1
)

and s0 = Rec0((s0,i)i∈I), and finally output m′ = Rec2((s0, s1)).

With the above defined scheme, we achieve the following:

Theorem 4. Let n, k(λ), �(λ), σ0(λ) ∈ N and ε0, ε1, ε2 ∈ [0, 1] be parameters,
and set k1 :=

√
k, �0 := � + 1 and �1 := � + n · σ0. Let A be an arbitrary access

structure for n parties, where for any I ∈ A we have |I| > k1. Assume that:

1. Σ0 is a (k, �0, ε0)-BLRSS realizing A under adaptive partitioning, with share
space such that log |S0,i| ≤ σ0 (for any i ∈ [n]);

2. Σ1 is a (k1 −1, �1, ε1)-BLRSS realizing the k1-out-of-n threshold access struc-
ture under adaptive partitioning;

3. Σ2 is a one-time ε2-non-malleable 2-out-of-2 secret sharing (i.e. a (1, 1, ε2)-
NMSS).

Then, the above defined Σ is a (k1 − 1, �, 1, 2(ε0 + ε1)+ ε2)-BLR-NMSS realizing
A under semi-adaptive partitioning.

5.2 Proof Overview

In order to prove Theorem 4, we first make some considerations on the tampering
query (T ,B, f). In particular, we construct two disjoint sets T ∗

0 and T ∗
1 that are

the union of subsets from the partition B, in such a way that (i) T ∗
0 ∩T contains

at least k1 elements (so that it can be used as a reconstruction set for Rec1);
and (ii) each subset Bi of the partition B intersects at most one of T ∗

0 , T ∗
1 (so

that both leakage and tampering queries can be computed on T ∗
0 and on T ∗

1

independently). Hence, we define four hybrid experiments as described below.

First Hybrid: In the first hybrid experiment, we change how the tampering
query is answered. Namely, after the last leakage query, we replace all the left
shares (s0,β)β∈T ∗

1
with new shares (s∗

0,β)β∈T ∗
1

that are valid shares of s0 and
consistent with the leakage obtained by the adversary and with the shares
(s0,β)β∈T ∗

0
. Here, we note that due to the fact that we only consider semi-

adaptive partitioning,9 the shares (s0,β)β∈T ∗
1

and (s1,β)β∈T ∗
0

are independent

9 We thank Ashutosh Kumar for pointing out to us that independence given the
leakage does not necessarily hold in the case of fully adaptive (rather than semi-
adaptive) partitioning.

144 G. Brian et al.

even given the leakage. In particular, the above shares are independent before
the leakage occurs, and furthermore condition (i) in Definition 7 ensures that
the adversary never leaks jointly from shares in T ∗

0 and in T ∗
1 . Thus, since the

old and the new shares are sampled from the same distribution, this change
does not affect the view of the adversary and does not modify its advantage.

Second Hybrid: In the second hybrid experiment, we change the distribution
of the left shares. Namely, we discard the original ones and we replace them
with left shares of some unrelated message ŝ0, where (ŝ0, ŝ1) ←$ Share2(0). In
order to prove that this hybrid experiment is ε0-close to the previous one, we
construct an admissible reduction to leakage resilience of Σ0, thus proving
that, if some admissible adversary is able to notice the difference between the
old and the new experiment with advantage more than ε0, then our reduction
can distinguish between a secret sharing of s0 and a secret sharing of ŝ0 with
exactly the same advantage.
The key idea here is to forward leakage queries to the target oracle and,
once the adversary outputs its tampering query, obtain all the shares in T ∗

0

from the challenger, using the augmented property ensured by Theorem2;
the reduction remains admissible because Σ0 has security against adaptive
k-partitioning and |T ∗

0 | ≤ k. After receiving such shares, the reduction can
sample the shares (s∗

0,β)T ∗
1

as in the first hybrid experiment and compute the
tampering on both s0 (using the shares in T ∗

0 and the sampled shares in T ∗
1)

and s1 (only using the shares in T ∗
0), which allows to simulate the tampering

query.
Third Hybrid: In the third hybrid experiment, we change how the tamper-

ing query is answered. Similarly to the modification introduced in the first
hybrid experiment, after the last leakage query, we replace all the right shares
(s1,β)β∈T ∗

0
with new shares (s∗

1,β)β∈T ∗
0

that are valid shares of s1 and con-
sistent with the leakage obtained by the adversary. However, we now further
require that this change does not affect the outcome of the tampering query on
the left shares; in particular, if the tampering function applied to (ŝ0,β , s1,β)
leads to (s̃0,β , ∗), the same tampering function applied to (ŝ0,β , s∗

1,β) must
lead to (s̃0,β , ∗). This is required in order to keep consistency with the modi-
fications introduced in the second hybrid experiment. As before, since the old
and the new shares are sampled from the same distribution, this change does
not modify the advantage of the adversary.

Fourth Hybrid: In the fourth hybrid experiment, we change the distribution of
the right shares. Similarly to the modification introduced in the third hybrid
experiment, we discard the original shares and replace them with the right
shares of the previously computed unrelated message, i.e. ŝ1. In order to prove
that this hybrid experiment is ε1-close to the previous one, we construct an
admissible reduction to leakage resilience of Σ1.
The key idea here is to simulate the tampering query with a leakage query
that yields the result of the tampering on all the left shares (s̃0,β)β∈T ∗ ,
where T ∗ = T ∗

0 ∪ T ∗
1 . This is allowed because of the restriction on the

shares of Σ0 being at most σ0 bits long, so that the total performed leak-
age is bounded by � + nσ0. In particular, after sampling the fake shares

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 145

(ŝ0,1, . . . , ŝ0,n), forwarding the leakage queries to the target oracle and receiv-
ing the tampering query, the reduction samples the shares (s∗

0,β)β∈T ∗
1

as in
the second hybrid experiment and hard-wires them, along with the shares
(ŝ0,1, . . . , ŝ0,n), inside a leakage function that computes (s̃0,β , s̃1,β)β∈T ∗ and
outputs (s̃0,β)β∈T ∗ . After receiving the mauled shares, the reduction samples
the shares (s∗

1,β)β∈T ∗
0

as in the third hybrid and computes the correspond-
ing tampered shares (s̃1,β)β∈T ∗

0
. Given the mauled shares (s̃0,β)β∈T ∗ and

(s̃1,β)β∈T ∗
0
, the reduction can then simulate the tampering query correctly.

Since the above defined hybrid experiments are all statistically close, it only
remains to show that no adversary can distinguish between the last hybrid exper-
iment with bit b = 0 and the same experiment with b = 1 with an advantage
more than ε2, thus proving the security of our scheme. Here, we once again con-
struct a reduction, this time to one-time ε2-non-malleability, that achieves the
same advantage of an adversary distinguishing between the two experiments.

The key idea is to use s0 to sample the shares (s∗
0,β)β∈T ∗

1
and s1 to sam-

ple the shares (s∗
1,β)β∈T ∗

0
. In particular, all the missing shares needed for the

computation are the one sampled from (ŝ0, ŝ1) and, since T ∗
0 ∩ T ∗

1 = ∅, there
is no overlap and the tampering can be split between two functions f0, f1 that
hard-wire the sampled values. These two functions take as input s0 and s1,
respectively, and can thus compute the mauled values s̃0 and s̃1, which in turn
allows the reduction to simulate the tampering query.

5.3 Security Analysis

Before proceeding with the analysis, we introduce some useful notation. We
will define a sequence of hybrid experiments Hi(λ, b) for i ∈ N and b ∈ {0, 1},
starting with H0(λ, b) which is identical to the JATamperΣ,A(λ, b) experiment.
Recall that, after the leakage phase, the adversary sends a single tampering
query (T ,B, f).

– Let τ ∈ N and T = {β1, . . . , βτ}, and write ξ(i) for the index such that
βi ∈ Bξ(i) (i.e., the i-th share of the reconstruction is tampered by the ξ(i)-th
tampering function).

– We define some subsets starting from T . Call

T ∗
0 =

⋃

β∈T|k1

Bξ(β) and T0 = T ∗
0 ∩ T .

Then, use the above to define

T1 = T \ T0 and T ∗
1 =

⋃

β∈T1

Bξ(β).

and let T ∗ = T ∗
0 ∪ T ∗

1 .

146 G. Brian et al.

Note that, with the above notation, we can write:
⋃

β∈T|k1

Bξ(β) =
⋃

β∈T0

Bξ(β).

Moreover, T0 and T1 are defined in such a way that |T0| ≥ k1 and, if Bi ∩ T = ∅,
then either Bi ∩ T0 = ∅ or Bi ∩ T1 = ∅, but not both. In this way, we also obtain
that T ∗

0 ∩ T ∗
1 = ∅.

Finally recall that the adversary sends leakage queries (B(1), g(1)), . . . ,
(B(q), g(q)), for q ∈ poly (λ), and by condition (i) in the definition of semi-
adaptive admissibility (cf. Definition 7) we have that for all B∗ ∈

⋃
i∈[q] B(i)

either (1) ∃j ∈ T : B∗ ⊆ Bξ(j), or (2) ∀j ∈ T : B∗ ∩ Bξ(j) = ∅.

Hybrid 1. Let H1(λ, b) be the same as H0(λ, b) except for the shares of s0
being re-sampled at the end of the leakage phase. Namely, in H1(λ, b) we sample
(s∗

0,β)β∈T ∗
1

such that (s0,β)β∈T ∗
0
, (s∗

0,β)β∈T ∗
1

are valid shares of s0 and consistent
with the leakage. Then, we answer to A’s queries as follows:

– upon receiving a leakage query, use (s0,1, s1,1), . . . , (s0,n, s1,n) to compute the
answer;

– upon receiving the tampering query, use (s0,β , s1,β)β∈T ∗
0
, (s∗

0,β , s1,β)β∈T ∗
1

to
compute the answer.

Lemma 2. For b ∈ {0, 1}, Δ(H0(λ, b),H1(λ, b)) = 0.

Proof. Let (S0,β)β∈T ∗
1

and (S∗
0,β)β∈T ∗

1
be the random variables for the values

(s0,β)β∈T ∗
1

and (s∗
0,β)β∈T ∗

1
in experiments H0 and H1. More in details, the ran-

dom variable (S∗
0,β)β∈T ∗

1
comes from the distribution of the shares (s0,β)β∈T ∗

1

conditioned on the fixed values (s0,β)β∈T ∗
0

and the overall leakage Λ. We claim
that (S∗

0,β)β∈T ∗
1

and (S1,β)β∈T ∗
0

are independent conditioned on the leakage Λ.
This is because the random variables (S0,β)β∈T ∗

1
and (S1,β)β∈T ∗

0
are independent

in isolation, and, by condition (i) in the definition of semi-adaptive admissibil-
ity, none of the leakage functions leaks simultaneously from a share in T ∗

0 and
a share in T ∗

1 . The latter holds as otherwise there would exist B∗ ∈
⋃

i∈[q] B(i)

such that T ∗
1 ∩ B∗ = ∅ and T ∗

0 ∩ B∗ = ∅, and therefore: (1) ∀j ∈ T : B∗
� Bξ(j),

and (2) ∃j ∈ T : B∗ ∩ Bξ(j) = ∅. Finally, by Lemma1, we can conclude that the
two random variables are independent even conditioned on the leakage.

For any string s̄, let Bs̄
0 and Bs̄

1 be, respectively, the event that (S0,β)β∈T ∗
1

= s̄
and (S∗

0,β)β∈T ∗
1

= s̄. Then:

P [H0(λ, b) = 1] − P [H1(λ, b) = 1]

=
∑

s̄

P
[
Bs̄

0

]
P

[
H0(λ, b)=1

∣∣Bs̄
0

]
−

∑

s̄

P
[
Bs̄

1

]
P

[
H1(λ, b)=1

∣∣Bs̄
1

]

=
∑

s̄

P
[
Bs̄

0

] (
P

[
H0(λ, b)=1

∣∣Bs̄
0

]
− P

[
H1(λ, b)=1

∣∣Bs̄
1

])
(7)

= 0, (8)

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 147

where Eq. (7) holds because of (S∗
0,β)β∈T ∗

1
is re-sampled from the distribution

of the (s0,β)β∈T ∗
1

conditioned on the measured leakage Λ and fixed (s0,β)β∈T ∗
0

and moreover it is independent of (s1,β)β∈T ∗
0

thus is distributed exactly as the
conditional distribution of the (S0,β)β∈T ∗

1
. The Eq. (8) holds because, once fixed

the value of s̄, if both Bs̄
0 and Bs̄

1 happen, then (S0,β)β∈T ∗
1

= s̄ = (S∗
0,β)β∈T ∗

1

and the two hybrids are the same. ��

Hybrid 2. Let H2(λ, b) be the same as H1(λ, b) except for the leakage being
performed on fake shares of s0. Namely, compute (ŝ0, ŝ1) ←$ Share2(0), let ŝi =
(ŝ0,i, s1,i) where (ŝ0,1, . . . , ŝ0,n) ←$ Share0(ŝ0), and sample the shares (s∗

0,β)β∈T ∗
1

of H1 such that (ŝ0,β)β∈T ∗
0
, (s∗

0,β)β∈T ∗
1

are valid shares of s0 and consistent with
the leakage. Then:

– upon receiving a leakage query, use (ŝ0,1, s1,1), . . . , (ŝ0,n, s1,n) to compute the
answer;

– upon receiving the tampering query, use (ŝ0,β , s1,β)β∈T ∗
0
, (s∗

0,β , s1,β)β∈T ∗
1

to
compute the answer.

Lemma 3. For b ∈ {0, 1}, Δ((H1(λ, b),H2(λ, b))) ≤ ε0(λ).

Proof. By reduction to leakage resilience of Σ0. Suppose towards contradiction
that there exist b ∈ {0, 1}, messages m0,m1, and an adversary A able to tell
apart H1(λ, b) and H2(λ, b) with advantage more than ε0(λ). Let (s0, s1) and
(ŝ0, ŝ1) be, respectively, a secret sharing of mb and of the all-zero string under
Σ2. Consider the following reduction trying to distinguish a secret sharing of
s0 and a secret sharing of ŝ0 under Σ0, where we call starget0 the target secret
sharing in the leakage oracle.

Adversary ÂOleak((s
target
0,i)i∈[n],·,·)(1λ):

1. Sample (s1,1, . . . , s1,n) ←$ Share1(s1) and run the experiment as in H1

with the adversary A; upon receiving each leakage function, hard-code
into it the shares of s1 and forward it to the leakage oracle.

2. Eventually, the adversary sends its tampering query. Obtain from the
challenger the shares (starget0,β)β∈T ∗

0
(using the augmented property from

Theorem 2).
3. For all β ∈ T0, compute (s̃0,j , s̃1,j)j∈Bξ(β) = fξ(β)((s

target
0,j , s1,j)j∈Bξ(β))

and compute s̃1 = Rec1((s̃1,β)β∈T|k1
).

4. Sample (s∗
0,β)β∈T ∗

1
as described in H2 and compute s̃0 as follows: for

all β ∈ T1, let (s̃0,j , s̃1,j)j∈Bξ(β) = fξ(β)((s∗
0,j , s1,j)j∈Bξ(β)) and s̃0 =

Rec0((s̃0,β)β∈T).
5. Compute the value m̃ = Rec2(s̃0, s̃1). In case m̃ ∈ {m0,m1} return �

to A, and else return m̃.
6. Output the same as A.

For the analysis, note that the reduction is perfect. In particular, the reduction
perfectly simulates H1 when (starget0,i)i∈[n] is a secret sharing of s0 and perfectly
simulates H2 when (starget0,i)i∈[n] is a secret sharing of ŝ0. Moreover, the leakage

148 G. Brian et al.

requested by A is forwarded to the leakage oracle of Â and perfectly simulated
by it. Finally, the reduction gets in full (starget0,β)β∈T ∗

0
, which allows it to compute

s̃1, and computes s̃0 by sampling the values (s∗
0,β)β∈T ∗

1
as in H1.

Let us now analyze the admissibility of Â. The only leakage performed by
Â is the one requested by A, and augmented leakage resilience can be obtained
with 1 extra bit of leakage by Theorem2. Finally, since |T ∗

0 | ≤ k1(k1 − 1) ≤ k,
it follows that if A is (k1 − 1, �, 1)-BLTA, Â is (k, � + 1)-BLA. ��

Hybrid 3. Let H3(λ, b) be the same as H2(λ, b) except for the shares of s1
being re-sampled at the end of the leakage phase. Namely, in H3(λ, b) we sample
(s∗

1,β)β∈T ∗
0

such that (1) the shares (s1,β)β∈T ∗
0

and (s∗
1,β)β∈T ∗

0
agree with the

same leakage and the same reconstructed secret s1, and (2) for all β ∈ T0,
applying the tampering function fξ(β) to (ŝ0,j , s

∗
1,j)j∈Bξ(β) or to (ŝ0,j , s1,j)j∈Bξ(β)

leads to the same values (s̃0,j)j∈Bξ(β) . Then, we answer to A’s queries as follows:

– upon receiving a leakage query, use (ŝ0,1, s1,1), . . . , (ŝ0,n, s1,n) to compute the
answer;

– upon receiving the tampering query, use (ŝ0,β , s∗
1,β)β∈T ∗

0
, (s∗

0,β , s1,β)β∈T ∗
1

to
compute the answer.

Lemma 4. For b ∈ {0, 1}, Δ(H2(λ, b),H3(λ, b)) = 0.

Proof. The proof is similar to that of Lemma 2, and thus omitted.

Hybrid 4. Let H4(λ, b) be the same as H3(λ, b) except for the leakage being
performed on fake shares of s1. Namely, let (ŝ1,i)i∈[n] ←$ Share1(ŝ1), where ŝ1
comes from Share2(0) as in H2. Then:

– upon receiving a leakage query, use (ŝ0,1, ŝ1,1), . . . , (ŝ0,n, ŝ1,n) to compute the
answer;

– upon receiving the tampering query, use (ŝ0,β , s∗
1,β)β∈T ∗

0
, (s∗

0,β , ŝ1,β)β∈T ∗
1

to
compute the answer.

Lemma 5. For b ∈ {0, 1}, Δ(H3(λ, b),H4(λ, b)) ≤ ε1(λ).

Proof. By reduction to the leakage resilience of Σ1. Suppose towards contradic-
tion that there exist b ∈ {0, 1}, messages m0,m1, and an adversary A able to tell
apart H3(λ, b) and H4(λ, b) with advantage more than ε1(λ). Let (s0, s1) and
(ŝ0, ŝ1) be, respectively, a secret sharing of mb and of the all-zero string under
Σ2. Consider the following reduction trying to distinguish a secret sharing of
s1 and a secret sharing of ŝ1 under Σ1, where we call starget1 the target secret
sharing in the leakage oracle.

Adversary ÂOleak((s
target
1,i)i∈[n],·,·)(1λ):

1. Sample (ŝ0,1, . . . , ŝ0,n) ←$ Share0(ŝ0) and run the experiment as in H3

with the adversary A; upon receiving each leakage function, hard-code
into it the shares of ŝ0 and forward it to the leakage oracle.

2. Eventually, the adversary sends its tampering query (T ,B, f).

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 149

3. Sample (s∗
0,β)β∈T ∗

1
as in H2. In particular, recall that we can sample

these share as a function of just the shares (s0,β)β∈T ∗
0

and the leakage.
Then, set

s′
0,β :=

{
ŝ0,β if β ∈ T ∗

0 ,

s∗
0,β if β ∈ T ∗

1 .

Note that this is well defined since T ∗
0 ∩ T ∗

1 = ∅.
4. For all i ∈ [t], construct the leakage function gi that, given as input

(starget1,β)β∈Bi
, computes (s̃0,β , s̃1,β)β∈Bi

= fj((s′
0,β , starget1,β)β∈Bi

) and out-
puts (s̃0,β)β∈Bi

. Send (B, (g1, . . . , gt)) to the leakage oracle obtaining
values (s̃0,β)β∈T ∗ .

5. Sample the values (s∗
1,β)β∈T ∗

0
as in H3 using (s̃0,β)β∈T ∗ and the leak-

age.
6. For all j ∈ T0, compute (s̃0,β , s̃1,β)β∈Bξ(j) = fj((s′

0,β , s∗
1,β)β∈Bξ(j));

then, compute s0 = Rec0((s̃0,β)β∈T) and s1 = Rec1((s̃1,β)β∈T|k1
) and

let m̃ = Rec2(s0, s1). In case m̃ ∈ {m0,m1} return � to A, and else
return m̃ to A.

7. Output the same as A.

For the analysis, note that the reduction is perfect. In particular, the reduction
perfectly simulates H3 when (starget1,i)i∈[n] is a secret sharing of s1 and perfectly
simulates H4 when (starget1,i)i∈[n] is a secret sharing of ŝ1. Moreover, the leakage
requested by the adversary A is forwarded to the leakage oracle of Â and perfectly
simulated by it. Finally, the reduction obtains all the shares (s̃0,β)β∈T ∗ , and thus
it is able to both compute s̃0 and sample the values (s∗

1,β)β∈T ∗
0
.

Let us now analyze the admissibility of Â. The only leakage performed by Â
is the one requested by A in step 1 plus the one needed in order to get the values
(s̃0,β)β∈T ∗ in step 4; summing up, the overall leakage performed by Â is:

� +
∑

β∈T ∗
log |S0,β | ≤ � +

∑

i∈[n]

log |S0,i| ≤ � + nσ0,

where the last inequality follows by the fact that log |S0,i| ≤ σ0 for all i ∈ [n].
Therefore, we can conclude that Â is (k1 − 1, � + nσ0)-BLA. ��

Final Step. Finally, we show:

Lemma 6. Δ(H4(λ, 0),H4(λ, 1)) ≤ ε2(λ).

Proof. By reduction to non-malleability of Σ2. Suppose by contradiction that
there exist messages m0,m1 and an adversary A telling apart H4(λ, 0) and
H4(λ, 1) with advantage more than ε2(λ). Fix values (ŝi)i∈[n] = ((ŝ0,i, ŝ1,i)i∈[n])
and (s0, s1) being either a (2-out-of-2) secret sharing of m0 or of m1. Consider
the following reduction:

Adversary ÂOnmss((s
target
0 ,starget

1),·)(1λ):

150 G. Brian et al.

1. Run the experiment as in H4 with the adversary A; upon receiving
each leakage function, answer using the values (ŝi)i∈[n].

2. Upon input the tampering query (T ,B, f), construct the following two
tampering functions:

– Function f0, upon input s0, samples (s∗
0,β)β∈T ∗

1
as in H2; notice

that the reduction knows all the information needed to re-
sample the shares, as in particular it samples (s0,β)β∈[n] and
simulates the leakage. Then, f0 computes (s̃0,j , s̃1,j)j∈Bξ(β) =
fξ(β)((ŝ0,j , ŝ1,j)j∈Bξ(β)) for all β ∈ T0 and (s̃0,j , s̃1,j)j∈Bξ(β) =
fξ(β)((s∗

0,j , ŝ1,j)j∈Bξ(β)) for all β ∈ T1 and outputs s̃0 =
Rec0((s̃0,β)β∈T).

– Function f1, upon input s1, samples (s∗
1,β)β∈T ∗

0
as in H3. Then, f1

computes (s̃0,j , s̃1,j)j∈Bξ(β) = fξ(β)((ŝ0,j , s
∗
1,j)j∈Bξ(β)) for all β ∈ T0

and outputs s̃1 = Rec1((s̃1,β)β∈T).
3. Send (f0, f1) to the tampering oracle, receiving an answer m̃.
4. Return m̃ to A and output the same as A.

For the analysis, note that the reduction is perfect. In particular, shares
(s∗

0,β)β∈T ∗
1

and (s∗
1,β)β∈T ∗

0
are computed using s0 and s1 respectively; more-

over, both s̃0 and s̃1 are computed as in experiment H4 and thus the tampering
query is perfectly simulated. Finally, the leakage is computed using the fake
shares (ŝi)i∈[n] as in H4 and thus, once again, perfectly simulated. The lemma
follows.

Proof (Theorem 4). Follows by the above lemmas and the triangular inequality:

Δ(H0(λ, 0),H0(λ, 1))

≤
∑

b∈{0,1}

∑

i∈[4]

Δ(Hi−1(λ, b),Hi(λ, b)) + Δ(H4(λ, 0),H4(λ, 1))

≤ 2 (Δ(H1(λ, b),H2(λ, b)) + Δ(H3(λ, b),H4(λ, b))) + Δ(H4(λ, 0),H4(λ, 1))
≤ 2(ε0 + ε1) + ε2.

��

5.4 Instantiation

Using a previous construction of bounded leakage-resilient secret sharing scheme
against joint leakage under adaptive partitioning, we obtain the following:

Corollary 3. For every �, n, λ ≥ 0, every k ∈ O(
√

log n), and every access
structure A over n parties that can be described by a polynomial-size monotone
span program for which authorized sets have size greater than k, there exists a
(k, �, 1, 2−Ω(λ/ log(λ)))-BLR-NMSS with message length Ω(λ/ log(λ)) realizing A
under semi-adaptive partitioning.

Proof. By Theorem 4, we need to instantiate Σ0, Σ1, and Σ2. Using [26, Thm.
1] and [26, Cor. 2], we can take ε0 = ε1 = 2−Ω(λ/ log(λ)), k ∈ O(log n), and
thus k1 ∈ O(

√
log n), σ0 = poly (λ) and any �0, �1 > 0. As for Σ2, we can

take the split-state non-malleable code in [27, Thm. 1.12], which achieves error
2−Ω(λ/ log(λ)). ��

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 151

6 Applications

6.1 Lower Bounds for Non-malleable Secret Sharing

Combining our result from Theorem3 with the lower bound of Nielsen and
Simkin [29], we obtain a lower bound on the share size and randomness com-
plexity of non-malleable secret sharing schemes. In particular, we obtain the
following:

Corollary 4. Any τ -out-of-n (1, 1, ε)-NMSS must satisfy

σ ≥ (log(1/ε) − 1)(1 − τ/n)
τ̂

,

where τ̂ is the number of shares needed to reconstruct the full vector of shares
and σ is the bit-length of each share.

Observe that τ̂ is a simplified notion of entropy. If τ = τ̂ , then any authorized
set can reconstruct all remaining shares, meaning that those shares have no
entropy left.

6.2 Bounded-Time Non-malleability

Here, we revisit the compiler from Ostrovsky et al. [30] in the setting of non-
malleable secret sharing against joint tampering.

The basic idea is as follows. First, we commit to the message m using random
coins r, thus obtaining a cryptographic commitment c. Then, we secret share the
string m||r using an auxiliary secret sharing scheme Σ, thus obtaining shares
s1, . . . , sn. The final share of the i-th party is set to be s∗

i = (c, si). Given
an authorized set I, the reconstruction first checks that all commitments in
s∗

I are equal, and then uses sI to recover m||r, and verifies consistency of the
commitments. If any of these checks fails, it outputs ⊥; else, it returns m.

The original analysis by Ostrovsky et al. shows that if Σ is a 2-out-of-2 secret
sharing that is bounded leakage-resilient, statistically one-time non-malleable,
and further satisfies additional non-standard properties, then Σ∗ is continuously
non-malleable. In a follow up work, Brian et al. [11] proved that the additional
properties on Σ can be avoided if one assumes that Σ satisfies a stronger form
of leakage resilience known as noisy leakage resilience, and further extended the
original analysis to any value n ≥ 2 and for arbitrary access structures.

Both the proofs in [11,30] are for the setting of independent tampering. The
theorem below says that the same construction works also in the case of joint p-
time tampering under selective/semi-adaptive partitioning as long as Σ tolerates
joint bounded leakage resilience, where there is a natural trade off between the
leakage bound and the number of tampering queries. The main idea behind the
proof is to reduce the security of Σ∗ to that of Σ, where the bounded leakage
is used to simulate multiple tampering queries. The main difference with the
original proof is that we need a small leakage for each tampering query, and
thus the analysis only works in case the number of tampering queries is a priori

152 G. Brian et al.

Let Commit be a non-interactive commitment scheme with message space M, random-
ness space R and commitment space C. Let Σ = (Share,Rec) be an auxiliary secret
sharing scheme realizing access structure A with message space M×R and share space
S = S1 × . . .×Sn. Define the following secret sharing scheme Σ∗ = (Share∗,Rec∗) with
message space M and share space S∗ = S∗

1 × . . . × S∗
n, where, for each i ∈ [n], we have

S∗
i = C × Si

Sharing algorithm Share∗: Upon input a value m ∈ M, sample random coins
r ←$ R and compute c = Commit(m; r) and (s1, . . . , sn) ←$ Share(m||r). Return
the shares s∗ = (s∗

1, . . . , s
∗
n) where, for each i ∈ [n], s∗

i = (c, si).
Reconstruction algorithm Rec∗: Upon input shares (s∗

i)i∈I , parse s∗
i = (ci, si) for

each i ∈ I. Hence, proceed as follows.
1. If ∃i1, i2 ∈ I for which ci1 �= ci2 , return ⊥; else, let the input shares be

s∗
i = (c, si).

2. Run m||r = Rec((si)i∈I); if the outcome equals ⊥, return ⊥.
3. If c = Commit(m; r), return m; else, return ⊥.

Fig. 2. Compiler for obtaining bounded-time non-malleability against joint tampering.

bounded. Moreover, in the case of semi-adaptive partitioning, we need to make
sure that the leakage performed by the reduction does not violate condition (i)
in the definition of semi-adaptive admissibility (cf. Definition 7); intuitively, the
latter holds thanks to the fact that the tampering queries chosen by the attacker
must satisfy condition (ii) in Definition 7. We refer to the full version of the paper
for the details [10].

Theorem 5. Let n ∈ N and let A be an arbitrary access structure for n parties
without singletons. Assume that:

1. Commit is a perfectly binding and computationally hiding non-interactive com-
mitment;

2. Σ is a n-party k-joint �-bounded leakage-resilient one-time non-malleable
secret sharing scheme realizing access structure A against joint semi-adaptive
(resp., selective) partitioning with information-theoretic security and with
message space M such that |M| ∈ ω(log(λ)).

Then, the secret sharing scheme Σ∗ described in Fig. 2 is a n-party k-joint p-
time non-malleable secret sharing scheme realizing access structure A against
joint semi-adaptive (resp., selective) partitioning with computational security,
as long as � = p · (γ + n) + 1, where γ = log |C| is the size of a commitment.

7 Conclusions

We presented new constructions of non-malleable secret sharing schemes against
joint tampering with the shares, both in the setting of selective and adaptive
partitioning.

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 153

Our constructions for selective partitioning are for threshold access structures
and tolerate joint tampering with maximal subsets of unauthorized parties, i.e.,
of size equal to the privacy threshold. Our construction for adaptive partitioning
is for general access structures, but tolerates joint tampering with much smaller
subsets of size k ∈ O(

√
log n) (where n is the number of parties) and under some

restrictions on the way the partitions are determined by the attacker. Removing
the latter limitation is an intriguing open question.

The above results hold for any a priori fixed bound p > 0 on the number
of tampering queries, and under computational assumptions. We leave it as an
open problem to design continuously non-malleable (i.e., for p = p(λ) being an
arbitrary polynomial in the security parameter) secret sharing schemes tolerating
joint tampering under selective/adaptive partitioning.

Another interesting question would be to improve the rate, i.e., the ratio
between message size and maximal size of a share, for non-malleable secret shar-
ing against joint tampering. Note that, in the computational setting, it is always
possible to boost the rate as follows: First, share the secret key κ ∈ {0, 1}λ

of an authenticated symmetric encryption using a secret sharing scheme with
poor rate, obtaining shares s1, . . . , sn; hence, encrypt the message m using κ,
obtaining a ciphertext c, and define the final i-th share to be s∗

i = (c, si). Such a
rate-optimizing compiler was originally analyzed in the setting of non-malleable
codes [1,16,19], and more recently in the setting of non-malleable secret sharing
against independent tampering [21]. While this transformation may be proven
secure even in the setting of joint tampering with the shares, it yields a rate
asymptotically approaching one, which is still far from the optimal share size of
O(μ/n) [25] (where μ is the message size).

Acknowledgments. We thank Ashutosh Kumar for clarifications on the tampering
model in [23] and for pointing out an issue in a previous version of the proof of Theo-
rem 4 (leading to the restriction of semi-adaptive partitioning).

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing
schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 18

3. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions
and applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp.
459–468. ACM Press, June 2015

4. Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Contin-
uous non-malleable codes in the 8-split-state model. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 531–561. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 18

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-030-26951-7_18
https://doi.org/10.1007/978-3-030-17653-2_18

154 G. Brian et al.

5. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-
malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 398–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46494-6 17

6. Aggarwal, D., Kazana, T., Obremski, M.: Inception makes non-malleable codes
stronger. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp.
319–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 10

7. Aggarwal, D., Obremski, M.: A constant-rate non-malleable code in the split-state
model. Cryptology ePrint Archive, Report 2019/1299 (2019). https://eprint.iacr.
org/2019/1299

8. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp.
593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 20

9. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979
National Computer Conference, vol. 48, pp. 313–317 (1979)

10. Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-malleable secret
sharing against bounded joint-tampering attacks in the plain model. Cryptology
ePrint Archive, Report 2020/725 (2020). https://eprint.iacr.org/2020/725

11. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing for
general access structures. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II.
LNCS, vol. 11892, pp. 211–232. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36033-7 8

12. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48285-7 10

13. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with
their many tampered extensions. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 285–298. ACM Press, June 2016

14. Chattopadhyay, E., Li, X.: Non-malleable extractors and codes for composition of
tampering, interleaved tampering and more. Cryptology ePrint Archive, Report
2018/1069 (2018). https://eprint.iacr.org/2018/1069

15. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-
state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 19

16. Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously
non-malleable codes. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M.
(eds.) ACNS 2019. LNCS, vol. 11464, pp. 3–23. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21568-2 1

17. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40084-1 14

18. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: 48th FOCS,
pp. 227–237. IEEE Computer Society Press, October 2007

19. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.C.
(ed.) ICS 2010, pp. 434–452. Tsinghua University Press, January 2010

20. Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable
codes with split-state refresh. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018.
LNCS, vol. 10892, pp. 121–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93387-0 7

https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-662-46494-6_17
https://doi.org/10.1007/978-3-319-70503-3_10
https://eprint.iacr.org/2019/1299
https://eprint.iacr.org/2019/1299
https://doi.org/10.1007/978-3-030-17653-2_20
https://eprint.iacr.org/2020/725
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/978-3-030-36033-7_8
https://doi.org/10.1007/3-540-48285-7_10
https://doi.org/10.1007/3-540-48285-7_10
https://eprint.iacr.org/2018/1069
https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-93387-0_7

Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks 155

21. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting:
adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 448–479.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 16

22. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

23. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe,
D., Henzinger, M. (eds.) 50th ACM STOC, pp. 685–698. ACM Press, June 2018

24. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 17

25. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 12

26. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding
parties. In: Zuckerman, D. (ed.) 60th FOCS, pp. 636–660. IEEE Computer Society
Press, November 2019

27. Li, X.: Improved non-malleable extractors, non-malleable codes and independent
source extractors. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC,
pp. 1144–1156. ACM Press, June 2017

28. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

29. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
556–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 20

30. Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable
codes in the split-state model from minimal assumptions. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 608–639.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 21

31. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press,
May 1989

32. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

33. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693,
pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-
7 17

https://doi.org/10.1007/978-3-030-26951-7_16
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-030-45721-1_20
https://doi.org/10.1007/978-3-319-96878-0_21
https://doi.org/10.1007/978-3-030-26951-7_17
https://doi.org/10.1007/978-3-030-26951-7_17

Nearly Optimal Robust Secret Sharing
Against Rushing Adversaries

Pasin Manurangsi1(B), Akshayaram Srinivasan2,
and Prashant Nalini Vasudevan2

1 Google Research, Mountain View, USA
pasin@google.com

2 University of California, Berkeley, USA
{akshayaram,prashvas}@berkeley.edu

Abstract. Robust secret sharing is a strengthening of standard secret
sharing that allows the shared secret to be recovered even if some of the
shares being used in the reconstruction have been adversarially modi-
fied. In this work, we study the setting where out of all the n shares, the
adversary is allowed to adaptively corrupt and modify up to t shares,
where n = 2t + 1 (Note that if the adversary is allowed to modify any
more shares, then correct reconstruction would be impossible.). Further,
we deal with rushing adversaries, meaning that the adversary is allowed
to see the honest parties’ shares before modifying its own shares.

It is known that when n = 2t + 1, to share a secret of length m bits
and recover it with error less than 2−λ, shares of size at least m + λ bits
are needed. Recently, Bishop, Pastro, Rajaraman, and Wichs (EURO-
CRYPT 2016) constructed a robust secret sharing scheme with shares
of size m + O(λ · polylog(n, m, λ)) bits that is secure in this setting
against non-rushing adversaries. Later, Fehr and Yuan (EUROCRYPT
2019) constructed a scheme that is secure against rushing adversaries,
but has shares of size m + O(λ ·nε ·polylog(n, m, λ)) bits for an arbitrary
constant ε > 0. They also showed a variant of their construction with
share size m + O(λ · polylog(n, m, λ)) bits, but with super-polynomial
reconstruction time.

We present a robust secret sharing scheme that is simultaneously
close-to-optimal in all of these respects – it is secure against rushing
adversaries, has shares of size m + O(λ log n(log n+log m)) bits, and has
polynomial-time sharing and reconstruction. Central to our construction
is a polynomial-time algorithm for a problem on semi-random graphs
that arises naturally in the paradigm of local authentication of shares
used by us and in the aforementioned work.

1 Introduction

Secret sharing, first studied by Shamir [Sha79] and Blakley [Bla79], is a funda-
mental cryptographic primitive that allows a secret to be shared among several
parties in such a way that certain authorized subsets of parties can reconstruct
the secret, while unauthorized subsets learn no information about the secret
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 156–185, 2020.
https://doi.org/10.1007/978-3-030-56877-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_6

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 157

from their shares. Secret sharing has widespread applications across cryptogra-
phy, ranging from secure multiparty computation [GMW87,BGW88,CCD88] to
threshold cryptographic systems [DF90,Fra90,DDFY94].

Typically, threshold secret sharing schemes1 are required to satisfy two prop-
erties: correctness, which says that more than a certain number of parties can
use their shares to reconstruct the secret, and privacy, which says that if there
are fewer than this number of parties, then their shares together reveal noth-
ing about the secret. A number of strengthenings of secret sharing have also
been studied in the past owing to various applications, such as verifiable secret
sharing [CGMA85], robust secret sharing [RB89], leakage-resilient secret shar-
ing [BDIR18,GK18], etc. In this work, we focus on robust secret sharing.

Robust Secret Sharing. In robust secret sharing, in addition to the standard
correctness and privacy properties, we require the following robustness property:
even if some of the shares are adversarially modified, there is a reconstruction
procedure that can recover the original secret given all the shares (among which
it does not know which have been modified). In this sense, robust secret sharing
is to standard threshold secret sharing as decoding from errors is to decoding
from erasures in coding theory.

To be more specific, suppose a secret of length m bits is to be shared among
n parties with threshold t – meaning the adversary is allowed to (adaptively)
corrupt up to t of the parties. The properties we ask of a robust secret sharing
scheme are:

– Correctness – given (t + 1) shares, it is possible to reconstruct the secret,
– Privacy – given t shares, the secret is hidden, and,
– Robustness – even if the adversary arbitrarily modifies up to t shares belong-

ing to the parties it corrupts, the secret should be recoverable given all n
shares.

If t < n/3, it may be seen that Shamir secret sharing [Sha79] with threshold
t satisfies the robustness requirement, owing to the error correcting properties of
the Reed-Solomon code. On the other hand, if t � n/2, robustness is impossible
as the adversary could modify a majority of the shares. In addition, it is known
that for n/3 � t < n/2, it is not possible to achieve perfect robustness, and any
construction will necessarily have a small probability of failure of reconstruc-
tion [Cev11], which we will call the robustness error. Further, any robust secret
sharing scheme for n = 2t + 1 that has robustness error at most 2−λ has shares
of length at least (m + λ) bits [CDV94].

In this work, we are interested in schemes that are robust in this extreme
case of n = 2t + 1. And the quantity we are most interested in is the size of the
shares as a function of the robustness error and the number of parties.

1 Throughout this work, we will be concerned only with threshold secret sharing, and
thus we leave out this specification hereafter.

158 P. Manurangsi et al.

Prior Work. There has been significant past work [RB89,CDV94,CDF01,
CDF+08,CFOR12,Che15,BP16,BPRW16,HO18,FY19b] in studying and con-
structing robust secret sharing schemes, both in the setting where n = 2t + 1,
and where t < (1 − δ)n/2 for some constant δ > 0. We discuss here only the
former line of work, which is what leads up to our own, and refer the reader to
the paper by Bishop et al. [BPRW16] for discussions of the rest.

The first construction of robust secret sharing was by Rabin and Ben-
Or[RB89], and had a share size of m + Õ(nλ) bits.2 This was done by giving
each party a set of (n − 1) keys of a message authentication code (MAC) that
it could use to authenticate the shares held by each other party, and a set of
(n − 1) MAC tags that other parties could use to authenticate its share. This
was improved by Cramer, Damgard and Fehr [CDF01] to m+ Õ(n+λ) but with
inefficient reconstruction, and later Cevallos et al. [CFOR12] achieved the same
overhead with efficient reconstruction. The approach of the latter was to reduce
the size of the authentication keys used in the MAC at the expense of a more
complicated reconstruction procedure.

Recently, Bishop et al. [BPRW16] improved the overhead in the share size
to m + Õ(λ). The central idea in their work is to not authenticate each share
to every other party, but instead, for each party to have d (roughly O(log n))
authentication keys/tags corresponding to d other randomly chosen parties.
They further showed that even though some of the keys/tags themselves could
be adversarially modified, enough information can be recovered after such cor-
ruptions to reconstruct the secret. However, it was pointed out later by Fehr and
Yuan [FY19b] that the proof of robustness of this scheme relies on the adversary
being non-rushing.

Rushing Adversaries. A rushing adversary, in our context, is one that decides
how to change the shares of the parties it has corrupted after seeing the honest
parties’ shares. In the case of interactive reconstruction (which is what is used
in our construction and in prior work), in each round the parties corrupted by
the adversary may wait till they see all the honest parties’ messages and then
decide what to send. Robustness against such adversaries becomes relevant, for
instance, if the parties are conducting the reconstruction amongst themselves as
happens in multiparty computation protocols.

As mentioned above, Fehr and Yuan [FY19b] noted that the proof of robust-
ness of Bishop et al. [BPRW16] does not work if the adversary is rushing, though
it is not known whether their construction is actually non-robust in this case.
Fehr and Yuan then presented a construction of robust secret sharing, using the
local authentication approach of Bishop et al. that was robust against rushing
adversaries, but with a share size of m + Õ(λ · nε) for an arbitrary constant
ε > 0. They also showed how to improve this to m + Õ(λ) if the reconstruction
procedure was allowed to run in super-polynomial time.

2 Throughout the introduction, we use Õ to hide polylogarithmic factors in λ,n, and
m.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 159

Our Results. We construct robust secret sharing against rushing adversaries in
the setting of n = 2t + 1, with a share size of m + O(λ · log n(log n + log m)) for
secrets of size m and robustness error 2−λ. (Note that the overhead here is only
polylogarithmically larger than in the lower bound of m+λ for share size shown
in [CDV94].) Our reconstruction procedure is interactive, with two rounds of
interaction, and both sharing and reconstruction are polynomial-time. Our app-
roach is similar to those of Bishop et al. [BPRW16] and Fehr and Yuan [FY19b],
though our construction is simpler than either and does not use some of the
sophisticated tools used there.

1.1 Technical Overview

In this subsection, we give a high-level overview of our construction and the
techniques we use. Recall that we wish to share secrets of length m among n
parties, with a threshold of t (the adversary is allowed to corrupt up to t parties),
with a robustness error smaller than 2−λ, and with n = 2t + 1.

Sharing and Reconstruction. We follow the local authentication paradigm
used in [BPRW16,FY19b]. In this approach, each party is given authentication
information about the shares of a small set of parties, which we will call its
“watchlist.” We will set the size of the watchlist to be roughly O(log n), thus
this contributes only a polylog(n) factor to the overhead in the size of each share.
This is to be contrasted with Rabin and Ben-Or’s approach [RB89] where each
party stores authentication information about every other party, thus leading to
a linear blow-up in the overhead. We now give some more details on how we use
the local authentication paradigm.

Sharing. In the sharing phase, we first compute a set of Shamir shares
(Sh1, . . . ,Shn) for the given secret. Then, for each i ∈ [n], we pick a random
multiset Si of size d (where d is roughly O(log n)) from [n] \ {i}. Si will be the
set of parties in the watchlist of party i. For every j ∈ Si, we pick a random MAC
key ki→j and compute the tag σi→j of the jth Shamir share Shj using ki→j . The
tuple (ki→j , σi→j) constitutes authentication information for Shj . The share cor-
responding to the ith party includes the Shamir share Shi, the watchlist Si, and
the authentication information {ki→j , σi→j}j∈Si of the parties in its watchlist.

There is, however, a concern about privacy as we are storing both the key
ki→j and the tag σi→j together and this might leak some information about the
share Shj that is being authenticated. In order to deal with this issue, we use
a tool called private (randomized) MAC introduced in [BPRW16]. This private
MAC has the property that for any key ki→j , the pair (ki→j , σi→j) does not
reveal any information about Shj . This allows us to argue that even when the
key is stored together with the tag, the privacy is still preserved.

Reconstruction. Recontruction is performed by a two-round interactive protocol
that proceeds as follows.

160 P. Manurangsi et al.

– In the first round, the i-th party broadcasts its Shamir share Shi. The honest
parties will broadcast the correct shares, whereas for the adversarial parties,
the broadcasted shares could either be the original share or some modified
(even empty) share. At this point, we may partition the set of parties into
three sets – the set H of honest parties, the set P of “passive” corrupted
parties i that are corrupted but broadcast the correct share Shi, and the set
A of “active” corrupt parties that broadcast a modified share.
At the end of the first round, all the parties can determine if the shares
of the parties in its watchlist have been modified or not by checking if the
corresponding MAC tag verifies under the respective key. Specifically, for
every j ∈ Si, such that the σi→j verifies, party i labels j as “good.” Similarly,
if the tag does not verify, it labels j as “bad.” Thus, at the end of the first
round, the parties can obtain the labels for each j ∈ Si. Note that the honest
parties will always label a party j ∈ H ∪P as “good” and with overwhelming
probability, will label a party in A as “bad.” Furthermore, at the end of the
first round, the adversarial parties do not learn any information about the
watchlist of the honest parties. This will be crucially used to argue robustness.

– In the second round, each party i broadcasts Si along with the labels it
computed as above for each j ∈ Si. Again, the honest parties will broadcast
the correct information whereas the adversarial parties, including the parties
in P , can broadcast incorrect information. In particular, an adversarial party
might modify its watchlist, and also incorrectly accuse some honest party as
being “bad” or label a party in A as “good.”
The action of any adversary in this protocol effectively induces a (labelled
directed) graph on the vertex set V = [n] (with a vertex representing each
party) that is generated by the following process:

• The adversary partitions V into sets H,P, and A, where |H| � t + 1.
• For every i ∈ H, we choose a random multiset Si of size d from [n] \ {i}.

For each j ∈ Si, we add an edge (i, j) to the graph. We label the edge (i, j)
to be “good” if j ∈ H ∪ P , and “bad” if j ∈ A.

• The outgoing edges from P ∪A and their labels are generated adversarially
after seeing the edges and labels from H.

(In the above process, we sample the watchlists Si of honest parties after the
adversary has partitioned the set into H,P,A. We note that this is fine, in spite
of the fact that the watchlists are actually sampled during the sharing, since the
adversary does not learn any information about the watchlist of honest parties
at the end of the first round of the reconstruction protocol.)

Suppose we have an algorithm that on input the above graph, outputs the
set S = H ∪ P . In this case, we are done since we can use the shares of these
parties to reconstruct the correct secret by the correctness of Shamir sharing.
We give an algorithm that finds an S that has a large intersection with H ∪ P
and a small intersection with A. With such an S, we can use the error correction
properties of Shamir secret sharing (a.k.a. Reed-Solomon codes) to recover the
correct secret.

We next briefly describe how the above graph algorithm works.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 161

Vertex Identification Algorithm. Our vertex identification algorithm cru-
cially uses the connection between the problem at hand and the independent set
problem. Recall that a subset of vertices in an undirected graph is said to be an
independent set if there is no edge between any pair of vertices in the set. While
our graph G is a directed graph, there is a natural way to view it as an undi-
rected graph: by simply keeping each edge with a “bad” label as an undirected
edge and discarding all edges with “good” labels. It is not hard to show that a
maximum independent set in this undirected version of G would give the desired
set S.

Unfortunately, computing the maximum independent set is NP-hard in the
worst case [Kar72]. On the other hand, our graph is not a worst case graph since
all edges from H are random, although the edges from A ∪ P are worst case
(i.e., adversarially generated). Finding independent sets in such “semi-random”
graphs has long been a topic of study in literature, starting with the work of
Feige and Kilian [FK01] (see also [FK00,CSV17,MMT18]). Unfortunately, these
works do not apply to our scenario because of the following two reasons. First,
the guarantees from this line of work do not suffice for us; a typical guarantee
there is that an independent set found has a large size relative to the maximum
independent set, whereas we need the fact that the independent set has a large
intersection with H ∪P and a small intersection with A. Second, the distribution
of our graph is unlike those considered in [FK01,FK00,CSV17,MMT18]. Specif-
ically, the distributions considered in literature are often the following: pick a set
I of vertices (i.e., the “planted independent set”) and add random edges between
I and the remaining vertices. Then, the adversary is allowed to add arbritrary
edges that are not within I. However, this is not the case for us since the edges
from P to H are not random.

Despite the challenges mentioned in the previous paragraph, several things
go in our favor. First, our directed graph G actually contains more information
than its undirected variant considered in the previous paragraph. For instance,
if we have two vertices u1, u2 each having a directed edge pointing to v but with
different labels, then we know that either u1 or u2 must be corrupted. Such
information is not included when we just consider finding an independent set in
the trivial undirected version of G. This motivates us to look instead to what
we call the conflict graph Gconf, where we add an edge between every pair of
vertices u1, u2 that label a common neighbor differently. Clearly, H remains an
independent set in Gconf. Moreover, from the definition of Gconf, any independent
set I of Gconf has a “consistent opinion” on all vertices in the following sense:
every vertex v is labelled with the same label by all its in-neighbors that lie
in I. This leads us to the overall structure of our algorithm: (1) find a large
independent set I in Gconf and (2) output the set of all vertices labelled “good”
by (at least one vertex in) I.

Of course, we have not yet specified how we find a large independent set I in
Gconf. This is indeed where a second advantage of our scenario comes in: we are
guaranteed to have an independent set H of size more than half of the graph,
unlike previous works that place weaker assumptions on the size of the “planted”

162 P. Manurangsi et al.

independent set. It turns out that this 1/2 threshold makes the problem “easier.”
For instance, Nemhauser and Trotter [NT74] show that any extremal solution
to the linear program (LP) relaxation of the independent set problem is half
integral (i.e., every variable is assigned either 0, 1/2, or 1), which means that
at least one vertex in H is assigned 1 in the solution. In our proof, we use a
more specific structural lemma from [ACF+04] (Lemma 3) together with the
expansion property of the random part of our graph (Lemma 4) to argue that, if
we let I be the set of all vertices assigned 1 by the LP solution, then it contains
sufficiently many vertices from H. This in turn implies that I labels most of
the vertices in H ∪ P as “good” and most of those in A as “bad.” A more
quantitative version of this argument shows that the output set satisfies the
desired properties.

1.2 Comparison with Prior Work

As mentioned earlier, our construction follows the paradigm of local authentica-
tion of shares introduced by Bishop et al. [BPRW16] and used also by Fehr and
Yuan [FY19b]. There are a number of similarities and differences between how
we proceed in this paradigm and how these papers do, and we briefly explain
these below.

Bishop et al. [BPRW16]. The authors here use local authentication of shares
to reduce the robust reconstruction to a graph theoretic problem called graph
bisection, which when solved gives a set S of trustworthy parties whose shares
are used to reconstruct the secret.

Their reduction also involves partitioning the corrupted parties into a set P of
“passive” corruptions and a set A of “active” corruptions according to whether a
certain part of the shares are reported correctly during reconstruction. But their
notion of passive corruption is stronger than the one we use here – they also
require that parties in P never falsely label a party in H as being “bad.” This
required them to store the authentication information in a distributed manner,
using a primitive they call robust distributed storage. Additionally, they had
to authenticate not only the Shamir shares (as we do), but also the MAC keys
themselves. As pointed out by Fehr and Yuan [FY19b], authenticating the keys
in this way is what causes their proof of robustness to not include rushing adver-
saries. In the end, the set S that is the solution to the graph bisection problem
instance generated by this reduction is the set H ∪ P .

We use a weaker notion of passive corruptions, where parties in P are allowed
to label parties in H as “bad.” This allows us leave out the distributed storage
and the authentication of the MAC keys, enabling proofs of security against
rushing adversaries. And solving the graph problem that we reduce to does
not require recovering the entire set H ∪ P , but only a set S that has a large
intersection with H ∪ P and a small intersection with A. Such a set is easier to
find, which is what lets us relax the definition of passive corruptions, and is still
sufficient to recover the shared secret due to the error correction properties of
Shamir sharing.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 163

Fehr and Yuan [FY19b]. The approach of Fehr and Yuan is more similar to
ours. They also partition the parties into sets H, P and A, and their definitions
for these sets are the same as ours. However, they still use robust distributed
storage to store authentication information. Our construction is simpler, using
only private MACs, which both of these papers also use.

Their approach is also to recover a set S of vertices that has a large inter-
section with H ∪ P and a small intersection with A, and then use the error
correction properties of Shamir sharing to recover the secret. Further, similarly
to us, they do this by reducing robust reconstruction to the vertex identification
problem in the model of random graphs that comes up in our work.

But their algorithm to solve this problem over n vertices with out-degree
d only works when the number of passive parties (|P |) is at most roughly
n · (log d/ log n)2. And so, when they find that |P | is more than this and their
algorithm fails, they fall back to list-decoding of all the shares together to recover
a list of possible sharings and then iterate over this list to find the actual secret.
The size of this list is roughly (log n/ log d)Õ((log n/ log d)2), leading to the restric-
tion of d � nε for some constant ε for the list-decoding to run in polynomial-time.

Our algorithm, on the other hand, solves the same graph problem without
any such restriction on |P |. To be more precise, it first solves the problem when
|P | is at most roughly 0.84 · n, and then observes that if |P | is more than this,
then S = [n] is already a solution. As |P | can be efficiently estimated from the
graph, this solves the problem. This releases us from their restriction on d, which
we can set to be O(log n), leading to our shares being significantly smaller.

1.3 Concurrent Work

In concurrent and independent work, Fehr and Yuan [FY19a] also give a con-
struction of a robust secret sharing scheme secure against rushing adversaries in
the setting of n = 2t + 1 with near-optimal parameters. Their construction has
shares of size m+O(λ · log3 n(log n+log m)) for secrets of size m and robustness
error 2−λ, and polynomial-time sharing and reconstruction, where the latter
involves five rounds of interaction. We obtain the slightly better share size of
m+O(λ · log n(log n+log m)), and our reconstruction procedure has two rounds
of interaction.

In terms of techniques, while both papers have as their starting point the
ideas underlying the construction in [FY19b], the papers differ significantly in
how they proceed from there. Our improvements come from designing a better
algorithm for the vertex identification problem described in Sect. 1.2. [FY19a]
use the same algorithm for this problem that [FY19b] did, and develop new
techniques to deal with the case where the algorithm fails. Specifically, they add
additional instances of the consistency graph that are revealed over the course
of the reconstruction, and use this information to do better list-decoding, thus
eliminating the restrictions described above that the construction in [FY19b]
was subject to.

164 P. Manurangsi et al.

Outline of paper. In Sect. 2, we define robust secret sharing and private MACs,
and state some known facts and theorems that will be useful later. In Sect. 3,
we present our vertex identification algorithm that will be used in our recon-
struction procedure. For readers who are only interested in our cryptographic
constructions, we suggest to look at Theorem 3 in Sect. 3 and skip to Sect. 4,
where we present our robust secret sharing scheme.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote
the set {1, 2, . . . , n} and Ur denote the uniform distribution over {0, 1}r. For a

finite set S, we denote x
$← S as sampling x uniformly at random from the set

S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for
any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates
indexed by T . We write ◦ to denote concatenation.

Multisets. Let S be a multiset and for any element a, we define the multiplic-
ity ma(S) to be the number of times a occurs in the multiset S. For any two
multisets S1, S2, we define S1‖S2 to be the multiset such that for any element
a, ma(S1‖S2) = ma(S1) + ma(S2).

We assume the reader’s familiarity with the definition of statistical distance.

2.1 Private MAC

In this subsection, we recall the definition of a private message authentication
code (MAC) used by Bishop et al. [BPRW16] and Fehr and Yuan [FY19b], but
using different terminology. A private MAC for message space {0, 1}η for some
η ∈ N consists of the following algorithms, all of them running in time poly(η).

– KeyGen : A randomized algorithm that outputs a key k.
– Tag(k, (m, r)) : A deterministic algorithm that takes a key k, a “message

tuple” (m, r) ∈ {0, 1}η × {0, 1}κ for some κ ∈ N (called the randomness
length), and outputs a tag σ.

– Verify(k, (m, r), σ) : A deterministic algorithm that takes a key k, a message
tuple (m, r), and a tag σ, and outputs 1 or 0.

Definition 1. For an η, � ∈ N and ε ∈ [0, 1], a triple of algorithms (KeyGen,Tag,
Verify) is an (�, ε)-private MAC for a message space {0, 1}η if the following
properties are satisfied for some κ ∈ N.

– Correctness. For every message tuple (m, r) ∈ {0, 1}η × {0, 1}κ, with k ←
KeyGen, and σ ← Tag(k, (m, r)),

Pr[Verify(k, (m, r), σ) = 1] = 1

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 165

– Unforgeability. For any message tuple (m, r) ∈ {0, 1}η × {0, 1}κ, and any
adversary A, with k ← KeyGen, σ ← Tag(k, (m, r)), and (m′, r′, σ′) ←
A(m, r, σ),

Pr[(m, r) �= (m′, r′) ∧ Verify(k, (m′, r′), σ′) = 1] � ε.

– Privacy. For every m0,m1 ∈ {0, 1}η, any arbitrary set of � keys {k1, . . . , k�},
and any adversary A, with k ← KeyGen, r ← {0, 1}κ, and σb

i ←
Tag(ki, (mb, r)) for i ∈ [�] and b ∈ {0, 1},

Pr[A(σ0
1 , σ

0
2 , . . . , σ

0
�) = 1] = Pr[A(σ1

1 , σ
1
2 , . . . , σ

1
�) = 1]

– Uniformity. There is an s ∈ N such that for every (m, r) ∈ {0, 1}η ×{0, 1}κ,
with k ← KeyGen, the distribution of σ ← Tag(k, (m, r)) is uniform over
{0, 1}s.

The following theorem follows from the construction of a private MAC pre-
sented in [BPRW16], using GF[2λ] as the field there.

Theorem 1 ([BPRW16]). For any η, � ∈ N and ε ∈ [0, 1], there exists an (�, ε)-
private MAC for message space {0, 1}η, with randomness length �λ, key length
2λ and tag length λ, where λ =
log((η + �)/ε)�.

2.2 Secret Sharing Scheme

We start with the definition of the sharing function and then give the definition
of a threshold secret sharing scheme.

Definition 2 (Sharing Function [Bei11]). Let [n] = {1, 2, . . . , n} be a set of
identities of n parties. Let M be the domain of secrets. A sharing function Share
is a randomized mapping from M to S1 × S2 × . . . × Sn, where Si is called the
domain of shares of party with identity i. A dealer distributes a secret m ∈ M
by computing the vector Share(m) = (S1, . . . ,Sn), and privately communicating
each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a
restriction of Share(m) to its T entries.

Definition 3 ((t, n, εc, εs)-Secret Sharing Scheme). Let M be a finite set
of secrets, where |M| � 2. Let εc, εs ∈ [0, 1], t, n ∈ N such that t � n, and
[n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing function
Share with domain of secrets M is a (t, n, εc, εs)-secret sharing scheme if the
following two properties hold :

– Correctness: The secret can be reconstructed by any t-out-of-n parties. That
is, for any set T ⊆ [n] such that |T | � t, there exists a deterministic, inter-
active reconstruction protocol Rec between the parties in T with the input of
i ∈ T being Share(m)i such that for every m ∈ M,

Pr[Rec(Share(m)T) = m] = 1 − εc

where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction protocol that
takes in T and Share(m)T where T is of size at least t and outputs the secret.

166 P. Manurangsi et al.

– Statistical Privacy: Any collusion of less than t parties should have
“almost” no information about the underlying secret. More formally, for any
unauthorized set U ⊆ [n] such that |U | < t, and for every pair of secrets
m0,m1 ∈ M , for any distinguisher D with output in {0, 1}, the following
holds :

|Pr[D(Share(m0)U) = 1] − Pr[D(Share(m1)U) = 1]| � εs

We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Remark 1. The above definition of privacy considers a weaker notion where the
unauthorized set U is specified upfront. We can also consider a stronger variant
where the adversary adaptively specifies this set U one party at a time, seeing
the share of each party as it is specified. We note that for the case of perfect
privacy (i.e., εs = 0), the above two variants are equivalent.

2.3 Robust Secret Sharing

We now give the definition of robust secret sharing scheme.

Definition 4. Let εc, εs, δ ∈ [0, 1], t, n, κ, τ ∈ N such that t � n, and τ � κ � n.
An (t, n, εc, εs) secret sharing scheme (Share,Rec) for message space M is said
to be (δ, κ, τ)-robust if for every interactive adversary A and message m ∈ M,

Pr[ExptA,m,κ,τ = 1] � δ

where ExptA,m,κ,τ is defined below.

– (share1, . . . , sharen) ← Share(m).
– A outputs a set Γ ⊆ [n] such that |Γ | = κ.
– Set T = ∅. Repeat until |T | = τ :

• A chooses i ∈ Γ \ T .
• Update T = T ∪ {i} and give sharei to A.

– Run the reconstruction protocol among the parties in Γ with every party
i ∈ Γ \ T behaving honestly using its share sharei and the adversary A taking
control the parties in T . A is allowed to behave maliciously (possibly using a
different share) and can deviate arbitrarily from the specification of the recon-
struction protocol. Here, we assume that in every round of the reconstruction
protocol, A can send its outgoing messages after seeing all its incoming mes-
sages from the honest parties (a.k.a. rushing adversary). For every i ∈ Γ \T ,
let m′

i be the output of the i-th party at the end of the reconstruction algorithm.
– Output 1 if and only if there exists an i ∈ Γ \ T such that m �= m′

i.

We call log(1/εs) as the privacy parameter and log(1/δ) as the robustness param-
eter.

Fact 2. Fix t ∈ N, n, κ � t. There is a robust reconstruction protocol such that
Shamir secret sharing is a (t, n, 0, 0) secret sharing scheme that is (0, κ, (κ −
t)/2�)-robust.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 167

3 Vertex Identification Algorithm

In this section, we give a polynomial time graph algorithm that we call the
vertex identification algorithm, which will be used as a building block in the
construction of robust secret sharing. We start with the description of the model
of semi-random graphs the algorithm works for.

Model. Our (directed) graph3 G where |V | = n and a labeling L : EG →
{good,bad} is generated as follows:

– First, the adversary partitions V into three parts H,P,A such that |H| � n+1
2 .

– For every u ∈ H and every i ∈ {1, . . . , d}, select a vertex vi ∈ (V \ {u})
uniformly at random and add an edge (u, vi) to the graph. The label for
L(u, vi) of the edge is “good” if vi lies in H ∪ P , and is “bad” if vi ∈ A.

– The outgoing edges of A ∪ P and their labels are generated by the adversary
after seeing the edges and the labels from H.

For notational convenience, we will always think of each vertex v ∈ V as having
a self-loop with label L(v, v) = good. Our main theorem in this section is the
following:

Theorem 3. There is a polynomial-time (deterministic) algorithm VertexID
that, given G,L generated as above with d � C log n, outputs a set S ⊆ V
that satisfies

|S ∩ (H ∪ P)| � n + 1
2

+ 2 · |S ∩ A| (1)

with probability 1 − O(e−βd), where C > 1 and β > 0 are some constants.

The Algorithm. Our algorithm relies on the linear programming (LP) relaxation
of the Independent Set problem. To state the LP relaxation for Independent Set,
let first recall that we may reformulate Independent Set on an undirected graph
F = (V,EF) as the following integer program (IP):

max
∑

v∈V

xv

subject to xv ∈ {0, 1} ∀v ∈ V

xu + xv � 1 ∀{u, v} ∈ EF

Notice that a solution (xv)v∈V to the above IP corresponds to an independent
set {v ∈ V | xv = 1}. Since solving the above IP is equivalent to finding the
maximum indepent set of the graph F , the problem remains NP-hard. As a
result, we have to resort to the LP relaxation of the above IP where the condition
xv ∈ {0, 1} is relaxed to 0 � xv � 1.

3 We note that our graph allows multi-edges and self-loops.

168 P. Manurangsi et al.

More specifically, the LP relaxation of Independent Set for an undirected
graph F = (V,EF) can be stated as:

max
∑

v∈V

xv (2)

subject to 0 � xv � 1 ∀v ∈ V (3)
xu + xv � 1 ∀{u, v} ∈ EF (4)

We refer to the above relaxation as LP-IS of F .
As the reader might have noticed, the Independent Set (IS) problem is defined

on undirected graphs, whereas our input graph G is a directed graph. To turn
this into an instance of Independent Set, we create what we will call the conflict
graph of G,L:

Definition 4. Given a directed graph G = (V,EG) and a labeling L : EG →
{good, bad}, their conflict graph is denoted4 by Gconf = (V,Econf). This is an
undirected graph on the same vertex set of G, and there is an edge between two
vertices u, v ∈ V iff there exists a common out-neighbor w of u, v such that
L(u,w) �= L(v, w).

Recall that we always add a self-loop with “good” label to every vertex in G,
which means that {u, v} will always be an edge in the conflict graph if (u, v) ∈ EG

and L(u, v) = bad.
There are a couple (straightforward) observations that will be useful to keep

in mind. The first one is that H is an independent set in this conflict graph:

Observation 5. H is an independent set in the conflict graph of G,L.

The second is that, for any independent set I of the conflict graph, its vertices
never label a vertex inconsistently. This follows from the definition of the conflict
graph, as such an inconsistency would create an edge in the graph.

Observation 6. Let I be any independent set of a conflict graph of G,L. Then,
for any v ∈ V , it must fall into one of the following three categories:

– v has no in-neighbor (w.r.t. G) in I.
– v has at least one in-neighbor (w.r.t. G) in I and each of v’s neighbors in I

labels it with good.
– v has at least one in-neighbor (w.r.t. G) in I and each of v’s neighbors in I

labels it with bad.

Moreover, we have to recall the concept of extreme point solutions of linear
programs. A feasible solution is said to be an extreme point solution if it cannot
be written as a convex combination of other feasible solutions5. For any LP with

4 Of course, the conflict graph depends on the labeling. However, we choose not to
have L in the notation to avoid cumbersomeness.

5 Equivalently, the solution must be a vertex of the polytope defined by the constraints.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 169

a finite feasible region, it is known that an extreme point optimum solution exists
and can be found in polynomial time (see e.g. [Jai98]). Extreme point solutions
are widely used in approximation algorithms; interested readers may refer to the
survey [LRS11] for more details.

With these ready, we can now describe our algorithm, which we call
Conflict-LP:

Conflict-LP(G = (V,EG), L)

0. For each vertex v ∈ V , let bv denote the number of vertices labelled bad
by it. If the median of bv’s is at most 0.16d, then output V and terminate.

1. Construct the conflict graph Gconf of G,L (as in Definition 4).
2. Solve for an extreme point optimum solution {x∗

v}v∈V of LP-IS of Gconf.
Let I denote the set of all vertices u ∈ V such that x∗

u = 1.
3. Let S be the set of all vertices v ∈ V that has at least one in-neighbor

(w.r.t. G) in I and is labelled good by the neighbor(s). Output S.

It is obvious to see that the algorithm runs in polynomial time.

Correctness Intuition. Before we proceed with the formal proof of correctness,
let us briefly give an informal intuition behind the proof. First, Step 0 simply
helps us deal with the “trivial” case where |A| is less than6 say 0.15(n−1). In this
case, we can simply output the whole vertex set V ; this is indeed what Step 0
does. Thus, from this point onward, we may assume that |A| � 0.15(n − 1).

Next, a priori, it is not even clear that I must be non-empty. To see this, let
us first recall a classic result of Nemhauser and Trotter that an extreme point
solution of LP-IS is always half-integral, meaning that xv ∈ {0, 1/2, 1} for every
vertex v.

Theorem 7 ([NT74]). In any extreme point solution of LP-IS, xv ∈ {0, 1/2, 1}
for all v ∈ V .

Now, if I were empty, then we would have xv ∈ {0, 1/2}, which would imply
that the optimum of LP-IS is at most n/2 < |H|. This would be a contradiction
to Observation 5.

Next, let us consider the set T = {v | x∗
v = 0}. It is well-known that |I| � |T |;

this can be easily seen because otherwise we can instead assign 1 to T and 0 to
I and obtain a valid LP solution with larger objective value. (In fact, we will
use a stronger property between the two sets below.)

For simplicity of exposition, let us assume for now that I only contains
honest players, i.e., I ⊆ H, and that T only contains active adversary, i.e.,
T ⊆ A. Observe that, due to condition (4) of the relaxation, we must have

6 The constant 0.15 here can be replaced with any constant less than 1/6. We only
use 0.15 to avoid introducing an additional parameter.

170 P. Manurangsi et al.

NGconf(I) ⊆ T . Notice also that, since every honest player labels its out-
neighbor in A as “bad”, we must have NGconf(I) ⊇ (Nout

G (I) ∩ A). From this
and from the bound |I| � |T | in the previous paragraph, it must be that
|I| � |Nout

G (I) ∩ A|. However, recall that the edges from I to A are (“essen-
tially”) random of degree Ω(d) � 100 log n. Such a “non-expansion” condition
can only hold when Nout

G (I) ∩ A already contains all but o(1) fraction of A. In
other words, we have |I| � |Nout

G (I)∩A| � (1− o(1))|A| � (0.15− o(1))n, where
the last inequality comes from our assumption that |A| � 0.15(n − 1).

Now, note that we never output vertices from Nout
G (I) ∩ A because they are

already labelled as bad by at least one vertex in I. This means that S∩A is small
(i.e. o(n)). On the other hand, we always output all vertices in Nout

G (I)∩(H ∪P)
because they are labelled good by at least one vertex in I; since we concluded that
|I| � (0.15 − o(1))n in the previous paragraph, it follows from vertex expansion
of random graphs that |Nout

G (I)∩(H∩P)| � |H∪P |−o(n) � n+1
2 +|P |−o(n). By

a more careful calculation of the terms o(n), it is then possible to show that (1)
holds.

To turn the above intuition into a formal proof, we not only have to make the
calculations more precise, but we also need to deal with the case where I � H
(or T � A). Nevertheless, we can still show, using a more general structural
result (see Lemma 3), that I ∩ H still satisfies “non-expansion”. This allows the
proof to go through in a similar manner.

3.1 Proof of Correctness of the Algorithm

We now give a formal proof of correctness of our algorithm. We will need several
additional notations:

– Once again, let I = {v ∈ V | x∗
v = 1} and T = {v ∈ V | x∗

v = 0}. Moreover ,
let R = {v ∈ V | x∗

v = 1/2}.
– Let IH , TH and RH denote I ∩ H,T ∩ H and R ∩ H respectively. Similarly,

let IH , TH and RH denote I \ H, T \ H and R \ H respectively.

We will prove our main theorem for the constants C = 1010 and β = 10−10.
It is henceforth assumed that d � C log n, and this will not be explicitly stated.
We remark that we make no attempt in optimizing these constants and it is
likely that they can be reduced substantially.

Step 0: Dealing with the trivial case. As stated earlier, Step 0 in our algorithm
helps us take care of the “trivial” case where A is already small. In particular,
we can show that, if |A| � 0.15(n−1), then the algorithm w.h.p. simply outputs
V , which is a correct output in this case. Moreover, it is not hard to see that,
when A is larger than (n − 1)/6 and V is the wrong answer, then we do not
terminate in this step and proceed to the remaining part of the algorithm. This
is encapsulated in the following lemma.

Lemma 1. When |A| � 0.15(n−1), our algorithm outputs V and terminates at
Step 0 with probability 1 − O(e−βd). On the other hand, when |A| > (n − 1)/6,
our algorithm terminates at Step 0 with probability only O(e−βd).

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 171

It turns out that the above lemma follows easily from the concentration of
the number of bad labels given by each honest vertex. This concentration is
stated and proved below.

Observation 8. With probability 1 − O(e−βd), for all vertices u ∈ H, we have
(μ − 0.001)d � |Nout

G (u) ∩ A| � (μ + 0.001)d where μ = |A|
n−1 .

Proof. We will only prove that |Nout
G (u) ∩ A| � (μ − 0.001)d for every u ∈ H

with high probability. The upper bound can be shown analogously. Note that our
desired bound is obvious when μ � 0.001. Hence, we may assume that μ � 0.001,
or equivalently |A| � 0.001(n − 1).

Let us fix u ∈ H and a vertex v ∈ A. The probability that v belongs to
Nout

G (u) is exactly d
n−1 . Moreover, from how the graph is generated, the events

v ∈ Nout
G (u) for different v’s are independent. Hence, Chernoff bounds implies

that

Pr
[
|Nout

G (u) ∩ A| < 0.999 ·
(

d

n − 1
· |A|

)]

� exp
(

−10−6

2
· d

n − 1
· |A|

)

� exp
(

−10−6

2
· d

n − 1
· 0.001(n − 1)

)

� n−2 · e−βd,

where the second and third inequalities follow from |A| � 0.001(n − 1) and d �
1010 log n respectively. Furthermore, observe that 0.999·

(
d

n−1 · |A|
)

= 0.999μd �
(μ − 0.001)d. Hence, we have Pr [|Nout

G (u) ∩ A| < (μ − 0.001)d] � n−2 · e−βd.
Using union bound over all u ∈ H concludes our proof. ��

Now that we have proved the concentration, we can prove Lemma 1 simply
as follows.
Proof of Lemma 1: Suppose that |A| � 0.15(n−1). Then, from Observation 8,
w.p. 1−O(e−βd) we have |Nout

G (u)∩A| �
(

|A|
n−1 + 0.001

)
d < 0.16d for all u ∈ H.

Notice that Nout
G (u) ∩ A is exactly the set of vertices for which u labels bad. As

a result, for these |H| � t + 1 vertices, they label bad to at most 0.16d vertices.
This means that the condition in Step 0 is satisfied and the algorithm outputs V .

On the other hand, if |A| > (n − 1)/6, then Observation 8 gives the bound
|Nout

G (u) ∩ A| �
(

|A|
n−1 − 0.001

)
d > 0.16d with probability 1 − O(eβd). When

this event occurs, each u ∈ H labels more than 0.16d vertices as bad. Thus, the
condition in Step 0 is not satisfied in this case. ��

Step I: Non-Expansion of IH to A. The first step of the remaining part of the
proof is to show that the set IH does not (vertex-)expand in A (w.r.t out-edges in
G), as stated below. We remark here that it also implicitly implies that IH �= ∅.

172 P. Manurangsi et al.

Lemma 2. |IH | > |Nout
G (IH) ∩ A|.

To prove non-expansion of IH , we will resort to a structural result regarding
an extreme point LP solution. It is easiest to state in terms of crown as defined
below [CFJ04,ACF+04]:

Definition 9. For any undirected graph F = (V,EF) and disjoint subsets I, T ⊆
F , (I, T) is said to be a crown of F if (i) T = N(I) and (ii) there is a matching
between T and I such that all vertices in T are matched.

Lemma 3 ([AFLS07]). For any undirected graph F = (V,EF), let {x∗
v}v∈V be

an extreme point solution, and let I = {v ∈ V | x∗
v = 1} and T = {v ∈ V | x∗

v =
0}. Then, (I, T) forms a crown (w.r.t F).

Notice that if (I, T) is a crown, then it must be that |I| � |T | due to (ii).
Hence, the above result is stronger than the one we used in the informal expo-
sition. We are now ready to prove Lemma 2.
Proof of Lemma 2: First, we claim that

|RH | � |RH |. (5)

This is because otherwise we can instead set x∗
v = 1 for v ∈ RH and x∗

v = 0 for
v ∈ RH , which would give an LP solution with higher value. (Note that this is
a valid LP solution because RH is an independent set from Observation 5, and
all neighbors of I lie in T .)

From Lemma 3, (I, T) forms a crown. Consider a matching from T to I
such that all vertices in T are matched (which is guaranteed to exist from the
definition of a crown). Notice that there is no edge from TH to IH in the graph
Gconf; hence, all vertices in TH must be matched to vertices in IH . In other
words, we have

|TH | � |IH |. (6)

From (5) and (6), we have

|IH | = |H| − |TH | − |RH | > |A ∪ P | − |RH | − |IH | = |TH |.
Finally, observe that (Nout

G (IH)∩A) ⊆ (NGconf(IH)∩A) ⊆ TH , which yields the
desired bound. ��

Step II: Expansion of Subsets of H in G. Similar to the outline, the second step
of the proof is to observe that most subsets X ⊆ H expands very well into A (or
V), with respect to out-edges in G. The reason is simply that the graph from H
to these sets are (essentially) random bipartite graphs of out-degree Ω(d). Due
to technical reasons, we will also state the vertex expansion properties in terms
of the in-degree graphs to V . The formal statement is as follows.

Lemma 4. Suppose that |A| � 0.15(n − 1). Then, with probability 1 − O(e−βd),
the following holds:

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 173

1. For any set X ⊆ H such that |X| � 0.05(n − 1), we have

|A ∩ Nout
G (X)| � |X|. (7)

2. For any set W ⊆ V , we have

|H ∩ N in
G (W)| � min{|H| − 0.05(n − 1), 10|W |}. (8)

We remark here that the above lemma is the main place we use |A| � Ω(n)
as guaranteed from Step 0; otherwise the inequality (7) may not be true (some
vertex in H might not even have an outgoing edge to A at all if A is too small).

The proof is via a standard approach to prove vertex/edge expansion of
graph: we bound the probability that each neighbor is a subset of a too-small
set and then use union bound in the end.

Proof. 1. Let us consider any sets X ⊆ H and Y ⊆ A. For any vertex u ∈ X,

the probability that (Nout
G (u) ∩ A) ⊆ Y is exactly

(
|H|−1+|Y |

n−1

)d

. Since the

events Nout
G (u) ⊆ Y are independent for all u ∈ X, we have

Pr[(Nout
G (X) ∩ A) ⊆ Y] =

(|H| − 1 + |Y |
n − 1

)d|X|
�

(
1 − |A \ Y |

n − 1

)d|X|
.

Hence, the undesired event happens with probability at most
∑

X⊆H,Y ⊆A
|X|�0.05(n−1),|Y |=|X|−1

Pr[(Nout
G (X) ∩ A) ⊆ Y]

�
∑

X⊆H,Y ⊆A
|X|�0.05(n−1),|Y |=|X|−1

(
1 − |A \ Y |

n − 1

)d|X|

�
∑

X⊆H,Y ⊆A
|X|�0.05(n−1),|Y |=|X|−1

(0.9)d|X|

=
�0.05(n−1)	∑

i=1

(|H|
i

)
(0.9)d|X|

�
�0.05(n−1)	∑

i=1

ni (0.9)di

�
�0.05(n−1)	∑

i=1

n−2 · e−βd

= O(e−βd),

where the second inequality follows from |A| � 0.15(n−1) and |Y | � 0.05(n−
1) and we use our choice of d � 1010 log n in the last inequality.

174 P. Manurangsi et al.

2. Consider any set W ⊆ V and X ⊆ H. We will bound the probability that (H ∩
N in

G (W)) is a subset of X. Recall from our definition that every vertex has a
self-loop. Hence, if (W ∩ H) � X, it is immediate that Pr[(H ∩ N in

G (W)) ⊆
X] = 0.
Now, for the case (W ∩H) ⊆ X, we can bound Pr[(H ∩N in

G (W)) ⊆ X] as fol-
lows. First, notice that each vertex u ∈ (H\X), u does not belongs to N in

G (W)

(or equivalently Nout
G (u)∩W = ∅) with probability exactly

(
1 − |W |

n−1

)d

. Since

the events u /∈ N in
G (W) are independent for all u ∈ (H \ X), we have

Pr[(H ∩ N in
G (W)) ⊆ X] =

(
1 − |W |

n − 1

)d·|H\X|
� e− d|W |·(|H|−|X|)

n−1 .

For convenience, let μ(|W |) denote
min{|H|−0.05(n−1), 10|W |}�−1. From
union bound and the previous inequality, the probability of the undesired
event is at most

∑

W⊆V,X⊆H
|X|=µ(|W |)

Pr[(H ∩ N in
G (W)) ⊆ X] �

∑

W⊆V,X⊆H
|X|=µ(|W |)

e− d·|W |·(|H|−|X|)
n−1

�
∑

W⊆V,X⊆H
|X|=µ(|W |)

e−0.05d|W |

=
n∑

i=1

(
n

i

)(|H|
μ(i)

)
e−0.05di

�
n∑

i=1

n11ie−0.05di

�
n∑

i=1

n−2 · e−βd

= O(e−βd)

where the second inequality is due to μ(|W |) � |H|−0.05(n−1) and the last
inequality follows from d � 1010 log n. This completes our proof. ��
We can deduce from the above lemma the following corollary, which will be

more convenient to use in the main proof.

Corollary 1. Suppose that |A| � 0.15(n − 1). Then, with probability 1 −
O(e−βd), for any set X ⊆ H, at least one of the following must hold: (i)
|X| � |Nout

G (X) ∩ A| or (ii) |Nout
G (X) ∩ (H ∪ P)| � n+1

2 + 2 · |A \ Nout
G (X)|.

Proof. Suppose for the sake of contradiction that there exists X ⊆ H that
violates both inequalities. Since X violates (i) and from the first item (i.e. (7))
of Lemma 4, we must have |X| > 0.05(n − 1), which means

|H \ X| < |H| − 0.05(n − 1). (9)

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 175

Let Y = (A \ Nout
G (X)) and k = |Y |. From the violation of (i), we have

|X| � |Nout
G (X) ∩ A| + 1 = |A| − k + 1 = (n − |H| − |P |) − k + 1

From the above, we have

|H \ X| = |H| − |X| � |P | + k + 2
(

|H| − n + 1
2

)
.

For convenience, we let Γ = |H| − n+1
2 . We may write the above inequality as

|H \ X| � |P | + k + 2Γ (10)

Now, from (8) in Lemma 4 with W = Y , we have

|H \ X| � |N in
G (Y) ∩ H| � min{|H| − 0.05(n − 1), 10k}.

From (9), it cannot be that |H \ X| � |H| − 0.05(n − 1). As a result, we have

|H \ X| � 10k. (11)

Similarly, let Z = (H ∪ P) \ Nout
G (X). From the violation of (ii), we have

|Z| = |H| + |P | − |Nout
G (X) ∩ (H ∪ P)| � |H| + |P | − n − 1

2
− 2k

= |P | − 2k + 1 + Γ. (12)

Moreover, from (8) in Lemma 4 with W = Z, we have

|H \ X| � |N in
G (Z) ∩ H| � min{|H| − 0.05(n − 1), 10|Z|}.

Once again, (9) implies that |H \X| cannot be at least |H|−0.05(n−1). Hence,
we have

|H \ X| � 10|Z|
(12)

� 10(|P | − 2k + 1 + Γ). (13)

By combining (10), (11) and (13), we arrive at

|P | + k + 2Γ
(10)

� |H \ X| = 0.8|H \ X| + 0.2|H \ X|
(11),(13)

� 8k + 2(|P | − 2k + 1 + Γ)
= 2|P | + 4k + 1 + 2Γ,

a contradiction. ��

176 P. Manurangsi et al.

Step III: Putting things together. With the above lemmas ready, we now prove
our main theorem by simply plugging them together.
Proof of Theorem 3: From Lemma 1, if |A| < 0.15(n − 1), then we output
the entire vertex set V and terminates with probability 1 − O(e−βd); this is a
correct output. Moreover, Lemma 1 also ensures that we w.p. 1−O(eβd) do not
terminate here with an incorrect output.

We may now assume for the rest of the proof that |A| � 0.15(n − 1). From
Lemma 2, we have |IH | > |Nout

G (IH)∩A|. As a result, from Corollary 1, we with
probability 1 − O(e−βd) must have

|Nout
G (IH) ∩ (H ∪ P)| � n + 1

2
+ 2 · |A \ Nout

G (IH)|. (14)

Now, observe that, every vertex in Nout
G (IH) ∩ (H ∪ P) is labelled good by at

least one vertex in IH ⊆ I; hence, they will be included in S. In other words,
S ∩ (H ∪ P) ⊇ Nout

G (IH) ∩ (H ∪ P).
On the other hand, all vertices in Nout

G (IH) ∩ A are labelled bad by at least
one vertex in IH ⊆ I; hence, they will not be included in S. In other words, we
have S ∩ A ⊆ (A \ Nout

G (IH)).
As a result, we arrive at

|S ∩ (H ∪ P)| � |Nout
G (IH) ∩ (H ∪ P)|

(14)

� n + 1
2

+ 2 · |A \ Nout
G (IH)|

� n + 1
2

+ 2 · |S ∩ A|,

which concludes our proof. ��

4 Construction of Robust Secret Sharing

Let λ be the robustness parameter. In this section, we give a construc-
tion of robust secret sharing for messages of length m with share size m +
O(λ log n(log n + log m)). In Sect. 4.1, we first give a construction of a basic
robust secret sharing scheme with share size m + O(λ2 + λ(log n + log m) +
log2 n + log n log m). In the Sect. 4.2, we use parallel repetition (as was done
by Bishop et al. [BPRW16]) to improve the share size of our construction to
m + O(λ log n(log n + log m)).

4.1 Basic Scheme

The construction is described in Fig. 1 and we show the following theorem.7

Theorem 10. For some t, d, λ, ρ ∈ N, ε2, ε3 ∈ [0, 1], n � 2t + 1, and message
space M, assume we have the following:

7 Recall the definition of multiplicity of a multiset and ‖ from Sect. 2.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 177

– A (t + 1, n, 0, 0) secret sharing scheme (Share,Rec) for M that is (0, s, (s −
(t+1))/2�)-robust for any s � t+1. Further, the shares are strings in {0, 1}ρ.

– A (2d, ε2)-secure private MAC scheme (KeyGen,Tag,Verify) for message space
{0, 1}ρ with randomness length ν, key length κ and tag length λ.

– The vertex identification algorithm VertexID from Theorem 3, when run on
graphs with out-degree d, has error probability at most ε3.

Then, the construction in Fig. 1 is a (t + 1, n, ne−d/3, 0) secret sharing scheme
for M that is (ndε2 + ε3 +ne−d/3, n, t)-robust. The size of each share is (ρ+ ν +
d
log n� + d(κ + λ)) bits.

Fig. 1. Basic construction of robust secret sharing (using terminology from Theo-
rem 10)

178 P. Manurangsi et al.

Proof of Theorem 10: The share size may be verified by inspection. We first
show the correctness and privacy properties of our construction and finally show
its robustness.

Correctness. Note that in an honest execution of the sharing and the reconstruc-
tion algorithm, in the absence of any corruptions, every edge in the graph G will
be labeled as good. Thus, the algorithm VertexID will output V = [n]. It now
follows from the perfect correctness of Rec that the secret output by BasRobRec
will be equal to m∗ with probability 1. We will now bound the probability that
m∗ is not equal to m.

We estimate the probability that the chosen multisets {Si}i∈[n] has the prop-
erty such that for v ∈ [n], the multiplicity of v in S1‖ . . . ‖Sn is at most 2d. Let
us fix a party v ∈ [n], and call the event that its multiplicity is more than 2d
as Badv. For any i �= v, v might get selected (possibly multiple times) in the
multiset Si. Thus, there are totally d(n − 1) random draws where v might get
selected. For any i ∈ [d(n − 1)], let Xi be the indicator random variable which
is 1 if and only if v is selected in the i-th draw. Now, for any i ∈ [d(n − 1)],

Pr[Xi = 1] =
1

n − 1
(15)

Then, Badv occurs if
∑

i Xi > 2d. The variables {Xi}i are independent and
hence from Chernoff bounds,

Pr[Badv] = Pr[
∑

i

Xi > 2d] � e−d/3 (16)

Let Bad be the event that there exists at least one v ∈ [n] such that Badv

happens. By union bound,

Pr[Bad] �
∑

v

Pr[Badv] = ne−d/3 (17)

Thus, with probability at least 1−ne−d/3, the chosen multisets {Si}i∈[n] satisfies
the property the multiplicity of every v ∈ [n] in S1‖ . . . ‖Sn is at most 2d. Notice
that when this happens, m∗ = m. Thus, the correctness error is at most ne−d/3.
We will call {Si}i∈[n] that satisfies the above property to be bounded.

Privacy. To show perfect privacy, we need to argue that for every set U of
size at most t, for every pair of secrets m0,m1 ∈ M , the distributions of
BasRobShare(m0)U and BasRobShare(m1)U are identical.8 It is sufficient to show
that this is in the case when {Si} is bounded, and when it is not bounded, by
design the output of BasRobShare is independent of the message being shared,
and so the shares of U are identical.

When {Si} is bounded, we show this by the following hybrid argument. Fix
any choice of the multisets {Si}i∈[n] such that it is bounded. For every i ∈ [n],

8 From Remark 1, we also satisfy the stronger notion of adaptive privacy.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 179

we define T i to be the sequence of (v, j) ∈ [n]× [d] such that the j-th entry of the
multiset Sv is equal to i. From the choice of the fixed {Si}i∈[n], each |T i| � 2d.
We first fix all the MAC keys chosen during the share phase, and make the follow-
ing argument for any such set of keys. We now argue that BasRobShare(m0)U is
identical to BasRobShare(m1)U , going through the following hybrid distributions
over the shares of U :

– Hyb1 : This is the same as BasRobShare(m0)U .
– Hyb2 : In this hybrid, during the share phase, for every i �∈ U , we generate

σj
v→i (for any j ∈ [d] and v ∈ [n]) as Tag(kj

v→i, (0
ρ, ri)). We finally output

the shares corresponding to U . Note that Hyb1 is identical to Hyb2 from the
perfect privacy property of the private MAC scheme, which is (2d, ε2)-secure,
since |T i| � 2d for every i ∈ [n].

– Hyb3 : In this hybrid, during the share phase, instead of running Share(m∗)
to get the Shi’s, we run Share(0).9 We run the rest of the sharing normally
and output the shares corresponding to U . Hyb3 is identical to Hyb2 by the
perfect privacy of the secret sharing scheme (Share,Rec).

Note that via a similar argument we can show that BasRobShare(m1)U is also
identical to Hyb3, and thus to BasRobShare(m0)U , proving perfect privacy.

Robustness. We now argue the robustness of our construction. Consider an inter-
active adversary A that adaptively corrupts a set T of parties. We assume with-
out loss of generality that this adversary corrupts (n−1)/2� number of parties.
In the case where the adversary corrupts less than this many parties, we con-
sider another adversary that corrupts all the parties corrupted by the original
adversary and corrupts some additional parties such that the total number of
corrupted parties is (n−1)/2�. For the parties corrupted by the original adver-
sary, this new adversary behaves exactly as specified by the original adversary.
For the additional corrupted parties, this new adversary follows the reconstruc-
tion protocol as specified. The adversary is given {sharei}i∈T . Let H be the set
of honest parties. Consider the interactive reconstruction algorithm.

– In the first round of the reconstruction algorithm, the party i broadcasts
(Shi, ri) to every other party. Now, every party i ∈ T might broadcast the
correct (Shi, ri) or a modified (Sh′

i, r
′
i). Based on this, we partition T into

two sets P and A. P consists of the parties that send the unmodified (Shi, ri)
whereas the parties in A modify the shares and send (Sh′

i, r
′
i) �= (Shi, ri). Note

that at the end of the first round, the adversarial parties learn no information
about the multisets Si of the honest parties and conditioned on the informa-
tion available to the adversary at the end of the first round, these multisets
Si are still random.

– At the end of the first round, the parties will verify the tags of the MAC.
Every i ∈ H will generate the set Ni as follows:

• Let Si = (vi
1, . . . , v

i
d).

9 0 denoting some universally fixed element in M.

180 P. Manurangsi et al.

• For every j ∈ [d] such that vi
j ∈ H ∪ P , party i adds ((i, vi

j), good) to Ni.
• For every j ∈ [d] such that vi

j ∈ A, party i adds ((i, vi
j),bad) to Ni except

with probability at most ε2. The ε2 error probability follows directly from
the ε2-unforgeability of the private MAC.

By standard union bound, the probability that there exists an i ∈ H such
that for some v ∈ A, party i adds ((i, v), good) to Ni is at most ndε2 since
each multiset Si has size d.

– Conditioned on the above event not happening, the graph G = (V,E) with
V = [n] and the edge labeling L is effectively generated as follows.
1. The adversary partitions V into H,P,A where |H| = n − (n − 1)/2� �

(n + 1)/2.
2. For every u ∈ H, choose a multiset Su uniformly at random from [n]\{u}

with replacement and let Su = (vu
1 , . . . , vu

d). For every j ∈ [d], add an
edge (u, vu

j) and set L(u, vu
j) = good if and only if vu

j ∈ H ∪ P . This is
identically distributed to the distribution where we choose Su uniformly
at random during the sharing phase since at the end of the first round,
the adversary learns no information about the multisets of the honest
parties.

3. The outgoing edges and their labels of A∪P can be generated adversarily
after looking at the outgoing edges and the labels of the vertices in H.

This is exactly same as the graph generation procedure given in Sect. 3.
– It now follows from the correctness of the VertexID algorithm (Theorem 3)

that its output S when run on this graph satisfies the property that |S ∩ (H ∪
P)| � (n + 1)/2 + 2 · |S ∩ A| � (t + 1) + 2 · |S ∩ A| except with probability ε3.
The fact that Rec({Shj}j∈S) = m∗ follows from robustness of secret sharing
(Fact 2).

– Finally, as in the correctness argument, m∗ is equal to the actual secret m
except with probability ne−d/3. Thus, by the union bound, the probability of
error of the whole reconstruction procedure is at most (ndε2 + ε3 + ne−d/3).

This completes the proof of the theorem. ��
Remark 2. While they are not explicitly covered by the discussion so far, our
construction extends to the case of aborting adversaries in a straightforward
manner. If an adversary does not send a message in the reconstruction phase
then it must be a corrupted party. In this case, all the honest parties which have
this party in its watchlist will mark the corresponding edge as being bad. Further,
the parties will consider some default set of d parties, (say the first d parties) as
being part of this corrupted party’s watchlist and consider some default labeling
of the edges. Notice that our vertex identification algorithm allows the watchlist
and the labeling from the malicious parties to be arbitrary.

Instantiation. We now provide the following instantiation of the building
blocks of our robust secret sharing scheme. Let us fix the robustness param-
eter λ, and the length m of the secret to be shared (if m <
log n�, replace it
with
log n� in the following).

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 181

– We set d = 10λ/β +3C log n/β, where C (> 1) and β (∈ (0, 1)) are constants
from Theorem 3.

– We instantiate the secret sharing with Shamir secret sharing over GF[2m].
This gives ρ = m.

– We instantiate the private MAC with the (�, ε2)-secure MAC for message
space {0, 1}ρ from Theorem 1, with � = 2d and ε2 = 2−λ/(2nd). The ran-
domness, tag and key lengths are, respectively, 2d(λ + log(2nd(ρ + 2d))),
λ + log(2nd(ρ + 2d)), and 2(λ + log(2nd(ρ + 2d))).

– The VertexID algorithm has error probability ε3 < 2−10λ.

The robustness error is ndε2 + ε3 + ne−d/3 < 2−λ/2 + 2−10λ + n2−3λ−log n �
2−λ. The correctness error is ne−d/3 � 2−λ. The size of each share is ρ + 2d(λ +
log(2nd(ρ+2d)))+d log n+3d(λ+log(2nd(ρ+2d))) = m+5dλ+O(d log(2nd(m+
2d))) = m + O(λ2) + O(λ log n) + O((λ + log n)(log n + log λ + log m)) = m +
O(λ2 + λ(log n + log m) + log2 n + log n log m).

Corollary 2. For any λ, t,m, n ∈ N with n � 2t + 1, there exists a (t +
1, n, 2−λ, 0)-secret sharing scheme that is (2−λ, n, t)-robust and, for secrets of
length m bits, has shares of size m+O(λ2+λ(log n+log m)+log2 n+log n log m)
bits.

4.2 Improved Parameters via Parallel Repetition

In this subsection, we improve the share size of our basic construction to m +
O(λ log n(log n+log m)) to achieve robustness error of 2−λ via parallel repetition.
This is similar to the ideas explained in [BPRW16]. Before we describe the
construction, we start with some notation.

Notation. We split BasRobRec into two steps. The first step BasRobRec1 is an
interactive protocol comprising of the first two rounds of BasRobRec and the
output of the protocol is the set S which is the output of VertexID algorithm on
the constructed graph G and the labeling L. The second step consists of running
Rec on {Shi}i∈S and outputting the message.

Construction. The construction of robust secret sharing (RobShare,RobRec) with
improved parameters is described in Fig. 2.

Theorem 11. For any λ, t,m, n ∈ N, with n � 2t+1, the construction in Fig. 2
is a (t + 1, n, 0, 0) secret sharing scheme (with expected polynomial time sharing
algortithm) for secrets of length m that is (e−λ/24, n, t)-robust. The size of each
share is m + O(λ log n(log n + log m)).

Due to page limits, we defer the proof of this theorem to the full version of
the paper.

182 P. Manurangsi et al.

Fig. 2. Improved construction of robust secret sharing

Acknowledgment. Pasin would like to thank Theo McKenzie for useful discussions
on the independent set problem on semi-random graphs.

Akshayaram Srinivasan and Prashant Nalini Vasudevan were supported in part by
AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and
research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cyber-
security (CLTC, UC Berkeley). The views expressed are those of the authors and do
not reflect the official policy or position of the funding agencies.

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 183

References

[ACF+04] Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters,
W.H., Symons, C.T.: Kernelization algorithms for the vertex cover prob-
lem: Theory and experiments. In: Proceedings of the Sixth Workshop on
Algorithm Engineering and Experiments and the First Workshop on Ana-
lytic Algorithmics and Combinatorics, New Orleans, LA, USA, 10 January
2004, pp. 62–69 (2004)

[AFLS07] Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown
structures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–
430 (2007)

[BDIR18] Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage
resilience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 531–561. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96884-1 18

[Bei11] Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z.,
Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS,
vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-20901-7 2

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended
abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 1–10 (1988)

[Bla79] Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS
1979 National Computer Conference, vol. 48, pp. 313–317 (1979)

[BP16] Bishop, A., Pastro, V.: Robust secret sharing schemes against local adver-
saries. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 327–356. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8 13

[BPRW16] Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal
robust secret sharing with maximal corruptions. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 58–86. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 3

[CCD88] Chaum, D., Crepeau, C., Damgaard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, Chicago, Illinois, USA, 2–4 May
1988, pp. 11–19. ACM (1988)

[CDF01] Cramer, R., Damgard, I., Fehr, S.: On the cost of reconstructing a secret,
or VSS with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 30

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of alge-
braic manipulation with applications to robust secret sharing and fuzzy
extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 27

[CDV94] Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability
of cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT
1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 10

https://doi.org/10.1007/978-3-319-96884-1_18
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-662-49387-8_13
https://doi.org/10.1007/978-3-662-49890-3_3
https://doi.org/10.1007/3-540-44647-8_30
https://doi.org/10.1007/3-540-44647-8_30
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/978-3-540-78967-3_27
https://doi.org/10.1007/3-540-48285-7_10
https://doi.org/10.1007/3-540-48285-7_10

184 P. Manurangsi et al.

[Cev11] Cevallos, A.: Reducing the share size in robust secret sharing. Universiteit
Leiden, Mathematisch Instituut (2011)

[CFJ04] Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear time, or how to
save k colors in O(n2) steps. In: Graph-Theoretic Concepts in Computer
Science, 30th International Workshop, WG 2004, Bad Honnef, Germany,
21–23 June 2004, pp. 257–269 (2004). Revised Papers

[CFOR12] Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure
robust secret sharing with compact shares. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 13

[CGMA85] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract).
In: 26th Annual Symposium on Foundations of Computer Science, pp.
383–395. IEEE Computer Society Press, October 1985

[Che15] Cheraghchi, M.: Nearly optimal robust secret sharing. Cryptology ePrint
Archive, Report 2015/951 (2015). http://eprint.iacr.org/2015/951

[CSV17] Charikar, M., Steinhardt, J., Valiant, G.: Learning from untrusted data.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp.
47–60 (2017)

[DDFY94] De Santis, A., Desmedt, Y., Frankel, Y. , Yung, M.: How to share a function
securely. In: 26th Annual ACM Symposium on Theory of Computing, pp.
522–533. ACM Press, May 1994

[DF90] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 28

[FK00] Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in
a semirandom graph. Random Struct. Algorithms 16(2), 195–208 (2000)

[FK01] Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput.
Syst. Sci. 63(4), 639–671 (2001)

[Fra90] Frankel, Y.: A practical protocol for large group oriented networks. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol.
434, pp. 56–61. Springer, Heidelberg (1990). https://doi.org/10.1007/3-
540-46885-4 8

[FY19a] Fehr, S., Yuan, C.: Robust secret sharing with optimal share size and
security against rushing adversaries. IACR Cryptology ePrint Archive,
2019:1182 (2019)

[FY19b] Fehr, S., Yuan, C.: Towards optimal robust secret sharing with security
against a rushing adversary. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11478, pp. 472–499. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4 16

[GK18] Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I.,
Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on Theory
of Computing, pp. 685–698. ACM Press, June 2018

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: Aho, A.
(ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229.
ACM Press, May 1987

[HO18] Hemenway, B., Ostrovsky, R.: Efficient robust secret sharing from expander
graphs. Cryptograph. Commun. 10(1), 79–99 (2017). https://doi.org/10.
1007/s12095-017-0215-z

https://doi.org/10.1007/978-3-642-29011-4_13
http://eprint.iacr.org/2015/951
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-46885-4_8
https://doi.org/10.1007/3-540-46885-4_8
https://doi.org/10.1007/978-3-030-17659-4_16
https://doi.org/10.1007/978-3-030-17659-4_16
https://doi.org/10.1007/s12095-017-0215-z
https://doi.org/10.1007/s12095-017-0215-z

Nearly Optimal Robust Secret Sharing Against Rushing Adversaries 185

[Jai98] Jain, K.: Factor 2 approximation algorithm for the generalized Steiner net-
work problem. In: 39th Annual Symposium on Foundations of Computer
Science, FOCS 1998, Palo Alto, California, USA, 8–11 November 1998, pp.
448–457. IEEE Computer Society (1998)

[Kar72] Karp, R.M.: Reducibility among combinatorial problems. In: Proceed-
ings of a Symposium on the Complexity of Computer Computations,
IBM Thomas J. Watson Research Center, Yorktown Heights, New York,
USA, 20–22 March 1972, pp. 85–103 (1972). https://doi.org/10.1007/978-
1-4684-2001-2 9

[LRS11] Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Opti-
mization, vol. 46. Cambridge University Press, Cambridge (2011)

[MMT18] McKenzie, T., Mehta, H., Trevisan, L.: A new algorithm for the robust
semi-random independent set problem. CoRR, abs/1808.03633 (2018)

[NT74] Nemhauser, G.L., Trotter, L.E.: Properties of vertex packing and indepen-
dence system polyhedra. Math. Program. 6(1), 48–61 (1974)

[RB89] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In: 21st Annual ACM Sympo-
sium on Theory of Computing, pp. 73–85. ACM Press, May 1989

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach.
22(11), 612–613 (1979)

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Cryptanalysis

Cryptanalytic Extraction of
Neural Network Models

Nicholas Carlini1(B), Matthew Jagielski2, and Ilya Mironov3

1 Google, Mountain View, CA, USA
nicholas@carlini.com

2 Northeastern University, Boston, USA
3 Facebook, Menlo Park, USA

Abstract. We argue that the machine learning problem of model extrac-
tion is actually a cryptanalytic problem in disguise, and should be stud-
ied as such. Given oracle access to a neural network, we introduce a
differential attack that can efficiently steal the parameters of the remote
model up to floating point precision. Our attack relies on the fact that
ReLU neural networks are piecewise linear functions, and thus queries
at the critical points reveal information about the model parameters.

We evaluate our attack on multiple neural network models and extract
models that are 220 times more precise and require 100× fewer queries
than prior work. For example, we extract a 100,000 parameter neural
network trained on the MNIST digit recognition task with 221.5 queries
in under an hour, such that the extracted model agrees with the oracle on
all inputs up to a worst-case error of 2−25, or a model with 4,000 param-
eters in 218.5 queries with worst-case error of 2−40.4. Code is available at
https://github.com/google-research/cryptanalytic-model-extraction.

1 Introduction

The past decade has seen significant advances in machine learning, and deep
learning in particular. Tasks viewed as being completely infeasible at the begin-
ning of the decade became almost completely solved by the end. AlphaGo
[SHM+16] defeated professional players at Go, a feat in 2014 seen as being
at least ten years away [Lev14]. Accuracy on the ImageNet recognition bench-
mark improved from 73% in 2010 to 98.7% in 2019, a 20× reduction in error
rate [XHLL19]. Neural networks can generate photo-realistic high-resolution
images that humans find indistinguishable from actual photographs [KLA+19].
Neural network achieve higher accuracy than human doctors in limited settings,
such as early cancer detection [EKN+17].

These advances have brought neural networks into production systems. The
automatic speech recognition systems on Google’s Assistant, Apple’s Siri, and
Amazon’s Alexa are all powered by speech recognition neural networks. Neural

M. Jagielski—Northeastern University, part of work done at Google. I. Mironov—
Facebook, part of work done at Google.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 189–218, 2020.
https://doi.org/10.1007/978-3-030-56877-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_7&domain=pdf
https://github.com/google-research/cryptanalytic-model-extraction
https://doi.org/10.1007/978-3-030-56877-1_7

190 N. Carlini et al.

Machine Translation [BCB15] is now the technique of choice for production
language translation systems [WSC+16]. Autonomous driving is only feasible
because of these improved image recognition neural networks.

High-accuracy neural networks are often held secret for at least two reasons.
First, they are seen as a competitive advantage and are treated as trade secrets
[Wen90]; for example, none of the earlier systems are open-source. Second, is seen
as improving both security and privacy to keep these models secret. With full
white-box access it is easy to mount evasion attacks and generate adversarial
examples [SZS+14,BCM+13] against, for instance, abuse- or spam-detection
models. Further, white-box access allows model inversion attacks [FJR15]: it is
possible to reconstruct identifiable images of specific people given a model trained
to recognize specific human faces. Similarly, given a language model trained on
text containing sensitive data (e.g., credit card numbers), a white-box attacker
can pull this sensitive data out of the trained model [CLE+19].

Fortunately for providers of machine learning models, it is often expensive
to reproduce a neural network. There are three reasons for this cost: first, most
machine learning requires extensive training data that can be expensive to col-
lect; second, neural networks typically need hyper-parameter tuning requiring
training many models to identify the optimal final model configuration; and
third, even performing a final training run given the collected training data and
correctly configured model is expensive.

For all of the above reasons, it becomes clear that (a) adversaries are moti-
vated for various reasons to obtain a copy of existing deployed neural network,
and (b) preserving the secrecy of models is highly important. In practice compa-
nies ensure the secrecy of these models by either releasing only an API allowing
query access, or releasing on-device models, but attempting to tamper-proof and
obfuscate the source to make it difficult to extract out of the device.

Understandably, the above weak forms of protection are often seen as insuf-
ficient. The area of “secure inference” improves on this by bringing tools from
Secure Function Evaluation (SFE), which allows mutually distrustful cooperat-
ing parties to evaluate f(x) where f is held by one party and x by the other. The
various proposals often apply fully homomorphic encryption [Gen09,GBDL+16],
garbled circuits [Yao86,RWT+18], or combinations of the two [MLS+20]. Per the
standard SFE guarantee, secure inference “does not hide information [about the
function f] that is revealed by the result of the prediction” [MLS+20]. However
this line of work often implicitly assumes that total leakage from the predictions
is small, and that recovering the function from its output would be difficult.

In total, it is clear that protecting the secrecy of neural network models is
seen as important both in practice and in the academic research community.
This leads to the question that we study in this paper:

Is it possible to extract an identical copy of a neural network
given oracle (black-box) access to the target model?

While this question is not new [TZJ+16,MSDH19,JCB+19,RK19], we argue
that model extraction should be studied as a cryptanalytic problem. To do this,
we focus on model extraction in an idealized environment where a machine

Cryptanalytic Extraction of Neural Network Models 191

learning model is made available as an oracle O that can be queried, but with no
timing or other side channels. This setting captures that of obfuscated models
made public, prediction APIs, and secure inference.

1.1 Model Extraction as a Cryptanalytic Problem

The key insight of this paper is that model extraction is closely related to
an extremely well-studied problem in cryptography: the cryptanalysis of block-
ciphers. Informally, a symmetric-key encryption algorithm is a keyed function
Ek : X → Y that maps inputs (plaintexts) x ∈ X to outputs (ciphertexts) y ∈ Y.
We expect all practically important ciphers to be resistant, at the very least,
to key recovery under the adaptive chosen-plaintext attack, i.e., given some
bounded number of (adaptively chosen) plaintext/ciphertext pairs {(xi, yi)} an
encryption algorithm is designed so that the key k cannot be extracted by a
computationally-bounded adversary.

Contrast this to machine learning. A neural network model is (informally)
a parameterized function fθ : X → Y that maps input (e.g., images) x ∈ X
to outputs (e.g., labels) y ∈ Y. A model extraction attack adaptively queries
the neural network to obtain a set of input/output pairs {(xi, yi)} that reveals
information about the weights θ. Neural networks are not constructed by design
to be resistant to such attacks.

Thus, viewed appropriately, performing a model extraction attack—learning
the weights θ given oracle access to the function fθ—is a similar problem to
performing a chosen-plaintext attack on a nontraditional “encryption” algorithm.

Given that it took the field of cryptography decades to design encryption
algorithms secure against chosen-plaintext attacks, it would be deeply surprising
if neural networks, where such attacks are not even considered in their design,
were not vulnerable. Worse, the primary objective of cipher design is robustness
against such attacks. Machine learning models, on the other hand, are primarily
designed to be accurate at some underlying task, making the design of chosen-
plaintext secure neural networks an even more challenging problem.

There are three differences separating model extraction from standard crypt-
analysis that make model extraction nontrivial and interesting to study.

First, the attack success criterion differs. While a cryptographic break can
be successful even without learning key bits—for example by distinguishing the
algorithm from a pseudo-random function, only “total breaks” that reveal (some
of) the actual model parameters θ are interesting for model extraction.

Second, the earlier analogy to keyed ciphers is imperfect. Neural networks
typically take high-dimensional inputs (e.g., images) and return low-dimensional
outputs (e.g., a single probability). It is almost more appropriate to make an
analogy to cryptanalysis of keyed many-to-one functions, such as MACs. How-
ever, the security properties of MACs are quite different from those of machine
learning models, for example second preimages are expected rather than shunned
in neural networks.

Finally, and the largest difference in practice, is that machine learning models
deal in fixed- or floating-point reals rather than finite field arithmetic. As such,
there are many components to our attack that would be significantly simplified

192 N. Carlini et al.

given infinitely precise floating-point math, but given the realities of modern
machine learning, require far more sophisticated attack techniques.

1.2 Our Results

We introduce a differential attack that is effective at performing functionally-
equivalent neural network model extraction attacks. Our attack traces the neural
network’s evaluation on pairs of examples that differ in a few entries and uses
this to recover the layers (analogous to the rounds of a block cipher) of a neural
network one by one. To evaluate the efficacy of our attack, we formalize the
definition of fidelity introduced in prior work [JCB+19] and quantify the degree
to which a model extraction attack has succeeded:

Definition 1. Two models f and g are (ε, δ)-functionally equivalent on S if

Prx∈S

[|f(x) − g(x)| ≤ ε
] ≥ 1 − δ.

Table 1 reports the results of our differential attack across a wide range of model
sizes and architectures, reporting both (ε, δ)-functional equivalence on the set
S = [0, 1]d0 , the input space of the model, along with a direct measurement of
max |θ − θ̂|, directly measuring the error between the actual model weights θ

and the extracted weights θ̂ (as described in Sect. 6.2).

Table 1. Efficacy of our extraction attack which is orders of magnitude more precise
than prior work and for deeper neural networks orders of magnitude more query effi-
cient. Models denoted a-b-c are fully connected neural networks with input dimension
a, one hidden layer with b neurons, and c outputs; for formal definitions see Sect. 2.
Entries denoted with a † were unable to recover the network after ten attempts.

Architecture Parameters Approach Queries (ε, 10−9) (ε, 0) max |θ − θ̂|
784-32-1 25,120 [JCB+19] 218.2 23.2 24.5 2−1.7

Ours 219.2 2−28.8 2−27.4 2−30.2

784-128-1 100,480 [JCB+19] 220.2 24.8 25.1 2−1.8

Ours 221.5 2−26.4 2−24.7 2−29.4

10-10-10-1 210 [RK19] 222 2−10.3 2−3.4 2−12

Ours 216.0 2−42.7 2−37.98 2−36

10-20-20-1 420 [RK19] 225 ∞† ∞† ∞†

Ours 217.1 2−44.6 2−38.7 2−37

40-20-10-10-1 1,110 Ours 217.8 2−31.7 2−23.4 2−27.1

80-40-20-1 4,020 Ours 218.5 2−45.5 2−40.4 2−39.7

The remainder of this paper is structured as follows. We introduce the notation,
threat model, and attacker goals and assumptions used in Sect. 2. In Sect. 4 we
introduce an idealized attack that extracts (0, 0)-functionally-equivalent neural
networks assuming infinite precision arithmetic. Section 5 develops an instantia-
tion of this attack that works in practice with finite-precision arithmetic to yield
(ε, δ)-functionally equivalent attacks.

Cryptanalytic Extraction of Neural Network Models 193

1.3 Related Work

Model extraction attacks are classified into two categories [JCB+19]: task accu-
racy extraction and fidelity extraction. The first paper to study task accuracy
extraction [TZJ+16] introduced techniques to steal similar models that approxi-
mately solves the same underlying decision task on the natural data distribution,
but do not necessarily match the predictions of the oracle precisely. While fur-
ther work exists in this space [CCG+18,KTP+19], we instead focus on fidelity
extraction where the adversary aims to faithfully reproduce the predictions of
the oracle model, when it is incorrect with respect to the ground truth. Again,
[TZJ+16] studied this problem and developed (what we would now call) func-
tionally equivalent extraction for the case of completely linear models.

This attack was then extended by a theoretical result defining and giving
a method for performing functionally-equivalent extraction for neural networks
with one layer, assuming oracle access to the gradients [MSDH19]. A concrete
implementation of this one layer attack that works in practice, handling floating
point imprecision, was subsequently developed through applying finite differ-
ences to estimate the gradient [JCB+19]. Parallel work to this also extended on
these results, focusing on deeper networks, but required tens to hundreds of mil-
lions of queries [RK19]; while the theoretical results extended to deep networks,
the implementation in practice only extracts up to the first two layers. Our work
builds on all of these four results to develop an approach that is 106 times more
accurate, requiring 103 times fewer queries, and applies to larger models.

Even without query access, it is possible to steal models with just a cache side-
channel [BBJP19], although with less fidelity than our attack that we introduce
which are 220× more precise. Other attacks target hyperparameter extraction—
that is, extracting high-level details about the model: through what method it
was trained, if it contains convolutions, or related questions [WG18]. It is further
possible to steal hyperparameters with cache side channels [HDK+20].

Recent work has studied the learnability of deep neural networks with random
weights in the statistical query (SQ) model [DGKP20], showing that learnability
drops off exponentially with the depth of the network. This line of work does not
address the cryptographic hardness of extraction in the non-SQ model—precisely
the question addressed in this work in the empirical setting.

While not directly related to our problem, it is worth noting that we are
not the first to treat neural networks as just another type of mathemati-
cal function that can be analyzed without any specific knowledge of machine
learning. Shamir et al. [SSRD19] explain the existence of adversarial examples
[SZS+14,BCM+13], which capture evasion attacks on machine learning classi-
fiers, by considering an abstract model of neural networks.

In a number of places, our attack draws inspiration from the cryptanalysis
of keyed block-ciphers, most prominently differential cryptanalysis [BS91]. We
neither assume nor require familiarity with this field, but the informed reader
may enjoy certain parallels.

194 N. Carlini et al.

2 Preliminaries

This paper studies an abstraction of neural networks as functions f : X → Y.
Our results are independent of any methods for selecting the function f (e.g.,
stochastic gradient descent), and are independent of any utility of the function f .
As such, machine learning knowledge is neither expected nor necessary.

2.1 Notation and Definitions

Definition 2. A k-deep neural network fθ(x) is a function parameterized by θ
that takes inputs from an input space X and returns values in an output space Y.
The function f is composed as a sequence of functions alternating between linear
layers fj and a nonlinear function (acting component-wise) σ:

f = fk+1 ◦ σ ◦ · · · ◦ σ ◦ f2 ◦ σ ◦ f1.

We exclusively study neural networks over X = R
d0 and Y = R

dk . (Until Sect. 5
we assume floating-point numbers can represent R exactly.)

Definition 3. The jth layer of the neural network fj is given by the affine
transformation fj(x) = A(j)x+ b(j). The weights A(j) ∈ R

dj×dj−1 is a dj × dj−1

matrix; the biases b(j) ∈ R
dj is a dj-dimensional vector.

While representing each layer fj as a full matrix product is the most general defi-
nition of a layer, which is called fully connected, often layers have more structure.
For example, it is common to use (discrete) convolutions in neural networks that
operate on images. Convolutional layers take the input as a n × m matrix and
convolve it with a kernel, such as a 3 × 3 matrix. Importantly, however, it is
always possible to represent a convolution as a matrix product.

Definition 4. The neurons {ηi}N
i=1 are functions receiving an input and passing

it through the activation function σ. There are a total of N =
∑k−1

j=1 dj neurons.

In this paper we exclusively study the ReLU [NH10] activation function, given
by σ(x) = max(x, 0). Our results are a fundamental consequence of the fact that
ReLU neural networks are piecewise linear functions.

Definition 5. The architecture of a neural network captures the structure of f :
(a) the number of layers, (b) the dimensions of each layer {di}k

i=0, and (c) any
additional constraints imposed on the weights A(i) and biases b(i).

We use the shorthand a-b-c neural network to denote the sizes of each dimension;
for example a 10-20-5 neural network has input dimension 10, one layer with 20
neurons, and output dimension 5. This description completely characterizes the
structure of f for fully connected networks. In practice, there are only a few
architectures that represent most of the deployed deep learning models [ZL16],
and developing new architectures is an extremely difficult and active area in
research [HZRS16,SIVA17,TL19].

Cryptanalytic Extraction of Neural Network Models 195

Definition 6. The parameters θ of fθ are the concrete assignments to the
weights A(j) and biases b(j), obtained during the process of training the neu-
ral network.

It is beyond the scope of this paper to describe the training process which pro-
duces the parameters θ: it suffices to know that the process of training is often
computationally expensive and that training is a nondeterministic process, and
so training the same model multiple times will give different sets of parameters.

2.2 Adversarial Goals and Resources

There are two parties in a model extraction attack: the oracle O who
returns fθ(x), and the adversary who generates queries x to the oracle.

Definition 7. A model parameter extraction attack receives oracle access to a
parameterized function fθ (in our case a k-deep neural network) and the archi-
tecture of f , and returns a set of parameters θ̂ with the goal that fθ(x) is as
similar as possible to fθ̂(x).

Throughout this paper we use the ˆ symbol to indicate an extracted param-
eter. For example, θ̂ refers to the extracted weights of a model θ.

There is a spectrum of similarity definitions between the extracted weights
and the oracle model that prior work has studied [TZJ+16,JCB+19,KTP+19];
we focus on the setting where the adversarial advantage is defined by (ε, δ)-
functionally equivalent extraction as in Definition 1.

Analogous to cryptanalysis of symmetric-key primitives, the degree to which
a model extraction attack succeeds is determined by (a) the number of chosen
inputs to the model, and (b) the amount of compute required.

Assumptions. We make several assumptions of the oracle O and the attacker’s
knowledge. (We believe many of these assumptions are not fundamental and can
be relaxed. Removing these assumptions is left to future work.)

– Architecture knowledge. We require knowledge of the architecture
of the neural network.

– Full-domain inputs. We feed arbitrary inputs from X .
– Complete outputs. We receive outputs directly from the model f

without further processing (e.g., by returning only the most likely class
without a score).

– Precise computations. f is specified and evaluated using 64-bit
floating-point arithmetic.

– Scalar outputs. Without loss of generality we require the output
dimensionality is 1, i.e., Y = R.

– ReLU Activations. All activation functions (σ’s) are ReLU’s.1

1 This is the only assumption fundamental to our work. Switching to any activation
that is not piecewise linear would prevent our attack. However, as mentioned, all
state-of-the-art models use exclusively (piecewise linear generalizations of) the ReLU
activation function [SIVA17,TL19].

196 N. Carlini et al.

3 Overview of the Differential Attack

∂2x
∂e2j

∂2f
∂x2 = A

(1)
ji · A(2)

i

Fig. 1. A schematic of our extraction attack on a 1-deep neural network. Let x be
an input that causes exactly one neuron to have value zero. The second differential
becomes zero at all other neurons—because they remain either fully-inactive or fully-
active. Therefore the value of this differential is equal to the product of the weight
going into the neuron at its critical point and the weight going out of this neuron.

Given oracle access to the function fθ, we can estimate ∂fθ through finite
differences along arbitrary directions. For simple linear functions defined by
f(x) = a · x + b, its directional derivative satisfies ∂f

∂ei
≡ ai, where ei is the

basis vector and ai is the ith entry of the vector a, allowing direct recovery of
its weights through querying on these well-chosen inputs.

In the case of deep neural networks, we consider second partial directional
derivatives. ReLU neural networks are piecewise linear functions with ∂2f

∂x2 ≡ 0
almost everywhere, except when the function has some neuron ηj at the bound-
ary between the negative and positive region (i.e., is at its critical point). We
show that the value of the partial derivative ∂2f

∂e2
i

evaluated at a point x so that

neuron ηj is at such a critical point actually directly reveals the weight T (A(1)
i,j)

for some transform T that is invertible—and therefore the adversary can learn
A

(1)
i,j . By repeating this attack along all basis vectors ei and for all neurons ηj we

can recover the complete matrix A(1). Once we have extracted the first layer’s
weights, we are able to “peel off” that layer and re-mount our attack on the
second layer of the neural network, repeating to the final layer. There are three
core technical difficulties to our attack:

Recovering the neuron signs. For each neuron η, our attack does not exactly
recover A

(l)
i , the ith row of A(l), but instead a scalar multiple v = α ·A(l)

i . While
losing a constant α > 0 keeps the neural network in the same equivalence class,
the sign of α is important and we must distinguish between the weight vector
A

(l)
i and −A

(l)
i . We construct two approaches that solve this problem, but in the

general case we require exponential work (but a linear number of queries).

Cryptanalytic Extraction of Neural Network Models 197

Controlling inner-layer hidden state. On the first layer, we can directly compute
the derivative entry-by-entry, measuring ∂2f

∂e2
i

for each standard basis vector ei in

order to recover A
(1)
ij . Deeper in the network, we can not move along standard

basis vector vectors. Worse, for each input x on average half of the neurons are in
the negative region and thus their output is identically 0; when this happens it is
not possible to learn the weight along edges with value zero. Thus we are required
to develop techniques to elicit behavior from every neuron, and techniques to
cluster together partial recoveries of each row of A

(l)
i to form a complete recovery.

Handling floating-point imprecision. Implementing our attack in practice with
finite precision neural networks introduces additional complexity. In order to
estimate the second partial derivative, we require querying on inputs that differ
by only a small amount, reducing the precision of the extracted first weight
matrix to twenty bits, or roughly 10−6. This error of 10−6 is not large to begin
with, but this error impacts our ability to recover the next layer, compounding
multiplicatively the deeper we go in the network. Already in the second layer,
the error is magnified to 10−4, which can completely prevent reconstruction for
the third layer: our predicted view of the hidden state is sufficiently different
from the actual hidden state that our attack fails completely. We resolve this
through two means. First, we introduce numerically stable methods assuming
that all prior layers have been extracted to high precision. Second, we develop
a precision-refinement technique that takes a prefix of the first j ≤ k layers of
a neural network extracted to n bits of precision and returns the j-deep model
extracted to 2n bits of precision (up to floating-point tolerance).

4 Idealized Differential Extraction Attack

We now introduce our (0, 0)-functionally-equivalent model extraction attack that
assumes infinite precision arithmetic and recovers completely functionally equiv-
alent models. Recall our attack assumptions (Sect. 2.2); using these, we present
our attack beginning with two “reduced-round” attacks on 0-deep (Sect. 4.1)
and 1-deep (Sect. 4.2) neural networks, and then proceeding to k-deep extraction
for contractive (Sect. 4.3) and expansive (Sect. 4.4) neural networks. Section 5
refines this idealized attack to work with finite precision.

4.1 Zero-Deep Neural Network Extraction

Zero-deep neural networks are linear functions f(x) ≡ A(1) ·x+b(1). Querying d0
linearly independent suffices to extract f by solving the resulting linear system.

However let us view this problem differently, to illuminate our attack strategy
for deeper networks. Consider the parallel evaluations f(x) and f(x + δ), with

f(x + δ) − f(x) = A(1) · (x + δ) − A(1) · x = A(1) · δ.

198 N. Carlini et al.

If δ = ei, the ith standard basis vector of Rd0 (e.g., e2 =
[
0 1 0 0 . . . 0

]
), then

f(x + δ) − f(x) = A(1) · δ = A
(1)
i .

This allows us to directly read off the weights of A(1). Put differently, we perform
finite differences to estimate the gradient of f , given by ∇xf(x) ≡ A(1).

4.2 One-Deep Neural Network Extraction

Many of the important problems that complicate deep neural network extraction
begin to arise at 1-deep neural networks. Because the function is no longer
completely linear, we require multiple phases to recover the network completely.
To do so, we will proceed layer-by-layer, extracting the first layer, and then use
the 0-deep neural network attack to recover the second layer.

η0
η1

η2

�

η0

e1

e2

Fig. 2. (left) Geometry of a 1-deep neural network. The three solid line corresponds to
“critical hyperplanes” of neurons. We identify one witness to each neuron with binary
search on the dotted line �. (right) For each discovered critical point, we compute the
second partial derivative along axis e1 and e2 to compute the angle of the hyperplane.

For the remainder of this paper it will be useful to have two distinct mental
models of the problem at hand. First is the symbolic view shown previously in
Fig. 1. This view directly studies the flow of information through the neural
networks, represented as an alternating sequence of linear layers and non-linear
transformations. This view helps understanding the algebraic steps of our attack.

The second is the geometric view. Because neural networks operate over the
real vector space, they can be visualized by plotting two dimensional slices of
the landscape [MSDH19]. Figure 2 (left) contains an example of such a figure.
Each solid black line corresponds to a change in gradient induced in the space
by a neuron changing sign from positive to negative (or vice versa)—ignoring for
now the remaining lines. The problem of neural network extraction corresponds
to recovering the locations and angles of these neuron-induced hyperplanes: in
general with input dimension d0, the planes have dimension d0 − 1.

Cryptanalytic Extraction of Neural Network Models 199

Definition 8. The function that computes the first j layers (up to and includ-
ing fj but not including σ) of f is denoted as f1..j. In particular, f = f1..k.

Definition 9. The hidden state at layer j is the output of the function f1..j,
before applying the nonlinear transformation σ.

Layer fj is a linear transformation of the (j − 1)st hidden state after σ.

Definition 10. V(η;x) denotes the input to neuron η (before applying σ) when
evaluated at x. L(η) denotes the layer of neuron η. The first layer starts at 1.

Definition 11. A neuron η is at a critical point when V(η;x) = 0. We refer
to this input x as a witness to the fact that η is at a critical point, denoted by
x ∈ W(η). If V(η;x) > 0 then η is active, and otherwise inactive.

In Fig. 2 the locations of these critical points correspond exactly to the solid
black lines drawn through the plane. Observe that because we restrict ourselves
to ReLU neural networks, the function f is piecewise linear and infinitely differ-
entiable almost everywhere. The gradient ∇xf(x) is well defined at all points x
except when there exists a neuron that is at its critical point.

Extracting the rows of A(1) up to sign. Functionally, the attack as presented in
this subsection has appeared previously in the literature [MSDH19,JCB+19].
By framing it differently, our attack will be extensible to deeper networks.

Assume we were given a witness x∗ ∈ W(ηj) that caused neuron ηj to be
at its critical point (i.e., its value is identically zero). Because we are using the
ReLU activation function, this is the point at which that neuron is currently
“inactive” (i.e., is not contributing to the output of the classifier) but would
become “active” (i.e., contributing to the output) if it becomes slightly positive.
Further assume that only this neuron ηj is at its critical point, and that for all
others neurons η 	= ηj we have |V(η, xj)| > δ for a constant δ > 0.

Consider two parallel executions of the neural network on pairs of examples.
Begin by defining ei as the standard basis vectors of X = R

N . By querying on
the two pairs of inputs (x∗, x∗ + εei) and (x∗, x∗ − εei) we can estimate

αi
+ =

∂f(x)
∂ei

∣
∣
∣
∣
x=x∗+εe1

and αi
− =

∂f(x)
∂ei

∣
∣
∣
∣
x=x∗−εe1

through finite differences.
Consider the quantity |α+ − α−|. Because x∗ induces a critical point of ηj ,

exactly one of {α+, α−} will have the neuron ηj in its active regime and the
other will have ηj in its inactive regime. If no two columns of A(1) are collinear,
then as long as ε < δ

∑
i,j |A(1)

i,j | , we are guaranteed that all other neurons in the

neural network will remain in the same state as before—either active or inactive.
Therefore, if we compute the difference |αi

+ − αi
−|, the gradient information

flowing into and out of all other neurons will cancel and we will be left with just
the gradient information flowing along the edge from the input coordinate i to
neuron ηj to the output. Concretely, we can write the 1-deep neural network as

f(x) = A(2)ReLU(A(1)x + b(1)) + b(2).

200 N. Carlini et al.

and so either αi
+−αi

− = A
(1)
j,i ·A(2) or αi

−−αi
+ = A

(1)
j,i ·A(2). However, if we repeat

the above procedure on a new basis vector ek then either αk
+ − αk

− = A
(1)
j,k · A(2)

or αk
− −αk

+ = A
(1)
j,k ·A(2) will hold. Crucially, whichever of the two relations that

holds for along coordinate i will be the same relation that holds on coordinate k.
Therefore we can divide out A(2) to obtain the ratio of pairs of weights

αk
+−αk

−
αi

+−αi
−

=
A

(1)
j,k

A
(1)
j,i

.

This allows us to compute every row of A(1) up to a single scalar cj . Further, we
can compute b

(1)
j = −Â

(1)
j · x∗ (again, up to a scaling factor) because we know

that x∗ induces a critical point on neuron ηj and so its value is zero.
Observe that the magnitude of cj is unimportant. We can always push a

constant c > 0 through to the weight matrix A(2) and have an a functionally
equivalent result. However, the sign of cj does matter.

Extracting row signs. Consider a single witness xi for an arbitrary neuron ηi.
Let h = f1(x), so that at least one element of h is identically zero. If we assume
that A(1) is contractive (Sect. 4.4 studies non-contractive networks) then we can
find a preimage x to any vector h. In particular, let ei be the unit vector in the
space R

d1 . Then we can compute a preimage x+ so that f̂1(x+) = h + ei, and a
preimage x− so that f̂1(x−) = h − ei.

Because xi is a witness to neuron ηi being at its critical point, we will have
that either f(x+) = f(xi) or f(x−) = f(xi). Exactly one of these equalities is
true because σ(h−ei) = σ(h), but σ(h+ei) 	= σ(h) when hi = 0. Therefore if the
second equality holds true, then we know that our extracted guess of the ith row
has the correct sign. However, if the first equality holds true, then our extracted
guess of the ith row has the incorrect sign, and so we invert it (along with the
bias b

(1)
i). We repeat this procedure with a critical point for every neuron ηi to

completely recover the signs for the full first layer.

Finding witnesses to critical points. It only remains to show how to find witnesses
x∗ ∈ W(η) for each neuron η on the first layer. We choose a random line in input
space (the dashed line in Fig. 2, left), and search along it for nonlinearities in the
partial derivative. Any nonlinearity must have resulted from a ReLU changing
signs, and locating the specific location where the ReLU changes signs will give
us a critical point. We do this by binary search.

To begin, we take a random initial point x0, v ∈ R
d0 together with a large

range T . We perform a binary search for nonlinearities in f(x0 + tv) for t ∈
[−T, T]. That is, for a given interval [t0, t1], we know a critical point exists in
the interval if ∂f(x+tv)

∂v |t=t0 	= ∂f(x+tv)
∂v |t=t1 . If these quantities are equal, we do

not search the interval, otherwise we continue with the binary search.

Extracting the second layer. Once we have fully recovered the first layer weights,
we can “peel off” the weight matrix A(1) and bias b(1) and we are left with
extracting the final linear layer, which reduces to 0-deep extraction.

Cryptanalytic Extraction of Neural Network Models 201

4.3 k-Deep Contractive Neural Networks

Extending the above attack to deep neural networks has several complications
that prior work was unable to resolve efficiently; we address them one at a time.

Critical Points Can Occur Due to ReLUs on Different Layers. Because 1-deep
networks have only one layer, all ReLUs occur on that layer. Therefore all critical
points found during search will correspond to a neuron on that layer. For k-deep
networks this is not true, and if we want to begin by extracting the first layer
we will have to remove non-first layer critical points. (And, in general, to extract
layer j, we will have to remove non-layer-j critical points.)

The Weight Recovery Procedure Requires Complete Control of the Input. In order
to be able to directly read off the weights, we query the network on basis vec-
tors ei. Achieving this is not always possible for deep networks, and we must
account for the fact that we may only be able to query on non-orthogonal direc-
tions.

Recovering Row Signs Requires Computing the Preimage of Arbitrary Hidden
States. Our row-sign procedure requires that we be able to invert A(1), which in
general implies we need to develop a method to compute a preimage of f1..j .

4.3.1 Extracting Layer-1Weights withUnknown Critical Point Layers
Suppose we had a function C0(f) = {xi}M

i=1 that returns at least one critical
points for every neuron in the first layer (implying M ≥ d1), but never returns
critical points for any deeper layer. We claim that the exact differential attack
from above still correctly recovers the first layer of a deep neural network.

We make the following observation. Let x∗ 	∈ ⋃
ηi

W(ηi) be an input that is a
witness to no critical point, i.e., |V(ηi;x∗)| > ε > 0. Define flocal as the function
so that for a sufficiently small region we have that flocal ≡ f , that is,

flocal(x) =
(
A(k+1) · · · (I(2)(A(2)(I(1)(A(1)x + b(1))) + b(2))) + . . .

)
+ b(k+1)

= A(k+1)I(k)A(k) · · · I(2)A(2)I(1)A(1)x + β

= Γx + β

Here, I(j) are 0–1 diagonal matrices with a 0 on the diagonal when the neuron
is inactive and 1 on the diagonal when the neuron is active:

I(j)n,n =

{
1 if V(ηn;x) > 0
0 otherwise

where ηn is the nth neuron on the first layer. Importantly, observe that each I(j)

is a constant as long as x is sufficiently close to x∗. While β is unknown, as long as
we make only gradient queries ∂flocal its value is unimportant. This observation
so far follows from the definition of piecewise linearity.

202 N. Carlini et al.

Consider now some input that is a witness to exactly one critical point on
neuron η∗. Formally, x∗ ∈ W(η∗), but x∗ 	∈ ⋃

ηj �=η∗ W(ηj ;x∗). Then

flocal(x) = A(k+1)I(k)A(k) · · · I(2)A(2)I(1)(x)A(1)x + β(x)

where again I(j) are 0–1 matrices, but except that now, I(1) (and only I(1))
is a function of x returning a 0–1 diagonal matrix that has one of two values,
depending on the value of V(η∗;x) > 0. Therefore we can no longer collapse the
matrix product into one matrix Γ but instead can only obtain

flocal(x) = ΓI(1)(x)A(1)x + β(x).

But this is exactly the case we have already solved for 1-deep neural network
weight recovery: it is equivalent to the statement flocal(x) = Γσ(A(1)x+b(1))+β2,
and so by dividing out Γ exactly as before we can recover the ratios of A

(1)
i,j .

Finding first-layer critical points. Assume we are given a set of inputs S = {xi}
so that each xi is a witness to neuron ηxi

, with ηxi
unknown. By the coupon

collector’s argument (assuming uniformity), for |S|
 N log N , where N is the
total number of neurons, we will have at least two witnesses to every neuron η.

Without loss of generality let x0, x1 ∈ W(η) be witnesses to the same neu-
ron η on the first layer, i.e, that V(η;x0) = V(η;x1) = 0. Then, performing the
weight recovery procedure beginning from each of these witnesses (through finite
differences) will yield the correct weight vector A

(1)
j up to a scalar.

Typically elements of S will not be witnesses to neurons on the first layer.
Without loss of generality let x2 and x3 be witnesses to any neuron on a deeper
layer. We claim that we will be able to detect these error cases: the outputs of
the extraction algorithm will appear to be random and uncorrelated. Informally
speaking, because we are running an attack designed to extract first-layer neu-
rons on a neuron actually on a later layer, it is exceedingly unlikely that the
attack would, by chance, give consistent results when run on x2 and x3 (or any
arbitrary pair of neurons).

Formally, let h2 = f1(x2) and h3 = f1(x3). With high probability, sign(h2) 	=
sign(h3). Therefore, when executing the extraction procedure on x2 we compute
over the function Γ1I

(1)(x2)A(1)x + β1, whereas extracting on x3 computes over
Γ2I

(1)(x3)A(1)x + β2. Because Γ1 	= Γ2, this will give inconsistent results.
Therefore our first layer weight recovery procedure is as follows. For all inputs

xi ∈ S run the weight recovery procedure to recover the unit-length normal
vector to each critical hyperplane. We should expect to see a large number of
vectors only once (because they were the result of running the extraction of a
layer 2 or greater neuron), and a small number of vectors that appear duplicated
(because they were the result of successful extraction on the first layer). Given
the first layer, we can reduce the neural network from a k-deep neural network
to a (k − 1)-deep neural network and repeat the attack. We must resolve two
difficulties, however, discussed in the following two subsections.

Cryptanalytic Extraction of Neural Network Models 203

4.3.2 Extracting Hidden Layer Weights with Unknown Critical Points
When extracting the first layer weight matrix, we were able to compute ∂2f

∂e1∂ej
for

each input basis vectors ei, allowing us to “read off” the ratios of the weights on
the first layer directly from the partial derivatives. However, for deeper layers, it
is nontrivial to exactly control the hidden layers and change just one coordinate
in order to perform finite differences.2 Let j denote the current layer we are
extracting. Begin by sampling dj + 1 directions δi ∼ N (0, εId0) ∈ X and let

{yi} =
{

∂2f(x)
∂δ1∂δi

∣
∣
∣
∣
x=x∗

}dj+1

i=1

.

From here we can construct a system of equations: let hi = σ(f1..j−1(x + δi))
and solve for the vector w such that hi · w = yi.

As before, we run the weight recovery procedure assuming that each witness
corresponds to a critical point on the correct layer. Witnesses that correspond to
neurons on incorrect layers will give uncorrelated errors that can be discarded.

Unifying partial solutions. The above algorithm overlooks one important prob-
lem. For a given critical point x∗, the hidden vector obtained from f1..j(x∗) is
likely to have several (on average, half) neurons that are negative, and therefore
σ(f1..j(x∗)) and any σ(f1..j(x∗ + δi)) will have neurons that are identically zero.
This makes it impossible to recover the complete weight vector from just one
application of least squares—it is only possible to compute the weights for those
entries that are non-zero. One solution would be to search for a witness x∗ such
that component-wise f1..j(x∗) ≥ 0; however doing this is not possible in general,
and so we do not consider this option further.

Instead, we combine together multiple attempts at extracting the weights
through a unification procedure. If x1 and x2 are witnesses to critical points for
the same neuron, and the partial vector f1..j(x1) has entries t1 ⊂ {1, . . . , dj}
and the partial vector f1..j(x2) has entries t2 ⊂ {1, . . . , dj} defined, then it is
possible to recover the ratios for all entries t1 ∪ t2 by unifying together the two
partial solutions as long as t1 ∩ t2 is non-empty as follows.

Let ri denote the extracted weight vector on witness x1 with entries at loca-
tions t1 ⊂ {1, . . . , dj} (respectively, r2 at x2 with locations at t2). Because the
two vectors correspond to the solution for the same row of the weight matrix A

(j)
i ,

the vectors r1 and r2 must be consistent on t1 ∩ t2. Therefore, we will have that
r1[t1 ∩ t2] = c ·r2[t1 ∩ t2] for a scalar c 	= 0. As long as t1 ∩ t2 	= ∅ we can compute
the appropriate constant c and then recover the weight vector r1,2 with entries
at positions t1 ∪ t2.

Observe that this procedure also allows us to check whether or not x1 and x2

are witnesses to the same neuron n reaching its critical point. If |t1 ∩ t2| ≥ γ,
then as long as there do not exist two rows of A(j) that have γ + 1 entries that
are scalar multiples of each other, there will be a unique solution that merges the

2 For the expansive networks we will discuss in Sect. 4.4 it is actually impossible;
therefore this section introduces the most general method.

204 N. Carlini et al.

two partial solutions together. If the unification procedure above fails—because
there does not exist a single scalar c so that c · r1[t1 ∩ t2] = r2[t1 ∩ t2]—then x1

and x2 are not witnesses to the same neuron being at a critical point.

4.3.3 Recovering Row Signs in Deep Networks
The 1-layer contractive sign recovery procedure can still apply to “sufficiently
contractive” neural network where at layer j there exists an ε > 0 so that for
all h ∈ R

dj with ‖h‖ < ε there exists a preimage x with f1..j(x) = h. If a neural
network is sufficiently contractive it is easy to see that the prior described attack
will work (because we have assumed the necessary success criteria).

In the case of 1-deep networks, it suffices for d1 ≤ d0 and A(1) to be onto as
described. In general it is necessary that dk ≤ dk−1 ≤ · · · ≤ d1 ≤ d0 but it is not
sufficient, even if every layer A(i) were an onto map. Because there is a ReLU
activation after every hidden layer, it is not possible to send negative values into
the second layer fj when computing the preimage.

Therefore, in order to find a preimage of hi ∈ R
di we must be more careful

in how we mount our attack: instead of just searching for hi−1 ∈ R
di−1 so that

fi−1(hi−1) = hi we must additionally require that component-wise hi−1 ≥ 0.
This ensures that we will be able to recursively compute hi−2 → hi−1 and by
induction compute x ∈ X such that f1..j(x) = hj .

It is simple to test if a network is sufficiently contractive without any queries:
try the above method to find a preimage x; if this fails, abort and attempt the
following (more expensive) attack procedure. Otherwise it is contractive.

4.4 k-Deep Expansive Neural Networks

η0
η1

η2

η3

η4

η5

x

y

x′

x

y

Fig. 3. (left) Geometry of a k-deep neural network, following [RK19]. Critical hyper-
planes induced from neuron η0, η1, η2 are on the first layer and are linear. Critical
hyperplanes induced from neurons η3, η4 are on the second layer and are “bent” by
neurons on the first layer. The critical hyperplane induced from neuron η5 is a neuron
on the third layer and is bent by neurons on the prior two layers. (right) Diagram of
the hyperplane following procedure. Given an initial witness to a critical point x, fol-
low the hyperplane to the double-critical point x′. To find where it goes next, perform
binary search along the dashed line and find the witness y.

Cryptanalytic Extraction of Neural Network Models 205

While most small neural networks are contractive, in practice almost all
interesting neural networks are expansive: the number of neurons on some inter-
mediate layer is larger than the number of inputs to that layer. Almost all of
the prior methods still apply in this setting, with one exception: the column sign
recovery procedure. Thus, we are required to develop a new strategy.

Recovering signs of the last layer. Observe that sign information is not lost for
the final layer: because there is no ReLU activation and we can directly solve for
the weights with least squares, we do not lose sign information.

Recovering signs on the second-to-last layer. Suppose we had extracted com-
pletely the function f̂1..k−1 (the third to last layer), and further had extracted
the weights Â(k) and biases b̂(k) up to sign of the rows. There are three unknown
quantities remaining: a sign vector s ∈ {−1, 1}dk , Â(k+1) and b̂(k+1). Suppose
we were given S ⊂ X so that |S| > dk. Then it would be possible to solve for all
three unknown simultaneously through brute force.

Definition 12. Let v � M = M ′ denote multiplying rows of matrix M ∈ R
a×b

by the corresponding coordinate from v ∈ R
a. Thus, M ′

ij = Mij · vi.

Let hi = σ(f1..k−1(xi)). Enumerate all 2dk assignments of s and compute
gi = σ((s � Â(k))hi + (s � b̂(k)). We know that if we guessed the sign vector s
correctly, then there would exist a solution to the system of equations v ·gi +b =
f(xi). This is the zero-deep extraction problem and solving it efficiently requires
just a single call to least squares. This allows us to—through brute forcing the
sign bits—completely recover both the signs of the second-to-last layer as well
as the values (and signs) of the final layer.

Unfortunately, this procedure does not scale to recover the signs of layer k−1
and earlier. It relies on the existence of an efficient testing procedure (namely,
least squares) to solve the final layer. If we attempted this brute-force strategy at
layer k − 3 in order to test if our sign assignment was correct, we would need to
run the complete layer k−2 extraction procedure, thus incurring an exponential
number of queries to the oracle.

However, we can use this idea in order to still recover signs even at earlier
layers in the network with only a linear number of queries (but still exponential
work in the width of the hidden layers).

Recovering signs of arbitrary hidden layers. Assume that we are given a collec-
tion of examples {xi} ⊂ W(η) for some neuron η that is on the layer after we
extracted so far: L(η) = j + 1. Then we would know that there should exist a
single unknown vector v and bias b such that fj(xi) · v + b = 0 for all xi.

This gives us an efficient procedure to test whether or not a given sign assign-
ment on layer j is correct. As before, we enumerate all possible sign assignments
and then check if we can recover such a vector v. If so, the assignment is correct;
if not, it is wrong. It only remains left to show how to implement this procedure
to obtain such a collection of inputs {xi}.

206 N. Carlini et al.

4.4.1 The Polytope Boundary Projection Algorithm
Definition 13. The layer j polytope containing x is the set of points {x + δ}
so that sign(V(η;x)) = sign(V(η;x + δ)) for all L(η) ≤ j.

Observe that the layer j polytope around x is an open, convex set, as long as x
is not a witness to a critical point. In Fig. 3, each enclosed region is a layer-k
polytope and the triangle formed by η0, η1, and η2 is a layer-(k − 1) polytope.

Given an input x and direction Δ, we can compute the distance α so that
the value x′ = x + αΔ is at the boundary of the polytope defined by layers 1
to k. That is, starting from x traveling along direction Δ we stop the first time
a neuron on layer j or earlier reaches a critical point. Formally, we define

Proj1..j(x,Δ) = minα≥0 {α : ∃η s.t. L(η) ≤ j ∧ V(η;x + αΔ) = 0}

We only ever compute Proj1..j when we have extracted the neural network up to
layer j. Thus we perform the computation with respect to the extracted func-
tion f̂ and neuron-value function V̂, and so computing this function requires no
queries to the oracle. In practice we solve for α via binary search.

4.4.2 Identifying a Single Next-Layer Witness
Given the correctly extracted network f̂1..j−1 and the weights (up to sign) of
layer j − 1, our sign extraction procedure requires some witness to a critical
point on layer j. We begin by performing our standard binary search sweep
to find a collection S ⊂ X , each of which is a witness to some neuron on an
unknown layer. It is simple to filter out critical points on layers j − 1 or earlier
by checking if any of V̂(η;x) = 0 for L(η) ≤ j − 1. Even though we have not
solved for the sign of layer j, it is still possible to compute whether or not they
are at a critical point because critical points of Â(j) are critical points of −Â(j).
This removes any witnesses to critical points on layer j or lower.

Now we must filter out any critical points on layers strictly later than j.
Let x∗ ∈ W(η∗) denote a potential witness that is on layer j or later (having
already filtered out critical points on layers j − 1 or earlier). Through finite
differences, estimate g = ±∇xf(x) evaluated at x = x∗. Choose any random
vector r perpendicular to g, and therefore parallel to the critical hyperplane. Let
α = Proj1..j(x∗, r). If it turns out that x∗ is a witness to a critical point on layer j
then for all ε < α we must have that x∗ + εr ∈ W(η∗). Importantly, we also have
the converse: with high probability for δ > α we have that x∗ + δr 	∈ W(η∗).
However, observe that if x∗ is not a witness to a neuron on layer j then one
of these two conditions will be false. We have already ruled out witnesses on
earlier neuron, so if x∗ is a witness to a later neuron on layer j′ > j then it
is unlikely that the layer-j′ polytope is the same shape as the layer-j polytope,
and therefore we will discover this fact. In the case that the two polytopes are
actually identical, we can mount the following attack and if it fails we know that
our initial input was on the wrong layer.

Cryptanalytic Extraction of Neural Network Models 207

4.4.3 Recovering Multiple Witnesses for the Same Neuron
The above procedure yields a single witness x∗ ∈ W(η∗) so that L(η∗) = j + 1.
We expand this to a collection of witnesses W where all x ∈ W have x ∈ W(η∗),
requiring the set to be diverse:

Definition 14. A collection of inputs S is fully diverse at layer j if for all η
with L(η) = j and for s ∈ {−1, 1} there exists x ∈ S such that s · V(η;x) ≥ 0.

Informally, being diverse at layer j means that if we consider the projection onto
the space of layer j (by computing f1..j(x) for x ∈ S), for every neuron η there
will be at least one input x+ ∈ S that the neuron is positive, and at least one
input x− ∈ S so that the neuron is negative.

Our procedure is as follows. Let n be normal to the hyperplane x∗ is on.
Choose some r with r · n = 0 and let α = Proj1..j(x∗, r) to define x′ = x∗ + αr
as a point on the layer-j polytope boundary. In particular, this implies that we
still have that x′ ∈ W(η∗) (because r is perpendicular to n) but also x′ ∈ W(ηu)
for some neuron L(ηu) < j (by construction of α). Call this input x′ the double-
critical point (because it is a witness to two critical points simultaneously).

From this point x′, we would like to obtain a new point y so that we still
have y ∈ W(η∗), but that also y is on the other side of the neuron ηu, i.e.,
sign(V(ηu;x∗)) 	= sign(V(ηu; y)). Figure 3 (right) gives a diagram of this process.
In order to follow x∗ along its path, we first need to find it a critical point on
the new hyperplane, having just been bent by the neuron ηu. We achieve this
by performing a critical-point search starting ε-far away from, and parallel to,
the hyperplane from neuron ηu (the dashed line in Fig. 3). This returns a point
y from where we can continue the hyperplane following procedure.

The geometric view hurts us here: because the diagram is a two-dimensional
projection, it appears that from the critical point y there are only two directions
we can travel in: away from x′ or towards x′. Traveling away is preferable—
traveling towards x′ will not help us construct a fully diverse set of inputs.

However, a d0-dimensional input space has in general (d0−1) dimensions that
remain on the neuron η∗. We defer to Sect. 5.5.1 an efficient method for selecting
the continuation direction. For now, observe that choosing a random direction
will eventually succeed at constructing a fully-diverse set, but is extremely inef-
ficient: there exist better strategies than choosing the next direction.

4.4.4 Brute Force Recovery
Given this collection S, we can now—through brute force work—recover the
correct sign assignment as follows. As described above, compute a fully diverse
set of inputs {xi} and define hi = f1..j(xi). Then, for all possible 2dj assignments
of signs s ∈ {−1, 1}dj , compute the guessed weight matrix Â

(j)
s = s � Â(j).

If we guess the correct vector s, then we will be able to compute ĥi =
σ(Â(j)

v hi + b̂
(j)
v) = σ(Â(j)

v f1..j−1(xi) + b̂
(j)
v) for each xi ∈ S. Finally, we know

that there will exist a vector w 	= 0 and bias b̂ such that for all hi we have
ĥiw + b = 0. As before, if our guess of s is wrong, then with overwhelming

208 N. Carlini et al.

probability there will not exist a valid linear transformation w, b. Thus we can
recover sign with a linear number of queries and exponential work.

5 Instantiating the Differential Attack in Practice

The above idealized attack would efficiently extract neural network models but
suffers from two problems. First, many of the algorithms are not numerically
stable and introduce small errors in the extracted weights. Because errors in
layer i compound and cause further errors at layers j > i, it is necessary to
keep errors to a minimum. Second, the attack requires more chosen-inputs than
is necessary; we develop new algorithms that require fewer queries or re-use
previously-queried samples.

Reading this section. Each sub-section that follows is independent from the sur-
rounding sub-sections and modifies algorithms introduced in Sect. 4. For brevity,
we assume complete knowledge of the original algorithm and share the same
notation. Readers may find it helpful to review the original algorithm before
proceeding to each subsection.

5.1 Improving Precision of Extracted Layers

Given a precisely extracted neural network up to layer j so that f̂1..j−1 is func-
tionally equivalent to f1..j−1, but so that weights Â(j) and biases b̂(j) are impre-
cisely extracted due to imprecision in the extraction attack, we will now show
how to extend this to a refined model f̃1..j that is functionally equivalent to f1..j .
In an idealized environment with infinite precision floating point arithmetic this
step is completely unnecessary; however empirically this step brings the relative
error in the extracted layer’s weights from 2−15 to 2−35 or better.

To begin, select a neuron η with L(η) = j. By querying the already-extracted
model f̂1..j , analytically compute witnesses {xi}dj

i=1 so that each xi ∈ Ŵ(η). This
requires no queries to the model as we have already extracted this partial model.

If the Â(j) and b̂(j) were exactly correct then W(η; ·) ≡ Ŵ(η; ·) and so each
computed critical point xi would be exactly a critical point of the true model
f and so V(η;xi) ≡ 0. However, if there is any imprecision in the computation,
then in general we will have that 0 < |V(η;xi)| < ε for some small ε > 0.

Fortunately, given this xi it is easy to compute x′
i so that V(η;x′

i) = 0. To
do this, we sample a random Δ ∈ Rd0 and apply our binary search procedure
on the range [xi +Δ,xi −Δ]. Here we should select Δ so that ‖Δ‖ is sufficiently
small that the only critical points it crosses is the one induced by neuron η, but
sufficiently large that it does reliably find the true critical point of η.

Repeating this procedure for each witness xi gives a set of witnesses {x′
i}dj

i=1

to the same neuron η. We compute hi = f̂1..j−1(x′
i) as the hidden vector that

layer j will receive as input. By assumption hi is precise already and so f̂1..j−1 ≈
f1..j−1. Because x′

i is a witness to neuron η having value zero, we know that that
A

(j)
n · hi = 0 where n corresponds to the row of neuron η in A(j).

Cryptanalytic Extraction of Neural Network Models 209

Ideally we would solve this resulting system with least squares. However, in
practice, occasionally the conversion from x → x′ fails because x′ is no longer a
witness to the same neuron η′. This happens when there is some other neuron
(i.e., η′) that is closer to x than the true neuron η. Because least squares is not
robust to outliers this procedure can fail to improve the solution.

We take two steps to ensure this does not happen. First, observe that if
Δ is smaller, the likelihood of capturing incorrect neurons η′ decreases faster
than the likelihood of capturing the correct neuron η. Thus, we set Δ to be
small enough that roughly half of the attempts at finding a witness x′ fails.
Second, we apply a (more) robust method of determining the vector that satisfies
the solution of equations [JOB+18]. However, even these two techniques taken
together occasionally fail to find valid solutions to improve the quality. When
this happens, we reject this proposed improvement and keep the original value.

Our attack could be improved with a solution to the following robust statistics
problem: Given a (known) set S ⊂ R

N such that for some (unknown) weight
vector w we have Prx∈S [|w · x + 1| ≤ ε] > δ for sufficiently small ε, sufficiently
large δ > 0.5, and δ|S| > N , efficiently recover the vector w to high precision.

5.2 Efficient Finite Differences

Most of the methods in this paper are built on computing second partial deriva-
tives of the neural network f , and therefore developing a robust method for
estimating the gradient is necessary. Throughout Sect. 4 we compute the partial
derivative of f along direction α evaluated at x with step size ε as

∂ε

∂εα
f(x) def=

f(x + ε · α) − f(x)
ε

.

To compute the second partial derivative earlier, we computed αi
+ and αi

−
by first taking a step towards x∗ + ε0e1 for a different step size ε0 and then
computed the first partial derivative at this location. However, with floating
point imprecision it is not desirable to have two step sizes (ε0 controlling the
distance away from x∗ to step, and ε controlling the step size when computing the
partial derivative). Worse, we must have that ε � ε0 because if ∂f

∂e1
ε0 > ∂f

∂ei
ε then

when computing the partial derivative along ei we may cross the hyperplane and
estimate the first partial derivative incorrectly. Therefore, instead we compute

αi
+ =

∂f(x)
∂ei

∣
∣
∣
∣
x=x∗+εei

and αi
− =

∂f(x)
∂ -ei

∣
∣
∣
∣
x=x∗−εei

where we both step along ei and also take the partial derivative along the same
ei (and similarly for −ei). This removes the requirement for an additional hyper-
parameter and allows the step size ε to be orders of magnitude larger, but
introduces a new error: we now lose the relative signs of the entries in the row
when performing extraction and can only recover

∣
∣
∣A(1)

i,j /A
(1)
i,k

∣
∣
∣.

210 N. Carlini et al.

Extracting column signs. We next recover the value sign(A(1)
i,j) · sign(A(1)

i,k). For-
tunately, the same differencing process allows us to learn this information, using
the following observation: if A

(1)
i,j and A

(1)
i,k have the same sign, then moving in

the ej + ek direction will cause their contributions to add. If they have different
signs, their contributions will cancel each other. That is, if

∣
∣
∣αj+k

+ − αj+k
−

∣
∣
∣ =

∣
∣
∣αj

+ − αj
−

∣
∣
∣ +

∣
∣αk

+ − αk
−

∣
∣ ,

we have that
∣
∣
∣(A(1)

i,j + A
(1)
i,k) · A(2)

∣
∣
∣ =

∣
∣
∣A(1)

i,j · A(2)
∣
∣
∣ +

∣
∣
∣A(1)

i,k · A(2)
∣
∣
∣ ,

and therefore that ∣
∣
∣
∣
A

(1)
i,j

A
(1)
i,k

∣
∣
∣
∣ =

A
(1)
i,j

A
(1)
i,k

.

We can repeat this process to test whether each A
(1)
i,j has the same sign as

(for example) A
(1)
i,1 . However, we still do not know whether any single A

(1)
i,j is

positive or negative—we still must recover the row signs as done previously.

5.3 Finding Witnesses to Critical Points

xα x∗ xβ xα x∗ xβ xα x∗ xβ

f(x∗) = f̂(x∗) f(x∗) = f̂(x∗)

f(x∗)

f̂(x∗)

Fig. 4. Efficient and accurate witness discovery. (left) If xα and xβ differ in only one
ReLU (as shown left), we can precisely identify the location x∗ at which the ReLU
reaches its critical point. (middle) If instead more than one ReLU differs (as shown
right), we can detect that this has happened: the predicted of f̂(·) evaluated at x∗

as inferred from intersecting the dotted lines does not actually equal the true value
of f(x∗). (right) This procedure is not sound and still may potentially incorrectly
identify critical points; in practice we find these are rare.

Throughout the paper we require the ability to find witnesses to critical
points. Section 4.2 uses simple binary search to achieve this which is (a) imprecise
in practice, and (b) query inefficient. We improve on the witness-finding search
procedure developed by [JCB+19]. Again we interpolate between two examples
u, v and let xα = (1−α)u+αv. Previously, we repeatedly performed binary search
as long as the partial derivatives were not equal ∂f(xα) 	= ∂f(xβ), requiring p
queries to obtain p bits of precision of the value x∗. However, observe that if xα

Cryptanalytic Extraction of Neural Network Models 211

and xβ differ in the sign of exactly one neuron i, then we can directly compute
the location x∗ at which V(ηi;x∗) = 0 but so that for all other ηj we have

sign
(V(ηj ;xα)

)
= sign

(V(ηj ;x∗)
)

= sign
(V(ηj ;xβ)

)

This approach is illustrated in Fig. 4 and relies on the fact that f is a piecewise
linear function with two components. By measuring, f(xα) and ∂f(xα) (resp.,
f(xβ) and ∂f(xβ)), we find the slope and intercept of both the left and right lines
in Fig. 4 (left). This allows us to solve for their expected intersection (x∗, f̂(x∗)).
Typically, if there are more than two linear segments, as in the middle of the
figure, we will find that the true function value f(x∗) will not agree with the
expected function value f̂(x∗) we obtained by computing the intersection; we
can then perform binary search again and repeat the procedure.

However, we lose some soundness from this procedure. As we see in Fig. 4
(right), situations may arise where many ReLU units change sign between xα

and xβ , but f̂(x∗) = f(x∗). In this case, we would erroneously return x∗ as a
critical point, and miss all of the other critical points in the range. Fortunately,
this error case is pathological and does not occur in practice.

5.3.1 Further Reducing Query Complexity of Witness Discovery
Suppose that we had already extracted the first j layers of the neural network
and would like to perform the above critical-point finding algorithm to identify
all critical points between xα and xβ . Notice that we do not need to collect any
more critical points from the first j layers, but running binary search will recover
them nonetheless. To bypass this, we can analytically compute S as the set of
all witnesses to critical points on the extracted neural network f̂1..j between xα

and xβ . As long as the extracted network f̂ is correct so far, we are guaranteed
that all points in S are also witnesses to critical points of the true f .

Instead of querying on the range (xα, xβ) we perform the |S| + 1 different
searches. Order the elements of S as {si}|S|

i=1 so that si < sj =⇒ |xα − si| <
|xα − sj |. Abusing notation, let s1 = xα and s|S| = xβ . Then, perform binary
search on each disjoint range (Si, Si+1) for i = 1 to |S|−1 and return the union.

5.4 Unification of Witnesses with Noisy Gradients

Recall that to extract Â(l) we extract candidates candidates {ri} and search for
pairs ri, rj that agree on multiple coordinates. This allows us to merge ri and rj

to recover (eventually) full rows of Â(l). With floating point error, the unification
algorithm in Sect. 4.3 fails for several reasons.

Our core algorithm computes the normal to a hyperplane, returning pairwise
ratios Â

(1)
i,j /Â

(1)
i,k ; throughout Sect. 4 we set Â

(1)
i,1 = 1 without loss of generality.

Unfortunately in practice there is loss of generality, due to the disparate
impact of numerical instability. Consider the case where A

(l)
i,1 < 10−α for α
 0,

but A
(l)
i,k ≥ 1 for all other k. Then there will be substantially more (relative)

212 N. Carlini et al.

floating point imprecision in the weight A
(l)
i,1 than in the other weights. Before

normalizing there is no cause for concern since the absolute error is no larger
than for any other. However, the described algorithm now normalizes every other
coordinate A

(l)
i,k by dividing it by A

(l)
i,1—polluting the precision of these values.

Therefore we adjust our solution. At layer l, we are given a collection of vec-
tors R = {ri}n

i=1 so that each ri corresponds to the extraction of some (unknown)
neuron ηi. First, we need an algorithm to cluster the items into sets {Sj}dl

j=1 so
that Sj ⊂ R and so that every vector in Sj corresponds to one neuron on layer
l. We then need to unify each set Sj to obtain the final row of Â

(l)
j .

Creating the Subsets S with Graph Clustering. Let r
(a)
m ∈ Sn denote the ath

coordinate of the extracted row rm from cluster n. Begin by constructing a
graph G = (V,E) where each vector ri corresponds to a vertex. Let δ

(k)
ij =

|r(k)i − r
(k)
j | denote the difference between row ri and row rj along axis k; then

connect an edge from ri to rj when the approximate ‖·‖0 norm is sufficiently

large
∑

k 1
[
δ
(k)
ij < ε

]
> log d0. We compute the connected components of G and

partition each set Sj as one connected component. Observe that if ε = 0 then this
procedure is exactly what was described earlier, pairing vectors whose entries
agree perfectly; in practice we find a value of ε = 10−5 suffices.

Unifying Each Cluster to Obtain the Row Weights. We construct the three
dimensional Mi,a,b = r

(i)
a /r

(i)
b . Given M , the a good guess for the scalar cab

so that r
(i)
a = r

(i)
b ·Cab along as many coordinates i as possible is the assignment

Cab = mediani Mi,a,b, where the estimated error is eab = stdevi Mi,a,b.
If all ra were complete and had no imprecision then Cab would have no error

and so Cab = Cax · Cxb. However because it does have error, we can iteratively
improve the guessed C matrix by observing that if the error eax +exb < eab then
the guessed assignment Cax · Cxb is a better guess than Cab. Thus we replace
Cab ← Cax · Cxb and update eab ← eax + exb. We iterate this process until
there is no further improvement. Then, finally, we choose the optimal dimension
a = arg mina

∑
b eab and return the vector Ca. Observe that this procedure

closely follows constructing the union of two partial entries ri and rj except that
we perform it along the best axis possible for each coordinate.

5.5 Following Neuron Critical Points

Section 4.4.3 developed techniques to construct a set of witnesses to the same
neuron being at its critical point. We now numerically-stabilize this procedure.

As before we begin with an input x∗ ∈ W(η∗) and compute the normal
vector n to the critical plane at x∗, and then choose r satisfying r · n = 0. The
computation of n will necessarily have some floating point error, so r will too.

This means when we compute α = Proj1..j(x∗, r) and let x′ = x∗ + rα the
resulting x′ will be almost exactly a witness to some neuron ηu with L(ηu) < j,
(because this computation was performed analytically on a precisely extracted

Cryptanalytic Extraction of Neural Network Models 213

ηu

η∗

η∗

η∗

ηu

ηz

η∗

x∗

x1

x2

x′
x̄′

x∗

x̄′

y

Fig. 5. Numerically stable critical-point following algorithm. (left) From a point x′

compute a parallel direction along η∗, step part way to x1 and refine it to x2, and then
finish stepping to x′. (right) From x′ grow increasingly large squares until there are
more than four intersection points; return y as the point on η∗ on the largest square.

model), but x′ has likely drifted off of the original critical plane induced by η∗

(Fig. 5).
To address this, after computing α we initially take a smaller step and let

x1 = x∗ + r
√

α. We then refine the location of this point to a point x2 by
performing binary search on the region x1 − εn to x1 + εn for a small step ε.
If there was no error in computing n then x1 = x2 because both are already
witnesses to η∗. If not, any error has been corrected. Given x∗ and x2 we now
can now compute α2 = Proj1..j(x∗, x2 −x∗) and let x̄′ = x∗ +(x2 −x∗)α2 which
will actually be a witness to both neurons simultaneously.

Next we give a stable method to compute y that is a witness to η∗ and on
the other side of ηu. The previous procedure required a search parallel to ηu and
infinitesimally displaced, but this is not numerically stable without accurately
yet knowing the normal to the hyperplane given by ηu.

Instead we perform the following procedure. Choose two orthogonal vectors
of equal length β, γ and and perform binary search on the line segments that
trace out the perimeter of a square with coordinates x̄′ ± β ± γ.

When ‖β‖ is small, the number of critical points crossed will be exactly four:
two because of ηu and two because of η∗. As long as the number of critical points
remains four, we double the length of β and γ.

Eventually we will discover more than four critical points, when the perimeter
of the square intersects another neuron ηz. At this point we stop increasing the
size of the box and can compute the continuation direction of η∗ by discarding the
points that fall on ηu. We can then choose y as the point on η∗ that intersected
with the largest square binary search.

5.5.1 Determining Optimal Continuation Directions
The hyperplane following procedure will eventually recover a fully diverse set of
inputs W but it may take a large number of queries to do so. We can reduce
the number of queries by several orders of magnitude by carefully choosing the
continuation direction r instead of randomly choosing any value so that r ·n = 0.

214 N. Carlini et al.

Given the initial coordinate x and after computing the normal n to the
hyperplane, we have d0 − 1 dimensions that we can choose between to travel
next. Instead of choosing a random r · n = 0 we instead choose r such that we
make progress towards obtaining a fully diverse set W .

Define Wi as the set of witnesses that have been found so far. We say that this
set is diverse on neuron η if there exists an x+, x− ∈ Wi such that V(η;x+) ≥ 0
and V(η;x−) < 0. Choose an arbitrary neuron ηt such that Wi is not diverse
on ηt. (If there are multiple such options, we should prefer the neuron that would
be easiest to reach, but this is secondary.)

Our goal will be to choose a direction r such that (1) as before, r · n = 0,
however (2) Wi ∪ {x + αr} is closer to being fully diverse. Here, “closer” means
that d(W) = minx∈W |V(ηt;x)| is smaller. Because the set is not yet diverse on
ηt, all values are either positive or negative, and it is our objective to switch the
sign, and therefore become closer to zero. Therefore our procedure sets

r = arg minr : r·n=0 d(Wi ∪ {x + αr})

performing the minimization through random search over 1,000 directions.

6 Evaluation

We implement the described extraction algorithm in JAX [BFH+18], a Python
library that mirrors the NumPy interface for performing efficient numerical com-
putation through just in time compilation.

6.1 Computing (ε, 10−9)-Functional Equivalence

Computing (ε, 10−9)-functional equivalence is simple. Let S̄ ⊂ S be a finite set
consisting of |S̄| > 109 different inputs drawn x ∈ S. Sort S̄ by |f(x)− f̂(x)| and
choose the lowest ε so that

Prx∈S̄

[|f(x) − g(x)| ≤ ε
] ≥ 1 − δ.

In practice we set |S̄| = 109 and compute the max so that evaluating the function
is possible under an hour per neural network.

6.2 Computing (ε, 0)-Functional Equivalence

Directly computing (ε, 0)-functional equivalence is infeasible, and is NP-hard
(even to approximate) by reduction to Subset Sum [JCB+19]. We nevertheless
propose two methods that efficiently give upper bounds that perform well.

Cryptanalytic Extraction of Neural Network Models 215

Error bounds propagation. The most direct method to compute (ε, 0)-functional
equivalence of the extracted neural network f̂ is to compare the weights A(i)

to the weights Â(i) and analytically derive an upper bound on the error when
performing inference. Observe that (1) permuting the order of the neurons in
the network does not change the output, and (2) any row can be multiplied by a
positive scalar c > 0 if the corresponding column in the next layer is divided by c.
Thus, before we can compare Â(i) to A(i) we must “align” them. We identify
the permutation mapping the rows of Â(l) to the rows of A(l) through a greedy
matching algorithm, and then compute a single scalar per row s ∈ R

di
+ . To

ensure that multiplying by a scalar does not change the output of the network,
we multiply the columns of the next layer Â(l+1) by 1/s (with the inverse taken
pairwise). The process to align the bias vectors b(l) is identical, and the process
is repeated for each further layer.

This gives an aligned Ã(i) and b̃(i) from which we can analytically derive
upper bounds on the error. Let Δi = Ã(i) − A(i), and let δi be the largest
singular value of Δi. If the �2-norm of the maximum error going into layer i is
given by ei then we can bound the maximum error going out of layer i as

ei+1 ≤ δi · ei + ‖b̃(i) − b(i)‖2.
By propagating bounds layer-by-layer we can obtain an upper bound on the
maximum error of the output of the model.

This method is able to prove an upper bound on (ε, 0) functional equivalence
for some networks, when the pairing algorithm succeeds. However, we find that
there are some networks that are (2−45, 10−9) functionally equivalent but where
the weight alignment procedure fails. Therefore, we suspect that there are more
equivalence classes of functions than scalar multiples of permuted neurons, and
so develop further methods for tightly computing (ε, 0) functional equivalence.

Error overapproximation through MILP. The above analysis approach is loose.
Our second approach gives exact bounds with an additive error at most 10−10.

Neural networks are piecewise linear functions, and so can be cast as a mixed
integer linear programming (MILP) problem [KBD+17]. We directly express
Definition 1 as a MILP, following the process of [KBD+17] by encoding linear
layers directly, and encoding ReLU layers by assigning a binary integer variable
to each ReLU. Due to the exponential nature of the problem, this approach is
limited to small networks.

State-of-the-art MILP solvers offer a maximum (relative, additive) error tol-
erance of 10−10; for our networks the SVD upper bound is often 10−10 or better,
so the MILP solver gives a worse bound, despite theoretically being tight.

7 Results

We extract a wide range of neural network architectures; key results are given
in Table 1 (Sect. 1). We compute (ε, δ)-functional equivalence at δ = 10−9 and
δ = 0 on the domain S = {x : ‖x‖2 < d0 ∧ x ∈ X}, sufficient to explore both
sides of every neuron.

216 N. Carlini et al.

8 Concluding Remarks

We introduce a cryptanalytic method for extracting the weights of a neural
network by drawing analogies to cryptanalysis of keyed ciphers. Our differential
attack requires multiple orders of magnitude fewer queries per parameter than
prior work and extracts models that are multiple orders of magnitude more
accurate than prior work. In this work, we do not consider defenses—promising
approaches include detecting when an attack is occuring, adding noise at some
stage of the model’s computation, or only returning the label corresponding to
the output, any of these easily break our presented attack.

The practicality of this attack has implications for many areas of machine
learning and cryptographic research. The field of secure inference relies on the
assumption that observing the output of a neural network does not reveal the
weights. This assumption is false, and therefore the field of secure inference will
need to develop new techniques to protect the secrecy of trained models.

We believe that by casting neural network extraction as a cryptanalytic prob-
lem, even more advanced cryptanalytic techniques will be able to greatly improve
on our results, reducing the computational complexity, reducing the query com-
plexity and reducing the number of assumptions necessary.

Acknowledgements. We are grateful to the anonymous reviewers, Florian Tramèr,
Nicolas Papernot, Ananth Raghunathan, and Úlfar Erlingsson for helpful feedback.

References

[BBJP19] Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI NN: reverse engineering of
neural network architectures through electromagnetic side channel. In: 28th
USENIX Security Symposium (2019)

[BCB15] Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly
learning to align and translate. In: 3rd International Conference on Learning
Representations (ICLR) (2015)

[BCM+13] Biggio, B., et al.: Evasion attacks against machine learning at test time.
In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD
2013. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40994-3 25

[BFH+18] Bradbury, J., et al.: JAX: composable transformations of Python+NumPy
programs (2018)

[BS91] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosys-
tems. J. Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

[CCG+18] Chandrasekaran, V., Chaudhuri, K., Giacomelli, I., Jha, S., Yan, S.:
Exploring connections between active learning and model extraction. arXiv
preprint arXiv:1811.02054 (2018)

[CLE+19] Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D.: The secret sharer:
evaluating and testing unintended memorization in neural networks. In:
USENIX Security Symposium, pp. 267–284 (2019)

[DGKP20] Das, A., Gollapudi, S., Kumar, R., Panigrahy, R.: On the learnability of
random deep networks. In: ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, pp. 398–410 (2020)

https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/BF00630563
http://arxiv.org/abs/1811.02054

Cryptanalytic Extraction of Neural Network Models 217

[EKN+17] Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542(7639), 115–118 (2017)

[FJR15] Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit
confidence information and basic countermeasures. In: ACM CCS, pp.
1322–1333 (2015)

[GBDL+16] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M.,
Wernsing, J.: CryptoNets: applying neural networks to encrypted data with
high throughput and accuracy. In: International Conference on Machine
Learning, pp. 201–210 (2016)

[Gen09] Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford
University (2009)

[HDK+20] Hong, S., Davinroy, M., Kaya, Y., Dachman-Soled, D., Dumitraş, T.: How
to 0wn the NAS in your spare time. In: International Conference on Learn-
ing Representations (2020)

[HZRS16] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778 (2016)

[JCB+19] Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High-
fidelity extraction of neural network models. arXiv:1909.01838 (2019)

[JOB+18] Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., Li, B.: Manip-
ulating machine learning: poisoning attacks and countermeasures for regres-
sion learning. In: 2018 IEEE Symposium on Security and Privacy (S&P),
pp. 19–35. IEEE (2018)

[KBD+17] Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex:
an efficient SMT solver for verifying deep neural networks. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 5

[KLA+19] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila,
T.: Analyzing and improving the image quality of StyleGAN. CoRR,
abs/1912.04958 (2019)

[KTP+19] Krishna, K., Tomar, G.S., Parikh, A.P., Papernot, N., Iyyer, M.: Thieves
on sesame street! Model extraction of BERT-based APIs. arXiv preprint
arXiv:1910.12366 (2019)

[Lev14] Levinovitz, A.: The mystery of Go, the ancient game that computers still
can’t win. Wired, May 2014

[MLS+20] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: DELPHI:
a cryptographic inference service for neural networks. In: 29th USENIX
Security Symposium (2020)

[MSDH19] Milli, S., Schmidt, L., Dragan, A.D., Hardt, M.: Model reconstruction
from model explanations. In: Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* 2019, pp. 1–9 (2019)

[NH10] Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine
Learning (ICML), pp. 807–814 (2010)

[RK19] Rolnick, D., Kording, K.P.: Identifying weights and architectures of
unknown ReLU networks. arXiv preprint arXiv:1910.00744 (2019)

[RWT+18] Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T.,
Koushanfar, F.: Chameleon: a hybrid secure computation framework for
machine learning applications. In: ACM ASIACCS, pp. 707–721 (2018)

[SHM+16] Silver, D., et al.: Mastering the game of Go with deep neural networks and
tree search. Nature 529(7587), 484 (2016)

http://arxiv.org/abs/1909.01838
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1910.12366
http://arxiv.org/abs/1910.00744

218 N. Carlini et al.

[SIVA17] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-
ResNet and the impact of residual connections on learning. In: Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017,
pp. 4278–4284. AAAI Press (2017)

[SSRD19] Shamir, A., Safran, I., Ronen, E., Dunkelman, O.: A simple explanation for
the existence of adversarial examples with small Hamming distance. CoRR,
abs/1901.10861 (2019)

[SZS+14] Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd
International Conference on Learning Representations (ICLR 2014).
arXiv:1312.6199 (2014)

[TL19] Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional
neural networks. arXiv preprint arXiv:1905.11946 (2019)

[TZJ+16] Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing
machine learning models via prediction APIs. In: USENIX Security Sym-
posium, pp. 601–618 (2016)

[Wen90] Wenskay, D.L.: Intellectual property protection for neural networks. Neural
Netw. 3(2), 229–236 (1990)

[WG18] Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In:
2018 IEEE Symposium on Security and Privacy (S&P), pp. 36–52. IEEE
(2018)

[WSC+16] Wu, Y., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144
(2016)

[XHLL19] Xie, Q., Hovy, E., Luong, M.-T., Le, Q.V.: Self-training with noisy student
improves ImageNet classification. arXiv preprint arXiv:1911.04252 (2019)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS 1986, pp.
162–167. IEEE (1986)

[ZL16] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578 (2016)

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1611.01578

Automatic Verification of Differential
Characteristics: Application to Reduced

Gimli

Fukang Liu1,3(B), Takanori Isobe2,3, and Willi Meier4

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com
2 National Institute of Information and Communications Technology, Tokyo, Japan

3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

4 FHNW, Windisch, Switzerland
willimeier48@gmail.com

Abstract. Since Keccak was selected as the SHA-3 standard, more and
more permutation-based primitives have been proposed. Different from
block ciphers, there is no round key in the underlying permutation for
permutation-based primitives. Therefore, there is a higher risk for a dif-
ferential characteristic of the underlying permutation to become incom-
patible when considering the dependency of difference transitions over
different rounds. However, in most of the MILP or SAT based models
to search for differential characteristics, only the difference transitions
are involved and are treated as independent in different rounds, which
may cause that an invalid one is found for the underlying permutation.
To overcome this obstacle, we are motivated to design a model which
automatically avoids the inconsistency in the search for differential char-
acteristics. Our technique is to involve both the difference transitions
and value transitions in the constructed model. Such an idea is inspired
by the algorithm to find SHA-2 characteristics as proposed by Mendel
et al. in ASIACRYPT 2011, where the differential characteristic and the
conforming message pair are simultaneously searched. As a first attempt,
our new technique will be applied to the Gimli permutation, which was
proposed in CHES 2017. As a result, we reveal that some existing dif-
ferential characteristics of reduced Gimli are indeed incompatible, one
of which is found in the Gimli document. In addition, since only the
permutation is analyzed in the Gimli document, we are lead to carry
out a comprehensive study, covering the proposed hash scheme and the
authenticated encryption (AE) scheme specified for Gimli, which has
become a second round candidate of the NIST lightweight cryptography
standardization process. For the hash scheme, a semi-free-start (SFS)
collision attack can reach up to 8 rounds starting from an intermediate
round. For the AE scheme, a state recovery attack is demonstrated to
achieve up to 9 rounds. It should be emphasized that our analysis does
not threaten the security of Gimli.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 219–248, 2020.
https://doi.org/10.1007/978-3-030-56877-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_8

220 F. Liu et al.

Keywords: Gimli · Hash function · AE · MILP · Collision ·
State-recovery

1 Introduction

As the demand for lightweight cryptographic primitives in industry increases,
NIST is currently holding a public Lightweight Cryptography Standardization
process [1], aiming at lightweight cryptography standardization by combining the
efforts from both academia and industry. Among the 32 second round candidates,
Gimli was first proposed in CHES 2017 [4]. The main strategy to improve its
performance is to process the 384-bit data in four 96-bit columns independently
and make only a 32-bit word swapping among the four columns every two rounds.
Such a design strategy soon received a doubt from Hamburg [13]. However, the
attack in [13] works for an ad-hoc mode rather than the proposed hash scheme
or AE scheme in the submitted Gimli document.

Along the development of differential attacks [7], several variants have been
proposed. A very influential one was the modular differential attack on the
MD-SHA hash family, which directly turned MD5 [23] and SHA-1 [20,22] into
broken hash functions. To mount collision attacks on MD5 and SHA-1 as
in [22,23], one challenging work is to find a proper differential characteristic,
which was first finished by hand-craft [22,23]. Later, the guess-and-determine
method to search for differential characteristics was proposed in ASIACRYPT
2006, together with its application to full SHA-1 [10]. However, when such a
guess-and-determine technique is directly applied to reduced SHA-2, Mendel et
al. pointed out in [18] that the discovered differential characteristics are always
invalid since contradictions may easily occur in the set of conditions implied in
the discovered differential characteristics. To overcome this obstacle, they finally
developed an algorithm to search for the differential characteristic and the con-
forming message pair simultaneously to avoid the inconsistency.

Indeed, such a case does not only exist in the MD-SHA hash family. For the
ARX construction, for instance, some differential characteristics of Blake-256 [8]
and Skein-512 [3] are also proven to be invalid if taking some dependency into
account, as revealed by Leurent [15]. To search for valid differential characteris-
tics of reduced Skein, Leurent designed a dedicated algorithm in [16] using the
improved generalized conditions [15] and the guess-and-determine technique [10].

In another direction, since the introduction of the MILP-based method to
search for differential characteristics [21], the SAT-based method has also been
developed [14]. However, in most of the MILP models or SAT models to search for
differential characteristics [4,14,21,25], only the difference transitions are taken
into account and are treated as independent in different rounds. Although such
an assumption is commonly believed to be reasonable for block ciphers, it may
not hold well for permutation-based primitives since there is no round key in the
permutation. A similar problem has been investigated in [9]. Moreover, since Kec-
cak [6] was selected as the SHA-3 standard, more and more permutation-based
primitives have been proposed. However, whether similar cases once appear-
ing in SHA-2 [18], Skein-512 [3] and Blake-256 [8] will occur in the commonly

Automatic Verification of Differential Characteristics 221

constructed MILP or SAT models to search for differential characteristics for
the underlying permutation remains unknown. Therefore, it is vital to make an
investigation for such a problem.

However, both the methods in [16,18] require a dedicated implementation of
the heuristic search. In addition, how to achieve the simultaneousness is ambigu-
ous in [18]. For [16], the inconsistency is avoided by using the improved gener-
alized conditions [15]. As is known, the most convincing way is to provide a
conforming message pair for the discovered differential characteristic.

Therefore, similar to the motivation to introduce the MILP-based method
into cryptanalysis, it would be meaningful to utilize some off-the-shelf tools to
reduce the workload. Consequently, we take Gimli as our first attempt and are
motivated to tackle the problem of how to construct a model to always avoid
the incompatibility in the search for differential characteristics. Moreover, since
Gimli is one of the second round candidates in NIST Lightweight Cryptography
Standardization process, we will provide some additional analysis of reduced
Gimli. We noticed that there is a related work [19] for MD-SHA hash family
published at SAT 2006 aiming at automatic message modification, though with
ambiguous technical details.

Our Contributions. We made a comprehensive study of Gimli1, as summarized
below:

• We make the first step to investigate the properties of the SP-box. Such a
work is meaningful since all the attacks in this paper heavily rely on them.

• A novel MILP model capturing the difference transitions and value transitions
simultaneously is developed. To the best of our knowledge, this is the first
model which takes both transitions into account. This model can be simply
used to detect contradictions in the differential characteristic of Gimli. As
a result, we prove that both the 12-round differential characteristic in the
Gimli document [4] and the 6-round differential characteristic used for the
collision attack on 6-round Gimli-Hash in [25] are invalid. The second usage
of this model is to directly search for a valid differential characteristic and
the conforming message pair simultaneously.

• For the hash scheme, we provide the first practical semi-free-start (SFS) col-
liding message pair for 6-round Gimli-Hash and develop several techniques to
convert SFS collisions into collisions. Moreover, we also mount a SFS collision
attack on the intermediate 8-round Gimli-Hash.

• For the AE scheme, we are curious why the designers only claim 128-bit
security while a 256-bit key is used. Thus, we are motivated to devise an
attack which can maximize the number of rounds with complexity below
2256. Consequently, we mount a state-recovery attack on 9-round Gimli with
a rather high time complexity 2192 and memory complexity 2190.

The memory/data/time complexity of the above attacks are displayed in Table 1.

1 The source code of our attacks can be referred to https://github.com/LFKOKAMI/
GimliAnalysis.git.

https://github.com/LFKOKAMI/GimliAnalysis.git
https://github.com/LFKOKAMI/GimliAnalysis.git

222 F. Liu et al.

Organization. The Gimli permutation and some properties of the SP-box will be
introduced in Sect. 2 and Sect. 3, respectively. Then, the MILP model capturing
both difference transitions and value transitions will be described in Sect. 4.
The (SFS) collision attack on 6-round and 8-round Gimli-Hash will be shown
in Sect. 5 and Sect. 6, respectively. Then, we will investigate the security of the
AE scheme and present the state-recovery attack on 9-round Gimli in Sect. 7.
Finally, we conclude the paper in Sect. 8.

Table 1. The analytical results of reduced Gimli, where Z-S represents Zero-sum and
Z-D represents Zero-internal-difference.

Target Attack Type Rounds Memory Data Time Ref.

Hash scheme SFS collision 6 Practical Sect. 5

Hash scheme Collision 6 264 – 264 Sect. 5.3

Hash scheme Collision 6 Negligible – 291.4 [17]a

Hash scheme SFS collision 8 Negligible – 264 Sect. 6

AE scheme State-recovery 5 2126 4 2128 [17]a

AE scheme State-recovery 9 2190 4 2192 Sect. 7
aThe full version of this paper.

2 Description of Gimli

The Gimli state can be viewed as a two-dimensional array S = (Si,j) (0 ≤ i ≤
2, 0 ≤ j ≤ 3), where Si,j ∈ F 32

2 , as illustrated in Fig. 1.

Fig. 1. The Gimli state

The 24-round permutation can be viewed as iterating the following sequence
of operations for 6 times:

(SP → S SW → AC) → (SP) → (SP → B SW) → (SP),

where the SP-box operation, Small-Swap operation, Big-Swap operation and
AddRoundConstant operation are denoted by SP, S SW, B SW and AC, respec-
tively. For the SP-box operation, the SP-box will be applied to the four columns

Automatic Verification of Differential Characteristics 223

independently. For the AddRoundConstant operation, a 32-bit word is added
to S0,0. More details can be referred to [4]. For convenience, denote the internal
state after r-round permutation by Sr and the input state by S0. In other words,
we have

S4i SP−→ S4i+0.5 S SW−→ AC−→ S4i+1 SP−→ S4i+2 SP−→S BW−→ S4i+3 SP−→ S4i+4,

where 0 ≤ i ≤ 5. In addition, ΔSr denotes the exclusive or difference in Sr

(0 ≤ r ≤ 24). Z[i] (0 ≤ i ≤ 31) denotes the (i + 1)-th bit of the 32-bit word Z
and Z[0] is the least significant bit of Z. Z[i ∼ j](0 ≤ j < i ≤ 31) represents the
(j + 1)-th bit to the (i + 1)-th bit of the 32-bit word Z. For example, Z[1 ∼ 0]
represents the two bits (Z[1],Z[0]). Moreover, ⊕, �, ≪, ∨ and ∧ represent the
logic operations exclusive or, shift left, rotate left, or, and, respectively.

2.1 SP-box

The SP-box of Gimli takes a 96-bit value as input and outputs a 96-bit value.
Denote the input and the output by (IX, IY, IZ) ∈ F 32×3

2 and (OX,OY,OZ) ∈
F 32×3

2 , respectively. Then, the relation between (OX,OY,OZ) and (IX, IY, IZ)
can be described as follows:

IX ← IX ≪ 24
IY ← IY ≪ 9
OZ ← IX ⊕ IZ � 1 ⊕ (IY ∧ IZ) � 2
OY ← IY ⊕ IX ⊕ (IX ∨ IZ) � 1
OX ← IZ ⊕ IY ⊕ (IX ∧ IY) � 3

Based on the above relation, the following bit relations can be derived, where
the indices are considered within modulo 32.

OX[i] =

{
IZ[i] ⊕ IY [i − 9] (0 ≤ i ≤ 2)
IZ[i] ⊕ IY [i − 9] ⊕ (IX[i − 27] ∧ IY [i − 12]) (3 ≤ i ≤ 31)

(1)

OY [i] =

{
IY [i − 9] ⊕ IX[i − 24] (i = 0)
IY [i − 9] ⊕ IX[i − 24] ⊕ (IX[i − 25] ∨ IZ[i − 1]) (1 ≤ i ≤ 31)

(2)

OZ[i] =

⎧⎪⎨
⎪⎩

IX[i − 24] (i = 0)
IX[i − 24] ⊕ IZ[i − 1] (i = 1)
IX[i − 24] ⊕ IZ[i − 1] ⊕ (IY [i − 11] ∧ IZ[i − 2]) (2 ≤ i ≤ 31)

(3)

2.2 Linear Layer

The linear layer includes two different swap operations, namely Small-Swap
and Big-Swap. Small-Swap occurs every 4 rounds starting from the 1st round.
Big-Swap occurs every 4 rounds starting from the 3rd round. The illustration of
Small-Swap and Big-Swap can be referred to Fig. 2.

224 F. Liu et al.

Fig. 2. The linear layer. The left/right one represent the Small-Swap/Big-Swap.

2.3 Gimli-Hash

How Gimli-Hash compresses a message is illustrated in Fig. 3. Specifically, Gimli-
Hash initializes a 48-byte Gimli state to all-zero. It then reads sequentially
through a variable-length input as a series of 16-byte input blocks, denoted
by M0, M1, · · ·. After all message blocks are processed, the 256-bit hash value
will be generated. More details can be referred to [1].

Fig. 3. The process to compress the message, where f is the Gimli permutation

3 Properties of the SP-box

Since several properties of the SP-box will be exploited in our collision attack
and state-recovery attack, for convenience, we summarize them in this part. For
simplicity, the input and output of the SP-box are denoted by (IX, IY, IZ) and
(OX,OY,OZ), respectively.

Property 1. If IY [31 ∼ 23] = 0 and IY [19 ∼ 0] = 0, OX will be independent
of IX.

Property 2. A random triple (IY, IZ,OX) is potentially valid with probability
2−15.5 without knowing IX.

Property 3. Given a random triple (IX,OY,OZ), it is valid with probability
2−1. Once it is valid, (OX[30 ∼ 0], IY, IZ[30 ∼ 0]) can be determined.

Property 4. Given a random triple (IY, IZ,OZ), (IX,OX,OY) can be
uniquely determined. In addition, a random tuple (IY, IZ,OY,OZ) is valid with
probability 2−32.

Automatic Verification of Differential Characteristics 225

Property 5. Suppose the pair (IY, IZ) and t bits of OY are known. Then t
bits of information on IX can be recovered by solving a linear equation system
of size t.

The above properties will be frequently exploited in our attacks and therefore
we list them ahead of time. The corresponding proofs can be referred to the full
version of this paper [17]. Some other properties will be explained later.

4 The MILP Model Capturing Difference and Value
Transitions

To search for a valid differential characteristic of reduced SHA-2, Mendel et al.
developed a technique to search for the differential characteristic and conforming
message pair simultaneously [18]. However, how to achieve the simultaneousness
is not explained in [18]. Inspired by such an idea, different from many models
where only the difference transitions are considered and are treated as inde-
pendent in different rounds, we try to construct a model which can describe
the difference transitions and value transitions simultaneously. The basic idea is
simple. As shown in Fig. 4, the models to describe the difference transitions and
value transitions will be independently constructed. Then, construct a model to
describe the difference-value relations in the nonlinear operation and use it to
connect the difference transitions and value transitions. The reason is that the
difference transitions and value transitions are dependent only in the nonlinear
operation. If such a model can be constructed, the contradictions can always be
avoided in the search.

Fig. 4. Illustration of the model

4.1 Difference-Value Relations Through the SP-box

First of all, consider the relations between the difference and value. According to
the bit relations between (IX, IY, IZ) and (OX,OY,OZ) as specified in Eq. 1,
Eq. 2, and Eq. 3, one can easily observe that there are at most 4 types of Boolean
expressions as follows, where a[i] ∈ F2 and 0 ≤ i ≤ 4.

Type-1: a[1] = a[0].
Type-2: a[2] = a[0] ⊕ a[1].

226 F. Liu et al.

Type-3: a[4] = a[0] ⊕ a[1] ⊕ a[2] ∧ a[3].
Type-4: a[4] = a[0] ⊕ a[1] ⊕ a[2] ∨ a[3].

Specifically, Type-1 corresponds to the expression to calculate OZ[0]. Type-2
corresponds to the expressions to calculate OX[0], OX[1], OX[2], OY [0] and
OZ[1]. Type-3 corresponds to the expression to compute OX[i] (3 ≤ i ≤ 31)
and OZ[j] (2 ≤ j ≤ 31), while Type-4 corresponds to the expression to compute
OY [i] (1 ≤ i ≤ 31).

For convenience, introduce another 5 bit variables a′ = {a′[0], a′[1], a′[2], a′[3],
a′[4]} and let Δa = a ⊕ a′, i.e. Δa[i] = a[i] ⊕ a′[i] for 0 ≤ i ≤ 4. For better
understanding, we explain the relations between the difference (Δa) and the
value (a) for each of the 4 types.

Type-1. For this type, there is no relation between Δa and a. Only the following
relation can be derived:

Δa[1] = Δa[0].

Type-2. Similar to Type-1, there is no relation between Δa and a. Only the
following relation can be derived:

Δa[2] = Δa[0] ⊕ Δa[1].

Type-3. Since a nonlinear operation exists in this expression, we can derive the
relations between Δa and a, as specified below:

Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 0,Δa[3] = 0 ⇒ Contradiction

Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 0,Δa[3] = 1 ⇒ a[2] = 1
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 1,Δa[3] = 0 ⇒ a[3] = 1
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 1,Δa[3] = 1 ⇒ a[2] = a[3]
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 0,Δa[2] = 0,Δa[3] = 1 ⇒ a[2] = 0
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 0,Δa[2] = 1,Δa[3] = 0 ⇒ a[3] = 0
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 0,Δa[2] = 1,Δa[3] = 1 ⇒ a[2] ⊕ a[3] = 1.

Type-4. Similar to Type-3, since a nonlinear operation exists in this expression,
the following relations between Δa and a can be derived:

Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 0,Δa[3] = 0 ⇒ Contradiction

Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 0,Δa[3] = 1 ⇒ a[2] = 0
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 1,Δa[3] = 0 ⇒ a[3] = 0
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 1,Δa[2] = 1,Δa[3] = 1 ⇒ a[2] = a[3]
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 0,Δa[2] = 0,Δa[3] = 1 ⇒ a[2] = 1
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 0,Δa[2] = 1,Δa[3] = 0 ⇒ a[3] = 1
Δa[4] ⊕ Δa[0] ⊕ Δa[1] = 0,Δa[2] = 1,Δa[3] = 1 ⇒ a[2] ⊕ a[3] = 1.

Automatic Verification of Differential Characteristics 227

4.2 Constructing the MILP Model

It has been discussed above that there are only two cases when we need to
consider the relations between the difference and value transitions through the
SP-box. Thus, we first construct the MILP model to describe such relations.
First of all, consider two minimal models called AND-Model and OR-Model.

Constructing AND-Model. Consider the following Boolean expression

a[2] = a[0] ∧ a[1].

Firstly, construct the truth table for (a[0], a[1],Δa[0],Δa[1],Δa[2]), which can be
easily finished by enumerating all 16 possible values of (a[0], a[1],Δa[0],Δa[1])
and computing the corresponding Δa[2]. Details are given in the full version of
this paper [17]. Using the greedy algorithm in [21], the corresponding truth table
can be described with the following linear inequalities, where the remaining 16
invalid patterns can not satisfy at least one of them.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a[0] − a[1] − Δa[1] + Δa[2] + 2 ≥ 0
a[0] − a[1] − Δa[1] − Δa[2] + 2 ≥ 0

−a[0] + a[1] − Δa[0] − Δa[2] + 2 ≥ 0
a[0] + Δa[0] − Δa[2] ≥ 0

a[0] + a[1] − Δa[0] − Δa[1] + Δa[2] + 1 ≥ 0
Δa[0] + Δa[1] − Δa[2] ≥ 0

a[1] + Δa[1] − Δa[2] ≥ 0
−a[1] − Δa[0] + Δa[1] + Δa[2] + 1 ≥ 0
−a[0] + Δa[0] − Δa[1] + Δa[2] + 1 ≥ 0

(4)

Constructing OR-Model. Consider the following Boolean expression

a[2] = a[0] ∨ a[1].

Similarly, construct the truth table for (a[0], a[1],Δa[0],Δa[1],Δa[2]) by enu-
merating all 16 possible values of (a[0], a[1],Δa[0],Δa[1]) and computing the
corresponding Δa[2]. Details are given in the full version of this paper [17]. The
corresponding truth table is equivalent to the following linear inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a[1] + Δa[1] − Δa[2] + 1 ≥ 0
−a[0] + Δa[0] − Δa[2] + 1 ≥ 0

a[1] − Δa[0] + Δa[1] + Δa[2] ≥ 0
a[0] + Δa[0] − Δa[1] + Δa[2] ≥ 0

a[0] + a[1] − Δa[1] + Δa[2] ≥ 0
Δa[0] + Δa[1] − Δa[2] ≥ 0

a[0] − a[1] − Δa[0] − Δa[2] + 2 ≥ 0
−a[0] − a[1] − Δa[0] − Δa[1] + Δa[2] + 3 ≥ 0

−a[0] + a[1] − Δa[1] − Δa[2] + 2 ≥ 0

(5)

228 F. Liu et al.

Constructing MILP Model for Value Transitions. For the Gimli round
function, the linear layer can be viewed as a simple permutation of bit positions.
Thus, we only focus on the model to describe the value transitions through the
SP-box in this part. As discussed above, there are at most 4 types of Boolean
expressions when expressing the output bit in terms of the input bits for the
SP-box. Now, we explain how to model such 4 types of expressions.

Modeling Type-1 Expression. The Type-1 Boolean expression is

a[1] = a[0].

Thus, it is rather simple to model the value relation by using the following linear
equality:

a[1] = a[0]. (6)

Modeling Type-2 Expression. The Type-2 Boolean expression is

a[2] = a[0] ⊕ a[1].

Such a linear Boolean equation can be described with the following linear
inequalities: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a[0] + a[1] − a[2] ≥ 0
a[0] − a[1] + a[2] ≥ 0

−a[0] + a[1] + a[2] ≥ 0
−a[0] − a[1] − a[2] + 2 ≥ 0

(7)

Modeling Type-3 Expression. The Type-3 Boolean expression is

a[4] = a[0] ⊕ a[1] ⊕ a[2] ∧ a[3].

Such a linear Boolean equation can be described with the following linear
inequalities: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a[0] + a[1] + a[3] + a[4] ≥ 0
a[0] − a[1] + a[3] + a[4] ≥ 0
a[0] + a[1] + a[2] − a[4] ≥ 0
a[0] + a[1] + a[3] − a[4] ≥ 0
a[0] − a[1] + a[2] + a[4] ≥ 0

−a[0] + a[1] + a[2] + a[4] ≥ 0
a[0] + a[1] − a[2] − a[3] + a[4] + 1 ≥ 0

−a[0] − a[1] + a[2] − a[4] + 2 ≥ 0
a[0] − a[1] − a[2] − a[3] − a[4] + 3 ≥ 0

−a[0] − a[1] − a[2] − a[3] + a[4] + 3 ≥ 0
−a[0] − a[1] + a[3] − a[4] + 2 ≥ 0

−a[0] + a[1] − a[2] − a[3] − a[4] + 3 ≥ 0

(8)

Automatic Verification of Differential Characteristics 229

Modeling Type-4 Expression. The Type-4 Boolean expression is

a[4] = a[0] ⊕ a[1] ⊕ a[2] ∨ a[3].

Such a linear Boolean equation can be described with the following linear
inequalities: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a[0] + a[1] − a[3] − a[4] + 2 ≥ 0
a[0] − a[1] − a[3] − a[4] + 2 ≥ 0

−a[0] − a[1] − a[3] + a[4] + 2 ≥ 0
−a[0] + a[1] − a[2] − a[4] + 2 ≥ 0

a[0] − a[1] − a[2] − a[4] + 2 ≥ 0
−a[0] − a[1] − a[2] + a[4] + 2 ≥ 0

−a[0] + a[1] + a[2] + a[3] + a[4] ≥ 0
a[0] + a[1] − a[3] + a[4] ≥ 0
a[0] + a[1] − a[2] + a[4] ≥ 0

a[0] − a[1] + a[2] + a[3] + a[4] ≥ 0
a[0] + a[1] + a[2] + a[3] − a[4] ≥ 0

−a[0] − a[1] + a[2] + a[3] − a[4] + 2 ≥ 0

(9)

Constructing MILP Model for Difference Transitions. The value tran-
sitions through the SP-box have been discussed above. In the following, how to
model the difference transitions will be detailed. Similarly, write the four possible
types of expressions for differences as follows:

Δa[1] = Δa[0], (10)
Δa[2] = Δa[0] ⊕ Δa[1], (11)
Δa[4] = Δa[0] ⊕ Δa[1] ⊕ Δna0, (12)
Δa[4] = Δa[0] ⊕ Δa[1] ⊕ Δna1, (13)

where na0 and na1 represent the output difference of the nonlinear operation
a[2]∧a[3] and a[2]∨a[3], respectively. It can be easily observed that the first two
possible transitions (Eq. 10 and Eq. 11) share the same MILP model used to
describe the value transitions for Type-1 expression and Type-2 expression. For
the last two transitions, we need to construct a model to describe the following
linear Boolean equation:

a[3] = a[0] ⊕ a[1] ⊕ a[2].

230 F. Liu et al.

This task is also rather easy. The linear inequalities to describe the above linear
Boolean equation in terms of four variables are specified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a[0] + a[1] − a[2] + a[3] ≥ 0
a[0] + a[1] + a[2] − a[3] ≥ 0

−a[0] + a[1] + a[2] + a[3] ≥ 0
a[0] − a[1] + a[2] + a[3] ≥ 0

−a[0] − a[1] + a[2] − a[3] + 2 ≥ 0
a[0] − a[1] − a[2] − a[3] + 2 ≥ 0

−a[0] + a[1] − a[2] − a[3] + 2 ≥ 0
−a[0] − a[1] − a[2] + a[3] + 2 ≥ 0

(14)

One may observe that two intermediate variables na0 and na1 are intro-
duced when constructing the model for difference transitions and they have not
been connected with the actual variables, i.e. a and Δa in the constructed model.
In fact, this is where our technique exists in order to model the difference and
value transitions simultaneously. Specifically, the two intermediate variables na0

and na1 will be utilized to link the value transitions and difference transitions,
together with the two minimal models AND-Model and OR-Model.

Connecting the Value Transitions and Difference Transitions. It can
be observed that the current MILP models for value transitions and difference
transitions are independently constructed. In this part, we will describe how to
connect the value and difference transitions with the two intermediate variables
(na0, na1) by using the AND-Model and OR-Model. Note that na0 and na1

denote the output difference of the nonlinear operations a[2]∧a[3] and a[2]∨a[3],
respectively.

Connecting the Two Transitions for Type-3 Expression. Consider the Type-3
expression:

a[4] = a[0] ⊕ a[1] ⊕ a[2] ∧ a[3].

Firstly, use Eq. 8 to model the relations of (a[0], a[1], a[2], a[3], a[4]). Then, use
the AND-Model to describe the relations of (a[2], a[3],Δa[2],Δa[3], na0). Finally,
use Eq. 14 to describe the relations of (Δa[0],Δa[1], na0,Δa[4]). In this way, the
value and difference transitions for Type-3 expression are connected.

Connecting the Two Transitions for Type-4 Expression. The Type-4 expression
is specified as follows:

a[4] = a[0] ⊕ a[1] ⊕ a[2] ∨ a[3].

Similarly, Eq. 9 is used to model the relations of (a[0], a[1], a[2], a[3], a[4]). Then,
the OR-Model is used to model the relations of (a[2], a[3],Δa[2],Δa[3], na1). At
last, Eq. 14 is used to describe the relations of (Δa[0],Δa[1], na1,Δa[4]).

Automatic Verification of Differential Characteristics 231

For the remaining two expressions (Type-1 and Type-2), the value and differ-
ence transitions are independent. Therefore, the corresponding two models are
independent and there is no need to connect them. Obviously, the AND-Model
and OR-Model are the core techniques to achieve the connection.

4.3 Detecting Contradictions

Since both the difference transitions and value transitions are taken into account
in our MILP model, once given a specified differential characteristic of Gimli, the
difference transitions are fixed. In addition, some constraints on the value of the
internal states are fixed as well based on the AND-Model and OR-Model. Thus,
the final inequality system in the whole model is only in terms of the variables
representing the value of the internal states. If a solution can be returned by the
solver, it simply means that there is a conforming message pair satisfying the
differential characteristic. However, if the solver returns “infeasible”, it implies
that no conforming message pair can satisfy the differential characteristic, thus
revealing that the differential characteristic is impossible.

We have used the above method to check the validity of two existing dif-
ferential characteristics of Gimli. One is the 12-round differential characteristic
proposed in the Gimli document [4], and the other is the 6-round differential
characteristic used for a collision attack in [25]. Surprisingly, both of them are
proven to be invalid, i.e. the Gurobi solver [2] returns “infeasible”. To support
the correctness of our model, detailed analysis of the contradictions are provided
in the full version of this paper [17].

5 Collision Attack on 6-Round Gimli-Hash

Since the 6-round differential characteristic is invalid in [25], it is necessary to
search for a valid one in order to mount a collision attack on 6-round Gimli-Hash.
On the whole, our collision attack procedure can be divided into the following
two phases:

Phase 1: Utilize our model to find a valid 6-round differential characteristic.
Phase 2: Use the linearization and start-from-the-middle techniques to find all

the conforming message pairs satisfying the discovered differential
characteristic and store them in a clever way. All these message pairs
can be viewed as SFS colliding message pairs. Then, convert the SFS
collisions into collisions with a divide-and-conquer method.

Obviously, both the way to search for a differential characteristic and the way
to mount a collision attack are different from that in [25].

5.1 Searching a Valid 6-Round Differential Characteristic

It can be easily observed in [25] that, in order to eliminate the influence of lin-
ear layer (Big-Swap and Small-Swap) and to reduce the workload of the MILP

232 F. Liu et al.

model, the authors only considered the difference transitions in one column
rather than the whole state. Specifically, as shown in Fig. 5, the target is to
find the following valid difference transitions through the SP-box:

(D0, 0, 0) SP−→ (0,D1,D2)
SP−→ (D3,D4,D5)

SP−→
(D6,D7,D8)

SP−→ (D9,D10,D11)
SP−→ (0, 0,D12)

SP−→ (D13, 0, 0).

Once such a solution is found, it can be easily converted into a differential char-
acteristic of the full state. However, as has been proved, the solution found in [25]
is actually invalid if considering the dependency between the value transitions
and difference transitions.

Fig. 5. The pattern of the difference transitions in [25]

Different from the optimal differential characteristic which may be sparse,
the differential characteristic used for the collision attack is much denser, thus
having a high probability that contradictions occur if only the difference tran-
sitions are considered. To avoid such a bad case, the differential characteristic
and the conforming message pair will be simultaneously searched with our con-
structed MILP model. Similar to [4,25], a probability 1 two-round differential
characteristic is first constructed in the last two rounds. Moreover, to reduce
the workload, some additional constraints will be added when constructing the
model, as specified below:

ΔS0
i,0 = ΔS0

i,2 = 0 (0 ≤ i ≤ 2). (15)

ΔS0
j,1 = ΔS0

j,3 = 0 (1 ≤ j ≤ 2). (16)

ΔS4
i,0 = ΔS4

i,2 = 0 (0 ≤ i ≤ 2). (17)

ΔS4
j,1 = ΔS4

j,3 = 0 (1 ≤ j ≤ 2). (18)
ΔSr

i,j = ΔSr
i,j+2 (0 ≤ i ≤ 2, 0 ≤ j ≤ 1, 0 ≤ r ≤ 3). (19)

ΔS4
0,1 = ΔS4

0,3 = 0x80. (20)

ΔS4
1,1 = ΔS4

1,3 = 0x400000. (21)

ΔS4
2,1 = ΔS4

2,3 = 0x80000000. (22)

Automatic Verification of Differential Characteristics 233

Moreover, to reduce the search space, we further constrain the hamming weight
of (ΔS3

0,1,ΔS3
1,1,ΔS3

2,1) as follows, i.e. the number of bits whose values are 1:

HW (ΔS3
0,1,ΔS3

1,1,ΔS3
2,1) ≤ 8.

Specifically, the aim is to find a solution for the 32-bit words marked with “?”
in Fig. 6.

Fig. 6. Searching a valid 6-round differential characteristic

The 6-Round Differential Characteristic. Based on the above model, the Gurobi
solver returns a solution in less than 4 h. In other words, a valid 6-round differ-
ential characteristic and a conforming message pair are obtained. For a better
presentation, the differential characteristic is displayed in Table 2. The conform-
ing message pair is displayed in Table 4. The conditions implied in the differential
characteristic are shown in Table 3. Note that by using one more message block
to eliminate the difference in the rate part, a full-state SFS collision is obtained.
However, the SFS collision attack is still less meaningful than the collision attack.
Therefore, we are further motivated to convert the SFS collisions into collisions.

5.2 Converting SFS Collision Attacks into Collision Attacks

First of all, as shown in Table 3, the conditions on S3
0,1 and S3

0,3 only involve the
bits of S3

0,1 and S3
0,3, respectively. Due to the symmetry of the 6-round differential

characteristic, the conditions on S3
0,1 and S3

0,3 are the same. Due to the influence
of Big-Swap, S3

0,3 is actually computed by using (S2
0,1, S

2
1,1, S

2
2,1), while S3

0,1 is
computed by using (S2

0,3, S
2
1,3, S

2
2,3). Thus, we define two sets of conditions which

can be independently verified, as specified below:

Definition 1. The internal state words (S0
0,1, S

0
1,1, S

0
2,1), (S1

0,1, S
1
1,1, S

1
2,1),

(S2
0,1, S

2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1) only depend on the input state words (S0

i,j)
(0 ≤ i ≤ 2, 0 ≤ j ≤ 1), while the internal state words (S0

0,3, S
0
1,3, S

0
2,3),

234 F. Liu et al.

Table 2. The 6-round differential characteristic

State XOR Difference

ΔS0
0 0x7c2c642a 0 0x7c2c642a
0 0 0 0
0 0 0 0

ΔS1
0 0 0 0
0 0x6e1c342c 0 0x6e1c342c
0 0x2a7c2c64 0 0x2a7c2c64

ΔS2
0 0x91143078 0 0x91143078
0 0x28785014 0 0x28785014
0 0x35288a58 0 0x35288a58

ΔS3
0 0x80010008 0 0x80010008
0 0x00002000 0 0x00002000
0 0x44400080 0 0x44400080

ΔS4
0 0x00000080 0 0x00000080
0 0x00400000 0 0x00400000
0 0x80000000 0 0x80000000

ΔS5
0 0 0 0
0 0 0 0
0 0x80000000 0 0x80000000

ΔS6
0 0x80000000 0 0x80000000
0 0 0 0
0 0 0 0

(S1
0,3, S

1
1,3, S

1
2,3), (S2

0,3, S
2
1,3, S

2
2,3) and (S3

0,1, S
3
1,3, S

3
2,3) only depend on the input

state words (S0
i,j) (0 ≤ i ≤ 2, 2 ≤ j ≤ 3).

Therefore, by only knowing (S0
i,j) (0 ≤ i ≤ 2, 0 ≤ j ≤ 1), we can fully

compute (S0
0,1, S

0
1,1, S

0
2,1), (S1

0,1, S
1
1,1, S

1
2,1), (S2

0,1, S
2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1).

For simplicity, the conditions on these 12 internal state words in Table 3 are
called L-Conditions.

Similarly, by only knowing (S0
i,j) (0 ≤ i ≤ 2, 2 ≤ j ≤ 3), we can fully

compute (S0
0,3, S

0
1,3, S

0
2,3), (S1

0,3, S
1
1,3, S

1
2,3), (S2

0,3, S
2
1,3, S

2
2,3) and (S3

0,1, S
3
1,3, S

3
2,3).

For simplicity, the conditions on these 12 internal state words in Table 3 are
called R-Conditions.

Therefore, the L-Conditions and R-Conditions can be verified independently.
Now, we introduce a method to identify all the possible values for the capacity
of the first two columns (S0

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 1) which can fulfill the L-
Conditions. Since the L-Conditions and R-Conditions are identical, the method
works in the same way to find all the possible values for the capacity part of the
last two columns (S0

i,j) (1 ≤ i ≤ 2, 2 ≤ j ≤ 3) which can fulfill the R-Conditions.

Identifying All Possible Solutions. To obtain all valid values of (S0
i,j) (1 ≤

i ≤ 2, 0 ≤ j ≤ 1), the following techniques will be exploited to accelerate the
exhaustive search:

1. Merge the conditions in two consecutive rounds, which can significantly
reduce the size of the search space.

2. Use a start-from-the-middle method and the properties of the SP-box to
further accelerate the exhaustive search.

Automatic Verification of Differential Characteristics 235

Table 3. The conditions implied in the 6-round differential characteristic

S0
0,1 −

S0
1,1 − − 0 0 − − 0 − − − − − − 0 − 0 − − 0 0 0 0 0 − − − − 0 − 0 0 −

S0
2,1 − − 0 − 1 − 0 − − 1 0 0 1 1 − − − − 1 − 0 0 − − − 1 0 − − 0 − −

S0
0,3 −

S0
1,3 − − 0 0 − − 0 − − − − − − 0 − 0 − − 0 0 0 0 0 − − − − 0 − 0 0 −

S0
2,3 − − 0 − 1 − 0 − − 1 0 0 1 1 − − − − 1 − 0 0 − − − 1 0 − − 0 − −

S1
0,1 − 1 1 1 0 1 − − − 0 1 0 1 0 − − 1 0 0 1 1 0 − − − − 1 1 0 − 1 −

S1
1,1 − − − 1 − − − − − − − − − − − 0 − − − − 1 − 1 − − − − 1 − − 1 −

S1
2,1 − − − 1 − − − − − − − − − − − − − 0 − 1 − − − − 1 − − 0 0 − − −

S1
0,3 − 1 1 1 0 1 − − − 0 1 0 1 0 − − 1 0 0 1 1 0 − − − − 1 1 0 − 1 −

S1
1,3 − − − 1 − − − − − − − − − − − 0 − − − − 1 − 1 − − − − 1 − − 1 −

S1
2,3 − − − 1 − − − − − − − − − − − − − 0 − 1 − − − − 1 − − 0 0 − − −

S1
1,1[2] �= S1

2,1[11], S1
1,1[10] �= S1

2,1[19], S1
1,1[12] = S1

2,1[21]

S1
1,1[13] = S1

2,1[22], S1
1,1[18] = S1

2,1[27], S1
1,1[20] �= S1

2,1[29]

S1
1,1[25] = S1

2,1[2], S1
1,1[29] �= S1

2,1[6], S1
1,3[2] �= S1

2,3[11]

S1
1,3[10] �= S1

2,3[19], S1
1,3[12] = S1

2,3[21], S1
1,3[13] = S1

2,3[22]

S1
1,3[18] = S1

2,3[27], S1
1,3[20] �= S1

2,3[29], S1
1,3[25] = S1

2,3[2]

S1
1,3[29] �= S1

2,3[6]

S2
0,1 − − 1 − 0 − − − 0 − 1 − 0 − 0 − − 1 − − 1 − − − − − − − − 0 − 1

S2
1,1 − − − 0 − 0 − − − − − − − 1 1 − 1 − − − 1 0 − − 1 0 − − 1 − 1 0

S2
2,1 − 0 − − 1 − − − 1 − − 0 − − − 1 − − 0 1 − 0 − − − − 0 − − − − −

S2
0,3 − − 1 − 0 − − − 0 − 1 − 0 − 0 − − 1 − − 1 − − − − − − − − 0 − 1

S2
1,3 − − − 0 − 0 − − − − − − − 1 1 − 1 − − − 1 0 − − 1 0 − − 1 − 1 0

S2
2,3 − 0 − − 1 − − − 1 − − 0 − − − 1 − − 0 1 − 0 − − − − 0 − − − − −

S2
0,1[4] �= S2

2,1[28], S2
0,1[5] �= S2

2,1[29], S2
0,1[12] = S2

2,1[4]

S2
0,1[31] = S2

1,1[14], S2
1,1[2] �= S2

2,1[11], S2
1,1[12] = S2

2,1[21]

S2
1,1[19] = S2

2,1[28], S2
1,1[20] �= S2

2,1[29], S2
1,1[27] �= S2

2,1[4]

S2
1,1[29] �= S2

2,1[6], S2
0,3[4] �= S2

2,3[28], S2
0,3[5] �= S2

2,3[29]

S2
0,3[12] = S2

2,3[4], S2
0,3[31] = S2

1,3[14], S2
1,3[2] �= S2

2,3[11]

S2
1,3[12] = S2

2,3[21], S2
1,3[19] = S2

2,3[28], S2
1,3[20] �= S2

2,3[29]

S2
1,3[27] �= S2

2,3[4], S2
1,3[29] �= S2

2,3[6]

S3
0,1 − 0 − − − − − − − − − − − − − − 0 − − − − − − − − 1 − − − 0 − −

S3
1,1 0 0 − − − − − − − − − − − 1 0 − − 1 − − − − − − − − − − − − − −

S3
2,1 − − − − 1 − − − 1 − − − − − − − − − − − − − − 1 − − − − − − − −

S3
0,3 − 0 − − − − − − − − − − − − − − 0 − − − − − − − − 1 − − − 0 − −

S3
1,3 0 0 − − − − − − − − − − − 1 0 − − 1 − − − − − − − − − − − − − −

S3
2,3 − − − − 1 − − − 1 − − − − − − − − − − − − − − 1 − − − − − − − −

S3
1,1[13] �= S3

2,1[22], S3
1,3[13] �= S3

2,3[22]

Instead of directly finding all valid values for (S0
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 1),

we will first search for all the valid solutions for (S1
0,1, S

1
1,1, S

1
2,1). It should be

noted that once (S1
0,1, S

1
1,1, S

1
2,1) are known, (S2

0,1, S
2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1)

can be fully determined. In other words, we can first identify all the solu-
tions for (S1

0,1, S
1
1,1, S

1
2,1) which can make the conditions on (S1

0,1, S
1
1,1, S

1
2,1),

(S2
0,1, S

2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1) hold.

Merging the Conditions. According to Table 3, there are 40 linearly indepen-
dent conditions on (S1

0,1, S
1
1,1, S

1
2,1). Moreover, there are 41 linearly independent

conditions on (S2
0,1, S

2
1,1, S

2
2,1). The basic idea to convert partial conditions on

(S2
0,1, S

2
1,1, S

2
2,1) into those on (S1

0,1, S
1
1,1, S

1
2,1) is simple. Specifically, represent

the conditions on (S1
0,1, S

1
1,1, S

1
2,1) using a matrix LM1 at first. Then, represent

236 F. Liu et al.

Table 4. The conforming message pair for the 6-round differential characteristic

The input state S0

0xff792f16 0x9a757bef 0xff792f16 0x9a757bef
0x37feedd1 0x0d8080e8 0x37feedd1 0x0d8080e8
0xaca93960 0x88cda05b 0xaca93960 0x88cda05b

The input state S′0(S0 ⊕ ΔS0)
0xff792f16 0xe6591fc5 0xff792f16 0xe6591fc5
0x37feedd1 0x0d8080e8 0x37feedd1 0x0d8080e8
0xaca93960 0x88cda05b 0xaca93960 0x88cda05b

The output state S6 after 6-round permutation for S0

0x0765a592 0xcda58e91 0xa5f12648 0xcf35aef1
0x2cecc20e 0xc11436eb 0xba243082 0xc0df1177
0xeda218de 0xeb3f7ab7 0xffb9fd21 0xebe4552b

The output state S′6 after 6-round permutation for S′0

0x0765a592 0x4da58e91 0xa5f12648 0x4f35aef1
0x2cecc20e 0xc11436eb 0xba243082 0xc0df1177
0xeda218de 0xeb3f7ab7 0xffb9fd21 0xebe4552b

ΔS6 = S′6 ⊕ S6

0 0x80000000 0 0x80000000
0 0 0 0
0 0 0 0

the conditions on (S2
0,1, S

2
1,1, S

2
2,1) using another matrix LM2. Consider the fol-

lowing relations between (S1
0,1, S

1
1,1, S

1
2,1) and (S2

0,1, S
2
1,1, S

2
2,1):

S2
0,1[i] =

{
S1

2,1[i] ⊕ S1
1,1[i − 9] (0 ≤ i ≤ 2)

S1
2,1[i] ⊕ S1

1,1[i − 9] ⊕ (S1
0,1[i − 27] ∧ S1

1,1[i − 12]) (3 ≤ i ≤ 31)

S2
1,1[i] =

{
S1

1,1[i − 9] ⊕ S1
0,1[i − 24] (i = 0)

S1
1,1[i − 9] ⊕ S1

0,1[i − 24] ⊕ (S1
0,1[i − 25] ∨ S1

2,1[i − 1]) (1 ≤ i ≤ 31)

S2
2,1[i] =

⎧⎪⎨
⎪⎩

S1
0,1[i − 24] (i = 0)

S1
0,1[i − 24] ⊕ S1

2,1[i − 1] (i = 1)

S1
0,1[i − 24] ⊕ S1

2,1[i − 1] ⊕ (S1
1,1[i − 11] ∧ S1

2,1[i − 2]) (2 ≤ i ≤ 31)

Therefore, if there are conditions on S2
0,1[i] (0 ≤ i ≤ 2) or on S2

1,1[0]
or on S2

2,1[i] (0 ≤ i ≤ 1), they can be directly converted into linear condi-
tions on (S1

0,1, S
1
1,1, S

1
2,1). Thus, we can add these newly-generated conditions

to LM1 and apply the Gauss elimination. As for the remaining conditions on
(S2

0,1, S
2
1,1, S

2
2,1), we first check whether the nonlinear part S1

0,1[i−27] ∧ S1
1,1[i−12]

or S1
0,1[i − 25] ∨ S1

2,1[i − 1] or S1
1,1[i − 11] ∧ S1

2,1[i − 2] can be linearized based
on the conditions on (S1

0,1, S
1
1,1, S

1
2,1). Specifically, if one bit of the nonlinear

part is fixed in (S1
0,1, S

1
1,1, S

1
2,1), the corresponding conditions on (S2

0,1, S
2
1,1, S

2
2,1)

can be directly converted into linear conditions on (S1
0,1, S

1
1,1, S

1
2,1). Then, we

add these newly-generated linear conditions to LM1 and again apply the Gauss
elimination. Such a process is repeated until LM1 becomes stable, i.e. no more
conditions on (S2

0,1, S
2
1,1, S

2
2,1) can be converted into new linear conditions on

Automatic Verification of Differential Characteristics 237

(S1
0,1, S

1
1,1, S

1
2,1). In this way, there will be finally 61 linearly independent con-

ditions on (S1
0,1, S

1
1,1, S

1
2,1). In other words, the size of the solution space of

(S1
0,1, S

1
1,1, S

1
2,1) is reduced to 296−61 = 235 from 296−40 = 256 after converting

partial conditions on (S2
0,1, S

2
1,1, S

2
2,1) into those on (S1

0,1, S
1
1,1, S

1
2,1).

The Start-From-the-Middle Method. According to the above analysis, the solu-
tion space of (S1

0,1, S
1
1,1, S

1
2,1) can now be exhausted in practical time 235. For

each of its possible values, the conditions on (S2
0,1, S

2
1,1, S

2
2,1) and (S3

0,3, S
3
1,1, S

3
2,1)

can be fully verified. In this way, we find that there are in total 1632 solutions for
(S1

0,1, S
1
1,1, S

1
2,1). By sorting the solutions according to (S1

1,1, S
1
2,1), we find that

among all the 1632 solutions, there are 720 different values of (S1
1,1, S

1
2,1) and

each different value of (S1
1,1, S

1
2,1) will correspond to 2 different values of S1

0,1 on
average. Record these 720 different values of (S1

1,1, S
1
2,1) in order to identify all

the valid values of (S0
1,1, S

0
2,1).

It has been discussed in Property 4 that a random tuple (S0
1,1, S

0
2,1, S

1
1,1, S

1
2,1)

is valid with probability 2−32. Once it is valid, (S0
0,1, S

1
0,1) is determined. In other

words, although the attacker can freely choose the values of S0
0,1, whether the

720 different values of (S1
1,1, S

1
2,1) can be reached only depends on the value of

(S0
1,1, S

0
2,1). According to Table 3, there are 27 linearly independent conditions

on (S0
1,1, S

0
2,1). Thus, a naive way to find all the valid solutions of (S0

1,1, S
0
2,1) is to

exhaust all the 264−27 = 237 possible values of (S0
1,1, S

0
2,1) since we can pre-assign

values to (S0
1,1, S

0
2,1) to make the 27 linear conditions on them hold. For each

guessed value, check whether there exists a tuple (S1
1,1, S

1
2,1) which can make the

tuple (S0
1,1, S

0
2,1, S

1
1,1, S

1
2,1) valid. Obviously, the time complexity of this method

is 720×237 = 246.4 and therefore it still requires a significant amount of time. To
accelerate this exhaustive search, we use the following property of the SP-box.

Property 6. Given the triple (IZ,OY,OZ), IY can be recovered by solving a
linear equation system of size 32.

Proof. For simplicity, we omit the rotate shift of (IX, IY) and only focus on the
following relations.

OZ ← IX ⊕ IZ � 1 ⊕ (IY ∧ IZ) � 2
OY ← IY ⊕ IX ⊕ (IX ∨ IZ) � 1
OX ← IZ ⊕ IY ⊕ (IX ∧ IY) � 3

Therefore, we can obtain that

OY = IY ⊕ (OZ ⊕ IZ � 1 ⊕ (IY ∧ IZ) � 2) ⊕ ((OZ ⊕ IZ � 1 ⊕ (IY ∧ IZ) � 2) ∨ IZ) � 1.

Since (IZ,OY,OZ) are known, 32 linearly independent equations in terms of
the unknown 32 bits of IY can be derived. Consequently, IY can be recovered
by solving a linear equation system of size 32.

Based on Property 6, the search space of (S0
1,1, S

0
2,1) can be significantly

reduced, as specified below:

238 F. Liu et al.

Step 1: Record the 13 conditions on S0
1,1 displayed in Table 3 by a matrix

LM3. Keep the 14 conditions on S0
2,1 displayed in Table 3 hold.

Step 2: Guess all possible values of the remaining unknown 18 bits of S0
2,1.

For each guess of S0
2,1, exhaust the 720 different values of (S1

1,1, S
1
2,1).

For each guessed value of (S0
2,1, S

1
1,1, S

1
2,1), according to Property 6, 32

linear equations in terms of S0
1,1 can be derived. Add these 32 linear

equations to LM3 and check the consistency using Gauss elimination.
If they are consistent, output the solution to S0

1,1.

The time complexity of the above method is therefore 720 × 218 = 227.4. With
this method, we find that there are in total 0x34c8 valid values for (S0

1,1, S
0
2,1).

Moreover, each solution of (S0
1,1, S

0
2,1) will correspond to 2 different values of

(S1
1,1, S

1
2,1). Note that each (S1

1,1, S
1
2,1) can correspond to 2 different values of

S1
0,1 on average. Thus, each valid solution of (S0

1,1, S
0
2,1) can correspond to 4

different solutions of S1
0,1 on average.

Calculating the Probability. It has been identified that there are in total 0x34c8
valid values for (S0

1,1, S
0
2,1), each of which will correspond to 4 different val-

ues of S1
0,1. Note that S1

0,1 is computed by using (S0
0,0, S

0
1,0, S

0
2,0) due to the

effect of Small-Swap. It has been pointed out in Property 2 that a random
tuple (S0

1,0, S
0
2,0, S

1
0,1) holds with probability 2−15.5. Thus, a random tuple

(S0
1,0, S

0
2,0, S

0
1,1, S

0
2,1) is valid with probability 2−64 × 0x34c8 × (4 × 2−15.5) ≈

2−63.8. It has been discussed above that L-Conditions and R-Conditions are
identical. Consequently, the whole capacity part (S0

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) is
valid with probability 2−127.6. Once it is valid, a solution to (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3)

can always be computed to make the L-Conditions and R-Conditions hold.
In the following, how to find the solution to (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3) when (S0

i,j)
(1 ≤ i ≤ 2, 0 ≤ j ≤ 1) are valid will be described.

For better understanding, the corresponding illustrations for merging the
conditions, the start-from-the-middle method and calculating the probability
can be referred to the full version of this paper [17].

Storing the Solutions. Note that there is no need to enumerate all the valid
solutions for (S0

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3), which will be very costly. Instead, we
can construct 4 small tables to record all the valid solutions as follows.

1. Construct the table TA0 to record the valid tuples (S0
1,1, S

0
2,1).

2. Construct the table TA1 to record the valid tuples (S1
0,1, S

1
1,1, S

1
2,1).

3. Construct the table TA2 to record the valid tuples (S0
1,1, S

0
2,1, S

1
1,1, S

1
2,1).

4. Construct the table TA3 to record the valid tuples (S0
1,1, S

0
2,1, S

1
0,1).

In this way, once (S0
i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) are valid, we can retrieve the

corresponding (S1
1,1, S

1
2,1, S

1
1,3, S

1
2,3) from TA2. And once (S1

1,1, S
1
2,1, S

1
1,3, S

1
2,3)

are known, we can retrieve valid (S1
0,1, S

1
0,3) from TA1. Until this phase,

(S0
1,0, S

0
2,0, S

1
0,1), (S0

1,2, S
0
2,2, S

1
0,3), (S0

1,1, S
0
2,1, S

1
1,1, S

1
2,1) and (S0

1,3, S
0
2,3, S

1
1,3, S

1
2,3)

are known. Thus, we can compute the corresponding value of (S0
0,0, S

0
0,1,

S0
0,2, S

0
0,3) and they will always make the L-Conditions and R-Conditions hold.

Automatic Verification of Differential Characteristics 239

Thus, the remaining work is how to find a valid value of the capacity part (S0
i,j)

(1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

5.3 Finding a Valid Capacity Part

According to the above analysis, converting a semi-free-start collision attack into
a collision attack based on the 6-round differential characteristic in Table 2 is
reduced to finding a valid capacity part of the output state after several message
blocks are absorbed. Since the capacity part is valid with probability 2−127.6, a
naive way is to try 2127.6 random messages, which is obviously too inefficient. In
the following, a time-memory trade-off method will be introduced to efficiently
find a message which can make the capacity part valid. Another method without
time-memory trade-off can be referred to the full version of this paper [17].

The Exhaustive Search with Time-Memory Trade-Off. An illustration of
the procedure can be referred to Fig. 7. Note that the valid values of (S6

1,1, S
6
2,1)

have been stored in TA0 and (S6
1,3, S

6
2,3) shares the same valid values with

(S6
1,1, S

6
2,1) due to the symmetry of the 6-round differential characteristic. More-

over, given a valid value of (S6
1,1, S

6
2,1), by using TA3 and the Property 2 of the

SP-box, we can determine whether (S6
1,0, S

6
2,0) is valid with only 4 times of check.

Why 4 times are needed can be referred to the part to calculate the probability
of a valid capacity part.

To efficiently find a valid value for S6, some conditions on (S0
i,j) (1 ≤ i ≤

2, 0 ≤ j ≤ 3) will be added, as specified below:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(S0
1,0 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,1 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,2 ≪ 9) ∧ 0x1fffffff = 0,

(S0
1,3 ≪ 9) ∧ 0x1fffffff = 0.

(23)

In this way, (S1
0,0, S

1
0,1, S

1
0,2, S

1
0,3) will be independent of (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3)

based on Property 1. For readability, how to find a message which can lead
to an output whose capacity part satisfies Eq. 23 will be first skipped. In the
following, we start from how to find a valid solution for the capacity part of S6

when Eq. 23 has been fulfilled. We refer to Fig. 7 for better understanding. The
corresponding procedure is as follows:

Step 1: Exhaust all 0x34c8 possible values of (S6
1,1, S

6
2,1). For each value, guess

S5
2,1 and compute S5

1,1. Store all 232 × 0x34c8 ≈ 245.7 possible values
of (S5

1,1, S
5
2,1, S

6
1,1, S

6
2,1) in the table TA4. Due to the symmetry of the

6-round differential characteristic, (S5
1,3, S

5
2,3, S

6
1,3, S

6
2,3) take the same

possible values with that of (S5
1,1, S

5
2,1, S

6
1,1, S

6
2,1).

Step 2: Exhaust all 264 possible values of (S0
0,0, S

0
0,2) and compute the corre-

sponding (S5
0,1, S

5
0,3). Record all the values of (S5

0,1, S
5
0,3, S

0
0,0, S

0
0,2) in

the table TA5.

240 F. Liu et al.

Fig. 7. Matching one valid capacity part

Step 3: Exhaust all 264 possible values of (S0
0,1, S

0
0,3). For each value, compute

the corresponding (S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3). According to TA4, retrieve the

corresponding (S6
1,1, S

6
2,1, S

6
1,3, S

6
2,3) if there is. Otherwise, try another

guess of (S0
0,1, S

0
0,3). It is expected that there will be 264+(−64+45.7)×2 =

227.4 valid values of (S0
0,1, S

0
0,3, S

6
1,1, S

6
2,1, S

6
1,3, S

6
2,3). For each valid

value, move to Step 4.
Step 4: Once (S6

1,1, S
6
2,1, S

6
1,3, S

6
2,3) is known, compute the corresponding

(S5
0,1, S

5
0,3) according to Property 4. Then, retrieve the corresponding

(S0
0,0, S

0
0,2) from TA5. Once (S0

0,0, S
0
0,2) is determined, we can compute

(S6
1,0, S

6
2,0, S

6
1,2, S

6
2,2) and check its validity according to TA3, which

holds with probability (4 × 2−15.5)2 = 2−27. Thus, it is expected to
find one solution to (S0

0,0, S
0
0,1, S

0
0,0, S

0
0,3) which can make the capacity

part of S6 valid.

It can be easily observed that the time and memory complexity of the above
procedure are both 264.

Fulfilling Equation 24. It should be observed that the initial state of Gimli-Hash
satisfies Eq. 23. Thus, we can start from an input state S0 whose capacity part
satisfies Eq. 23 and find a solution to (S0

0,0, S
0
0,1, S

0
0,2, S

0
0,3) in order that the

capacity part of S6 satisfies Eq. 24. The procedure is almost the same with the
above one. ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(S6
1,0 ≪ 9) ∧ 0x1fffffff = 0,

(S6
1,1 ≪ 9) ∧ 0x1fffffff = 0,

(S6
1,2 ≪ 9) ∧ 0x1fffffff = 0,

(S6
1,3 ≪ 9) ∧ 0x1fffffff = 0.

(24)

Step 1: Exhaust all 264 possible values of (S0
0,0, S

0
0,2) and compute the corre-

sponding (S5
0,1, S

5
0,3). Record all the values of (S5

0,1, S
5
0,3, S

0
0,0, S

0
0,2) in

the table TA6.
Step 2: Exhaust all 264 possible values of (S0

0,1, S
0
0,3). For each possible value,

(S5
1,1, S

5
2,1, S

5
1,3, S

5
2,3) is computable. Then, based on the Property 5 of

the SP-box, compute (S5
0,1, S

5
0,3) which can make the conditions on

Automatic Verification of Differential Characteristics 241

(S6
1,1, S

6
1,3) hold. Once (S5

0,1, S
5
0,3) is determined, we can retrieve from

TA6 the values of (S0
0,0, S

0
0,2). Then, we can compute the full value of

S6 and check whether the conditions on (S6
1,0, S

6
1,2) hold. Once it is

valid, a solution to the rate part of S0 which can make the 4×29 = 116
bit conditions on the capacity part of S6 hold is found.

Obviously, the time complexity to find a conditional capacity part is upper
bounded by 264 and the memory complexity is 264. Consequently, the time and
memory complexity to convert the SFS collisions into collisions are both 264.

5.4 Discussions on Our MILP Model

Similar to the MILP model for bit-based division property to find an integral
distinguisher [24], our model is used to identify whether there exists a feasible
solution instead of proving something optimal. If the model is infeasible, it simply
implies that the corresponding differential characteristic is invalid. We also have
to admit that the detection of contradictions can be performed manually, espe-
cially for the primitives with simple linear and nonlinear components. However,
when the components become sophisticated, it is rather time-consuming to tackle
this task. For example, the linear and nonlinear components of ASCON [11] are
more complex than those of Gimli and we are not able to carry out a manual
analysis of the 2-round differential characteristic for ASCON found in [25]. How-
ever, after constructing a similar model for ASCON, we immediately found that
the 2-round differential characteristic [25] is invalid as well. The correctness of
the model for ASCON is verified by setting a correct 4-round differential char-
acteristic and its corresponding conforming message as inputs, which are found
by the designers in [12]. However, we are not able to improve the results for
ASCON.

We also notice that as the number of the attacked rounds increases, more
variables and more related inequalities are involved, thus making the time to get
a solution increase significantly. Consequently, it is difficult to estimate whether
a differential characteristic can be verified in practical time. We believe that
if there are simple contradictions in the differential characteristic, they can be
found immediately. However, when the contradictions are complex, it may take
more time to detect them. For example, we followed some truncated collision-
producing differential characteristics for ASCON identified in [11]. For the dense
parts, after we ensure that there is no contradiction for certain two consecutive
rounds and get a solution for the differential characteristic, when three consecu-
tive rounds are tested, contradictions start to appear and it takes some time for
the solver to output “infeasible”.

Therefore, we provide an insight on searching for differential characteris-
tics for the permutation-based primitives. Suppose the target is to search for a
characteristic for up to XR rounds. For such a task, one can involve the value
transitions in a suitable place of the differential characteristics to avoid the
inconsistency in this part. After a feasible solution is found, involve the value

242 F. Liu et al.

transitions in longer consecutive rounds and further check the consistency. How-
ever, it can not be guaranteed that we can always obtain a solution (“feasible”)
or no solution (“infeasible”) in practical time.

6 SFS Collisions for Intermediate 8-Round Gimli-Hash

The collision attack on 6-round Gimli-Hash has been described above. To further
understand the security of Gimli-Hash, a SFS collision attack on the intermediate
8 rounds of Gimli-Hash will be described in this section. Specifically, the following
sequence of operations (8-round permutation) will be considered:

(SP) → (SP → B SW) → (SP)
→ (SP → S SW → AC) → (SP) → (SP → B SW) → (SP)
→ (SP → S SW → AC).

In addition, our target is to find an inner collision, i.e. the collision in the capacity
part, which can be trivially converted to a real SFS collision by using more
message blocks to absorb the difference in the rate part.

Different from the collision attack on 6-round Gimli-Hash, this attack does
not rely on a specific differential characteristic. Instead, the structure of the
intermediate 8-round permutation will be exploited. As shown in Fig. 8, the
message difference is only injected in S1

0,3 and the difference of several internal
state words are conditioned in order to generate an inner collision. In other
words, finding a SFS collision is equivalent to finding a message pair which can
make the conditions on these intermediate words hold.

6.1 Fulfilling ΔS3
0,1 = 0, ΔS5

1,3 = 0 and ΔS5
2,3 = 0

First of all, consider the conditions on ΔS3 and ΔS5, i.e. ΔS3
0,1 = 0, ΔS5

1,3 = 0
and ΔS5

2,3 = 0. The following facts should be noticed:

– S3
0,1 only depends on (S1

0,3, S
1
1,3, S

1
2,3).

– (S5
1,3, S

5
2,3) only depend on (S3

0,3, S
3
1,3, S

3
2,3).

– S3
0,3 only depends on (S1

0,1, S
1
1,1, S

1
2,1).

– (S3
1,3, S

3
2,3) only depend on (S1

0,3, S
1
1,3, S

1
2,3).

Therefore, the corresponding attack procedure to make the above three condi-
tions hold can be described as below:

Step 1: Randomly choose a value for (S1
1,3, S

1
2,3), exhaust all 232 possible values

of S1
0,3 and compute the corresponding (S3

0,1, S
3
1,3, S

3
2,3). Store these

values in a table and sort it according to S3
0,1.

Step 2: For each pair of (S3
0,1, S

3
1,3, S

3
2,3) colliding in S3

0,1, exhaust all 232 pos-
sible values of S3

0,3. Then, we can compute a pair of (S5
1,3, S

5
2,3) and

check whether they collide. If all possible values of S3
0,3 are used up

and there is no collision in (S5
1,3, S

5
2,3), goto Step 1. If a collision in

(S5
1,3, S

5
2,3) is found, move to Step 3.

Step 3: Randomly choose a value for (S3
1,1, S

3
2,1) and compute backward to

obtain (S1
0,1, S

1
1,1, S

1
2,1).

Automatic Verification of Differential Characteristics 243

Fig. 8. SFS collision attack on the intermediate 8-round Gimli-Hash

Complexity Evaluation. Obviously, at Step 1, we can expect 231 pairs of
(S3

0,1, S
3
1,3, S

3
2,3) colliding in S3

0,1. The time complexity and memory complex-
ity to obtain these collisions are both 232. As for Step 2, we need to enumerate
all possible values of S3

0,3 for each colliding message pair. Therefore, the time
complexity is 264. In addition, ΔS5

1,3 = 0 and ΔS5
2,3 = 0 hold with probability

2−64 while only 232+31 pairs of (S3
0,3, S

3
1,3, S

3
2,3) will be checked at Step 2. Thus,

Step 1 will be repeated twice. Since only half state is computed at this phase,
the time complexity to make the conditions ΔS3

0,1 = 0, ΔS5
1,3 = 0 and ΔS5

2,3 = 0
hold is 264, while the memory complexity is 232.

6.2 Fulfilling ΔS7
0,0 = 0, ΔS9

1,2 = 0 and ΔS9
2,2 = 0

After the conditions on ΔS3 and ΔS5 are satisfied, some internal state words will
be fixed, as can be noted in the above attack procedure to fulfill these conditions.
In fact, the above method can be adjusted to fulfill ΔS7

0,0 = 0, ΔS9
1,2 = 0 and

ΔS9
2,2 = 0. First of all, notice the following facts:

– S7
0,0 only depends on (S5

0,2, S
5
1,2, S

5
2,2).

– (S9
1,2, S

9
2,2) only depend on (S7

0,2, S
7
1,2, S

7
2,2).

– S7
0,2 only depends on (S5

0,0, S
5
1,0, S

5
2,0).

– (S7
1,2, S

7
2,2) only depend on (S5

0,2, S
5
1,2, S

5
2,2).

– (S5
0,0, S

5
0,2) have already been fixed.

Therefore, the procedure to fulfill the conditions ΔS7
0,0 = 0, ΔS9

1,2 = 0 and
ΔS9

2,2 = 0 can be described as below:

Step 1: Exhaust all 264 possible values of (S5
1,2, S

5
2,2). In this way, 264 different

pairs of (S5
0,2, S

5
1,2, S

5
2,2) can be obtained. For each pair, check whether

they collide in S7
0,0, which holds with probability 2−32. Once they

collide, move to Step 2.
Step 2: Exhaust all 232 possible values of S7

0,2. In this way, 232 different pairs of
(S7

0,2, S
7
1,2, S

7
2,2) can be generated. For each pair, check whether they

collide in (S9
1,2, S

9
2,2), while occurs with probability 2−64. Once they

collide, move to Step 3. Otherwise, goto Step 1.

244 F. Liu et al.

Step 3: Randomly choose values for (S5
1,0, S

5
2,0) and compute the corresponding

S7
0,2. Repeat until the computed S7

0,2 is consistent with that obtained
at Step 2. Finally, randomly choose a value for S5

0,3 and the full state
of S5 is known. Compute backward to obtain the corresponding S1.

Complexity Evaluation. At Step 1, it is expected that there will be 232 pairs of
(S5

0,2, S
5
1,2, S

5
2,2) colliding in S7

0,0. The corresponding time complexity is 264. For
each colliding pair, at Step 2, we will exhaust 232 all possible values of S7

0,2 and
check whether the collision will occur in (S9

1,2, S
9
2,2). Thus, after traversing all

possible solutions obtained at Step 1, we can expect a collision in (S9
1,2, S

9
2,2).

Thus, the time complexity at Step 2 is 232. As for Step 3, it is obvious that
the time complexity is 232. Therefore, the total time complexity to find a SFS
collision for the intermediate 8-round Gimli-Hash is 264.

Remark. It can be noted that there is a minor difference between the methods
to fulfill the conditions on (S3, S5) and on (S7, S9). Thus, when fulfilling the
conditions on (S3, S5), there is actually no need to consume 232 memory. Similar
to the above method, one can simply first choose two different values for S1

0,3

and then exhaust all possible values of (S1
1,3, S

1
2,3) to obtain 232 pairs colliding

in S3
0,1. Thus, we do not take the memory complexity into account in the final

complexity evaluation. On the other hand, 232 memory is cheap as well.

6.3 Experimental Verification

One may doubt whether the above differential pattern for 8-round Gimli-Hash
is valid. To confirm it, our MILP model is applied. Since the generic complexity
we found is 264, it is reasonable that the solver cannot find a solution in practical
time, except the case when there are some more clever algorithms to solve the
corresponding inequalities in the solver. According to the output of the Gurobi
solver, it keeps trying to solve the inequalities and does not output “infeasible”
for such a differential pattern. Thus, we believe that the 8-round differential
pattern is reasonable. As a counter-example, an impossible 7-round differential
pattern is displayed in full version of this paper [17].

7 State Recovery Attack on 9-Round Gimli

For the AE scheme specified in the submitted Gimli document [1], which adopts
the well-known duplex mode [5], the key length is 256 bits while the designers
claim only 128-bit security. Such a security claim is strange since there is no
generic attack matching this bound. Although there is a key-recovery attack on
22.5-round Gimli [13], it only works for an ad-hoc mode and cannot be directly
applied to the official scheme. Thus, we are motivated to devise the following
two attacks and we believe that they are meaningful to further understand the
security of Gimli.

Automatic Verification of Differential Characteristics 245

1. The attack on a round-reduced variant matching the 2128 security claim.
2. Maximize the number of rounds that can be attacked with complexity below

2256.

For our state recovery attack, we aim at the encryption phase and only four
128-bit message blocks will be used, as shown in Fig. 9. The aim is to recover
the secret state of P1. To achieve it in less than 2256 time, a guess-and-determine
method will be utilized.

Fig. 9. Leaked information in the state recovery attack

Specifically, as shown in Fig. 10, our aim is to exhaust all possible values of
(S9

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) and then compute backward to check whether the
first row of S0 can be matched. The complexity is required not to exceed 2256.
The corresponding attack procedure can be described as follows:

Fig. 10. State recovery attack on 9-round Gimli

Step 1: Guess (S9
1,0, S

9
2,0, S

9
1,2, S

9
2,2, S

4
0,0, S

4
0,2). For each guess, compute back-

ward to obtain (S0.5
1,0 , S0.5

2,0 , S0.5
1,2 , S0.5

2,2 , S0.5
0,1 , S0.5

0,3). Then, according to the
Property 3 of the SP-box, the guess is correct with probability 2−2.
Once it is correct, compute (S0

1,0, S
0
2,0[30 ∼ 0], S0.5

0,0 [30 ∼ 0]). For the
correct guess, store the corresponding value of the tuple

(S0.5
0,0 [30 ∼ 0], S0.5

0,1 , S0.5
0,2 [30 ∼ 0], S0.5

0,3 , S4
0,0, S

4
0,1, S

4
0,2, S

4
0,3, S

9
1,0, S

9
2,0, S

9
1,2, S

9
2,2)

246 F. Liu et al.

in a table denoted by T49. It is expected to have 2192−2 = 2190 valid
values.

Step 2: Similarly, guess (S9
1,1, S

9
2,1, S

9
1,3, S

9
2,3, S

4
0,1, S

4
0,3) and compute the cor-

responding value of the tuple

(S0.5
0,0 , S0.5

0,1 [30 ∼ 0], S0.5
0,2 , S0.5

0,3 [30 ∼ 0], S4
0,0, S

4
0,1, S

4
0,2, S

4
0,3).

Check whether there is a match between

(S0.5
0,0 [30 ∼ 0], S0.5

0,1 [30 ∼ 0], S0.5
0,2 [30 ∼ 0], S0.5

0,3 [30 ∼ 0], S4
0,0, S

4
0,1, S

4
0,2, S

4
0,3)

in the table T49. Once a match is found, a valid value of (S9
i,j) (1 ≤ i ≤

2, 0 ≤ j ≤ 3) is found. Since the matching probability is 2−31×4−128 =
2−252 and there are in total 2190+190 = 2380 pairs, it is expected to
find 2380−252 = 2128 valid values of (S9

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3).

Obviously, the time complexity and memory complexity to enumerate all
valid values of (S9

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) are 2192 and 2190, respectively. The
correctness of (S9

i,j) (1 ≤ i ≤ 2, 0 ≤ j ≤ 3) can be simply further verified using
the leaked information from (P2, P3).

8 Conclusion

A comprehensive study of Gimli has been made. Especially, a novel MILP model
capturing both difference transitions and value transitions is developed. As far
as we know, this is the first MILP model to search for a differential characteristic
involving the value transitions. It would be interesting to apply this technique to
other permutation-based cryptographic primitives. Based on this new model, we
reveal that some existing differential characteristics of Gimli are incompatible.
Moreover, a practical SFS colliding message pair for 6-round Gimli-Hash is found
by utilizing this model and several techniques to convert the SFS collisions into
collisions are developed. To test how far the SFS collision attack on Gimli-
Hash can go, we also mount an attack on the intermediate 8-round Gimli-Hash
with time complexity 264. For the authenticated encryption scheme, a state-
recovery attack on 9-round Gimli can be mounted with time complexity 2192 and
memory complexity 2190. To the best of our knowledge, these are the best attacks
on round-reduced Gimli, covering the proposed hash scheme and authenticated
encryption scheme.

Acknowledgements. We thank the anonymous reviewers of CRYPTO 2020 for their
many helpful comments. We thank Daniel J. Bernstein and Florian Mendel for some
discussions on the cryptanalysis of Gimli. We also thank Xiaoyang Dong and Rui
Zong for the discussions on the contradictions in the 6-round differential characteristic.
Fukang Liu and Takanori Isobe are supported by Grant-in-Aid for Scientific Research
(B) (KAKENHI 19H02141) for Japan Society for the Promotion of Science and SECOM
science and technology foundation. In addition, Fukang Liu is partially supported by
National Natural Science Foundation of China (Grant No. 61632012, 61672239) and
the National Cryptography Development Fund [No. MMJJ20180201].

Automatic Verification of Differential Characteristics 247

References

1. https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
2. https://www.gurobi.com
3. Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.:

Improved cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-10366-7 32

4. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

6. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference (2011).
http://keccak.noekeon.org

7. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

8. Biryukov, A., Nikolić, I., Roy, A.: Boomerang attacks on BLAKE-32. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 13

9. Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 204–221.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 12

10. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 1

11. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 (2018).
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf

12. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Preliminary analysis of
Ascon-Xof and Ascon-Hash (version 0.1) (2019). https://ascon.iaik.tugraz.at/files/
Preliminary Analysis of Ascon-Xof and Ascon-Hash v01.pdf

13. Hamburg, M.: Cryptanalysis of 22 1/2 rounds of Gimli. Cryptology ePrint Archive,
Report 2017/743 (2017). https://eprint.iacr.org/2017/743

14. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher
family. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, Part I, vol.
9215, pp. 161–185. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 8

15. Leurent, G.: Analysis of differential attacks in ARX constructions. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34961-4 15

16. Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, Part I, vol.
8042, pp. 241–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40041-4 14

17. Liu, F., Isobe, T., Meier, W.: Automatic verification of differential characteristics:
application to reduced Gimli (full version). Cryptology ePrint Archive, Report
2020/591 (2020). https://eprint.iacr.org/2020/591

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
https://www.gurobi.com
https://doi.org/10.1007/978-3-642-10366-7_32
https://doi.org/10.1007/978-3-642-10366-7_32
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-642-28496-0_19
http://keccak.noekeon.org
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-642-21702-9_13
https://doi.org/10.1007/978-3-642-40041-4_12
https://doi.org/10.1007/11935230_1
https://ascon.iaik.tugraz.at/files/asconv12-nist.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://ascon.iaik.tugraz.at/files/Preliminary_Analysis_of_Ascon-Xof_and_Ascon-Hash_v01.pdf
https://eprint.iacr.org/2017/743
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/978-3-642-40041-4_14
https://doi.org/10.1007/978-3-642-40041-4_14
https://eprint.iacr.org/2020/591

248 F. Liu et al.

18. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 16

19. Mironov, I., Zhang, L.: Applications of SAT solvers to cryptanalysis of hash func-
tions. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 102–115.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814948 13

20. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, Part
I, vol. 10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 19

21. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, Part I, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

22. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

23. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

24. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, Part I, vol. 10031, pp.
648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 24

25. Zong, R., Dong, X., Wang, X.: Collision attacks on round-reduced Gimli-
Hash/Ascon-Xof/Ascon-Hash. Cryptology ePrint Archive, Report 2019/1115
(2019). https://eprint.iacr.org/2019/1115

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24
https://eprint.iacr.org/2019/1115

The MALICIOUS Framework:
Embedding Backdoors into Tweakable

Block Ciphers

Thomas Peyrin(B) and Haoyang Wang(B)

School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

thomas.peyrin@ntu.edu.sg, wang1153@e.ntu.edu.sg

Abstract. Inserting backdoors in encryption algorithms has long seemed
like a very interesting, yet difficult problem. Most attempts have been
unsuccessful for symmetric-key primitives so far and it remains an open
problem how to build such ciphers.

In this work, we propose the MALICIOUS framework, a new method
to build tweakable block ciphers that have backdoors hidden which allows
to retrieve the secret key. Our backdoor is differential in nature: a specific
related-tweak differential path with high probability is hidden during the
design phase of the cipher. We explain how any entity knowing the back-
door can practically recover the secret key of a user and we also argue why
even knowing the presence of the backdoor and the workings of the cipher
will not permit to retrieve the backdoor for an external user. We analyze
the security of our construction in the classical black-box model and we
show that retrieving the backdoor (the hidden high-probability differen-
tial path) is very difficult.

We instantiate our framework by proposing the LowMC-M construc-
tion, a new family of tweakable block ciphers based on instances of
the LowMC cipher, which allow such backdoor embedding. Generating
LowMC-M instances is trivial and the LowMC-M family has basically the
same efficiency as the LowMC instances it is based on.

Keywords: Tweakable block cipher · Backdoor · Differential
cryptanalysis · LowMC-M

1 Introduction

A backdoor in an encryption algorithm enables an entity who knows it to cir-
cumvent the security guarantees so that he can obtain the secret information
more efficiently than with a generic black-box attack. There are two categories
of backdoors. The first one is the backdoor implemented in a security product at
the protocol or key-management level, which is generally considered in practice.

In this article, we focus on the second type: a cryptographic backdoor.
A cryptographic backdoor is embedded directly during the design phase of a
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 249–278, 2020.
https://doi.org/10.1007/978-3-030-56877-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_9

250 T. Peyrin and H. Wang

cryptographic primitive and renders the cipher susceptible to some dedicated
cryptanalysis. Cryptographic backdoors have been extensively studied by Young
and Yung, introducing the term “Kleptography” [41,44]. However, despite some
interest from the academic community about this topic, there are very few pub-
licly known backdoored primitives. A concrete example is the pseudorandom
number generator Dual EC DBRG [8] designed by NSA, whose backdoor was
revealed by Edward Snowden in 2013 and also in some research works [10,37].

Embedding backdoors into block ciphers is a challenging problem since block
ciphers are deterministic and thus it is complex to exploit randomness in com-
putations. Young and Yung have designed several backdoors in secret block
ciphers [42,43,45], where it is assumed that the cipher specifications are unknown
to the adversary. In this work, we will not make such assumption and we will
consider the specifications of the cipher to be fully public.

A backdoor should be computationally difficult to retrieve, even if its general
form is known. More concretely, the backdoor security (the cost of retrieving the
backdoor) should be the same as the security generically provided by the cipher
(otherwise the backdoor would naturally reduce the security of the block cipher).
Besides, the backdoor should ideally lead to a practical key recovery attack, or
at least reduce the brute force search cost for the adversary. For example, if
a backdoor could reduce the security of AES-256 to 2128, it would be a great
theoretical advance, but would be unusable in practice. Last but not least, the
resulting block cipher also has to be secure in the classical sense, that is, it is
able to resist state-of-the-art cryptanalysis techniques.

There have been only limited works focusing on this direction and to the best
of the authors’ knowledge there is no such design satisfying the above require-
ments simultaneously. In 1997, Rijmen and Preneel proposed a special Sbox
design strategy which was used to hide a high-probability linear approximation
in an Sbox [35]. The knowledge of this backdoor leads to an efficient key recov-
ery attack based on linear cryptanalysis, but only a part of the key information
can be obtained. They presented concrete instantiations by applying the Sbox
design to CAST and LOKI91 ciphers and claimed that the embedded backdoors
are undetectable even if the general form of the backdoor is known. However,
this design was broken subsequently in 1998 [39] by Wu et al. who found a way
to easily recover the backdoor and showed that the security and practicability
of the backdoor can’t be guaranteed at the same time. Later in 1999, Paterson
suggested that if the group generated by round functions acts imprimitively on
the message group, then it is possible to create a backdoor in the cipher [31].
Built upon this mechanism, he introduced a DES-like cipher which allows an
entity knowing the backdoor to retrieve the key with 241 computations. How-
ever, as mentioned by the author, the backdoor is detectable and the cipher
is vulnerable to differential attacks. Following on this idea, a backdoor based
on partitioning cryptanalysis was studied in [5] and a concrete instance of an
AES-like cipher called BEA-1 was later proposed in [6], but no explicit back-
door security was provided. One can also mention the work from Patarin and
Goubin [29,30] who proposed “2R–schemes”, basically Sbox-based asymmetric

The MALICIOUS Framework 251

schemes secretly consisting of a 2-round secret Substitution-Permutation Net-
work (SPN) but publicly represented as its corresponding algebraic equations.
However, this research direction also suffered from attacks [12,40]. Two more
backdoor designs [4,13] have been introduced, but neither of them provide solid
proof for the backdoor security and even the security of the cipher itself is ques-
tionable. Lastly, in a different setting, a backdoored version of the SHA-1 hash
function was proposed in [1], where the attacker is allowed to pre-choose the
constants used in the design, so he can prepare in advance some specific collision
messages for that particular instance.

Apart from these public researches, one can naturally question if there are
some public block ciphers that might contain backdoors not claimed by the
designers. In particular, primitives whose detailed design rationale is not pro-
vided are naturally more suspicious, especially when the ciphers have been
designed by governmental agencies (as can be seen by the difficulties encoun-
tered by the NSA lightweight block ciphers SIMON and SPECK [9] to become
ISO standards). For example, Perrin found a very strong algebraic structure [32]
that is hidden inside the Sbox employed in both the block cipher Kuznyechik [36]
and the hash function Streebog [27], both primitives being selected as Russian
standards (GOST). Even though there is currently no attack based on this result,
it illustrates the issue of potential backdoor in foreign encryption algorithms and
more research is required to better understand the possibilities and implications
of cryptographic backdoor.

We emphasize that inserting backdoors in an encryption algorithm itself is
very different from inserting backdoors in an implementations, being in software
or in hardware (like hardware trojans).

Our Contributions. In this paper, we propose a new method to generate back-
door encryption algorithms. We bring together tweakable block ciphers (TBC)
and Extendable-Output Function (XOF) in a common framework called MALI-
CIOUS, which enables the designer to embed backdoors into the TBC. The gen-
eral representation of our construction is similar to that of the TWEAKEY
framework [22], but the tweak is handled separately by a XOF and the round
function has to be partially non-linear.

Our backdoor is based on differential cryptanalysis: due to the partial non-
linear layer, the designer can embed related-tweak differential characteristics
with probability 1 over many rounds. In particular, the sub-tweak difference
employed in an embedded differential characteristic is generated from a specific
tweak pair that is chosen in advance by the designer. This malicious tweak
pair is the backdoor, and the XOF applied in the tweak schedule is used to
protect the malicious tweak pair: even knowing the high-probability related-
tweak differential characteristic, it will remain computationally difficult to find
a tweak pair that triggers it. More importantly, the backdoor security is ensured
by the target-difference resistance ability of the chosen XOF. An attacker with
the knowledge of the backdoor is able to retrieve the full key with negligible
effort under the chosen-tweak scenario.

252 T. Peyrin and H. Wang

Based on the MALICIOUS framework, we also propose a concrete instantia-
tion that we call LowMC-M. Our family of TBC LowMC-M is created based on
some instances of the block cipher LowMC [2]. Compared to LowMC, our proposal
LowMC-M has an additional sub-tweak addition in each round and the tweak
schedule is a XOF, but the other parts of the round function and the number
of rounds remain unchanged. Apart from its backdoor security that is naturally
inherited from the MALICIOUS framework, we claim that its classical black-box
security against state-of-the-art cryptanalysis is the same as the corresponding
LowMC variants.

We believe this work is a first step in a new direction for the study of back-
doors in encryption algorithms. We are confident that more exotic (based on
other types of cryptanalysis techniques than plain differential cryptanalysis) and
potentially more efficient instances following the MALICIOUS would be possible.

Paper Organization. In Sect. 2, we present the attacking scenario and some
security notions for backdooring cryptographic primitives. In Sect. 3 the MALI-
CIOUS framework is described and its backdoor security and design rationale
are explained. We introduce a concrete instantiation of MALICIOUS (so-called
LowMC-M) in Sect. 4. We then analyze LowMC-M with respect to the backdoor
security and the classical black-box security in Sect. 5 and Sect. 6 respectively.
Finally, we present our conclusions in Sect. 7.

2 Preliminaries

2.1 Attacking Scenario

For classical (tweakable) block ciphers, the attacking scenario considers only two
entities: the user (or pair of users) who owns the secret key and the attacker who
tries to break the cryptosystem, i.e., to find out the secret key. For (tweakable)
block ciphers with a backdoor, another entity has to be involved in the attacking
scenario: the designer, who inserts the backdoor into the primitive. Thus, we have
in total three entities: the designer (knows the backdoor, but not the secret key),
the user (knows the secret key, but not the backdoor) and the attacker (neither
backdoor nor key is known).

One can see that both the user and the attacker have some motivation to
find out what is the backdoor. More importantly, in our model the backdoor is
independent of the secret key, and therefore the user and the attacker possess
the same capability in trying to uncover the backdoor (the cipher specifications
are public known, so they can test the cipher with any chosen key they want).
For the rest of this article, when considering the recovery of the backdoor, we
will simply refer to both of them as the attacker.

2.2 Security Notions and More

We introduce below various notions regarding the security and the practicability
of a backdoor:

The MALICIOUS Framework 253

– Undetectability: this security notion represents the inability for an external
entity to realize the existence of the hidden backdoor.

– Undiscoverability: it represents the inability for an attacker to find the hidden
backdoor, even if the general form of the backdoor is known.

– Untraceability: it states that an attack based on the backdoor should not
reveal any information about the backdoor itself.

– Practicability: this usability notion stipulates that the backdoor is practical,
in the sense that it is easy to recover the secret key once the backdoor is
known.

If a cipher is publicly claimed as potentially backdoored, it will naturally
increase the watchfulness of users, even if they do not know whether there is
indeed backdoored or not embedded in the primitive. In this scenario, the unde-
tectability notion models the incapacity of a user to find any hard evidence that
a backdoor indeed exists.

For our proposal LowMC-M, the backdoor is claimed to be undetectable,
undiscoverable and practicable, but not untraceable.

2.3 Notations

Given a bit string x, we will denote by x[i] its i-th bit, counting from the least
significant bit (LSB). Given two bit strings x and y, x||y will represent the
concatenation of x and y. Finally, we denote by kj (respectively by tj) the sub-
key (respectively sub-tweak) incorporated during the j-th round of the cipher,
while k0 and t0 are added in as whitening material.

3 The MALICIOUS Framework

In this section, we introduce the MALICIOUS framework which allows to generate
tweakable block ciphers that are embedded with hidden high-probability differ-
ential characteristics. This framework is based on partial non-linear layers for
the internal state transformation and a tweak schedule based on an extendable-
output function (XOF).

3.1 Block Ciphers with Partial Non-linear Layers

SPN-based block ciphers are usually designed to apply linear layers (Li) and non-
linear layers (Si) to the entire state at every round i. In 2013, an irregular design
was suggested by Gérard et al. [18], where the non-linear layer is only applied
to a subpart of the state at each round. We consider such design with block size
n bits and partial non-linear layers of size s (< n) bits. Assume, without loss of
generality, that the non-linear layer is always applied before the linear layer at
every round. Then, we can write fi(x) = Li(Si(x(0))||x(1)) the round function
fi that transforms the state x at round i, the state being partitioned into two
parts where the non-linear layer only operates on the part x(0) and not on the
part x(1).

254 T. Peyrin and H. Wang

Such design allows efficient masking and thus can improve security against
side-channel attacks. A concrete instantiation of this methodology named
ZORRO was then proposed [18]. Even though ZORRO was rapidly broken
[7,20,33,38], the general design strategy continued to attract interest from the
research community: in 2015, another such design LowMC was proposed [2]. Its
aim was to minimize the multiplicative complexity and depth of the cipher in
order to have performance advantages in certain applications, including multi-
party computation (MPC), fully homomorphic encryption (FHE) and zero-
knowledge proofs (ZK). After a few tweaks due to security concerns, the cur-
rent version v3 of LowMC remains solid after the several third party analy-
sis [15,16,34].

Compared to a full non-linear layer, a partial non-linear layer inevitably
weakens the security of a cipher. One notable property is that there will exist
non-trivial differential characteristics that will not activate any Sboxes over one
or more rounds of the cipher. In a single round, by setting the difference on
x(0) to be 0, there are 2n−s differences of x that do not differentially activate
any Sboxes. Assuming a well designed linear layer with good mixing properties,
one can still expect around 2n−2s differences that will also not differentially
activate any Sboxes in the second round. This reasoning can be continued until
no difference survives and thus the maximal expected number of rounds that a
deterministic differential characteristic can cover is �n

s �. Note that this number
would of course vary depending on the specificities of the linear layers.

3.2 Tweakable Block Ciphers

The first formal treatment of tweakable block ciphers (TBC) was proposed by
Liskov, Rivest and Wagner in [25,26]. The signature of a conventional block
cipher can be described as E : {0, 1}k × {0, 1}n → {0, 1}n where an n-bit plain-
text is encrypted to an n-bit ciphertext using a k-bit secret key. A tweakable
block cipher accepts an additional t-bit public input called tweak, its signature
thus being E : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n. The introduction of a tweak
input provides the ability for the user to select a permutation among a family
of permutations even when the key is fixed.

Due to this extra degree of freedom that can potentially be leveraged by the
attacker, designing a TBC is not straightforward. Block cipher-based TBC con-
structions have been studied, but comes with a non-negligible efficiency penalty.
We can mention the TWEAKEY framework, a recent design strategy to build
ad-hoc TBCs, that was proposed at ASIACRYPT 2014 by Jean et al. [22]. In
this framework, the key and tweak inputs are treated equivalently in terms of
design and this material is called tweakey: the tweakey input can be used as key
or tweak value, which is up to the choice of the user.

Unlike the key input, the tweak does not need to be kept secret and therefore
one should assume that an adversary has full control over it. Thus, besides
the attack models of single-key (no difference in the key or tweak), related-key
(difference in the key, but no difference in the tweak), related-tweak (no difference
in the key, but difference in the tweak) and related-tweakey (difference in both

The MALICIOUS Framework 255

the key and tweak), it is reasonable to consider the chosen-tweak model as a
meaningful model in practice.

3.3 Extendable-Output Function

An extendable-output function (XOF) is a generalization of a hash function,
where the output can be extended to any desired length. Similar to a hash
function, it should be collision, preimage and second-preimage resistant. A XOF
is a natural choice when an application requires a hash function to have non-
standard digest length. Technically, it is also possible to use a XOF as a generic
hash function by setting the output length fixed. Besides, it has some other
applications, such as key derivation functions and stream ciphers.

Currently, there are many instances of XOF, such as SHAKE128 and
SHAKE256 (defined in SHA-3 standard [17]) and the more efficient variant Kan-
garooTwelve [11].

3.4 The MALICIOUS Construction

Motivation. Differential and linear cryptanalysis are among the most efficient
and well-understood attacks against block ciphers, both in theory and in prac-
tice. Thus, it seems natural to try creating backdoors using these techniques.
Yet, there have been only a few works focusing on this research direction. For
example, [3] and [28] explored backdoors in hash functions based on differential
cryptanalysis. As for block ciphers, to the best of our knowledge, there is only
one work from 1997 [35] using linear cryptanalysis. In that paper, special Sboxes
are designed to hide high-probability linear approximations, which then enable
a practical linear cryptanalysis. However, this construction was easily broken by
Wu et al. in the subsequent year [39]. The attack against this cipher shows that
the higher the probability of the embedded linear approximation, the weaker the
backdoor security. Consequently, the authors claimed that it is infeasible for such
a cipher to build a practical backdoor while keeping acceptable backdoor secu-
rity. They further noted that “it seems that hiding differentials is more difficult
than hiding linear relations”.

Even though other block ciphers embedding backdoors have been pro-
posed [4–6,13,31], their design methodologies are usually very dedicated. On
the other hand, as the topic of backdoor ciphers has not drawn much attention
from the cryptography community, the backdoor security of these ciphers has
not been well analyzed yet.

Considering the above facts, we introduce the MALICIOUS framework which
allows to build efficient backdoors based on differential cryptanalysis. Moreover,
we will show that the backdoor security can be reduced to a variation of the
collision resistance notion of the XOF used in the tweak schedule.

The Construction. MALICIOUS is a framework to build a tweakable block
cipher with n-bit blocksize, k-bit key and tweak of arbitrary size. It consists of
three components:

256 T. Peyrin and H. Wang

– a round function fi with partial non-linear layer, which can be expressed as
fi(x) = Li(Si(x(0))||x(1)),

– a tweak schedule based on a XOF,
– a key schedule.

The sub-tweak and sub-key values are XORed only to the non-linear part of
the state, but are XORed to full state at the whitening stage1. The cipher is
composed of r consecutive rounds. The framework is depicted in Fig. 1.

Fig. 1. The MALICIOUS framework

The backdoor introduced by MALICIOUS are related-tweak differential char-
acteristics with probability 1 (deterministic). With the knowledge of this back-
door, a key recovery attack can be performed using various methods of differ-
ential cryptanalysis. It is to be noted that the attack is under the chosen-tweak
model: both the designer and the attacker have complete freedom over the tweak
values. This model is classical for TBC and realistic in practice.

We now describe how the backdoor can be embedded in the cipher. The core
idea is that the sub-tweak difference of the backdoor chosen tweaks is used to
cancel the difference of the non-linear part of the state in each round, so that
the resulting differential characteristics will have no differentially active Sbox (as
illustrated in Fig. 2). In Algorithm 1, we present the general steps to construct
a MALICIOUS instance, in which a deterministic differential characteristic over
r0 (≤ r) rounds is embedded.

The key of the backdoor is the tweak pair generating these particular sub-
tweak differences and the plaintext difference used in the embedded differential
characteristic. We will use the prefix malicious to denote them. We also note that

1 This is equivalent to a full state addition for all rounds, see Sect. 4.2 for details.

The MALICIOUS Framework 257

Fig. 2. Transitions of state difference in the embedded related-tweak differential char-
acteristic. The differences of the hashed blocks can be zero or non-zero, while the
differences of the white blocks are necessarily zero.

Algorithm 1: Constructing a MALICIOUS instance with an embedded
deterministic differential characteristic over r0 rounds

Select a XOF as the tweak schedule.

Choose uniformly at random a pair of tweak values (T1, T2) of arbitrary length.

Compute t10|| . . . ||t1r ← XOF(T1) and t20|| . . . ||t2r ← XOF(T2).

Evaluate the differences Δti = t1i ⊕ t2i for all i ∈ [0, . . . , r].

Randomly select a plaintext difference ΔP = Δx0 for the linear part x
(1)
0 and

set Δx
(0)
0 = Δt

(0)
0 .

for i from 1 to r do
Determine a round function fi with partial non-linear layers such that:
if i < r0 then

Given the input difference (Δxi−1 ⊕ Δti−1), the output difference after

fi has to satisfy Δx
(0)
i = Δti.

end

end
Output the cipher description and the r0-round related-tweak differential
characteristic that is embedded into it (with related tweaks T1 and T2).

it is possible to embed multiple differential characteristics simultaneously. Then,
the key recovery complexity will depend on the number of embedded differential
characteristics and the cryptanalysis method.

We emphasize that the framework only focuses on the requirements of the
cipher to embed a backdoor. However, a concrete instantiation would also have
to take into account many other design principles so that the cipher could
resist all state-of-the-art cryptanalysis as well as the attack against the back-
door described in the following section.

258 T. Peyrin and H. Wang

3.5 The Backdoor Security

In this section, we will evaluate two particular aspects of the backdoor security:
(1) the complexity for the attacker to find the embedded differential character-
istics, (2) whether additional backdoors exist in the resulting primitives, and if
so, what is the complexity to find them.

Firstly, we will discuss the relation between the malicious tweak pair and
its corresponding plaintext difference. We consider in this article that the num-
ber of rounds for the embedded differential characteristic is publicly known.
On the one hand, if the malicious tweak pair is known to the attacker, then
the corresponding sub-tweak differences can of course be computed. From these
sub-tweak differences, he can obtain partial information about the state differ-
ences expected during the differential characteristic. Note that the embedded
differential characteristic being deterministic indicates that the transformations
of state differences are linear. Hence, by reversing the linear transformations, the
malicious plaintext difference can eventually be recovered. That is, the leakage
of the malicious tweak pair reveals the malicious plaintext difference.

On the other hand, if the malicious plaintext difference is known to the
attacker, he can compute its transformation through the linear layer and obtain
the required value for the sub-tweak difference such that it cancels the non-
linear layer difference (since the sub-tweak is only XORed to the non-linear part,
there is only one such candidate), and continue this process in the following
rounds. Eventually, the embedded differential characteristic will be revealed.
However, it remains difficult to recover the actual malicious tweak pair due to
the XOF-based tweak schedule: given the embedded related-tweak differential
characteristic, finding a tweak pair that leads to it through the XOF will be
difficult. We define this new security notion as target-difference resistance:

Definition 1 (Target-difference resistance). A hash function H is target-
difference resistant if it is hard to find two inputs x and y such that H(x) ⊕
H(y) = Δ, where Δ is a given non-zero constant.

To better understand target-difference resistance, we introduce the limited-
birthday problem, which was first proposed in [19]:

Definition 2 (The limited-birthday problem [21]). Let H be an n-bit out-
put hash function that can be randomized by some input (IV or tweak or etc.)
and that processes any input message of fixed size m bits, where m > n. Let IN
be a set of admissible input differences and OUT be a set of admissible output
differences, with the property that IN and OUT are closed sets with respect to
⊕ operation. Then, for the limited-birthday problem, the goal of the adversary is
to generate a message pair (x, y) such that x⊕y ∈ IN and H(x)⊕H(y) ∈ OUT
for a randomly chosen instance of H.

Let 2I and 2O denote the sizes of IN and OUT respectively. The lower bound
on the time complexity to find a solution for the limited-birthday problem is

The MALICIOUS Framework 259

max(2
n−O+1

2 , 2n−I−O+1)2. If I is small, the complexity is 2n−I−O+1. However,
even if I is very big, the complexity cannot be below 2

n−O+1
2 .

Target-difference resistance can be seen as a special case of the limited-
birthday problem (as well as a generalisation of the classical collision resistance)
where OUT is limited to a single value (2O = 1) and IN is the full input space.
Therefore, target-difference resistance has the same generic complexity as the
classical collision resistance notion, that is the birthday bound O(2n/2).

More generally, instead of the exact malicious tweak pair, the attacker could
try to find another tweak pair whose sub-tweak differences are also the desired
ones for the embedded differential characteristic. Yet, its complexity is still cov-
ered by the expected target-difference resistance of the XOF.

The above attack can possibly be applied to other plaintext differences.
According to the construction of the MALICIOUS framework, the size of the
input (tweak) to the XOF can be arbitrary long and thus any output of the
XOF can potentially be obtained. For instance, if SHAKE128 is used as XOF, it
can produce at most 2b output streams (b being the state size between absorbing
and squeezing phases in the sponge construction). Hence the number of possi-
ble sub-tweaks values is bounded by 2b, no matter how many rounds it covers,
and the number of sub-tweak differences is accordingly bounded by a greater
value N (≥ 2b). Thus, given a random plaintext difference and a certain number
of rounds, if the size of the required sub-tweak differences for the deterministic
related-tweak differential characteristic does not exceed log N , then there will be
a tweak pair matching the differential characteristic. We summarize this finding
as follows:

Property 1. In addition to the embedded differential characteristics, there might
exist other deterministic differential characteristics that would threaten the
cipher security.

Consequently, we have to evaluate the security of the cipher with respect to all
the potential deterministic differential characteristics, not only the planned ones.
We consider a MALICIOUS instance that has a key size of 128 bits and employs
SHAKE128 as tweak schedule. The security strength of SHAKE128 against colli-
sion attack is min(l/2, 128) bits, where l is the output length (or the length of the
colliding part). In order to recover an r0-round deterministic differential charac-
teristic, the attacker has to find a tweak pair whose sub-tweak differences are the
desired ones. The total size of these sub-tweak differences is n + s · (r0 − 1) bits
and thus the generic attack complexity is 2min((n+s·(r0−1))/2,128), which becomes
2128 when (n + s · (r0 − 1))/2 ≥ 128. The analysis is similar for the case where
the key size is 256 bits and SHAKE256 is employed. We define r′ to represent
the value of r0 that turns this inequality into an equality:

(n + s · (r′ − 1))/2 = k (1)

All the deterministic related-tweak differential characteristics smaller than r′

rounds can be recovered with a complexity smaller than the actual key size.
2 The success probability here is about 0.63.

260 T. Peyrin and H. Wang

Therefore, in order to prevent these differential characteristics to weaken the
cipher, r′ must be taken into consideration when determining the number of
rounds of the MALICIOUS instance. Actually, these related-tweak differential
characteristics will decay exponentially in the remaining rounds as the corre-
sponding sub-tweak differences are basically random.

3.6 Rationale Underlying the MALICIOUS Construction

When designing a backdoor for block ciphers, the first question that comes into
mind is probably what type of backdoor should be used? While some existing
backdoor designs directly insert a backdoor inside Sboxes or some other parts
of the round function, we found out that the additional input tweak capability
of a tweakable block cipher could be a perfect carrier of the backdoor. Suppose
that a tweakable block cipher has a special property only when it is initiated
with very specific tweak values, while it performs normally for all the other
tweak values, then this property could be used as a backdoor. Moreover, if the
tweak size is large enough, finding these special tweak values could be as hard
as finding the secret key in the ideal case. One straightforward example of the
special property is to build related-tweak differential characteristics using these
tweaks. In the following, we provide more in-depth explanations on the design
choices in MALICIOUS.

Components Rationale. When instantiating the MALICIOUS framework,
some (security) notions have to be taken into account. The first and most impor-
tant one is the undiscoverability: an entity who does not know the backdoor
should not have increased chances to break the cipher. This requires that the
backdoor security has to be as high as the cipher security. Thus, the MALICIOUS
framework should provide a valid and solid security evaluation for the backdoor.

Another important notion is the practicability of the backdoor, and we will
aim to make it as efficient as possible.

We detail in the following how the components of the MALICIOUS framework
do follow these principles.

Tweak Schedule Based on XOF. As the malicious tweak values are the
backdoor, the main task of the tweak schedule is to protect the malicious tweaks.
According to the security analysis from Sect. 3.5, the backdoor security relies on
the target-difference problem, where the attacker tries to find a tweak pair whose
sub-tweak differences are the desired ones. This notion is simply a variation
of the classical collision resistance for a hash function, so we expect a good
cryptographic hash function to naturally provide this resistance.

Since MALICIOUS is a generalized framework, the total number of rounds
will vary according to the different instantiations, so does the length of the sub-
tweaks. Hence, the output length of the tweak schedule is expected to be flexible.
Besides, if the tweak schedule was designed specifically for each MALICIOUS
instantiation, it will render the backdoor evaluation much more difficult. Thus,

The MALICIOUS Framework 261

for sake of simplicity of the analysis, it seems a better idea to make the tweak
schedule uniform in the framework.

For all these reasons, a XOF seemed to be the best choice for our tweak
schedule. The security of actual XOF functions such as SHAKE128 or SHAKE256
is rather well-analyzed and it can provide many choices in terms of security level.

Partial Non-linear Layers. The probability of a differential characteristic
is determined by the number of differentially active Sboxes. Hence, in order to
embed an efficient backdoor based on a differential characteristic, the best case
is that the differential characteristic activates no Sbox at all. This is obviously
very unlikely to happen in the MALICIOUS framework if the round functions
are fully non-linear layers. Indeed, unless the related-key model is considered,
a non-zero difference inserted in the plaintext would have to be cancelled by
the first sub-tweak difference. However, when inserting differences in the tweak
input, as the sub-tweak differences produced by the XOF will be random, they
will force many active Sboxes in the subsequent rounds. Thus, it is unlikely
for the MALICIOUS framework to be able to embed a deterministic related-
tweak differential characteristic that covers more than a few rounds if full non-
linear layers are utilized. Of course, it is possible to construct a differential
characteristic with limited number of active Sboxes, but this is not the efficiency
we are targeting.

We have also tried to modify the framework such that the sub-tweak addition
is not performed every round. For example, an r rounds deterministic related-
tweak differential characteristic can be realized by applying the tweak addition
only once at the beginning, see Fig. 3. This way, the sub-tweak difference Δt0
could neutralize the plaintext input difference Δx0 and the resulting zero differ-
ence would get through the r rounds with probability 1. However, this candidate
has an obvious fatal flaw: for any tweak pair the attacker can always set the
plaintext input difference to be equal to Δt0.

Fig. 3. A defective variant of the MALICIOUS framework. Key addition is omitted.

The above analysis shows that full non-linear layers seem not suitable for the
MALICIOUS framework. On the contrary, partial non-linear layers satisfy our
requirements. As in that case the Sbox only applies to a part of the internal
state, the round function is able to map a non-zero input difference to a non-
zero output difference while no active Sbox is activated. In term of building
deterministic differential characteristics, we only have to set the difference of the
non-linear part of the internal state to be zero rather than the full state. This

262 T. Peyrin and H. Wang

allows to choose the linear transformation so that the output difference could
satisfy the requirements from Algorithm 1.

4 Instantiating the MALICIOUS Framework with LowMC

In this section, we introduce a concrete instantiation of the MALICIOUS frame-
work, called LowMC-M, which is based on the family of block ciphers LowMC.

4.1 LowMC

LowMC [2] is a family of block ciphers based on SPN structure with partial non-
linear layers. The parameters are flexible and we denote the block size by n, the
key size by k, the number of Sboxes applied each round by m and the maximum
allowed data complexity by d (d is the log2 of the allowable data complexity
up to which the cipher is expected to give the claimed security). In order to
reach the security claims, the number of rounds r is then derived from all these
parameters using a round formula, the latest version being given in [34].

At the beginning of the encryption process, a key whitening is performed.
The round function at round i consists of four operations in the following order:

– SboxLayer. A 3-bit Sbox is applied in parallel on the s = 3m LSBs of the
state, while the transformation for the remaining n − s bits is the identity.

– LinearLayer(i). The state is multiplied in GF(2) with an invertible n × n
binary matrix Li which is chosen independently and uniformly at random.

– ConstantAddition(i). The state is XORed with an n-bit round constant Ci

which is chosen independently and uniformly at random.
– KeyAddition(i). The state is XORed with an n-bit round key ki. To generate

ki, the master key K is multiplied in GF(2) with an n × k binary matrix
KLi. This matrix is chosen independently and uniformly at random with
rank min(n, k).

4.2 Equivalent Representation of LowMC

As discussed in [14,23,34], round keys and constants in LowMC can be com-
pressed due to the fact that the non-linear layer is partial.

In the round function, it is possible to exchange the order of consecutive linear
operations. We swap the order of LinearLayer and KeyAddition operations
while keeping ConstantAddition as the last step in round i. Then, the equivalent
round key can be written as k′

i = L−1
i (ki). We observe that the Sbox only

operates on the first s bits of the state and does not change the rest of the n− s

bits. Thus, we split k′
i into k

′(0)
i and k

′(1)
i , and we can move the addition of k

′(1)
i

to the beginning of the round. Next, we observe that k
′(1)
i can move further

up to be combined with ki−1 in the previous round. The procedure is illustrated
in Fig. 4. In general, if we start from the last round and iterate this procedure
recursively until all the additions to the linear part have been moved to the

The MALICIOUS Framework 263

beginning of the algorithm, we will end up with an equivalent representation
where all the round keys are reduced to s bits apart from the whitening key. We
remark that the same reasoning can be applied to the round constants.

This optimized representation can also reduce the implementation cost of the
key schedule. Since all transformations performed during the optimization are
linear and since the key schedule is itself linear, these transformations can be
composed with the key schedule in order to compute the new 3m-bit round keys
directly. We refer to [14] for details.

Fig. 4. Simplified representation of LowMC.

4.3 LowMC-M

We will directly use the simplified representation of LowMC as a starting point in
our design, with a further modification: we move LinearLayer behind SboxLayer
in every round3.

LowMC-M is a family of tweakable block ciphers built upon LowMC with an
additional transformation in each round:

– TweakAddition(i). The non-linear part of the state is XORed with an s-bit
sub-tweak ti just after KeyAddition. ti is generated from a XOF whose input
is the original tweak value T .

The XOF is based on SHAKE128 or SHAKE256, depending on the key size. All
the other transformations of the round function are the same as for LowMC. The
round function is finally composed of the following operations (Fig. 5):

TweakAddition(i) ◦ KeyAddition(i) ◦ ConstantAddition(i) ◦ LinearLayer(i) ◦ SboxLayer

The encryption starts with a key and tweak whitening and the sizes of k0 and
t0 are both n. The derivation formula for the number of rounds r is the same as
for LowMC.
3 The resulting primitive is an equivalent representation of a LowMC instantiation with

different linear layers, key schedule and round constants, because these components
are chosen randomly.

264 T. Peyrin and H. Wang

Fig. 5. A single round of LowMC-M.

Notations for LowMC-M. During a differential cryptanalysis, we denote by Xi

the i-th round state difference before the LinearLayer transformation. Given
a matrix Li, we denote its j-th row by Li[j, ∗], and partition Li into four sub-
matrices:

Li =
[

L00
i L01

i

L10
i L11

i

]

where L00
i ∈ GF(2)s×s, L01

i ∈ GF(2)s×(n−s), L10
i ∈ GF(2)(n−s)×s, L11

i ∈
GF(2)(n−s)×(n−s). With this notation, L00

i and L01
i will map X

(0)
i and X

(1)
i

to the non-linear part of the state, respectively. And L10
i and L11

i will map X
(0)
i

and X
(1)
i to the linear part of the state, respectively.

4.4 Embedding a Backdoor into LowMC-M

There are many forms of differential cryptanalysis that can perform a key recov-
ery attack, such as the impossible differential attack, the boomerang attack, etc.
For LowMC-M, we use the plain version where the attacker can deduce full or
partial information about the r-th round key from a differential characteristic
over r − 1 rounds.

Since an (r−1)-round deterministic differential characteristic can only reveal
the s-bit sub-key kr of the r-th round, more deterministic differential character-
istics should be added in order to eventually recover the full key. After kr has
been retrieved, the cipher can be reduced to r −1 rounds and thus another s-bit
sub-key kr−1 can be recovered from an (r − 2)-round deterministic differential
characteristic. Finally, assume that there are a total of a such deterministic dif-
ferential characteristics embedded in LowMC-M (one on r − 1 rounds, one on
r − 2 rounds, etc., see Fig. 6), then a · s sub-key bits can be recovered. As the
key schedule is fully linear and each matrix inside the key schedule is generated

The MALICIOUS Framework 265

independently and uniformly at random, it implies that one will recover a ·s bits
of information about the key by solving a system of linear equations. Therefore,
at most a = �k/s� deterministic differential characteristics are needed to recover
the full key.

Fig. 6. The deterministic differential characteristics embedded into LowMC-M.

Now, we explain how to embed such differential characteristics into an instan-
tiation of LowMC-M. The general procedure is given in Algorithm 1. The a
malicious tweak pairs are chosen by the designer at the very beginning and
the corresponding sub-tweak differences are computed. Then, the linear layer
matrix Li is generated along with the generation of the deterministic differential
characteristics, round by round.

Firstly, we explain how to generate the linear layer matrices. Note that in
order to have a deterministic differential characteristic over i rounds, only the
linear layer matrices of the first i − 1 rounds have to be specifically designed
as the matrix Li has no impact on the differences of the i-th round Sboxes.
Assuming we have already embedded a deterministic differential characteristics
over i rounds, then all the linear layer matrices of the first i − 1 rounds of
LowMC-M have been fixed accordingly. If we plan to extend b (b ≤ a) of the a
deterministic differential characteristics by one more round, the matrix Li should
be specified. Denote by SXi the set of X

(1)
i of those deterministic differential

characteristics that will be extended in the next round. Here, SXi refers to the
b differential characteristics. Since the non-linear state difference X

(0)
i equals

to zero for all the b differential characteristics, the set SXi will determine the
differential in the following round. Given the difference set SXi, the output
differences after the multiplication by the matrix L01

i should cancel the following
sub-tweak differences so that the b differential characteristics will activate no
Sbox in round i + 1. We detail the generation of Li in Algorithm 2.

Denote the b × (n − s) matrix in Equation (2) by MXi. We emphasize that
the rank of MXi should be min(b, n−s), otherwise Equation (2) is likely to have
no solution. In practice, b is always smaller than n − s for a normal parameters
set of LowMC-M. Thus, this requirement also means that the binary vectors of
X

(1)
i in SXi should be linearly independent.

266 T. Peyrin and H. Wang

Algorithm 2: Generate linear layer matrix Li.

Input : The set SXi = (X
(1)
i,1 , X

(1)
i,2 , · · · , X

(1)
i,b) and the sub-tweak differences

(Δt1i , Δt2i , · · · , Δtbi) for the b differential characteristics.
Output: Matrix Li

while True do
for j from 1 to s do

Solve the following system of linear equations and randomly pick one
solution of x = (x1, x2, ..., xn) as L01

i [j, ∗].

⎛
⎜⎜⎜⎜⎝

X
(1)
i,1 [1] X

(1)
i,1 [2] ... X

(1)
i,1 [n − s]

X
(1)
i,2 [1] X

(1)
i,2 [2] ... X

(1)
i,2 [n − s]

...

X
(1)
i,b [1] X

(1)
i,b [2] ... X

(1)
i,b [n − s]

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

x1

x2

...
xn−s

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Δt1i [j]
Δt2i [j]

...

Δtbi [j]

⎞
⎟⎟⎟⎠ (2)

end
Randomly select the sub-matrices L00

i , L10
i and L11

i .
if Li is full rank then

return Li

end

end

The whole process of generating an instance of LowMC-M is given here:

1. Select a different pairs of tweaks of any desired length and compute the
corresponding sub-tweak differences in all rounds for each pair of tweaks.

2. For each tweak pair, choose an n-bit value of the plaintext difference ΔP as
the input difference for the embedded differential characteristic, while setting
the first s bits of ΔP to be equal to Δt

(0)
0 .

3. For the a differential characteristics, compute X
(1)
1 = ΔP (1) ⊕ Δt

(1)
0 and if

the binary vectors of SX1 are not linearly independent, then go back to step
2.

4. For round i from 1 to r − 2:
• Generate the matrix Li using Algorithm 2 with SXi and the correspond-

ing sub-tweak differences as inputs4.
• Except for the last loop, compute the set of SXi+1 through the matrix

multiplication of Li. If the binary vectors of SXi+1 are not linearly inde-
pendent, repeat this loop.

5. Choose Lr−1 and Lr independently and uniformly at random from all invert-
ible n × n binary matrices.

6. For all rounds i, choose KLi independently and uniformly at random from
all n × k binary matrices of rank min(n, k) and the round constants Ci as
well.

4 Starting from round r−a+1, the number of deterministic differential characteristics
decrements by 1 at every loop.

The MALICIOUS Framework 267

Recovering the Secret Key With the Backdoor. The backdoor is the a
malicious tweak pairs and the corresponding plaintext differences. With the
knowledge of these related-tweak differential characteristics, the designer can
recover the full key in a very short time. To create the a plaintext differences,
the designer can firstly choose a random P , then compute Pi = P ⊕ ΔPi for
i ∈ {1, · · · , a}. We note the fact that for any non-zero probability differential
(Δ1,Δ2) of LowMC-M Sbox, where Δ1 = 0 and Δ2 = 0, there is only one
unordered pair of inputs/outputs of the Sbox satisfying the differential. If each
plaintext difference is used only once in the attack, then two sub-key candi-
dates will remain for each Sbox as we cannot determine which order of the
input/output pair of the targeted Sbox should be in the attack. The wrong
sub-key candidate can be filtered by repeating the attack with another pair of
plaintexts of the same difference. By doing so, a · s bits of information of the key
can be retrieved in the end. Later, the remaining (k−a ·s) key bits, if they exist,
can be brute forced. Finally, the key recovery requires 2(a+1)+max(k −a ·s, 0)
encryptions and the data complexity is 2(a + 1).

Note that the bit length of X
(1)
i is n − s. In order to ensure that Equa-

tion (2) is solvable, the number of differential characteristics that are embedded
in LowMC-M should not be higher than n − s. Generally, this bound is much
higher than the number of differential characteristics that is actually needed in
a concrete instantiation. Last but not least, one may wonder why we chose dif-
ferent malicious tweak pairs for the a related-tweak differential characteristics
(indeed using a single malicious tweak pair would work), but we recommend
doing so for security reasons as we will explain in Sect. 5.1.

4.5 Parameters

The design goal of LowMC-M is to keep the backdoor and the cipher secure,
but also to ensure the efficiency of the key recovery using the backdoor. Based
on these principles, we selected some instantiation parameters5 and we present
them in Table 1. The security analysis is given in Sect. 5 and Sect. 6.

Regarding the performances, we evaluated the corresponding LowMC used
in the LowMC-M instances. The LowMC implementations we benchmarked are
optimized for AVX2 instructions. Measurements were performed on an AMD
EPYC 7401 running Ubuntu 18.04. We tested several instances and we observed
that a single encryption generally costs around 10000 to 30000 cycles depending
on the parameters, the block size (= key size) ranging from 128 to 256 bits.

5 The reference code of LowMC-M generation can be found at https://github.com/
MaliciousLowmc/LowMC-M.

https://github.com/MaliciousLowmc/LowMC-M
https://github.com/MaliciousLowmc/LowMC-M

268 T. Peyrin and H. Wang

Table 1. A range of different parameters sets of LowMC-M instantiations. For each
instantiation, the malicious tweak pair that triggers each embedded differential char-
acteristic is unique. d is the log2 of the allowed data complexity, a is the number of
differential characteristics embedded.

block size
n

non-linear
s

key size
k

data
d

rounds
r

#differentials
a

XOF

128

3 128 64 208 43 SHAKE128

6 128 64 104 21 SHAKE128

9 128 64 70 14 SHAKE128

30 128 64 23 5 SHAKE128

90 128 64 14 2 SHAKE128

256

3 256 64 384 85 SHAKE256

9 256 64 129 28 SHAKE256

60 256 64 21 5 SHAKE256

120 256 64 14 3 SHAKE256

5 Backdoor Security

In this section, we will discuss the backdoor security of LowMC-M with respect
to the notions mentioned in Sect. 2.2: undetectability, undiscoverability, untrace-
ability and practicability.

5.1 Undetectability

In this subsection, we discuss whether a LowMC-M instance containing a back-
door is distinguishable from a random LowMC-M with no backdoor embedded.
Since the only difference between these two cases lies in the way the linear layer
matrices are generated, we will investigate the properties of these matrices.

We now would like to show that all embedded differential characteristics
must use distinct tweak pairs in order to maintain undetectability. Assuming
there is a backdoored LowMC-M instance that is generated following the steps
described in Sect. 4.4 and a total of a deterministic related-tweak differential
characteristics are embedded, while only a′ (< a) different tweak pairs are used
during the generation phase. Let cj denote the number of embedded differential
characteristics triggered by the same tweak pair, with j ∈ {1, . . . , a′}. We will
show that some dependency will exist in the linear layer matrices for the first
i (≤ r − a) rounds, consequently some additional deterministic related-tweak
differential characteristics over the first i rounds can be recovered.

The MALICIOUS Framework 269

Definition 3. For a LowMC-M instance, Ai is the matrix of dimension (i · s)×
(n − s) defined as:

⎛
⎜⎜⎜⎜⎜⎝

L01
1

L01
2 · L11

1

L01
3 · L11

2 · L11
1

...
L01

i · L11
i−1 · ... · L11

1

⎞
⎟⎟⎟⎟⎟⎠

We remark that a malicious plaintext difference ΔP can be retrieved if the
corresponding malicious tweak pair is provided: in order to have a deterministic
differential characteristic all Sboxes must be differentially inactive (i.e., the input
difference of each Sbox should be zero) and thus for a malicious tweak pair that
takes any of the a′ different values, recovering ΔP (0) (the non-linear part of ΔP)
is straightforward as it is equal to the sub-tweak difference Δt

(0)
0 . After that, one

just needs to retrieve the remaining part ΔP (1). In order to have a deterministic
differential characteristic over the first two rounds, L01

1 (X(1)
1) should be equal

to Δt1, where X
(1)
1 = ΔP (1) ⊕ Δt

(1)
0 . To extend the differential characteristic to

the third round, L01
2 ·L11

1 (X(1)
1) should be equal to Δt2. Continuing this process

until the i-th round, we can create a system of linear equations with n−s binary
variables:

⎛
⎜⎜⎜⎜⎜⎝

L01
1

L01
2 · L11

1

L01
3 · L11

2 · L11
1

...
L01

i−1 · L11
i−2 · ... · L11

1

⎞
⎟⎟⎟⎟⎟⎠

· (X(1)
1) = Ai−1 · (X(1)

1) =

⎛
⎜⎜⎜⎜⎜⎝

Δt1
Δt2
Δt3

...
Δti−1

⎞
⎟⎟⎟⎟⎟⎠

(3)

Solving Eq. (3) will output the solution of X
(1)
1 , then the remaining part

ΔP (1) can be recovered naturally. However, there may be more solutions as the
number of solutions is determined by the rank of Ai−1.

In cases where the number of rounds i is large enough such that (i − 1) · s �
(n−s), if all the linear layer matrices are chosen independently and uniformly at
random, the rank of Ai−1 will be n − s with very high probability. However, for
a LowMC-M instance with backdoor embedded, since the linear layer matrices
are specially designed, the rank of Ai−1 can not be determined similarly.

Determining the Rank of Ai−1. We first introduce the following definition.

Definition 4. If M is an n × m binary matrix and v is an n-bit vector, the
solution space sol(M,v) is defined as: sol(M,v) = {xT ∈ {0, 1}m : Mx = v}.

Assume that a special LowMC-M instance is generated with c related-tweak
deterministic differential characteristics over i rounds while only one malicious

270 T. Peyrin and H. Wang

tweak pair is used. During the generation of L01
j , j ∈ {1, . . . , i−1}, Equation (2)

could be simplified as:

MXj · x = 1 or MXj · x = 0 (4)

where 0 and 1 are c-bit vectors full of zeros and ones, respectively.
Denote by V the union of sol(MX1,1) and sol(MX1,0), the rows of L01

1 are
chosen from V . Since the dimensions of sol(MX1,1) and sol(MX1,0) are both
n − s − c, then the dimension of V is n − s − c + 1. When j = 2, Eqs. (4) can be
represented by:

MX1 · (L11
1)T · x = 1 or MX1 · (L11

1)T · x = 0

because X
(1)
2 = L11

1 ·X(1)
1 . The rows of L01

2 are chosen from sol(MX1 · (L11
1)T ,1)

or sol(MX1 · (L11
1)T ,0). Before we continue, we will use the following lemma.

Lemma 1. Let M1 and M2 be two binary matrices of dimension (n × m) and
(m × m) respectively. If x ∈ sol(M1 · M2, v), then x · MT

2 ∈ sol(M1, v) for any
n-bit vector v.

Proof. For any x ∈ sol(M1 · M2, v), we have (M1 · M2) · xT = v. It can be
represented by M1 · (M2 · xT) = v, thus (M2 · xT)T = x · MT

2 ∈ sol(M1, v). �

According to Lemma 1, if x ∈ sol(MX1·(L11
1)T ,1), then x·L11

1 ∈ sol(MX1,1)
and also if x ∈ sol(MX1 · (L11

1)T ,0), then x · L11
1 ∈ sol(MX1,0). Thus, all the

rows of L01
2 · L11

1 are in the space V . Similarly, we can get the same results for
L01
3 ·L11

2 ·L11
1 , · · · , L01

i−1 ·L11
i−2 · ... ·L11

1 . To summarize, all the rows of Ai−1 for this
special LowMC-M instance are chosen from the space V of dimension n−s−c+1.
Thus, the rank of Ai−1 is n − s − c + 1.

Let us return back to the previous LowMC-M instance mentioned at the
beginning of this subsection. We can divide the a differential characteristics into
a′ sub-groups where each sub-group includes cj differential characteristics that
are triggered with the same tweak pair, j ∈ {1, . . . , a′}. Then, the space V will
be the intersection of all the spaces that are determined by the a′ sub-groups.
We summarize the result as follows.

Proposition 1. If there is a total of a′ different malicious tweak pairs and each
of them is used to build cj deterministic differential characteristics over i rounds
in an instance of LowMC-M, with (i − 1) · s � (n − s), then the rank of Ai−1

will be n − s − ∑a′

j=1(cj − 1).

As a result, the rank of Ai−1 is n−s−∑a′

j=1(cj −1) and a total of 2
∑a′

j=1(cj−1)

deterministic differential characteristics for each of the a′ tweak pairs can be
recovered by the designer. Note that the rank of Ai−1 can be easily computed
by any entity. Compared to the full rank Ai−1 for a random LowMC-M with no
backdoor embedded, the unusual property of Ai−1 for the backdoored LowMC-M
will uncover the existence of the backdoor if a′ < a. However, if a′ = a, that is,

The MALICIOUS Framework 271

cj = 1 for all j ∈ {1, . . . , a′}, then Ai−1 will be full rank. Therefore, in order
to keep the backdoor of LowMC-M undetectable, we recommend to not use the
same tweak pair for building more than one differential characteristics in the
generation phase.

5.2 Undiscoverability

In this subsection, we discuss whether the backdoor from a LowMC-M instance
can be efficiently recovered by an attacker. Recall that some unknown deter-
ministic related-tweak differential characteristics potentially exist in LowMC-M,
according to Property 1. Instead of considering the embedded backdoor exclu-
sively, we evaluate the complexity of finding any useful deterministic related-
tweak differential characteristics for an attacker. Basically, the complexity is
based on the XOF security properties.

We simply adopt the security analysis for the general MALICIOUS framework
in Sect. 3.5. For any LowMC-M instance, the bound r′ derived from Formula 1
is much smaller compared to the total number of rounds, which poses no threat
to the backdoor. We list the evaluation for some instances in Table 2.

We can examine the undiscoverability security from another perspective.
Note that deterministic related-tweak differential characteristics can be derived
as long as Eq. (3) is solvable. The requirement for the equation to be solvable
is that the ranks of the coefficient matrix Ai−1 and the augmented matrix of
Eq. (3) are equal, which means that the vector on the right side of the equation,
denoted as v, has to be a combination of the columns of Ai−1. Observe that
the number of such combinations is 2α, α being the rank of Ai−1 and it can be
computed according to Proposition 1. As for vector v, it is random due to the
XOF and its size is s · (i − 1). In conclusion, Eq. (3) is solvable with probability
2α−s·(i−1), that is, the complexity of finding an i-round deterministic related-
tweak differential characteristic is 2s·(i−1)−α. We define r′′ to represent the value
of i that turns the complexity to be equal to the key space size

r′′ =
k + α

s
+ 1 (5)

The maximal value is r′′ = k+n
s when Ai−1 is full rank of n− s. Still, r′′ is much

smaller than the number of rounds of any LowMC-M instance, see examples in
Table 2.

To summarize, the backdoor and the other potential deterministic related-
tweak differential characteristics of the same length are fully protected by the
XOF, and its recovery is as hard as brute forcing the key.

272 T. Peyrin and H. Wang

Table 2. Backdoor security evaluation for LowMC-M-n/s with block size n, key size n,
non-linear layer size s and log2 data complexity 64. r is the actual number of rounds
of the instance, r′ and r′′ are defined in Formulas 1 and 5 respectively.

Parameters r r′ r′′

LowMC-M-128/3 208 44 86

LowMC-M-128/6 104 23 43

LowMC-M-128/9 70 16 29

LowMC-M-128/30 23 6 9

LowMC-M-128/90 14 3 3

LowMC-M-256/3 384 87 170

LowMC-M-256/9 129 30 57

LowMC-M-256/60 21 6 9

LowMC-M-256/120 14 4 5

5.3 Untraceability and Practicability

As for practicability, only negligible data and computation are required to launch
a full key recovery attack with the knowledge of the backdoor, as explained in
Sect. 4.4. Thus, the full key can be recovered within seconds.

Since the usage of the backdoor requires chosen tweaks, the malicious tweaks
can be detected by the user once the designer makes queries to attack him, which
means the backdoor is traceable. Besides, as only a few queries are needed to
launch an attack with the knowledge of the backdoor, the user is able to quickly
brute force the queries to find out the malicious tweak pairs.

6 Cipher Security

In this section, we study the security of LowMC-M as a tweakable block cipher.

6.1 Attacks Based on Tweak

In comparison to LowMC, an additional tweak addition is introduced in LowMC-
M. Theoretically, this feature will provide extra degrees of freedom for the
attacker and might naturally weaken LowMC-M when compared to LowMC. How-
ever, since the tweak schedule is an XOF, the attacker cannot control its output.
Even if the attacker could brute force some structures on the sub-tweaks for a
few rounds, this will result in the remaining rounds containing completely ran-
dom structure, which consequently prevent the attacker utilizing these remaining
rounds for what should have been the best attack on LowMC. Hence, we believe
that the extra degrees of freedom provided by the tweak is not easily usable and
will not lead to any important improvement over classical attack, including the
existing cryptanalysis [15,16,34] on LowMC.

The MALICIOUS Framework 273

6.2 Attacks Without Tweak

All the current attacks [15,16,34] on LowMC have been conducted under the
assumption that the linear layer matrices of LowMC are chosen independently
and uniformly at random. Except the tweak addition, LowMC-M has the equiv-
alent specification to LowMC. The only difference lies in the way the linear layer
matrices Li are chosen during the generation phase. In order to prove that the
security of LowMC-M is on par with that of LowMC, we need to show that the
linear layer matrices of LowMC-M are indistinguishable from those of LowMC-M
from the perspective of the attacker. We will evaluate this with respect to the
randomness and independence.

Randomness of Linear Layer Matrices. The randomness of the linear layer
matrix Li is analyzed by scrutinizing its four sub-matrices one by one.

L00
i and L10

i . As described in Algorithm 2, the two sub-matrices L00
i and L10

i

of Li are chosen independently and uniformly at random for each round.

L11
i . Even though L11

i is chosen randomly in Algorithm 2, there is a supple-
mentary requirement during the generation phase. That is, the binary vectors of
SXi+1 have to be linearly independent, which adds an extra constraint to L11

i

since each binary vector of SXi+1 is obtained by:

X
(1)
i+1 = L11

i · X
(1)
i (6)

and thus the transformation of L11
i should map a set of linearly independent

vectors to another set of linearly independent vectors. Since L11
i is chosen ran-

domly and all the X
(1)
i involved are linearly independent, every X

(1)
i+1 in SXi+1

produced by Formula 6 can be regarded as random binary vectors and are inde-
pendent from each other. On the other hand, note that at most a = �k/s�
differential characteristics are embedded in LowMC-M, which means that the
size of SXi+1 is �k/s� at most. For any reasonable parameter set, we will have
�k/s� � (n−s). Based on Lemma 2 below, we can compute the probability that
the set SXi+1 is linearly independent. As a result, the probability is almost 1,
which is also verified from our experiments.

Hence, the constraint on L11
i is very loose. The final selection of L11

i will not
introduce any special property.

Lemma 2. [24, adapted] For m random n-bit vectors over F2 (m � n), the
probability that they are linearly independent is p(m) =

∏m−1
k=0 (1 − 2k−n). In

particular, p(n) > 0.2887.

L01
i . L01

i is the essential part for embedding backdoors, and thus it is the one
specially designed. The row length of L01

i is n − s bits, while in the generation
phase each row is chosen from a sub-space of dimension n − s − b which is
determined by the corresponding Equation (2), b being the size of SXi. However,

274 T. Peyrin and H. Wang

we will show that for the attacker this special chosen L01
i is still indistinguishable

from a randomly chosen one.
Observe that both MXi and the sub-tweak difference vector in Equation (2)

are unknown for the attacker, thus the solution space is unidentified. Moreover,
the solution space for each row of L01

i could be different due to the sub-tweak
difference. Therefore, it is impossible for the attacker to trace some rows of L01

i

to the targeted hidden sub-space.
To summarize, the four sub-matrices are indistinguishable from random

matrices for the attacker. The only connection between these four sub-matrices
is that the combined matrix Li should be invertible, which is also the same for
LowMC, so it reveals no additional information. Hence, we conclude that for the
attacker the matrix Li is indistinguishable from a random matrix.

Independence Between Linear Layer Matrices. The definition of Ar cap-
tures partial information of the matrices that includes L10

i and L11
i over r consec-

utive rounds. If the linear layer matrices are chosen independently and uniformly
at random, the resultant Ar should be random, thus the rank of Ar will be n−s
when r ·s � (n−s). If the rank for a LowMC-M instance is smaller than n−s, it
will imply a connection between these matrices. As suggested in Proposition 1,
the rank of Ar can be computed by n − s − ∑a′

i=1(ci − 1). In order to eliminate
the connections, each ci should equal to 1, that is, different malicious tweak pairs
should be used to build different differential characteristics during the generation
phase.

The two sub-matrices L00
i and L10

i are chosen randomly and independently,
so it will not impose any connection between the matrices.

We remark that even if there is some dependence existing between the linear
layer matrices, the cipher security is still unlikely to be threatened. Yet, we
conservatively recommend to avoid such dependency in a LowMC-M instance.

7 Conclusion

In this article, we proposed the MALICIOUS framework for embedding backdoors
into tweakable block ciphers. The backdoor is a set of related-tweak differential
characteristics with probability 1, from which the secret key can be recovered
fully and efficiently. Besides, the backdoor security of our proposal is reduced
to the target-difference resistance (a variant of the classical collision resistance,
with the same generic complexity) of the XOF employed in the cipher. We also
proposed several concrete instances LowMC-M, which are directly inspired from
the block cipher LowMC.

We have proved that it is possible to build a secure and efficient backdoor
into tweakable block ciphers. Third party analysis is of course required to fully
understand its security, but our proposal could be a new interesting direction
towards building backdoors in symmetric-key primitives.

Not only this result will increase the community’s awareness to potential
backdoors in symmetric-key primitives, but it can also lead to new applications.

The MALICIOUS Framework 275

It has been shown in [35] that a backdoored block cipher is equivalent to a public
key encryption where the backdoor is regarded as the secret key. Even though our
proposal does not yet reach the usability of a public encryption scheme, building
public-key primitives out of symmetric-key ones has been a long standing open
problem.

We envision several future works after this first step. Other cryptanalysis
techniques than just a plain differential attack (such as impossible differential
attacks, boomerang attacks, integral attacks, etc.) might also be used to build
backdoors and could allow us to build more efficient or more usable designs. It
would also be interesting to build other types of backdoored primitives, such as
Message Authentication Codes (MAC), Authenticated Encryption (AE), etc.
which might require totally different design strategies. Finally, our proposal
remains somewhat traceable (once the backdoor used against him, a user could
try to check all of its tweak values queried and check which tweaks pair leads
to a related-tweak differential with a very good probability) and it would be
interesting to study new techniques or protocols to reduce this detection surface
as much as possible.

Acknowledgements. The authors would like to thank the anonymous referees and
Eik List for their helpful comments. We also thank Shiyao Chen for his help on auto-
matic search tools. We furthermore thank the Picnic team for providing standalone
optimized implementations of LowMC.

References

1. Albertini, A., Aumasson, J.-P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
hashing: Eve’s variant of SHA-1. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS,
vol. 8781, pp. 1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13051-4 1

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 17

3. AlTawy, R., Youssef, A.M.: Watch your constants: malicious Streebog. Cryptology
ePrint Archive, Report 2014/879 (2014). https://eprint.iacr.org/2014/879

4. Angelova, V., Borissov, Y.: Plaintext recovery in DES-like cryptosystems based on
S-boxes with embedded parity check. Serdica J. Comput. 7(3), 257–270 (2013)

5. Bannier, A., Bodin, N., Filiol, E.: Partition-based trapdoor ciphers. Cryptology
ePrint Archive, Report 2016/493 (2016). http://eprint.iacr.org/2016/493

6. Bannier, A., Filiol, E.: Mathematical backdoors in symmetric encryption systems-
proposal for a backdoored AES-like block cipher. arXiv preprint arXiv:1702.06475
(2017)

7. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, Part I, vol. 9056, pp. 315–342.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 13

https://doi.org/10.1007/978-3-319-13051-4_1
https://doi.org/10.1007/978-3-319-13051-4_1
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2014/879
http://eprint.iacr.org/2016/493
http://arxiv.org/abs/1702.06475
https://doi.org/10.1007/978-3-662-46800-5_13

276 T. Peyrin and H. Wang

8. Barker, E.B., Kelsey, J.M.: Recommendation for random number generation using
deterministic random bit generators (revised). US Department of Commerce, Tech-
nology Administration, National Institute of Standards and Technology, Computer
Security Division, Information Technology Laboratory (2007)

9. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404

10. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: a standardized back door.
In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers.
LNCS, vol. 9100, pp. 256–281. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49301-4 17

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R., Viguier, B.:
KangarooTwelve: fast hashing based on Keccak-p. In: Preneel, B., Vercauteren, F.
(eds.) ACNS 2018. LNCS, vol. 10892, pp. 400–418. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-93387-0 21

12. Biham, E.: Cryptanalysis of Patarin’s 2-round public key system with S boxes (2R).
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408–416. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 28

13. Calderini, M., Sala, M.: On differential uniformity of maps that may hide an
algebraic trapdoor. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 70–78.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23021-4 7

14. Dinur, I., Kales, D., Promitzer, A., Ramacher, S., Rechberger, C.: Linear equiv-
alence of block ciphers with partial non-linear layers: application to LowMC. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, Part I, vol. 11476, pp.
343–372. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 12

15. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, Part II,
vol. 9453, pp. 535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 22

16. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30840-1 6

17. Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output
functions. Technical report (2015)

18. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40349-1 22

19. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 21

20. Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro. Cryptology ePrint
Archive, Report 2013/713 (2013). http://eprint.iacr.org/2013/713

21. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday distinguishers for hash func-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, Part II, vol.
8270, pp. 504–523. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 26

22. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, Part II,
vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8 15

http://eprint.iacr.org/2013/404
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-662-49301-4_17
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/978-3-319-93387-0_21
https://doi.org/10.1007/3-540-45539-6_28
https://doi.org/10.1007/978-3-319-23021-4_7
https://doi.org/10.1007/978-3-030-17653-2_12
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-319-30840-1_6
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-40349-1_22
https://doi.org/10.1007/978-3-642-13858-4_21
http://eprint.iacr.org/2013/713
https://doi.org/10.1007/978-3-642-42045-0_26
https://doi.org/10.1007/978-3-642-42045-0_26
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15

The MALICIOUS Framework 277

23. Kales, D., Perrin, L., Promitzer, A., Ramacher, S., Rechberger, C.: Improvements
to the linear operations of LowMC: a faster picnic (2018)

24. Kolchin, V.: Random Graphs. Cambridge University Press, Cambridge (1999)
25. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)

CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

26. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2011)

27. Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing algorithm. In:
Materials of XII Scientific Conference RusCrypto 2010 (2010)

28. Morawiecki, P.: Malicious Keccak. Cryptology ePrint Archive, Report 2015/1085
(2015). https://eprint.iacr.org/2015/1085

29. Patarin, J., Goubin, L.: Asymmetric cryptography with S-Boxes is it easier than
expected to design efficient asymmetric cryptosystems? In: Han, Y., Okamoto, T.,
Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 369–380. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0028492

30. Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polyno-
mials. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp.
356–368. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0028491

31. Paterson, K.G.: Imprimitive permutation groups and trapdoors in iterated block
ciphers. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 201–214. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8 15

32. Perrin, L.: Partitions in the S-Box of Streebog and Kuznyechik. IACR Trans.
Symm. Cryptol. 2019(1), 302–329 (2019)

33. Rasoolzadeh, S., Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Total break of Zorro
using linear and differential attacks. Cryptology ePrint Archive, Report 2014/220
(2014). http://eprint.iacr.org/2014/220

34. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of
full LowMCv2. IACR Trans. Symm. Cryptol. 2018(3), 163–181 (2018)

35. Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg (1997). https://doi.org/
10.1007/BFb0052342

36. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.:
Low-weight and hi-end: draft Russian encryption standard. CTCrypt 14, 05–06
(2014)

37. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90
Dual Ec Prng. In: Proceedings of Cryptology, vol. 7 (2007)

38. Wang, Y., Wu, W., Guo, Z., Yu, X.: Differential cryptanalysis and linear distin-
guisher of full-round Zorro. Cryptology ePrint Archive, Report 2013/775 (2013).
http://eprint.iacr.org/2013/775

39. Wu, H., Bao, F., Deng, R.H., Ye, Q.-Z.: Cryptanalysis of Rijmen-Preneel trapdoor
ciphers. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 126–
132. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 11

40. Ye, D.-F., Lam, K.-Y., Dai, Z.-D.: Cryptanalysis of “2 R” schemes. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 315–325. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 20

41. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://eprint.iacr.org/2015/1085
https://doi.org/10.1007/BFb0028492
https://doi.org/10.1007/BFb0028491
https://doi.org/10.1007/3-540-48519-8_15
http://eprint.iacr.org/2014/220
https://doi.org/10.1007/BFb0052342
https://doi.org/10.1007/BFb0052342
http://eprint.iacr.org/2013/775
https://doi.org/10.1007/3-540-49649-1_11
https://doi.org/10.1007/3-540-48405-1_20
https://doi.org/10.1007/3-540-68697-5_8

278 T. Peyrin and H. Wang

42. Young, A., Yung, M.: Monkey: black-box symmetric ciphers designed for MONop-
olizing KEYs. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 122–133.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69710-1 9

43. Young, A., Yung, M.: A subliminal channel in secret block ciphers. In: Handschuh,
H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 198–211. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-30564-4 14

44. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,
New York (2004)

45. Young, A.L., Yung, M.: Backdoor attacks on black-box ciphers exploiting low-
entropy plaintexts. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 297–311. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45067-X 26

https://doi.org/10.1007/3-540-69710-1_9
https://doi.org/10.1007/978-3-540-30564-4_14
https://doi.org/10.1007/3-540-45067-X_26
https://doi.org/10.1007/3-540-45067-X_26

Cryptanalysis of the Lifted Unbalanced
Oil Vinegar Signature Scheme

Jintai Ding(B), Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang

University of Cincinnati, Cincinnati, OH, USA
jintai.ding@gmail.com,

{deatonju,schmidku,sharmav4,zhang2zh}@mail.uc.edu

Abstract. In 2017, Ward Beullens et al. submitted Lifted Unbalanced
Oil and Vinegar (LUOV) [4], a signature scheme based on the famous
multivariate public key cryptosystem (MPKC) called Unbalanced Oil
and Vinegar (UOV), to NIST for the competition for post-quantum pub-
lic key scheme standardization. The defining feature of LUOV is that,
though the public key P works in the extension field of degree r of F2,
the coefficients of P come from F2. This is done to significantly reduce
the size of P. The LUOV scheme is now in the second round of the NIST
PQC standardization process.

In this paper we introduce a new attack on LUOV. It exploits the
“lifted” structure of LUOV to reduce direct attacks on it to those over
a subfield. We show that this reduces the complexity below the targeted
security for the NIST post-quantum standardization competition.

1 Introduction

1.1 Background and Post-quantum Cryptography Standardization

A crucial building block for any free, secure, and digital society is the ability
to authenticate digital messages. In their seminal 1976 paper [40], Whitfield
Diffie and Martin Hellman described the mathematical framework to do such,
which is now called a digital signature scheme. They proposed the existence
of a function F so that for any given message D any party can easily check
whether for any X that F (X) = D, i.e. verify a signature. However, only one
party, who has a secret key, can find such an X, i.e. sign a document. Such a
function F is called a trapdoor function. Following this idea, Rivest, Shamir,
and Adleman proposed the first proof of concept of a signature scheme based
on their now famous RSA public key encryption scheme, which relies on the
difficulty of integer factorization [38].

Up to 2013, the National Institute of Standards and Technology (NIST)’s
guidelines allowed for three different types of signature schemes: the Digital
Signature Algorithm (DSA), RSA Digital Signature Algorithm, and The Elliptic
Curve Digital Signature Algorithm [25]. However, a major drawback to these
signature schemes is that in 1999 Peter Shor showed that they were weak to a
sufficiently powerful quantum computer [39]. As research towards developing a
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 279–298, 2020.
https://doi.org/10.1007/978-3-030-56877-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_10

280 J. Ding et al.

fully fledged quantum computer continues, it has become increasingly clear that
there is a significant need to prepare our current communication infrastructure
for a post-quantum world. For it is not easy nor quick undergoing to transition
our current infrastructure into a post quantum one. Thus, a significant effort
will be required in order to develop, standardize, and deploy new post-quantum
signature schemes.

As such in December 2016, NIST, under the direction of the NSA, put out
a call for proposals of new post-quantum cryptosystems. NIST expects to per-
form multiple rounds of evaluations over a period of three to five years. The goal
of this process is to select a number of acceptable candidate cryptosystems for
standardization. These new standards will be used as quantum resistant coun-
terparts to existing standards. The evaluation will be based on the following
three criteria: Security, Cost, and Algorithm and Implementation Characteris-
tics. We are currently in the second round of this process, and out of the original
twenty-three signature schemes there are only nine left. LUOV is one of these
remaining.

An additional complication to designing a post-quantum cryptosystem is
quantifying security levels in a post quantum world for the exact capabilities of
a quantum computer is not fully understood. In [34], NIST addresses this issue
and quantifies the security strength of a given cryptosystem by comparing it to
existing NIST standards in symmetric cryptography, which NIST expects to offer
significant resistance to quantum cryptanalysis. Below are the relevant NIST
security strength categories which we present the log base 2 of the complexity
(Table 1).

Table 1. Description of different NIST security strength categories.

NIST Level Security Description Complexity

II At least as hard to break as SHA256 (collision search) 146

IV At least as hard to break as SHA384 (collision search) 210

V At least as hard to break as AES256 (exhaustive key search) 272

1.2 Multivariate Public Key Cryptosystems

Since the work of Diffie and Hellman, mathematicians have found many other
groups of cryptosystems that do not rely on Number Theory based problems.
Some of these seem to be good candidates for a post-quantum system. One such
group is Multivariate Public Key Cryptosystems (MPKC) [12,15]. The security
of MPKC depends on the difficulty of solving a system of m multivariate poly-
nomials in n variables over a finite field. Usually these polynomials are of degree
two. Solving a set of random multivariate polynomial equations over a finite field
is proven to be an NP-hard problem [27], thus lending a solid foundation for a
post-quantum signature scheme. Furthermore, MPKCs in general can be com-
putationally much more efficient than many other systems. However, as these
systems need to be made into a trapdoor function they cannot be truly random.

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 281

They must be of a special form, which is generally hidden by composition with
invertible linear maps. The difficulty lies in creating a hidden structure which
does not impact the difficulty of solving the system.

A breakthrough in MPKC was proposed by Matsumoto and Imai in 1988
which is called either the MI cryptosystem or C∗ [30]. They worked with a finite
field k, but they did not work with the vector space kn directly. Instead, they
looked to a degree n extension of k where an inverse map can be constructed
which is still a trapdoor function. As such this can be used to both encrypt
and sign documents. This scheme was broken by Patarin using the Linearization
Equation Attack which is the inspiration for all Oil and Vinegar Schemes [35]. To
be brief, Patarin discovered that plain-text/cipher-text pairs (x,y) will satisfy
equations (called the linearization equations) of the form

∑
αijxiyj +

∑
βixi +

∑
γiyi + δ = 0

Collecting enough such pairs and plugging them into above equations pro-
duces linear equations in the αij ’s, βi’s, γi’s, and δ which then can be solved for.
Then for any cipher-text y, its corresponding plain-text x will satisfy the lin-
ear equations found by plugging in y into the linearization equations. This will
either solve for the x directly if enough linear equations were found or at least
massively increase the efficiency of other direct attacks of solving for x. Inspired
by the attack, Patarin introduced the Oil and Vinegar scheme [36]. This has
been one of the most studied schemes for multivariate cryptography.

1.3 A Brief Sketch and History of Oil and Vinegar Schemes

One of the most well known multivariate public key signature schemes is the
Oil and Vinegar scheme. The key idea of the Oil and Vinegar signature scheme
is to reduce signing a document into solving a linear system. This is done by
separating the variables into two collections, the vinegar variables and the oil
variables. Let F be a (generally small) finite field, o and v be two integers, and
n = o + v. The central map F : Fn → F

o is a quadratic map whose components
f1, . . . , fo are in the form

fk(x) =
v∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk

where each coefficient is in F. Here, x1, . . . , xv (which are called the vinegar vari-
ables) are potentially multiplied to all the other variables including themselves.
However, the variables xv+1, . . . , xn (which are called the oil variables) are never
multiplied to one another. Hence, if one guesses for all the vinegar variables, one
is left with a system of o linear polynomials in o variables. This has a high prob-
ability of being invertible, and if it is not one can just take another guess for the
vinegar variables. Hence to find pre-images for F , one repeatedly guesses values

282 J. Ding et al.

for the vinegar variables until the resulting linear system is invertible. The public
key P is the composition of F with an invertible affine map T : Fn → F

n.

P = F ◦ T .

The private key pair is (F , T). To find a signature for a message y, one first
finds an element z in F−1(y), and then simply computes a signature by finding
T −1(z).

The security of Oil and Vinegar schemes relies on the fact that P is essen-
tially as hard to find pre-images for as a random system (when one does not
know the decomposition).

Patarin originally proposed that the number of oil variables would equal the
number of vinegar variables. Hence the original scheme is now called Balanced
Oil and Vinegar. However, Balanced Oil Vinegar was broken by Kipnis and
Shamir using the method of invariant subspaces [28]. This attack, however, is
thwarted by making the number of vinegar variables sufficiently greater then
the number of oil variables. The other major attack using the structure of UOV
is the Oil and Vinegar Reconciliation attack proposed by Ding et al. However,
with appropriate parameters this attack can be avoided as well [18].

Proposed nearly twenty years ago, the Unbalanced Oil and Vinegar (UOV)
scheme still remains unbroken. Further, this simple and elegant signature scheme
boasts small signatures and fast signing times. Arguably, the only drawback to
UOV is its rather large public key size. The work of Petzoldt mitigates this by
generating the pair ((F ,T),P) from a portion of the public key’s Macaulay
matrix and the map T . By choosing this portion to be easy to store, i.e. if it is a
cyclic matrix or generated from a pseudo-random number generator, the public
key’s bit size can be much reduced [37].

A large number of modern schemes are modifications to UOV that are
designed to increase efficiency. This is in general hard to do as can be seen from
the singularity attack by Ding et al. on HIMQ-3, which takes a large amount
of its core design from UOV [19]. Out of the nine signature schemes that were
accepted to round two of the NIST standardization program, two (LUOV and
Rainbow) are based on UOV. Rainbow, originally proposed in 2005, reduces
its keysize by forming multiple layers of UOV schemes, where oil variables in a
higher layer become vinegar variables in the lower layers [16,18]. LUOV achieved
a reduction in key size by forcing all the coefficients of the public key to either
be 0 or 1. In this paper, we will show that such modifications used by LUOV
allow for algebraic manipulations that result in an under-determined quadratic
system over a much smaller finite field. We will further show that Rainbow and
other UOV schemes are immune to such attacks.

1.4 Lifted Unbalanced Oil Vinegar Scheme (LUOV)

The LUOV scheme, as clear from its name, is a modification of the original UOV
scheme. Its design was first proposed by Beullens et al. in [4]. The core design
of LUOV is as follows:

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 283

Let F2r be a degree r extension of F2. Let o and v be two positive integers
such that o < v and n = o + v. The central map F : Fn

2r → F
o
2r is a quadratic

map whose components f1, . . . , fo are in the form:

fk(x) =
v∑

i=1

n∑

j=i

αi,j,kxixj +
n∑

i=1

βi,kxi + γk,

where the coefficients αi,j,k
′s, βi,k

′s and γk
′s are chosen randomly from the base

field F2. As in standard UOV, To hide the Oil and Vinegar structure of these
polynomials an invertible linear map T : Fn

2r → F
n
2r is used to mix the variables.

In particular, the authors of LUOV choose T in the form:
[
1v T
0 1o

]

where T is a v × o matrix whose entries are from the field F2. The public key is
P = F ◦ T , where T andF are the private keys.

This choice of T , first proposed by Czypek [10], speeds up the key generation
and signing process as well as decreases storage requirements. This specific choice
of T does not affect the security of the scheme in comparison to standard UOV
due to the fact that for any UOV private key (F ,T) key, there exists a with
high probability an equivalent key (F ′,T ′) such that T ′ is in the form chosen
by above [42].

The third major modification is the use of the Petzoldt’s aforementioned
technique to use a pseudo-random number generator to generate both the pri-
vate key and the public key. This modified key generation algorithm still pro-
duces the same distribution of key pairs, and thus the security of the scheme
remains unaffected by this modification (assuming that the output of the PRNG
is indistinguishable from true randomness). The keys, both public and private,
are never directly stored. Each time are wishes to either generate or verify a
signature, they are generated from the PRNG.

For the purpose of this paper, much of the details of LUOV are not important.
In fact, we will ignore essentially most of the specified structure and focus purely
on the “lifted” aspect of the design.

1.5 Our Contributions

We will present a new attack method called the Subfield Differential Attack
(SDA). This attack does not rely on the Oil and Vinegar structure of LUOV
but merely that the coefficients of the quadratic terms are contained in a small
subfield. We will show that the attack will make it impossible for LUOV, as orig-
inally presented in the second round of the NIST competition, to fulfill NIST’s
security level requirements.

For public key P : Fn
2r → F

o
2r , we assert that with extremely high probability

that for a randomly chosen x′ ∈ F
n
2r and y ∈ F

o
2r there exists x̄ ∈ F

n
2d such that

P(x’+ x̄) = y, where F2d is a subfield of F2r . By the fact that the coefficients of

284 J. Ding et al.

P are either 0 or 1 and by viewing P(x̄) = P(x′ + x̄) as a system of equations
over the smaller field F2d , we will reduce the forging a signature to solving an
under-determined quadratic system over F2d . The complexity required for such
is well under our target. For each proposed set of parameters, we will explicitly
apply our attack. We will provide a small toy example. We will explain how
UOV and Rainbow are unaffected by our attack. Finally, we will discuss the new
parameter sets that LUOV uses in response to SDA.

2 The Subfield Differential Attack on LUOV

2.1 Transforming a LUOV Public by a Differential

The key idea of the attack is to transform the public key, P, into a map over a
subfield which is more efficient to work over but still contains a signature for a
given message. Namely, maps of the form P : Fn

2d → F
o
2r defined by

P(x̄) = P(x′ + x̄)

where x′ is a random point F
n
2r . We note that for any irreducible polynomial

g(t) of degree r/d = s,
F2d [t]/(g(t)) ∼= F2r .

Henceforth, we will represent F2r by this quotient ring. Here, F2d is embedded
as the set of constant polynomials. For more details see [29].

Consider a LUOV public key P = F ◦ T : Fn
2r → F

o
2r . Then following the

construction of all Oil Vinegar Schemes, P appears to be a random quadratic
system except that all the coefficients are either 0 or 1.

P(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃1(x) =
n∑

i=1

n∑

j=i

αi,j,1xixj +
n∑

i=1

βi,1xi + γ1

f̃2(x) =
n∑

i=1

n∑

j=i

αi,j,2xixj +
n∑

i=1

βi,2xi + γ2

...

f̃o(x) =
n∑

i=1

n∑

j=i

αi,j,oxixj +
n∑

i=1

βi,oxi + γo.

Randomly chose x′ ∈ F
n
2r and define P(x̄) = P(x′ + x̄). We see that the kth

component of P is of the form:

f̃k(x′ + x̄) =
n∑

i=1

n∑

j=i

αi,j,k(x′
i + x̄i)(x′

j + x̄j) +
n∑

i=1

βi,k(x′
i + x̄i) + γk.

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 285

Expanding the above and separating the quadratic terms leads to

f̃k(x′ + x̄) =
n∑

i=1

n∑

j=i

αi,j,k(x′
ix

′
j + x′

ix̄i + x′
j x̄j) +

n∑

i=1

βi,k(x′
i + x̄i) + γk

+
n∑

i=1

n∑

j=i

αi,j,kx̄ix̄j .

On one hand, the coefficients of the quadratic terms in the variables x̄ =
(x̄1, . . . , x̄n) are still contained in F2. On the other hand, the x′

i are arbitrary
elements of F2r , and so the linear terms will have coefficients containing all the
powers of t. We can thus regroup the above equation in terms of the powers of
t, where the quadratic part is confined in the constant term. Meaning, for some
linear polynomials Li,k(x̄1, . . . , x̄n) ∈ F2d [x̄1, . . . , x̄n], and quadratic polynomials
Qk(x̄1, . . . , x̄n) ∈ F2d [x̄1, . . . , x̄n], we have that

f̃k(x′ + x̄) =
s−1∑

i=1

Li,k(x̄1, . . . , x̄n)ti + Qk(x̄1, . . . , x̄n).

2.2 Forging a Signature

Now suppose we want to forge a signature for a message y ∈ F
o
2r where y =

(y1, . . . , ym). Here yk =
∑s−1

i=0 wi,kti where each wi,k ∈ F2d . We will achieve this
by solving the system of equations

P(x̄) = y.

This is solving the set of (s − 1)o linear equations

A =
{
Li,k(x̄1, . . . , x̄n) = wi,k : 1 ≤ i ≤ s − 1, 1 ≤ k ≤ o

}

and the set of o quadratic equations

B =
{
Qk(x̄1, . . . , x̄n) = w0,k : 1 ≤ k ≤ o

}
.

As A is a random system of linear equations, it has high probability to have
rank (s−1)o (or dimension n if (s−1)o ≥ n). Let S be the solutions space to A.
By the Rank Nullity Theorem, the dimension of S is n − (s − 1)o. We see that
our problem thus reduces to solving B over S. That is o quadratic equations in
n − (s − 1)o variables over the subfield F2d . Once we find a solution for x̄, the
signature is then x′ + x̄ as

P(x′ + x̄) = P(x̄) = y.

286 J. Ding et al.

2.3 The Choice of the Intermediate Field

Now that we know the method of the attack, we need to find the intermediate
fields that ensures that P(x̄) = y has at least one solution. We wish to compute
the probability that, when we define the map P : Fn

2d → F
o
2r as in the prior

section, that P
−1

(y) is nonempty. We will achieve this by heuristically arguing
that the quadratic map P acts as a random map. So, we derive the following
short lemma:

Lemma 1. Let A and B be two finite sets and Q : A → B be a random map.
For each b ∈ B, the probability that Q−1(b) is non-empty is approximately 1 −
e−|A|/|B|.

Proof. As the output of each element of A is independent, it is elementary that
the probability for there to be at least one a ∈ A such that Q(a) = b is

1−Pr(Q(α) �= b, ∀α ∈ A) = 1−
∏

α∈A

Pr(Q(α) �= b) = 1−
(
1 − 1

|B|
)|A|

= 1−
(
1 − 1

|B|
)|B| |A|

|B|
.

Using lim
n→∞

(
1 − 1

n

)n

= e−1, we achieve the desired result.

As a result of this lemma, the probability that P
−1

(y) is non-empty is
approximately 1 − e−2(dn)−(ro)

.
By far the largest cost in the attack is solving the final quadratic system over

F2d . The smaller the d is, the more efficient the cost is. So, we will minimize
our choice of d such that the probability of finding a signature is high given our
above estimate.

In Tables 6 and 3, we calculate the probability of success on the first guess
for x′ for the parameters as originally given for round 2 LUOV (the authors
have since changed their parameters due to SDA) [3]. In the astronomically
unlikely event that there is no signature, a different guess for x′ can be used.
Table 6 is given on parameters designed to reduce the size of signatures. These
parameters are used in situations where many signatures are needed. Table 3 is
given on parameters designed to reduce the cost of both signatures and public
keys. These parameters are used when communicating both signatures and public
keys is needed (Table 2).

Table 2. Estimated Probabilities of Success for Parameters Designed to Minimize the
Size of the Signature

NIST Security Level r o v n d Probability of Success

II 8 58 237 295 2 1 − exp(−2126)

IV 8 82 323 405 2 1 − exp(−2154)

V 8 107 371 478 2 1 − exp(−2100)

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 287

Table 3. Estimated Probabilities of Success for Parameters Designed to Minimize the
Size of the Signature and Public Key

NIST Security Level r o v n d Probability of Success

II 48 43 222 265 8 1 − exp(−256)

IV 64 61 302 363 16 1 − exp(−21904)

V 80 76 363 439 16 1 − exp(−2944)

3 Complexity of the Attack

While there is some slight overhead cost in computing P(x) and solving the
linear system, the vast majority of the complexity is solving the quadratic sys-
tem of n − (s − 1)o variables and o equations over F2d . Hence, to evaluate the
effectiveness of our attack we will compute the complexity of finding a single
solution to this quadratic system, which we will measure with the number of
field multiplications. As this is a underdetermined system, the most effective
strategy is first to use the method of Thomae and Wolf [41] to transform it by
a linear change of variables to a determined system with fewer equations than
before.

3.1 Statement and Results of Thomae and Wolf

Theorem 1 (Thomae and Wolf). By a linear change of variables, the com-
plexity of solving an underdetermined quadratic system of m equations and
n = ωm variables can be reduced to solving a determined quadratic system of
m − �ω	 + 1 equations. Further, if �ω	|m then the complexity can be further
reduced to solving a determined quadratic system of m − �ω	 equations.

We calculate what these new determined systems will be in Table 4 for the
various parameter sets representing each system as (number of variables) ×
(number of equations). The complexity will depend on direct methods of solving
these systems of equations.

Table 4. Determined Systems to Solve after Thomae and Wolf

Table and
Security

Finite
Field

Original
System

New
System

(2, II) F22 58 × 121 56 × 56

(2, IV) F22 82 × 159 81 × 81

(2, V) F22 107 × 157 106 × 106

(3, II) F28 43 × 50 42 × 42

(3, IV) F216 61 × 180 60 × 60

(3, V) F216 76 × 135 75 × 75

288 J. Ding et al.

3.2 Solving the Determined Systems

To find a solution to one of these determined systems, the best method is to
use what is called the hybrid approach [1,2] which involves repeatedly fixing
some of the values of the variables and then performing a direct attack on the
new overdetermined system until a solution is found. The amount of variables
guessed for depends on the algorithm and the finite field involved with a smaller
finite field leading to more variables being guessed for.

The two main contenders for the best algorithm to use are one of the family
of XL (eXtended Linearization) algorithms proposed by Courtois et al. [9] and
either the F4/F5 algorithms proposed by Faugère [22,23] or algorithms developed
from these two. In our case both will give comparable results though we will
follow the work of Yet et al. [45] and favor the former using Wiedemann XL, the
reason why we will explain shortly.

Let us give a brief description of the XL algorithm which, for simplicity,
we will give for the case of quadratic systems. Let P : Fn

q → F
m
q by a given

quadratic system we want to solve where P = (p1, . . . , pm). As in our case we
will be working with overdetermined systems, we can assume that there will be
at most one solution as can be justified by Lemma 1. We will denote a monomial
xb1
1 xb2

2 · · · xbn
n by xb where b = (b1, . . . , bn) and |b| = b1 + b2 + · · · + bn. For a

given natural number D, let us denote by T (D) = {xb : |b| ≤ D} the set of all
degree D or lower monomials. We note that |T (D)| =

(
n+D

D

)
as was shown in [9]

but as we only seek a solution in the field Fq we can reduce this by equating
xq

i = xi leading to

|T (D)| = [tD]
(1 − tq)n

(1 − t)n+1

where [tD]g(t) is the coefficient of tD in the series expansion g(t) [44].
One begins by extending P to the set of relations R(D) = {xbpi(x) = 0 :

1 ≤ i ≤ m,xb ∈ T (D−2)}. Let us denote by M (D) the Macaulay matrix for R(D).
One performs linear algebra techniques to attempt to solve M (D), and provided
D is large enough one will either find a solution, a univariate polynomial for
one of the variables which then can be solved for, or a contradiction. Obviously,
the smallest such D will allow the lowest complexity in working with M (D) as
the size of M (D) depends on D. We will denote this by D0 which is called the
operating degree of XL. Yeh et al. [45] stated that for random quadratic systems
(which UOV systems behave like) over small fields (when the operating degree
is larger than the size of the field) we will have

D0 = min
{

d : [td]
(1 − tq)n(1 − t2)m

(1 − t)n+1(1 − t2q)m
≤ 0

}
.

For larger fields we will instead have

D0 = min
{
d : [td](1 − t)m−n−1(1 + t)m < 0

}
.

The Macaulay matrix M (D0) is a sparse matrix with total weight approx-
imately equal to |R(D0)|n2/2. This is one of the advantages of using XL as it

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 289

allows one to solve the linear system by using the (block) Wiedemann matrix
solver [8] in approximately 3

2 |R(D0)||T (D0)|n2 field multiplications. By randomly
discarding rows (most of of which are nonessential for solving the system) until
there are |T (D0)| left the number of field multiplications becomes 3

2 |T (D0)|2n2

[43]. As |T (D0)| ≤ (
n+D0

D0

)
and n2

2 ≈ (
n
2

)
we can estimate this as 3×(

n+D0
D0

)×(
n
2

)
.

Returning our focus to the determined systems we are dealing with in attack-
ing LUOV, if we denote the number of variables we are guessing for as k and
D

(k)
0 as the calculated operating degree after guessing for those variables, we

have the following theorem with the additional factor of qk accounting for the
necessary repeated attempts due to the potential of incorrect guessing.

Theorem 2. The complexity in terms of field multiplications of performing the
XL algorithm on a determined quadratic system of m equations over a finite field
of size q is

ComplexityXL = mink

⎧
⎨

⎩qk × 3 ×
(

m − k + D
(k)
0

D
(k)
0

)2

×
(

m − k

2

)⎫
⎬

⎭ .

While there are other, more sophisticated, versions of XL like mutant XL and
its sub-variants [11,31–33] that can also perform well in certain situations, the
Wiedemann algorithm offers parallel compatibility and cheaper memory cost
[7] that, along with its computation time, makes Wiedemann XL better than
the other variants of XL for our case. It is for this same reason that we prefer
Wiedemann XL over F4 and F5.

Now let us briefly describe our reasoning for preferring Wiedemann XL to
either F4 or F5 in estimating the complexity of the attack. F4 [22] is an improve-
ment of Buchberger’s algorithm [6] for generating a Groebner for the ideal gen-
erated by the quadratic system P. F4 also works with linear algebra techniques
with a Macaulay matrix which allows it to do reduction steps in parallel to com-
pute normal forms, eventually generating a Groebner basis. Thus its complexity
will be determined the largest size of the matrix involved and the linear algebra
cost in working with that matrix.

The size of the matrix will be determined by what is called the degree of
regularity which is the degree at which the first non-trivial relation from the
original polynomials p1, · · · , pm occurs. The trivial relations are ph

i ph
j −ph

j ph
i = 0

and pq
i − pi = 0. All others are nontrivial. We will denote this by Dreg. As F4

will have to deal with polynomial of degree Dreg [14], the size of the matrix will
be roughly |T (Dreg)| =

(
n+Dreg

Dreg

)
rows and columns.

The F5 algorithm [23] is an improvement on the F4 algorithm in that it too
uses linear algebra techniques to construct a Groebner for the quadratic system.
With the use of what Faugère calls signatures of the polynomials one can perform
fewer reduction steps than F4. This is because some of the row reductions in F4
represent reductions to 0 meaning they are essentially useless in constructing the
Groebner basis. The F5 algorithm uses the signatures to know beforehand not
do these reductions. We note that we cannot find independent implementation of

290 J. Ding et al.

the F5 algorithm which meets the originally claimed levels of efficiency, and that
the original “proof” of the termination of F5 was flawed. It was not until 2012
when Galkin [24] proved the termination (in fact in a more general case than
originally proposed). There has been much research conducted on F5 inspired
signature-based Groebner algorithms [21]. However, these improvements (some
of which were not based on complexity at all but the issue of termination) are
not large enough to overcome the largest determining factor in their complexity:
the size of the Macaulay matrix involved. As the degree of regularity for F5 and
F4 are the same Dreg [45], the matrix that F5 and F5 inspired algorithms will
be working with is essentially the same size as F4 but having fewer rows due to
the use of signatures.

The complexity for F4/F5 will then be approximately
(
n+Dreg

Dreg

)ω
where 2 ≤

ω ≤ 3 is the complexity exponent of matrix multiplication. ω is likely to be
about log2(7) ≈ 2.8 though may be as low as 2.3727 [45]. We note that there
has been work on improving the linear algebra cost involved in Groebner basis
calculations due to the special shape of the matrices involved such as the GBLA
library [5]. However, due to the fact that the matrix involved in XL is more
sparse than that in F4 or F5 [45], the linear algebra for F4/F5 is more costly
than that for Wiedemann XL and the memory size is greater for F4/F5 as well
provided the size of the matrices are relatively close which happens when D0

is very close to Dreg [45]. It is known that Dreg ≤ D0 so there will be fewer
rows needed to work with when using F4 or F5. Further, for certain polynomial
systems with specific (even if hidden) structure like HFE and its variants, Dreg

may be much smaller for which there is much research [13,14,17,20,26]. In these
cases, an F4/F5 type algorithm is the best to use. However, Yeh et al. [45] has
shown that for random overdetermined systems, like the ones we are attacking
after we fix some variables, D0 − Dreg is most often ≤ 1 and in many cases 0.
They give Dreg for quadratic systems over small fields as

Dreg = min
{

d : [td]
(1 − tq)n(1 − t2)m

(1 − t)n(1 − t2q)m
< 0

}

and for larger fields

Dreg = min
{
d : [td](1 − t)m−n(1 + t)m < 0

}
.

As an example Fig. 1 shows both D0 and Dreg after the different choices of
variables to fix for the system of 56 variables and 56 equations over F22 . We see
that the difference is never more than 1 and often is 0. Thus we will use Theorem
2’s estimate for the complexity of the attack using Wiedemann XL.

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 291

Fig. 1. D0 and Dreg for the system with 56-k Variables and 56 Equations over F22

3.3 Calculating the Complexity

As an example, let’s estimate the complexity of forging a signature for a LUOV
public key with parameters r = 8, o = 58, v = 237 using Wiedemann XL. We
need only to focus on solving the quadratic over the intermediate field as addi-
tional overhead is very small. As mentioned before, the optimal choice for the
intermediate field is F22 . The resulting quadratic system over this smaller field
has o = 58 equations and n − (s − 1)o = 121 variables. As �121/58	 = 2 which
divides 58, we can use the stronger version of Theorem 1. So, the complexity is
reduced to solving a determined system of 58 − 2 = 56 equations.

We search through the complexities of the XL algorithm for the various
choices of k, and we find the smallest is when k = 31. In this case,

(1 − tq)m−k(1 − t2)m

(1 − t)m−k+1(1 − t2q)m
,= 1 + 26t + 295t2 + 1820t3 + 5610t4 − 1560t5 + · · · .

So the first power of t with a non-positive coefficient is t5. Thus, D
(31)
0 = 5.

Finally, we compute the complexity as

431 × 3 ×
(56 − 31 + 5

5

)2

×
(56 − 31

2

)
= 84288541824723017810071624089600 ≈ 2107.

In Table 5 we compute the complexity for the various parameters found in
the original round 2 submission. We round up the given log base 2 complexity.
Recalling that NIST requires complexity (2146, 2210, 2272) for security levels (II,
IV, V) respectively, we see that LUOV fails to meet the security level require-
ments in all parameter sets given for their targeted security.

292 J. Ding et al.

Table 5. Complexity in Terms of Number of Field Multiplications

Table and
Security

Finite
Field

Original
System

New
System

of
Guesses

D
(k)
0

Log2

Complexity

(2, II) F22 58 × 121 56 × 56 31 5 107

(2, IV) F22 82 × 159 81 × 81 38 8 146

(2, V) F22 107 × 157 106 × 106 51 9 184

(3, II) F28 43 × 50 42 × 42 3 19 135

(3, IV) F216 61 × 180 60 × 60 2 31 202

(3, V) F216 76 × 135 75 × 75 2 38 244

The two schemes which claim to be of Level II security do not even satisfy the
Level I security, which is supposed to be 2143.

3.4 Toy Example

Let o = 2, v = 8, and n = 10. The size of the large extension field chosen by the
public key generator will be 28 = 256. In the attack, we will use our small field
F22 denoting its elements by {0, 1, w1, w2}. We will then represent the field F28

by F22 [t]/f(t) where f(t) = t4 + t2 + w1t + 1.
Consider the LUOV public key P : Fn

28 → F
o
28 , where for simplicity sake, it

will be homogeneous of degree two:

f̃1(x) =x1x4 + x1x5 + x1x6 + x1x7 + x1x8 + x1x9 + x2x4 + x2x6 + x2x9 + x2
3

+ x3x6 + x3x7 + x3x10 + x2
4 + x4x7 + x4x8 + x4x9 + x4x10 + x5x6 + x6x10

+ x2
7 + x7x8 + x7x9 + x8x9 + x8x10 + x2

9 + x9x10

f̃2(x) =x1x3 + x1x4 + x1x5 + x1x9 + x2x3 + x2x6 + x2x7 + x2x9 + x2
3 + x3x4

+ x3x5 + x3x6 + x3x7 + x3x9 + x2
4 + x4x5 + x4x6 + x4x7 + x4x10 + x2

5

+ x5x6 + x5x7 + x5x8 + x5x10 + x6x7 + x7x9 + x9x10 + x2
10

We will attempt to find a signature for the message:

y =
[
w1t

3 + w2t
2 + w2t

w2t
3 + w2t

2 + t

]

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 293

First, we randomly select our x′ as

x′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t3 + w2t
w1t

3 + w2t
2 + w2t

t3 + t + 1
w2t

2 + w1

t3 + t2 + 1
w2t

3 + t2 + w2t + w2

w1t
3 + w2t + w

w1t
2 + w2t + 1

t3 + w2t + w1

w2t + w2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We then calculate P(x′ + x̄) and represent it as a polynomial of t:

f̃1(x′ + x̄) =(x̄1 + w1x̄2 + x̄3 + w1x̄5 + w2x̄6 + x̄7 + w1x̄8 + x̄9 + w2x̄10)t3

+ (x̄1 + w1x̄2 + x̄3 + x̄4 + x̄5 + w1x̄6 + x̄7 + w2x̄8 + w1x̄9)t2

+ (w2x̄3 + w1x̄6 + w1x̄7 + w2x̄9 + w1x̄10)t
+ Q1(x̄1, . . . , x̄n)

f̃2(x′ + x̄) =(x̄1 + x̄2 + w1x̄3 + x̄5 + x̄8)t3

+ (w1x̄1 + x̄2 + x̄6 + x̄8 + w2x̄9 + w1x̄10)t2

+ (w1x̄1 + w1x̄2 + w2x̄3 + x̄4 + w1x̄5 + x̄6 + w1x̄7 + x̄9 + w2x̄10)t
+ Q2(x̄1, . . . , x̄n),

where Q1(x̄1, . . . , x̄n) and Q2(x̄1, . . . , x̄n) are quadratic polynomials from
F22 [x̄1, . . . , x̄n]. By comparing the coefficients of t3, t2, t1 and assuming P(x′ +
x̄) = y, we arrive at a system of linear equations over F22 . This can be repre-
sented by a matrix equation Ax = y. In our case, this is the following:

⎡

⎢⎢⎢⎢⎢⎢⎣

1 w1 1 0 w1 w2 1 w1 1 w2

1 w1 1 1 1 w1 1 w2 w1 0
0 0 w2 0 0 w1 w1 0 w2 w1

1 1 w1 0 1 0 0 1 0 0
w1 1 0 0 0 1 0 1 w2 w1

w1 w1 w2 1 w1 1 w1 0 1 w2

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̄1

x̄2

x̄3

x̄4

x̄5

x̄6

x̄7

x̄8

x̄9

x̄10

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

w1

w2

w2

w2

w2

1

⎤

⎥⎥⎥⎥⎥⎥⎦

The solution space for the equation above has dimension 4 over F22 , as we
would expect it to be n − (s − 1)o = 4. Thus, there are only (22)4 = 28 possible
choices for x̄. A quick search through these finds the signature

294 J. Ding et al.

σ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t3 + w2t + 1
w1t

3 + w2t
2 + w2t + w1

t3 + t + w2

w2t
2

t3 + t2 + 1
w2t

3 + t2 + w2t + 1
w1t

3 + w2t + w1

w1t
2 + w2t + 1

t3 + w2t + 1
w2t

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4 The Inapplicability of the Subfield Differential Attack
on Unbalanced Oil Vinegar

Now, let us discuss why the Subfield Differential Attack does not work on Unbal-
anced Oil Vinegar or Rainbow. Let P : Fn

qr → F
o
qr be either a UOV public key

or a Rainbow public key. Let us assume that Fqr contains a non-trivial subfield
Fqd . Again, construct the differential x′ + x̄ with x′ ∈ Fqr and x̄ ∈ Fqd , and eval-
uate the public key at the differential P(x̄) = P(x′ + x̄). In the kth component
of P, we have that

f̄k(x′ + x̄) =
n∑

i=1

n∑

j=i

αi,j,k(x′
i + x̄i)(x′

j + x̄j) +
n∑

i=1

βi,k(x′
i + +x̄i) + γk.

Note that there are no restrictions on the coefficients, αi,j,k, βi,k and γk as they
are randomly chosen from Fqr . If we multiply the polynomial out, then we get

f̃k(x′ + x) =
n∑

i=1

n∑

j=i

αi,j,k(x′
ix

′
j + x′

ix̄i + x′
j x̄j) +

n∑

i=1

βi,k(x′
i + x̄i) + γk

+
n∑

i=1

n∑

j=i

αi,j,kx̄ix̄j .

The quadratic terms’ coefficients will not be contained in the subfield Fqd . Thus,
instead of having a clear separation of (s−1)o linear polynomials and o quadratic
polynomials over F2d as before for a LUOV public key, we instead have s ∗ o
quadratic polynomials over Fqd . Thus it is not more efficient to direct attack
than simply having o quadratic polynomials over Fqr , and so viewing the field
as a quotient ring does not help for UOV or Rainbow. So the SDA attack does
not apply to these schemes.

5 New Parameter Sets for LUOV in Response to SDA

We note that in response to the SDA attack, the authors of LUOV have submit-
ted new parameters sets designed to avoid the existence of a sufficiently large

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 295

intermediate field to perform SDA. In particular, they chose the extension F2r

where r is a prime number. This means that only the trivial subfield F2 exists
which is not large enough to find a signature over given their new parameters.
Table 5 lists these new parameters.

Table 6. The New Parameter Sets for LUOV

Name NIST Security Level r o v n

LUOV-7-57-197 I 7 57 197 254

LUOV-7-83-283 III 7 83 283 366

LUOV-7-110-374 V 7 110 374 484

LUOV-47-42-182 I 47 42 182 224

LUOV-61-60-261 III 61 60 261 321

LUOV-79-76-341 V 79 76 341 417

These new modifications are very new and untested. There is a good possi-
bility that a more robust SDA variant utilizing special subsets of F2r instead of
just subfields could handle a wider variety of parameters, including the current
parameters of LUOV. Further research is needed in this area.

6 Conclusion

We proposed a new attack to a NIST round 2 candidate LUOV. All the param-
eters originally set for round 2 LUOV were broken according to the NIST stan-
dards. SDA only uses the basic structure of field extensions which is the core idea
of LUOV. The idea of our attack is simple, however it has great potential. Its
simple structure leaves room for improvement and modification to handle more
cases more efficiently. Furthermore, one can see that the attack does not depend
on the design of the central map. It can be applied to other schemes with a lifted
structure and solving lifted quadratic systems in general. We believe that future
study of SDA is warranted.

Acknowledgments. First we would like to thank Bo-Yin Yang for useful discussions,
in particular, on the complexity analysis. Second, We would also like to thank partial
support of NSF (Grant: #CNS-1814221) and NIST, and J. Ding would like to thank
the TAFT Research Center for many years’ support. Finally, we are grateful for the
comments of the referees helping us improve the quality of this paper.

References

1. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

2. Bettale, L., Faugère, J.-C., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation, pp. 67–74 (2012)

296 J. Ding et al.

3. Beullens, W., Preneel, B., Szepieniec, A., Vercauteren, F.: LUOV: signature scheme
proposal for NIST PQC project (round 2 version) (2018)

4. Beullens, W., Preneel, B.: Field lifting for smaller UOV public keys. In: Patra, A.,
Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 227–246. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71667-1 12

5. Boyer, B., Eder, C., Faugère, J.-C., Lachartre, S., Martani, F.: GBLA: Gröbner
basis linear algebra package. In: Proceedings of the ACM on International Sympo-
sium on Symbolic and Algebraic Computation, pp. 135–142 (2016)

6. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. ACM SIGSAM Bull. 10(3), 19–29 (1976)

7. Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.: Solving quadratic equations
with XL on parallel architectures - extended version. Cryptology ePrint Archive,
Report 2016/412 (2016). https://eprint.iacr.org/2016/412

8. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994)

9. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

10. Czypek, P.: Implementing multivariate quadratic public key signature schemes on
embedded devices. Ph.D. thesis, Citeseer (2012)

11. Ding, J., Buchmann, J., Mohamed, M.S.E., Mohamed, W.S.A.E., Weinmann,
R.-P.: MutantXL. In: Talk at the First International Conference on Symbolic Com-
putation and Cryptography (SCC 2008) (2008)

12. Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems.
Advances in Information Security, vol. 25. Springer, Boston (2006). https://doi.
org/10.1007/978-0-387-36946-4

13. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields.
In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 41

14. Ding, J., Kleinjung, T.: Degree of regularity for HFE-. IACR Cryptology ePrint
Archive, 2011:570 (2011)

15. Ding, J., Petzoldt, A.: Current state of multivariate cryptography. IEEE Secur.
Priv. 15(4), 28–36 (2017)

16. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

17. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P.
(ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38616-9 4

18. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0 15

19. Ding, J., Zhang, Z., Deaton, J., Vishakha: The singularity attack to the multivari-
ate signature scheme HIMQ-3. Cryptology ePrint Archive, report 2019/895 (2019).
https://eprint.iacr.org/2019/895

20. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 32

https://doi.org/10.1007/978-3-319-71667-1_12
https://eprint.iacr.org/2016/412
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-0-387-36946-4
https://doi.org/10.1007/978-0-387-36946-4
https://doi.org/10.1007/978-3-642-22792-9_41
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-642-38616-9_4
https://doi.org/10.1007/978-3-540-68914-0_15
https://eprint.iacr.org/2019/895
https://doi.org/10.1007/978-3-642-17373-8_32

Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme 297

21. Eder, C., Faugère, J.-C.: A survey on signature-based algorithms for computing
Gröbner bases. J. Symb. Comput. 80, 719–784 (2017)

22. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139(1–3), 61–88 (1999)

23. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, pp. 75–83 (2002)

24. Galkin, V.: Termination of original F5 (2012)
25. Gallagher, P.: Digital signature standard (DSS). Federal Information Processing

Standards Publications, vol. FIPS, pp. 186–183 (2013)
26. Jiang, X., Ding, J., Hu, L.: Kipnis-Shamir attack on HFE revisited. In: Pei, D.,

Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 399–411.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79499-8 31

27. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman, New York (1979)

28. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

29. Lidl, R., Niederreiter, H.: Finite Fields, vol. 20. Cambridge University Press, Cam-
bridge (1997)

30. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

31. Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: an
efficient algorithm for computing Gröbner bases of zero-dimensional ideals. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14423-3 7

32. Mohamed, M.S.E., Ding, J., Buchmann, J., Werner, F.: Algebraic attack on the
MQQ public key cryptosystem. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS
2009. LNCS, vol. 5888, pp. 392–401. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10433-6 26

33. Mohamed, M.S.E., Mohamed, W.S.A.E., Ding, J., Buchmann, J.: MXL2 : solving
polynomial equations over GF(2) using an improved mutant strategy. In: Buch-
mann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 203–215. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3 14

34. National Institute of Standards and Technology: Submission requirements and eval-
uation criteria for the post-quantum cryptography standardization process. Tech-
nical report, National Institute of Standards and Technology (2017)

35. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Euro-
crypt88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 20

36. Patarin, J.: The oil and vinegar algorithm for signatures. In: Dagstuhl Workshop
on Cryptography 1997 (1997)

37. Petzoldt, A., Bulygin, S., Buchmann, J.: Linear recurring sequences for the UOV
key generation. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 335–350. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 21

38. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM. 21(2), 120–126 (1978)

https://doi.org/10.1007/978-3-540-79499-8_31
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/978-3-642-14423-3_7
https://doi.org/10.1007/978-3-642-10433-6_26
https://doi.org/10.1007/978-3-642-10433-6_26
https://doi.org/10.1007/978-3-540-88403-3_14
https://doi.org/10.1007/3-540-44750-4_20
https://doi.org/10.1007/978-3-642-19379-8_21
https://doi.org/10.1007/978-3-642-19379-8_21

298 J. Ding et al.

39. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

40. Stallings, W.: Cryptography and Network Security, 4/E. Pearson Education India,
London (2006)

41. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 10

42. Wolf, C., Preneel, B.: Equivalent keys in multivariate quadratic public key systems.
J. Math. Cryptol. 4(4), 375–415 (2011)

43. Yang, B.-Y., Chen, C.-H.O., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 290–308. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74619-5 19

44. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang,
H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–
288. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9 24

45. Yeh, J.Y.-C., Cheng, C.-M., Yang, B.-Y.: Operating degrees for XL vs. F4/F5 for
generic MQ with number of equations linear in that of variables. In: Fischlin, M.,
Katzenbeisser, S. (eds.) Number Theory and Cryptography. LNCS, vol. 8260, pp.
19–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42001-6 3

https://doi.org/10.1007/978-3-642-30057-8_10
https://doi.org/10.1007/978-3-642-30057-8_10
https://doi.org/10.1007/978-3-540-74619-5_19
https://doi.org/10.1007/978-3-540-27800-9_24
https://doi.org/10.1007/978-3-642-42001-6_3

Out of Oddity – New Cryptanalytic
Techniques Against Symmetric Primitives
Optimized for Integrity Proof Systems

Tim Beyne1(B), Anne Canteaut2(B), Itai Dinur3(B), Maria Eichlseder4,5(B),
Gregor Leander5(B), Gaëtan Leurent2(B), María Naya-Plasencia2(B), Léo
Perrin2(B), Yu Sasaki7(B), Yosuke Todo5,7(B), and Friedrich Wiemer5,6(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
tim.beyne@student.kuleuven.be

2 Inria, Paris, France
3 Department of Computer Science, Ben-Gurion University, Beersheba, Israel

4 Graz University of Technology, Graz, Austria
5 Ruhr-Universität Bochum, Bochum, Germany

6 cryptosolutions, Essen, Germany
7 NTT Secure Platform Laboratories, Tokyo, Japan

Abstract. The security and performance of many integrity proof sys-
tems like SNARKs, STARKs and Bulletproofs highly depend on the
underlying hash function. For this reason several new proposals have
recently been developed. These primitives obviously require an in-depth
security evaluation, especially since their implementation constraints
have led to less standard design approaches. This work compares the
security levels offered by two recent families of such primitives, namely
GMiMC and HadesMiMC. We exhibit low-complexity distinguishers
against the GMiMC and HadesMiMC permutations for most parame-
ters proposed in recently launched public challenges for STARK-friendly
hash functions. In the more concrete setting of the sponge construction
corresponding to the practical use in the ZK-STARK protocol, we present
a practical collision attack on a round-reduced version of GMiMC and
a preimage attack on some instances of HadesMiMC. To achieve those
results, we adapt and generalize several cryptographic techniques to fields
of odd characteristic.

Keywords: Hash functions · Integrity proof systems · Integral
attacks · GMiMC · HadesMiMC

1 Introduction

The emergence of cryptographic protocols with advanced functionalities, such as
fully homomorphic encryption, multi-party computation and new types of proof
systems, has led to a strong demand for new symmetric primitives offering good
performance in the context of these specific applications. Indeed, as emphasized
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 299–328, 2020.
https://doi.org/10.1007/978-3-030-56877-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_11

300 T. Beyne et al.

by Katz [26] in his invited lecture at CRYPTO 2019, symmetric-key cryptogra-
phy has an important role to play in the further practical advancement of these
applications. However, the standard criteria which govern the design of symmet-
ric primitives are usually not appropriate in the context of these applications.
For instance, the cost of the homomorphic evaluation of a symmetric primitive
is mainly determined by its multiplicative size and depth [6]. Similarly, the area
of integrity proof systems, like SNARKs, STARKs, Bulletproofs, is asking for
symmetric primitives optimized for yet another cost metric. Moreover, the use
of hash functions that are defined over finite fields of odd characteristic, in par-
ticular over prime fields is desirable in many such applications. One example of
such a use case is the zero-knowledge proof system deployed in the Zcash cryp-
tocurrency. Another very interesting example is the ZK-STARK protocol [13],
which is expected to be deployed on top of the Ethereum blockchain within the
next year: it uses as a building-block a collision-resistant hash function, and the
performance of the proof system highly depends on the number of arithmetic
operations required for describing the hash function (see [7] for details).

Therefore, several new ciphers and hash functions have been proposed in the
last five years for these advanced protocols. They include several FHE-friendly
symmetric encryption schemes such as LowMC [6], FLIP [31], Kreyvium [20]
and Rasta [22], some MPC-friendly block ciphers such as MiMC [5] and its
variants [3,24], and some primitives dedicated to proof systems such as the func-
tions from the Marvellous family, including Jarvis, Friday [8], Vision and
Rescue [7].

However, all these primitives are very innovative constructions and the imple-
mentation constraints which govern their designs may have introduced some
unexpected weaknesses. This was the case for LowMC, which was broken a few
weeks after its publication [21,23,32]. More recently, a practical attack against
Jarvis has been mounted [2], showing that some of these designs are probably
not mature enough for practical applications and require a more in-depth secu-
rity evaluation. In particular, several of these primitives are defined over an odd
prime field, a setting in which most of the classical cryptanalytic tools, and there-
fore also related security arguments, do not apply directly. This includes linear
cryptanalysis and its variants, integral attacks and higher-order differential or
cube attacks.

Our Contributions. This work analyses the security of two families of such prim-
itives. To be concrete, we focus on the concrete proposals of STARK-friendly
hash functions which have been specified in the context of a public competi-
tion launched by StarkWare Industries1. We aim to compare the security levels
offered, for similar parameters, by two families of primitives: GMiMC [3,4] and
HadesMiMC [24,25]. More precisely, we evaluate the resistance of these two
primitives against several general types of attacks: attacks exploiting differen-
tial properties, integral attacks and advanced algebraic attacks. As a result, we
present low-complexity distinguishers against the GMiMC and HadesMiMC

1 https://starkware.co/hash-challenge/.

https://starkware.co/hash-challenge/

Out of Oddity – New Cryptanalytic Techniques 301

permutations for most parameters proposed in the challenges. In the more con-
crete setting of the sponge construction corresponding to the practical use in
the ZK-STARK protocol, we describe a collision attack on a round-reduced ver-
sion of GMiMC and a preimage attack on some instances of HadesMiMC.
Our findings for the most efficient variants of the primitives are summarized in
Table 1.

From a technical point, our results required to adapt and generalize several
cryptanalytic techniques to fields of odd characteristic. In particular, for integral
attacks, we demonstrate that instead of using sums over additive subgroups as
usually done for ciphers over F

n
2 , it is possible to use any multiplicative subgroup

of F
×
q with similar impact. Interestingly, this seems to suggest that finite fields

Fq with a limited number of multiplicative subgroups might be preferable, i.e.
one might want to avoid q − 1 being smooth. This implies that the fields which
are suitable for implementing FFT may be more vulnerable to integral attacks.
We expect that these general insights have applications beyond our concrete
cryptanalytic results.

An additional technical contribution of this paper is the use of algebraic
techniques for ensuring that transitions of a differential characteristic for a hash
function hold for many rounds without paying the typical expensive probabilistic
cost. In particular, we exploit the algebraic structure of the hash function to
penetrate deep into its state and represent the conditions for the differential
transitions as algebraic equations that can be efficiently solved. We refer to
these attacks as algebraically controlled differential attacks. Algebraic techniques
have been previously used in combination with differential attacks (for example,
in the recent cryptanalysis of SHA-1 [36]). However, unlike prior work, in our
setting each differential transition is very expensive to bypass probabilistically.
Hence, our attacks are almost entirely algebraic and use dedicated techniques to
ensure that the algebraic equations can be efficiently solved.

Organization of the Paper. The following section describes the two STARK-
friendly primitives considered in the paper and their concrete instances. Section 3
details how integral attacks can be mounted over finite fields of any charac-
teristic. Following this new framework, Sect. 4 exhibits low-complexity integral
distinguishers on the full GMiMC permutation. Several differential attacks on
round-reduced GMiMC are then detailed in Sect. 5, including a practical colli-
sion attack on the corresponding hash function. Section 6 presents two attacks
on HadesMiMC: a general integral distinguisher covering all but two rounds
of the permutation, and a preimage attack on the hash function which applies
in the specific case where the MDS matrix defining the linear layer has a low
multiplicative order.

2 STARK-Friendly Primitives

This paper focuses on two families of primitives, which are recent evolutions of
the block cipher MiMC designed by Albrecht et al. in 2016 [5], and offer much
more flexibility than the original construction:

302 T. Beyne et al.

Table 1. Distinguishers on the GMiMC and HadesMiMC permutations and attacks
breaking the corresponding sponge hash functions. The variants aiming at 128-bit
security operate on t = 12 elements in Fq with q = 261 + 20 × 232 + 1. The variants
aiming at 256-bit security operate on t = 14 elements in Fq with q = 2125+266×264+1.
The last attack (∗) only applies when the linear layer has a low multiplicative order.
Attacks on full versions are typeset in bold.

Primitive Rounds Attack
(security)

Type Rounds Cost Sect.

GMiMC 101 permutation integral distinguisher 70 261 4.1
(128 bits) ZS distinguisher 102 248 4.3

ZS distinguisher 128 2122 4.2
diff. distinguisher 64 2123 5.2
diff. distinguisher 66 practical 5.2

hash function collisions 40 practical 5.4
collisions 42 292 5.4
collisions 52 283 5.4

Poseidon 8+40 permutation ZS distinguisher 6+45 261 6.1
(128 bits)

GMiMC 186 permutation integral distinguisher 116 2125 4.1
(256 bits) ZS distinguisher 206 2125 4.2

ZS distinguisher 218 2250 4.2
hash function collisions 50 2187 5.3

Poseidon 8+83 permutation ZS distinguisher 6+87 2125 6.1
(256 bits) hash function∗ preimages 8+any 2160 6.2

– GMiMC, designed by Albrecht et al. [3,4]
– HadesMiMC, proposed by Grassi et al. [24,25], for which two versions

are distinguished depending on the characteristic of the underlying field:
Starkad over a field of characteristic 2, and Poseidon over a prime field.

2.1 Expected Security Level

GMiMC and HadesMiMC are two block ciphers but both of them can be
turned into permutations by replacing the round-keys by fixed independent and
randomly chosen round-constants. Based on these primitives, hash functions are
obtained by applying the sponge construction [14,15] depicted in Fig. 1 and using
the primitive as an inner permutation.

In the following, we extensively use the following notation: the sponge oper-
ates on a state composed of t elements in a finite field Fq. The main parameters
which determine the security level of the sponge construction with respect to
generic attacks are its capacity c and the size of the underlying alphabet Fq.
Namely, a random sponge whose capacity consists of c elements in Fq provides

Out of Oddity – New Cryptanalytic Techniques 303

Fig. 1. Sponge construction with inner permutation π, internal state with t = 12 words
and capacity c = 4.

a generic security level corresponding to c
2 log2 q queries both for collision and

(second)-preimage resistance [14].
The primary cryptanalytic goal is to exhibit collision or preimage attacks on

some weakened variants of the hash functions. However, the existence of a prop-
erty which distinguishes a given cryptographic function from an ideal function of
the same size is also commonly considered as a weakness (see e.g. [11, Page 19]
for a discussion). In our context, since our attacks do not make any assump-
tions about the round-constants in the inner permutations, our distinguishers
are related to the known-key model for block ciphers [28].

While a distinguisher on π cannot always be turned into a distinguisher for
the hash function, it invalidates the security arguments provided by the indiffer-
entiability proof of the sponge construction [15]. For this reason, the authors of
Keccak advocate following the so-called hermetic sponge strategy [16, Page 13],
i.e. using the sponge construction with an inner permutation that should not have
any structural distinguisher (other than the existence of a compact description).

2.2 Concrete Instances

The different members in each of these families are determined by the triple
(c, t, q) representing respectively the number of words in the capacity, the num-
ber of words in the state and the field size. In the following, when referring to
practical examples, we will focus on the values (c, t, q) considered in the Stark-
Ware challenges given in Table 2. To each triple (c, t, q) correspond two variants:
over a prime field and over a binary field, and the exact values of q are detailed in
Table 2. Performance in terms of trace size, proving time, and verification cost,
are essential criteria for choosing a STARK-friendly hash function. Implementa-
tion results show that, for each family of hash functions, the variant 128-d (for
the target 128-bit security) is by far the most efficient [35]. For this reason, some
attacks in the paper focus more specifically on this member in the three families,
i.e., on sponges whose internal state consists of t = 12 words in a finite field Fq

of order close to 264 and with capacity c = 4. It is also worth noticing that, in

304 T. Beyne et al.

Table 2. Parameters proposed for the permutation and sponge construction.

Security level log2 q q (prime) q (binary) c t Variant

128 bits

64 261 + 20 × 232 + 1 263 4 12 128-d

128 2125 + 266 × 264 + 1 2125
2 4 128-a
2 12 128-c

256 2253 + 2199 + 1 2255
1 3 128-b
1 11 128-e

256 bits 128 2125 + 266 × 264 + 1 2125
4 8 256-a
4 14 256-b

terms of performance and suitability, odd prime fields are more STARK-friendly
than binary fields for a given size.

2.3 Specifications of GMiMC

GMiMC is a family of block ciphers designed by Albrecht et al. in 2019 [3] based
on different types of Feistel networks using x �→ x3 over the field corresponding to
the branch alphabet as the round function. Among the variants proposed by the
designers, we focus on the one chosen in the StarkWare challenges and depicted in
Fig. 2, namely the variant using an unbalanced Feistel network with an expanding
round function, named GMiMCerf . In the whole paper, the rounds (and round
constants) are numbered starting from 1, and the branches are numbered from 1
to t where Branch 1 is the leftmost branch. For the sake of simplicity, this
particular variant will be called GMiMC. A specificity of GMiMC is that the
designers’ security claims concern the primitive instantiated over a prime field.
They mention that “even if GMiMC can be instantiated over F2n , [they] do not
provide the number of rounds to guarantee security in this scenario”.

In the block cipher setting with a key size equal to n = log2 q bits, the key
schedule is trivial, i.e. the master key is added to the input of the cube function
at every round. This very simple key schedule is a major weakness [18]. However,
it seems difficult to leverage the underlying property in the hash function setting
we are focusing on.

2.4 Specifications of HadesMiMC

HadesMiMC is a family of permutations described by Grassi et al. in [25] which
follows a new design strategy for block ciphers called HADES. The HADES
construction aims to decrease the number of Sboxes relative to a traditional
Substitution-Permutation Network, while guaranteeing that the cipher still
resists all known attacks, including differential and linear cryptanalysis and alge-
braic attacks. Reducing the number of Sboxes is especially important in many
applications and this was traditionally achieved by using a partial substitution-
layer, i.e., an Sbox layer which does not operate on the whole internal state.

Out of Oddity – New Cryptanalytic Techniques 305

Fig. 2. One round of the GMiMC permutation with t = 12.

However, several attacks on this type of constructions, e.g. [12,21,23,32] show
that it is much more difficult to estimate the security level of these constructions
than that of classical SPNs. The basic principle of the HADES construction is
then to combine both aspects: the inner rounds in the cipher have a partial Sbox
layer to increase the resistance to algebraic attacks at a reduced implementa-
tion cost, whereas the outer rounds consist of traditional SPN rounds, with a
full Sbox layer (Fig. 3). The resistance against statistical attacks is analyzed by
removing the inner rounds, while the resistance to algebraic attacks, e.g. the
evolution of the algebraic degree over the cipher, involves the inner rounds.

Fig. 3. The HadesMiMC construction with t = 6.

HadesMiMC [25, Section 3] is then a keyed permutation following the
HADES construction dedicated to MPC applications or to STARK proof sys-
tems, where the Sbox is defined by the cube mapping over a finite field and the
linear layer L corresponds to a (t × t)-MDS matrix. Two concrete instantiations
of HadesMiMC are then detailed by Grassi et al. in [24], namely:

– Starkad operates on t elements in a binary field of odd absolute degree
(which guarantees that the cube mapping is bijective);

– Poseidon operates on t elements in a prime field Fp with p mod 3 �= 1.

In both cases the partial rounds consist of a single Sbox operating on the last
coordinate of the state. For all parameters we consider, the number of full rounds
is equal to 8 and the number of partial rounds varies between 40 and 88.

306 T. Beyne et al.

3 Integral Attacks over Fields of Any Characteristic

The notion of integral attacks has been introduced by Knudsen and Wagner [29]
and captures several variants including saturation attacks and higher-order dif-
ferential attacks. These attacks have been used for cryptanalyzing many ciphers,
but to our best knowledge, all of them operate on a binary field. Indeed, the main
property behind these attacks is that, for any F : F

m
2 → F

m
2 and for any affine

subspace V ⊂ F
m
2 , ∑

x∈V

F (x) = 0

when degF < dimV . This comes from the fact that the sum of the images by F
of all inputs in V corresponds to a value of a derivative of F of order (dimV) [30].
It follows that this derivative has degree at most (deg(F) − dimV) and thus
vanishes when degF < dimV . It is then possible to saturate some input bits
of F and to use as a distinguishing property the fact that the output bits are
balanced, i.e. they sum to zero. The fact that the sum over all x ∈ V of F (x)
corresponds to the value of a higher-order derivative does not hold anymore in
odd characteristic, and the same technique cannot be applied directly.

Higher-order differentials over Fq then need to use a generalized notion of
differentiation as analyzed in [34] (see also [1]). However, we can show that for
the particular case of saturation attacks, the same technique can be used in the
general case of a field Fq – even in odd characteristic. Indeed, we can exploit the
following result.

Proposition 1. For any F : Fq → Fq with deg(F) < q − 1,
∑

x∈Fq

F (x) = 0 .

Proof. The result is due to following well-known property: for any exponent k
with 1 ≤ k ≤ q − 2,

∑
x∈Fq

xk = 0. Moreover, when k = 0, we have
∑

x∈Fq
x0 =

q = 0. �	
Proposition 1 can be generalized to the multivariate case, i.e. to functions from
F

k
q to Fq.

Corollary 1. For any F : F
t
q → Fq with deg(F) < k(q − 1) and any affine

subspace V ⊆ F
t
q of dimension at least k,

∑
x∈V F (x) = 0.

Proof. Let V be an affine space of dimension κ ≥ k and A an affine permutation
over F

t
q such that A(V) = {(y, 0, . . . , 0) | y ∈ F

κ
q }. Then,

∑

x∈V

F (x) =
∑

x∈V

(F ◦ A−1)(A(x)) =
∑

y1,...,yκ∈Fq

(F ◦ A−1)(y1, . . . , yκ, 0, . . . , 0).

Since deg(F ◦ A−1) = degF < k(q − 1), (F ◦ A−1) consists of monomials of the
form yi1

1 yi2
2 . . . yiκ

κ with at least one exponent ij < q − 1. Then,
∑

yj∈Fq
y

ij

j = 0,
implying that ∑

y1,...,yκ∈Fq

yi1
1 yi2

2 . . . yiκ
κ = 0,

Out of Oddity – New Cryptanalytic Techniques 307

which leads to
∑

x∈V F (x) = 0.

Based on this observation, a saturation attack with data complexity qk can
be mounted whenever the degree of F as a polynomial over Fq is strictly less
than k(q − 1), even if Fq is a field of odd characteristic.

Now, we generalize the notion of integral distinguishers to multiplicative
subgroups using the following property.

Proposition 2. Let G be a multiplicative subgroup of F
×
q . For any F : Fq → Fq

such that deg(F) < |G|, ∑
x∈G

F (x) − F (0) · |G| = 0.

This is a strict generalization of Proposition 1, for which |G| = q − 1.

Proof. The result is a direct consequence of the following well-known property:
for any exponent k with 1 ≤ k ≤ |G| − 1,

∑
x∈G

xk = 0. Moreover, when k = 0,
we have

∑
x∈G

x0 = |G|. �	
We also note that Corollary 1 can be straightforwardly adapted to multiplica-

tive subgroups. The power of summing over multiplicative subgroups (rather
than over the entire field Fq) comes from the fact that if Fq contains small mul-
tiplicative subgroups (as for the fields used for the concrete instances specified
in Table 2), the complexity of the attacks may be fine-tuned and significantly
reduced. In the next sections, such attacks will be applied to both GMiMC and
HadesMiMC.

4 Integral Distinguishers on the Full GMiMC

4.1 Integral Distinguisher on GMiMC

Using Corollary 1, we can exhibit a distinguisher for (3t−4+log3(q−2)�) rounds
of GMiMC. A remarkable property is that this distinguisher holds for any finite
field. It is obtained by saturating a single branch of the Feistel network and
consequently has data complexity q. Indeed, we choose a set of inputs where the
(t − 2) leftmost branches are inactive, while the rightmost branch is determined
by the value of Branch (t − 1). More precisely, we consider a set of inputs of the
form

X = {(α1, . . . , αt−2, x, f(x)) | x ∈ Fq} (1)

where the αi are arbitrary constants in Fq and f is defined by

f(x) = −
(
x +

t−2∑

i=1

βi + RCt−1

)3

− x − 2
t−2∑

i=1

βi − RCt−1 − RCt

and β1, . . . , βt−2 are constant values derived from α1, . . . , αt−2 by

β1 = (α1 + RC1)3 and βi+1 =
(
αi+1 +

i∑

j=1

βj + RCi+1

)3

.

308 T. Beyne et al.

Let us first consider the first (t − 2) rounds. We observe that, at Round i,
1 ≤ i ≤ t − 2, the output of the Sbox corresponds to βi and is added to all
branches except the leftmost branch of the input. It follows that the output of
Round (t − 2) corresponds to

(x +
∑t−2

i=1 βi, f(x) +
∑t−2

i=1 βi, γ1, . . . , γt−2)

where (γ1, . . . , γt−2) are constants (see Figure 4 in [17]).
Therefore, if x′ denotes the value of Branch 1, i.e., x′ = x+

∑t−2
i=1 βi, we have

that Branch 2 corresponds to

f

(
x′ −

t−2∑

i=1

βi

)
+

t−2∑

i=1

βi = − (x′ + RCt−1)
3 − x′ − RCt−1 − RCt .

The inputs of Round t are then

{(−x′ −RCt −RCt−1, γ1 +(x′ +RCt−1)3, . . . , γt−2 +(x′ +RCt−1)3, x′) | x′ ∈ Fq}

and the inputs of Round (t + 1) are

{(γ1, . . . , γt−2, x
′ − (x′ + RCt−1)3,−x′ − RCt − RCt−1) | x′ ∈ Fq} .

The following (t − 2) rounds do not activate the Sbox, implying that the input
set at Round (2t − 1) has the form

{(x′ − (x′ + RCt−1)3 + δ1,−x′ + δ2, δ3, . . . , δt) | x′ ∈ Fq} (2)

for some fixed values δ1, . . . , δt determined by the constants. Each coordinate
of this input word can then be seen as a q-ary polynomial in x′ of degree at
most three. It follows that, after r additional rounds, the set (2) is transformed
into a set of elements (z1, . . . , zt), whose coordinates have degree at most 3r+1.
Proposition 1 then implies that all zi are balanced if 3r+1 ≤ q − 2, i.e., if r ≤
log3(q − 2)� − 1.

Adding (t − 1) Rounds. We can add some more rounds by using the following
relation over (t − 1) rounds of GMiMC.

Proposition 3. Let (x1, . . . , xt) and (y1, . . . , yt) denote the input and output of
(t − 1) rounds of GMiMC.

t∑

i=2

yi − (t − 2)y1 =
t−1∑

i=1

xi − (t − 2)xt . (3)

Proof. Let (x�
1, . . . , x

�
t) denote the input of Round �. It can be observed that, for

any i, j ∈ {1, . . . , t − 1},

x�
i = x�−1

i+1 + (x�
j − x�−1

j+1) and x�
t = x�−1

1 .

Out of Oddity – New Cryptanalytic Techniques 309

It follows that, for any j, 1 ≤ j ≤ (t − 1),

t∑

i=1

x�
i − (t − 1)x�

j =
t∑

i=1

x�−1
i − (t − 1)x�−1

j+1 .

By applying this equality (t − 1) times, we deduce (3). �	
From the previous proposition, we deduce that after a total of R = 3t − 4 +

log3(q − 2)� rounds the output (v1, . . . , vt) of GMiMC satisfies
∑t

i=2 vi − (t −
2)v1 =

∑t−1
i=1 zi − (t − 2)zt, which is a polynomial in x of degree at most (q − 2).

This leads to a distinguisher with complexity q on R rounds, i.e., 70 rounds for
the parameters we focus on.

4.2 Zero-Sum Distinguishers on the Full Permutation

Saturating a Single Branch. Since we are analyzing a permutation (or a
family of permutations parameterized by the round-constants), there is no secret
material involved in the computation, implying that a distinguisher can be built
from some internal states in the middle of the primitive, not only from inputs
and outputs, exactly as in the known-key setting for block ciphers [28]. This leads
to zero-sum distinguishers, which were introduced by Aumasson and Meier [10]
and exhibited for several hash functions, including SHA-3 [9,19].

The previously described distinguisher can be extended by (t− 2+ log3(q −
2)�) rounds backwards. This is realized by choosing the internal states after
(t−2+log3(q−2)�) rounds in X , as defined by (1). The inverse of one round of
GMiMC is still a round of a Feistel network of the same form and it has degree
three over Fq. Then, the coordinates (y1, . . . , yt) of the images of the elements in
X by r backward rounds can be seen as univariate polynomials in x with degree
at most 3r+1. Exactly as in the forward direction, after (log3(q−2)�−1) rounds,
the degree of these polynomials cannot exceed (q − 2).

Based on Proposition 3, we can then add (t − 1) rounds backwards. Indeed,
the input of the first round of the permutation (u1, . . . , ut) is related to the
output of Round (t − 1), i.e. (y1, . . . , yt), by

t∑

i=2

yi − (t − 2)y1 =
t−1∑

i=1

ui − (t − 2)ut ,

and the left-hand term of this equation is a polynomial in x of degree at most (q−
2), implying that

(∑t−1
i=1 ui − (t − 2)ut

)
sum to zero.

Similarly, we can apply the previously described distinguisher in the forward
direction, and deduce that the outputs (v1, . . . , vt) of the permutation after (3t−
4 + log3(q − 2)�) additional rounds are such that

(∑t
i=2 vi − (t − 2)v1

)
sum

to zero. This leads to a distinguisher with complexity q for a total of (4t − 6 +
2log3(q − 2)�) rounds, which is higher than the number of rounds proposed in
all StarkWare challenges, except in the case where q exceeds the claimed security
level (see Table 3).

310 T. Beyne et al.

Saturating Two Branches. When t ≥ 4, it is possible to exhibit a similar
distinguisher on more rounds with complexity q2 by saturating two branches. In
this case, we start from Round m in the middle with a set of internal states

Y = {(α1, . . . , αt−4, x, f(x), g(y), y) | x, y ∈ Fq}

where

f(x) = −
(
x +

t−4∑

i=1

βi + RCm+t−4

)3

− x − 2
t−4∑

i=1

βi − RCm+t−4 − RCm+t−3

g(y) = (y + RCm−1)3 − y − RCm−1 − RCm−2

and β1, . . . , βt−4 are defined as before by replacing RCi by RCm+i−1.

Computing Forwards. As depicted on Figure 5 in [17], the corresponding set at
the input of Round (m + t − 4) is then of the form

{(x′, − (
x′ + RCm+t−4

)3 − x′ − RCm+t−4 − RCm+t−3, γ1(y), . . . , γt−2(y)) | x′, y ∈ Fq}

where (γ1, . . . , γt−2) are some values which depend on y only. After two more
rounds, we then get some internal states whose (t − 2) leftmost branches do not
depend on x′. It follows that each coordinate of the input of Round (m+2t− 4)
is a polynomial in x′ and y of degree at most three in x′. After (log3(q−2)�−1)
rounds, we get that each coordinate is a polynomial of degree at most (q − 2)
in x′. Then, with the same technique as before, we can add (t − 1) rounds and
show that the output of the permutation (v1, . . . , vt) is such that the linear
combination

(∑t−1
i=1 vi − (t − 2)vt

)
sums to zero after (3t − 6 + log3(q − 2)�)

rounds.

Computing Backwards. Starting from Round m and computing backwards, we
get that the input of Round (m − 1) is of the form

(y, α1 − (y + RCm−1)
3, . . . , x − (y + RCm−1)

3, f(x) − (y + RCm−1)
3, −y − RCm−1 − RCm−2)

and the input of Round (m − 2) equals

(−y − RCm−1 − RCm−2, y + (y + RCm−1)3, α1, . . . , x, f(x)) .

Then, the following (t−2) rounds do not activate the Sbox, implying that all the
coordinates of the input of Round (m − t) are polynomials in x and y of degree
at most three in y. We deduce that the input (u1, . . . , ut) of Round (m−2t+2−
log3(q − 2)�) is such that the linear combination

(∑t−1
i=1 ui − (t − 2)ut

)
sums to

zero. This zero-sum distinguisher then covers a total of (5t − 8+ 2log3(q − 2)�)
rounds which is detailed in Table 3 for the relevant parameters.

Out of Oddity – New Cryptanalytic Techniques 311

Table 3. Number of rounds of GMiMC covered by the zero-sum distinguishers of
complexity q and q2.

Security Parameters Number of rounds

log2 q t Full ZS with complexity q ZS with complexity q2

128 bits

61 12 101 118 128
125 4 166 166 –
125 12 182 198 –
256 3 326 – –
256 11 342 – –

256 bits 125 8 174 182 188
125 14 186 206 218

4.3 Exploiting Integral Distinguishers over Multiplicative
Subgroups

A noticeable shortcoming of the integral attacks over Fq, as demonstrated by
Table 3, is that they do not give any result for primitives over large fields Fq

(for which log2 q ≈ 256). However, by exploiting integral distinguishers over
multiplicative subgroups of Fq (e.g., for the specific choice of q = 2253+2199+1),
we obtain essentially the same results for GMiMC instances with large q as
we obtain for instances with small q. For example, in Sect. 4.1 we derived an
integral distinguisher on R = 3t − 4 + log3(q − 2)� rounds, with complexity q.
By exploiting any multiplicative subgroup of size |G| = 2s for s ≤ 199 when q =
2253+2199+1, we obtain an integral distinguisher on R = 3t−4+log3(|G|−1)�
with complexity |G| + 1.

Moreover, even for smaller fields, we can fine-tune the size of G to reduce the
complexity of the attack. This is relevant especially for cases where an attack
with complexity q can reach more rounds than the ones used by the primitive
(which is indeed the case, as shown in Table 3). For example, as derived in
Sect. 4.2, we have a zero-sum property for 4t − 6 + 2log3(q − 2)� rounds with
complexity q. For the GMiMC variant with q = 261 + 20 × 232 + 1 and t = 12,
we use a subgroup of size 233 · 167 · 211 ≈ 248 (which divides q − 1), and obtain
a zero-sum property for 4t − 6+2log3(248 − 1)� = 102 rounds, with complexity
of about 248 (which covers the full permutation).

5 Differential Attacks on Round-Reduced GMiMC

5.1 Impossible Differential Attacks

We present a new impossible differential for (3t− 4) rounds, which improves the
previous one for (2t − 2) rounds presented by the designers [4, Page 46].

The previous impossible differential exploits the following probability one
propagation for (t − 1) rounds: (0, . . . , 0, α) → (α, 0, . . . , 0) where α is a non-
zero difference. Hence, (0, . . . , 0, α) never propagates to (β, 0, . . . , 0) after 2t − 2

312 T. Beyne et al.

rounds for any β. The designers concluded that conservatively 2t rounds are
secure when the security level corresponds to the block size n.

We show that (0, . . . , 0, α1)
R3t−4

� (β1, 0, . . . , 0) is an impossible propagation,
where α1, β1 are non-zero differences satisfying α1 �= β1. That is, we include t−2
more rounds in the middle compared to the property presented by the designers.

The intuition for why the above differential is impossible is as follows. When
(0, . . . , 0, α1) is propagated, the output difference of the cube mapping is 0 for
the first t−1 rounds and is unpredictable for the next t/2−1 rounds. We denote
them by α2, α3, . . . , αt/2. Similarly, we extend (0, . . . , 0, β1) by t/2 − 1 rounds
backwards, using the notation β2, β3, . . . , βt/2. Here, to be a valid propagation,
those differences must be equal in all the branches, which yields a system of
t linear equations with 2(t/2 − 1) = t − 2 variables. By solving the system,
we obtain that α1 = β1 is a necessary condition to obtain a valid differential
propagation. In other words, for any α1, β1 with α1 �= β1, the propagation is
impossible. A detailed analysis of this property is provided in [17].

5.2 A Differential Distinguisher

The original paper [4, Appendix D] analyzes the resistance of GMiMC against
differential attacks. Most notably, the designers exhibit a differential character-
istic over (t+1) rounds with two active Sboxes, with probability 2−(2n+2) where
n = log2 q and they conjecture that the corresponding differential is optimal.
They deduce that

R = 2 + (t + 1)
⌈ tn

2(n − 1)

⌉
rounds

are sufficient to resist differential cryptanalysis in the sense that the data com-
plexity of the attack exceeds the size of the full codebook. For instance, when
t = 12 and n = 61, this corresponds to 93 rounds out of 101.

A Better Differential. We exhibit another differential, over t rounds, which leads
to a much more efficient attack. Let α and α′ be two differences in Fq. Then, the
difference (0, . . . , 0, α, α′) propagates through t rounds of the permutation as

(0, . . . , 0, α, α′) Rt−2

−→ (α, α′, 0 . . . , 0)
R−→ (α′ + β, β, . . . , β, α)
R−→ (β + β′, . . . , β + β′, α + β′, α′ + β),

where α
S→ β denotes the Sbox transition occurring at Round (t−1) and α′+β

S→
β′ the Sbox transition occurring at Round t.

It follows that, for any possible value of β, we obtain the following t-round
differential as soon as β′ = −β, which occurs with probability 2−n on average:

(0, . . . , 0, α, α′) Rt

−→ (0, . . . , 0, α − β, α′ + β) .

Out of Oddity – New Cryptanalytic Techniques 313

Since this probability does not depend on the choice of α and α′, this differential
can be iterated several times to cover more rounds.

For instance, when t = 12 and n = 61, the 101 rounds of GMiMC can be
decomposed into 8 blocks of t = 12 rounds, followed by 5 rounds. We then get a
differential of the form

(0, . . . , 0, α, α′) −→ (0, 0, 0, 0, 0, γ, γ′, 0, 0, 0, 0, 0)

over the full cipher for some unknown γ, γ′ with probability at least

P = (2−61)8 = 2−488

since the characteristic over the last 5 rounds has probability one. This leads to a
differential distinguisher over the full permutation with complexity P−1 = 2488

which is much lower than the size of the full codebook (2732).
It is worth noticing that P is a lower bound on the probability of the 101-

round differential since we considered pairs following some specific characteristics
by fixing the forms of some differences at intermediate rounds. Some additional
input pairs may lead to an output difference of the same form but not to these
specific intermediate differences.

Improving the Complexity of the Distinguisher with Structures. The data
complexity of the previous distinguisher can be improved by using struc-
tures of inputs. Here, a structure is a set of 22n inputs of the form Sc =
{(c1, . . . , ct−2, x, y) | x, y ∈ Fp}. The difference between any two elements in
the same structure has the form (0, . . . , 0, α, α′). It follows that, from any struc-
ture, we can construct 24n−1 pairs of inputs whose difference conforms with the
differential. Then, the number of structures required to obtain P−1 = 28n pairs
with an appropriate difference is

28n−4n+1 = 24n+1,

leading to an overall data complexity of 26n+1 = 2367. The time complexity is
equal to the data complexity here since the distinguisher consists in identifying
the output pairs which coincide on all output words except the two in the middle.
This does not require computing all pairs of elements in each structure, but only
to store the values π(x), x ∈ Sc according to their first coordinates.

This differential distinguisher does not lead to an attack with complexity
below the target security level. However, this must be considered as an unsuitable
property since its complexity is much lower than what we expect for a randomly
chosen permutation on a set of size 2732.

It is worth noticing that, if we restrict ourselves to distinguishers with com-
plexity below the target security level of 128 bits, then we can use at most
2128/22n = 26 structures. Therefore, we can derive from these structures 26+4n−1

i.e. 2249 pairs of inputs conforming with the differential. These pairs be can
used to distinguish 4 blocks of t rounds since the differential has probability
at least 2−244. Moreover, a valid pair propagates to a differential of the form

314 T. Beyne et al.

(γ, γ′, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) with probability one over (t − 2) rounds, and we
can extend it by a few more rounds by considering the number of state words
that have the same difference. After another 6 rounds, the pair has a differential
of the form

(Δ,Δ,Δ,Δ,Δ,Δ, ∗, ∗, ∗, ∗, ∗, ∗),
with probability one, where ∗ is an unknown difference that we do not care about.
This differential form has a constraint of the size 5n: the left-most six state words
have an identical difference. The number of queries to satisfy the same property
for a randomly chosen permutation is lower bounded by 25n/2 ≈ 2152.5. This
implies that we can distinguish 4t + (t − 2) + (t − 6) = 64 rounds of GMiMC
from a randomly chosen permutation with complexity less than 2128.

Improved Distinguisher Using Three Active Words. If we consider a differential
with only two active words, the biggest structure we can build is of size 22n, which
limits the advantage of using structures in reducing the cost of the distinguishers.
Let us now consider the following differential:

(0, . . . , 0, α, α′, α′′)
Rt−3

−→ (α, α′, α′′, 0 . . . , 0)
R−→ (α′ + β, α′′ + β, β, . . . , β, α)
R−→ (α′′ + β + β′, β + β′, β + β′, . . . , β + β′, α + β′, α′)
R−→ (β + β′ + β′′, . . . , β + β′ + β′′, α + β′ + β′′, α′ + β + β′′, α′′ + β + β′),

where α
S→ β, α′ + β

S→ β′ and α′′ + β + β′ S→ β′′ denote the Sbox transitions
occurring at Round (t − 2), at Round (t − 1) and at Round t.

As with the previous differential, if β + β′ + β′′ = 0, which occurs with
probability 2−n on average, we have:

(0, . . . , 0, α, α′, α′′) Rt

−→ (0, . . . , 0, α − β, α′ + β + β′′, α′′ − β′′) .

Again, the probability of this transition is independent of the values of α, α′ and
α′′, so it can be iterated with probability 2−n.

For this differential, we can build structures of size 23n. This will allow us to
consider around 26n pairs with the required input differential, so we can expect
to be able to iterate the characteristic for 6t rounds. The total distinguisher will
cover 6t + (t − 3) rounds. As for the previous one, we can add 4 more rounds,
generating an output state with 8 words having the same difference with a cost
of 23n, compared to a cost of 27n/2 for a random permutation. For GMiMC with
t = 12, this allows to distinguish 85 rounds with a cost of 23n. By repeating this
procedure 2n times, we can expect t more round to be covered, and distinguish
the whole permutation with 101 rounds with a complexity of 25n = 2320 and
having 9 words with a zero difference (as we do not need to add the final four
rounds).

Out of Oddity – New Cryptanalytic Techniques 315

Let us point out that using four instead of three words would not improve
the number of rounds attacked on GMiMC-128-d, as the cost of one structure
is already the same as the cost of obtaining the 8 non-zero differences in the
output for a random permutation. Nevertheless, in the case of the GMiMC
variant 256-b with t = 14, if we use a similar differential with four active words,
we can distinguish up to 8t + (t − 4) = 122 rounds while finding 10 words with
no difference and with a complexity of about 24n = 2500.

To determine whether further improvements of these differentials are possi-
ble, we have searched for other differential characteristics with a Mixed-Integer
Linear Programming (MILP) model. We conclude that the previously described
characteristics are essentially optimal for the defined search space, and refer
to [17] for details.

5.3 Algebraically Controlled Differential Attacks

In this section, we show how to use algebraic techniques to efficiently find inputs
that satisfy a given differential characteristic. The basic idea is to represent the
initial state of the permutation symbolically by assigning variables to some of
its branches, while the remaining branches are assigned constant values. We
then compute the permutation symbolically for several rounds. Namely, for each
round, we derive a polynomial expression for each branch of the internal state
in terms of the allocated variables.

We repeat this process starting from two initial states (representing two
inputs to the permutation), perhaps assigning them different variables. We can
now represent the difference between the internal states at each round in these
two computations using polynomial expressions in the allocated variables. In par-
ticular, each differential transition of the given differential characteristic (whose
probability is smaller than one) is expressed as a polynomial equation in the
variables. Collecting the equations for all differential transitions, we obtain a
system of polynomial equations, whose solution immediately gives two inputs
to the permutation that satisfy the differential characteristic. For this approach
to be useful, the equation system has to be efficiently solvable, which generally
implies that we cannot allocate too many variables and need to minimize the
algebraic degree of the polynomial equations.

Next, we discuss the complexity of solving equation systems of a specific
form that we encounter in the remainder of this section. We then demonstrate
the basic attack approach with an example and continue with more involved
attacks.

Solving Polynomial Equation Systems with Few Variables. Some of our attacks
in the remainder of this section reduce to solving equation systems over Fq.
When possible, we solved the systems in practice using the MAGMA software.
However, it is also important to understand the complexity of our attacks on
stronger variants of the cryptosystem, where they become impractical. In this
section, we will only consider systems with one or two variables and estimate the
complexity of solving such systems below. We note that in Sect. 6.2 we encounter

316 T. Beyne et al.

equation systems with more variables. Solving such equations is more involved
and we will have to use a different estimation, which is heuristic (but standard).

Solving a univariate polynomial equation over Fq of degree d is done by factor-
ing the polynomial. Asymptotically, the best known algorithm for this problem
was published in [27] and has complexity of about d1.5+o(1) bits operations. We
note, however, that the o(1) expression in the exponent hides a non-negligible
term. Solving two bivariate polynomial equations P1(x, y) = 0 and P2(x, y) = 0
of total degrees d1 and d2 (respectively) can be done by computing the resultant2
of the two polynomials, which is a univariate polynomial in x of degree d1 · d2.
We then compute the roots of the resultant (by factoring it) and for each such
root x̄, we compute the common roots of P1(x̄, y) and P2(x̄, y) (using a GCD
algorithm). In general, the heaviest step in this process is factoring the resultant.

Satisfying 3t− 2 Rounds. We show how to efficiently satisfy 3t− 2 rounds of the
iterative differential characteristic of Sect. 5,

(0, . . . , 0, μ0, μ
′
0)

Rt−2

−→ (μ0, μ
′
0, 0 . . . , 0)

R−→ (μ′
0 + μ1, μ1, . . . , μ1, μ0)

R−→ (μ1 + μ′
1, . . . , μ1 + μ′

1, μ0 + μ′
1, μ

′
0 + μ1),

where we require that μ1 + μ′
1 = 0.

Consider an initial state of the permutation of the form

X0 = (α1, . . . , αt−2, x, f(x)),

where the αi are constants in Fq, x is a variable and the function f(x) is described
in Sect. 4 (see (1)). Then, as described in Sect. 4, the internal state at Round (t−
2) is described as

Xt−2 = (x +
∑t−2

i=1 βi, f(x) +
∑t−2

i=1 βi, γ1, . . . , γt−2),

while the state at Round (2t − 2) is described as

X2t−2 = (x′ − (x′ + RCt−1)3 + δ1,−x′ + δ1, δ2, . . . , δt),

where x′ = x +
∑t−2

i=1 βi. Starting from Round (2t − 2), the algebraic degree of
the branches generally grows by a multiplicative factor of 3 per round, namely,
the algebraic degree of Round (2t − 2 + r) is at most 3r+1.

Next, consider another initial state of the permutation of the form

Y0 = (α1, . . . , αt−2, y, f(y)),

where the initial constants αi are identical to those of X0. Note that the initial
difference between the states is of the form

Δ0 = X0 − Y0 = (0, . . . , 0, μ0(x, y), μ′
0(x, y)).

2 The resultant of two polynomials is itself a polynomial in their coefficients, whose
zeroes coincide with the common roots of the two polynomials.

Out of Oddity – New Cryptanalytic Techniques 317

Then, the state Y2t−2 after Round (2t − 2) is described as

Y2t−2 = (y′ − (y′ + RCt−1)3 + δ1,−y′ + δ2, δ3, . . . , δt).

Therefore, the choice of the initial states of the two inputs, assures that (2t − 2)
rounds of the differential characteristic are satisfied with probability one. At
round 2t, we have

Δ2t = X2t − Y2t =

(μ2(x, y) + μ′
2(x, y), . . . , μ2(x, y) + μ′

2(x, y), μ1(x, y) + μ′
2(x, y), μ′

1(x, y) + μ2(x, y)),

and we require μ2(x, y)+μ′
2(x, y) = 0, which is a polynomial equation of degree

32+1 = 27 in the variables x, y. Since we have 2 variables and only one equation
in Fq, we can set one of the variables to an arbitrary constant and solve a
univariate polynomial equation in the other variable. We expect one solution on
average, which gives an input pair that satisfies the differential characteristic for
2t rounds. Since the next (t − 2) rounds are satisfied with probability one, we
can satisfy 3t − 2 rounds at the cost of solving a univariate polynomial equation
over Fq of degree 27 (which has very low complexity).

Satisfying 4t − 2 Rounds in an Inside-Out Setting. In an inside-out setting, the
differential characteristic can be extended from (3t−2) rounds to (4t−2) rounds
algebraically, by adding t rounds before the initial state. Indeed, since the initial
state is described by polynomials of degree 3, the state at round (−2) can be
described by polynomials of degree 27:

Δ−2 =X−2 − Y−2 = (μ−1(x, y) + μ′
−1(x, y), . . . ,

μ−1(x, y) + μ′
−1(x, y), λ1(x, y) + μ′

−1(x, y), λ′
1(x, y) + μ−1(x, y)).

Thus, we require μ−1(x, y)+μ′
−1(x, y) = 0 in addition to μ2(x, y)+μ′

2(x, y) = 0.
This defines a system of two equations of degree 27 in two variables. Any solution
with x �= y defines a pair of states that satisfies a differential characteristic from
round (−t) to round (3t − 2), because rounds (−t) to (−2) are satisfied with
probability 1.

To solve the system, we first divide each equation by (y − x) to eliminate
trivial solutions with x = y. Then we compute a Gröbner basis of the resulting
system. Using the MAGMA software, this can be done in less than one minute
on a standard PC (solving the system also has very low complexity by our
theoretical estimate). Moreover, this can be extended to a distinguisher on 66
rounds by considering a truncated difference in the input and output. We give
an example in Figure 6 of [17].

Satisfying 4t − 4 Rounds. If we want to use the differential in a collision attack,
we must preserve the value of some initial state words, and we cannot use the
inside-out technique. We describe an alternative technique, using a modified
differential with four active state words:

318 T. Beyne et al.

(0, . . . , 0, μ0, μ
′
0, μ

′′
0 , μ′′′

0)
Rt−4

−→ (μ0, μ
′
0, μ

′′
0 , μ′′′

0 , 0 . . . , 0)
R−→ (μ′

0 + μ1, μ
′′
0 + μ1, μ

′′′
0 + μ1, μ1, . . . , μ1, μ0)

R−→ (μ′′
0 + μ1 + μ′

1, μ
′′′
0 + μ1 + μ′

1, μ1 + μ′
1, . . . , μ1 + μ′

1, μ0 + μ′
1, μ

′
0 + μ1)

R−→ (μ′′′
0 + μ1 + μ′

1 + μ′′
1 , μ1 + μ′

1 + μ′′
1 , . . . , μ1 + μ′

1 + μ′′
1 , μ0 + μ′

1 + μ′′
1 ,

μ′
0 + μ1 + μ′′

1 , μ′′
0 + μ1 + μ′

1)
R−→ (µ1, . . . ,µ1, μ0 + µ1 − μ1, μ

′
0 + µ1 − μ′

1, μ
′′
0 + µ1 − μ′′

1 , μ′′′
0 + µ1 − μ′′′

1)
with µ1 = μ1 + μ′

1 + μ′′
1 + μ′′′

1 .

As in Sect. 5.2, we require that µ1 = 0. This happens with probability
2−n, and results in an iterative truncated characteristic (0, . . . , 0, ∗, ∗, ∗, ∗) Rt

−→
(0, . . . , 0, ∗, ∗, ∗, ∗).

As in the previous attack, we build an initial state with special relations to
control the first t rounds with probability one:

X0 = (α1, . . . , αt−4, x, f(x), y, f(y)).

This ensures that the state at Round (2t − 4) is of the form:

X2t−4 = (x′−(x′+RCt−1)3+δ1,−x′+δ2, y
′−(y′+RCt−1)3+δ3,−y′+δ4, δ5, . . . , δt).

Instead of considering two different states with this shape (with four unknown
in total), we will consider one variable state and one fixed state with (x, y) =
(0, 0). When we consider the state at Round (2t), we have

Δ2t = X2t − X2t(0, 0) =
(µ2, . . . ,µ2, μ1 + µ2 − μ2, μ

′
1 + µ2 − μ′

2, μ
′′
1 + µ2 − μ′′

2 , μ′′′
1 + µ2 − μ′′′

2)

Where (μ1, μ
′
1, μ

′′
1 , μ′′′

1) are polynomials of degree 3, 1, 3, and 1 respectively (as
seen in X2t−4), and (μ2, μ

′
2, μ

′′
2 , μ′′′

2) are polynomials of degree 9, 27, 81, and 243,
with µ2 = μ2 + μ′

2 + μ′′
2 + μ′′′

2 . All polynomials have variables x and x′, and
X2t(0, 0) is a vector of constants. We now require µ2(x, x′) = 0, and we can
simplify the state using this assumption:

X2t = X2t(0, 0) + (0, . . . , 0, μ1 − μ2, μ
′
1 − μ′

2, μ
′′
1 − μ′′

2 , μ′′′
1 + μ2 + μ′

2 + μ′′
2).

We obtain an expression of degree (0, . . . , 0, 9, 27, 81, 81).
When we focus on Round (3t), we can now express the condition of the

differential as a polynomial of degree 729. Therefore, we have a system of two
equations of degree 243 and 729 in two variables. To estimate the complexity of
solving the system, recall that we factor the resultant of these polynomials in
time d1.5+o(1) bit operations. In our case, d = 243 · 729 = 177, 147.

Any solution with (x, y) �= (0, 0) defines a state such that (X(x, y),X(0, 0))
satisfies the differential characteristic up to round (4t − 4), because rounds (4t)
to (4t − 4) are satisfied with probability one.

Out of Oddity – New Cryptanalytic Techniques 319

Extending the Differentials. All these attacks can be extended probabilistically
by finding about q different input pairs that satisfy the differential characteristic
(each pair is found by choosing different constants αi in the initial state). With
high probability, one of these input pairs will also satisfy the next differential
transitions, and follow the characteristic for t more rounds.

5.4 Reduced-Round Collision Attacks

We can build collisions on a reduced number of rounds by using the same ideas as
for the previous structural or algebraic differential distinguishers. The additional
constraint that we have now compared to distinguishers is that any values that
need to be chosen must be assigned to the rate part, i.e. the 8 left-most words in
GMiMC-128-d, and the capacity part, i.e. the 4 right-most words in GMiMC-
128-d, will be fixed to a known value we cannot choose.

Building Collisions with Structures. We won’t use the 3-word differential but
the 2-word one, as using the full 2n structure from the 2-word one already
implies a complexity equivalent to that of a generic collision attack. Instead of
having t = 12 free rounds at the beginning, we will have only 8, due to the 4
words reserved for the capacity. With a cost of 2r·n we can then go through r · t
rounds maintaining the same differential. Finally, we can freely add (t−2) rounds
that preserve the differences in the rate part and, consequently, can finally be
cancelled:

(0, . . . , 0, α, α′, 0, 0, 0, 0) Rt−6

−→ (α, α′, 0 . . . , 0) Rr·t
−→ (β, β′, 0 . . . , 0),

This differential has a probability of 2−r·t, and would allow to build collisions
up to 3t − 6 rounds, so for 30 rounds for GMiMC-128-d. If we use structures
we can improve this: if we build a structure of size 2x, with the cost of the
structure we can verify a probability up to 2−2x. If we choose structures of size
23n/2, we can consider r = 3. This would provide collisions for 4t − 6 rounds.
For GMiMC-128-d this implies collisions on 42 rounds with a cost of 292, and
for GMiMC-256 it implies collisions on 50 rounds with a complexity of 2187.

Building Collisions with Algebraically Controlled Techniques. To use the alge-
braically controlled techniques in a collision attack, we must not use any differ-
ence in the inner part of the sponge. As noted, in the case of GMiMC-128-d,
we have c = 4, therefore, we start from a state

X0 = (α1, . . . , α4, x, f(x), y, f(y), α9, . . . , α12)

and we have a characteristic over 4t−4− c = 40 rounds. In MAGMA, this takes
a few minutes using less than 3GB of RAM. We give an example of a conforming
pair in Figure AAA in [17], where all the α constants have been set to zero. This
attack can be extended to t more rounds probabilistically, with (asymptotic)
complexity of q ·d1.5+o(1) bit operations. In our case, d = 177, 147 and we obtain
an estimate of about 290 if we ignore the o(1) term.

320 T. Beyne et al.

6 Attacks on HadesMiMC

This section describes two types of attacks against HadesMiMC, which both
exploit the propagation of affine subspaces over the partial rounds. The first
one is an integral distinguisher covering all rounds except the first two rounds
for most sets of parameters. The second one is a preimage attack on the full
function which applies when the MDS matrix defining the linear layer has, up to
multiplication by a scalar, a low multiplicative order. It is worth noticing that,
while the designers of HadesMiMC do not mention any requirements on this
MDS matrix, they provide several suggestions. For Starkad and Poseidon,
Cauchy matrices are used [24]. In [17], we identify weak instances from this class
of matrices. Alternatively, the HadesMiMC authors propose [25, Appendix B]
the use of a matrix of the form A × B−1 where both A and B are Vandermonde
matrices with generating elements ai and bi. In this case, if ai = bi + r for some
r ∈ Fq, then the resulting MDS matrix will be an involution for Fq of char-
acteristic two [33]. Similarly, in characteristic p �= 2, one obtains an involution
whenever ai = −bi.

6.1 Integral Distinguishers

In HadesMiMC, the number of rounds has been chosen by the designers in such
a way that, when each coordinate of the output is expressed as a polynomial in
t variables over Fq, then the degree of this polynomial in each input is close to
(q − 1), which is the behaviour expected for a randomly chosen permutation.
Assuming that the degree grows as 3r for r rounds (which is an upper bound),
�log3(t(q−1))� rounds are enough to get a polynomial of total degree (q−1)t. For
the concrete parameters, i.e. t = 12 and q = 261 + 20 × 232 + 1 for Poseidon,
we get that 41 rounds (out of 48 in total) are necessary to achieve maximal
degree. For Starkad with t = 12 and q = 263, 43 rounds (out of 51 in total)
are necessary.

An Integral Property. Our idea to improve upon the trivial bound above by a few
partial rounds is to choose a specific subspace of inputs. Indeed, we are going to
construct a one-dimensional subspace V such that t − 1 partial rounds will map
any coset V + v0 onto a coset of another one-dimensional subspace W . Adding
at most log3(q − 2)� rounds (either full or partial), ensures that the conditions
of Corollary 1 are satisfied and thus the outputs sum to zero.

V + v0
Rt−1

p−→ W + w0
deg<q−1−→ zero sum.

Let us denote by V a linear subspace of internal states after the Sbox layer
of the last of the first Rf/2 full rounds (see Fig. 4). Then, this subspace leads
to an affine subspace at the input of the first partial round, which is a coset of
L(V). The following lemma guarantees the existence of a nontrivial vector space
L(V) such that any coset of L(V) is mapped to a coset of W = Lt(V) after t−1
partial rounds.

Out of Oddity – New Cryptanalytic Techniques 321

Lemma 1. Let F : F
t
q → F

t
q denote a permutation obtained from r ≥ 1 partial

HadesMiMC rounds instantiated with linear layer L. If L has multiplicative
order h up to multiplication by a scalar, then there exists a vector space V with
dimV ≥ t − min{h, r} such that F (x + V) ⊆ F (x) + Lr(V) for all x ∈ F

t
q.

Proof. Let V = 〈δt, L
T (δt), . . . , (LT)r−1(δt)〉⊥ where δt = (0, . . . , 0, 1). Clearly,

dimV satisfies the desired lower bound. It suffices to show that for all x ∈ F
t
q and

v ∈ V , F (x+ v) = F (x)+Lr(v). Let F = Rr ◦ · · · ◦R1. Since the last coordinate
of any v in V is zero, i.e. v ⊥ δt, the image of x + V by the partial Sbox layer
is a coset of V . It follows that R1(x + v) = R1(x) + L(v). Similarly, for Round
i = 2, . . . , r, it holds that Ri(xi + Li−1(v)) = Ri(xi) + Li(v) if Li−1(v) ⊥ δt or
equivalently v ⊥ (L�)i−1(δt). �	

Let us consider any coordinate y of the output of the permutation after
adding r additional (partial or full) rounds. When z0 varies in V , these output
words correspond to the images by the additional rounds of the elements z1 in a
coset of W = Lt(V), which we denote by γ +W (see Fig. 4). As the polynomial
corresponding to the r additional rounds has degree at most 3r, it then follows
using Corollary 1 that

∑

z0∈V

y(z0) =
∑

z1∈γ+W

y(z1) =
∑

x∈Fq

P (x) = 0 ,

as long as r is at most log3(q − 2)�.
Thus, in total this covers (t − 1) + log3(q − 2)� rounds, starting after the

first full rounds. For most sets of concrete parameters, this actually exceeds the
recommended number of rounds in the forward direction for both Poseidon
and Starkad. Furthermore, Lemma1 implies that if the linear layer L has
multiplicative order less than t − 1, then the distinguisher covers an arbitrary
number of partial rounds.

Fig. 4. Zero-sum distinguisher against Poseidon and Starkad covering (2 + 4) full
rounds and all partial rounds.

322 T. Beyne et al.

Zero-Sum Distinguishers over Fq. By extending the above-mentioned approach
in the backwards direction, we can construct a zero-sum distinguisher with a
(slightly) extended number of rounds as depicted on Fig. 4. The problem is that
contrary to the case of GMiMC, the inverse round function in HadesMiMC is
very different from the round function itself, and it has a much higher degree.
Indeed, the inverse of the cube mapping over Fq is the power function x �→
x(2q−1)/3. By using classical bounds on the degree, we cannot guarantee a degree
lower than (q − 2) for more than a single round backwards.

However, V being one dimensional allows to overcome one additional layer of
Sboxes, and thus one additional round. Namely, as V is a one-dimensional space
there exists a vector v = (v1, . . . , vt) ∈ F

t
q such that

V = {(x v1, x v2, . . . , x vt) | x ∈ Fq}.

The image of V under the inverse of the full Sbox layer consists of all the
vectors in F

t
q of the form

(
(x v1)1/3, . . . , (x vt)1/3

)
= x1/3

(
v
1/3
1 , . . . , v

1/3
t

)
.

As a consequence, this image is again a one-dimensional vector space having the
same form, namely U = {x′ (u1, . . . , ut) | x′ ∈ Fq} where ui = v

1/3
i for all 0 ≤

i < t. It is worth noticing that this particular structure does not propagate over
more rounds because of the addition of a round constant. Then, any coordinate
at the input of the previous round y′ is the image of an element z′

0 = x′u in U
by an affine layer, followed by the inverse of Sbox, i.e., by x �→ x1/3 (see Fig. 4).
We can then consider this mapping as a function of x′ ∈ Fq, and express it as a
polynomial Q with coefficients in Fq. Since the degree of this polynomial is the
degree of the inverse Sbox, it does not exceed (q − 2). Using the notion from
Fig. 4, we then have

∑

z0∈V

y′(z0) =
∑

z′
0∈U

y′(z′
0) =

∑

x′∈Fq

Q(x) = 0 .

For most sets of proposed parameters, this provides a zero-sum distinguisher
with data complexity q on HadesMiMC for all but the two initial rounds, i.e.
for 2+4 full rounds (2 at the beginning and 4 at the end), and all partial rounds,
as detailed in Table 4. Again, for instantiations of HadesMiMC with a linear
layer of multiplicative order less than t−1, the distinguisher covers an arbitrary
number of partial rounds.

6.2 Finding Preimages by Linearization of the Partial Rounds

This section shows that, when the linear layer in HadesMiMC has a low mul-
tiplicative order, the propagation of linear subspaces through all partial rounds
leads to a much more powerful attack. Indeed, we now show that the existence
of perfect linear approximations over the partial rounds of HadesMiMC, as
detailed in Lemma 2, can be used to setup a simplified system of equations for
finding preimages, leading to a full-round preimage attack.

Out of Oddity – New Cryptanalytic Techniques 323

Table 4. Number of rounds of HadesMiMC covered by the zero-sum distinguisher of
complexity q.

Poseidon Starkad
security t log2 q proposed nb of rounds log2 q proposed nb of rounds
level Rf , RP of the ZS Rf , RP of the ZS
128 bits 12 61 8, 40 2+4, 45 63 8, 43 2+4, 46

4 125 8, 81 2+4, 77 125 8, 85 2+4, 77
12 125 8, 83 2+4, 85 125 8, 86 2+4, 85
3 253 8, 83 2+4, 157 255 8, 85 2+4, 158
12 253 8, 85 2+4, 165 255 8, 88 2+4, 166

256 bits 8 125 8, 82 2+4, 81 125 8, 86 2+4, 81
14 125 8, 83 2+4, 87 125 8, 83 2+4, 87

Lemma 2. Let F : F
t
q → F

t
q denote a permutation obtained from r ≥ 1 par-

tial HadesMiMC rounds instantiated with linear layer L and round constants
c1, . . . , cr. Let V ⊂ F

t
q be the vector space V = 〈L(δt), L2(δt), . . . , Lr(δt)〉⊥, where

δt = (0, . . . , 0, 1). Then, for all x ∈ F
t
q and v ∈ V ,

v · F (x) = v · Lr(x) +
r∑

i=1

v · Lr+1−i(ci),

where u · v denotes the usual scalar product in F
t
q. Furthermore, if L has multi-

plicative order h, then dimV ≥ t − min{h, r}.
Proof. Let Fr = Rr ◦ Rr−1 ◦ · · · ◦ R1, where Ri denotes the ith partial round of
HadesMiMC, namely Ri(x) = L◦S(x+ ci). We proceed by induction on r. For
r = 1, we have, for any v and x,

v · R1(x) = LT (v) · S(x + c1) = LT (v) · (x + c1) = v · L(x) + v · L(c1)

if the last coordinate of LT (v) is zero, or equivalently LT (v) · δt = v · L(δt) = 0.
Let us now consider Round r and v ∈ 〈L(δt), L2(δt), . . . , Lr(δt)〉⊥. For any

y ∈ F
t
q, we have

v · Rr(y) = LT (v) · S(y + cr) = LT (v) · (y + cr)

since LT (v) · δt = v · L(δt) = 0. Letting y = Fr−1(x), it follows that

v · Fr(x) = LT (v) · Fr−1(x) +LT (v) · cr = LT (v) · Lr−1(x) +

r−1∑

i=1

LT (v) · Lr−i(ci) +LT (v) · cr

where the last equality is deduced from the induction hypothesis using that
LT (v) belongs to 〈L(δt), . . . , Lr−1(δt)〉⊥. Finally, it is easy to see that the
dimension of V ⊥ can be upper bounded as dimV ⊥ ≤ min{h, r, t}. Hence,
dimV ≥ t − min{h, r}. �	

324 T. Beyne et al.

Suppose that L is such that the vector space V from Lemma2 is of dimen-
sion d. It will be shown that, if d is sufficiently large, such an instantiation of
HadesMiMC is vulnerable to preimage attacks for some choices of the rate and
capacity parameters of the sponge construction. In particular, when the MDS
matrix L is an involution, we obtain d = t − 2.

By Lemma 2, there exists a matrix U1 ∈ F
d×t
q such that U1F (x) = U1(Lr(x)+

a) for a known constant a. Indeed, let the rows of U1 be a basis for V . Further-
more, let U2 ∈ F

(t−d)×t
q be a matrix with row space complementary to the row

space of U1. For each x, it holds that

U1y = U1(Lr(x) +
∑r

i=1 Lr+1−i(ci))
U2y = U2F (x).

(4)

Consider a HadesMiMC permutation in a sponge construction with rate k and
capacity c = t−k. Computing preimages of a one-block message (y1, . . . , yk) ∈ F

k
q

then corresponds to solving the system of equations [F (x‖IV)]i = yi, i = 1, . . . , k
in the unknowns x1, . . . , xk.

The idea of the attack is simple: for each guess of U2F (x) ∈ F
t−d
q , replace

the equations for the partial rounds by the affine relations (4) and solve the
resulting system of equations. In order to ensure that the ideal generated by
these equations is zero-dimensional, we should have k ≤ d, which always holds
when L is an involution unless c = 1. Note that we focus on the case where the
number of output elements is equal to the rate. This is the most challenging
setting. Indeed, if the output size is smaller than the rate – as in some of the
StarkWare challenges – then the preimage problem will typically have many
solutions. This allows the attacker to partially or completely avoid the guessing
phase. If further degrees of freedom remain after fixing U2F (x) completely, one
or more input elements may be fixed to an arbitrary value.

In [17], we show that the total time cost of the attack can be estimated as

2γ (2π)−ω/2 k2−ω/2 eωk 3(ωk+1)(RF −1) qt−d

where ω is the asymptotic exponent of the time complexity of matrix multipli-
cation and γ is such that the cost of computing the row-reduced echelon form of
an m × n matrix is γmnω.

For example, for an involutive L, RF = 8 and an arbitrary number of partial
rounds, Fig. 5a shows for which choices of q and t an improvement over the
generic security of the sponge construction is obtained. The insecure instances
are shaded in grey. Note that this domain corresponds to a conservative estimate
for the cost of row-echelon reduction, i.e. ω = 3 and γ = 3/2. The cost itself is
shown in Fig. 5b. We stress that these figures correspond to the most challenging
case, i.e. assuming that the hash output is of length k and no shorter.

For the concrete Starkad and Poseidon instances specified in Table 2, we
obtain better-than-generic attacks on some variants assuming that the hash out-
put has length c ≤ k (Table 5). Indeed, provided that c ≤ d/2 = t/2 − 1,
a sufficiently large number of preimages is likely to exist so that it is no

Out of Oddity – New Cryptanalytic Techniques 325

Fig. 5. Cost analysis of the preimage attack on HadesMiMC with an involutive linear
layer and RF = 8. The shaded areas correspond to parameters for which the attack
improves over the qmin{k,c/2} security level.

longer necessary to guess U2F (x). In addition, input variables may be fixed
until only c free variables remain. This leads to a computational cost of
2γ (2π)−ω/2 c2−ω/2 eωc 3(ωc+1)(RF −1). Note that, for these instances, we do not
obtain relevant preimage attacks when the output size exceeds t/2 − 1.

Table 5. Overview of the computational cost (measured in Fq operations) of the preim-
age attack on different instances of Poseidon and Starkad, assuming an involutive
linear layer. These estimates assume that the hash output has length c. For the variants
128-a, 128-b and 128-d, the attack does not improve over the generic security level of
the sponge.

Variant c Computational cost

ω ≈ 2.8 ω = 3

128-c 2 280.0 284.3

128-e 1 244.2 246.3

256-a 4 2150.9 2160.3

256-b 4 2150.9 2160.3

7 Conclusions

Our analysis of STARK-friendly primitives clearly shows that the concrete
instances of GMiMC and HadesMiMC proposed in the StarkWare challenges
present several major weaknesses, independently from the choice of the underly-
ing finite field. At a first glance, the third contender involved in the challenges,

326 T. Beyne et al.

namely Vision for the binary field and Rescue for the prime fields [7], seems
more resistant to the cryptanalytic techniques we have used against the other two
primitives. This seems rather expected since Vision and Rescue follow a more
classical SPN construction with full Sbox layers; for similar parameters, they
include a larger number of Sboxes which may prevent them from the unsuitable
behaviours we have exhibited on the other primitives.

Another important aspect of our work is the extension of higher-order dif-
ferential and integral attacks to primitives operating on any finite field, even
with odd characteristic, while these attacks were previously defined over binary
fields only. This points out that the notion of symmetric primitives over a prime
field, which has been introduced very recently, needs to be further analyzed in
order to get a rigorous assessment on its security. While decades of research have
produced efficient cryptanalytic tools and security criteria for primitives defined
over F2, establishing the right tools to analyze primitives over Fq for odd q raises
many new and interesting open questions.

Acknowledgements. This research has received funding from StarkWare Industries
and the Ethereum Foundation, as part of the process of selecting a STARK-friendly
hash function. Tim Beyne is supported by a PhD Fellowship from the Research Foun-
dation – Flanders (FWO). Itai Dinur is supported by the Israeli Science Foundation
through grant no. 573/16. Part of this project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreements no. 714294 “QUASYModo”, no. 757731
“LightCrypt”, and no. 681402 “SOPHIA”). This work was partially supported by the
German Federal Ministry of Education and Research (BMBF, project iBlockchain –
16KIS0901K) and by DFG under Germany’s Excellence Strategy – EXC 2092 CASA
– 390781972.

References

1. Agnesse, A., Pedicini, M.: Cube attack in finite fields of higher order. In: Boyd, C.,
Pieprzyk, J. (eds.) AISC 20111. CRPIT, vol. 116, pp. 9–14. Australian Computer
Society (2011)

2. Albrecht, M.R., Cid, C., Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger,
C., Schofnegger, M.: Algebraic cryptanalysis of STARK-friendly designs: appli-
cation to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 371–397. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-34618-8_13

3. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel structures for MPC, and more. In: Sako, K.,
Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019, Part II. LNCS, vol. 11736, pp.
151–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8

4. Albrecht, M.R., Grassi, L., Perrin, L., Ramacher, S., Rechberger, C., Rotaru, D.,
Roy, A., Schofnegger, M.: Feistel structures for MPC, and more. Cryptology ePrint
Archive, Report 2019/397 (2019). https://eprint.iacr.org/2019/397

5. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6_7

https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-29962-0_8
https://eprint.iacr.org/2019/397
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7

Out of Oddity – New Cryptanalytic Techniques 327

6. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part
I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5_17

7. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint
Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426

8. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic
primitives. Cryptology ePrint Archive, Report 2018/1098 (2018). https://eprint.
iacr.org/2018/1098

9. Aumasson, J.-P., Käsper, E., Knudsen, L.R., Matusiewicz, K., Ødegård, R.S.,
Peyrin, T., Schläffer, M.: Distinguishers for the compression function and out-
put transformation of Hamsi-256. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 87–103. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14081-5_6

10. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi. Presented at the Rump Session of
Cryptographic Hardware and Embedded System – CHES 2009 (2009). https://
131002.net/data/papers/AM09.pdf

11. Aumasson, J.-P., Phan, R.C.-W., Meier, W., Henzen, L.: The Hash Function
BLAKE. ISC. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44757-4

12. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Keller, N., Tsaban, B.:
Cryptanalysis of SP networks with partial non-linear layers. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 315–342.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_13

13. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

14. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007). https://keccak.team/files/SpongeFunctions.pdf

15. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3_11

16. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family - main document. In: Submission to NIST (2009). https://keccak.team/
obsolete/Keccak-main-2.0.pdf

17. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G., Naya-
Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of oddity - new
cryptanalytic techniques against symmetric primitives optimized for integrity proof
systems. Cryptology ePrint Archive, Report 2020/188 (2020). https://eprint.iacr.
org/2020/188

18. Bonnetain, X.: Collisions on Feistel-MiMC and univariate GMiMC. Cryptology
ePrint Archive, Report 2019/951 (2019). https://eprint.iacr.org/2019/951

19. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15

20. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://eprint.iacr.org/2019/426
https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2018/1098
https://doi.org/10.1007/978-3-642-14081-5_6
https://doi.org/10.1007/978-3-642-14081-5_6
https://131002.net/data/papers/AM09.pdf
https://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-46800-5_13
https://eprint.iacr.org/2018/046
https://keccak.team/files/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://keccak.team/obsolete/Keccak-main-2.0.pdf
https://keccak.team/obsolete/Keccak-main-2.0.pdf
https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2020/188
https://eprint.iacr.org/2019/951
https://doi.org/10.1007/978-3-642-21702-9_15

328 T. Beyne et al.

21. Dinur, I., Liu, Y., Meier, W., Wang, Q.: Optimized interpolation attacks on
LowMC. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS,
vol. 9453, pp. 535–560. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3_22

22. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: a cipher with low ANDdepth and few ANDs
per bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1_22

23. Dobraunig, C., Eichlseder, M., Mendel, F.: Higher-order cryptanalysis of LowMC.
In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 87–101. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_6

24. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger,
M.: Starkad and Poseidon: new hash functions for zero knowledge proof systems.
Cryptology ePrint Archive, Report 2019/458 (2019). https://eprint.iacr.org/2019/
458

25. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: the HADES design strat-
egy. Cryptology ePrint Archive, Report 2019/1107 (2019). https://eprint.iacr.org/
2019/1107

26. Katz, J.: Secure computation: When theory meets... Invited talk at CRYPTO 2019
(2019)

27. Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: 49th
FOCS, pp. 146–155. IEEE Computer Society Press (2008)

28. Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_19

29. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9_9

30. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceedings of
“Symposium on Communication, Coding and Cryptography”, in Honor of J. L.
Massey on the Occasion of his 60th Birthday. Kluwer Academic Publishers (1994)

31. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers
for efficient fhe with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49890-3_13

32. Rechberger, C., Soleimany, H., Tiessen, T.: Cryptanalysis of low-data instances of
full LowMCv2. IACR Trans. Symm. Cryptol. 2018(3), 163–181 (2018)

33. Sajadieh, M., Dakhilalian, M., Mala, H., Omoomi, B.: On construction of invo-
lutory MDS matrices from Vandermonde matrices in GF(2q). Des. Codes Crypt.
64(3), 287–308 (2012)

34. Sălăgean, A., Winter, R., Mandache-Sălăgean, M., Phan, R.C.-W.: Higher order
differentiation over finite fields with applications to generalising the cube attack.
Des. Codes Crypt. 84(3), 425–449 (2016). https://doi.org/10.1007/s10623-016-
0277-5

35. StarkWare Industries: Personal communication (2019)
36. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-

lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7_19

https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-662-48800-3_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-319-30840-1_6
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/458
https://eprint.iacr.org/2019/1107
https://eprint.iacr.org/2019/1107
https://doi.org/10.1007/978-3-540-76900-2_19
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/s10623-016-0277-5
https://doi.org/10.1007/s10623-016-0277-5
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19

Improved Differential-Linear Attacks
with Applications to ARX Ciphers

Christof Beierle1, Gregor Leander1, and Yosuke Todo1,2(B)

1 Ruhr University Bochum, Bochum, Germany
{christof.beierle,gregor.leander}@rub.de

2 NTT Secure Platform Laboratories, Tokyo, Japan
yosuke.todo.xt@hco.ntt.co.jp

Abstract. We present several improvements to the framework of
differential-linear attackswith a special focus onARXciphers.As a demon-
stration of their impact, we apply them to Chaskey and ChaCha and we
are able to significantly improve upon the best attacks published so far.

Keywords: Symmetric cryptanalysis · ARX · Chaskey · ChaCha

1 Introduction

Symmetric cryptographic primitives play major roles in virtually any crypto-
graphic scheme and any security-related application. The main reason for this
massive deployment of symmetric primitives, i.e. (tweakable) block ciphers,
stream ciphers, hash functions, or cryptographic permutations, is their signif-
icant performance advantage. Symmetric primitives usually outperform other
cryptographic schemes by order(s) of magnitude.

One class of design of symmetric primitives that is inherently motivated by
(software) efficiency is an ARX-based design. ARX is short for addition (mod-
ulo a power of two), word-wise rotation and XOR. Indeed, ciphers following
this framework are composed of those operations and avoid the computation of
smaller S-boxes through look-up tables. As most CPUs have hardware support
for all those operations, in particular an addition unit and a barrel shifter imple-
mented directly in hardware, executing them on such CPUs based on a suitable
register size is inherently fast.

The block cipher FEAL [27] was probably the first ARX cipher presented in
the literature and by now there are several state-of-the-art ciphers that follow
this approach. One of the most important (family) of ARX ciphers is certainly
the one formed by Salsa20, ChaCha and their variants (see [6,7]). Designed by
Bernstein, those ciphers are now the default replacement for RC4 in TLS due
to the high efficiency and simplicity of their implementations and are thus one
of the most widely-used ciphers in practice. Besides being used in TLS, ChaCha
is also deployed in several other products and in particular used as a building
block in the popular hash functions Blake and Blake2 [2,3].
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 329–358, 2020.
https://doi.org/10.1007/978-3-030-56877-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_12

330 C. Beierle et al.

Clearly, the ARX-based design approach is not restricted to only stream-
ciphers, but also allows the design of efficient block ciphers (e.g., Sparx [15]),
cryptographic permutations (e.g., Sparkle [5]), and message authentication codes
(MACs). For the latter, Chaskey [24] is among the most prominent examples.

Besides the advantage of having efficient implementations, there are also
good reasons for ARX-based designs when it comes to security. The algebraic
degree of ARX ciphers is usually high after only a very few rounds, as the
carry bit within one modular addition already reaches almost maximal degree.
Structural attacks like integral [18] or invariant attacks [28] are less of a concern
and rotational cryptanalysis [17], originally invented for ARX ciphers, is in most
cases very efficiently prevented by the XOR of constants.

When it comes to differential [9] and linear attacks [23], ARX-based designs
often show a peculiar behaviour. For a small number of rounds, i.e., only very
few modular additions, the differential probabilities (resp., absolute linear cor-
relations) are very high. In particular for a single modular addition, those are
equal to 1 due to the linear behaviour of the most and least significant bits.
Moreover, for a single modular addition, the differential probabilities and linear
correlations are well understood and we have at hand nice and efficient formulas
for their computation [21,29]. In the case of (dependent) chains of modular addi-
tions and XORs, the situation is different and often checking the probabilities
experimentally is the best way to evaluate the behaviour.

Thus, while a few rounds are very weak, for a well-crafted ARX scheme, the
probabilities of differentials and the absolute correlations of linear approxima-
tions decrease very quickly with increasing the number of rounds. Indeed, this
property led to the long-trail strategy for designing ARX-based ciphers [15].

Now, for symmetric primitives, the existence of strong differentials and lin-
ear approximations for a few rounds with a rapid decrease of probabilities (resp.
absolute correlations) is exactly the situation in which considering differential-
linear attacks [19] is promising. In a nutshell, differential-linear attacks combine
a differential with probability p for the first r rounds of the cipher and a linear
approximation with correlation q for the next t rounds into a linear approxima-
tion for r + t rounds with correlation pq2 that can be turned into an attack with
data complexity of roughly p−2q−4.

Indeed, that said, it is not surprising that the best attacks against many ARX
constructions, including ChaCha and Chaskey, are differential-linear attacks [11,
14,20]. Our work builds upon those ideas and improves differential-linear attacks
on ARX ciphers along several dimensions.

1.1 Our Contribution

In this paper we present the best known attacks on ChaCha and Chaskey. Our
improvements over prior work are based on improvements in the differential, as
well as the linear part and the key-recovery part of differential-linear attacks.

Differential Part. For the differential part, our observation is both simple and
effective. Recall that for a differential-linear attack, one needs many (roughly
q−4) pairs to fulfill the difference in the first part of the cipher, that is many

Improved Differential-Linear Attacks with Applications to ARX Ciphers 331

Table 1. (Partial) Key-Recovery Attacks on Chaskey and ChaCha.

Key size Rounds Time Data Ref

Chaskey 128 6 228.6 225 [20]

7 267 248 [20]

251.21 240.21 Section 5.3

ChaCha 256 6 2139 230 [1]

2136 228 [26]

2116 2116 [11]

277.4 258 Section 6.3

7 2248 227 [1]

2246.5 227 [26]

2238.9 296 [22]

2237.7 296 [11]

2235.22 – [14]

2230.86 248.83 Section 6.4

right pairs for the differential. Now, imagine that an attacker could construct
many right pairs with probability (close to) one, given only a single right pair.
This would immediately reduce the data complexity of the attack by a factor
of p−1. As we will see, this situation is rather likely to occur for a few rounds
of many ARX ciphers and in particular occurs for ChaCha and Chaskey. The
details of those improvements are presented in Sect. 3.

Linear Part. For the linear part, our first observation is that often it is beneficial
to not restrict to a single mask but rather consider multiple linear approxima-
tions. As we detail in Sect. 4, this nicely combines with an improved version of
the partitioning technique for ARX ciphers [8,20], that splits the space of cipher-
texts into subsets in order to increase the correlation of linear approximations.
The starting point of our attacks is a new way of partitioning the ciphertexts,
summarized in Lemma 3. Note that, although we use multiple linear masks in
the attack, because of partitioning the ciphertexts, we use only a single linear
mask for each ciphertext. In this way we avoid possible dependencies that would
be hard to analyze otherwise.

Key Recovery. Related to the improvement in the linear part, we present a sig-
nificant speed-up in the key recovery part. Here, the main observation is that
after considering multiple masks and the partitioning technique, several key bits
actually appear only linearly in the approximations. In particular, their value
does not affect the absolute value of the correlation but rather the sign only.
This observation allows us to, instead of guessing those keys as done in pre-
vious attacks, recover them by applying the Fast Walsh-Hadamard Transform
(FWHT). Similar ideas have already been described in [12]. Details of this app-
roach are given in Sect. 4.

332 C. Beierle et al.

Putting those improvements into one framework and applying the frame-
work to round-reduced variants of ChaCha and Chaskey results in significantly
reduced attack complexities. Our attacks with the corresponding complexities
are summarized in Table 1, together with a comparison to the best attacks pub-
lished so far.1 In particular for ChaCha it is important to add that, as those
attacks are on round-reduced variants of the ciphers only, they do not pose any
threat on the full-round version of the ciphers. Rather, those attacks strengthen
our trust in the design. We expect that our improvements have applications to
other ciphers as well, especially ARX-based designs.

2 Preliminaries

By ⊕ we denote the XOR operation, i.e., addition in F
n
2 and by + we either

denote the addition in Z, or the modular addition mod 2n for elements in F
n
2 ,

depending on the context. For x ∈ F
n
2 , we denote by x̄ the bitwise complement

of x. Given a set S ⊆ F
n
2 and a Boolean function f : Fn

2 → F2, we define

Corx∈S [f(x)] :=
1

|S|
∑

x∈S
(−1)f(x).

We denote the i-th unit vector of a binary vector space by [i] and the sum of
unit vectors [i1] ⊕ [i2] ⊕ · · · ⊕ [it] by [i1, i2, . . . , it]. Given a vector x ∈ F

n
2 , x[i]

denotes the i-th bit of x, and x[i1, i2, . . . , it] denotes
⊕t

j=1 x[ij]. For γ, x ∈ F
n
2 ,

we define the inner product by 〈γ, x〉 =
⊕n−1

i=0 γ[i]x[i] mod 2. In particular,
x[i1, i2, . . . , it] = 〈x, [i1, i2, . . . , it]〉.

In the remainder of this paper we assume that, when S ⊆ F
n
2 is a (sufficiently

large) subset of Fn
2 of random samples, Corx∈S [f(x)] is a good approximation

for Corx∈Fn
2

[f(x)]. In other words, we assume that the empirical correlations
obtained by sampling for a sufficiently large number of messages closely match
the actual correlations.

We denote by N (μ, σ2) the normal distribution with mean μ and variance
σ2. By Φ we denote the cumulative distribution function of the standard normal
distribution N (0, 1). Thus if X ∼ N (μ, σ2), it holds that

Pr(X ≤ Θ) = Φ

(
Θ − μ

σ

)
.

2.1 Differential-Linear Attacks

We first recall the basic variant of differential-linear cryptanalysis as intro-
duced by Langford and Hellman [19]. Figure 1 shows the overview of the distin-
guisher. An entire cipher E is divided into two sub ciphers E1 and E2, such that
1 After the submission of this paper, the authors of [13] independently found the same

distinguisher without applying the technique for improving over the differential part,
and the presented attack complexities are very close to ours.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 333

Fig. 1. The structure of a classical
differential-linear distinguisher.

Fig. 2. A differential-linear distin-
guisher with experimental evaluation of
the correlation r.

E = E2◦E1, and a differential distinguisher and a linear distinguisher are applied
to the first and second parts, respectively.

In particular, assume that the differential Δin
E1→ Δm holds with probability

Prx∈Fn
2

[E1(x) ⊕ E1(x ⊕ Δin) = Δm] = p.

Let us further assume that the linear approximation Γm
E2→ Γout is satisfied

with correlation Corx∈Fn
2

[〈Γm, x〉 ⊕ 〈Γout, E2(x)〉] = q. The differential-linear
distinguisher exploits the fact that, under the assumption that E1(x) and E(x)
are independent random variables, we have

Corx∈Fn
2

[〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ Δin)〉] = pq2. (1)

Therefore, by preparing εp−2q−4 pairs of chosen plaintexts (x, x̃), for x̃ = x ⊕
Δin, where ε ∈ N is a small constant, one can distinguish the cipher from a PRP.

In practice, there might be a problem with the assumption that E1(x) and
E(x) are independent, resulting in wrong estimates for the correlation. To pro-
vide a better justification of this independence assumption (and in order to
improve attack complexities) , adding a middle part is a simple solution and
usually done in recent attacks (as well as in ours). Here, the cipher E is divided
into three sub ciphers E1, Em and E2 such that E = E2 ◦ Em ◦ E1 and the
middle part Em is experimentally evaluated. In particular, let

r = Corx∈S [〈Γm, Em(x)〉 ⊕ 〈Γm, Em(x ⊕ Δm)〉] ,

where S denotes the set of samples over which the correlation is computed. Then,
the total correlation in Eq. 1 can be estimated as prq2. Recently, as a theoretical

334 C. Beierle et al.

support for this approach the Differential-Linear Connectivity Table (DLCT) [4]
has been introduced. The overall attack framework is depicted in Fig. 2 and we
will use this description in the remainder of the paper.

2.2 Partitioning Technique for ARX-Based Designs

Partitioning allows to increase the correlation of the differential-linear distin-
guisher by deriving linear equations that hold conditioned on ciphertext and key
bits. We first recall the partitioning technique as used in [20]. Let a, b ∈ F

m
2

and let s = a + b. When i = 0 (lsb), the modular addition for bit i becomes
linear, i.e., s[0] = a[0] ⊕ b[0]. Of course, for i > 0, computing the i-th output bit
of modular addition is not linear. Still, by restricting (a, b) to be in a specific
subset, we might obtain other linear relations. In previous work, the following
formula on s[i] was derived.

Lemma 1 ([20]). Let a, b ∈ F
m
2 and s = a + b. For i ≥ 2, we have

s[i] =

{
a[i] ⊕ b[i] ⊕ a[i − 1] if a[i − 1] = b[i − 1]
a[i] ⊕ b[i] ⊕ a[i − 2] if a[i − 1] �= b[i − 1] and a[i − 2] = b[i − 2].

Let us now consider two m-bit words z0 and z1 and a modular addition
operation

F : F2m
2 → F

2m
2 , (z1, z0) → (y1, y0) = (z1, z0 + z1),

as depicted in Fig. 5. F might correspond to a single branch of a wider ARX-
based design. In the attacks we present later, we are interested in the value z0[i].
For this, we cannot apply Lemma1 directly since z0[i] is obtained by modular
subtraction. However, for that case the following formula can be derived.

Lemma 2. Let i ≥ 2 and let S1:={(x1, x0) ∈ F
2m
2 | x0[i − 1] �= x1[i − 1]} and

S2:={(x1, x0) ∈ F
2m
2 | x0[i − 1] = x1[i − 1] and x0[i − 2] �= x1[i − 2]}. Then,

z0[i] =

{
y0[i] ⊕ y1[i] ⊕ y0[i − 1] ⊕ 1 if (y1, y0) ∈ S1,

y0[i] ⊕ y1[i] ⊕ y0[i − 2] ⊕ 1 if (y1, y0) ∈ S2.
(2)

Clearly, S1 and S2 are disjoint sets. Note that Eq. 2 only holds for 3
4 of the data,

since |S1| = 2−122m and |S2| = 2−222m.
Due to the propagation rules for linear trails over modular addition, we may

end up with multiple linear trails that are closely related to each other. As
an example, Fig. 3 shows two possible trails, where [i] and [i − 1, i] denote the
corresponding linear masks. The partitioning technique described above evalu-
ates z0[i], but we can expect that there is a highly-biased linear trail in which
z0[i − 1] ⊕ z0[i] needs to be evaluated instead of z0[i]. In the trivial method, we
apply the partitioning technique of Lemma2 for z0[i] and z0[i − 1] separately,
which requires the knowledge of 3 bits of information from y in total. Our new

Improved Differential-Linear Attacks with Applications to ARX Ciphers 335

Fig. 3. Two linear trails with correlation 2−1.

partitioning method allows us to determine the partition only by knowing the
same 2 bits of information as needed for evaluating the case of z0[i], namely
(y0[i − 1] ⊕ y1[i − 1]) and (y0[i − 2] ⊕ y1[i − 2]). This is especially helpful if y
consists of the ciphertext XORed with the key, so we need to guess less key bits
to evaluate the partition. In particular, the following relation holds, which is
straightforward to proof. The intuition is that z0[i − 1] corresponds to the carry
bit c[i−1] in the case of (y1, y0) ∈ S3 and (y1[i−2], y1[i−1]) = (c[i−2], c[i−1])
for (y1, y0) ∈ S4.

Lemma 3. Let i ≥ 2 and let S3 = {(x1, x0) ∈ F
2m
2 | x0[i − 1] = x1[i − 1]} and

S4 = {(x1, x0) ∈ F
2m
2 | x0[i − 1] �= x1[i − 1] and x0[i − 2] �= x1[i − 2]}. Then,

z0[i] ⊕ z0[i − 1] =

{
y0[i] ⊕ y1[i] if (y1, y0) ∈ S3,

y0[i] ⊕ y1[i] ⊕ y0[i − 1] ⊕ y0[i − 2] ⊕ 1 if (y1, y0) ∈ S4.

Again, S3 and S4 are disjoint and the equation above holds for 3
4 of the data.

3 The Differential Part – Finding Many Right Pairs

Let us be given a permutation E1 : Fn
2 → F

n
2 and a differential Δin

E1→ Δm that
holds with probability p. In other words,

|{x ∈ F
n
2 | E1(x) ⊕ E1(x ⊕ Δin) = Δm}| = p · 2n.

In a usual differential-linear attack on a permutation E = E2 ◦ Em ◦ E1 as
explained in Sect. 2.1, the internal structure of E1 could be in general arbitrary
and we would consider randomly chosen x ∈ F

n
2 to observe the ciphertexts of

the plaintext pairs (x, x ⊕ Δin). For each of those pairs, the differential over
E1 is fulfilled with probability p, which results in a data complexity of roughly
εp−2r−2q−4 for the differential-linear attack. In other words, we did not exploit
the particular structure of E1. In particular, it would be helpful to know some-
thing about the distribution of right pairs (x, x ⊕ Δin) ∈ F

n
2 × F

n
2 that fulfill the

above differential.
Let us denote by X the set of all values that define right pairs for the differ-

ential, i.e.,
X = {x ∈ F

n
2 | E1(x) ⊕ E1(x ⊕ Δin) = Δm}.

336 C. Beierle et al.

To amplify the correlation of a differential-linear distinguisher, instead of
choosing random plaintexts from F

n
2 , we would consider only those that are in

X . In particular, we have2

Corx∈X [〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ Δin)〉] = rq2.

Since the set X might have a rather complicated structure, and is moreover
key-dependent, we cannot use this directly for an arbitrary permutation E1.
However, if X employs a special structure such that, given one element x ∈ X ,
we can generate many other elements in X for free,3 independently of the secret
key, we can use this to reduce the data complexity in a differential-linear attack.
For example, if X contains a large affine subspace A = U ⊕ a, given x ∈ A,
we can generate (roughly) 2| dimU| elements in X for free, namely all elements
x ⊕ u, for u ∈ U . In order to obtain an effective distinguisher, we must be able
to generate enough plaintext pairs to observe the correlation of the differential-
linear approximation. In particular, we need to require |U| > εr−2q−4.

This will be exactly the situation we find in ChaCha. Here the number of
rounds covered in the differential part is so small that it can be described by the
independent application of two functions (see Sect. 3.1).

If |U| is smaller than the threshold of εr−2q−4, we can’t generate enough
right pairs for free to obtain a distinguisher by this method and we might use a
probabilistic approach, see Sect. 3.2.

3.1 Fully Independent Parts

Let E1 : Fn
2 → F

n
2 with n = 2m be a parallel application of two block ciphers

E
(i)
1 : Fm

2 → F
m
2 , i ∈ {0, 1} (for a fixed key), i.e.,

E1 : (x(1), x(0)) → (E(1)
1 (x(1)), E(0)

1 (x(0))).

Suppose that, E
(0)
1 employs a differential α

E
(0)
1→ β with probability p. We consider

the differential Δin
E1→ Δm with Δin = (0, α) and Δm = (0, β), which also holds

with probability p. Given one element (x(1), x(0)) ∈ X , any (x(1) ⊕ u, x(0)) for
u ∈ F

m
2 is also contained in X , thus we can generate 2m right pairs for free.

If 2m > εr−2q−4, a differential-linear distinguisher on E = E2 ◦ Em ◦ E1

would work as follows:

1. Choose a = (a(1), a(0)) ∈ F
n
2 uniformly at random.

2. Empirically compute

Corx∈a⊕(Fm
2 ×{0}) [〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ Δin)〉] .

2 Under the assumption that the sets {〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ Δin)〉 | x ∈ X} and
{〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ Δin)〉 | x ∈ S} are indistinguishable, where S denotes a
set of uniformly chosen samples of the same size as X .

3 Or at least with a cost much lower than p−1, see Sect. 3.2.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 337

3. If we observe a correlation of rq2 using εr−2q−4 many x, the distinguisher
succeeded. If not, start over with Step 1.

With probability p, we choose an element a ∈ X in Step 1. In that case, the
distinguisher succeeds in Step 3. Therefore, the data complexity of the distin-
guisher is εp−1r−2q−4, compared to εp−2r−2q−4 as in the classical differential-
linear attack.

3.2 Probabilistic Independent Parts

We are also interested in the situations in which the differential part cannot be
simply written as the parallel application of two functions. Again, the goal is,
given one element x ∈ X , to be able to generate εr−2q−4 other elements in X ,
each one with a much lower cost than p−1. Suppose that U ⊆ F

n
2 is a subspace

with |U| > εr−2q−4 and suppose that Pru∈U (x ⊕ u ∈ X | x ∈ X) = p1, where p1
is much larger than p. The data complexity of the improved differential-linear
distinguisher would then be εp−1p−2

1 r−2q−4. Note that the probability p1 also
depend on x. In particular, there might be x ∈ X ′ ⊆ X for which p1 is (almost)
1, but the probability to draw such an initial element x from F

n
2 is p′, which

is smaller than p. Then, the data complexity would be εp′−1p−2
1 r−2q−4. For

instance, this will be the case for the attack on Chaskey (Sect. 5), where we have
p1 ≈ 1 and p′ = p × 222/256.

In such situations, we propose an algorithmic way to experimentally detect
suitable structures in the set of right pairs. This idea of the algorithm, see Algo-
rithm1 for the pseudo code, is to detect canonical basis vectors within the sub-
space U . Running this algorithm for enough samples will return estimates of the
probability γj that a right pair x ∈ X stays a right pair when the j-th bit is
flipped, i.e.,

γi = Pr (x ⊕ [i] ∈ X | x ∈ X) .

When applied to a few rounds of ARX ciphers it can be expected that there
are some bits that will always turn a right pair into a right pair, i.e. γi = 1.
Moreover, due to the property of the modular addition that the influence of bits
on distant bits degrades quickly, high values of γj �= 1 can also be expected. As
we will detail in Sect. 5 this will be the case for the application to Chaskey.

4 The Linear Part – Advanced Partitioning
and WHT-based Key-Recovery

In this section, we describe our improvements over the linear part of the attack
which consists in exploiting multiple linear approximations and an advanced
key-recovery technique using the partitioning technique and the fast Walsh-
Hadamard transform. The overall structure of the advanced differential-linear
attack is depicted in Fig. 4. Here F corresponds to the part of the cipher that
we are going to cover using our improved key-guessing. Our aim is to recover
parts of the last whitening key k by using a differential-linear distinguisher given

338 C. Beierle et al.

Algorithm 1. Computing probabilistic independent bits
Require: Number of samples T , input difference Δin, output difference Δm

Ensure: Probabilities γ0, γ1, . . . , γn−1

1: Let s = 0 and cj = 0 for j ∈ {0, . . . , n − 1}.
2: for i = 1 to T do
3: Pick a random X and compute E1(X) and E1(X ⊕ Δin)
4: if E1(X) ⊕ E1(X ⊕ Δin) = Δm then
5: Increment s
6: for j ∈ {0, . . . , n − 1} do
7: Prepare X̂ where the j-th bit of X is flipped.
8: if E1(X̂) ⊕ E1(X̂ ⊕ Δin) = Δm then
9: Increment cj

10: end if
11: end for
12: end if
13: end for
14: for j ∈ {0, . . . , n − 1} do
15: γj = cj/s
16: end for

by s (multiple) linear approximations 〈Γ (pi)
out , z〉 ⊕ 〈Γ (pj)

out , z̃〉. In the following, we
assume that the ciphertext space F

n
2 is split into a direct sum P ⊕ R with

nP := dimP and nR := dim R = n − nP . Therefore, we can uniquely express
intermediate states z as zP ⊕ zR, where zP ∈ P and zR ∈ R. The precise
definition of P and R depends on the particular application of the attack.

4.1 Multiple Linear Approximations and Partitioning

The idea is to identify several tuples (Tpi
, Γ

(pi)
out , γ(pi)), i ∈ {1, . . . , s}, where

Tpi
= R ⊕ pi is a coset of R ⊆ F

n
2 , Γ

(pi)
out ∈ F

n
2 and γ(pi) ∈ R, for which we can

observe a high absolute correlation

εi :=Cory∈Tpi

[
〈Γ (pi)

out , z〉 ⊕ 〈γ(pi), y〉
]
.

In the simplest case, we would have εi = 1, i.e.,

y ∈ Tpi
⇒

(
〈Γ (pi)

out , z〉 = 〈γ(pi), y〉 = 〈γ(pi), c〉 ⊕ 〈γ(pi), k〉
)

.

In other words, by considering only a specific subset of the ciphertexts (defined
by Tpi

) we obtain linear relations in the key with a high correlation.
Note that y ∈ Tpi

⇔ c ∈ Tpi
⊕ kP , so we need to guess nP bits of k to

partition the ciphertexts into the corresponding Tpi
. Note that there might be

ciphertexts that are discarded,4 i.e., there might be y which do not belong to

4 Of course, the discarded data has to be considered in the data complexity of the
attack.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 339

Fig. 4. The general structure of the attack.

any Tpi
, for i ∈ {1, . . . , s}. Note also that, since we require γ(pi) ∈ R, we obtain

linear relations only on kR.
By defining5

qi,j :=Cor x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

[
〈Γ (pi)

out , z〉 ⊕ 〈Γ (pj)
out , z̃〉

]
,

we obtain

Cor x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

[
〈γ(pi), c〉 ⊕ 〈γ(pj), c̃〉 ⊕ 〈γ(pi) ⊕ γ(pj), k〉

]

= Cor x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

[
〈γ(pi), y〉 ⊕ 〈γ(pj), ỹ〉

]
= εiεjqi,j .

For r ∈ R, let us define sgn(r) =

{
0 if r ≥ 0
1 if r < 0

. If we define

hi,j := (−1)sgn(εiεjqi,j)Cor x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

[
〈γ(pi), c〉 ⊕ 〈γ(pj), c̃〉

]
,

5 If |qi,j | is not too small and if the number s of approximations is not too
huge, we can empirically compute qi,j for all i, j. In other cases, we estimate

qi,j = Corx∈X
[
〈Γ (pi)

out , z〉 ⊕ 〈Γ (pj)
out , z̃〉

]
by assuming indistinguishability of the sets

{〈Γ (pi)
out , z〉 ⊕ 〈Γ (pj)

out , z̃〉 | x ∈ X s.t. (y, ỹ) ∈ Tpi × Tpj} and {〈Γ (pi)
out , z〉 ⊕ 〈Γ (pj)

out , z̃〉 |
x ∈ S}, where S is a set of uniformly random samples of X of suitable size.

340 C. Beierle et al.

we have hi,j = (−1)〈γ(pi)⊕γ(pj),k〉|εiεjqi,j |. Let us further assume that

{x ∈ X | (c, c̃) ∈ Tpi
× Tpj

⊕ (kP , kP)}

is of equal size σ for all (i, j) and consider the scaled version of hi,j , i.e.,

αi,j :=σ · hi,j = (−1)sgn(εiεjqi,j)
∑

x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

(−1)〈γ(pi),c〉⊕〈γ(pj),c̃〉.

For each γ ∈ W := Span{γ(pi) ⊕ γ(pj) | i, j ∈ {1, . . . , s}}, we define

β(γ) :=
∑

(i,j) such that

γ(pi)⊕γ(pj)=γ

αi,j .

This function β now allows to efficiently recover dim W bits of information on
kR. In other words, kR can be uniquely expressed as kL ⊕ kR′ , where kL is the
part of the key that can be obtained from β. Finally, using the Fast Walsh-
Hadamard transform on β, we compute for each tuple (kP , kL) a cumulative
counter

C(kP , kL) :=
∑

γ∈W

(−1)〈γ,kL〉β(γ).

Whenever this counter C is larger than some threshold Θ, we store the tuple
(kP , kL) in the list of key candidates. Note that the idea of applying the Fast
Walsh-Hadamard transform to gain a speed-up in the key-recovery phase of
linear cryptanalysis has already been used before, see [12].

The attack is presented in Algorithm 2. Note that the actual correlations are
approximated by sampling over N pairs of plaintexts, resp., ciphertexts.

A Note on the Walsh-Hadamard Transform. Given a real-valued function
f : Fn

2 → R, the Walsh-Hadamard transform evaluates the function

f̂ : Fn
2 → R, α →

∑

y∈Fn
2

(−1)〈α,y〉f(y).

A naive computation needs O(22n) steps (additions and evaluations of f), i.e.,
for each α ∈ F

n
2 , we compute (−1)〈α,y〉f(y) for each y ∈ F

n
2 . The Fast Walsh-

Hadamard transform is a well-known recursive divide-and-conquer algorithm
that evaluates the Walsh-Hadamard transform in O(n2n) steps. We refer to
e.g., [10, Section 2.2] for the details.

Running Time and Data Complexity of Algorithm2. Clearly, Algorithm 2 needs
2N queries to E as the data complexity. For the running time, the dominant
part is the loop over the key guesses for kP , the collection of N data samples,
and the Walsh-Hadamard transform. The overall running time can be estimated
as 2nP (2N + dimW · 2dimW).

Improved Differential-Linear Attacks with Applications to ARX Ciphers 341

Algorithm 2. Key-recovery
Require: Cipher E, sample size N , threshold Θ.
Ensure: List of key candidates (k′

P , kL) for nP + dim W bit of information on k.
1: for (i, j) ∈ {1, . . . , s} × {1, . . . , s} do
2: for k′

P ∈ P do

3: α
(k′

P)

i,j ← 0
4: end for
5: end for
6: Choose a

$← F
n
2

7: for � ∈ {1, . . . , N} do

8: x
$← U ⊕ a

9: (c, c̃) ← (E(x), E(x ⊕ Δin))
10: for k′

P ∈ P do
11: Identify Ti × Tj for (c ⊕ k′

P , c̃ ⊕ k′
P) and get corresponding γ(pi) and γ(pj)

12: α
(k′

P)

i,j ← α
(k′

P)

i,j + (−1)〈γ(pi),c〉⊕〈γ
(pj),c̃〉 (where i, j are computed in line 11)

13: end for
14: end for
15: for k′

P ∈ P do
16: Compute C(k′

P , kL) using the Fast Walsh-Hadamard Transform
17: if C(k′

P , kL) > Θ then
18: Save (k′

P , kL) as a key candidate
19: end if
20: end for

Success Probability of Algorithm2. Two questions remain to be discussed here:
(i) what is the probability that the right key is among the candidates and (ii)
what is the expected size of the list of candidates? To answer those questions,
we have to first establish a statistical model for the counter values C(kP , kL).

For a key guess k′
L, we first note that

C(kP , k′
L) =

∑

γ∈W

(−1)〈γ,k′
L〉β(γ)

=
∑

γ∈W

∑

(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,k′
L〉(−1)sgn(εiεjqi,j)

∑

x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

(−1)〈γ(pi),c〉⊕〈γ(pj),c̃〉

=
∑

γ∈W

∑

(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,k′
L〉(−1)sgn(εiεjqi,j)

∑

x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

(−1)〈γ(pi),y⊕kR〉⊕〈γ(pj),ỹ⊕kR〉

=
∑

γ∈W

∑

(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,kL⊕k′
L〉(−1)sgn(εiεjqi,j)

∑

x∈X such that
(c,c̃)∈Tpi

×Tpj
⊕(kP ,kP)

(−1)〈γ(pi),y〉⊕〈γ(pj),ỹ〉

=
∑

γ∈W

∑

(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,kL⊕k′
L〉|εiεjqi,j | · σ,

342 C. Beierle et al.

which implies that if k′
L = kL the partial counters add up, while if kL �= k′

L,
the partial counters can be expected to cancel each other partially.

In the following, we assume that the distributions involved can be well esti-
mated by normal approximations. This significantly simplifies the analysis. Note
that we opted for a rather simple statistical model ignoring in particular the
effect of the wrong key distribution and the way we sample our plain-texts (i.e.
known vs. chosen vs. distinct plaintext). Those effects might have major impact
on the performance of attacks when the data complexity is close to the full code-
book and the success probability and the gain are limited. However, none of this
is the case for our parameters. In our concrete applications, we have verified the
behaviour experimentally wherever possible.

For the statistical model for the right key, this implies that the counter can
be expected to approximately follow a normal distribution with parameters

C(kP , kL) ∼ N (N∗h,N∗)

where
h =

1
s2

∑

i,j

hi,j

is the average correlation over all partitions and N∗ is the effective data complex-
ity, i.e. the data complexity N reduced by the invalid partitions. The wrong key
counters (under the simple randomization hypothesis) is approximately normal
distributed with parameters

C(k′
P , k′

L) ∼ N (0, N∗).

With this we can deduce the following proposition.

Proposition 1. After running Algorithm2 for p−1-times, the probability that
the correct key is among the key candidates is

psuccess ≥ 1
2

Pr(C(kP , kL) ≥ Θ) =
1
2

(
1 − Φ

(
Θ − N∗h√

N∗

))
.

The expected number of wrong keys is 2n

p ×
(
1 − Φ

(
Θ√
N∗

))
.

4.2 A Simple Toy Example

We transfer the above terminology on the simple toy example given in Fig. 5 and
already discussed earlier in Sect. 2.2. In this example, for a fixed i ≥ 2, we want
to evaluate z0[i] or z0[i] ⊕ z0[i − 1] by using the partitioning rules as expressed
in Lemma 2 and Lemma 3. For this, we say that (z0[i], z0[i] ⊕ z0[i − 1]) defines
a partition point ζ. This partition point gives rise to a 2-dimensional subspace
P which can be defined by two parity check equations, i.e., P is a complement
space of the space

R = {(x1, x0) ∈ F
2m
2 | x0[i − 1] ⊕ x1[i − 1] = 0 and x0[i − 2] ⊕ x1[i − 2] = 0}.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 343

Fig. 5. A simple toy example. Fig. 6. A consecutive case.

For example, P can be chosen as {([], []), ([i− 1], []), ([i− 2], []), ([i− 2, i− 1], [])}.
To demonstrate the attack from the previous section, we split F

2m
2 into the

direct sum P ⊕ R. By the isomorphism between P and F
2
2, we can identify the

elements p ∈ P by two-bit values p ∼= b0b1, where b0 indicates the parity of
x̄0[i − 1] ⊕ x1[i − 1] and b1 indicates the parity of x̄0[i − 2] ⊕ x1[i − 2]. We then
consider the following four tuples (Tb0b1 , Γ

(b0b1)
out , γ(b0b1)) and corresponding εb0b1 ,

whose definition come from the properties presented in Lemma 2 and Lemma 3:

T00 = R ⊕ 00 = S4 Γ
(00)
out = ([], [i, i − 1]) γ(00) = ([i], [i, i − 1, i − 2]) ε00 = −1

T01 = R ⊕ 01 = S1 \ S4 Γ
(01)
out = ([], [i]) γ(01) = ([i], [i, i − 1]) ε01 = −1

T10 = R ⊕ 10 = S2 Γ
(10)
out = ([], [i]) γ(10) = ([i], [i, i − 2]) ε10 = −1

T11 = R ⊕ 11 = S3 \ S2 Γ
(11)
out = ([], [i, i − 1]) γ(11) = ([i], [i]) ε11 = 1.

For example, to give an intuition for the choice of the first tuple,6 when
(y1, y0) ∈ S4, Lemma 3 tells us that 〈Γ (00)

out , (z1, z0)〉 = 〈γ(00), (y1, y0)〉 ⊕ 1, i.e.,
ε00 = Cory∈T00

[
〈Γ (00)

out , z〉 ⊕ 〈γ(00), y〉
]

= −1.
We further have

W = Span{γ(a)⊕γ(b) | a, b ∈ F
2
2} = {([], []), ([], [i−1]), ([], [i−2]), ([], [i−1, i−2])}

and we could recover the two bits k0[i − 1] and k0[i − 2] by the last step using
the fast Walsh-Hadamard transform.

6 Note that we might choose different (Γ
(b0b1)
out , γ(b0b1)) for Tb0b1 . For example, for

T00 = S4, we might alternatively choose

Γ
(00)
out = ([], [i]) γ(00) = ([i], [i, i − 1]) ε00 = −1,

which is obtained from Lemma 2. To verify, note that S4 ⊆ S1.

344 C. Beierle et al.

4.3 Another Toy Example Using Multiple Partition Points

Let us now look at another example which consists of two branches of the struc-
ture depiced in Fig. 5 in parallel, i.e., (y3, y2, y1, y0) = (F (z3, z2), F (z1, z0)) and
ci = yi⊕ki. By using a single partition point as done in the above example, we can
only evaluate the parity of at most two (consecutive) bits of z = (z3, z2, z1, z0).
Instead of just one single partition point, we can also consider multiple par-
tition points. For example, if we want to evaluate the parity involving three
non-consecutive bits of z = (z3, z2, z1, z0), we can use three partition points, i.e.

ζ1 = (z0[i], z0[i] ⊕ z0[i − 1]),
ζ2 = (z0[j], z0[j] ⊕ z0[j − 1]),
ζ3 = (z2[], z2[] ⊕ z2[− 1]),

where i, j, ≥ 2. In a specific attack, the choice of the partition points depends
on the definition of the linear trail. Those partition points give rise to three
subspaces P1, P2, and P3, defined by two parity-check equations each, i.e., Pi is
a complement space of Ri, where

R1 = {(x3, x2, x1, x0) ∈ F
4m
2 | x0[i − 1] ⊕ x1[i − 1] = 0, x0[i − 2] ⊕ x1[i − 2] = 0}

R2 = {(x3, x2, x1, x0) ∈ F
4m
2 | x0[j − 1] ⊕ x1[j − 1] = 0, x0[j − 2] ⊕ x1[j − 2] = 0}

R3 = {(x3, x2, x1, x0) ∈ F
4m
2 | x2[− 1] ⊕ x3[− 1] = 0, x2[− 2] ⊕ x3[− 2] = 0}.

By defining7 P = P1 ⊕ P2 ⊕ P3 and R to be a complement space of P, we split
F
4m
2 into the direct sum P ⊕ R.

We can identify the elements p ∈ P by nP -bit values p ∼= b0b1 . . . bnP−1. We
can then again define tuples

(Tb0b1...bnP −1 , Γ
(b0b1...bnP −1)
out , γ(b0b1...bnP −1)) (3)

by using the properties presented in Lemma 2 and Lemma 3. For example, if
nP = 6, we can define

T010101 = {(x3, x2, x1, x0) ∈ F
4m
2 |x0[i − 1] �= x1[i − 1], x0[i − 2] = x1[i − 2],

x0[j − 1] �= x1[j − 1], x0[j − 2] = x1[j − 2],
x2[− 1] �= x3[− 1], x2[− 2] = x3[− 2]},

Γ
(010101)
out = ([], [], [], [i, j]), γ(010101) = ([], [− 1,], [i, j], [i − 1, i, j − 1, j]), and

ε010101 = −1 by using the first case of Lemma 2.
We can also use the three partition points to compute the parity of more

than three bits of z. For example, if nP = 6, by using Lemma 2 and 3, we can
define

T001011 = {(x3, x2, x1, x0) ∈ F
4m
2 |x0[i − 1] �= x1[i − 1], x0[i − 2] �= x1[i − 2],

x0[j − 1] = x1[j − 1], x0[j − 2] �= x1[j − 2],
x2[− 1] = x3[− 1], x2[− 2] = x3[− 2]},

7 Note that P is not necessarily a direct sum of P1, P2, and P3. In other words, the
dimension of P might be smaller than 6, for instance if i = j, i.e., ζ1 = ζ2.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 345

and

Γ
(001011)
out = ([], [− 1,], [], [i − 1, i, j])

γ(001011) = ([], [], [i, j], [i − 2, i − 1, i, j − 2, j]), ε001011 = 1,

which evaluates the parity of five bits of z. Again, several choices for the definition
of the tuples in Eq. 3 are possible.

4.4 Analysis for Two Consecutive Modular Additions

To avoid the usage of long linear trails and to reduce the data complexity, we may
use the partition technique for the more complicated structure of two consecutive
modular additions. Inspired by the round function of Chaskey, we consider the
case depicted in Fig. 6.

Suppose that we have the partition point ζ = (z1[i], z1[i] ⊕ z1[i − 1]), i.e.,
we want to compute the parity z1[i] and z1[i, i − 1] from c2, c1, and c0 (see
Fig. 6). This partition point gives rise to a 5-dimensional subspace P which can
be defined by five parity check equations, i.e., P is a complement space of the
space

R = {(x2, x1, x0) ∈ F
3m
2 |x2[ia − 1] ⊕ x1[ib − 2] ⊕ x1[ic − 2] = 0,

x0[ib − 1] ⊕ x1[ib − 1] = 0, x0[ib − 2] ⊕ x1[ib − 2] = 0,
x0[ic − 1] ⊕ x1[ic − 1] = 0, x0[ic − 2] ⊕ x1[ic − 2] = 0},

where ia = i + a, ib = i + b, and ic = i + a + b. Then, if nP = 5, we can identify
the elements pi ∈ P by five-bit values pi

∼= b0b1b2b3b4, where (b0b1b2b3b4) =
(y2[ia − 1] ⊕ y1[ib − 2] ⊕ y1[ic − 2], s[ib − 1], s[ib − 2], s[ic − 1], s[ic − 2]) with
s = ȳ0 ⊕ y1. The whole F

3m
2 is partitioned into 25 cosets Tpi

= R ⊕ pi and
these partitions can be constructed by guessing 5 bit of key information. The
tuples as in Eq. 3 can be defined by Γ

(pi)
out ∈ {([], [i], []), ([], [i, i − 1], [])}, and the

corresponding linear mask γ(pi) involves the bits

y2[ia], y0[ib], y1[ib], y1[ib − 1], y1[ib − 2], y0[ic], y1[ic], y1[ic − 1], y1[ic − 2].

When ia − 2, ib − 2, and ic − 2 is not extremely close to 0, for each possible
choice of Γ ∈ {([], [i], []), ([], [i, i − 1], [])}, we have 4 tuples corresponding to
correlation ε = ±1, 8 tuples corresponding to correlation ε = ±2−1, and 12
tuples corresponding to correlation ε = ±2−0.263. In other words, a fraction
of 24/32 = 3/4 tuples with non-zero correlation is available, and the average
absolute correlation is (4 × 1) + (8 × 2−1) + (12 × 2−0.263) ≈ 2−0.415.

5 Application to Chaskey

Chaskey [24] is a lightweight MAC algorithm whose underlying primitive is an
ARX-based permutation in an Even-Mansour construction, i.e., Chaskey-EM.
The permutation operates on four 32-bit words and employs 12 rounds of the
form as depicted in Fig. 7. The designers’ claim security up to 280 computations
as long as the data is limited to 248 blocks.

346 C. Beierle et al.

Fig. 7. The round function of Chaskey.

5.1 Overview of Our Attack

We first show the high-level overview of our attack. Similarly to the previous
differential-linear attack from [20], we first divide the cipher into three sub
ciphers, i.e, E1 covering 1.5 rounds, Em covering 4 rounds, and E2 covering
0.5 rounds. The key-recovery is done over 1 round, thus the function F is cov-
ering 1 round to attack 7 rounds in total. The differential characteristic and
the linear trail are applied to E1 and E2, respectively, while the experimen-
tal differential-linear distinguisher is applied to the middle part Em. Note that,
since the differential-linear distinguisher over Em is constructed experimentally,
its correlation must be high enough to be detectable by using a relatively small
sampling space. Moreover, since it is practically infeasible to check all input
difference and all output linear mask, we restricted ourselves to the case of an
input difference of Hamming weight 1 and linear masks of the form [i] or [i, i+1],
i.e., 1-bit or consecutive 2-bit linear masks. As a result, when there is a non-zero
difference only in the 31st bit (msb) of w1

0, i.e.,

Δm = (([]), ([]), ([31]), ([])),

we observed the following two differential-linear distinguishers with correlations
2−5.1:

Corw1∈S
[
w5

2[20] ⊕ w̃5
2[20]

]
≈ 2−5.1, (4)

Corw1∈S
[
w5

2[20] ⊕ w5
2[19] ⊕ w̃5

2[20] ⊕ w̃5
2[19]

]
≈ 2−5.1. (5)

These correlations8 are estimated using a set S consisting of 226 random samples
of w1. This is significant enough since the standard deviation assuming a normal
distribution is 213. For simplicity, only the first differential-linear distinguisher
is exploited in our 7-round attack. That is

Γm = (([]), ([20]), ([]), ([])).

Note that we do not focus on the theoretical justification of this 4-round exper-
imental differential-linear distinguisher in this paper and we start the analysis
for E1 and E2 from the following subsection.
8 The first case is the exactly same as the one shown in [20], but its correlation was

reported as 2−6.1. We are not sure the reason of this gap, but we think that 2−6.1

refers to the bias instead of the correlation.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 347

Fig. 8. Probability that flipping v0
j/32[j mod 32] affects the output difference.

5.2 Differential Part

We need to construct a differential distinguisher Δin → Δm over E1, where
the output difference is equal to the 1-bit difference Δm = (([]), ([]), ([31]), ([])).
We have 1.5-round differential characteristic of highest probability under this
restriction and its probability is 2−17, where

Δin =
(
([8, 13, 21, 26, 30]), ([8, 18, 21, 30]), ([3, 21, 26]), ([21, 26, 27])

)
.

If this differential characteristic is directly used in the differential-linear attack,
the impact on the data complexity is p−2 = 234, which is quite huge given
the restriction on the data complexity for Chaskey. In order to reduce the data
complexity, we employ the new technique described in Sect. 3. Note that the pre-
vious analysis shown in [20] also employs the same differential characteristic, but
the technique for reducing the data complexity is completely different. We will
compare our technique to the previous technique at the end of this subsection.

Detecting an Appropriate Subspace U . As described in Sect. 3, we want to
detect a subspace U of the input space such that E1(v0⊕u)⊕E1(v0⊕u⊕Δin) =
Δm for all u ∈ U if E1(v0) ⊕ E1(v0 ⊕ Δin) = Δm. Then, for our attack to
be effective, the condition is that 2| dimU| > εr−2q−4, where r and q denote
the correlation of the differential-linear distinguisher over Em and the linear
distinguisher over E2, respectively. If this condition is satisfied, we can reduce
the total data complexity from εp−2r−2q−4 to εp−1r−2q−4.

Since the four branches are properly mixed with each other within 1.5 rounds,
there is no trivial subspace as in the simple example in Sect. 3.1. However, the
diffusion obtained by the modular addition, XOR and rotation is heavily biased.
For example, let us focus on v0

2 [31]. This bit is independent of the 1.5-round
differential trail. Thus, we will experimentally detect bits that do not, or only
very rarely, effect the differential trail, as explained in Sect. 3 in Algorithm 1. We

348 C. Beierle et al.

used this algorithm with a sampling parameter T = 232. Due to the differential
probability of 2−17, we find on average 232 × 2−17 = 215 values of X such that
E1(X) ⊕ E1(X ⊕ Δin) = Δm.

Figure 8 summarizes the result of the search. When the basis of the linear
subspace U is chosen from the 18 indices i corresponding to a probability γi = 1,
we are exactly in the setting as explained in Sect. 3 and the factor on the data
complexity corresponding to the differential part would be p−1. Unfortunately, 18
indices are not always sufficient to attack 7-round Chaskey. Therefore, we addi-
tionally add 7 indices, i.e., v0[19], v0[20], v0[31], v1[19], v1[20], v3[24], and v3[25]
to define the basis of U . We then randomly picked 256 pairs (X,X ⊕ Δin) that
result in the output difference Δm after E1 and checked for how many of those
pairs, the equation E1(X ⊕u)⊕E1(X ⊕u⊕Δin) = Δm is satisfied for all u ∈ U .
As a result, this holds for 222 out of 256 pairs (X,X ⊕ Δin). In other words, we
can estimate the factor on the data complexity corresponding to the differential
part to be (p × 222/256)−1.

Comparison with the Technique of Leurent. In [20], Leurent applied
the partitioning technique to the same 1.5-round differential characteristic. For
applying the partitioning technique, 14 bit of key information need to be guessed
and the impact on the data complexity from the differential part was estimated
as

(
17496
223 × 210 × 2−2×11)

)−1 ≈ 220.9 in [20]. In contrast, our technique does
not need to guess any key bit and the impact on the data complexity from the
differential part is estimated as (p × 222

256)−1 ≈ 217.2 when the size of U is 225.

5.3 Linear Part

In order to attack 7-round Chaskey, we consider as E2 0.5-rounds of Chaskey
and as F 1.5-rounds of Chaskey. For E2 we consider two trails for the mask
Γm = (([]), ([20]), ([]), ([])), namely

ψ(1) = v6
2 [11, 10, 4] ⊕ w6

1[31, 0] ⊕ w6
0[16, 15],

ψ(0) = v6
2 [11, 4, 3] ⊕ w6

1[0] ⊕ w6
0[16].

That is computing 〈Γ pi

out, z〉 corresponds to either ψ(1) or ψ(0)

Similarly, we denote by ψ̃(1) and ψ̃(0) the corresponding parity bits for c̃.
As discussed in Sect. 4, our attack uses only one of them (with highest absolute
correlation) for each partition. For example, let us assume that ψ(1) is preferable
for the partition belonging to c and ψ(0) is preferable for the partition belonging
to c̃. Then, we compute ψ(1) and ψ̃(0) from c and c̃, respectively, and evaluate the
probability satisfying ψ(1) = ψ̃(0). We experimentally evaluated the correlations
of any combination, i.e., the correlation of 2×2 differential-linear distinguishers.
Similarly to the experiments in Sect. 5.1, we computed those correlations over a
set S consisting of random samples of w1, but the size of S had to be increased
to 228 because of the lower correlation. As a result, these empirical correlations
are ≈ ±2−6.4.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 349

Fig. 9. Two 0.5-round linear trails and corresponding partition points.

For Chaskey, we use three partition points as shown in the right table of
Fig. 9. The dimension of W for the FWHT is increased by 1 but it does not
affect the size of partitions. As already presented in Sect. 4, the corresponding
subspaces P1 can be defined by the bits summarized in Fig. 9, where sL := v̄1⊕v2
and sR := v̄3 ⊕ v0. The same table also summarizes the linear bits that can be
involved to a linear combination in the corresponding γ(p1).

For ζ2 and ζ3, the situation is different since we have to evaluate two con-
secutive modular additions instead of just one. The major difference is that the
corresponding subspace is now of dimension 5, i.e., the condition is defined by a
5-bit value. Further, the corresponding εi are not always ±1.

Note that because there is a 1-bit interception in the defining bits for P2 and
P3, we have nP = dim P = dim(P1 ⊕ P2 ⊕ P3) = 2 + 5 + 5 − 1 = 11. Namely,
the index pi of the partition Tpi

is defined by the 11-bit value

(sR[15], sR[14], v3[18] ⊕ v2[9, 17], sL[10], sL[9], sL[18], sL[17],

v3[11] ⊕ v2[2, 10], sL[3], sL[2], sL[11]).

It is difficult to evaluate the actual correlations of all qi,j , i, j ∈ {1, . . . , 211}
experimentally with a high significance. Therefore, we simply assume that these
correlations are common for each partition, i.e., qi,j = 2−6.4 for all i and j.

Since we have two choices ψ(0) or ψ(1) for the linear mask Γ
(pi)
out that we

use in each partition, we evaluated every correlation of possible Γ
(pi)
out and took

the one with the highest absolute correlation. More precisely, we evaluated each
subspace Pi step by step. We start our analysis from P1. For this, the condition
is based on sR[15] and sR[14] and the available linear masks can be immediately

350 C. Beierle et al.

determined as follows.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(1), ψ(0) if (sR[15], sR[14]) = (0, 0),
ψ(0) if (sR[15], sR[14]) = (0, 1),
ψ(1), ψ(0) if (sR[15], sR[14]) = (1, 0),
ψ(1), if (sR[15], sR[14]) = (1, 1).

In other words, the number of available linear masks decreases from 2 to 1 for
210 partitions, and the number is preserved for the other 210 partitions. We
next focus on P2, but it is more complicated because the index bit sL[10] also
appears in the index for P3. Since dim(P2⊕P3) = 9 is not large, we exhaustively
evaluated the correlation of each partition. As a result, 1472 out of 211 partitions
show a significant correlation and the average of the absolute value of those
correlations is 2−0.779. In the differential-linear attack, this partition analysis
must be executed for both texts in each pair. Thus, when N pairs are used, the
number of available pairs is N∗ = N × (14722048)2 ≈ N ×2−0.953 and the correlation
is h = 2−6.4−0.779×2 = 2−7.958.

We also need to evaluate the dimension of W := Span{γ(pi) ⊕ γ(pj) | i, j ∈
{1, . . . , s}} to evaluate the time complexity for the FWHT. Note that γ ∈ W is
always generated by XORing two linear masks. Therefore, bits that are always
set to 1 in the linear masks γ(pi) and γ(pj) do not increase the dimension of
W . For example, since both ψ(1) and ψ(0) involves v1[0], it does not increase
the dimension of W . On the other hand, since v1[31] is involved only in ψ(1), it
increases the dimension of W by 1. The same analysis can be applied to each
partition point. For example, partition point ζ1 involves four bits v3[16], v0[16],
v0[15], and v0[14] in the key mask γ(pi), but both v3[16] and v0[16] are always
involved. As a result, the 10 bits

v1[31], v0[15], v0[14], v2[10], v2[9], v2[18], v2[17], v2[3], v2[2], v2[11]

are enough to construct any γ ∈ W , i.e., dim(W) ≤ 10.

Experimental Reports. To verify our technique, we implemented the attack
and estimated the experimental correlation if the linear masks are appropri-
ately chosen for each partition. Then, for a right pair (X,X ⊕ Δin), we used
228 pairs (X ⊕ u,X ⊕ u ⊕ Δin) for u ∈ U . As a result, the number of available
pairs is 227.047, and the number well fits our theoretical estimation. On the other
hand, there is a small (but important) gap between our theoretical analysis and
experimental analysis. While this correlation was estimated as 2−7.958 in our
theoretical analysis, the experimental correlation is 2−7.37, which is much higher
than our theoretical estimation. We expect that this gap comes from linear-hull
effect between qi,j and (εi, εj). The linear masks λ(0) and λ(1) are fixed in our
theoretical estimation, but it allows to use multiple linear masks similarly to
the conventional linear-hull effect. Moreover, as a consecutive modular addition
causes much higher absolute correlation, we expect that our case also causes
much higher absolute correlation. However, its detailed theoretical understand-
ing is left as a open question in this paper.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 351

Data and Time Complexities and Success Probability. We use the for-
mula in Proposition 1 to estimate the data complexity and corresponding success
probability. To find a right pair, we repeat Algorithm2 for (p × 222/256)−1 =
217.206 times, and we expect to find a right pair with probability 1/2. For each
iteration of Algorithm 2, we use N = 222 pairs, and N∗ = 221.047. By using the
threshold Θ =

√
N∗ × Φ−1(1 − p×222/256

2n), the expected number of wrong keys
is 1, while9 psuccess = 0.489, where correlation 2−7.37 is used in this estimation.
On this success probability, the data complexity is 21+22+17.206 = 240.206 and
the time complexity is 217.206 × 211 × (2 × 222 + 10 × 210) ≈ 251.208.

6 Application to ChaCha

The internal state of ChaCha is represented by a 4 × 4 matrix whose elements
are 32-bit vectors. In this section, the input state for the r-th round function is
represented as

⎛

⎜⎜⎝

vr
0 vr

1 vr
2 vr

3

vr
4 vr

5 vr
6 vr

7

vr
8 vr

9 vr
10 vr

11

vr
12 vr

13 vr
14 vr

15

⎞

⎟⎟⎠ .

In odd and even rounds, the QR function is applied on every column and diag-
onal, respectively. We also introduce the notion of a half round, in which the
QR function is divided into two sub function depicted in Fig. 10. Let wr be the
internal state after the application of a half round on vr. Moreover, we use the
term branches for a, b, c and d, as shown in Fig. 10.

In the initial state of ChaCha, a 128-bit constant is loaded into the first row,
a 128- or 256-bit secret key is loaded into the second and third rows, and a 64-bit
counter and 64-bit nonce are loaded into the fourth row. In other words, the first
three rows in v0 are fixed. For r-round ChaCha, the odd and even round functions
are iteratively applied, and the feed-forward values v0

i � vr
i is given as the key

stream for all i. Note that we can compute vr
i for i ∈ {0, 1, 2, 3, 12, 13, 14, 15}

because corresponding v0
i is known.

6.1 Overview of Our Attack

We use the same attack strategy as for Chaskey. The cipher is divided into the
sub ciphers E1 covering 1 round, Em covering 2.5 rounds, and E2 covering 1.5
rounds to attack 6 rounds, and F the key recovery is applied to the last one
round. One difference to Chaskey is the domain space that can be controlled
by the attacker. In particular, we cannot control branches a, b, and c because
fixed constants and the fixed secret key is loaded into these states. Thus, only
branch d can be varied. It implies that active bit positions for input differences
9 It means that the success probability is 0.489 × 2 = 0.978 under the condition that

the right pair is successfully obtained during 217.206 iterations.

352 C. Beierle et al.

Fig. 10. The odd and even round functions of ChaCha.

are limited to branch d and a difference Δm after E1 with Hamming weight is
1 will not be available due to the property of the round function. Therefore, we
first need to generate consistent Δm whose Hamming weight is minimized. The
following shows such differential characteristics over one QR function.

Δin = (([]), ([]), ([]), ([i])) → Δm = (([i + 28]), ([i + 31, i + 23, i + 11, i + 3]),
([i + 24, i + 16, i + 4]), ([i + 24, i + 4])).

The probability that pairs with input difference Δin satisfy this characteristic
is 2−5 on average. We discuss the properties of this differential characteristic in
Sect. 6.2 in more detail.

We next evaluate an experimental differential-linear distinguisher for the
middle part Em. When the Hamming weight of Γm is 1 and the active bit is
in the lsb, it allows the correlation of linear trails for E2 to be lower. For i = 6,
i.e., Δm = (([2]), ([5, 29, 17, 9]), ([30, 22, 10]), ([30, 10])), we find the following four
differential-linear distinguishers.

Δ(v1
j , v1

j+4, v
1
j+8, v

1
j+12) = Δm → Cor[w3

(j+1) mod 4[0] ⊕ w̃3
(j+1) mod 4[0]] = 2−8.3,

for j ∈ {0, 1, 2, 3}. When this experimental distinguisher is combined with the
differential characteristic for E1, it covers 3.5 rounds with a 1-bit output linear
mask Γm. This differential-linear distinguisher is improved by 0.5 rounds from
the previous distinguisher with 1-bit output linear mask (see [1,11]).

6.2 Differential Part

The QR function is independently applied to each column in the first round.
Therefore, when the output difference of one QR function is restricted by Δm,
the input of other three QR functions are trivially independent of the output

Improved Differential-Linear Attacks with Applications to ARX Ciphers 353

difference. It implies that we have 96 independent bits, and we can easily amplify
the probability of the differential-linear distinguisher. On the other hand, we face
a different problem, namely that the probability of the differential characteris-
tic (Δin,Δm) highly depends on the value of the secret key. For example, for
Δv0

12[6] = 1, we expect that there is a pair (v0
12, v

0
12 ⊕ 0x00000020) satisfying

Δ(v1
0 , v

1
4 , v

1
8 , v

1
12) = Δm, but it depends on the constant v0

0 and the key values
v0
4 and v0

8 . In our experiments, we cannot find such a pair for 292 out of 1024
randomly generated keys. On the other hand, when we can find it, i.e., on 732
out of 1024 keys, the average probability satisfying Δ(v1

0 , v
1
4 , v

1
8 , v

1
12) = Δm is

2−4.5. This experiment implies the existence of “strong keys” against our attack.
However, note that we can vary the columns in which we put a difference, which
involve different key values. Since the fraction of “strong keys” is not so high, i.e.,
292/1024, we can assume that there is at least one column in which no “strong
key” is chosen with very high probability.

To determine the factor p, for 1024 randomly generated keys, we evaluated
p−1 randomly chosen iv and counter, where the branch that we induce the dif-
ference is also randomly chosen. As a result, we can find a right pair on 587 keys
with p−1 = 25 iterations. Therefore, with p = 2−5, we assume that we can find
a right pair with probability 1/2 in this stage of the attack.

In the following, we explain our attack for the case that v0
12 is active and

Δ(v1
0 , v

1
4 , v

1
8 , v

1
12) = Δm. Note that the analysis for the other three cases follows

the same argument.

6.3 Linear Part for 6-Round Attack

To attack 6-round ChaCha, we first construct a 5-round differential-linear distin-
guisher, where 1.5-round linear trails are appended (i.e. the E2 part) to the 3.5-
round experimental differential-linear distinguisher from the previous section.
We have two 1.5-round linear trails given by

Cor[w3
1[0] ⊕ ψ(1)] = 2−1, Cor[w3

1[0] ⊕ ψ(0)] = −2−1,

where ψ(1) = ψ ⊕ v5
10[6] and ψ(0) = ψ ⊕ v5

14[6], and

ψ = (v5
5 [19, 7] ⊕ v5

10[19, 7] ⊕ v5
15[8, 0]) ⊕ (v5

1 [0] ⊕ v5
6 [26] ⊕ v5

11[0])

⊕ (v5
13[0]) ⊕ (v5

3 [0] ⊕ v5
9 [12] ⊕ v5

14[7]).

Since their correlations are ±2−1, we have 2× 2 differential-linear distinguishers
on 5 rounds whose correlations are ±2−10.3. Note that the sign of each correlation
is deterministic according to the output linear mask.

Our 6-round attack uses these 5-round differential-linear distinguishers, and
the 1-round key recovery is shown in Fig. 11. Let c = (c0, . . . , c15) be the corre-
sponding output, and let v = (v0, . . . , v15) be the sixteen 32-bit values before the
secret key is added. Note that the secret key is only added with half of the state
and public values are added with the other state. Therefore, we simply regard
vi = ci for i ∈ {0, 15, 1, 12, 2, 13, 3, 14}.

354 C. Beierle et al.

Fig. 11. Key recovery for 6-round ChaCha.

First, we partially extend two linear masks for the last round so that it can
be linearly computed. Figure 11 summarizes the extended linear masks, where
we need to compute the bits labeled by a red color. Moreover, for simplicity, we
introduce t0, t10, t11, and t3 as depicted in Fig. 11.

Each bit in v in which the secret key is not added can be computed for free.
For the other bits, we need to guess some key bits first. We first explain the
simple case, i.e., we compute vi[j] from ci. As an example, we focus on v7[7],
which involves k7 nonlinearly. We apply the partition technique to compute this
bit, where (3/4) data is available by guessing k7[6] and k7[5] (remember that
k7[7] cancels out in the differential-linear approximation). Since vi[0] is linearly
computed by ci[0], there are 13 simple partition points in which we need to guess
key bits. In total, we need to guess a 26-bit key and (3/4)13 data is available.

Computing bits in v5 and t is a bit more complicated than the simple case
above. For example, let us consider v5

9 [12], and this bit can be computed as

v5
9 [12] = (c9 � k9 � c14 � (c3 ⊕ (v14 ≫ 8)))[12]

= ((c9 � c14 � (c3 ⊕ (v14 ≫ 8))) � k9)[12].

Since we can compute (c9�c14�(c3⊕(v14 ≫ 8))) for free, this case is equivalent
to the simple case. We also use this equivalent transformation for t10, t11, and
v10[19]. In total, we have 6 such partition points, and some partition points
can share the same key, e.g., 2-bit key k10[18] and k10[17] is already guessed to
compute v10[19]. Guessing 4 bits of additional key is enough to compute each bit.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 355

Since we have two linear masks ψ(0) and ψ(1), the number of available partitions
does not decrease for v5

10[7]/v5
10[7, 6]. Therefore, (3/4)5 data is available.

We cannot use the equivalent transformation to compute bits in t0 and t3.
Then, we further extend this linear mask with correlation 2−1. For example, we
have the following approximations

t0[8] ≈ v0[8, 7] ⊕ v5[15] ⊕ v10[8] ⊕ 1, t0[8] ≈ v0[8] ⊕ v5[15, 14] ⊕ v10[8, 7],

for t0[8] with correlation 2−1, and we can use preferable approximations depend-
ing on the data. Namely, we first guess k10[7] and determine which linear approx-
imations are available. Then, we guess k5[14] and k5[13] and compute v5[15]
(resp. v5[15, 14]) with the fraction of available partitions 3/4. In order words, we
guess 3-bit key and 3/4 data is available. We also use the same technique for
t0[7]/t0[7, 6]. Therefore, 6-bit additional key is required, (3/4)2 data is available,
but the correlation is ±2−10.3−2×2 = ±2−14.3.

In summary, the fraction of available partitions is (3/4)13+5+2 ≈ 2−8.3. We
need to guess 36-bit key in total.

We finally estimate the data and time complexities. When we use N pairs,
the number of available pairs is N∗ = N × 22×−8.3 ≈ N2−16.6, and the average
correlation is ±2−14.3. Note that unlike Chaskey, once these key bits are cor-
rectly guessed, all linearly involved bits are either determined or cancelled out
by XORing another text. It implies dim(W) = 0 and we do not need to proceed
with the FWHT.

Data and Time Complexities and Success Probability. We use the
formula in Proposition 1 to estimate the data complexity and corresponding
success probability. To find a right pair, we repeat Algorithm2 for 25 times.
For each pair, we use N = 252 pairs, and N∗ = 235.4. For the thresh-
old Θ =

√
N∗ × Φ−1(1 − 2−5

236), the expected number of wrong keys is 1,
but10 psuccess = 0.499. For this success probability, the data complexity is
21+52+5 = 258.

If we guess 236 keys for each texts, the required time complexity is 258+36 =
294. However, note that once we get a pair, we can immediately compute those
kP values that correspond to valid partitions. Consequently, we only iterate
through those kP values for every pair. The time complexity is estimated as
1/p × (2N + 2N∗ × 2nP) ≈ 277.4.

6.4 The 7-Round Attack

Unfortunately, 7-round ChaCha is too complicated to apply our technique for
the linear part. On the other hand, thanks to our other contribution for the dif-
ferential part, we find a new differential-linear distinguisher which is improved
by 0.5 rounds. Therefore, to confirm the effect of our contribution for the differ-
ential part, we use the known technique, i.e., the probabilistic neutral bits (PNB)

10 Note that it means that the success probability is 0.499 × 2 = 0.999 under the
condition that the right pair is successfully obtained during 27 iterations.

356 C. Beierle et al.

approach, for the key-recovery attack against 7-round ChaCha. The PNB-based
key recovery is a fully experimental approach. We refer to [1] for the details and
simply summarize the technique as follows:

– Let the correlation in the forward direction (a.k.a, differential-linear distin-
guisher) after r rounds be εd.

– Let n be the number of PNBs given by a correlation γ. Namely, even if we
flip one bit in PNBs, we still observe correlation γ.

– Let the correlation in the backward direction, where all PNB bits are fixed
to 0 and non-PNB bits are fixed to the correct ones, is εa.

Then, the time complexity of the attack is estimated as 2256−nN +2256−α, where
the data complexity N is given as

N =

(√
α log(4) + 3

√
1 − ε2aε2d

εaεd

)2

,

where α is a parameter that the attacker can choose.
In our case, we use a 4-round differential-linear distinguisher with correla-

tion εd = 2−8.3. Under pairs generated by the technique shown in Sect. 6.2, we
experimentally estimated the PNBs. With γ = 0.35, we found 74 PNBs, and its
correlation εa = 2−10.6769. Then, with α = 36, we have N = 243.83 and the time
complexity is 2225.86. Again, since we need to repeat this procedure p−1 times,
the data and time complexity is 248.83 and 2230.86, respectively.

7 Conclusion and Future Work

We presented new ideas for differential-linear attacks and in particular the best
attacks on ChaCha, one of the most important ciphers in practice. We hope
that our framework finds more applications. In particular, we think that it is
a promising future work to investigate other ARX designs with respect to our
ideas.

Besides the plain application of our framework to more primitives, our work
raises several more fundamental questions. As explained in the experimental
verification, we sometimes observe absolute correlations that are higher than
expected, which in turn make the attacks more efficient than estimated. Explain-
ing those deviations from theory, likely to be caused by linear-hull effects, is an
interesting question to tackle. Related to this, we feel that – despite interesting
results initiated by [25] – the impact of dependent chains of modular additions
on the correlations is not understood sufficiently well and requires further study.

Finally, we see some possible improvements to our framework. First, it might
be beneficial to use multiple linear mask per partition, while we used only one in
our applications. This of course rises the question of independence, but maybe a
multidimensional approach along the lines of [16] might be possible. Second, one
might improve the results further if the estimated values for β(γ) are replaced by
a weighted sum, where partitions and masks with higher correlations are given
more weight than partitions and masks with a comparable low correlation.

Improved Differential-Linear Attacks with Applications to ARX Ciphers 357

Acknowledgments. We thank the anonymous reviewers for their detailed and helpful
comments. We further thank Lukas Stennes for checking the application of our frame-
work to ChaCha in a first version of this paper. This work was funded by Deutsche
Forschungsgemeinschaft (DFG), project number 411879806 and by DFG under Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972.

References

1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of latin dances: analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008, Revised Selected Papers. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71039-4 30

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal Blake. In:
Submission to NIST (2008)

3. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1 8

4. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: a new tool for
differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part I. LNCS, vol. 11476, pp. 313–342. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-17653-2 11

5. Beierle, C., et al.: Lightweight AEAD and Hashing using the sparkle permutation
family. IACR Trans. Symm. Cryptol. 2020(S1), 208–261 (2020)

6. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008). http://cr.yp.to/chacha.html
7. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.

(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

8. Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with addition
operations with applications to FEAL-8X. In: Joux, A., Youssef, A. (eds.) SAC
2014, Revised Selected Papers. LNCS, vol. 8781, pp. 59–76. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13051-4 4

9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

10. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge Uni-
versity Press (2007)

11. Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for
reduced round Salsa and ChaCha. IACR Trans. Symm. Cryptol. 2016(2), 261–
287 (2016)

12. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76788-6 7

13. Coutinho, M., Neto, T.C.S.: New multi-bit differentials to improve attacks against
ChaCha. IACR Cryptology ePrint Archive 2020/350 (2020). https://eprint.iacr.
org/2020/350

14. Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and ChaCha. Dis-
crete Appl. Math. 227, 58–69 (2017)

https://doi.org/10.1007/978-3-540-71039-4_30
https://doi.org/10.1007/978-3-642-38980-1_8
https://doi.org/10.1007/978-3-030-17653-2_11
https://doi.org/10.1007/978-3-030-17653-2_11
http://cr.yp.to/chacha.html
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-319-13051-4_4
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/978-3-540-76788-6_7
https://doi.org/10.1007/978-3-540-76788-6_7
https://eprint.iacr.org/2020/350
https://eprint.iacr.org/2020/350

358 C. Beierle et al.

15. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 484–513.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 18

16. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis. J.
Cryptol. 32(1), 1–34 (2019)

17. Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong, S.,
Iwata, T. (eds.) FSE 2010, Revised Selected Papers. LNCS, vol. 6147, pp. 333–
346. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4 19

18. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002, Revised Papers. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45661-9 9

19. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 3

20. Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey with
partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I.
LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49890-3 14

21. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties
of addition. In: Matsui, M. (ed.) FSE 2001, Revised Papers. LNCS, vol. 2355, pp.
336–350. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45473-X 28

22. Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discrete
Appl. Math. 208, 88–97 (2016)

23. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

24. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers. In:
Joux, A., Youssef, A. (eds.) SAC 2014, Revised Selected Papers. LNCS, vol. 8781,
pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-
4 19

25. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Rob-
shaw, M. (ed.) FSE 2006, Revised Selected Papers. LNCS, vol. 4047, pp. 144–162.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799313 10

26. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC
2012, Revised Selected Papers. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37682-5 24

27. Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 267–278. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 24

28. Todo, Y., Leander, G., Sasaki, Yu.: Nonlinear invariant attack. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 3–33. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 1

29. Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.)
FSE 2003, Revised Papers. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39887-5 20

https://doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-48658-5_3
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/3-540-45473-X_28
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/11799313_10
https://doi.org/10.1007/978-3-642-37682-5_24
https://doi.org/10.1007/3-540-39118-5_24
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/978-3-540-39887-5_20

Cryptanalysis Results on Spook

Bringing Full-Round Shadow-512 to the Light

Patrick Derbez1(B), Paul Huynh2, Virginie Lallemand2,
Maŕıa Naya-Plasencia3, Léo Perrin3, and André Schrottenloher3

1 Univ Rennes, CNRS, IRISA, Rennes, France
patrick.derbez@irisa.fr

2 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{paul.huynh,virginie.lallemand}@loria.fr

3 Inria, Paris, France
{maria.naya plasencia,leo.perrin,andre.schrottenloher}@inria.fr

Abstract. Spook [BBB+19] is one of the 32 candidates that has made it
to the second round of the NIST Lightweight Cryptography Standardiza-
tion process, and is particularly interesting since it proposes differential
side channel resistance. In this paper, we present practical distinguish-
ers of the full 6-step version of the underlying permutations of Spook,
namely Shadow-512 and Shadow-384, solving challenges proposed by the
designers on the permutation. We also propose practical forgeries with
4-step Shadow for the S1P mode of operation in the nonce misuse sce-
nario, which is allowed by the CIML2 security game considered by the
authors. All the results presented in this paper have been implemented.

Keywords: Dedicated cryptanalysis · Differential attacks ·
Implemented attacks · Spook · Round constants · Lightweight
primitives · Distinguisher · Forgery

1 Introduction

The number of applications running on interconnected resource-constrained
devices increased exponentially during the last decade, bringing new challenges
to both the community and the industry. Sensor networks, Internet-of-Things,
smart cards and healthcare are a few examples which handle sensitive data that
should be protected.

These new platforms have their own specific sets of requirements, in partic-
ular in terms of implementation efficiency. As common cryptographic primitives
were not designed to satisfy these specific use cases, they can be ill-suited in
these contexts. A staggering number of algorithms has been proposed to fulfill
such requirements, such as PRESENT [BKL+07] (low gate count in hardware),

c© IACR 2020. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on June 8th, 2020.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 359–388, 2020.
https://doi.org/10.1007/978-3-030-56877-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_13

360 P. Derbez et al.

PRINCE [BCG+12] (low latency in hardware), Midori [BBI+15] (low power con-
sumption), or LEA [HLK+14] (low ROM and cycle count on micro-controllers).
Such primitives have been nicknamed lightweight. Because the corresponding
devices can often be expected to be physically interacted with by an attacker, an
algorithm easing side channel resistance has a significant advantage. Hence many
recent proposals were designed to be naturally resistant against side-channel
attacks or, at least, protectable at low cost. For instance, the authenticated
encryption (AE) scheme Pyjamask [GJK+19] was designed with a minimal num-
ber of non-linear gates to allow efficient masked implementations while the AE
scheme ISAP [DEM+17] is resistant to differential power analysis, a powerful
type of attack where the adversary try to deduce information about the secret
key from power consumption.

This need for lightweight cryptographic primitives led the American National
Institute of Standards and Technology (NIST) to initiate the Lightweight Cryp-
tography Project, aiming at the standardization of hash functions and authen-
ticated encryption algorithms suitable for constrained devices. It received 57
algorithm proposals in February 2019 and accepted 56 of them. In August 2019,
32 primitives were announced as the 2nd round candidates.

In this paper we study Spook, an Authenticated Encryption scheme with
Associated Data (AEAD) which is among those 2nd round candidates. It was
designed to achieve both resistance against side-channel analysis and low-energy
implementations and is particularly interesting as it aims at providing strong
integrity guarantees even in the presence of nonce misuse and leakage. AEAD is
provided using three sub-components: the Sponge One-Pass mode of operation
(S1P), the tweakable block cipher Clyde-128 and the permutation Shadow. Both
Clyde and Shadow are based on simple extensions of the LS-design framework
first introduced by the designers of the lightweight block ciphers Robin and
Fantomas [GLSV15]. This strategy leads to efficient bitslicing and side-channel
resistant implementations on a wide range of platforms. To further simplify
the implementation, the permutation uses the round function of the tweakable
block cipher as a sub-routine, effectively combining 3 or 4 parallel instances of a
round-reduced cipher using a simple linear layer to construct a 384- or 512-bit
permutation.

Motivation and Contributions. In Sect. 4.3 of the specification document of
Spook [BBB+19], the designers explicitly point out that an important require-
ment for the permutation in the S1P mode of operation is that it provides collision
resistance with respect to the 255 bits that generate the tag and they say:

“Hence, a more specific requirement is to prevent truncated differentials
with probability larger than 2128 for those 255 bits. A conservative heuristic
for this purpose is to require that no differential characteristic has proba-
bility better than 2−385, which happens after twelve rounds (six steps).”

In this paper we show that this heuristic is not conservative, providing
practical truncated distinguishers on Shadow, the inner permutation of Spook.
We exhibit non-random behavior for up to the full version of Shadow-512.

Cryptanalysis Results on Spook 361

Moreover, the same technique would also distinguish Shadow-512 extended by 2
more rounds at the end. More precisely, we exhibit two particular subspaces E
and F of co-dimension 128 and an efficient algorithm which returns pairs of mes-
sages (m,m′) such that m⊕m′ ∈ E and Shadow-512(m)⊕Shadow-512(m′) ∈ F .
This implies in particular a practical collision on 128 bits of the output. This
problem is a particular instance of the so-called limited birthday problem, which
was first introduced by Gilbert and Peyrin when looking for known key dis-
tinguishers against the AES [GP10]. As a permutation can be seen as a block
cipher with a known key, it is natural to borrow distinguishers from this field.
While the complexity of a generic algorithm performing this task is around 264

because of the birthday bound (see [IPS13] for more details), our un-optimized
implementations of our distinguishers run in at most a few minutes on a regular
desktop computer.

We also provide similar distinguishers targeting up to 10 (out of 12) rounds of
Shadow-384, the small version of Shadow. Note that, as for Shadow-512, adding
2 more rounds at the end of the permutation would not increase its security as
there would exist a similar distinguisher on the last 12 rounds (a 2-round shifted
version of the proposed permutation).

As other several sponge-based lightweight algorithms1, the authors purpose-
fully relied on a permutation for which distinguishers could exist as this allows to
use fewer permutation rounds (Spook designers pointed out for instance that 12
rounds were not enough to have 512 bits of security with respect to linear distin-
guishers) and thus an increase in the speed of data processing. Nevertheless, our
distinguishers seem to prove that the behavior of Shadow is not compatible with
the requirements given by the authors on the permutation for the S1P mode of
operation.

The next important question is whether these distinguishers are a threat
to Spook itself, as the impact is a priori not clear. For Spook, we are able to
leverage the results we obtained to produce practical existential forgeries for the
S1P mode of operation when Shadow-512 is reduced to 8 rounds out of 12 in the
nonce misuse scenario, which is allowed by the CIML2 security game considered
by the authors [BPPS17].

Distinguishers on both Shadow-512 and Shadow-384 along with the forg-
eries on 8-step Spook have been implemented and verified against the reference
implementation provided by the designers.

Paper Organization. In Sect. 2 we describe Shadow and introduce some crypt-
analysis techniques. Then in Sect. 3 we make some observations on the structure
of the permutation that will play a crucial role in our cryptanalysis. Finally, in
Sects. 4 and 5 we present the results of our analysis of both versions of Shadow,
including a distinguisher on the full Shadow-512, as well as forgeries against
Spook when Shadow-512 is reduced to 8 rounds.

1 See for instance ASCON [DEMS16], Ketje [BDP+16], or SPARKLE [BBdS+19].

362 P. Derbez et al.

All the analyses presented in this paper are practical and have been imple-
mented and tested. Their source code is available at: https://who.paris.inria.
fr/Leo.Perrin/code/spook/index.html.

Our results have been acknowledged and discussed by the designers of Spook
in [BBB+20].

2 Preliminaries

The specific mode of operation we target will be described in the relevant section.
Here, we present the Shadow family of permutations and recall the definition of
differential distinguishers.

2.1 Specification of Shadow-384 and Shadow-512

The Spook algorithm is based on a permutation named Shadow that exists in
two flavors: Shadow-384 and Shadow-512, where Shadow-512 is the one used in
the primary candidate to the NIST Lightweight competition. In both cases, the
internal state is seen as a collection of m two-dimensional arrays (or bundles)
each of dimensions 32 × 4: as depicted in Fig. 1, m = 4 for Shadow-512 and
m = 3 for Shadow-384. The permutations have a Substitution Permutation
Network (SPN) structure based on a 4-bit S-box layer and two distinct linear
layers, each being used every second round.

Fig. 1. State Organization of Shadow-512 (left) and of Shadow-384 (right).

The full versions of the permutations iterate 6 steps. As represented in Fig. 2,
one step is made of two rounds, denoted round A and round B, interleaved
with round constant additions. Shadow-384 and Shadow-512 only differ in the
definition of the D layer.

Round A first applies a non-linear layer made by the application on each
bundle column of the 4-bit S-box recalled in Table 1. It then applies the so-called
L-box which calls the L′ transformation to the first two and last two rows of each
bundle. If we denote by (x, y) the input and by (a, b) the output the definition
of L′ is given by:

(a, b) = L′(x, y) =
(

circ(0xec045008) · xT ⊕ circ(0x36000f60) · yT

circ(0x1b0007b0) · xT ⊕ circ(0xec045008) · yT

)

where circ(A) stands for a circulant matrix whose first line is a row vector
given by the binary decomposition of A.

https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html
https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html

Cryptanalysis Results on Spook 363

Fig. 2. Description of one step of Shadow-512.

Table 1. 4-bit S-box used in Shadow.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 8 1 f 2 a 7 9 4 d 5 6 e 3 b c

Round B starts with the same S-layer as round A but uses a different linear
layer, denoted D. The purpose of D is to provide diffusion between the m bundles
of the state: as depicted in Fig. 2, it takes as input one bit of each bundle. It
modifies them with the application of a near-MDS matrix (which previously
appeared in the design of the ciphers Midori [BBI+15] and Mantis [BJK+16] for
instance), respectively:

D(a, b, c, d) =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠

for Shadow-512 while for Shadow-384 we use:

D(a, b, c) =

⎛
⎝1 1 1

1 0 1
1 1 0

⎞
⎠ ×

⎛
⎝a

b
c

⎞
⎠ .

The round constants used in the permutation correspond to the internal
state of a 4-bit LFSR. They are recalled in Table 2. At the end of every round
(for rounds from 0 to 11), the 4-bit constant is XORed at 4 different positions,
one time in each bundle: in bundle b (for b = 0, 1, 2, 3), the constant is XORed
to the column number b. Without loss of generality, we hereafter position bit
number 0 on the right of the state in our figures.

2.2 Differential Distinguishers

As indicated in the Spook specification, the black box security analysis of the
mode of operation that is used in Spook (S1P) relies on the assumption that
the permutations are random. In this paper we challenge this assumption by
exhibiting distinguishers for the permutations – that is, algorithms that unveil
a non-random behavior.

364 P. Derbez et al.

Table 2. Round constants used in Shadow. Note that the LSB is on the left.

Round Constant Round Constant Round Constant Round Constant

0 (1,0,0,0) 1 (0,1,0,0) 2 (0,0,1,0) 3 (0,0,0,1)

4 (1,1,0,0) 5 (0,1,1,0) 6 (0,0,1,1) 7 (1,1,0,1)

8 (1,0,1,0) 9 (0,1,0,1) 10 (1,1,1,0) 11 (0,1,1,1)

Our distinguishers use the notion of differential, a technique that was intro-
duced by Biham and Shamir in [BS91]. The idea is to find a couple of XOR
differences (δ,Δ) such that if two messages differ from δ then with high proba-
bility their output difference after encryption is equal to Δ.

This idea was later extended by Knudsen in 1994 to define truncated differ-
entials [Knu95], a variant in which only a portion of the difference is fixed (while
the remaining part is undetermined). This technique is illustrated in Fig. 5 for
instance, where we introduce a distinguisher that ends with a difference of the
form (∗, ∗, ∗, 0) before the last D operation: the ‘*’ symbol indicates that the
difference between the messages is not determined over the first three bundles,
while the ‘0’ symbol indicates that the two messages are identical on the last
bundle (128 bits).

3 Structural Observations

In this section we present the general properties we found that we will later
exploit in our analysis. While our distinguisher is a truncated differential one,
our method for finding right pairs does not rely on a high probability differential
trail (whose very existence is disproved by the authors’ wide trail argument).
Instead, we exploit the similarity between the functions applied in parallel on
each bundle. To better describe them, we introduce the notion of Super S-box
(as it applies to Shadow) and we study the propagation of the following type of
properties through the step function. Note that we next provide the details for
Shadow-512 but that similar results apply to Shadow-384.

Definition 1 (i-identical state). We call i-identical an internal state of
Shadow in which i bundles are equal.

3.1 Super S-Box

Given the fact that in every step only the D layer is mixing the bundles together,
it is possible to rewrite Shadow as an SPN using four 128-bit Super S-boxes (each
operating on one bundle) interleaved with a linear permutation D operating on
the full state. If a, b, c and d are the 128-bit bundles, this linear permutation is
represented as follows:

Cryptanalysis Results on Spook 365

D(a, b, c, d) =

⎛
⎜⎜⎝

0 I I I
I 0 I I
I I 0 I
I I I 0

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ .

D is an involution with branching number 4 (over 128-bit words) and it
verifies that ∀a ∈ F

128
2 ,D(a, a, a, 0) = (0, 0, 0, a).

We denote by σj for j ∈ {0, 1, 2, 3} the four parallel Super S-boxes of the
cipher. They correspond to the first four operations of the step, namely: the
S-layer and the linear operation L of round A, the constant addition (that is
done on a different position for each Super S-box), and the S-layer of round B.

In the following, we show that even though the four bundles of a state go
through different Super S-boxes it might be possible to have a Shadow state with
four equal bundles that is transformed into a Shadow state of the same form at
the output of a full step.

3.2 4-Identical States

In the discussion below we follow the evolution of the 4-identical property
through a step and show the required conditions for it to remain in the end.
This evolution is also summarized in Fig. 3.

Probability of Maintaining the 4-Identical Property Through a Step. We start
from a 4-identical state X that we write X = (x, x, x, x). Each bundle x is made
of 32 columns: x = (x31, x30, · · · , x1, x0).

– Application of the Super S-boxes. The step starts with one non-linear
layer followed by the L layer, applied in parallel (that is, independently) on
each of the 4 bundles. Since these transformations are identical for each bundle
the 4-identical property is followed with probability one up to this point and
so we have L◦S(X) = (y, y, y, y) with y = L◦S(x). We next have the addition
of the first round constant on column j of bundle j for j ∈ {0, 1, 2, 3}, that
we will call AC, and finally we apply another S-box layer. By denoting the
round constant by2 c, we obtain the following values for S ◦AC(2i)◦L◦S(X):

B0 : S(y31) · · · S(y4) S(y3) S(y2) S(y1) S(y0 ⊕ c)
B1 : S(y31) · · · S(y4) S(y3) S(y2) S(y1 ⊕ c) S(y0)
B2 : S(y31) · · · S(y4) S(y3) S(y2 ⊕ c) S(y1) S(y0)
B3 : S(y31) · · · S(y4) S(y3 ⊕ c) S(y2) S(y1) S(y0)

where Bi is bundle i. At this stage, the 4 bundles stop being 4-identical but
differ on the value of their 4 first columns.

– D-box and second round constant addition. The D layer mixes together
the 4 bundles by XORing 3 of them together to form one output bundle, as

2 Recall here that the value of the round constant depends on the round index.

366 P. Derbez et al.

Fig. 3. Evolution of two rounds with a starting 4-identical state, where the four bundles
are equal in the beginning.

described in Sect. 2.1. In the above representation of the state, it operates
columnwise by replacing each column element with the XOR of the 3 others.
The last operation is the addition of the second round constant, that we
denote c′, at the same positions as before (column j of bundle j for j ∈
{0, 1, 2, 3}). Formally, the expression of the bundles of AC(2i + 1) ◦ D ◦ S ◦
AC(2i) ◦ L ◦ S(X) is the following:

B0 : S(y31) · · · S(y4) S(y3 ⊕ c) S(y2 ⊕ c) S(y1 ⊕ c) S(y0) ⊕ c′

B1 : S(y31) · · · S(y4) S(y3 ⊕ c) S(y2 ⊕ c) S(y1) ⊕ c′ S(y0 ⊕ c)
B2 : S(y31) · · · S(y4) S(y3 ⊕ c) S(y2) ⊕ c′ S(y1 ⊕ c) S(y0 ⊕ c)
B3 : S(y31) · · · S(y4) S(y3) ⊕ c′ S(y2 ⊕ c) S(y1 ⊕ c) S(y0 ⊕ c)

Cryptanalysis Results on Spook 367

To ensure a 4-identical state at this point, the following 4 equations need to
be satisfied: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

S(y3 ⊕ c) = S(y3) ⊕ c′

S(y2 ⊕ c) = S(y2) ⊕ c′

S(y1 ⊕ c) = S(y1) ⊕ c′

S(y0 ⊕ c) = S(y0) ⊕ c′.

Depending on the values of c and c′ – that vary with the index of the step –
these 4 equations are either never verified or can be verified with a rather high
probability. In fact, their number of solutions corresponds to the probability of
the transition from a difference of c to a difference of c′ through the S-box S. We
computed the corresponding probabilities for all the steps and report the results
in Table 3. Note that we experimentally verified these values.

Table 3. Probability that an output of step s of Shadow is 4-identical knowing that
the input is.

s 0 1 2 3 4 5

Probability 0 0 0 2−12 2−8 0

3.3 3-Identical States

A similar reasoning applies to states for which only 3 (out of 4) bundles are
equal. In this case, we have one fewer S-box transition to constrain, and then
the probabilities of Table 3 increase to the ones provided in Table 4.

Table 4. Probability that an output of step s of Shadow is 3-identical knowing that
the input is.

s 0 1 2 3 4 5

Probability 0 0 0 2−9 2−6 0

We detail the equations leading to the probabilities of Table 4 in AppendixA.
These probabilities do not depend on the choice of the positions of the 3 input
bundles that are identical. Instead, they are valid as soon as the 3 positions are
the same in the input and in the output.

3.4 2-Identical States

We can follow a similar reasoning to obtain the probability of keeping a 2-
identical state. We obtain two equations to solve, and the probabilities become
the ones given in Table 3. Again, the position of the 2 identical bundles does
not impact these probabilities but it has to be the same in the input and in the
output.

368 P. Derbez et al.

Table 5. Probability that an output of step s of Shadow is 2-identical knowing that
the input is.

s 0 1 2 3 4 5

Probability 0 0 0 2−6 2−4 0

4 A Distinguisher Against Full Shadow-512 (and More)

In this section, we present a practical distinguisher which allows us to exhibit
pairs (x, x′) of 512-bit inputs of the Shadow-512 permutation such that

x ⊕ x′ = (∗, ∗, ∗, 0) and π(x) ⊕ π(x′) = D(0, 0, 0, ∗), (1)

for the full version and such that

x ⊕ x′ = (∗, ∗, ∗, 0) and π(x) ⊕ π(x′) = D(∗, ∗, ∗, 0), (2)

for a “round-extended” version of Shadow-512 using 7 steps rather than 6. In
other words, we efficiently solve a limited-birthday problem.

As proved by Iwamoto et al. [IPS13], generating such pairs for a random
permutation would require roughly 264 queries. However, we can produce pairs
satisfying Property (1) for full Shadow-512 using about 215 calls to said permu-
tation. The exact same technique finds pairs satisfying Property (2) for 7-step
Shadow-512. The corresponding procedures are described in Sect. 4.2.

These distinguishers hinge on two properties: the propagation of 3-identical
states which we described in Sect. 3.3, and a probability 1 truncated differential
explained in Sect. 4.1. The latter can be used directly as a distinguisher for 10-
round Shadow-512.

4.1 A 5-Step Truncated Differential Property

We start by devising a distinguisher of Shadow-512 reduced to 5 steps out of 6.
The truncated trail we use is summarized in Fig. 4. Starting from the middle,
we can easily construct pairs of states such that their difference propagates with
probability 1 over 2 forward and 2 backward steps.

All propagations are of probability 1, the only place where we would a priori
have to pay for the cost of a transition is for the three Super S-box level transi-
tions α � β in step 2. However, the high similarity between the Super S-boxes
provides us with a simple way to obtain three such pairs of 128-bit blocks.

Building Pairs of Bundles That Follow the Same Differential for Different Super
S-boxes. Recall that the only difference between two Super S-boxes lies in the
constant addition operation that is done right after the L linear layer. The 4-bit
constant c is added to the input of only one S-box of the second non-linear layer,
and the index of this S-box depends on the Super S-box index.

Cryptanalysis Results on Spook 369

Fig. 4. A 5-step distinguisher against the 512-bit permutation Shadow.

Thanks to this limited difference between the Super S-boxes, we can easily
build an input difference α so that the output difference of the S-box does not
depend on its index. More precisely, this difference α should be chosen so that it
does not diffuse to the last 4 columns of the bundle. This simple fact is formalized
in the following lemma:

Lemma 1. If x ∈ F
128
2 and α ∈ F

128
2 are such that (L◦S)(x)⊕(L◦S)(x⊕α) = β

and if β is set to 0 on the 4 S-boxes that can receive the round constant c, then
the value of σb(x) ⊕ σb(x ⊕ α) does not depend on the bundle index b.

Proof. We denote by y and y ⊕ β the respective values of (L ◦ S)(x) and (L ◦
S)(x ⊕ α). By expanding these into the column notation we get:

y = y31 · · · y4 y3 y2 y1 y0

y ⊕ β = y31 ⊕ β31 · · · y4 ⊕ β4 y3 y2 y1 y0

Let us first look at σ0. We have that

σ0(x) = S(y31) · · · S(y4) S(y3) S(y2) S(y1) S(y0 ⊕ c)
σ0(x ⊕ α) = S(y31 ⊕ β31) · · · S(y4 ⊕ β4) S(y3) S(y2) S(y1) S(y0 ⊕ c)

so summing these equations yields

σ0(x) ⊕ σ0(x ⊕ α) = γ31 · · · γ4 0 0 0 0

370 P. Derbez et al.

Without loss of generality, let us now consider σ1. We have

σ1(x) = S(y31) · · · S(y4) S(y3) S(y2) S(y1 ⊕ c) S(y0)
σ1(x ⊕ α) = S(y31 ⊕ β31) · · · S(y4 ⊕ β4) S(y3) S(y2) S(y1 ⊕ c) S(y0)

As we can see we have the exact same pairs of values, and thus the same output
differences, unless we look at one of the first 4-bit nibbles. However, in this case,
the values in σ1(x) and σ1(x ⊕ α) are identical to one another, meaning that
their difference is equal to 0 as well.

This concludes the proof since the two differences are equal. ��
To put it differently, this lemma allows us to build pairs of messages that

follow the same differential trail over one step whatever the index of the Super
S-box.

Our distinguisher for 5 steps of Shadow-512 thus works by following the pro-
cess described in Algorithm 1. As depicted in Fig. 4, the choice of the difference
β ensures that the same transition is followed for the 3 first Super S-boxes of
step 2. The differential pattern then propagates as expected with probability 1
through steps 1 then 0 (backward), and 3 then 4 (forward).

We have verified experimentally that this distinguisher works as predicted.

Algorithm 1. A distinguisher for 5-step Shadow.
1. Choose β ∈ F

128
2 such that it is set to 0 on the 4 S-boxes of lowest weight

2. Choose a random y ∈ F
128
2 and a random z ∈ F

128
2

3. Compute x = σ−1
0 (y) and x + α = σ−1

0 (y + β),
4. Set the two states at step 2 to be

X2 = (x, x, x, z) and X ′
2 = (x + α, x + α, x + α, z).

5. Invert step 1 and step 0 on X2 and X ′
2 to obtain a pair of states (X0, X

′
0) such

that π(X0) ⊕ π(X ′
0) = D(∗, ∗, ∗, 0).

The differences in the output of the Super S-box layer of step 5 (denoted
by ∗ in Fig. 4) are a priori different from one another, meaning that this app-
roach cannot cover more rounds. Fortunately, we can use the property studied
in Sect. 3.3 to our advantage, as explained below.

4.2 A Distinguisher for 6- and 7-Step Shadow

Using the truncated trail discussed in Sect. 4.1 with the observation in Sect. 3.3,
we can build a distinguisher on 6 steps of Shadow, i.e. on the full permutation.
It would naturally extend to a distinguisher on 7 steps if we defined such a
“round-extended” variant of Shadow. This distinguisher is summarized in Fig. 5.

Cryptanalysis Results on Spook 371

Fig. 5. A 7-step distinguisher against the 512-bit permutation Shadow.

Structure of the Distinguisher. Our distinguisher works as follows.

– We first focus on the input of step 2 and build a pair of messages that differ
by (α, α, α, 0). This difference automatically sets the input difference of step
0 to be equal to 0 on the third bundle. Our choice of the two messages must
also ensure that their difference at the end of step 2 is equal to (0, 0, 0, β)
and that the two output messages are 3-identical (the 3-identical property is
depicted by the thick rectangle in Fig. 5).

– In step 3, we want to keep the 3-identical property in order to ease the follow-
ing step. As we established before (see Table 4), this event has a probability
equal to 2−9. The input difference at the end of step 3 is then equal to
(γ, γ, γ, 0).

– We next aim for a difference equal to (δ, δ, δ, 0) at the output of the Super
S-boxes of step 4, an event whose probability we later prove to be 2−7.245.
When this condition is fulfilled we obtain a difference equal to (0, 0, 0, δ) at
the output of step 4, which automatically leads to the required difference of
the form (∗, ∗, ∗, 0) at the end of step 5.

372 P. Derbez et al.

Let us now show how we can efficiently find two states that verify the condi-
tions at the input and the output of Step 3.

Suppose that there is an x ∈ F
128
2 such that the following holds during step 2

for some 128-bit values α, β, ε and ε′:
⎧⎪⎨
⎪⎩

σ0(x) + σ0(x + α) = β

σ1(x + ε) + σ1(x + ε + α) = β

σ2(x + ε′) + σ2(x + ε′ + α) = β,

(3)

these constraints corresponding to the differential trail at step 2 that is used in
Fig. 5. Such an x would allow us to run the 5-round distinguisher described in
Sect. 4.1. However, as we explained, the property would not extend beyond the
fifth step. To achieve this, we add another set of constraints:{

(AC ◦ D)
(
σ0(x), σ1(x + ε), σ2(x + ε′), z

)
= (y, y, y, z′)

(AC ◦ D)
(
σ0(x + α), σ1(x + α + ε), σ2(x + α + ε′), z

)
= (y, y, y, z′ + β).

(4)
In other words, we impose that each state we consider is 3-identical.

In this case, the difference between the states has to be equal to (0, 0, 0, β)
at the input of step 3. Furthermore, each state is 3-identical. This property is
carried over to the next step with some probability. Should this happen, we
would have at the input of step 4 that the difference between the states is equal
to (0, 0, 0, γ) for some γ ∈ F

128
2 , and that each state is 3-identical.

Finding Solutions for Properties (3) and (4). It turns out that a specific probabil-
ity 1 truncated differential pattern allows us to trivially find solutions satisfying
both Property (3) and Property (4).

Indeed, we remark that:

1. the impact of the constant additions both within the Super S-box layers
and outside it (after the D layer) is limited to the S-boxes with indices in
{0, 1, 2, 3} (i.e. the 4 of lowest weight) within each Super S-box, and

2. the bits with indices 22 and 23 in each of the 4 input words of a Super S-box
do not influence the output bits with indices in {0, 1, 2, 3}.

Using the reference implementation, we can indeed see that

L(0, e22) = (1b880510, 6c06f000)
L(e22, 0) = (36037800, 1b880510)
L(0, e23) = (37100a20, d80de000)
L(e23, 0) = (6c06f000, 37100a20),

where the 4 bits of lowest weight in each output are always equal to 0. We then
define the vector space ∇ ⊂ (F4

2)
32 as

∇ = {a × e22 + b × e23, a ∈ F
4
2, b ∈ F

4
2},

where the multiplications are done in the finite field F
4
2. As a consequence of our

observations, we have the following lemma.

Cryptanalysis Results on Spook 373

Lemma 2. Let x ∈ (F4
2)

32 be a 128-bit vector and let α ∈ ∇ be a difference.
Then for all steps and all bundle index i, we have that

σi(x) + σi(x + α) = (∗, ∗, ..., ∗, 0, 0, 0, 0).

As evidenced by our experimental results (see below), this approach is effi-
cient, and with the cost of computing 1 Super-Sbox we can obtain about 216

internal states that verify the condition of step 2.

Description of the Full Distinguisher. Algorithm 2 details our distinguisher.
Using the techniques described so far, we are able to find input differences that
satisfy the truncated trail and are 3-identical where needed (see Fig. 5) from the
beginning of step 0 to the end of step 2. Let us now see what happens in the
remaining steps.

Algorithm 2. Our 7-step distinguisher against Shadow.
Output: A pair (x, y, z, t), (x′, y′, z′, t) such that π(x, y, z, t) ⊕ π(x′, y′, z′, t) =
(∗, ∗, ∗, 0) with probability at least 2−16.245 after 7-step Shadow-512.

1. Select a difference ε ∈ ∇.
2. Select a state (y2, y2, y2, z2) that will be a state after step 2.
3. Invert step 2 on (y2, y2, y2, z2), obtaining (x1, y1, z1, t1).
4. Invert step 1 on (x1, y1, z1, t1) and (x1⊕ε, y1⊕ε, z1⊕ε, t1), obtaining (x0, y0, z0, t0)

and (x0, y0, z0, t
′
0).

5. Invert step 0, obtaining a pair of Shadow-512 states with a zero-difference in the
last bundle.

6. Return this pair of state. With high probability (≥ 2−16.24), it satisfies the trun-
cated trail in Figure 5.

Step 3. We start from two messages that are built such that at the end of step 2
they are 3-identical, and we want that the two messages are again 3-identical
at the end of step 3. With a reasoning similar to the one given in Sect. 3.3,
we obtain 6 equations to solve, while in fact only 3 are independent (the 3
equations obtained for the second message are the same as the 3 obtained for
the first message since they only differ on the last bundle), and as detailed
in Table 4 the probability is equal to 2−9 since this is step number 3.

Step 4. Our objective is to obtain a difference of the form (0, 0, 0, δ) for any
non-zero δ in F

128
2 at the beginning of step 5 (see Fig. 5). In order for this

to happen, we need to have a difference equal to (δ, δ, δ, 0) at the end of step
4. To estimate the probability of this event, let us write the corresponding
equations. We denote the two messages after the application of S and L of
step 4 by (y, y, y, w) and (y′, y′, y′, w) respectively. Since the input of step 4 is
3-identical, yi = y′i for all i > 3. The expression of the last 4 column values
at the end of step 4 (i.e. after applying D and AC) is then as follows for
(y, y, y, w)

S(w3 ⊕ c) S(y2) ⊕ S(y2 ⊕ c) ⊕ S(w2) S(y1) ⊕ S(y1 ⊕ c) ⊕ S(w1) S(w0) ⊕ c′
S(w3 ⊕ c) S(y2) ⊕ S(y2 ⊕ c) ⊕ S(w2) S(w1) ⊕ c′ S(y0) ⊕ S(y0 ⊕ c) ⊕ S(w0)

S(w3 ⊕ c) S(w2) ⊕ c′ S(y1) ⊕ S(y1 ⊕ c) ⊕ S(w1) S(y0) ⊕ S(y0 ⊕ c) ⊕ S(w0)

S(y3) ⊕ c′ S(y2 ⊕ c) S(y1 ⊕ c) S(y0 ⊕ c)

374 P. Derbez et al.

and as follows for (y′, y′, y′, w):

S(w3 ⊕ c) S(y′2) ⊕ S(y′2 ⊕ c) ⊕ S(w2) S(y′1) ⊕ S(y′1 ⊕ c) ⊕ S(w1) S(w0) ⊕ c′
S(w3 ⊕ c) S(y′2) ⊕ S(y′2 ⊕ c) ⊕ S(w2) S(w1) ⊕ c′ S(y′0) ⊕ S(y′0 ⊕ c) ⊕ S(w0)

S(w3 ⊕ c) S(w2) ⊕ c′ S(y′1) ⊕ S(y′1 ⊕ c) ⊕ S(w1) S(y′0) ⊕ S(y′0 ⊕ c) ⊕ S(w0)

S(y′3) ⊕ c′ S(y′2 ⊕ c) S(y′1 ⊕ c) S(y′0 ⊕ c)

In order for the sum of these two states to be equal to (0, 0, 0, δ) (for any
non-zero δ), the following relations have to be satisfied:

S(y′2) ⊕ S(y′2 ⊕ c) = S(y2) ⊕ S(y2 ⊕ c)
S(y′1) ⊕ S(y′1 ⊕ c) = S(y1) ⊕ S(y1 ⊕ c)
S(y′0) ⊕ S(y′0 ⊕ c) = S(y0) ⊕ S(y0 ⊕ c).

Since we are looking at step 4, the constant c is equal to 0x5 and then each
equality has a probability equal to 2−2.415 to be verified (assuming that the
value of y and y′ are independent).

Step 5. This last step is passed with probability one, so in the end we observe
an output difference equal to (∗, ∗, ∗, 0) with a probability at least equal to
(2−2.415)3 × 2−9 = 2−16.245.

Step 6. One additional round can be added with probability one, since by
inverting D we would find a difference equal to 0 in the last bundle with the
same probability of 2−16.245.

Experimental Results. Experiments showed that the probability of the distin-
guisher is slightly higher than what we expected, since in fact the previously
detailed trail is not the only one that leads to the required output difference (see
AppendixB for a description of another valid trail). By running Algorithm2 for
222 times, we obtained 124 successful pairs, a probability close to 2−15. Our
unoptimized C++ implementation found all these pairs in less than 30 s on a
desktop computer. Below is an example for 7 steps.

x1 x2

9c7fbdf0 4a9a3523 90bd4f15 33e12e8f

5554509d 5ea7c50d db9fd14e 8cd31faf

5f0785c3 14ce1b1f b9a7f521 336e44ba

fcf630fb 82cafa8e abf5b881 e5534b79

b4764864 aaabc55e 2b65df83 33e12e8f

30d8625c 6d513db3 9024c477 8cd31faf

89fb6758 5d19b594 e69ccd64 336e44ba

4f3d62a5 3e530b8b f7ccf2b7 e5534b79

x1 ⊕ x2 π(x1) ⊕ π(x2)

2809f594 e031f07d bbd89096 00000000

658c32c1 33f6f8be 4bbb1539 00000000

d6fce29b 49d7ae8b 5f3b3845 00000000

b3cb525e bc99f105 5c394a36 00000000

39e368a5 03e51caf f2d7ae55 00000000

2668956a b1720999 00c93f81 00000000

4aed9270 2b317fb5 6f1a183b 00000000

d902b8fd 5c7db7c2 2ef09921 00000000

4.3 A Distinguisher for 6-Step Shadow-384

In this section we show how to build a similar distinguisher on 6 steps of the
384-bit variant of Shadow shifted by one round (i.e. which works for steps from

Cryptanalysis Results on Spook 375

1 to 6 but for no steps from 0 to 5 because of the round constants). As explained
in the preliminaries, Shadow-384 is defined as a 3LS-design, and the D layer acts
on three 128-bit bundles a, b, c as follows:

D(a, b, c) =

⎛
⎝I I I

I 0 I
I I 0

⎞
⎠ ×

⎛
⎝a

b
c

⎞
⎠

Interestingly, propagating identical states remains possible with this layer,
more specifically for states in which the last 2 bundles are equal. Using this
property, one can exhibit pairs (x, x′) such that x ⊕ x′ = (0, ∗, ∗) at step 1 and
π(x) ⊕ π(x′) = D(0, ∗, ∗) at the end of step 6. Note that in this case, we cannot
cover step 0. Hence this is not a distinguisher on the full version of Shadow-384
for which we can cover only 5 steps. However, it shows that adding 1 more step
at the end does not increase the security of Shadow-384. The distinguisher is
summarized in Fig. 6.

Fig. 6. A (1-step shifted) 6-step distinguisher for Shadow-384. The thick rectangles
depict 2-identical states.

376 P. Derbez et al.

As previously described in Sect. 4.2, by picking an α in the vector space
∇ = {a×e22+b×e23, a ∈ F

4
2, b ∈ F

4
2} we can easily find two states (x1, y1, y1+ε)

and (x1, y1+α, y1+ε+α) as inputs to step 2 that satisfy the following properties
at input of step 3:

{
σ1(y1) + σ1(y1 + α) = β

σ2(y1 + ε) + σ2(y1 + ε + α) = β ,
(5)

and{
(AC ◦ D)

(
x1, σ1(y1), σ2(y1 + ε)

)
= (x2, y2, y2)

(AC ◦ D)
(
x1, σ1(y1 + α), σ2(y1 + α + ε)

)
= (x2, y2 + β, y2 + β).

(6)

By inverting step 1, we obtain a difference (0, ∗, ∗) with probability 1.
Now at step 3, the input difference equals (0, β, β) and the last two bundles

of each state are identical. With probability 2−12 and 2−8 respectively, the 2-
identical states are preserved through step 3 and 4. Using the same notations as
in Sect. 3.2, these probabilities are explained below.

Starting from a 2-identical state X = (x, y, y), let (w, z, z) = L ◦ S(X) with
w = L ◦ S(x) and z = L ◦ S(y). The first round constant c is then added on
column j of bundle j for j ∈ {0, 1, 2}, and another S-box layer is applied, and
we obtain the following:

S ◦ AC(2i) ◦ L ◦ S(X) =
[· · · S(wi) · · · S(w2) S(w1) S(w0 ⊕ c)

· · · S(zi) · · · S(z2) S(z1 ⊕ c) S(z0)
· · · S(zi) · · · S(z2 ⊕ c) S(z1) S(z0)

]
.

At this stage, the last 2 bundles of each state differ only on the value of their
second and third columns. After the D layer and the addition of the second round
constant c′ at column j of bundle j for j ∈ {0, 1, 2}) as before, the expression of
the bundles of AC(2i + 1) ◦ D ◦ S ◦ AC(2i) ◦ L ◦ S(X) becomes:

· · · S(wi) · · · S(w2) ⊕ S(z2) ⊕ S(z2 ⊕ c) S(w1) ⊕ S(z1 ⊕ c) ⊕ S(z1) S(w0 ⊕ c) ⊕ c′

· · · S(wi) ⊕ S(zi) · · · S(w2) ⊕ S(z2 ⊕ c) S(w1) ⊕ S(z1) ⊕ c′ S(w0 ⊕ c) ⊕ S(z0)

· · · S(wi) ⊕ S(zi) · · · S(w2) ⊕ S(z2) ⊕ c′ S(w1) ⊕ S(z1 ⊕ c) S(w0 ⊕ c) ⊕ S(z0).

Thus, to ensure a 2-identical state, the following 2 equations need to be satisfied:

S(z2 ⊕ c) = S(z2) ⊕ c′, S(z1 ⊕ c) = S(z1) ⊕ c′.

We can then compute the probability of following each step of the truncated
pattern in Fig. 6 starting from the end of step 2:

Step 3: each equation is satisfied with probability 2−3 for one state, thus 2−12

in total for the two states.
Step 4: the probability for one state becomes 2−2, meaning 2−8 in total.

Cryptanalysis Results on Spook 377

Step 5: the 2-identical property cannot be carried through because of the round
constants. However, one can obtain a difference in the form (0, ∗, ∗) between
the two states with probability 2−4.83, as explained below.

By inverting the D layer of step 6, we should then observe a difference equal to 0
in the first bundle with a probability equal to (2−2.415)2 × 2−8 × 2−12 = 2−24.83.

Let us now compute the probability of going through step 5. If we denote
(w, z, z) and (w, z′, z′) the two states after the application of S and L in step
5, then the expression of the column values at the end of that step for (w, z, z)
becomes

· · · S(wi) · · · S(w2) ⊕ S(z2) ⊕ S(z2 ⊕ c) S(w1) ⊕ S(z1 ⊕ c) ⊕ S(z1) S(w0 ⊕ c) ⊕ c′

· · · S(wi) ⊕ S(zi) · · · S(w2) ⊕ S(z2 ⊕ c) S(w1) ⊕ S(z1) ⊕ c′ S(w0 ⊕ c) ⊕ S(z0)

· · · S(wi) ⊕ S(zi) · · · S(w2) ⊕ S(z2) ⊕ c′ S(w1) ⊕ S(z1 ⊕ c) S(w0 ⊕ c) ⊕ S(z0)

and it takes the following value for (w, z′, z′)

· · · S(wi) · · · S(w2) ⊕ S(z′2) ⊕ S(z′2 ⊕ c) S(w1) ⊕ S(z′1 ⊕ c) ⊕ S(z′1) S(w0 ⊕ c) ⊕ c′
· · · S(wi) ⊕ S(z′i) · · · S(w2) ⊕ S(z′2 ⊕ c) S(w1) ⊕ S(z′1) ⊕ c′ S(w0 ⊕ c) ⊕ S(z′0)

· · · S(wi) ⊕ S(z′i) · · · S(w2) ⊕ S(z′2) ⊕ c′ S(w1) ⊕ S(z′1 ⊕ c) S(w0 ⊕ c) ⊕ S(z′0)

For the first bundles to be equal for both states the following relations have
to be satisfied:

S(z′2) ⊕ S(z′2 ⊕ c) = S(z2) ⊕ S(z2 ⊕ c)
S(z′1) ⊕ S(z′1 ⊕ c) = S(z1) ⊕ S(z1 ⊕ c),

which occurs with probability 2−2.415 for each relation.

Experimental Results. Experiments showed that the probability of the distin-
guisher is very close to what we expected. By testing 230 pairs, we obtained 31
successes, a probability close to 2−25. Our unoptimized C++ implementation took
less than 70 min on a desktop computer to find these pairs, i.e. about 2 min per
pair on average. Below is an example.

x1 x2

62544d56 60b9af6e bd3ddabf

019d0421 569ad0d3 e543b03f

5f8ba283 087f4892 f7b632d8

116bb908 eef0b58d 97dc955a

62544d56 48d12ffc bb391a7d

019d0421 5efa911b cb4ff1e5

5f8ba283 265b098a ffd272c0

116bb908 e0d8f55f 9790d5da

x1 ⊕ x2 π(x1) ⊕ π(x2)

00000000 28688092 0604c0c2

00000000 086041c8 2e0c41da

00000000 2e244118 08644018

00000000 0e2840d2 004c4080

00000000 d7ddf0cd 87ed7095

00000000 c4e25bec df225a5c

00000000 d3d67ba2 9416fab2

00000000 1cff6fdd 9cf7ed09

Difference with 7 Rounds. The main difference with our 7-round distinguisher
on Shadow-512 is our inability to cover step 0, and it stems from D. The middle
rounds of the attack cannot be moved, as they depend on our ability to cancel

378 P. Derbez et al.

out the constants and maintain 2-identical states. In the 7-round attack, rounds
alternate between 3 and 1 active Super S-box (bundle). The inverse step 1 takes
in input a difference α, α, α, 0 and the inverse application of D gives a difference
0, 0, 0, α. But since this difference is active in only one bundle, we can traverse
one more round and have a difference active in only three bundles. Here, we
used a different path, with two active bundles at each round. The inverse step 1
takes as input a difference 0, α, α, the inverse of D maps to a difference 0, α, α,
but after the inverse Super S-box, we obtain two unknown differences, and we
cannot traverse round 0.

5 Forgeries with 4-Step Shadow in the Nonce Misuse
Setting

In this section, we show how to use the properties exploited in the distinguishers
to create existential forgeries for the S1P mode of operation [BBB+19], in the
single user setting, when used with 4-step Shadow (out of 6) shifted of two
steps (starting at step 2 instead of 0). Hence, our attack targets the “aggressive
parameters” specified in [BBB+19, Section 5].

One interesting feature of Spook is that it provides strong integrity guaran-
tees in the presence of nonce misuse and leakage, which are formalized as CIML2
in the unbounded leakage model [BPPS17]. In our attack, we do not require leak-
age and instead exploit the nonce control. More specifically, we require the same
nonce to be used three times. Our attack then creates two different messages
with the same authentication tag. In particular, we are able to build collisions
on the underlying hash function, which allows us to build the forgeries.

Attack Outline. S1P is a sponge-based mode of authenticated encryption with
associated data represented in Fig. 7, that uses Shadow as its underlying permu-
tation. It has a rate of size 256 bits and a capacity of size 256 bits. If we number
the bundles of Shadow as in the reference implementation, bundles 0 and 1 are
the rate part and bundles 2 and 3 are the capacity part.

For the sake of simplicity, we consider a version of the S1P mode of operation
without associated data, and we only consider two-block messages M0,M1. This
situation is depicted on Fig. 7, where π is the Shadow permutation, Initialize
is a procedure combining π and the Clyde block cipher, that produces a 512-bit
state from a nonce N and the secret key K, and Finalize is a procedure that,
on input a 512-bit state, produces a 128-bit authentication tag.

Our goal is to output two plaintexts (M0,M1), (M ′
0,M

′
1) and a nonce N that

yield the same authentication tag. In order to do that, we obtain a collision on
the internal state before Finalize. This means that any pair (M0,M1, x2, ..., x�),
(M ′

0,M
′
1, x2, ..., x�) of messages built by appending the same blocks to our col-

liding pair would also yield the same tag provided that the nonce is reused. We
can find (M0,M1) and (M ′

0,M
′
1) thanks to the following algorithm, that we will

prove later.

Cryptanalysis Results on Spook 379

Fig. 7. S1P mode in our attack setting

Let π be the Shadow permutation restricted to rounds 2 to 5. Informally,
the first queries allow us to find the difference between the states before π, the
second ones to figure out the difference after π, and the third to cancel it out.
The whole attack is presented in details in Algorithm4. Before describing it, we
present its main subroutine whose success probability is given by the following
lemma.

Algorithm 3. Algorithm to generate candidate pairs for our 4-step property.
Output: two pairs of (x1, y1), (x

′
1, y

′
1) such that π(x1, y1, a, b) ⊕ π(x′

1, y
′
1, a, b) =

(∗, ∗, 0, 0) with probability p.

1. Select a random 128-bit bundle w2.
2. Invert step 2 on (w2, w2, 0, 0), obtaining (x1, y1, ∗, ∗)
3. Return (x1, y1), (x1 ⊕ ε, y1 ⊕ ε) where ε ∈ ∇ (a difference that intervenes only in

columns 22 and 23 of a bundle).

Lemma 3. Let (∗, ∗, a, b) be a Shadow state. Then Algorithm3 produces 4 bun-
dles (x1, y1), (x′

1, y
′
1) such that π(x1, y1, a, b) ⊕ π(x′

1, y
′
1, a, b) = (∗, ∗, 0, 0) with a

probability p � 2−24.83.

In a nutshell, this property allows us to find a collision on the capacity part
of the state after having applied π. Since we can control the differences in the
rate before and after π, we then obtain a collision on the full 512-bit state. This
is summarized in Algorithm 4. Notice that each plaintext and ciphertext “block”
is comprised of two rate bundles.

4-Step Path. We will now prove Lemma 3. We are interested in pairs of 2-identical
states for Shadow, where the first two bundles are equal. The following lemma
stems immediately from the results in Table 5 (as both states in the pair must
remain 2-identical, we take the squared probabilities).

Lemma 4. Let t1, t2 be a pair of 2-identical states with difference (α, α, 0, 0).
Then after a step of Shadow, they remain 2-identical with probability 2−12 at step
3, 2−8 at step 4 and 0 otherwise.

380 P. Derbez et al.

Algorithm 4. Collision attack on the S1P mode, with nonce reuse, and using
4-step Shadow.
1. Encrypt an arbitrary two-block (4-bundle) message, e.g. (0, 0), (0, 0), and obtain

ciphertexts (d0, d1), (d2, d3). Let x1, y1, a, b be the 4-bundle state after Initialize
(immediately before step 1). Then d0, d1 = x1, y1.

2. Use Algorithm 3 to obtain two pairs of rate bundles (x′
1, y

′
1), (x

′′
1 , y′′

1) such that
π(x′

1, y
′
1, a, b) ⊕ π(x′′

1 , y′′
1 , a, b) = (∗, ∗, 0, 0) with probability p.

3. Encrypt (with the same nonce) (x1 ⊕x′
1, y1 ⊕y′

1), (0, 0) and obtain (c′
0, c

′
1), (c

′
2, c

′
3).

Then (c′
2, c

′
3) is the value of the rate after the application of π on (x′

1, y
′
1, a, b).

4. Encrypt (with the same nonce) (x1⊕x′′
1 , y1⊕y′′

1), (0, 0) and obtain (c′′
0 , c′′

1), (c′′
2 , c′′

3).
Then (c′′

2 , c′′
3) is the value of the rate after the application of π on (x′′

1 , y′′
1 , a, b).

5. Output the two 4-bundle plaintexts: (x1 ⊕ x′
1, y1 ⊕ y′

1), (c
′
2, c

′
3) and (x1 ⊕ x′′

1 , y1 ⊕
y′′
1), (c′′

2 , c′′
3) and the nonce N that was used. Then these plaintexts, encrypted with

this nonce, yield the same internal state before the Finalize procedure, and the
same tag, with probability p � 2−24.83.

Using these probabilities, we can investigate Lemma 3.

Proof (of Lemma 3). We follow the convention of indexing bundles depending on
the step that immediately precedes, i.e. w2 is a bundle after step 2. The pattern
used in this proof is summarized in Fig. 8.

We consider Shadow reduced to steps 2 to 5. We start with an input state
(∗, ∗, a1, b1). We select a random bundle w2 and invert step 2 on (w2, w2, 0, 0).
We denote by (x1, y1, ∗, ∗) the state obtained after this inversion.

Now we consider the “mixed” state (x1, y1, a1, b1) passing through step 2.
Applying the super-sboxes, D and adding the second round constant we obtain
the state: (σ2(a1) ⊕ σ3(b1) ⊕ w2, σ2(a1) ⊕ σ3(b1) ⊕ w2, ∗, ∗) which is 2-identical.

We also consider the state (x1 ⊕ ε, y1 ⊕ ε, a1, b1), where ε belongs to the set ∇
of 216 differences that modify only the columns 22 and 23 of a bundle. Then, as
shown in our analysis from the previous section, the difference does not interact
with the part of the state dealing with the round constant. Hence, the state after
step 2 is also 2-identical and it has the same bundles in the capacity part.

We now have a pair of 2-identical states (x2, x2, a2, b2) and (y2, y2, a2, b2) in
the output of step 2. It is mapped to a pair of 2-identical states (x3, x3, a3, b3)
and (y3, y3, a3, b3) through step 3 with probability 2−12 and similarly through
step 4 with probability 2−8.

Before step 5, we have a 2-identical pair (x4, x4, a4, b4), (y4, y4, a4, b4). Our
goal is to obtain a zero-difference in the capacity part. By an analysis analogous
to the one of Shadow-384, this happens with a probability approximately equal
to 2−4.83. We then have a total probability of 1︸︷︷︸

Step 2

× 2−12︸︷︷︸
Step 3

× 2−8︸︷︷︸
Step 4

× 2−4.83︸ ︷︷ ︸
Step 5

. ��

Experimental Results. Lemmas 3 and 4 have been verified independently. Fur-
thermore, we have fully implemented the attack against S1P itself. Using the

Cryptanalysis Results on Spook 381

Fig. 8. 4-step path

reference implementation of S1P (but taking out the two first steps) we obtained
the following example for a zero-key and a zero-nonce.

m1 = aaf2fbf5334fdfc6c1ee182f593cc6e1 a5ebc70be994a1bc8b980410a3dae96a

e93257859683265f20552e381b15c621 eb3257859783265f23552e381b15c621

m2 = aaf2bbf5334fdfc6c1ee182f593cc6e1 a5eb870be994a1bc8b980410a3dae96a

2f160415c118c8c174200434e93c2e83 2d160415c018c8c177200434e93c2e83

c1 = 75235998b09dcbe55a97db04e29622e4 4e73577cdacccc3520d6d6b03b5f2f51

00000000000000000000000000000000 00000000000000000000000000000000

c6461d8861f434500882ac5dc3490ce1

c2 = 75231998b09dcbe55a97db04e29622e4 4e73177cdacccc3520d6d6b03b5f2f51

00000000000000000000000000000000 00000000000000000000000000000000

c6461d8861f434500882ac5dc3490ce1

After 230 trials, we obtained 41 successful collisions, with an experimental
probability of success of 2−24.64 which backs the theoretical 2−24.83. In practice,
our un-optimized C++ implementation needs about 15 min to find one collision.

Possible Extensions. Although using similar properties as the previous distin-
guishers (keeping 2-identical states with a cancellation of constants, using a
difference in ∇), our attack suffers from the fact that we cannot control the
input in the capacity part. This is the main reason why we cannot consider the
steps before step 2, contrary to our distinguisher on full Shadow-512.

As a trivial extension, we remark that we can extend our reduced-step Shadow
by one round (i.e. half a step) at the end of our 4-step path, since this round

382 P. Derbez et al.

does not traverse D; but it falls outside the scope of the actual primitive. We
could attack rounds 4 to 13 of Shadow-512 instead of rounds 0 to 12.

Furthermore, the differences that we obtain at the input of step 2 are very
sparse, since they belong to the space ∇. As the complexity of our attack is of the
order of 225, and the generic complexity is of 2128 for a collision on the capacity,
it might be possible to extend the attack 1 round at the beginning Shadow, but
this seems far from trivial and would require advanced message modification
techniques.

6 Conclusion

In this paper we have shown some new cryptanalysis results on the second round
candidate of the lightweight NIST competition Spook based on the limited birth-
day problem. We can distinguish 5-step Shadow-512 from a random permutation
using only 2 queries. If we exploit the round constants, we are able to distinguish
the full (6-step) Shadow-512, and we could even distinguish 7 steps if the num-
ber of rounds was increased (and regardless of the round constant values chosen
for this step). Regarding Shadow-384, we are able to efficiently distinguish the
6-step permutation if its round constants are shifted, and a round-reduced 5-step
version otherwise.

Using similar ideas we could build collisions on the underlying hash function
for a 4-step version of the permutation, which means we can build forgeries for
the S1P mode with nonce misuse, which is allowed by the CIML2 security game
considered by the authors [BPPS17].

All the analyses presented are practical and have been implemented and
verified. The corresponding source code is publicly available.

An interesting extension of this work would be to reach 5-step forgeries: as
we presented, extending it one round is easy, but one more round for reaching
5-steps might be possible using some advanced message modification techniques.
In any case, 6-steps do seem out of reach with our current techniques.

New Criterion. Our analysis provides a new simple criterion for choosing the
round constants in LS-designs: besides trying to avoid invariant subspaces
attacks, they should be introduced in such a way that their effect in the internal
symmetries cannot be canceled out.

Possible Tweaks for Shadow. Though our findings do not represent a threat
on the full-round authenticated encryption primitive, it is possible to tweak
the permutation to counter the low complexity distinguisher and improve the
security margin of Spook.

The first tweak we would suggest is to use denser constants. This change
would not affect the 5-step distinguishers, but would counter the 6-step ones
and the 4-step forgeries. Another option that might have the same effect as
using less sparse constants is to only use one round constant per step instead
of two as it is the case now. This would prevent us from canceling them out

Cryptanalysis Results on Spook 383

inside a step in order to build identical bundle states. This option could be more
interesting than denser constants due to implementation reasons.

A second option is to change the D matrix in order to break the symmetry
properties between the bundles. This approach was favored by the authors of
Spook. After our results, they proposed a new version, Spook v2 [BBB+20], in
which they replace the matrix D by an efficient MDS matrix (they also modify
the round constants of Shadow for more efficiency). Thus, the attacks presented
in this paper are a priori inapplicable to Spook v2.

Acknowledgments. The authors would like to thank the designers of Spook for many
helpful discussions and useful comments. Part of this work was done during the sym-
metric cryptography seminars of FrisiaCrypt 2019 and Dagstuhl 2020 (Seminar 20041).
This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment no. 714294 - acronym QUASYModo) and has been partly funded by the ANR
under grant Decrypt ANR-18-CE39-0007.

A Equations to Keep a 3-Identical State

Without loss of generality we consider that the 3 first bundles are identical so we
start from a 3-identical state X = (x, x, x, z). The step starts with the application
of the same operations to each bundle, namely S and L, we denote the modified
state as L◦S(X) = (y, y, y, w). Once the other operations are applied the output
becomes:

S(w31), · · · , S(w3 ⊕ c), S(y2) ⊕ S(y2 ⊕ c) ⊕ S(w2), S(y1) ⊕ S(y1 ⊕ c) ⊕ S(w1), S(w0) ⊕ c
′
,

S(w31), · · · , S(w3 ⊕ c), S(y2) ⊕ S(y2 ⊕ c) ⊕ S(w2), S(w1) ⊕ c
′
, S(y0) ⊕ S(y0 ⊕ c) ⊕ S(w0),

S(w31), · · · , S(w3 ⊕ c), S(w2) ⊕ c
′
, S(y1) ⊕ S(y1 ⊕ c) ⊕ S(w1), S(y0) ⊕ S(y0 ⊕ c) ⊕ S(w0),

S(y31), · · · , S(y3) ⊕ c
′
, S(y2 ⊕ c), S(y1 ⊕ c), S(y0 ⊕ c)

To assure a 3-identical state the following equations have to be satisfied:

S(y2 ⊕ c) = S(y2) ⊕ c′, S(y1 ⊕ c) = S(y1) ⊕ c′, S(y0 ⊕ c) = S(y0) ⊕ c′.

B Another High Probability Characteristic over 7 Steps

The trail we describe in Sect. 4.2 and that is represented in Fig. 5 is not the only
one contributing to the probability of our 7-step distinguisher, as demonstrated
by the fact that our experiments return a probability close to 2−15 while we
expected 2−16.245. In this section we detail a second trail of high probability
that benefits from the definition of L, namely from the fact that the bits in
column 2 do not diffuse to column 0, 1 and 2.

384 P. Derbez et al.

Structure of the Trail. The trail is represented in Fig. 9 and works as follows:

– As previously, our construction at step 2 gives a pair of messages that leads
with probability 1 to the desired difference (∗, ∗, ∗, 0) at the input of the
permutation, while the states at the output of step 2 are 3-identical and
differ by (0, 0, 0, β).

– With probability 2−9 the two states keep their 3-identical property at the end
of step 3, and their difference is (γ, γ, γ, 0).

– We then require that at the end of step 4 the two states are 2-identical while
they share the same third bundle value. As we detail next, this event is of
probability 2−8.3.

– Step 5 ends with a null difference in the last bundle with probability 1 thanks
to the definition of L. The distinguisher can be extended to a 7-step one for
free.

The total probability of this trail is thus equal to 2−17.3. Adding it to the
probability of the other trail discussed in Sect. 4.2 we obtain something closer to
what is observed experimentally: 2−17.3 + 2−16.245 = 2−15.678. Note that other
trails add up to this probability, for instance the ones with a difference of the
form (0, τ, τ, κ) or (τ, 0, τ, κ) at the end of step 4.

Detail of the Probabilities.

Step 3. As for the trail described in Sect. 4.2, the probability that the states
remain 3-identical is equal to 2−9.

Step 4. At the end of step 4, we aim for a pair of messages that are 2-identical
in their first 2 bundles and that have no difference in their third bundle.
Formally, let us denote by (y, y, y, w) and (y′, y′, y′, w) the two states after S
and L. After applying the first constant addition, the second S-layer, the D
operation and the second constant addition, we obtain:

S(w31), · · · , S(w3 ⊕ c), S(y2) ⊕ S(y2 ⊕ c) ⊕ S(w2), S(y1) ⊕ S(y1 ⊕ c) ⊕ S(w1), S(w0) ⊕ c
′
,

S(w31), · · · , S(w3 ⊕ c), S(y2) ⊕ S(y2 ⊕ c) ⊕ S(w2), S(w1) ⊕ c
′
, S(y0) ⊕ S(y0 ⊕ c) ⊕ S(w0),

S(w31), · · · , S(w3 ⊕ c), S(w2) ⊕ c
′
, S(y1) ⊕ S(y1 ⊕ c) ⊕ S(w1), S(y0) ⊕ S(y0 ⊕ c) ⊕ S(w0),

S(y31), · · · , S(y3) ⊕ c
′
, S(y2 ⊕ c), S(y1 ⊕ c), S(y0 ⊕ c)

and

S(w31), · · · , S(w3 ⊕ c), S(y′2) ⊕ S(y′2 ⊕ c) ⊕ S(w2), S(y′1) ⊕ S(y′1 ⊕ c) ⊕ S(w1), S(w0) ⊕ c
′
,

S(w31), · · · , S(w3 ⊕ c), S(y′2) ⊕ S(y′2 ⊕ c) ⊕ S(w2), S(w1) ⊕ c
′
, S(y′0) ⊕ S(y′0 ⊕ c) ⊕ S(w0),

S(w31), · · · , S(w3 ⊕ c), S(w2) ⊕ c
′
, S(y′1) ⊕ S(y′1 ⊕ c) ⊕ S(w1), S(y′0) ⊕ S(y′0 ⊕ c) ⊕ S(w0),

S(y′31), · · · , S(y′3) ⊕ c
′
, S(y′2 ⊕ c), S(y′1 ⊕ c), S(y′0 ⊕ c)

In order to obtain a 2-identical state the following relations have to hold:

S(y1) ⊕ S(y1 ⊕ c) = c′, S(y0) ⊕ S(y0 ⊕ c) = c′,

S(y′1) ⊕ S(y′1 ⊕ c) = c′, S(y′0) ⊕ S(y′0 ⊕ c) = c′.

Cryptanalysis Results on Spook 385

Fig. 9. Another trail contributing to the probability of the 7-step distinguisher of
Shadow-512.

Given that we are looking at step number 4 we have c = 0x5 and c′ = 0xa,
so each equation is verified with probability 2−2. Also, since we aim for a
difference at the end of step 4 of the form (τ, τ, 0, κ) with τ �= 0, we have to
add the condition:

S(y2) ⊕ S(y2 ⊕ c) ⊕ S(y′2) ⊕ S(y′2 ⊕ c) �= 0.

That is verified with probability 2−0.3. Consequently, the probability of step
4 is equal to 2−8.3. Once these conditions are fulfilled, we automatically have
an output difference of step 4 equal to (τ, τ, 0, κ) and the actual value of τ is
very sparse, only the second column is active:

τ = (0, · · · , 0, S(y′2) ⊕ S(y′2 ⊕ c) ⊕ S(y2) ⊕ S(y2 ⊕ c), 0, 0)

This particular shape implies that step 5 is passed with probability 1.

386 P. Derbez et al.

Step 5. We denote the two input states by (u, u, v, x) and (u ⊕ τ, u ⊕ τ, v, x′).
Our goal is to obtain a difference equal to zero in the last bundle at the end
of the step. We first remark that after applying the first S-layer to the two
states, we obtain two states (U,U, V,X) and (U ′, U ′, V,X ′) so that again the
difference between U and U ′ is only positioned in the second column of the
bundle (simply because the S-layer modifies each column independently). We
denote the new difference by T = U ⊕ U ′.
Due to the linearity of the next step we can further trace the evolution of τ
through the L layer: we have that L(U)⊕L(U ′) = L(T). Moreover, using the
specification of L and the same notations as in Sect. 4.2 we observe that:

L(e2, 0) = (805101b8, 6f0006c0)
L(0, e2) = (37800360, 805101b8).

These computations indicate that any difference positioned in column 2 does
not propagate to any of the first 3 columns, and in particular that whatever
the exact value of T the two first bundles of each state have the same value
over their 3 first columns. To see how this leads to the required equality at
the end of step 5, we can look at the formal expression of the two states. After
applying L, the first round constant addition and the second non-linear layer
we obtain:

S(L(U)31), · · · , S(L(U)3), S(L(U)2), S(L(U)1), S(L(U)0 ⊕ c),

S(L(U)31), · · · , S(L(U)3), S(L(U)2), S(L(U)1 ⊕ c), S(L(U)0),

S(L(V)31), · · · , S(L(V)3), S(L(V)2 ⊕ c), S(L(V)1), S(L(V)0),

S(L(X)31), · · · , S(L(X)3 ⊕ c), S(L(X)2), S(L(X)1), S(L(X)0)

for the first state, and the following for the second state:

S(L(U′)31), · · · , S(L(U′)3), S(L(U′)2), S(L(U′)1), S(L(U′)0 ⊕ c),

S(L(U′)31), · · · , S(L(U′)3), S(L(U′)2), S(L(U′)1 ⊕ c), S(L(U′)0),

S(L(V)31), · · · , S(L(V)3), S(L(V)2 ⊕ c), S(L(V)1), S(L(V)0),

S(L(X′)31), · · · , S(L(X′)3 ⊕ c), S(L(X′)2), S(L(X′)1), S(L(X′)0)

The difference in the last bundle at the end of step 5 is thus given by the
sum of the first 3 bundles of both states (since we are passing through D). It
gives:

0, · · · , 0, S(L(U)1) ⊕ S(L(U)1 ⊕ c) ⊕ S(L(U′)1) ⊕ S(L(U′)1 ⊕ c), S(L(U)0) ⊕ S(L(U)0 ⊕ c) ⊕ S(L(U′)0)

⊕ S(L(U′)0 ⊕ c).

We then use the previous observation which implies that L(U ′)1 = L(U)1

together with L(U ′)0 = L(U)0 to conclude that the bundle difference is null
with probability 1.

Cryptanalysis Results on Spook 387

References

[BBB+19] Bellizia, D., et al.: Spook: sponge-based leakage-resilient authenticated
encryption with a masked tweakable block cipher. In: Submission to the
NIST Lightweight Cryptography project (2019). https://csrc.nist.gov/
CSRC/media/Projects/lightweight-cryptography/documents/round-2/
spec-doc-rnd2/Spook-spec-round2.pdf

[BBB+20] Bellizia, D., et al.: Spook: sponge-based leakage-resistant authenticated
encryption with a masked tweakable block cipher. IACR Trans. Symm.
Cryptol. Special Issue Des. NIST Lightweight Standardisation Process
(2020). https://www.spook.dev/assets/TOSC Spook.pdf

[BBdS+19] Beierle, C., et al.: Schwaemm and Esch: lightweight authenticated encryp-
tion and hashing using the Sparkle permutation family. In: Submission
to the 2nd Round of the NIST Lightweight Process (2019)

[BBI+15] Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp.
411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48800-3 17

[BCG+12] Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive
computing applications extended abstract. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34961-4 14

[BDP+16] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAE-
SAR submission: Ketje v2. In: Submission to the CAESAR Competition
(2016)

[BJK+16] Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II.
LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53008-5 5

[BKL+07] Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74735-2 31

[BPPS17] Berti, F., Pereira, O., Peters, T., Standaert, F.-X.: On leakage-resilient
authenticated encryption with decryption leakages. IACR Trans. Symm.
Cryptol. 2017(3), 271–293 (2017)

[BS91] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosys-
tems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol.
537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3 1

[DEM+17] Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer,
T.: ISAP - towards side-channel secure authenticated encryption. IACR
Trans. Symm. Cryptol. 2017(1), 80–105 (2017)

[DEMS16] Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2. In:
Submission to the CAESAR Competition (2016)

[GJK+19] Goudarzi, D., et al.: Submission to the NIST Lightweight Cryptog-
raphy Project (2019). https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/pyjamask-
spec-round2.pdf

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf
https://www.spook.dev/assets/TOSC_Spook.pdf
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf

388 P. Derbez et al.

[GLSV15] Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bit-
slice encryption for efficient masked software implementations. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0 2

[GP10] Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for
AES-like permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS,
vol. 6147, pp. 365–383. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13858-4 21

[HLK+14] Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA:
a 128-bit block cipher for fast encryption on common processors. In: Kim,
Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9 1

[IPS13] Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-birthday distinguishers for
hash functions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 504–523. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-42045-0 26

[Knu95] Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8 16

https://doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1007/978-3-319-05149-9_1
https://doi.org/10.1007/978-3-642-42045-0_26
https://doi.org/10.1007/978-3-642-42045-0_26
https://doi.org/10.1007/3-540-60590-8_16

Cryptanalysis of LEDAcrypt

Daniel Apon1(B), Ray Perlner1, Angela Robinson1, and Paolo Santini2,3

1 National Institute of Standards and Technology, Gaithersburg, USA
{daniel.apon,ray.perlner,angela.robinson}@nist.gov

2 Università Politecnica delle Marche, Ancona, Italy
p.santini@pm.univpm.it

3 Florida Atlantic University, Boca Raton, USA

Abstract. We report on the concrete cryptanalysis of LEDAcrypt, a
2nd Round candidate in NIST’s Post-Quantum Cryptography standard-
ization process and one of 17 encryption schemes that remain as can-
didates for near-term standardization. LEDAcrypt consists of a public-
key encryption scheme built from the McEliece paradigm and a key-
encapsulation mechanism (KEM) built from the Niederreiter paradigm,
both using a quasi-cyclic low-density parity-check (QC-LDPC) code.

In this work, we identify a large class of extremely weak keys and pro-
vide an algorithm to recover them. For example, we demonstrate how to
recover 1 in 247.72 of LEDAcrypt’s keys using only 218.72 guesses at the
256-bit security level. This is a major, practical break of LEDAcrypt.
Further, we demonstrate a continuum of progressively less weak keys
(from extremely weak keys up to all keys) that can be recovered in sub-
stantially less work than previously known. This demonstrates that the
imperfection of LEDAcrypt is fundamental to the system’s design.

Keywords: NIST PQC · LEDAcrypt · McEliece · QC-LDPC ·
Cryptanalysis

1 Introduction

Since Shor’s discovery [27] of a polynomial-time quantum algorithm for factoring
integers and solving discrete logarithms, there has been a substantial amount of
research on quantum computers. If large-scale quantum computers are ever built,
they will be able to break many of the public-key cryptosystems currently in use.
This would gravely undermine the integrity and confidentiality of our current
communications infrastructure on the Internet and elsewhere.

In response, the National Institute of Standards and Technology (NIST) ini-
tiated a process [1] to solicit, evaluate, and standardize one or more quantum-
resistant, public-key cryptographic algorithms. This process began in late 2017
with 69 submissions from around the world of post-quantum key-establishment
mechanisms or KEMs (resp. public-key encryption schemes or PKEs), and dig-
ital signature algorithms. In early 2019, the list of candidates was cut from 69

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 389–418, 2020.
https://doi.org/10.1007/978-3-030-56877-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_14

390 D. Apon et al.

to 26 (17 of which are PKEs or KEMs), and the 2nd Round of the competition
began [2]. The conclusion of Round 2 is now rapidly approaching.

LEDAcrypt [16] is one of the 17 remaining candidates for standardization
as a post-quantum PKE or KEM scheme. It is based on the seminal works of
McEliece [20] in 1978 and Niederreiter [23] in 1986, which are based on the NP-
complete problem of decoding an arbitrary linear binary code [5]. More precisely,
LEDAcrypt is composed of a PKE scheme based on McEliece but instantiated
with a particular type of codes (called QC-LDPC) and a KEM in the variant
style of Niederreiter. The specific origins of LEDAcrypt – the idea of using QC-
LDPC codes with the McEliece paradigm – dates back a dozen years to [15].

At a very high level, the private key of LEDAcrypt is a pair of binary matrices
H and Q, where H is a sparse, quasi-cyclic, parity-check matrix of dimension
p × p · n0 for a given QC-LDPC code and where Q is a random, sparse, quasi-
cyclic matrix of dimension p · n0 × p · n0. Here p is a moderately large prime
and n0 is a small constant. The intermediate matrix L = [L0|...|Ln0−1] = H · Q
is formed by matrix multiplication. The public key M is then constructed from
L by multiplying each of the Li by L−1

n0−1. Given this key pair, information can
be encoded into codeword vectors, then perturbed by random error-vectors of a
low Hamming weight.1

Security essentially relies on the assumption that it is difficult to recover
the originally-encoded information from the perturbed codeword unless a party
possesses the factorization of the public key as H and Q. To recover such matrices
(or, equivalently, their product) one must find low-weight codewords in the public
code (or in its dual) which, again, is a well-known NP-complete problem [5].
State-of-the-art algorithms to solve this problem are known as Information Set
Decoding (ISD), and their expected computational complexity is indeed used as
a design criteria for LEDAcrypt parameters.

The LEDAcrypt submission package in the 2nd Round of NIST’s PQC pro-
cess provides a careful description of the algorithm’s history and specific design,
a variety of concrete parameters sets tailored to NIST’s security levels (claiming
approximately 128-bit, 192-bit, and 256-bit security, under either IND-CPA or
IND-CCA attacks), and a reference implementation in-code.

1.1 Our Results

In this work, we provide a novel, concrete cryptanalysis of LEDAcrypt. Note
that, in LEDAcrypt design procedure, the time complexity of ISD algorithms
is derived by assuming that the searched codewords are uniformly distributed
over the set of all n-uples of fixed weight. However, as we show in Sect. 3, for
LEDAcrypt schemes this assumption does not hold, since it is possible to identify
many families of secret keys, i.e., matrices H and Q, for which the rows of L =
HQ (which represent low weight codewords in the dual code) are characterized
by a strong bias in the distribution of set bits. We define such keys as weak since,
intuitively, in such a case an ISD algorithm can be strongly improved by taking

1 We refer the reader to [3], A.1 for further technical details of the construction.

Cryptanalysis of LEDAcrypt 391

into account the precise structure of the searched codeword. As a direct evidence,
in Sect. 4 we consider a moderately-sized, very weak class of keys, which can be
recovered with substantially less computational effort than expected. This is a
major, practical break of the LEDAcrypt cryptosystem, which is encapsulated
in the following theorem.

Theorem 1.1 (Section 4). There is an algorithm that costs the same as 249.22

AES-256 operations and recovers 1 in 247.72 of LEDAcrypt’s Category 5 (i.e.
claimed 256-bit-secure) ephemeral/IND-CPA keys.

Similarly, there is an algorithm that costs the same as 257.50 AES-256 oper-
ations and recovers 1 in 251.59 of LEDAcrypt’s Category 5 (i.e. claimed 256-bit-
secure) long-term/IND-CCA keys.

While most key-recovery algorithms can exchange computational time spent
vs. fraction of the key space recovered, this trade-off will generally be 1-to-
1 against a secure cryptosystem. (In particular this trade off is 1-to-1 for the
AES cryptosystem which is used to define the NIST security strength categories
for LEDAcrypt’s parameter sets.) However, we note in the above that both
49.22 + 47.72 = 96.94 � 256 and 57.49 + 51.59 = 109.08 � 256, making this
attack quite significant. Additionally, we note that this class of very weak keys
is present in every parameter set of LEDAcrypt.

While the existence of classes of imperfect keys is a serious concern, one
might ask:

Is it possible to identify such keys during KeyGen, reject them, and thereby
save the scheme’s design?

We are able to answer this in the negative.
Indeed, as we demonstrate in Sect. 3, the bias in the distribution of set bits

in L, which is at the basis of our attack, is intrinsic in the scheme’s design.
Our results clearly show that the existence of weaker-than-expected keys in
LEDAcrypt is fundamental in the system’s formulation and cannot be avoided
without a major re-design of the cryptosystem.

Finally, we apply our new attack ideas to attempting key recovery without
considering a weak key notion. Here we analyze the asymptotic complexity of
attacking all LEDAcrypt keys.

Theorem 1.2 (Section 5). The asymptotic complexity of ISD using an appro-
priate choice of structured information sets, when attacking all LEDAcrypt keys
in the worst case, is exp(Õ(p

1
4)).

This gives a significant asymptotic speed-up over running ISD with uniformly
random information sets, which costs exp(Õ(p

1
2)). We note that simply enumer-

ating all possible values of H and Q actually leads to an attack running in time
exp(Õ(p

1
4)), and indeed similar attacks were considered in LEDAcrypt’s sub-

mission documents for the NIST PQC process. However, this type of attack had
worse concrete complexity than ordinary ISD with uniformly random informa-
tion sets for all of the 2nd Round parameter sets.

392 D. Apon et al.

1.2 Technical Overview of Our New Attacks

Basic Approach: Exploiting the Product Structure. The typical approach
to recovering keys for LEDAcrypt-like schemes is to use ordinary ISD algorithms,
a class of techniques which can be used to search for low weight codewords in an
arbitrary code. Generally speaking, these algorithms symbolically consider a row
of an unknown binary matrix corresponding to the secret key of the scheme. From
this row, they randomly choose a set of bit positions uniformly at random in the
hope that these bits will (mostly) be zero. If the guess is correct and, additionally,
the chosen set is an information set (i.e., a set in which all codewords differ
at least in one position), then the key will be recovered with linear algebra
computation. If (at least) one of the two requirements on the set is not met,
then the procedure resets and guesses again.

For our attacks, intuitively, we will choose the information set in a non-
uniform manner in order to increase the probability that the support of HQ,
i.e. the non-zero coefficients of HQ, is (mostly) contained in the complement
of the information set. At a high level, we will guess two sets of polynomials
H ′

0, ...,H
′
n0−1 and Q′

0,0, ..., Q
′
n0−1,n0−1, then (interpreting the polynomials as p×

p circulant matrices) group them into quasi-cyclic matrices H ′ and Q′. These
matrices will be structured analogously to H and Q, but with non-negative
coefficients defined over Z[x]/〈xp − 1〉 rather than F2[x]/〈xp + 1〉. The hope is
that the support of H ′Q′ will (mostly) contain the support of HQ. It should be
noted that a sufficient condition for this to be the case is that the support of
H ′ contains the support of H and the support of Q′ contains the support of Q.
Assuming the Hamming weight of H ′Q′ (interpreted as a coefficient vector) is
chosen to be approximately W , then the information set can be chosen as the
complement of the support of H ′Q′ and properly passed to an ISD subroutine
in place of a uniform guess.

Observe that the probability that the supports of H ′ and Q′ contain the
supports of H and Q, respectively, is maximized by making the Hamming weight
of H ′ and Q′ as large as possible while still limiting the Hamming weight of
H ′Q′ to W . An initial intuition is that this can be done by choosing the 1-
coefficients of the polynomials H ′

0, ...,H
′
n0−1 and Q′

0,0, ..., Q
′
n0−1,n0−1 to be in

a single, consecutive chunk. For example, by choosing the Hamming weight of
the polynomials (before multiplication) as some value B � W, we can take
H ′

0 = xa + xa+1 + ... + xa+B−1 and Q′
0,0 = xc + xc+1 + ... + xc+B−1.

Note that the polynomials H ′
0 and Q′

0,0 (chosen with consecutive 1-
coefficients as above) have Hamming weight B, while their product only has
Hamming weight 2B − 1. In the most general case, uniformly chosen polynomi-
als with Hamming weight B would be expected to have a product with Hamming
weight much closer to min(B2, p). That is, for a fixed weight W required of H ′Q′

by the ISD subroutine, we can guess around W/2 positions at once in H ′ and
Q′ respectively instead of something closer to

√
W as would be given by a truly

uniform choice of information set. As a result, each individual guess of H ′ and Q′

that’s “close” to this outline of our intuition will be more rewarding for searching
the keyspace than the “typical” case of uniformly guessing information sets.

Cryptanalysis of LEDAcrypt 393

This constitutes the core intuition for our attacks against LEDAcrypt, but
additional considerations are required in order to make the attacks practically
effective (particularly when concrete parameters are considered). We enumerate
a few of these observations next.

Different Ring Representations. The idea of choosing the polynomials within H ′

and Q′ with consecutive nonzero coefficients makes each iteration of an infor-
mation set decoding algorithm using such an H ′ and Q′ much more effective
than an iteration with a random information set. However there is only a lim-
ited number of successful information sets with this form. We can vastly increase
our range of options by observing that the ring F2[x]/〈xp + 1〉 has p − 1 isomor-
phic representations which can be mapped to one another by the isomoprhism
f(x) → f(xα). This allows us many more equally efficient choices of the infor-
mation set, since rather than restricting our choices to have polynomials H ′

0 and
Q′

0,0 with consecutive ones in the standard ring representation, we have the free-
dom to choose them with consecutive ones in any ring representation (provided
the same representation is used for H ′

0 and Q′
0,0.)

Equivalent Keys. For each public key of LEDAcrypt, there exist many choices
of private keys that produce the same public key. In particular, the same public
key M = (Ln0−1)−1L produced by the private key

H = [H0,H1, · · · ,Hn0−1],

Q =

⎡
⎢⎢⎢⎣

Q0,0 Q0,1 · · · Q0,n0−1

Q1,0 Q1,1 · · · Q1,n0−1

...
...

. . .
...

Qn0−1,0 Qn0−1,1 · · · Qn0−1,n0−1

⎤
⎥⎥⎥⎦ ;

would also be produced by any private key of the form

H ′ = [xa0H0, x
a1H1, · · · , xan0−1Hn0−1],

Q′ =

⎡
⎢⎢⎢⎣

xb−a0Q0,0 xb−a0Q0,1 · · · xb−a0Q0,n0−1

xb−a1Q1,0 xb−a1Q1,1 · · · xb−a1Q1,n0−1

...
...

. . .
...

xb−an0 Qn0−1,0 xb−an0 Qn0−1,1 · · · xb−an0 Qn0−1,n0−1

⎤
⎥⎥⎥⎦ ;

for any integers 0 < ai, b < p, i ∈ {0, . . . , n0 − 1}. These pn0+1 equivalent keys
improve the success probability of key recovery attacks as detailed in the follow-
ing sections.

Different Degree Constraints for H ′ and Q′. While we have so far described H ′

and Q′ as having the same Hamming weight B, this does not necessarily need
to be the case. In fact, there are many, equivalent choices of H ′ and Q′ which

394 D. Apon et al.

produce the same product H ′Q′ based on this observation. For example, the
product of

H ′
0 = xa + xa+1 + ... + xa+B−1

Q′
0,0 = xc + xc+1 + ... + xc+B−1

is identical to the product of

H ′
0 = xa + xa+1 + ... + xa+B−1−δ

Q′
0,0 = xc + xc+1 + ... + xc+B−1+δ

for any integer −B < δ < B. More generally, this relationship (that if H ′ shrinks
and Q′ proportionally grows, or vice versa, then the product H ′Q′ is the same)
is independently true for any set of {H ′

i, Q
′
i,0, ..., Q

′
i,n0−1} for i ∈ {0, ..., n0 − 1}.

Attacks for n0 = 2 Imply Similar-Cost Attacks for n0 > 2. Our attacks are more
easily described (and more effective) in the case n0 = 2. In this case, we apply
ISD to find low-weight codewords in the row space of the public key [M0 | M1]
to recover a viable secret key for the system. Naively extending this approach
for the case n0 > 2 to the entire public key [M0 | ... | Mn0] requires constraints
on the support of n0 +n2

0 polynomials (n0 polynomials corresponding to H ′ and
n2
0 polynomials corresponding to Q′), so the overall work in the attack would

increase quadratically as n0 grows. However, even in the case that n0 > 2, we
observe that it is sufficient to find low weight codewords in the row space of only
[M0 | M1] in order to recover a working key, implying that the attack only needs
to consider 3n0 polynomials Hi, Qj,0, Qk,1. So, increasing n0 will make all of
our attacks less effective, but not substantially so. More importantly, any attack
against n0 = 2 parameters immediately implies a similar-cost attack against
parameters with n0 > 2. Therefore, we focus on the case of n0 = 2 in the
remainder of this work.
A Continuum of Progressively Less Weak Keys. The attacker can recover
keys with the highest probability per iteration of ISD by using a very structured
pattern for L′. As we will see in Sect. 4, in this pattern both L′

0 and L′
1 will have

a single contiguous stretch of nonzero coefficients in some ring representation.
The result is a practical attack, but one which is only capable of recovering weak
keys representing something like 1 in 240 or 1 in 250 private keys.

However, if the attacker is willing to use a more complicated pattern for the
information set, using different ring representations for different blocks of H ′

and Q′, and possibly having multiple separate stretches of consecutive nonzero
coefficients in each block, then the attacker will not recover keys with as high a
probability per iteration, but the attack will extend to a broader class of slightly
less weak keys. This may for example lead to a somewhat less practical attack
that recovers 1 in 230 keys, but still much faster than would be expected given
the claimed security strength of the parameter set in question.

We do not analyze the multitude of possible cases here, but we show they
must necessarily exist in Sect. 3 by demonstrating that bias is intrinsically
present throughout the LEDAcrypt key space.

Cryptanalysis of LEDAcrypt 395

Improvements to Average-Case Key Recovery. In Sect. 5 we will take the
continuum of progressively weaker keys to its logical extreme. We show that the
attacks in this paper are asymptotically stronger than the standard attacks not
just for weak keys, but for all keys.

As we move away from the simpler information set patterns used on the
weakest keys, the analysis becomes more difficult. To fully quantify the impact
of our attack on average keys would require extensive case analysis of all scenarios
that might lead to a successful key recovery given a particular distribution of
information sets used by the attacker, which we leave for future work.

1.3 Related Work

The main attack strategies against cryptosystems based on QC-LDPC codes are
known as information set decoding (ISD) algorithms. These algorithms are also
applicable to a variety of other code-based cryptosystems including the NIST
2nd round candidates BIKE [22], HQC [8], Classic McEliece [9], and NTS-KEM
[17]. Initiated by Prange [25] in 1962, these algorithms have since experienced
substantial improvements during the years [4,7,12,13,18,19,28]. ISD algorithms
can also be used to find low-weight codewords in a given, arbitrary code. ISD
main approach is that of guessing a set of positions where such codewords contain
a very low number of set symbols; when this set is actually an information set,
then linear algebra computations yield the searched codeword (see [3], Appendix
A.3). ISD time complexity is estimated as the product between the expected
number of required information set guesses and the cost of testing each set.
Advanced ISD algorithms improve Prange’s basic idea by reducing the average
number of required guesses, at the cost of increasing the time complexity of the
testing phase. Quantum ISD algorithms take into account Grover’s algorithm [10]
to quadratically accelerate the guessing phase. A quantum version of Prange’s
algorithm [6] was presented in 2010, while quantum versions of more advanced
ISD algorithms were presented in 2017 [11].

In the case of QC-MDPC and QC-LDPC codes, ISD key recovery attacks
can get a speed-up which is polynomial in the size of the circulant blocks [26].
This gain is due to the fact that there are more than one sparse vector in the
row space of the parity check matrix, and no modification to the standard ISD
algorithms is required to obtain this speed-up. Another example of gains due to
the QC structure is that of [14] which, however, works only in the case of the
circulant size having a power of 2 among its factors (which is not the case we
consider here).

ISD can generally be described as a technique for finding low Hamming-
weight codewords in a linear code. Most ISD algorithms are designed to assume
that the low-weight codewords are random aside from their sparsity. However, in
some cryptosystems that can be cryptanalyzed using ISD, these short codewords
are not random in this respect, and modified versions of ISD have been used to
break these schemes [21,24]. Our paper can be seen as a continuation of this
line of work, since unlike the other 2nd Round NIST candidates where ISD is
cryptanalytically relevant, the sparse codewords which lead to a key recovery of

396 D. Apon et al.

LEDAcrypt are not simply random sparse vectors, but have additional structure
due to the product structure of LEDAcrypt’s private key.

2 Preliminaries

2.1 Notation

Throughout this work, we denote the finite field with 2 elements by F2. We
denote the Hamming weight of a vector a (or a polynomial a, viewed in terms
of its coefficient vector) as wt(a). For a polynomial a we use the representation
a =

∑p−1
i=0 aix

i, and call ai its i-th coefficient. We denote the support – i.e. the
non-zero coordinates – of a vector (or polynomial) a by S(a). In similar way,
we define the antisupport of a, and denote it as S̄(a), as the set of positions i
such that ai = 0. Given a polynomial a and a set J , we denote as a|J the set of
coefficients of a that are indexed by J . Given π, a permutation of {0, · · · , n−1},
we represent it as the ordered set of integers {�0, · · · , �n−1}, such that π places
�i in position i. For a length-n vector a, π(a) denotes the action of π on a, i.e.,
the vector whose i-th entry is a�i

. For a probability distribution D, we write
X ∼ D if X is distributed according to D.

2.2 Parameters

The parameter sets of LEDAcrypt that we explicitly consider in this work are
shown in Table 1 (although similar forms of our results hold for all parameter
sets). We refer the reader to [3], Appendix A.1 for further technical details of
the construction.

Table 1. LEDAcrypt parameter sets that we consider in this paper.

NIST Category Security Type p dv m0 m1 n0

1 (128-bit) IND-CPA 14,939 11 4 3 2

5 (256-bit) IND-CPA 36,877 11 7 6 2

5 (256-bit) IND-CCA 152,267 13 7 6 2

3 Existence of Weak Keys in LEDAcrypt

As we have explained in Sect. 1.3, key recovery attacks against cryptosystems
based on codes with sparse parity-check matrices can be performed by searching
for low weight codewords, either in the code or in its dual. For instance, such
codewords in the dual correspond, with overwhelming probability, to the rows
of the secret parity-check matrix, of weight ω � n, where n denotes the code
length. The most efficient way to solve this problem is to use ISD algorithms. To
analyze the efficiency of such attacks, weight-ω codewords are normally modeled

Cryptanalysis of LEDAcrypt 397

as independent random variables, sampled according to the uniform distribution
of n-uples with weight ω, which we denote as Uω. At each ISD iteration, the
algorithm succeeds if the intersection between the chosen set T and the support
of (at least) one of such codewords satisfies some properties. Regardless of the
considered ISD variant, this intersection has to be small.

Let ε be the probability that a single ISD iteration can actually recover a
specific codeword of the desired weight. When the code contains M codewords
of weight ω, then the probability that a single ISD iteration can recover any
of these codewords is 1 − (1 − ε)M which, if εM � 1, can be approximated as
εM . This speed-up in ISD algorithm normally applies to the case of QC codes,
where M corresponds to the number of rows in the parity-check matrix (that is,
M = n − k).

In this section we show that the product structure in LEDAcrypt yields
to a strong bias in the distribution of set symbols in the rows of the secret
parity-check matrix L = HQ. As a consequence, the assumption on the uniform
distribution of the searched codewords does not hold anymore, and this opens
up for dramatic improvements in ISD algorithms. To provide evidence of this
claim we analyze, without loss of generality, a simplified situation. We focus on
the case n0 = 2, and consider the success probability of ISD algorithms when
applied on LEDAcrypt schemes, searching for a row of the secret L (say, the first
row), with weight ω = 2dv(m0 + m1).

In this case we expect to have the usual speed-up deriving from the presence
of multiple low-weight codewords. However, quantifying this speed-up is not
straightforward and requires cumbersome computations, since it also depends
on the particular choice of the chosen set in ISD. Thus, to keep the description
as general as possible and easy to follow, in this section we only focus on a single
row of L. Exact computations for these quantities are performed in Sects. 4 and 5.
Furthermore, we only consider the probability that a chosen set T does not over-
lap with the support of the searched codeword. With this choice, we essentially
capture the essence of all ISD algorithms. An analysis on a specific variant, with
optimized parameters and requirements on the chosen set, might significantly
improve the results of this section which, however, are already significant for the
security of LEDAcrypt schemes.

Let T ⊆ {0, · · · , n − 1} be a set of dimension k: for a ∼ Uω, we have

Pr [T ∩ S(a) = ∅| a ∼ Uω] =

(
n−ω

k

)
(
n
k

) .

Note that this probability does not depend on the particular choice of T , but just
on its size. When a purely random QC-MDPC code is used, as in BIKE [22], the
first row of the secret parity-check matrix is well modeled as a random sample
from Uω. The previous probability can also be described as the ratio between
the number of n-uples of weight ω whose support is disjoint with T , and that of
all possible samples from Uω; in schemes such as BIKE, this also corresponds to
the probability that a secret key satisfies the requirement on an arbitrary set T .

398 D. Apon et al.

As we show in the remainder of this section, in LEDAcrypt such a fraction
can actually be made significantly larger, when T is properly chosen. To each
choice, we can then associate a family of weak keys, that is, secret keys for which
the corresponding first row of L does not overlap with T . We formally define the
notion of weak keys in the following.

Definition 3.1. Let K be the public key space of LEDAcrypt with parameters
n0, p, dv,m0,m1. Let T ⊆ {0, · · · , n0p − 1} of cardinality n − k = p and W ⊆ K
be the set of all public keys corresponding to secret keys sk = (H,Q) such that
the first row in the corresponding L = HQ has support that is disjoint with T .
Finally, we define ω = n0(m0 + m1)dv and Uω as the uniform distribution of
(n0p)-tuples with weight ω. Then, we say that W is a set of weak-keys if

Pr [pk ∈ W|(sk, pk) ← KeyGen()] � Pr [T ∩ S(a) = ∅|a ∼ Uω] =

(
n0p−ω

p

)
(
n0p
p

) .

Roughly speaking, we have a family of weak keys when, for a specific set
choice, the number of keys meeting the requirement on the support is signifi-
cantly larger than the one that we would have for the uniform case. Indeed, for
all such keys, we will have a strongly bias in the matrix L, since null positions
can be guessed with high probability; as we describe in Sects. 4 and 5, this fact
opens up for strong attacks against very large portions of keys.

3.1 Preliminary Considerations on Sparse Polynomials
Multiplications

We now recall some basic fact about polynomial multiplication in the rings
F2[x]/〈xp + 1〉 and Z[x]/〈xp − 1〉, which will be useful for our treatment. Let
a, b ∈ F2[x]/〈xp + 1〉 and c = ab; we then have

ci =
p−1⊕
z=0

azbz′ , z′ = i − z mod p,

where the operator
⊕

highlights the fact that the sum is performed over F2.
Taking into account antisupports, we can rewrite the previous equation as

ci =
p−1⊕

z �∈S̄(a)

z′=i−z mod p, z′ �∈S̄(b)

azbz′ . (1)

Let N(a, b, i) denote the set of terms that contribute to the sum in Eq. (1), i.e.

N(a, b, i) =
{
z s.t. z ∈ S̄(a) and i − z mod p ∈ S̄(b)

}
.

We now denote with ã and b̃ the polynomials obtained by lifting a and b over
Z[x]/〈xp −1〉 i.e., by mapping the coefficients of a and b into {0, 1} ⊂ Z. Let c̃ =

Cryptanalysis of LEDAcrypt 399

ãb̃: we straightforwardly have that c ≡ c̃ mod 2, |N(a, b, i)| = c̃i and
∑p−1

i=0 c̃i =
wt(a) ·wt(b). Let a′ ∈ Z[x]/〈xp +1〉 with coefficients in {0, 1}, such that S(a′) ⊇
S(a), i.e., such that its support contains that of a (or, in another words, such
that its antisupport is contained in that of a); an analogous definition holds for
b′. Indeed, we can write a′ = ã + sa, where sa ∈ Z[x]/〈xp + 1〉 and whose i-th
coefficient is equal to 0 if a′

i = ai, and equal to 1 otherwise; with analogous
notation, we can write b′ = b̃ + sb. Then

c′ = a′b′ = (ã + sa)(b̃ + sb) = ãb̃ + sab̃ + sbã + sasb = c̃ + sab̃ + sbã + sasb.

Since sab̃, sbã and sasb have all non-negative coefficients, we have

c′
i ≥ c̃i = |N(a, b, i)| ≥ 0,∀i ∈ {0, · · · , p − 1}. (2)

We now derive some properties that link the coefficients of c′ to those of c;
as we show, knowing portions of the antisupports of a and b is enough to gather
information about the coefficients in their product.

Lemma 3.2. Let a, b ∈ F2[x]/〈xp + 1〉, and Ja, Jb ⊆ {0, · · · , p − 1} such that
Ja ⊇ S(a) and Jb ⊇ S(b). Let a′, b′ ∈ Z[x]/〈xp − 1〉 be the polynomials whose
coefficients are null, except for those indexed by Ja and Jb, respectively, which
are set as 1. Let c = ab ∈ F2[x]/〈xp + 1〉 and c′ = a′b′ ∈ Z[x]/〈xp − 1〉; then

c′
i = 0 =⇒ ci = 0.

Proof. The result immediately follows from (2) by considering that if c′
i = 0 then

necessarily |N(a, b, i)| = 0 and, subsequently, ci = 0. ��
When the weight of c = ab is maximum, i.e., equal to wt(a) · wt(b), the

probability to have null coefficients in ci can be related to the coefficients in
c′
i; in analogous way, we can also derive the probability that several bits are

simultaneously null. These relations are formalized in the following Lemma.

Lemma 3.3. Let a, b ∈ F2[x]/〈xp + 1〉, with respective weights ωa and ωb, such
that ω = ωaωb ≤ p, and c = ab has weight ω. Let Ja, Jb ⊆ {0, · · · , p − 1} such
that Ja ⊇ S(a) and Jb ⊇ S(b). Let a′, b′ ∈ Z[x]/〈xp −1〉 be the polynomials whose
coefficients are null, except for those indexed by Ja and Jb, respectively, which
are set as 1; finally, let M = |Ja| · |Jb|.
i) Let c′

i be the i-th coefficient of c′ = a′b′; then

Pr [ci = 0|c′
i] = γ(M,ω, c′

i) =
(

1 + ω · c′
i

M + 1 − ω − c′
i

)−1

.

ii) For V = {v0, · · · , vt−1} ⊆ {0, · · · , p − 1}, we have

Pr [wt(c|V) = 0 | c′] = ζ(V, c′, ω) =
t−1∏
�=0

γ
(
M − ∑�−1

j=0 c′
vj

, ω, c′
v�

)
.

Proof. The results follow from a combinatorial argument. See [3], Appendix B.3
for details. ��

400 D. Apon et al.

3.2 Identifying Families of Weak Keys

We are now ready to use the results presented in the previous section to describe
how, in LEDAcrypt, families of weak keys as in Definition 3.1 can be identified.
We base our strategy on the results of Lemmas 3.2 and 3.3. Briefly, we guess “con-
tainers” for each polynomial in the secret key, i.e., polynomials over Z[x]/〈xp−1〉
whose support contains that of the corresponding polynomials in F2[x]/〈xp +1〉.
We then combine such containers, to find positions that, with high probability,
do not point at set coefficient in the polynomials in L = HQ. Assuming that the
initial choice for the containers is right, we can then use the results of Lemmas 3.2
and 3.3 to determine such positions. For the sake of simplicity, and without loss
of generality, we describe our ideas for the practical case of n0 = 2.
Operatively, to build a set T defining an eventual set of weak keys, we rely on
the following procedure.

1. Consider sets JHi
such that JHi

⊇ S(Hi), for i = 0, 1; the cardinality of JHi
is

denoted as BHi
. In analogous way, define sets JQi,j

, for i = 0, 1 and j = 0, 1,
with cardinalities BQi,j

.
2. To each set JHi

, associate a polynomial H ′
i ∈ Z[x]/〈xp − 1〉, taking values

in {0, 1} and whose support corresponds to JHi
; in analogous way, construct

polynomials JQi,j
from the sets JQi,j

. Compute

L′
i,j = H ′

jQ
′
j,i ∈ Z[x]/〈xp − 1〉, (i, j) ∈ {0, 1}2.

3. Compute

L′
i = L′

i,0 + L′
i,1 = H ′

0Q
′
0,i + H ′

1Q
′
1,i ∈ Z[x]/〈xp − 1〉.

Let πi, with i = 0, 1, be a permutation such that the coefficients of πi

(
L′

i

)
are in non decreasing order. Group the first

⌊
p
2

⌋
entries of π0 in a set T0, and

the first
⌈

p
2

⌉
ones of π1 in a set T1. Define T as T = T0 ∪ {p + �| � ∈ T1}.

A visual representation of the above constructive method to search for weak keys
is described in [3], Appendix C.

Essentially, our proposed procedure to find families of weak keys starts from
the sets JHi

and JQi,j
, which we think of as “containers” for the secret key,

i.e., sets containing the support of the corresponding polynomial in the secret
key. Their products yield polynomials L′

i,j , which are containers for the products
HiQj,i. Because of the maximum weight requirement in LEDAcrypt key gener-
ation, each L′

i,j matches the hypothesis required by the Lemma 3.3: the lowest
entries in L′

i,j correspond to the coefficients that, with the highest probability,
are null in H ′

iQ
′
j,i. We remark that, because of Lemma 3.2, a null coefficient in

L′
i,j means that the corresponding coefficients in HjQj,i must be null. Finally,

we need to combine the coefficients of the polynomials L′
i,j , to identify positions

that are very likely to be null in each Li. The approach we consider consists in
choosing the positions that correspond to coefficients with minimum values in
the sums L′

i,0 +L′
i,1. This simple criterion is likely to be not optimal, but allows

Cryptanalysis of LEDAcrypt 401

to avoid cumbersome notation and computations; furthermore, as we show next,
it already detects significantly large families of weak keys.

The number of secret keys that meet the requirements on T , i.e., keys leading
to polynomials L0 and L1 that do not overlap with the chosen sets T0 and T1,
respectively, clearly depends on the particular choice for the containers. In the
remainder of this section, we describe how such a quantity can be estimated.
For the sake of simplicity, we analyze the case in which the starting sets for the
containers have constant size, i.e., BHi

= BH and BQi,j
= BQ, for all i and j;

furthermore, we choose JH0 = JH1 , JQ0,0 = JQ1,1 and JQ1,0 = JQ0,1 .
First of all, let J be the set of secret keys whose polynomials are contained

in the sets JHi
and JQi,j

; the cardinality of this set can be estimated as

|J | = η

((
BH

dv

)(
BQ

m0

)(
BQ

m1

))2

,

where η is the acceptance ratio in key generation, i.e., the probability that a
random choice of matrices H and Q leads to a matrix L with full weight.

We now estimate the number of keys in J that produce polynomials L0

and L1 corresponding to a correct choice for T0 and T1, i.e., such that their
supports are disjoint with T0 and T1, respectively. For each product HiQi,j , we
know i) that it has full weight, not larger than p, and ii) that sets JHi

, JQi,j

are containers for Hi and Qi,j , respectively. Then, Lemma 3.3 can be used to
estimate the portion of valid keys. For instance, we consider the polynomial
L0 = H0Q0,0 +H1Q1,0: the coefficients that are indexed by T0 will be null when
both the supports of H0Q0,0 and H1Q1,0 are disjoint with T0. If we neglect the
fact that these two products are actually correlated (because of the full weight
requirement on L0), then the probability that L0 does not overlap with T0, which
we denote as Pr [null(T0)], is obtained as

Pr [null(T0)] = ζ
(
T0, L

′
0,0,m0dv

) · ζ
(
T0, L

′
0,1,m1dv

)
,

where ζ is defined in Lemma 3.3. The above quantity can then be used to estimate
the fraction of keys in J for which the support of L0 does not overlap with T0; we
remark that, as highlighted by the above formula, this quantity strongly depends
on the choices on JH0 , JH1 , JQ0,0 , JQ1,0 .

With the same reasoning, and with analogous notation, we compute
Pr [null(T1)]; because of the simplifying restrictions on JQi,j

, this probability is
equal to Pr [null(T0)].

Then, if we neglect the correlation between L0 and L1 (since H0 and H1 are
involved in the computation of both polynomials), the probability that a random
key from J is associated to a valid L, i.e., that it leads to polynomials L0 and
L1 that respectively do not overlap with T0 and T1, can be estimated as

Pr [null(T)] = Pr [null(T0)] · Pr [null(T1)]

=
(
Pr [null(T0)]

)2

=
(

ζ
(
T0, L

′
0,0,m0dv

) · ζ
(
T0, L

′
0,1,m1dv

))2

.

402 D. Apon et al.

Thus we conclude that the number of keys whose polynomials are contained by
the chosen sets, and such that the corresponding L does not overlap with T , can
be estimated as |J | · Pr[null(T)].

Then, for the set of secret keys where T does not intercept the first row of
L, which we denote with W, we have

|W| ≥ |J | · Pr[null(T)]. (3)

The inequality comes from the fact the right term in the above formula only
counts keys with polynomials contained by the initially chosen sets; even if such
property is not satisfied, it may still happen that the resulting L does not overlap
with T (thus, we are underestimating the cardinality of W).

3.3 Results

In this section we provide practical examples on choices for containing sets,
leading to actual families of weak keys. To this end, we need to define clear
criteria on how the sets JHi

and JQi,j
can be selected. For the sake of simplicity,

we restrict our attention to the cases JH0 = JH1 = JH and JQ0,0 = JQ0,1 =
JQ1,0 = JQ1,1 = JQ. We here consider two different strategies to pick these sets.

– Type I : for i = 0, 1, δ ∈ {0, · · · , p − 1} and t ∈ {1, · · · , p − 1}, we choose

JH = {�t mod p |0 ≤ � ≤ BH − 1} ,

JQ = {δ + �t mod p |0 ≤ � ≤ BQ − 1} .

– Type II : for i = 0, 1, we choose JH0 = JH1 as the union of disjoint sets,
formed by contiguous positions. Analogous choice is adopted for JQ.

To provide numerical evidences for our analysis, in Fig. 1 we compare the simu-
lated values of Pr[null(T)] with the ones obtained with theoretical expression,
for parameters of practical interest and for some Types I and II choices. The sim-
ulated probabilities have been obtained by generating random secret keys from
J and, as our results show, are well approximated by the theoretical expression.
This shows that Eq. 3 provides a good estimate for the fraction of keys in J that
meet the requirement on the corresponding set T .

Tables 2, 3 display results testing various weak key families of Type I and II,
for two different LEDAcrypt parameters sets. According to the reasoning in the
previous section, the values reported in the last column can be considered as a
rough (and likely conservative) estimate for the probability that a random key
belongs to the corresponding set W. Our results show that the identified families
of keys meet Definition 3.1, so can actually be considered weak.

Remark 1. The results we have shown in this section only represent a qualitative
evidence of the existence of families of weak keys in LEDAcrypt. There may exist
many more families of weak keys, having a complete different structure from the
ones we have studied. Additionally, the parameters we have considered for types

Cryptanalysis of LEDAcrypt 403

Fig. 1. Comparison between simulated and theoretical values for Pr[null], for
p = 14939, dv = 11, m0 = 4, m1 = 3. The values reported in Figure (a) are
all referred to the case δ = 0. In Figure (b), the blue curves correspond to the
choice JH = JQ = {0, · · · , 1999} ∪ {μ, · · · , μ + 1999}, while the red curves correspond
to JH = {0, · · · , 2499} ∪ {μ, · · · , μ + 2499} and JQ = {0, · · · , 3999}.

Table 2. Fraction of weak keys, for LEDAcrypt instances designed for 128-bit security,
with parameters n0 = 2, p = 14939, dv = 11, m0 = 4, m1 = 3, for which η ≈ 0.7090.
For this parameter set, probability of randomly guessing a null set of dimension p, in
a vector of length 2p and weight 2(m0 + m1)dv, is 2−154.57.

Type Family Parameters |J |·Pr[null(T)]
|K|

I
BH = BQ = 7470

δ = 0, t = 1
2−99.88

I
BH = 8000, BQ = 4000

δ = 2000, t = 1
2−85.25

I
BH = 8500, BQ = 4000

δ = 0, t = 127
2−90.23

II
JH = {0, · · · , 4499} ∪ {7000, · · · , 11499}
JQ = {0, · · · , 2499} ∪ {8000, · · · , 10499} 2−101.53

I and II may not be the optimal ones, but already identify families of weak keys.
In the next sections we provide a detailed analysis for families of keys of type
I and II, and furthermore specify the actual complexity of a full cryptanalysis
exploiting such a key structure.

404 D. Apon et al.

Table 3. Fraction of weak keys, for LEDAcrypt instances designed for 256-bit security,
with parameters n0 = 2, p = 36877, dv = 11, m0 = 7, m1 = 6, for which η ≈ 0.614.
For this parameter set, probability of randomly guessing a null set of dimension p, in
a vector of length 2p and weight 2(m0 + m1)dv, is 2−286.80.

Type Family Parameters
|J |·Pr[null(T)]

|K|

I
BH = 18000, BQ = 9000

δ = 9000, t = 1
2−125.18

I
BH = 24000, BQ = 12000

δ = 0, t = 1
2−184.21

I
BH = 18000, BQ = 9000

δ = 0, t = 5
2−125.18

II
JH = {0, · · · , 20999}

JQ = {0, · · · , 3999} ∪ {10000, · · · , 13999} ∪ {20000, · · · , 23999} 2−270.30

4 Explicit Attack on the Weakest Class of Keys

In the previous section we described how the product structure in LEDAcrypt
leads to an highly biased distribution in set positions in L. As we have hinted,
this property may be exploited to improve cryptanalysis techniques based on
ISD algorithms. In this section, we present an attack against a class of weak
keys in LEDAcrypt’s design. We begin by identifying what appear to be the
weakest class of keys (though large enough in number to constitute a serious,
practical problem for LEDAcrypt). It is easily seen that the class of keys we
consider in this section corresponds to a particular case of type I, introduced
in Sect. 3.3. We proceed to provide a simple, single-iteration ISD algorithm to
recover these keys, then analyze the fraction of all of LEDAcrypt’s keys that
would be recovered by this attack. Afterward, we show how to extend the ISD
algorithm to more than one iteration, so as to enlarge the set of keys recovered
by a similar enough of effort per key. We conclude by considering the effect of
advanced ISD algorithms on the attack as well as the relationship between the
rejection sampling step in LEDAcrypt’s KeyGen and our restriction to attacking
a subspace of the total key space.

4.1 Attacking an Example (sub)class of Ultra-Weak Keys

The simplest and, where it works, most powerful version of the attack dramati-
cally speeds up ISD for a class of ultra-weak keys chosen under parameter sets
where n0 = 2. One example (sub)class of ultra-weak keys are those keys where
the polynomials L0 and L1 are of degree at most p

2 . Such keys can be found by
a single iteration of a very simple ISD algorithm. We describe this simple attack
as follows.

The attacker chooses the information set to consist of the last p−1
2 columns

of the first block of M and the last p+1
2 columns of the second block. If the key

being attacked is one of these weak keys, the attacker can correctly guess the top

Cryptanalysis of LEDAcrypt 405

row of L as being identically zero within the information set and linearly solve
for the nonzero linear combination of the rows of M meeting this condition. The
cost of the attack is one iteration of an ISD algorithm.

A sufficient condition for this class of weak key to occur is for the polynomials
H0, H1, Q0,0, Q0,1, Q1,0, and Q1,1 to have degree no more than p

4 . Since each of
the 2m0+2m1+2dv nonzero coefficients of these polynomials has a 1

4 probability
of being chosen with degree less than p

4 , these weak keys represent at least 1 part
in 42m0+2m1+2dv of the key space.

4.2 Enumerating Ultra-Weak Keys for a Single Information Set

In fact, there are significantly more weak keys than this that can be recovered
by the basic, one-iteration ISD algorithm using the information set described
above. Intuitively, this is for two reasons:

1. Equivalent keys: There are p2 private keys, not of this same, basic form,
which nonetheless produce the same public key.

2. Different degree constraints: The support of the top row of L will also
fall entirely outside the information set if the degree of H0 is less than p

4 − δ
and the degrees of Q0,0 and Q0,1 are both less than p

4 + δ for any δ ∈ Z such
that −p

4 < δ < p
4 . Likewise for H1 and Q1,0 and Q1,1, for a total of p keys.

Concretely, we derive the number of distinct private keys that are recovered
by the one-iteration ISD algorithm in the following theorem.

Remark 2. There are p columns of each block of M . For the sake of simplicity,
instead of referring to pairs of p−1

2 and p+1
2 columns, we instead use p

2 for both
cases. This has a negligible effect on our results.

Theorem 4.1. The number of distinct private keys that can be found in a single
iteration of the decoding algorithm described above (where the information set is
chosen to consist of the last p

2 columns of each block of M) is

p3 ·
p
2∑

A0=dv−1

p
2∑

A1=dv−1

((
A0 − 1
dv − 2

)(
A1 − 1
dv − 2

)

·
((p

2 − A0 − 2
m0 − 1

)(p
2 − A0 − 1

m1

)(p
2 − A1 − 1

m1

)(p
2 − A1 − 1

m0

)

+
(p

2 − A0 − 1
m0

)(p
2 − A0 − 2

m1 − 1

)(p
2 − A1 − 1

m1

)(p
2 − A1 − 1

m0

)

+
(p

2 − A0 − 1
m0

)(p
2 − A0 − 1

m1

)(p
2 − A1 − 2

m1 − 1

)(p
2 − A1 − 1

m0

)

+
(p

2 − A0 − 1
m0

)(p
2 − A0 − 1

m1

)(p
2 − A1 − 1

m1

)(p
2 − A1 − 2

m0 − 1

)))

·
(

1 − O

(
m

p

))
.

(4)

406 D. Apon et al.

Proof. We count the number of ultra-weak keys as follows. By assumption, all
nonzero bits in each block of an ultra-weak key are contained in some consecutive
stretch of size ≤ p

2 . Thus these ultra-weak keys contain a stretch of at least p
2

zero bits. This property applies directly to the polynomials H0Q0,0 + H1Q1,0

and H0Q0,1 + H1Q1,1, and must also hold for H0 and H1. We index the number
of ultra-weak keys according to the first nonzero coefficient of these polynomials
after the stretch of zero bits in cyclic ordering.

We begin by considering H,Q though not requiring HQ to have full weight.
We are using an information set consisting of the same columns for both H0Q0,0+
H1Q1,0 and H0Q0,1 + H1Q1,1. Therefore we count according the first nonzero
bit of the sum H0Q0,0 + H1Q1,0 + H0Q0,1 + H1Q1,1. Let l be the location of the
first nonzero bit of this sum.

Let j0, j1 be the locations of the first nonzero bit of H0,H1, respectively.
Suppose that the nonzero bits of H0,H1 are located within a block of length
A0, A1, respectively.

By LEDAcrypt’s design, dv ≤ Ai, i ∈ {0, 1} and by assumption on the chosen
information set, Ai ≤ p

2 , i ∈ {0, 1}. Once j0 is fixed, there are
∑ p

2
A0=dv−1

(
A0−1
dv−2

)
ways to arrange the remaining bits of H0. Thus there are

p−1∑
j0=1

p
2∑

A0=dv−1

(
A0 − 1
dv − 2

) p−1∑
j1=1

p
2∑

A1=dv−1

(
A1 − 1
dv − 2

)
(5)

many bit arrangements of H0,H1.
Once j0, j1 are fixed, there are four blocks of Q which may influence the

location l. We compute the probability that only one block of Q may influence
l at a time.

If l is influenced by Q0,0, there are
(p

2 −A0−2
m0−1

)
ways the remaining bits of Q0,0

can fall,
(p

2 −A0−1
m1

)
arrangements of the bits of Q0,1,

(p
2 −A1−1

m1

)
arrangements of

the bits of Q1,0, and
(p

2 −A1−1
m0

)
arrangements of the bits of Q1,1. If l is influenced

by Q0,1, there are
(p

2 −A0−2
m0

)
arrangements of the bits of Q0,0,

(p
2 −A0−1
m1−1

)
ways

the remaining bits of Q0,1 can fall,
(p

2 −A1−1
m1

)
arrangements of the bits of Q1,0,

and
(p

2 −A1−1
m0

)
arrangements of the bits of Q1,1. Similar estimates hold for Q1,0,

or Q1,1.
We sum over the l locations considering each of the blocks of Q and their

respective weights. Then the overall sum is

Cryptanalysis of LEDAcrypt 407

p−1∑
j0=0

p
2∑

A0=dv−1

(
A0 − 1
dv − 2

) p−1∑
j1=0

p
2∑

A1=dv−1

(
A1 − 1
dv − 2

)

·
p−1∑
l=0

((p
2 − A0 − 2

m0 − 1

)(p
2 − A0 − 1

m1

)(p
2 − A1 − 1

m1

)(p
2 − A1 − 1

m0

)

+
(p

2 − A0 − 1
m0

)(p
2 − A0 − 2

m1 − 1

)(p
2 − A1 − 1

m1

)(p
2 − A1 − 1

m0

)

+
(p

2 − A0 − 1
m0

)(p
2 − A0 − 1

m1

)(p
2 − A1 − 2

m1 − 1

)(p
2 − A1 − 1

m0

)

+
(p

2 − A0 − 1
m0

)(p
2 − A0 − 1

m1

)(p
2 − A1 − 1

m1

)(p
2 − A1 − 2

m0 − 1

)))

·
(

1 − O

(
m

p

))
.

(6)

Failure to impose full weight requirements on HQ introduces double-
counting. This occurs when more than one block of Q influences l, though the
probability of this event will not exceed O(m

p). The constant sums yield the
factor of p3. ��

We can now estimate the percentage of these recovered, ultra-weak keys out
of all possible keys.

Theorem 4.2. Let m = m0 + m1, x = A0
p , y = A1

p . Out of
(

p
dv

)2(p
m0

)2(p
m1

)2
possible keys, we estimate the percentage of ultra-weak keys found in a single
iteration of the decoding algorithm above as

dv
2(dv − 1)2m

∫ 1
2

x=0

∫ 1
2

y=0
(xy)dv−2

((
1

2
− x

) (
1

2
− y

))m
(

1
1
2
− x

+
1

1
2
− y

)
dydx.

Proof. Note that the lines 2–5 of (4) are approximately
(p

2 − A0

m0

)(p
2 − A0

m1

)(p
2 − A1

m1

)(p
2 − A1

m0

)(
m0 + m1

p
2 − A1

+
m0 + m1

p
2 − A0

)
. (7)

For b, c ∈ {0, 1},
(p

2 − Ab

mc

)
≈

(
p

mc

) (
1
2

− Ab

p

)mc

(8)

and
(

Ab − 1
dv − 2

)
≈

(
p

dv − 2

)(
Ab

p

)dv−2

(9)

408 D. Apon et al.

since p is much larger than m0,m1, dv. We rewrite (4) using the approximations
of expressions (7, 8) as

p3

p
2∑

A0=dv−1

(
A0 − 1
dv − 2

) p
2∑

A1=dv−1

(
A1 − 1
dv − 2

)(
p

m0

)2 (
1
2

− A0

p

)m0+m1

(10)

(
p

m1

)2 (
1
2

− A1

p

)m0+m1
(

m0 + m1
p
2 − A1

+
m0 + m1

p
2 − A0

)
. (11)

Applying approximation (9) further reduces expression (10) to

p3
(

p

m0

)2(
p

m1

)2(
p

dv − 2

)2
p
2∑

A0=dv−1

(
A0

p

)dv−2
p
2∑

A1=dv−1

(
A1

p

)dv−2

(
1
2

− A0

p

)m0+m1
(

1
2

− A1

p

)m0+m1
(

m0 + m1
p
2 − A1

+
m0 + m1

p
2 − A0

)

= p2
(

p

dv − 2

)2(
p

m0

)2(
p

m1

)2

m

p
2∑

A0=dv−1

p
2∑

A1=dv−1

(
A0

p

A1

p

)dv−2 (
1
2

− A0

p

)m

(
1
2

− A1

p

)m
(

1
1
2 − A0

p

+
1

1
2 − A1

p

)
.

Letting x = A0
p , y = A1

p , this is approximated by

p2
(

p

dv

)2(
p

m0

)2(
p

m1

)2

m
dv

2(dv − 1)2

(p − dv + 2)2(p − dv + 1)2

· p2
∫ 1

2

x=0

∫ 1
2

y=0

(xy)dv−2

(
1
2

− x

)m (
1
2

− y

)m (
1

1
2 − x

+
1

1
2 − y

)
dydx.

Dividing by
(

p
dv

)2(p
m0

)2(p
m1

)2, the result follows. ��
Evaluating this percentage with the claimed-256-bit ephemeral (CPA-secure)

key parameters of LEDAcrypt—dv = 11,m = 13—we determine that 1 in 272.8

ephemeral keys are broken by one iteration of ISD. Similarly for the long-term
(CCA-secure) key setting, we evaluate with the claimed 256-bit parameters—
dv = 13,m = 13—and conclude the number of long-term keys broken is 1 in
280.6.

This result merely determines the number of keys that can be recovered given
that the information set of both blocks of M is chosen to be the last p

2 columns.2

In the following, we turn to demonstrating a class of additional information sets
that are as effective as this one.
2 For the reader, we point out that if, hypothetically, we had a sufficiently large number

of totally independent information sets that were equally “rewarding” in recovering
keys, this would straightforwardly imply ≈ 272.8-time and ≈ 280.6-time “full” attacks
against LEDAcrypt’s claimed-256-bit parameters rather than weak-key attacks.

Cryptanalysis of LEDAcrypt 409

Remark 3. We remind the reader that instead of referring to the pairs of p−1
2 , p+1

2
columns of blocks of M , we use p

2 in both cases. This has a negligible effect on
our results.

4.3 Enumerating Ultra-Weak Keys for All Information Sets

Now we will demonstrate a multi-iteration ISD attack that is effective against
the class of all ultra-weak keys. To set up the discussion, we begin by highlighting
two, further “degrees of freedom,” which will allow us to find additional, relevant
information sets to guess:

1. Changing the ring representation: Contiguity of indices depends on
the choice of ring representation. The large family of ring isomorphisms on
Z[x]/〈xp − 1〉 given by f(x) → f(xt) for t ∈ [0, p] preserves Hamming weight.
For example, we can use the family of polynomials

H ′
i = Q′

i,j = 1 + xt + x2t + ... + x� p
4 �t

in this attack, since there exists one t such that H ′
i has consecutive nonzero

coefficients. Choices of t ∈ {1, . . . , p−1
2 } yield independent information sets

(noting that choices of t and −t mod p yield equivalent information sets).

2. Changing the relative offset of the two consecutive blocks: We can
also change the beginning index of the consecutive blocks produced within
L′
0 or L′

1 (by modifying the beginning indices of H ′
i and Q′

i,j to suit). Note
that shifting both L′

0 and L′
1 by the same offset will recover equivalent keys.

However, if we fix the beginning index of L′
0 and allow the beginning index of

L′
1 to vary, we can find more, mostly independent information sets in order

to recover more, distinct keys. The exact calculation of how far one should
shift L′

1’s indices for a practically effective attack is somewhat complex; we
perform this analysis below in the remainder of this subsection.

Recall that in the prior 1-iteration attack, we considered one example class
of ultra-weak keys – namely, those keys where the polynomials L0 and L1 are of
degree at most p

2 . Here, we will now take a broader view on the weakest-possible
keys.

Definition 4.3. We define the class of ultra-weak keys to be those where,
in some ring representation, both H0Q0,0 + H1Q1,0 and H0Q0,1 + H1Q1,1 have
nonzero coefficients that lie within a block of p−1

2 -many consecutive (modulo p)
degrees.

Our goal will be now to find a multi-iteration ISD algorithm—by estimat-
ing how far to shift the offset of L′

1 per iteration—that recovers as much of
the class of ultra-weak keys as possible without “overly wasting” the attacker’s
computational budget. Toward this end, recall that we have a good estimate in
Theorem 4.2 of the fraction of keys (2−72.8, resp. 2−80.6) recovered by the best-
case, single iteration of our ISD algorithm. In what follows, we will first calculate
the fraction of ultra-weak keys as a part of the total key space.

410 D. Apon et al.

Let 2−X be the fraction of all keys recovered by the best-case, single itera-
tion of our previous ISD algorithm. Let 2−Y be the fraction of ultra-weak keys
among all keys. On the assumption that every ring representation leads to inde-
pendent information sets (chosen uniformly for each invocation of ISD) and on
the assumption that independence of ISD key-recovery is maximized by shifting
“as far as possible,” we will compute an estimate of the number of index-shifts
that should be performed by the optimal ultra-weak-key attacker as 2Z = 2X−Y .
Beyond 2Z shifts per guess (but not until), the attacker should begin to experi-
ence diminishing returns in how many keys are recovered per shifted guess.

Therefore, given an index beginning at 1 out of p positions, the attacker will
shift by p(p−1

2)

2Z indices at each invocation (where the factor p−1
2 accounts for the

effect of the different possible ring representations). By assumption, each such
guess will be sufficiently independent to recover as many keys in expectation
as the initial, best-guess case described by the 1-iteration algorithm. We note
that additional, ultra-weak keys will certainly be obtained by performing more
work—specifically by shifting less than p(p−1

2)

2Z per guess—but necessarily at a
reduced rate of reward per guess.

Toward this end, we now calculate the number of ultra-weak keys then the
fraction of ultra-weak keys among all keys following the format of the previous
calculation.

Theorem 4.4. The total number of ultra-weak keys is

p − 1
2

p2

p
2∑

A0=dv−1

p
2∑

A1=dv−1

(
A0 − 1
dv − 2

)(
A1 − 1
dv − 2

)
(12)

·
p−1∑
l0=0

((p
2 − A0 − 1

m0 − 1

)(p
2 − A1 − 1

m1

)
+

(p
2 − A0 − 1

m0

)(p
2 − A1 − 1

m1 − 1

))
(13)

·
p−1∑
l1=0

((p
2 − A0 − 1

m0

)(p
2 − A1 − 1

m1 − 1

)
+

(p
2 − A0 − 1

m0 − 1

)(p
2 − A1 − 1

m0

))
. (14)

Proof. The proof technique follows as in Theorem4.1. Details are found in [3],
B.1. ��
Theorem 4.5. Let m = m0 + m1, x = A0

p , y = A1
p . The fraction of ultra-weak

keys out of all possible keys is

p − 1
2

dv
2(dv − 1)2

∫ 1
2

x=0

∫ 1
2

y=0

xdv−2ydv−2

(
1
2

− x

)m (
1
2

− y

)m

(
m0

2 + m1
2

(12 − x)(12 − y)
+

m0m1

(12 − x)2
+

m0m1

(12 − y)2

)
dydx.

Proof. Similar techniques apply. See [3], B.2 for details. ��

Cryptanalysis of LEDAcrypt 411

We evaluate the fraction of weak keys using the claimed CPA-secure parame-
ters p = 36877,m = 13, dv = 11 and determine that 1 in 254.1 ephemeral keys are
broken. Evaluating with one of the CCA-secure parameter sets p = 152267,m =
13, dv = 13, approximately 1 in 259.7 long-term keys are broken.

Given the above, we can make an estimate as to the optimal shift-distance per
ISD invocation as 36,877(36,876

2)

272.8−54.1 ≈ 1597 ≈ 210.6 for the ephemeral key parameters

and 152,267(152,266
2)

280.6−59.7 ≈ 5925 ≈ 212.5 for the long-term key parameters.
The multi-iteration ISD algorithm against the class of ultra-weak keys, then,

makes its first guess (except, one in each ring representation) as in the case
of the 1-iteration ISD algorithm. It then shifts the relative offset of the two
consecutive blocks by the values calculated above and repeats (again, in each
ring representation).

This will not recover all ultra-weak keys, but it will recover a significant
fraction of them. In particular, if the support of each block of L, rather than
fitting in p

2 consecutive bits fits in blocks that are smaller by at least 1
4 of the

shift distance. We can therefore lower bound the fraction of recovered keys by
replacing factors of 1

2 with factors of p
2 minus half or a quarter of the offset, all

divided by p, to find the sizes of sets of private keys of which we are guaranteed
to recover all, or at least half of respectively.

The multi-iteration ISD algorithm attacking the ephemeral key parameters
will make 272.8−54.1 ≈ 218.7 independent guesses and recover at least 1 in 256.0

of the total keys. The multi-iteration ISD algorithm attacking the long-term key
parameters will make 280.6−59.7 ≈ 220.9 independent guesses and recover at least
1 in 261.6 of the total keys.

4.4 Estimating the Effect of More Advanced Information-Set
Decoding

Our attempts to enumerate all weak keys were based on the assumption that
the adversary was using an ISD variant that required a row of L to be uniformly
0 on all columns of the information set. The state of the art in information set
decoding still allows the adversary to decode provided that a row of L has weight
no more than about 6 on the information set. For example, Stern’s algorithm
[28] with parameter 3 would attempt to find a low weight row of L as follows.

The information set is divided into two disjoint sets of p
2 columns. The first

row of L to be recovered should have weight at most 3 within each of the two
sets. Further, the same row of L should have have Ω(log(p)) many consecutive
0’s in column-indices that are disjoint from those of the information set. If both
of these conditions occur, then a matrix inversion is performed (even though 6
non-zero bits were contained in the information set).

Note that for reasonably large p, nearly a third of the sparse vectors having
weight 6 in the information set will meet both conditions. The most expensive
steps in the Stern’s algorithm iteration are a matrix inversion of size p and a claw
finding on functions with logarithmic cost in p and domain sizes of

(p
2
3

)
. The claw

finding step is similar in cost to the matrix inversion, both having computational

412 D. Apon et al.

cost ≈ p3. The matrix inversion step is present in all ISD algorithms. Therefore
with Stern’s algorithm we can recover in a single iteration with similar cost to
a single iteration of a simpler ISD algorithm, O(1) of the private keys where a
row of L has weight no more than 6 on the information set columns.

Recall that we choose the information set to be of size ≈ p
2 in L′. The dis-

tribution of the non-zero coordinates within a successful guess of information
set will be more heavily weighted toward the middle of the set and approxi-
mately triangular shaped (since these coordinates are produced by convolutions
of polynomials). In particular, we will heuristically model both of the tails of the
distribution as small triangles containing 3 bits on the left side and three bits
on the right that are missed by the choice of information set.

Let W = 2dv(m0 + m1) denote the number of non-zero bits in L′. Then the
actual fraction ε that the information set (in the context of advanced information
set decoding) should target within L, rather than 1/2, can be estimated by
geometric area as

ε ·
(

1 −
√

3
W/2

)
=

1
2

or, re-writing:

ε =
1

2
(
1 −

√
3

W/2

) .

For the claimed-256-bit ephemeral key parameters, we have WCPA = 286. For
the claimed-256-bit long-term key parameters, we have WCCA = 338. Therefore,

εCPA =
1

2
(
1 −

√
3

286/2

) ≈ 0.585.

εCCA =
1

2
(
1 −

√
3

338/2

) ≈ 0.577.

So – heuristically – we can model the effect of using advanced information
set decoding algorithms by replacing the 1

2 ’s in the calculations of the theorems
earlier in this section by εCPA or εCCA respectively.

4.5 Rejection Sampling Considerations

We recall that LEDACrypt’s KeyGen algorithm explicitly requires that the parity
check matrix L be full weight. Intuitively full weight means that no cancellations
occur in the additions or the multiplications that are used to generate L from
H and Q. Formally, the full weight condition on L can be stated as:

∀i ∈ {0, . . . , n0 − 1}, weight(Li) = dv

n0−1∑
j=0

mj .

When a weak key notion causes rejections to occur significantly more often
for weak keys than non-weak keys, we will effectively reduce the probability of

Cryptanalysis of LEDAcrypt 413

weak key generation compared to our previous analysis. As an extreme example,
if, for a given weak key notion, rejection sampling rejects all weak keys, then no
weak keys will ever be sampled. We therefore seek to measure the probability
of key rejection for both weak keys and keys in general in order to determine
whether the effectiveness of this attack is reduced via rejection sampling.

Let K, W ⊂ K, and KeyGen be the public key space, the weak key space,
and the key generation algorithm of LEDACrypt, respectively. Let K′, W ′ ⊂ K′,
and KeyGen’ be the associated objects if rejection sampling were omitted from
LEDACrypt. We observe that since KeyGen samples uniformly from K,

Pr [pk ∈ W|(pk, sk) ← KeyGen()] =
|W|
|K| .

This equality additionally holds when rejection sampling does not occur. Since,
until now, all of our analysis has ignored rejection sampling we have effectively
been measuring |W ′|/|K′|. We therefore seek to find a relation that allows us
determine |W|/|K| from |K′| and W ′|. We observe that

|W|
|K| =

|W|
|K|

|W ′|
|W ′|

|K′|
|K′| =

|W ′|
|K′|

|W|
|W ′|

|K′|
|K| .

Therefore it holds that the probability of generating a weak key when we consider
rejection sampling for the first time in our analysis changes by exactly a factor
of (|W|/|W ′|) · (|K′|/|K|). This is precisely the probability that a weak key will
not be rejected due to weight concerns divided by the probability that key will
not be rejected due to weight concerns.

We note that as long as the rejection probabilities for both keys and weak
keys is not especially close to 0 or 1, then it is sufficient to sample many keys
according to their distributions and observe the portion of these keys that would
be rejected.

In order to practically measure the security gained by rejection sampling
for the 1-iteration ISD attack against the ephemeral key parameters, we sample
10,000 keys according to KeyGen’ and we sample 10,000 weak keys according
to KeyGen’ and we observe how many of them are rejected. We observe that
approximately 39.2% of regular keys are rejected while approximately 67.4% of
weak keys are rejected. We therefore conclude for this attack and this parameter
set, |W|

|K| = 0.582 |W′|
|K′| . Therefore, rejection sampling grants less than 1 additional

bit of security back to LEDACrypt.
This attack analysis can be efficiently reproduced for additional parameter

sets and alternative notions of weak key with the same result.

4.6 Putting It All Together

Finally, we re-calculate the results of Sect. 4.2 using Theorems 4.2 and 4.5, but
accounting for the attack improvement of using advanced information set decod-
ing from Sect. 4.4 and accounting for the security improvement due to rejection

414 D. Apon et al.

sampling issues in Sect. 4.5. We re-write the formulas with the substitutions of
εCPA (resp. εCPA) for the constant 1

2 for the reader, and note that the defini-
tion of ultra-weak keys has been implicitly modified to have more liberal degree
constraints to suit the advanced ISD subroutine being used now.

Let x, y,m be defined as in Theorem 4.5. For the case of claimed-256-bit
security for ephemeral key parameters, the fraction of ultra-weak keys recovered
by a single iteration of the advanced ISD algorithm is

dv
2(dv − 1)2m

∫ ε

x=0

∫ ε

y=0

(xy)dv−2 ((ε − x) (ε − y))m

(
1

ε − x
+

1
ε − y

)
dydx,

and the fraction of these ultra-weak keys out of all possible keys is

(εp)dv
2(dv − 1)2

∫ ε

x=0

∫ ε

y=0

xdv−2ydv−2 (ε − x)m (ε − y)m

(
m0

2 + m1
2

(ε − x)(ε − y)
+

m0m1

(ε − x)2
+

m0m1

(ε − y)2

)
dydx.

Evaluating these formulae with ephemeral key parameters dv = 11,m0 =
7,m1 = 6, p = 36, 877 and substituting εCPA = .585 yields 1 key recovered in
262.62 per single iteration, and 1 ultra-weak key in 243.90 of all possible keys.
This yields an algorithm making 262.62−43.90 = 218.72 guesses and recovering 1
in 247.72 of the ephemeral keys (accounting for the loss due to rejection sampling
and the limited number of iterations).

Substituting εCCA = .577 similarly and evaluating with long-term key param-
eters dv = 13,m0 = 7,m1 = 6, p = 152, 267 yields 1 key recovered in 270.45 per
single iteration and 1 ultra-weak key in 249.55 of all possible keys. This yields
an algorithm making 270.45−49.55 = 220.90 guesses and recovering 1 in 252.54 of
the long-term keys (accounting for the loss due to rejection sampling and the
limited number of iterations).

To conclude, we would like to compare this result against the claimed security
level of NIST Category 5. Formally, these schemes should be as hard to break
as breaking 256-bit AES. Each guess in the ISD algorithms leads to a cost of
approximately p3 bit operations (due to linear algebra and claw finding opera-
tions combined). This is 245.5 bit operations for the ephemeral key parameters
and 251.6 bit operations for the long-term key parameters. A single AES-256
operation costs approximately 215 bit operations. This yields the main result of
this section.

Theorem 4.6 (Main). There is an advanced information set decoding algo-
rithm that costs the same as 249.22 AES-256 operations and recovers 1 in 247.72

of LEDAcrypt’s Category 5 ephemeral keys.
Similarly, there is an advanced information set decoding algorithm that costs

the same as 257.50 AES-256 operations and recovers 1 in 252.54 of LEDAcrypt’s
Category 5 long-term keys.

Remark 4. Note that 49.22+47.72 = 96.94 � 256, 57.50+52.54 = 110.03 � 256.

Cryptanalysis of LEDAcrypt 415

Remark 5. Finally, we recall that we used various heuristics to approximate the
above numbers, concretely. However, these simplifying choices can only affect
at most one or two bits of security compared to a fully formalized calculation
(which would come at the expense of making the analysis significantly more
burdensome to parse for the reader).

5 Attack on All Keys

To conclude, we briefly analyze the asymptotic complexity of our new attack
strategy in the context of recovering keys in the average case. We first note that,
assuming the LEDAcrypt approach is parameterized in a balanced way – that is,
H and Q are similarly sparse, and further assuming that n0 is a constant – the
ordinary ISD attack (with a randomly chosen information set) has a complexity
of exp(Õ(p

1
2)). To see this, observe that all known ISD variants using a ran-

dom information set to find an asymptotically sparse secret parity check matrix
constructed like the LEDAcrypt private key, have complexity O

(
n0

n0−1

)w

, where
w = n0dvm is the row weight of the secret parity check matrix. Efficient decoding
requires w = O(p

1
2). By inspection this complexity is exp(Õ(p

1
2))

However, we obtain an improved asymptotic complexity when using struc-
tured information sets as follows.

Theorem 5.1. The asymptotic complexity of ISD using an appropriate choice
of structured information sets, when attacking all LEDAcrypt keys in the worst
case, is exp(Õ(p

1
4)).

Proof. We analyze the situation with structured information sets. Imagine we
are selecting the nonzero coefficients of H ′ and Q′ completely at random, aside
from a sparsity constraint. The sparsity constraint needs to be set in such a way
that the row weight of the product H ′Q′ (restricted to two cyclic blocks) has
row weight no more than p. This further constrains the row weight of each cyclic

block of H ′ and Q′ to be approximately
(

pln(2)
n0

) 1
2

= O(p
1
2). The probability of

success per iteration is then at least O

((
ln(2)
pn0

) 1
2 ·(∑n0−1

i=0 mi+n0dv)
)

. With bal-

anced parameters, dv and the mi are O(p
1
4), thus the total complexity is indeed

exp(Õ(p
1
4)). Note that when H ′ and Q′ are random aside from the sparsity con-

straint, the probability that the supports of H ′ and Q′ contain the supports
of H and Q respectively does not depend on H and Q, so the structured ISD
algorithm is asymptotically better than the unstructured ISD algorithm, even
when we ignore weak keys.

��
Remark 6. The fact that there exists an asymptotically better attack than stan-
dard information set decoding against keys structured like those of LEDAcrypt

416 D. Apon et al.

is not itself particularly surprising. Indeed, the very simple attack that pro-
ceeds by enumerating all the possible values of H and Q is also asymptotically
exp(Õ(p

1
4)). However, this simple attack does not affect the concrete parameters

presented in the Round 2 submission of LEDAcrypt.
In contrast, we strongly suspect, but have not rigorously proven, that our

attack significantly improves on the complexity of standard information set
decoding against typical keys randomly chosen for some of the submitted param-
eter sets of LEDAcrypt. In particular, our estimates suggest that the NIST cat-
egory 5 parameters with n0 = 2 can be attacked with an appropriately chosen
distribution for H ′ and Q′ (e.g. with each polynomial block of H ′ and Q′ chosen
to have 5 or 6 consecutive chunks of nonzero coefficients in some ring represen-
tation) and that typical keys will be broken at least a few hundred times faster
than with ordinary information set decoding.

If it were the case that we were attacking an “analogously-chosen” parameter
set for LEDAcrypt targeting higher security levels (512-bit security, 1024-bit
security, and so on), we believe a much larger computational advantage would
be obtained and (importantly) be very easy to rigorously demonstrate.

6 Conclusion

In this work, we demonstrated a novel, real-world attack against LEDAcrypt –
one of 17 remaining 2nd Round candidates for standardization in NIST’s Post-
Quantum Cryptography competition. The attack involved a customized form
of Information Set Decoding, which carefully guesses the information set in a
non-uniform manner so as to exploit the unique product structure of the keys in
LEDAcrypt’s design. The attack was most effective against classes of weak keys
in the proposed parameter sets asserted to have 256-bit security (demonstrating
a trade-off between computational time and fraction of the key space recovered
that was better than expected even of a 128-bit secure cryptosystem), but the
attack also substantially reduced security of all parameter sets similarly.

Moreover, we demonstrated that these type of weak keys are present through-
out the key space of LEDAcrypt, so that simple “patches” such as rejection sam-
pling cannot repair the problem. This was done by demonstrating a continuum
of progressively larger classes of less weak keys and by showing that the same
style of attack reduces the average-case complexity of certain parameter sets.

Acknowledgements. We thank Corbin McNeill for his contributions to our analysis
of rejection sampling on the weak key attack. We also thank the anonymous reviewers
for very thorough editorial feedback. This work is funded in part by NSF grant award
number 1906360.

Cryptanalysis of LEDAcrypt 417

References

1. National Institute of Standards and Technology: Post-quantum cryptography
project (2016). https://csrc.nist.gov/projects/post-quantum-cryptography

2. Alagic, G., et al.: Status Report on the First Round of the NIST Post-Quantum
Cryptography Standardization Process (2019)

3. Apon, D., Perlner, R.A., Robinson, A., Santini, P.: Cryptanalysis of LEDAcrypt.
Cryptology ePrint Archive, Report 2020/455 (2020). https://eprint.iacr.org/2020/
455

4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 31

5. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of
certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

6. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6

7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 42

8. Melchor, C.A.: et al.: HQC. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gove/projects/post-quantum-cryptography/
round-2-submission

9. Bernstein, D.J.: Classic McEliece. Technical report, National Institute of
Standards and Technology (2019). https://csrc.nist.gove/projects/post-quantum-
cryptography/round-2-submission

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of 28th Annual ACM Symposium on the Theory of Computing, pp. 212–
219, Philadephia, PA, May 1996

11. Kachigar, G., Tillich, J.-P.: Quantum Information Set Decoding Algorithms, pp.
69–89, March 2017

12. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key
cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330,
pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-
8 25

13. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Trans. Inf. Theory 34(5), 1354–1359 (1988)

14. Löndahl, C., et al.: Squaring attacks on McEliece public-key cryptosystems using
quasi-cyclic codes of even dimension. Des. Codes Cryptogr. 80(2), 359–377 (2016)

15. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosys-
tem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85855-3 17

16. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAcrypt. Tech-
nical report, National Institute of Standards and Technology (2019). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions

17. Albrecht, M., Cid, C., Paterson, K.G., Tjhai, C.J., Tomlinson, M.: NTS-KEM.
Technical report, National Institute of Standards and Technology (2019). https://
csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission

https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2020/455
https://eprint.iacr.org/2020/455
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-22792-9_42
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/978-3-540-85855-3_17
https://doi.org/10.1007/978-3-540-85855-3_17
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission

418 D. Apon et al.

18. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 6

19. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding
of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 9

20. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Netw. (DSN) Prog. Rep. 44, 114–116 (1978)

21. Moody, D., Perlner, R.: Vulnerabilities of “McEliece in the World of Escher”. In:
Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 104–117. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-29360-8 8

22. Aragon, N., et al.: BIKE. Technical report, National Institute of Standards and
Technology (2019). https://csrc.nist.gove/projects/post-quantum-cryptography/
round-2-submission

23. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Control Inf. Theory 15(2), 159–166 (1986)

24. Perlner, R.: Optimizing information set decoding algorithms to attack cyclosym-
metric MDPC codes. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp.
220–228. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4 13

25. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

26. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed.) PQCrypto 2011.
LNCS, vol. 7071, pp. 51–67. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25405-5 4

27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 124–134 (1994)

28. Jacques Stern. A method for finding codewords of small weight. In Coding Theory
and Applications, 3rd International Colloquium, Toulon, France, November 2–4,
1988, Proceedings, pages 106–113, 1988

https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-319-29360-8_8
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://csrc.nist.gove/projects/post-quantum-cryptography/round-2-submission
https://doi.org/10.1007/978-3-319-11659-4_13
https://doi.org/10.1007/978-3-642-25405-5_4
https://doi.org/10.1007/978-3-642-25405-5_4

Alzette: A 64-Bit ARX-box
(Feat. CRAX and TRAX)

Christof Beierle1, Alex Biryukov2, Luan Cardoso dos Santos2,
Johann Großschädl2, Léo Perrin3, Aleksei Udovenko4, Vesselin Velichkov5,

and Qingju Wang2(B)

1 Ruhr University Bochum, Bochum, Germany
christof.beierle@rub.de

2 University of Luxembourg, Esch-sur-Alzette, Luxembourg
{alex.biryukov,luan.cardoso,johann.groszschaedl,qingju.wang}@uni.lu,

sparklegrupp@googlegroups.com
3 Inria, Paris, France
leo.perrin@inria.fr

4 CryptoExperts, Paris, France
aleksei@affine.group

5 University of Edinburgh, Edinburgh, UK
vvelichk@ed.ac.uk

Abstract. S-boxes are the only source of non-linearity in many symmet-
ric primitives. While they are often defined as being functions operating
on a small space, some recent designs propose the use of much larger ones
(e.g., 32 bits). In this context, an S-box is then defined as a subfunction
whose cryptographic properties can be estimated precisely.

We present a 64-bit ARX-based S-box called Alzette, which can be
evaluated in constant time using only 12 instructions on modern CPUs.
Its parallel application can also leverage vector (SIMD) instructions. One
iteration of Alzette has differential and linear properties comparable to
those of the AES S-box, and two are at least as secure as the AES super
S-box. As the state size is much larger than the typical 4 or 8 bits, the
study of the relevant cryptographic properties of Alzette is not trivial.

We further discuss how such wide S-boxes could be used to construct
round functions of 64-, 128- and 256-bit (tweakable) block ciphers with
good cryptographic properties that are guaranteed even in the related-
tweak setting. We use these structures to design a very lightweight 64-bit
block cipher (Crax) which outperforms SPECK-64/128 for short mes-
sages on micro-controllers, and a 256-bit tweakable block cipher (Trax)
which can be used to obtain strong security guarantees against powerful
adversaries (nonce misuse, quantum attacks).

Keywords: (Tweakable) block cipher · Related-tweak setting · Long
trail strategy · Alzette · MEDCP · MELCC

1 Introduction

It is well known that symmetric cryptographic primitives need to be non-linear.
It is common to rely on so-called S-boxes to obtain this property. Typically
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 419–448, 2020.
https://doi.org/10.1007/978-3-030-56877-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_15

420 C. Beierle et al.

these are functions S mapping F
n
2 to F

m
2 for a value of n small enough that it is

possible to specify S using its lookup table. They are applied in parallel to the
whole state as part of the round function of the primitive.

This common definition of S-boxes is being challenged by the recent use of
larger S-boxes in some designs. First, the designers of the hash function WHIRL-
WIND [5] used a 16-bit S-box based on the multiplicative inverse in the finite
field F216 . In this case, the intention of the implementers was not to use the
217-byte lookup table of the permutation but instead to rewrite the permutation
using tower fields. More recently, large S-boxes have been proposed in Sparx [19]
and in the NIST lightweight candidate Saturnin [15]. In the latter case, a 16-bit
S-box is constructed using a classical Substitution-Permutation Network (SPN):
four 4-bit S-boxes are applied to a 16-bit word in parallel, followed by an MDS
matrix, and another application of the 4-bit S-box layer. While there is no closed
formula for the differential and linear properties of such a structure (unlike for
the multiplicative inverse used in WHIRLWIND), 16-bit remains small enough
that a direct computation is possible.

This is not the case for the 32-bit S-box of Sparx. In this cipher, the S-
box consists of an Addition, Rotation, XOR (ARX) network operating on two
16-bit branches, and it is key-dependent. Furthermore, while the properties of
the S-box are usually sufficient1 to prove that the cipher meets some security
criteria, it is not the case for the ARX-box of Sparx. Indeed, in order to achieve
the security goals by its designers (following the long trail security argument),
it was necessary to study several “S-boxes”, namely A, A ◦ A, A ◦ A ◦ A, etc.

Another significant difference between the 32-bit ARX-box of Sparx and
16-bit S-boxes is the fact that it is not possible to evaluate its cryptographic
properties directly because the complexity of the algorithms involved is usually
proportional to 22n, where n is the block size. Thus, the authors of Sparx
instead considered their ARX-box like a small block cipher and used techniques
borrowed from block cipher analysis [14] to investigate their ARX-box.

Our Contribution. In this paper, we present a new 64-bit S-box called Alzette
(pronounced) that satisfies a similar scope statement to that of the Sparx
ARX-box: it is also an ARX-based S-box, and we analyze both A and A ◦ A.
Alzette is parameterized by a constant c ∈ F

32
2 and is defined for each such c as

a permutation of F32
2 × F

32
2 . The algorithm evaluating this permutation is given

in Algorithm 1 and depicted in Fig. 1. Alzette has the following advantages:

– it relies on 32-bit rather than 16-bit operations, meaning that (according to
[18, Sect. 5]) it is suitable for a larger number of architectures;

– it makes better use of barrel shift registers (when available) and has more
efficient rotation constants (for platforms on which they have different costs);

– its differential and linear properties are superior to those of a scaled-up Sparx
ARX-box;

– our analysis takes more attacks into account, and is confirmed experimentally
whenever possible;

1 Along with some conditions on the linear layer, in particular its branching number.

Alzette: A 64-Bit ARX-Box 421

After providing a detailed design rationale of Alzette, we investigate its secu-
rity against cryptanalytic attacks in more detail. Besides using state-of-the-art
methods to conduct the analysis, we also developed new methods. In particular,
to analyze the security against generalized integral attacks, we describe a new
encoding of the bit-based division property [39] for modular addition.

Note that in some attack scenarios, the security of Alzette needs to be ana-
lyzed for the precise choice of round constants c used in the actual primitive. In
this work, we provide experimental analysis for the round constants employed
in the permutation Sparkle, submitted to the NIST lightweight cryptography
standardization process [8]. However, our methods can easily be applied for an
arbitrary choice of round constants.

Large parts of the experimental analysis have been carried out on the UL
HPC cluster [40]. The source code for our experimental analysis can be found
at https://github.com/cryptolu/sparkle.

We provide software implementations of Alzette on 8-bit AVR and 32-bit
ARM processors. To summarize, Alzette can be executed in only 12 cycles on a
32-bit ARM Cortex-M3 and 122 cycles on an 8-bit AVR ATmega128 processor.
Besides, the code size is low: respectively 24 and 176 bytes on those platforms.

Finally, we discuss the suitability of Alzette as a building block in crypto-
graphic primitives. Since we already know how to use Alzette to design a crypto-
graphic permutation, i.e., Sparkle, we show in this paper how it can be applied
to design (tweakable) block ciphers operating on a variety of block lengths. In a
nutshell, those ciphers use Alzette in a Feistel construction and interleave it with
xoring the round keys. In a tweakable block cipher, the tweak will be xored
only to half the state and only every second round. Similar to how the long-trail
strategy was applied to take into account cancellations of differences within the
absorption phase in a cryptographic sponge construction [8], we use the same
technique to provide security arguments against related-tweak attacks, by taking
cancellations of differences through tweak injection into account.

Besides describing this more general design idea, we provide two concrete
cipher instances Crax and Trax.

Crax is a 64-bit block cipher that uses a 128-bit secret key. Since its key
schedule is very simple and does not have to be precomputed, it is one of the
fastest 64-bit lightweight block ciphers in software, beaten only for messages
longer than 72 bytes by the NSA cipher Speck [6]. Due to this simple key
schedule, it consumes lower RAM than Speck. While the family of tweakable
block ciphers Skinny [9] can be considered as an academic alternative to the
NSA cipher Simon [6] in terms of hardware efficiency, Crax can be seen as an
academic alternative to Speck in terms of software efficiency.

Trax is a tweakable block cipher operating on a larger state of 256-bit blocks.
It applies a 256-bit key and 128-bit tweak. To the best of our knowledge, the
only other large tweakable block cipher is Threefish which was used as a build-
ing for the SHA-3 candidate Skein [31]. Unlike this cipher, Trax uses 32-bit
words that are better suited for vectorized implementation as well as on micro-
controllers. Another improvement of Trax over Threefish is the fact that we pro-
vide strong bounds for the probability of all linear trails and all (related-tweak)

https://github.com/cryptolu/sparkle

422 C. Beierle et al.

differential trails. Because of its Substitution-Permutation Network structure,
Trax is indeed inherently easier to analyze. Such a large tweakable block cipher
can provide robust authenticated encryption, meaning that it can retain a high
security level even in case of nonce misuse or in the presence of quantum adver-
saries, as argued in [15]. The performance penalty of such guarantees can be
minimized using vectorization and/or parallelism.

Algorithm 1. Ac

Input/Output: (x, y) ∈ F
32
2 × F

32
2

x ← x + (y ≫ 31)
y ← y ⊕ (x ≫ 24)
x ← x ⊕ c
x ← x + (y ≫ 17)
y ← y ⊕ (x ≫ 17)
x ← x ⊕ c
x ← x + (y ≫ 0)
y ← y ⊕ (x ≫ 31)
x ← x ⊕ c
x ← x + (y ≫ 24)
y ← y ⊕ (x ≫ 16)
x ← x ⊕ c
return (x, y)

Fig. 1. The Alzette instance Ac.

Outline. The design process that we used to construct Alzette is explained in
Sect. 2. In particular, we show that it offers resilience against a large variety
of attacks. This analysis is confirmed experimentally in Sect. 3. We also discuss
the efficiency of Alzette in Sect. 4. The discussion on the usage of Alzette as a
building block, together with the specification of our (tweakable) block ciphers
is given in Sect. 5.

Notation. By F2, we denote the finite field with two elements and by F
n
2 the set

of bitstrings of length n. We denote the set {0, 1, . . . , n − 1} by Zn. We use + to
denote the addition modulo 232 and ⊕ to denote the XOR of two bitstrings of
the same size. The symbol & denotes the bit-wise AND. Further, by x ≫ r, we
denote the cyclic rotation of the 32-bit word x to the right by the offset r.

Let E be a key alternating block cipher with r rounds, and round function
R. In a differential attack [12] against Ek, an attacker exploits differences δ and
Δ such that the probability that Ek(x ⊕ δ) ⊕ Ek(x) = Δ is significantly higher
than 2−n (for an n-bit block cipher). For typical values of n (64, 128 or 256)
the exact computation of this probability is infeasible. Instead, the common
practise is to approximate this quantity by the maximum probability of a differ-
ential trail/characteristic averaged over all round keys. A differential trail is a
sequence of differences {δ0, δ1, ..., δr} that specifies not only the input and out-
put differences to the block cipher, but also the intermediate differences between
the rounds such that R(δi ⊕ x) ⊕ R(x) = δi+1. The approximated probability

Alzette: A 64-Bit ARX-Box 423

(averaged over all round keys) is derived as the product of the probabilities of the
transitions occurring in each round2. The maximum probability (across all trails)
computed in this way is denoted Maximum Expected Differential Characteristic
Probability (MEDCP). An upper bound on the MEDCP is an approximation of
the maximum differential probability and is called a differential bound.

By analogy to the differential case, for linear attacks [29] the aim is to find
masks α and β such that β · Ek(x) = α · x + f(k), where “·” denotes the usual
scalar product over Fn

2 and where f is a function of the key bits. In practice, we
look for a sequence of input, output and intermediate masks {α0, ..., αr} called a
linear trail/characteristic that has high absolute correlation, where αi+1 ·R(x) =
αi · x + fi(k). Analogously to MEDCP and the differential bound, in the linear
case we define a Maximum Expected Linear Characteristic Correlation (MELCC)
and a linear bound.

2 The Design of Alzette

We now present both the design process and the main properties of Alzette.
These are verified experimentally later in Sect. 3, and summarized in Sect. 3.6.

2.1 Block and Word Sizes

Our S-box should be efficient on a wide variety of platforms, while allowing a
practical analysis of its relevant cryptographic properties. What would be the
best word and block sizes in this context?

Word Size. In Sparx, the S-box operates on 32 bits, which are split into two
16-bit words. This word size allows a computationally cheap analysis of its cryp-
tographic properties while facilitating efficient implementations on 8 and 16-bit
micro-controllers. However, 16-bit words hamper performance on 32-bit plat-
forms, simply because only half of their 32-bit registers and datapath can be
used. The same holds when 16-bit operations are executed on a 64-bit processor.
Furthermore, 16-bit operations can also incur a performance penalty on 8-bit
micro-controllers; for example, rotating two 16-bit operands by n bits on an 8-
bit AVR device is usually slower than rotating a single 32-bit operand by n bits
(see e.g. [17, Appendix A, B, C] for details).

While 16-bit words are suboptimal because they are too small, it can also be
argued that 64-bit word are too large. To establish why, we have to separately
discuss the performance of 64-bit operations on 8/16/32-bit micro-controllers
and on 64-bit processors. We start with three arguments for why 64-bit opera-
tions may not be a good choice on small micro-controllers.

1. 32-bit ARM micro-controllers allow one to perform a rotation “for free” since
it can be executed together with another arithmetic/logical instruction.3 Still,

2 Under the Markov assumption which allows to treat the rounds as independent from
each other.

3 We exploit this property to design Alzette, as explained in Sect. 2.2.

424 C. Beierle et al.

a 32-bit ARM processor can only perform rotations of 32-bit operands for free,
but not rotations of 64-bit words.

2. As discussed later, we will use word-wise modular additions. Some 32-bit
architectures, most notably RISC-V and MIPS32, do not have an add-with-
carry instruction. Adding two 64-bit operands on these platforms requires to
first add the lower 32-bit parts of the operands and then compare the 32-bit
sum with any of the operands to find out whether an overflow happened (i.e.
to obtain a carry bit). Then, the two upper 32-bit words are added up together
with the carry bit. A 64-bit addition requires at least four instructions (i.e.
four cycles) on these platforms, whereas two 32-bit additions take only two
instructions (i.e. two cycles).

3. Compilers for 8 and 16-bit micro-controllers are notoriously bad at handling
64-bit words, especially rotations of 64-bit words. The reason is simple: out-
side of cryptography, 64-bit words are of little to no use on an 8- or 16-bit
platform, and therefore compiler designers have no incentive to optimize 64-
bit operations.

A word size of 64 bits is naturally a good choice for 64-bit processors. For
example, the authors of [21] established that SHA512 (which operates in 64-bit
words) reaches much higher throughput on 64-bit Intel processors than SHA256
(operating on 32-bit words). However, this does not necessarily imply that ARX
designs using 32-bit words are inferior to 64-bit variants on 64-bit processors.
This can be justified with the fact that the best way to implement an ARX
cipher on a 64-bit Intel or a 64-bit ARM processor is to use the vector (SIMD)
extensions they provide, e.g. Intel SSE, AVX or ARM NEON. Most high-end
64-bit processors have such vector instruction sets, and all of them can execute
additions, rotations and XORs on 32-bit words. The fact that a 32-bit word size
allows peak performance on 64-bit processors was already used for instance by
the designers of Gimli [11].

As a consequence, we chose to design an S-box that operates on 32-bit words
as those offer the best performances across the board.

Block Size. Our S-box could a priori operate on any block size that is a multiple
of 32. However, two criteria significantly narrow down the design space.

First, we need to be able to investigate the cryptographic properties of our S-
box. We are not aware of any efficient combination of simple operations (AND,
addition, rotation, XOR, etc.) on a single word that would allow us to give
strong bounds on the differential and linear probabilities. On the other hand,
computational technique that find such bounds tend to be less efficient if the
state size is large as it implies a greater number of potential branches to explore
in a tree. Our ability to find bounds thus imposes a number of words which is
at least equal to 2 and as small as possible.

Second, in order to use vector instruction sets to their fullest extent, it is
better to have a larger number of S-boxes that can be applied in parallel in each
call to the round function. On smaller micro-controllers, limiting the block size
makes it easier for implementers to keep one full S-box state (or maybe even

Alzette: A 64-Bit ARX-Box 425

several full S-box states) in the register file, thereby reducing the number of
memory accesses. Finally, in order to build primitives with a small state size,
it is necessary that the S-box size is at most equal to said state size. However,
as mentioned before, it makes sense to aim for the smallest possible number of
branches (and, consequently, a large number of S-boxes) to leverage SIMD-style
parallelism.

Because of these requirements, we settled for the use of two words. Given
that our discussion above set a 32-bit word size, our S-box operates on 64 bits.

2.2 Round Structure and Number of Rounds

We decided to build an ARX-box out of the operations XOR of rotation and
ADD of rotation, i.e., x ⊕ (y ≫ s) and x + (y ≫ r), because they can be
executed in a single clock cycle on ARM processors and thus provide extremely
good diffusion per cycle. As the ARX-boxes could be implemented with their
rounds unrolled, we allowed the use of different rotations in every round. We
observed that one can obtain much better resistance against differential and
linear attacks in this case compared to having identical rounds.

In particular, we aimed for designing an ARX-box consisting of the compo-
sition of t rounds of the form

Ti :

{
F

32
2 × F

32
2 → F

32
2 × F

32
2

(x, y) �→ (
x + (y ≪ ri), y ⊕ (

(x + (y ≪ ri)) ≪ si

)) ⊕ (γL
i , γR

j) ,

where i-th round is defined by the rotation amounts (ri, si) ∈ Z32 × Z32 and
the round constant (γL

i , γR
i) ∈ F

32
2 × F

32
2 . It is computed in three steps: x ←

x + (y ≪ ri), y ← y ⊕ (x ≪ si), and finally (x, y) ← (x ⊕ γL
i , y ⊕ γR

i).
In our final design, we decided to use t = 4 rounds. The reason is that, when

it comes to designing primitives, for r-round ARX-boxes, usable bounds from
the long-trail strategy can be obtained from the 2r-round bounds of the ARX
structure by concatenating two ARX-boxes. The complexity of deriving upper
bounds on the differential trail probability or absolute linear trail correlation
depends on the number of rounds considered. For 8 rounds, i.e., 2 times a 4-
round ARX-box, it is feasible to compute strong bounds in reasonable time (i.e.,
several days up to few weeks on a single CPU). For 3-round ARX-boxes, the 6-
round bounds of the best ARX-boxes we found seem not strong enough to build
a secure cipher with a small number of iterations. Since we cannot arbitrarily
reduce the number of round (step) iterations in a cryptographic function because
of structural attacks, using ARX-boxes with more than four rounds would lead
to worse efficiency overall. In other words, we think that four-round ARX-boxes
provide the best balance between the number of ARX-box layers needed and
rounds per ARX-box in order to build a secure primitive.

2.3 Criteria for Choosing the Rotation Amounts

We aimed for choosing the rotations (ri, si) in Alzette in a way that maximizes
security and efficiency. For efficiency reasons, we want to minimize the cost of the

426 C. Beierle et al.

rotations, where we use the cost metric as given in Table 1. While each rotation
has the same cost in 32-bit ARM processors (i.e., 0 because rotation is for free on
top of XOR, resp., AND), we further aimed for minimizing the cost with regard
to 8-bit and 16-bit architectures. Therefore, we restricted ourselves to rotations
from the set {0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31}, as those are the most efficient
when implemented on 8 and 16-bit micro-controllers. We define the cost of a
collection of rotation amounts (that is needed to define all the rounds of an
ARX-box) as the sum of the costs of its contained rotations.

Table 1. For each rotation in {0, 1, 7, 8, 9, 15, 16, 17, 23, 24, 25, 31}, the table shows an
estimation of the number of clock cycles needed to implement the rotation on top of
XOR, resp. ADD. We associate the mean of those values for the three platforms to be
the cost of a rotation.

rot (mod 32) 8-bit AVR 16-bit MSP 32-bit ARM cost

0 0 0 0 0.00

±1 5 3 0 2.66

±7 5 9 0 4.66

8 0 6 0 2.00

±9 5 9 0 4.66

±15 5 3 0 2.66

16 0 0 0 0.00

For security reasons, we aim to minimize the provable upper bound on the
expected differential trail probability (resp. expected absolute linear trail cor-
relation) of a differential (resp. linear) trail. More precisely, our target was to
obtain strong bounds, preferably at least as good as those of the round structure
of the 64-bit block cipher Speck, i.e., an 8-round differential bound of 2−29 and
an 8-round linear bound of 2−17. If possible, we aimed for improving upon those
bounds. Note that for r > 4, the term r-round bound refers to the differential
(resp. linear) bound for r rounds of an iterated ARX-box. As explained above,
at the same time we aimed for choosing an ARX-box with a low cost. In order
to reduce the search space, we relied on the following criteria as a heuristic for
selecting the final choice for Alzette:

– The candidate ARX-box must fulfill the differential bounds (− log2) of 0, 1,
2, 6, and 10 for 1, 2, 3, 4 and 5 rounds respectively, for all four possible offsets.
We conjecture that those bounds are optimal for up to 5 rounds.

– The candidate must fulfill a differential bound of at least 16 for 6 rounds, also
for all offsets.

– The 8-round linear bound (− log2) of the candidate ARX-box should be at
least 17.

By the term offset we refer to the round index of the starting round of
a differential trail. Note that we are considering all offsets for the differential

Alzette: A 64-Bit ARX-Box 427

criteria because the bounds are computed using Matsui’s branch and bound
algorithm, which needs to use the (r − 1)-round bound of the differential trail
with starting round index 1 (second round) in order to compute the r-round
bound of the trail.

We tested all rotation sets with a cost below 12 for the above conditions.
None of those fulfilled the above criteria. For a cost below 15, we found the
ARX-box with the following rotations:

(r0, r1, r2, r3, s0, s1, s2, s3) = (31, 17, 0, 24, 24, 17, 31, 16) .

This rotation set fulfills all the criteria. The differential and linear bounds for
the respective ARX-box are summarized in Table 2.

Table 2. Differential and linear bounds for several rotation parameters. For each offset,
the first line shows the differential bound and the second shows the linear one. The
value set in parenthesis is the maximum absolute correlation of the linear hull taking
clustering into account (see Sect. 3.2). The bounds [14,20,27,28] for SPECK are given
for comparison.

(r0, r1, r2, r3, s0, s1, s2, s3) 1 2 3 4 5 6 7 8 9 10 11 12

(31, 17, 0, 24, 24, 17, 31, 16) 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 ≥ 46 ≥ 52
0 0 1 2 5 8 13 (11.64) 17 (15.79) – – – –

(17, 0, 24, 31, 17, 31, 16, 24) 0 1 2 6 10 17 ≥ 25 ≥ 31 ≥ 37 ≥ 41 ≥ 47 –
0 0 1 2 5 9 13 16 – – – –

(0, 24, 31, 17, 31, 16, 24, 17) 0 1 2 6 10 18 ≥ 24 ≥ 32 ≥ 36 ≥ 42 – –
0 0 1 2 6 8 13 15 – – – –

(24, 31, 17, 0, 16, 24, 17, 31) 0 1 2 6 10 17 ≥ 25 ≥ 31 ≥ 37 – – –
0 0 1 2 5 9 12 16 – – – –

Speck64 0 1 3 6 10 15 21 29 34 38 42 46
0 0 1 3 6 9 13 17 19 21 24 27

2.4 On the Round Constants

The purpose of round constant additions, i.e., the XORs with γL
i , γR

i in the
general ARX-box structure, is to ensure some independence between the rounds.
They also break additive patterns that could arise on the left branch due to the
chain of modular addition it would have without said constant additions. Perhaps
even more importantly, they should also ensure that the Alzette instances called
in parallel are different from one another to avoid symmetries.

For efficiency reasons, we decided to use the same round constant in every
round of the ARX-box, i.e., ∀i : γL

i = c. As the rounds themselves are different
from one another, we do not rely on γL

i or γR
i to prevent slide-style patterns.

Thus, using the same constant in each round is not a problem. Moreover, we
chose γR

i = 0 for all i. It is important to note that the experimental verification
of the differential probabilities and absolute linear correlations we conducted
(see Sects. 3.1 and 3.2 respectively) did not lead to significant differences when

428 C. Beierle et al.

changing to a more complex round constant schedule. In other words, even for
random choices of all γL

i and γR
i , we did not observe significantly different results

that would justify the use of a more complex constant schedule (which would of
course lead to worse efficiency in the implementation).

The analysis provided in the next section is dependent on the actual choice
of round constants c. We conducted this analysis for the constants of Sparkle:

c0 = b7e15162, c1 = bf715880, c2 = 38b4da56, c3 = 324e7738,
c4 = bb1185eb, c5 = 4f7c7b57, c6 = cfbfa1c8, c7 = c2b3293d .

(1)

3 Analysis of Alzette

In this section, we study cryptographic properties of the ARX-box Alzette. The
analysis is done for the round constants used in Sparkle, except for analysis
of differential/linear characteristic bounds and division property propagation,
which are independent of the choice of the constants. All described methods can
easily be applied to arbitrary choices of constants.

3.1 On the Differential Properties

Bounding the Maximum Expected Differential Trail Probability. We used the
Algorithm 1 in [14] and adapted it to our round structure to compute the bounds
on the maximum expected differential trail probabilities of the ARX-boxes which
use the constants given in Eq. (1). The algorithm is basically a refined variant
of Matsui’s well-known branch and bound algorithm [30]. While the latter has
been originally proposed for ciphers that have S-boxes (in particular the DES),
the former is targeted at ARX-based designs that use modular addition, rather
than an S-box, as a source of non-linearity.

Algorithm 1 [14] exploits the differential properties of modular addition to
efficiently search for characteristics in a bitwise manner. Upon termination, it
outputs a trail (characteristic) with the maximum expected differential trail
probability (MEDCP). For Alzette, we obtain such trails for up to six rounds,
where the 6-round bound is 2−18. We further collected all trails corresponding
to the maximum expected differential probability for 4 and 5 rounds and exper-
imentally checked the actual probabilities of the differentials (for the constants
used in Sparkle), see below.

Note that for 7 and 8 rounds, we could not get a tight bound due to the high
complexity of the search. In other words, the algorithm did not terminate in
reasonable time. However, the algorithm exhaustively searched the range up to
− log2(p) = 24 and − log2(p) = 32 for 7 and 8 rounds respectively, which proves
that there are no valid differential trails with an expected differential trail prob-
ability larger than 2−24 and 2−32, respectively. We evaluated similar bounds for
up to 12 rounds.

Alzette: A 64-Bit ARX-Box 429

Experiments on the Fixed-Key Differential Probabilities. As in virtually all block
cipher designs, the security arguments against differential attacks are only aver-
age results when averaging over all keys of the primitive. When leveraging such
arguments for a cryptographic permutation, i.e., a block cipher with a fixed
key, it might be possible in theory that the actual fixed-key maximum differen-
tial probability is higher than the expected maximum differential probability. In
particular, the variance of the distribution of the maximum fixed-key differential
probabilities might be high.

For all of the 8 Alzette instances corresponding to the constants in Eq. (1),
we conducted experiments in order to see if the expected maximum differential
trail probabilities derived by Matsui’s search are close to the actual differential
probabilities of the fixed ARX-boxes. Our results are as follows.

By Matsui’s search we found 7 differential trails for Alzette4 that correspond
to the maximum expected differential trail probability of 2−6 for 4 rounds, see
Table 3. For any Alzette instance Aci and any such trails with input difference
α and output difference β, we experimentally computed the actual differential
probability of the differential α → β by

|{x ∈ S|Aci(x) ⊕ Aci(x ⊕ α) = β}|
|S| ,

where S is a set of 224 inputs sampled uniformly at random. Our results show that
the expected differential trail probabilities approximate the actual differential
probabilities very well, i.e., all of the probabilities computed experimentally are
in the range [2−6 − 10−4, 2−6 + 10−4] for a sample size of 224.

For 5 rounds, i.e., one full Alzette instance and one additional first round of
Alzette, there is only one trail with maximum expected differential trail proba-
bility p = 2−10. In the case of Sparkle, for all combinations of round constants
that can occur in 5 rounds (one Alzette instance plus one round) that do not go
into the addition of a step counter, i.e., corresponding to the twelve compositions

Ac2 ◦ Ac0 Ac3 ◦ Ac1 Ac3 ◦ Ac0 Ac4 ◦ Ac1 Ac5 ◦ Ac2 Ac4 ◦ Ac0

Ac5 ◦ Ac1 Ac6 ◦ Ac2 Ac7 ◦ Ac3 Ac2 ◦ Ac3 Ac3 ◦ Ac4 Ac2 ◦ Ac7 ,

we checked whether the actual differential probabilities are close to the maximum
expected differential trail probability. We found that all of the so computed
probabilities are in the range [2−10 − 10−5, 2−10 + 10−5] for a sample size of 228.

3.2 On the Linear Properties

Bounding Maximum Expected Absolute Linear Trail Correlation. We used the
Mixed-Integer Linear Programming approach described in [20] and the Boolean
satisfiability problem (SAT) approach in [27] in order to get bounds on the

4 Note that those are independent of the actual round constants as the probability
corresponds to the average probability over all keys when analyzing Alzette as a
block cipher where independent subkeys are used instead of round constants.

430 C. Beierle et al.

Table 3. The input and output differences α, β (in hex) of all differential trails over
Alzette corresponding to maximum expected differential trail probability p = 2−6 and
p = 2−10 for four and five rounds, respectively.

rounds α β − log2(p)

4

8000010000000080 8040410041004041 6
8000010000000080 80c04100410040c1 6
0080400180400000 8000018081808001 6
0080400180400000 8000008080808001 6
a0008140000040a0 8000010001008001 6
8002010000010080 0101000000030101 6
8002010000010080 0301000000030301 6

5 a0008140000040a0 8201010200018283 10

maximum expected absolute linear trail correlation. It was feasible to get tight
bounds even for 8 rounds, where the 8-round bound of our final choice for Alzette
is 2−17. We were able to collect all linear trails that correspond to the maximum
expected absolute linear trail correlation for 4 up to 8 rounds and experimentally
checked the actual correlations of the corresponding linear approximations for
the Alzette instances using the constants in Eq. (1), see below.

Experiments on the Fixed-Key Linear Correlations. Similarly as for the case of
differentials, for all of the 8 Alzette instances used in Sparkle, we conducted
experiments in order to see whether the maximum expected absolute linear
trail correlations derived by MILP and presented in Table 2 are close to the
actual absolute correlations of the linear approximations over the fixed Alzette
instances. Details of our results are presented in the full version, but they can
be summarized as follows.

For a full Alzette instance, there are 4 trails with a maximum expected abso-
lute trail correlation of 2−2. For all of the eight Alzette instances, the actual
absolute correlations are very close to the theoretical values and we did not
observe any clustering. For more than four rounds (i.e., one full instance plus
additional rounds), we again checked all combinations of ARX-boxes that do
not get a step counter in Sparkle. For five rounds, there are 16 trails with a
maximum expected absolute trail correlation of 2−5. In our experiments, we can
observe a slight clustering. In fact, we chose the round constants ci of Sparkle
such that, for all combinations of Alzette that occur over the linear layer, the
linear hull effect is to our favor, i.e., the actual correlation tends to be lower
than the theoretical value.5

This tendency also holds for the correlations over six rounds. There are 48
trails with a maximum expected absolute linear trail correlation of 2−8.

5 The constants in Sparkle were derived from the fractional digits of e, excluding
some blocks. For the excluded blocks, the actual absolute correlations are slightly
higher than the theoretical bound, but all smaller than 2−8.

Alzette: A 64-Bit ARX-Box 431

For seven rounds, there are 2992 trails with a maximum expected absolute
linear trail correlation of 2−13. Over all the twelve combinations that do not add
a step counter in Sparkle and all of the 2992 approximations, the maximum
absolute correlation we observed was 2−11.64 using a sample size of 232 plaintexts
chosen uniformly at random.

For eight rounds, there are 3892 trails with a maximum expected absolute
linear trail correlation of 2−17. Over all the twelve combinations that do not
add a step counter and all of the 3892 approximations, the maximum absolute
correlation we observed was 2−15.79 using a sample size of 240 plaintexts chosen
uniformly at random.

Overall, our correlation estimates based on linear trails seem to closely
approximate the actual absolute correlations since our estimate is only 21.21

times lower than the actual absolute correlation.

3.3 On the Algebraic Properties

Integral cryptanalysis exploits low algebraic degree or a more fine-grained alge-
braic degeneracy of the cryptographic primitive under attack. An integral dis-
tinguisher defines an input set X such that the analyzed function sums to zero
over this set (at least in some bits) for any value of the secret key involved.
In the case of a keyless permutation, such as an ARX-box, such distinguishers
are trivial to find and are meaningless. However, an analysis of the growth of
the algebraic degree (and the evolution of the algebraic structure in general)
provides a useful information about the permutation. When the permutation is
plugged into, for example, a block cipher, this information directly translates
into information about integral distinguishers.

Division property is a technique introduced by Todo [37] to find integral char-
acteristics. Later, Xiang et al. [41] discovered that the bit-based division property
propagation can be efficiently encoded as an mixed-integer linear programming
instance (MILP), and, surprisingly, can be solved on practice using modern opti-
mization software (Gurobi Optimizer [22]) for practically all known block ciphers.
Sun et al. [36] described a way to encode the modular addition operation using
MILP inequalities, extending the framework to ARX-based primitives.

We briefly recall the MILP-aided bit-based division property framework.

Definition 1 (Block-Based Division Property). Let n be an integer and let
X be a set of n-bit vectors. Let k be an integer, 0 ≤ k ≤ n. The set S satisfies
division property Dn

k if and only if for all u ∈ F
n
2 with wt(u) < k, we have⊕

x∈X xu = 0, where xu is a shorthand for xu0
0 . . . x

un−1
n−1 .

Definition 2 (Bit-Based Division Property). Let n be an integer and let
X,K be two sets of n-bit vectors, 0 /∈ K. The set X satisfies division property
DK if and only if for all u ∈ F

n
2 such that u ≺ k for all k ∈ K⊕

x∈X

xu = 0 ,

where u ≺ k if and only if u �= k and ui ≤ ki for all i, 0 ≤ i < n.

432 C. Beierle et al.

For further information on division property propagation and its encoding
using MILP inequalities, we refer to [41]. However, we describe briefly a new tech-
nique for encoding division property propagation through the modular addition.
Our technique is simpler and more compact than the one proposed by Sun et al.
[36].

Addition Modulo 232. The method by Sun et al. is based on expressing the
modular addition as a Boolean circuit and applying the standard known encoding
for xor and and operations. As a result, for each bit of a word at least 12 bit
operations are produced. We propose a new simple method which requires only
2 inequalities per bit.

Our key idea is to compute the carry bits and the output bits in pairs using a
3 × 2 bit look-up table. The division property propagation through this look-up
table can be encoded using only 2 inequalities.

Consider an addition of two n-bit words a, b ∈ F
n
2 and let y = a � b mod 2n

(recall that a0 denotes the most significant bit of a, an−1 denotes the least
significant bit of a, etc.). Define carry bits ci, 0 ≤ i < n as follows: cn−1 = 0 and
ci = Maj(ai+1, bi+1, ci+1) for −1 ≤ i < n − 1, where Maj is the 3-bit majority
function. Then it is easy to verify that yi = ai ⊕ bi ⊕ ci for all 0 ≤ i < n. Full
modular addition can be computed sequentially from i = n − 1 to i = 0. Let
f : F3

2 → F
2
2 be such that f(a, b, c) = (Maj(a, b, c), a ⊕ b ⊕ c), then we can write

(ci−1, yi) = f(ai, bi, ci),

for all 0 ≤ i < n. The lookup table of f is given in Table 4. Note that no bits
are copied in the sequential computation process. It follows that the division
property propagation can be encoded directly by encoding n sequential applica-
tions of f (using the S-Box encoding methods by Xiang et al. [41]). Finally, an
additional constraint is needed to ensure that the resulting division property is
not active in the bit c−1.

The division property propagation table is given in Table 5. This table can
be characterized by the two following integer inequalities:{

−a − b − c + 2c′ + y ≥ 0,

a + b + c − 2c′ − 2y ≥ −1,

where a, b, c ∈ Z2 correspond to the values of the input division property and
c′, y ∈ Z2 correspond to the values of the output division property. In our exper-
iments, these two inequalities applied for each bit position generate precisely
the correct division property propagation table of the addition modulo 2n for n
up to 7. There are a few redundant transitions, but they do not affect the result.

An alternative to MILP-solvers that is used for division property analysis
are SMT-solvers. To facilitate this alternative method, we characterize the divi-
sion property propagation table of f by four Boolean propositions (obtained by

Alzette: A 64-Bit ARX-Box 433

Table 4. Look-up table of f .

input output input output

000 00 100 01
001 01 101 10
010 01 110 10
011 10 111 11

Table 5. Division property propagation table of f .

input outputs input outputs

000 {00} 100 {01, 10}
001 {01, 10} 101 {10}
010 {01, 10} 110 {10}
011 {10} 111 {11}

enumerating all possible outputs and constraining respective inputs):⎧⎪⎪⎨
⎪⎪⎩

c′ ∧ y ⇒ a ∧ b ∧ c, � a = b = c = 1
¬c′ ∧ ¬y ⇒ ¬a ∧ ¬b ∧ ¬c, � a = b = c = 0
¬c′ ∧ y ⇒ (a ⊕ b ⊕ c) ∧ (¬a ∨ ¬b), � a + b + c = 1
c′ ∧ ¬y ⇒ (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c). � 1 ≤ a + b + c ≤ 2

We used this representation together with the Boolector SMT-solver [32] (version
3.1.0) to verify our results.

Finally, we note that subtraction modulo 2n, used in the inverse of Alzette,
is equivalent to the addition with respect to the division property propagation
in our method. Indeed, let f ′ : F3

2 → F
2
2,

f ′(a, b, c) = (c′, y) = ([a − b − c < 0], a ⊕ b ⊕ c),

where the first coordinate of f ′ computes the subtraction carry bit. It is in fact
equivalent to the first coordinate of f (the majority function) up to xor with
constants:

[a − b − c < 0] = [a + (1 − b) + (1 − c) < 2]
= 1 − [a + (1 − b) + (1 − c) ≥ 2] = 1 ⊕ f0(a, 1 ⊕ b, 1 ⊕ c).

We conclude that f ′ has the same division property propagation table as f and
thus division property propagation using our method is the same for modular
addition and subtraction.

Division Property Propagation in Alzette. First, we evaluated the general alge-
braic degree of the ARX-box structure based on the division property. The 5th

and 6th rounds rotation constants were chosen as the 1st and 2nd rounds rota-
tion constants respectively, as this will happen when two Alzette instances will
be chained. The inverse ARX-box structure starts with 4th round rotation con-
stants, then 3rd, 2nd, 1st, 4th, etc. The minimum and maximum degree among
coordinates of the ARX-box structure and its inverse are given in Table 6 Even
though these are just upper bounds, we expect that they are close to the actual
values, as the division property was shown to be rather precise [39]. Thus, the
Alzette structure may have full degree in all its coordinates, but the inverse of
an Alzette instance has a coordinate of degree 46.

The block-based division property of Alzette is such that, for any 1 ≤ k ≤ 62,
D64

k maps to D64
1 after two rounds, and D64

63 maps to D64
2 after two rounds and

to D64
1 after three rounds. The same holds for the inverse of an Alzette instance.

434 C. Beierle et al.

Table 6. The upper bounds on the minimum and maximum degree of the coordinates
of Alzette and its inverse.

Rounds 1 2 3 4 Inverse rounds 1 2 3 4

min 1 10 42 63 min 1 2 32 46
max 32 62 63 63 max 32 62 63 63

The longest integral characteristic found with bit-based division property is
for the 6-round ARX-box, where the input has 63 active bits and the inactive
bit is at the index 44 (i.e., there are 44 active bits from the left and 19 active
bits from the right), and in the output 16 bits are balanced:

input active bits:
11111111111111111111111111111111,11111111111101111111111111111111,

balanced bits after 6-round ARX-box (denoted by B) :
????????????????????????BBBBBBBB,?????????BBBBBBBB???????????????.

The inactive bit can be moved to indexes 45, 46, 47, 48 as well, the balanced
property after 6 round stays the same. For the 7-round ARX-box we did not
find any integral distinguishers.

For the inverse ARX-box, the longest integral characteristic is for 5 rounds:

input active bits:
11111111111111111111111111101111,11111111111111111111111111111111,

balanced bits after 5-round ARX-box inverse:
???????????????????????????????B,???????BBBBBBBBB????????????????.

For the ARX-box inverse with 6-rounds we did not find any integral character-
istic.

As a conclusion, even though a single Alzette instance has integral character-
istics, for two chained Alzette instances there are no integral characteristics that
can be found using the state-of-the-art division property method.

Experimental Algebraic Degree Lower Bound. The modular addition is the only
non-linear operation in Alzette. Its algebraic degree is 31 and thus, in each 4-
round Alzette instance, there must exist some output bits of algebraic degree at
least 32.

We experimentally checked that, for each instance Aci with ci as in Eq. (1),
the algebraic degree of each output bit is at least 32. In particular, for each
output bit we found a monomial of degree 32 that occurs in its ANF. Note that
for checking whether the monomial

∏m−1
i=0 xim occurs in the ANF of a Boolean

function f one has to evaluate f on 2m inputs.

3.4 Invariant Subspaces

Invariant subspace attacks were considered in [26]. For the round constants used
in Sparkle, using a similar “to and fro” method from [13,33], we searched for

Alzette: A 64-Bit ARX-Box 435

an affine subspace that is mapped by an Alzette instance Aci to a (possibly
different) affine subspace of the same dimension. We could not find any such
subspace of nontrivial dimension.

Note that the search is randomized so it does not result in a proof. As an
evidence of the correctness of the algorithm, we found many such subspace trails
for all 2-round reduced ARX-boxes, with dimensions from 56 up to 63. For
example, let A denotes the first two rounds of Ac0 . Then for all l, r, l′, r′ ∈ F

32
2

such that A(l, r) = (l′, r′), it holds that

(l29 + r21 + r30)(l30 + r31)(l31 + r0)(r22)(r23) =
(l′4 + r′

21)(l
′
5 + r′

22)(l
′
6 + r′

23)(l
′
28 + l′30 + l′31 + r′

13 + 1)(l′29 + l′31 + r′
14).

This equation defines a subspace trail of constant dimension 59.

3.5 Nonlinear Invariants

Nonlinear invariant attacks were considered recently in [38] to attack lightweight
primitives. For the round constants used in Sparkle, using linear algebra, we
experimentally verified that for any ARX-box Aci and any non-constant Boolean
function f of degree at most 2, the compositions f ◦Aci and f ◦A−1

ci have degree
at least 10:

∀f : F64
2 → F2, 1 ≤ deg(f) ≤ 2, deg(f ◦ Aci) ≥ 10,deg(f ◦ A−1

ci) ≥ 10,

and for functions f of degree at most 3, the compositions have degree at least 4:

∀f : F64
2 → F2, 1 ≤ deg(f) ≤ 3, deg(f ◦ Aci) ≥ 4,deg(f ◦ A−1

ci) ≥ 4.

In particular, any Aci has no cubic invariants. Indeed, a cubic invariant f would
imply that f ◦ Aci + ε = f is cubic (for a constant ε ∈ F2). The same holds for
the inverse of any ARX-box Aci .

By using the same method, we also verified that there are no quadratic
equations relating inputs and outputs of any Aci . However, there are quadratic
equations relating inputs and outputs of 3-round reduced versions of each Aci .

3.6 Summary of the Properties of Alzette

Our experimental results validate our theoretical analysis of the properties of
Alzette: in practice, the differential and linear trail probabilities (resp., absolute
correlations) are as predicted. In the case of differential probabilities, the clus-
tering is minimal. While it is not quite negligible in the linear case, our estimates
remain very close to the quantities we measured experimentally.

The diffusion is fast: all output bits depend on all input bits after a single
call of Alzette – though the dependency may be sometimes weak. After a double
call of Alzette, diffusion is of course complete. More formally, as evidenced by
our analysis of the division property, no integral distinguisher exist in this case.

436 C. Beierle et al.

While the two components have utterly different structures, Alzette has sim-
ilar properties to one round of AES and the double iteration of Alzette to the
AES super-S-box (see Table 7). The bounds for the (double) ARX-box come
from Table 2. For the AES, the bounds for a single rounds are derived from the
properties of its S-box, so its maximum differential probability is 4/256 = 2−6

and its maximum absolute linear correlation is 2−3. For two rounds, we raise
the quantities of the S-box to the power 5 because the branching number of the
MixColumn operation is 5,

Table 7. A comparison of the properties of Alzette with those of the AES with a fixed
key. MEDCP denotes the maximum expected differential trail probability and MELCC
denotes the maximum expected absolute linear trail correlation.

MEDCP MELCC

Alzette 2−6 2−2

AES S-box layer 2−6 2−3

Double Alzette ≤ 2−32 2−17

AES super S-box layer 2−30 2−15

These experimental verifications were enabled by our use of a key-less struc-
ture. For a block cipher, we would need to look at all possible keys to reach the
same level of confidence.

4 Implementation Aspects

4.1 Software Implementations

Alzette was designed to provide good security bounds, but also efficient imple-
mentation. The rotation amounts have been carefully chosen to be a multiple
of eight bits or one bit from it. On 8 or 16 bit architectures these rotations can
be efficiently implemented using move, swap, and 1-bit rotate instructions. On
ARM processors, operations of the form z ← x <op>(y ≪) can be executed
with a single instruction in a single clock cycle, irrespective of 	.

Alzette itself operates over two 32-bit words of data, with an extra 32-bit
constant value. This allows the full computation to happen in-register in AVR,
MSP and ARM architectures, whereby the latter is able to hold at least 4 Alzette
instances entirely in registers. This in turn reduces load-store overheads and
contributes to the performance of a primitive calling Alzette.

The consistency of operations allows one to either focus on small code size
(by implementing the parallel Alzette instances in a substitution layer in a loop),
or on architectures with more registers, execute two or more instances to exploit
instruction pipelining. This consistency of operations also allows some degree of
parallelism, namely by using Single Instruction Multiple Data (SIMD) instruc-
tions. SIMD is a type of computational model that executes the same operation
on multiple operands. Due to the layout of Alzette, an SIMD implementation can

Alzette: A 64-Bit ARX-Box 437

be created by packing x0 . . . xnb
, y0 . . . ynb

, and c0 . . . cnb
each in a vector register.

That allows 128-bit SIMD architectures such as NEON to execute four Alzette
instances in parallel, or even eight instances when using x86 AVX2 instructions.

Table 8. Execution time (in clock cycles) and codes size (in bytes) of Alzette.

Platform Execution time Code size

8-bit AVR ATmega128 78 156
32-bit ARM Cortex-M3 12 48

Table 8 summarizes the execution time and code size of Alzette on an 8-bit
AVR and a 32-bit ARM Cortex-M3 micro-controller. The assembler implemen-
tation of Alzette for the latter architecture consists of 12 instructions, which
take 12 clock cycles to execute. The actual code size of Alzette may be less
than 48 bytes since the Cortex-M3 supports Thumb2, which means some sim-
ple instructions can be only 16 bits long. However, whether an instruction is
16 or 32 bits long depends, among other things, on the register allocation. Our
ARM implementation assumes that the two 32-bit branches of Alzette and the
round constant are already in registers and not in memory, which is a reasonable
assumption since the register file of a Cortex-M3 is big enough to accommodate
a few instances of Alzette together with a few round constants.

The situation is a bit different for 8-bit AVR. The arithmetic/logical oper-
ations of Alzette amount to 78 instructions altogether, each of which executes
in a single cycle, i.e. 78 clock cycles in total. Each of the used instructions has
a length of 2 bytes, yielding a code size of 156 bytes. However, in contrast to
ARM, we can not take it for granted that the whole state of a cipher fits into
the register file of an AVR micro-controller, which means the load and store
operations should be considered when evaluating the execution time. Loading
a byte from RAM takes 2 cycles, while loading a byte from flash (e.g. for the
round constants) requires 3 cycles. Storing a byte in RAM takes also 2 cycles.
Consequently, when taking all loads/stores into account (including the loading
of a round constant from flash), the execution time increases from 78 to 122
cycles and the code size from 156 to 196 bytes.

4.2 Hardware Implementations

A hardware implementation can, for example, use a 32-bit ALU that is able
to execute the following set of basic arithmetic/logical operations: 32-bit XOR,
addition of 32-bit words, and rotations of a 32-bit word by four different amounts,
namely 16, 17, 24, and 31 bits. Since there are only four different rotation
amounts, the rotations can be simply implemented by a collection of 32 4-to-1
multiplexers. There exist a number of different design approaches for a 32-bit
adder; the simplest variant is a conventional Ripple-Carry Adder (RCA) com-
posed of 32 Full Adder (FA) cells. RCAs are very efficient in terms of area
requirements, but their delay increases linearly with the bit-length of the adder.

438 C. Beierle et al.

Alternatively, if an implementation requires a short critical path, the adder can
also take the form of a Carry-Lookahead Adder (CLA) or Carry-Skip Adder
(CSA), both of which have a delay that grows logarithmically with the word
size. On the other hand, when reaching small silicon area is the main goal, one
can “re-use” the adder for performing XOR operations. Namely, an RCA can
output the XOR of its two inputs by simply suppressing the propagation of car-
ries, which requires an ensemble of 32 AND gates. In summary, a minimalist
ALU consists of 32 FA cells, 32 AND gates (to suppress the carries if needed),
and 32 4-to-1 multiplexers (for the rotations). To minimize execution time, it
makes sense to combine the addition (resp. XOR) with a rotation into a single
operation that can be executed in a single clock cycle.

5 Alzette as a Building Block

Alzette is at the core of two families of lightweight algorithms that are among the
second round candidates of the NIST lightweight cryptography standardization
process, namely the hash functions Esch and the authenticated ciphers with
associated data Schwaemm (submission Sparkle [8]). In this section, we show
that it can also be used to easily construct block ciphers. This approach is
flexible: combining Alzette with simple linear layers, we can simply build step
functions operating on 64-, 128- and 256-bit blocks. We explain this approach
and analyze the security of its result in Sect. 5.1. Specific instances are then given
in Sect. 5.2, namely the 64-bit lightweight block cipher Crax, and the 256-bit
tweakable block cipher Trax.

5.1 Skeletons for a Family of (Tweakable) Block Ciphers

Our approach relies on the long trail strategy pioneered by the designers of
Sparx [19], and which was then used to build sLiSCP [3], sLiSCP-light [4]
as well as the NIST lightweight candidates using them (SPIX [2], SPOC [1],
Sparkle [8]). Provided that the round function allows its use, this method pro-
vides a simple algorithm for bounding the probability of differential and linear
trails. To achieve this, we loop over all possible truncated trails, and bound the
probability of all differential (resp. linear) trails that conform to the truncated
trail using the differential (resp. linear) bounds of the employed S-box, including
those for multiple iterations when relevant. In all the algorithms listed above,
variants of the Feistel structure have been applied because such round functions
lend themselves well to such an analysis.

It is simple to adapt this framework to the design of Alzette-based block
ciphers. Furthermore, the structure of a long trail argument allows for an efficient
algorithm bounding the probability of related-tweak differentials.6 Indeed, in our
6 Note that, in a related-tweak differential, we allow non-zero input differences not only

in the plaintext, but also in the tweak value. This is because the attacker can choose
the tweak, i.e., he has access to an encryption oracle for the cipher instantiated
with a tweak T and a (random) key K and to an encryption oracle for a cipher
instantiated with tweak T ⊕ Δ and key K, where Δ can be freely chosen.

Alzette: A 64-Bit ARX-Box 439

case, the S-box used is 64 bit wide. Thus, the number of bits needed to describe
a truncated differential in a given internal state is very small, only 4 suffice for a
block size of 256 bits. Besides, the use of a Feistel structure implies that half of
these bits are mere copies of the ones in the previous round. As a consequence,
the total number of truncated trails that must be considered is low.

It also implies that the impact of a tweak difference is manageable: if the
tweak difference activates a previously inactive S-box then its presence does
not increase the number of truncated trails. On the other hand, a possible can-
cellation merely multiplies the number of possible trails by 2. An algorithm
enumerating all related-tweak truncated trails such that the probability of all
differential trails that conform to them is below a given threshold, is therefore
easy to write and is efficient. In fact, our straight-forward Python implementa-
tion returned all the results needed for this paper in a matter of seconds at worst.
Large S-boxes such as Alzette are therefore very convenient building blocks to
construct tweakable block ciphers with strong security arguments.

Fig. 2. The round functions of Trax-S, Trax-M, and Trax-L, respectively.
�′(z1, z2, z3, z4) = (z4, z3 ⊕ z4, z2, z1 ⊕ z2), where zi are 16-bit words. The tweak is
added only in odd steps.

Below, we present three Alzette-based (tweakable) block cipher structures for
which we provide upper bounds on the probability of the best differential trail in
both the single-key and the related-tweak setting. Of course, we also investigate
other attacks. The “S”, “M” and “L” versions operate on 64, 128 and 256 bits
respectively and their round functions are depicted in Fig. 2 (pseudo-code is
provided in the full version). Their properties are summarized in Table 9:

– re(c) rounds are needed to prevent the existence of known single-key distin-
guishers with a data complexity upper bounded by 2c in total,

– rT
e (c) rounds are needed to prevent the existence of known related-tweak

distinguishers with a data complexity upper bounded by 2c in total (possibly
spread across multiple tweak values), and

440 C. Beierle et al.

– rd rounds are needed in order for all the bits of the state to depend on all the
bits of the key.

For example, if the best single-key differential trail with a probability above 2−n

covers r rounds, then re ≥ r + 1. It is assumed that n-bit subkeys are used.
It is assumed that there is no tweak schedule, i.e. that the tweak is simply

xored in the same part of the state each time it is added. As discussed below,
we found that the security level was higher when this addition occurred every
second step. The motivation for this simple tweak-schedule is simple: the tweak is
expected to change far more often than the key, so using a trivial tweak-schedule
will improve the performances of our algorithms.

Of course, we can set the tweak to a constant (e.g. 0) and obtain a tweak-
less “regular” block cipher.7 For the skeleton structures, we do not specify key
schedules and leave it to cipher designers to come up with appropriate ones for
their use cases. Related-key and related-tweak security will of course depend on
the specifics of the key schedule chosen. We present concrete ciphers using these
structures in Sect. 5.2 (along with their key schedules). Our best distinguishers
against the various versions of our step function are summarized in Table 10.
Related-tweak integral cryptanalysis is given in the full version of this paper.

Table 9. The properties of the different (tweakable) round functions.

Version n |T | rd re rT
e (n) rT

e (n/2)

S 64 64 2 5 8 4

M 128 64 2 7 11 6

L 256 128 3 10 16 9

The S Version. It operates on 64 bits, meaning that it simply consists in iterating
Alzette, interleaving it with key additions. The tweak is xored every second step
as it allows to ensure that at least one double Alzette is active during 4 steps.
Thus, 8 steps are sufficient to prevent related-tweak differential distinguishers
with a data complexity of 264. If we remove the tweak then we need 4 steps to
argue the absence of differential distinguishers.

We start adding the tweak at the beginning of step 1 and not step 0 as it
could otherwise trivially be cancelled out with chosen plaintexts.

As we saw in Sect. 3.2, linear distinguishers are in practice less predictable
than differential ones. In particular, they exhibit some key-sensitivity that we
did not observe in the differential case. As our bound for 4 steps is at the edge
of being exploitable (2−34), a small key-dependent deviation may allow 4-step
distinguishers. As a consequence, we consider that 5 steps are needed to prevent
linear distinguishers. Note that, allowing related tweaks does not give an advan-
tage when looking for linear distinguisher, as established by Kranz et al. [24].
7 We do not consider related-cipher attacks between the obtained block cipher and

the corresponding tweakable block cipher.

Alzette: A 64-Bit ARX-Box 441

Table 10. The number of steps re(i) needed for the S, M and L step functions to
prevent various distinguishers with a data complexity of at most 2i. “RT” stands for
“related-tweak” where the tweak is added in every odd step. As re(n/2) ≤ re(n), we
use the latter if the former is not known and use “†”. For comparison, we give re(i) for
the AES using thatit achieves 25 active S-boxes in any non-trivial 4-round (differential
or linear) trail and plugging in the bounds for its S-box provided in Table 7.

Distinguisher Differential Linear Imp. diff. RT differential

S
re(n) 4 5 2 8

re(n/2) 2 3 2† 4

M
re(n) 7 7 4 11

re(n/2) 4 4 4† 6

AES-128
re(n) 4 4 5 –

re(n/2) 4 4 5† –

L
re(n) 10 10 4 16

re(n/2) 5 6 4† 9

The security against integral attacks and other attacks that would exploit
a slow diffusion (like impossible differential attacks) also follows directly from
our analysis of Alzette: our best integral distinguisher relies on the bit-based
division property and covers only 6 rounds of Alzette, i.e. 1.5 steps. Extending it
backwards, we can obtain at most an 11-round zero-sum distinguisher, i.e. one
that covers 2.75 steps. Thus, 3 steps are sufficient to prevent them. Since we
have full diffusion in one step, there cannot be an impossible differential found
via a miss-in-the-middle that covers 2 steps.

Assuming that the key schedule uses statistically independent key bits in even
and odd steps, we need only rd = 2 steps to ensure that all bits depend (although
possibly weakly) on all key bits. This result, along with all the distinguishers we
investigated for this step function, are summarized in Table 10.

The M Version. In order to operate on 128 bits, we use a simple Feistel round as
the linear layer that maps (x, y) to (y ⊕ x, x). This structure ensures long trails.
To further foster the existence of long trails, we only XOR the tweak on half of
the state, namely at the input of the Alzette instance which is always doubled
due to the structure of the linear layer.

We have found using our long trail argument implementation that the best
frequency for adding a tweak corresponds to an addition every second round (as
for the S version). A smaller or larger number of steps between tweak additions
would lead to worse differential bounds. As in the S version, we start adding the
tweak at the beginning of step 1.

A long trail argument shows that differential and linear distinguishers become
infeasible when the number of steps is at least equal to 7. Unlike in the S version,
trail clustering is less of a concern here. Indeed, we observed the clustering within
one Alzette to be minimal, and unlike in the S version, the linear masks are
constrained in each step by the presence of the linear layer. It is not sufficient
for the input and output masks of a double Alzette to be identical: in order to

442 C. Beierle et al.

leverage clustering, we now need that the mask at the end of the first Alzette
call is the same in all trails as well.

In the related-tweak setting, there could exist differential trail covering more
than 7 steps with usable probabilities but none covering 11 steps (or more). If
we restrict ourselves to attack with a data complexity at most equal to 264 then
no useful related-tweak trail can cover more than 6 steps.

This step function employs a Feistel structure with a bijective Feistel func-
tion but the well known 5-round impossible differential identified by Knudsen [23]
cannot be used here. Indeed, our non-linear permutation (Alzette) is applied on
both branches in each round, thus breaking the pattern used by this distin-
guisher. In fact, the best impossible differential we can find only covers 4 steps:
the probability of the transition (0, δ) � (Δ,Δ) is equal to 0 for any non-zero
64-bit differences δ and Δ. It needs about 232 chosen plaintexts to be exploited.

Since the key is of the same size as the block, the number of rounds needed
for diffusion of the key material is the number of rounds needed all state bits to
impact the whole state. In this case, it is rd = 2.

The L Version. This round function operates on 256-bit using 4 Alzette instances
in parallel. The round key is added in the full state. The best frequency for adding
the tweak is every second step, for the same reason as for the M version: changing
this frequency leads to worse differential bounds in the related-tweak setting.

This round function is similar to the one of Sparkle: a lot of the cryptanal-
ysis performed for this algorithm directly carries over (see [8]). In particular, the
type of attacks for which we need the largest number of steps to prevent the
existence of distinguishers is indeed the linear one in the single-tweak setting.

As for the M version, the number of rounds needed for diffusion of the key is
the number needed for all state bits to impact the whole state. Here, it is rd = 3.

5.2 Recommended Instances

Choosing the Number of Steps. In order to evaluate the number of steps needed to
build a secure cipher, we observed that attacks against block ciphers are usually
constructed using a specific distinguisher against a round-reduced version of the
algorithm. Then, rounds are added at the top and at the bottom using key
guesses. As a consequence, we used the following heuristic.

Heuristic (Number of rounds). Suppose that a block cipher round function
is such that:

– re rounds are needed to prevent the existence of known (and relevant) distin-
guishers, and

– rd rounds are needed in order for all the bits of the state to depend on all the
bits of the key.

Then, we suggest using a number of rounds equal to Hη = �2rd + (1 + η)re�,
where η is a security factor intended to take into account possible improvements
of the relevant distinguishers.

Alzette: A 64-Bit ARX-Box 443

This method is heuristic as it is impossible to foresee how the best distinguish-
ers will be improved, if at all. At the same time, we think it makes more sense
than an approach based e.g. on simply doubling the number of rounds needed to
prevent known distinguisher since it takes into account the actual structure of
the attacks known. Our restriction to “relevant” distinguisher allows for example
designers to discard related-key distinguisher if those are not relevant for their
design. On the other hand, in our case, we consider related-tweak distinguishers
to be relevant. In our definition of rd, we assume that the diffusion is equally
fast in the forward and in the backward direction.

A Lightweight Block Cipher. We can use our round function to build Crax-S-
10, a lightweight block cipher operating on 64-bit using a 128-bit key intended
for the most constrained micro-controllers. We claim that it provides 128 bits of
security in the single-key setting. A reference implementation is provided in the
full version. We used a security factor η = 0.2, so that the total number steps
corresponds to 10 = �2 + 2 + re × 1.2�.

Our cipher uses a tweakless instance of the S step function described above.
Since the step function has good diffusion and since we do not aim for related-
key security, we use a very simple key schedule: the 64-bit round key ki used
at the beginning of step i is simply ki = Ki mod 2 ⊕ i, where the master key is
(K0,K1). As there is no tweak, we do not need to worry about a bad interaction
between tweak and key.

In order to prevent slide properties, we use the step counter in combination
with a reduction of the number of round constants: instead of using all 8 of
them, we only use 5. That way, in the first half of the cipher the steps involve ci

and Ki mod 2 while in the second half they use ci and K(i+1) mod 2. For other
attacks, the security of Crax-S-10 follows directly from our analysis of Alzette.

Crax-S-10 is a very lightweight block cipher, arguably one of the the lightest
ever reported in the literature when it comes to micro-controller implementa-
tions. The code size, RAM consumption, and execution time of Crax-S-10 on
an 8-bit AVR and a 32-bit ARM Cortex-M3 micro-controller are summarized
in Table 11, along with those of Speck-64/128 [7]. We obtained the results for
Speck from the best implementations contained in the FELICS project [18],
namely the implementation “03” for ARM Cortex-M3 and the implementation
“06” for the AVR architecture.8 As Speck has the best performances across
micro-controllers, it serves as a good benchmark for comparison.

The ARM implementation of Crax we benchmarked is the optimized C
code included in the full version of this paper. Encrypting a single 64-bit block
on a Cortex-M3 takes 239 cycles (including function-call overhead), and the
decryption has exactly the same execution time. For comparison, Speck-64/128
encrypts and decrypts at a rate of 184 and 254 cycles per block, respectively.
However, since Speck needs first to run its key schedule, Crax-S-10 encryption

8 The source code of these Speck implementations and the complete benchmarking
results are available on the CryptoLux wiki at http://www.cryptolux.org/index.php/
FELICS Block Ciphers Detailed Results (“Scenario 0”).

http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results
http://www.cryptolux.org/index.php/FELICS_Block_Ciphers_Detailed_Results

444 C. Beierle et al.

Table 11. A comparison of our implementation of Crax-S-10 with Speck-64/128.
RAM and ROM consumption are measured in bytes and the time for processing a
64-bit block is given in clock cycles.

Enc. 64-bit Dec. 64-bit Key schedule

ROM RAM Time ROM RAM Time ROM RAM Time

32-bit ARM Speck 340 132 184 448 132 254 48 132 514

(Cortex-M3) Crax-S 196 36 239 202 36 239 0 0 0

8-bit AVR Speck 542 132 997 706 132 1139 178 132 1401

(ATmega128) Crax-S 584 20 1257 582 20 1249 0 0 0

is faster than Speck for short messages of up to 9 blocks (i.e. 72 bytes). The
Speck implementation occupies significantly more RAM than that of Crax
(mostly because of the round keys) and has a much smaller binary code size.

The results for the 8-bit AVR platform in Table 11 were both obtained with
hand-written assembler implementations. When executed on an ATmega128
micro-controller, Crax-S-10 is slower than Speck-64/128 when we leave the key
schedule aside, but is actually faster on short messages (up to 5 blocks). Similar
to ARM, the round keys make Speck significantly more RAM-demanding than
Crax. In terms of code size, the decryption Crax is smaller than that of Speck,
while the encryption is slightly larger. However, when both functionalities are
needed, Crax consumes less code space than Speck (including key schedule).

In summary, we can say that Crax is at least as light as Speck (lighter on
ARM, comparable on AVR). Further, Crax shines for short messages, which
are common in real-world applications like simple challenge-response protocols
for the authentication of RFID tags and other IoT devices.

A Wide Tweakable Block Cipher. We can build an efficient software-oriented
256-bit tweakable block cipher with a 256-bit key and a 128-bit tweak using
Trax-L-17 (pronounced “T-rax”). We claim related-tweak security as long as
the total number of (x, T) queries to the encryption (or decryption) oracle for a
given key k is at most equal to 2128. We do not make any claim in the related-key
setting. A reference implementation is provided in the full version.

The motivation for this bound on the data complexity is simple: while an
attacker may have tremendous computing power, it is impossible that they
obtain this many plaintext/ciphertext pairs. Furthermore, the security of many
modes of operations drops when the amount of queries reaches the birthday
bound—2128 in our case. Combining the fact that the best distinguisher in the
related-tweak setting cannot cover 9 steps with the same security factor as Crax-
S-10 (namely η = 0.2), we use �3 + 3 + 1.2 × 9� = 17 steps.

For the key schedule, we use a simple generalized Feistel structure to update
the key state and thus derive ki+1 = Fi(ki), where k0 is the 256-bit master key
and where Pi is σ ◦ Fi, with σ(x0, ..., x7) = (x1, x2, x3, x4, x5, x6, x7, x0) and

Fi(x0, x1, x2, x3, x4, x5, x6, x7) =
(
x0 + x1 + c2i+1, x1, x2 ⊕ x3 ⊕ i, x3,

x4 + x5 + c2i, x5, x6 ⊕ x7 ⊕ (i � 16), x7

)
,

Alzette: A 64-Bit ARX-Box 445

where the constant indices are taken modulo 8. This key schedule ensures that
the key material undergoes some transformation so as to break potential patterns
linking subkeys and tweak.

A tweakable block cipher lends itself well to a parallelizable mode of operation
such as ΘCB [25], a variant of OCB which saves its complex overhead needed to
turn a regular block cipher into a tweakable one. Since our block size is equal to
256 bits, attacks relying on collisions obtained via the birthday paradox are non-
issue with Trax-L-17. Some modes such as the Synthetic Counter-in-Tweak [35]
can retain a security level up to the birthday bound in case of nonce misuse. As
suggested in [15], using a 256-bit block cipher can also help providing post-
quantum security in cases where the attacker is given a lot of power (e.g. if the
primitive runs on a quantum computer).9

In summary, Trax-L-17 can be used in SCT mode to provide 128 bits of
security in case of nonce-misuse, and its large block size can frustrate some
quantum attacks when used in the same mode as Saturnin: it can be used to
offer a very robust authenticated encryption. On a Cortex-M3 micro-controller,
the generation of sub-keys takes 980 cycles and the encryption has an execution
time of 2506 cycles (both results are based on a standard C implementation).
For comparison, Saturnin is more than two times slower on ARM (a detailed
comparison can be found in the full version).

The use of 32-bit operations implies that it is possible to vectorize the com-
putation of several parallel Trax-L-17 instances on many platforms, meaning
that its speed can be multiplied whenever e.g. AVX instructions are available.

6 Conclusion

Alzette is a component of a new kind, a wide S-box operating on 64 bits that can
nevertheless be argued to provide strong security against many attacks. Because
of its reliance on ARX operations with carefully chosen rotations, a constant-
time implementation is both easy to write and very efficient on a wide class of
processors and micro-controllers.

The NIST LWC submission Sparkle [8] provides the first application of the
Alzette S-box, but we showed that Alzette can also be used to design software-
efficient (tweakable) block ciphers on a variety of block lengths. A modified
long-trail argument allows us to estimate the number of rounds needed to pro-
vide security with regard to (related-tweak) differential and linear attacks. We
provided two concrete instances of this approach: the 64-bit block cipher Crax
and the 256-bit tweakable block cipher Trax. Due to its very simple key sched-
ule, Crax is competitive compared to the block cipher Speck: it consumes less

9 We remark that in several modes of operations, like ΘCB, it is necessary to take
care of domain separation. For instance, a few bits of the tweak can be reserved for
this purpose. For example, the NIST lightweight AEAD candidate SKINNY-AEAD [10]
simply dedicates one byte of the tweak for domain separation. Therefore, if a full
256-bit tweak needs to be exploited, a tweakable block cipher with a (slightly) larger
tweak length of 256 + x would be beneficial.

446 C. Beierle et al.

RAM and is faster for short messages consisting of up to nine 64-bit blocks. On
the other hand, the large block size of Trax can be used to obtain strong secu-
rity guarantees in settings where the attacker is quite powerful (nonce-misuse,
quantum computing) while its use of a tweak eases the use of parallelizable
modes of operation that can better leverage vector instructions.

Acknowledgements. Part of the work of Christof Beierle was funded by Deutsche
Forschungsgemeinschaft (DFG), project number 411879806, and part of the work
of Christof Beierle was performed while he was at the University of Luxem-
bourg and funded by the SnT CryptoLux RG budget. Luan Cardoso dos San-
tos is supported by the Luxembourg National Research Fund through grant
PRIDE15/10621687/SPsquared. Part of the work of Aleksei Udovenko was performed
while he was at the University of Luxembourg and funded by the Fonds National de
la Recherche Luxembourg (project reference 9037104). Part of the work by Vesselin
Velichkov was performed while he was at the University of Luxembourg. The work of
Qingju Wang is funded by the University of Luxembourg Internal Research Project
(IRP) FDISC. The experiments presented in this paper were carried out using the
HPC facilities of the University of Luxembourg [40] – see https://hpc.uni.lu.

References

1. AlTawy, R., et al.: SpoC: an authenticated cipher. NIST round 2 lightweight
candidate (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf

2. AlTawy, R., Gong, G., He, M., Mandal, K., Rohit, R.: SPIX: an authenticated
cipher. NIST round 2 lightweight candidate (2019). https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
spix-spec-round2.pdf

3. AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: sLiSCP: Simeck-
based permutations for lightweight sponge cryptographic primitives. In: Adams, C.,
Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 129–150. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72565-9 7

4. Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., Gong, G.: SLISCP-light:
towards hardware optimized sponge-specific cryptographic permutations. ACM
Trans. Embed. Comput. Syst. 17(4), 81:1–81:26 (2018)

5. Barreto, P., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new
cryptographic hash function. Des. Codes Cryptogr. 56(2), 141–162 (2010). https://
doi.org/10.1007/s10623-010-9391-y

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013). http://eprint.iacr.org/2013/404

7. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK block ciphers on AVR 8-bit microcontrollers. Cryptology
ePrint Archive, Report 2014/947 (2014). http://eprint.iacr.org/2014/947

8. Beierle, C., et al.: SCHWAEMM and ESCH: lightweight authenticated encryption
and hashing using the Sparkle permutation family. NIST round 2 lightweight
candidate (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf

https://hpc.uni.lu
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spoc-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/spix-spec-round2.pdf
https://doi.org/10.1007/978-3-319-72565-9_7
https://doi.org/10.1007/s10623-010-9391-y
https://doi.org/10.1007/s10623-010-9391-y
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2014/947
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/sparkle-spec-round2.pdf

Alzette: A 64-Bit ARX-Box 447

9. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. Part II. LNCS, vol.
9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

10. Beierle, C., et al.: SKINNY-AEAD and SKINNY-Hash. NIST round 2 lightweight
candidate (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf

11. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

12. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

13. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 3

14. Biryukov, A., Velichkov, V., Corre, Y.L.: Automatic search for the best trails in
ARX: application to block cipher speck. In: Peyrin [34], pp. 289–310

15. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for
post-quantum security. NIST round 2 lightweight candidate (2019). https://csrc.
nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/
spec-doc-rnd2/saturnin-spec-round2.pdf

16. Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. Part I. LNCS, vol. 10031.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6

17. Dinu, D.: Efficient and secure implementations of lightweight symmetric crypto-
graphic primitives. Ph.D. thesis, University of Luxembourg (2017). https://orbilu.
uni.lu/handle/10993/33803

18. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
Triathlon of lightweight block ciphers for the Internet of things. J. Cryptogr. Eng.
9(3), 283–302 (2018). https://doi.org/10.1007/s13389-018-0193-x

19. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon and
Takagi [16], pp. 484–513

20. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for speck. In: Peyrin [34], pp. 268–288

21. Gueron, S., Johnson, S., Walker, J.: SHA-512/256. Cryptology ePrint Archive,
Report 2010/548 (2010). http://eprint.iacr.org/2010/548

22. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2018). http://
www.gurobi.com

23. Knudsen, L.: Deal - a 128-bit block cipher. NIST AES Proposal (1998)
24. Kranz, T., Leander, G., Wiemer, F.: Linear cryptanalysis: key schedules and tweak-

able block ciphers. IACR Trans. Symmetric Cryptol. 2017(1), 474–505 (2017)
25. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption

modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

26. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 12

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/saturnin-spec-round2.pdf
https://doi.org/10.1007/978-3-662-53887-6
https://orbilu.uni.lu/handle/10993/33803
https://orbilu.uni.lu/handle/10993/33803
https://doi.org/10.1007/s13389-018-0193-x
http://eprint.iacr.org/2010/548
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-3-642-22792-9_12

448 C. Beierle et al.

27. Liu, Y., Wang, Q., Rijmen, V.: Automatic search of linear trails in ARX with
applications to SPECK and Chaskey. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 485–499. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 26

28. Liu, Z.: Automatic tools for differential and linear cryptanalysis of ARX ciphers.
Ph.D. thesis, University of Chinese Academy of Science (2017). (in Chinese)

29. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

30. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: Santis, A.D. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0053451

31. Niels, F., et al.: The Skein hash function family. Submission to the NIST SHA-3
competition (round 3) (2010)

32. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. J. Satisf.
Boolean Model. Comput. 9, 53–58 (2014 (published 2015)). https://github.com/
boolector/boolector

33. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054126

34. Peyrin, T. (ed.): FSE 2016. LNCS, vol. 9783. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-52993-5

35. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. Part
I. LNCS, vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53018-4 2

36. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. Part I. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

37. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. Part I. LNCS, vol. 9056, pp. 287–314.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

38. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack - practical attack
on full SCREAM, iSCREAM, and Midori64. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. Part II. LNCS, vol. 10032, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 1

39. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin [34], pp. 357–377

40. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic
HPC cluster: the UL experience. In: Proceedings of the 2014 International Confer-
ence on High Performance Computing & Simulation (HPCS 2014), pp. 959–967.
IEEE, Bologna, July 2014

41. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon and Takagi [16], pp. 648–678

https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/978-3-319-39555-5_26
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/BFb0053451
https://github.com/boolector/boolector
https://github.com/boolector/boolector
https://doi.org/10.1007/BFb0054126
https://doi.org/10.1007/978-3-662-52993-5
https://doi.org/10.1007/978-3-662-52993-5
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-319-70694-8_5
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-53890-6_1

Delay Functions

Order-Fairness for Byzantine Consensus

Mahimna Kelkar1,2,3(B), Fan Zhang1,2,3, Steven Goldfeder1,2,3,
and Ari Juels1,2,3

1 Cornell Tech, New York, USA
{mahimna,fanz}@cs.cornell.edu,
{goldfeder,juels}@cornell.edu
2 Cornell University, Ithaca, USA

3 The Initiative for CryptoCurrencies & Contracts (IC3), New York, USA

Abstract. Decades of research in both cryptography and distributed
systems has extensively studied the problem of state machine replication,
also known as Byzantine consensus. A consensus protocol must satisfy
two properties: consistency and liveness. These properties ensure that
honest participating nodes agree on the same log and dictate when fresh
transactions get added. They fail, however, to ensure against adversarial
manipulation of the actual ordering of transactions in the log. Indeed, in
leader-based protocols (almost all protocols used today), malicious lead-
ers can directly choose the final transaction ordering.

To rectify this problem, we propose a third consensus property: trans-
action order-fairness. We initiate the first formal investigation of order-
fairness and explain its fundamental importance. We provide several nat-
ural definitions for order-fairness and analyze the assumptions necessary
to realize them.

We also propose a new class of consensus protocols called Aequitas.
Aequitas protocols are the first to achieve order-fairness in addition to
consistency and liveness. They can be realized in a black-box way using
existing broadcast and agreement primitives (or indeed using any consen-
sus protocol), and work in both synchronous and asynchronous network
models.

1 Introduction

The abstraction of state machine replication has been investigated in cryptogra-
phy and distributed systems literature for the past three decades. At a high level,
the goal of a state machine replication protocol is for a set of nodes to agree on
an ever-growing, linearly ordered log of messages (transactions). Two properties
need to be satisfied by such a protocol: (1) Consistency - all honest nodes must
have the same view of the agreed upon log—that is, they must output messages

The full version of this paper is available at https://eprint.iacr.org/2020/269 [27].

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 451–480, 2020.
https://doi.org/10.1007/978-3-030-56877-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_16&domain=pdf
https://eprint.iacr.org/2020/269
https://doi.org/10.1007/978-3-030-56877-1_16

452 M. Kelkar et al.

in the same order; and (2) Liveness - messages submitted by clients are added
to the log within a reasonable amount of time. In this paper, we will use the
terms state machine replication and consensus1 interchangeably.

Unfortunately, neither consistency nor liveness says anything about the
actual ordering of transactions in the final log. A protocol that ensures that
all nodes agree on the same ordering is deemed consistent regardless of how the
ordering is generated. This leaves room for the definition to be satisfied even if
an adversary directly chooses the actual transaction ordering, which is discom-
forting considering that the ordering is often easy to manipulate [7]. Moreover, in
all existing protocols that rely on a designated “leader” node (e.g., [15,34,44]),
which includes most used in practice, an adversarial leader may choose to pro-
pose transactions in any order.

In this paper, we formulate a new property for byzantine consensus which we
call order-fairness. Intuitively, order-fairness denotes the notion that if a large
number of nodes receive a transaction tx1 before another one tx2, then this
should somehow be reflected in the final ordering.

Importance of Fair Transaction Ordering. The need for a notion of fair
transaction ordering is immediately clear when looking at financial systems.
Here, the execution order can determine the validity and/or profitability of a
given transaction. Suppose Bob has $0, and two transactions are initiated: tx0,
which sends $5 from Alice to Bob, and tx1, which sends $5 from Bob to Carol. If
tx0 is sequenced before tx1, then both transactions are valid; the opposite order-
ing invalidates tx1. Manipulation of transaction ordering is a well known phe-
nomenon on Wall Street [32], but recent work has shown it to also be common-
place in consensus-based systems such as permissionless blockchains. A recent
paper by Daian et al. [20], for example, reports rampant adversarial manipula-
tion of transactions in the Ethereum network [23] by bots extracting upwards of
USD 6M in revenue from unsophisticated users.

Comparison to Validity in Byzantine Agreement. Beyond its critical prac-
tical importance, we believe that order-fairness is a key missing theoretical con-
cept in existing consensus literature. To underscore this point, consider Byzan-
tine agreement [30], or single-shot agreement, another well-studied problem in
consensus literature. For Byzantine agreement, each node starts with a single
value within a set V. The goal is for all nodes to agree on the same value. Valid-
ity requires that if all honest nodes start with the same value v, then the agreed
upon value should also be v.

The property of order-fairness is a natural analog of validity formulated
for the consensus problem, i.e., extension of Byzantine agreement to multiple
rounds. If all honest nodes start with the belief that a transaction tx1 precedes
another transaction tx2, by natural analogy with validity, the final output log

1 The term “consensus” has been used in systems literature for a number of related
primitives, including “single-shot” consensus. However, in this paper, we use “con-
sensus” to refer to the problem of “state machine replication.”

Order-Fairness for Byzantine Consensus 453

should sequence tx1 before tx2. Consequently, we maintain that order-fairness is
a natural property of independent theoretical interest in the consensus literature.

1.1 Our Contributions

The main contributions of our paper are three-fold: (1) First, we investigate
a natural notion of fair transaction ordering and show why it is impossible to
realize. (2) Second, we investigate slightly weaker notions of fair ordering that
are intuitive yet achievable. Still, we find that no existing consensus protocol
achieves them. (3) Third, we introduce a new class of consensus protocols that
we refer to as Aequitas2. Aequitas protocols achieve fair transaction ordering while
also providing the usual consistency and liveness. We discuss Aequitas protocols
in both synchronous and asynchronous settings.

Defining Order-Fairness and Impossibility Results. To model our con-
sensus protocols, we use an approach similar to prior work by Pass et al. [39,40],
wherein protocol nodes receive transactions from clients and need to output or
deliver them in a way that satisfies consistency and liveness. We detail our model
in Sect. 2. Within this model, we provide the first formalization of the property
of order-fairness (Sect. 4). We start with a natural definition based on when
transactions are received by nodes.

Definition 1 (Receive-Order-Fairness, informal; formalized in Defini-
tion 9). If sufficiently many (at least γ-fraction) nodes receive a transaction tx
before another transaction tx′, then all honest nodes must output tx before tx′.

While Definition 1 is intuitive, it turns out that it is impossible to achieve unless
we assume very strong synchrony properties and/or a non-corrupting adversary.
This result draws from a surprising connection with voter preferences in social
choice theory. To highlight this using a simple example, consider three nodes, A,
B, and C, that each receive 3 transactions, x, y, and z. A receives them in the
order [x, y, z], B in the order [y, z, x] and C in the order [z, x, y]. Notice that a
majority of nodes have received (x before y), (y before z) and (z before x)! This
scenario, often called the Condorcet paradox [18], can cause a non-transitive
global ordering even when all local orderings are transitive. This is problematic
for the notion of receive-order-fairness. Theorem 1 gives an informal description
of our impossibility result.

Theorem 1 (Impossibility of receive-order-fairness, informal; formal-
ized in Theorem 2). Consider a system with n nodes where the external net-
work (between users and protocol nodes) is either asynchronous or the maximum
delay δ is at least n rounds. Then, no protocol can achieve all of consistency,
liveness, and receive-order-fairness.

Given this impossibility result, we consider a natural relaxation of receive-
order-fairness that we call block-receive-order-fairness, or simply block-order-
fairness. To see the primary difference between the two definitions, we look
2 Aequitas (IPA pronunciation: /'ae

“
.kwi.ta:s/) is the Roman personification of fairness.

454 M. Kelkar et al.

at two transactions, tx and tx′, where sufficiently many nodes have received tx
before tx′. While receive-order-fairness requires that tx be output “before” tx′,
block-order-fairness relaxes this to “before or at the same time as.” We refer to
transactions delivered at the same time as being in the same “block.”

Definition 2 (Block-Order-Fairness, informal; formalized in Definition
11). If sufficiently many nodes (at least γ-fraction) receive a transaction tx before
another transaction tx′, then no honest node can deliver tx in a block after tx′.

This small relaxation allows us to evade the Condorcet paradox by a sim-
ple trick: placing paradoxical orderings into the same “block.” We emphasize
that block order-fairness does not mean that transactions are partially ordered.
Consistency still requires that all nodes output transactions in the same order
(within the same block or not). The only difference is that unfair ordering of a
set of transactions in our definition without blocks is now, with the use of blocks,
considered fair, provided that these transactions appear in the same block.

Further, we note that while receive-order-fairness is impossible to achieve (as
pointed out informally in Theorem1 and formalized later in the paper in Theo-
rem 2), block-order-fairness is not and we provide protocols that guarantee it. We
would also like to highlight that our proposed Aequitas protocols actually make
minimal use of this relaxation. In particular, they achieve the stronger notion of
receive-order-fairness except when non-transitive preferences are observed.

Aequitas: Achieving order-fairness. We present a new class of consensus pro-
tocols, Aequitas, that achieve block-order-fairness, in addition to providing con-
sistency and liveness. Aequitas protocols make use of two basic primitives in a
black-box way: (1) FIFO Broadcast (FIFO-BC) [26], which is a basic extension of
standard reliable broadcast; and (2) Set Byzantine Agreement (Set-BA; defined
in Sect. 3), which can be achieved from Byzantine agreement.

We note that these are weak primitives and any standard consensus protocol
(that achieves consistency and liveness) can also be used to build the FIFO-BC
and Set-BA primitives. This results in an interesting observation: The Aequitas
technique provides a generic compiler that takes any standard consensus protocol
and converts it into one that also provides order-fairness. At a high level, Aequitas
protocols proceed in three major stages. Each transaction tx goes through these
stages before being delivered.

1. Gossip Stage. Nodes gossip transactions in the order that they are received.
That is, each node gossips its local transaction ordering.
For this purpose, we use the FIFO broadcast primitive (FIFO-BC), which
guarantees that broadcasts by an honest node are delivered by other hon-
est nodes in the same order that they were broadcast. Even if the sender
is dishonest, FIFO-BC guarantees that all honest nodes deliver messages in
the same order. As a result, nodes have a consistent view of the transaction
orderings of other nodes.
We use Logj

i to denote node i’s view of the order in which node j received
transactions, according to how j gossiped them. Note that if node j is mali-
cious, Logj

i may arbitrarily differ from the actual order in which j received

Order-Fairness for Byzantine Consensus 455

transactions, but FIFO-BC prevents j from equivocating, i.e., any two honest
nodes i and k will have consistent Logj

i and Logj
k. When i records enough logs

Logk
i that contain tx, we say that the “gossip phase” for tx is complete.

2. Agreement Stage. Nodes agree on the set of nodes whose local orderings
should be considered for deciding on the global ordering of a particular trans-
action.
To elaborate, at the end of the gossip stage for a transaction tx, a node i
ends up with a set U tx

i of other nodes whose local orderings i has obtained.
That is, k ∈ U tx

i if tx ∈ Logk
i . Note that different nodes may end up with a

slightly different set U , but agreement proceeds when enough honest nodes
are present in each set. Nodes perform Byzantine agreement to agree on a set
Ltx of nodes whose ordering will be used to finalize the ordering for tx. For
this, we define a new primitive Set-BA whose validity condition guarantees
that if k ∈ U tx

i for all i, then k ∈ Ltx. It is easy to see how Set-BA can be
realized by using standard Byzantine agreement to determine the inclusion
of each possible value k individually.

3. Finalization Stage. Nodes finalize the global ordering of a transaction tx
using the set of local orderings decided on in the agreement stage.
Suppose that the agreement stage for a transaction tx resulted in the set Ltx.
Now, if there is any other transaction tx′ such that tx′ is ordered before tx
in a large number of these local logs, it signifies that tx should be delivered
after tx′. In other words, the finalization of tx depends on waiting until tx′

has been delivered.
To characterize such ordering dependencies between transactions, a node i
maintains a directed graph Gi, where vertices represent transactions and an
edge from a to b denotes that b is waiting for a. Since nodes are building this
graph on the same “data” (the set of local logs agreed upon in the agreement
phase), nodes will have consistent graphs. That is, if an edge (a, b) exists in
Gi, then it will also (eventually) exist in Gj , if i and j are both honest.
We present two finalization techniques, a leader-based one and a leaderless
one. For the leader-based technique, resolving any partial ordering within
the graph is delegated to a leader node. We emphasize that order-fairness is
not lost. The leader is only able to choose the ordering for transactions that
are not required to be ordered a certain way. We present another, leaderless
technique that requires no further communication between nodes. We find
that both realize a slightly weaker notion of liveness than the standard one,
even in the synchronous setting. Specifically, future transactions are required
to be input to the system in order to “flush out” earlier transactions. We
formally define “weak-liveness” in Sect. 2.

It is worth pointing out that the first two stages (gossip and agreement)
are fairly straightforward to understand and easy to achieve. The third stage is
somewhat complex, as it needs to avoid the Condorcet paradox while continuing
to maintain both consistency and order-fairness.

Aequitas Protocols. In summary, we present the first consensus protocols
that provide order-fairness. We provide a leader-based and a leaderless protocol

456 M. Kelkar et al.

each for the synchronous and asynchronous settings, for a total of four protocols
that follow the same general outline. These protocols all provide consistency,
block order-fairness, and some form of liveness. Figure 1 shows a comparison.

Fig. 1. The Aequitas protocols

Paper Organization. The rest of the paper is organized as follows. We discuss
our results in the context of related work in Sect. 1.2. We describe our formal
framework, along with other preliminaries, in Sect. 2. In Sect. 3, we provide the
building blocks for our protocol constructions. Section 4 formally introduces our
notion of order-fairness. Section 5 provides a general overview of our construc-
tions; we detail our leaderless construction for the synchronous setting in Sect. 6.
Due to space constraints, we defer other constructions and results, as well as sev-
eral proofs to the full version [27] of our paper.

1.2 Related Work

While there is an extensive literature on consensus protocols, to the best of our
knowledge, no previous work formally captures a notion of order-fairness like the
one we introduce. The term “fairness” has been used widely in blockchain and
cryptography literature, but for properties unrelated to ours.

Broadcast Primitives. Byzantine broadcast, or the Byzantine Generals Prob-
lem [30], is the elementary broadcast primitive where a designated sender broad-
casts a single value to a set of receiving nodes. In a Byzantine broadcast protocol
with the key property of consistency, all honest receivers output the same value.
Reliable broadcast is a continuous version of Byzantine broadcast where the
sender broadcasts multiple values which must be eventually delivered by nodes
if the sender is honest. Three orthogonal properties can be added onto reli-
able broadcast to give stronger notions. FIFO-ordering provides first-in first-out
ordering on the messages broadcast by an honest sender. We refer to such a

Order-Fairness for Byzantine Consensus 457

protocol as FIFO Broadcast or OARcast [26]. Local-ordering (also called causal-
ordering) ensures that if a node broadcasts a message m′ after receiving some
other message m, then m will be ordered before m′. The total-ordering property
ensures that all honest nodes deliver messages broadcast potentially by different
senders in the same order. This notion is usually called atomic broadcast [19],
which is well-known to be equivalent to the consensus problem. Adding all three
properties to reliable broadcast results in the notion of Causal FIFO Atomic
Broadcast which still does not provide the order-fairness property that we are
looking for. The main problem is none of the requirements consider a global
notion of FIFO ordering based on multiple senders.

Our order-fairness property does enforce such a notion according to the fol-
lowing idea: If enough nodes broadcast a message m before another message
m′, then honest nodes will respect this ordering. Adding this property to atomic
broadcast results in a new broadcast notion, which we call “Global FIFO Atomic
Broadcast.” Consequently, requiring order-fairness along with standard consen-
sus properties of consistency and liveness will be equivalent to this new notion
of Global FIFO Atomic Broadcast.

We note that our setup is also slightly different than earlier notions. We
assume that any message broadcast by an honest node is also eventually broad-
cast by all honest nodes. This allows us to redefine liveness in terms of being
broadcast by enough nodes. This also means that identical messages broadcast
by different nodes can now be delivered together as a single message. Global
FIFO ordering is defined on the ordering of these messages. Note that it no
longer makes sense to talk about (single source) FIFO order or causal order
as identical messages, potentially broadcast at different positions by different
nodes, are now delivered as a single message.

Consensus Protocols. Hundreds of Byzantine fault tolerant consensus pro-
tocols have been proposed over the years, with PBFT [15] being perhaps the
most well known. Multiple survey papers [7,10] have aimed to systematize this
vast literature. Many papers provide efficiency improvements while maintaining
the basic leader-based structure of PBFT. That is, a leader or primary node is
responsible for proposing the transactions in the current round. In such leader-
based protocols ([2,3,5,8,17,34,42–44], just to name a few), the leader node
can propose transactions in the order of its choosing. The leader is also capable
of suppressing transactions, at least temporarily, until an honest node becomes
the new leader. We highlight that in previously explored leader-based protocols,
nodes do not know the ordering in which transactions were received by everyone.
This means that a leader’s proposal can only be rejected based on validity of
transactions rather than the fairness of their ordering. Order-fairness is thus not
achieved in existing leader-based protocols.

Some protocols provide transaction censorship resistance, such that malicious
nodes cannot censor specific transactions based on their content. For this, in pro-
tocols like [4,11,36], transactions are encrypted, and the contents are revealed
only once their ordering is fixed. Separately, protocols like [4,29,31] rely on a
reputation based system to detect unfair censorship. Censorship resistance is

458 M. Kelkar et al.

strictly weaker than the order-fairness we consider for three reasons. First, in
practice, even if transaction data is temporarily encrypted, metadata such as a
user identifier or a client IP address can be used to censor a particular transac-
tion. Second, a malicious leader can still blindly reorder or censor transactions
based on just their ciphertext. But perhaps more importantly, a malicious leader
colluding with a user will know the ciphertext corresponding to the user’s trans-
action and can thus unfairly order this transaction before others.

Other Uses of the Word Fairness. The term fairness has been used before in
consensus literature for notions unrelated to ours. One popular use case relates to
fairness in block mining in Proof-of-Work (PoW) blockchains, which intuitively
requires that a node’s mining rewards be proportional to its relative computa-
tional power. That is, no node should be able to mine selfishly [24] to obtain
more rewards than its fair share. This fairness notion is met by protocols in
[1,31,33,35,37], among others.

Another related definition considers fairness in terms of the opportunities
each node gets to append transactions to the ledger. This includes both fair
leader election (in leader based protocols) and fair committee election (in hybrid
consensus protocols). This definition is considered in [1,25,28,31,38]. We note
that even if the leader election process is fair, the current leader still has the
power to manipulate transaction ordering.

Fairness has also been used in the context of “fair exchange,” which provides
a way for mutually distrusting parties to exchange digital goods in a secure way.
This notion is unrelated to ours but we mention it for completeness.

Works That Mention Fair Transaction Ordering. Helix [4] alludes to fair
transaction ordering, but only considers censorship resistance and fair committee
election. It uses threshold encryption to choose a random set of pending trans-
actions for inclusion in the current block. Hashgraph [6] considers our notion of
receive-order fairness, but provides no formal definitions. Moreover, it fails to
realize the impossibility of this notion of fairness resulting from the Condorcet
paradox [18]. As a result, we identify an elementary attack on the Hashgraph
protocol that allows an adversarial node to control transaction ordering. The
main problem in Hashgraph is the use of timestamp based ordering. In Sect. 5,
we provide a brief explanation for why this does not work and defer the descrip-
tion of our attack to the full version [27].

2 Definitions, Framework, and Preliminaries

In this section, we describe the general execution framework that we will use for
expressing and analyzing consensus protocols. We adopt an approach like that
of Pass and Shi [39,40] and Chan et al. [16]. We focus on the “permissioned”
setting, where the number of consensus nodes n, as well as their identities, are
known a priori to all participants. While arbitrary clients can send messages to
these nodes, only a fixed set of nodes will take part in the consensus protocol.
We are interested in protocols for several network settings (e.g. synchronous,

Order-Fairness for Byzantine Consensus 459

partially synchronous, and asynchronous) and define constrained environments
for these settings by imposing restrictions that an adversary must respect. Due
to space constraints, we only include the relevant formalism for the constructions
in this paper. For the complete details of the model, we refer the reader to the
full version [27].

2.1 Protocol Execution Model

Interactive Turing Machines (ITMs). We adopt the widely used Interactive
Turing Machine (ITM) approach rooted in the Universal Composability frame-
work [12]. Informally, a protocol details how nodes interact with each other,
where each node is represented by an ITM. As standard practice in cryptog-
raphy literature [12–14], we use an environment Z(1κ) (where κ is the security
parameter) to direct the protocol execution. Z is responsible for activating nodes
as either honest or corrupt, providing messages as inputs to nodes, and deliver-
ing messages between nodes. Honest nodes follow the protocol description while
corrupt nodes are assumed to be controlled by an adversary, denoted by A. A
is able to read all inputs/messages sent to corrupt nodes and can set all out-
puts/messages to be sent. The adversary also decides when messages sent over
the network get delivered, subject to any network assumptions.

Rounds. We assume that Z maintains a global clock. The clock is a global func-
tionality [14] that contains a simple monotonic counter which can be updated
adversarially by the environment. In the synchronous setting, we can model pro-
tocol execution in discrete time steps or rounds. At the start of each round, each
node receives a set txs of transactions from the environment Z. Transactions
are assumed to be submitted by clients, but using the environment abstrac-
tion avoids having to model clients explicitly. At the end of each round, each
node outputs an ordered log LOG to Z which intuitively represents the list of
transactions ordered by the node so far. We assume that Z always signals the
start of a new round to each node. Rounds in the partially synchronous set-
ting work similarly to the synchronous setting. In the asynchronous setting, the
clock is not accessible to the protocol nodes. Z can provide user transactions
and communication messages to nodes at any time. Any protocol that works in
the asynchronous setting should not rely on the current time. Throughout the
paper, we may use the terms “time” and “round” interchangeably.

Notational Conventions. We use κ to denote the security parameter. N
denotes the set of protocol nodes. For a protocol Π, EXECΠ(A,Z, κ) represents
the random variable for all possible execution traces of Π w.r.t. adversary A and
environment Z. We use view ←$ EXECΠ(A,Z, κ) to denote randomly sampling
an execution. |view| denotes the number of rounds in view.

Corruption Model. Since we are concerned only with the permissioned setting,
we consider environments Z that spawn a set of nodes, numbered from 1 to n
at the start, and never spawn additional nodes. At any point, A can ask Z to
corrupt a particular node for which Z sends a corrupt signal to that node. When

460 M. Kelkar et al.

this happens, the internal state of the node gets exposed to A and A henceforth
fully controls the node. A node is said to be honest in a given view if it is never
under adversarial control. Otherwise, it is said to be corrupt or Byzantine. A can
corrupt nodes at any point during the protocol’s execution; but once a node is
corrupted, it cannot become honest at a later point. The corruption parameter
f denotes the maximum number of nodes that A can corrupt.

Communication and Network Model. As mentioned before, Z provides
transactions sent by users as inputs to nodes and also handles communication
between nodes. We assume that a node can broadcast messages to others through
authenticated channels. Furthermore, we assume that the adversary A cannot
modify messages sent by honest nodes but can reorder or delay messages, possibly
constrained by the specific setting.

We differentiate between two networks in our model—an internal network
for communication between nodes and an external network for how external
users send transactions to nodes. We emphasize that A is only in charge of
scheduling message delivery for the internal network. The external network may
reside in other parts of the application (not relevant to the consensus protocol)
and is managed by Z (and possibly by some other network adversary). For
both networks, we consider the synchronous setting [22] (where the network
delay bound is known), the partially synchronous setting [21] (where the network
delay bound is finite but unknown), and the asynchronous setting [9] (where the
network delay is unbounded).

2.2 Execution Environments

Clients submit transactions by sending them to all nodes. As mentioned before,
we do not explicitly model clients, but rather have transactions input by Z.

External Network. The external network models the channel between the
system clients and the protocol nodes. By a synchronous external network, we
mean that any transaction that is received from Z by a node reaches all other
nodes within a known time. This is formally defined in Definition 3.

Definition 3 (External Synchronous Setting). We say that (A,Z) respects
Δext = (full, δ) ext-synchrony w.r.t. protocol Π if for every κ ∈ N and view in
the support of EXECΠ(A,Z, κ), the following conditions hold: (1) Z provides δ
to all nodes upon spawning; (2) If Z provides an input message m to a node in
the txs set at time t, then at any time t′ ≥ t + δ, all other nodes will also have
received message m as input.

For the partially synchronous setting, we assume that δ exists but is unknown
to the nodes, and not provided by Z. For the asynchronous setting, we only
assume that transactions are not dropped by the network—they eventually get
delivered to all the nodes.

Internal Network. The internal network represents the network between nodes
and is usually the standard network considered for consensus problems. We

Order-Fairness for Byzantine Consensus 461

formalize the internal synchrony assumption in Definition 4. The partially syn-
chronous and asynchronous settings are defined similarly to the corresponding
notions for the external network.

Definition 4 (Internal Synchronous Setting). We say that (A,Z) respects
Δint = (full, δ) int-synchrony w.r.t. protocol Π if for every κ ∈ N and view in the
support of EXECΠ(A,Z, κ), the following conditions hold: (1) Z provides δ to
all nodes upon spawning; (2) If an honest node sends a message at time t, then
at any time t′ ≥ t + δ, all recipient(s) will have received the message.

Network Nomenclature. We say that the network is completely synchronous
(resp. completely asynchronous) if both the external and the internal network
are synchronous (resp. asynchronous). We use not-async to denote both the syn-
chronous setting and the partially synchronous setting.

Permissioned Setting. For the “permissioned” or “classical” environment, we
require that Z spawn all nodes up front and not spawn any new nodes during
the protocol execution. Furthermore, all nodes know the identity of all other
nodes in the protocol. We define the permissioned environment in Definition 5.

Definition 5 (Classical Permissioned Environment). We say that (A,Z)
respects (n, f,Δint,Δext)-classical execution w.r.t. a protocol Π if it respects Δint

int-synchrony, Δext ext-synchrony and for every κ ∈ N and view in the support
of EXECΠ(A,Z, κ), the following conditions hold: (1) Z spawns a set of nodes
numbered from 1 to n at the start of the protocol and never spawns any nodes
later; (2) Z does not corrupt more than f nodes; (3) Z provides all nodes n, f
as well as any other public parameters upon spawning.

For all constraints on (A,Z), when the context is clear, we may choose to exclude
the protocol we are referring to.

2.3 The State Machine Replication Abstraction

In the state machine replication or consensus problem, a set of nodes try to
agree on a growing, linearly ordered log. At the start of each round, Z provides
a set txs (possibly empty) of transactions to protocol nodes. We assume that
the transactions input by Z are unique. At any time, nodes may also choose to
deliver transactions by outputting a LOG to Z. The LOG can be thought of as
a totally ordered sequence where each element is an ordered set of transactions.
We refer to the set of transactions at an index of the LOG as a “block.” The
LOG represents the set of transactions committed by a node so far.

Transaction Nomenclature. When discussing the trajectory of a transaction,
we say that a transaction tx is received by a node when it is given as input to the
node by Z. A transaction tx is delivered or output by a node when it is included
in a LOG output by the node to Z.

462 M. Kelkar et al.

Notation for the Ordered Log. T denotes the space of all possible trans-
actions. Let LOGi represent the most recent log output by node i to the envi-
ronment, i.e., the ordered list of transactions that node i has delivered so far.
For two logs LOG and LOG′, we define a relation � which intuitively signifies a
“prefix” notion. LOG � LOG′ stands for “LOG is a prefix of LOG′.” We assume
that for any x, we have x � x and ∅ � x. LOG[p] denotes the pth element in
LOG. LOG(m) denotes the number p such that LOG[p] contains m.
The security of a state machine replication protocol is now defined as follows:

Definition 6 (Security of state machine replication [40]). We say that a
protocol Π satisfies consistency (resp. (Twarmup, Tconfirm)-liveness) w.r.t. (A,Z)
if there exists a negligible function negl(·) such that for any κ ∈ N, consistency
(resp. (Twarmup, Tconfirm)-liveness) is satisfied except with negl(κ) probability over
the choice of view ←$ EXECΠ(A,Z, κ) where negl is negligible in κ. For a partic-
ular view, we define the properties as below:

– (Consistency) A view satisfies consistency if the following holds:
• Common Prefix. If an honest node i outputs LOG to Z at time t and

an honest node j outputs LOG′ to Z at time t′, then it holds that either
LOG � LOG′ or LOG′ � LOG.

• Future Self Consistency. If a node that is honest between times t and t′,
outputs LOG at time t and LOG′ at time t′ ≥ t to the environment Z, then
it holds that LOG � LOG′.

– (Liveness) A view satisfies (Twarmup, Tconfirm)-liveness if the following holds:
At a time t such that Twarmup < t ≤ |view|, if an honest node either received a
transaction m from Z or output m in its log to Z, then for any honest node i
and any time t′ ≥ t + Tconfirm; t′ ≤ |view|, it holds that m is in the log output
by node i at time t′.

Here, Tconfirm and Twarmup are polynomial functions in κ, n, f , any maximum
network delay bounds as defined in Δext and Δint, as well as the actual network
delay. Twarmup is the protocol’s warmup time, until which point liveness need
not be satisfied. Tconfirm is the maximum time it takes for a transaction (input
after the warmup time) to be delivered by all honest nodes.

Weak Liveness. The standard definition of liveness of a transaction tx (from
Definition 6) is independent of what happens in the rest of the protocol’s exe-
cution. Sometimes however, it may be enough for a protocol to be live only if
transactions continue to be received by the system. For example, a transaction
tx will only be delivered if there is some transaction that is received by all nodes
sufficiently after tx. Intuitively, later transactions will cause earlier ones to be
“flushed out” of the system. We note that this subtle distinction between the
two liveness definitions is rarely considered in the literature. We found that some
leaderless protocols (i.e. those that are not based on a leader node) like [6,41]
implicitly ignore this distinction. Along similar lines, we define a weaker version
of conventional liveness, which we call “weak-liveness.” Despite the technical

Order-Fairness for Byzantine Consensus 463

difference, we think that it should be acceptable in most real world systems. For
a particular view, we define weak-liveness below.

– (Weak Liveness) A view satisfies (Twarmup, Tconfirm)-weak-liveness if the fol-
lowing holds: Suppose that at a time t such that t > Twarmup, an honest node
either received a transaction m from Z or output m in its log to Z. Let T be
a set built recursively as follows: (1) Add m to T; (2) For m0 ∈ T, add to T,
all transactions m′

0 that were received by at least one honest node before m0.
Now if another transaction m′ was received at time t′ and is such that it was
first received by a node after all nodes received all transactions in T, then for
any honest node i and any time t′′ ≥ t′ + Tconfirm; t′′ ≤ |view|, it holds that
m is in the log output by node i at time t′′.

3 Building Blocks

We start by describing some useful primitives that will form the foundation
for designing our fair ordering consensus protocols. More specifically, we will
utilize two primitives: (1) Set Byzantine Agreement (Set-BA); and (2) FIFO
Broadcast (FIFO-BC). We show how to build Set-BA from Byzantine agreement
and FIFO-BC from reliable broadcast in the full version [27].

Subroutines and Composition. We follow standard conventions to enable
secure composition. Each instance of a protocol is spawned with a session iden-
tifier sid. We use Π[sid] to denote the instance of protocol Π with session id sid.
Each protocol may take inputs from and return outputs to an environment. Note
that this “environment” may be different for any subroutines called.

3.1 Set Byzantine Agreement

Definitions. In a (poly) Set Byzantine Agreement protocol (Set-BA), partici-
pating nodes will try to agree on a set of values. At the start of the protocol,
each node receives any public parameters from Z. Each node i in the set P of
participating nodes also receives a set Ui ⊆ S as input from Z. The set S is
also known to all nodes and its description is polynomial in κ. At the end of the
protocol, each honest node j ∈ P outputs a set of the agreed upon values Oj .

Definition 7 (Security of Set-BA). A Set-BA protocol Πsba satisfies agree-
ment, inclusion validity, and exclusion validity w.r.t. (A,Z) if for all
κ ∈ N, the following properties hold except with negligible probability over
view ←$ EXECΠsba(A,Z, κ).

– (Agreement) If honest nodes i and j output the sets Oi and Oj respectively,
then Oi = Oj.

– (Inclusion Validity) If an element is in the input sets of all nodes, then it
will also be in the output sets of all honest nodes.

464 M. Kelkar et al.

– (Exclusion Validity) If an element is not in any input set, then it is not
in any honest output set.

For a given view, we also say that Πsba satisfies T sba
confirm-liveness, if all honest

nodes output in at most T sba
confirm rounds after all honest nodes have input their

starting value. Lemma 1 shows a helpful result that any outputs are “honestly
proposed.”

Lemma 1. Consider any set Byzantine agreement protocol Πsba that satisfies
agreement, inclusion validity, and exclusion validity (w.r.t (A,Z)). Except for a
negligible number of views, Πsba also satisfies the following:

– (Honest Proposal) If an honest node outputs the set O, then for every
c ∈ O, there exists i ∈ P such that i is honest and c ∈ Ui.

3.2 FIFO Broadcast

Single source FIFO (first in, first out) broadcast (also called Ordered Authenti-
cated Reliable broadcast or OARcast in [26]) is a broadcast primitive in which all
honest nodes in the protocol need to deliver messages in the same order as they
were broadcast by the sender. In one instantiation of a FIFO broadcast protocol,
we consider a single designated sender who broadcasts a sequence of messages
to all other nodes. If the sender is honest, each honest node must deliver the
messages in the same order as they were broadcast. If the sender is dishonest,
all honest nodes must deliver messages in the same order as each other; except
now, this order may be different than the one broadcast by the sender. When
composing several FIFO broadcast primitives together with different senders,
FIFO order is maintained for each individual sender but different honest nodes
may deliver messages from different senders in different orders.

Definitions. At the start of the FIFO Broadcast (FIFO-BC) protocol, each node
receives the appropriate public parameters from the environment. At any time,
the designated sender may also receive as input a message m from the environ-
ment. At any time, nodes can choose to deliver messages.

Definition 8 (Security of (FIFO-BC)). A FIFO-BC protocol Πfifocast satisfies
liveness, agreement, and FIFO-order w.r.t. (A,Z) if for all κ ∈ N, the follow-
ing properties hold except with negligible probability over view ←$ EXECΠfifocast

(A,Z, κ).

– ((T fifocast
warmup, T fifocast

confirm)-Liveness) If the sender is honest and receives a message
m as input in round r > T fifocast

warmup, or if an honest node delivers m in round
r > T fifocast

warmup, then all honest nodes will have delivered m by round r+T fifocast
confirm.

– (Agreement) If an honest node delivers a message m before m′, then no
honest node delivers m′ unless it has already delivered m.

– (FIFO-Order) If the sender is honest and is input a message m before m′,
then no honest node delivers m′ unless it has already delivered m.

Order-Fairness for Byzantine Consensus 465

T fifocast
confirm is a polynomial in κ, n, f and the internal network delay.

Notation. Let Πfifocast[(sid, j)] denote the instance of the protocol Πfifocast

where node j is the designated sender. In a consensus protocol that invokes
Πfifocast[(sid, j)], we assume that each node i keeps track of the messages deliv-
ered (i.e. messages broadcast by node j) in a local log Log

(sid,j)
i . This represents

node i’s view of broadcasts from node j in the session sid. When the session id is
clear from context, we may simply write Logj

i . Two local logs Log and Log′ are
called “equal until tx”, denoted by ≈tx, if they are equivalent until the occur-
rence of tx. Log[p] denotes the pth element in Log. Log(m) denotes the number p
such that Log[p] contains m. Consequently, Log(m) < Log(m′) signifies that m
appears before m′ in Log.

4 Defining Fair Ordering

We formally define fair ordering in this section. As it turns out, providing a
definition that is achievable by protocols, yet intuitive, is not trivial. Some nat-
ural definitions are not achievable except under strong assumptions. We use this
section to also go through these definitions that led to our final definition.

(Attempt 1) – Send-order-fairness. A strawman approach is to require
ordering to be in terms of when transactions were sent by clients. For instance,
if a transaction tx1 was sent by a client before another transaction tx2 (possi-
bly by another client), then tx1 should appear before tx2 in the agreed upon
log. Not surprisingly, this can lead to several problems: most importantly, there
needs to be a trusted way to timestamp a transaction at the client side. We
discuss the possibility of achieving it in practice using trusted hardware in the
full version [27].

(Attempt 2) – Receive-order-fairness. The challenges of send-order-fairness
suggest it would be more prudent to define fair ordering in terms of when the
consensus nodes actually receive transactions. Intuitively, “receive order” means
that the fair ordering is defined by looking at when enough nodes receive a par-
ticular transaction. For instance, if sufficiently many nodes receive a transaction
tx1 before another transaction tx2, then tx1 must appear before tx2 in the final
log. “Sufficiently many” is parameterized using γ.

Definition 9 (Receive-order-fairness, restatement of Definition 1). For
a view in the support of EXECΠ(A,Z, κ), define receive-order-fairness as follows:

– A view satisfies (γ, Twarmup) receive-order-fairness if the following holds: For
any two transactions m and m′, let η be the number of nodes that received
both transactions between times Twarmup and |view|. If at least γη of those
nodes received m before m′ from Z, then for all honest nodes i, i does not
deliver m′ unless it has previously delivered m.

A protocol Π satisfies (γ, Twarmup) receive-order-fairness w.r.t (A,Z) if there is
a negligible function negl(·) such that for any κ ∈ N, the order-fairness property
is satisfied except with probability negl(κ) over view ←$ EXECΠ(A,Z, κ).

466 M. Kelkar et al.

4.1 Condorcet Paradox and the Impossibility of Fair Ordering

The Condorcet paradox [18], or the “voting paradox”, is a result in social choice
theory that shows how some situations can lead to non-transitive collective vot-
ing preferences even if the preferences of individual voters are transitive. To
illustrate how this applies to fair ordering, let us look at a simple example:

Example 1. Suppose that there are 3 nodes: A, B, and C. In the protocol exe-
cution, 3 transactions, tx1, tx2, and tx3 are sent by clients to all the nodes.

– Node A receives transactions in the order tx1, tx2, tx3.
– Node B receives transactions in the order tx2, tx3, tx1.
– Node C receives transactions in the order tx3, tx1, tx2.

Now, 2 nodes (A and C) received tx1 before tx2, 2 nodes (A and B) received
tx2 before tx3, and 2 nodes (B and C) received tx3 before tx1. It is easy to see
that no protocol can satisfy fair ordering for γ ≤ 2

3 , since such a protocol would
have to include tx1 before tx2; tx2 before tx3; and tx3 before tx1 in its final log.

Theorem 2 generalizes this observation to show an impossibility for γ ≤ n−1
n .

Furthermore, it also shows that when f ≥ 1, even γ = 1 receive-order-fairness is
impossible to achieve.

Theorem 2 (Restatement of Theorem 1). Consider any n, f ≥ 1,Δint,Δext

where Δext is either asynchronous or (not-async, δext ≥ n). Let γ ≤ 1. If a con-
sensus protocol Π satisfies consistency and (Twarmup, Tconfirm) liveness w.r.t. all
(A,Z) that respect (n, f,Δint,Δext)-classical execution, then it cannot also satisfy
(γ, Twarmup) receive-order-fairness.

Proof (Sketch). Taking inspiration from the counterexample in Example 1, we
first show the result for γ ≤ n−1

n . Denote the nodes in the system by the numbers
1 to n. Suppose that clients submit n transactions tx1 to txn. Further, suppose
that node 1 receives the transactions in the order tx1, tx2, · · · , txn and any node
i
= 1 receives the transactions in the order txi, · · · , txn, tx1, · · · , txi−1.

Now, it is straightforward to see that all nodes except node 2 received tx1

before tx2, all nodes except node 3 received tx2 before tx3 and so on. Finally,
all nodes except node 1 received txn before tx1. This means that any consensus
protocol that provides order-fairness for γ ≤ n−1

n must order tx1 before tx2, · · · ,
txn−1 before txn, and txn before tx1 which is a contradiction.

To see the result for γ = 1, since f ≥ 1, we observe that the adversary A can
simply crash a single node N . Suppose that all other nodes receive tx1 before tx2.
Now, since the node N sends no messages, other nodes do not know the order
in which it received tx1 and tx2. Therefore, any protocol that satisfies receive-
order-fairness for γ = 1 would order tx1 before tx2 even when N actually received
tx2 first. In other words it would also need to satisfy receive-order-fairness for
γ = n−1

n , which we showed to be impossible.

Order-Fairness for Byzantine Consensus 467

4.2 Environments that Support Receive-Order-Fairness

We find that the Condorcet paradox can be circumvented in a few ways by
assuming specific network properties.

External Synchrony Assumption. The primary reason for the impossibility
of fair-ordering is that different nodes may receive the same client transaction
several rounds apart, resulting in non-transitive collective ordering. Suppose that
Δext = (full, δ) where δ ≤ 1 (e.g., an instant synchronous external network).
Then, any client transaction that a node receives will reach all other nodes within
1 round. This implies that if some node receives transactions tx1, tx2 and tx3 in
that order, then no node can receive tx3 before tx1. It is now straightforward to
see how this circumvents the Condorcet paradox.

Non-corrupting Adversary and γ = 1. If the adversary does not corrupt
any nodes, and its power is restricted to influencing network delays, we find that
it is possible to achieve receive-order-fairness for γ = 1. In this setting, a single
leader can receive the transaction orderings from individual nodes, and decide
on a final ordering that preserves receive order-fairness.

4.3 Towards Weaker Definitions for Order-Fairness

We give two natural relaxations of the original definition. The first is approximate
receive order-fairness (or simply approximate-order-fairness) while the second
is block receive order-fairness (or simply block-order-fairness). For approximate-
order-fairness, we only look at unfairness in the ordering of two transactions if
they were received sufficiently apart in time. We emphasize that approximate-
order-fairness only makes sense in synchronous and partially synchronous set-
tings. On the other hand, for block-order-fairness, we choose to ignore the order-
ing within a block while considering fair ordering. Notably, this allows us to
circumvent the Condorcet paradox by aggregating any transactions with non-
transitive orderings into the same block. This is reasonable to consider even in
asynchronous environments. First, we look at approximate-order-fairness. For a
given view in the support of EXECΠ(A,Z, κ), we define the property below.

Definition 10 (Approximate-Order-Fairness). A view satisfies (γ, Twarmup,
ξ) approximate-order-fairness if the following holds: For any two transactions m
and m′, let η be the number of nodes that received both transactions between
times Twarmup and |view|. If at least γη of those nodes received m more than
ξ rounds before m′ from Z, then for all honest nodes i, i does not deliver m′,
unless it has previously delivered m.

A protocol Π satisfies (γ, Twarmup, ξ) approximate-order-fairness w.r.t (A,Z)
if there is a negligible function negl(·) such that for any κ ∈ N, the above property
is satisfied except with probability negl(κ) over view ←$ EXECΠ(A,Z, κ).

Quickly, we notice a protocol that satisfies (Twarmup, Tconfirm)-liveness, also
satisfies (1, Twarmup, ξ) approximate order-fairness for any ξ ≥ Tconfirm. Clearly,
if a transaction tx2 was received after tx1 was delivered by all nodes, then tx2

468 M. Kelkar et al.

will be delivered after tx1. Moreover, we also find that if ξ < Tconfirm, then any
protocol that satisfies (γ, Twarmup, ξ) approximate-order-fairness must also sat-
isfy (γ, Twarmup) receive-order-fairness (for environments with a different network
synchrony bound).

Theorem 3. Consider any n, f ≥ 1,Δint,Δext. Let Δint = (not-async, δint) and
Δext = (not-async, δext ≥ 1). Also consider γ ≤ 1 and ξ < Tconfirm. If a pro-
tocol Π achieves consistency, (Twarmup, Tconfirm)-liveness, and (γ, Twarmup, ξ)
approximate-order-fairness. w.r.t. all (A,Z) that respect (n, f,Δint,Δext)-
classical execution, then it also satisfies (γ, Twarmup) receive-order-fairness
w.r.t all (A′,Z ′) that respect (n, f,Δ′

int,Δ
′
ext)-classical execution where Δ′

int =
(not-async, δ′

int = δint
ξ+1) and Δ′

ext = (not-async, δ′
ext = δext

ξ+1).

Consequently, approximate-order-fairness doesn’t turn out to be very useful
since it suffers from the same problems as the previously defined receive-order-
fairness. Note that from Sect. 4.2, we can infer that approximate-order-fairness
can be achieved when δext ≤ ξ. Still, since it only applies to non-asynchronous
networks, we propose a second definition, block-order-fairness, that performs
much better since it provides a way to handle any cycles in transaction order-
ing and also applies to asynchronous networks. We note that our synchronous
protocol (Sect. 6) also satisfies approximate-order-fairness for ξ ≥ δext.

For a given view in the support of EXECΠ(A,Z, κ), we state the block-order-
fairness property below.

Definition 11 (Block Order-Fairness). A view satisfies (γ > 1
2 , Twarmup)-

block-order-fairness if the following holds: For any two transactions m and m′,
let η be the number of nodes that received both transactions between times Twarmup

and |view|. If at least γη of those nodes received m before m′ from Z, then for
all honest nodes i, i does not deliver m at a later index than it delivers m′.

A protocol Π satisfies (γ, Twarmup)-block-order-fairness w.r.t (A,Z) if there
is a negligible function negl(·) such that for any κ ∈ N, the above property is
satisfied except with probability negl(κ) over view ←$ EXECΠ(A,Z, κ).

5 Overview of the Aequitas Protocols

We provide a general overview of our Aequitas protocols in this section. Specifi-
cally, we give four constructions:

• Πsync,nolead
Aequitas is a leaderless protocol that provides consistency, (weak) liveness,

and block-order-fairness in the completely synchronous setting.
• Πsync,lead

Aequitas is a leader-based protocol that provides consistency, (weak) liveness,
and block-order-fairness in the completely synchronous setting.

• Πasync,nolead
Aequitas is a leaderless protocol that provides consistency, eventual (weak)

liveness, and block-order-fairness in any setting.
• Πasync,lead

Aequitas is a leader-based protocol that provides consistency, eventual (weak)
liveness, and block-order-fairness in any setting.

Order-Fairness for Byzantine Consensus 469

We present a detailed account only for the synchronous leaderless protocol
Πsync,nolead

Aequitas in this paper (Sect. 6) and defer the other constructions to the full
version [27].

Construction Overview. Our Aequitas protocols utilize the FIFO-broadcast
(FIFO-BC) and the set Byzantine agreement (Set-BA) primitives described in
Sect. 3 in a black-box way to provide order-fairness. We elaborate on the three
major stages of our Aequitas protocols below:

• Stage I: Gossip/Broadcast. Each node FIFO-broadcasts transactions as
they are received as input from the environment. When a node i receives a set
of transactions txs from Z, it sends txs as input to the protocol Πfifocast[(sid, i)]
with i as the designated sender. Note that all broadcasts can be sent in the
same session sid. Different session ids need to be used only when considering
composition of several protocols in the system.
In parallel to broadcasting transactions, a node also receives and processes
broadcasts from other nodes. For a node i, broadcasts sent by node j are
appended to a local log Logj

i when they get delivered to i by Πfifocast[(sid, j)].
Intuitively, Logj

i denotes node i’s view of how transactions were received by
node j.

• Stage II: Agreement on local logs. To determine the ordering for a par-
ticular transaction tx, a node i waits until it has received tx from sufficiently
many other nodes. In other words, node i waits until there are sufficiently
many k such that its local log Logk

i contains tx. When both the external
and internal networks are synchronous, this can alternatively be achieved by
waiting for enough time. The properties of FIFO-BC guarantee that if two
honest nodes i and j have local logs Logk

i and Logk
j respectively that both

contain tx, then Logk
i ≈tx Logk

j . We state this fact as Lemma 2. Recall that
Logk

i ≈tx Logk
j holds when Logk

i and Logk
j are identical until tx occurs.

Now, the next step is for all nodes to agree on which local logs to use to deter-
mine the ordering for tx. For a node i, let U tx

i denote the set of nodes k such
that Logk

i contains tx. Node i starts an instance of the protocol Πsba[(sid, tx)]
and provides it the input U tx

i . Upon the completion of the Set-BA protocol,
all honest nodes receive the same set Ltx. Intuitively, Set-BA is used to agree
which nodes’ orderings should be used to determine the final ordering for
transaction tx. Recall that Lemma 1 guarantees that if k ∈ Ltx, then there
is some honest node j such that tx ∈ Logk

j . This, along with the liveness
property for FIFO-BC ensures that all honest nodes will eventually receive tx
broadcast by node k ∈ Ltx (even if k is malicious).
Finally, we note that at the end of the agreement phase, every honest node
has agreed on a set of nodes Ltx whose transaction orderings should be used
to determine the final ordering for the transaction tx in consideration. We
say that a node i has received the agreed logs for tx if for all k ∈ Ltx, it holds
that tx ∈ Logk

i .
• Stage III: Finalization. To decide on the final ordering for a transaction

tx, we provide two options for the finalization step: a leader based one and a

470 M. Kelkar et al.

leaderless one. For both the leader-based and leaderless finalizations, nodes
first build a graph that represents any ordering dependencies between trans-
actions. Specifically, a node i maintains a directed graph Gi, where vertices
represent transactions and edges represent ordering dependencies. We refer
to Gi as the “dependency graph” or the “waiting graph” maintained by i.
After the agreement stage for tx is completed, the protocol now uses the
local logs to see if some other transaction might have come before. If there
is another transaction tx′ that appears before tx in sufficiently many local
logs (e.g., n − f times), then i adds an edge from tx′ to tx in Gi. Intuitively,
an edge (a, b) ∈ Gi denotes that the finalization stage for b is “waiting” for
a to be delivered. Since the same Ltx is used by all honest nodes, if an edge
(a, b) exists in Gi, then it will at some point exist in Gj , when nodes i and j
are both honest. However, we note that Gi is neither guaranteed to be com-
plete nor acyclic. Two vertices in Gi might never have an edge between them.
Moreover, the Condorcet paradox can still create cycles in Gi. To break ties
between transactions without an edge, we use the following two techniques.

• Finalization via leader-based proposal. Πsync,lead
Aequitas and Πasync,lead

Aequitas both use
a leader-based approach to finalize transactions in the graph. For this, any
leader-based consensus protocol can be run along with the gossip and agree-
ment stages above. When a designated leader proposes and broadcasts a new
block, instead of just checking the syntactical validity of transactions, each
node i checks that the proposal does not conflict with any required order-
fairness in the graph Gi. That is, node i checks that for any transaction tx
in the proposed block, if (tx′, tx) is in Gi, then either tx′ has already been
delivered or tx′ is also in the current proposed block.
Abstractly, we allow the leader node to choose the transaction ordering but
only as long as order-fairness is still satisfied. For transactions among which
there is no clear winner, the leader may choose any ordering.

• Finalization via local computation. Πsync,nolead
Aequitas and Πasync,nolead

Aequitas both use
a leaderless approach to finalize transactions in the graph and require no
further communication. At a high level, to order transactions tx1 and tx2

between whom there in no edge in Gi, the protocol will wait until tx1 and
tx2 have a common descendant, with the final ordering being based on which
transaction vertex has the most descendants. We prove that any other graph
vertex that is a descendant of only one of tx1 and tx2 is present in Gi when
node i makes the decision for ordering tx1 and tx2. This will ensure that all
honest nodes will order tx1 and tx2 the same way.

We highlight that the above description of the finalization stage is a simplified
one. As described, it is not sufficient to avoid the Condorcet paradox. Further-
more, adversarial transactions could result in a node waiting for unbounded
periods of time. The actual technique to get around these obstacles is quite
nuanced and we dedicate Sect. 5.1 to its details.

Order-Fairness for Byzantine Consensus 471

Lemma 2. If two honest nodes i and j have local logs Logk
i and Logk

j respectively
where k is any other node such that both logs contain a transaction tx, then
Logk

i ≈tx Logk
j .

Proof. This result follows directly from the agreement property of FIFO-BC.

Before diving into the details of the finalization step, we take a step back to
understand why it turns out to be quite non-trivial. We look at a simple straw-
man protocol based on transaction timestamping that looks intuitive and analyze
why it does not work.

The Problem with Timestamp-Based Ordering. Consider a simple syn-
chronous protocol Πtimestamp that works as follows:

1. When an honest node i receives a transaction tx from Z in round t, it assigns
tx the timestamp t and broadcasts (tx, t) to all other nodes.

2. Upon waiting for δext +Tconfirm rounds where δext is the network delay bound
for the external network and Tconfirm is the liveness polynomial for the broad-
cast primitive, nodes reach agreement on the set of timestamps T to use to
calculate the final timestamp for tx.

3. Each node calculates the final timestamp for tx as the median of all the
timestamps in T. We represent this final timestamp by final(tx).

Notice how the first two steps almost perfectly resemble the gossip and agree-
ment stages. The finalization (third) step is also surprisingly simple, but unfor-
tunately can lead to easy manipulation of final timestamps by a single adversary.
To see why, consider 5 nodes, A,B,C,D and E, where E is malicious and two
transactions, tx1 and tx2. tx1 is received by nodes A, . . . , E at rounds 1, 1, 4, 4, 2
while tx2 is received by the nodes at rounds 2, 2, 5, 5, 3. Now, all nodes have
received tx1 before tx2 and consequently, final(tx1) < final(tx2) should hold.
However, notice how E can invert the ordering of the final timestamps simply by
switching around its own timestamps for tx1 and tx2. E can make final(tx1) = 3
and final(tx2) = 2 which results in a timestamp of 3 for tx1 (median of (1, 1, 3,
4, 4)) and 2 for tx2 (median of (2, 2, 2, 5, 5)), and thus an unfair ordering.

5.1 The Finalization Stage

We describe the general theme of the finalization stage here.

Ordering Two Transactions. For a pair of transactions tx and tx′, how does
a node i choose which one to deliver first? Suppose that the agreement phases
for tx and tx′ result in the outputs Ltx and Ltx′

. Define l(tx,tx′) as below.

l(tx,tx′) =
∣
∣
∣

{

k ∈ Ltx ∪ Ltx′ | Logk
i (tx) ≤ Logk

i (tx′)
}∣

∣
∣

l(tx,tx′) denotes the number of logs Logk
i where tx was ordered at or before tx′.

Now, if l(tx,tx′) is “small,” it means that a large number of nodes have received tx′

before tx. This means that the finalization stage for tx should wait until tx′ has
been delivered. This provides a partial ordering between any two transactions.

472 M. Kelkar et al.

Additional Notation. Let tx �i tx′ represent that i is waiting to deliver tx′

before proceeding with the finalization phase for tx. Lemma3 shows that l(tx,tx′)
and l(tx′,tx) cannot both be “small”. Consequently, both tx and tx′ will not wait
for each other or equivalently, at most one of tx �i tx′ and tx′ �i tx will be true.

Lemma 3. l(tx,tx′) + l(tx′,tx) ≥
∣
∣
∣Ltx ∪ Ltx′

∣
∣
∣

Proof. Let X = Ltx ∪ Ltx′
. For any k ∈ X, at least one of Logk

i (tx) ≤ Logk
i (tx′)

and Logk
i (tx′) ≤ Logk

i (tx) is true. k is therefore counted in either l(tx,tx′) or
l(tx′,tx) which proves the required result.

Adversarial Transactions. The calculation of l(tx,tx′) needs to wait for the
agreement phases of both tx and tx′ to finish. Now, if an adversarial node FIFO-
broadcasts a transaction txfake claiming it to be a real user transaction, then
the ordering between txfake and a real transaction tx cannot be calculated since
the agreement phase for txfake will never finish. So that this does not happen,
the protocol needs to ensure that at least one honest node has received txfake

before tx (from Z). For the synchronous protocol, this is done by checking that
a transaction tx′ is added to the graph only when there is another transaction
tx that has finished its agreement stage and tx′ is present in at least |Ltx| −
(n − f) + 1 among the local logs in Ltx. Note that the agreement stage will
only finish for honest transactions.

Non-transitive Waiting. The Condorcet paradox can still cause non-transitive
waiting. It is still possible to have transactions tx1, tx2, and tx3 such that tx1 �
tx2; tx2 � tx3; and tx3 � tx1. The way we get around this is by delivering such
transactions at the same time—by placing them in the same block.

Graph Based Approach. Instead of a separate thread waiting for the resolu-
tion of each transaction, representing the “waiting” between transactions as a
graph provides a nice way to modularize the protocol. Suppose that each node
i maintains a directed graph Gi = (Gi.V,Gi.E) where Gi.V denotes the set of
vertices and Gi.E denotes the set of edges in Gi. Each vertex represents a trans-
action and an edge from y to x (equiv. (y, x) ∈ Gi.E) represents that x is waiting
on y i.e. x�i y. When the agreement phase for a transaction tx completes, i does
the following:

• Add tx to the graph Gi if it does not already exist.
• For all transactions tx′ such tx �i tx′, first, if tx′ does not exist in the graph,

add a new vertex. Then, add the edge (tx′, tx) to Gi.

As mentioned before, Gi may not be acyclic. In order to deal with the Condorcet
paradox, we consider the strongly connected components of Gi. Recall that a
subgraph G′ of a directed graph G is called strongly connected if every vertex
in G′ can reach every other vertex in G′. A strongly connected component is a
maximal strongly connected subgraph.

Order-Fairness for Byzantine Consensus 473

Intuitively, all transactions in a strongly connected component will be deliv-
ered in the same block. A cycle that exists in Gi (due to non-transitivity of
transactions) will be entirely contained in the same strongly connected compo-
nent. On the other hand, if a transaction does not need to wait on any other one,
then it will be in a strongly connected component by itself. We can collapse Gi

into a new graph G∗
i where each strongly connected component is represented

as a single vertex. G∗
i is also called the condensation of Gi. Each vertex in G∗

i

will now denote a set of transactions. We note that G∗
i will now be acyclic.

Graph Notation. Since a vertex in Gi contains a single transaction, we may
use a transaction and its corresponding vertex interchangeably when referring to
the vertex in Gi. Let TXSi(v) be the set of transactions for a vertex v ∈ G∗

i .V .
Let SCCi(v) denote the strongly connected component of Gi that contains the
vertex v. SCCi(v) also denotes the corresponding vertex in the condensation
graph G∗

i .

Ordering Incomparable Vertices in G∗
i and Breaking Ties. As mentioned

before, not all pairs of vertices in G∗
i are connected by an edge. This only gives a

partial ordering for delivering transactions. We still need a way to totally order
vertices in G∗

i . In the leader-based version of the finalization step, we delegate
this responsibility to the leader node. We elaborate on the technique used in the
synchronous leaderless protocol in Sect. 6.

Delivering a Transaction. Recall that a transaction enters the finalization
stage when it has completed the agreement stage, while it is delivered when it
gets output to Z as part of the LOG. For the leaderless protocols, the set of
transactions TXSi(v) corresponding to the vertex v ∈ G∗

i .V can be delivered in
the LOG output to Z when it is not waiting for any other transaction and is
preferred over any other transaction that it is incomparable with in the graph.
For this, care must be taken to ensure that the set of transactions that tx is
incomparable with is the same when all honest nodes are deciding to deliver tx,
which we defer to the actual protocol description in Sect. 6.

6 The Synchronous Aequitas Protocol

We describe Πsync,nolead
Aequitas , the leaderless Aequitas protocol for the completely syn-

chronous setting. By “complete synchrony,” we mean that both the external
and internal networks are synchronous. For this section, we assume that (A,Z)
respects Δext = (full, δext) ext-synchrony and Δint = (full, δint) int-synchrony.

To build the Πsync,nolead
Aequitas protocol, we assume a secure FIFO-BC protocol

Πfifocast (from Definition 8) and a secure Set-BA protocol Πsba (from Defini-
tion 7) that both work for any (A,Z) that respects (n, f,Δint,Δext)-classical
execution. Let (T fifocast

warmup, T fifocast
confirm) and T Set-BAconfirm denote the liveness param-

eters for Πfifocast and Πsba respectively. We note that any bound for the number
of corruptions f will be at least as restrictive as bounds required by Πfifocast and
Πsba.

474 M. Kelkar et al.

6.1 Protocol Description

The Πsync,nolead
Aequitas protocol follows much of the same general techniques from Sect. 5.

The gossip and agreement stage take place exactly as described there. In the
gossip stage, a node i forks an instance of Πfifocast[(sid, i)] and uses it to broadcast
transactions as they are received from Z. After broadcasting a transaction tx,
it waits until the broadcasts from all honest nodes would have arrived. Let U tx

i

denote the set of nodes k such that tx ∈ Logk
i . Note that all honest nodes are

present in U tx
i . In the agreement stage, i forks an instance of Πsba[(sid, tx)] to

agree on a set Ltx indicating the nodes whose logs to use to order tx.
For the finalization stage, we now present the remaining details that were

deferred from Sect. 5.1. Please refer to Sect. 5 for any notation.

Building the “Waiting” Graph Gi. Recall that each node i builds a graph Gi

where vertices are transactions and edges denote ordering dependencies between
transactions. For two transactions tx and tx′, an edge (tx′, tx) is added to Gi

if l(tx,tx′) ≤
∣
∣
∣Ltx ∪ Ltx′

∣
∣
∣ − γn + f . Each node i also maintains the condensation

graph G∗
i where each strongly connected component in Gi is condensed to a

single vertex.

Ordering Incomparable Vertices in G∗
i . Suppose that v and v′ are two

vertices in G∗
i that are currently not comparable i.e. they do not have an edge

between them. To determine which vertex to deliver first, we wait until they have
a common descendant, after which we order based on number of descendants.
We note that once a common descendant arrives, any other transaction that
arrives will also be a descendant of both v and v′. In other words, the vertex
with the higher number of descendants will become fixed allowing for a consistent
ordering across protocol nodes. Lemma 4 shows a helpful result on when vertices
can be “incomparable.”

A subtle point to note here is that the common descendant itself can cause v
and v′ to be combined into the same strongly connected component if it creates a
cycle containing them. This is precisely why our protocol achieves weak-liveness,
where we achieve liveness, if a transaction arrives late enough that it cannot
create a cycle with transactions in v and v′. Effectively, we need to wait for a
transaction to arrive sufficiently late in order to “flush out” earlier transactions.

Lemma 4. Let v1 and v2 be two vertices in G∗
i that do not have an edge between

them. Let rfirst denote the time when any transaction in TXSi(v1) was first
received by a node. Let rlast denote the time when any transaction in TXSi(v2)
was last received by a node. Then rlast − rfirst ≤ 2δext.

Breaking Ties. We use an a priori known ordering relation to break any ties
that arise (e.g., two vertices with equal number of descendants). In particular,
suppose that Ord is a binary relation on 2T × 2T that is known a priori to
all nodes. 2T represents the power set of T . The relation is defined on sets
of transactions (rather than individual transactions only) since we may deliver
several transactions at once. We assume that Ord is supplied to all nodes on

Order-Fairness for Byzantine Consensus 475

initialization by Z. We will use this function to deterministically break ties
between two sets of transactions when neither should clearly come before the
other. For two sets S1 and S2, (S1, S2) ∈ Ord implies that all nodes agree S1

should come before S2 if there is no clear winner. Ord can also be used to order
transactions in the same block. We note that Ord can be defined using a simple
alphabetical or ascending order. In general, Ord needs to satisfy two properties:

• ∀(a, b) ∈ 2T × 2T ; a
= b, exactly one of (a, b) and (b, a) is in Ord.
• ∀a, b, c ∈ 2T , if (a, b) ∈ Ord and (b, c) ∈ Ord then (a, c) ∈ Ord.

Delivering Transactions. The transactions TXSi(v) of a vertex v in G∗
i can

be delivered when:

• v is a source vertex i.e., it has no incoming edge. This ensures that v is not
waiting on any other transaction to be delivered first.

• 2δext rounds have passed since v was added to the graph. This ensures that
any other vertex v′ that v is incomparable to, is also present in the graph.

• For any other source vertex v′, v has a common descendant with v′ and
either has more descendants or has an equal number of descendants and
(TXSi(v),TXSi(v′)) ∈ Ord holds. This ensures that every node will order v
before v′.

Bound on f . Suppose that (γ, ·) order-fairness needs to be realized. This implies
that if γn nodes receive transactions in a particular order, it must be reflected in
the final ordering. Since f nodes can be adversarial, the output must be the same
even if γn − f of those orderings are seen. Now, as we don’t want a bi-directed
edge to be added to Gi, γn − f > n

2 must hold. Equivalently, n > 2f
2γ−1 . For

block-order-fairness with γ = 1, we require an honest majority.

6.2 Protocol Pseudocode

Initialization. At the start of the protocol, we assume that i receives the iden-
tities of other protocol nodes, n, f , the maximum network delays δint, δext, and
the binary relation Ord. A FIFO-BC protocol Πfifocast and a Set-BA protocol Πsba

have also been agreed upon a priori. Let T fifocast
confirm and T sba

confirm represent the live-
ness bounds for Πfifocast and Πsba respectively. Now, for each j ∈ N , i initializes
Logj

i ← []. It also initializes an empty graph Gi and a final output log LOGi.

• At the start of round r, when a node i receives a set of transactions txs from
Z, it does the following:

1. (Gossip)
(a) Fork an instance of Πfifocast[(sid, i)], if it does not already exist.
(b) Send txs as input to Πfifocast[(sid, i)].
(c) Record (sid, gossip-end, txs, r + δext + T fifocast

confirm)

476 M. Kelkar et al.

2. (Agreement)
(a) Check if there is any recorded tuple (sid, gossip-end, txs′, r′) such that

r = r′.
(b) For such a tuple for txs′, for each tx ∈ txs′, fork an instance of

Πsba[(sid, tx)] and provide it the input U tx
i .

(c) Record (sid, agreement-end, tx, r + Tsba
confirm) for each tx ∈ txs′.

3. (Build Graph)
(a) Check if there is any recorded tuple (sid, agreement-end, tx, r′) such that

r = r′.
(b) For such a tuple for tx, first add a vertex denoted by tx to Gi if it does

not already exist. Now, for any other transaction tx′ seen so far that has
not yet been delivered,
i. Let u =

∣
∣
∣

{

k ∈ Ltx | tx′ ∈ Logk
i

}∣
∣
∣.

ii. If u ≥ |Ltx| − (n − f) + 1, compute l(tx,tx′) as per Sect. 5.1.

iii. If l(tx,tx′) ≤
∣
∣
∣Ltx ∪ Ltx′

∣
∣
∣ − γn + f , then record tx � tx′. Add an edge

(tx′, tx) to Gi if it does not already exist.
(c) Record (sid, graph-end, tx, r + 2δext) for tx.

4. (Finalization)
(a) Compute the condensation graph G∗

i of Gi by collapsing each strongly
connected component into a single vertex.

(b) Let Vsource be the set of vertices in G∗
i where v ∈ Vsource if it satisfies:

• All transactions in TXS(v) have been received.
• v is a source vertex in G∗

i . That is, v has no incoming edges.
(c) Let Vfinalize ⊆ Vsource be the set of vertices v that also satisfy:

• For all tx∗ ∈ TXS(v), there is any previously recorded tuple
(sid, graph-end, tx∗, r′) with r ≥ r′

(d) For v ∈ Vsource, let Desc(v) denote the descendants of v in G∗
i . Let

nDesc(v) = |Desc(v)| i.e. the number of descendants.
(e) For v ∈ Vfinalize and v′ ∈ Vsource, let common-desc(v,v′) be a boolean that

denotes whether v and v′ have a common descendant. That is, we define
common-desc(v,v′) := (Desc(v) ∩ Desc(v′)
= ∅)

(f) If there is a v ∈ Vfinalize such that for all other v′ ∈ Vsource,
• common-desc(v,v′) = true
• Either nDesc(v) > nDesc(v′) holds or (nDesc(v) = nDesc(v′)) ∧

(TXS(v),TXS(v′)) ∈ Ord.
then, deliver transactions in v by appending TXS(v) to LOGi. Remove v
from G∗

i and the corresponding vertices form Gi.
(g) Repeat steps 4b to 4f until there is no such v in step 4f.
(h) Output the current LOGi to Z.

• When i receives txs from Πfifocast[(sid, j)], it appends txs to Logj
i and adds j

to the set U tx
i .

• When i receives the output from Πsba[(sid, tx)], it stores it as Ltx.

Order-Fairness for Byzantine Consensus 477

Transaction Lifecycle. Suppose that a transaction tx is input to node i in
round r0. Since the external network is synchronous, by round r0 +δext, all nodes
will have been input tx by Z. Consequently, by round r1 = r0 + δext + T fifocast

confirm,
node i will have received the gossip broadcasts from all other honest nodes. By
round r2 = r1 + T sba

confirm, node i will receive the output of the agreement stage
for tx, and tx can be added to the graph Gi. Now by round r3 = r2 + 2δext, any
other transaction that tx could be incomparable with will also get added to Gi.
Waiting for this time ensures that tx does not get delivered before ensuring that
all relevant transactions have been placed in the graph.

6.3 Consistency, Liveness, and Order-Fairness Results

We present the consistency, liveness, and order-fairness results for Πsync,nolead
Aequitas

in Theorem 4. We provide brief proof sketches, and defer the formal proofs to
the full version [27]. As a corollary, we also note that Πsync,nolead

Aequitas also satisfies
receive-order-fairness, and (conventional) liveness when the external network has
δext = 1, since non-transitive Condorcet cycles can no longer arise.

Theorem 4 (Consistency, Liveness, and Order-Fairness of Πsync,nolead
Aequitas).

Consider any n, f, γ > 1
2 ,Δext = (full, δext),Δint = (full, δint) with n > 2f

2γ−1 .
Let Πfifocast be a secure FIFO-BC protocol and Πsba be a secure Set-BA protocol.
Further, suppose that Πfifocast satisfies (T fifocast

warmup, T fifocast
confirm) liveness, and Πsba sat-

isfies T sba
confirm liveness. Then Πsync,nolead

Aequitas satisfies consistency, (T fifocast
warmup, T ∗

confirm)
weak-liveness where T ∗

confirm = 2δext + T fifocast
confirm + T sba

confirm, and (γ, T fifocast
warmup) block-

order-fairness w.r.t. any (A,Z) that respects (n, f,Δint,Δext)-classical execution.

Consistency Proof Sketch. To show consistency, we need to prove that two
honest nodes i and j remove transactions from their graphs G∗

i and G∗
j in the

same order. For this, we first present a helpful lemma (Lemma 5).

Lemma 5. Suppose that when an honest node i delivers tx, v = SCCi(tx) is
the vertex that contains tx in G∗

i . Now, if another honest node j delivers tx
and v′ = SCCj(tx) at that point, then TXSi(v) = TXSj(v′), or equivalently
SCCi(tx) = SCCj(tx) when tx is output by each of the nodes. This means that
we can drop the node subscripts.

Now, suppose that node i delivers a transaction tx1 before another one tx2. Let
v1 = SCCi(tx1) and v2 = SCCi(tx2) be vertices in G∗

i when tx1 and tx2 were
delivered. Note that by Lemma 5, we can also use v1 and v2 to denote the vertices
when j delivers tx1 and tx2. Now, either tx1 was delivered even before tx2 was
added to Gi, or there is an edge from v1 to v2 in G∗

i (which caused tx1 to be
output before) or v1 and v2 are incomparable.

• If tx1 was delivered before tx2 was added to Gi, then at least γn − f nodes
received tx1 before tx2. Therefore, even if tx2 gets added to Gj before tx1,
there will be an edge from tx1 to tx2 in Gj . By Lemma 5, tx1 cannot be in
the same SCC as tx2 either, which implies that j cannot deliver tx2 first.

478 M. Kelkar et al.

• If (v1, v2) is an edge in G∗
i , then it will also be in G∗

j when j delivers TXS(v2).
This means that j cannot deliver TXS(v2) before it delivers TXS(v1).

• If there is no edge between v1 and v2 in G∗
i , then node i delivers TXS(v1)

before because v1 had more descendants (or because of the deterministic tie-
breaker). Since j waits for 2δext time, both v1 and v2 are present in its graph
G∗

j when j outputs TXS(v2), causing j to wait for a common descendant of
v1 and v2 to be added. By this time, any other vertex that is not a common
descendant will also be in G∗

j , and the difference in the number of descendants
of v1 and v2 will remain constant henceforth. This means that j will take the
same decision as i to deliver TXS(v1) before TXS(v2).

Weak-Liveness Proof Sketch. To show weak-liveness for a transaction tx,
first, in Lemma 6, we prove that if a transaction is input sufficiently after tx, it
cannot be coalesced into the same strongly connected component as tx.

Lemma 6. Consider a transaction tx and build the set T as per the weak-
liveness definition. Now, let tx′ be a transaction that is input to all nodes after
all transactions in T. Then SCCi(tx)
= SCCi(tx′) for any honest i.

Now, suppose that tx was first input by Z in round r > T fifocast
warmup. Consider

the set T built form tx as in the weak-liveness definition. Suppose now that a
transaction txflush is input to all nodes after all transactions in T. Let rflush be
the round that txflush is first input to some node. Then, txflush is received by all
nodes by round rflush +δext and therefore added to all honest graphs Gi by round
rflush + 2δext + T fifocast

confirm + T sba
confirm. From Lemma 6, v = SCCi(tx)
= SCCi(txflush)

for any honest i. Now, any transaction tx′ that tx is incomparable was input to
at least one honest node no later than tx, i.e. txflush was received after tx′ by all
honest nodes. Consequently, txflush will be a descendant of both tx and tx′. This
means that node i can deliver TXSi(tx) when txflush gets added to its graph,
which happens by round rflush + T ∗

confirm.

Order-Fairness Proof Sketch. First, we note that if γn nodes receive tx1

before tx2, then at least γn − f honest ones do. This means that there will
be an edge from tx1 to tx2 in all honest Gi. Consequently, either tx1 will be
delivered before tx2 by all nodes, or it will end up in the same strongly connected
component as tx2 and be delivered at the same time.

Acknowledgements. This work was funded by NSF grants CNS-1564102, CNS-
1704615, and CNS-1933655 as well as support from IC3 industry partners. We would
also like to thank Mic Bowman at Intel for drawing attention to potential applications.

References

1. Abraham, I., et al.: Solida: a blockchain protocol based on reconfigurable byzantine
consensus. In: OPODIS, pp. 25:1–25:19 (2017)

2. Abraham, I., et al.: Sync HotStuff: simple and practical synchronous state machine
replication. Cryptology ePrint Archive, Report 2019/270 (2019)

Order-Fairness for Byzantine Consensus 479

3. Amir, Y., et al.: Prime: byzantine replication under attack. IEEE TDSC 8(4),
564–577 (2011)

4. Asayag, A., et al.: A fair consensus protocol for transaction ordering. In: ICNP,
pp. 55–65 (2018)

5. Aublin, P.-L., Mokhtar, S.B., Quéma, V.: RBFT: redundant byzantine fault toler-
ance. In: ICDCS, pp. 297–306 (2013)

6. Baird, L.: The Swirlds Hashgraph Consensus Algorithm: Fair, Fast, Byzan-
tine Fault Tolerance (2016). https://www.swirlds.com/downloads/SWIRLDS-TR-
2016-01.pdf

7. Bano, S., et al.: Consensus in the age of blockchains. arXiv:1711.03936 (2017)
8. Bessani, A., Sousa, J., Alchieri, E.E.P.: State machine replication for the masses

with BFT-SMART. In: DSN, pp. 355–362 (2014)
9. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM

32(4), 824–840 (1985)
10. Cachin, C., Vukolić, M.: Blockchain consensus protocols in the wild.

arXiv:1707.01873 (2017)
11. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous

broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–147 (2001)

13. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 16

14. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 4

15. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, pp. 173–186
(1999)

16. Hubert Chan, T.-H., Pass, R., Shi, E.: Consensus through herding. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 720–749. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 24

17. Clement, A., et al.: Making byzantine fault tolerant systems tolerate byzantine
faults. In: NDSI, pp. 153–168 (2009)

18. Condorcet Paradox. https://wikipedia.org/wiki/Condorcet paradox
19. Cristian, F., et al.: Atomic broadcast: from simple message diffusion to byzantine

agreement. Inf. Comput. 118(1), 158–179 (1995)
20. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner

extractable value, and consensus instability. In: IEEE S&P, pp. 585–602 (2020)
21. Dolev, D., Raymond Strong, H.: Authenticated algorithms for byzantine agree-

ment. SIAM J. Comput. 12, 656–666 (1983)
22. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-

chrony. J. ACM 35(2), 288–323 (1988)
23. Ethereum. https://ethereum.org/
24. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:

Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

25. Gilad, Y., et al.: Algorand: scaling byzantine agreements for cryptocurrencies. In:
SOSP, pp. 51–68 (2017)

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
http://arxiv.org/abs/1711.03936
http://arxiv.org/abs/1707.01873
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-030-17653-2_24
https://wikipedia.org/wiki/Condorcet_paradox
https://ethereum.org/
https://doi.org/10.1007/978-3-662-45472-5_28

480 M. Kelkar et al.

26. Ho, C., Dolev, D., van Renesse, R.: Making distributed applications robust. In:
Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 232–
246. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77096-1 17

27. Kelkar, M., et al.: Order-fairness for byzantine consensus. Cryptology ePrint
Archive, Report 2020/269 (2020)

28. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

29. Kokoris-Kogias, E., et al.: OmniLedger: a secure, scale-out, decentralized ledger
via sharding. In: IEEE S&P, pp. 583–598 (2018)

30. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. TOPLAS
4(3), 382–401 (1982)

31. Lev-Ari, K., et al.: FairLedger: a fair blockchain protocol for financial institutions.
In: OPODIS, pp. 1:1–1:16 (2019)

32. Lewis, M.: Flash Boys: A Wall Street Revolt. WW Norton & Company, New York
(2014)

33. Luu, L., et al.: SmartPool: practical decentralized pooled mining. In: USENIX
Security, pp. 1409–1426 (2017)

34. Martin, J.-P., Alvisi, L.: Fast byzantine consensus. IEEE TDSC 3(3), 202–215
(2006)

35. Miller, A., et al.: Non-outsourceable scratch-off puzzles to discourage bitcoin min-
ing coalitions. In: ACM CCS, pp. 680–691 (2015)

36. Miller, A., et al.: The honey badger of BFT protocols. In: ACM CCS, pp. 31–42
(2016)

37. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: PODC, pp. 315–324 (2017)
38. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.

In: DISC, pp. 1–16 (2017)
39. Pass, R., Shi, E.: Rethinking large-scale consensus. In: CSF, pp. 15–129 (2017)
40. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:

Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

41. Rocket, T., et al.: Scalable and probabilistic leaderless BFT consensus through
metastability. arXiv:1906.08936 (2019)

42. Veronese, G.S., et al.: Efficient byzantine fault-tolerance. IEEE Trans. Comput.
62(1), 16–30 (2013)

43. Veronese, G.S., et al.: Spin one’s wheels? Byzantine fault tolerance with a spinning
primary. In: SRDS, pp. 135–144 (2009)

44. Yin, M., et al.: HotStuff: BFT consensus with linearity and responsiveness. In:
PODC, pp. 347–356 (2019)

https://doi.org/10.1007/978-3-540-77096-1_17
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-78375-8_1
http://arxiv.org/abs/1906.08936

Generically Speeding-Up Repeated
Squaring Is Equivalent to Factoring:

Sharp Thresholds for All Generic-Ring
Delay Functions

Lior Rotem(B) and Gil Segev

School of Computer Science and Engineering, Hebrew University of Jerusalem,
Jerusalem 91904, Israel

{lior.rotem,segev}@cs.huji.ac.il

Abstract. Despite the fundamental importance of delay functions,
repeated squaring in RSA groups (Rivest, Shamir and Wagner ’96) is the
only candidate offering both a useful structure and a realistic level of prac-
ticality. Somewhat unsatisfyingly, its sequentiality is provided directly by
assumption (i.e., the function is assumed to be a delay function).

We prove sharp thresholds on the sequentiality of all generic-ring delay
functions relative to an RSA modulus based on the hardness of factoring
in the standard model. In particular, we show that generically speeding-
up repeated squaring (even with a preprocessing stage and any polyno-
mial number parallel processors) is equivalent to factoring.

More generally, based on the (essential) hardness of factoring, we
prove that any generic-ring function is in fact a delay function, admit-
ting a sharp sequentiality threshold that is determined by our notion of
sequentiality depth. Moreover, we show that generic-ring functions admit
not only sharp sequentiality thresholds, but also sharp pseudorandom-
ness thresholds.

1 Introduction

The recent and exciting notion of a verifiable delay function, introduced by
Boneh et al. [BBB+18], and the classic notion of time-lock puzzles, introduced
by Rivest, Shamir and Wagner [RSW96], are gaining significant interest due to
a host of thrilling applications. These include, for example, randomness beacons,
resource-efficient blockchains, proofs of replication and computational times-
tamping. A fundamental notion underlying both of these notions is that of a
cryptographic delay function: For a delay parameter T , evaluating a delay func-
tion on a randomly-chosen input should require at least T sequential steps (even

L. Rotem and G. Segev—Supported by the European Union’s Horizon 2020 Framework
Program (H2020) via an ERC Grant (Grant No. 714253).
L. Rotem—Supported by the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 481–509, 2020.
https://doi.org/10.1007/978-3-030-56877-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_17

482 L. Rotem and G. Segev

with a polynomial number of parallel processors and with a preprocessing stage),
yet the function can be evaluated on any input in time polynomial in T .

A delay function can be easily constructed by iterating a cryptographic
hash function. A major benefit of this construction is that its sequentiality is
supported by an idealized-model proof of security: When the hash function is
modeled as a random oracle, its sequentiality is guaranteed in an information-
theoretic sense. Alas, the lack of structure exhibited by this construction seems
to disable its practical use for realizing time-lock puzzles or verifiable delay func-
tions. Specifically, for time-lock puzzles, iterated hashing does not seem to admit
sufficiently fast generation of input-output pairs [MMV11]; and for verifiable
delay functions it does not seem to enable sufficiently fast verification.1

The only known construction of a delay function that offers both a useful
structure for realizing time-lock puzzles or verifiable delay functions and a real-
istic level of practicality is the “repeated squaring” function in RSA groups,
defined via x �→ x2T

mod N , underlying the time-lock puzzle of Rivest et al.
[RSW96].2 This delay function was recently elegantly extended by Pietrzak
[Pie19] and Wesolowski [Wes19] to additionally yield a verifiable delay function.

The sequentiality of this function, however, is provided directly by assump-
tion. That is, the function is assumed to be a delay function, and there is
currently no substantial evidence relating its sequentiality to any other, more
standard, assumptions such as the RSA or factoring assumptions. This highly
unsatisfying state of affairs raises the important challenge of obtaining a better
understanding of the sequentiality of repeated squaring in RSA groups. Clearly,
given the factorization of the RSA modulus N , it is possible to speed up the
computation of the repeated squaring function by reducing 2T modulo the order
of the multiplicative group Z

∗
N . Thus, the hardness of factoring is essential for

the sequentiality of repeated squaring in RSA groups, leading to the following
ambitious question:

Is speeding-up repeated squaring equivalent to factoring?

More generally, and given that delay functions have become a basic primitive
underlying a variety of evolving applications, this urges at exploring other can-
didate delay functions, and obtaining a rigorous understanding of the crypto-
graphic assumptions underlying their sequentiality.

1 Although, asymptotically, for any concrete instantiation of the hash function, such
verification can be based on succinct non-interactive arguments for NP languages
[Kil92,Mic94,GW11], as suggested by Döttling et al. [DGM+19] and Boneh et al.
[BBB+18].

2 There are additional constructions of delay functions which enable extensions
to time-lock puzzles and to verifiable delay functions, but these rely on com-
putational hardness within algebraic structures that are less-explored from a
cryptographic standpoint. These include the class groups of imaginary quadratic
fields [BW88,BBB+18,Pie19,Wes19] and isogenies of supersingular elliptic curves
[FMP+19,Sha19].

Sharp Thresholds for All Generic-Ring Delay Functions 483

1.1 Our Contributions

We resolve the above-mentioned challenges within the generic-ring model relative
to an RSA modulus, capturing all computations that ignore any specific property
of the representation of ring elements. Our main result is a sharp threshold on
the sequentiality of all generic-ring delay functions based on the hardness of
factoring in the standard model.

Trade-offs between sequentiality and parallelism are still not sufficiently
understood from the complexity-theoretic perspective for computations in the
standard model, and the generic-ring model provides a framework in which the
nature of computation is somewhat better understood on the one hand, and
which captures a wide variety of practical constructions and attacks on the other
hand. In particular, our results apply to the repeated squaring function, for which
we obtain the following theorem:

Theorem 1.1 (informal). Generically speeding-up repeated squaring is equiv-
alent to standard-model factoring.

That is, we prove that any generic-ring algorithm that has a non-negligible prob-
ability in computing the function x �→ x2T

mod N for a uniformly chosen input
x ← Z

∗
N using a preprocessing stage and any polynomial number of parallel pro-

cessors, each of which performs less than T sequential ring operations, yields a
polynomial-time standard-model factoring algorithm with polynomially-related
success probability and running time.

Sharp Sequentiality Thresholds. More generally, as mentioned above, we
prove sharp thresholds on the sequentiality of all generic-ring delay functions
based on the hardness of factoring in the standard model. These include, in
particular, all rational (partial) multivariate functions over the ring, as well as
more expressive functions which may depend on the equality pattern among all
intermediate values in the computation.

We prove that every generic-ring function is in fact a delay function, whose
sequentiality depends on the notion sequentiality depth, which we put forward.
For rather simple polynomials, this notion essentially coincides with the log-
arithm of their degree (thus leading to Theorem1.1 for the case of repeated
squaring). For general generic-ring functions, our notion of sequentiality depth
can be viewed as approximating the minimal degree of a rational function that is
equivalent modulo N to the given function. Even for rational functions, however,
defining a notion of equivalence is quite subtle given that the ring we consider
is not an integral domain.

Equipped with our notion of sequentiality depth for any generic-ring func-
tion, we show that it serves as a sharp threshold for the number of sequential
ring operations required in order to evaluate the function on a uniformly-chosen
input.

Theorem 1.2 (informal). Let F be a generic-ring function of sequentiality
depth d. Assuming the hardness of factoring in the standard model, it holds that:

484 L. Rotem and G. Segev

– F can be generically evaluated on any input with d sequential rounds of
ring operations issued by a polynomial number of parallel processors.

– F cannot be generically evaluated on a uniformly-chosen input with less
than d sequential rounds of ring operations, even with a preprocessing stage
and any polynomial number of parallel processors.

Sharp Pseudorandomness Thresholds. Moreover, we prove that for generic
attackers who preform two few sequential rounds of ring operations, generic-
ring functions provide not only unpredictability but in fact pseudorandomness.
We explore the pseudorandomness of delay functions not merely as a natural
strengthening of sequentiality, but also given that various applications of delay
functions may directly benefit from it (e.g., randomness beacons [BCG15,BGZ16,
PW18,BBB+18]).

Complementing our notion of sequentiality depth, we put forward the notion
of pseudorandomness depth of a generic-ring function, which can be viewed as
an indistinguishability-based variant of sequentiality depth. As above, for rather
simple polynomials the notion of pseudorandomness depth essentially coincides
with the logarithm of their degree (thus leading to a variant of Theorem1.1 that
considers the pseudorandomness of repeated squaring instead of its sequentiality).
For general generic-ring functions, the pseudorandomness depth is always upper
bounded by the sequentiality depth, and exploring the exact relation between
these two notions is an interesting direction for future research.

We prove that the pseudorandomness depth of any generic-ring function
serves as a sharp threshold for the number of sequential rounds of ring oper-
ations required in order to distinguish between a uniformly chosen ring element
and the output of the function when evaluated on a uniformly-chosen input.

Theorem 1.3 (informal). Let F be a k-variate generic-ring function of pseu-
dorandomness depth d. Assuming the hardness of factoring in the standard model,
it holds that:

– F (x1, . . . , xk) can be generically distinguished from a uniform ring element y,
where x1, . . . , xk are uniformly chosen in the ring, with d sequential rounds
of ring operations issued by a polynomial number of parallel processors,

– F (x1, . . . , xk) cannot be generically distinguished from a uniform ring ele-
ment y, where x1, . . . , xk are uniformly chosen in the ring, with less than d
sequential rounds of ring operations, even with a preprocessing stage and any
polynomial number of parallel processors.

1.2 Related Work

We prove our results within the generic-ring model introduced by Aggarwal
and Maurer [AM09] and further studied by Jager and Schwenk [JS13], as part
of the line of research on idealized models for capturing algebraic construc-
tions and hardness assumptions (see [Nec94,Sho97,BL96,MW98,Mau05,JS08,
JR10,FKL18] and the references therein). Within their model, which is more

Sharp Thresholds for All Generic-Ring Delay Functions 485

suitable for capturing RSA-based constructions compared to the generic-group
model, Aggarwal and Maurer proved that any generic algorithm that is able
to compute roots of random ring elements relative to an RSA modulus can be
used to produce a standard-model factoring algorithm. That is, they showed
that the hardness of the RSA problem in the generic-ring model is equivalent
to the hardness of factoring in the standard model. Following-up on previous
work on the relationship between the RSA and factoring assumptions (e.g.,
[BV98,DK02,Bro05,LR06,JNT07]), this provided substantial evidence towards
the security of RSA-based constructions, showing that under the factoring
assumption they are not vulnerable to a wide variety of practical cryptanalytic
attacks.

Our work is directly inspired by the work of Aggarwal and Maurer in relating
the capabilities of generic attackers to the hardness of factoring. The key differ-
ence, however, both conceptually and technically is that, based on the hardness
of factoring, Aggarwal and Maurer proved that certain functions are completely
infeasible to compute in polynomial time, whereas we show a more fine-grained
result: It is infeasible to speed-up functions that can be computed in polyno-
mial time (even with a preprocessing stage and with any polynomial number of
parallel processors).

Following-up on the work of Aggarwal and Maurer, Jager and Schwenk [JS13]
proved that generically computing the Jacobi symbol of a random ZN element
is equivalent to factoring, although Jacobi symbols are easy to compute non-
generically given the standard integer representation of ZN elements. As pointed
out by Jager and Schwenk, and as discussed above, lower bounds in the generic-
ring model nevertheless capture a wide variety of practical constructions and
cryptanalytic attacks.3

In an independent work, Katz, Loss and Xu [KLX20] proved that within a
quantitative variant of the algebraic group model [FKL18], speeding-up repeated
squaring in the group QRN of quadratic residues modulo N is equivalent to
factoring N , where N is a bi-prime integer. Our results differ from theirs in
a few aspects. Firstly, our result holds for any function which may be defined
in the generic-ring model, whereas they consider only the repeated squaring
function; and we consider both unpredictability and pseudorandomness, whereas
they consider only unpredictability. Secondly, the model in which Katz et al.
prove their result is incomparable to the model in which we prove our results: On
the one hand, in the algebraic group model the adversary may use the concrete
representation of group elements (which is unavailable to the adversary in the
generic-ring model); but on the other hand, the adversary’s output must be
explained by a sequence of group operations (in QRN this translates to a sequence
of multiplications modulo N), whereas the generic-ring model permits the two

3 Aggarwal and Maurer also point out that lower bounds in the generic-ring model
remain interesting specifically for problems in which the adversary is required to
output elements in the ring, which is the case for evaluation of delay functions and
for computing roots in the ring, bit is not the case for computing the Jacobi symbol
of ring elements.

486 L. Rotem and G. Segev

ring operations and their inverses (i.e., in addition to multiplication, it also
allows for addition, subtraction and division modulo N). Finally, they consider
the group QRN , whereas we consider its super-group Z

∗
N . From a technical

standpoint, their proof inherently relies on the fact that QRN is cyclic, which is
not the case for Z

∗
N .

Various cryptographic notions that share a somewhat similar motivation
with delay functions have been proposed over the years, such as the above-
discussed notions of time-lock puzzles and verifiable delay functions (e.g.,
[RSW96,BGJ+16,BBB+18,BBF18,Pie19,Wes19,EFK+20,FMP+19]), as well
as other candidate functions [DN92,LW15] and other notions such as sequen-
tial functions and proofs of sequential work (e.g., [MMV11,MMV13,CP18]). It
is far beyond the scope of this work to provide an overview of these notions and
constructions, and we refer the reader to the work of Boneh et al. [BBB+18] for
an in-depth discussion of these notions and of the relations among them.

In the generic-group model, Rotem, Segev and Shahaf [RSS20] have recently
ruled out the possibility of constructing delay functions in cyclic groups, where
the group’s order is known to the attacker. In the random-oracle model, Döttling,
Garg, Malavolta and Vasudevan [DGM+19], and Mahmoody, Smith and Wu
[MSW19] recently proved impossibility results for certain classes of verifiable
delay functions. Our work is of a different flavor, as these works provide nega-
tive evidence for the existence of delay functions and verifiable delay functions,
whereas our work provides positive evidence for the existence of generic-ring
delay functions. Our work is also different from the work of Rotem et al. [RSS20]
in that it considers the generic-ring model in order to capture the RSA group
which is believed to be of an unknown order from a computational perspective;
and from the works of Döttling et al. [DGM+19] and Mahmoody et al. [MSW19]
both in terms of focusing on the seemingly weaker notion of delay functions (i.e.,
we do not require verifiability), and in terms of characterizing the sequentiality
and pseudorandomness of all functions in the more structured and expressive
generic-ring model, based on the hardness of factoring in the standard model.

1.3 Paper Organization

The remainder of the paper is organized as follows. First, in Sect. 2 we present
the generic-ring model, and in Sect. 3 we describe our framework for generic-
ring delay functions. In Sect. 4 we prove our sharp threshold on the sequentiality
of straight-line delay functions. Due to space limitations, our extension of this
threshold to arbitrary generic-ring delay functions, as well as our sharp threshold
on the pseudorandomness of delay functions, are formally presented and proven
in the full version of this paper.

2 The Generic-Ring Model

In this section we present the idealized model of computation that we consider in
this work, slightly refining the generic-ring model introduced by Aggarwal and

Sharp Thresholds for All Generic-Ring Delay Functions 487

Maurer [AM09] as we discuss below (mainly for the purpose of a more detailed
accounting of parallelism vs. sequentiality). Informally, a generic-ring algorithm
which receives one or more ring elements as input is restricted to handling these
elements only via the two ring binary operations and their inverses, and by
checking equality between two ring elements.

More formally, we consider generic computations in a ring R. Concretely,
following Aggarwal and Maurer, the ring R we consider is that of integers modulo
N , denoted ZN , for N which is the product of two primes and is generated
by a modulus-generation algorithm ModGen(1λ), where λ ∈ N is the security
parameter. All generic-ring algorithms in this paper receive the modulus N as
an explicit bit-string input. Any computation in this model is associated with a
table B, where each entry of this table stores an element of R, and we denote
by Vi the ring element that is stored in the ith entry.

Generic-ring algorithms access this table via an oracle O, providing black-box
access to B as follows. A generic-ring algorithm A that takes d ring elements as
input does not receive an explicit representation of these elements, but instead,
has oracle access to the table B, whose first d entries store the elements of R
corresponding to the d ring elements that are included in A’s input. That is, if
the input of an algorithm A consists of d ring elements x1, . . . , xd, then from
A’s point of view the input consists of “pointers” x̂1, . . . , x̂d to the ring elements
x1, . . . , xd (these elements are stored in the table B). Accordingly, when a generic-
ring algorithm outputs a ring element y ∈ R, it actually outputs a pointer which
we denote by ŷ, pointing to an entry in B containing y.4 The oracle O allows
for two types of queries:

– Ring-operation queries: These queries enable computation of the binary
ring operations and their inverses. On input (i, j, ◦) for i, j ∈ N and ◦ ∈
{+,−, ·, /}, the oracle checks that the ith and jth entries of the table B
are not empty and are not ⊥, and in case that ◦ is / (i.e., the inverse of
the multiplication operation), the oracle also checks that the result of Vj is
invertible in the ring. If all checks pass, then the oracle computes Vi ◦ Vj and
stores the result in the next available entry. Otherwise, it stores ⊥ in the next
available entry.

– Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that the
ith and jth entries in B are not empty and are not ⊥, and then returns 1 if
Vi = Vj and 0 otherwise. If either the ith or the jth entries are empty or are
⊥, the oracle ignores the query.

Straight-Line Functions. Looking ahead, we will first prove our results for the
case in which the delay function is a straight-line program, which is a determin-
istic generic-ring algorithm that does not issue any equality queries. We refer to
such delay functions as straight-line delay functions. Then, we will extend our
4 We assume that all generic-ring algorithms receive a pointer to the multiplicative

identity 1 and a pointer to the additive identity 0 as their first two inputs (we capture
this fact by always assuming that the first two entries of B are occupied by 1 ∈ R
and 0 ∈ R), and we will forgo noting this explicitly from this point on.

488 L. Rotem and G. Segev

result to arbitrary generic-ring functions that may issue both ring-operations
queries and equality queries.

Parallel Computation. In order to reason about delay functions in this model,
we need to extend it in a way which accommodates parallel computation. A
generic-ring algorithm with w parallel processors invokes the oracle O with ring-
operation queries in “rounds”, where in each round, at most w parallel ring-
operation queries may be issued. We assume some order on the processors so
that the results of the queries are also placed in the table B according to this
order. We emphasize, however, that the action that the oracle takes in response
to each of the queries in a certain round is with respect to the contents of the
table B before this round; meaning, the elements passed as input in the query
issued by a processor in some round cannot depend on the result of a query
made by any other processor in the same round. We emphasize that parallelism
will not play a role when it comes to equality queries, as we allow algorithm to
issue all possible such queries and do not account for their sequentiality (i.e., we
prove our thresholds for the number of ring-operation queries considering only
the total number of equality queries in our lower bound, and without issuing any
equality queries in our upper bound).

We are interested in three main efficiency measures when considering generic-
ring algorithms: (1) The number of parallel processors; (2) the number of sequen-
tial rounds in which ring-operation queries are issued; and (3) the algorithm’s
internal computation, measured via its running time.

Interactive Computations. We consider interactive computations in which
multiple algorithms pass ring elements (as well as non-ring elements) as inputs to
one another. This is naturally supported by the model as follows: When a generic-
ring algorithm A outputs k ring elements (along with a potential bit-string σ),
it outputs the indices of k (non-empty) entries in the table B (together with
σ). When these outputs (or some of them) are passed on as inputs to a generic-
ring algorithm C, the table B is re-initialized, and these values (and possibly
additional group elements that C receives as input) are placed in the first entries
of the table.

Polynomial Interpretation. Every ring element computed by the oracle O in
response to a ring-operation query made by a generic-ring algorithm, can be nat-
urally identified with a pair of polynomials in the ring elements given as input
to the algorithm. Formally, for a generic-ring algorithm which receives d ring
elements as input (in addition to the multiplicative identity 1 and the additive
identity 0), we identify the ith input element with the pair (Xi, 1) where Xi is
an indeterminate of the polynomials we will consider (the 1 and 0 elements are
identified with the pairs (1, 1) and (0, 1), respectively). The rest of the polynomi-
als are defined recursively: For a ring-operation query (i, j, ◦), let (Pi(X), Qi(X))
and (Pj(X), Qj(X)) be the pairs of polynomials identified with Vi and with Vj ,
where X = (X1, . . . , Xd). We define the pair of polynomials identified with the
result of the query as:

Sharp Thresholds for All Generic-Ring Delay Functions 489

(P (X), Q(X)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(Pi(X) · Qj(X) + Pj(X) · Qi(X), Qi(X) · Qj(X)) , if ◦ is +
(Pi(X) · Qj(X) − Pj(X) · Qi(X), Qi(X) · Qj(X)) , if ◦ is −
(Pi(X) · Pj(X), Qi(X) · Qj(X)) , if ◦ is ·
(Pi(X) · Qj(X), Qi(X) · Pj(X)) , if ◦ is /

Note that this definition extends to the interactive case, in which one generic-ring
algorithm A receives d ring elements x1, . . . , xd as input, computes some ring ele-
ment from them which is associated with the pair of polynomials (P (X), Q(X)),
and then passes this ring element as input to another generic-ring algorithm C.
Then, this definition allows us to reason about the values computed by C as
pairs of polynomials in the elements x1, . . . , xd.

Each pair of polynomials is naturally interpreted as a rational function (by
setting the first polynomial to be the numerator and the second to be the denom-
inator). For the time being, however, we simply think of these polynomials as
polynomials in Z[X], and so the problem of division by 0 does not arise yet,
since the second polynomial is always non-zero as a polynomial in Z[X]. For a
straight-line program S, we will denote by (PS

σ [i, j], QS
σ [i, j]) the pair of poly-

nomials computed by the jth query of the ith processor of S, when invoked on
explicit input σ ∈ {0, 1}∗. For the special case of a straight-line program S that
outputs a single ring element, the pair of polynomials corresponding to this ele-
ment is fixed for every explicit input σ, and we denote it by

(

PS
σ , QS

σ

)

. When we
are working in the ring ZN , we will sometimes consider all of the aforementioned
polynomials as polynomials in ZN [X] (instead of allowing arbitrary integer coef-
ficients). This is naturally done by reducing all coefficients of the polynomial
modulo N , and will be clear from context.

Passing Ring Elements Explicitly. Throughout the paper we refer to values
as either “explicit” ones or “inexplicit”/“implicit” ones. Explicit values are all
values whose representation (e.g., binary strings of a certain length) is explicitly
provided to the generic algorithms under consideration. Inexplicit values are all
values that correspond to ring elements and that are stored in the table B – thus
generic algorithms can access them only via oracle queries. We will sometimes
interchange between providing ring elements as input to generic-ring algorithms
inexplicitly, and providing them explicitly. Note that moving from the former to
the latter is well defined, since a generic-ring algorithm A that receives some of
its input ring elements explicitly can always simulate the computation as if they
were received as part of the table B. For a ring element x, we will differentiate
between the case where x is provided explicitly and the case where it is provided
implicitly via the table B, using the notation x in the former case, and the
notation x̂ in the latter.

In cases where all inputs to a generic-ring element A are provided explicitly,
we may be interested in obtaining its outputs explicitly as well (note that this is
indeed possible, since in this case the algorithm may preform all ring operations
internally in an explicit manner). When this is the case, we will use the oracle
notation AR instead of AO, where R is the ring being considered. For example,
consider a generic-ring algorithm A which receives two ring elements x1 and

490 L. Rotem and G. Segev

x2 as input, and outputs x1 + x2, and the is ring Z15 of integers modulo 15.
The notation AZ15(7, 10) indicates that the output of A (i.e., the integer 2) is
obtained explicitly as an integer.

Finally, note that if we replace a proper subset of the input ring-elements to
a generic algorithm A with explicit integers, than the intermediate ring elements
which A computes via the oracle O can be interpreted as pairs of polynomials
in the remaining inexplicit ring elements, as described above.

Comparison with the Model of Aggarwal and Maurer. Our model slightly
refines that of Aggarwal and Maurer [AM09] in the following natural respects:

– As mentioned above, we consider algorithms with possibly many parallel pro-
cessors, whereas Aggarwal and Maurer consider algorithms which may invoke
the oracle on a single query at a time. Considering multiple processors is
essential when reasoning about delay function, as their security guarantees
should hold even against parallel adversaries.

– Algorithms in our model may receive multiple ring elements as input, as
opposed to a single ring element in the model of Aggarwal and Maurer. This
allows us to reason about the sequentiality of computing arbitrary generic
functions in the ring (e.g., multivariate rational functions).

– We consider interactive computations, which allows us to reason about secu-
rity properties which are defined via an interactive security experiment. In
particular, it allows us to account for a preprocessing stage when reasoning
about delay functions.

– Algorithms in our model may receive an explicit bit-string input (in addition
to the modulus N), which allows us to consider families of functions (via the
delay parameter T passed to the function evaluation algorithm), and explicit
states passed from one adversarial algorithm to another in interactive security
experiments.

In addition to the above extensions, it should be noted that Aggarwal and Mau-
rer present graph-based definitions for straight-line programs and generic-ring
algorithms, which we forgo here. However, both our definitions and the ones in
the work of Aggarwal and Maurer can be rendered as special cases of Maurer’s
generic model of computation [Mau05]; and when restricting our definitions to
single-processor algorithms with one ring element input, they are equivalent to
the ones found in the work of Aggarwal and Maurer.

The reason we choose to base our definitions on oracle-aided algorithms is
that we find it more convenient to explicitly consider the running time of such
algorithms in terms of their internal computational efforts. This comes up when
analyzing the running time of our factorization algorithms (in the plain model)
outputted by the reduction. Even when considering the simple case where the
input to the reduction is a straight-line program; once this program receives an
explicit input (e.g., the modulus N) in addition to ring elements, its queries may
be (and are indeed expected to be) a function of this input. Since this function is
not necessarily efficiently computable, reasoning about the running time of the
underlying straight-line program is necessary.

Sharp Thresholds for All Generic-Ring Delay Functions 491

3 Generic-Ring Delay Functions

A generic-ring delay function in the ring ZN is given by a generic-ring algorithm
DF. This is a deterministic generic-ring algorithm, which receives as input the
modulus N , the delay parameter T and implicit access, as defined in Sect. 2, to kin
ring elements x1, . . . , xkin , and outputs (implicitly) a single ring element.5 In this
section, we define the security of generic-ring delay functions (see Sect. 3.1) and
our notions of sequentially depth and pseudorandomness depth (see Sect. 3.2).

3.1 The Security of Generic-Ring Delay Functions

We consider two definitions that capture the fact that a generic-ring delay func-
tion needs to be “inherently sequential”. The first requires that for a delay param-
eter T , no algorithm which makes less than T sequential rounds of ring-operation
queries should be successful with non-negligible probability in evaluating a delay
function on a randomly-chosen input – even with any polynomial number of
parallel processors and with a preprocessing stage. This definition is an adapta-
tion of the sequentiality definition for verifiable delay functions of Boneh et al.
[BBB+18] to the generic-ring model.

Definition 3.1 (Sequentiality). Let kin = kin(λ), T = T (λ) and w = w(λ)
be functions of the security parameter λ ∈ N. A generic-ring delay function
DF is (T,w)-sequential if for every polynomial q = q(·, ·) and for every pair
A = (A0, A1) of generic-ring algorithms, where A0 issues at most q(λ, T) ring-
operation queries and A1 consists of at most w(λ) parallel processors each of
which issues at most T sequential rounds of ring-operation queries, there exists
a negligible function ν(·) such that

Pr
[

ExpSeqDF,A(λ) = 1
]

≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExpSeqDF,A(λ) is defined as
follows:

1. N ← ModGen(1λ).
2. st ← AO

0 (N,T).
3. ŷ := DFO(N,T, x̂1, . . . , x̂kin), where x1, . . . , xkin ← ZN .
4. ̂y′ ← A1

O(N, st, x̂1, . . . , x̂kin).
5. Output 1 if y′ = y, and otherwise output 0.

Note that the state st passed from A0 to A1 in the definition of ExpSeqDF,A(λ) may
include both explicit bit-strings and implicit ring elements.

Our second definition is a seemingly stronger one, and it requires that the for
a delay parameter T , no algorithm which makes less than T sequential rounds
5 For concreteness, we consider the case where the output consists of a single ring

element, and note that all of our bounds easily extend to the case where the output
consists of several ring elements and an explicit bit-string.

492 L. Rotem and G. Segev

of ring-operation queries should be successful with non-negligible probability in
distinguishing between the true output of the function and a uniformly chosen
ring element – even with any polynomial number of parallel processors and with
a preprocessing stage. Satisfying this definition is desirable not merely because it
is stronger in principal, but also because applications of delay functions often do
rely on the assumption that the output of the function is pseudorandom for any
algorithm which runs in sequential time which is less than the delay parameter
T . Such application include for example the use of verifiable delay-functions
for constructing randomness beacons (see, for example [BCG15,BGZ16,PW18,
BBB+18] and the references within).

Definition 3.2 (Pseudorandomness). Let kin = kin(λ), T = T (λ) and w =
w(λ) be functions of the security parameter λ ∈ N. A generic-ring delay function
DF whose input includes kin ring elements is (T,w)-pseudorandom if for every
polynomial q = q(·, ·) and for every pair A = (A0, A1) of generic-ring algorithms,
where A0 issues at most q(λ, T) ring-operation queries and A1 consists of at
most w(λ) parallel processors each of which issues at most T sequential rounds
of ring-operation queries, there exists a negligible function ν(·) such that

AdvDF,A(λ) def=
∣

∣

∣Pr
[

ExpSPDF,A,0(λ) = 1
]

−
[

ExpSPDF,A,1(λ) = 1
]∣

∣

∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where for b ∈ {0, 1}, the experiment ExpSPDF,A,0(λ)
is defined as:

1. N ← ModGen(1λ).
2. st ← AO

0 (N,T).
3. y0 ← ZN .
4. ŷ1 := DFO(N,T, x̂1, . . . , x̂kin), where x1, . . . , xkin ← ZN .
5. b′ ← A1

O(N, st, x̂1, . . . , x̂kin , ŷb).
6. Output b′.

3.2 The Depth of Generic-Ring Delay Functions

Our bounds on the sequentiality and pseudorandomness of generic-ring delay
functions depend on the notions of sequentiality depth and pseudorandomness
depth that we now introduce. We will begin by defining these notions for straight-
line functions, and then we will extend them to arbitrary generic-ring functions.

Straight-Line Delay Functions. We begin, in Definition 3.3, by defining the
sequentiality depth of a straight-line delay function. Informally, if a straight-line
delay function DF has sequentiality depth at most d, it means that it is possible
(with high probability and with a preprocessing stage) to compute a rational
function which is equivalent modulo N to the rational function computed by
DF using d or less sequential rounds of ring operations. By equivalence of ratio-
nal functions, we mean that the numerator of the difference between the two
functions is the zero polynomial modulo N .

Sharp Thresholds for All Generic-Ring Delay Functions 493

We remind the reader that for a straight-line program S and explicit input σ,
the pair (PS

σ , QS
σ) describes the output of S on the explicit input σ, as a pair of

polynomials (which we may think of as a rational function) in the ring elements
given as input to S (see Sect. 2).

Definition 3.3. Let T = T (λ) and d = d(λ) be functions of the security param-
eter λ ∈ N, and let DF be a straight-line delay function. We say that DF has
sequentiality depth at least d if for every pair G = (G0, G1) of polynomial-time
generic-ring algorithms, where G1 is a straight-line program with polynomially-
many parallel processors each of which issues at most d − 1 sequential rounds of
ring-operation queries, there exists a negligible function ν(·) such that

Pr
[

ExpSeqDepth
DF,G (λ) = 1

]

≤ ν(λ),

for all sufficiently large λ ∈ N, where the experiment ExpSeqDepth
DF,G (λ) is defined as

follows:

1. N ← ModGen(1λ).
2. st ← GO

0 (N,T), where st = (st0, ̂st1, . . . , ̂st�).
3. Output 1 if

gnum, gden 	≡ 0 (mod N)

and
PDF

N,T · gden − QDF
N,T · gnum ≡ 0 (mod N),

where (gnum(X), gden(X)) = (PG1
N,T,st0(st1, . . . , st�,X), QG1

N,T,st0(st1, . . . , st�,
X)). Otherwise, output 0.

If the sequentiality depth of DF is not at least d + 1, we say that it is at most d.
If the sequentiality depth of DF is at least d and at most d, we say that DF has
sequentiality depth d.

We clarify that gnum and gden are polynomials only in the formal variables
replacing the input elements to the function DF, and are obtained from G1

by fixing its explicit input to be (N,T, st0) and assigning the integer values
st1, . . . , st� to the variables replacing the ring elements passed from G0 to G1 as
part of the state. By the notation P ≡ 0 (mod N) for a polynomial P , we mean
that all of the coefficients of P are 0 modulo N . Note that a k-variate polynomial
might have a value of 0 for all inputs in (ZN)k, but still have non-zero coefficients
modulo N .

Intuitively, Definition 3.3 captures the fact that if we multiply both the numer-
ator and the denominator of the function computed by DF by the same poly-
nomial p, then this does not change the number of sequential ring operations
required to evaluate the function. For example, the function fN,T (X1,X2,X3) =
(

X2T

1 · X2

)/(

X2T

1 · X3

)

(mod N) can be evaluated using a single ring opera-
tion, since it is equivalent to the function gN,T (X1,X2,X3) = X2/X3 (mod N).
On the other hand, the function fN,T (X) = Xϕ(N) (mod N) (where ϕ is

494 L. Rotem and G. Segev

Euler’s totient function) is not equivalent under our definition to the function
gN,T (X) = 1, even though the two functions agree almost everywhere in the
ring.

Note that since we wish to relate Definition 3.3 to Definition 3.1, allowing
for a preprocessing stage is paramount. Consider for example the function
fN,T (X) = 2T · X (mod N). Without preprocessing, trivially evaluating this
function requires T + 1 ring operations. However, T of them are independent of
the input, and may be moved to the preprocessing stage, leaving just a single
ring operation to be computed in the online stage.

We now define, in Definition 3.3, the pseudorandomness depth of a straight-
line delay function. The definition will use the notation PG1

N,T,st0(st1, . . . , st�,X,

PDF
N,T (X)/QDF

N,T (X)) for a straight-line program G1. This can be seen as the
polynomial obtained by invoking G1 on explicit input (N,T, st0), � explicit state
ring elements, kin input ring elements x̂1, . . . , x̂kin , and an ring element ŷ which
is the output of DF on x̂1, . . . , x̂kin , and looking at the numerator of the output
of G1 as a polynomial in the variables X1, . . . , Xkin replacing x̂1, . . . , x̂kin (as
discussed in Sect. 2).

Definition 3.4. Let T = T (λ) and d = d(λ) be functions of the security param-
eter λ ∈ N, and let DF be a straight-line delay function. We say that DF has pseu-
dorandomness depth at least d if for every pair G = (G0, G1) of polynomial-time
generic-ring algorithms, where G1 is a straight-line program with polynomially-
many parallel processors each of which issues at most d − 1 rounds of ring-
operation queries, there exists a negligible function ν(·) such that

Pr
[

ExpPRDepth
DF,G (λ) = 1

]

≤ ν(λ),

for all sufficiently large λ ∈ N, where the experiment ExpPRDepth
DF,G (λ) is defined as

follows:

1. N ← ModGen(1λ).
2. st ← GO

0 (N,T), where st = (st0, ̂st1, . . . , ̂st�).
3. Output 1 if

PG1
N,T,st0(st1, . . . , st�,X, Y) 	≡ 0 (mod N)

and

PG1
N,T,st0

(

st1, . . . , st�,X,
PDF

N,T (X)
QDF

N,T (X)

)

≡ 0 (mod N)

Otherwise, output 0.

If the pseudorandomness depth of DF is not at least d + 1, we say that it is at
most d. If the pseudorandomness depth of DF is at least d and at most d, we say
that DF has pseudorandomness depth d.

Informally, if the pseudorandomness depth of a straight-line delay function
DF which takes in kin ring elements is at most d, it means that it is possible (with

Sharp Thresholds for All Generic-Ring Delay Functions 495

high probability and with a preprocessing stage) to compute a (kin + 1)-variate
polynomial p which is not the zero polynomial, but becomes the zero (kin-variate)
polynomial when the last variable is replaced with the output of the rational
function computed by DF (in the previous kin input variables). Intuitively, this
notion captures the following trivial attack: Given access to x̂1, . . . , x̂kin and ŷ,
evaluate p at these inputs and zero test the result. Note that if the sequentiality
depth of DF is at most d, then so is its pseudorandomness depth.

Sequentiality and Pseudorandomness Depths vs. Degree. The sequential-
ity and pseudorandomness depths of a straight-line delay function are inherently
related to the degree the rational function it computes. For a rational function
f = fnum/fden, we let its degree be the difference (in absolute value) between
the degrees of its numerator and denominator polynomials, where by degree of
a multi-variate polynomial, we mean its total degree;6 i.e.,

deg(f) = |deg(fnum) − deg(fden)| .

Informally, the following claim establishes that the sequentiality and pseudoran-
domness depths of a straight-line delay function DF are lower bounded by the
logarithm of the degree of the rational function it computes.

Before stating the claim (which is proved in the full version of the paper), we
introduce the following notation. For a concrete modulus N ∈ N outputted by
ModGen(1λ), denote by ExpSeqDepth

DF,G (λ,N) and ExpPRDepth
DF,G (λ,N) the experiments

obtained from ExpSeqDepth
DF,G (λ) and ExpPRDepth

DF,G (λ) by fixing the modulus to be N
(instead of sampling it at the onset), respectively.

Claim 3.5. Let T = T (λ), d = d(λ) and kin = kin(λ) be functions of the security
parameter λ ∈ N, let N be an integer outputted by ModGen(1λ) and let DF be
a straight-line delay function. Let fnum, fden ∈ ZN [X1, . . . , Xk] such that f =
fnum/fden is the rational function computed by DF on explicit input (N,T). If
all coefficients of fnum and of fden are coprime to N , then for every pair G =
(G0, G1) of polynomial-time generic-ring algorithms, where G1 is a straight-line
program with polynomially-many parallel processors each of which issues at most
d sequential rounds of ring-operation queries, it holds that

1. If Pr
[

ExpSeqDepth
DF,G (λ,N) = 1

]

> 0 then d(λ) ≥ log (deg(f)).

2. If Pr
[

ExpPRDepth
DF,G (λ,N) = 1

]

> 0 then d(λ) ≥ log (deg(f)).

The Depth of Repeated Squaring. As discussed in Sect. 1.1, for rather simple
polynomials our notions of sequentiality depth andpseudorandomness depth essen-
tially coincideswith the logarithmof their degree.This is the casewith the repeated
squaring function of Rivest, Shamir and Wagner [RSW96], where both notions
exactly coincide with the logarithmof its degree. Specifically, consider the repeated
squaring function: For a modulus N and a delay parameter T = T (λ), the function

6 E.g., the degree of the polynomial X1X2 is 2.

496 L. Rotem and G. Segev

is defined by fRSW
N,T (X) = X2T

(mod N). Of course, fRSW
N,T may be evaluated using

T ring operations, so its sequentiality depth is at most T . Claim 3.5 shows that it
is exactly T , since any function computed with less than T ring operations will not
be equivalent (as specified by Definition 3.3) to fRSW

N,T . Moreover, Claim 3.5 shows
that the pseudorandomness depth of repeated squaring is also exactly T .

Arbitrary Generic-Ring Delay Functions. We now extend the above
notions to arbitrary generic-ring delay functions. Informally, in case that a
delay function DF issues equality queries, we consider the straight-line program
obtained from DF by setting the responses to all equality queries to be nega-
tive, except those which are trivially satisfied. As formally defined below, by a
trivially satisfied equality query we mean that the polynomial it induces is the
all-zero polynomial modulo N .

More formally, for a generic-ring delay function DF, we denote by SLP(DF)
the straight-line program obtained from DF by setting the responses to all non-
trivial equality queries to be negative (and to all trivial queries to be positive).
This may be done one query at a time: At each step, consider the first of the equal-
ity queries remaining (recall that DF is deterministic), and let (P,Q) and (P ′, Q′)
be the pairs of polynomials associated with it. If P · Q′ − P ′ · Q ≡ 0 (mod N),
then assume (without querying) that the answer is answered affirmatively, and
otherwise assume that it is answered negatively (if any of P,Q, P ′ and Q′ is
⊥, then treat the query as ignored). Note that this transformation is not nec-
essarily efficient, but it need not be, since it is only used to define the notions
of sequentiality depth and pseudorandomness depth for arbitrary generic-ring
delay functions. Equipped with this notation, Definition 3.6 captures the above
informal description.

Definition 3.6. Let T = T (λ), dSeq = dSeq(λ) and dPR = dPR(λ) be functions of
the security parameter λ ∈ N, and let DF be a generic-ring delay function. We
say that DF has sequentiality depth at least (resp. at most) dSeq if SLP(DF) has
sequentiality depth at least (resp. at most) dSeq. We say that DF has pseudoran-
domness depth at least (resp. at most) dPR if SLP(DF) has sequentiality depth at
least (resp. at most) dPR.

4 A Sharp Sequentiality Threshold for Straight-Line
Delay Functions

In this section we present our sharp threshold for the number of sequential
rounds of ring-operation queries that are required for evaluating straight-line
delay functions (i.e., rational functions in their input elements). Our lower bound
is proven in Sect. 4.1, and its matching upper bound is proven in Sect. 4.2.

4.1 From Speeding up Straight-Line Delay Functions to Factoring

Let DF be a straight-line delay function that has sequentiality depth at least
d, for some function d = d(λ) of the security parameter (recall Definition 3.3).

Sharp Thresholds for All Generic-Ring Delay Functions 497

We prove the following theorem, showing that any generic-ring algorithm that
computes DF on a uniform input with a non-negligible probability in less than d
sequential rounds of ring-operation queries, can be transformed into a factoring
algorithm in the standard model.

Theorem 4.1. Let T = T (λ) and kin = kin(λ) be functions of the security
parameter λ ∈ N, and let DF be a straight-line program delay function receiving
kin ring elements as input. Then, for every function ε = ε(λ), for every poly-
nomial p(·), and for every pair G = (G0, G1) of probabilistic polynomial-time
generic-ring algorithms such that G1 has polynomially many parallel processors
each of which issues at most qop = qop(λ) sequential rounds of ring-operation
queries and the sequentiality depth of DF is at least qop + 1, there exists an algo-
rithm A running in time poly(λ, log(1/ε)) for which the following holds: For all
sufficiently large λ ∈ N, if

Pr
[

ExpSeqDF,G(λ) = 1
]

≥ 1
p(λ)

then
Pr

N←ModGen(1λ)
(a,b)←A(N,T)

[(N = a · b) ∧ (a, b ∈ [N − 1])] > 1 − ε(λ).

The proof of Theorem 4.1 makes use of Lemma 4.2 stated below. We first
introduce some notation: For an integer N ∈ N and for a k-variate polynomial
P , we denote by αN (P) the density of roots of P in ZN ; i.e.,

αN (P) = Pr
x1,...,xk←ZN

[P (x1, . . . , xk) = 0 (mod N)] .

Roughly speaking, Lemma4.2 states that given any straight-line program whose
output is a polynomial P in its input elements, we can construct a standard-
model algorithm which succeeds in factoring N with probability which is propor-
tional to αN (P). Recall that for a straight-line program S, the pair (PS

N,σ, QS
N,σ)

denotes the output of S on explicit input (N,σ), as a pair of polynomials in the
input ring elements to S (see Sect. 2).

Lemma 4.2. Let k = k(λ), t = t(λ), w = w(λ), � = �(λ) and q = q(λ) be
functions of the security parameter λ ∈ N. For any generic-ring straight-line
program S which takes as input k ring elements, a modulus N and an additional
explicit �-bit string, and runs in time t with w parallel processors, while making
at most q sequential rounds of ring-operation queries, there exists an algorithm
AS which runs in time O

(

t + λ5 · k3 + w3 · q3
)

, such that the following holds:
For every λ ∈ N, for every N which is outputted with positive probability by
ModGen(1λ) and for every bit-string σ ∈ {0, 1}� which S may receive as an
additional explicit input, if PS

N,σ 	≡ 0 (mod N) then

Pr
(a,b)←AS(N,σ)

[

N = a · b
a, b ∈ [N − 1]

]

≥ αN (PS
N,σ) − (k − 1) · 2−λ+1

(1 − 2−λ)k−1 · 8k · (2λ · k + w · q)
.

498 L. Rotem and G. Segev

We first prove Theorem 4.1 assuming Lemma 4.2 and then turn to prove
Lemma 4.2. We start by giving a high-level overview of the proof, which ignores
many of the technical difficulties arising in the formal analysis. Given G = (G0,
G1), our factoring algorithm A operates in three stages. In the first stage, it
invokes G0 in order to sample a state st,7 samples random coins ρ for G1, and
initializes a data structure η which will be used in order to keep track of the
likely response pattern to G1’s equality queries. The second stage proceeds in
iterations – one per each equality query made by G1. Each such equality query
naturally induces a polynomial when fixing st, ρ and the responses to all previous
equality queries according to the information in η. In the ith iteration, A tries
to factor N using the factoring algorithm guaranteed by Lemma4.2 for the
polynomial induced by the ith equality query. If unsuccessful, A updates η with
the likely response to the ith query, by checking it on a uniformly sampled input.
In the third stage, A considers the polynomial induced by an equality between
the output of DF and the output of G1 when it is ran on the state st and with
random coins ρ, and when the responses to its equality queries are in accordance
with the learned η. Our algorithm then tries to factor N using the factoring
algorithm guaranteed by Lemma4.2 for the straight-line program computing
this induced polynomial.

The analysis considers two cases. In the first case, there exists an equality
query which is “balanced” in the sense that it is affirmatively answered with
probability which is sufficiently bounded away from both 0 and 1, conditioned
on all previous queries being answered with the more likely response. When this
is the case, we show that in the iteration which corresponds to the first such
query in the second stage of A, it succeeds in factoring N with high probability
since: (1) with high probability the information in η indeed reflects the likely
responses to previous queries; and (2) the polynomial induced by the this query
is non-trivial and has a high rate of roots. In the second case, all equality queries
of G1 are sufficiently non-balanced so that the success probability of G is not
reduced by too much when conditioning on all of these queries being answered
in the more likely manner. If this is the case, then whenever the information
in η is consistent with the likely responses (which happens with high enough
probability), the rate of roots of the polynomial considered in the third stage of
A is proportional to the success probability of G. We use the fact that G1 makes
less ring-operation queries than the sequentiality depth of DF to argue that this
polynomial is non-trivial. We proceed to the formal proof.

Proof of Theorem 4.1. Let G = (G0, G1) be a pair of generic-ring algorithms
as in the statement of Theorem 4.1. Let qeq = qeq(λ) and w = w(λ) denote
the bound on the number of equality queries made by G1, and the number of
parallel processors of G1, respectively, and let r = r(λ) be a bound on the
number of random coins used by G1. For a modulus N , a state st outputted by
GZN

0 (N,T), an index i ∈ [qeq], random coins ρ ∈ {0, 1}r and a binary string η of
7 For the sake of this high-level overview, assume that st does not include any implicit

ring elements. In the full proof, this assumption is lifted by noting that since A is the
one that runs G0 it has explicit knowledge of the integer values of these elements.

Sharp Thresholds for All Generic-Ring Delay Functions 499

length at most qeq bits, we define a related polynomial f [G1, N, st, i, ρ, η]. This is
the polynomial obtained from G1 by running it on explicit input (N,T, st) and
randomness ρ up to (and not including) the ith equality query, while setting
the reply to each of the first i − 1 equality queries of G1 according to η: The
reply to the jth equality query is positive if and only if the jth bit of η is 1.
Let (P,Q) and (P ′, Q′) be the pairs of polynomials corresponding to the two
ring elements compared in the jth equality query in this computation. Then,
we define f [G1, N, st, i, ρ, η] = P · Q′ − P ′ · Q. Finally, for ρ ∈ {0, 1}r and
η ∈ {0, 1}qeq , denote by SLP(G1) the straight-line program obtained from G1

in the following manner: On explicit input (N,T, st, ρ, η), the program SLP(G1)
runs G1 on explicit input (N,T, st) and randomness ρ, while setting the responses
to all equality queries according to the bits of η. Consider the following standard-
model factoring algorithm AG:

Algorithm AG

Input: An integer N sampled by ModGen(1λ), and a delay parameter T ∈ N.

1. Sample st ← GZN
0 (N, T), and ρ ← {0, 1}r.

2. Initialize η0 to be the empty string.
3. For i = 1, . . . , qeq:

(a) Let f
(N,st,ρ,ηi−1)

i (X) = f [G1, N, st, i, ρ, ηi−1](X), let Si be the straight-
line program that on explicit input (N, T, st, ρ, ηi−1) computes the pair(
f
(N,st,ρ,ηi−1)

i (X), 1
)
, and let ASi be the corresponding factorization algo-

rithm guaranteed by Lemma 4.2. Run ASi(N, T, st, ρ, ηi−1) to obtain
(ai, bi). If ai, bi ∈ [N − 1] and ai · bi = N , output (ai, bi) and terminate.

(b) Sample x1, . . . , xkin ← ZN .

(c) If f
(N,st,ρ,ηi−1)

i (x1, . . . , xkin) = 0, set ηi := ηi−1‖1 and otherwise, set ηi :=
ηi−1‖0.

4. Let η = ηqeq , let S = SLP(G1) and let f
(N,st,ρ,η)
out = P S

N,T,st,ρ,η · QDF
N,T −

QS
N,T,st,ρ,η · PDF

N,T . Let Sout be the straight-line program that on explicit input

(N, T, st, ρ, η) computes
(
f
(N,st,ρ,η)
out (X), 1

)
and let ASout be the corresponding

factorization algorithm guaranteed by Lemma 4.2. Run ASout(N, T, st, ρ, η) to
obtain (a, b). If a, b ∈ [N − 1] and a · b = N , output (a, b). Otherwise, output
⊥.

Denote Pr
[

ExpSeqDF,G(λ) = 1
]

by β. We show that the probability that AG outputs

a valid factorization of N is at least Ω
(

β2/poly(λ)
)

. Then, repeating the attack
described by AG for Ω

(

ln (1/ε) · β−2 · poly(λ)
)

iterations yields Theorem 4.1.
For a modulus N , an index i ∈ [qeq], a state st passed by G0, randomness

ρ ∈ {0, 1}r and a string η ∈ {0, 1}i−1, we say that the polynomial f
(N,st,ρ,η)
i is

heavy if Prx
[

f
(N,st,ρ,η)
i (x) = 0

]

≥ 1 − β/(4 · qeq), and we say that it is light if

Prx
[

f
(N,st,ρ,η)
i (x) = 0

]

≤ β/(4 · qeq). Otherwise, we say that it is balanced. For

the same parameters, we also define an i-character string η∗
N,st,ρ,i ∈ {0, 1,⊥}i

recursively; we let η∗
N,st,ρ,0 be the empty string, and for i ∈ [qeq] we define:

500 L. Rotem and G. Segev

η∗
N,st,ρ,i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

η∗
N,st,ρ,i−1‖⊥, if ⊥ ∈ η∗

N,st,ρ,i−1 or f
(N,st,ρ,η∗

N,st,ρ,i−1)

i is balanced

η∗
N,st,ρ,i−1‖0, if ⊥ 	∈ η∗

N,st,ρ,i−1 and f
(N,st,ρ,η∗

N,st,ρ,i−1)

i is light

η∗
N,st,ρ,i−1‖1, if ⊥ 	∈ η∗

N,st,ρ,i−1 and f
(N,st,ρ,η∗

N,st,ρ,i−1)

i is heavy

Denote η∗
N,st,ρ = η∗

N,st,ρ,ieq
, and denote by Bal the event in which η∗

N,st,ρ contains
a ⊥ symbol. We will prove the bound on AG’s success probability separately for
the following two cases.

Case 1: Pr [Bal] ≥ β/2. Let Factor be the event in which AG(N,T) suc-
cessfully outputs a factorization of N . By total probability, it holds that

Pr [Factor] ≥ Pr [Factor|Bal] · Pr [Bal] ≥ β

2
· Pr [Factor|Bal] , (1)

and so we wish to bound Pr [Factor|Bal]. For i ∈ [qeq], let Ei and E∗
i be the

random variables corresponding to ηi in the execution of AG and to η∗
N,st,ρ,i

described above. Let i∗ be the minimal index in which η∗
N,st,ρ has a ⊥ symbol

(if there are no ⊥ symbols, then i∗ = 0; note that i∗ is also a random variable),
and let Typ be the event in which Ei∗−1 = E∗

i∗−1. Then,

Pr [Factor|Bal] ≥ Pr [Factor|Bal ∧ Typ] · Pr [Typ|Bal]

≥ Pr [Factor|Bal ∧ Typ] ·
(
1 − β

4

)
(2)

≥ 3

4
· Pr [Factor|Bal ∧ Typ] (3)

where (2) follow by union bound on all indices up to i∗ and the fact that it is
always the case that i∗ ≤ qeq.

Let Factor(i∗) denote the event in which ASi∗ (N,T, st, ρ, ηi∗−1) successfully
outputs a factorization of N . It holds that

Pr [Factor|Bal ∧ Typ] ≥ Pr [Factor(i∗)|Bal ∧ Typ] . (4)

To complete the analysis of Case 1, we wish to bound Pr [Factor(i∗)|Bal ∧ Typ],
and to this end, we would like to invoke Lemma4.2. In order to so, we need to
argue two things: (1) That the (first) polynomial outputted by Si∗ – meaning,
the polynomial f

(N,st,ρ,ηi∗−1)
i∗ – is non-trivial modulo N ; and (2) That this poly-

nomial has many roots modulo N in ZN . This is indeed the case, since assuming
both Bal and Typ occur, it holds that Ei∗−1 = E∗

i∗−1 and hence the polynomial

f
(N,st,ρ,ηi∗−1)
i∗ is equal to the polynomial f

(N,st,ρ,η∗
N,st,ρ,i∗−1)

i∗ . But since the i∗th

bit of η∗
st,ρ is ⊥, it means that αN

(

f
(N,st,ρ,η∗

N,st,ρ,i∗−1)

i∗

)

> β/(4 · qeq). Hence, by
Lemma 4.2,

Pr [Factor(i∗)|Bal ∧ Typ] ≥
αN

(

f
(N,st,ρ,η∗

N,st,ρ,i∗−1)

i∗

)

− (kin − 1) · 2−λ+1

8 · (1 − 2−λ)kin−1 · kin · (2λ · kin + w · qop)

≥ β − (kin − 1) · 2−λ+3 · qeq

32 · qeq · (1 − 2−λ)kin−1 · kin · (2λ · kin + w · qop)
.(5)

Sharp Thresholds for All Generic-Ring Delay Functions 501

Combining inequalities (1), (3) and (5) concludes the analysis of Case 1.

Case 2: Pr [Bal] < β/2. In this case, it holds that

Pr
[

ExpSeqDF,G(λ) = 1|Bal
]

≥ Pr
[(

ExpSeqDF,G(λ) = 1
)

∧ Bal
]

= β − Pr
[(

ExpSeqDF,G(λ) = 1
)

∧ Bal
]

≥ β − Pr [Bal]

>
β

2
. (6)

Let AllTyp be the event in which η = η∗
N,st,ρ, and let FactorOut denote the event

in which ASout(N,T, st, ρ, η) successfully outputs a factorization of N . Then,

Pr [Factor] ≥ Pr [FactorOut]
≥ Pr

[

FactorOut|Bal ∧ AllTyp
] · Pr

[

Bal
] · Pr

[

AllTyp|Bal]

> Pr
[

FactorOut|Bal ∧ AllTyp
] ·

(

1 − β

2

)

·
(

1 − β

4

)

(7)

≥ 3
8

· Pr
[

FactorOut|Bal ∧ AllTyp
]

, (8)

where (7) follows from union bound over i ∈ [qeq].
We again wish to invoke Lemma 4.2, so we wish to argue that conditioned

on Bal∧AllTyp, the polynomial f
(N,st,ρ,η)
out = PS

N,T,st,ρ,η ·QDF
N,T −QS

N,T,st,ρ,η ·PDF
N,T

which the straight-line program S (from Step 4 of the algorithm AG) computes is
non-trivial modulo N with overwhelming probability. Assume that the contrary
is true; i.e., that f

(N,st,ρ,η)
out ≡ 0 (mod N) with non-negligible probability condi-

tioned on Bal∧AllTyp. But, conditioned on Bal∧AllTyp, it holds that η = η∗
N,st,ρ,

and the responses pattern induced by η∗
N,st,ρ to G1’s equality queries occurs with

probability at least 3/4 in ExpSeqDF,G(λ). This means that the straight-line program
S corresponds to a valid execution of G1, and thus makes at most qop operation
queries, when given as input the ring elements in st implicitly (as elements in the
oracle table B). Consider the pair of algorithms (B0, S), where B0 computes st, ρ
and η as in the definition of AG and passes them to S, where the ring elements
in st are passed implicitly. By Definition 3.3, this is a contradiction to the fact
that DF has sequentiality depth at least qop + 1. Hence, for all sufficiently large
λ ∈ N, the polynomial f

(N,st,ρ,η)
out is non-trivial modulo N with all but negligible

probability, and there exists an negligible function ν(·) such that by Lemma 4.2,

Pr
[

factor(N, out)|Bal ∧ AllTyp
]

≥
αN

(

f
(N,st,ρ,η)
out

)

− (kin − 1) · 2−λ+1 − ν(λ)

8 · (1 − 2−λ)kin−1 · kin · (2λ · kin + w · qop)

=
αN

(

f
(N,st,ρ,η∗

N,st,ρ)
out

)

− (kin − 1) · 2−λ+1 − ν(λ)

8 · (1 − 2−λ)kin−1 · kin · (2λ · kin + w · qop)
(9)

502 L. Rotem and G. Segev

We are left with bounding αN

(

f
(N,st,ρ,η∗

N,st,ρ)
out

)

for N , st and ρ for which Bal

holds. Consider the experiment ExpSeqDF,G(λ), and let Con be the event in which
the all equality queries made by G1 in this experiment are answered consis-
tently with η∗

N,st,ρ. Conditioned on Bal and on Con, the output of G1 is exactly
(

PS
N,st,ρ,η∗

N,st,ρ
, QS

N,st,ρ,η∗
N,st,ρ

)

, and hence for every x ∈ (ZN)kin for which G1

successfully evaluates the function, it is also the case that f
N,st,ρ,η∗

N,st,ρ
out (x) =

0 (mod N). Since the input N given to AG is sampled as in ExpSeqDF,G(λ), and the
st and ρ are sampled by AG as in ExpSeqDF,G(λ), this means that for N , st and ρ

for which Bal holds, it holds that

αN

(

f
N,st,ρ,η∗

N,st,ρ
out

)

≥ Pr
[

ExpSeqDF,G(λ) = 1|Bal ∧ Con
]

≥ Pr
[(

ExpSeqDF,G(λ) = 1
)

∧ Con|Bal
]

= Pr
[

ExpSeqDF,G(λ) = 1|Bal
]

− Pr
[(

ExpSeqDF,G(λ) = 1
)

∧ Con|Bal
]

≥ β

2
− Pr

[

Con|Bal] (10)

≥ β

4
. (11)

Inequality (10) follows from (6) and inequality (11) follows by union bound over
all i ∈ [qeq]. Combining inequalities (8), (9) and (11) concludes the analysis of
case 2.

We complete the proof by analyzing the running time of AG. To that end,
we use the following proposition, which states that any single-output straight-
line program S can be converted into a related straight-line program S′ which
computes the pairs (PS

N,σ, 1) and (QS
N,σ, 1) in two different oracle queries, using

roughly the same running time, parallelism and query complexity as S. In other
words, one can “decouple” the numerator from the denominator which a straight-
line program computes, with very little overhead. An almost identical proposition
(in the univariate, single processor setting) was proven in [Jag07] and was also
used in [AM09].

Proposition 4.3. Let w = w(λ), q = q(λ), t = t(λ) and � = �(λ) be functions
of the security parameter λ ∈ N, let N ← ModGen(1λ) and let σ ∈ {0, 1}�. For
any single-output straight-line program S which runs in time t with w parallel
processors, each of which making at most q sequential oracle queries, there exits
a straight-line program S′ which runs in time O(t) with 3w parallel processors,
each of which making at most 2q sequential oracle queries, and there exist indices

Sharp Thresholds for All Generic-Ring Delay Functions 503

i1, i2 ∈ [3w] and j1, j2 ∈ [2q], such that (PS′
N,σ[i1, j1], QS′

N,σ[i1, j1]) = (PS
N,σ, 1) and

(PS′
N,σ[i2, j2], QS′

N,σ[i2, j2]) = (QS
N,σ, 1).

We turn to the runtime analysis. Steps 1 and 2 of AG take poly(λ) time. The
dominant part in each iteration of Step 3 is Step (a): The straight-line program
Si runs in time poly(λ) and makes at most O(poly(λ)+qop) ring-operation queries
per processor. This is by: (1) first, converting the explicit elements in st (of which
there are at most poly(λ)) to elements in the table (each conversion takes at
most 2λ queries), and then (2) running the straight-line program guaranteed by
Proposition 4.3 for the straight-line program which runs G1 until the ith equality
query (answering all equality queries up to that point according to η) and then
outputting z1−z2 where z1 and z2 are the ring elements being compared. Hence,
the factorization algorithm ASi

runs in time polynomial in λ by Lemma 4.2.
Similarly, the factorization algorithm ASout from Step 5 runs in time polynomial
in λ as well. This concludes the proof of Theorem 4.1. �

We now conclude this section by presenting the proof of Lemma4.2. In order
to prove Lemma 4.2, we reduce the case of straight-line programs with multiple
input elements and multiple parallel processors, to single-processor straight-line
programs receiving just one ring element as input. In the latter setting, Aggarwal
and Maurer [AM09] proved the following special case of Lemma 4.2.8

Lemma 4.4. ([AM09]). Let t = t(λ), q = q(λ) and � = �(λ) be functions of the
security parameter λ ∈ N. For any straight-line program S which takes as input
a single ring element and an explicit bit-string in {0, 1}�, and runs in time t
with a single processor making at most q ring-operation queries, there exists an
algorithm AS which runs in time O(t + q3 · λ2), such that the following holds:
For every λ ∈ N, for every N which is outputted with positive probability by
ModGen(1λ) and for every σ ∈ {0, 1}� which S may receive as an explicit input,
if PS

N,σ 	≡ 0 (mod N) then

Pr
(a,b)←AS(N,σ)

[

N = a · b
a, b ∈ [N − 1]

]

≥ αN

(

PS
N,σ(x)

)

8q
.

Equipped with this lemma, we turn to prove the general case of Lemma 4.2.

Proof of. Lemma 4.2. Let k = k(λ), t = t(λ), w = w(λ), � = �(λ) and q = q(λ)
be functions of the security parameter λ ∈ N, and let S be a straight-line program
which receives as input k ring elements, a modulus N and an additional �-bit
string, and runs in time t with w parallel processors, each making at most q
oracle queries. Consider the following algorithm AS :

8 The lemma of Aggarwal and Maurer is stated in [AM09] in the terminology of their
graph-based language for generic-ring algorithms, and without explicitly considering
additional bit-string inputs (alongside the implicit access to ring elements). However,
Lemma 4.4 as stated here follows directly from their proof.

504 L. Rotem and G. Segev

Algorithm AS

Input: An integer N sampled by ModGen(1λ), and an �-bit string σ.

1. Sample i ← [k], and sample x = (x1, . . . , xi−1, xi+1, . . . , xk) ←
(ZN \ {0})k−1.

2. For every j ∈ [k] \ {i}, compute gi = gcd(xj , N), and if gj �∈ {1, N}, then
output (gj , N/gj) and terminate.

3. Let fx := P S
N,σ(x1, . . . , xi−1, X, xi+1, . . . , xk) be the uni-variate polynomial

in the indeterminate X obtained from P S
N,σ by fixing Xj to be xj for each

j ∈ [k] \ {i}, let Sfx be the single-processor straight-line which on explicit
input (N, σ) outputs (fx(X), 1), and let ASfx (N) be the factoring algorithm
guaranteed by Lemma 4.4. Invoke (a, b) ← ASfx

(N, σ) and output (a, b).

Let N be the input modulus to AS , and let a∗, b∗ ∈ {0, 1}λ be its prime
factors and assume that PS

N,σ 	≡ 0 (mod N) (as otherwise the lemma trivially
holds). Let success be the event in which AS outputs the correct factors of N ,
and denote the event in which Xi (where i is the index chosen by AS in Step 1)
has non-zero degree in PS

N,σ by nonzero. Observe that since PS
N,σ 	≡ 0 (mod N),

then the probability of nonzero is at least 1/k. By total probability it holds that

Pr [sucess] ≥ Pr [sucess|nonzero] · 1
k

.

Denote by hit the event in which AS terminates in Step 2 (hence, hit is the event
in which it terminates in Step 3). Since hit and nonzero are independent events,
it holds that

Pr [success|nonzero] = Pr [success|hit ∧ nonzero] Pr [hit]
+ Pr

[

success|hit ∧ nonzero
] · Pr

[

hit
]

= 1 · Pr [hit] + Pr
[

success|hit ∧ nonzero
] · (1 − Pr [hit])

≥ Pr
[

success|hit ∧ nonzero
]

.

We now wish to lower bound Pr
[

success|hit ∧ nonzero
]

. We observe that since
PS

N,σ 	≡ 0 (mod N), then conditioned on hit and nonzero it is also the case
that fx 	≡ 0 (mod N). To see why that is, assume that hit and nonzero hold,
and assume towards contradiction that fx ≡ 0 (mod N). In this case, since
Xi has non-zero degree in PS

N,σ, there exists in PS
N,σ a monomial of the form

c · Xi1 · · · Xim
· Xδ

i (where c ∈ Z, m ∈ N, δ > 0 and ij ∈ [k] for every j ∈ [m])
such that c is not divisible by N . Assume without loss of generality that c is not
divisible by a∗ (if c is divisible by a∗, then it is not divisible by b∗ and the proof
is symmetric). But since f ≡ 0 (mod N) it holds that c · xi1 · · · xim

is divisible
by N . Finally, since 0 < xi1 , . . . , xim

< N , there exists at least one h ∈ [m] such
that xih

is divisible by a∗. Therefore, gcd(xih
, N) = a∗ and AS outputs (a∗, b∗)

in Step 2 with probability 1, in contradiction to the fact that we are conditioning
on hit. Moreover, the single-processor straight-line program Sfx makes at most
2λ · k + w · q oracle queries: 2λ queries to obtain each element in x, and then

Sharp Thresholds for All Generic-Ring Delay Functions 505

w · q operations to compute the polynomial fx (by a serialization of the multi-
processor program S). Hence, if PS

N,σ 	≡ 0 (mod N) then by Lemma 4.4 it holds
that

Pr [success] ≥ 1

k
· Pr

[
success|hit ∧ nonzero

]

≥
Prx←(ZN \{0})k−1

x←ZN

[
P

ASfx
(N)

N (x) = 0 (mod N)

]

8k · (2λ · k + w · q)
(12)

=

Prx←(ZN \{0})k−1

x←ZN

[
fx(x) = 0 (mod N)

]

8k · (2λ · k + w · q)

=

Prx←(ZN)k−1

x←ZN

[
fx(x) = 0 (mod N) | ∀xj ∈ x, xj �= 0

]

8k · (2λ · k + w · q)

≥
Prx←(ZN)k−1

x←ZN

[
fx(x) = 0 (mod N)

] − Prx←(ZN)k−1 [∃xj ∈ x, xj = 0]

(
Prx←(ZN)k−1 [∀xj ∈ x, xj �= 0]

)
· 8k · (2λ · k + w · q)

≥
Prx←(ZN)k−1

x←ZN

[
fx(x) = 0 (mod N)

] − (k − 1) · 2−λ+1

(1 − 2−λ)k−1 · 8k · (2λ · k + w · q)
(13)

≥ αN (P S
N,σ) − (k − 1) · 2−λ+1

(1 − 2−λ)k−1 · 8k · (2λ · k + w · q)
, (14)

where (12) follows from Lemma 4.4, (13) holds since 2λ−1 ≤ N < 2λ and (14)
follows from the definition of fx.

We conclude by analyzing the running time of AS . Steps 1 and 2 can be exe-
cuted in time O(k ·λ). The significant step is Step 3: Sfx runs in time t and makes
at most 2λ·k+w ·q oracle queries. Hence, by Lemma 4.4, invoking ASfx

in Step 3
can be done in time O

(

t + (2λ · k + w · q)3 · λ2
)

= O
(

t + λ5 · k3 + w3 · q3
)

. This
concludes the proof of Lemma 4.2. �

4.2 A Matching Upper Bound

In this section we prove a matching upper bound to the lower bound from
Sect. 4.1. Roughly speaking, Theorem4.5 states that for qop = qop(λ), if DF has
sequentiality depth at most qop, then there is a generic attack which evaluates DF
(according to Definition 3.1) while issuing at most qop rounds of ring-operation
queries (after a preprocessing stage), or else factoring is easy.

Theorem 4.5. Let T = T (λ) and qop = qop(λ) be functions of the security
parameter λ ∈ N, and let DF be a straight-line delay function whose sequentiality
depth is at most qop. Then, there exist a pair G = (G0, G1) of generic-ring
algorithms where G1 has polynomially-many parallel processors each of which
issues at most qop rounds of ring-operation queries, a standard-model probabilistic

506 L. Rotem and G. Segev

polynomial-time algorithm A, and a polynomial p(·), such that at least one of the
following holds for infinitely many values of λ ∈ N:

1. Pr
[

ExpSeqDF,G(λ) = 1
]

≥ 1/(2 · p(λ)).
2. PrN←ModGen(1λ)

(a,b)←A(N,T)

[(N = a · b) ∧ (a, b ∈ [N − 1])] > 1/(2 · p(λ)).

Proof. Since DF has sequentiality depth at most qop, it means that there exists
a pair G = (G0, G1) of polynomial-time generic-ring algorithms, where G1 is
a straight-line program with polynomially-many parallel processors making at
most qop rounds of operation queries, and there exists a polynomial p(·) such
that

Pr
[

ExpSeqDepth
DF,G (λ) = 1

]

>
1

p(λ)
,

for infinitely many values of λ ∈ N.Let kin = kin(λ) be the number of ring
elements which DF receives as input, and consider the following standard-model
factoring algorithm A.

Algorithm A

Input: An integer N sampled by ModGen(1λ), and the delay parameter T ∈ N.

1. Sample x = (x1, . . . , xkin) ← (ZN)kin .
2. Compute y = QDF

N,T (x1, . . . , xkin), and compute a = gcd(y, N). If a �∈ {1, N},
then output (a, N/a) and terminate.

3. Run GZN
0 (N, T) to obtain a state st = (st0, st1, . . . , st�), where st1, . . . , st� are

ring elements.
4. Compute z = QG1

N,T,st0
(st1, . . . , st�, x1, . . . , xkin), and compute b = gcd(z, N).

If b �∈ {1, N}, then output (b, N/b) and terminate.
5. Output ⊥.

Denote by Factor the event in which A outputs a valid factorization of N ,
and denote by Inv the event in which both y = QDF

N,T (x1, . . . , xkin) and z =
QG1

N,T,st0(st1, . . . , st�, x1, . . . , xkin) are invertible modulo N . Observe that condi-
tioned on ExpSeqDepth

DF,G (λ) = 1 and on Inv, it holds that

QDF
N,T (x1, . . . , xkin)

PDF
N,T (x1, . . . , xkin)

=
PG1

N,T,st0(st1, . . . , st�, x1, . . . , xkin)

QG1
N,T,st0(st1, . . . , st�, x1, . . . , xkin)

.

In other words, G1 successfully outputs the output of DF.
On the other hand, conditioned on ExpSeqDepth

DF,G (λ) = 1 and on Inv, at least
one of y and z are not invertible modulo N . In this case, a = gcd(y,N) or
b = gcd(z,N) are a prime factor of N and A outputs a valid factorization of N .
Hence, by total probability, for infinitely many values of λ ∈ N it holds that

Pr
[

ExpSeqDepth
DF,G (λ) = 1

]

= Pr
[

ExpSeqDepth
DF,G (λ) = 1 ∧ Inv

]

+ Pr
[

ExpSeqDepth
DF,G (λ) = 1 ∧ Inv

]

≤ Pr
[

ExpSeqDF,G(λ) = 1
]

+ Pr [Factor] . (15)

Sharp Thresholds for All Generic-Ring Delay Functions 507

Therefore, at least one of the addends in (15) is greater than 1/(2p(λ)) for
infinitely many values of λ ∈ N, concluding the proof. �

References

[AM09] Aggarwal, D., Maurer, U.: Breaking RSA generically is equivalent to fac-
toring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 36–53.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 2

[BBB+18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 25

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018)

[BCG15] Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness
source. Cryptology ePrint Archive, Report 2015/1015 (2015)

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Proceedings
of the 7th Conference on Innovations in Theoretical Computer Science, pp.
345–356 (2016)

[BGZ16] Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv:605.04559
(2016)

[BL96] Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their appli-
cation to cryptography. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 283–297. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-68697-5 22

[Bro05] Brown, D.R.L.: Breaking RSA may be as difficult as factoring. Cryptology
ePrint Archive, Report 2005/380 (2005)

[BV98] Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factor-
ing. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117

[BW88] Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary
quadratic fields. J. Cryptol. 1(2), 107–118 (1988). https://doi.org/10.1007/
BF02351719

[CP18] Cohen, B., Pietrzak, K.: Simple proofs of sequential work. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 451–467.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 15

[DGM+19] Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable
delay functions. Cryptology ePrint Archive, Report 2019/659 (2019)

[DK02] Damg̊ard, I., Koprowski, M.: Generic lower bounds for root extraction and
signature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-46035-7 17

[DN92] Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

[EFK+20] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable
delay functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 125–154. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 5

https://doi.org/10.1007/978-3-642-01001-9_2
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
http://arxiv.org/abs/605.04559
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5

508 L. Rotem and G. Segev

[FKL18] Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its
applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS,
vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96881-0 2

[FMP+19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from
supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.)
ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 10

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: Proceedings of the 43rd Annual ACM Sym-
posium on Theory of Computing, pp. 99–108 (2011)

[Jag07] Jager, T.: Generic group algorithms. Master’s thesis, Ruhr Universität
Bochum (2007)

[JNT07] Joux, A., Naccache, D., Thomé, E.: When e-th roots become easier than fac-
toring. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 13–
28. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-
2 2

[JR10] Jager, T., Rupp, A.: The semi-generic group model and applications to
pairing-based cryptography. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 539–556. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 31

[JS08] Jager, T., Schwenk, J.: On the equivalence of generic group models. In:
Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324,
pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88733-1 14

[JS13] Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in
the generic ring model. J. Cryptol. 26(2), 225–245 (2012). https://doi.org/
10.1007/s00145-012-9120-y

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pp. 723–732 (1992)

[KLX20] Katz, J., Loss, J., Xu, J.: On the security of time-locked puzzles and timed
commitments. Cryptology ePrint Archive, Report 2020/730 (2020)

[LR06] Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding
generic ring algorithms. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 241–251. Springer, Heidelberg (2006). https://doi.
org/10.1007/11935230 16

[LW15] Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryp-
tology ePrint Archive, Report 2015/366 (2015)

[Mau05] Maurer, U.: Abstract models of computation in cryptography. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 1

[Mic94] Micali, S.: CS proofs. In: Proceedings of the 35th Annual IEEE Symposium
on the Foundations of Computer Science, pp. 436–453 (1994)

[MMV11] Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the ran-
dom oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 39–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22792-9 3

[MMV13] Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of
sequential work. In: Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, pp. 373–388 (2013)

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-540-76900-2_2
https://doi.org/10.1007/978-3-540-76900-2_2
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-642-17373-8_31
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/978-3-540-88733-1_14
https://doi.org/10.1007/s00145-012-9120-y
https://doi.org/10.1007/s00145-012-9120-y
https://doi.org/10.1007/11935230_16
https://doi.org/10.1007/11935230_16
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3

Sharp Thresholds for All Generic-Ring Delay Functions 509

[MSW19] Mahmoody, M., Smith, C., Wu, D.J.: A note on the (im)possibility of verifi-
able delay functions in the random oracle model. Cryptology ePrint Archive,
Report 2019/663 (2019)

[MW98] Maurer, U., Wolf, S.: Lower bounds on generic algorithms in groups. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054118

[Nec94] Nechaev, V.I.: Complexity of a determinate algorithm for the discrete log-
arithm. Math. Notes 55(2), 91–101 (1994)

[Pie19] Pietrzak, K.: Simple verifiable delay functions. In: Proceedings of the 10th
Conference on Innovations in Theoretical Computer Science, pp. 60:1–60:15
(2019)

[PW18] Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryp-
togr. Commun. 10(1), 211–233 (2018). https://doi.org/10.1007/s12095-
017-0264-3

[RSS20] Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require
hidden-order groups. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 155–180. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45727-3 6

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto (1996)

[Sha19] Shani, B.: A note on isogeny-based hybrid verifiable delay functions. Cryp-
tology ePrint Archive, Report 2019/205 (2019)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/s12095-017-0264-3
https://doi.org/10.1007/s12095-017-0264-3
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-030-17659-4_13

Zero Knowledge

Compressed Σ-Protocol Theory
and Practical Application to Plug & Play

Secure Algorithmics

Thomas Attema1,2,3(B) and Ronald Cramer1,2(B)

1 CWI, Cryptology Group, Amsterdam, The Netherlands
thomas.attema@tno.nl, cramer@cwi.nl, cramer@math.leidenuniv.nl
2 Mathematical Institute, Leiden University, Leiden, The Netherlands
3 Cyber Security and Robustness, TNO, The Hague, The Netherlands

Abstract. Σ-Protocols provide a well-understood basis for secure algo-
rithmics. Recently, Bulletproofs (Bootle et al., EUROCRYPT 2016, and
Bünz et al., S&P 2018) have been proposed as a drop-in replacement in
case of zero-knowledge (ZK) for arithmetic circuits, achieving logarithmic
communication instead of linear. Its pivot is an ingenious, logarithmic-
size proof of knowledge BP for certain quadratic relations. However,
reducing ZK for general relations to it forces a somewhat cumbersome
“reinvention” of cryptographic protocol theory.

We take a rather different viewpoint and reconcile Bulletproofs with
Σ-Protocol Theory such that (a) simpler circuit ZK is developed within
established theory, while (b) achieving exactly the same logarithmic
communication.

The natural key here is linearization. First, we repurpose BPs as
a blackbox compression mechanism for standard Σ-Protocols handling
ZK proofs of general linear relations (on compactly committed secret
vectors); our pivot. Second, we reduce the case of general nonlinear
relations to blackbox applications of our pivot via a novel variation on
arithmetic secret sharing based techniques for Σ-Protocols (Cramer et
al., ICITS 2012). Orthogonally, we enhance versatility by enabling sce-
narios not previously addressed, e.g., when a secret input is dispersed
across several commitments. Standard implementation platforms lead-
ing to logarithmic communication follow from a Discrete-Log assumption
or a generalized Strong-RSA assumption. Also, under a Knowledge-of-
Exponent Assumption (KEA) communication drops to constant, as in
ZK-SNARKS.

All in all, our theory should more generally be useful for modular (“plug
& play”) design of practical cryptographic protocols; this is further evi-
denced by our separate work (2020) on proofs of partial knowledge.

Keywords: Σ-protocols · Bulletproofs · Zero-knowledge ·
Plug-and-play · Secure algorithmics · ZK-SNARKS · Verifiable
computation

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 513–543, 2020.
https://doi.org/10.1007/978-3-030-56877-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_18

514 T. Attema and R. Cramer

1 Introduction

The theory of Σ-Protocols provides a well-understood basis for plug-and-
play secure algorithmics.1 Recently, Bulletproofs [5,7] have been introduced
as a “drop-in replacement” for Σ-Protocols in several important applica-
tions. Notably, this includes ZK for arithmetic circuits with communication
O(log |C| · κ) bits where |C| is the circuit size2 and κ is the security param-
eter, down from O(|C| · κ) bits. A similar result holds for range proofs.

At the heart of Bulletproofs is an interactive proof of knowledge between a
Prover and Verifier showing that a Pedersen commitment to a vector of large
length n satisfies a multi-variate polynomial equation of degree 2, defined with
an inner product. We refer to this PoK by BP. Concretely, suppose G is a cyclic
group of prime order q (denoted multiplicatively) supporting discrete-log-based
cryptography. Suppose, furthermore, that g = (g1, . . . , gn) ∈ G

n and h ∈ G (each
gi as well as h generators of G) have been set up once-and-for-all such that, for
parties that may subsequently act as provers, finding nontrivial linear relations
between them is computationally as hard as computing discrete logarithms in G.
For each x ∈ Z

n
q , define gx =

∏n
i=1 gxi

i . A Pedersen-commitment P to a vector
x ∈ Z

n
q is then computed as P = gx · hρ where ρ ∈ Zq is selected uniformly at

random. This commitment is information-theoretically hiding and, on account
of the set-up, computationally binding. Note that it is compact in the sense that,
independently of n, a commitment is a single G-element. Suppose that n is even
and write n = 2m. Setting x = (x0,x1) ∈ Z

m
q × Z

m
q , a Bulletproof allows the

prover to prove that it can open P such that the inner-product 〈x0,x1〉 equals
some value claimed by the prover.3

BPs stand out in that they ingeniously reduce communication to O(log n)
elements from O(n) via traditional methods. Although this is at the expense of
introducing logarithmic number of moves (instead of constant), its public-coin
nature ensures that it can be rendered non-interactive using the Fiat-Shamir
heuristic [16]. However, design of BP applications meet with a number of tech-
nical difficulties. First, BPs are not zero-knowledge, and second, cryptographic
protocol theory has to be “reinvented” with the quadratic constraint proved as
its “pivot”. This leads to practical yet rather opaque, complex protocols where
applying natural plug-and-play intuition appears hard.

1.1 Summary of Our Contributions

In this work we take a different approach. We reconcile Bulletproofs with theory
of Σ-Protocols such that (a) applications can follow (established) cryptographic
protocol theory, thereby dispensing with the need for “reinventing” it, while

1 Loosely speaking, we refer to modular design of “cryptographic realizations” of stan-
dard “algorithmic tasks”. In other words, this entails porting algorithms for standard
tasks to cryptographic scenarios, e.g., MPC and zero-knowledge.

2 Actually, the result only depends on the number of inputs and multiplication gates.
3 Alternatively, this inner-product value may be taken as part of the committed vector.

Compressed Σ-Protocol Theory and Practical Application 515

(b) enjoying exactly the same communication reduction. We do this by giving
a precise perspective on BPs as a significant strengthening of the power of Σ-
protocols. We believe this novel perspective is rather useful for intuitive, plug-
and-play or modular design of practical secure algorithmics. Perhaps surprisingly
our approach yields the same communication complexity; up to and including
the constants.

We combine two essential components. First, we isolate a natural, alternative
pivot: compact commitment with “arbitrary linear form openings”. Given a Ped-
ersen commitment to a long vector x, consider a ZKPoK that the prover knows
x, while also revealing, for an arbitrary, public, linear form L, the scalar L(x)
correctly and nothing else. This has a simple Σ-Protocol. We then compress it by
replacing the final (long) prover-message with an appropriate BP that the prover
knows it. Indeed, the relation that this message is required to satisfy turns out
amenable to deployment of a suitable BP. As a result, PoK and honest-verifier
ZK are preserved, but overall communication drops from linear to logarithmic.
In the process, we simplify, for a portion of the full parameter space relevant
to our applications, known run-time analyses of knowledge extractors involved
and give concrete estimates. For the remainder, we continue to rely on known
analyses. On top of this, we introduce further necessary utility enhancements.
First, without increasing overall complexity, we show, using the pivot as black-
box, how to open several linear form evaluations instead of just one. Second,
using this and by plug & play with our basic theory, we show how to handle the
application scenario where the secret, long vector is initially “dispersed” across
several commitments, by compactifying these into a single compact commitment
first. This is useful in important applications. From this point on, the only fact
about the pivot that we will need is that we have access to a compact commitment
scheme that allows a ZKPoK with low overall communication, showing that the
prover knows the long secret committed vector and showing the correct openings
of several linear evaluations on that committed vector; the technical details do
not matter anymore.

Second, the pivot’s significance now surfaces when integrated with a novel
variation on – hitherto largely overlooked – arithmetic secret sharing based tech-
niques for Σ-Protocols [12], inspired by MPC. These techniques allow for lin-
earization of “nonlinear relations”. Mathematically, solving the linear instances
first and then “linearizing” the non-linear ones is perhaps among the most nat-
ural problem solving strategies; here, this fits seamlessly with Sigma-protocol
theory and our adaptation of [12]. It is in these adaptations that free choice of
linear forms in the pivot is fully exploited; the maps arising from our adaptation
of [12] do not form a well-structured subclass of maps. All in all, this yields
simple logarithmic communication solutions for circuit ZK. Similarly for range
proofs, which are now trivial to design. We also offer trade-offs, i.e., “square-
root” complexity in constant rounds. Our results are based on either of three
assumptions, the Discrete Logarithm assumption, an assumption derived from
the Strong-RSA assumption, or a Knowledge-of-Exponent derived assumption.

516 T. Attema and R. Cramer

We proceed as follows. We start by outlining our program, in nearly exclu-
sively conceptual fashion. We believe that the fact that it is possible to do so
further underscores our main points. Later on we detail how this program devi-
ates exactly from the paths taken in the recent literature.

1.2 A More Detailed View of Our Program

A. Our Pivotal Σ-Protocol
We isolate a basic Σ-protocol Π0 that, given a compact commitment to a secret
vector x of large length n, allows to partially open it. Concretely, given an arbi-
trary, public, linear form L, only the value L(x) is released and nothing else.
Briefly, the prover has a compact commitment P to a long secret vector x. By
a simple twist on basic Σ-protocol theory, the prover then selects a compact
commitment A to a secret random vector r. The prover sends, as first move, this
commitment A and the values y = L(x) and y′ = L(r). In the second move, the
verifier sends a random challenge c ∈ Zq. In the third, final move, the prover
then opens the commitment AP c to a vector z (i.e., z is its committed vector;
we leave the randomness underlying the commitment implicit here). Finally, the
verifier checks the opening of the commitment and checks that L(z) = cy + y′.
The communication in this Σ-protocol is dominated by the opening of AP c. The
latter amounts to O(nκ) bits (where κ is the security parameter), whereas the
remainder of the protocol has O(κ) bits in total. That said, it is an honest-verifier
zero-knowledge proof of knowledge (with unconditional soundness). In addition,
we describe an amortized version of this basic Σ-protocol, i.e., a Σ-protocol ΠAm

0

that, given s compact commitments to secret vectors x1, . . . ,xs and a linear form
L, allows to open L(x1), . . . , L(xs) and nothing else. The communication costs
of this amortized Σ-protocol are exactly s − 1 elements more than that of the
basic Σ-protocol (i.e., the evaluations at the s − 1 additional input vectors).

Using the pivotal Σ-protocol as a black-box, its utility can be enhanced,
which will be important later on. More concretely, many linear forms can be
opened for essentially the price of a single one. First, by deploying a “polynomial
amortization trick” (known, e.g., from MPC) we can do any number of nullity
checks without any substantial increase in complexity. Second, building on this
trick, we can extend the utility to the opening of several arbitrary linear forms
L1, . . . , Ls instead of a single one, at the cost of increasing the communication
by exactly s − 1 values in Zq (i.e., the evaluations of s − 1 additional forms).
Finally, we note the entire discussion on these enhancements holds verbatim
when we replace linear forms by affine forms.4

Note that we have identified two distinct intractability assumptions, each
of which supports this pivot: the Discrete Logarithm assumption (as used in
prior work involving Bulletproofs [5,7]) but also one derived from the Strong-
RSA assumption (as nailed down in a recent work [8] on Bulletproofs and their
improved applications). The introduction focuses on the DL assumption, but

4 I.e., a linear form plus a constant.

Compressed Σ-Protocol Theory and Practical Application 517

the Σ-protocol for the solution derived from the Strong-RSA assumption fol-
lows similarly. Our program can be based on either platform. In addition, we
show how to base the program on a specific knowledge of exponent assump-
tion. However, such assumptions are known to be unfalsifiable and, therefore,
not without controversy. The details of our pivotal Σ-protocol can be found in
Sect. 3, and the utility enhancements are described in Sect. 5.

B. Compressing the Pivot
We argue that protocol Π0 can be compressed using the ideas underlying Bul-
letproofs, yielding a protocol Πc that has the same functionality and is still
an honest-verifier zero-knowledge proof of knowledge for the relation in ques-
tion, but that has communication O(κ log n) bits instead, and O(log n) moves.
Technically the compression degrades the soundness from unconditional to com-
putational, and protocols with computational soundness are called arguments
of knowledge. However, we will use the terms proof and argument of knowledge
interchangeably. The compression techniques directly carry over to amortized
Σ-protocol ΠAm

0 . See below for variations achieving unconditional soundness.

Main Compression Idea. The idea is simply as follows, starting from Π0. Sup-
pose that P is the commitment in question. The linear forms are constants as
they are part of the relation proved, so they will not be made explicit for now.
Furthermore suppose that the prover has sent the message a as first move of
Π0, and that the verifier has subsequently sent challenge c as the second move.
Thus, in the third –and final– move, the prover would be required to send the
reply z. The verifier would, finally, apply the verification function φ attached to
Π0 to check that φ(P ; a, c, z) = 1, and accept only if this is the case. To define
the compressed protocol Πc, instead of requiring the prover to send the long
vector z, a suitable adaptation of Bulletproof’s PoK (BP) will be deployed to let
the prover convince the verifier that it knows some z such that φ(P ; a, c, z) = 1,
which is much more efficient. Note that it is immaterial that the Bulletproof
part is not zero knowledge as, in Π0, the prover would have revealed z anyway.

This will ensure the claimed communication reduction, i.e., O(κ log n) bits
in O(log n) moves. We show that, as a trade-off, we may opt for constant num-
ber of rounds (instead of logarithmic) and O(κ

√
n) communication (instead of

logarithmic). But of course, in non-interactive Fiat-Shamir mode (which clearly
applies here), the logarithmic variant may be preferable.

Note that this compression idea equally applies to the enhancements of the
basic utility as discussed above. It gives essentially the same complexities. Of
course, this assumes that the number of openings of linear forms is not too
large; it is not sensitive to the number of nullity checks though. The details of
the compression idea can be found in Sect. 4.

Refined Analysis of Knowledge Extractors. In the theory of Σ-protocols [9], it is
well known that special soundness implies knowledge soundness with knowledge
error 1/q, where q is the size of the challenge set. Depending on a choice for
the definition of knowledge soundness, this result can either be shown by an
application [9] of Jensen’s inequality, or by a more intricate variation of the
classical heavy-row type approach [14].

518 T. Attema and R. Cramer

Recently, and particularly for the above mentioned compression techniques,
natural generalizations of special soundness have become relevant. However, the
mentioned proof techniques are no longer directly applicable. The nature of
the compression techniques namely significantly reduces the efficiency of the
corresponding knowledge extractors. For this reason prior works [5,7] resort to
alternative arguments without computing the exact knowledge error. See also
[29] and [23] for a discussion on extractor efficiency and knowledge errors.

Here, we show that an adaptation of the proof using Jensen’s inequality does
apply for a portion of the full parameter space relevant to our applications. This
results in a simple proof and an exact knowledge error for this portion of the
parameter space. For parameters that do not fall in this range we resort to prior
results [5,7]. The details of the extractor analysis can be found in the full-version
of this paper [1].

Compressed Pivot with Unconditional Soundness. In addition, we show two
approaches for realizing our compressed pivot with unconditional soundness,
rather than computational. In our first approach we simply omit the step of
the BP compression in which the linear-form evaluation is incorporated into the
commitment, and execute that part “in the open”. This works for us here since
we only consider linear constraints in the compressed pivot and no quadratic
ones. As a result, unconditional soundness is achieved. This approach increases
the communication costs by a factor 2.

Our second approach is based on the observation that an unconditionally
sound ZKPoK for opening linear forms can be based on black-box access to an
unconditionally sound ZKPoK for just proving knowledge of an opening of a
Pedersen vector commitment. The reduction uses structural information of a
given linear form (i.e., it depends on the null-space and selection of a basis for
it). By removing the provisions for linear forms from the compressed pivot Πc

the required black-box is realized. The details can be found in the full-version
of this paper [1].

C. Compactifying a Vector of Commitments
Our compressed pivot may be summarized as compact commitments to long
secret vectors that allow for very efficient partial openings, i.e., arbitrary lin-
ear forms applied to the secret committed vector. As we show later on, this is
sufficient for proving any (nonlinear) relation. To make this work, all relevant
prover data (secret data vector plus secret auxiliary data, such a random coins)
is required to be committed to in a single compact commitment.

However, in many relevant practical scenarios, we must assume that the
commitment to the prover’s secret data vector, about which something is to be
proved in zero knowledge, has already been produced before the zero knowledge
protocol is run. In order to handle this, we require the prover to compactify these
commitments together with the secret auxiliary data in a single commitment.

We consider two extreme scenarios: (1) the prover has a single compact com-
mitment to the secret data vector about which some zero knowledge proof is
to be conducted and (2) same, except that the prover has individual commit-
ments to the coordinates of that secret data vector. For each scenario we give a

Compressed Σ-Protocol Theory and Practical Application 519

conceptually clean realization by plug & play with our basic theory. We note
that scenario 1 has not been addressed by previous work.

For the first scenario the prover uses new generators to commit to the aux-
iliary information. Using the compressed Σ-protocol, the prover shows that this
is indeed a commitment that exclusively involves the new generators. Prover
and verifier multiply the two compact commitments to obtain a single compact
commitment to all relevant data.

For the second scenario, a basic (amortized) Σ-protocol shows that the prover
knows openings to all individual commitments. From this basic protocol, we
define a new Σ-protocol as follows. The prover appends the first message a of
the basic protocol with a compact commitment containing all relevant data and
the randomness sampled in the first move of the basic Σ-protocol. After receiving
the challenge the prover’s response can now be computed as a public linear form
(parameterized by the challenge c) evaluated at the vector to which the prover
committed. Instead of sending this message directly, the prover and verifier run
the interactive protocol to open the associated linear form on the compact vector
commitment. The verifier checks that the opening of the vector commitment is
also an opening of the commitment in the Σ-protocol. As a result the prover has
shown that it knows openings to all the individual commitments and that these
openings are contained in the compact commitment together with the auxiliary
data. The details on the compactification of vector commitments can be found
in Sect. 5.3.

D. Plug-and-Play Secure Algorithmics from Compressed Pivot
We will now explain the power of our compressed pivot. It will turn out that we
only need black-box access. Our key point is to show how to combine this with
a hitherto largely overlooked part of Σ-protocol theory, namely the work of [12]
that shows how to prove arbitrary constraints on committed vectors by exploit-
ing techniques from secure multi-party computation based on arithmetic secret
sharing, more concretely, the ideas underlying the Commitment Multiplication
Protocol from [10]. For more information, see Section 12.5.3 in [11] for a general
description of efficient zero-knowledge verification of secret multiplications in
terms of arbitrary (strongly-multiplicative) arithmetic secret sharing. It is this
combination of “compact commitments with linear openings” and arithmetic
secret sharing that allows for “linearizing nonlinear relations”. So this explains
also why our compressed pivot does not need any “direct” provision to handle
nonlinearity.

We need to make some appropriate adaptations to make this work for us
here. We first outline the technique from [12] and then we discuss adaptations.
The work of [12] considers homomorphic commitment schemes where the secret
committed to is not a vector of large length, but a single element of Zq instead.
The primary result is a Σ-protocol showing the correctness of commitments to
m multiplication triples (αi, βi, γi := αiβi), with low amortized complexity for
large m. In other words, the protocol verifies the multiplicative relations, and
the costs per triple are relatively small.

520 T. Attema and R. Cramer

Each of the αi’s (resp., the βi’s and γi’s) is individually committed to. Their
solution employs strongly-multiplicative packed-secret sharing. For instance,
consider Shamir’s scheme over Zq, with privacy parameter t = 1, but with
secret-space dimension m. This uses random polynomials of degree ≤ m, subject
to the evaluations on the points 1, . . . ,m comprising the desired secret vector.
Note that, for each sharing, a single random Zq-element is required (which can
be taken as the evaluation at 0).

It is important to note that, given secret vector and random element, it
holds by Lagrange Interpolation that, for each c ∈ Zq, the evaluation f(c) of
such polynomial f(X) is some public Zq-linear combination over the coordinates
of the secret vector and the random element. Namely, consider the map that
takes m + 1 arbitrary evaluations on the points 0, . . . ,m and that outputs the
unique polynomial f(X) of degree ≤ m interpolating them to the evaluations of
f(X) in all other points. A transformation matrix describing this map does not
correspond to a Vandermonde-matrix, but it can be determined from it.

Now, assume that 2m < q (for strong-multiplicativity). The protocol goes as
follows.

– The vectors of commitments to the multiplication triples are assumed to be
part of the common input.

– The prover selects a random polynomial f(X) that defines a packed secret
sharing of the vector (α1, . . . , αm). The prover also selects a random poly-
nomial g(X) that defines a packed secret sharing of the vector (β1, . . . , βm).
Finally, the prover computes the product polynomial h(X) := f(X)g(X) of
degree ≤ 2m < q.

– The prover commits to the random Zq-element for the sharing based on f(X),
i.e., f(0), and commits to the random Zq-element for the sharing based on
g(X), i.e., g(0). The prover also commits the evaluations of h(X) on the points
0,m+1, . . . , 2m.5 Note that the “absent” evaluations at 1, . . . ,m comprise the
γi’s and their commitments are already assumed to be part of the common
input.

– The prover sends these commitments to the verifier.
– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and

sends it to the prover.
– By public linear combinations, both prover and verifier can compute three

commitments: one to u := f(c), one to v := g(c) and one to w := h(c). The
prover opens each of these (assuming, of course, that c is in the right range).
The verifier checks each of these three openings and checks whether w = uv.
If the committed polynomials do not satisfy f(X)g(X) = h(X), and under
the assumption that the commitment scheme is binding, there are at most 2m
values of c out of the q−m possibilities such that the final check goes through.
So a lying prover is caught with probability greater than 1 − 2m/(q − m).
With q exponential in the security parameter and m, say, polynomial in it, this
is exponentially close to 1. Honest-verifier zero-knowledge essentially follows
from 1-privacy of the secret sharing scheme.

5 By Lagrange interpolation these points, together with the γi’s, determine h(X).

Compressed Σ-Protocol Theory and Practical Application 521

Our first observation here is as follows. In the above protocol, the prover may
as well use our compressed pivot as a black-box. Indeed, the entire vector

y = (α1, . . . , αm, β1, . . . , βm, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z
4m+3
q

of data that the prover commits to in the protocol above can be committed
to in a single compact commitment. Note that, by definition, γi = h(i) for all
1 ≤ i ≤ m. Furthermore, all of the data opened to the verifier is some fixed linear
form on the (long) secret committed vector y. Indeed:

1. Each of the values u, v correspond to an opening of a public linear form
applied to y. The linear form is determined by some row in a transformation
matrix as addressed above, under the convention that the form takes zeros
on the portion of the coordinates of y not relevant to the computation.

2. Similarly for the value w, except that this simply corresponds to an “eval-
uation of a polynomial whose coefficients are defined by a part of y”. So
evaluation is a public linear form as well.

Overall, we get an honest-verifier proof of knowledge for showing correctness of
m secret multiplication-triples with O(k log m) bits communication in O(log m)
moves (or in constant rounds but with O(k

√
m) bits communication).

Our second observation here is as follows. Suppose we have an arithmetic
circuit6 C over Zq with n inputs, s outputs and m multiplication gates.7 We can
easily turn the observation above into a solution for “circuit zero-knowledge”,
i.e., the prover convinces the verifier that the committed vector x ∈ Z

n
q satisfies

some constraint captured by a given circuit C which (w.l.o.g.) returns 0. We
note that [12] also gives a solution for circuit zero-knowledge. But that one does
not work for us here as it gives too large complexity. So we make some changes.

By the aforementioned compactification techniques it is sufficient to consider
the ZK scenario where the prover wants to demonstrate that C is satisfiable; this
means that we may assume that the prover commits to all relevant data (inputs
and all auxiliary data) in a single compact commitment. Other ZK scenarios,
in which the prover has already committed to input data, are dealt with by
first compactifying existing commitments and auxiliary information into a single
compact commitment.

The protocol goes as follows. The prover first determines the computation
graph implied by instantiating the circuit C with its input vector x ∈ Z

n
q . The

m multiplication gates in C will be handled as above, i.e., via polynomials f(X),
g(X) and h(X) defining packed-secret sharings of the left inputs, the right inputs
and outputs of the multiplication gates. The prover commits to each of the coor-
dinates of x and to the auxiliary data aux = (f(0), g(0), h(0), h(1), . . . , h(2m)) ∈
Z
2m+3
q in one single compact commitment. The length γ of the committed vector

y thus equals n + 2m + 3.

6 Each gate of the circuit has fan-in two, but unbounded fan-out.
7 We only count multiplication gates with variable inputs. Additions and multiplica-

tions by constants are implicitly handled and immaterial to the communication.

522 T. Attema and R. Cramer

A simple fact about arithmetic circuits shows that all wire values are acces-
sible as affine combinations of the coefficients committed to. These affine com-
binations are uniquely defined by the addition and scalar multiplication gates of
the circuit. This explains why, in contrast to the discussion above, it is no longer
necessary to commit explicitly to the αi’s and the βi’s as these are now implicitly
committed to via said affine functions of y. Therefore, since the values f(0), g(0)
are still included in y, the polynomials f(X), g(X) and h(X) are well-defined
by y, and their evaluations are, by composition of the appropriate maps, also
affine evaluations on y.

With the above observations in hand, the protocol is reduced to opening the
affine map Φ that, on input y, outputs (C(x), f(c), g(c), h(c)) for a challenge
c ∈ Zq \ {1, . . . , m} sampled uniformly at random by the verifier. First, the
verifier checks that h(c) = f(c)g(c) which, as above, shows that the required
multiplicative relations hold with high probability. Second, the verifier checks
that C(x) = 0, which shows that the circuit is satisfiable and that the prover
knows a witness x. By the amortized nullity checks (A) the costs of these open-
ings can be amortized. As a result, circuit zero knowledge can be done O(κ log γ)
bits in O(log γ) moves. In particular, the communication costs are independent
of the number of output vertices s. Trade-off between communication and moves
applies as above. More details on circuit ZK can be found in Sect. 6.

E. Range Proofs
In a basic range proof a prover wishes to commit to a secret integer v and
show that this integer is in a public range, say [0, 2n−1]. From the above circuit
ZK protocols, range proofs immediately follow. A prover simply considers the
bit decomposition b ∈ Z

n of the integer v, the length of this decomposition
determines the range. Note that v can be accessed as a linear form evaluated at
b and thereby a commitment to b is an implicit commitment to v. Prover and
verifier run the above circuit satisfiability protocol to commit to b and prove that
C(b) = 0 for C : Zn

q → Z
n
q , x �→ x∗(1−x), where ∗ represents the component-

wise product. The nullity check for C shows that the committed coefficients are
indeed bits. The communication complexity of this range proof is O(κ log n) bits.
Using the techniques described in Sect. 5.3, this functionality can be extended
to scenario where a prover has to prove that a Pedersen commitment to v ∈ Zq

is in a certain range. The details can be found in Sect. 7 and the full-version of
this paper.

F. Our Program from the Strong-RSA Assumption
Thus far, we have implemented our program in the discrete log setting, starting
from Pedersen commitments and their basic Σ-protocols. Besides some minor
details in the compressed pivot, we show that the above discussion holds verbatim
for a commitment scheme based on an assumption derived from the Strong-
RSA assumption. More precisely, we show how the polynomial commitment
scheme from a recent work [8] can be adapted to open arbitrary linear forms.
Our adaptations of the linearization techniques from [12] are directly applicable
to the Strong-RSA derived pivot. The details can be found in Sect. 7 and the
full-version of this paper.

Compressed Σ-Protocol Theory and Practical Application 523

G. Our Program from the Knowledge-of-Exponent Assumption
In addition to the discrete log and strong-RSA derived assumptions, our program
can also be based on an assumption derived from the Knowledge-of-Exponent
Assumption (KEA). Note that KEA is unfalsifiable and its application is not
completely without controversy [4,26]. Moreover, this approach introduces a
trusted set-up phase, which might be undesirable. The main benefit of the KEA
based approach is that it reduces the communication complexity from logarith-
mic to constant, i.e., independent of the dimension of the committed vector. In
Sect. 9 we describe the main techniques and for more details we refer to [22].

H. Proofs of Partial Knowledge from Compressed Σ-Protocol Theory
In a ZK proof of (k, n)-partial knowledge, a prover knowing witnesses for some k-
subset of n given public statements can convince the verifier of this fact without
revealing which k-subset. In separate work [2], we construct logarithmic size
proofs of partial knowledge for all k, n, by adapting our compressed Σ-protocols
and repurposing ideas from [13].

I. Our program from Lattice Assumptions
From the work of [6] we can extract an instantiation of our compressed pivot
based on lattice assumptions. Based on this, our framework can therefore be
instantiated from lattice assumptions. However, lattice based proofs of knowledge
in general are typically subject to a so called soundness slack that is further
increased by the compression in [6]. Therefore, whether or not one follows our
framework, selection of larger implementation parameters is warranted. Further
research is required to determine if and how the implementation parameters can
be improved.

1.3 Comparison with Earlier Work

Traditional solutions for circuit ZK in the discrete logarithm setting have a com-
munication complexity that is linear in the circuit size. Building on the work of
Groth [20], an ingenious recursive approach achieved logarithmic communication
complexity [5]. At its heart lies an earlier version of the BP protocol discussed
earlier. Further improvements were introduced in [7] and later revisited in [23].
Recently, Bünz, Fisch and Szepieniec [8] show that similar results can be derived
from the Strong-RSA assumption. The main merit of the Strong-RSA derived
solutions is a reduction in the number of public parameters. In addition, [8]
deploys proofs of exponentiation [28] to reduce the computational complexity.

A common denominator in the aforementioned works is the use of a quadratic
constraint as a main pivot. In [20], a specific inner-product relation is introduced,
and it is shown how basic Σ-protocols for this relation can be enhanced to
achieve sub-linear communication complexity. A similar inner-product relation
lies at the foundation of the logarithmic size protocols of [5], except that it
also uses an earlier version of the BP idea. In [7], it is subsequently shown
that a modification of the quadratic relation leads to better constants. In [23],
more general quadratic constraints were considered with a view towards reducing
computational complexity in specific ZK scenarios. Also they strive for a more

524 T. Attema and R. Cramer

modular approach. However, this induces (minor) communication overhead in
comparison to Bulletproofs [7].

Furthermore, it is worth mentioning that in [5], as an intermediate stepping
stone, a polynomial commitment scheme is constructed. A polynomial com-
mitment is a commitment to the coefficient vector of a polynomial together
with the functionality of opening the evaluation at any given point. The solu-
tion derived from the Strong-RSA assumption [8] bases itself entirely on this
polynomial functionality. For general relations it uses recent, but complicated,
reductions [18,25,30]. Constructing protocols from quadratic constraints, either
directly or via a polynomial commitment scheme, leads to a complex theory
in which plug-and-play secure algorithmics appears hard. Significant effort is
required to realize higher level applications such as circuit ZK or range proofs.

As for zero-knowledge, the work of [7] and [23] establishes this property at
a higher level, and not, as do the other works, at the level of their main pivot,
which leads to additional difficulties in designing ZK protocols. In fact, in [23],
zero-knowledge, reduced communication and reduced computation is achieved
in an integrated manner.

The most significant difference between our approach and that of the afore-
mentioned works is our simple and direct construction of a compressed pivot to
open arbitrary linear forms and to combine this with the simple (MPC inspired)
linearization techniques from [12]. The compression is achieved by a suitable
adaptation of the BP ideas [7], and the linearization techniques discard the need
for a direct provision to handle nonlinearity. Moreover, plug and play design
of applications according to this compressed Σ-protocol theory is just as easy
as with the standard Σ-protocol theory. Despite the conceptual simplicity, the
communication complexities of our approach are, even including the constants,
equal to that of Bulletproofs [7].

Note that polynomial evaluation, as used in some of the other works, of
course also comes down to the evaluation of a linear form, albeit a specific one.
Therefore these approaches are not amenable to the linearization techniques
we use. Opening arbitrary linear forms therefore seems to be a sweet spot in
that it achieves conceptual simplicity, both in designing ZK protocols and in
implementing the pivot.

2 Preliminaries

In this section we introduce the basic notation, definitions and conventions used
in the remainder of the paper.

Interactive Protocols. Let R = {(x,w)} be some NP-relation. Here, x is
called a statement and w is called a witness for x. An interactive protocol Π
for relation R is a protocol that allows a prover to convince a verifier that it
knows a witness w for given statement x. Protocol Π takes x as public input
and w as prover’s private input, which we write as either Π(x;w) or, in the
graphical protocol description, as Input(x;w). The verifier always implicitly
outputs reject or accept. Optionally, the protocol can output a public string y to

Compressed Σ-Protocol Theory and Practical Application 525

both verifier and prover, and a private string w′ only to the prover. In this case
we write Output(y;w′). In addition to the input and output of the protocol,
the prover’s claim (i.e, (x;w) ∈ R) is made explicit in the graphical protocol
description. An interactive protocol in which the verifier chooses all its messages
uniformly at random and independent from the prover’s messages is called a
public coin protocol. All protocols in this work are public coin and can therefore
be made non-interactive by applying the Fiat-Shamir transformation [16].

Special Soundness and Zero-Knowledge. A public coin protocol is said to
be (unconditionally) (k1, . . . , kμ)-special sound if there exists a polynomial time
algorithm that on input a statement x and a (k1, k2, . . . , kμ)-tree of accepting
transcripts, outputs a witness w for x. See [5] for a detailed definition. In brief,
a (k1, k2, . . . , kμ)-tree of accepting transcripts is a set of

∏μ
i=1 ki accepting tran-

scripts that are arranged in a tree structure. The edges in this three correspond
to the verifier’s challenges and vertices to the prover’s messages, which can be
empty. Every node at depth i has precisely ki children corresponding to ki pair-
wise distinct challenges. Every transcript corresponds to exactly one path from
the root node to a leaf node. Note that this notion is, in two ways, a natural
generalization of the standard notion special soundness: (1) from a colliding pair
of transcripts to a k-collision and (2) from 1 challenge protocols to protocols
with μ ≥ 1 challenges. In [5] it is shown that (k1, . . . , kμ)-special soundness
implies witness extended emulation [24]. A protocol is said to have this property
if for any prover P∗ there exists an efficient algorithm, with rewindable oracle
access to P∗, that outputs a transcript and, if this transcript is accepting then it
outputs, with overwhelming probability, a witness as well. The transcripts gen-
erated by this algorithm are required to be indistinguishable from conversations
between P∗ and an honest verifier. We show that all protocols in this work are
(k1, k2, . . . , kμ)-special sound for some μ and some set of ki’s. From the result
of [5] it then follows that the protocols in this work are proofs of knowledge.

The protocol’s public parameters are typically a set of generators g1, . . . , gn, h
of a group G of prime order q. We assume that, in the setup phase, these gen-
erators are sampled uniformly at random such that the prover does not know a
non-trivial DL relation between them. We say that the protocol is computation-
ally (k1, k2, . . . , kμ)-special sound, under the DL assumption, if there exists an
efficient algorithm that either extracts a witness or finds a non-trivial DL relation
between the public parameters g1, . . . , gn, h. Protocols that satisfy this computa-
tional variant of soundness are also called arguments of knowledge. Later we will
also consider different set up assumptions, based on Strong-RSA of Knowledge
of Exponent derived assumptions. Finally, we will consider standard notions of
zero-knowledge such special honest verifier zero-knowledge (SHVZK).

3 The Basic Pivot

This section formally describes the Pedersen vector commitment scheme and
our pivotal Σ-protocol, as discussed in Sect. 1.2 (A). In addition, we describe a
standard amortized Σ-protocol for opening a linear form on many commitments.

526 T. Attema and R. Cramer

3.1 The Basic Σ-protocol

The primary commitment scheme under consideration in this paper is the Ped-
ersen vector commitment scheme.

Definition 1. (Pedersen Vector Commitment [27]). Let G be an Abelian
group of prime order q. Pedersen vector commitments are defined by the following
setup and commitment phase:

– Setup: g = (g1, . . . , gn) ←R G
n, h ←R G.

– Commit: Com : Zn
q × Zq → G, (x, γ) �→ hγgx := hγ

∏n
i=1 gxi

i .

We define gx :=
∏n

i=1 gxi
i and gc := (gc

1, g
c
2, . . . , g

c
n) for any g ∈ G

n, x ∈ Z
n
q and

c ∈ Zq. Moreover, the component-wise product between two vectors g,h ∈ G
n

is written as g ∗ h = (g1h1, g2h2, . . . , gnhn).
Pedersen vector commitments are perfectly hiding and computationally bind-

ing under the assumption that the prover does not know a non-trivial discrete
log relation between the generators g1, . . . , gn, h.

To open a commitment to a linear form L : Zn
q → Zq means that the prover

wishes to reveal L(x) together with a proof of validity without revealing any
additional information on x. Achieving this functionality amounts for the prover
to send the value L(x) along with a ZKPoK for the relation

R =
{(

P ∈ G, L ∈ L (
Z

n
q

)
, y ∈ Zq;x ∈ Z

n
q , γ ∈ Zq

)
:

P = gxhγ , y = L(x)},
(1)

where we use the following definition for the set of linear forms on Z
n
q .

Definition 2. L (
Z

n
q

)
:= {(L : Zn

q → Zq) : L is a Zq-linear map}. Protocol 1,
denoted by Π0, shows a basic Σ-protocol for relation R. Π0 was informally
described in Sect. 1.2 (A). Theorem 1 shows that Π0 is indeed a special honest-
verifier zero-knowledge (SHVZK) Proof of Knowledge (PoK). Both the commu-
nication costs from the prover P to the verifier V and vice versa are given. Note
that in the non-interactive Fiat-Shamir [16] mode the communication costs from
verifier to prover might be irrelevant.

Theorem 1 (Basic Pivot). Π0 is a 3-move protocol for relation R. It is per-
fectly complete, special honest-verifier zero-knowledge and unconditionally special
sound. Moreover, the communication costs are:

– P → V: 1 element of G and n + 2 elements of Zq.
– V → P: 1 element of Zq.

3.2 Amortization over Many Commitments

A standard amortization technique for Σ-protocols allows a prover to show cor-
rectness of s evaluations of the linear form L on s committed vectors for essen-
tially the costs of one evaluation. For details we refer to the full-version of this
paper [1].

Compressed Σ-Protocol Theory and Practical Application 527

Protocol 1 Σ-protocol Π0 for relation R
Σ-protocol to prove correctness of a linear form evaluation.

Public Parameters : g ∈ G
n, h ∈ G

Input(P, L, y;x, γ)

P = gxhγ ∈ G

y = L(x) ∈ Zq

Prover Verifier

r ←R Z
n
q , ρ ←R Zq

t = L(r)

A = grhρ t,A−−−−−−→
c ←R Zq

c←−−−−−−
z = cx + r
φ = cγ + ρ

z,φ−−−−−−→
gzhφ ?

= AP c

L(z)
?
= cy + t

4 Compressing the Pivot

This section shows how Bulletproof techniques can be applied to compress our
pivotal Σ-protocol Π0, as mentioned in Sect. 1.2 (B). The key observation is
that sending the final message ẑ := (z, φ) ∈ Z

n+1
q is actually a (trivial) proof of

knowledge for the relation

R1 =
{(

P̂ , L̂, ŷ; ẑ
)

: ĝẑ = P̂ ∧ ŷ = L̂(ẑ)
}

, (2)

where, with respect to relation R, ĝ := (g1, . . . , gn, h) ∈ G
n+1, P̂ := AP c, ŷ :=

cy + t and L̂(z, φ) := L(z) for all (z, φ). Another PoK would also suffice, in par-
ticular a PoK with a smaller communication complexity. Moreover, it is imma-
terial that the PoK is zero-knowledge as the original PoK clearly is not. In [5]
this observation was applied to Groth’s Σ-protocol [20]. The main difference is
that we start with linear form relation R, whereas Groth’s Σ-protocol is for a
specific quadratic relation.

Let Π be a PoK for relation R1. We call the new protocol obtained by
replacing the final move of protocol Π0 by protocol Π the composition and write
Π Π0. Since Π0 is SHVZK it immediately follows that the composition is also
SHVZK.

The essence of Bulletproofs is a PoK, denoted by BP, with logarithmic com-
munication complexity for the following inner product relation,

Rbullet =
{(

P ∈ G, u ∈ Zq;a,b ∈ Z
n
q

)
: P = gahb ∧ u = 〈a,b〉}, (3)

528 T. Attema and R. Cramer

where g,h ∈ G
n are the public parameters. The quadratic relation Rbullet is

quite similar to the relation R1 and it turns out that minor adaptations of BP
give a logarithmic size PoK for relation R1. We will now describe the components
of the BP protocol, while simultaneously adapting these to our relation R1.

4.1 Reduction from Relation R1 to Relation R2

The first step of the BP PoK is to incorporate the linear form into the Pedersen
vector commitment. For this step an additional generator k ∈ G is required such
that the prover does not know a discrete log relation between the generators
g1, . . . , gn, h, k. More precisely, the problem of finding a proof for relation R1 is
reduced to the problem of finding a proof for relation

R2 =
{(

Q ∈ G, L̃ ∈ L (
Z

n+1
q

)
; ẑ ∈ Z

n+1
q

)
: Q = ĝẑk

˜L(ẑ)
}

. (4)

where, Q := P̂ kŷ and L̃ := cL̂ for a random challenge c ∈ Zq sampled by the
verifier. The reduction is described in Protocol 2 and denoted by Π1. Lemma 1
shows that Π1 is an argument of knowledge for relation R1.

Lemma 1. Π1 is a 2-move protocol for relation R1. It is perfectly complete and
computationally special sound, under the discrete logarithm assumption. More-
over, the communication costs are:

– P → V: n + 1 elements of Zq.
– V → P: 1 element of Zq.

Proof. Completeness follows directly.

Special Soundness: We show that there exists an efficient algorithm χ that,
on input two accepting transcripts, either extracts a witness for R1, or finds
a non-trivial discrete log relation. So let (c1, ẑ1) and (c2, ẑ2) be two accepting
transcripts with c1 �= c2, then ĝẑ1−ẑ2kc1̂L(ẑ1)−c2̂L(ẑ2) = k(c1−c2)ŷ. Hence, either
we have found a non-trivial discrete log relation, or ẑ1 = ẑ2 and c1L̂(ẑ1) −
c2L̂(ẑ2) = (c1 − c2)ŷ. In the latter case, it follows that L̂(ẑ1) = L̂(ẑ2) = ŷ.
Moreover, from this it follows that ĝẑ1kc1̂L(ẑ1) = P̂ kc1ŷ which implies ĝẑ1 = P̂ .
Hence, ẑ1 is a witness for relation R1, which completes the proof.

4.2 Logarithmic Size PoK for Linear Relation R2

Next we deploy the main technique of the Bulletproof protocol to construct an
efficient PoK for relation R2. For simplicity let us assume that n + 1 is a power
of 2. If this is not the case the vector can be appended with zeros. The protocol
is recursive and in each iteration the dimension of the witness is halved until
its dimension equals 2. We could add one additional step to the recursion and
only send the response when the dimension equals 1. This would reduce the

Compressed Σ-Protocol Theory and Practical Application 529

Protocol 2 Argument of Knowledge Π1 for R1

Reduction from relation R1 to relation R2.
Public Parameters : ĝ ∈ G

n+1, k ∈ G

Input(̂P , ̂L, ŷ; ẑ)

̂P = ĝẑ ∈ G

ŷ = ̂L(ẑ) ∈ Zq

Prover Verifier
c←−−−−− c ←R Zq

ẑ−−−−−→
ĝẑkĉL(ẑ) ?

= ̂Pkcŷ

communication costs by one field element, but it would increase the number of
group elements sent by the prover by 2.

For any even dimension m and vector g ∈ G
m, we define gL = (g1, . . . , gm/2)

as its left half and gR = (gm/2+1, . . . , gm) as its right half. The same notation is
used for vectors in Z

m
q . For a linear form L : Zm

q → Zq, we define

LL : Zm/2
q → Zq, x �→ L(x, 0), LR : Zm/2

q → Zq, x �→ L(0,x), (5)

where (x, 0), (0,x) ∈ Z
m
q are the vectors x appended with m/2 zeros on the

right and left, respectively. Recall that the component-wise product between
two vectors is denoted by ∗.

The compression is described in Protocol 3 and denoted by Π2. Theorem 2
shows that protocol Π2 is a proof of knowledge for relation R2. Note that, in
contrast to the compression mechanism of [7], protocol Π2 is unconditionally
(3, . . . , 3)-special sound.

Theorem 2 (Compression Mechanism). Π2 is a (2μ+1)-move protocol for
relation R2, where μ = �log2(n + 1)� − 1. It is perfectly complete and uncondi-
tionally (k1, . . . , kμ)-special sound, where ki = 3 for all 1 ≤ i ≤ μ. Moreover, the
communication costs are:

– P → V: 2 �log2(n + 1)� − 2 elements of G and 2 elements of Zq.
– V → P: �log2(n + 1)� − 1 elements of Zq.

Proof. Completeness follows directly.

Special Soundness follows in a similar manner as it does for the amortized
Σ-protocol mentioned in Sect. 3.2. Namely, by the same “polynomial amorti-
zation trick” the commitments A, Q, B are combined in a single commitment
Q′ := AQcBc2 where c is a random challenge. Informally, if a prover can open
commitment Q′, it follows, with high probability, that a prover can open all three
commitments A, Q and B. For completeness we include the detailed proof.

For simplicity we assume that we only run one of the recursive steps, i.e.,
we consider the 3-move variant of protocol Π2, where the prover sends the

530 T. Attema and R. Cramer

response z′ regardless of its dimension, and we show that this protocol is 3-
special sound. From there (3, . . . , 3)-special soundness follows by an inductive
argument of which we omit the details.

So let us show that there exists an efficient algorithm χ that, on input
3 accepting transcripts (A,B, c1, z1), (A,B, c2, z2), (A,B, c3, z3), with ci �= cj

for all i, j, outputs a witness for relation R2. Given these transcripts let us define
Vandermonde matrix

V =

⎛

⎝
1 1 1
c1 c2 c3
c21 c22 c23

⎞

⎠, (6)

with det(V) = (c3 − c1)(c3 − c1)(c3 − c2). Since ci �= cj for all i, j, it follows that
V is invertible and that we can define

(
a1 a2 a3

)T := V −1
(
0 1 0

)T
. (7)

Now it is easily seen that, for z̄ :=
(∑3

i=1 aizi,
∑3

i=1 aicizi

)
, it holds that

gz̄k
˜L(z̄) = Q. Hence, z is a witness for relation R2, which proves the claim.

Protocol 3 Compressed Proof of Knowledge Π2 for R2

Public Parameters : ĝ, k

Input(Q, ˜L; ẑ)

Q = ĝẑk
˜L(ẑ)

Prover Verifier

A = ĝẑL
R k

˜LR(ẑL)

B = ĝẑR
L k

˜LL(ẑR) A,B−−−−−−−−−−−−−−→
c ←R Zq

c←−−−−−−−−−−−−−−
g′ := ĝc

L ∗ ĝR ∈ G
(n+1)/2

Q′ := AQcBc2

L′ := c˜LL + ˜LR

z′ = ẑL + cẑR

if
(

z′ ∈ Z
2
q

)

:
z′−−−−−−−−−−−−−−→ (g′)z

′
kL′(z′) ?

= Q′

else : Run Π2(Q
′, L′; z′) with

Public Parameters : g′, k

4.3 Composing the Building Blocks

The compressed Σ-protocol Πc for relation R is the composition of the previously
mentioned protocols, i.e., Πc := Π2Π1Π0. For a graphical protocol description

Compressed Σ-Protocol Theory and Practical Application 531

of Πc we refer to the full-version of this paper [1]. Theorem 3 shows that Πc

is indeed a SHVZK argument of knowledge for relation R with a logarithmic
communication complexity.

Theorem 3 (Compressed Pivot). Πc is a (2μ+3)-move protocol for relation
R, where μ = �log2(n + 1)� − 1. It is perfectly complete, special honest-verifier
zero-knowledge and computationally (2, 2, k1, . . . , kμ)-special sound, under the
discrete logarithm assumption, where ki = 3 for all 1 ≤ i ≤ μ. Moreover, the
communication costs are:

– P → V: 2 �log2(n + 1)� − 1 elements of G and 3 elements of Zq.
– V → P: �log2(n + 1)� + 1 elements of Zq.

Proof. Completeness follows directly from the completeness of Π0,Π1 and Π2.
SHVZK follows since Π0 is SHVZK. The simulator for Πc namely runs the

simulator for Π0 and continues with honest executions of Π1 and Π2.
Special soundness follows from a straightforward combination of the

extraction algorithms of protocols Π0, Π1 and Π2.

In a completely analogous manner, the amortized Σ-protocol ΠAm
0 of

Sect. 3.2 can be compressed. For the properties of the amortized and compressed
Σ-protocol we refer to the full-version of this paper [1].

4.4 Compressed Pivot with Unconditional Soundness

Note that since protocol Π1 has computational soundness so does the compressed
pivot Πc. In the full-version of this paper [1] we show two approaches for deriving
an unconditionally sound compressed pivot.

4.5 A Remark on Sublinear Communication Complexity

A straightforward adaptation of the compression techniques from Sect. 4 allows
the round complexity of the compressed pivot to be reduced from logarithmic to
constant. However, this reduction comes at the cost of increasing the communi-
cation complexity from O(log(n)) to O(

√
n) elements. For more details on this

trade-off we refer to the full-version of this paper [1].

5 The Compressed Pivot as a Black-Box

From this point on, the only facts about the pivot that we need is that we have
access to a compact vector commitment scheme that allows a prover to open
arbitrary linear forms on multiple commitments. Hence, we assume black-box
access to such a pivot. First, we treat the utility enhancements mentioned in
Sect. 1.2 (A). Second, we describe the compactification techniques as discussed
in Sect. 1.2 (C).

We use the following notation. We write [x] for a compact commitment to
a vector x ∈ Z

n
q , and for a (public) linear form L we write ΠOpen ([x], L;x) for

532 T. Attema and R. Cramer

the interactive protocol that reveals L(x) and nothing else to the verifier. Recall
that our notation ΠOpen ([x], L;x) means that interactive protocol ΠOpen takes
as public input [x] and L and as prover’s private input x. The communication
costs of ΠOpen are equal to the cost of the underlying interactive protocol (Πc)
plus 1 field element from P to V (the output of L), unless of course the output
is known in advance. Similarly, we write ΠOpen ([x1], . . . , [xs], L;x1, . . . ,xs) for
the (amortized) interactive protocol that exclusively reveals L(xi) for 1 ≤ i ≤ s
to the verifier.

At this point, the implementation details of the compact commitment scheme
do not matter anymore. However, when we give soundness properties and com-
munication costs it is implicitly assumed that [·] is instantiated with Pedersen
vector commitments and compressed Σ-protocol Πc.

5.1 Many Nullity Checks for the Price of One

A “polynomial amortization trick” (known, e.g., from MPC) allows us to do
many nullity checks on the committed vector x without a substantial increase
in complexity. Consider linear forms L1, . . . , Ls and suppose the prover claims
that Li(x) = 0 for i = 1 . . . , s. The verifier then samples ρ ∈ Zq uniformly at
random and asks the prover to open the linear form L(x) :=

∑s
i=1 Li(x)ρi−1,

i.e., prover and verifier run ΠOpen ([x], L;x). The opening of L(x) equals the
evaluation of some polynomial of degree at most s − 1. If this polynomial is
non-zero, it has at most s − 1 zero’s. Hence, L(x) = 0 implies that Li(x) = 0
for all i with probability at least 1 − (s − 1)/q. When q is exponential and s is
polynomial in the security parameter this probability is exponentially close to
1. We write ΠNullity([x], L1, . . . , Ls; ,x) for this protocol. The communication
costs are equal to the costs of a single nullity-check (s = 1) plus one additional
Zq element from V to P (the challenge ρ).

The above discussion holds verbatim when we replace the linear forms by
affine forms Φ1, . . . , Φs, for which we also write ΠNullity([x], Φ1, . . . , Φs;x).
Moreover, by the amortized and compressed Σ-protocol ΠAm

c these techniques
directly carry over to the scenario where the prover makes the same nullity claims
over many different commitments.

5.2 Opening Affine Maps

Many ZK scenarios can be reduced to nullity-checks and, as such, the above
utility enhancement is extremely powerful. As an often encountered example,
we specifically mention the functionality of opening arbitrary affine maps Φ :
Z

n
q → Z

s
q, x �→ Ax+ b, at the cost of increasing the communication by exactly

s−1 values in Zq in comparison to opening one linear form (i.e., the evaluations
of s−1 additional outputs). Note that Φ is the combination of s affine forms. The
protocol goes as follows. The prover reveals the evaluation y = Φ(x) followed by
an amortized nullity-check on the affine forms Φ1(x) − y1, . . . , Φs(x) − ys. For
the interactive protocol that opens an affine map Φ we write ΠOpen ([x], Φ;x).

Compressed Σ-Protocol Theory and Practical Application 533

As before, this protocol directly caries over the scenario where a prover opens
the evaluations of Φ on many committed vectors. The communications costs
are only increased by the additional evaluations, i.e., the communication costs
of the underlying compressed Σ-protocol remain the same. Note that in this
case amortization is applied twice. First, at the Σ-protocol level, allowing many
commitments to be considered. Second, only requiring black-box access to the
pivotal Σ-protocols, allowing many affine forms to be considered.

5.3 Compactifying a Vector of Commitments

So far, we have shown how to open many linear forms L applied to a compactly
committed secret vector x with low complexity. Dealing with nonlinear functions
of a secret-vector-of-interest x will, as shown in Sect. 6, require that the prover,
at the starting point, is also committed to a vector aux consisting of correlated
secret randomness. As the method will consist of opening appropriate linear
forms on the entire vector given by the pair (x, aux), it will be assumed that the
prover is committed to this pair via a single compact commitment.

Now, from a practical application perspective, it is likely that the prover is
already committed to x before the start of a ZK proof. Consider, for example,
the following two extreme cases:

– Case 1: The prover is committed to x in a single compact commitment. This
scenario may be said to correspond to a “textbook” ZK setting.

– Case 2: The prover is committed to the coordinates of x individually. This
scenario is relevant in practical situations with a natural dynamic where
provers deliver committed data in subsequent transactions and only peri-
odically prove in ZK some property on the compound information.

In order to deal with each of these scenarios, we need some further utility
enhancements of the compressed pivot in order to bring about the desired start-
ing point for the methods from Sect. 6, without too much loss in communication.
It turns out that this is just a matter of “technology”, i.e., plug and play with
our compressed pivot and its basic theory suffices.

Besides these extreme cases one can consider hybrid scenarios in which the
secret-vector-of-interest x is dispersed over various compact commitments. The
methods described below both carry over to hybrid scenarios. The optimal app-
roach depends on specific properties of the scenario. Namely, the communication
complexity of the “Case 1 enhancement” is linear in the number of commitments,
whereas the communication complexity of the “Case 2 enhancement” is linear
in the (maximum) dimension of the committed vectors.

Case 1. We describe a straightforward approach. We use the homomorphic
property of Pedersen commitments. The prover has a compact commitment P
to x. Taking from the public set-up information a new set of generators disjoint
from the initial set that, supposedly, underlies P , the prover creates a compact
commitment Q to aux. Eventually, the prover will set P ′ := P ·Q as the compact
commitment to the secret pair (x, aux), a join. But, first, the prover must show

534 T. Attema and R. Cramer

that x and aux “live on disjoint sets of generators”. This is just a nullity check,
basically. The prover shows that, in P , there is a window of zeros w.r.t. the new
generators, i.e., each occurs to the power 0. Similarly for Q but with a window
of zeros w.r.t. the initial set of generators. By the methods for amortized nullity
checks described earlier, this is handled with logarithmic communication. In fact,
for the methods of Sect. 6 to work, it is easy to see that it suffices to perform the
check on Q only. However, since the methods of Sect. 6 would be applied serially,
i.e., after the join above, this would incur a constant multiplicative factor 2 loss
in communication efficiency. We show how it can be done in parallel, thereby
avoiding any such loss.

The amortized pivot allows a prover to open one linear form on many com-
pact commitments efficiently. By the amortized nullity checks a prover can open
many linear forms on one compact commitments efficiently. Together these amor-
tization techniques almost suffice, except that they force a prover to open linear
forms “intended” for one particular commitment on other commitments as well;
they reveal the cross-terms. Thus, to prevent a privacy breach, we need to mask
these cross-terms appropriately and we do this by constructing a small shell
around commitments containing sufficient randomness. Masking the appropri-
ate cross-terms returns us to the “standard” amortization scenario where the
prover wishes to open one affine map on multiple compact commitments. The
shells cause unintended evaluations to return random values, whereas intended
evaluations are left unaltered. For the details we refer to the full-version of this
paper [1].

Case 2. In this case we describe a simple, single protocol that integrates the com-
pactification of a vector of commitments to individual coordinates of x together
with a compact commitment to aux. See the full-version of this paper [1] for the
details. Performing this integration in parallel with the methods of Sect. 6 is a
straightforward application of the amortized nullity checks.

6 Proving Nonlinear Relations via Arithmetic Circuits

Using our compressed pivot as a black-box, this section describes how to obtain
efficient zero-knowledge arguments for arbitrary arithmetic circuits. We consider
arithmetic circuits C over Zq with n inputs, s outputs and m multiplication
gates. Addition and multiplication gates have fan-in 2 and unbounded fan-out.
The number of addition gates is immaterial, as is the number of gates for scalar
multiplication. For this reason m only refers to the multiplication gates that take
two variable inputs. We fix an ordering 1, . . . , n of the inputs and an ordering
1, . . . ,m of the multiplication gates.

The approach is to combine the compressed pivot with an adaptation of
the work of [12] that shows how to prove arbitrary constraints on vectors of
committed elements by exploiting techniques from secure multi-party computa-
tion. Concretely, we use the ideas underlying the Commitment Multiplication

Compressed Σ-Protocol Theory and Practical Application 535

Protocol from [10].8 A detailed overview of the approach has been given in
Sect. 1.2 (D). Here, we summarize the key points and formalize the main prop-
erties of the resulting protocols.

6.1 Basic Circuit Satisfiability

First, we consider the basic circuit satisfiability scenario in which a prover shows
that it knows an input x ∈ Z

n
q for which the arithmetic circuit C evaluates to 0.

More precisely, we construct a ZK protocol for the following circuit satisfiability
relation: Rcs = {(C;x) : C(x) = 0}.

Our approach follows the commit and prove paradigm, i.e., the prover com-
mits to the witness x and subsequently proves that it satisfies the required
relation. The terminology circuit satisfiability seems to suggest that we are only
considering circuits for which it is hard to compute a satisfying witness x. How-
ever, many practical scenarios consider circuits C for which it is easy to compute
an x such that C(x) = 0. In these scenarios the arithmetic circuit allows the
prover to show that a committed vector satisfies certain properties.

If C is an affine map, i.e., without multiplication gates, the protocol fol-
lows directly from the (enhanced) functionality of our pivot. Namely, the prover
commits to x and runs ΠNullity([x], C;x). Hence, addition gates and scalar mul-
tiplications, are implicitly handled since our pivot allows the opening of arbitrary
linear forms.

Multiplication gates are handled by an appropriate adaptation of the tech-
niques from [12]. Their primary result is a Σ-protocol showing correctness of m
multiplication triples (αi, βi, γi). First, we recall the adaptation of their approach
that uses our compressed pivot as a black-box. See also the first observation made
in Sect. 1.2 (D). The protocol goes as follows.

– The prover selects a random polynomial f(X) ∈ Zq[X]≤m that defines a
packed secret sharing of the vector (α1, . . . , αm). The prover also selects a
random polynomial g(X) ∈ Zq[X]≤m that defines a packed secret sharing of
the vector (β1, . . . , βm). Finally, the prover computes the product polynomial
h(X) := f(X)g(X) of degree ≤ 2m < q.

– The prover commits to the vector

y = (α1, . . . , αm, β1, . . . , βm, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z
4m+3
q

in a single compact commitment and sends the commitment to the verifier.
Note that, by Lagrange interpolation, the polynomials f(X), g(X) and h(X)
are uniquely defined by the vector y.

– The verifier selects a random challenge c ∈ Zq distinct from 1, . . . ,m and
sends it to the prover.

8 For a general description of efficient ZK verification of secret multiplications, in terms
of (strongly-multiplicative) arithmetic secret sharing, see Section 12.5.3 [11].

536 T. Attema and R. Cramer

– Public linear combinations of the coefficients of y define three values: u :=
f(c), v := g(c) and w := h(c). These values are opened and the verifier checks
whether w = uv. A cheating prover is caught with probability greater than
1 − 2m/(q − m) and honest-verifier zero-knowledge essentially follows from
1-privacy of the secret sharing scheme.

Now we adapt this approach to the circuit satisfiability scenario, where we
let C : Z

n
q → Z

s
q be an arbitrary arithmetic circuits with m multiplication

gates. We use a simple fact about a circuit C. Consider the computation graph
induced by evaluation at input-vector x ∈ Z

n
q . Write γ1, . . . , γm ∈ Zq for the

resulting outputs of the multiplication gates. For each i, write (αi, βi) ∈ Z
2
q for

the resulting inputs to the i-th multiplication gate. Finally, write ω ∈ Z
s
q for

the resulting output of the circuit. Then, for each i, there are affine forms9

ui, vi : Zn+m
q → Zq, depending only on C, such that, for all x ∈ Z

n
q , it holds

that αi = ui(x, γ1, . . . , γm) and βi = vi(x, γ1, . . . , γm). These forms are uniquely
determined by the addition and scalar multiplication gates. Similarly, there is
an affine function w : Z

n+m
q → Z

s
q such that, for all x ∈ Z

n
q , it holds that

ω = w(x, γ1, . . . , γm). In other words, a given pair (x, γ1, . . . , γm) ∈ Z
n
q ×Z

m
q can

be completed to an accepting computation graph if and only if ui(x, γ1, . . . , γm) ·
vi(x, γ1, . . . , γm) = γi (for i = 1, . . . ,m) and w(x, γ1, . . . , γm) = 0.

The vector y, from the above multiplication-triples approach, is now adapted
as follows. The prover includes the input vector x. However, the αi’s and the
βi’s are omitted from y. Otherwise, the vector y is unchanged. In particular,

y = (x, f(0), g(0), h(0), h(1), . . . , h(2m)) ∈ Z
n+2m+3
q

and (x, γ1, . . . , γm) := (x, h(1), . . . , h(m)) is a subvector of y. Subsequently, the
prover compactly commits to this adapted vector y. By the handle discussed
above, the prover needs to convince the verifier that (1) w(x, γ1, . . . , γm) = 0,
and that (2) αi · βi = γi for all 1 ≤ i ≤ m. The αi’s and βi’s are now taken as
the evaluation at (x, γ1, . . . , γm) of the affine functions ui, vi introduced above.
Note that we may capture all these as affine functions evaluated at y.

As for (1), checking that w(x, γ1, . . . , γm) = 0 is just a nullity check as
provided by the pivot. As for (2), the polynomials f(X), g(X) are still well-
defined by the prover’s compact commitment to y. Namely, ρ := f(0), i.e.,
the randomness underlying its selection, is still included in y. As the αi’s thus
defined are affine functions of y, the prover is still (implicitly) committed to a
polynomial f(X) of degree ≤ m such that f(0) = ρ and f(i) = αi (i = 1, . . . , m)
and evaluation of f(X) in a point c is still, by composition of appropriate maps,
an affine evaluation at y, as enabled by the pivot. Since ρ′ := g(0) is also still
included in y, a similar conclusion is drawn about the βi’s, g(X), and evaluation
of the latter. As no changes with respect to h(X) were made in y, we conclude
that the required check can be performed in the same way as before.

The costs of the different openings are reduced by applying the amortized
nullity checks of Sect. 5.1. In fact, the communication costs are independent of
the number of outputs s.
9
Zq-linear forms plus a constant.

Compressed Σ-Protocol Theory and Practical Application 537

The protocol is formally described in Protocol 4 and denoted by Πcs. Protocol
Πcs only requires black-box access to the commitment scheme [·]. For notational
convenience, we write

ΠNullity ([y], C(x), f(c) − y1, g(c) − y2, h(c) − y3;y) (8)

for the amortized nullity check on the affine forms associated to the s + 3 coef-
ficients of (C(x), f(c) − z1, g(c) − z2, h(c) − z3).

Theorem 4 shows that, when [·] is instantiated with Pedersen vector commit-
ments and compressed Σ-protocol Πc, Πcs is a SHVZK argument of knowledge
for relation Rcs. The theorem also shows that the special soundness property
depends on the number of multiplication gates in the circuit. If the circuit size is
polynomial in the security parameter and q is exponential, then witness extended
emulation follows from the special soundness property of Πcs.

Theorem 4 (Basic Circuit ZK). Πcs is a (2μ + 7)-move protocol for the
circuit relation Rcs, where μ = �log2(n + 2m + 4)� − 1. It is perfectly com-
plete, special honest-verifier zero-knowledge and computationally (2m + 1, s +
3, 2, 2, k1, . . . , kμ)-special sound, under the discrete logarithm assumption, where
ki = 3 for all 1 ≤ i ≤ μ. Moreover, the communication costs are:

– P → V: 2 �log2(n + 2m + 4)� elements of G and 6 elements of Zq.
– V → P: �log2(n + 2m + 4)� + 3 elements of Zq.

Proof (Sketch). Completeness follows directly.

Special soundness: By Lagrange interpolation there exists an efficient algo-
rithm to reconstruct a polynomial of degree t given t + 1 evaluations. Hence,
the packed secret sharing and the amortized nullity-checks are (2m + 1)-special
sound and (s + 3)-special sound, respectively. The soundness in these steps is
computational, i.e., it is essential that the prover does not know a non-trivial
discrete log relation. The special soundness claim now from the properties of
protocol Πc.

SHVZK follows from 1-privacy of the secret sharing scheme and the fact
that Πc is SHVZK.

6.2 Circuit ZK from Compactification

Thus far, we have restricted ourselves to the basic circuit satisfiability scenario
where the prover commits to all input and auxiliary data at once. However, there
is a great variety of other scenarios, where the circuit takes as input committed
values. As in Sect. 5.3 we consider two extreme cases for circuit ZK:

– Case 1. Prove that C(x) = 0 for a vector commitment [x] with x ∈ Z
n
q .

– Case 2. Prove that C(x1, . . . , xn) = 0 for commitments [xi] with xi ∈ Zq for
all i.

538 T. Attema and R. Cramer

Protocol 4 Circuit Satisfiability Argument Πcs for Relation Rcs

The polynomials f and g are sampled uniformly at random such that their
evaluations in 1, . . . , m coincide with the left and, respectively, right inputs of
the m multiplication gates of C evaluated at x.

Input(C;x)

C : Zn
q → Z

s
q

C(x) = 0
Prover Verifier

f, g ←R Zq[X]≤m

h(X) := f(X)g(X)
y = (x, f(0), g(0), h(0),

h(1), . . . , h(2m))

[y]−−−−−−−−−−−−−−→
c ←R Zq \ {1, . . . , m}

z1 = f(c)
c←−−−−−−−−−−−−−−

z2 = g(c)

z3 = h(c)
z1,z2,z3−−−−−−−−−−−−−−→

z3
?
= z1z2

ΠNullity

⎛

⎜

⎜

⎝

[y],

C(x)
f(c) − z1
g(c) − z2
h(c) − z3

; z

⎞

⎟

⎟

⎠

These cases are dealt with by compactifying the commitments into a single
compact commitment to all relevant data. The resulting protocol for Case 1 is
denoted by Π

(1)
cs with corresponding relation R

(1)
cs and its properties are given by

Theorem 5. Recall that we consider arithmetic circuits C over Zq with n input,
s output and m multiplication gates.

Theorem 5 (Circuit ZK Case 1). Π
(1)
cs is a (2μ + 9)-move protocol for cir-

cuit relation R
(1)
cs , where μ = �log2(n + 2m + 6)� − 1. It is perfectly complete,

special honest-verifier zero-knowledge and computationally (2m + 1,max(n, s +
3) + 1, 2, 2, 3, 2, k1, . . . , kμ)-special sound, under the discrete logarithm assump-
tion, where ki = 3 for all 1 ≤ i ≤ μ. Moreover, the communication costs are:

– P → V: 2 �log2(n + 2m + 6)� + 4 elements of G and 12 elements of Zq.
– V → P: �log2(n + 2m + 6)� + 5 elements of Zq.

The protocol for Case 2 is denoted by Π
(2)
cs with corresponding relation R

(2)
cs

and its properties are given by Theorem6. Note that in this case we can restrict
ourselves to n ≤ 2m. For if n is larger than the number of inputs to multi-
plication gates there must exist linear reductions that can be applied directly
to the Pedersen commitments [xi] using its homomorphic properties. There-
fore, the communication costs from prover to verifier are upper-bounded by

Compressed Σ-Protocol Theory and Practical Application 539

2 �log2(4m + 5)� + 9 ≤ 2 �log2(m + 2)� + 13 elements. Bulletproofs achieve a
communication cost of 2 �log(m)� + 13 elements. Hence, perhaps surprisingly,
our plug-and-play approach almost never increases the communication costs.

Theorem 6 (Circuit ZK Case 2). Π
(2)
cs is a (2μ + 7)-move protocol for cir-

cuit relation R
(2)
cs , where μ = �log2(n + 2m + 5)� − 1. It is perfectly complete,

special honest-verifier zero-knowledge and computationally (2m + 1, n + 1, s +
4, 2, 2, k1, . . . , kμ)-special sound, under the discrete logarithm assumption, where
ki = 3 for all 1 ≤ i ≤ μ. Moreover, the communication costs are:

– P → V: 2 �log2(n + 2m + 5)� + 1 elements of G and 8 elements of Zq.
– V → P: �log2(n + 2m + 5)� + 4 elements of Zq.

7 Range Proofs

In a range proof a prover wishes to show that a secret committed integer v is
in a public range, say [0, 2n−1]. For our range proofs, we invoke the circuit ZK
protocols of Sect. 6 in a black-box manner and thereby achieve a conceptual
simplification of earlier solutions such as those in [5,7]. Note that this black-box
approach for range proofs can also be instantiated from the circuit ZK protocols
of (e.g.) [5] and [7]. For details we refer to the full-version of this paper [1].

8 Our Program from the Strong-RSA Assumption

In this section we describe how our program can be based on Strong-RSA derived
assumptions, as mentioned in Sect. 1.2 (F). We treat the main differences and
refer to the full-version of this paper [1] and [8] for more details.

A disadvantage of the Pedersen vector commitment scheme is the number
of generators required. In fact, to commit to an n-dimensional vector, n + 1
generators of the group G are required. Moreover, the compressed Σ-protocol
Πc has a verification time that is linear in the dimension n.

Alternatively, vector commitment schemes can be constructed via integer
commitment schemes [15,17]. A commitment to the vector x ∈ Z

n
q is then a

commitment to an integer representation x̂ ∈ Z of x. The integer commitment
schemes of [15,17] are constructed by using groups G of unknown order.

This is precisely the approach followed in a recent work of Bünz, Fisch
and Szepieniec [8]. They construct a polynomial commitment scheme allow-
ing a prover to commit to a polynomial f ∈ Zq[X] of arbitrary degree, via a
unique integer representation of its coefficient vector. A commitment to such a
representation only requires two group elements g, h ∈ G.

The work of [8] shows how to open arbitrary evaluations f(a) ∈ Zq of a
committed polynomial without revealing any additional information about f .
Their polynomial evaluation protocol uses recursive techniques similar to those
used in Bulletproofs. This approach results in a logarithmic communication com-
plexity. In addition, [8] deploys Proofs of Exponentiation (PoE) [28] to achieve
logarithmic verification time.

540 T. Attema and R. Cramer

Their work refers to generic constructions that can be used to obtain more
general ZK protocols from polynomial commitment schemes. However, we argue
that these constructions are overly complicated and that a stronger functionality
(vector commitment scheme with linear form openings) avoids many difficulties
in the design of ZK protocols. Moreover, it turns out that the protocols of [8] only
require minor adaptations to accommodate this stronger functionality. From this,
an instantiation of the black-box functionality of Sect. 5 is derived, now based
on the hardness assumptions related to the Strong-RSA assumption [3]. The
techniques of Sect. 6 and Sect. 7 directly apply, and the higher level applications
inherit the logarithmic communication and computation complexity of the vector
commitment scheme. The compactification methods of Sect. 5.3 are tailored to
Pedersen (vector) commitments. Minor modifications are required to adapt these
techniques to the Strong-RSA setting.

9 Our Program from the KEA

If one desires our program can also be instantiated from the Knowledge-of-
Exponent Assumption (KEA), i.e., we construct a KEA based vector commit-
ment scheme with compact linear form openings. The techniques from Sect. 6
apply as before, resulting in ZK protocols for arbitrary arithmetic circuits. Bas-
ing our program on KEA reduces communication complexity from logarithmic
to constant. The protocols do require a trusted setup that depends on the arith-
metic circuit under consideration.

We stress that KEA is of a different nature than the DL or strong-RSA
assumption. KEA is not an intractability assumption and it is unfalsifiable [4,26].
For these reasons, its application is not completely without controversy.

We now, informally, describe the main components of the KEA based vector
commitment scheme together with its ZK protocol for opening linear forms. Our
approach uses the techniques of [22] and only minor adaptations are required.

A compact commitment to a vector x ∈ Z
n
q is, as before, a Pedersen vec-

tor commitment P = hγgx. A ZKPoK for knowing an opening to P is another
Pedersen commitment P ′ to x, under the same randomness γ, using a different
set of generators h′ := hα, g′

1 := gα
1 , . . . , g′

n := gα
n . The value α ∈ Zq is sam-

pled uniformly at random in the trusted setup phase and is only shared with a
designated verifier. Both sets of generators are public and part of the common
reference string. The proof P ′ is verified by checking that P ′ = Pα.

The Knowledge-of-Exponent Assumption states that an adversary capable of
computing pairs (P, P ′) with P ′ = Pα, either knows α or an opening to P . From
this assumption knowledge soundness follows. Correctness and zero-knowledge
are immediate. Note that the resulting ZKPoK is non-interactive and its size is
independent of the dimension n.

Given a bilinear pairing e : G×G → GT the verification can be done without
knowledge of α, eliminating the restriction to a designated verifier. In this case
verification amounts to checking that e(P, h′) = e(h, P ′).

To prove that the committed vector x satisfies a linear form relation L(x) =
u, the generators are taken of a specific form. More precisely, the generators

Compressed Σ-Protocol Theory and Practical Application 541

are sampled under the condition that gi = hβi

, for some secret β ∈ Zq, for all
1 ≤ i ≤ n. The associated KEA derived assumption is the n-power Knowledge-
of-Exponent Assumption (n-PKEA).

Groth showed that, using this additional structure, together with the bilinear
pairing, efficient circuit ZK protocols exist [22]. His protocols are easily adapted
to our situation, where we simply wish to prove correctness of a linear form
evaluation. The adaptation relies on the following observation. Suppose that
a = (a1, . . . , an) ∈ Z

n
q is such that L(z) = 〈a, z〉 for all z ∈ Z

n
q , and let us

define the following polynomials: f(Y) := γ +
∑n

i=1 xiY
i, g(Y) :=

∑n−1
i=0 an−iY

i

and h(Y) := f(Y)g(Y) =
∑2n−1

i=0 ciY
i. The n-th coefficient of h(Y) equals cn =

〈x,a〉 = L(x). This observation allows for a straightforward adaptation of the
product argument in [22, Section 6], resulting in a constant size ZKPoK for the
correctness of a linear form evaluation. We omit further details and refer the
reader to [22].

For circuit ZK protocols we apply the techniques from Sect. 6 to linearize the
non-linearities in a black-box manner. In contrast, other KEA based approaches
use a protocol for proving quadratic relations as their main pivot and translate
arithmetic circuit relations to so called quadratic span programs or QSPs [19,21].
This translation, also called arithmetization, is not required when applying our
linearization techniques. However, in contrast to other KEA based protocols, the
linearization techniques render our solution interactive (although in a setting
where Fiat-Shamir applies). Additionally, we note that this approach achieves
constant verification complexity, in contrast to the linear complexity of the DL
based approach, i.e., our KEA based protocol is a ZK-SNARK.

Acknowledgements. We thank Serge Fehr, Toon Segers and Thijs Veugen for exten-
sive commenting at an early stage. We also thank Jens Groth for useful editorial
comments and pointers. We are grateful for a comment by Michael Klooß that our
exact analysis of knowledge error is only meaningful for a portion of the full param-
eter space relevant to our application. Thomas Attema has been supported by EU
H2020 project No 780701 (PROMETHEUS). Ronald Cramer has been supported by
ERC ADG project No 74079 (ALGSTRONGCRYPTO) and by the NWO Gravitation
project QSC.

References

1. Full-version of this paper. IACR ePrint 2020/152
2. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowl-

edge. IACR ePrint 2020/753
3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature

schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

4. Bitansky, N., Canetti, R., Paneth, O., Rosen, A.: On the existence of extractable
one-way functions. In: STOC, pp. 505–514. ACM (2014)

https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33

542 T. Attema and R. Cramer

5. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

6. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to
succinct quantum-safe zero-knowledge. IACR ePrint 2020/737

7. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: IEEE S&P 2018, pp. 315–
334 (2018)

8. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 24

9. Cramer, R.: Modular design of secure yet practical cryptographic protocols. Ph.D.
thesis, CWI and University of Amsterdam (1996)

10. Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

11. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

12. Cramer, R., Damg̊ard, I., Pastro, V.: On the amortized complexity of zero knowl-
edge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS,
vol. 7412, pp. 62–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32284-6 4

13. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

14. Damg̊ard, I.: On sigma-protocols. Lecture Notes, Aarhus University, Department
of Computer Science (2010)

15. Damg̊ard, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based
on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol.
2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36178-2 8

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

17. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

18. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
Lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR
ePrint 2019/953

19. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

20. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 12

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-642-32284-6_4
https://doi.org/10.1007/978-3-642-32284-6_4
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-03356-8_12

Compressed Σ-Protocol Theory and Practical Application 543

21. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. Part II. LNCS, vol. 9666, pp. 305–326.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

22. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

23. Hoffmann, M., Klooß, M., Rupp, A.: Efficient zero-knowledge arguments in the
discrete log setting, revisited. In: ACM CCS (2019)

24. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003). https://doi.org/10.1007/s00145-002-0143-7

25. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge snarks
from linear-size universal and updatable structured reference strings. In: ACM
CCS, pp. 2111–2128 (2019)

26. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 6

27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

28. Wesolowski, B.: Efficient Verifiable Delay Functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. Part III. LNCS, vol. 11478, pp. 379–407. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 13

29. Wikström, D.: Special soundness revisited. IACR ePrint 2018/1157
30. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-

knowledge proofs with optimal prover computation. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. Part III. LNCS, vol. 11694, pp. 733–764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 24

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-26954-8_24

A Tight Parallel Repetition Theorem
for Partially Simulatable Interactive

Arguments via Smooth KL-Divergence

Itay Berman1, Iftach Haitner2, and Eliad Tsfadia2(B)

1 MIT, Cambridge, USA
itayberm@mit.edu

2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
iftachh@cs.tau.ac.il, eliadtsf@tau.ac.il

Abstract. Hardness amplification is a central problem in the study of
interactive protocols. While “natural” parallel repetition transformation
is known to reduce the soundness error of some special cases of interac-
tive arguments: three-message protocols (Bellare, Impagliazzo, and Naor
[FOCS ’97]) and public-coin protocols (H̊astad, Pass, Wikström, and
Pietrzak [TCC ’10], Chung and Liu [TCC ’10] and Chung and Pass
[TCC ’15]), it fails to do so in the general case (the above Bellare et al.;
also Pietrzak and Wikström [TCC ’07]).

The only known round-preserving approach that applies to all
interactive arguments is Haitner’s random-terminating transformation
[SICOMP ’13], who showed that the parallel repetition of the trans-
formed protocol reduces the soundness error at a weak exponential rate:
if the original m-round protocol has soundness error 1 − ε, then the n-
parallel repetition of its random-terminating variant has soundness error

(1 − ε)εn/m4
(omitting constant factors). H̊astad et al. have generalized

this result to partially simulatable interactive arguments, showing that
the n-fold repetition of an m-round δ-simulatable argument of sound-

ness error 1 − ε has soundness error (1 − ε)εδ2n/m2
. When applied to

random-terminating arguments, the H̊astad et al. bound matches that
of Haitner.

In this work we prove that parallel repetition of random-terminating
arguments reduces the soundness error at a much stronger exponential
rate: the soundness error of the n parallel repetition is (1 − ε)n/m, only
an m factor from the optimal rate of (1 − ε)n achievable in public-coin
and three-message arguments. The result generalizes to δ-simulatable

Due to space limitations, the reader is referred to the full version [2].
I. Berman—Research supported in part by NSF Grants CNS-1413920 and CNS-
1350619, and by the Defense Advanced Research Projects Agency (DARPA) and the
U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-
0236.
I. Haitner—Member of the Check Point Institute for Information Security.
I. Haitner and E. Tsfadia—Research supported by ERC starting grant 638121 and
Israel Science Foundation grant 666/19.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 544–573, 2020.
https://doi.org/10.1007/978-3-030-56877-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_19

A Tight Parallel Repetition Theorem 545

arguments, for which we prove a bound of (1 − ε)δn/m. This is achieved
by presenting a tight bound on a relaxed variant of the KL-divergence
between the distribution induced by our reduction and its ideal variant,
a result whose scope extends beyond parallel repetition proofs. We prove
the tightness of the above bound for random-terminating arguments, by
presenting a matching protocol.

Keywords: Parallel repetition · Interactive argument · Partially
simulatable · Smooth KL-divergence

1 Introduction

Hardness amplification is a central question in the study of computation: can a
somewhat secure primitive be made fully secure, and, if so, can this be accom-
plished without loss (i.e., while preserving certain desirable properties the orig-
inal primitive may have). In this paper we focus on better understanding the
above question with respect to interactive arguments (also known as, compu-
tationally sound proofs). In an interactive argument, a prover tries to convince
a verifier in the validity of a statement. The basic properties of such proofs
are completeness and soundness. Completeness means that the prover, typi-
cally using some extra information, convinces the verifier to accept valid state-
ments with high probability. Soundness means that a cheating polynomial-time
prover cannot convince the verifier to accept invalid statements, except with
small probability. Interactive arguments should be compared with the related
notion of interactive proofs, whose soundness should hold against unbounded
provers. Interactive argument are important for being “sufficiently secure” proof
system that sometimes achieve properties (e.g., compactness) that are beyond
the reach of interactive proofs. Furthermore, the security of many cryptographic
protocols (e.g., binding of a computationally binding commitment) can be cast
as the soundness of a related interactive argument, but (being computational)
cannot be cast as the soundness of a related interactive proof.

The question of hardness amplification with respect to interactive arguments
is whether an argument with non-negligible soundness error, i.e., a cheating
prover can convince the verifier to accept false statements with some non-
negligible probability, can be transformed into a new argument, with similar
properties, of negligible soundness error (i.e., the verifier almost never accepts
false statements). The most common paradigm to obtain such an amplification is
via repetition: repeat the protocol multiple times with independent randomness,
and the verifier accepts only if the verifiers of the original protocol accept in
all executions. Such repetitions can be done in two different ways, sequentially
(known as sequential repetition), where the (i+1) execution of the protocol starts
only after the ith execution has finished, or in parallel (known as parallel repeti-
tion), where the executions are all simultaneous. Sequential repetition is known
to reduce the soundness error in most computational models (cf., Damgärd and
Pfitzmann [9]), but has the undesired effect of increasing the round complexity

546 I. Berman et al.

of the protocol. Parallel repetition, on the other hand, does preserve the round
complexity, and reduces the soundness error for (single-prover) interactive proofs
(Goldreich [16]) and two-prover interactive proofs (Raz [25], Holenstein [19] Rao
[24]). Parallel repetition was also shown to reduce the soundness error in three-
message arguments ([1]) and public-coin arguments (H̊astad, Pass, Wikström,
and Pietrzak [18], Chung and Lu [5], Chung and Pass [8]). Unfortunately, as
shown by Bellare et al. [1], and by Pietrzak and Wikström [23], parallel repeti-
tion might not reduce the soundness error of any interactive argument: assum-
ing common cryptographic assumptions, [23] presented an 8-message interactive
proof with constant soundness error, whose parallel repetition, for any polyno-
mial number of repetitions, still has a constant soundness error.

Faced with the above barrier, Haitner [17] presented a simple method for
transforming any interactive argument π into a slightly modified protocol π̃,
such that the parallel repetition of π̃ does reduce the soundness error. Given
any m-round interactive protocol π = (P,V), let ˜V be the following random-
terminating variant of V: in each round, ˜V flips a coin that takes one with
probability 1/m and zero otherwise. If the coin outcome is one, ˜V accepts and
aborts the execution. Otherwise, ˜V acts as V would, and continues to the next
round. At the end of the prescribed execution, if reached, ˜V accepts if and only
if V would. Observe that if the original protocol π has soundness error 1 − ε,
then the new protocol π̃ = (P, ˜V) has soundness error 1 − ε/4 (i.e., only slightly
closer to one). Haitner [17] proved that the parallel repetition of π̃ does reduce
the soundness error (for any protocol π). H̊astad, Pass, Wikström, and Pietrzak
[18] have generalized the above to partially-simulatable interactive arguments, a
family of interactive arguments that contains the random-terminating variant
protocols as a special case. An interactive argument π = (P,V) is δ-simulatable
if given any partial view v of an efficient prover P∗ interacting with V, the
verifier’s future messages in (P∗,V) can be simulated with probability δ. This
means that one can efficiently sample a random continuation of the execution
conditioned on an event of density δ over V’s coins consistent with v. It is easy
to see that the random-terminating variant of any protocol is 1/m simulatable.
Unfortunately, the soundness bound proved by Haitner [17], H̊astad et al. [18]
lags way behind what one might have hoped for, making parallel repetition
impractical in many typical settings. Assuming a δ-simulatable argument π has
soundness error is 1 − ε, then πn, the n-parallel repetition of π, was shown
to have soundness error (1 − ε)εδ2n/m2

(equals (1 − ε)εn/m4
if π is a random-

terminating variant), to be compared with the (1−ε)n bound achieved by parallel
repetition of interactive proofs, and by three-message and public-coin interactive
arguments.1 Apart from the intellectual challenge, improving the above bound
is important since repeating the random-termination variant in parallel is the

1 As in all known amplifications of computational hardness, and proven to be an
inherent limitation (at least to some extent) in Dodis et al. [11], the improvement
in the soundness error does not go below negligible. We ignore this subtly in the
introduction. We also ignore constant factors in the exponent.

A Tight Parallel Repetition Theorem 547

only known unconditional round-preserving amplification method for arbitrary
interactive arguments.

1.1 Proving Parallel Repetition

Let π = (P,V) be an interactive argument with assumed soundness error 1 − ε,
i.e., a polynomial time prover cannot make the verifier accept a false statement
with probability larger than 1−ε. Proving amplification theorems for such proof
systems is done via reduction: assuming the existence of a cheating prover Pn∗

making all the n verifiers in n-fold protocol πn = (Pn,Vn) accept a false state-
ment “too well” (e.g., more than (1 − ε)n), this prover is used to construct a
cheating prover P∗ making V accept this false statement with probability larger
than 1 − ε, yielding a contradiction. Typically, the cheating prover P∗ emulates
an execution of (Pn∗,Vn) while embedding the (real) verifier V as one of the
n verifiers (i.e., by embedding its messages). Analyzing the success probability
of this P∗ is directly reduced to bounding the “distance” (typically statistical
distance or KL-divergence) between the following Winning and Attacking dis-
tributions: the Winning distribution is the n verifiers’ messages distribution in a
winning (all verifiers accept) execution of (Pn∗,Vn). The Attacking distribution
is the n verifiers’ messages distribution in the emulated execution done by P∗

(when interacting with V).
If the verifier is public-coin, or if the prover is unrestricted (as in single-

prover interactive proofs), an optimal strategy for P∗ is sampling the emulated
verifiers messages uniformly at random conditioned on all verifiers accept, and
the messages so far. H̊astad et al. [18] have bounded the statistical distance
between the induced Winning and Attacking distributions in such a case, while
Chung and Pass [8] gave a tight bound for the KL-divergence between these
distributions, yielding an optimal result for public-coin arguments.

For non public-coin protocols, however, a computationally bounded prover
cannot always perform the above sampling task (indeed, this inability under-
neath the counter examples for parallel repetition of such arguments). How-
ever, if the argument is random terminating, the cheating prover can sample the
following “skewed” variant of the desired distribution: it samples as described
above, but conditioned that the real verifier aborts at the end of the current
round, making the simulation of its future messages trivial. More generally, for
partially-simulatable arguments, the cheating prover samples the future mes-
sages of the real verifier using the built-in mechanism for sampling a skewed sam-
ple of its coins. Analyzing the prover success probability for such an attack, and
thus upper-bounding the soundness error of the parallel repetition of such argu-
ments, reduces to understanding the (many-round) skewed distributions induced
by the above attack. This will be discussed in the next section.

1.2 Skewed Distributions

The Attacking distribution induced by the security proof of parallel repetition of
partially-simulatable arguments discussed in Sect. 1.1, gives rise to the following

548 I. Berman et al.

notion of (many-round) skewed distributions. Let P = PX be a distribution over
an m × n size matrices, letting PXi

and PXj denoting the induced distribution
over the ith row and jth column of X, respectively. For an event W , let ˜P = P |W .
The following distribution QX,J is a skewed variant of ˜P induced by an event
family E = {Ei,j}i∈[m],j∈[n] over P : let QJ = U[n], and let

QX|J =
m
∏

i=1

PXi,J |X<i,J
˜PXi,−J |X<i,Xi,J ,Ei,J

(1)

for X<i = (X1, . . . , Xi−1), X<i,j = (X<i)j = (X1,j , . . . , Xi−1,j) and Xi,−j =
Xi,[n]\{j}. That is, Q induced by first sampling J ∈ [n] uniformly at random,
and then sampling the following skewed variant of ˜P : At round i

1. Sample Xi,J according to PXi,J |X<i,J
(rather than PXi,J |X<i,W as in ˜P),

2. Sample Xi,−J according ˜PXi,−J |X<i,Xi,J ,Ei,J
(rather than ˜PXi,J |X<i,Xi,J

).

At a first glance, the distribution Q looks somewhat arbitrary. Nevertheless,
as we explain below, it naturally arises in the analysis of parallel repetition
theorem of partially-simulatable interactive arguments, and thus of random-
terminating variants. Somewhat similar skewed distributions also come up when
proving parallel repetition of two-prover proofs, though there we only care for
single round distributions, i.e., m = 1.

The distributions ˜P and Q relate to the Winning and Attacking distributions
described in Sect. 1.1 in the following way: let π = (P,V) be an m-round δ-
simulatable argument, and let Pn∗ be an efficient (for simplicity) deterministic
cheating prover for πn. Let P to be the distribution of the n verifiers messages in
a random execution of πn, and let W be the event that Pn∗ wins in (Pn∗,Vn).
By definition, ˜P = P |W is just the Winning distribution. Assume for sake of
simplicity that V is a random-termination variant (halts at the end of each
round with probability 1/m), let Ei,j be the set of coins in which the jth verifier
halts at the end of the ith round of (Pn,Vn), and let Q = Q(P,W, {Ei,j})
be according to Eq. (1). Then, ignoring some efficiency concerns, Q is just the
Attacking distribution. Consequently, a bound on the soundness error of πn can
be proved via the following result:

Lemma 1 (informal). Let π be a partially simulatable argument of soundness
error (1 − ε). Assume that for every efficient cheating prover for πn and every
event T , it holds that

PrQX
[T] ≤ Pr

˜PX
[T] + γ

where W , ˜P and Q are as defined above with respect to this adversary, and that
Q is efficiently samplable. Then πn has soundness error (1 − ε)log(1/P [W])/γ.

It follows that proving a parallel repetition theorem for partially simulat-
able arguments, reduces to proving that low probability events in ˜PX have low
probability in QX (for the sake of the introduction, we ignore the less funda-
mental samplability condition assumed for Q). One can try to prove the latter,

A Tight Parallel Repetition Theorem 549

as implicitly done in [17,18], by bounding the statistical distance between ˜P and
Q (recall that SD(P,Q) = maxE(PrP [E] − PrQ [E])). This approach, however,
seems doomed to give non-tight bounds for several reasons: first, statistical dis-
tance is not geared to bound non-product distributions (i.e., iterative processes)
as the one defined by Q, and one is forced to use a wasteful hybrid argument
in order to bound the statistical distance of such distributions. A second rea-
son is that statistical distance bounds the difference in probability between the
two distributions for any event, where we only care that this difference is small
for low (alternatively, high) probability events. In many settings, achieving this
(unneeded) stronger guarantee inherently yields a weaker bound.

What seems to be a more promising approach is bounding the KL-divergence
between ˜P and Q (recall that D(P ||Q) = Ex∼P log P (x)

Q(x)). Having a chain rule,
KL-divergence is typically an excellent choice for non-product distributions. In
particular, bounding it only requires understanding the non-product nature (i.e.,
the dependency between the different entries) of the left-hand-side distribution.
This makes KL-divergence a very useful measure in settings where the iterative
nature of the right-hand-side distribution is much more complicated. Further-
more, a small KL-divergence guarantees that low probability events in ˜P happen
with almost the same probability in Q, but it only guarantees a weaker guarantee
for other events (so it has the potential to yield a tighter result). Chung and Pass
[8] took advantage of this observation for proving their tight bound on parallel
repetition of public-coin argument by bounding the KL-divergence between their
variants of ˜P and Q. Unfortunately, for partially simulatable (and for random
terminating) arguments, the KL-divergence between these distributions might
be infinite.

Faced with the above difficulty, we propose a relaxed variant of KL-divergence
that we name smooth KL-divergence. On the one hand, this measure has the
properties of KL-divergence that make it suitable for our settings. However, on
the other hand, it is less fragile (i.e., oblivious to events of small probability),
allowing us to tightly bound its value for the distributions under consideration.

1.3 Smooth KL-divergence

The KL-divergence between distributions P and Q is a very sensitive distance
measure: an event x with P (x) � Q(x) might make D(P ||Q) huge even if P (x)
is tiny (e.g., P (x) > 0 = Q(x) implies D(P ||Q) = ∞). While events of tiny
probability are important in some settings, they have no impact in ours. So we
seek a less sensitive measure that enjoys the major properties of KL-divergence,
most notably having chain-rule and mapping low probability events to low prob-
ability events. A natural attempt would be to define it as infP ′,Q′{D(P ′||Q′)},
where the infimum is over all pairs of distributions such that both SD(P, P ′)
and SD(Q,Q′) are small. This relaxation, however, requires an upper bound on
the probability of events with respect to Q, which in our case is the complicated
skewed distribution Q. Unfortunately, bounding the probability of events with
respect to the distribution Q is exactly the issue in hand.

550 I. Berman et al.

Instead, we take advantage of the asymmetric nature of the KL-divergence
to propose a relaxation that only requires upper-bounding events with respect
to P , which in our case is the much simpler ˜P distribution. Assume P and Q
are over a domain U . The α-smooth KL-divergence of P and Q is defined by

Dα(P ||Q) = inf
(FP ,FQ)∈F

{D(FP (P)||FQ(Q))}

for F being the set of randomized function pairs, such that for any (FP , FQ) ∈ F :
(1) Prx∼P [FP (x) �= x] ≤ α, and (2) ∀x ∈ U and C ∈ {P,Q}: FC(x) ∈ {x} ∪ U .
Note that for any pair (FP , FQ) ∈ F and any event B over U , it holds that
PrQ[B] ≥ PrFQ(Q)[B], and PrFP (P)[B] ≥ PrP [B] − α. Thus, if PrP [B] is low,
a bound on D(FP (P)||FQ(Q)) implies that PrQ[B] is also low. Namely, low
probability events in P happen with low probability also in Q.
Bounding Smooth KL-Divergence. Like the (standard) notion of KL-
divergence, the power of smooth KL-divergence is best manifested when applied
to non-product distributions. Let P and Q be two distributions for which we
would like to prove that small events in PX=(X1,...,Xm) are small in QX=(X1,...,Xm)

(as a running example, let P and Q be the distributions ˜PX and QX,J from the
previous section, respectively). By chain rule of KL-divergence, it suffices to show
that for some events B1, . . . , Bm over Q (e.g., Bi is the event that J |X<i has
high min entropy) it holds that

m∑

i=1

D(PXi ||QXi|B≤i
| PX<i)

(
i.e.,

m∑

i=1

Ex←PX<i

[
D

(
PXi|X<i=x||QXi|X<i=x,B≤i

)])

(2)

is small, and Q[B≤m] is large. Bounding Eq. (2) only requires understanding P
and simplified variants of Q (in which all but the ith entry is sampled according
to P). Unfortunately, bounding Q[B≤m] might be hard since it requires a good
understanding of the distribution Q itself. We would have liked to relate the
desired bound to P [B≤m], but the events {Bi} might not even be defined over P
(in the above example, P has no J part). However, smooth KL-divergence gives
us the means to do almost that.

Lemma 2 (Bounding smooth KL-divergence, informal). Let P , Q and
{Bi} be as above. Associate the events { ˜Bi} with P , each ˜Bi (independently)
occur with probability Q[Bi | B<i,X<i]. Then

D1−P [˜B≤m](PX ||QX) ≤
m

∑

i=1

D
(

PXi
||QXi|B≤i

| PX<i| ˜B≤i

)

.

Namely, { ˜Bi} mimics the events {Bi}, defined over Q, in (an extension of) P .
It follows that bounding the smooth KL-divergence of PX and QX (and thus
guarantee that small events in PX are small in QX), is reduced to understanding
P and simplified variants of Q.

A Tight Parallel Repetition Theorem 551

1.4 Main Results

We prove the following results (in addition to Lemmas 1 and 2). The first result,
which is the main technical contribution of this paper, is the following bound on
the smooth KL-divergence between a distribution and its many-round skewed
variant.

Theorem 1 (Smooth KL-divergence for skewed distributions, infor-
mal). Let P = PX be a distribution over an m × n matrices with indepen-
dent columns, and let W and E = {Ei,j} be events over P . Let ˜P = P |W
and let Q = Q(P,W, E) be the skewed variant of ˜P defined in Eq. (1). Assume
∀(i, j) ∈ [m]× [n]: (1) Ei,j is determined by Xj and (2) There exists δi,j ∈ (0, 1]
such that P [Ei,j |X≤i,j] = δi,j for any fixing of X≤i,j. Then (ignoring constant
factors, and under some restrictions on n and P [W])

Dεm+1/δn(˜PX ||QX) ≤ εm + m/δn

for δ = mini,j{δi,j} and ε = log(1
P [W])/δn. In a special case where Ei,j is

determined by X≤i+1,j, it holds that

Dε+1/δn(˜PX ||QX) ≤ ε + m/δn.

Combining Lemma 1 and Theorem 1 yields the following bound on paral-
lel repetition of partially simulatable arguments. We give separate bounds for
partially simulatable argument and for partially prefix-simulatable arguments: a
δ-simulatable argument is δ-prefix-simulatable if for any i-round view, the event
E guaranteed by the simulatable property for this view is determined by the
coins used in the first i + 1 rounds. It is clear that the random-termination
variant of an m-round argument is 1/m-prefix-simulatable.

Theorem 2 (Parallel repetition for partially simulatable arguments,
informal). Let π be an m-round δ-simulatable interactive argument with sound-
ness error 1 − ε, and let n ∈ N. Then πn has soundness error (1 − ε)δn/m.
Furthermore, if π is δ-prefix-simulatable, then πn has soundness error (1−ε)δn.2

A subtlety that arises when proving Theorem2 is that a direct composition
of Lemma 1 and Theorem 1 only yields the desired result when the number of
repetitions n is “sufficiently” large compared to the number of rounds m (roughly,
this is because we need the additive term m/δn in Theorem 1 to be smaller than
ε). We bridge this gap by presenting a sort of upward-self reduction from a few

2 Throughout, we assume that the protocol transcript contains the verifier’s
Accept/Reject decision (which is without loss of generality for random-terminating
variants). We deffer the more general case for the next version.

552 I. Berman et al.

repetitions to many repetitions. The idea underlying this reduction is rather
general and applies to other proofs of this type, and in particular to those of
[6,17,18].3

We complete the picture by showing that an δ factor in the exponent in
Theorem 2 is unavoidable.

Theorem 3 (lower bound, informal). Under suitable cryptographic assump-
tions, for any n,m ∈ N and ε ∈ [0, 1], there exists an m-round δ-prefix-
simulatable interactive argument π with soundness error 1 − ε, such that πn

has soundness error at least (1 − ε)δn. Furthermore, protocol π is a random-
terminating variant of an interactive argument.

It follows that our bound for partially prefix-simulatable arguments and
random-termination variants, given in Theorem2, is tight.

1.4.1 Proving Theorem 1
We highlight some details about the proof of Theorem1. Using Lemma 2, we
prove the theorem by showing that the following holds for a carefully chosen
events {Bi} over QX,J :

–
∑m

i=1 D
(

˜PXi
||QXi|B≤i

| ˜PX<i| ˜B≤i

)

is small, and

– ˜P [˜B≤m] is large,

where { ˜Bi} are events over (extension of) ˜P , with ˜Bi taking the value 1 with
probability Q[Bi | B<i,X<i]. We chose the events {Bi} so that we have the
following guarantees on QXi,J|B≤i,X<i

:

1. J |X<i has high entropy (like it has without any conditioning), and
2. P [W | X<i,Xi,J , Ei,J] ≥ P [W |X<i]/2.

Very roughly, these guarantees make the task of bounding the required KL-
divergence much simpler since they guarantee that the skewing induced by Q
does not divert it too much (compared to ˜P). The remaining challenge is there-
fore lower-bounding ˜P [˜B≤m]. We bound the latter distribution by associating
a martingale sequence with the distribution Winning. In order to bound this
sequence, we prove a new concentration bound for “slowly evolving” martingale
sequences, Lemma 3, that we believe to be of independent interest.

3 Upward-self reductions trivially exist for interactive proof: assume the existence of
a cheating prover Pn∗ breaking the α soundness error of πn, then (Pn∗)�, i.e., the
prover using Pn∗in parallel for � times, violates the assumed α� soundness error of
πn�. However, when considering interactive arguments, for which we cannot guaran-
tee a soundness error below negligible (see Footnote 1), this approach breaks down
when α� is negligible.

A Tight Parallel Repetition Theorem 553

1.5 Related Work

1.5.1 Interactive Arguments
Positive Results. Bellare et al. [1] proved that the parallel repetition of three-
message interactive arguments reduces the soundness error at an exponential,
but not optimal, rate. Canetti et al. [4] later showed that parallel repetition
does achieve an optimal exponential decay in the soundness error for such argu-
ments. Pass and Venkitasubramaniam [22] have proved the same for constant-
round public-coin arguments. For public-coin arguments of any (polynomial)
round complexity, H̊astad et al. [18] were the first to show that parallel rep-
etition reduces the soundness error exponentially, but not at an optimal rate.
The first optimal analysis of parallel repetition in public-coin arguments was
that of Chung and Liu [6], who showed that the soundness error of the k repe-
titions improves to (1 − ε)k. Chung and Pass [8] proved the same bound using
KL-divergence. For non-public coin argument (of any round complexity), Hait-
ner [17] introduced the random-terminating variant of a protocol, and proved
that the parallel repetition of these variants improves the soundness error at
a weak exponential rate. H̊astad et al. [18] proved the same, with essentially
the same parameters, for partially-simulatable arguments, that contain random-
terminating protocols as a special case. All the above results extend to “threshold
verifiers” where the parallel repetition is considered accepting if the number of
accepting verifiers is above a certain threshold. Our result rather easily extends
to such verifiers, but we defer the tedious details to the next version. Chung and
Pass [7] proved that full independence of the parallel executions is not necessary
to improve the soundness of public-coin arguments, and that the verifier can
save randomness by carefully correlating the different executions. It is unknown
whether similar savings in randomness can be achieved for random-terminating
arguments. Finally, the only known round-preserving alternative to the random-
terminating transformation is the elegant approach of Chung and Liu [6], who
showed that a fully-homomorphic encryption (FHE) can be used to compile any
interactive argument to a one (with the same soundness error) for which parallel
repetition improves the soundness error at ideal rate, i.e., (1 − ε)n. However, in
addition to being conditional (and currently it is only known how to construct
FHE assuming hardness of learning with errors [3]), the compiled protocol might
lack some of the guarantees of the original protocol (e.g., fairness). Furthermore,
the reduction is non black box (the parties homomorphically evaluate each of
the protocol’s gates), making the resulting protocol highly impractical, and pre-
venting the use of this approach when only black-box access is available (e.g.,
the weak protocol is given as a DLL or implemented in hardware).
Negative Results. Bellare et al. [1] presented for any n ∈ N, a four-message
interactive argument of soundness error 1/2, whose n-parallel repetition sound-
ness remains 1/2. Pietrzak and Wikström [23] ruled out the possibility that
enough repetitions will eventually improve the soundness of an interactive argu-
ment. They presented a single 8-message argument for which the above phe-
nomenon holds for all polynomial n simultaneously. Both results hold under
common cryptographic assumptions.

554 I. Berman et al.

1.5.2 Two-Prover Interactive Proofs
The techniques used in analyzing parallel-repetition of interactive arguments are
closely related to those for analyzing parallel repetition of two-prover one-round
games. Briefly, in such a game, two unbounded isolated provers try to convince a
verifier in the validity of a statement. Given a game of soundness error (1−ε), one
might expect the soundness error of its n parallel repetition to be (1−ε)n, but as
in the case of interactive arguments, this turned out to be false [13–15]. Nonethe-
less, Raz [25] showed that parallel repetition does achieve an exponential decay
for any two-prover one-round game, and in particular reduces the soundness
error to (1 − ε)εO(1)n/s, where s is the provers’ answer length. These parameters
were later improved by Holenstein [19], and improved further for certain types of
games by Rao [24], Dinur and Steurer [10], Moshkovitz [20]. The core challenge
in the analysis of parallel repetition of interactive arguments and of multi-prover
one-round games is very similar: how to simulate a random accepting execution
of the proof/game given the verifier messages. In interactive arguments, this is
difficult since the prover lacks computational power. In multi-prover one-round
games, the issue is that the different provers cannot communicate.

Open Questions
While our bound for the parallel repetition of partially prefix-simulatable argu-
ments is tight, this question for (non prefix) partially simulatable arguments is
still open (there is a 1/m gap in the exponent). A more important challenge is
to develop a better (unconditional) round-preserving amplification technique for
arbitrary interactive arguments (which cannot be via random termination), or
alternatively to prove that such an amplification does not exist.

Paper Organization
Basic notations, definitions and tools used throughout the paper are stated in
Sect. 2. The definition of smooth KL-divergence and some properties of this
measure are given in Sect. 3. The definition of many-round skewed distributions
and our main bound for such distributions are given in Sect. 4. A proof sketch of
the aforementioned bound is given in Sect. 6, and is used in Sect. 5 for proving
our bound on the parallel repetition of partially simulatable arguments. Due to
space limitations, the full proof of our main bound, the matching lower bound
(Theorem 3) and other missing proofs are only given in the full version of this
paper [2].

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. All logarithms considered here are natural
logarithms (i.e., in base e). For n ∈ N, let [n] := {1, . . . , n}. Given a vector

A Tight Parallel Repetition Theorem 555

v ∈ Σm, we let vi be its ith entry, and let v<i = v1,...,i−1 and v≤i = v1,...,i. For
v ∈ {0, 1}n, let 1v = {i ∈ [n] : vi = 1}. For m × n matrix x, let xi and xj denote
their ith row and jth column respectively, and defined x<i, x≤i, x<j and x≤j

respectively. Given a Boolean statement S (e.g., X ≥ 5), let 1S be the indicator
function that outputs 1 if S is a true statement and 0 otherwise.

Let poly denote the set of all polynomials, ppt denote for probabilistic poly-
nomial time, and pptm denote a ppt algorithm (Turing machine). A function
ν : N → [0, 1] is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every
p ∈ poly and large enough n. Function ν is noticeable, denoted ν(n) ≥ 1/poly(n),
if exists p ∈ poly such that ν(n) ≥ 1/p(n) for all n.

2.2 Distributions and Random Variables

A discrete random variable X over X is sometimes defined by its probability
mass function (pmf) PX (P is an arbitrary symbol). A conditional probabil-
ity distribution is a function PY |X(·|·) such that for any x ∈ X , PY |X(·|x)
is a pmf over Y. The joint pmf PXY can be written the product PXPY |X ,
where (PXPY |X)(x, y) = PX(x)PY |X(y|x) = PXY (xy). The marginal pmf
PY can be written as the composition PY |X ◦ PX , where (PY |X ◦ PX)(y) =
∑

x∈X PY |X(y|x)PX(x) = PY (y). We sometimes write P·,Y to denote a pmf
PX,Y for which we do not care about the random variable X. We denote by
PX [W] the probability that an event W over PX occurs, and given a set S ⊆ X
we define PX(S) = PX [X ∈ S]. Distribution P ′

XY is an extension of PX if
P ′

X ≡ PX . Random variables and events defined over PX are defined over the
extension P ′

XY by ignoring the value of Y . We sometimes abuse notation and
say that PXY is an extension of PX .

The support of a distribution P over a finite set X , denoted Supp(P),
is defined as {x ∈ X : P (x) > 0}. The statistical distance of two distri-
butions P and Q over a finite set X , denoted as SD(P,Q), is defined as
maxS⊆X |P (S) − Q(S)| = 1

2

∑

x∈S |P (x) − Q(x)|. Given a set S, let US denote
the uniform distribution over the elements of S. We sometimes write x ∼ S or
x ← S, meaning that x is uniformly drawn from S. For p ∈ [0, 1], let Bern(p) be
the Bernoulli distribution over {0, 1}, taking the value 1 with probability p.

2.3 KL-Divergence

Definition 1. The KL-divergence (also known as, Kullback-Leibler divergence
and relative entropy) between two distributions P,Q on a discrete alphabet X is

D(P ||Q) =
∑

x∈X
P (x) log

P (x)
Q(x)

= Ex∼P log
P (x)
Q(x)

,

where 0·log 0
0 = 0 and if ∃x ∈ X such that P (x) > 0 = Q(x) then D(P ||Q) = ∞.

Definition 2. Let PXY and QXY be two probability distributions over X × Y.
The conditional divergence between PY |X and QY |X is

556 I. Berman et al.

D(PY |X ||QY |X |PX) = Ex∼PX [D(PY |X=x||QY |X=x)] =
∑

x∈X
PX(x)D(PY |X=x||QY |X=x).

Fact 4 (Properties of divergence). PXY and QXY be two probability distri-
butions over X × Y. It holds that:

1. (Information inequality) D(PX ||QX) ≥ 0, with equality holds iff PX = QX .
2. (Monotonicity) D(PXY ||QXY) ≥ D(PY ||QY).
3. (Chain rule) D(PX1···Xn

||QX1···Xn
) =

∑n
i=1 D(PXi|X<i

||QXi|X<i
|PX<i

) If
QX1···Xn

=
∏n

i=1 QXi
then

D(PX1···Xn
||QX1···Xn

) = D(PX1···Xn
||PX1PX2 · · · PXn

) +
n

∑

i=1

D(PXi
||QXi

).

4. (Conditioning increases divergence) If QY = QY |X ◦ PX (and PY = PY |X ◦
PX), then D(PY ||QY) ≤ D(PY |X ||QY |X |PX).

5. (Data-processing) If QY = PY |X ◦ QX (and PY = PY |X ◦ PX), it holds that
D(PY ||QY) ≤ D(PX ||QX).

Fact 5. Let X be random variable drawn from P and let W be an event defined
over P . Then D

(

PX|W ||PX

)

≤ log 1
P [W] .

Definition 3. For p, q ∈ [0, 1] let D (p||q) := D (Bern(p)||Bern(q)).

Fact 6 ([21, Implicit in Corollary 3.2 to 3.4]). For any p ∈ [0, 1]:

1. D ((1 − δ)p||p) ≥ δ2p/2 for any δ ∈ [0, 1].
2. D ((1 + δ)p||p) ≥ min{δ, δ2}p/4 for any δ ∈ [0, 1

p − 1].

The proof of the following proposition, which relies on Donsker and Varadhan
[12]’s inequality, is given in the full version.

Proposition 1. Let X be a random variable drawn form either P or Q. Assume
that PrP [|X| ≤ 1] = 1 (i.e., if X is drawn from P then |X| ≤ 1 almost surely)
and that there exist ε, σ2,K1,K2 > 0 such that PrQ[|X| ≤ 1] ≥ 1 − ε and

PrQ[|X| ≥ t] ≤ K2 · exp
(

− t2

K1σ2

)

for all 0 ≤ t ≤ 1.

Then, ∃K3 = K3(K1,K2, ε) > 0 such that EP [X2] ≤ K3 · σ2 · (D(P ||Q) + 1).

2.4 Concentration Bounds

The following concentration bound is proven in the full version.

Fact 7. Let L1, . . . , Ln be independent random variables over R with |Li| ≤

for all i ∈ [n] and let Zi = (Li/pi) · Bern(pi) with pi > 0 for all i ∈ [n]. Let
L =

∑n
i=1 Li, let Z =

∑n
i=1 Zi, let μ = E [L] and let p = mini∈[n]{pi}. Finally,

let Γ = Z/μ − 1. Then for any γ ∈ [0, 1] it holds that

Pr [|Γ | ≥ γ] ≤ 4 exp
(

−pμ2γ2

5
2n

)

A Tight Parallel Repetition Theorem 557

2.4.1 Martingales
Definition 4. A sequence of random variables Y0, Y1, . . . , Yn is called a mar-
tingale sequence with respect to a sequence X0,X1, . . . , Xn, if ∀i ∈ [n]: (1) Yi

is a deterministic function of X0, . . . , Xi, and (2) E [Yi | X0, . . . , Xi−1] = Yi−1.

The following lemma (proven in the full version) is a new concentration bound
on “slowly evolving” martingales.

Lemma 3 (A bound on slowly evolving martingales). Let Y0 =
1, Y1, . . . , Yn be a martingale w.r.t X0,X1, . . . , Xn and assume that Yi ≥ 0 for
all i ∈ [n]. Then for every λ ∈ (0, 1

4] it holds that

Pr [∃i ∈ [n] s.t. |Yi − 1| ≥ λ] ≤
23 · E

[
∑n

i=1 min{|Ri| , R2
i }

]

λ2

for Ri = Yi

Yi−1
− 1, letting Ri = 0 in case Yi−1 = Yi = 0.

That is, if Yi is unlikely to be far from Yi−1 in a multiplicative manner, then
the sequence is unlikely to get far from 1.

2.5 Interactive Arguments

Definition 5 (Interactive arguments). A ppt protocol (P,V) is an interac-
tive argument for a language L ∈ NP with completeness α and soundness error β,
if the following holds:

– Pr [(P(w),V)(x) = 1] ≥ α(|x|) for any (x,w) ∈ RL.
– Pr [(P∗,V)(x) = 1] ≤ max{β(|x|),neg(|x|)} for any ppt P∗ and large enough

x /∈ L.

We refer to party P as the prover, and to V as the verifier.

Soundness against non-uniform provers is analogously defined, and all the
results in this paper readily extend to this model.

Since in our analysis we only care about soundness amplification, in the
following we fix L to be the empty language, and assume the input to the protocol
is just a string of ones, which we refer to as the security parameter, a parameter
we omit when cleared from the context.

2.5.1 Random-Terminating Variant
Definition 6 (Random-terminating variant, [17]). Let V be a m-round ran-
domized interactive algorithm. The random-terminating variant of V, denoted ˜V,
is defined as follows: algorithm V acts exactly as V does, but adds the following
step at the end of each communication round: it tosses an (1−1/m, 1/m) biased
coin (i.e., 1 is tossed with probability 1/m), if the outcome is one then it outputs
1 (i.e., accept) and halts. Otherwise, it continues as V would.

For a protocol π = (P,V), the protocol π̃ = (P, ˜V) is referred to as the
random-terminating variant of π.

558 I. Berman et al.

2.5.2 Partially Simulatable Interactive Arguments
Definition 7 (Partially simulatable protocols, [18]). A randomized inter-
active algorithm V is δ-simulatable, if there exists an oracle-aided S (simulator)
such that the following holds: for every strategy P∗ and a partial view v of P∗ in
an interaction of (P∗,V)(1κ), the output of SP

∗
(1κ, v) is P∗’s view in a random

continuation of (P∗,V)(1κ) conditioned on v and Δ, for Δ being a δ-dense sub-
set of the coins of V that are consistent with v. The running time of SP

∗
(1κ, v)

is polynomial in κ and the running time of P∗(1κ).
Algorithm V is δ-prefix-simulatable if membership in the guaranteed event Δ

is determined by the coins V uses in the first round(v) + 1 rounds.4

An interactive argument (P,V) is δ-simulatable/ δ-prefix-simulatable, if V is.

It is clear that random termination variant of an m-round interactive argument
is 1/m-prefix-simulatable.

Remark 1. One can relax the above definition and allow a different (non-black)
simulator per P∗, and then only require it to exists for poly-time P∗. While our
proof readily extends to this relaxation, we prefer to use the above definition for
presentation clarity.

2.5.3 Parallel Repetition
Definition 8 (Parallel repetition). Let (P,V) be an interactive protocol, and
let n ∈ N. We define the n-parallel-repetition of (P,V) to be the protocol (Pn,Vn)
in which Pn and Vn execute n copies of (P,V) in parallel, and at the end of the
execution, Vn accepts if all copies accept.

Black-box soundness reduction. As in most such proofs, our proof for the
parallel repetition of partially-simulatable arguments has the following black-box
form.

Definition 9 (Black-box reduction for parallel repetition). Let π =
(P,V) be an interactive argument. An oracle-aided algorithm R is a black-box
reduction for the g-soundness of the parallel repetition of π, if the following holds
for any poly-bounded n: let κ ∈ N and Pn∗ be deterministic cheating prover
breaking the soundness of πn=n(κ)(1κ) with probability ε′ ≥ g(n, ε = ε(κ)). Then

Sucesss probability. R = RPn∗
(1κ, 1n) breaks the soundness of π with proba-

bility at least 1 − ε/3.
Running time. Except with probability ε/3, the running time of R is polynomial

in κ, the running time of Pn∗(1κ) and 1/ε′.

We use the following fact (proven in the full version).

4 Δ = Δ1 × Δ2, for Δ1 being a (δ-dense) subset of the possible values for first
round(v) + 1 round coins, and Δ2 is the set of all possible values for the coins
used in rounds round(v) + 2, . . . , m, for m being the round complexity of V.

A Tight Parallel Repetition Theorem 559

Proposition 2. Assume there exists a black-box reduction for the g-soundness
of the parallel repetition of any δ-simulatable [resp., δ-prefix-simulatable] inter-
active argument, then for any poly-bounded n, the soundness error of the n-fold
repetition of any such argument is bounded by g(n, ε).

3 Smooth KL-Divergence

In this section we formally define the notion of smooth KL-divergence, state
some basic properties of this measure in Sect. 3.1, and develop a tool to help
bounding it in Sect. 3.2.

Definition 10. (α-smooth divergence). Let P and Q be two distributions
over a universe U and let α ∈ [0, 1]. The α-smooth divergence of P and Q,
denoted Dα(P ||Q), is defined as inf(FP ,FQ)∈F{D (FP (P)||FQ(Q))}, for F being
the set of randomized functions pairs such that for every (FP , FQ) ∈ F :

1. Prx∼P [FP (x) �= x] ≤ α, where the probability is also over the coins of FP .
2. ∀x ∈ U : Supp(FP (x)) ∩ U ⊆ {x} and Supp(FQ(x)) ∩ U ⊆ {x}.

See the full version for comparison to the H-technique.

3.1 Basic Properties

The following proposition (proven in the full version) states that small smooth
KL-divergence guarantees that small events with respect to the left-hand-side
distribution are also small with respect to the right-hand-side distribution.

Proposition 3. Let P and Q be two distributions over U with Dα(P ||Q) < β.
Then for every event E over U , it holds that Q[E] < 2 · max{α + P [E], 4β}.

Like any useful distribution measure, smooth KL-divergence posses a data-
processing property. The following proposition is proven in the full version.

Proposition 4 (Data processing of smooth KL-divergence). Let P and
Q be two distributions over a universe U , let α ∈ [0, 1] and let H be a randomized
function over U . Then Dα(H(P)||H(Q)) ≤ Dα(P ||Q).

3.2 Bounding Smooth KL-Divergence

The following lemma allow us to bound the smooth KL-divergence between P
and Q, while only analyzing simpler variants of Q.

Lemma 4 (Bounding smooth KL-Divergence, restatement of Lemma
2).

Let P and Q be distributions with PX and QX being over universe Um, and
let A1, . . . , Am and B1, . . . , Bm be two sets of events over P and Q respectively.
Let P·,XY be an extension of P = P·,X defined by PY |·,X =

∏

i PYi|X for PYi|X =

560 I. Berman et al.

Bern (P [Ai | X,A<i] · Q[Bi | X<i, B<i]), letting PYi|X = 0 if P [A<i | X] = 0 or
Q[B<i | X<i] = 0, and let Ci = {Yi = 1}. Then5

D1−P [C≤m](PX ||QX) ≤
m

∑

i=1

D(PXi|A≤i
||QXi|B≤i

| PX<i|C≤i
).

Proof. Let Q·,XY be an extension of Q = Q·,X defined by QY |·,X =
∏

i QYi|X for
QYi|X = Bern (P [Ai | X<i, A<i] · Q[Bi | X,B<i]), letting QYi|X = 0 if P [A<i |
X<i] = 0 or Q[B<i | X] = 0. Our goal is to show that

D1−P [C≤m](PY1,X1,...,Ym,Xm ||QY1,X1,...,Ym,Xm) ≤
m∑

i=1

D(PXi|A≤i
||QXi|B≤i

| PX<i|C≤i
)

(3)

The proof then follows by data processing of smooth KL-divergence (Propo-
sition 4). By definition, for any i ∈ [m]:

PX<i|Y≤i=1i ≡ PX<i|C≤i
(4)

and for any fixing of x<i ∈ Supp(PX<i|Y≤i=1i):

PXi|Y≤i=1i,X<i=x<i
≡ PXi|X<i,A≤i

(5)

QXi|Y≤i=1i,X<i=x<i
≡ QXi|X<i,B≤i

(6)

and for any fixing of x<i ∈ Supp(PX<i|Y<i=1i−1):

PYi|Y<i=1i−1,X<i=x<i
(1) (7)

≡ Ex←PX|Y<i=1i−1,X<i=x<i
[P [Ai | X = x,A<i] · Q[Bi | X<i = x<i, B<i]]

≡ P [Ai | X<i = x<i, A<i] · Q[Bi | X<i = x<i, B<i]
≡ Ex←QX|Y<i=1i−1,X<i=x<i

[P [Ai | X<i = x<i, A<i] · Q[Bi | X = x,B<i]]

≡ QYi|Y<i=1i−1,X<i=x<i
(1).

By Eqs. (4) to (6):

EP
X<i|Y≤i=1i

[]D

(

P
Xi|X<i,Y≤i=1i ||Q

Xi|X<i,Y≤i=1i

)

=EPX<i|C≤i

[

D

(

PXi|X<i,A≤i
||QXi|X<i,B≤i

)]

(8)

and by Eq. (7), for any fixing of x ∈ Supp(PX<i|Y<i=1i−1):

D
(

PYi|X<i=x,Y<i=1i−1 ||QYi|X<i=x,Y<i=1i−1

)

= 0 (9)

5 Note that Lemma 2 is a special case of Lemma 4 that holds when choosing A1, . . . , Am

with P [A≤m] = 1.

A Tight Parallel Repetition Theorem 561

We use Eqs. (8) and (9) for proving Eq. (3), by applying on both distribu-
tions a function that “cuts” all values after the first appearance of Yi = 0.
Let fcut(y1, x1, . . . ym, xm) = (y1, x1, . . . ym, xm) if y = (y1, . . . , ym) = 1m, and
fcut(y1, x1, . . . ym, xm) = (y1, x1, . . . yi−1, xi−1, yi,⊥2n−2i+1) otherwise, where i is
the minimal index with yi = 0, and ⊥ is an arbitrary symbol /∈ U . By definition,

Prs∼PY1,X1,...,Ym,Xm
[fcut(s) �= s] = P [Y �= 1m] = 1 − P [C≤m],

and by Eqs. (8) and (9) along with data-processing of standard KL-divergence
(Fact 4(3)),

D
(
fcut

(
PY1,X1,...,Ym,Xm

) ||fcut
(
QY1,X1,...,Ym,Xm

)) ≤
m∑

i=1

D(PXi|A≤i
||QXi|B≤i

| PX<i|C≤i
).

That is, fcut is the function realizing the stated bound on the smooth KL-
divergence of PX and QX .

4 Skewed Distributions

In this section we formally define the notion of many-round skewed distributions
and state our main result for such distributions.

Definition 11 (The skewed distribution Q). Let P be a distribution with
PX being a distribution over m×n matrices, and let W and E = {Ei,j}i∈[m],j∈[n]

be events over P . We define the skewed distribution QX,J = Q(P,W, E) of ˜PX =
P |W , by QJ = U[n] and

QX|J =
m
∏

i=1

PXi,J |X<i,J
˜PXi,−J |X<i,Xi,J ,Ei,J

Definition 12 (dense and prefix events). Let PX be a distribution over m×n
matrices, and let E = {Ei,j}i∈[m],j∈[n] be an event family over PX such that Ei,j,
for each i, j, is determined by Xj. The family E has density δ if ∀(i, j) ∈ [m]× [n]
and for any fixing of X≤i,j, it holds that P [Ei,j |X≤i,j] = δi,j ≥ δ. The family E
is a prefix family if ∀(i, j) ∈ [m] × [n] the event Ei,j is determined by X≤i+1,j.

Bounding Smooth KL-Divergence of Smooth Distributions. The follow-
ing theorem states our main result for skewed distributions. In Sect. 6 we give a
proof sketch of Theorem 8, and in the full version we give the full details.

Theorem 8. Let P be a distribution with PX being a distribution over m × n
matrices with independent columns, let W be an event over P and let E = {Ei,j}
be a δ-dense event family over PX . Let ˜P = P |W and let QX,J = Q(P,W, E) be
the skewed variant of ˜P defined in Definition 11. Let Yi = (Yi,1, . . . , Yi,n) for Yi,j

being the indicator for Ei,j, and let d =
∑m

i=1 D(˜PXiYi
||PXiYi

| ˜PX<i
). Assuming

n ≥ c · m/δ and d ≤ δn/c, for a universal constant c > 0, then

D
c

δn (d+1)(˜P ||Q) ≤ c

δn
(d + m).

562 I. Berman et al.

We now prove that Theorem 1 is an immediate corollary of Theorem8.

Corollary 1 (Restatement of Theorem 1). Let P, ˜P ,Q,W, E , δ and c be as
in Theorem8, and let ε = log(1

P [W])/δn. Then the following hold assuming n ≥
c · m/δ:

– if P [W] ≥ exp (−δn/cm), then Dc·(εm+1/δn)(˜P ||Q) ≤ c · (εm + m/δn), and
– if P [W] ≥ exp (−δn/2c) and E is a prefix family, then D2c·(ε+1/δn)(˜P ||Q) ≤

2c · (ε + m/δn).

Proof. Let {Yi,j} be as in Theorem 8. Note that for each i ∈ [m]:

D(˜PXiYi
||PXiYi

| ˜PX<i
) ≤ D(˜PX≥i

||PX≥i
| ˜PX<j

) ≤ D(˜PX ||PX) ≤ log
1

P [W]
.

The first inequality holds by data-processing of KL-divergence (Fact 4(5)). The
second inequality holds by chain-rule of KL-divergence (Fact 4(3)). The last
inequality holds by Fact 5. Assuming P [W] ≥ exp (−δn/cm), it holds that

d ≤ m · log
1

P [W]
≤ δn/c,

concluding the proof of the first part.
Assuming P [W] ≥ exp (−δn/c) and E is a prefix family (i.e., Ei,j is a function

of X≤i+1), then

d ≤
m−1
∑

i=1

D(˜PXiXi+1 ||PXiXi+1 | ˜PX<i
) + D(˜PXm ||PXm | ˜PX<m

)

=
∑

i∈[m−1]∩Neven

D(˜PXiXi+1 ||PXiXi+1 | ˜PX<i
) +

∑

i∈[m−1]∩Nodd

D(˜PXiXi+1 ||PXiXi+1 | ˜PX<i
)

+ D(˜PXm ||PXm | ˜PX<m
) ≤ 2 · D(˜PX ||PX)

≤ 2 · log 1

P [W]
≤ δn/c,

concluding the proof of the second part. The first inequality holds by data-
processing of KL-divergence, and the second one holds by chain-rule and data-
processing of KL-divergence.

In order to show that the attacking distribution Q can be carried out effi-
ciently, it suffice to show that with high probability over (x, j) ∼ QX,J , we have
for all i ∈ [m] that P [W | (X<i,Xi,j) = (x<i, xi,j), Ei,j] is not much smaller than
P [W]. The following lemma (proven in the full version) states that the above
holds under ˜PX . Namely, when sampling x ∼ ˜PX (instead of x ∼ QX) and then
j ∼ QJ|X=x, then P [W | (X<i,Xi,j) = (x<i, xi,j), Ei,j] is indeed not too low.

A Tight Parallel Repetition Theorem 563

Lemma 5. Let P, ˜P ,Q,W, E , δ, d be as in Theorem8, let t > 0 and let

pt := Pr
x∼ ˜PX ; j∼QJ|X=x

[∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j] < P [W]/t]

Assuming n ≥ c · m/δ and d ≤ δn/c, for a universal constant c > 0, then

pt ≤ 2m/t + c(d + 1)/(δn).

As an immediate corollary, we get the following result.

Corollary 2. Let P, ˜P ,Q,W, E , δ be as in Theorem8, let ε = log(1
P [W])/δn, let

t > 0 and let c and pt as in Lemma 5. Assuming n ≥ c · m/δ, it holds that

– if P [W] ≥ exp (−δn/cm), then pt ≤ 2m/t + c · (εm + 1/δn).
– if P [W] ≥ exp (−δn/2c) and E is a prefix family, then pt ≤ 2m/t + 2c · (ε +

1/δn).

5 The Parallel Repetition Theorem

In this section, we use Theorem 8 to prove Theorem 2, restated below.

Theorem 9 (Parallel repetition for partially simulatable arguments,
restatement of Theorem 2). Let π be an m-round δ-simulatable [resp., pre-
fix δ-simulatable] interactive argument of soundness error 1 − ε. Then πn has
soundness error (1 − ε)cnδ/m [resp., (1 − ε)cnδ], for a universal constant c > 0.

Since the random terminating variant of an m-round interactive argument is
1/m-prefix-simulatable, the (tight) result for such protocols immediately follows.
The proof of Theorem 9 follows from our bound on the smooth KL-divergence
of skewed distributions, Theorem 8, and Lemma 6, stated and proven below.

Definition 13 (bounding function for many-round skewing). A function
f is a bounding function for many-round skewing if there exists a polynomial
p(·, ·) such that the following holds for every δ ∈ (0, 1] and every m,n ∈ N
with n > p(m, 1/δ): let P be a distribution with PX being a column independent
distribution over m × n matrices. Let W be an event and let E be a δ-dense
[resp., prefix δ-dense] event family over P (see Definition 12). Let ˜P = P |W and
let Q = Q(P,W, E) be according to Definition 11. Then the following holds for
γ = log (1/P [W]) /f(n,m, δ):

1. QX [T] ≤ 2 · ˜PX [T] + γ for every event T ,6 and
2. ∀t > 0 : Prx∼ ˜PX ; j∼QJ|X=x

[(x, j) ∈ Badt] ≤ p(m, 1/δ)/t + γ, letting

Badt := {(x, j) : ∃i ∈ [m] : P [W | (X<i,Xi,j) = (x<i, xi,j), Ei,j] < P [W]/t}.

6 The constant 2 can be replaced with any other constant without changing (up to a
constant factor) the decreasing rate which is promised by Lemma 6.

564 I. Berman et al.

Lemma 6 (Restatement of Lemma 1). Let π be an m-round δ-simulatable
[resp., prefix δ-simulatable] interactive argument of soundness error 1 − ε, let
f be a bounding function for many-round skewing (according to Definition 13).
Then πn has soundness error (1 − ε)f(n,m,δ)/80.

That is, Lemma 6 tells us that the task of maximizing the decreasing rate
of πn directly reduces to the task of maximizing a bounding function for many-
round skewing. A larger bounding function yields a smaller γ in Definition 13.
This γ both defines an additive bound on the difference between a small event
in ˜P to a small event in Q, and bounds a specific event in ˜P that captures the
cases in which an attack can be performed efficiently.

We first prove Theorem 9 using Lemma 6.
Proof of Theorem 9.

Proof. We prove for δ-simulatable arguments, the proof for δ-prefix-simulatable
arguments follows accordingly. Let m,n, P , δ, E , W , ˜P and Q be as in Lemma 6,
where E is δ-dense, and let c = max{c′, c′′} where c′ is the constant from Corol-
lary 1 and c′′ is the constant from Corollary 2. By Corollary 1, if n ≥ c ·m/δ and
P [W] ≥ exp (−δn/cm), then

D3cmμ(˜P ||Q) ≤ 3cmμ (10)

for μ = log(1/P [W])/δn, where we assumed without loss of generality that
P [W] ≤ 1/2. Hence, assuming that n ≥ c · m/δ and P [W] ≥ exp (−δn/cm),
Proposition 3 Eq. (10) yields that for every event T :

Q[T] ≤ 2 · ˜P [T] + γ, (11)

where γ = log(1/P [W])/f(n,m, δ) for f(n,m, δ) = δn/(24cm). For an event W
of smaller probability, it holds that γ ≥ 24, and therefore Eq. (11) trivially holds
for such events. In addition, by Corollary 2, if n ≥ c · m/δ then

Pr
x∼ ˜PX ; j∼QJ|X=x

[∃i ∈ [m] : P [W | (X<i, Xi,j) = (x<i, xi,j), Ei,j] < P [W]/t
] ≤ 2m/t + γ (12)

(We assume P [W] ≥ exp (−δn/cm), as otherwise Eq. (12) trivially holds.) By
Eqs. (11) and (12), f is a bounding function for many-round skewing with the
polynomial p(m, 1/δ) = c · m/δ. Therefore, Lemma 6 yields that the soundness
error of πn is bounded by (1 − ε)f(n,m,δ)/80 = (1 − ε)δn/(c′m), for c′ = 1920c.

5.1 Proving Lemma 6

Let f be a bounding function for many-round skewing with the polynomial
p(·, ·) ∈ poly. We first prove the case when the number of repetition n is at least
p(m, 1/δ), and then show how to extend the proof for the general case.

A Tight Parallel Repetition Theorem 565

Many Repetitions Case.

Proof (Proof of Lemma 6, many repetitions). Fix an m-round δ-simulatable
interactive argument π = (P,V) of soundness error 1−ε (the proof of the δ-prefix-
simulatable case follows the same lines), and let n = n(κ) > p(m(κ), 1/δ(κ)).
Note that without loss of generality ε(κ) ≥ 1/poly(κ).

Our proof is a black-box reduction according to Definition 9: we present an
oracle-aided algorithm that given access to a deterministic cheating prover for
πn violating the claimed soundness of πn, uses it to break the assumed soundness
of π while not running for too long. The lemma then follows by Proposition 2.

Let S be the oracle-aided simulator guaranteed by the δ-simulatablily of V.
For a cheating prover Pn∗ for πn, let P∗ be the cheating prover that when
interacting with V, emulates a random execution of (Pn∗,Vn), letting V plays
one of the n verifiers at a random location. (Clearly, P∗ only requires oracle
access to Pn∗.) Assume without loss of generality that in each round V flips
t = t(κ) coins. The oracle-aided algorithm P∗ is defined as follows.

Algorithm 10 (P∗)
Input: 1κ, m = m(κ) and n = n(κ).
Oracles: cheating prover Pn∗ for πn.
Operation:

1. Let j ← [n].
2. For i = 1 to m do:

(a) Let ai be the ith message sent by V.
(b) Do the following (“rejection continuation”):

i. Let xi,−j ← ({0, 1}t)n−1

ii. Let v = SP
n∗

(1κ, (j, x≤i,−j , a≤i)).
iii. If all n verifiers accept in v, break the inner loop.

(c) Send to V the ith message Pn∗ sends in v.

Fix a cheating prover Pn∗. We also fix κ ∈ N, and omit it from the notation. Let
P = PX denotes the coins Vn uses in a uniform execution of (Pn∗,Vn). (Hence
PX is uniformly distributed over m × n matrices.) Let W be the event over P

that Pn∗ wins in (Pn∗,Vn) (i.e., all verifiers accept), and let ˜PX = PX |W . For
an i rounds view v = (j, ·) of Pn∗ in (Pn∗,V), let Δv be the δ-dense subset of V’s
coins describing the output distribution of SP

n∗
(v). Let Ti,j be all possible i round

views of Pn∗ in (Pn∗,V) that are starting with j. Finally, let E = {Ei,j}i∈[m],j∈[n]

be the event family over P defined by Ei,j =
⋃

v∈Ti,j
Δv, and let QX,J be the

e (skewed) distribution described in Definition 11 with respect to P,W, E . By
inspection, Q describes the distribution of (j, x≤m) in a random execution of
(P∗,Vn), where x≤m,j denotes the coins of V, and x≤m,−j denote the final value
of this term in the execution. Assume

Pr [(Pn∗,Vn) = 1] = P [W] > (1 − ε)f(n,m,δ)/80, (13)

566 I. Berman et al.

and let γ = log (1/P [W]) /f(n,m, δ). By Eq. (13) it holds that

γ < − log(1 − ε)/80 ≤ ε/80 (14)

Since ˜P [W] = 1, we deduce by Property 13(1) of f on the event ¬W that

Pr [(P∗,V) = 1] ≥ QX [W] > 1 − γ > 1 − ε/80 (15)

So it is left to argue about the running time of P∗. By Property 13(2) of f on
t = 80 · p(m, 1/δ)/ε it holds that

Prx∼ ˜PX ; j∼QJ|X=x
[(x, j) ∈ Badt] ≤ p(m, 1/δ)/t + γ < ε/40 (16)

Consider the extension ˜PXJ of ˜PX , where ˜PJ|X = QJ|X . Note that by Prop-
erty 13(1), for any event T over (X,J) it holds that QXJ [T] ≤ 2 · ˜PXJ [T] + γ.
In particular, this holds for the event (X,J) ∈ Badt. Therefore, we deduce from
Eqs. (14) and (16) that

Prx∼QX ; j∼QJ|X=x
[(x, j) ∈ Badt] ≤ 2ε/40 + γ < ε/10 (17)

By Eqs. (15) and (17) we obtain that

Pr(x,j)∼QX,J
[W ∧ ((x, j) /∈ Badt)] > 1 − ε/5 (18)

Namely, with probability larger than 1 − ε/5, the attacker P∗ wins and its
expected running time in each round is bounded by O(t/P [W]) ≤ poly(κ). This
contradicts the soundness guaranty of π.

Any Number of Repetitions. See the full version.

6 Bounding Smooth KL-Divergence of Skewed
Distributions - Proof Sketch

In this section we give a rather detailed proof sketch (more accurately, an attempt
proof sketch) for proving Theorem8 in which we explain the difficulties that arise.
The actual proof appears in the full version due to page limitation.

Fix a distribution P with PX being a distribution over Um×n matrices with
independent columns, event W over P and δ-dense event family E = {Ei,j} over
PX . Let ˜P = P |W and let QX,J = Q(P,W, E) be the skewed variant of ˜P defined
in Definition 11. Let Yi = (Yi,1, . . . , Yi,n) for Yi,j be the indicator for Ei,j , and
let d =

∑m
i=1 D(˜PXiYi

||PXiYi
| ˜PX<i

).
In the following we present an attempt to bound the divergence between ˜P

and Q. That is, to show that

D(˜P ||Q) ≤ O

(

1
δn

)

· (d + m) (19)

A Tight Parallel Repetition Theorem 567

We try to do so by showing that for every i ∈ [m] it holds that

D(˜PXi
||QXi

| ˜PX<i
) ≤ O

(

1
δn

)

· (di + 1) (20)

for di = D(˜PXiYi
||PXiYi

| ˜PX<i
), and applying chain-rule of KL-divergence for

deducing Eq. (19). By data-processing of KL-divergence (Fact 4(5)), it holds that

D(˜PXi
||QXi

| ˜PX<i
) ≤ D(˜PXiYi

||Q′
XiYi

| ˜PX<i
), (21)

where

Q
′
XiYi|X<i

= ˜PXiYi|X<i,Xi,J ,Yi,J=1 ◦ QJ,Xi,J |X<i
≡ PXi,J |X<i

˜PXiYi|X<i,Xi,J ,Yi,J=1 ◦ QJ|X<i

(note that Q′
Xi

≡ QXi
and that PXi,J |X<i

≡ PXi,J |X<i,J
because the columns

under P are independent). By definition of Q′, for any fixing of x≤iyi ∈
Supp(˜PX≤iYi

) it holds that

Q′
XiYi|X<i=x<i

(xiyi) (22)

= Ej∼QJ|X<i=x<i

[

PXi,j |X<i=x<i
(xi,j) · ˜PXiYi|X<i=x<i,Xi,j=xi,j ,Yi,j=1(xiyi)

]

=
n

∑

j=1

QJ|X<i=x<i
(j) · PXi,j |X<i=x<i

(xi,j) ·
˜PXiYiXi,jYi,j |X<i=x<i

(xiyixi,j1)
˜PXi,j ,Yi,j |X<i=x<i

(xi,j , 1)

=
∑

j∈1yi

QJ|X<i=x<i
(j) · PXi,j |X<i=x<i

(xi,j) ·
˜PXiYi|X<i=x<i

(xiyi)
˜PXi,j ,Yi,j |X<i=x<i

(xi,j , 1)

=
∑

j∈1yi

QJ|X<i=x<i
(j) ·

βi,j(xi,j) · ˜PXiYi|X<i=x<i
(xiyi)

δ̃i,j

,

for βi,j(xi,j) = βi,j(xi,j ;x<i) =
PXi,j |X<i=x<i

(xi,j)

˜PXi,j |X<i=x<i,Yi,j=1(xi,j)
and δ̃i,j = δ̃i,j(x<i) =

˜PYi,j |X<i=x<i
(1) (= ˜P [Ei,j | X<i = x<i]), where recall that we denote 1yi

= {j ∈
[n] : yi,j = 1}. We now use the following claim (proven in the full version) that
calculates the probability to get j in the conditional distribution QJ|X<i=x<i

.

Claim. Let ω′
i,j = ω′

i,j(x<i) :=
∏i−1

s=1
P [Xs,j=xs,j |X<s=x<s]
˜P [Xs,j=xs,j |X<s=x<s]

and let

ωi,j = ωi,j(x<i) :=
n · ω′

i,j
∑n

t=1 ω′
i,t

·
i−1
∏

s=1

˜P [Es,j | X<s = x<s]

˜P [Es,j | X<s = x<s, Xs,j = xs,j]
·

˜P [Es,j | X≤s = x≤s]

˜P [Es,j | X<s = x<s]
.

Then it holds that
QJ|X<i=x<i

(j) =
ωi,j

∑n
t=1 ωi,t

.

568 I. Berman et al.

Note that ωi,j is basically a relative “weight” for the column j, where a large
ωi,j with respect to the other ωi,t’s means that QJ|X<i=x<i

(j) is higher. In an
extreme case it is possible that ωi,j = ∞, meaning that QJ|X<i=x<i

(j) = 1.
However, we assume for now that all ωi,j < ∞. Later in this proof attempt we
even assume that all the terms are close to 1, meaning that QJ|X<i=x<i

has
high min entropy (assumptions that are eliminated in the full version). As a
side note, observe that ω1,j = 1 for all j ∈ [n] (meaning that QJ , without any
conditioning, is the uniform distribution over [n]). At this point, we just mention
that we added (the same) multiplicative factor of n

∑n
t=1 ω′

i,t
to all {ωi,j}n

j=1. On
the one hand this does not change the relative weight, but on the other hand it
will help us to claim in the full version that these ωi,j ’s are indeed close to 1. By
Eqs. (21) and (22) and Claim 6, it holds that

D(˜PXi
||QXi

| ˜PX<i
) ≤ D(˜PXiYi

||Q′
XiYi

| ˜PX<i
) (23)

= Ex<i∼X<i
Exiyi∼ ˜PXiYi|X<i=x<i

[

log
˜PXiYi|X<i=X<i

(xiyi)
QXiYi|X<i=X<i

(xiyi)

]

= Ex<i∼X<i
Exiyi∼ ˜PXiYi|X<i=x<i

⎡

⎣log

∑n
j=1 ωi,j

∑

j∈1yi

ωi,j ·βi,j(xi,j)

δ̃i,j

⎤

⎦

= Ex<i∼X<i
Exiyi∼ ˜PXiYi|X<i=x<i

[− log (1 + γi(xiyi))] ,

for

γi(xiyi) = γi(xiyi;x<i) =

⎛

⎝

∑

j∈1yi

ωi,j · βi,j(xi,j)
δ̃i,j

⎞

⎠ /

⎛

⎝

n
∑

j=1

ωi,j

⎞

⎠ − 1 (24)

Naturally, we would like to approximate the logarithm in the above equation
with a low-degree polynomial. However, we can only do if γi is far away from −1.
In particular, if ˜P [γi(XiYi;X<i) = −1] > 0 (which happens if the event W allows
for none of the events {Ei,j}n

i=1 to occur), the above expectation is unbounded.
At that point, we only show how to bound Eq. (23) under simplifying assump-
tions, while in the full version we present how to eliminate the assumptions via
smooth KL-divergence. We now assume that for any x<i ∈ Supp(˜PX<i

) and any
j ∈ [n], the following holds:

Assumption 11

1. |γi(xiyi)| ≤ 1/2 for any xiyi ∈ Supp(˜PXiYi|X<i=x<i
).

2. δ̃i,j ≥ 0.9δi,j (recall that δi,j = P [Ei,j] = P [Ei,j | X≤i] for any fixing of X≤i).
3. ωi,j ∈ 1 ± 0.1.
4. Supp(PXi,j |X<i=x<i

) ⊆ Supp(˜PXi,j |X<i=x<i,Yi,j=1).
5. βi,j(xi,j) ≤ 1.1 for any xi,j ∈ Supp(˜PXi,j |X<i=x<i

).

A Tight Parallel Repetition Theorem 569

Note that Assumption 3 implies that QJ|X<i
has high min-entropy, and Assump-

tions 2 along with 5 imply that for all j:

P [W | (X<i,Xi,j) = (x<i, xi,j), Ei,j]

=
˜PXi,j |X<i=x<i,Ei,j

(xi,j)
PXi,j |X<i=x<i,Ei,j

(xi,j)
·

˜P [Ei,j | X<i = x<i]
P [Ei,j | X<i = x<i]

· P [W | X<i = x<i]

= βi,j(xi,j) ·
(

δ̃i,j/δi,j

)

· P [W | X<i = x<i] ≥ P [W | X<i = x<i]/2,

which fits the explanation in Sect. 1.4.1 (note that in the second equality we used
the fact that PXi,j |X<i=x<i,Ei,j

(xi,j) = PXi,j |X<i=x<i
(xi,j) by assumption).

By Eq. (23), note that in order to prove Eq. (20), it is enough to show that for
any x<i ∈ Supp(˜Px<i

) it holds that

(25)

E
xiyi∼ ˜PXiYi|X<i=x<i

[− log (1 + γi(xiyi))] ≤ O

(

1

δn

)

·
(

D(˜PXiYi|X<i=x<i
||PXiYi|X<i=x<i

) + 1
)

In the following, fix x<i ∈ Supp(˜Px<i
). We now focus on proving Eq. (25). Using

the inequality − log(1+x) ≤ −x+x2 for |x| ≤ 1
2 , we deduce from Assumption 1

that

E
xiyi∼ ˜PXiYi|X<i=x<i

[− log (1 + γi(xiyi))] ≤ E
xiyi∼ ˜PXiYi|X<i=x<i

[

−γi(xiyi) + γi(xiyi)
2
]

(26)

Note that

Exiyi∼ ˜PXiYi|X<i=x<i

⎡

⎣

∑

j∈1yi

ωi,j · βi,j(xi,j)
δ̃i,j

⎤

⎦ (27)

=
n

∑

j=1

Exi,jyi,j∼ ˜PXi,jYi,j |X<i=x<i

[

yi,j · ωi,j · βi,j(xi,j)
δ̃i,j

]

=
n

∑

j=1

ωi,j · Exi,j∼ ˜PXi,j |X<i=x<i,Yi,j=1
[βi,j(xi,j)]

=
n

∑

j=1

ωi,j · Exi,j∼ ˜PXi,j |X<i=x<i,Yi,j=1

[

PXi,j |X<i=x<i
(xi,j)

˜PXi,j |X<i=x<i,Yi,j=1(xi,j)

]

=
n

∑

j=1

ωi,j · PXi,j |X<i=x<i
(Supp(˜PXi,j |X<i=x<i,Yi,j=1)) =

n
∑

j=1

ωi,j .

The second equality holds since yi,j ∈ {0, 1} and since Assumption 2 implies
that ˜PYi,j |X<i=x<i

(1) = δ̃i,j > 0 for all j ∈ [n], and the last equality holds by
Assumption 4. Therefore, we deduce from Eq. (27) that

570 I. Berman et al.

Exiyi∼ ˜PXiYi|X<i=x<i

[γi(xiyi)] (28)

=

⎛

⎝Exiyi∼ ˜PXiYi|X<i=x<i

⎡

⎣

∑

j∈1yi

ωi,j · βi,j(xi,j)
δ̃i,j

⎤

⎦

⎞

⎠ /

⎛

⎝

n
∑

j=1

ωi,j

⎞

⎠ − 1 = 0.

Hence, in order to prove Eq. (25), we deduce from Eqs. (26) and (28) that it
is left to prove that

E
xiyi∼ ˜PXiYi|X<i=x<i

[

γi(xiyi)
2
]

≤ O

(

1

δn

)

·
(

D(˜PXiYi|X<i=x<i
||PXiYi|X<i=x<i

) + 1
)

(29)

In the following, rather than directly bounding the expected value of γi(xiyi)2

under ˜PXiYi|X<i=x<i
, we show that under the product of the marginals of

˜PXiYi|X<i=x<i
(namely, under the distribution

∏n
j=1

˜PXi,jYi,j |X<i=x<i
), the value

of γi(xiyi) is well concentrated around its mean (i.e., zero), and the proof will
follow by Proposition 1. More formally, let Γ be the value of γi(xiyi) when xiyi

is drawn from either ˜P = ˜PXiYi|X<i=x<i
or ˜PΠ =

∏n
j=1

˜PXi,jYi,j |X<i=x<i
. We

prove that there exist two constants K1,K2 > 0 such that for any γ ∈ [0, 1] :

˜PΠ [|Γ | ≥ γ] ≤ K2 · exp
(

− γ2

K1 · σ2

)

(30)

for σ2 = 1/δn. Using Eq. (30) and the fact that |Γ | ≤ 1 (Assumption 1), Propo-
sition 1 yields that

E
xiyi∼ ˜PXiYi|X<i=x<i

[

γi(xiyi)
2
]

= E
˜P

[

Γ
2
]

≤ K3

δn
·
(

D(˜P || ˜P
Π

) + 1
)

(31)

=
K3

δn
·
⎛

⎝D(˜PXiYi|X<i=x<i
||

n
∏

j=1

˜PXi,jYi,j |X<i=x<i
) + 1

⎞

⎠

≤ K3

δn
·
(

D(˜PXiYi|X<i=x<i
||PXiYi|X<i=x<i

) + 1
)

.

The last inequality holds by chain rule of KL-divergence when the right-
hand side distribution is product (Fact 4(3), where recall that PXiYi|X<i=x<i

=
∏n

j=1 PXi,jYi,j |X<i=x<i
). This concludes the proof of Eq. (29). It is left to prove

Eq. (30). In the following, given xiyi which are drawn from either ˜PΠ =
∏n

j=1
˜PXi,jYi,j |X<i=x<i

or ˜PΠ′
=

∏n
j=1

˜PYi,j |X<i=x<i
· ˜PXi,j |X<i=x<i,Yi,j=1, we

define the random variables Lj ,Zj ,L and Z (in addition to Γ), where Lj is the

value of ωj · βj(xi,j), L =
∑n

j=1 Lj , Zj =

{

Lj/δ̃j yi,j = 1
0 yi,j = 0

and Z =
∑n

j=1 Zj ,

letting ωj = ωi,j , βj(·) = βi,j(·) and δ̃j = δ̃i,j . Note that by definition,
Z = (1 + Γ)μ for μ =

∑n
j=1 ωj . Namely, Γ measures how far Z is from its

expected value μ (follows by Eq. (27) that calculates E
˜P [Z], which also equals

to E
˜P Π [Z] and E

˜P Π′ [Z]). Note that the distribution of Z and Γ when xiyi is

A Tight Parallel Repetition Theorem 571

drawn from ˜PΠ is identical to the distribution of Z and Γ (respectively) when
xiyi is drawn from ˜PΠ′

. Therefore, in particular it holds that

˜PΠ [|Γ | ≥ γ] = ˜PΠ′
[|Γ | ≥ γ] (32)

Under ˜PΠ′
, the Lj ’s are independent random variables with E

˜P Π′ [Lj] = ωj and
E

˜P Π′ [L] = μ where μ =
∑n

j=1 ωj ≥ n/2 and |Lj | ≤ 2 (by Assumptions 3 and
5). Moreover, for all j ∈ [n], Zj = (Lj/δ̃j) · Bern(δ̃j) where δ̃j ≥ 0.9δi,j ≥ 0.9δ
(by Assumption 2). Hence, Fact 7 yields that

˜PΠ′
[|Γ | ≥ γ] ≤ 4 exp

(

−δnγ2

100

)

(33)

The proof of Eq. (30) now follows by Eqs. (32) and (33), which ends the proof
of Theorem 8 under the assumptions in 11.

6.1 Eliminating the Assumptions

The assumptions we made in 11 may seem unjustified at first glance. For
instance, even for j = 1, there could be “bad” columns j ∈ [n] with δ̃1,j < 0.9δ1,j .
We claim, however, that the probability that a uniform J (chosen by Q) will hit
such a “bad” column j is low. For showing that, let B1 = {j ∈ [n] : δ̃1,j < 0.9δ1,j}
be the set of “bad” columns j ∈ [n] for i = 1. A simple calculation yields that

d1 = D(˜PX1Y1 ||PX1Y1) ≥ D(˜PY1 ||PY1) ≥
n

∑

j=1

D(˜PY1,j
||PY1,j

)

=
n

∑

j=1

D(δ̃1,j ||δ1,j) ≥
∑

j∈B1

D(δ̃1,j ||δ1,j) ≥
∑

j∈B1

δ1,j/200 ≥ |B1| · δ/200.

The second inequality holds by chain-rule of KL-divergence when the right-hand
side distribution is product (Fact 4(3))) and the penultimate inequality holds
by Fact 6(1). This implies that |B1| ≤ 200d1/δ, and hence, QJ [J ∈ B1] <
200d1/(δn). Extending the above argument for a row i > 1 is a much harder
task. As we saw in Claim 6, the conditional distribution QJ|X<i

is much more
complicated, and it also seems not clear how to bound |Bi| (now a function of
X<i) as we did for i = 1, when X<i is drawn from Q. Yet, we show in the full
version that when X<i is drawn from ˜P (and not from Q), then we are able to
understand QJ|X<i

and Bi(X<i) better and bound by O(d/(δn)) the probability
of hitting a “bad” column for all i ∈ [m]. This is done by relating martingale
sequences for each sequence {ωi,j}m

i=1 under ˜P , and by showing (using Lemma3)
that with high probability, the sequences of most j ∈ [n] remains around 1.

Following the above discussion, the high level plan of our proof is to define the
“good” events A1, . . . , An for ˜P and B1, . . . , Bn for Q such that for all i ∈ [m],
the conditional distributions ˜PXi|A≤i

and QXi|B≤i
satisfy the assumptions in 11.

Then, by only bounding the probability of “bad” events under ˜P , the proof of
Theorem 8 will follow by Lemma 4. For details, see the full version.

572 I. Berman et al.

References

1. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in
computationally sound protocols? In: 38th Annual Symposium on Foundations of
Computer Science, FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997,
pp. 374–383 (1997)

2. Berman, I., Haitner, I., Tsfadia, E.: A tight parallel repetition theorem for partially
simulatable interactive arguments via smooth KL-divergence. Cryptology ePrint
Archive, Report 2019/393 (2019). https://eprint.iacr.org/2019/393

3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. J. ACM 43(2), 831–871 (2014)

4. Canetti, R., Halevi, S., Steiner, M.: Hardness amplification of weakly verifiable
puzzles. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 17–33. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 2

5. Chung, F., Lu, L.: Connected components in random graphs with given expected
degree sequences. Ann. Comb. 6, 125–145 (2002). https://doi.org/10.1007/
PL00012580

6. Chung, K.-M., Liu, F.-H.: Parallel repetition theorems for interactive arguments.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 19–36. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11799-2 2

7. Chung, K.M., Pass, R.: The randomness complexity of parallel repetition. In: Pro-
ceedings of the 52nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 658–667 (2011)

8. Chung, K.-M., Pass, R.: Tight parallel repetition theorems for public-coin argu-
ments Using KL-divergence. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part
II. LNCS, vol. 9015, pp. 229–246. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46497-7 9

9. Damgärd, I.B., Pfitzmann, B.: Sequential iteration arguments and an efficient zero-
knowledge argument for NP. In: Annual International Colloquium on Automata,
Languages and Programming (ICALP), pp. 772–783 (1998)

10. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–03 June 2014,
pp. 624–633 (2014)

11. Dodis, Y., Jain, A., Moran, T., Wichs, D.: Counterexamples to hardness ampli-
fication beyond negligible. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp.
476–493. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 27

12. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain markov process
expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)

13. Feige, U.: On the success probability of the two provers in one-round proof systems.
In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference,
Chicago, Illinois, USA, 30 June–3 July 1991, pp. 116–123 (1991)

14. Feige, U., Verbitsky, O.: Error reduction by parallel repetition - a negative result.
Combinatorica 22(4), 461–478 (2002)

15. Fortnow, L., Rompel, J., Sipser, M.: Errata for on the power of multi-prover interac-
tive protocols. In: Proceedings: Fifth Annual Structure in Complexity Theory Con-
ference, Universitat Politècnica de Catalunya, Barcelona, Spain, 8–11 July 1990,
pp. 318–319 (1990)

16. Goldreich, O.: Modern Cryptography Probabilistic Proofs and Pseudorandomness.
Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-12521-2

https://eprint.iacr.org/2019/393
https://doi.org/10.1007/978-3-540-30576-7_2
https://doi.org/10.1007/PL00012580
https://doi.org/10.1007/PL00012580
https://doi.org/10.1007/978-3-642-11799-2_2
https://doi.org/10.1007/978-3-662-46497-7_9
https://doi.org/10.1007/978-3-662-46497-7_9
https://doi.org/10.1007/978-3-642-28914-9_27
https://doi.org/10.1007/978-3-642-28914-9_27
https://doi.org/10.1007/978-3-662-12521-2

A Tight Parallel Repetition Theorem 573

17. Haitner, I.: A parallel repetition theorem for any interactive argument. SIAM J.
Comput. 42(6), 2487–2501 (2013). https://doi.org/10.1137/100810630

18. H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel repetition
theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 1–18. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 1

19. Holenstein, T.: Parallel repetition: simplification and the no-signaling case. Theory
Comput. 5(1), 141–172 (2009)

20. Moshkovitz, D.: Parallel repetition from fortification. In: 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
18–21 October 2014, pp. 414–423 (2014)

21. Mulzer, W.: Chernoff bounds (2018). https://page.mi.fu-berlin.de/mulzer/notes/
misc/chernoff.pdf

22. Pass, R., Venkitasubramaniam, M.: A parallel repetition theorem for constant-
round Arthur-Merlin proofs. TOCT 4(4), 10:1–10:22 (2012)

23. Pietrzak, K., Wikström, D.: Parallel repetition of computationally sound protocols
revisited. J. Cryptol. 25(1), 116–135 (2012). https://doi.org/10.1007/s00145-010-
9090-x

24. Rao, A.: Parallel repetition in projection games and a concentration bound. SIAM
J. Comput. 40(6), 1871–1891 (2011)

25. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)

https://doi.org/10.1137/100810630
https://doi.org/10.1007/978-3-642-11799-2_1
https://page.mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf
https://page.mi.fu-berlin.de/mulzer/notes/misc/chernoff.pdf
https://doi.org/10.1007/s00145-010-9090-x
https://doi.org/10.1007/s00145-010-9090-x

Interactive Proofs for Social Graphs

Liran Katzir1(B), Clara Shikhelman2, and Eylon Yogev3

1 Google Research, Tel Aviv, Israel
lirank@google.com

2 Chaincode Labs, New York City, USA
clara.shikhelman@gmail.com
3 BU and TAU, Boston, USA

eylony@gmail.com

Abstract. We consider interactive proofs for social graphs, where the
verifier has only oracle access to the graph and can query for the ith

neighbor of a vertex v, given i and v. In this model, we construct a
doubly-efficient public-coin two-message interactive protocol for estimat-
ing the size of the graph to within a multiplicative factor ε > 0. The
verifier performs ˜O(1/ε2 · τmix · Δ) queries to the graph, where τmix is
the mixing time of the graph and Δ is the average degree of the graph.
The prover runs in quasi-linear time in the number of nodes in the graph.

Furthermore, we develop a framework for computing the quantiles of
essentially any (reasonable) function f of vertices/edges of the graph.
Using this framework, we can estimate many health measures of social
graphs such as the clustering coefficients and the average degree, where
the verifier performs only a small number of queries to the graph.

Using the Fiat-Shamir paradigm, we are able to transform the above
protocols to a non-interactive argument in the random oracle model. The
result is that social media companies (e.g., Facebook, Twitter, etc.) can
publish, once and for all, a short proof for the size or health of their social
network. This proof can be publicly verified by any single user using a
small number of queries to the graph.

Keywords: Interactive proofs · Social graphs · Succinct arguments

1 Introduction

Social networks have become a large and influential part of the everyday lives
of billions of people. The study and analysis of social networks is a modern
approach to understand human relationships and, as such, it has gained a vast
amount of attention from researchers in areas spanning from psychology and
public policy to game theory and computer science. As many of these networks
contain immense amounts of data [CEKLM15], new tools ought to be developed
to facilitate new demands.

From a computational point of view, a social network is modeled as a graph.
Very abstractly, a node represents an individual (or an entity), and an edge
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 574–601, 2020.
https://doi.org/10.1007/978-3-030-56877-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_20

Interactive Proofs for Social Graphs 575

represents a relationship between two individuals (we note that a social graph
can represent other entities as well, such as companies, objects of interest, or
virtual asserts such as a webpage and more). This abstraction is limited yet
has been shown very fruitful for studying social relationships with applications
ranging from economics to health. Social networks usually share common struc-
tural properties such as homophily, the existence of clusters, the small-world
phenomena, heterogeneous distributions of friends, and community structure
[Bre12,EK10,Kle00]. Some of these properties can be explained using known
measures of graphs such as small mixing time (e.g., a random walk converges
rapidly to its stationary distribution), small average distance between a pair of
nodes (the “small world” phenomenon), and small average degree.

The company or the network’s provide (the entity in hold of the data of the
network) in most cases regularly publishes data (either to the public or to a group
of interest) regarding the number of (active) users and other “health” measures
for various commercial and sociological purposes. However, as a community, it is
crucial to have an independent estimate of these measures, and in particular, one
that does not have a blind trust in the provider’s reports, which are amenable by
financial or political incentives. For example, Facebook has acquired WhatsApp
at a steep price of 16 billion dollars which was computed by a 40 dollar evaluation
per user of the platform [Wha], giving WhatsApp incentive to increase their
network size in the reports1.

Two main challenges stand in the path to performing independent estimates
of social graphs health measures. First, the graphs are huge, which makes it
infeasible to simply obtained the data on a standard machine and perform arbi-
trary computations. Second, and perhaps more importantly, the data is usually
not freely available to obtain, but instead, is accessible via the public interface
of the network. Typically, and as considered in this work, the interface includes
queries to check membership of a specific node’s ID, querying for the node’s
neighbors, fetching meta-data as its degree, and so on. Furthermore, for security
and data proprietary reasons, access to this interface is throttled where it is
forbidden to perform a large number of queries in a short time.

As a result, to face these challenges, there has been a line of work focused on
estimating the size of social graphs, and other measures, via its public inter-
face while performing few queries as possible. The main ingredient in these
works is that the public interface allows performing a “random walk” in the
graph and since such graphs have good mixing-time one can reach the station-
ary distribution with only a few queries. For example, the public interfaces have
been used in [GKBM10,HRH09,RT10] to estimate the assortativity coefficient,
degree distribution, and clustering coefficients of online social networks, as well
as in [YW11,HRH09,KLSC14,KBM12,KH15] to estimate the number of regis-
tered users.

Similar techniques are used for search engines as well, as they provide a
public interface as part of their service. Web results (documents) which fit a

1 We are not suggesting that WhatsApp behave untruthfully, but merely that they
had the incentive to do so.

576 L. Katzir et al.

search engine queries induces a bipartite query-document graph structure. Search
engine public interfaces have been used in [BYG08,Bro+06,BYG11] to estimate
corpus size, index freshness, and density of duplicates using search engine queries.
In [BYG09] the authors provide a way to estimate the impression rank of a
webpage. In [ZLAZ11] the number of YouTube videos is estimated by sampling
link prefixes.

One of the most basic property of a social graph that one would study is
the size of the graph (the number of nodes in the network). If the graph has n
nodes, then using birthday paradox techniques, the number of queries required
to estimate n is roughly

√
n, assuming queries return a uniform node at ran-

dom [YW11]. In a more recent work, [KLSC14] have shown that the random
walks provide a biased sampling of the nodes in the graph which, under certain
assumptions on the graph, allow to get a biased version of the birthday para-
dox that uses only (roughly) O(n1/4) queries. In [KMV17] it is shown that this
bound is tight, if one insists on solely using the public interface. This is a huge
improvement over a näıve O(n) solution but still leaves much to be desired. This
leads us to ask:

Can we estimate social graph measures using few queries to the network
while having no trust in the graph’s provider?

We propose a way to, on the one hand, use the power of the network provider
(e.g., Facebook, Twitter, YouTube, Linkedin, etc.) for computation, and on the
other hand, put no trust in them. That is, we propose interactive proof for social
graphs, as a solution to this problem and as a generalization of the known inter-
active protocols [GMR89]. In this model, we request the network’s provider to
not only provide measures such as the size of the graph but, in addition, provide
a “proof” of their claims. The proof will come in the form of an interactive pro-
tocol between a verifier (a weak computation device that can perform a small
number of queries to the public interface) and a prover (the network’s provider
that has full access to the graph).

As the verifier cannot query the entire graph, we cannot hope to compute the
precise graph size. Instead, we relax this requirement and settle for an approx-
imation of the size of any measure in mind. As is often the case in interactive
proofs, we require two properties from the interactive protocol. Completeness: if
the prover is honest and provides the right measures with the prescribed proof,
then the verifier will accept the claims (with high probability). Soundness: if a
cheating prover submits claims that are far from the correct ones, then no matter
what proof it provides, the verifier will reject its claims (with high probability).
This way, we can efficiently estimate the graph’s size without putting any trust
in the network itself.

Our model assumes that the graph itself is fixed, and we only interact with
a prover that has access to this graph but cannot make changes to it. One could
imagine that a social network could create an alternative fake view of the network
with a large number of fake users and connections which would fool the verifier.
However, there are several reasons why this would not happen and we stress two
points.

Interactive Proofs for Social Graphs 577

First, it is impossible to distinguish between queries issued by a verifier and
by legitimate users. Thus, in order for the prover to cheat the cheating prover
must consistently change the graph for all users, and not only for a specific
verifier. Second, without our protocol, the social network can cheat simply by
publishing wrong reports about their network (which happens in many cases).
Using our protocol, any cheating report has to be materialized and maintained
in the network in a way that affects all users. While this is still possible, it puts
a huge burden on the cheating party.

1.1 Our Results

We develop a framework for interactive proofs for social graphs. The first main
result is a public-coin interactive protocol for estimating the size of a social
graph, up to a small multiplicative error ε for any ε > 0. Let G be a graph of
size n and let ñ be the claimed size. The protocol verifies that ñ ∈ (1± ε)n. The
verifier performs a small number of queries (depending on the mixing-time and
average degree of the graph), and the prover is quasi-linear in the size of the
graph. This improves upon all previous works in terms of the number of queries
(however, with the help of a prover).

We stress that we have no precise definition of a “social graph” and instead
our results apply to any graph where the complexity of the protocol depends on
different measures of the graph (e.g., mixing time) which are relatively small for
social graphs. We show the following theorem.

Theorem 1 (informal). Let G be a graph with n nodes, mixing time τmix and
average degree Δ, and let ε > 0. There is a two message public-coin interactive
proof for estimating the size of a graph in the social graph model, within an error
of ε where the verifier’s query complexity, running-time and the communication
complexity are all bounded by ˜O(1/ε2 · τmix · Δ), and the prover runs in time
˜O(n · 1/ε2).

The theorem above is shown via a more general technique of estimating the
size of any set S where the verifier has limited access to the set, in our case, the
set will be the set of vertices in the graph. The verifier has membership queries
to the set and an efficient procedure that can sample a uniform element from the
set (which in our case corresponds to a random walk in the graph). The precise
theorem is given in Theorem 5.

Estimating the size of a social graph (or in general a set) is perhaps the
first and most basic property one would like to know about the graph. However,
many other more involved complexity measures are desired as well, including the
average degree, the local clustering coefficients, and others. Towards this end,
we develop a general framework for estimating a large class of measures that
include the most popular and studied ones, such as the examples given above.

For essentially any computable function f which is applied on a single vertex
of the graph, let Af (q) a value that is the q-th quantile of the vertices of the
graph when applying the function f . As the first theorem, this theorem, too, is

578 L. Katzir et al.

shown via a more general approach to estimate the average value f(x) for any
set S.

Theorem 2 (informal). Let G be a graph with n nodes and mixing time τmix,
and let f be a computable function. There is a two-message protocol that (given
n) computes ˜Af (q) such that

˜Af (q) ∈ [Af ((1 − ε)q), Af ((1 + ε)q)],

with soundness error 1/3, completeness error 1/3, communication complex-
ity ˜O(1/ε2), verifier query complexity ˜O(1/ε2 · τmix), and prover running-time
˜O(1/ε2 · n).

The precise theorem (for general sets) is given in Theorem 8.

Applications of Our Framework. The structure of social networks is studied via
a set of common structural measures which reflect the health and authentic-
ity of the network (see [CRTB06] for a survey of major structural measure-
ment). In [MMGDB07] a large-scale measurement study and analysis of the
structure of multiple online social networks. Our framework is useful for esti-
mating various different structural measures of social graphs. The core measures
are average degree; degree distribution; and local clustering coefficient distribu-
tion. [CRTB06]. In Sect. 5 we elaborate on these applications.

Social Graphs and Society. Social media companies are subject to severe pub-
lic critique in the past years. As the understanding of the effects of social
media grows, the companies are expected to fight bots pretending to be users,
echo chambers, and other unfavorable phenomena (see, e.g., [GDFMGM18,
ACELP13] and references therein). The protocol proposed in this paper can be
used by the companies to prove that the issues are under control, and by society
to hold the companies accountable. In Sect. 5.5 we elaborate on this further.

Non-interactive Arguments for Social Graphs. One important property of our
protocols is that they are public-coin protocols, meaning that the verifier has
no secret random coins and the messages it sends are merely the random coins
he flips. This has two main benefits. First, it ensures that the protocol is secure
even if the social graph observes the verifier’s queries. The verifier might perform
queries that are later not sent to the prover and leak information about its private
randomness. Since the social graph is the entity that implements these oracles to
the graph, these private queries are indeed leaked to it. Our public-coin protocol
removes any concern of this type.

Second, and even more importantly, public-coin protocols can be trans-
formed, via the Fiat-Shamir transformation, to non-interactive arguments sys-
tems, in the random oracle model. This is achieved by having the prover use the
random oracle for getting the random challenge for a specific prover message.
The result is a short (e.g., polylog-sized) “proof” that can be published once
and for all by a social graph company (Facebook, Twitter, etc.) and can be later
publicly verified by any single user using only few (i.e., polylog) queries to the

Interactive Proofs for Social Graphs 579

network (in the random oracle model, the scheme is even more practical and
does not hide any large constants). These proofs can be used for publishing the
company’s annual report and even possibly used in court.

1.2 Related Work

Goldwasser and Sipsers [GS89] presented a general technique that transforms any
interactive protocol to a public coin protocol. At the heart of their transformation
is a public-coin interactive proof for lower bounding the size of a specific set that
is given implicitly to the verifier (he has only membership access to the set). Our
work strengthens this result in several ways. First, we provide an upper bound
together with the lower bound, which gives a complete estimation of the size
of the set (in [GS89] a lower bound was sufficient for their proof). Second, we
provide an arbitrary approximation with ratio ε where in [GS89] the ratio was
assumed to be 2. We note that the protocol given in [GS89] does not work for
better approximations ratios (it is not merely a matter of better analysis, but a
protocol change is required).

There is a generic way to reduce a general approximation ratio of ε to 2, by
taking the Cartesian product of the set with itself. That is, if S is the set, we
estimate the size of Sk which contains all k tuples from S. The main problem
with this is that the set Sk has size |S|k, and thus, the running time of the prover
is at least |S|k, which is not realistic for most sets S and appropriate values k.

Fortnow [For87] also gave a protocol for estimating the size of a general set (he
gives a lower bound and an upper bound), however, in his work the approxima-
tion ratio assumed is super-constant (in fact, his protocol allows distinguishing
between a set of size n and a set of size n2). Moreover, the upper bound he
gives is a private-coin protocol where our protocol is public-coin. As discussed, a
public-coin protocol is desirable, in part for applying the Fiat-Shamir transfor-
mation to get a corresponding non-interactive argument. Note that one cannot
simply apply the [GS89] transformation to make the protocol of [For87] public-
coin as this transformation is proven in the standard model (where the verifier
has full access to the input) and, moreover, this transformation does not preserve
the running-time of the prover (where we aim to have an efficient and practical
prover).

Interactive Proofs of Proximity. In our protocol, the verifier is sublinear in its
input and soundness condition only asserts that what we compute is close to
the real value. This can be modeled as an interactive proof of proximity (IPP)
[EKR04,RVW13]. One can view IPPs as the property testing analogue of inter-
active proofs. More concretely, consider the representation of the graph as a long
indicator vector of size |U | where U is the universe of all possible vertex IDs.
Then, what we develop here is an IPP for the hamming weight of this vector,
which corresponds to the size of the graph. However, there are critical differ-
ences in our goal compared to what is known for IPPs. Our protocols achieve a
multiplicative error ε with respect to the size of the graph. On the other hand,
in an IPP, the distance and error are with respect to |U |, the size of this long
vector. Thus, any hamming weight IPP would not be useful in our setting.

580 L. Katzir et al.

1.3 Paper Organization

In Sect. 2 we give a formal definition of the graph query model in which our
interactive protocols take place, and provide additional required preliminaries.

In Sect. 3 we show our first main result which is a general protocol for esti-
mating the size of any set, where the verifier is given only oracle access to the
set. The proof is split into two parts, one for the lower bound and one for the
upper bound (each in its own subsection).

Then, in Sect. 4 we build upon this protocol and construct a general frame-
work for estimating a large class of functions. The section begin with an overview
of our techniques and then the formal statement and proof.

In Sect. 5 we combine the previous sections (that apply to any set) and show
how to instantiate them on a social graph using random walks and get our
final theorem statements. Additionally, we demonstrate the usefulness of our
framework and show how to estimate various different social graph measures.

Finally, in Sect. 6 we show how to apply the Fiat-Shamir transformation to
get a corresponding non-interactive version of our protocols, in the random oracle
model.

2 Model Definition and Preliminaries

Graph Notations. Throughout the paper, we will consider a social graph. The
graph is denoted by G, its set or vertices is denoted by V and the set of edges
is denoted by E. Usually, n represents the size of the graph, i.e., the number of
vertices in the graph, where m usually represents the number of edges. Using
this notation, |V | = n and |E| = m. Additionally, we denote by di the degree of
vertex i and the sum of degrees by D =

∑n
i=1 di = 2|E|. The maximum degree

of a graph is noted by dmax = maxn
i=1 di.

2.1 Interactive Proofs

An interactive protocol (P, V) for a language L is a pair of interactive Turing
machines; for a instance x we denote by 〈P (x), V (x)〉 the output of V in an
interaction between P and V on common input x.

Definition 1. An interactive protocol (P, V) is an interactive argument system
for a language L ⊂ {0, 1}∗, if V is PPT and the following conditions hold:

– Completeness: For every x ∈ L: Pr[〈P (x), V (x)〉 = 1] ≥ 2/3.
– Soundness: For every P ∗, for every x /∈ L: Pr[〈P ∗(x), V (x)〉 = 1] ≤ 1/3.

We refer to (P, V) as a public-coin proof system if V simply sends the out-
comes of its coin tosses to the prover (and only performs computation to
determine its final verdict). Note that the soundness error and completeness
error can be arbitrary amplified to 2−k by repeating the protocol in parallel
O(k) times.

Interactive Proofs for Social Graphs 581

2.2 The Graph Query Model

In this paper, we construct interactive protocols for languages where the verifier
is sublinear and has specific oracle access to the input. In particular, we consider
languages of graphs. Let U be a universe of elements (e.g., U is the set of all
possible IDs of a vertex in the graph). Let G = (V,E) be a graph where V ⊆ U
and let n = |V |. Every element in x ∈ V is described using log |U | bits and this
will be our “word” size w = log |U |. In our model of computation, we assume
that algorithms can perform operations on words of size w in constant time.
The verifier has oracle access to such a graph G where the oracle ρG is given as
follows:

ρG : U × {0, 1, . . . , |U |} −→ U ∪ {0, 1, . . . , |U |} ∪ {⊥}.
The oracle ρG gets an element x and an index i and returns the ith neighbor of
x in the graph G. If x is not in the graph then it returns ⊥. If x has less than
i neighbors then it returns ⊥. If i = 0 then it returns the number of neighbors
that x has in the graph (this is why the range of ρG is U ∪0, 1, ..., |U |). Formally,
we define

ρG(x, i) =

⎧

⎪

⎨

⎪

⎩

⊥ if x /∈ V or deg(x) < i

deg(v) if x ∈ V and i = 0
u if x ∈ V and u is the ith neighbor of v.

We consider algorithms that have oracle access to ρG. An oracle algorithm A
with oracle ρG can perform queries to ρG and get a response in a single time unit
cost. Thus, the running time of A is a bound on the actual computation time and
the number of oracle queries it performs. Using this, we can define an interactive
protocol between a verifier and a prover where the prover has complete access
to the graph and the verifier has only ρG query access, and performs a small
number of queries.

Definition 2 (Interactive proofs in the graph query model). Let G be a
graph and let 〈P (G), V (G)〉 be an interactive protocol where the instance is the
graph G. We say that the protocol is in the graph query model if the verifier V
has only oracle access to ρG (the prover has explicit access to G). Additionally,
we give the verifier V an arbitrary node x0 in the graph.

Formally, we write the completeness and soundness conditions as follows.

– Completeness: For every G ∈ L:

Pr[〈P (G), V ρG(x0)〉 = 1] ≥ 2/3.

– Soundness: For every unbounded P ∗, and every G /∈ L,

Pr[〈P ∗(G), V ρG(x0)〉 = 1] ≤ 1/3.

582 L. Katzir et al.

2.3 Additional Preliminaries

Theorem 3 (Chernoff-Hoeffding). Let X =
∑m

i=1 Xi be the mean of m
independent Bernoulli (indicator) random variables where E [Xi] = pi. Let μ =
E [X] =

∑m
i=1 pi. Then,

1. Pr [X ≥ (1 + δ)μ] ≤ e− δ2
2+δ ·μ for all δ > 0.

2. Pr [X ≤ (1 − δ)μ] ≤ e− δ2
2 ·μ for all 0 < δ < 1.

Limited Independence. A family of functions H mapping domain {0, 1}n to range
{0, 1}m is k-wise independent if for every distinct elements x1, . . . , xk ∈ {0, 1}n,
y1, . . . , yk ∈ {0, 1}m, we have Prh∈H[h(x1) = y1 ∧ . . . ∧ h(xk) = yk] ≤ 1

2km .

Theorem 4. There exists a family H of k-wise independent functions from
{0, 1}n to {0, 1}m such that choosing a random function from H requires O(k ·n)
bits.

Definition 3. We say that G : {0, 1}d → {0, 1}n ε-fools a circuit class C if for
every C ∈ C it holds that

∣

∣

∣

∣

Pr
s←{0,1}d

[C(G(s)) = 1] − Pr
x←{0,1}n

[C(X) = 1]
∣

∣

∣

∣

≤ ε. (1)

3 Set Cardinality Interactive Proof

In this section, we provide a general interactive protocol for estimating the size
of a (large) given set, with a sublinear verifier that has only oracle access to
the set. Looking ahead, we will apply this protocol on the nodes (and edges) of
the social graph. The task is formulated as follows. There is a universe U and a
subset S ⊂ U of interest. Our goal is to (approximately) compute the size of the
set to within a multiplicative error ε. The prover has complete access to the set
S while the verifier has only limited access to S given by two methods. The first
method is a membership oracle where the verifier can specify an element x ∈ U
and gets as response whether x ∈ S or not. The second method is an efficient
random algorithm D that samples a uniformly random element in the set. We
say that D is a sampler for the set S that uses � bits if D can sample a uniform
element in S using at most � random bits.

One can easily observe that it is impossible to verify that indeed the size of
the set S is exactly n while using a sublinear (in n) number of queries. However,
here our goal is to verify that the size of the set is approximately n. That is, for
every ε > 0 we want a protocol that assures that a given alleged size ñ satisfies
ñ ∈ (1 ± ε)|S| with probability at least 2/3.

To formally define this as an interactive proof for a specific language, we
define the language LS,ε

LS,ε = {(S, ñ) : (1 − ε)|S| ≤ ñ ≤ (1 + ε)|S|} .

Interactive Proofs for Social Graphs 583

The main focus is to minimize the number of queries the verifier performs (both
membership queries and sampling queries). For practical use cases, we addition-
ally want the running-time of the prover to actually be quasi-linear in the size
of the set S (which is achieved in our protocol). In the following theorem the
notation ˜O hides polylog(n) factors.

Theorem 5. Let S be a set of size n with a sampler D that uses � random bits.
Let ε > 0 be a parameter and let LS,ε be the language defined as above. Then,
there is an public-coin protocol for LS,ε with the following properties: (1) The
protocol has two messages (first the verifier then the prover); (2) The verifier
performs at most ˜O(1/ε2) queries (to both D and the membership oracle); (3)
The verifier’s running time and the communication complexity are bounded by
˜O(1/ε2 · �); and (4) The prover runs in time ˜O(n · 1/ε2).

We split the proof into two parts, one for the lower bound and one for the
upper bound. The protocols are described separately for ease of presentation and
since each might be used independently in different contexts. The final protocol
is obtained by simply running the two subprotocols in parallel (without a cost
in the round complexity).

Let n be the real number of nodes in the graph and let ñ be the number
of nodes in the graph claimed by the prover. Throughout, assume for simplicity
that 0 < ε ≤ 1/2. Recall, our goal is to verify that ñ ∈ n ± εn. We begin with
the lower bound.

3.1 Lower Bound

Overview. The general idea of the protocol is inspired by the Goldwasser-Sipser
protocol [GS89]. Goldwasser and Sipser provide a method to compile any pri-
vate coin protocol to a corresponding public-coin protocol. At the heart of their
transformation was a protocol proving that a certain exponentially large set,
given implicitly to the verifier, is indeed large enough. The verifier has only
membership access to this set.

In the protocol, the verifier sends a (pairwise independent) hash function
h ∈ H that hashes the elements of the set to a range of size ñ. The prover is
asked to find an element that is mapped to a specific bin (i.e., an element in
the range of the hash). Their main observation is that is the set is indeed large
enough, then such an element exists with higher probability than if the set is
smaller. This suffices for catching a cheating prover (with some probability) and
at the end the soundness and completeness of the protocol are amplified.

A Better Statistical Measure. Put in more general terms, the verifier picks a
random hash function, and is concerned with how the elements of the set are
distributed among the different bins. The Goldwasser-Sipser protocol asks the
prover to send a simple “statistical measure” of proving that a random bin is
not empty. This measure was sufficient for their protocol as they had a factor
of 2 separating from a large set and a small set, however, their protocol cannot

584 L. Katzir et al.

separate smaller differences in the sizes, and in our case, we only have a factor
of (1 + ε).

There is a generic way to amplify this factor by taking the Cartesian product
of the set with itself. That is, if S is the set, we estimate the size of Sk which
contains all k tuples from S. The main problem with this approach is that it
does maintain the running of the prover which is now at least O(|S|k) (k is not
even a constant in general, and we aim for linear time prover).

Instead, we look at a more involved statistic, namely, the size of the preimage.
The verifier samples a single hash function h ∈ H which is sent to the prover.
The prover responds with all the preimages z of fixed output y with respect to
h. The verifier asserts that z is indeed a set of preimages, and then counts the
number of elements in z and accepts if and only if it is higher than its expectation
(minus a small fraction).

The hash family we use is a t-wise independence hash family. Let H =
{h : U → [c · ñ/k]} be a family of t-wise independent hash functions, where t
and c are a parameters that will be defined later. The c parameter is used to
ensure the h’s co-domain(range) is a power of 2 and also to control the error
probability. It would be easier for the reader to think of the hash functions as
being completely random, and moreover, the analysis will be first shown under
this assumption. Then, in Sect. 3.3 we show how the same analysis (with negli-
gible changes in the soundness and completeness) holds for our family of t-wise
independent hash functions.

The formal description of the protocol is given in Fig. 1.

Fig. 1. Our lower bound protocol for the approximate size of a set.

Formally, this protocol is an interactive protocol for a similar language of
LS,ε only where we consider only the lower bound. Thus, we define

L′
S,ε = {(S, ñ) : (1 − ε)|S| ≤ ñ} .

We show the following lemma which specifies the properties of the protocol with
respect to parameter c.

Interactive Proofs for Social Graphs 585

Lemma 1. Given a parameter c, and ε the protocol in Fig. 1 is an interactive
protocol for L′

S,ε with the following properties: soundness error e−2c; complete-
ness error e−4c; total communication O(c/ε2 ·polylog(n)); verifier running time
O(c/ε2 · polylog(n)); prover running time O(1/ε2 · n · polylog(n)).

We turn to analyze the protocol (i.e., Fig. 1). As mentioned, the completeness
and soundness are first analyzed under the assumption that each h is a truly
random function. After the proof, in Sect. 3.3 we show that the limited indepen-
dence hash function suffices and compute its complexity (both in terms of the
key size and the evaluation time), as this affects the communication complexity
of the protocol and the verifier’s running time.

Completeness. Assume that ñ = n and that the prover behaves honestly accord-
ing to the protocol. Denote the elements of the set by S = (x1, . . . , xn). Let Zi

be the indicator h(xi) = y. Namely, Zi = 1 iff h(xi) = y. Then, since the hash
function is random we get that E [Zi] = c · k/n. Clearly |Z| =

∑

i Zi, and thus
we get

E [|Z|] =
n

∑

i=1

E [Zi] = n · c · k

n
= c · k.

Since we assumed that h is a completely random function, we get that we the
random variables Z1, . . . , Zn are independent. Using a Chernoff-Hoeffding bound
(see Theorem 3) we entail

Pr [reject] = Pr [Z ≤ (1 − ε/4) · c · k] ≤ e− ε2

2·42 ·c·k = e−2c.

Soundness. Assume that the instance is not in the language, that is, ñ > (1+ε)n.
Let ˜Z be the set sent by the prover (i.e., the alleged Z). If the verifier did not
reject at step (3) then it must be that ˜Z ⊆ S and ˜Z ⊆ Z, and therefore | ˜Z| ≤ |Z|.
Again, let Zi be the indicator h(xi) = y. In this case, we have that

E [|Z|] =
n

∑

i=1

E [Zi] = n · c · k

ñ
= c · k < c · k

n

(1 + ε)n
=

c · k

1 + ε
.

We bound from above the probability that the verifier accepts in this case.

Pr [accept] ≤ Pr
[

| ˜Z| > (1 − ε/4) · c · k
]

≤ Pr [|Z| > (1 − ε/4) · c · k]
= Pr [|Z| − E [|Z|] > (1 − ε/4) · c · k − E [|Z|]]
≤ Pr [|Z| − E [|Z|] > (1 − ε/4)(1 + ε)E [|Z|] − E [|Z|]]
= Pr

[|Z| − E [|Z|] > (ε − ε/4 − ε2/4)E [|Z|]]

≤ Pr [|Z| − E [|Z|] > ε/2 · E [|Z|]] < e−4c.

This shows the soundness error and completeness error of the protocol. Notice
that one can set c to be a small constant (e.g., c = 2) to get the standard 1/3

586 L. Katzir et al.

and 2/3 soundness error and completeness requirements. We now turn to show
the other complexity measures of the protocol.

Complexity Measures

– Queries. The verifier performs c · k = O(c/ε2) membership queries, one to
each z ∈ Z. Note that there is no need for the prover to send Z whose size
is bigger than c · k. That is, if Z is larger than c · k then the prover simply
sends an arbitrary subset Z ′ ⊂ Z of size c · k. This way, the verifier performs
at most O(c · k), and it also bounds the communication complexity.

– Communication. We bound the total amount of communication in the proto-
col (both from prover to verifier and from verifier to prover). The verifier sends
a hash function with O(t) bits, where t = polylog(n) is the independence of
the hash function. The prover replies with a set that have total size of O(c ·k)
(see argument above) and thus can be specified using O(c · k · log n) bits. The
total communication is thus O(c · k · polylog(n)) = O(c/ε2 · polylog(n)).

– Verifier running-time. The verifier is rather simple and its only computation
besides choosing randomness and reading the communication is to compute
the hash function h on all z ∈ Z. The hash function can be computed in time
polylog(n) for a single element, there are O(c · k) elements and thus the total
running time of the verifier is O(c/ε2 · polylog(n)).

– Prover running-time. The prover runs over all n nodes in the graph and checks
if it a preimage of y. This takes time O(1/ε2 · n · polylog(n)).

3.2 Upper Bound

Overview. In the previous subsection, we have devised a protocol for a lower
bound on the set size. In this subsection, we provide a protocol for an upper
bound on the size of the set. An upper bound for a set is somewhat counter-
intuitive, as the prover can always act honestly on a small subset. Since the
verifier has limited access to the set, it would be hard to notice this.

Here, we exploit the fact that the verifier has uniform random access to the
set. If the prover ignores an ε fraction of the set, and the verifier samples 1/ε
random elements then the verifier has a good chance of sampling an element that
was ignored by the prover. However, even if this happens, how can the verifier
check if the prover included this element in this proof? After all, the proof is
very short compared to the large set (the set is of size n and the proof is roughly
logarithmic in the size of the set).

A Simple but Expensive Solution. Our protocol is based on the “birthday para-
dox” and works as follows. We begin with a simple and not query efficient proto-
col. We have the verifier sample roughly O(

√
ñ) random elements from the set.

If indeed n = ñ, then we expect to see a collision (i.e., two samples that ended
with the same element). However, if the set is much larger, then such a collision
is less likely. This is a good protocol, however, the verifier has a very high query
complexity.

Interactive Proofs for Social Graphs 587

The Actual Protocol. Instead, we let the prover simulate this process for us. We
ask the prover to perform O(

√
ñ) samples and tell us if he saw a collision. This is

very naive, as it is hard to force that prover to behave this way. Thus, we again
use a random hash function. Here the goal of the hash is fixed some common
randomness that is used in order to perform the O(

√
ñ) samples.

Let H = {h : U → [�]} be a family of hash functions (recall that � is the
number of bits used by the algorithm D. Then, the prover uses the values of
the hash function h(i) as random bits to use to run the D, and finds 1 ≤ i �=
j ≤ ñ such that running the sampler with random coins h(i) results in the same
elements as with the coins h(j), namely, D(h(i)) = D(h(j)). The prover sends i
and j to the verifier which can easily verifier that D(h(i)) = D(h(j)) (and that
i �= j) with merely 2 queries!

The description above heavily uses the fact that the hash function h is truly
random. Again, in Sect. 3.3 we show that a limited independent hash function
suffices for this analysis as well. Formally, the protocol is given in Fig. 2.

Fig. 2. An interactive protocol for ensuring an upper bound of the set size.

Completeness and Soundness. We turn to analyze the protocol. Here, we do
not argue completeness and soundness separately but rather in a single joint
argument. We denote the completeness by α and the soundness error by β and
show that α − β = γ, where γ is not too small. Then, using parallel repetition,
we can expand the gap between the completeness and soundness error by an
arbitrary constant of our choice. In particular, if γ is the gap, then, to get the
desired completeness 2/3 and soundness error 1/3, the number of repetitions
required is O(1/γ) (see e.g., [HPWP10]). In our case, we show that γ ≥ Ω(ε)
which means that we need O(1/ε) repetitions of the protocol we describe above.

Define α and β as follows:

α = Pr
[

∃i, j ∈ [
√

ñ] : D(ri) = D(rj) | ñ = n
]

,

β = Pr
[

∃i, j ∈ [
√

ñ] : D(ri) = D(rj) | ñ ≤ (1 − ε)n
]

.

588 L. Katzir et al.

Note that α and β are indeed the completeness and soundness parameters of
the protocol. We consider what is known to be “the birthday paradox”. Given
m uniformly chosen items r1, . . . , rm from a set of size n we have that

Pr [r1, . . . , rm are distinct] =
m−1
∏

i=0

(

1 − i

n

)

.

We are interested in analyzing this formula. Thus, before we continue the proof
of the completeness and soundness we provide the following technical lemma.
Lemma 2. For any integer 1 ≤ k ≤ n

2 ,

e− k(k+1)
2n − (k+1)3

3n2 <
k

∏

i=0

(

1 − i

n

)

< e− k(k+1)
2n .

Proof. First, we observe that
k

∏

i=0

(

1 − i

n

)

= exp

(

k
∑

i=0

ln
(

1 − i

n

)

)

.

Next, we note that −x−x2 < ln (1 − x) < −x holds for 0 < x ≤ 1/2 (the second
inequality even holds for 0 < x < 1). In addition, for every positive k we have
k(k + 1)(2k + 1) < 2(k + 1)3. Finally,

−k(k + 1)
2n

− k(k + 1)(2k + 1)
6n2

<
k

∑

i=0

ln
(

1 − i

n

)

< −k(k + 1)
2n

.

��
Claim 3.2. For any x ≥ 1, c > 0 and ε > 0,

ce−x − e− x
1−ε > e−x [c − (1 − ε)] .

Proof.

ce−x − e− x
1−ε = e−x

[

c − e− x
1−ε+x

]

= e−x
[

c − e−x ε
1−ε

]

> e−x [c − (1 − ε)x] ≥ e−x [c − (1 − ε)] .

The for first inequality we used e− z
1−z < 1−z for z > 0. The for second inequality

we used x ≥ 1. ��
We choose k as the smallest integer such that k(k + 1) ≥ 2n. Using the

Lemma 2 and Claim 3.2, we get

α − β > e− k(k+1)
2n − (k+1)3

3n2 − e− k(k+1)
2n(1−ε)

> e− k(k+1)
2n

(

e− (k+1)3

3n2 − (1 − ε)
)

> e− k(k+1)
2n

(

1 − (k + 1)3

3n2
− (1 − ε)

)

= e− k(k+1)
2n

(

ε − (k + 1)3

3n2

)

,

Interactive Proofs for Social Graphs 589

where the three inequalities follow since: (1) the first inequality is due to Lemma2
and the definition of α and β; (2) the second inequality is due to Claim3.2 for

x = k(k+1)
2n , c = e− (k+1)3

3n2 and ε (and the choice of k); and (3) the third inequality
is due to e−x > 1 − x. Since (k − 1)2 < (k − 1)k < 2n ≤ k(k + 1), we get that
k < 1 +

√
2n which yields

1. k(k+1)
2n < 1 + 2+3

√
2n

2n ;

2. (k+1)3

3n2 < (2+
√
2n)3

3n2 < 2√
n
.

For any n ≥ 1000, we get e− k(k+1)
2n

(

ε − (k+1)3

3n2

)

> 1
4

(

ε − 2√
n

)

. Assuming ε ≥
2√
n
, we have α − β ≥ ε

12 , as desired.

Complexity Measures. We compute the complexity measures of the underlying
protocol and then its cost for the amplified protocol. Recall that we perform
parallel repetitions for O(1/ε) repetitions. All the complexity measures below
are actually subsumed by the upper bound.

– Queries. The verifier performs only two queries, for the given i and j. After
amplification, the number of queries is O(1/ε).

– Communication. The verifier sends h which takes polylog(n) bits. The prover
simply sends i and j which are O(log n) bits. After amplification, the com-
munication complexity is O(1/ε · polylog(n)).

– Verifier running-time. The verifier’s running time is mainly the running time
of D, which is O(�·polylog(n)), and computing the hash function h which takes
time polylog(n). After amplification, the running time is O(1/ε·�·polylog(n)).

– Prover running-time. The prover runs over all i ∈ [
√

n] and runs D on h(i)
and searches for collisions. The running time is O(

√
n · polylog(n)), and after

amplification it is O(1/ε · √
n · polylog(n)).

3.3 Using Explicit Hash Functions

The analysis of the above upper bound and lower bound were performed in a
model where the sampled hash functions h ∈ H were assumed to be truly random
functions. This approach is useful for making the analysis easy to read and is
a complete proof in the random oracle model. Practically speaking, one could
implement the protocol above using a heuristic hash function such as SHA256
and similar implementations as the random oracle. This would heuristically be
secure and save a lot in terms of communication since the random oracle serves a
large common source of randomness and thus eliminating the need of the verifier
to send random coins.

Nevertheless, we show how to use explicit limited independent hashes func-
tions to make the analysis provably secure where the description of the hash is
small (it will be polylog(n)). Thus, our protocol is secure in the standard model
with no heuristics or any further assumptions.

We give different arguments for the lower bound and upper bound, but in
both cases we rely on pseudorandom generators. The main idea in both the lower

590 L. Katzir et al.

bound and upper bound is similar. The analysis of the protocols relies on the
probability of a certain event. For example, in the lower bound, we relied on the
probability of Z to be large enough for completeness and to be small enough for
soundness. Instead of using a completely random hash function, we use pseudo-
random hash function. The main question is which definition of “pseudo” suffices
for our protocol, which we now argue separately.

What we show here is that the event we rely on can be identified by a
low depth circuit. Thus, it will suffice to use polylog(n) wise independent hash
function as these fool AC0 circuits.

Lower Bound. Consider the event E that the set Z = h−1(y) has size at least
(1 − ε/4) · c · k. The completeness of the protocol shows that if the instance is in
the language then the probability of E is high, and the soundness of the protocol
shows that when the instance is not in the language then the probability of this
event is low. The probability is taken over a truly random hash function h, where
takes at most |U | · log n bits to describe.

The key point is that this event can be identified by a low space algorithm,
and thus we can use a pseudorandom generator to fool it. Define an algorithm
C that has gets x1, . . . , xn and y and outputs 1 if and only if

|h−1(y)| > (1 − ε/4) · c · k,

where h is a truly random function defined by the random coins of the algorithm.
What the analysis of the completeness of the protocol shows is that for any
x1, . . . , xn and y it holds that Pr[C(x1, . . . , xn, y) = 1] ≥ 1−e−4c. The soundness
shows that in the “no” case it holds that Pr[C(x1, . . . , xn, y) = 1] ≤ e−2c.

It is easy to see that this algorithm C can be implemented in O(log n) space.
Indeed, the algorithm enumerates over all x1, . . . , xn and for each computes
h(xi) by tossing coins (no need to remember the coins) and counting how many
of them equal h(xi) = y (where or course counting can be done in small space).

Thus, it suffices to use Nisan’s pseudorandom generator to fool algorithm C.

Theorem 6. Let C be the family of algorithms computable in log m space. There
is a PRG G : {0, 1}log2 m → {0, 1}m that 1/m-fools C.

That is, we do not need the verifier to send |U | log n = poly(n) = m random bits.
Instead, it suffices for the verifier to send a seed of length O(log2 n) to the prover
which will then act the same on the m pseudorandom bits which the generator
G provides. This has a negligible effects in the completeness and soundness error
of the protocol and reduces the description of the hash function to O(log2 n)
bits.

Upper Bound. We now move to the upper bound. In this protocol, we used the
truly random property of the hash function where we claimed that for ri =
D(h(i)) it holds that

Pr [r1, . . . , rm are distinct] =
m−1
∏

i=0

(

1 − i

n

)

.

Interactive Proofs for Social Graphs 591

To argue this with an explicit hash function, we will the following theorem
due to Braverman [Bra10] and its improvement by Tal [Tal17] and Harsha and
Srinivasan [HS19].

Theorem 7 (Follows from [Bra10,Tal17,HS19]). Let C be an AC0 circuit of
size m and depth d over n bits. Let μ be a distribution that is r = r(m, d)-
independent over n bits and let U be the uniform distribution over n bits. Then,
|Ex←μ[C(x)] − Ex←U [C(x)]| ≤ 1

m where r = (log m)O(d).

Let C be a circuit that gets an input a random string R = r1, . . . , r√
ñ, and

works as follows:

C(r1, . . . , r√
ñ) = 1 if and only if D(ri) �= D(rj) for all i �= j.

Recall that D uses at most � bits of randomness assume, without loss of gener-
ality, that log m ≤ �. Then, the circuit C can be implemented as an AC0 circuit
(constant depth) of size |C| = 2O(�) by precomputing D(r) for all r ∈ {0, 1}� and
then searching for collisions. Thus, there exists a constant c such that �c-wise
independence 1/n-fools C. Therefore, we set H to be a family of �c-wise indepen-
dent hash functions from Theorem4. Each function h ∈ H maps [n] to {0, 1}�

and can be described using O(�c · log n) bits. In particular, if � = polylog(n) then
each hash function can be described using polylog(n) bits and the difference in
the soundness and completeness is at most 1/n.

4 The General Framework

We have seen an interactive protocol for estimating the size of a set while given
only oracle access to the set. In this section, building on this protocol, we extend
it to get a more general framework for computing arbitrary function quantiles of
the set (the precise definition is below). Then, the framework is used to estimate
other interesting measures of the graph, such as degree distribution, the local
clustering coefficients distribution and more (see Sect. 5), given that the size of
the set has already been established.

Fix a set S of interest. Let S≤u be the set of all elements in S whose f value is
less or equal u. Formally, S≤u = {x ∈ S | f(x) ≤ u}. Moreover, we given a similar
definition for other operations such as greater than, equal and so on. Formally,
for any ◦ ∈ {≥, >,=, <,≤} we define S◦u to be S◦u = {x ∈ S | f(x) ◦ u}.

Given a function f , a set S of known size n, and a parameter q we seek to
compute the q-th quantile of f which is a value Af (q) such that:

∣

∣

∣S≤Af (q)

∣

∣

∣ ≥ n · q; and
∣

∣

∣S≥Af (q)

∣

∣

∣ ≥ n · (1 − q)

In particular, if q = 1/2 then Af (q) is the median of the set S with respect to the
function f . As before, we will not compute Af (q) exactly (which is impossible

592 L. Katzir et al.

with a sublinear-time verifier), but rather give an approximation ˜Af which with
high probability satisfies

˜Af (q) ∈ [Af ((1 − ε)q), Af ((1 + ε)q)].

Note that the approximation above is with respect to the quantile and not the
value Af (q).

Overview. We begin with a high-level overview of the protocol. We divide the
elements into three “buckets” (or bins) according to their f(x) values. Each
bucket includes all nodes with values in a specific range, where the ranges are
(−∞, ˜Af (q)), [˜Af (q), ˜Af (q)], and (˜Af (q),∞). The size of each bucket can be
communicated using the lower bound protocol (Sect. 3.1).

Therefore, our goal now is to learn the size of each bucket. Actually, approx-
imate values suffice as well. Here we reduce the problem to our lower bound
protocol. To run the cardinality protocol, we need to implement the two oracle
queries for the verifier. The membership queries are easy to implement, as we
simply check that the element x is in the set, then compute f(x) and see that
its value is in the buckets range (given ˜Af (q) the ranges are fixed and known to
the verifier).

Multiple q Values. The framework can be extended to multiple q values. We can
reduce the number of queries if we perform the protocol for buckets induced by
the ranges intersection together instead of one-by-one.

Fig. 3. A detailed description of our interactive protocol for estimating the quantile q
of a function f on the elements of a given set S of known size n.

Theorem 8. The protocol described above (See Fig. 3) asserts that

˜Af (q) ∈ [Af ((1 − ε)q), Af ((1 + ε)q)],

with soundness error 1/3, completeness error 1/3, communication complexity
˜O(1/ε2), verifier running-time ˜O(1/ε2), and prover running-time ˜O(1/ε2 · n).

Interactive Proofs for Social Graphs 593

Proof of Theorem 8. The lower bound protocol (see Fig. 1) is invoked three time.
To correct for potentially increased error we use a large enough constant c (as
specified in Lemma 1) such we can union bound over all invocations of the proto-
col (e.g., c ≈ 3). Thereby, soundness is guaranteed with probability 3e−2c < 1/3
(by union bound) and completeness guaranteed with probability e−4c < 1/3.

Given the guarantees of the lower bound protocol we can conclude that:
∣

∣

∣S≤ ˜Af (q)

∣

∣

∣ =
∣

∣

∣S< ˜Af (q)

∣

∣

∣ +
∣

∣

∣S= ˜Af (q)

∣

∣

∣ ≥ (1 − ε) (ñ<q + ñ=q) ≥ (1 − ε)n · q.

This implies that ˜Af (q) ≥ Af ((1 − ε)q). On the other hand, we have that
∣

∣

∣S≥ ˜Af (q)

∣

∣

∣ =
∣

∣

∣S> ˜Af (q)

∣

∣

∣ +
∣

∣

∣S= ˜Af (q)

∣

∣

∣ ≥ (1 − ε) (ñ=q + ñ>q) ≥ (1 − ε)n · (1 − q).

This implies that ˜Af (q) ≤ Af ((1 + ε)q). Together, this concludes the proof.
��

Approximating n. This section assumes that the size n of the set has already been
established, and is known to the verifier. If this is not the case, then one can run
our protocol for estimating the size of the set first, getting an approximation
of n and then running the protocols in this section. Note that if one wants to
compute many different functions f , then it suffices to estimate n once, and
then run these protocols for any f . For this reason, we did not explicitly include
running the cardinality estimation protocol in this section but assumed that it
was already established. Finally, note that if one has only an approximation of
the size n, then the error of the approximation will be added to the error of the
protocol in this section. Thus, in order to get a desired error of ε then one should
use ε/2 in each protocol.

5 Applications to Social Graphs

The framework we developed can be used to estimate the size of any set S.
Moreover, the suggested framework can be used to approximate the values dis-
tribution of any arbitrary function on elements of S. In order to implement
these protocols, the verifier needs to have access to the set via the two methods
of membership and random sampling. In this section, we show how to implement
this access with a social graph and hence get a protocol to estimate the size of a
social graph and other complexity measures.

Suppose we have a social graph G with vertex set V and edge set E. We are
interested in estimating the size of the graph, that is, we let the set S be the
set V of vertices. First, notice that implementing membership access is easy, as
such a query is included in the interface of a social graph. Given an element x,
we can check if x ∈ S by checking if x is a valid vertex in V using a single query
to the graph. The more involved part is sampling a uniformly random vertex in
the graph, as this is not part of the interface given by a social graph. However,
using random walks on the graph, we can implement sampling a random vertex
using a small number of queries to the graph. This strongly relates to the mixing
time of the graph, and we elaborate below on how to do this and its cost.

594 L. Katzir et al.

5.1 Generating Random Samples

Let G = (V,E) be an undirected graph with n vertices, and let dx be the
degree of a node vx ∈ V . A random walk with r steps on G, denoted by
R = (x1, x2, . . . , xr), is defined as follows: start from an arbitrary node vx1 ,
then choose a uniformly random neighbor (i.e., xi+1 is chosen with probability
1

dxi
) and repeat this process r − 1 times. As r grows to infinity, the probability

that the last step of this random walk lands on a specific node vi, i.e., Pr [xr = i],
converges to pi � di/D. The vector π = (p1, p2, . . . , pn) is called the stationary
distribution of G. We recommend the book [LPW08] and additionally the sur-
vey [LLE96] for an excellent overview on random walks and their properties.

The actual number of steps needed to converge to the stationary distribution
depends on what is called as the mixing time of G. There are several different
definitions of mixing time, many of which are known to be equivalent up to
constant factors [LPW08]. All definitions take an ε parameter to measure the
distance between the stationary and the induced distribution by the random
walk. We denote the mixing time of graph G by τmix(ε). We use the following
definition:

Definition 4. Let p be a distribution over the vertices of the graph G. Let πr(p)
be the distribution of the end point of an r step random walk starting from a
vertex chosen in accordance with p. Then we say that ε-mixing time of the graph
is τmix(ε) if for any p we have that the total variation is less than ε. Namely,

∥

∥πτmix(ε)(p) − π
∥

∥

1
≤ ε.

It is customary to define the mixing time to be τmix := τmix(1/4). Choosing
this (or any other constant) is not very significant as the value of ε affects the
value by at most a logarithmic amount [LPW08]:

τmix(ε) ≤ �log2 1/ε� τmix.

Social network graphs are known to have low mixing times. Recently,
Addario-Berry et al. [ABL12] proved rigorously that the mixing time of
Newman-Watts [NW99a,NW99b] small world networks is Θ(log2 n). Mohaisen
et al. [MYK10] provide numerical evaluation of the mixing time of several net-
works. The empirical evidence provided by [MYK10] support the claim that
the theoretical argument by Addario-Berry et al. [ABL12] extends to real world
social networks. Specifically, in [MYK10, Table 1 and Figure 2] it is shown that
to get total variation close to 0, the number of steps should be r = log2 n for
the Facebook network, r = 3 log2 n for the DBLP and youtube networks, and
r = 10 log2 n for the Live Journal network.

Sampling a Random Vertex. There are three popular ways to sample a node
uniformly at random [CDKLS16] (and matching lower bounds [CH18]). As in
this model we do not have any prior knowledge of the graph, we use rejection
sampling.

Interactive Proofs for Social Graphs 595

In this processes we start by performing a random walk for r = τmix(ε) steps.
The stationary distribution is proportional to the degree of the vertex, that is
Pr [xr = vi] = di/D. To fix the dependency on the degree, after preforming the
random walk, we accept the vertex with probability 1/di and reject it otherwise.
Thus, the expected probability for rejection is

∑n
i=1 1/di · di/D = n/D = 1/Δ,

and the expected number of trials until acceptance is Δ. Using this approach to
sample random vertices, we get the following theorem.

Theorem 9. Let G be a graph of size n with mixing time τmix and average
degree Δ. For every ε > 0, there is a two-message public-coin interactive protocol
to estimate the size of the graph within an error ε, in the graph query model where
the verifier’s query complexity and communication are bounded by O(1

ε2 · log 1/ε ·
τmix · Δ) queries, and the prover runs in ˜O(n · 1/ε2) time.

Sampling a Random Edge. Sampling an edge uniformly at random from the graph
can be achieved as follows: (1) generate a random node vi from the stationary
distribution; (2) pick one of vi’s neighbors uniformly at random. The probability
for sampling an edge e = (vi, vj) is di

D · 1
di

+ dj

D · 1
dj

= 1
|E| .

The mixing time of the edges is bounded by the mixing time of the nodes2.
Note that no rejection is needed here. Thus, an edge is sampled using O(τmix)
queries, without a dependency on the average degree of the graph. We apply the
framework on the set of edges of the graph and get the following theorem.

Theorem 10. Let G be a graph with m edges and mixing time τmix. For every
ε > 0, there is a two-message public-coin interactive protocol to estimate m
within an error ε, in the graph query model where the verifier’ query complexity
and communication are bounded by O(1

ε2 · log 1/ε · τmix) queries, and the prover
runs in ˜O(m · 1/ε2) time.

5.2 The Average Degree

For a graph with n nodes and m edges, the average degree is m/n. The average
degree is a crucial property of a social graph ([DKS14]). Estimating the average
degree can be done using Theorems 9 and 10 when using ε′ = ε/4, where one
can obtain the following bounds:

m

n
(1 − 2ε′) <

m(1 − ε′)
n(1 + ε′)

<
m̃

ñ
<

m(1 + ε′)
n(1 − ε′)

<
m

n
(1 + 4ε′).

The number of queries required by the prover for this is then O(1
ε2 · log 1/ε ·τmix ·

Δ).

2 Since any ε deviation is further divided by the vi’s degree.

596 L. Katzir et al.

5.3 Degree Distribution

In this subsection, we show how to use our framework to estimate the degree
distribution of the graph, given that we have already established the size of the
graph. We set the function f(v) = d(v) and the use of the framework (The-
orem 8) immediately yields the nodes degree distribution. For a parameter b,
the framework returns all quantiles q = (1/b, 2/b, . . . , (b − 1)/b). This is a very
robust surrogate for the full nodes’ degree distribution.

Theorem 11. Let G be a graph of size n. Let b be an integer and let ε > 0.
Let Af (q) = (Af (1/b), Af (2/b), . . . , Af ((b − 1)/b)) be the quantiles of the nodes’
degree. There is a three-message protocol for estimating Af (q) (given n) to within
a factor of ε in the graph query model where the verifier performs ˜O(ε−2) queries
to the graph (this also bounds the communication complexity and the verifier’s
run-time).

5.4 Local Clustering Coefficients

Besides the degree distribution, one of the interesting measures for social graph
is the distribution of the local clustering coefficients [CRTB06,UKBM11]. The
local clustering coefficient of a node quantifies how close the sub-graph of the
node and its neighbors to being a clique. The notion of social graph composed
by small overlapping mini-communities is captured by this node-centric view.
In turn, the local clustering coefficients can be used to quantify how close is a
graph to a small-world network.

Let Ni be the set of neighbor nodes of the node vi. The number of edges
between any two nodes in Ni is at least 0 and at most di(di − 1)/2. The local
clustering coefficient Ci measures the fraction between the actual number of
edges between nodes in Ni and the maximum number of such edges. Thus,
0 ≤ Ci ≤ 1. Formally,

Ci =
| {(j, k) : (vj , vk) ∈ E, vk, vj ∈ Ni, j �= k} |

di(di − 1)
.

We set the function f(vi) = Ci and the use of the framework (Theorem8)
immediately yields the local clustering coefficient distribution. The computation
of f(vi) in our model requires O(d2i) queries. For simplicity, we assume that
we additionally have oracle access to the mutual neighbors of two vertices, or
alternatively, can get the full list of neighbors in a single query which reduces
the cost to O(di) queries. We denote by dmax the maximum degree of any node
in the graph.

Theorem 12. Let G be a graph of size n. Let b be an integer and let
ε > 0. Let Af (q) = (Af (1/b), Af (2/b), . . . , Af ((b − 1)/b)) be the quantiles of
{C1, C2, . . . , Cn}. There is a three-message protocol for estimating Af (q) (given
n) to within a factor of ε in the graph query model where the verifier performs
˜O(ε−2·dmax) queries to the graph (this also bounds the communication complexity
and the verifier’s run-time).

Interactive Proofs for Social Graphs 597

5.5 Social Graphs and Society

As a result of the growing influence of social networks, the question of the com-
panies obligations and responsibilities is a subject of a heightened discussion.
Various companies were required to prove that they are following various laws
and guidelines, and to back their claims with data. Our protocol can be applied
to some of these claims and we elaborate on two examples that are of particular
interest.

Bots and Fake Accounts. Companies, political organizations and other entities
are known to use bots to fabricate support, notion of validity or image of popu-
larity. Malicious actors use fake accounts for various attacks on private people or
groups of users. In light of public outrage on various events in the recent years,
social networks are making efforts to fight this issue.

The detection of fake accounts is the subject of many studies in recent years
(see, e.g. [XFH15,EAKA17]). These studies, together with our protocol, can
be used to publicly prove that the proportion of fake users is low, or at least
decreasing after certain policies were brought into effect.

For example, in many cases, fake accounts appear in clusters that share
similar emails, dates of joining the network and other features. One can apply our
framework with a function f(v) that returns a “similarity” measure of a vertex
v to its neighbors, for some appropriate definition of similarity. In a healthy
network we would expect the average similarity to be somewhat high but beneath
a certain trivial threshold. We also expect the number of individual vertices with
a suspiciously high neighbor-similarity to be low. It is crucial to require social
networks both to keep track of these and other “red flags” and prove that they
are indeed fighting the phenomenon.

Echo Chambers. Social networks are one of the main stages for political debate,
compared by many to a virtual “town square” where different people have a
chance to debate their opinions. In contrast to this, others claim that instead
of introducing various opinions, social networks close people in echo chambers
where the only opinions that they are exposed to are similar to theirs.

Extensive research has been done on this subject for various social network
(see, e.g., Facebook [QSS16] or Twitter [BJNTB15]). In many cases, it is pos-
sible to determine the standing of users on controversial subjects, and explore
the connection between various parties. One might make use of use protocol to
estimate the number of edges in the graph where each endpoint of the edge has
a user with a different stand. This might be useful to track how much diversity
are users exposed to in the network.

The above are only two of the many phenomena that social media exhibits.
Our protocol allows researchers from various fields to demand reliable data and
use it to improve our interaction with social media in the upcoming future.

6 Non-interactive Succinct Arguments for Social Graphs

We have described an interactive protocol for estimating the size of a social
graph and other complexity measures. Our protocols are AM protocols – they

598 L. Katzir et al.

are public-coin and consist of a constant number of rounds. One might ask if
this already limited interaction can be further reduced to a completely non-
interactive setting where the prover sends a proof and the verifier (probabilis-
tically) decides whether to accepts or reject (an MA protocol). Such a non-
interactive protocol is very mush desirable: a social graph provider can publish a
proof, once and for all, and any user can later verify the proof on its own, using
a small number of queries to the graph. This eliminates the need of the prover
to interact with each verifier and to be online on time of verification.

Towards this end, we observe that our protocols can be compiled to non-
interactive argument systems in the random oracle model. In such an argument
system, proofs of false statements exist, but it is computationally hard to find
them. Here, computation is measured by the number of queries performed to the
random oracle. We apply the common approach to eliminate interaction, which
is called the Fiat-Shamir transformation or heuristic (first used in [FS86]), that
is applicable to any public-coin protocol (this is another reason why we insisted
on having a protocols public-coin). In the Fiat-Shamir setting, the parties have
access to a random oracle, and the prover is computationally limited: it can only
perform a (polynomially) bounded number of queries to the random oracle.

The security of the compiled protocol, in general, is not clear and requires
careful analysis [Can+19,CCRR18,CCHLRR18,KRR17]. However, in our case,
since our protocols have only a constant number of rounds (it is either a single
round for estimating the size of the graph, or two rounds for the general case),
it is easy to argue about its soundness. In general, the compiler uses the random
oracle to define the randomness sent by the verifier. Very roughly, on prover mes-
sage Π, the prover uses the randomness in ρ(Π) as the verifier’s next message,
where ρ is the random oracle (see [Mic00,BCS16] and [NPY18, Section 8.1] for a
more precise description). As long as the protocol had negligible soundness, then
the compiled protocol will be sound (against cheating prover that can perform at
most polynomially many queries to the random oracle). Recall that to achieve
soundness 2−λ it suffices to perform parallel repetition of the protocol O(λ),
which yields a multiplicative overhead of λ in the communication complexity
and query complexity of all protocols. The resulting argument size is simply the
communication complexity of the amplified protocol.

The result of this compilation is quite remarkable. A company or social net-
work provider (e.g., facebook, twitter, linkedin, youtube) can provide, in their
public report, a proof of the health of its network, in terms of the number of users
from different communities and other health measures such as local clustering
coefficient, distribution of degrees and so on. The proof is written once in the
report without a specific verifier in mind. Then, any individual (a private citi-
zen, shareholders, potential buyer) can look at the report and verify its validity.
This might have an effect on the way such provides manage their network, with
the aim to more transparent and truthful reports. These reports are also critical
for business development issues, choosing between networks for advertisement
campaigns or for launching social applications.

Interactive Proofs for Social Graphs 599

Acknowledgments. This work was done (in part) while the second and third authors
were visiting the Simons Institute for the Theory of Computing. Eylon Yogev is funded
by the ISF grants 484/18, 1789/19, Len Blavatnik and the Blavatnik Foundation, and
The Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University.

References

[ABL12] Addario-Berry, L., T, Lei.: “The mixing time of the Newman-Watts
small world”. In

[ACELP13] Alvisi, L., Clement, A., Epasto, A., Lattanzi, S., Panconesi, A.: Sok:
the evolution of sybil defense via social networks. IEEE (2013)

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle proofs.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–
60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53644-5 2

[BJNTB15] Barberá, P., Jost, J.T., Nagler, J., Tucker, J.A., Bonneau, R.: Tweeting
from left to right: is online political communication more than an echo
chamber? Psychol. Sci. 26, 1531–1542 (2015)

[BYG08] Bar-Yossef, Z., Gurevich, M.: Random sampling from a search engine’s
index. J. ACM 55, 1–74 (2008)

[BYG09] Bar-Yossef, Z., Gurevich, M.: Estimating the ImpressionRank of web
pages (2009)

[BYG11] Bar-Yossef, Z., Gurevich, M.: Efficient search engine measurements.
TWEB 5, 1–48 (2011)

[Bra10] Braverman, M.: Polylogarithmic independence fools AC0 circuits. J.
ACM 57, 1–10 (2010)

[Bre12] Brede, M.: Networks-an introduction. In: Newman, M.E.J. (ed.) 2010
Artificial Life. Oxford University Press (2012)

[Bro+06] Broder, A., et al.: Estimating corpus size via queries. In: Association
for Computing Machinery (2006)

[CCHLRR18] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N.,
Rothblum, R.D.: Fiat-Shamir from simpler assumptions. IACR Cryp-
tology ePrint Archive (2018)

[CCRR18] Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir
and correlation intractability from strong KDM-secure encryption. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 91–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9 4

[CDKLS16] Chiericetti, F., Dasgupta, A., Kumar, R., Lattanzi, S., Sarlós, T.: On
sampling nodes in a network (2016)

[CEKLM15] Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan,
S.: One trillion edges: graph processing at Facebook-scale. PVLDB 8,
1804–1815 (2015)

[CH18] Chierichetti, F., Haddadan, S.: On the complexity of sampling vertices
uniformly from a graph (2018)

[CRTB06] da F Costa, L., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Charac-
terization of complex networks: a survey of measurements. Adv. Phys.
56, 167–242 (2006)

[Can+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory (2019)

https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1007/978-3-319-78381-9_4

600 L. Katzir et al.

[DKS14] Dasgupta, A., Kumar, R., Sarlós, T.: On estimating the average degree.
ACM (2014)

[EAKA17] Ersahin, B., Aktas, Ö., Kilinç, D., Akyol, C.: Twitter fake account
detection. IEEE (2017)

[EK10] Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Rea-
soning About a Highly Connected World. Cambridge University Press,
Cambridge (2010)

[EKR04] Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilisti-
cally checkable proofs. Inf. Comput. 189, 135–159 (2004)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to iden-
tification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-47721-7 12

[For87] Fortnow, L.: The complexity of perfect zero-knowledge. In: STOC 1987
(1987)

[GDFMGM18] Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.:
Political discourse on social media: echo chambers, gatekeepers, and
the price of bipartisanship (2018)

[GKBM10] Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Face-
book: a case study of unbiased sampling of OSNs. In: Proceedings of
IEEE INFOCOM 2010 (2010)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)

[GS89] Goldwasser, S., Sipser, M.: Private coins versus public coins in inter-
active proof systems. In: Advances in Computing Research (1989)

[HPWP10] H̊astad, J., Pass, R., Wikström, D., Pietrzak, K.: An efficient parallel
repetition theorem. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 1–18. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-11799-2 1

[HRH09] Hardiman, S.J., Richmond, P., Hutzler, S.: Calculating statistics of
complex networks through random walks with an application to the
on-line social network Bebo. Eur. Phys. J. B 71, 611 (2009)

[HS19] Harsha, P., Srinivasan, S.: On polynomial approximations to AC. Ran-
dom Struct. Algorithms 54, 289–303 (2019)

[KBM12] Kurant, M., Butts, C.T., Markopoulou, A.: Graph size estimation.
CoRR (2012)

[KH15] Katzir, L., Hardiman, S.J.: Estimating clustering coefficients and size
of social networks via random walk. ACM Trans. Web 9, 1–20 (2015)

[KLSC14] Katzir, L., Liberty, E., Somekh, O., Cosma, I.A.: Estimating sizes of
social networks via biased sampling. Internet Math. 10, 335–359 (2014)

[KMV17] Kanade, V., Mallmann-Trenn, F., Verdugo, V. How large is your graph?
(2017)

[KRR17] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to
the security of Fiat-Shamir for proofs. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 224–251. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 8

[Kle00] Kleinberg, J.M.: The small-world phenomenon: an algorithmic perspec-
tive (2000)

[LLE96] Lovász, L., Lov, L., Erdos, O.: Random walks on graphs: a survey
(1996)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-11799-2_1
https://doi.org/10.1007/978-3-642-11799-2_1
https://doi.org/10.1007/978-3-319-63715-0_8

Interactive Proofs for Social Graphs 601

[LPW08] Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing
Times. American Mathematical Society (2008)

[MMGDB07] Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee,
B.: Measurement and analysis of online social networks (2007)

[MYK10] Mohaisen, A., Yun, A., Kim, Y.: Measuring the mixing time of social
graphs (2010)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30, 1253–
1298 (2000)

[NPY18] Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in
interactive proofs. In: Electronic Colloquium on Computational Com-
plexity (ECCC) (2018)

[NW99a] Newman, M., Watts, D.: Renormalization group analysis of the small-
world network model. Phys. Lett. A 263, 341–346 (1999)

[NW99b] Newman, M., Watts, D.: Scaling and percolation in the small-world
network model. Phys. Rev. E 60, 7332 (1999)

[QSS16] Quattrociocchi, W., Scala, A., Sunstein, C.R.: Echo chambers on Face-
book. Available at SSRN 2795110 (2016)

[RT10] Ribeiro, B.F., Towsley, D.F.: Estimating and sampling graphs with
multidimensional random walks (2010)

[RVW13] Rothblum, G.N., Vadhan, S.P., Wigderson, A.: Interactive proofs of
proximity: delegating computation in sublinear time. In: Boneh, D.,
Roughgarden, T., Feigenbaum, J. (eds.) ACM (2013)

[Tal17] Tal, A.: Tight bounds on the fourier spectrum of AC0 (2017)
[UKBM11] Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of

the Facebook social graph. CoRR (2011)
[Wha] List of mergers and acquisitions by Facebook. https://en.wikipedia.

org/wiki/List of mergers and acquisitions by Facebook
[XFH15] Xiao, C., Freeman, D.M., Hwa, T.: Detecting clusters of fake accounts

in online social networks (2015)
[YW11] Ye, S., Wu, S.F.: Estimating the size of online social networks. IJSCCPS

1, 160–179 (2011)
[ZLAZ11] Zhou, J., Li, Y., Adhikari, V.K., Zhang, Z.-L.: Counting YouTube

videos via random prefix sampling. In: Association for Computing
Machinery, New York (2011). ISBN 9781450310130

https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Facebook
https://en.wikipedia.org/wiki/List_of_mergers_and_acquisitions_by_Facebook

The Measure-and-Reprogram Technique
2.0: Multi-round Fiat-Shamir and More

Jelle Don1(B), Serge Fehr1,2, and Christian Majenz1,3

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{jelle.don,serge.fehr}@cwi.nl, c.majenz@uva.nl

2 Mathematical Institute, Leiden University, Leiden, The Netherlands
3 QuSoft, Amsterdam, The Netherlands

Abstract. We revisit recent works by Don, Fehr, Majenz and Schaffner
and by Liu and Zhandry on the security of the Fiat-Shamir (FS) transfor-
mation of Σ-protocols in the quantum random oracle model (QROM).
Two natural questions that arise in this context are: (1) whether the
results extend to the FS transformation of multi-round interactive proofs,
and (2) whether Don et al.’s O(q2) loss in security is optimal.

Firstly, we answer question (1) in the affirmative. As a byproduct of
solving a technical difficulty in proving this result, we slightly improve
the result of Don et al., equipping it with a cleaner bound and an even
simpler proof. We apply our result to digital signature schemes showing
that it can be used to prove strong security for schemes like MQDSS in
the QROM. As another application we prove QROM-security of a non-
interactive OR proof by Liu, Wei and Wong.

As for question (2), we show via a Grover-search based attack that Don
et al.’s quadratic security loss for the FS transformation of Σ-protocols
is optimal up to a small constant factor. This extends to our new multi-
round result, proving it tight up to a factor depending on the number of
rounds only, i.e. is constant for constant-round interactive proofs.

1 Introduction

Reprogramming the Quantum Random Oracle. We reconsider the recent
work of Don, Fehr, Majenz and Schaffner [9] on the quantum random oracle
model (QROM). On a technical level, they showed how to reprogram the QROM
adaptively at one input. More precisely, for any oracle quantum algorithm AH ,
making q calls to a random oracle H and outputting a pair (x, z) so that some
predicate V (x,H(x), z) is satisfied, they showed existence of a “simulator” S that
mimics the random oracle, extracts x from AH by measuring one of the oracle
queries to H, and then reprograms H(x) to a given value Θ so that z output by
AH now satisfies V (x,Θ, z), except with a multiplicative O(q2) loss in probability
(plus a negligible additive loss). We emphasize that the challenging aspect of this
problem is that AH ’s queries to H may be in quantum superposition, and thus
measuring such a query disturbs the state and thus the behavior of AH . Still,
Don et al. managed to control this disturbance sufficiently. In independent work
c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 602–631, 2020.
https://doi.org/10.1007/978-3-030-56877-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_21

The Measure-and-Reprogram Technique 2.0 603

and using very different techniques, Liu and Zhandry [13] showed a similar kind
of result, but with a O(q9) loss.

As an immediate application of this technique, it is then concluded that the
Fiat-Shamir (FS) transformation of a Σ-protocol is as secure (in the QROM) as
the original Σ-protocol (in the standard model), up to a O(q2) loss, i.e., any of the
typically considered security notions is preserved under the FS transformation,
even in the quantum setting. In combination with prior work on simulating
signature queries [11,18], security (in the QROM) of FS signatures that arise
from ordinary Σ-protocols then follows as a corollary.

Given important examples of multi-round public-coin interactive proofs, used
in, e.g., MQDSS [5] and for Bulletproofs [4]1, a natural question that arises
is whether these techniques and results extend to the reprogrammability of
the QROM at multiple inputs and the security of the FS transformation (in
the QROM) of multi-round public-coin interactive proofs. Another question is
whether the O(q2) loss (for the original Σ-protocols) is optimal, or whether one
might hope for a linear loss as in the classical case.

In this work, we provide answers to both these natural questions—and more.

A technical hurdle for generalizing[9] to multi-round Fiat-Shamir. To
start with, we observe that the naive approach of applying the original result
of [9] inductively to reprogram multiple inputs one by one does not work . This
is due to a subtle technical issue that has to do with the precise statement of
the original result. In more detail, the statement involves an additive error term
εx ≥ 0 that depends on the choice of the point x, which is (adaptively) chosen to
be the input on which the random oracle (RO) is reprogrammed. The guarantee
provided by [9] is that this error term stays negligible even when summed over
all x’s, i.e.,

∑
x εx = negl. The formulation of the result for individual x’s with

control over
∑

x εx is important for the later applications to the FS transforma-
tion. However, when applying the result twice in a row, with the goal being to
reprogram the RO at two inputs x1, x2, then we end up with two error terms εx1

and εx1
x2

(with the second one depending on x1), where the first one stays negli-
gible when summed over x1 and the second one stays negligible when summed
over x2 (for any x1); but it is unclear that the sum εx1,x2 := εx1 + εx1

x2
stays

negligible when summed over x1 and x2, which is what we would need to get the
corresponding generalized statement.

Our Results. As a first contribution, we revise the original result from [9] of
reprogramming the QROM at one input by showing an improved version that has
no additive error term, but only the original multiplicative O(q2) loss. For typical
direct cryptographic applications, this improvement makes no big quantitative
difference due to the error term being negligible, but: (1) it makes the statement
cleaner and easier to formulate, (2) somewhat surprisingly, the proof is simpler
than that of the original result in [9], and (3) most importantly, it removes the

1 The security of the original Bulletproofs protocol relies on the hardness of discrete-
log; however, work in progress considers post-quantum secure versions [2].

604 J. Don et al.

technical hurdle to extend to multiple inputs. Indeed, we then get the desired
multi-input reprogrammability result by means of a not too difficult, though
somewhat tedious, induction argument.

Building on our multi-input reprogrammability result above, our next goal
then is to show the security of the FS transformation (in the QROM) of
multi-round public-coin interactive proofs. In contrast to the original result
in [DFMS19] for the FS transformation of Σ-protocols some additional work
is needed here, to deal with the order of the messages extracted from the FS
adversary. Thus, as a stepping stone, we consider and analyze a variant of the
above multi-input reprogrammability result, which enforces the right order of the
extracted messages. As a simple corollary of this, we then obtain the desired secu-
rity of multi-round FS. Here, the multiplicative loss becomesO(q2n) for a (2n+1)-
round public-coin interactive proof with constantn.

In the context of digital signatures, the original motivation for the FS trans-
formation, we extend previous results by Unruh [18] and Don et al. [9] to show
that FS signature schemes based on a multi-round, honest-verifier zero knowl-
edge public-coin interactive quantum proof of knowledge have standard signature
security (existential unforgeability under chosen message attacks, UF-CMA) in
the QROM. Assuming the additional collision-resistance-like property of com-
putationally unique responses, they are even strongly unforgeable. We go on to
apply this result to the signature scheme MQDSS [5], a candidate in the ongoing
NIST standardization process for post-quantum cryptographic schemes [1], pro-
viding its first QROM proof. Another application of our multi-round FS result
would for instance be to Bulletproofs [4].

As a second application of our multi-input reprogrammability result, we show
QROM-security of the non-interactive OR-proof introduced by Liu, Wei and
Wong [12], further analyzed by Fischlin, Harasser and Janson [10]. While the
well-known (interactive) OR-proof by Cramer, Damg̊ard and Schoenmakers [7]
is a Σ-protocol and thus the results from [9] apply, the inherently non-interactive
OR-proof by Liu et al. does not is not obtained as the FS transformation of a
Σ-protocol (though in some sense it is “close” to being of this form). We show
here how the 2-input version of our multi-input reprogrammability result implies
security of this OR-proof in the QROM.

Our last contribution is a lower bound that shows that the multiplicative
O(q2) loss in the security argument of the FS transformation of Σ-protocols is
tight (up to a factor 4). Thus, the O(q2) loss is unavoidable in general. Fur-
thermore, we extend this lower bound to the FS transformation of multi-round
interactive proofs as considered in this work, and we show that the obtained loss
O(q2n) is in general optimal as well here, up to a constant depending on n only.

Related Work. Before the recently obtained reduction [9,13] was available,
the FS tranform in the QROM was studied in a number of works [8,11,18],
where weaker security properties were shown. In addition, Unruh developed an
alternative transform [16] that provided QROM security at the expense of an

The Measure-and-Reprogram Technique 2.0 605

increased proof size. The Unruh transform was later generalized to apply to
5-round public coin interactive proof systems [6].

2 Notation

Up to some modifications, we follow closely the notation used in [9]. We consider
a (purified) oracle quantum algorithm A that makes q queries to an oracle, i.e.,
an unspecified function H : X → Y with finite non-empty sets X ,Y. Formally,
A is described by a sequence of unitaries A1, . . . , Aq and an initial state |φ0〉.2
For technical reasons that will become clear later, we actually allow (some of)
the Ai’s to be a projection followed by a unitary (or vice versa). One can think
of such a projection as a measurement performed by the algorithm, with the
algorithm aborting except in case of a particular measurement outcome.

For any concrete choice of H : X → Y, the algorithm A computes the state

|φH
q 〉 := AH |φ0〉 := AqOH · · · A1OH |φ0〉,

where OH is the unitary defined by OH : |c〉|x〉|y〉 �→ |c〉|x〉|y ⊕ c·H(x)〉 for any
triple c ∈ {0, 1}, x ∈ X and y ∈ Y, with OH acting on appropriate registers. We
emphasize that we allow controlled queries to H. Per se, this gives the algorithm
more power, and thus will make our result only stronger. It is, however, easy to
see that controlled queries to the standard quantum oracle for a function can be
simulated using ordinary queries, at the price of one additional query.3 The final
state AH |φ0〉 is considered to be a state over registers X = X1 . . .Xn, Z and E.

We introduce some notation following [9]. For 0 ≤ i, j ≤ q we set

AH
i→j := AjOH · · · Ai+1OH ,

where, by convention, AH
i→j is set to 1 if j ≤ i. Furthermore, we let

|φH
i 〉 :=

(AH
0→i

)|φ0〉
be the state of A after the i-th step but right before the (i + 1)-st query, which
is consistent with |φH

q 〉 above.
For a given function H : X → Y and for fixed x ∈ X and Θ ∈ Y, we define

the reprogrammed function H ∗Θx : X → Y that coincides with H on X \ {x}
but maps x to Θ. With this notation at hand, we can then write

(AH∗Θx
i→q

) (AH
0→i

) |φ0〉 =
(AH∗Θx

i→q

)|φH
i 〉

for an execution of A where the oracle is reprogrammed at a given point x
after the i-th query. We stress that (AH∗Θx

i→q)(AH
0→i) can again be considered

2 Alternatively, we may regard |φ0〉, as an additional input given to A.
3 Allowing controlled queries to the random oracle is also the more natural model

compared to restricting to plain access to the unitary After all, the motivation for
the QROM is that in the real world, an attacker can implement hash functions on a
quantum computer, allowing them to implement the controlled version as well.

606 J. Don et al.

to be an oracle quantum algorithm B, which depends on Θ ∈ Y, that makes
q queries to (the unprogrammed) function H. Indeed, the (controlled) queries
to the reprogrammed oracle H ∗ Θx can be simulated by means of controlled
queries to H (using one additional “work qubit”).4 Exploiting that, in addition to
unitaries, we allow projections as elementary operations, we can also understand
(AH∗Θx

i→q)X(AH
0→i) to be an oracle quantum algorithm that makes oracle queries

to H, where X is the projection X = |x〉〈x|, acting on the oracle query register.
More generally, for any x = (x1, . . . , xn) ∈ X n without duplicate entries, i.e.,

xi �= xj for i �= j, and for any Θ ∈ Yn, we define

H ∗ Θx = H ∗ Θ1x1 ∗ · · · ∗ Θnxn : X → Y

x �→
{

Θi if x = xi for some i ∈ {1, . . . , n}
H(x) otherwise.

This will then allow us to consider (AH∗Θ1x1∗Θ2x2
i2→q)X2(AH∗Θ1x1

i1→i2
)X1(AH

0→i1
) as

an oracle quantum algorithm with oracle queries to H, etc.
Eventually, we are interested in the probability that after the execution of

the original algorithm AH , and upon measuring register X in the computational
basis to obtain x = (x1, . . . , xn) ∈ X n, the state of register Z is of a certain
form dependent on x and H(x) = (H(x1), . . . , H(xn)). Such a requirement (for
a fixed x) is captured by a projection

GH
x = |x〉〈x| ⊗ Πx,H(x),

where {Πx,Θ}x,Θ is a family of projections with x ∈ X n and Θ ∈ Yn, and with
the understanding that |x〉〈x| acts on X and Πx,H(x) on register Z. We refer to
such a family of projections as a quantum predicate. We use GΘ

x as a short hand
for GH∗Θx

x , and we write GH
x and GΘ

x with x ∈ X and Θ ∈ Y for the case n = 1.
For an arbitrary but fixed x◦ ∈ X n, we are then interested in the probability

Pr
[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
=

∥
∥GH

x◦ |φH
q 〉∥∥2

2
.

where the left hand side is our notation for this probability, where we understand
AH to be an algorithm that outputs the measured x together with the quan-
tum state z in register Z, and V to be the quantum predicate specified by the
projections Πx,Θ. Correspondingly, Pr

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
=

‖GH
x◦ |φH

q 〉‖2
2 for the n = 1 case.

3 An Improved Single-Input Reprogramming Result

For the case n = 1, Don et al. [9] show the existence of a black-box simulator S
such that for any oracle quantum algorithm A as considered above with oracle
access to a uniformly random H, it holds that

4 Here it is crucial that we allow controlled queries to H.

The Measure-and-Reprogram Technique 2.0 607

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA, Θ〉]

≥ 1
2(q+1)(2q+3)

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

] − εx◦ ,
(1)

for any x◦ ∈ X , where the εx◦ ’s are non-negative and their sum over x◦ ∈ X
is bounded by 1/(2q|Y|), i.e., negligible whenever |Y| is superpolynomial. The
notation (x, z) ← 〈SA, Θ〉 is to be understood in that in a first stage SA outputs
x, and then on input Θ it outputs z. At the core, Eq. (1) follows from Lemma 1
of [9] which shows that

E
Θ,i,b

[∥
∥(|x〉〈x| ⊗ Πx,Θ)

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]

≥
EΘ

[∥
∥(|x〉〈x| ⊗ Πx,Θ)|φH∗Θx

q 〉∥∥2

2

]

2(q + 1)(2q + 3)
−

∥
∥X|φH

q 〉∥∥2

2

2(q + 1)|Y| ,

(2)

and from which the construction of S can be extracted. The bound (1) on
the “success probability” of S then follows from the observation that S can
simulate the calls to H and to H ∗Θx by means of a 2(q+1)-wise independent
hash function, and that H and H ∗Θx are indistinguishable for random H and
Θ.

In this section we show an improved variant of Eq. (1), which avoids the
additive error term εx◦ . While having negligible quantitative effect in typcial
situations, it makes the statement simpler. In addition it circumvents a technical
issue one encounters when trying to extend to the multi-input case. Furthermore,
our improved version comes with a simpler proof.5

The approach is to avoid the additive error term in Eq. (2). We achieve this
by slightly tweaking the simulator S. From the technical perspective, while on
the left hand side of Eq. (2) the expectation is over a random i ∈ {0, . . . , q},
selecting one of the q + 1 queries of A at random (where the X register of the
output state is considered to be a final query), and a random b ∈ {0, 1}, our
new version has syntactically the same left hand side, but with the expectation
over a random pair (i, b) ∈ ({0, . . . , q�1}×{0, 1})∪{(q, 0)} instead. This absorbs
the additive error term into the simulator’s success probability. Furthermore, it
holds for any fixed choice of Θ (and not only on average for a random choice).

Lemma 1. Let A be a q-query oracle quantum algorithm. Then, for any func-
tion H : X → Y, any x ∈ X and Θ ∈ Y, and any projection Πx,Θ, it holds
that

E
i,b

[∥
∥(|x〉〈x| ⊗ Πx,Θ)

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]
≥

∥
∥(|x〉〈x| ⊗ Πx,Θ)|φH∗Θx

q 〉∥∥2

2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ ({0, . . . , q�1} × {0, 1}) ∪ {(q, 0)}.
5 We thank Dominique Unruh for the idea that it might be possible to avoid the

additive error term, and for proposing an argument for achieving that, which inspired
us to find the simpler argument we eventually used.

608 J. Don et al.

This new version of Eq. (2) translates to a simulator S that works by running
A, but with the following modifications. First, one of the q + 1 queries of A
(also counting the final output in register X) is measured, and the measurement
outcome x is output by (the first stage of) S. We emphasize that the crucial
difference to [9] is that each of the q actual queries is picked with probability

2
2q+1 , while the final output is picked with probability 1

2q+1 . Then, very much
as in [9], this very query of A is answered either using the original H or using
the reprogrammed oracle H∗Θx, with the choice being made at random6, while
all the remaining queries of A are answered using oracle H ∗Θx. Finally, (the
second stage of) S outputs whatever A outputs.

In line with Theorem 1 in [9], i.e. Equation (1) above, we obtain the following
result from Lemma 1.

Theorem 2 (Measure-and-reprogram, single input). Let X and Y be
finite non-empty sets. There exists a black-box two-stage quantum algorithm S
with the following property. Let A be an arbitrary oracle quantum algorithm that
makes q queries to a uniformly random H : X → Y and that outputs some x ∈ X
and a (possibly quantum) output z. Then, the two-stage algorithm SA outputs
some x ∈ X in the first stage and, upon a random Θ ∈ Y as input to the second
stage, a (possibly quantum) output z, so that for any x◦ ∈ X and any (possibly
quantum) predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA, Θ〉]

≥ 1
(2q + 1)2

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
.

Furthermore, S runs in time polynomial in q, log |X | and log |Y|.
The proof of Lemma 1 follows closely the proof of Eq. (1) in [9], but the stream-
lined statement and simulator allow to cut some corners.

Proof (of Lemma 1). For any 0 ≤ i ≤ q, inserting a resolution of the identity
and exploiting that

(AH∗Θx
i+1→q

)(AH
i→i+1

)(
1 − X

)|φH
i 〉 =

(AH∗Θx
i→q

)(
1 − X

)|φH
i 〉,

we can write
(AH∗Θx

i+1→q+1

)|φH
i+1〉

=
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)(
1 − X

)|φH
i 〉 +

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉
=

(AH∗Θx
i→q+1

)(
1 − X

)|φH
i 〉 +

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉
=

(AH∗Θx
i→q+1

)|φH
i 〉 − (AH∗Θx

i→q+1

)
X|φH

i 〉 +
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉

6 If it is the final output that is measured then there is nothing left to reprogram, so
no choice has to be made.

The Measure-and-Reprogram Technique 2.0 609

Rearranging terms, applying GΘ
x = (|x〉〈x|⊗Πx,Θ) and using the triangle equal-

ity, we can thus bound
∥
∥GΘ

x

(AH∗Θx
i→q

)|φH
i 〉∥∥

2
≤ ∥

∥GΘ
x

(AH∗Θx
i+1→q

)|φH
i+1〉

∥
∥

2

+
∥
∥GΘ

x

(AH∗Θx
i→q

)
X|φH

i 〉∥∥
2

+
∥
∥GΘ

x

(AH∗Θx
i+1→q

)(AH
i→i+1

)
X|φH

i 〉∥∥
2
.

Summing up the respective sides of the inequality over i = 0, . . . , q − 1, we get
∥
∥GΘ

x |φH∗Θx
q 〉∥∥

2
≤ ∥

∥GΘ
x |φH

q 〉∥∥
2

+
∑

0≤i<q
b∈{0,1}

∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥
2
.

By squaring both sides, dividing by 2q+1 (i.e., the number of terms on the right
hand side), and using Jensen’s inequality on the right hand side, we obtain

∥
∥GΘ

x |φH∗Θx
q 〉∥∥2

2

2q + 1
≤ ∥

∥GΘ
x |φH

q 〉∥∥2

2
+

∑

0≤i<q
b∈{0,1}

∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

and thus, noting that we can write
∥
∥GΘ

x |φH
q 〉∥∥2

2
as

∥
∥GΘ

x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

with i = q and b = 0,
∥
∥GΘ

x |φH∗Θx
q 〉∥∥2

2

(2q + 1)2
≤ E

i,b

[∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]
.

��
For completeness, let us spell out how Theorem 8 of [9] on the generic security

of the FS transformation (in the QROM) can now be re-phrased, avoiding the
negligible error term present in [9]. We refer to [9] or to our later Sect. 5 for the
details on the FS transformation.

Theorem 3. There exists a black-box quantum polynomial-time two-stage quan-
tum algorithm S such that for any adaptive FS adversary A, making q queries
to a uniformly random function H with appropriate domain and range, and for
any x◦ ∈ X :

Pr
[
x=x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

≥ 1
(2q + 1)2

Pr
H

[
x=x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]
.

610 J. Don et al.

4 Multi-input Reprogrammability

In this section, we extend our (improved) results on adaptively reprogram-
ming the quantum random oracle at one point x ∈ X to multiple points
x1, . . . , xn ∈ X . This in turn will allow us to extend the results on the secu-
rity of the FS transformation to multi-round protocols. We point out again that
the improvement of Lemma 1 over Lemma 1 in [9] plays a crucial role here, in
that it circumvents the trouble with the negligible error term that occurs when
trying to extend the result from [9] to the setting considered here.

The starting point is the following generalized version of the problem con-
sidered in Sect. 3. We assume an oracle quantum algorithm AH that makes q
queries to a random oracle H : X → Y and then produces an output of the
form (x1, . . . , xn, z), where z may be quantum, such that a certain (quantum)
predicate V (x1,H(x1), . . . , xn,H(xn), z) is satisfied with some probability. The
goal then is to turn such an AH into a multi-stage quantum algorithm S (the
simulator) that, stage by stage, outputs the xi’s and takes corresponding Θi’s
as input, and eventually outputs a (possibly quantum) z with the property that
V (x1, Θ1, . . . , xn, Θn, z) is satisfied with similar probability.

4.1 The General Case

Naively, one might hope for an S that outputs x1 in the first stage (obtained
by measuring one of the queries of AH), and then on input Θ1 proceeds by
outputting x2 in the second stage (obtained by measuring one of the subsequent
queries of AH), etc. However, since AH may query the hashes of x1, . . . , xn in
an arbitrary order, we cannot hope for this to work. Therefore, we have to allow
S to produce x1, . . . , xn in an arbitrary order as well.7 Formally, we consider S
with the following syntactic behavior: in the first stage it outputs a permutation
π together with xπ(1) and takes as input Θπ(1), and then for every subsequent
stage 1 < i ≤ n it outputs xπ(i) and takes as input Θπ(i); eventually, in the final
stage (labeled by n + 1) it outputs z. In line with earlier notation, but taking
this additional complication into account, we denote such an execution of S as
(π, π(x), z) ← 〈SA, π(Θ)〉.

A final issue is that if xi = xj then H(xi) = H(xj) as well, whereas Θi

and Θj may well be different. Thus, we can only expect S to work well when
x1, . . . xn has no duplicates.

For us to be able to mathematically reason about the simulator described
above, we introduce some additional notation. For the basic simulator from
Lemma 1 we write, using r1 = (b1, i1), as

SH,A
Θ1,x1,r1

:= SH,A,Θ1,x1,r1 :=
(AH∗Θ1x1

i1+b1→q

)(AH
i1→i1+b1

)
X1

(AH
0→i1

)
.

7 Looking ahead, in Sect. 4.2 we will force AH to query, and thus S to extract,
x1, . . . , xn in the right order by requiring x2 to contain H(x1) as a substring, x3

to contain H(x2) as a substring, etc. This will be important for the multi-round FS
application.

The Measure-and-Reprogram Technique 2.0 611

This can be recursively extended by applying it to AH now being SH,A
Θ1,x1,r1

so
as to obtain

SH,A
Θ1,2,x1,2,r1,2

:=
(SH∗Θ2x2,A,Θ1,x1,r1

i2+b2→q

)(SH,A,Θ1,x1,r1
i2→i2+b2

)
X2

(SH,A,Θ1,x1,r1
0→i2

)
.

In general, we can consider the following operator, which simulates A and per-
forms n measurements:

SH,A
Θ,x,r :=

(SH∗Θnxn,A,Θ,x,r
in+bn→q

)(SH,A,Θ,x,r
in→in+bn

)
Xn

(SH,A,Θ,x,r
0→in

)
.

where, for arbitrary but fixed n and Θ = (Θ1, . . . , Θn) ∈ Yn, the notation Θ
is understood as Θ = (Θ1, . . . , Θn−1) ∈ Yn−1, and correspondingly for x etc.
Finally, when considering fixed Θ ∈ Yn and x ∈ X n, we write

SH
r (A) := SH,A

Θ,x,r .

At the core of our multi-round result will be the following technical lemma,
which generalizes Lemma 1.

Lemma 4. Let A be a q-query oracle quantum algorithm. Then, for any func-
tion H : X → Y, any x ∈ X n and Θn ∈ Yn, and any projection Πx,Θ, it holds
that

∥
∥
(|x〉〈x| ⊗ Πx,Θ

)AH∗Θx|φ0〉
∥
∥2

2

(2q + 1)2n
≤ E

r

[∥
∥
(|x〉〈x|A ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]
.

Proof. The proof is by induction on n, where the base case is given by Lemma 1.
For the induction step we first apply the base case, substituting xn for x1, Θn

for Θ1, rn for r1, H∗Θx for H, and Π̂xn,Θn
for Πx1,Θ1 , where

Π̂xn,Θn
= |x1〉〈x1| ⊗ . . . ⊗ |xn�1〉〈xn�1| ⊗ Πx,Θ

to obtain
∥
∥
(|xn〉〈xn| ⊗ Π̂xn,Θn

)A(H∗Θx)∗Θnxn |φ0〉
∥
∥2

2

(2q + 1)2

≤ E
rn

[∥
∥
(|xn〉〈xn|A ⊗ Π̂xn,Θn

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

]

which we can write as

∥
∥
(|x〉〈x| ⊗ Πx,Θ

)AH∗Θx|φ0〉
∥
∥2

2

(2q + 1)2n
≤

Ern

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

]

(2q + 1)2(n�1) (3)

dividing both sides by (2q + 1)2(n�1) and swapping registers appropriately (to
make sure that the register which contains xn comes after the others).

Now fix rn. We define

Π̂x,Θ := |xn〉〈xn| ⊗ Πx,Θ.

612 J. Don et al.

and apply the induction hypothesis for n−1, substituting SH∗Θx
rn

(A) for AH∗Θx,
and Π̂x,Θ for Πx,Θ, in order to derive

∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

(2q + 1)2(n�1) =

∥
∥
(|x〉〈x| ⊗ Π̂x,Θ

)SH∗Θx
rn

(A)|φ0〉
∥
∥2

2

(2q + 1)2(n�1)

≤ E
r

[∥
∥
(|x〉〈x| ⊗ Π̂x,Θ

)SH
r (Srn

(A))|φ0〉
∥
∥2

2

]

= E
r

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]
.

Since this inequality holds for any fixed rn, it also holds in expectation over rn.
Substituting it in Eq. 3, we retrieve the statement of the lemma. ��
Remark 5. In case of x = (x1, . . . , xn) ∈ X n without duplicate entries, it fol-
lows from the resulting mutual orthogonality of the projections Xj and the
definition of SH

r (A) that the following holds. The term in the expectation Er in
the inequality of Lemma 4 vanishes for any r = (i,b) for which there exist two
distinct coordinates j �= k with ij = ik. As such, we may well understand this
expectation to be over r = (i,b) for which ij �= ik whenever j �= k; this only
increases the expectation.8 In other words, we may assume that random distinct
queries are measured in order to extract x1, . . . , xn.

Theorem 6 (Measure-and-reprogram, multiple inputs). Let n be a pos-
itive integer, and let X ,Y be finite non-empty sets. There exists a black-box
polynomial-time (n+1)-stage quantum algorithm S with the syntax as outlined
at the start of this section, satisfying the following property. Let A be an arbi-
trary oracle quantum algorithm that makes q queries to a uniformly random
H : X → Y and that outputs a tuple x ∈ X n and a (possibly quantum) output z.
Then, for any x◦ ∈ Xn without duplicate entries and for any predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (π, π(x), z) ← 〈SA, π(Θ)〉]

≥ 1
(q + 1)2n

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
.

Proof. We consider the inequality of Lemma 4 with the expectation over r under-
stood as in Remark 5. Additionally taking the expectation over H and Θ on both
sides, we obtain

E
H,Θ

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)AH∗Θx|φ0〉
∥
∥2

2

(2q + 1)2n

]

≤ E
H,Θ,r

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]

and note that this is equivalent to

E
H

[∥
∥
(|x〉〈x| ⊗ Πx,H(x)

)AH |φ0〉
∥
∥2

2

(2q + 1)2n

]

≤ E
H,Θ,r

[∥
∥
(|x〉〈x| ⊗ Πx,Θ

)SH
r (A)|φ0〉

∥
∥2

2

]
.

8 One might try to exploit this actual improvement in the bound; however, for typical
choices of parameters, with n a small constant and q large, this is insignificant.

The Measure-and-Reprogram Technique 2.0 613

since all values Θj and H(xj) have the same distribution. The term SH
r (A)|φ0〉 =

SH,A
Θ,x,r|φ0〉 corresponds to the output of the simulator that uses oracle access to

H to run A on an initial state |φ0〉, while measuring queries ij (finding xj as the
outcome) and reprogramming the oracle at xj to Θj from the (ij + bj)-th query
onwards, with (ij , bj) = rj .

Next, we note that the value of the right hand side does not change [19] when
instead of giving S oracle access to H, we let it choose a random instance from
a family of 2q-wise9 independent hash functions to simulate A on. The choice of
r uniquely determines the permutation π with the property iπ(1) < · · · < iπ(n);
by definition of SH,A

Θ,x,r, the values x = (x1, . . . , xn) are then extracted from the
adversary’s queries in the order π(x) = (xπ(1), . . . , xπ(n)). Since S chooses this
r itself, we can assume that it includes π in its output. Likewise, the simulator
takes as input to every stage—from the second to the (n+1)-st — a fresh random
value, in the order given by π(Θ). However, by definition of Πx,Θ the final output
of the simulator satisfies the predicate V with respect to the given order (without
π), i.e. such that V (x,Θ, z) = 1, as is the claim of the theorem. ��

4.2 The Time-Ordered Case

In some applications, like the multi-round version of the FS transformation,
we need that the simulator extracts the messages in the right order. This can
be achieved by replacing the hash list H(x) =

(
H(x1), . . . , H(xn)

)
, consisting of

individual hashes, by a hash chain, where subsequent hashes depend on previous
hashes. Intuitively, this enforces A to query the oracle in the given order.

Formally, considering a function H : (X0∪Y)×X → Y and given a tuple x =
(x0, x1, . . . , xn) in X0 × X n, we define the hash chain hH,x =

(
hH,x

1 , . . . , hH,x
n

)

given by
hH,x

1 = H(x0, x1) and hH,x
i := H

(
hH,x

i−1 , xi

)

for 2 ≤ i ≤ n.

Theorem 7 (Measure-and-reprogram, enforced extraction order). Let
n be a positive integer, and let X0,X and Y be finite non-empty sets. There exists
a black-box polynomial-time (n+1)-stage quantum algorithm S, satisfying the
following property. Let A be an arbitrary oracle quantum algorithm that makes
q queries to a uniformly random H : (X0 ∪Y)×X → Y and that outputs a tuple
x = (x0, x1, . . . , xn) ∈ (X0 × X n) and a (possibly quantum) output z. Then, for
any x◦ ∈ (X0 × X n) without duplicate entries and for any predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA,Θ〉]

≥ n!
(q + n + 1)2n

Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

] − εx◦ .

where εx◦ is equal to n!
|Y| when summed over all x◦.

9 It is easy to see that the result of [19] also holds for controlled-query algorithms.
Alternatively, the q controlled queries can be simulated using q + 1 plain queries,
and a 2(q + 1)-wise independent function can be used.

614 J. Don et al.

Remark 8. The additive error term n!/|Y| stems from the fact that the extrac-
tion in the right order fails if A succeeds in guessing one (or more) of the hashes
in the hash chain. The claimed term can be improved to (n−1)2/|Y|+n!/|Y|2 by
doing a more fine-grained analysis, distinguishing between permutations π �= id
that bring 2 elements “out of order” or more. In any case, it can be made arbi-
trary small by extending the range Y of H for computing the hash chain.

Proof. First, we note that V (x,hH,x, z) = V ′(v,H(v), z) for v = (v1, . . . , vn)
given by v1 = (x0, x1) and vi =

(
hH,x

i−1 , xi

)
=

(
H(vi−1), xi

)
for i ≥ 2, and

V ′(v,h, z) :=
[
V (x,h, z) ∧ h′

i =hi−1∀i ≥ 2
]

for any v of the form v1 = (x0, x1)
and vi =

(
h′

i, xi

)
for i ≥ 2. Next, at the cost of n additional queries, we can

extend A to an algorithm A+ that actually outputs (v, z), since A+ can easily
obtain the H(vi)’s by making n queries to H. These observations together give

Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

]
=

Pr
H

[
x=x◦ ∧ V ′(v,H(v), z) : (v, z) ← AH

+

]
.

Let v◦ = (v◦
1 , . . . , v◦

n) with v◦
i := (h◦

i , x
◦
i), where h◦

1 = x◦
0 and h◦

i ∈ Y is
arbitrary but fixed for i ≥ 2. Let Θ be uniformly random in Yn. An application
of Theorem 6 yields a simulator Ŝ with

Pr
Θ

[
v=v◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉]

≥ 1
(q + n + 1)2n

Pr
H

[
v=v◦ ∧ V ′(v,H(v), z) : (v, z) ← AH

+

]
.

Summing both sides of the inequality over h◦
i for i ≥ 2 yields

Pr
Θ

[
x=x◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉]

≥ 1
(q + n + 1)2n

Pr
H

[
x=x◦ ∧ V ′(v,H(v), z) : (v, z) ← AH

+

]

=
1

(q + n + 1)2n
Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

]
.

(4)

Recalling its construction, the simulator ŜA+ begins by sampling a uniformly
random permutation π, so we can write

Pr
Θ

[
x=x◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉]

=
1
n!

∑

σ∈Sn

Pr
Θ

[
x=x◦ ∧ V ′(v,Θ, z) : (π, π(v), z) ← 〈ŜA+ , π(Θ)〉∣∣π = σ

]
.

(5)

By definition, the predicate V ′(v,Θ, z) (with v of the form as explained above)
is false whenever there exists an i ≥ 2 such that hi �= Θi−1. Now suppose that
π �= id, then there must be some j such that π(j) < π(j − 1). This implies

The Measure-and-Reprogram Technique 2.0 615

that the first π(j) stages of ŜA+ which together (in the π(j)-th stage) produce
vj = (hj , xj) are independent of Θj−1, since Θj−1 is given as input only at the
later stage π(j − 1). We thus have the following, taking it as understood, here
and in the sequel, that the random variables π,v,Θ and z are as in (5).

Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π �= id

]

≤ Pr
[
x=x◦ ∧ hj = Θj−1|π �= id

]
=

Pr
[
x=x◦|π �= id

]

|Y| .

Using Eq. (5), we can bound

1
n!

∑

σ∈Sn

Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π=σ

]

≤ 1
n!

Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π=id

]
+

Pr
[
x=x◦|π �=id

]

|Y| .

We note that by definition of V ′,

Pr
[
x=x◦ ∧ V (x,Θ, z)

∣
∣π = id

] ≥ Pr
[
x=x◦ ∧ V ′(v,Θ, z)

∣
∣π = id

]
.

Furthermore, we may define a new simulator S which takes oracle access to A and
turns it into A+, and always chooses π = id instead of a random permutation.
Where Ŝ would output (v, z), S ignores the h-part of v and simply outputs
(x, z). We then have

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA,Θ〉]

≥ n!
(q + n + 1)2n

Pr
H

[
x=x◦ ∧ V (x,hH,x, z) : (x, z) ← AH

] − εx◦ .

with εx◦ given by εx◦ := n! · PrΘ
[
x = x◦|π �= id

]
/|Y|. ��

5 The Multi-round Fiat-Shamir Transformation

A straightforward generalization of the FS transformation can be applied to
arbitrary (i.e., multi-round) public-coin interactive proof systems (PCIP). We
show here security of this multi-round FS transformation in the QROM.

5.1 Public Coin Interactive Proofs and Multi-round Fiat-Shamir

We begin by defining PCIPs, mainly to fix notation, and the corresponding
multi-round FS transformation.

Definition 9 (Public coin interactive proof system (PCIP)). Let C be a
finite non-empty set, and V a predicate. A (2n+1)-round public coin interactive
proof system (PCIP) Π = (P,V) for a language L is a (2n+1)-round two-party
interactive protocol that proceeds as follows. In round 2r − 1, P sends ar to C,
who answers with cr

$← C (round 2r), for r = 1, ..., n. Finally, P sends z (round
2n + 1) which is accepted iff V (x, a1, c1, ..., an, cn, z) = 1.

616 J. Don et al.

Remark 10. If the language L is definied by means of an (efficiently verifiable)
witness relation R ⊆ X × W, then the prover typcially gets a witness w for x
as an additional input. We then also say that Π is a PCIP for the relation R. In
case of a (2n+1)-round PCIP Π for a witness relation R that is hard on average,
meaning that there exists an instance generator Gen with the property that for
(w, x) ← Gen it holds that (w, x) ∈ R, but given x alone it is computationally
hard to find w with (w, x) ∈ R, Π is also called an identification scheme.

Just as in the ordinary FS transformation, the interaction used to enforce
the time order between the prover committing to the message ai and receiving
the challenge ci can be replaced by a hash function. In addition, we can include
the previous challenge (i.e. the previous hash value) in the hash determining
the next challenge to enforce the ordering of the n pairs (ai, ci) according to
increasing i. We thus obtain the following non-interactive proof system.

Definition 11 (Fiat-Shamir transformation for general PCIP (mFS)).
Given an (2n+1)-round PCIP Π = (P,V) for a language L and a hash function
H with appropriate domain, and range equal to C, we define the non-interactive
proof system FS[Π] = (PH

FS ,VH
FS) as follows. The prover P outputs

(x, a1, ..., an, z) ← PH
FS

where z and ai for i = 1, ..., n are computed using P, and the challenges are
computed as

c1 = H(0, x, a1) and ci = H(i − 1, ci−1, ai) for i = 2, ..., n ,

The verifier outputs ‘accept’ iff V (x, a1, c1, ..., an, cn, z) = 1 for c1 =
H(0, x, a1) and ci = H(i − 1, ci−1, ai), i = 2, ..., n, denoted by
VFS(x, a1, c1, ..., an, cn, z) = 1.

Remark 12. The challenge number i (minus 1) is included in the hash input
to ensure that the challenges are generated using distinct inputs to H with
probability 1. This is to enable us to apply Theorem 7, which only holds for
duplicate-free lists of hash inputs. In fact, any additional strings can be included
in the argument when computing ci using H, without influencing the security
properties of the non-interactive proof system in a detrimental way. In the liter-
ature one sometimes sees that the entire previous transcript is hashed (in which
case the counter number i may then be omitted).

5.2 General Security of Multi-round Fiat-Shamir in the QROM

When constructing a reduction for mFS, this reduction is participating as a
prover in the underlying PCIP, and is hence only provided with random chal-
lenges one at a time. We thus need the special simulator from Theorem 7, which
always outputs the corresponding messages in the right order. The success of
this simulator is based on the very essence of the FS transformation, namely the

The Measure-and-Reprogram Technique 2.0 617

fact that the intractability of the hash function takes the role of the interaction
in enforcing a time order in the transcript of the PCIP.

The security of the multi-round FS transformation follows as a simple Corol-
lary of Theorem 7.

Corollary 13. There exists a black-box quantum polynomial-time (n+1)-stage
quantum algorithm S such that for any adaptive adversary A against the multi-
round FS transformed version FS[Π] of a (2n+1)-round PCIP Π, making q queries
to a uniformly random function H with appropriate domain and range equal C,
and for any x◦ ∈ X :

Pr
[
x = x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

≥ n!
(2q + n + 1)2n

Pr
H

[
x = x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]−εx◦ .

where the additive error term εx◦ is equal to n!
|C| when summed over all x◦.

Proof. We may simply set x◦ = (x◦, (0, a1), . . . , (n − 1, an)) for arbitrary
a1, . . . , an, apply Theorem 7 and then sum over all choices of a1, . . . , an to obtain
the claimed inequality. Note that the round indices ensure that every such x◦ is
duplicate free, satisfying the corresponding requirement of Theorem 7.

Note that the additive error terms reflect the fact that the random oracle only
approximately succeeds in enforcing the original time order in the transcript of
the PCIP. However, it can be made arbitrarily small, as discussed below.

Remark 14. There exist PCIPs with soundness error much smaller than 1/|C|.
As an example, consider the sequential repetition of a Σ-protocol with special
soundness. Here, the soundness error is 1/|C|n. In this case, the term proportional
to 1/|C| renders the bound from the above theorem trivial. Note however, that
(i) this situation is extremely artificial, as there is absolutely no reason to repeat
sequentially instead of in parallel, and (ii) the additive error term can be made
arbitrarily small by considering a variant Π′ of Π where the random challenges are
enlarged with a certain number of bits that are ignored otherwise, see Remark 8.

In fact, we suspect that the observation from (i) is true in a much broader
sense: if a PCIP still has negligible soundness error when allowing the adver-
sary to learn one of the challenges ci in advance of sending the corresponding
commitment-type message ai, it seems like the number of rounds can be reduced
and the loss in soundness error can be won back by parallel repetition.

As for the case of the FS transformation for Σ-protocols, the general reduction
implies that security properties that protect against dishonest provers carry over
from the interactive to the non-interactive proof system. For a definition of the
properties considered in the following theorem, see, e.g. [9]. The quantum proof-
of-knowledge-property was intoduced in [15].

Corollary 15 (Preservation of Soundness/PoK). Let Π be a constant-
round PCIP that has (statistical/computational) soundness, and/or the (statisti-
cal/computational) quantum proof-of-knowledge-property, respectively. Then, in

618 J. Don et al.

the QROM, FS[Π] has (statistical/computational) soundness, and/or the (statis-
tical/computational) quantum proof-of-knowledge-property, too.

Proof. Corollary 13 turns any dishonest prover AFS[Π] for FS[Π] with success
probability ε into a dishonest prover AΠ for Π, with success probability ε · (2q +
1)−2n, where 2n + 1 is the number of rounds in Π. Since n is constant and q is
polynomial in the security parameter, the success probabilities of the respective
provers are polynomially related. The claimed implications follow now using the
same arguments as in Corollaries 13 and 16 in [9]. ��

6 Tightness of the Reductions

Here, we show tightness of our results. We start with proving tightness of The-
orems 2 and 3 (up to essentially a factor 4). This implies that a O(q2)-loss is
unavoidable in general. Indeed, the following result shows that for a large and
natural class of Σ-protocols Σ, there exists an attack against FS[Σ] that succeeds
with a probability q2 times larger than the best attack against Σ. The attack is
based on an application of Grover’s quantum algorithm for unstructured search.

To our surprise, we could not find an analysis of Grover’s algorithm in the
regime we require in the literature. Grover search has been analyzed in the case of
an unknown number of solutions [3], but the focus of that work is on analyzing
the expected number of queries required to find a solution, while we analyze
the probability with which the Grover search algorithm succeeds for a fixed but
arbitrary number of queries.

Theorem 16. Let L be a language, and let Σ be a Σ-protocol for L with chal-
lenge set C, special soundness and perfect honest-verifier zero-knowledge. Fur-
thermore, we assume that the triples (a, c, z) produced by the simulator SZK(x)
are always accepted by the verifier even for instances x �∈ L, and that a has min-
entropy γ.10 Then for any q such that (q2 +1) ·e2 · (5q)6 < |C| and 2γ/(5q)3 > 2,
there exists a q-query dishonest prover that succeeds with probability q2/|C| in
producing a valid FS[Σ]-proof for an instance x �∈ L.

The idea of the attack against FS[Σ] is quite simple. For a Σ-protocol that is
special honest-verifier zero-knowledge, meaning that the simulation works by first
sampling the challenge c and the repsonse z and then computing a fitting answer
a as a function a(c, z), one simply does a Grover search to find a pair (c, z) for
which H

(
x, a(c, z)

)
= c. For a typical H, this will give a quadratic improvement

over the classical search, which, for a random H, succeeds with probability q/|C|
(due to the special soundness). A subtle issue is that, for some (unlikely) choices
of H, there are actually many (c, z) for which H

(
x, a(c, z)

)
= c, in which case

10 These additional assumptions on the simulator could be avoided, but they simplify
the proof. Furthermore, for typical Σ-protocols they are satisfied. In particular, the
simulated transcripts for hard instances are accepted by the verifier with high prob-
ability. Otherwise, the two polynomial-time algorithms could otherwise be used to
solve the hard instances, a contradiction.

The Measure-and-Reprogram Technique 2.0 619

the Grover search “overshoots”. In the formal proof below, this is dealt with by
controlling the probability of H having this (unlikely) property. Also, it removes
the special honest-verifier zero-knowledge property by doing the Grover search
over the randomness of the simulator, which requires some additional caution.

Remark 17. It is not hard to see that Theorem 16 still holds in the following
two variations of the statement. (1) H(x, a) is random and independent for
different choices of a, but is not necessarily independent for different choices of
x. (2) The Σ-protocol Σ is replaced by Σ′, which has its challenge enlarged with
a certain number of bits that are ignored otherwise, in line with Remark 14, and
FS[Σ′] then uses an H with a correspondingly enlarged range.11

Proof. Let SZK be the zero-knowledge simulator given by the perfect honest-
verifier zero-knowledge property of Σ. Consider an adversary AFS against FS[Σ],
that works as follows for an arbitrary instance x /∈ L:

– Define the function fH : R → {0, 1} (where R is the set of random coins for
SZK) as

fH(ρ) =

{
1 for SZK(x; ρ) → (a, c, z) ∧ H(x||a) = c

0 otherwise.

– Use Grover’s algorithm for q steps, to try and find ρ s.t. f(ρ) = 1
– Run SZK(x; ρ) → (a, c, z) and output (x, a||z).

Let pH
1 be the fraction of random coins from R that map to 1 under fH . Note

that by the special soundness of Σ, in any accepting triple a determines c and we
thus have EH [pH

1] = 1
|C| . By the way Grover works, after q iterations (requiring

q queries to H) the probability pH
2 of finding such an input is sin2((2q + 1)ΘH),

where 0 ≤ ΘH ≤ π/2 is such that sin2(ΘH) = pH
1 . Now as long as Θ is not

too large to begin with (i.e. as long as the Grover search will not ‘overshoot’),
pH
2 is approximately a factor q2 larger than pH

1 . Our goal will be to show that
also on average over H, the improvement is at least q2. To this end we define
Hbad := {H : pH

1 > sin2(π
6q+3)} and Hgood its complement. Then,

E
H

[pH
2] = (1 − α) · E

H

[
pH
2 |H ∈ Hgood

]
+ α · E

H

[

pH
2 |H ∈ H

bad

]

≥ (1 − α) · E
H

[
pH
2 |H ∈ Hgood

]

where α = Pr
H

[H ∈ Hbad] and 1 − α = PrH [H ∈ Hgood].

11 While (1) follows by inspecting the proof, (2) holds more generically: the dishonest
prover attacking FS[Σ′] simply runs the prover attacking FS[Σ] but enlarges the
output register of the hash queries, with the corresponding state being set to be the
fully mixed state in each query, and then dismisses these additional qubits again.

620 J. Don et al.

We first compute EHgood

[
pH
2

]
. Let H ∈ Hgood. We have (2q + 1)ΘH ≤ π

3 .
Since d

dΘ sin(Θ) = cos(Θ) ≥ 1/2 for Θ ∈ [0, π
3], and Θ ≥ sin(Θ), it follows that

sin((2q + 1) · ΘH) ≥ sin(ΘH) +
2q · ΘH

2
≥ (q + 1) · sin(ΘH).

Using sin(Θ) ≥ 0 for Θ ∈ [0, π
3], we obtain

pH
2 = sin2((2q + 1) · ΘH) ≥ (q + 1)2 · sin2(ΘH) = (q + 1)2 · pH

1 .

Therefore,

E
H

[pH
2] ≥ E

H

[
pH
2 |H ∈ Hgood

] · Pr
H

[H ∈ Hgood]

≥ (q + 1)2 · E
H

[
pH
1 |H ∈ Hgood

] · Pr
H

[H ∈ Hgood]

≥ (q + 1)2 ·
(

E
H

[pH
1] − Pr

H
[H ∈ Hbad]

)
(6)

Next we bound α = PrH [H ∈ Hbad] = PrH [pH
1 > sin2(π

6q+3)]. Note that for
pH
1 to be large, we need that for many first messages a, H(a) must be the unique

challenge c for which there exist an accepting response. For a random H this
is unlikely to happen. Formally, we argue as follows, using the Chernoff bound
eventually.

We first define the following equivalence relation:

ρ ∼ ρ′ iff SZK(ρ) = (a, c, z) ∧ SZK(ρ′) = (a, c′, z′) for ρ, ρ′ ∈ R.

R/∼ then denotes the set of equivalence classes [ρ] = {ρ′ ∈ R | ρ ∼ ρ′}. By the
perfect special soundness property and the assumptions on SZK, we have that a
determines c (remember that x /∈ L), and therefore fH is constant on elements
within a given equivalence class. Thus, fH : R/∼ → {0, 1}. For two distinct
equivalence classes [ρ] �= [ρ′], we have

Pr
H

[fH([ρ]) = 1 ∧ fH([ρ′]) = 1] = Pr
H

[fH([ρ]) = 1] · Pr
H

[fH([ρ′]) = 1] ,

since H(x||a) is chosen independently for different a. Taking XH :=
∑

[ρ] f
H([ρ])

we then have

pH
1 = Pr

ρ
[fH(ρ) = 1] =

∑
ρ f(ρ)
|R|

=

∑
[ρ]

(
fH([ρ]) · |[ρ]|)

|R| ≤ |[ρmax]| · ∑[ρ] f
H([ρ])

|R| = XH · 2−γ

where [ρmax] is the [ρ] that maximizes |[ρ]|. It follows that

α = Pr
H

[pH
1 > sin2

(
π

6q + 3

)

]

≤ Pr
H

[

XH > sin2

(
π

6q + 3

)

· 2γ

]

≤ Pr
H

[

XH >
2γ

|C| +
2γ

(5q)3

]

The Measure-and-Reprogram Technique 2.0 621

where we used sin2(x) > x3 for 0 ≤ x ≤ 0.80 and π
6q+3 > 1

5q + 3

√
1

|C| for |C| > (5q)3

in the last inequality. By definition of f , for any [ρ] we have PrH [f(ρ) = 1] = 1
|C| ,

hence

E
H

[X] =
∑

[ρ]

E
H

[fH([ρ])] =
∑

[ρ]

Pr
H

[fH([ρ]) = 1] =
|R/∼|
|C| ≥ 2γ

|C| .

We use the following Chernoff bound:

Pr
H

[

XH > (1 + δ) · E
H

[
XH

]
]

<

(
eδ

(1 + δ)1+δ

)EH [XH]
<

(
e1+δ

δ1+δ

)EH [XH]

=
(e

δ

)EH [XH]·(1+δ).

Setting δ := |C|
(5q)3 , together with the inequalities derived above this leads to

α ≤
(

e · (5q)3

|C|
) 2γ

|C| +
2γ

(5q)3

<
e2 · (5q)6

|C|2 <
1

|C| · (q2 + 1)

where we used 2γ

(5q)3 > 2 in the second to last, and |C| > (q2 + 1) · e2 · (5q)6 in
the last inequality. Plugging this bound into Eq. 6, we get

E
H

[pH
2] ≥ (q2 + 1) ·

(

p1 − 1
|C| · (q2 + 1)

)

=
q2

|C| +
1
|C| − 1

|C| =
q2

|C| .

Thus, the success probability of our adversary AFS after making q queries to H

is at least q2

|C| . ��

The tightness of Corollary 13 follows from the above tightness result for the
case of Σ-protocols in a fairly straightforward manner.

Theorem 18. For every positive integer n, there exists a (2n+1)-round PCIP
Π with soundness error ε and challenge space C such that |C| ≥ 1/ε and such
that there exists a q-query dishonest prover A on FS(Π) with success probability
n−2nq2nε.

Before proving the theorem, we show how it implies the tightness of Theorem 13.

Corollary 19. The security loss in the bound in Corollary 13 is optimal, up to
a multiplicative factor that depends on n only.

Proof. Let Π be a PCIP as shown to exist in Theorem 18. Let εΠ, and εFS(Π)(q),
be the soundness error of Π, and the one of its Fiat Shamir transformation
against q-query adversaries, respectively. By Theorem 18,

εFS(Π)(q) ≥ n−2nq2nεΠ. (7)

622 J. Don et al.

Theorem 13, on the other hand, yields

εΠ ≥ n!
(2q + n + 1)2n

εFS(Π)(q) − n!
|C| ≥ n!

(2q + n + 1)2n
εFS(Π)(q) − n!εΠ, (8)

where we used the condition on the challenge space size from Theorem 18 in the
last line. Rearranging terms we obtain

εFS(Π)(q) ≤ (2q + n + 1)2n

(

1 +
1
n!

)

εΠ(q) ≤ 2(n + 3)2q2nεΠ(q), (9)

where we have used 1 ≤ q in the last line. In summary, we have constants
c1 = n−2n and c2 = 2(n + 3)2n such that

c1q
2nεΠ ≤ εFS(Π)(q) ≤ c2q

2nεΠ. (10)

��
Proof. (of Theorem 18). Let Σ̂ be a Σ-protocol for a language L fulfilling the
requirements of Theorem 16. Let the challenge space be denoted by Ĉ. Given
an arbitrary positive integer, we define an (2n+1)-round PCIP Π for the same
language L by means of n sequential independent executions of Σ̂ . Concretely,
the 2n + 1 messages of Π are given in terms of the messages âi, ĉi and ẑi of the
i-th repetition of Σ̂ as

a1 = â1, ci = (ĉi, ri) for i = 1, ..., n,

ai = (âi, ẑi−1) for i = 2, ..., n, and z = ẑn,

where ri is an independent random string of arbitrary (but fixed) length, which
is ignored otherwise (in line with Remark 14). The purpose of ri is to make the
challenge space C of Π arbitrary large, as required. The verification procedure
of Π simply checks if all the triples (âi, ĉi, ẑi) are accepted by Σ̂. By the special
soundness property of Σ̂, the soundness error of this PCIP is ε = |Ĉ|−n.

Using Theorem 16, we can attack the FS transformation of Σ̂ repeatedly to
devise an attack agains FS(Π): first use Theorem 16 to find â1 and ẑ1, then
use it again to find â2 and ẑ2, etc., having the property that with the correctly
computed challenges these form valid triples for an instance x �∈ L. In each
invocation of Theorem 16 we use a q′-query attack, which then succeeds with
probability q′2/|Ĉ|. Thus, using in total q = nq′ queries, we succeed in breaking
FS[Π] with probability q′2n/|Ĉ|n = n−2nq2nε, as claimed.

There are two issues we neglected in the above argument. First, we actually
employ Theorem 16 for attacking a variant of Σ̂ that has its challenge enlarged
(and thus is not special sound); and, second, the challenge ci is computed as

ci = H(i − 1, ...,H(1,H(0, x, â1), â2), ..., âi),

which is not a uniformly random function of x and âi (but only of âi). However,
by Remark 17, the attack from Theorem 16 still applies. ��

The Measure-and-Reprogram Technique 2.0 623

7 Applications

7.1 Digital Signature Schemes from Multi-round Fiat-Shamir

One of the prime applications of the FS transformation is the construction of
digital signature schemes from interactive identification schemes. In this context,
multi-round variants have also been used. An example where a QROM reduction
is especially desirable is MQDSS [5], a candidate digital signature scheme in the
ongoing NIST standardization process for post-quantum cryptographic schemes
[1]. This digital signature scheme is constructed by applying the multi-round FS
transformation to the 5-round identification scheme by Sakumoto, Shirai, and
Hiwatari [14] based on the hardness of solving systems of multivariate quadratic
equations.

In this section, we present a generic construction of a digital signature scheme
based on multi-round FS, and give a proof sketch of its strong unforgeability
under chosen message attacks. We refrain from giving a full, self-contained proof
here so as to not distract from our main technical result and its implications.
Many, though not all, parts of the argument are very similar to the ones made
elsewhere for the 3-round case.

The following construction is a straightforward generalization of the original
construction of Fiat and Shamir.

Definition 20 (Fiat-Shamir signatures from a general PCIP). Given an
(2n+1)-round public coin identification scheme Π = (Gen,P,V) for a witness
relation R and a hash function H with appropriate domain and range equal to
C, we define the digital signature scheme Sig[Π] = (Gen,Sign,Verify) as follows.
The key generation algorithm Gen is just the one from Π. The signing algorithm
Sign, on input a secret key sk and a message m, outputs

σ = (a1, ..., an, z) ← Signsk(m)

where z and ai for i = 1, ..., n are computed using P(pk), and the challenges are
computed as

c1 = H(0, pk,m, a1) and ci = H(i − 1, ci−1, ai) for i = 2, ..., n .

The verification algorithm Verify, on input a public key pk, a message m and
a signature σ = (a1, ..., an, z), computes ci as specified above, outputs ‘accept’ iff
Vpk(a1, c1, ..., an, cn, z) = 1, denoted by Verifypk(m,σ) = 1.

We note that the above definition is equivalent to the following, alternative
formulation: Let Signsk(m) produce σ by running PH

FS(x||m), and let Verify(m,σ)
be equal to the outcome of V H

FS(x||m), where (PH
FS , V H

FS) = FS[Π∗] and Π∗ =
(P∗,V∗) is the identification scheme obtained from Π by setting P∗(x||m) = P(x)
and V∗(x||m) = V(x) for any m. This alternative formulation will be convenient
in the proof of Theorem 23.

Remark 21. As in the case of the plain multi-round FS transformation, one
can include arbitrary additional strings in the argument when computing the

624 J. Don et al.

challenges ci. Examples where this is done include the MQDSS signature scheme
[5], where the message m and the first commitment a1 are also included in
the argument for computing the second challenge, and Bulletproofs, where the
challenges are computed by hashing the entire transcript up to that point [4].

As an identification scheme is an interactive honest-verifier zero knowledge proof
of knowledge of a secret key, the above signature scheme is a non-interactive
zero knowledge proof of knowledge of a secret key according to Corollary 13.
For a digital signature scheme, however, the stronger security notion of (strong)
unforgeability against chosen message ((s)UF-CMA) attacks is required.

In the following, we give a proof sketch for the fact that the above signature
scheme is (s)UF-CMA. This fact follows immediately once we have convinced
ourselves that a certain result by Unruh about the FS transformation holds
for the multi-round case as well: For the FS transformation of Σ-protocols,
extractability implies a stronger notion of extractability enabling a proof of
(s)UF-CMA [18]. Here, we just patch the parts of the proof from [18] that make
use of the fact that the underlying PCIP has only three rounds.

For the following we need the notion of a PCIP having computationally
unique responses.

Definition 22. (Computationally unique responses - PCIP). A (2n+1)-
round PCIP Π = (P,V) is said to have computationally unique responses if
given a partial transcript (x, a1, c1, . . . ai, ci) it is computationally hard to find
two accepting conversations that both extend the partial transcript but differ
in (at least) ai+1 (here we consider z to be equal to an+1), i.e. for coni =
x, a1, c1, . . . ai, ci, a

(j)
i+1, c

(j)
i+1 . . . , a

(j)
n , c

(j)
n , z(j), j = 1, 2 we have that

Pr [V(con1) = 1 ∧ V(con2) = 1 : (con1, con2) ← A]

is negligible for computationally bounded (quantum) A, where a
(1)
i+1 �= a

(2)
i+1.

Equipped with this definition, we can state the main result of this section.

Theorem 23. ((s)UF-CMA of multi-round FS signatures). Let Π be a
PCIP for some hard relation R, which is a quantum proof of knowledge and sat-
isfies completeness, HVZK, and has unpredictable commitments12 as well as a
superpolynomially large challenge space. Then Sig[Π] is existentially unforgeable
under chosen message attack (UF-CMA). If Π in addition has computationally
unique responses, Sig[Π] is strongly existentially unforgeable under chosen mes-
sage attack (sUF-CMA).

In [18] (Theorem 24, and 25, respectively), it is proven that an extractable
FS proof system (of an HVZK Σ-protocol, and of an HVZK Σ-protocol with
computationally unique responses, respectively) satisfies the stronger notion of
(strong) simulation-sound extractability. In addition, it is shown that such a

12 We take unpredictable commitments for PCIP’s to be exactly the same as for
Σ-protocols, with the first message playing the role of the commitment.

The Measure-and-Reprogram Technique 2.0 625

FS proof system gives rise to a (s)UF-CMA signature scheme if the underlying
relation is hard. Corollary 15 implies that FS[Π∗] is indeed extractable if Π
is extractable. Below we rely on the proof in [18] to argue simulation-sound
extractability, only pointing out a particular difference for the multi-round case.

Proof (sketch). Since Π is a quantum proof of knowledge, so is Π∗. By Corollary
15, FS[Π∗] is a quantum proof of knowledge (extractable), and by Theorem
20 in [18] (which easily generalizes to the multi-round setting), completeness,
unpredictable commitments13 and HVZK of Π∗ together imply ZK for FS[Π∗].
For the proof that FS[Π∗] is also simulation-sound extractable, we refer to the
proof of Theorem 24 in [18], noting only that in the hop from Game 1 to Game
2 we have to adjust the argument as follows: Let SZK be the zero-knowledge
simulator that runs the HVZK simulator from Π∗ and reprograms the oracle
as necessary. We write Hf for the oracle H after it has been reprogrammed by
SZK , at the end of the run of A. We have to show that V

Hf

FS (x, a1, . . . , an, z) = 1
implies V H

FS(x, a1, . . . , an, z) = 1, where (x, a1, . . . , an, z) is the final output of A.
Suppose the implication does not hold. Then either (i) Hf (0, x, a1) �= H(0, x, a1)
or (ii) Hf (i − 1, ci−1, ai) �= H(i − 1, c′

i−1, ai) for some i, where ci−1 is the (i−1)-
st challenge as recomputed by V

Hf

FS and c′
i−1 is the one computed by V H

FS . In
case (i) holds, A has queried x and the corresponding forged proof that was
output by SZK starts with a1. In case (ii), assume that Hf (j − 1, cj−1, aj) =
H(j − 1, cj−1, aj) for all j < i, so that ci−1 = c′

i−1. Then,

Hf (i−1, ...,H(1,H(0, x, a1), a2), ..., ai) �= H(i−1, ...,H(1,H(0, x, a1), a2), ..., ai)

which means that A either queried x and the corresponding forged proof that
was output by SZK starts with a1, or else A has queried some x′ such that

H(i − 2, . . . , H(1,H(0, x′, a′
1), a

′
2), . . . a

′
i−1)

= H(i − 2, . . . , H(1,H(0, x, a1), a2), . . . , ai−1)

and ai = a′
i, where (a′

1, . . . , a
′
i) is part of the SZK proof resulting from query x′.

By the fact that H is a random oracle, it is infeasible for A to find such an x′.
In the context of weak simulation-sound extractability, the fact that A has

queried x is enough to derive a contradiction. For the strong variant, we now
have that SZK has output (x, a1, a

′
2, . . . , a

′
n, z′) such that

V(x, a1,Hf (0, x, a1), a′
2, c

′
2 . . . , a′

n, c′
n, z′) = 1

and A has output (x, a1, a2, . . . , an, z) such that

V(x, a1,Hf (0, x, a1), a2, c2, . . . , an, cn, z) = 1

13 This property is required to have sufficient entropy on the inputs to the oracle that
are reprogrammed by the zero-knowledge simulator SZK . While SZK may reprogram
the oracle on inputs (i−1, ci−1, ai) for i > 1, it is enough to require the first message
a1 to have sufficient entropy, since with ci−1, these later inputs all include a uniformly
random element from the superpolynomially large challenge space.

626 J. Don et al.

(and A knows both since it interacted with SZK). By the computationally unique
responses property of Π, it must be that a2 = a′

2. But then it follows that

c2 = Hf (1,Hf (0, x, a1), a2) = Hf (1,Hf (0, x, a1), a′
2) = c′

2

(remember that both proofs are accepting with respect to Hf) which in turn
implies that a3 = a′

3, etc. Thus, we obtain that A has output a proof that was
produced by SZK , yielding a contradiction. We conclude that

V
Hf

FS (x, a1, . . . , an, z) = 1 implies V H
FS(x, a1, . . . , an, z) = 1

except with negligible probability.
In the rest of the proof of Theorems 24 and 25 in [18], no properties specific

to a three-round scheme are used, and so the results extend to the PCIP con-
text, that is, FS[Π∗] is (strongly) simulation-sound extractable. Now applying
Theorem 31 from [18], we obtain that Sig[Π] is (s)UF-CMA. ��

Together with the fact that commit-and-open PCIPs can easily be made
quantum extractable in the right sense by using standard hash-based commit-
ments based on a collapsing hash function, we obtain the security of the MQDSS
signature scheme. Recall that the standard hash-based commitment scheme
works as follows. On input s, the commitment algorithm samples a random open-
ing string u and outputs it together with the commitment c = H(s, u). Opening
just works by recomputing the hash and comparing it with c. Note that, while
this commitment scheme is collapse-binding [17], we need the stronger property
of collapsingness of the function defined by the commitment algorithm that, on
input a string and some randomness, outputs a commitment (collapse-binding
only requires the collapsingness with respect to the committed string, not the
opening information).

Corollary 24 (sUF-CMA of MQDSS). Let ΠSSH be the 5-round identifica-
tion scheme from [14] repeated in parallel a suitable number of times and instan-
tiated with the standard hash-based commitment scheme using a collapsing hash
function. Then the FS signature scheme constructed from ΠSSH is sUF-CMA.

Proof (sketch). In ΠSSH, the honest prover’s first message consists of two com-
mitments, and the second and final messages contain functions of the strings
committed to in the first message. This structure, together with the computa-
tional binding property (implied by the collapse binding property) of the com-
mitments, immediately implies that ΠSSH has computationally unique responses.
According to Corollary 30 in the appendix, ΠSSH is a quantum proof of knowl-
edge. It also has HVZK according to [14]. Finally, the first message of ΠSSH is
clearly unpredictable. An application of Theorem 23 finishes the proof. ��

7.2 Sequential OR Proofs

A second application of our multi-input version of the measure-and-reprogram
result is to the OR-proof as introduced by Liu, Wei and Wong [12] and further

The Measure-and-Reprogram Technique 2.0 627

analyzed by Fischlin, Harasser and Janson [10]. This is an alternative (non-
interactive) proof for proving existence/knowledge of (at least) one of two wit-
nesses without revealing which one, compared to the well known technique by
Cramer, Damg̊ard and Schoenmakers [7].

Formally, given two Σ-protocols Σ0, and Σ1, for languages L0, and L1,
respectively, [12] proposes as a non-interactive proof for the OR-language L∨ =
{(x0, x1) : x0 ∈L0 ∨ x1 ∈L1} a quadruple π∨ = (a0, a1, z0, z1) such that

V H
∨ (x0, x1, π∨) :=

[
V0

(
x0, a0,H(1, x0, x1, a1), z0

)∧V1

(
x1, a1,H(0, x0, x1, a0), z1

)]

is satisfied. Fischlin et al. call this construction sequential OR proof. We empha-
size that the two challenges c0 and c1 are computed “over cross”, i.e., the chal-
lence c0 for the execution of Σ0 is computed by hashing a1, and vice versa. It
is straightforward to verify that if Σ0 and Σ1 are special honest-verifier zero-
knowledge, meaning that for any challenge c and response z one can efficiently
compute a first message a such that (a, c, z) is accepted, then it is sufficient to
be able to succeed in one of the two interactive protocols Σ0 and Σ1 in order to
honestly produce such an OR-proof π∨. Thus, depending on the context, it is
sufficient that one instance is in the corresponding language, or that the prover
knows one of the two witnesses, to produce π∨. Indeed, if, say, x0 ∈ L0 (and a
witness w0 is available), then π∨ can be produced as follows. Prepare a0 accord-
ing to Σ0, compute c1 := H(0, x0, x1, a0) and simulate z1 and a1 using the special
honest-verifier zero-knowledge property of Σ1 so that V1(x1, a1, c1, z1) is satis-
fied, and then compute the response z0 for the challenge c0 := H(1, x0, x1, a1)
according to Σ0.

On the other hand, intuitively one expects that one of the two instances must
be true in order to be able to successfully produce a proof. Indeed, [12] shows
security of the sequential OR in the (classical) ROM. [10] go a step further and
show security in the (classical) non-programmable ROM. Here we show that our
multi-input version of the measure-and-reprogram result (as a matter of fact the
2-input version) implies security in the QROM.

Theorem 25. There exists a black-box quantum polynomial-time interactive
algorithm P̂, which first outputs a bit b and two instances x0, x1, and in a second
stage acts as an interactive prover that runs Σb on instance xb, such that for
any adversary A making q queries to a uniformly random function H and for
any x◦

0, x
◦
1:

Pr
[
x0 = x◦

0 ∧ x1 = x◦
1 ∧ vb = accept : (b, x0, x1, vb) ← 〈P̂A,Vb〉

]

≥ 1
(2q + 1)4

Pr
H

[
x0 = x◦

0 ∧ x1 = x◦
1 ∧ V H

∨ (x0, x1, π∨) : (x0, x1, π∨) ← AH
]
.

As explained above, the execution (b, x0, x1, vb) ← 〈P̂A,Vb〉 should be under-
stood in that P̂A first outputs x0, x1 and b, and then it engages with Vb to execute
Σb on instance xb. Thus, the statement ensures that if AH succeeds to produce
a convincing proof π∨ then P̂A succeeds to convincingly run Σ0 or Σ1 (with

628 J. Don et al.

similar success probability), where it is up to P̂A to choose which one it wants
to do.

Of course, the statement translates to the static setting where the two
instances x0 and x1 are fixed and not produced by the dishonest prover.

Proof. The algorithm A fits into the statement of Theorem 6 with the two
extractable inputs x̃0 = (0, x0, x1, a0) and x̃1 = (1, x0, x1, a1). Thus, we can
consider the 3-stage algorithm S ensured by Theorem 6, which behaves as fol-
lows with at least the probability given by the right hand side of the claimed
inequality. In the first stage, it outputs a permutation on the set {0, 1}, repre-
sented by a bit b ∈ {0, 1} with b = 0 corresponding to the identity permuta-
tion, as well as x̃b = (b, x0, x1, ab). On input a random Θb = c1−b (“locally”
chosen by P̂), S then outputs x̃1−b = (1 − b, x0, x1, a1−b). Finally, on input a
random Θ1−b = cb (provided by Vb as challenge upon the first message ab),
S outputs z0, z1 so that V∨ is satisfied with the challenges cb and c1−b, and
thus in particular Vb

(
xb, ab, cb, zb

)
is satisfied. This shows the existence of P̂ as

claimed. ��

Acknowledgement. We thank Dominque Unruh for hinting towards the possibility
of the improved Theorem 2 (compared to [DFMS19]), see also Footnote 8, and Andreas
Hülsing for helpful discussions. CM was funded by a NWO VENI grant (Project No.
VI.Veni.192.159). SF was partly supported by the EU Horizon 2020 Research and
Innovation Program Grant 780701 (PROMETHEUS). JD was funded by ERC-ADG
project 740972 (ALGSTRONGCRYPTO).

A Quantum extractability of q2 identification schemes

A class of identification schemes that is of particular interest are so-called q2-
identification schemes. The NIST candidate signature scheme MQDSS, for exam-
ple, is obtained from such an identification scheme via the multi-round FS trans-
formation from Definition 20 (with some additional strings included in the hash
arguments). In this section, we will prove that a PCIP with a so-called “q2
extractor” [5, Definition 4.6] is a quantum proof of knowledge if it has an addi-
tional collapsingness property. This is necessary for its FS transformation to
fulfill (s)UF-CMA in the QROM (for (s)UF-CMA in the ROM, the q2-extractor
alone is sufficient [5]).

We begin by defining q2 identification schemes and their extractors.

Definition 26. A 5-round identification scheme is a q2 identification scheme,
if the second challenge is a single bit. A q2 identification scheme is called q2-
extractable if there exists a polynomial-time algorithm that, on input four tran-
scripts t(i) = (a(i)

1 , c
(i)
1 , a

(i)
2 , c

(i)
2 , z(i)), i = 1, 2, 3, 4, such that

c
(1)
1 = c

(2)
1 �= c

(3)
1 = c

(4)
1 and c

(1)
2 = c

(3)
3 �= c

(2)
2 = c

(4)
2 , (11)

outputs the secret key with non-negligible probability.

The Measure-and-Reprogram Technique 2.0 629

For ease of exposition we have assumed that the different challenges of a sin-
gle PCIP come all from the same challenge space. A q2 identification scheme
can be brought into this form by having the prover compute the second chal-
lenge by selecting the first bit of an augmented second challenge that is as
large as the first one. For classical provers, four transcripts as required by the
above definition can be obtained by straightforward rewinding. In the following,
we show that, if the q2 identification scheme has an additional property sim-
ilar to the quantum-computationally unique responses property introduced in
[9,13], then the existence of a q2 extractor implies that there exists a quantum
extractor. This makes the scheme a quantum proof of knowledge. The argu-
ment follows the same lines as the one given in [9] to prove that t-soundness
and quantum-computationally unique responses imply the quantum proof-of-
knowledge-property, which in turn is an extension of the result by Unruh for
Σ-protocols with perfect unique responses [15].

Recall the definition of a collapsing relation, [9, Definition 23], a generaliza-
tion of the notion of a collapsing hash function [17]. We define the notion of
collapsingness for interactive proof systems as follows:

Definition 27. A (2n+1)-round interactive proof system Π is called collapsing,
if the relation RΠ : X ×Y → {0, 1} with X = Cn ×A1 and Y = A2 × ...×An ×Z
given by the verification predicate VΠ of Π is collapsing from X to Y.

Note that for n = 1, this notion of collapsingness coincides with the notion of
quantum-computationally unique responses from [9].

Given a q2-identification scheme Π, consider the following straightforward
(first stage of a) quantum extractor EA

Π . The extractor runs the prover A using
honestly sampled challenges to obtain a first transcript t(1). Now it rewinds three
times and reruns A, each time with a fresh pair of challenges, chosen such as to
obtain t(i), i = 2, 3, 4 such that the four transcripts fulfill the conditions (11).
For this extractor, we obtain the following

Theorem 28. Let Π a q2-extractable q2-identification scheme that is also col-
lapsing. Then the success probability of the extractor EA

Π is lower-bounded in
terms of the success probability of the prover A as

Pr[EA
Π extracts] ≥ (

Pr
[
v = accept : (x, v) ← 〈A,VΠ〉])7 (12)

The proof of this theorem is essentially the same as for Theorem 25 in [9],
which is a slight modification of an argument from [15].

As a corollary, we obtain the fact that for q2 identification schemes, q2-
extractability and collapsingness imply the quantum proof of knowledge property
as defined in [15].

Corollary 29. Let Π a q2-extractable q2-identification scheme that is also col-
lapsing. Then it is a quantum proof of knowledge.

In particular, the 5-round identification scheme ΠSSH from [14] which is
used to construct the post-quantum digital signature scheme MQDSS has these

630 J. Don et al.

properties under plausible assumptions, namely that it is instantiated with the
standard hash-based commitment scheme using a collapsing hash function [17]
(see discussion towards the end of Sect. 7.1). For MQDSS, this is no additional
assumption, as the FS transformation uses the QROM anyway, and a quantum
accessible random oracle is collapsing by [17].

Corollary 30. If the 5-round identification scheme from [14] is instantiated
with the standard hash-based commitment scheme using a collapsing hash func-
tion, it is a quantum proof of knowledge.

Proof (sketch). According to [5], ΠSSH is a q2-extractable q2 identification
scheme. In ΠSSH, the honest prover’s first message consists of two commitments,
and the second and final messages contain functions of the strings commited to
in the first message, and some opening information, respectively. Measuring a
function of a register is equivalent to a partial computational basis measurement
of that register. According to the collapsing property of the hash function, no
efficient algorithm can distinguish whether the committed string and the opening
information are measured or not. This clearly implies the same indistinguisha-
bility for partial measurements of the string register, which implies that ΠSSH is
collapsing. ��
Note that the above proof works for any multi-round PCIP that has a similar
commit-and-open structure.

References

1. Nist post-quantum cryptography standardization. https://csrc.nist.gov/projects/
post-quantum-cryptography/round-1-submissions

2. Bootle, J.: Recursive techniques for lattice-based zero-knowledge. https://www.
youtube.com/watch?v=NEayIq k4ks. Accessed 06 Feb 2020

3. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46(4–5), 493–505 (1998)

4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP), pp. 315–334, May 2018

5. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-
pass MQ-based identification to MQ-based signatures. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 135–165. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 5

6. Chen, M.-S., Hülsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: SOFIA:
MQ-based signatures in the QROM. In: Abdalla, M., Dahab, R. (eds.) PKC 2018.
LNCS, vol. 10770, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-76581-5 1

7. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://www.youtube.com/watch?v=NEayIq_k4ks
https://www.youtube.com/watch?v=NEayIq_k4ks
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/978-3-319-76581-5_1
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19

The Measure-and-Reprogram Technique 2.0 631

8. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat–Shamir transformation in
a quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 62–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42045-0 4

9. Don, J., Fehr, S., Majenz, C., Schaffner, C.: Security of the Fiat-Shamir transfor-
mation in the quantum random-oracle model. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 356–383. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 13

10. Fischlin, M., Harasser, P., Janson, C.: Signatures from sequential-OR proofs. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 212–244.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 8

11. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 18

12. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27800-9 28

13. Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 326–355. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 12

14. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 40

15. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 10

16. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle
model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 25

17. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 18

18. Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 3

19. Zhandry, M.: How to construct quantum random functions. In: 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, pp. 679–687. IEEE,
October 2012

https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-030-45727-3_8
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-540-27800-9_28
https://doi.org/10.1007/978-3-030-26951-7_12
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-319-70694-8_3
https://doi.org/10.1007/978-3-319-70694-8_3

Fiat-Shamir for Repeated Squaring
with Applications to PPAD-Hardness

and VDFs

Alex Lombardi(B) and Vinod Vaikuntanathan

MIT, Cambridge, MA, USA
{alexjl,vinodv}@mit.edu

Abstract. The Fiat-Shamir transform is a methodology for compiling
a (public-coin) interactive proof system for a language L into a non-
interactive argument system for L. Proving security of the Fiat-Shamir
transform in the standard model, especially in the context of succinct
arguments, is largely an unsolved problem. The work of Canetti et al.
(STOC 2019) proved the security of the Fiat-Shamir transform applied to
the Goldwasser-Kalai-Rothblum (STOC 2008) succinct interactive proof
system under a very strong “optimal learning with errors” assumption.
Achieving a similar result under standard assumptions remains an impor-
tant open question.

In this work, we consider the problem of compiling a different succinct
interactive proof system: Pietrzak’s proof system (ITCS 2019) for the
iterated squaring problem. We construct a hash function family (with
evaluation time roughly 2λε

) that guarantees the soundness of Fiat-
Shamir for this protocol assuming the sub-exponential (2−n1−ε

)-hardness
of the n-dimensional learning with errors problem. (The latter follows
from the worst-case 2n1−ε

hardness of lattice problems.) More generally,
we extend the “bad-challenge function” methodology of Canetti et al.
for proving the soundness of Fiat-Shamir to a class of protocols whose
bad-challenge functions are not efficiently computable.

As a corollary (following Choudhuri et al., ePrint 2019 and Ephraim
et al., EUROCRYPT 2020), we construct hard-on-average problems
in the complexity class CLS ⊂ PPAD under the 2λε

-hardness of
the repeated squaring problem and the 2−n1−ε

-hardness of the learn-
ing with errors problem. Under the additional assumption that the
repeated squaring problem is “inherently sequential”, we also obtain
a Verifiable Delay Function (Boneh et al., EUROCRYPT 2018) in the
standard model. Finally, we give additional PPAD-hardness and VDF

A. Lombardi—Research supported in part by an NDSEG fellowship and by the second
author’s grants listed below.
V. Vaikuntanathan—Research was supported in part by NSF Grants CNS- 1350619
and CNS-1414119, an NSF-BSF grant CNS-1718161, the Defense Advanced Research
Projects Agency (DARPA) and the U.S. Army Research Office under contracts
W911NF-15-C-0226 and W911NF-15-C-0236, an IBM-MIT grant and a Microsoft
Trustworthy and Robust AI grant.
c© International Association for Cryptologic Research 2020

D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 632–651, 2020.
https://doi.org/10.1007/978-3-030-56877-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_22

Fiat-Shamir for Repeated Squaring 633

instantiations demonstrating a broader tradeoff between the strength
of the repeated squaring assumption and the strength of the lattice
assumption.

1 Reference to Full Version

The full version of this paper [LV20] is freely available on the Cryptology ePrint
Archive. We refer the reader to this version for a complete description of our
results and proofs.

2 Introduction

The Fiat-Shamir transform [FS86] is a methodology for compiling a public-coin
interactive proof (or argument) system for a language L into a non-interactive
argument system for L. While originally developed in order to convert 3-message
identification schemes into signature schemes, the methodology readily general-
ized [BR93] to apply to a broad, expressive class of interactive protocols, with
applications including non-interactive zero knowledge for NP [BR93], succinct
non-interactive arguments for NP [Mic00,BCS16], and widely used/practically
efficient signature schemes [Sch89].

However, these constructions and results come with a big caveat: the security
of the Fiat-Shamir transformation is typically heuristic. While the transforma-
tion has been proved secure (in high generality) in the random oracle model
[BR93,PS96,Mic00,BCS16], it is known that some properties that hold in the
random oracle model – including the soundness of Fiat-Shamir for certain con-
trived interactive arguments – cannot be instantiated at all in the standard
model [CGH04,DNRS99,Bar01,GK03,BBH+19].

Given these negative results, security in the random oracle model is by no
means the end of the story. Indeed, the question of whether Fiat-Shamir can
be instantiated for any given interactive argument system (and under what
computational assumptions this can be done) has been a major research direc-
tion over the last twenty years [DNRS99,Bar01,GK03,BLV06,CCR16,KRR17,
CCRR18,HL18,CCH+19,PS19,BBH+19,BFJ+19,JJ19,LVW19]. After much
recent work, some positive results are known, falling into three categories (in
the decreasing order of strength of assumptions required):

1. We can compile arbitrary (constant-round, public-coin) interactive proofs
under extremely strong assumptions [KRR17,CCRR18] that are non-
falsifiable in the sense of [Nao03].

2. We can compile certain succinct interactive proofs [LFKN92,GKR08] – and
variants of other interactive proofs not captured in item (3) below, such as
[GMW91] – under extremely strong but falsifiable assumptions [CCH+19].

3. We can compile variants of some classical 3-message zero knowledge proof
systems [GMR85,Blu86,FLS99] under standard cryptographic assumptions
[CCH+19,PS19].

634 A. Lombardi and V. Vaikuntanathan

Elaborating on item (2) above, what is currently known is that the sum-
check protocol [LFKN92] and the related Goldwasser-Kalai-Rothblum (GKR)
[GKR08] interactive proof system can be compiled under an “optimal security
assumption” related to (secret-key) Regev encryption. Roughly speaking, an
optimal hardness assumption is the assumption that some search problem can-
not be solved with probability significantly better than repeatedly guessing a
solution at random. This is an extremely strong assumption that (in the context
of Regev encryption) requires careful parameter settings to avoid being trivially
false.

In this work, we focus on improving item (2); in particular, we ask:

Under what computational assumptions can we instantiate Fiat-Shamir
for an interesting succinct interactive proof?

Instead of considering the [LFKN92,GKR08] protocols, we work on compiling
a protocol of Pietrzak [Pie18] for the “repeated-squaring language” [RSW96].
At a high level, Pietrzak constructs a “sumcheck-like” succinct interactive proof
system for the computation fN,g(T) = g2T (mod N) over an RSA modulus N =
pq. Compiling this protocol turns out to have applications related to verifiable
delay functions (VDFs) [BBBF18] and hardness in the complexity class PPAD
[CHK+19a,CHK+19b,EFKP19], which we elaborate on below.

Applications. We consider two apparently different questions: the first is that
of establishing the hardness of the complexity class PPAD (“polynomial parity
arguments on directed graphs”) [Pap94] that captures the hardness of finding
Nash equilibria in bimatrix games [DGP09,CDT09]; the second is that of con-
structing verifiable delay functions (VDFs), a recently introduced cryptographic
primitive [BBBF18] which gives us a way to introduce delays in decentralized
applications such as blockchains.

The Hardness of PPAD. Establishing the hardness of PPAD [Pap94], possibly
under cryptographic assumptions, is a long-standing question in the foundations
of cryptography and computational game theory. After two decades of little
progress on the question, a recent sequence of works [BPR15,HY17,CHK+19a,
CHK+19b,EFKP19] has managed to prove that there are problems in PPAD
(and indeed a smaller complexity class, CLS [DP11]) that are hard (even on
average) under strong cryptographic assumptions. The results so far fall roughly
into two categories, depending on the techniques used.

1. Program Obfuscation. Bitansky, Paneth and Rosen [BPR15], inspired
by an approach outlined in [AKV04], showed that PPAD is hard assum-
ing the existence of subexponentially secure indistinguishability obfuscation
(IO) [BGI+01,GGH+13] and one-way functions. This was later improved
[GPS16,HY17] to rely on polynomially-secure functional encryption and to
give hardness in CLS ⊂ PPAD.

Fiat-Shamir for Repeated Squaring 635

2. Unambiguously Sound Incrementally Verifiable Computation. The
recent beautiful work [CHK+19a] constructs a hard-on-average CLS instance
assuming the existence of a special kind of incrementally verifiable compu-
tation (IVC) [Val08]. Instantiating this approach, they show that CLS ⊂
PPAD is hard-on-average if there exists a hash function family that soundly
instantiates the Fiat-Shamir heuristic [FS86] for the sumcheck interactive
proof system for #P [LFKN92]. Two follow-up works [CHK+19b,EFKP19]
show the same conclusion if Fiat-Shamir for Pietrzak’s interactive proof sys-
tem [Pie18] can be soundly instantiated (and if the underlying “repeated
squaring language” is hard).

Regarding the first approach [BPR15,GPS16,HY17], secure indistinguishability
obfuscators have recently been constructed based on the veracity of a number
of non-standard assumptions (see, e.g., [AJL+19,BDGM20]). Regarding the sec-
ond approach [CHK+19a,CHK+19b,EFKP19], the hash function can be instan-
tiated in the random oracle model, or under “optimal KDM-security” assump-
tions [CCRR18,CCH+19].

In summary, despite substantial effort, there are no known constructions of
hard PPAD instances from standard cryptographic assumptions (although see
Section 2.3 for a recent independent work [KPY20] that shows such a result
under a new assumption on bilinear groups).

Verifiable Delay Functions. A Verifiable Delay Function (VDF) [BBBF18] is a
function f with the following properties:

– f can be evaluated in some (moderately large) time T .
– Computing f (on average) requires time close to T , even given a large amount

of parallelism.
– There is a time T + o(T) procedure that computes y = f(x) on an input

x along with a proof π that y = f(x) is computed correctly. This proof
(argument) system should be verifiable in time � T (ideally poly(λ, log T)))
and satisfy standard (computational) soundness.

Since their introduction [BBBF18], there have been a few proposed candidate
VDF constructions [BBBF18,Pie18,Wes19,dFMPS19,EFKP19]. There are cur-
rently no constructions based on standard cryptographic assumptions, but this
is somewhat inherent to the primitive: a secure VDF implies the existence of a
problem which can be solved in time T and also requires (sequential) time close
to T . Nonetheless, one can ask1 whether VDFs can be constructed from “more
standard-looking” assumptions, a question partially answered by [Pie18,Wes19].
In particular, each of their constructions relies on two assumptions:

(1) The T -repeated squaring problem [RSW96] requires sequential time close
to T .

1 [BBBF18] explicitly suggested this.

636 A. Lombardi and V. Vaikuntanathan

(2) The Fiat-Shamir heuristic for some specific public-coin interactive proof/
argument2 can be soundly instantiated.

The techniques used in both the construction of hard PPAD instances and
the construction of VDFs are similar, and so are the underlying assumptions
(this is due to the connection between PPAD and incrementally verifiable com-
putation [Val08,CHK+19a]). In particular, the works of [CHK+19b,EFKP19]
construct hard PPAD (and even CLS) instances under two assumptions:

(1′) The T -repeated squaring problem [RSW96] requires super-polynomial
(standard) time for some T = λω(1).

(2′) The Fiat-Shamir heuristic for a variant of the [Pie18] interactive proof sys-
tem can be soundly instantiated.

The assumption (1) (and its weakening, assumption (1′)) is the foundation of
the Rivest-Shamir-Wagner time-lock puzzle [RSW96] and has been around for
over 20 years. In particular, breaking the RSW assumption has received renewed
cryptanalytic interest recently [Riv99,Fab19].

On the other hand, as previously discussed, the assumptions (2, 2′) are not
well understood. Indeed, our main question about Fiat-Shamir for succinct argu-
ments (if specialized to the [Pie18] protocol) is intimately related to the following
question.

Can we construct hard PPAD instances and VDFs
under more well-studied assumptions?

2.1 Our Results

We show how to instantiate the Fiat-Shamir heuristic for the [Pie18] protocol
under a quantitatively strong (but relatively standard) variant of the Learning
with Errors (LWE) assumption [Reg09]. We give a family of constructions of hash
functions that run in subexponential (or even quasi-polynomial or polynomial)
time, and prove that they soundly instantiate Fiat-Shamir for this protocol under
a sufficiently strong LWE assumption.

More generally, we extend the “bad-challenge function” methodology of
[CCH+19] for proving the soundness of Fiat-Shamir to a class of protocols whose
bad-challenge functions are not efficiently computable. We elaborate on this
below in the technical overview (Sect. 2.4).

As a consequence, we obtain CLS-hardness and VDFs from a pair of quan-
titatively related assumptions on the [RSW96] repeated squaring problem and
on the learning with errors (LWE) problem [Reg09]; the latter can in turn be
based on the worst-case hardness of the (approximate) shortest vector problem
2 The two works [Pie18,Wes19] consider qualitatively different interactive argument

systems. In this work, we focus on the [Pie18] protocol since (1) it has unconditional
soundness and therefore is more conducive to provable Fiat-Shamir compilation, and
(2) it is more closely related to PPAD-hardness.

Fiat-Shamir for Repeated Squaring 637

(GapSVP) on lattices. In particular, we can base the hardness of CLS ⊂ PPAD,
as well as the security of a VDF, on the hardness of two relatively well-studied
problems.

Fiat-Shamir for Pietrzak’s Protocol. For our main result, we show that for any
ε > 0, an LWE assumption of quantitative strength 2n1−ε allows for a Fiat-Shamir
instantiation with verification runtime 2Õ(nε) on a repeated squaring instance
with security parameter λ = O(n log n). Such a result is meaningful as long as
the verification runtime is smaller than the time it takes to solve the repeated
squaring problem; the current best known algorithms for repeated squaring run
in heuristic time 2Õ(λ1/3) = 2Õ(n1/3) [LLMP90].

Here and throughout the paper, we will use (t, δ)-hardness to denote that a
cryptographic problem is hard for t-time algorithms to solve with δ probability
(or distinguishing advantage).

Theorem 2.1. Let ε > 0 be arbitrary. Assume that (decision) LWE is
(

2Õ(n1/2),

2−n1−ε
)

-hard (or alternatively,
(

2Õ(nε), 2−n1−ε
)

-hard for non-uniform algo-
rithms). Then, there exists a hash family H that soundly instantiates the Fiat-
Shamir heuristic for Pietrzak’s interactive proof system [Pie18]. When the proof
system is instantiated for repeated squaring over groups of size 2O(λ) with
λ = O(n log n), the hash function h from the family H can be evaluated in time
2Õ(λε).

Under the assumption that (decision) LWE is
(

2Õ(n1/2), 2− n
logc n

)
-hard for

some constant c > 0 (or alternatively,
(
quasipoly(n), 2− n

logc n

)
-hard for non-

uniform algorithms), there exists such a hash family H with quasi-polynomial
evaluation time.

Moreover, the LWE assumption that we make falls into the parameter regime
where we know worst-case to average-case reductions [Reg09,BLP+13,PRS17],
so we obtain the following corollary.

Corollary 2.1. The conclusions of Theorem 2.1 (with parameter ε < 1
2) follow

from the assumption that the worst case problem poly(n)-GapSVP for rank n

lattices requires time 2ω(n1−ε). Similarly, the protocol with quasi-polynomial ver-
ification time is sound under the assumption that poly(n)-GapSVP requires time
2

n
log(n)c for some c > 0.

The Shortest Vector Problem (SVP) on integer lattices is a well-studied prob-
lem (see discussion in [Pei16,ADRS15]); despite a substantial effort, all known
poly(n)-approximation algorithms for the problem have exponential run-time
2Ω(n). As a result, our current understanding of the approximate-SVP landscape
is consistent with the following conjecture.

Conjecture 2.1. (Exponential Time Hypothesis for GapSVP). For any fixed
γ(n) = poly(n), the γ(n)-GapSVP problem cannot be solved in time 2o(n).

638 A. Lombardi and V. Vaikuntanathan

Assuming Conjecture 2.1, the conclusion of Theorem 2.1 holds for every ε > 0;
moreover, the variant of the Theorem 2.1 protocol with quasi-polynomial time
evaluation is sound as well.

What about polynomial-time verification? Given a non-interactive protocol for
repeated squaring with 2Õ(λε) verification time (or quasi-polynomial evaluation
time), one can always define a new security parameter κ = 2Õ(λε) (or κ =
2log(λ)c) to obtain a protocol with polynomial-time verification. However, this
makes use of complexity leveraging [CGGM00], so (i) this requires making the
assumption that repeated squaring (on instances with security parameter λ) is
hard for poly(κ(λ))-time adversaries, and (ii) the resulting protocol cannot have
security subexponential in κ.

If one does not wish to use complexity leveraging, we give an alternative
construction that has (natively) polynomial-time verification, at the cost of a
stronger LWE assumption.

Theorem 2.2. Let δ > 0 be arbitrary and q(n) = poly(n) be a fixed (suffi-
ciently large) polynomial in n. Assume that (decision) LWE is

(
poly(n), q−δn

)
-

hard for non-uniform distinguishers (or
(

2Õ(n1/2), q−δn
)

-hard for uniform dis-
tinguishers). Then, there exists a hash family H that soundly instantiates
the Fiat-Shamir heuristic for Pietrzak’s interactive proof system [Pie18] with
poly(λ) = poly(n log n)-time verification. More specifically, the verification time
is λO(1/δ).

Moreover, this strong LWE assumption still falls into the parameter regime
with a meaningful worst-case to average-case reduction:

Corollary 2.2. The conclusion of Theorem 2.2 follows from the assumption
that worst-case γ(n)-GapSVP (for a fixed γ(n) = poly(n)) cannot be solved in
time no(n) with poly(n) space and poly(n) bits of nonuniform advice (indepen-
dent of the lattice).

Polynomial-space algorithms for GapSVP have themselves been an object
of study for over 25 years [Kan83,KF16,BLS16,ABF+20], but the current best
(poly-space) algorithms for this problem run in time nΩ(εn) for approximation
factor n1/ε. Therefore, under a sufficiently strong (and plausible) worst-case
assumption about GapSVP, we have a polynomial-time Fiat-Shamir compiler
without complexity leveraging.

By combining Theorems 2.1 and 2.2 with the results of [CHK+19b,EFKP19],
we obtain the following construction of hard-on-average CLS instances.

Theorem 2.3. For a constant ε > 0, suppose that

– n-dimensional LWE (with polynomial modulus) is
(

2Õ(n1/2), 2−n1−ε
)

-hard,
and

Fiat-Shamir for Repeated Squaring 639

– The repeated squaring problem on an instance of size 2λ requires 2λε log(λ)ω(1)

time.

Then, there is a hard-on-average problem in CLS ⊂ PPAD. The same conclu-
sion holds if for some c > 0,

– LWE is
(

2Õ(n1/2), 2− n
log(n)c

)
-hard, and

– The repeated squaring problem is hard for quasi-polynomial time algorithms.

The same conclusion also holds if for some δ > 0,

– LWE is
(

poly(n), q−δn
)

-hard for non-uniform distinguishers, and
– The repeated squaring problem is hard for polynomial time algorithms.

We obtain Theorem 2.3 by plugging our standard model Fiat-Shamir instan-
tiation into the complexity-theoretic reduction of [CHK+19b].3 For use in this
reduction, our non-interactive protocol must satisfy a stronger security notion
called (adaptive) unambiguous soundness [RRR16,CHK+19a], which we show is
indeed the case.

Note that the two hardness assumptions in the theorem statement are in
opposition to each other. As ε becomes smaller, the repeated squaring assump-
tion becomes weaker, but the LWE assumption becomes stronger. In particular,
we cannot set ε ≥ 1/3 as there are known algorithms [LLMP90] solving repeated
squaring in (heuristic) time 2Õ(λ1/3).

Additionally, as a direct consequence of Theorem 2.1, we obtain VDFs in the
standard model as long as the underlying repeated squaring problem is suffi-
ciently (sequentially) hard. Recall that the repeated squaring problem [RSW96]
is the computation of the function fN,g(T) = g2T (mod N), for the appropriate
distribution on N = pq and g.

Theorem 2.4. For a constant ε > 0, suppose that

– LWE is
(

2Õ(n1/2), 2−n1−ε
)

-hard, and
– The repeated squaring problem [RSW96] over groups of size 2O(λ) requires

T (1 − o(1)) sequential time for T � 2Õ(λε).

Then, the repeated squaring function fN,g can be made into a VDF with veri-
fication time 2Õ(λε) on groups of size 2O(λ) (with λ = O(n log n)). Similarly, if
for some c > 0,

– LWE is
(

2Õ(n1/2), 2− n
log(n)c

)
-hard, and

– The repeated squaring problem requires T (1 − o(1)) sequential time for T �
2Õ(log(λ)c+1),

3 Our protocol differs very slightly from the formulation in [CHK+19b], but the dif-
ference is irrelevant to the reduction.

640 A. Lombardi and V. Vaikuntanathan

Then, fN,g can be made into a VDF with verification time 2Õ(log(λ)c+1). Finally,
if for some δ > 0,

– LWE (with modulus q) is
(

poly(n), q−δn
)

-hard for non-uniform distinguish-
ers, and

– The repeated squaring problem requires T (1 − o(1)) sequential time for all
T = poly(λ).

Then, fN,g can be made into a VDF with λO(1/δ)-time verification.

Theorem 2.4 follows immediately from Theorem 2.1 along with the construc-
tion of Pietrzak [Pie18]. While many of the VDFs in Theorem 2.4 have super-
polynomial verification time (and therefore do not fit the standard definition),
they can be converted into (standard) VDFs with polynomial verification time
via complexity leveraging; however, the leveraged VDFs will only support quasi-
polynomial (respectively, 22poly log log κ) time computation (and soundness of the
VDF will only hold against adversaries running in time quasi-polynomial in the
new security parameter κ). Because of this, we consider the formulation in terms
of super-polynomial time verification to be more informative.

2.2 Comparison with Prior Work

Cryptographic Hardness of PPAD. As described in the introduction, prior works
on the cryptographic hardness of PPAD fall into two categories – those based
on obfuscation and ones based on incrementally verifiable computation (IVC).
The obfuscation-based constructions all make cryptographic assumptions related
to the existence of indistinguishability obfuscation or closely related primi-
tives that we currently do not know how to instantiate based on well-studied
assumptions. (For the latest in obfuscation technology, we refer the reader to
[JLMS19,JLS19].) We therefore focus on comparing to the previous IVC-based
constructions.

– [CHK+19a] constructs hard problems in CLS under the polynomial hardness
of #SAT with poly-logarithmically many variables along with the assump-
tion that Fiat-Shamir can be soundly instantiated for the sumcheck protocol
[LFKN92]. The latter follows either in the random oracle model or under the
assumption that a LWE-based fully homomorphic encryption scheme is “opti-
mally circular-secure” [CCH+18,CCH+19] for quasi-polynomial time adver-
saries.
While the hardness of #SAT (with this parameter regime) is a weaker assump-
tion than the subexponential hardness of repeated squaring, the [CHK+19a]
(standard model) result has the drawback of relying on an optimal hard-
ness assumption. Roughly speaking, an optimal hardness assumption is the
assumption that some search problem cannot be solved with probability sig-
nificantly better than repeatedly guessing a solution at random. This is an
extremely strong assumption that requires careful parameter settings to avoid
being trivially false.

Fiat-Shamir for Repeated Squaring 641

In contrast, our main LWE assumption is subexponential (concerning dis-
tinguishing advantage 2−n1−ε) and follows from the worst-case hardness of
poly(n)-GapSVP for time 2n1−ε algorithms. Even our most optimistic LWE
assumption (as in Theorem 2.2) follows from a form of worst-case hardness
quantitatively far from the corresponding best known algorithms.

– [CHK+19b,EFKP19] construct hard problems in CLS assuming the poly-
nomial hardness of repeated squaring along with a generic assumption that
the Fiat-Shamir heuristic can be instantiated for round-by-round sound (see
[CCH+18,CCH+19]) public-coin interactive proofs. The latter can be instan-
tiated either in the random oracle model, or under the assumption that
Regev encryption (or ElGamal encryption) is “optimally KDM-secure” for
unbounded KDM functions [CCRR18].
The [CCRR18] assumption is (up to minor technical details) stronger than the
optimal security assumption used in [CHK+19a] (because the security game
additionally involves an unbounded function), so the [CHK+19b,EFKP19]
are mostly framed in the random oracle model. In this work, we give a new
Fiat-Shamir instantiation to plug into the [CHK+19b,EFKP19] framework.

VDFs. We compare our construction of VDFs to previous constructions
[BBBF18,Pie18,Wes19,dFMPS19,EFKP19].

– [BBBF18] and [dFMPS19] give constructions of VDFs from new crypto-
graphic assumptions related to permutation polynomials and isogenies over
supersingular elliptic curves, respectively. These assumptions are certainly
incomparable to ours, but we rely on the hardness of older, more well-studied
problems.

– [Pie18,EFKP19] have the same basic VDF construction as ours; the main
difference is that they use a random oracle to instantiate their hash function,
while we use a hash function in the standard model and prove its security
under a quantitatively strong variant of LWE.

– [Wes19] also builds a VDF based on the hardness of repeated squaring, but
by building a different interactive argument for computing the function and
assuming that Fiat-Shamir can be instantiated for this argument. Again, this
assumption holds in the random oracle model, but we know of no instantiation
of this VDF in the standard model.

On the negative side, our main VDF (for the natural choice of security param-
eter) has verification time 2Õ(λε); this can be thought of as polynomial-time via
complexity leveraging, but this results in a VDF that is only quasi-polynomially
secure. Alternatively, based on our optimistic LWE assumption, we only obtain
a VDF with large polynomial (i.e. λ1/δ for small δ) verification time. As a result,
we consider our VDF construction to be a proof-of-concept regarding whether
VDFs can be built based on “more standard-looking assumptions”, in particular,
without invoking the random oracle model.

642 A. Lombardi and V. Vaikuntanathan

2.3 Additional Related Work

[BG20] constructs hard instances in the complexity class PLS – which contains
CLS and is incomparable to PPAD – under a falsifiable assumption on bilin-
ear maps introduced in [KPY19] (along with the randomized exponential time
hypothesis (ETH)).

In recent independent work, [KPY20] constructs hard-on-average CLS
instances under the (quasi-polynomial) [KPY19] assumption. In fact, they give
a protocol for unambiguous and incrementally verifiable computation for all lan-
guages decidable in space-bounded and slightly super-polynomial time.

2.4 Technical Overview

We now discuss the ideas behind our main result, Theorem 2.1, which is an
instantiation of the Fiat-Shamir heuristic for the [Pie18] repeated squaring pro-
tocol. In obtaining this result, we also broaden the class of interactive proofs for
which we have Fiat-Shamir instantiations under standard assumptions.

The main tool used by our construction is a hash function family H
that is correlation intractable [CGH04] for efficiently computable functions
[CLW18,CCH+19]. Recall that a hash family H is correlation intractable for
t-time computable functions if for every function f computable time t, the fol-
lowing computational problem is hard: given a description of a hash function
h, find an input x such that h(x) = f(x). We now know [PS19] that such hash
families can be constructed under the LWE assumption.

Correlation Intractability and Fiat-Shamir. In order to describe our result, we
first sketch the [CCH+19] paradigm for using such a hash family H to instantiate
the Fiat-Shamir heuristic.

For simplicity, consider a three-message (public-coin) interactive proof system
(Σ-protocol)

Fig. 1. A Σ-protocol Π.

as well as its corresponding Fiat-Shamir round-reduced protocol ΠFS,H for a
hash family H.

Moreover, suppose that this protocol Π satisfies the following soundness
property (sometimes referred to as “special soundness”): for every x �∈ L and

Fiat-Shamir for Repeated Squaring 643

Fig. 2. The Protocol ΠFS,H.

every prover message α, there exists at most one verifier message β∗(x, α) allow-
ing the prover to cheat.4

It then follows that if a hash family H is correlation intractable for the
function family fx(α) = β∗(x, α), then H instantiates the Fiat-Shamir heuristic
for Π.5 This is because a cheating prover P ∗

FS breaking the soundness of ΠFS,H
must find a first message α such that its corresponding challenge h(x, α) is equal
to the bad challenge fx(α) (or else it has no hope of successfully cheating).

Therefore, using the hash family of [PS19], we can (under the LWE assump-
tion) do Fiat-Shamir for any protocol Π whose “bad-challenge function” fx(α)
is computable in polynomial time; this has the important caveat that the com-
plexity of computing the hash function h is at least the complexity of computing
fx(α).

This paradigm seems to run into the following roadblock: intuitively, for
protocols Π of interest, computing fx(α) appears to be hard rather than easy.
For example,

1. For a standard construction of zero-knowledge proofs for NP such as [Blu86],
computing fx(α) involves breaking a cryptographically secure commitment
scheme.

2. For (unconditional) statistical zero knowledge protocols such as the [GMR85]
Quadratic Residuosity protocol, computing fx(α) involves deciding the under-
lying hard language L.

3. For doubly efficient interactive proofs such as the [GKR08] interactive proof
for logspace-uniform NC, computing fx(α) again involves deciding the under-
lying language L; in this case, L is in P, but this Fiat-Shamir compiler would
result in a non-interactive argument whose verifier runs in time longer than
it takes to decide L.

The work [CCH+19] resolves issues (1) and (2) in the following way: in both
cases, we can arrange for fx(α) to be efficiently computable given an appropriate
trapdoor : in the case of [Blu86], the commitment scheme can have a trapdoor
allowing for efficient extraction, while in the case of [GMR85], fx(α) is efficient

4 The prover can cheat on a pair (α, β) if and only if there exists a third message γ
such that (x, α, β, γ) is accepted by the verifier.

5 To obtain adaptive soundness, we modify the protocol to set β = h(x, α) and instead
consider the function f(x, α) = β∗(x, α).

644 A. Lombardi and V. Vaikuntanathan

given an appropriate NP-witness for the complement language L. However, we
have no analogous resolution to (3), which is the setting of interest to us.6

The bad-challenge function of the [Pie18] protocol. With this context in mind,
we now consider the [Pie18] protocol.7 This protocol (like the [GKR08] protocol
and the related sumcheck protocol [LFKN92]) is not a constant-round protocol,
but is instead composed of up to polynomially many “reduction steps” of the
following form.

– The prover, given (N, g, T), computes and sends u = g2T/2 , the (supposed)
“halfway point” of the computation.

– The message u indicates (to the verifier) two derivative claims: u = g2T/2 and
h = u2T/2 .

– The verifier then challenges the prover to prove a random linear combination
of the two statements: h · ur = (u · gr)2T/2 .

Soundness can then be analyzed in a “round-by-round” fashion [CCH+19]: if
you start with a false statement (or if you start with a true statement but send
an incorrect value ũ �= u), there is at most one8 bad challenge r∗ resulting in a
recursive call on a true statement.

To invoke the [CCH+19] paradigm, we ask: how efficiently can we compute
the function f(N, T, g, h, u) = r∗? To answer this question, let g̃ denote a fixed
group element of order φ(N)/2 such that g, h, u ∈ 〈g̃〉. Letting γ, η, ω denote the
discrete logs of g, h, and u in base g̃, we see that (for corresponding challenge r)
the statement (N, T/2, g′, h′) is true if and only if

η + r · ω ≡ 2T/2(ω + r · γ) (mod φ(N)/2).

As a result, we see that r can be efficiently computed from the following infor-
mation:

– The discrete logarithms η, ω, γ, and
– The factorization of N .

While the factorization of N can be known a priori in the security reduction
(similar to prior work), the discrete logarithms depend on the prover message u
and (adaptively chosen) statement (g, h). We conclude that the “bottleneck” for
computing f is the problem computing a constant number of discrete logarithms
in Z

×
p .

6 The only current known Fiat-Shamir instantiation for the [GKR08] protocol utilizes
a compact correlation intractable hash family (in the sense that the hash evaluation
time is independent of the time to compute the correlation function/relation) which
we only know how to build from an optimal security assumption [CCH+19].

7 For this overview, we ignore the details of working over the group QRN ⊂ Z
×
N and

the corresponding technical challenges.
8 To guarantee this property, r is selected from a range smaller than either of the

prime factors of N .

Fiat-Shamir for Repeated Squaring 645

Since computing discrete logarithms over Z
×
p is believed to be hard, and is

not known to have a trapdoor, it appears unlikely that this approach would allow
us to rely on the polynomial hardness of the [PS19] hash family. However, it is
plausible that we could use a variant of the [PS19] hash family supporting super-
polynomial time computation (proven secure under a super-polynomial variant
of LWE) to capture the complexity of computing discrete logarithms.

Unfortunately, the naive version of this approach fails: the best known run-
time bounds9 for computing discrete logarithms over Z×

p for p = 2O(λ) are of the
form 2Õ(λ1/2) [Adl79,Pom87], and the best known heuristic algorithms (plausi-
bly) run in time 2Õ(λ1/3) [LLMP90]. If we were to instantiate the [PS19] hash
family to support functions of this complexity, we could prove the soundness of
Fiat-Shamir for the [Pie18] protocol, but the resulting non-interactive protocol
would run in time 2Õ(λ1/2) (or in time 2Õ(λ1/3) with a heuristic security proof);
these are the same runtime bounds for the best known algorithms for solving the
repeated squaring problem [Dix81,Pom87,LLMP90] (via factoring the modulus
N). In other words, the verifier would run in enough time to be able to solve
the repeated squaring problem itself. This is a very similar problem to issue (3)
regarding the [LFKN92,GKR08] protocols, so we appear to be stuck.

Computing bad-challenge functions with low probability. We overcome the above
problem with the following idea:

What if we give up on computing the bad-challenge function exactly, and
instead use a faster randomized algorithm with low success probability?

In other words, we consider a new variant of the [CCH+19] framework for instan-
tiating Fiat-Shamir in the standard model, where:

– An interactive protocol Π is characterized by some bad-challenge function f ,
– f can be computed by a time t algorithm (or size s circuit) with some small

but non-trivial probability δ.
– The hash function H is assumed to be correlation intractable – with suffi-

ciently strong quantitative security – against adversaries running in time t
(or with size s).

Then, it turns out that the resulting non-interactive protocol is sound! Infor-
mally, this is because if f is “approximated” by a time t-computable randomized
function gr (in the sense that gr(x) and f(x) agree with probability δ on a
worst-case input), then an adversary breaking the protocol ΠFS,H will break the
correlation intractability of H with respect to g (rather than f) with proba-
bility δ. More formally, a cheating prover P ∗

FS yields an algorithm that breaks
the correlation intractability of H with respect to f , which in turn breaks the
correlation intractability of H with respect to gr (for hard-coded randomness

9 See [JOP14] for a detailed discussion of the state-of-the-art on discrete logarithm
algorithms.

646 A. Lombardi and V. Vaikuntanathan

r) with probability δ · 1
poly(λ) (since gr and f agree on an arbitrary input with

probability at least δ). Therefore, if H is (t, δ · λ−ω(1))-secure, we conclude that
ΠFS,H is sound.

This modification allows us to instantiate Fiat-Shamir for the [Pie18] proto-
col. In particular, we make use of folklore10 [CCRR18] preprocessing algorithms
for the discrete logarithm problem over Z

×
p that run in time 2λε and have suc-

cess probability 2−λ1−ε . More specifically, we consider a computation of the bad
challenge function f(N, T, g, h, u) in the following model:

– Hard-code (1) the factorization N = pq, (2) an appropriately chosen group
element g̃ of high order, and (3) 2Õ(λε) discrete logarithms (of fixed numbers
modulo p and modulo q, respectively) in base g̃.

– Compute a (constant-size) collection of worst-case discrete logarithms by the
standard index calculus algorithm [Adl79] in time 2Õ(λε) with success proba-
bility 2−λ1−ε .

This can be thought of as either a non-uniform 2Õ(λε)-time algorithm, or a
2Õ(λε)-time algorithm with 2Õ(λ1/2)-time preprocessing.11 By using this algo-
rithm for the computation of the bad-challenge function f(N, T, g, h, u), we
obtain a Fiat-Shamir instantiation with verification time 2Õ(λε) – a meaningful
result as long as this runtime does not allow for solving the repeated squaring
problem. Finally, the required assumption is that the [PS19] hash function is cor-
relation intractable for adversaries that succeed with probability 2−λ1−ε , which
holds under the claimed LWE assumption with parameters (n, q) for λ = n log q.

Generalizations. In this overview, we focused specifically on the [Pie18] protocol,
but our techniques give general blueprints for obtaining Fiat-Shamir instantia-
tions. We believe these blueprints may be useful in future work, so we state them
(as “meta-theorems”) explicitly here:

– Fiat-Shamir for protocols with low success probability bad-
challenge functions. Our approach shows that if an interactive protocol
Π is governed by a bad-challenge function f that is computable by an effi-
cient randomized algorithm that is only correct with (potentially very) low
probability, it is still possible to instantiate Fiat-Shamir for Π under a suffi-
ciently strong LWE assumption.

– Fiat-Shamir for discrete-log based bad-challenge functions. Our app-
roach also shows that if a protocol Π is governed by a bad-challenge function

10 We are not aware of prior work considering this particular time-probability trade-
off, but the necessary smooth number bounds appear in [CEP83,Gra08]. Quite curi-
ously, [CCRR18] considers the poly(λ)-time variant of this algorithm to give evidence
against the optimal hardness of computing discrete logarithms over Z

×
p . That was

bad for them, but for us, the non-optimal hardness is a feature!.
11 This second variant allows for an invocation of correlation intractability against

uniform adversaries in the security proof.

Fiat-Shamir for Repeated Squaring 647

f that is efficiently computable given oracle access12 to a discrete log solver
(over Z

×
p for p ≤ 2O(λ)), then it is possible to instantiate Fiat-Shamir for Π

under a sufficiently strong LWE assumption.

We formalize both of these “meta-theorems” in the language of correlation
intractability (rather than Fiat-Shamir) in the full version of this paper.

References

[ABF+20] Albrecht, M., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.:
Faster enumeration-based lattice reduction: root Hermite factor k1/(2k) in
time kk/8+o(k). In: CRYPTO (2020)

[Adl79] Adleman, L.: A subexponential algorithm for the discrete logarithm prob-
lem with applications to cryptography. In: 20th Annual Symposium on
Foundations of Computer Science (SFCS 1979), pp. 55–60. IEEE (1979)

[ADRS15] Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving
the shortest vector problem in 2n time using discrete gaussian sampling.
In: STOC 2015, pp. 733–742 (2015)

[AJL+19] Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfus-
cation without multilinear maps: new paradigms via low degree weak pseu-
dorandomness and security amplification. In: CRYPTO (2019)

[AKV04] Abbot, T., Kane, D., Valiant, P.: On algorithms for nash equilibria. Unpub-
lished Manuscript 1 (2004). http://web.mit.edu/tabbott/Public/final.pdf

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: Pro-
ceedings 42nd IEEE Symposium on Foundations of Computer Science, pp.
106–115. IEEE (2001)

[BBBF18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 25. (EUROCRYPT 2018)

[BBH+19] Bartusek, J., Bronfman, L., Holmgren, J., Ma, F., Rothblum, R.D.: On the
(in)security of Kilian-based SNARGs. In: Hofheinz, D., Rosen, A. (eds.)
TCC 2019. LNCS, vol. 11892, pp. 522–551. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-36033-7 20

[BCS16] Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 2

[BDGM20] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Candidate iO from
homomorphic encryption schemes. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12105, pp. 79–109. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45721-1 4

[BFJ+19] Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Sta-
tistical ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT
2020. LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45727-3 22

12 Crucially, we must also bound the number of calls that can be made to the oracle
to be at most poly log(λ) to get a meaningful result.

http://web.mit.edu/tabbott/Public/final.pdf
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-36033-7_20
https://doi.org/10.1007/978-3-030-36033-7_20
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-45721-1_4
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22

648 A. Lombardi and V. Vaikuntanathan

[BG20] Bitansky, N., Gerichter, I.: On the cryptographic hardness of local search.
In: 11th Innovations in Theoretical Computer Science Conference (ITCS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 1. Journal version appears
in JACM 2012

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)

[BLS16] Bai, S., Laarhoven, T., Stehlé, D.: Tuple lattice sieving. LMS J. Comput.
Math. 19(A), 146–162 (2016)

[Blu86] Blum, M.: How to prove a theorem so no one else can claim it. In: Proceed-
ings of the International Congress of Mathematicians, vol. 1, pp. 2. Citeseer
(1986)

[BLV06] Barak, B., Lindell, Y., Vadhan, S.: Lower bounds for non-black-box zero
knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

[BPR15] Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of
finding a nash equilibrium. In: FOCS 2015. IEEE (2015)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference on
Computer and communications security, pp. 62–73. ACM (1993)

[CCH+18] Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Roth-
blum, R.D.: Fiat-Shamir from simpler assumptions. IACR Cryptol. ePrint
Arch. 2018, 1004 (2018)

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC 2019.
ACM (2019). Merge of [CCH+18] and [CLW18]

[CCR16] Canetti, R., Chen, Y., Reyzin, L.: On the correlation intractability of obfus-
cated pseudorandom functions. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9562, pp. 389–415. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 17

[CCRR18] Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and cor-
relation intractability from strong KDM-secure encryption. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 91–122.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 4

[CDT09] Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-
player nash equilibria. J. ACM (JACM) 56(3), 1–57 (2009)

[CEP83] Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of oppenheim con-
cerning “factorisatio numerorum”. J. Number Theory 17(1), 1–28 (1983)

[CGGM00] Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-
knowledge. In: STOC 2000, pp. 235–244 (2000)

[CGH04] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited. J. ACM (JACM) 51(4), 557–594 (2004)

[CHK+19a] Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Roth-
blum, G.N.: Finding a nash equilibrium is no easier than breaking Fiat-
Shamir. In: STOC 2019 (2019)

[CHK+19b] Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Roth-
blum, G.N.: PPAD-hardness via iterated squaring modulo a composite.
Cryptology ePrint Archive, Report 2019/667, 2019 (2019)

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1007/978-3-662-49096-9_17
https://doi.org/10.1007/978-3-319-78381-9_4

Fiat-Shamir for Repeated Squaring 649

[CLW18] Canetti, R., Lombardi, A., Wichs, D.: Fiat-shamir: from practice to theory,
part II (non-interactive zero knowledge and correlation intractability from
circular-secure FHE). IACR Cryptol. ePrint Arch. 2018, 1248 (2018)

[dFMPS19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions
from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34578-5 10

[DGP09] Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of
computing a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

[Dix81] Dixon, J.D.: Asymptotically fast factorization of integers. Math. Comput.
36(153), 255–260 (1981)

[DNRS99] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. In:
FOCS (1999)

[DP11] Daskalakis, C., Papadimitriou, C.: Continuous local search. In: SODA 2011,
pp. 790–804. SIAM (2011)

[EFKP19] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable
delay functions. In: EUROCRYPT 2020 (2019)

[Fab19] After 20 years, someone finally solved this MIT puzzle (2019)
[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge

proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)
[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-

fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all cir-
cuits. In: FOCS 2013 (2013)

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: FOCS 2003, pp. 102–113. IEEE (2003)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: STOC 2008, pp. 113–122. ACM (2008)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: STOC 1985, pp. 291–304. ACM (1985)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. J. ACM
(JACM) 38(3), 690–728 (1991)

[GPS16] Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness
of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53008-5 20

[Gra08] Granville, A.: Smooth numbers: computational number theory and beyond.
Algorithm. Number Theory Lattices Number Fields Curves Cryptograph.
44, 267–323 (2008)

[HL18] Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way
functions. In: FOCS 2018 (2018)

[HY17] Hubáček , P., Yogev, E.: Hardness of continuous local search: query com-
plexity and cryptographic lower bounds. In: SODA 2017, pp. 1352–1371.
SIAM (2017)

[JJ19] Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. In:
EUROCRYPT 2020 (2019)

https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20

650 A. Lombardi and V. Vaikuntanathan

[JLMS19] Jain, A., Lin, H., Matt, C., Sahai, A.: How to leverage hardness of constant-
degree expanding polynomials over R to build iO. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 251–281. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2 9

[JLS19] Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for
iO. Cryptology ePrint Archive, Report 2019/1252 (2019)

[JOP14] Joux, A., Odlyzko, A., Pierrot, C.: The past, evolving present, and future of
the discrete logarithm. In: Koç, Ç.K. (ed.) Open Problems in Mathematics
and Computational Science, pp. 5–36. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10683-0 2

[Kan83] Kannan, R.: Improved algorithms for integer programming and related lat-
tice problems. In: STOC 1983, pp. 193–206 (1983)

[KF16] Kirchner, P., Fouque, P.-A.: Time-memory trade-off for lattice enumeration
in a ball. IACR Cryptol. ePrint Arch. 2016, 222 (2016)

[KPY19] Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly.
In: STOC 2019, pp. 1115–1124 (2019)

[KPY20] Kalai, Y., Paneth, O., Yang, L.: PPAD-hardness and delegation with unam-
biguous and updatable proofs. In: CRYPTO 2020 (2020)

[KRR17] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the
security of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 8

[LFKN92] Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for inter-
active proof systems. J. ACM 39(4), 859–868 (1992)

[LLMP90] Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number
field sieve. In: STOC 1990, pp. 564–572 (1990)

[LV20] Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring
with applications to PPAD-hardness and VDFs. IACR Cryptology ePrint
Archive, Report 2020/772 (2020). https://eprint.iacr.org/2020/772

[LVW19] Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifi-
able WI from (subexponential) LWE. Cryptology ePrint Archive, Report
2019/808 (2019)

[Mic00] Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

[Nao03] Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 6

[Pap94] Papadimitriou, C.H.: On the complexity of the parity argument and other
inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

[Pei16] Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Com-
put. Sci. 10(4), 283–424 (2016)

[Pie18] Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019 (2018)
[Pom87] Pomerance, C.: Fast, rigorous factorization and discrete logarithm algo-

rithms. In: Discrete Algorithms and Complexity, pp. 119–143. Elsevier
(1987)

[PRS17] Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-
LWE for any ring and modulus. In: STOC 2017, pp. 461–473. ACM (2017)

[PS96] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Mau-
rer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 33

https://doi.org/10.1007/978-3-030-17653-2_9
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1007/978-3-319-63715-0_8
https://eprint.iacr.org/2020/772
https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/3-540-68339-9_33

Fiat-Shamir for Repeated Squaring 651

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain)
learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7 4

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM (JACM) 56(6), 34 (2009)

[Riv99] Description of the LCS35 time capsule crypto-puzzle (1999)
[RRR16] Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive

proofs for delegating computation. SIAM J. Comput. STOC16-255 (2016)
[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-

release crypto (1996)
[Sch89] Schnorr, C.P.: Efficient identification and signatures for smart cards. In:

Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 22

[Val08] Valiant, P.: Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78524-8 1

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-030-17659-4_13

Delegation with Updatable Unambiguous
Proofs and PPAD-Hardness

Yael Tauman Kalai1,3, Omer Paneth2, and Lisa Yang3(B)

1 Microsoft Research, Cambridge, USA
2 Tel Aviv University, Tel Aviv, Israel

3 MIT, Cambridge, USA
lisayang1297@gmail.com

Abstract. In this work, we construct an updatable and unambiguous
delegation scheme based on the decisional assumption on bilinear groups
introduced by Kalai, Paneth and Yang [STOC 2019]. Using this dele-
gation scheme, we show PPAD-hardness (and hence the hardness of
computing Nash equilibria) based on the quasi-polynomial hardness of
this bilinear group assumption and any hard language that is decidable
in quasi-polynomial time and polynomial space.

The delegation scheme is for super-polynomial time deterministic
computations and is publicly verifiable and non-interactive in the com-
mon reference string (CRS) model. It is updatable meaning that given a
proof for the statement that a Turing machine reaches some configura-
tion C in T steps, it is efficient to update it into a proof for the statement
that the machine reaches the next configuration C′ in T + 1 steps. It is
unambiguous meaning that it is hard to find two different proofs for the
same statement.

Keywords: PPAD-hardness · Delegation · Unambiguous proofs ·
Zero-testable encryption.

O. Paneth—Member of the Check Point Institute of Information Security. Suported
by an Azrieli Faculty Fellowship, by Len Blavatnik and the Blavatnik Foundation, by
the Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University, and ISF
grant 1789/19. Part of this research was done while at MIT and Northeastern Uni-
versity and supported by NSF Grants CNS-1413964, CNS-1350619 and CNS-1414119,
and the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office (ARO) under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
Any opinions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the DARPA and
ARO.
L. Yang—Part of this research was done at Microsoft Research. This material is based
upon work supported by the National Science Foundation Graduate Research Fellow-
ship grant 174530, NSF/BSF grant 1350619, an MIT-IBM grant, and a DARPA Young
Faculty Award.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 652–673, 2020.
https://doi.org/10.1007/978-3-030-56877-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_23

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 653

1 Introduction

The computational complexity of finding a Nash equilibrium in bimatrix games
has been the subject of extensive research in recent years. In his seminal work,
Papadimitriou [27] defined the complexity class PPAD and showed that it con-
tains the problem NASH. Daskalakis, Goldberg and Papadimitriou [14], and
Chen, Deng and Teng [11] proved that NASH is PPAD-complete.

Currently polynomial (or even subexponential) time algorithms for PPAD
are not known and NASH is conjectured to be intractable. A promising approach
to proving the hardness of PPAD, proposed by Papadimitriou, is to base its
hardness on assumptions from cryptography. Despite tremendous progress in
this direction over the past five years, PPAD-hardness is only known under
very strong and “non-standard” cryptographic assumptions. Building on [1],
Bitanski, Paneth and Rosen [6] show that PPAD is hard on average assuming
sub-exponentially secure indistinguishability obfuscation. Hubáček and Yogev
[19] extended this result to CLS, a subclass of PPAD. The assumption was
relaxed in [18,23] from indistinguishability obfuscation to strong assumptions
related to functional encryption. Very recently, Choudhuri et al. [12,13] and
Ephraim et al. [17] showed average-case hardness of PPAD under an assumption
closely related to the soundness of the Fiat-Shamir heuristic when applied to
specific protocols. See Sect. 2.3 for more details on related work.

Basing PPAD-hardness on weaker, well-studied cryptographic assumptions
remains an important goal.

This work. We prove hardness of CLS and PPAD, under the following assump-
tions:

1. A decisional assumption on groups with bilinear maps (Assumption 1.3). This
is a quasi-polynomial version of an assumption recently introduced by [20].
It is falsifiable (in quasi-polynomial time) and it holds in the generic group
model.

2. The existence of a hard language L that can be decided in time n(log n)ε

for
some ε < 1 and polynomial space. For example, the assumption that SAT
over m = (log n)1+ε variables is hard for 2mc

-size circuits for some c < 1
suffices. If L is hard on average we show average-case hardness of PPAD.

Our result follows a similar approach to that of Choudhuri et al. [13] exploit-
ing a folklore connection between PPAD and the notion of incrementally verifi-
able computation [32]. Specifically, we consider delegation schemes that are both
updatable and unambiguous. Loosely speaking, a delegation scheme for T -time
computations is a computationally sound proof system that can be verified in
time << T . For the purpose of proving PPAD-hardness, in this work we focus
on publicly verifiable non-interactive schemes in the CRS model for delegating
super-polynomial time computations with polynomial-time verification.1 A dele-
1 More generally, in the literature delegation may also refer to privately verifiable

schemes and interactive schemes. The focus is often on delegating polynomial-time
computations with near linear-time verification.

654 Y. T. Kalai et al.

gation scheme is said to be updatable if given a proof of correctness for the first t
steps of a computation, we can extend it to a proof of correctness of the first t+1
steps without recomputing the proof from scratch (that is, in time independent
of t). A delegation scheme is said to be unambiguous if it is computationally
hard to construct two different accepting proofs for the same statement.

We show that the existence of such a delegation scheme for a hard language
L as above, implies the hardness of a problem known as relaxed-Sink-of-
Verifiable-Line (rSVL) that was defined and reduced to a problem in CLS
in [13].

Theorem 1.1 (Informal). Let L be a hard (resp. hard on average) language
decidable by a deterministic Turing machine running in time T (n) = nω(1) and
space S(n) = poly(n). If there exists an updatable and unambiguous delegation
scheme for L then rSVL is hard (resp. hard on average).

We refer the reader to Theorem 4.1 for the formal statement, to Definitions 3.1–
3.3 for updatable and unambiguous delegation schemes, and to Definition 4.1
for the rSVL problem.

Our main technical and conceptual contribution is the construction of such
a delegation scheme. Specifically, we show that for any ε < 1 and T = T (n) ≤
n(log n)ε

there exists an updatable and unambiguous delegation scheme for any
T -time polynomial-space computation under Assumption 1.3 below.

Theorem 1.2 (Informal). For any deterministic Turing machine M that runs
in time T (n) ≤ n(log n)ε

for some 0 ≤ ε < 1 and space S(n) = poly(n) the

following holds: Under Λ-hardness of Assumption 1.3 for Λ(κ) = 2(log κ)
1+ε
1−ε ,

there exists an updatable and unambiguous delegation scheme for M with setup
time and proof length poly(S(n)). The prover runs in time T (n) ·poly(S(n)) and
the verifier runs in time poly(S(n)).

We refer the reader to Sect. 5 for the formal statement (and a more general
setting of parameters). We note that in Theorem 1.2 the efficiency of the del-
egation scheme grows with the space of the computation. We believe that this
dependence can be removed using standard techniques [20,22]. However, we did
not pursue this in the current work since it would complicate the proof and it is
not needed for showing PPAD-hardness.

Assumption 1.3 is a version of the bilinear group assumption from [20] with
a hardness parameter Λ = Λ(κ). We mention that [20] rely on this assump-
tion for Λ(κ) = poly(κ) to construct a delegation scheme for polynomial-time
computations. To construct a delegation scheme for super-polynomial time com-
putations, towards showing PPAD-hardness, we rely on this assumption for
super-polynomial Λ(κ).

Assumption 1.3. Let G be a group of prime order p = 2Θ(κ) equipped with a
bilinear map. For every α(κ) = O(log Λ(κ)) given the following 3-by-α matrix of
group elements:

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 655

(
gsjti

)
i∈[0,2]
j∈[0,α]

=

⎛
⎜⎝

gs0
gs1

. . . gsα

gs0t gs1t . . . gsαt

gs0t2 gs1t2 . . . gsαt2

⎞
⎟⎠ ,

for random g ∈ G and s ∈ Zp, it is Λ(κ)-hard to distinguish between the case
where t = s2α+1 and the case where t is a random independent element in Zp.

2 Technical Overview

In this section we give an overview of our delegation scheme with unambiguous
and updatable proofs. We build on the non-interactive delegation scheme of [20]
(KPY) and we start by recalling the high-level structure of their scheme.

2.1 The KPY Delegation Scheme

The KPY construction consists of two steps: first, they construct quasi-
arguments for NP which, following [22], are known to imply delegation for P.
The KPY quasi-arguments have a long CRS which results in a delegation scheme
for P with a long CRS (of length proportional to the running time of the com-
putation). Then they use quasi-arguments again to “bootstrap” a delegation
scheme with a long CRS to get a delegation scheme with a short CRS.

Quasi-arguments. A quasi-argument is a relaxation of an argument-of-
knowledge: in a quasi-argument, the standard knowledge extraction requirement
is replaced by a weaker requirement called non-signaling (local) extraction. To
argue about locality, the definition specifically considers the NP complete lan-
guage 3SAT. Roughly speaking, in an argument-of-knowledge for 3SAT, for any
prover that convinces the verifier to accept a formula ϕ there exists an extrac-
tor that produces a satisfying assignment for ϕ. In a quasi-argument, however,
the extractor is not required to produce a full assignment. Rather it is given a
small set of variables S and it produces an assignment only for the variables in
S. This partial assignment is required to be locally consistent, satisfying every
clause of ϕ over variables in S. Furthermore, the partial assignments produced
by the extractor should satisfy the non-signaling property. Loosely speaking, this
property requires that for any subsets S ⊂ S′ the distribution of the assignments
produced by the extractor for the variables in S′, when restricted to the variables
in S, is independent of the variables in S′\S. The notion of a quasi-argument was
introduced in [26] under the name “core protocol with a local assignment gener-
ator”. Prior works including [8,21,22] (implicitly) construct privately verifiable
two-message quasi-arguments for NP.

The BMW heuristic. The KPY quasi-argument is inspired by the BMW heuristic
[2] for converting a multi-prover interactive proof (MIP) into a two-message
privately verifiable delegation scheme. In this delegation scheme, the verifier
generates the MIP queries, encrypts each query using a homomorphic encryption

656 Y. T. Kalai et al.

scheme (with a fresh key), and sends the encrypted queries to the prover. The
prover then homomorphically computes the encrypted answers, and the verifier
decrypts and checks the answers. While this heuristic is known to be insecure
in general [15,16], the work of [21] shows that it is sound for MIPs satisfying a
strong soundness condition called non-signaling soundness.

From private to public verification. To obtain a publicly verifiable non-interactive
delegation scheme, KPY follow the blueprint of Paneth and Rothblum (PR) [26]
and place the encrypted queries in the CRS. Now, since the verifier does not
encrypt the queries itself, it can no longer decrypt the answers. Instead, the
queries are encrypted using a special homomorphic encryption equipped with a
weak zero-test that allows the verifier to check the validity of the prover’s answers
without decrypting them. Modularizing the analysis of [21,22], PR show that the
resulting protocol is a quasi-argument for NP.

The CRS length. Unlike the PR solution that was based on mulilinear maps,
KPY construct a zero-testable homomorphic encryption scheme based only on
bilinear maps. In the KPY scheme, however, the ciphertext length grows expo-
nentially with the length of the encrypted query. This results in a quasi-argument
with a long CRS. To shorten the CRS, KPY use an idea known as “bootstrap-
ping” that was previously used to obtain succinct arguments of knowledge for
NP (SNARKs) with a sort CRS [3,32]. In this setting, a SNARK with a long
CRS is recursively composed with itself yielding a SNARK with a short CRS.
In contrast, KPY compose a delegation scheme for P and a quasi-argument for
NP, both with a long CRS to obtain a delegation scheme for P with a short
CRS.

2.2 Our Delegation Scheme

We modify the KPY delegation scheme to make its proofs updatable and unam-
biguous. Obtaining updatability is fairly straightforward. Previous work [3,32]
used recursive proof composition to merge proofs and applied this technique both
for bootstrapping proofs (with the goal of shortening the CRS), and for creating
updatable proofs. In the setting of delegation for P, the work of KPY shows how
to use quasi-arguments to merge proofs for bootstrapping. Following KPY, our
work shows how to use quasi-arguments to merge proofs for updatability.

The main technical challenge and the focus of the following overview is achiev-
ing unambiguity. We first construct quasi-arguments for NP with a long CRS
that satisfy a notion of unambiguity. Then we argue that unambiguity is pre-
served in the bootstrapping step. We mention that in addition to satisfying
the unambiguity property, our quasi-arguments are also more efficient than the
quasi-arguments in KPY. As a result, we can delegate nlog nε

-time polynomial-
space computations with a poly(n)-size CRS, as opposed to KPY that could
only delegate nO(log log n)-time computations.

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 657

Unambiguous delegation. The KPY delegation scheme is obtained by recursively
composing a quasi-argument. Abstracting away the details of this bootstrapping
step, the final delegation scheme has the following structure: the description of
the deterministic computation is translated into a sequence of formulas, and
the proof consists of one quasi-argument proof for each formula. Therefore, to
get an unambiguous delegation scheme we focus on constructing unambiguous
quasi-arguments.

Unambiguous quasi-arguments. In contrast to delegation for deterministic com-
putations, quasi-arguments argue about non-deterministic formulas. We there-
fore need to take care in defining the required notion of unambiguity. The
strongest requirement would be that the prover cannot find two accepting proofs
for the same formula, even if the formula has multiple satisfying assignments.
This notion, however, is only known under very strong assumptions [10,31]. A
natural relaxation is to ask for unambiguous proofs only for formulas where the
satisfying assignment is unique, or where finding multiple satisfying assignments
is intractable. However, even this relaxation seems outside the reach of our tech-
niques. The issue is that there exist formulas where the full satisfying assignment
is unique, however, there exists an efficient non-signaling local extractor that can
produce multiple locally consistent assignments for every small set of variables
(without violating the non-signaling property). We therefore further relax the
unambiguity requirement for quasi-arguments to only require that it is hard to
find multiple accepting proofs for formulas where any efficient non-signaling local
extractor can only produce a unique assignment to each small set of variables.
We refer to such formulas as locally unambiguous. We observe that instantiating
the KPY delegation scheme with a quasi-argument satisfying this notion results
in an unambiguous delegation scheme. Indeed, inspecting their soundness proof
reveals that each quasi-argument argues about a locally unambiguous formula.

Unambiguous answers and ciphertexts. Next we describe our high-level strat-
egy for making the KPY quasi-argument unambiguous. Recall that in KPY the
quasi-argument CRS consists of encrypted MIP queries and the proof contains
encrypted answers. Our construction has two steps: first we modify the quasi-
argument so the answers encrypted in the proof are unambiguous. That is, for
an honestly generated CRS, it is hard to find two accepting proofs for the same
locally unambiguous formula that, when decrypted, result in different answers.
Then we proceed to argue the unambiguity of the ciphertexts themselves. We
show that in the KPY encryption scheme it is hard to find two different cipher-
texts that decrypt to the same value without knowing the secret key. Moreover,
this task is hard even given the ciphertexts in the CRS. Together, these two
steps imply the unambiguity of the quasi-argument proof. We first explain how
to achieve unambiguous answers which is the main challenge.

Unambiguity of answers. The MIP queries in the KPY quasi-argument come
from F

� where F is a large field and � is logarithmic in the number of variables
in the formula. The prover’s answers are given by low-degree polynomials in

658 Y. T. Kalai et al.

the queries. The first polynomial evaluated is denoted by X and it encodes the
prover’s assignment. Specifically, X : F� → F is the multilinear extension of the
assignment. That is, X is multilinear, and for every variable Z of the formula
there exists a Boolean input y ∈ {0, 1}� such that the assignment to Z is X(y).
For each encrypted query in the CRS, the proof contains the evaluation of X
on that query as well as evaluations of additional “proof polynomials” that help
convince the verifier that the X evaluations are locally consistent. We first show
how to make the evaluations of X unambiguous and then extend these techniques
to the evaluations of the proof polynomials as well.

Unambiguity of X. Our first goal is to ensure unambiguity of the X evaluations.
That is, for a locally unambiguous formula and an honestly generated CRS it
should be hard to find two accepting proofs that encrypt different evaluations
of X. In fact, we show that for any fixed query q ∈ F

�, the evaluation X(q)
is unambiguous regardless of the other queries encrypted in the CRS. We first
observe that the KPY quasi-argument already guarantees the unambiguity of
X(q) for each Boolean query q ∈ {0, 1}�. This follows from the fact that the
formula is locally unambiguous and from the construction of their local extractor.
To see this, recall that for a Boolean q, the evaluation X(q) gives the assignment
to some variable Z of the formula. The KPY extractor, given a small set of
variables that contains Z, samples a CRS that contains an encryption of q,
evaluates the prover on the CRS and obtains an accepting proof. (If the proof
is rejecting, the extractor tries again with fresh randomness.) It then decrypts
the value X(q) and returns it as the assignment to Z. Since the formula is
locally unambiguous, the value the extractor assigns to Z is unambiguous. Since
the CRS sampled by the extractor has the same distribution as an honestly
generated CRS that contains an encryption of q, it follows that the evaluation
X(q) in the proof is also unambiguous for Boolean q.

Unambiguity of X on general queries. For general non-Boolean queries the KPY
quasi-argument does not guarantee unambiguity. To produce a second accepting
proof, an adversarial prover can compute a different polynomial X̃ �= X that
agrees with X on all inputs in {0, 1}� such that following the honest prover’s
strategy using X̃ instead of X still results in an accepting proof. Note that,
unlike X, the individual degree of X̃ must be > 1 since a multilinear polynomial
is completely determined by its evaluations on {0, 1}�.

Intuitively, our approach is to force the prover to evaluate a polynomial X
that is multilinear. Following this intuition, however, is tricky. Recall that the
prover does not explicitly specify the polynomial X (this would result in a long
proof) and it only evaluates X on a small set of queries. In fact, given a set of
queries and answers, there typically exists a multilinear polynomial X that is
consistent with them. may not know X in the clear, since he only gets encryptions
of these queries. However, this polynomial depends on the queries and answers,
in particular, the prover does not know X in the clear. A possible fix is to have
the prover provide a short proof of knowledge of the multilinear polynomial X.

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 659

In the non-interactive setting, however, such a proof of knowledge is only known
based on non-falsifiable knowledge assumptions [4].

A proof of multilinearity. In order to avoid knowledge assumptions, we introduce
a new notion of a multilinearity proof that allows us to argue the unambiguity
of X on general queries. We then construct such proofs based on our bilinear
assumption. In a multilinearity proof the CRS contains an encrypted input q ←
F

�. The prover can homomorphically evaluate any multilinear polynomial X on
q and provide the encrypted evaluation together with a proof of multilinearity
for the question-answer pair. The soundness requirement of our multilinearity
proof is defined based on the notion of unambiguity. Roughly speaking, consider
an efficient adversarial prover that, with non-negligible probability, produces
two different encrypted evaluations and an accepting multilinearity proof for
each of the evaluations with respect to the same encrypted input. We require
that there exists a Boolean input q ∈ {0, 1}� such that the prover continues
to produce two distinct evaluations even when given an encryption of q. (Note
that this requirement does not follow from the security of the encryption since
checking that the answers are distinct requires the secret key.) By adding such
a multilinearity proof to each evaluation of X in the KPY quasi-argument, we
can directly extend the unambiguity of X on Boolean queries to unambiguity
on general queries.

To see why this soundness requirement intuitively captures multilinearity,
consider an adversarial prover that evaluates some polynomial X̃ of individual
degree > 1. If the prover was able to provide an accepting multilinearity proof for
its evaluation, we would have been able to use this prover to break the soundness
requirement as follows: choose a multilinear polynomial X that agrees with X̃
on all inputs in {0, 1}�, homomorphically evaluate X on the input and compute
a multilinearity proof honestly. Output both evaluations and their proofs. This
contradicts the soundness of the multi-linearity test since for every Boolean q the
two evaluations would always agree, whereas there exists q ∈ F

� where X and X̃
disagrees resulting in different evaluations. By the security of the encryption, the
prover must output an accepting multilinearity proof with the same probability,
regardless of the encrypted input.

Zero-testable encryption. Our multilinearity proof relies on the weak zero-test of
the homomorphic encryption used in KPY.2 Before describing the construction,
we describe the properties of this test. The weak zero-test is a public procedure
(not using the secret key) that given a ciphertext, tests if it encrypts zero or not.
A perfectly accurate zero-test clearly contradicts semantic security. We therefore
consider a weak zero-test that has false negatives: it never passes on encryptions
of non-zero values, however, it may fail on some encryptions of zero. The test is
only guaranteed to pass on “trivial” encryptions of zero which are ciphertexts

2 As a homomorphic encryption scheme, the KPY construction has several drawbacks:
it can only encrypt short messages, and it is limited to arity-one one-hop homomor-
phic computations. For simplicity, in this overview we ignore these limitations.

660 Y. T. Kalai et al.

that result from homomorphically evaluating a polynomial that is identically
zero over F on some fresh ciphertext.

We demonstrate how to use the weak zero-test with the following dummy
protocol: the CRS contains an encryption of some input q ∈ F

�. The honest
prover homomorphically evaluates three polynomials A,B,C : F� → F on q and
sends the verifier the encrypted evaluations a, b, c respectively. The prover claims
that its polynomials satisfy the identity A·B ≡ C and therefore also a·b = c. The
verifier can test this (without the secret key) by homomorphically computing the
value a · b − c and zero-testing the resulting ciphertext. If A · B − C is indeed
the zero polynomial over F, the verifier evaluates a trivial encryption of zero and
the weak zero-test is guaranteed to pass. If, however, a · b �= c then the verifier’s
ciphertext encrypts a non-zero value and therefore the weak zero-test fails.

Multilinearity proof from zero-testable encryption. We proceed to construct a
multilinearity proof using the zero-testable encryption. To explain the high-level
idea, we first describe a simple flawed construction. The CRS contains an input
q ∈ F

� encrypted under a key sk. Given a multilinear polynomial X : F� → F,
the prover homomorphically computes the evaluation y = X(q). Additionally,
for every i ∈ [�] the prover computes the two multilinear polynomials Ai, Bi :
F

�−1 → F such that for every z ∈ F
�, X(z) = Ai(z−i)·zi+Bi(z−i) where zi is the

i-th coordinate of z and z−i ∈ F
�−1 is z with the i-th coordinate removed. The

prover homomorphically evaluates ai = Ai(q−i) and bi = Bi(q−i) and sends these
2� evaluations to the verifier as the proof of multilinearity. Given the encrypted
query q, the encrypted evaluation y and the proof, the verifier homomorphically
computes the value ai ·qi+bi−y for every i ∈ [�], and checks that all the resulting
ciphertexts pass the weak zero-test.

The completeness of the proof follows from the properties of the weak zero-
test. However, the proposed multilinearity proof is not sound: a cheating prover
can evaluate a polynomial X̃ of individual degree > 1 together with an accepting
multilinearity proof by homomorphically computing the values ai, bi as a function
of the entire query q rather than just q−i. To prevent this, we need to somehow
force the prover to compute the evaluations ai, bi without using the encryption
of qi. Our solution is to add to the CRS another input q′ encrypted under a dif-
ferent key sk′. In addition to the encrypted evaluations y and {ai, bi}, the prover
provides the evaluations

{
a′

i = Ai(q′
−i), b

′
i = Bi(q′

−i)
}

which are encrypted under
sk′. Now imagine that we set q′ to be the same as q except that q′

i = 0. Since
q−i = q′

−i, we have that the honest (ai, bi) = (a′
i, b

′
i). We would like the prover to

somehow convince the verifier that indeed (ai, bi) = (a′
i, b

′
i). Intuitively, since q′

contains no information about qi, such a proof would mean that the evaluations
ai, bi were computed without using qi. However, proving this equality is clearly
impossible: the prover and verifier have neither of the secret keys, and therefore
they cannot even test that indeed q−i = q′

−i. Instead we ask the prover to argue
a conditional claim: if q−i = q′

−i then (ai, bi) = (a′
i, b

′
i). To prove this claim we

design a sub-protocol that we call an equality proof.

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 661

Soundness of the multilinearity proof. Before delving into the equality proof, we
first argue the soundness of the multilinearity proof. The adversarial prover is
given the inputs q and q′ encrypted under keys sk and sk′ respectively, and it
outputs the evaluations y, {ai, bi} and {a′

i, b
′
i} together with equality proofs that

for every i ∈ [�], if q−i = q′
−i then (ai, bi) = (a′

i, b
′
i). We assume that for any

Boolean input q ∈ {0, 1}� the evaluation y is unambiguous. That is, the prover
cannot produce two distinct evaluations together with accepting proofs. We need
to show that the same holds for general inputs q ∈ F

�. Focusing on i = 1, for
every z1 ∈ {0, 1}, consider an experiment where the CRS encrypts q = (z1, 0�−1)
and q′ = 0�. We first argue that the line given by a′

1, b
′
1 is also unambiguous.

Since q−1 = q′
−1, when the proof is accepted we have that (a1, b1) = (a′

1, b
′
1) and

therefore y = a′
1·z1+b′

1. If the prover could produce two different lines a′
1, b

′
1, since

y is unambiguous, the two lines must agree on z1. Therefore, given only sk′ we
can decrypt the two lines and recover their unique intersection point z1, thereby
contradicting semantic security under sk. Now consider the same experiment
except that z1 is in F instead of {0, 1}. Again by semantic security, the proof
must continue to be accepting and the line a′

1, b
′
1 must remain unambiguous

(since this can be tested without sk). The equality q−1 = q′
−1 still holds and

hence also y = a′
1 · z1 + b′

1. Therefore, this argument shows y must remain
unambiguous even for q ∈ F × {0, 1}�−1. More generally, for each i ∈ [0, � − 1]
we use this argument to show that the unambiguity of y for q ∈ F

i × {0, 1}�−i

implies its unambiguity for q ∈ F
i+1 × {0, 1}�−i−1 until we get unambiguity for

general inputs q ∈ F
�.

Equality proof. In an equality proof the CRS contains a pair of inputs q, q′ ← F
�

each encrypted independently under a different key. The prover can homomor-
phically evaluate a multilinear3 polynomial X on both q and q′ and provide
the encrypted evaluations y = X(q) and y′ = X(q′) together with a proof of
equality. The soundness requirement of our equality proof is that if q = q′ and
the verifier accepts then y = y′ with overwhelming probability. Intuitively, the
equality proof does not guarantee that the encrypted evaluations are equal, but
that the prover computed both evaluations using the same polynomial.

We construct such an equality proof using the zero-testable encryption. The
first challenge is that the inputs q and q′ are encrypted under different keys.
Fortunately, the zero-testable homomorphic encryption from KPY is multi-key
homomorphic4 and therefore we can compute jointly over q and q′ under both
keys.

A natural approach to implementing the equality proof is to simply have the
verifier homomorphically compute the value y − y′ and zero-test the resulting
ciphertext. This approach, however, does not achieve completeness. Even if the
prover is honestly evaluating the same polynomial X on both inputs, since q

3 Our equality proof supports any polynomial of low individual degree. For simplicity,
in this overview we focus on the multilinear case.

4 In KPY, as well as in this work, multi-key homomorphism is also used to evaluate
the proof polynomials over multiple queries that are encrypted under different keys.

662 Y. T. Kalai et al.

are q′ are encrypted independently the verifier’s ciphertext would be a non-
trivial encryption of zero and would fail the zero-test. In more detail, the tested
ciphertext is obtained by evaluating the polynomial D(z, z′) = X(z) − X(z′) on
a ciphertext encrypting (q, q′). Unless X is constant, we have that D(z, z′) �= 0
for some z �= z′ and hence, starting from a CRS encrypting z and z′ would lead
the zero-test to fail. Therefore, by semantic security the test must also fail when
the CRS encrypts q = q′.

Equality proof from zero-testable encryption. Instead we take a different app-
roach. Suppose that the prover’s polynomial X is sparse. In this case, the prover
can simply send X’s coefficients and the verifier can evaluate X on both inputs
by itself. For a general polynomial X our idea is inspired by the interactive sum-
check proof [25]. In a nutshell, we restrict X to a sequence of axis-parallel lines
transitioning from q to q′. Each restriction is sparse and its consistency can be
checked by the verifier using the weak zero-test.

In more detail, for every i ∈ [�] the prover computes the polynomials Ai, Bi :
F

�−1 → F where X(z) = Ai(z−i)·zi+Bi(z−i). We denote by q̃(i) the vector whose
first i coordinates are from q and whose last � − i coordinates are from q′ (so
q̃(0) = q′ and q̃(�) = q). The prover homomorphically computes the evaluations
y = X(q) and y′ = X(q′) and the equality proofs that contain for every i ∈ [�]
the encrypted evaluations:

yi = X
(
q̃(i)

)
, ai = Ai

(
q̃
(i)
−i

)
, bi = Bi

(
q̃
(i)
−i

)
,

y′
i = X

(
q̃(i−1)

)
, a′

i = Ai

(
q̃
(i−1)
−i

)
b′
i = Bi

(
q̃
(i−1)
−i

)
.

The verifier uses the weak zero-test to check that y′ = y′
1, y = y�, and yi = y′

i+1

for every i ∈ [� − 1]. Additionally, for every i ∈ [�] the verifier checks that
yi = ai · qi + bi, y′

i = a′
i · q′

i + b′
i, and (ai, bi) = (a′

i, b
′
i). The completeness of

the proof follows from the properties of the weak zero-test together with the
fact that, by construction, q̃

(i)
−i and q̃

(i−1)
−i are encrypted by the same ciphertext.

To show soundness, we assume that q = q′ and use the equalities tested by the
verifier to deduce that y = y′.

Unambiguity of the multilinearity proof. To achieve the unambiguity of the eval-
uations of X we added multilinearity proofs. Thus, to show the unambiguity of
the quasi-argument proof, we must also guarantee that the multilinearity proofs
themselves are unambiguous.

Unambiguity of the proof polynomials. In addition to the evaluations of X the
KPY quasi-argument contains the evaluations of the proof polynomials which
must also be made unambiguous. To argue the unambiguity of these evaluations
we rely on the tests performed by the KPY verifier designed to check the con-
sistency between the proof polynomials and X. We show that if the evaluations
of X are unambiguous and the evaluations of the proof polynomials pass the
verifier’s zero-tests, then the evaluations of the proof polynomials must also be
unambiguous.

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 663

Towards both ends, we use some of the techniques discussed above as well as
additional tools, some of which use modifications of the KPY encryption scheme.
We refer the reader to the full version for more details.

Unambiguity of ciphertexts. So far we focused on the unambiguity of the
encrypted answers. Next, we argue the unambiguity of the ciphertexts them-
selves. That is, we show that given the CRS that contains an encryption of a
random query q ∈ F

�, an adversarial prover cannot find two different cipher-
texts that decrypt to the same value under the same key. Together with the
unambiguity of the answers (in the multilinearity proof and proof polynomials),
this implies the unambiguity of the entire quasi-argument proof. We show that
the KPY encryption scheme already satisfies the unambiguity of ciphertexts
property. In the KPY encryption scheme, the secret key is a random element
sk ∈ F and a ciphertext encrypting an element q ∈ F is given by an injective
encoding of a random low-degree polynomial P such that P (sk) = q. Therefore,
the encryption of the random query q ∈ F

� in the CRS is just an encoding of
random polynomials and therefore, it does not reveal any information about
sk. Finding two ciphertexts that encrypt the same value requires finding two
encoded low-degree polynomials that agree on sk which is information theoreti-
cally impossible. Note that this unambiguity of ciphertexts only holds when the
CRS contains encryptions of random queries in F

� and therefore it is crucial that
we prove the unambiguity of the encrypted answers for general queries and not
just for Boolean queries.

Bootstrapping preserves unambiguity. Finally, to go from the unambiguity of the
quasi-argument to that of the delegation scheme, we need to show that the boot-
strapping step preserves unambiguity. In more detail, the bootstrapping step uses
the quasi-argument recursively: at the base of the recursion each quasi-argument
is for a formula that encodes a small block of the delegated computation. We
can directly show that each of these base formulas is locally unambiguous and
therefore their quasi-argument proofs are also unambiguous. Then, to reduce the
number of quasi-argument proofs, KPY use the quasi-argument again to argue
about a formula that verifies multiple lower-level quasi-argument proofs. The
fact that this formula is also locally unambiguous follows from the unambiguity
of these lower-level proofs. Therefore, its quasi-argument proof is also unam-
biguous and the unambiguity of the entire delegation scheme proof follows by
induction.

2.3 Related Work

Comparison with Choudhuri et al. and followup work. The PPAD-hardness
proof of Choudhuri et al. [13] and followup work [12,17,24] can all be seen
as as constructing an updatable and unambiguous delegation scheme for some
particular contrived language. In [13] the language is related to the computation
of a round-collapsed sum-check proof and [12,17] start from the protocol of
Pietrzak [28] instead of sum-check. In contrast, this work constructs updatable

664 Y. T. Kalai et al.

and unambiguous delegation scheme for general (bounded space) deterministic
computations.

The delegation schemes in [12,13,17,24] are based on an interactive protocol
that is made non-interactive via the Fiat-Shamir transform. The unambiguity
property is inherited from that of the original protocol. Updatability relies on
the recursive structure of the interactive protocol and requires augmenting the
language to depend on the protocol itself. In comparison, the delegation scheme
in our work is based on the scheme from [20] for general computation and relies on
a quasi-polynomial version of their assumption on bilinear groups. Updatability
follows from the bootstrapping technique developed in [20] and the focus of this
work is on achieving ambiguity.

Following the work of Canetti et al. [9] on instantiating the Fiat-Shamir
huristic from simpler assumptions, Choudhuri et al. [13] show that that the
security of their sum-check based scheme follows from a strong assumption on the
“optimal security” of Learning with Errors against quasi polynomial attacks. In
a recent work (concurrent to ours) Lombardi and Vaikuntanathan [24] start from
Pietrzak’s protocol and replace the Fiat-Shamir assumption by sub-exponential
hardness of Learning with Errors.

In addition to the assumption behind the delegation scheme, previous work
as well as ours rely on the hardness of the underlying language. Choudhuri et al.
[13] assume hardness of #SAT with poly-logarithmic number of variables, while
[12,17,24] rely on super-polynomial or sub-exponential hardness of the repeated
squaring problem that is behind Pietrzak’s protocol and the time-lock puzzle
of [30]. Since our delegation scheme supports general languages we can rely on
any hard language that can be decided in quasi-polynomial time and polynomial
space.

Hardness of local search. Recently, Bitansky and Gerichter [5] showed the hard-
ness of the class Polynomial Local Search (PLS), which is a different subclass of
TFNP that contains CLS, based on the delegation scheme of KPY [20]. They
observe that the KPY delegation scheme can be made incremental and use this
to show PLS hardness. For hardness in PPAD and CLS, however, we need the
unambiguity property achieved in this work.

3 Delegation

In this section we define the notion of a non-interactive delegation scheme for
deterministic Turing machines.

Fix any Turing machine M. Let T (n) be an upper bound on the running time
of M on inputs of length n and let S(n) be an upper bound on the size of M’s
configuration which includes the machine’s state, input tape and all of the work
tapes. We always assume, without loss of generality, that T (n) ≥ S(n) ≥ n. Let
UM denote the language such that (cf, cf ′, t) ∈ UM if and only if M transitions
from configuration cf to configuration cf ′ in exactly t steps. Let UM

n ⊆ UM be
the set of instances (cf, cf ′, t) ∈ UM such that the input tapes in cf, cf ′ are of
length n.

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 665

A non-interactive delegation scheme for UM consists of algorithms
(Del.S,Del.P,Del.V) with the following syntax:

Setup: The probabilistic setup algorithm Del.S takes as input a security
parameter κ ∈ N and an input length n ∈ N, and outputs a pair of public
keys: a prover key pk and a verifier key vk.
Prover: The deterministic prover algorithm Del.P takes as input a prover
key pk and an instance x ∈ UM. It outputs a proof Π.
Verifier: The deterministic verifier algorithm Del.V takes as input a verifier
key vk, an instance x ∈ UM and a proof Π. It outputs a bit indicating if it
accepts or rejects.

Definition 3.1. A non-interactive delegation scheme (Del.S,Del.P,Del.V) for
UM with setup time TS = TS(κ, n) and proof length LΠ = LΠ(κ, n) satisfies the
following requirements:

Completeness. For every κ, n ∈ N such that T (n) ≤ 2κ and x = (cf, cf ′, t) ∈
UM

n :

Pr
[
Del.V(vk, x,Π) = 1

∣∣∣∣
(pk, vk) ← Del.S(κ, n)
Π ← Del.P(pk, x)

]
= 1.

Efficiency. In the completeness experiment above:
– The setup algorithm runs in time TS(κ, n).
– The prover runs in time t · O(LΠ(κ, n)) and outputs a proof of length

LΠ(κ, n).
– The verifier runs in time O(|x| + LΠ(κ, n)).

(Λ, n)-Soundness. For every poly(Λ(κ))-size adversary Adv there exists a
negligible function μ such that for every κ ∈ N:

Pr
[
Del.V(vk, x,Π) = 1
x /∈ UM

n(κ)

∣∣∣∣
(pk, vk) ← Del.S(κ, n(κ))
(x,Π) ← Adv(pk, vk)

]
≤ μ(Λ(κ)).

Next we define the notion of an unambiguous delegation scheme [29]. We
adapt the definition to our setting.

Definition 3.2 ((Λ, n)-Unambiguity). A non-interactive delegation scheme
(Del.S,Del.P,Del.V) for UM is (Λ, n)-unambiguous if for every poly(Λ(κ))-size
adversary Adv there exists a negligible function μ such that for every κ ∈ N:

Pr

⎡
⎣
Del.V(vk, x,Π) = 1
Del.V(vk, x,Π ′) = 1
Π �= Π ′

∣∣∣∣∣∣
(pk, vk) ← Del.S(κ, n(κ))
(x,Π,Π ′) ← Adv(pk, vk)

⎤
⎦ ≤ μ(Λ(κ)).

Lastly we define the notion of an updatable delegation scheme.

666 Y. T. Kalai et al.

Definition 3.3 (Updatability). A non-interactive delegation scheme (Del.S,
Del.P,Del.V) for UM is updatable if there exists a deterministic polynomial-
time algorithm Del.U such that for every κ, n ∈ N such that T (n) ≤ 2κ, and
x1, x2 ∈ UM

n of the form x1 = (cf, cf1, t) and x2 = (cf, cf2, t + 1):

Pr

⎡
⎢⎢⎣
cf ′2 = cf2
Π ′

2 = Π2

∣∣∣∣∣∣∣∣

(pk, vk) ← Del.S(κ, n)
Π1 ← Del.P(pk, x1)
Π2 ← Del.P(pk, x2)
(cf ′2,Π

′
2) ← Del.U(pk, x1,Π1)

⎤
⎥⎥⎦ = 1.

4 PPAD-Hardness

The complexity class PPAD is a subclass of TFNP that consists of all problems
that are polynomial-time reducible to the End-of-the-Line problem. We show
PPAD-hardness by following the blueprint of Choudhuri et al. [13] and refer the
reader to their work for background material. Specifically, we show the hardness
of the subclass CLS that lies in the intersection of PPAD and PLS. Towards
this end, we consider the Relaxed-Sink-of-Verifiable-Line problem that was defined
and proven to be reducible to a problem in CLS in [13].

Definition 4.1 ([13]). A Relaxed-Sink-of-Verifiable-Line (rSVL) instance (Succ,
Ver, T, v0) consists of T ∈ [2m], v0 ∈ {0, 1}m, and circuits Succ : {0, 1}m →
{0, 1}m and Ver : {0, 1}m × [T] → {0, 1} with the guarantee that for every (v, i) ∈
{0, 1}m × [T] such that v = Succi(v0), it holds that Ver(v, i) = 1. A solution
consists of one of the following:

1. The sink: A vertex v ∈ {0, 1}m such that Ver(v, T) = 1.
2. A false positive: A pair (v, i) ∈ {0, 1}m × [2m] such that v �= Succi(v0) and

Ver(v, i) = 1.

Lemma 4.1 ([13]). Relaxed-Sink-of-Verifiable-Line is polynomial-time reducible
to a problem in CLS.

Hard search problems. We say that a search problem given by a relation R is
T -hard in the worst-case if for every poly(T (n))-size circuit Adv = {Advn} there
exists an x ∈ {0, 1}n such that (x,Advn(x)) /∈ R.

We say the problem is T -hard in the average-case if there exists an effi-
ciently (polynomial-time) sampleable distribution D = {Dn} such that for every
poly(T (n))-size circuit Adv = {Advn} there exists a negligible function μ such
that for every n ∈ N:

Pr
x←Dn

[(x,Advn(x)) ∈ R] ≤ μ(T (n)).

Next we show the existence of a hard search problem and the existence of
a non-interactive delegation scheme that is unambiguous and updatable implies
rSVL is hard.

We say a function T̂ is well-behaved if for every polynomial p, it holds that
T̂ (p(n)) = poly(T̂ (n)).

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 667

Theorem 4.1. Let R be a search problem that is solvable by a deterministic
Turing machine M that runs in time T = T (n) = nω(1) and space S = S(n) =
poly(n), and let T̂ = T̂ (n) be a well-behaved function such that R is T̂ -hard in
the average-case (respectively in the worst-case).

If there exists a non-interactive delegation scheme for UM with setup time
TS(κ, n) = poly(n) and proof length LΠ(κ, n) = poly(n), and functions Λ = Λ(κ)
and n = n(κ) such that T (n(κ)) ≤ Λ(κ) and the delegation scheme is (Λ, n)-
sound, (Λ, n)-unambiguous, and updatable, then rSVL is T̂ -hard in the average-
case (respectively in the worst-case).

Proof. We focus on the setting of average-case hardness. The proof for worst-case
hardness is similar.

Let R be T̂ -hard with respect to a distribution D = {Dn}. Let
(Del.S,Del.P,Del.V,Del.U) be a delegation scheme as in the theorem statement.
Let A′ denote a circuit for solving rSVL. We construct a circuit A that uses A′

to solve R.
Given as input an instance x ∈ {0, 1}n, the algorithm A proceeds as follows:

1. Set the security parameter κ such that |x| = n(κ). Sample (pk, vk) ←
Del.S(κ, n). Let m = S(n) + LΠ(κ, n).

2. Let cf0 be the initial configuration of the Turing machine M on input x. We
assume without loss of generality that at every time step, the configuration
of M contains an index i ∈ [T] corresponding to the current time step. Let
v0 = (cf0,Π0) where Π0 ← Del.P(pk, (cf0, cf0, 0)).

3. Let Succ = Succx,pk : {0, 1}m → {0, 1}m be the circuit that on input
(cfi,Πi), parses the index i ∈ [0, T] from cfi and outputs (cfi+1,Πi+1) ←
Del.U(pk, (cf0, cfi, i),Πi).

4. Let Ver = Verx,vk : {0, 1}m × [T] → {0, 1} be the circuit that on input
(v, i) ∈ {0, 1}m × [T], parses v = (cf,Π) and returns the output of
Del.V(vk, (cf0, cf, i),Π).

5. Run A′ on (Succ,Ver, T, v0).
(a) If A′ outputs v ∈ {0, 1}m such that Ver(v, T) = 1 (the sink), then parse

v = (cf,Π) and output the solution for x contained in cf.
(b) Otherwise output ⊥.

We construct the following T̂ -hard distribution D′ of rSVL instances: sample
x ← Dn and run Steps 1 to 4 of A to generate (Succ,Ver, T, v0) of length � =
�(n) ≥ n.

First we show D′ = {D′
�} is efficiently sampleable. By the efficiency guaran-

tees of the delegation scheme (Del.S,Del.P,Del.V,Del.U) (given by the theorem
statement, Definition 3.1, Definition 3.3), Steps 1 to 4 take poly(n) = poly(�)
steps. Since D is efficiently sampleable, this shows D′ is efficiently sampleable.

Next we argue that D′ is supported on valid rSVL instances. We show that
for any x ∈ {0, 1}n, A generates (Succ,Ver, T, v0) such that for every i ∈ [T]
it holds that Ver(Succi(v0), i) = 1. Consider any i ∈ [T] and let v = (cf,Π) =
Succi(v0). Let cfi be the unique configuration such that (cf0, cfi, i) ∈ UM

n and

668 Y. T. Kalai et al.

let Πi = Del.P(pk, (cf0, cfi, i)). By the updatability of the delegation scheme
(Definition 3.3), (cf,Π) = (cfi,Πi) so by the completeness of the delegation
scheme (Definition 3.1), Ver(v, i) = 1, as desired.

To show that R is T̂ -hard with respect to D, assume towards contradiction
there exists a poly(T̂ (�))-size circuit A′ = {A′

�} and polynomial function p′ such
that for infinitely many � ∈ N, given an rSVL instance sampled from D′

�, A
′
� out-

puts a solution (the sink or a false positive) with probability at least 1/p′(T̂ (�)).
Since Steps 1 to 4 take poly(n) steps, � = poly(n) so T̂ (�) = poly(T̂ (n)). Let p

be a polynomial such that p′(T̂ (�)) ≤ p(T̂ (n)). Since D′ is efficiently sampleable
and A′ is a circuit of size poly(T̂ (n)), A is a circuit of size poly(T̂ (n)). It follows
from our assumption that for x ← D, A′ outputs a rSVL solution (the sink or
a false positive) in Step 5 with probability at least 1/p(T̂ (n)). Below we show
A′ outputs a false positive with probability at most 1/2p(T̂ (n)) and therefore it
outputs the sink with probability at least 1/2p(T̂ (n)). In this case, we use the
sink to recover a solution for x.

Assume towards contradiction that for infinitely many n ∈ N, A′ out-
puts a false positive (v, i) with probability at least 1/2p(T̂ (n)) ≥ 1/2p(Λ(κ))
(since T̂ (n) < T (n) ≤ Λ(κ)). If (v = (cf,Π), i) is a false positive, then
Del.V(vk, (cf0, cf, i),Π) = Ver(v, i) = 1 and (cf,Π) �= (cfi,Πi) = Succi(v0),
so either cf �= cfi, or cf = cfi and Π �= Πi. One of the two cases must occur
for infinitely many κ ∈ N with probability at least 1/4p(Λ(κ)). In the first case,
cf �= cfi, and A′ can be used to break the (Λ, n)-soundness of the delegation (Def-
inition 3.1): (cf0, cf, i) �∈ UM

n but Del.V(vk, (cf0, cf, i),Π) accepts. In the second
case, cf = cfi and Π �= Πi, and A′ can be used to break the (Λ, n)-unambiguity
of the delegation (Definition 3.2): by the efficiency of the delegation (cfi,Πi) can
be computed in time T (n) · poly(n) ≤ poly(Λ(κ)), and Del.V(vk, (cf0, cfi, i),Π)
and Del.V(vk, (cf0, cfi, i),Πi) both accept.

This shows A′ outputs a false positive with probability at most 1/2p(T̂ (n)).
Thus for infinitely many n ∈ N, with probability at least 1/2p(T̂ (n)), A′ outputs
the sink v = (cf,Π) and (cf,Π) = SuccT (v0). By the updatability of the del-
egation (Definition 3.3), (cf0, cf, T) ∈ UM

n , i.e. cf is the configuration of M on
input x after T steps so it contains a solution for x. In this case, A outputs this
solution, contradicting the T̂ -hardness of R.

5 Our Results

In the full version of this work we construct a non-interactive delegation scheme
that is unambiguous and updatable, proving the theorem below. This theorem
is a generalization of Theorem 1.2. The delegation scheme relies on the following
decisional assumption on groups with bilinear maps (also stated in Assump-
tion 1.3). The assumption is parameterized by a function Λ = Λ(κ).

Assumption 5.1. There exists an ensemble of groups G = {Gκ} of prime order
p = p(κ) = 2Θ(κ) with a non-degenerate bilinear map such that for every d(κ) =

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 669

O(log Λ(κ)) and poly(Λ(κ))-size adversary Adv, there exists a negligible function
μ such that for every κ ∈ N:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b ← {0, 1}
g ← G
s ← Zp

t0 ← Zp

t1 ← s2d+1

b′ ← Adv

((
gsi·tj

b

)
i∈[0,d]
j∈[0,2]

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 1
2

+ μ(Λ(κ)).

Theorem 5.2. For any deterministic Turing machine M that runs in time
T = T (n) and space S = S(n) ≥ n, and for every Λ = Λ(κ) and n = n(κ)
such that T (n(κ)) ≤ Λ(κ), let d = d(κ) = logn T (n) and let Λ∗(κ) =
max{Λ(κ), S(n(κ))d, κd2}. Under the Λ∗-hardness of Assumption 5.1, there
exists a non-interactive delegation scheme for UM with setup time TS(κ, n) =
poly(S(n), κd) and proof length LΠ(κ, n) = poly(S(n), κd) that is (Λ, n)-sound,
(Λ, n)-unambiguous, and updatable.

Next we state corollaries of Theorem 5.2 for different settings of parameters.

Corollary 5.1. For any deterministic Turing machine M that runs in time
T = T (n) and space S = S(n) = poly(n), and for every Λ = Λ(κ) and
n = n(κ) ≥ 2

√
log Λ·log κ such that T (n(κ)) ≤ Λ(κ), under the Λ-hardness of

Assumption 5.1, there exists a non-interactive delegation scheme for UM with
setup time TS(κ, n) = poly(n) and proof length LΠ(κ, n) = poly(n) that is (Λ, n)-
sound, (Λ, n)-unambiguous, and updatable.

Proof. It suffices to prove that max{Λ(κ), S(n(κ))d, κd2} ≤ poly(Λ(κ)) where
d = d(κ) = logn T (n), as follows:

S(n(κ))d = n(κ)O(d) = n(κ)O(logn T (n)) = poly(T (n)) ≤ poly(Λ(κ))

κd = κlogn T (n) ≤ κlogn Λ(κ) = 2
log Λ·log κ

log n ≤ n
√

log Λ·log κ
log n ≤ n

κd2 ≤ nd = nlogn T (n) = T (n) ≤ Λ(κ).

Corollary 5.2 (Quasi-polynomial security). For any constant c ≥ 1 and
any deterministic Turing machine M that runs in time T = T (n) ≤ n(log n)a

where a = (c−1)/(c+1) and space S = S(n) = poly(n), let Λ = Λ(κ) = 2(log κ)c

and n = n(κ) = 2
√
log Λ·log κ. Under the Λ-hardness of Assumption 5.1, there

exists a non-interactive delegation scheme for UM with setup time TS(κ, n) =
poly(n) and proof length LΠ(κ, n) = poly(n) that is (Λ, n)-sound, (Λ, n)-
unambiguous, and updatable.

Proof. By Corollary 5.1, it suffices to prove that T (n) ≤ Λ(κ) by showing:

n(log n)a

= 2(log n)a+1 ≤ 2(log κ)c

for a = (c − 1)/(c + 1).

670 Y. T. Kalai et al.

It suffices to prove that:

(log n)a+1 ≤ (log κ)c for a = (c − 1)/(c + 1).

This follows from the calculation:

(logn)a+1 = (logΛ · log κ)
a+1
2 = ((log κ)c · log κ)

a+1
2 = (log κ)

(c+1)(a+1)
2 = (log κ)c.

By Corollary 5.2, Theorem 4.1 implies the following corollary.

Corollary 5.3. Assume Assumption 5.1 is Λ-hard for Λ = Λ(κ) = 2(log κ)c

for
some c ≥ 1. If there exists a search problem R that is solvable by a deterministic
Turing machine M that runs in time T = T (n) ≤ n(log n)a

where a = (c−1)/(c+
1) and space S = S(n) = poly(n), and a well-behaved function T̂ = T̂ (n) such
that R is T̂ -hard in the average-case (respectively in the worst-case), then rSVL
is T̂ -hard in the average-case (respectively in the worst-case).

Corollary 5.4 (Sub-exponential security). For any constant ε < 1 and any
deterministic Turing machine M that runs in time T = T (n) ≤ n

ε
2 · log n

log log n and
space S = S(n) = poly(n), let Λ = Λ(κ) = 2κε

and n = n(κ) = 2
√
log Λ·log κ.

Under the Λ-hardness of Assumption 5.1, there exists a non-interactive dele-
gation scheme for UM with setup time TS(κ, n) = poly(n) and proof length
LΠ(κ, n) = poly(n) that is (Λ, n)-sound, (Λ, n)-unambiguous, and updatable.

Proof. By Corollary 5.1, it suffices to prove that T (n) ≤ Λ(κ) by showing:

n
ε
2 · log n

log log n = 2
ε·(log n)2

2 log log n ≤ 2κε

.

It suffices to prove that:
ε · (log n)2

2 log log n
≤ κε.

This follows from the calculation:

log n = (log Λ · log κ)1/2 = (κε · log κ)1/2 ≥ κε/2

ε · (log n)2

2 log log n
=

ε · κε · log κ

2 log log n
≤ ε · κε · log κ

2 · (ε/2) · log κ
= κε.

By Corollary 5.4, Theorem 4.1 implies the following corollary.

Corollary 5.5. Assume Assumption 5.1 is Λ-hard for Λ = Λ(κ) = 2κε

for
some ε < 1. If there exists a search problem R that is solvable by a deterministic
Turing machine M that runs in time T = T (n) ≤ n

ε
2 · log n

log log n and space S =
S(n) = poly(n), and a well-behaved function T̂ = T̂ (n) such that R is T̂ -hard
in the average-case (respectively in the worst-case), then rSVL is T̂ -hard in the
average-case (respectively in the worst-case).

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 671

References

1. Abbot, T., Kane, D., Valiant, P.: On algorithms for Nash equilibria (2004). http://
web.mit.edu/tabbott/Public/final.pdf. Unpublished manuscript

2. Biehl, I., Meyer, B., Wetzel, S.: Ensuring the integrity of agent-based computations
by short proofs. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp.
183–194. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0057658

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In: Boneh et al. [7], pp.
111–120 (2013). https://doi.org/10.1145/2488608.2488623, https://doi.acm.org/
10.1145/2488608.2488623

4. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

5. Bitansky, N., Gerichter, I.: On the cryptographic hardness of local search. In:
Vidick, T. (ed.) 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020. LIPIcs, Seattle, Washington, USA, 12–14 January 2020, vol. 151, pp.
6:1–6:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.ITCS.2020.6

6. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding
a Nash equilibrium. In: IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 1480–1498
(2015). https://doi.org/10.1109/FOCS.2015.94

7. Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): Symposium on Theory of
Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013. ACM
(2013). http://dl.acm.org/citation.cfm?id=2488608

8. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and batch
NP verification from standard computational assumptions. In: Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, 19–23 June 2017, pp. 474–482 (2017). https://doi.org/10.
1145/3055399.3055497, https://doi.acm.org/10.1145/3055399.3055497

9. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, 23–26 June 2019, pp. 1082–1090 (2019). https://doi.org/10.
1145/3313276.3316380

10. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications. In:
Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS,
vol. 12110, pp. 220–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45374-9 8

11. Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player Nash
equilibria. J. ACM. 56(3), 14:1–14:57 (2009). https://doi.org/10.1145/1516512.
1516516

12. Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: PPAD-hardness via iterated squaring modulo a composite. IACR Cryptology
ePrint Archive 2019/667 (2019). https://eprint.iacr.org/2019/667

13. Choudhuri, A.R., Hub’avcek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum,
G.N.: Finding a Nash equilibrium is no easier than breaking Fiat-Shamir. In: Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 1103–1114 (2019). https://
doi.org/10.1145/3313276.3316400

http://web.mit.edu/tabbott/Public/final.pdf
http://web.mit.edu/tabbott/Public/final.pdf
https://doi.org/10.1007/BFb0057658
https://doi.org/10.1145/2488608.2488623
https://doi.acm.org/10.1145/2488608.2488623
https://doi.acm.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.4230/LIPIcs.ITCS.2020.6
https://doi.org/10.4230/LIPIcs.ITCS.2020.6
https://doi.org/10.1109/FOCS.2015.94
http://dl.acm.org/citation.cfm?id=2488608
https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1145/3055399.3055497
https://doi.acm.org/10.1145/3055399.3055497
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516
https://eprint.iacr.org/2019/667
https://doi.org/10.1145/3313276.3316400
https://doi.org/10.1145/3313276.3316400

672 Y. T. Kalai et al.

14. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009). https://doi.org/10.
1137/070699652

15. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its appli-
cations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol.
9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53015-3 4

16. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM
50(6), 852–921 (2003)

17. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. IACR Cryptology ePrint Archive 2019/619 (2019). https://eprint.iacr.
org/2019/619

18. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part
II. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 20

19. Hubáček, P., Yogev, E.: Hardness of continuous local search: query complexity
and cryptographic lower bounds. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, 16–19 January, pp. 1352–1371 (2017). https://doi.org/10.1137/
1.9781611974782.88

20. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 1115–1124 (2019). https://
doi.org/10.1145/3313276.3316411

21. Kalai, Y.T., Raz, R., Rothblum, R.D.: Delegation for bounded space. In: Boneh
et al. [7], pp. 565–574 (2013). https://doi.org/10.1145/2488608.2488679, https://
doi.acm.org/10.1145/2488608.2488679

22. Kalai, Y.T., Raz, R., Rothblum, R.D.: How to delegate computations: the power
of no-signaling proofs. In: STOC, pp. 485–494. ACM (2014)

23. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 5

24. Lombardi, A., Vaikuntanathan, V.: Personal communication (2020)
25. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive

proof systems. In: 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, 22–24 October 1990, vol. I, pp. 2–10. IEEE Computer
Society (1990). https://doi.org/10.1109/FSCS.1990.89518

26. Paneth, O., Rothblum, G.N.: On zero-testable homomorphic encryption and pub-
licly verifiable non-interactive arguments. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017, Part II. LNCS, vol. 10678, pp. 283–315. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 9

27. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994). https://doi.
org/10.1016/S0022-0000(05)80063-7

28. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoreti-
cal Computer Science Conference, ITCS 2019, San Diego, California, USA, 10–12
January 2019, pp. 60:1–60:15 (2019). https://doi.org/10.4230/LIPIcs.ITCS.2019.
60

https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
https://doi.org/10.1007/978-3-662-53015-3_4
https://doi.org/10.1007/978-3-662-53015-3_4
https://eprint.iacr.org/2019/619
https://eprint.iacr.org/2019/619
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1007/978-3-662-53008-5_20
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1137/1.9781611974782.88
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/2488608.2488679
https://doi.acm.org/10.1145/2488608.2488679
https://doi.acm.org/10.1145/2488608.2488679
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1007/978-3-319-56620-7_5
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60

Delegation with Updatable Unambiguous Proofs and PPAD-Hardness 673

29. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21
June 2016, pp. 49–62 (2016). https://doi.org/10.1145/2897518.2897652

30. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, USA (1996)

31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) Symposium on Theory of Computing, STOC
2014, 31 May –03 June 2014, pp. 475–484. ACM, New York (2014). https://doi.
org/10.1145/2591796.2591825

32. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1007/978-3-540-78524-8_1

New Techniques for Zero-Knowledge:
Leveraging Inefficient Provers to Reduce

Assumptions, Interaction, and Trust

Marshall Ball1(B), Dana Dachman-Soled2, and Mukul Kulkarni3

1 Columbia University, New York City, USA
marshall@cs.columbia.edu

2 University of Maryland, College Park, USA
danadach@umd.edu

3 University of Massachusetts, Amherst, USA
mukul@cs.umass.edu

Abstract. We present a transformation from NIZK with inefficient
provers in the uniform random string (URS) model to ZAPs (two mes-
sage witness indistinguishable proofs) with inefficient provers. While
such a transformation was known for the case where the prover is effi-
cient, the security proof breaks down if the prover is inefficient. Our trans-
formation is obtained via new applications of Nisan-Wigderson designs,
a combinatorial object originally introduced in the derandomization
literature.

We observe that our transformation is applicable both in the set-
ting of super-polynomial provers/poly-time adversaries, as well as a new
fine-grained setting, where the prover is polynomial time and the ver-
ifier/simulator/zero knowledge distinguisher are in a lower complexity
class, such as NC1. We also present NC1-fine-grained NIZK in the URS
model for all of NP from the worst-case assumption ⊕L/poly �⊆ NC1.

Our techniques yield the following applications:
1. ZAPs for AM from Minicrypt assumptions (with super-polynomial

time provers),
2. NC1-fine-grained ZAPs for NP from worst-case assumptions,
3. Protocols achieving an “offline” notion of NIZK (oNIZK) in the stan-

dard (no-CRS) model with uniform soundness in both the super-
polynomial setting (from Minicrypt assumptions) and the NC1-fine-
grained setting (from worst-case assumptions). The oNIZK notion is
sufficient for use in indistinguishability-based proofs.

1 Introduction

A long and important line of research has been dedicated to understanding the
necessary and sufficient assumptions for the existence of computational zero

M. Kulkarni—Part of this work was done while the author was a student at the Uni-
versity of Maryland.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 674–703, 2020.
https://doi.org/10.1007/978-3-030-56877-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_24

New Techniques for Zero-Knowledge 675

knowledge (CZK) proofs (with potentially unbounded provers) for a language
L [13,49,60]. This line of research culminated with the work of Ong and Vad-
han [59] which fully resolved the question by proving that a language in NP has
a CZK protocol if and only if the language has an “instance-dependent” com-
mitment scheme. The minimal assumptions required in the non-interactive zero
knowledge (NIZK) setting—assuming unbounded provers and a common ref-
erence string (CRS)1 (sometimes called the “public parameters” setting)—are
also well-understood. Pass and Shelat [61], showed that (non-uniform) one-way
functions are sufficient for NIZK with unbounded provers in the CRS model for
all of AM, whereas NIZK with unbounded provers in the CRS model for a hard-
on-average language implies the existence of (non-uniform) one-way functions.

While the NIZK of Pass and Shelat [61] indeed minimizes interaction and
assumptions, it critically utilizes trusted setup to generate a structured CRS
sampled from a particular distribution. In contrast, motivated by concerns of
subversion of public parameters [12] and considerations from the blockchain
community [16–18], a recent line of research has focused on “transparent” setup
that does not require a trusted party, but simply access to a shared source of
public randomness such the NIST randomness beacon, or a uniform random
string (URS).2 In the URS model, it is well known that NIZK with unbounded
provers follows from one-way permutations (OWP) [34]. However, even agreeing
upon a genuinely random string to implement the URS model may be infeasible
in some cases.

We investigate what can be proven with “zero-knowledge” in a truly trust-free
setting, with minimal interaction and assumptions. In particular, we extend the
above line of work on minimizing assumptions to other types of “zero knowledge”
primitives, such as ZAPs (two message witness indistinguishable (WI) proofs),
non-interactive witness indistinguishable proofs (NIWI), and, ultimately, a type
of NIZK with uniform soundness (and no URS/CRS).

Our primary goal is to understand the relationship between ZAPs and zero-
knowledge primitives that can be constructed from minimal assumptions in the
inefficient prover setting. Once we construct ZAPs, we will show that NIWI
and a type of NIZK with uniform soundness can also be constructed (note that
while these implications are already known in the efficient-prover setting [8,10],
hurdles are introduced by removing this constraint). Ultimately, we are interested
in obtaining constructions of ZAPs from Minicrypt [45] assumptions only3. To

1 Throughout this work we make a distinction between common reference string
denoted as CRS and uniform random string denoted as URS. URS is sometimes
referred to common random string in literature. We write URS to avoid the confu-
sion and overloading.

2 Note that recent work on transparent or trustless (succinct) proofs, typically assumes
existence of a public random oracle. We will only consider (at most) short public
random strings in this work.

3 We understand Minicrypt to be chiefly characterized by the lack of key agreement
(KA), and note that one-way permutations (OWP) are separated from KA via the
original Impagliazzo and Rudich separation [46] For the same reason, we consider
Collision-Resistant Hashing to be in Minicrypt.

676 M. Ball et al.

further motivate our focus on the inefficient prover setting, note that barriers are
known for constructions of ZAPs from Minicrypt assumptions when the prover is
required to be efficient. Indeed, efficient-prover ZAPs are known to be equivalent
to efficient-prover NIZK in the URS model [32] (assuming one-way functions
exist), and efficient-prover NIZKs, in turn, are only known to be achievable from
Cryptomania [45] primitives such as (enhanced) trapdoor permutations. (See
Sect. 1.2 for details.).

Because of this dichotomy, we consider the setting where the prover is com-
putationally more powerful than the simulator/zero knowledge distinguisher.
We refer to this setting as the inefficient prover setting. This covers both the
setting of super-polynomial provers/polynomial adversary, as well as a new fine-
grained setting that we consider for the first time (to the best of our knowledge),
where the prover is polynomial time and the verifier/simulator/zero knowledge
distinguisher are in a lower complexity class, such as NC1 (logarithmic depth,
polynomial-size circuits with constant fan-in). Our main technical contribution
is a new transformation from inefficient prover NIZK in the URS model to ineffi-
cient prover ZAPs. A single transformation works both for the unbounded prover
and fine-grained settings. Our transformation is obtained via new applications
of Nisan-Wigderson designs, a combinatorial object originally introduced in the
derandomization literature [58]. We also show that fine-grained NIZK in the
URS model is achievable from worst-case assumptions (⊕L/poly �⊆ NC1). Given
the well-known construction of unbounded prover NIZK in the URS model from
one-way permutations (via the hidden bits model), we obtain (1) super-poly
prover ZAPs for AM from Minicrypt assumptions and (2) fine-grained ZAPs for
NP from worst-case assumptions.

Technical Hurdles Introduced by Inefficient Provers. When dealing with ineffi-
cient provers, one must proceed with care, as many “folklore” results no longer
hold. We make the following surprising observation (discussed in more detail in
Sect. 1.1): While it is known that NIZKs in the uniform random string (URS)
model imply ZAPs for the case of efficient provers [32], the transformation of [32]
fails when the NIZK prover is inefficient. Briefly, this occurs because the reduc-
tion from the zero knowledge of the underlying NIZK to the witness indistin-
guishability of the ZAP does not have the computational power to run the honest
prover’s algorithm. Furthermore, as we will explain in Sect. 1.1, the honest proofs
cannot simply be pre-computed and hardwired into the reduction. Instead, we
must develop new techniques for the inefficient prover case.

Our Notions of Zero Knowledge: The “Fine-Grained” Setting. We introduce
fine-grained analogues of zero knowledge and witness indistinguishability. In
fine-grained zero knowledge, we are concerned with (very) low complexity ver-
ifiers. We wish the honest verifier to have low complexity (we will use NC1 as
a running example), but we also want to scale down the claim “no additional
knowledge” leaked (beyond validity of the statement) to what can be computed
in this low complexity class (NC1). The standard definition of zero knowledge
simply requires that real transcripts can be simulated in probabilistic polyno-

New Techniques for Zero-Knowledge 677

mial time. But if the verifier is in NC1 the simulation complexity could in fact
be substantially larger than that of the verifier, which does not capture the idea
that “no additional knowledge” was leaked. While such a notion of simulation
is stronger, we only require interactions with malicious verifiers in NC1 to be
simulatable. Moreover, simulation is only required to be indistinguishable from
real to NC1 distinguishers. In this sense, our notion of fine-grained zero knowl-
edge is orthogonal to the standard, poly-time zero knowledge.4 We also define a
notion of fine-grained witness indistinguishability, where indistinguishability of
interactions is only required to hold for low complexity distinguishers/verifiers.

We note that interactive fine-grained zero knowledge is straightforward to
achieve using fine-grained commitments (which follow from the work of [29])
and a commitment-based ZK protocol (e.g. Blum-Hamiltonicity). We therefore
focus on fine-grained ZAPs and NIZK.

NIZK Imply ZAPs for Inefficient Provers. Our main contribution is to prove
that NIZK in the URS model implies ZAPs, even in the case of inefficient provers.
Specifically, we show the following:

Theorem 1 (Informal). Assuming the existence of an NIZK proof system for
a language L ∈ AM with provers running in time T in the URS model, there
exists a ZAP for L with provers running in time poly(T, n), where n is security
parameter.

Our proof surprisingly leverages a type of design—a combinatorial object
that was used in the derandomization of BPP by Nisan and Wigderson [58]. To
the best of our knowledge, this is a novel application of designs to the crypto-
graphic setting.

We also briefly discuss here the notion of a “witness” for an AM language
and the meaning of witness indistinguishability. Recall that a language is in AM
iff it has an AM protocol (Prover,Verifier) and so AM languages are inherently
tied to protocols. Therefore, similarly to tying witnesses for NP languages to a
specific verification algorithm, the notion of a “witness” for an AM language will
be tied to the protocol. Specifically, we assume that there is an AM-protocol
for a language L. Given the first message r from the verifier, we can consider
the Circuit-SAT problem w.r.t. the first message r and the verifier’s circuit.
Specifically, a witness w is a Prover’s message that causes the verifier to output
1, when the first message r is fixed. Thus, witness-indistinguishability means that

4 Note that this is very different from other fine-grained flavors of zero knowledge such
as “knowledge tightness” or “precise zero knowledge” [30,31,36,37,57] which look
for a simulation complexity that is tight to each simulator. Under these notions, if a
malicious verifier, V , runs for ncV steps, then the interaction with the prover should
simulatable with order O(ncV) steps. These verifier-by-verifier notions, in some sense,
recover fine-grained zero knowledge with respect to TIME(nc) for all c simultaneously.
In this work, we aren’t concerned with such verifier-by-verifier simulation of malicious
poly-time verifiers, but instead what can be achieved if one is only concerned with
(very) simple malicious verifiers (in order to minimize assumptions).

678 M. Ball et al.

if there are two possible Prover messages w1, w2 that can be sent in response to
r and such that the verifier accepts both, then the transcript of the ZAP should
be indistinguishable when the Prover uses witness w1 or w2.

As a concrete example, consider the Goldwasser-Sipser (GS) protocol [40] for
proving lower bounds on the size of NP sets. The verifier sends a random hash
value and the prover responds with an element in the set that hashes to that
value. WI is meaningful if there are multiple elements in the set that hash to
the target value, since it guarantees that the verifier cannot distinguish which
pre-image was used.5

Since it is well-known that NIZK with inefficient provers in the URS model
can be constructed from one-way permutations (OWP) (see e.g. [61]), our
result immediately yields ZAPs with subexponential provers from the Minicrypt
assumption of OWP.

Theorem 2 (Informal). Assuming the existence of one-way permutations, if
L ∈ AM with prover run-time T , then there exists a ZAP for L with prover
run-time poly(T, subexp(n)).

Extending to the Fine-Grained Setting. Next, we observe that our same trans-
formation can be applied to obtain fine-grained ZAPs from fine-grained NIZK
in the URS model. Here, we assume that the prover is polynomial-time, but that
the verifier and distinguisher are in a lower complexity class, F . We then require
that zero knowledge/witness indistinguishability hold against distinguishers from
complexity class F . For the proof technique from above to work, we require the
class F to satisfy some mild compositional requirements, which are, in particular,
satisfied by the class NC1. We thus obtain the following:

Theorem 3 (Informal). Assuming the existence of non-adaptive NC1-fine-
grained NIZK proof systems for NP in the URS model, there exist NC1-fine-
grained ZAPs for NP.

We next show how to construct NC1-fine-grained NIZK in the URS model
for all of NP, assuming the worst-case assumption that ⊕L/poly �⊆ NC1. Our
result begins by converting the NIZK construction of [3] that works for lan-
guages L with randomized encodings from the CRS model to the URS model.6

Since randomized encodings are known for the class ⊕L/poly, this yields an
NIZK proof system in the URS model (which actually achieves statistical zero
5 We note that the GS protocol is used to prove that MA is contained in AM (by proving

that the set of accepting coins of the verifier is sufficiently large). Recall that MA is
like NP except the verifier can be randomized. It is not difficult to observe that our
notion under the above transformation yields proofs for MA where witnesses that
make the randomized verifier accept w.h.p. are indistinguishable.

6 Recently, [33] constructed one-way permutations in the fine-grained setting. How-
ever, their results cannot be extended in straight-forward manner to construct fine-
grained NIZKs and therefore are unlikely to lead to simpler constructions without
using other techniques. For more discussion on this, we refer the interested readers
to Sect. 1.2.

New Techniques for Zero-Knowledge 679

knowledge). We then introduce a new primitive, which we call a G-extractable,
F-Fine-Grained Commitment. This is a commitment that is perfectly binding,
hiding against F , but extractable by G. We show how to construct ⊕L/poly-
extractable, NC1-Fine-Grained Commitment under the worst-case assumption
that ⊕L/poly �⊆ NC1 using techniques of [29]. Then, using ⊕L/poly-extractable,
NC1-Fine-Grained Commitment we show how to bootstrap the NIZK proof sys-
tem in the URS model for the class ⊕L/poly to an F-fine-grained NIZK proof
system for NP in the URS model. We obtain the following theorem:

Theorem 4 (Informal). Assuming that ⊕L/poly �⊆ NC1, there exist non-
adaptive NC1-fine-grained NIZK proof systems for NP in the URS model.

Beyond ZAPs. One reason that ZAPs are a crucial tool in cryptography, is that
they can be used as a building block to construct NIWI in the standard (no
trusted setup) model under certain types of assumptions that are common in
the derandomization literature. Indeed, the seminal work of Barak et al. [8] was
the first to establish this connection between derandomization assumptions and
NIWI. Furthermore, NIWI in the standard model can be used to construct NIZK
with soundness against uniform adversaries in the standard model.

The constructions of NIWI from ZAPs and derandomization techniques go
through in the inefficient-prover setting, since parallel repetition of 2-message
protocols retains WI even in the inefficient prover setting (though this is not
necessarily true for protocols with more than 2-messages).

We are not able to convert NIWI into fully standard NIZK with uniform
soundness. The reason is that the transformation from NIWI to NIZK with uni-
form soundness in the no-CRS model employs the well-known FLS paradigm [34].
In this paradigm, the ZK simulator runs the honest prover with a trapdoor wit-
ness. However, in our case, the simulator cannot run the honest prover as it does
not have enough computational power. Fortunately, we are able to show that if
the simulator is given non-uniform advice that does not depend on the statement
being proved then the simulator can perfectly simulate the honest prover’s out-
put on the trapdoor witness. Thus, we introduce offline NIZK (oNIZK), which
requires existence of a distribution DSim over small circuit simulators Sim, such
that for any statement x ∈ L, the distribution over (URS′, π′) obtained by draw-
ing Sim from DSim and outputting (URS′, π′) ← Sim(x) is computationally indis-
tinguishable from honest CRS’s and proofs (URS, π). We note that this notion
is sufficient for indistinguishability-based applications. We next state our results
for the oNIZK setting:

Theorem 5 (Informal). Assuming the existence of one-way permutations,
appropriate derandomization assumptions,7 and sub-exponentially-hard uniform
collision resistant hash functions, then for any constant 0 < ε < 1 and constant
c ≥ 1, there exist oNIZK in the standard model for NP with honest provers run-

7 Specifically, the existence of efficient 1/2-hitting set generators (HSG) against co-
nondeterministic uniform algorithms [8].

680 M. Ball et al.

ning in uniform time 2nε

and soundness against uniform adversaries running in
time 2nc

, where n is security parameter.

Theorem 6 (Informal). Assuming that ⊕L/poly �⊆ NC1, appropriate deran-
domization assumptions as above, and the existence of uniform collision resis-
tant hash functions, there exist NC1-fine-grained oNIZK in the standard model
for NP.

1.1 Technical Overview

ZAPs from NIZK with inefficient provers. Let us begin by recapping the con-
struction of ZAPs from a non-adaptive NIZK proof system with an efficient
prover in the URS model.

The public coin verifier sends a random string r, which is partitioned into
n′ sections r1|| · · · ||rn′ . Each ri is a bitstring of length n, where n is also the
bit length of the URS for the underlying NIZK proof system. Upon receiving
r1|| · · · ||rn′ , the prover chooses a string x ∈ {0, 1}n. For i ∈ [n′], the prover then
sets URSi := ri ⊕ x and runs the prover of the underlying NIZK proof system
on the input statement, witness and URSi, to produce proof πi. The prover
then sends x, π1, . . . , πn′ to the verifier. For i ∈ [n′], the verifier recomputes
URSi := ri ⊕ x and runs the verifier of the underlying NIZK proof system on
URSi, πi. If all the proofs accept, then the verifier accepts; otherwise, it rejects.

To prove soundness of the above proof system, a counting argument is
employed. Specifically, fix any statement st that is not in the language. Since the
underlying NIZK is statistically sound, the number of “bad” URS’s for which
there exists a proof π that accepts for st is small; say the fraction of “bad” URS’s
is at most 1/2. This means that for a fixed statement st not in the language and
a fixed x, the probability over random choice of r1, . . . , rn′ that there exists an
accepting proof πi relative to each URSi, i ∈ [n′] is at most 2−n′

. Taking a union
bound over all possible choices for x, we have that for a fixed st, the probabil-
ity over choice of r1, . . . , rn′ that there exists an x of length n for which there
exists an accepting proof relative to each URSi, i ∈ [n′] is at most 2n−n′

. Setting
n′ = 2n provides us with negligible statistical soundness in n.

On the other hand, to prove witness indistinguishability, one proceeds via
a hybrid argument. In the original hybrid, witness w1 is used for each of the
n′ number of honestly generated proofs π1, . . . , πn′ . In the final hybrid, witness
w2 is used for each of the n′ number of honestly generated proofs π1, . . . , πn′ . In
each intermediate hybrid, we switch from honestly generating a proof using w1 to
using w2. Indistinguishability of intermediate hybrids is proved by showing that
an efficient distinguisher between the hybrids implies an efficient distinguisher
between real and simulated proofs of the underlying NIZK system. Specifically,
a reduction is constructed as follows: Given the verifier’s string r = r1|| · · · ||rn′

and a real or simulated URS/proof pair (URS∗, π∗), the reduction sets x such
that URSi = x ⊕ ri = URS∗. The reduction then runs the honest prover with
w2 for the first i − 1 proofs, runs the honest prover with w1 for the last n′ −
i proofs, and embeds π∗ in the i-th location. The reduction then applies the

New Techniques for Zero-Knowledge 681

distinguisher between Hybrids i−1 and i to the resulting transcript, and outputs
whatever it does. Since a distinguisher between Hybrids i − 1 and i must either
distinguish the above when (URS∗, π∗) were generated using the honest prover
and w1 versus using the simulator or when (URS∗, π∗) were generated using the
honest prover and w2 versus using the simulator, the above reduction succeeds
in one of those cases. If one of the cases succeeds, we obtain a contradiction to
the zero knowledge property.

Note that to prove soundness of the ZAP, soundness against unbounded
provers in the underlying NIZK is crucial since we use a counting argument based
on the number of “bad” URS’s for which there exists an accepting proof of the
false statement. Furthermore, the fact that the prover in the underlying NIZK is
efficient is crucial for arguing witness indistinguishability. The reason can be seen
from the sketch of the hybrid argument above, where we have a hybrid in which
we reduce to the zero knowledge of the underlying NIZK (note that the zero
knowledge must always be computational, since we require the soundness to be
statistical). This means that existence of a distinguisher for consecutive hybrids
must imply a ZK distinguisher, and the ZK distinguisher that is constructed,
given an efficient distinguisher for consecutive hybrids, must be efficient. But
in the approach outlined above, to generate the correct hybrid distributions for
the efficient distinguisher, we must run the honest prover with witness w2 for
the first i − 1 proofs and run the honest prover with witness w1 for the last
n′ − i proofs. This cannot be done efficiently if the honest prover is inefficient.
An immediate thought would be to use non-uniform advice to hardcode all the
proofs except the i-th proof into the ZK distinguisher. However, this does not
work because URSi′ for i′ �= i depends on URS∗, which is part of the input to
the ZK distinguisher. Specifically, on input (URS∗, π∗), x is set to URS∗ ⊕ ri and
only once x is fixed do we learn URSi′ := ri′ ⊕ x for i′ �= i. So we cannot know
the URS’s URSi′ , i′ �= i ahead of time and therefore cannot hope to hardcode
the proofs πi′ as non-uniform advice.

We will resolve this issue and show that non-uniform advice can help in our
setting, by allow limited pairwise dependency across the URS’s. Specifically, our
construction leverages the notion of a design, introduced by Nisan and Wigderson
in their seminal work [58]. A design with parameters (l, n, c, n′) is a set of n′

sets S1, . . . ,Sn′ , where each Si, i ∈ [n′] is a subset of [l] and has size |Si| = n.
Moreover for every pair i, j ∈ [n′], i �= j, it holds that |Si ∩ Sj | ≤ c. It is known
how to construct designs with l = n2, constant c and n′ := nc (see e.g. [58]).
Let us see how a design with parameters (l = n2, n, c = 3, n′ = n3) can be used
to resolve our problems above. Upon receiving string r = r1|| · · · ||rn′ from the
verifier, we now allow the prover to choose a bit string x = [xj]j∈[l] of length l.
URSi is then defined as ri ⊕ [xj]j∈Si

, where [xj]j∈S for a set S ⊆ [l] denotes the
substring of x corresponding to the positions j ∈ S and Si is the corresponding
set in the design. Now, soundness is ensured by the same argument as above
(i.e. via a union bound), since 2−n′ · 2l = 2−n3 · 2n2

= 2−n3+n2
is negligible in n.

Furthermore, since for each pair i, j ∈ [n′], i �= j, it holds that |Si ∩ Sj | ≤ 3, we
can use the following proof strategy to argue indistinguishability of consecutive

682 M. Ball et al.

hybrids: In the i-th hybrid, we fix the string [xj]j /∈Si
at random. We then generate

n′ −1 truth tables with constant input length. The input to the i′-th truth table
(i′ ∈ [n′], i′ �= i) is at most 3 bits, corresponding to [xj]j∈Si′ ∩Si

. For i′ < i,
the output of the truth table Ti′ is a proof πi′ that is honestly computed using
witness w2 and URSi′ = [xj]j∈Si′ For i′ > i, the output of the truth table Ti′ is
a proof πi′ that is honestly computed using witness w1 and URSi′ = [xj]j∈Si′ .
Note that since everything is fixed (including all the bits of [xj]j∈Si′ except for
[xj]j∈Si′ ∩Si

), each truth table can be computed by an NC0 circuit.
Now, given a real or simulated URS/proof pair (URS∗, π∗), the reduction will

set [xj]j∈Si
such that URSi = [xj]j∈Si

⊕ ri = URS∗. The reduction will then use
the truth table Ti′ to generate proof πi′ for i′ �= i, and will embed π∗ in the
i-th location. The reduction will then evaluate the distinguisher D (represented
as a poly-sized circuit) on the resulting transcript and output whatever it out-
puts. Note that the reduction can now be represented as a poly-sized circuit
and note that it outputs exactly the correct distribution to the distinguisher.
Thus, an efficient distinguisher for intermediate hybrids yields a poly-sized cir-
cuit that breaks the zero knowledge property of the underlying NIZK, resulting
in contradiction.

Fine-Grained ZAPs. As discussed previously, fine-grained ZAPs relative to a
class F are ZAPs that have a poly-time prover and provide witness indistin-
guishability against class F that is conjectured to not contain P. The same
difficulty of converting a single-theorem fine-grained NIZK in the common ran-
dom string model into a ZAP arises as above. Luckily, if circuits f ∈ F composed
with NC0 circuits are also in F , then the same proof as above can work (since the
reduction sketched above can be implemented with a NC0 circuit. Thus, given
a non-adaptive, fine-grained NIZK in the URS model against NC1, we obtain a
fine-grained ZAP relative to NC1.

Fine-Grained NIZK in Uniform Random String (URS) Model. We first modify
a construction of [3] in the CRS model to yield a construction in the URS model.
This is done by observing that a random string is a good CRS for the construc-
tion of [47] with probability 1/2 (which follows from the fact that randomized
encodings of [47] are “balanced”). We then construct a URS by sampling many
reference strings at random, and having the prover either prove that the refer-
ence string is invalid or provide a proof of the statement relative to the reference
string. Note that this yields a construction with a poly-time prover and provides
statistical -zero knowledge as well as soundness against unbounded provers. How-
ever, this construction only allows proving statements for languages that have
randomized encodings (such as languages in ⊕L/poly). We would like to obtain a
proof system for all languages in NP, while sacrificing the statistical zero knowl-
edge property and obtaining a fine-grained NIZK with poly-time prover against
the class NC1. It turns out that to obtain this, we can use the fact that, assum-
ing ⊕L/poly �= NC1, there exist “commitments” with the following properties:
(1) Commitments can be constructed in the class NC1. (2) Given a commit-
ment, extracting the committed value can be performed in the class ⊕L/poly

New Techniques for Zero-Knowledge 683

(i.e. the decision problem Ldet which, given a commitment com outputs 1 if it
is a commitment to 1 is in ⊕L/poly). (3) Commitments are hiding against a
NC1 adversary. Such commitments can be easily constructed by computing the
randomized encoding of a “canonical” 0 (resp. 1) input to commit to 0 (resp. 1).
Now, using the fact that ⊕L/poly is closed under negation, disjunction and con-
junction (see [11]), we can use the statistical-zero knowledge NIZK in the URS
model for languages in ⊕L/poly to obtain a fine-grained NIZK in the URS model
against NC1 for all of NP as follows: Given a circuit-SAT instance C, where C is a
circuit consisting of NAND gates and we assume that it has z wires. the prover
will commit to the values of all the wires of C for some satisfying assignment. This
commitment will be performed using the “commitment” scheme described above.
The prover will then prove that the sequence of “commitments” com1, . . . , comz

is in the language LC , where comz ∈ Ldet, and for each NAND gate, with
input wires i, j and output wire k, comi, comj , comk are commitments to valid
inputs/outputs for a NAND gate (i.e. (comi, comj , comk) ∈ Lgate). Since LC
will consist of negation/conjunction/disjunction of languages in ⊕L/poly and
since ⊕L/poly is closed under negation/conjunction/disjunction, we have that
LC ∈ ⊕L/poly. Moreover, given com1, . . . , comz, we can simulate a proof in NC1

(using the simulator for the NIZK for languages in ⊕L/poly), indicating that
the NIZK provides zero knowledge against NC1.

1.2 Related Work

Zero Knowledge. Zero knowledge (ZK) proofs were introduced by Goldwasser,
Micali, and Rackoff [39]. Since its introduction, ZK proof systems and its variants
have been studied with great interest. Some of the notable results related to ZK
proofs are – [37] which showed ZK proofs exist for all languages in NP, and [38]
which showed that interaction is crucial for achieving zero knowledge property
in case of non-trivial languages. Specifically, [38] showed that if for language L,
2-message ZK proof system exists then L ∈ BPP. The research aimed at min-
imizing the interaction has since relied on either constructing Non-Interactive
Zero Knowledge proof systems (NIZKs) with the help of trusted setup assump-
tions such as uniform random string (URS) [21] or constructing non-interactive
protocols with weaker security guarantees such as non-interactive witness indis-
tinguishability (NIWI). Intuitively, witness indistinguishability ensures that the
verifier does not learn which witness (out of multiple valid witnesses) is used
by the prover to generate the proof. Dwork and Naor [32] showed introduced
two-message, witness indistinguishable proof systems (ZAPs) and showed that
ZAPs (in a no-CRS model) are equivalent to NIZKs in uniform random string
(URS) model.

Zero Knowledge Primitives and Underlying Assumptions. Blum et al. [21], gave
the first construction of NIZK in CRS model from number-theoretic assump-
tions (e.g. quadratic residuosity). Since then, NIZKs have been constructed in
URS model from one-way permutations and certified trapdoor permutations [34],

684 M. Ball et al.

whereas Lapidot and Shamir [55], constructed publicly verifiable NIZK from one-
way permutations in URS model, Groth et al. [42] constructed NIZK from DLIN
assumption in URS model. Recently, Peikert and Shiehian [62] constructed NIZK
from LWE assumption in URS model.

NIZKs have also been studied in other models [15,26,27], and models which
consider preprocessing along with other assumptions such as one-way encryption
schemes exist [28], lattices (LWE) [54], and DDH/CDH [53]. Few of the other
works on NIZKs include [1,14,19,25,41,44,61]. For more details on NIZK related
research, we refer the interested readers to [65]

The notion of witness indistinguishable proofs was introduced by [35]. As
discussed earlier, Dwork and Naor [32] introduced ZAP (two-message, witness
indistinguishable proofs) and presented a construction in plain (no-CRS) model
assuming the existence of certified trapdoor permutations. Barak et al. [8] gave a
construction of NIWI based on derandomization assumptions and certified trap-
door permutations (by derandomizing the verifier of [32] construction). Groth et
al. [43] constructed first non-interactive ZAP from DLIN assumption, whereas
Bitansky and Paneth [20] showed a construction of ZAP based on indistinguish-
abliy obfuscation (iO) and one-way functions, and NIWI from iO and one-way
permutations. Recently ZAP were constructed assuming quasi-polynomial hard-
ness of DDH [51,52], and quasi-polynomial hardness of LWE [4,50].

Fine-Grained Cryptography. Fine-grained cryptography refers to construction
of primitives which provide security guarantees against adversaries with sharper
complexity bounds than simply “polynomial time.” Both adversaries with spe-
cific polynomial runtime bounds (e.g. TIME[O(n2)]) and adversaries with specific
parallel-time complexity (e.g. NC1) have been considered under this moniker in
the literature. In [29] Degwekar et al. constructed primitives like one-way func-
tions, pseudo-random generators, collision-resistant hash functions and public
key encryption schemes based on well-studied complexity theoretic assumptions.
Ball et al. [6,7] worst-case to average-case reduction for different type of fine-
grained hardness problems and then extended their work to construct Proofs of
Work. Campanelli and Gennaro [23] initiated the study of fine-grained secure
computation by constructing a verifiable computation protocol secure against
NC1 adversaries based on worst-case assumptions. LaVigne et al. [56] constructed
a fine-grained key-exchange protocol.

Comparison with Egashira et al. [33]. Recently, Egashira et al. [33] constructed
one-way permutations, hash-proof systems, and trapdoor one-way functions, all
of which can be computed in NC1 and are secure against adversaries in NC1, from
the same assumptions that we consider in this work (⊕L/poly �⊆ NC1). Their
results do not directly extend to construct NC1-fine-grained NIZK systems in
the URS model, as (1) to the best of our knowledge it is not known how to
construct NIZK in URS model from trapdoor one-way functions, and (2) their
one-way permutation does not directly allow instantiation of the hidden bits
model [34], which could then be used to construct NC1-fine-grained NIZK in
the URS model. Specifically, the domain/range of their OWP includes only full

New Techniques for Zero-Knowledge 685

rank matrices and does not include all strings of a given length. Furthermore,
whether a given string is contained in the domain/range cannot be determined
by a NC1 circuit (assuming ⊕L/poly �⊆ NC1) and strings that are not in the range
can have multiple pre-images. So to implement the hidden bits model, a prover
would need to prove that a string is or is not contained in the domain/range,
without compromising the one-wayness of unopened bits, which would itself
require a NC1-fine-grained NIZK proof system in the URS model. In contrast, our
construction of NC1-fine-grained NIZK in the URS model is direct and does not
require fine-grained OWP nor implementing a fine-grained hidden bits model.

2 Definitions

Definition 1. Let F = {Fn}n∈N be a class of circuits parameterized by n with
input length �(n). We say that two distribution ensembles {D0

n}n∈N, {D0
n}n∈N,

with support {0, 1}�(n), are indistinguishable by F if

max
fn∈Fn

∣
∣Pr[fn(x) = 1 | x ∼ D0

n] − Pr[fn(x) = 1 | x ∼ D1
n]

∣
∣ ≤ negl(n).

We refer the interested reader to the full version of this paper [5], for additional
definitions of fine-grained pseudorandom generator (PRG), as well as the stan-
dard definitions of witness indistinguishability (WI), and non-interactive witness
indistinguishability (NIWI).

Definition 2 (G-Extractable, F-Fine-Grained Commitment Scheme).
A commitment scheme comprising of three algorithms (Commit,Open,Extract)
is called G-Extractable, F-Fine-Grained Commitment Scheme if the following
hold:

– Commit ∈ F and Open ∈ F for class F .
– Correctness: For all n ∈ N and for b ∈ {0, 1}:

Pr[(com, d) ← Commit(1n, b) : Open(com, d) = b] = 1

– Perfect Binding: There does not exist a tuple (com, d, d′) such that

Open(com, d) = 0 ∧ Open(com, d′) = 1.

– F-Hiding: For any Open∗ ∈ F ,
∣
∣
∣
∣

Pr
b←{0,1}

[(com, d) ← Commit(1n, b) : Open∗(c) = b] − 1
2

∣
∣
∣
∣
≤ negl(n)

– G-Extractability: There exists Extract ∈ G such that for any string com,

Extract(com) = b iff ∃d s.t. Open(com, d) = b.

An F-Fine-Grained Commitment Scheme is the same as the above definition,
but does not enjoy the G-Extractability property.

686 M. Ball et al.

2.1 NIZK and Fine-Grained NIZK in the URS Model

Definition 3 (Non-interactive Proofs in the URS Model). A pair of algo-
rithms (Prover,Verifier) is called a non-interactive proof system in the URS model
for a language L if the algorithm Verifier is deterministic polynomial-time, there
exists a polynomial p(·) and a negligible function μ(·) such that the following two
conditions hold:

– Completeness: For every x ∈ L
Pr[URS ← {0, 1}p(|x|); π ← Prover(x,URS) : Verifier(x,URS, π) = 1] ≥ 1 − μ(|x|).

– Soundness: For every x /∈ L, every algorithm P ∗

Pr[URS ← {0, 1}p(|x|);π′ ← P ∗(x,URS) : Verifier(x,URS, π′) = 1] ≤ μ(|x|).
Definition 4 (Non-interactive Zero-Knowledge with Offline Simula-
tion (oNIZK) in the URS Model). Let (Prover,Verifier) be a non-interactive
proof system in the URS model for the language L. We say that (Prover,Verifier)
is non-adaptively zero-knowledge with offline simulation in the URS model if
there exists a distribution DSim over polynomial-sized circuits Sim such that
the following two distribution ensembles are computationally indistinguishable
by polynomial-sized circuits (when the distinguishing gap is a function of |x|)

{(URS, π) : URS ← {0, 1}p(|x|);π ← Prover(URS, x)}x∈L
{(URS′, π′) ← Sim(x) : Sim ← DSim}x∈L.

A useful property of oNIZK is the following: Let Dyes be a distribution over
statements x ∈ L and let Dno be a distribution over statements x ∈ L. If Dyes

and Dno are computationally indistinguishable by polynomial-sized circuits then
the following two distribution ensembles are computationally indistinguishable
by polynomial-sized circuits (when the distinguishing gap is a function of |x|)

{(x, (URS, π) ← Sim(x)) : Sim ← DSim, x ← Dyes}
{(x′, (URS′, π′) ← Sim(x′)) : Sim ← DSim, x′ ← Dno}.

The above allows a typical usage of oNIZK in hybrid style proofs: In the first
hybrid, one can leave the statement the same and switch from proofs generated
by the honest prover to proofs generated by the simulator, in the second step,
one can switch the statement from a true statement to a false statement.

For more details on the relationship between Definition 4 and the notions of
witness hiding (WH) and weak zero knowledge (WZK), see [5].

Definition 5 (Fine-Grained Non-interactive Proofs in the URS
Model). A pair of algorithms (Prover,Verifier) is called a F-fine-grained non-
interactive proof system in the URS model for a language L if the algorithm
Prover is polynomial-time, (uniformly generated) Verifier ∈ F|x| (Verifier can be
uniformly generated), there exists a polynomial p(·) and a negligible function μ(·)
such that the following two conditions hold:

New Techniques for Zero-Knowledge 687

– Completeness: For every x ∈ L
Pr[URS ← {0, 1}p(|x|); π ← Prover(x,URS) : Verifier(x,URS, π) = 1] ≥ 1 − μ(|x|).

– Soundness: For every x /∈ L, every algorithm P ∗

Pr[URS ← {0, 1}p(|x|);π′ ← P ∗(x,URS) : Verifier(x,URS, π′) = 1] ≤ μ(|x|).
Definition 6 (Fine-Grained Non-interactive Zero-Knowledge in the
URS Model). Let (Prover,Verifier) be a F-fine-grained non-interactive proof
system in the URS model for the language L. We say that (Prover,Verifier) is a
F-fine-grained non-adaptively zero-knowledge in the URS model if there exists
a randomized circuit Sim in F such that the following two distribution ensembles
are computationally indistinguishable by circuits in F (when the distinguishing
gap is a function of |x|)

{(URS, π) : URS ← {0, 1}p(|x|);π ← Prover(URS, x)}x∈L
{(URS′, π′) ← Sim(x)}x∈L.

We say that a fine-grained non-interactive proof system in the URS model is
a statistical NIZK protocol (or alternatively achieves statistical zero knowledge)
if the above distribution ensembles are statistically close.

Definition 7 (Fine-Grained Non-interactive Zero-Knowledge with
Offline Simulation (oNIZK) in the URS Model). Let (Prover,Verifier)
be a F-fine-grained non-interactive proof system in the URS model for the lan-
guage L. We say that (Prover,Verifier) is a F-fine-grained non-adaptively zero-
knowledge with offline simulation in the URS model if there exists a distribution
DSim over circuits in F such that the following two distribution ensembles are
computationally indistinguishable by circuits in F (when the distinguishing gap
is a function of |x|)

{(URS, π) : URS ← {0, 1}p(|x|);π ← Prover(URS, x)}x∈L
{(URS′, π′) ← Sim(x) : Sim ← DSim}x∈L.

Note that by the same argument as above, our fine-grained NIZK definition
(for F = NC1) implies witness hiding and weak zero knowledge with inverse-
polynomial distinguishing advantage. Specifically, for the witness hiding case:
Let D be a distribution over statements x ∈ L. Assume that L has witness
relation R such that x ∈ L if and only if there exists a witness w such that
(x,w) ∈ R. Note that WLOG we can assume that R ∈ NC1. Assume that for
all circuits C ∈ NC1,

Pr
x∼D

[R(x,C(x)) = 1] ≤ negl(|x|).

Then we have that for all circuits C ′ ∈ NC1

Pr
x∼D

[R(x, C′(x,URS, π)) = 1 : URS ← {0, 1}p(|x|); π ← Prover(URS, x)] ≤ negl(|x|).

688 M. Ball et al.

2.2 Fine-Grained Witness Indistinguishability

Definition 8 (F-fine-grained Witness Indistinguishability). A proof sys-
tem 〈Prover,Verifier〉 for a language L is F-fine-grained witness-indistinguishable
if Prover is polynomial-time, Verifier is in the class F and for any V ∗ ∈ F , for
all x ∈ L, for all w1, w2 ∈ w(x), and for all auxiliary inputs z to V ∗, the dis-
tribution on the views of V ∗ following an execution 〈Prover,Verifier〉(x,w1, z) is
indistinguishable from the distribution on the views of V ∗ following an execution
〈Prover,Verifier〉(x,w2, z) to a non-uniform distinguisher in class F receiving one
of the above transcripts as well as (x,w1, w2, z).

2.3 ZAPs and Fine-Grained ZAPs

Definition 9 (ZAP). A ZAP is a 2-round (2-message) protocol for proving
membership of x ∈ L, where L is a language in NP. Let the first-round (verifier to
prover) message be denoted ρ and the second-round (prover to verifier) response
be denoted π satisfying the following conditions:

– Public Coins: There is a polynomial p(·) such that the first round messages
form a distribution on strings of length p(|x|). The verifier’s decision whether
to accept or reject is a polynomial time function of x, ρ, and π only.

– Completeness: Given x, a witness w ∈ w(x), and a first-round ρ, the prover
generates a proof π that will be accepted by the verifier with overwhelming
probability over the choices made by the prover and the verifier.

– Soundness: With overwhelming probability over the choice of ρ, there exists
no x′ /∈ L and second round message π such that the verifier accepts (x′, ρ, π).

– Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then ∀ρ, the
distribution on π when the prover has input (x,w) and the distribution on
π when the prover has input (x,w′) are nonuniform probabilistic polynomial
time (in |x|) indistinguishable, even given both witnesses w,w′.

Definition 10 (F-fine-grained ZAP). A F-fine-grained ZAP is a 2-round
(2-message) protocol for proving membership of x ∈ L, where L is a language
in NP. Let the first-round (verifier to prover) message be denoted ρ and the
second-round (prover to verifier) response be denoted π satisfying the following
conditions:

– Public Coins and Fine-Grained Verifier: There is a polynomial p(·)
such that the first round messages form a distribution on strings of length
p(|x|). The verifier’s decision whether to accept or reject is a function of x, ρ,
and π only, and is contained in F|x|.

– Completeness: Given x, a witness w ∈ w(x), and a first-round ρ, the prover,
running in time polynomial in |x|, can generates a proof π that will be accepted
by the verifier with overwhelming probability over the choices made by the
prover and the verifier.

– Soundness: With overwhelming probability over the choice of ρ, there exists
no x′ /∈ L and second round message π such that the verifier accepts (x′, ρ, π).

New Techniques for Zero-Knowledge 689

– F-fine-grained Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈
L. Then ∀ρ, the distribution on π when the prover has input (x,w) and the
distribution on π when the prover has input (x,w′) are indistinguishable to
nonuniform algorithms in the class F|x|, even given both witnesses w,w′.

2.4 Fine-Grained NIWI

Definition 11 (F-fine-grained NIWI). A F-fine-grained NIWI is a non-
interactive protocol for proving membership of x ∈ L, where L is a language
in NP. A single message π is sent from the prover to the verifier.

– Fine-Grained Verifier: The verifier’s decision whether to accept or reject
is a function of the statement x and proof π only, and the verifier’s circuit is
contained in F|x|.

– Completeness: Given x, and a witness w ∈ w(x) the prover, running in
time polynomial in |x|, can generate a proof π that will be accepted by the
verifier with overwhelming probability over the choices made by the prover
and the verifier.

– Soundness: There exists no x′ /∈ L and message π such that the verifier
accepts (x′, π).

– F-fine-grained Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈
L. Then the distribution on π when the prover has input (x,w) and the dis-
tribution on π when the prover has input (x,w′) are indistinguishable by the
class F := {F|x|}|x|∈N, even given both witnesses w,w′.

2.5 NIZK and Fine-Grained NIZK Without CRS and with Uniform
Soundness

Definition 12 (Non-interactive Proofs with uniform soundness). A pair
of algorithms (Prover,Verifier) is called a non-interactive proof system with uni-
form soundness T := T (|x|), for a language L if the algorithm Verifier is deter-
ministic polynomial-time, there exists a polynomial p(·) and a negligible function
μ(·) such that the following two conditions hold:

– Completeness: For every x ∈ L

Pr[π ← Prover(x) : Verifier(x, π) = 1] ≥ 1 − μ(|x|).

– Soundness: For every x /∈ L, every algorithm P ∗ running in uniform time T ,

Pr[π′ ← P ∗(x) : Verifier(x, π′) = 1] ≤ μ(|x|).

Definition 13 (Non-interactive Zero-Knowledge with Offline Simula-
tion (oNIZK) in the standard model with uniform soundness). Let
(Prover,Verifier) be a non-interactive proof system with uniform soundness T :=
T (|x|) for the language L. We say that (Prover,Verifier) is zero-knowledge with

690 M. Ball et al.

offline simulation if there exists a distribution DSim over polynomial-sized cir-
cuits Sim such that the following two distribution ensembles are computationally
indistinguishable by polynomial-sized circuits (when the distinguishing gap is a
function of |x|)

{π ← Prover(x)}x∈L
{π′ ← Sim(x) : Sim ← DSim}x∈L.

As discussed previously, our NIZK definition above implies witness hiding,
via the same argument.

Definition 14 (Fine-Grained Non-interactive Proofs with uniform
soundness). A pair of algorithms (Prover,Verifier) is called a F-fine-grained
non-interactive proof system with uniform soundness for a language L if the
algorithm Prover is polynomial-time, (uniformly generated) Verifier ∈ F|x|, there
exists a polynomial p(·) and a negligible function μ(·) such that the following two
conditions hold:

– Completeness: For every x ∈ L

Pr[π ← Prover(x,URS) : Verifier(x, π) = 1] ≥ 1 − μ(|x|).

– Soundness: For every x /∈ L, every uniform, PPT algorithm P ∗

Pr[π′ ← P ∗(x) : Verifier(x, π′) = 1] ≤ μ(|x|).

Definition 15 (Fine-Grained Non-interactive Zero-Knowledge with
Offline Simulation (oNIZK) in the standard model with uniform
soundness). Let (Prover,Verifier) be a F-fine-grained non-interactive proof sys-
tem with uniform soundness for the language L. We say that (Prover,Verifier) is
F-fine-grained zero-knowledge with offline simulation if there exists a distribu-
tion DSim over circuits in F such that the following two distribution ensembles
are computationally indistinguishable by circuits in F (when the distinguishing
gap is a function of |x|)

{π ← Prover(x)}x∈L
{π′ ← Sim(x) : Sim ← DSim}x∈L.

As discussed previously, our fine-grained NIZK definition above implies wit-
ness hiding, via the same argument.

3 ZAPs from NIZK

For our construction of ZAPs from oNIZK in the URS model, we will require a
certain type of design, defined next and first used by Nisan and Wigderson in
their derandomization of BPP [58].

New Techniques for Zero-Knowledge 691

Definition 16 (Design). A (l, n′, n, c)-design consists of sets S1, . . . ,Sn′ ⊆ [l]
such that the following hold:

– For each i ∈ [n′], |Si| = n,
– For each i, i′ s.t. i �= i′, |Si ∩ Si′ | ≤ c.

(l, n′, n, c) designs are known for l := n2, constant c ∈ N, and n′ := nc [58].
Let Π = (ProverNIZK ,VerifierNIZK) be a non-adaptive oNIZK in the URS

model with inefficient prover for language L that has soundness 1/2 or better.
Let sets S1, . . . ,Sn′ ⊆ [l] form a (l, n′, n, c)-design, where l := n2, c := 3, and
n′ := n3.
Verifier’s First Round Message: Recall that in the first round of a ZAP, the
Verifier sends a random string r to the Prover.
Prover Algorithm: On input statement st ∈ L, witness w, and random string
r = r1|| · · · ||rn′ from the Verifier:

1. Choose bits [xj]j∈[l] at random. For a set S ⊆ [l], let [xj]j∈S denote the
substring of [x1, . . . , xl] corresponding to indices in set S.

2. For each i ∈ [n′], let URSi = ri ⊕ [xj]j∈Si
, where each ri has length n and

each |Si| = n (recall that the sets Si are the sets of the design).
3. For i ∈ [n′], run ProverNIZK on input URSi and witness w, outputting proof

πi.
4. Output [πi]i∈[n′] along with [x1, . . . , xl].

Verifier’s Algorithm after the Second Round: Recall that the Verifier’s
first message is denoted r and that the verifier gets input statement st. After
observing the Prover’s message consisting of [πi]i∈[n′], [x1, . . . , xl], the Verifier
does the following:

1. For i ∈ [n′], set URSi = ri ⊕ [xj]j∈Si

2. For i ∈ [n′], verify proof πi relative to URSi by running the verifier
VerifierNIZK .

3. If all checks accept, then accept. Otherwise reject.

Theorem 7. Assume Π = (ProverNIZK ,VerifierNIZK) is a non-adaptive
oNIZK proof system for language L with an inefficient prover in the URS model.
Then the above construction is a ZAP for language L with an inefficient prover.

Soundness Proof: We say that a URS is “bad” relative to a statement st /∈ L
that is not in the language, if there exists an accepting proof relative to that
URS (recall that the verifier is deterministic). For statement st /∈ L and fixed
[xj]j∈[l], the probability over choice of r that every URSi, i ∈ [n′] is bad is at
most 2−n′

. Since there are at most 2l choices for [xj]j∈[l] (where l := n2), the
probability over random choice of r that there exists a setting of [xj]j∈[l] such
that each URSi is bad is at most 2n2 · 2−n′

. Since we have set n′ := n3, we have
that 2n2 · 2−n′

= 2−n3+n2
is negligible.

692 M. Ball et al.

Witness Indistinguishability Proof: We consider the following distributions:

Hybrid Hw1 : This is the real distribution with statement st and witness w1.

Hybrid Hw2 : This is the real distribution with statement st and witness w2.

To prove WI, we must show that for every malicious verifier V ∗.

Hw1 ≈ Hw2 .

Towards this goal, we define the following sequences of hybrid distributions:

Hybrid Hi,w1,w2 , for i ∈ [n′]: Proofs with URSi′ for i′ ≤ i are honest proofs
using w2. Proofs with URSi′ for i′ > i are honest proofs using w1.

Note that Hw1 = H0,w1,w2 and Hw2 = Hn′,w1,w2 .

Claim. For i ∈ [n′],
Hi−1,w1,w2 ≈ Hi,w1,w2 .

Proof. Consider the distribution H∗,i,w1,w2(URS∗, π∗), where a draw from the
distribution is defined as follows:

– Run V ∗ to produce r = r1|| · · · ||rn′
, sample [xj]j∈[l]\Si

– Set [xj]j∈Si
:= URS∗ ⊕ ri.

– Set πi := π∗.
– For each i′ ∈ [i − 1], run the honest prover ProverNIZK on witness w2 and
URSi′ = ri′ ⊕ [xj]j∈Si′ to obtain proof πi′ .

– For each i′ ∈ {i + 1, . . . , n′}, run the honest prover ProverNIZK on witness
w1 and URSi′ = ri′ ⊕ [xj]j∈Si′ to obtain proof πi′ .

– Output [πi′]i′∈[n′] and x := [xj]j∈[l].

Note that when (URS∗ = URShonest, π
∗ = πw1) (resp. (URS∗ = URShonest,

π∗ = πw2)) are generated as honest CRS/proofs with witness w1 (resp.
w2), then H∗,i,w1,w2(URShonest, πw1) (resp. H∗,i,w1,w2(URShonest, πw2)) is equiv-
alent to Hi−1,w1,w2 (resp. Hi,w1,w2). We must also have that H∗,i,w1,w2

(URShonest, πw1) (resp. H∗,i,w1,w2(URShonest, πw2)) is indistinguishable from
H∗,i,w1,w2(URSSim, πSim) (where URSSim, πSim are generated by drawing a sim-
ulator from the oNIZK distribution and obtaining its output), since otherwise
we obtain a non-uniform PPT adversary that breaks the zero knowledge of the
underlying NIZK proof system. We will elaborate on how this indistinguishabil-
ity is proved below. Assuming that this is the case, we conclude that Hi−1,w1,w2

and Hi−1,w1,w2 are indistinguishable, which completes the proof.
We now show that H∗,i,w1,w2(URShonest, πw1) (resp. H∗,i,w1,w2(URShonest,

πw2)) is indistinguishable from H∗,i,w1,w2(URSSim, πSim) (where URSSim, πSim

are generated by drawing a simulator from the oNIZK distribution and
obtaining its output). Towards contradiction, assume the existence of non-
uniform PPT verifier V ∗ and non-uniform PPT distinguisher D dis-
tinguishing H∗,i,w1,w2(URShonest, πw1) (resp. H∗,i,w1,w2(URShonest, πw2)) from

New Techniques for Zero-Knowledge 693

H∗,i,w1,w2(URSSim, πSim). Using V ∗,D as above, we construct the following dis-
tribution over poly-sized circuits that receive as input (URS∗, π∗):

– Run V ∗ to produce r = r1|| · · · ||rn′
, sample [xj]j∈[l]\Si

uniformly at random
as well as any auxiliary state stateV ∗ , which will be used by the distinguishing
circuit D.

– Hardwired values:
1. Statement s and witnesses w1, w2.
2. Auxiliary state stateV ∗ .
3. r = r1|| · · · ||rn′

, [xj]j∈[l]\Si
.

4. For each i′ ∈ [i], hardwire truthtable Ti′ that takes as input [xj]j∈Si∩Si′
(at most 3 input bits) and outputs URSi′ = ri′ ⊕ [xj]j∈Si′ , and proof πi′

honestly computed with statement st and witness w2.
5. For each i′ ∈ {i + 1, . . . , n′}, hardwire truthtable Ti′ that takes as input

[xj]j∈Si∩Si′ and outputs URSi′ = ri′ ⊕ [xj]j∈Si′ , and proof πi′ honestly
computed with statement st and witness w1.

– Circuit Evaluation: On input (URS∗, π∗), do the following:
• Embed (URS∗, π∗): Set [xj]j∈Si

:= ri ⊕ URS∗. Set πi := π∗.
• Compute Honest Proofs: Use the truthtables to compute URSi′ and

πi′ for all i′ �= i, where the i′-th truthtable Ti′ takes input [xj]j∈Si∩Si′ .
• Output of Prover: Combine the above two steps to obtain the Prover’s

message: ([πi′]i′∈[n′′], x := [xj]j∈[l]).
• Application of Distinguisher: Apply D (which may require stateV ∗

as auxiliary input) to the transcript and output D(r, [πi′]i′∈[n′′], x :=
[xj]j∈[l]).

Note that since each of the truth tables Ti′ takes a constant number of input
bits, and since all the truth tables can be evaluated in parallel, the above is a
distribution over circuits corresponding to a (non-uniform) NC0 circuit composed
with the distinguisher D. When D is a poly-sized circuit, the resulting circuit
drawn from the distribution is poly-sized. Moreover, the expected distinguishing
probability of a circuit drawn from the above distribution is exactly equal to
D’s distinguishing probability (which is assumed to be non-negligible). But this
contradicts the zero knowledge property of the underlying oNIZK.

Note the same proof as above holds for the case of F-fine-grained oNIZK, as
long as the distribution defined above is a distribution over circuits contained
in F , whenever D is contained in F . This holds when instantiating F with
the class non-uniform NC1 since, as discussed above, the depth of “Embed” +
“Compute Honest Proofs” + “Output of Prover” is constant. So if the depth
of D in the “Application of Distinguisher” is logarithmic, then the depth of the
entire “Circuit Evaluation” is logarithmic. We therefore obtain:

Theorem 8. Assume Π = (ProverNIZK ,VerifierNIZK) is a NC1-fine-grained,
non-adaptive oNIZK proof system in the URS model. Then the above construc-
tion is a NC1-fine-grained ZAP.

694 M. Ball et al.

We present the results related to ZAPs, NIWI and oNIZK for AM or NP
with polynomial security in the full version of this paper [5].

4 Fine-Grained NIZK and ZAPs for NP

This section is focuses on constructing NC1-fine-grained zero-knowledge non-
interactive proofs for NP. Our general approach is to bootstrap a statistical NIZK
for languages in ⊕L/poly to a fine-grained NIZK for all of NP. The NISZK pro-
tocol we bootstrap is a variant of NISZK protocol from [3], in turn constructed
from the randomized encodings of [47,48], adapted to work in the URS setting.
Next we repurpose the randomized encodings to construct a perfectly binding
commitment scheme which is (a) hiding for NC1, yet (b) extractable in ⊕L/poly.
Finally, to prove a circuit is satisfiable, the prover simply commits to a witness
and the ensuing circuit evaluation and appends a NISZK that the commitments
indeed open to a satisfying evaluation (which, when using such a special com-
mitment scheme, is a ⊕L/poly statement). The fine-grained ZAP follows from
the fine-grained NIZK by Theorem 8.

4.1 Background on Randomized Encodings of [47,48]

We begin by reviewing some of the ingredients we require from the work of Ishai
and Kushilevitz [47,48]. Our exposition in this subsection follows that of [2].

Let BP = (G,φ, s, t) be a mod-2 BP of size �, computing a Boolean function
f : {0, 1}n → {0, 1}; that is, f(x) = 1 if and only if the number of paths
from s to t in Gx equals 1 modulo 2, where Gx is the subgraph of G specified
momentarily. Fix some topological ordering of the vertices of G, where the source
vertex s is labeled 1 and the terminal vertex t is labeled �. Let A(x) be the �× �
adjacency matrix of Gx viewed as a formal matrix whose entries are degree-1
polynomials in the input variables, x1, . . . , xn = x. Specifically, the (i, j) entry
of A(x) contains the value of φi,j(x), where φi,j(x) is equal to either a constant
function 1 or some literal, such as xk or x̄k. We constrain φ such that if (i, j) is
not an edge, the entry is necessarily 0. Define L(x) as the submatrix of A(x)− I
obtained by deleting column s and row t (i.e., the first column and the last row).
As before, each entry of L(x) is a degree-1 polynomial in a single input variable
xi; moreover, L(x) contains the constant −1 = 1 mod 2 in each entry of its
second diagonal (the one below the main diagonal) and the constant 0 below
this diagonal (see Fig. 1).

Let r(1) and r(2) be vectors of F2 of length
∑�−2

i=1 i =
(
�−1
2

)

and � − 2, respec-
tively. Let R1(r(1)) be an (� − 1) × (� − 1) matrix with 1’s on the main diagonal,
0’s below it, and r(1)’s elements in the remaining

(
�−1
2

)

entries above the diag-
onal (a unique element of r(1) is assigned to each matrix entry). Let R2(r(2))
be an (� − 1) × (� − 1) matrix with 1’s on the main diagonal, r(2)’s elements in
the rightmost column, and 0’s in each of the remaining entries (see Fig. 1). We
will also need the following facts. Note that in all that follows, we consider all
arithmetic over F2, including determinants.

New Techniques for Zero-Knowledge 695

Fig. 1. The matrices R1(r
(1)), A(x), and R2(r

(2)).

Fact 1 ([2]). Let M,M ′ be (� − 1) × (� − 1) matrices that contain the constant
−1 = 1 mod 2 in each entry of their second diagonal and the constant 0 below
this diagonal. Then, det(M) = det(M ′) if and only if there exist r(1) and r(2)

such that R1(r(1))MR2(r(2)) = M ′.

Lemma 1 ([2]). Let BP be a mod-2 branching program computing the Boolean
function f . Define a function f̂(x, (r(1), r(2))) := R1(r(1))L(x)R2(r(2)). Then f̂
is a perfect randomized encoding of f .

Define M0 and M1 as matrices that are all 0 except for the lower diagonal
which is 1, and the top right entry which is 1 (resp. 0) in M1 (resp. M0).

M0 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

M1 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Lemma 2. Assuming ⊕L/poly �⊆ NC1, the distributions R1(r(1))M0R2(r(2))
and R1(r(1))M1R2(r(2)) cannot be distinguished by NC1 circuits, where r(1), r(2)

are chosen at random.

4.2 Statistical NIZK Protocol in the URS Model for ⊕L/poly

Due to properties of the randomized encoding construction of [47], we can con-
struct a statistical NIZK protocol in the uniform random string (URS) model for
languages in ⊕L/poly. Our protocol is heavily based on the protocol of Apple-
baum and Raykov [3], which gave a NISZK construction in the common reference
string (CRS) model for languages that have (statistical) randomized encodings.
Our protocol is described next:

– URS Generation: The URS consists of λ random strings, each from
{0, 1}t = {0, 1}(�−1

2)+�−1.
– Prover: On input statement matrix M = L(x) (as defined in Sect. 4.1), the

prover does the following:

696 M. Ball et al.

1. For i ∈ [λ], use the i-th block of t bits to populate the upper-triangular
entries of a matrix M ′

i that has −1’s on its second diagonal and 0’s below.
2. For i ∈ [λ], if det(M ′

i) = 0, reveal r
(1)
i , r

(2)
i of the correct form such

that R1(r
(1)
i)M0R2(r

(2)
i) = M ′

i , where M0 is a determinant 0 matrix of
“canonical form.” Otherwise, reveal r(1), r(2) of the correct form, such
that R1(r

(1)
i)MR2(r

(2)
i) = M ′

i .
3. Output π = [(r(1)i , r

(2)
i)]i∈[λ].

– Verifier: On input (URS,M, π = [(r(1)i , r
(2)
i)]i∈[λ]), the verifier checks that

for all i ∈ [λ], either M ′
i = R1(r

(1)
i)M0R2(r

(2)
i) or M ′

i = R1(r
(1)
i)MR2(r

(2)
i).

Lemma 3. The protocol above is a NIZK proof system with statistical soundness
and statistical zero knowledge in the URS for languages L ∈ ⊕L/poly. Moreover,
the NIZK simulator can be instantiated by sampling a NC1 circuit Sim from an
efficiently samplable distribution DSim.

We present the proof of Lemma 3 in the full version of this paper [5].

4.3 G-extractable, F-Fine-Grained Commitments for NC1

G-extractable, F-Fine-Grained Commitments are are commitments that are per-
fectly binding and have the following properties (see also Definition 2):

– The commitments can be computed and opened in class F .
– Given a commitment, the committed value can be extracted in class G.
– The hiding property of the commitment holds against F .

For our purposes, we will consider G to be the class ⊕L/poly and the class F to
be the class NC1.

Define the following languages Ldet, Ldet. Ldet is the set of � − 1 × � − 1
matrices M with −1 on the second diagonal, 0’s below the second diagonal, 0 or
1 elements on the diagonal and above such that M has determinant 1 over F2.
Ldet is the set of � − 1 × � − 1 matrices M with −1 on the second diagonal, 0’s
below the second diagonal, 0 or 1 elements on the diagonal and above such that
M has determinant 0 over F2.

Lemma 4. The languages Ldet and Ldet are contained in ⊕L/poly.

Toda [64] showed that the determinant is complete for #L by demonstrating
NC1-computable projection from the determinant to counting paths in acyclic
graphs. It follows that evaluating the determinant in F2 can be done in ⊕L/poly.
Construction of ⊕L/poly-extractable, NC1-Fine-Grained Commitment Scheme:
To commit to a 1, choose random (r(1), r(2)) of appropriate length and output
R1(r(1))M0R2(r(2)). To commit to a 0, choose random (r(1), r(2)) of appropriate
length and output R1(r(1))M1R2(r(2)).

The required properties of the ⊕L/poly-extractable, NC1-Fine-Grained Com-
mitment Scheme follow from Lemma 4 and from the assumption that ⊕L/poly �⊆
NC1, as shown by [29].

New Techniques for Zero-Knowledge 697

4.4 NC1-Fine-Grained NIZK for Circuit SAT

Assume C is represented as a circuit consisting of NAND gates and assume it
has z number of wires. The value of each wire is committed (using the ⊕L/poly-
extractable, NC1-fine-grained commitment scheme from the previous section) as
com1, . . . , comz. Recall that comi commits to 1 iff com1 ∈ Ldet and com1 com-
mits to 0 iff com1 ∈ Ldet. Additionally, recall that Ldet (and therefore also Ldet)
is contained in ⊕L/poly. The language LC consists of strings com1, . . . , comz

which satisfy all of the following:

– comz ∈ Ldet

– For each gate G� with input wires i, j and output wire k:
(

comi ∈ Ldet ∧ comk ∈ Ldet

) ∨ (

comj ∈ Ldet ∧ comk ∈ Ldet

) ∨
(

comi ∈ Ldet ∧ comj ∈ Ldet ∧ comk ∈ Ldet

)

.

We denote this as (comi, comj , comk) ∈ Lgate.

Due to closure of ⊕L/poly w.r.t. negation, conjunction and disjunction [11], we
have that LC ∈ ⊕L/poly.

Construction of NC1-Fine-Grained NIZK for Circuit SAT. Given a circuit-
SAT instance with circuit C, commit to the witness w using the above type
of commitment (i.e. the witness corresponds to the values of all wires in the
circuit C and the commitment is a wire-by-wire commitment to those val-
ues as above). We have shown above that the following language LC is then
in ⊕L/poly LC : {(com1, . . . , comz) : com1, . . . , comz are commitments to w =
w1, . . . , wz and w is a circuit-SAT witness for C}.

Now, applying the argument system from before to proving statement
(com1, . . . , comz) is contained in language LC yields a fine-grained NIZK in the
URS model for circuit SAT.

In more detail, the construction proceeds as follows: The Prover commits to
witness w = w1, . . . , wz using a ⊕L/poly-extractable, NC1-Fine-Grained Com-
mitment Scheme, yielding (com1, . . . , comz). The Prover then runs the statistical
NIZK protocol given above in Section 4.2 to prove that (com1, . . . , comz) ∈ LC .

Theorem 9. The construction above is a NC1-fine-grained NIZK proof system
for the circuit SAT language.

Note that the above implies a NC1-fine-grained NIZK proof system for all
of NP. This is because given an NP language, L, with a canonical polynomial
size verification circuit V (x,w), the prover can simply prove that the circuit
Vx(·) := V (x, ·) is satisfiable. Because each bit of Vx is computable in NC0, the
NIZK verifier can generate Vx independently of the prover.

To argue zero knowledge of the NIZK against a NC1 distinguisher, we define
the following randomized circuit Sim′ ∈ NC1. Sim′ takes as input the instance,
represented by NAND circuit C consisting of z number of wires, and a sufficiently
long string of random coins and does as follows:

698 M. Ball et al.

– Generate z commitments to garbage (com1, . . . , comz).
– Let Sim be the zero knowledge simulator defined in Sect. 4.2 for languages in

⊕L/poly.
– Sim′ runs the simulator Sim on input statement (com1, . . . , comz) and lan-

guage LC .
– Sim′ outputs whatever Sim outputs.

Note that Sim′ ∈ NC1, since Sim ∈ NC1. If a NC1 adversary can distinguish
simulated and real proofs, then we can use the adversary to break the hiding
property of the ⊕L/poly-extractable, NC1-Fine-Grained Commitment Scheme,
a contradiction.

We require an alternative construction of NC1-fine-grained NIZK in the URS
model (deferred to the full version [5]), to construct NC1-fine-grained oNIZK
with uniform soundness in the standard model. We use either construction above
together with Theorem 8 to obtain the following:

Theorem 10. Assuming that ⊕L/poly �⊆ NC1, there exist NC1-fine-grained
ZAPs for NP.

4.5 NC1-Fine-Grained NIWI for NP

We use the transformation of Barak et al. [8,9] from ZAPs to NIWI, that relies
on the existence of hitting set generators (HSG) against co-nondeterministic
uniform algorithms. Note that this transformation retains statistical soundness
(due to the properties of the HSG) and retains its witness indistinguishability
against NC1 adversaries. However, the verifier may no longer be in NC1, since
the verifier must evaluate the HSG in order to check that the prover is using
the correct URS for each of the sub-proofs. To remedy this situation, the prover
evaluates the HSG and then sends a tableau of the computation (which can be
verified in AC0) to the verifier, who can then verify that the URS being used is
indeed consistent with the output of the HSG.

Theorem 11. Assuming that ⊕L/poly �⊆ NC1, the existence of efficient 1/2-
HSG against co-nondeterministic uniform algorithms, there exist NC1-fine-
grained NIWI for NP.

4.6 NC1-Fine-Grained oNIZK with Uniform Soundness

We now assume existence of a uniform collision resistant hash function h. Let
Ch be the circuit that takes two inputs x1, x2 and outputs 1 if x1 �= x2 and
h(x1) = h(x2). On input circuit SAT circuit C, the prover now proves circuit
satisfiability of the circuit C′, where C′ is defined as follows: C′ takes public
input desc(C), which is a description of the circuit C, and private input x. C′

outputs 1 on input (desc(C), x) if and only if x is a satisfying assignment for C
or x is a satisfying assignment for Ch. Note that C′ is a NC1 circuit.

On input statement C, the Prover uses the NIWI based on the alternate con-
struction of the NC1-fine-grained NIZK proof system with statistical soundness

New Techniques for Zero-Knowledge 699

for the Circuit SAT language to prove that (1) (com1, . . . , ,z) is a satisfying
assignment for C′ and (2) The commitments corresponding to the public input
decommit to values that are consistent with desc(C). The verifier runs the verifier
of the NIWI to verify the proof for the statements (1) and (2) above.

To prove zero knowledge with offline simulation (oNIZK), we must show a
distribution DSim over NC1 circuits such that a circuit drawn from this distribu-
tion, evaluated on input statement C produces a distribution over proofs that is
indistinguishable from real proofs for a NC1 circuit.

A draw from DSim is defined as follows:

– Sample colliding inputs x1, x2 for h.
– For each wire i of C′, sample a commitment to 0 and a commitment to 1:

(com0
i , com

1
i).

– For each public wire i of C′, compute honest proofs π0
in,i, π

1
in,i proving that

com0
i ∈ Ldet and that com1

i ∈ Ldet, respectively.
– For the output wire z of C′, compute an honest proof πout that com1

z ∈ Ldet.
– For each gate with input wires i, j and output wire k of C′, compute 4 honest

proofs [πb1,b2
gate,i,j,k]b1,b2∈{0,1} proving that comb1

i , comb2
j , com1−b1∧b2

k ∈ Lgate,
for b1, b2 ∈ {0, 1}.

– Hardwired Values: A satisfying assignment y (using colliding inputs x1, x2)
for Ch and [com0

i , com
1
i]i∈[z], (π0

in,i, π
1
in,i), πout, [πb1,b2

gate,i,j,k]i,j,k,b1,b2 .
– Circuit Evaluation: On input desc(C), choose the appropriate public inputs

corresponding to that input. Additionally, chose the private inputs corre-
sponding to the satisfying assignment y. Let bin(i) denote the value of the
i-th public input wire. Assume there are a total of z′ input wires. Using these,
compute the values of all wires of C′ (this can be done in NC1, since C′ is a NC1

circuit). Let b(i) denote the value of the i-th wire of C′. Output commitments
[comb(j)

i]i∈[z] and proofs [πbin(i)
in,i]i∈[z′], [πb(i),b(j)

gate,i,j,k]i,j,k.

Note that the outputted distribution is indentical to an honest proof with
witness corresponding to a satisfying assignment of Ch. Thus, by the witness
indistinguishability property of the proof system, the simulated proof is indis-
tinguishable from the real proof. Moreover, note that by the collision resistance
of h, soundness still holds against uniform, poly-time provers.

Acknowledgments. We thank Tal Malkin for helpful discussions and suggestions to
improve this work. The first author is supported in part by an IBM Research PhD
Fellowship. This work is based upon work supported in part by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA) via Contract No. 2019-1902070006 and by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR001120C0085. The views and con-
clusions contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies, either express or implied, of ODNI, IARPA,
DAPRA, or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any copyright annota-
tion therein. The second and third authors are supported in part by NSF grants #CNS-
1933033, #CNS-1840893, #CNS-1453045 (CAREER), by a research partnership award

700 M. Ball et al.

from Cisco and by financial assistance award 70NANB15H328 and 70NANB19H126
from the U.S. Department of Commerce, National Institute of Standards and
Technology.

References

1. Ananth, P., Deshpande, A., Kalai, Y.T., Lysyanskaya, A.: Fully homomorphic
NIZK and NIWI proofs. Cryptology ePrint Archive, Report 2019/732 (2019).
https://eprint.iacr.org/2019/732

2. Applebaum, B.: Cryptography in Constant Parallel Time. ISC. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-17367-7

3. Applebaum, B., Raykov, P.: On the relationship between statistical zero-knowledge
and statistical randomized encodings. In: Robshaw and Katz [63], pp. 449–477

4. Badrinarayan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical ZAP
arguments. Cryptology ePrint Archive, Report 2019/780 (2019). https://eprint.
iacr.org/2019/780

5. Ball, M., Dachman-Soled, D., Kulkarni, M.: New techniques for zero-knowledge:
leveraging inefficient provers to reduce assumptions and interaction. Cryptology
ePrint Archive, Report 2019/1464 (2019). https://eprint.iacr.org/2019/1464

6. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Average-case fine-grained hard-
ness. In: Hatami, H., McKenzie, P., King, V. (eds.) 49th ACM STOC, pp. 483–496.
ACM Press, June 2017

7. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 26

8. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. SIAM J. Com-
put. 37(2), 380–400 (2007)

9. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 18

10. Barak, B., Pass, R.: On the possibility of one-message weak zero-knowledge. In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 121–132. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24638-1 7

11. Beimel, A., Gál, A.: On arithmetic branching programs. J. Comput. Syst. Sci.
59(2), 195–220 (1999)

12. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in
the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 26

13. Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds.
In: 22nd ACM STOC, pp. 482–493. ACM Press, May 1990

14. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge
based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996). https://
doi.org/10.1007/BF00208000

15. Ben-Or, M., Gutfreund, D.: Trading help for interaction in statistical zero-
knowledge proofs. J. Cryptol. 16(2), 95–116 (2003). https://doi.org/10.1007/
s00145-002-0113-0

https://eprint.iacr.org/2019/732
https://doi.org/10.1007/978-3-642-17367-7
https://eprint.iacr.org/2019/780
https://eprint.iacr.org/2019/780
https://eprint.iacr.org/2019/1464
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-540-24638-1_7
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/BF00208000
https://doi.org/10.1007/BF00208000
https://doi.org/10.1007/s00145-002-0113-0
https://doi.org/10.1007/s00145-002-0113-0

New Techniques for Zero-Knowledge 701

16. Ben-Sasson, E., et al.: Computational integrity with a public random string from
quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
III. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56617-7 19

17. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

18. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with
no trusted setup. In: Boldyreva and Micciancio [22], pp. 701–732

19. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commit-
ments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239,
pp. 209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 8

20. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability
from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7 16

21. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

22. Boldyreva, A., Micciancio, D. (eds.): CRYPTO 2019, Part III. LNCS, vol. 11694.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8

23. Campanelli, M., Gennaro, R.: Fine-grained secure computation. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 66–97. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 3

24. Canetti, R. (ed.): TCC 2008. LNCS, vol. 4948. Springer, Heidelberg (2008)
25. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum,

R.D., Wichs, D.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, June 2019

26. Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.P.: Interactive and nonin-
teractive zero knowledge are equivalent in the help model. In: Canetti [24], pp.
501–534

27. Ciocan, D.F., Vadhan, S.: Interactive and noninteractive zero knowledge coincide
in the help model. Cryptology ePrint Archive, Report 2007/389 (2007). http://
eprint.iacr.org/2007/389

28. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge with pre-
processing. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 269–282.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 21

29. Degwekar, A., Vaikuntanathan, V., Vasudevan, P.N.: Fine-grained cryptography.
In: Robshaw and Katz [63], pp. 533–562

30. Ding, N., Gu, D.: Precise time and space simulatable zero-knowledge. In: Boyen,
X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 16–33. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24316-5 4

31. Ding, N., Gu, D.: On constant-round precise zero-knowledge. In: Chim, T.W.,
Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 178–190. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34129-8 16

32. Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–
1543 (2007)

33. Egashira, S., Wang, Y., Tanaka, K.: Fine-grained cryptography revisited. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp.
637–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 22

https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-319-56617-7_19
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-03807-6_8
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-662-46497-7_16
https://doi.org/10.1007/978-3-030-26954-8
https://doi.org/10.1007/978-3-030-03810-6_3
http://eprint.iacr.org/2007/389
http://eprint.iacr.org/2007/389
https://doi.org/10.1007/0-387-34799-2_21
https://doi.org/10.1007/978-3-642-24316-5_4
https://doi.org/10.1007/978-3-642-34129-8_16
https://doi.org/10.1007/978-3-030-34618-8_22

702 M. Ball et al.

34. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

35. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, New
York (1990). https://doi.org/10.1007/0-387-34805-0 46

36. Goldreich, O.: The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, Cambridge (2001)

37. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM (JACM) 38(3),
690–728 (1991)

38. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

39. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

40. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: 18th ACM STOC, pp. 59–68. ACM Press, May 1986

41. Goyal, V., Jain, A., Sahai, A.: Simultaneous amplification: the case of non-
interactive zero-knowledge. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part II. LNCS, vol. 11693, pp. 608–637. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26951-7 21

42. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

43. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM (JACM) 59(3), 11 (2012)

44. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

45. Impagliazzo, R.: A personal view of average-case complexity. In: Tenth Annual
IEEE Conference on Proceedings of Structure in Complexity Theory, pp. 134–147.
IEEE (1995)

46. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61. ACM Press, May 1989

47. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st FOCS, pp. 294–304.
IEEE Computer Society Press, November 2000

48. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales,
R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9 22

49. Itoh, T., Ohta, Y., Shizuya, H.: Language dependent secure bit commitment. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 188–201. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48658-5 20

50. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. Cryptol-
ogy ePrint Archive, Report 2019/839 (2019). https://eprint.iacr.org/2019/839

51. Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simula-
tion in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 6

https://doi.org/10.1007/0-387-34805-0_46
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-030-26951-7_21
https://doi.org/10.1007/978-3-030-26951-7_21
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/3-540-48658-5_20
https://eprint.iacr.org/2019/839
https://doi.org/10.1007/978-3-319-63715-0_6
https://doi.org/10.1007/978-3-319-63715-0_6

New Techniques for Zero-Knowledge 703

52. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and
more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018.
LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78372-7 2

53. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Designated veri-
fier/prover and preprocessing NIZKs from Diffie-Hellman assumptions. In: Ishai,
Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 622–651.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 22

54. Kim, S., Wu, D.J.: Multi-theorem preprocessing NIZKs from lattices. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 733–765.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 25

55. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 26

56. LaVigne, R., Lincoln, A., Williams, V.V.: Public-key cryptography in the fine-
grained setting. In: Boldyreva and Micciancio [22], pp. 605–635

57. Micali, S., Pass, R.: Local zero knowledge. In: STOC, pp. 306–315. ACM (2006)
58. Nisan, N., Wigderson, A.: Hardness vs. randomness (extended abstract). In: 29th

FOCS, pp. 2–11. IEEE Computer Society Press, October 1988
59. Ong, S.J., Vadhan, S.P.: An equivalence between zero knowledge and commitments.

In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 482–500. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 27. [24]

60. Ostrovsky, R., Wigderson, A.: One-way fuctions are essential for non-trivial zero-
knowledge. In: Proceedings of Second Israel Symposium on Theory of Computing
Systems, ISTCS 1993, Natanya, Israel, 7–9 June 1993, pp. 3–17 (1993)

61. Pass, R., Shelat, A.: Unconditional characterizations of non-interactive zero-
knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 118–134.
Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 8

62. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I.
LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26948-7 4

63. Robshaw, M., Katz, J. (eds.): CRYPTO 2016, Part III. LNCS, vol. 9816. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3

64. Toda, S.: Counting problems computationally equivalent to. SIAM J. Comput. 13,
423–439 (1984)

65. Wu, H., Wang, F.: A survey of noninteractive zero knowledge proof system and its
applications (2014). https://doi.org/10.1155/2014/560484

https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-030-17656-3_22
https://doi.org/10.1007/978-3-319-96881-0_25
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1007/11535218_8
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-662-53015-3
https://doi.org/10.1155/2014/560484

Spartan: Efficient and General-Purpose
zkSNARKs Without Trusted Setup

Srinath Setty(B)

Microsoft Research, Redmond, USA
srinath@microsoft.com

Abstract. This paper introduces Spartan, a new family of zero-
knowledge succinct non-interactive arguments of knowledge (zkSNARKs)
for the rank-1 constraint satisfiability (R1CS), an NP-complete language
that generalizes arithmetic circuit satisfiability. A distinctive feature of
Spartan is that it offers the first zkSNARKs without trusted setup (i.e.,
transparent zkSNARKs) for NP where verifying a proof incurs sub-linear
costs—without requiring uniformity in the NP statement’s structure. Fur-
thermore, Spartan offers zkSNARKs with a time-optimal prover, a prop-
erty that has remained elusive for nearly all zkSNARKs in the literature.

To achieve these results, we introduce new techniques that we com-
pose with the sum-check protocol, a seminal interactive proof protocol: (1)
computation commitments, a primitive to create a succinct commitment
to a description of a computation; this technique is crucial for a verifier
to achieve sub-linear costs after investing a one-time, public computation
to preprocess a given NP statement; (2) spark, a cryptographic compiler
to transform any existing extractable polynomial commitment scheme for
multilinear polynomials to one that efficiently handles sparse multilinear
polynomials; this technique is critical for achieving a time-optimal prover;
and (3) a compact encoding of an R1CS instance as a low-degree polyno-
mial.The end result is apublic-coin succinct interactive argumentof knowl-
edge forNP (which canbe viewedas a succinct variant of the sum-check pro-
tocol); we transform it into a zkSNARK using prior techniques. By apply-
ing spark to different commitment schemes, we obtain several zkSNARKs
where the verifier’s costs and the proof size range from O(log2 n) to O(

√
n)

depending on the underlying commitment scheme (n denotes the size of
the NP statement). These schemes do not require a trusted setup except
for one that requires a universal trusted setup.

We implement Spartan as a library in about 8,000 lines of Rust. We
use the library to build a transparent zkSNARK in the random oracle
model where security holds under the discrete logarithm assumption. We
experimentally evaluate it and compare with recent zkSNARKs for R1CS
instance sizes up to 220 constraints. Among schemes without trusted setup,
Spartan offers the fastest prover with speedups of 36–152× depending on
the baseline, produces proofs that are shorter by 1.2–416×, and incurs the
lowest verification times with speedups of 3.6–1326×. When compared to
the state-of-the-art zkSNARK with trusted setup, Spartan’s prover is 2×
faster for arbitrary R1CS instances and 16× faster for data-parallel work-
loads.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 704–737, 2020.
https://doi.org/10.1007/978-3-030-56877-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_25

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 705

1 Introduction

We revisit the problem of designing zero-knowledge succinct non-interactive
arguments of knowledge (zkSNARKs) [22,48] for the complexity class NP: they
enable a computationally-bounded prover to convince the membership of a
problem instance in an NP language by producing a proof—without reveal-
ing anything besides the validity of the statement. Furthermore, the proof
size and the verifier’s costs are sub-linear in the size of the statement. We
are motivated to design zkSNARKs because they enable many applications
that involve various forms of delegation of computation for scalability or pri-
vacy [12,26,29,31,38,39,41,46,59,61,70,73–79,87].

Specifically, we are interested in zkSNARKs that prove the satisfiability of
R1CS instances over a finite field F (an NP-complete language that generalizes
arithmetic circuit satisfiability; see Sect. 2.1 for details): given a problem instance
x = (F , A,B,C, io,m, n), we desire a proof that demonstrates the knowledge of a
witness w such that SatR1CS(x, w) = 1.1 We desire zkSNARKs for R1CS because
there exist efficient toolchains to transform high-level applications of interest to
R1CS [13,15,18,31,60,70,73,77,83].

There are many approaches to construct such arguments in the literature,
starting with the work of Kilian [58] who provided the first construction of a
succinct interactive argument protocol by employing probabilistically checkable
proofs (PCPs) [5–7,42,44,54] in conjunction with Merkle trees [67]. Micali [68]
made a similar protocol non-interactive in the random oracle model, thereby
obtaining the first zkSNARK. Unfortunately, the underlying PCP machinery
remains extremely expensive for the prover and the verifier—despite founda-
tional advances [14,19–21].

Thus, the first works with an explicit motivation to make proof sys-
tems practical [38,74,76,77,79] refine and implement interactive protocols of
Ishai et al. [55] and Goldwasser et al. [49], which do not require asymptotically-
efficient PCPs. The principal downside is that they achieve practicality for only
a restricted class of NP statements.

Gennaro, Gentry, Parno, and Raykova (GGPR) [47] address the above issue
with a new characterization of NP called quadratic arithmetic programs (QAPs).
By building on the work of Ishai et al. [55], Groth [50], and Lipmaa [65], GGPR
construct a zkSNARK for R1CS in which the prover’s running time is O(n log n),
the size of a proof is O(1), and the verifier incurs O(|io|) computation to verify
a proof, where n is the size of the statement, and io denotes the public input
and output. Unfortunately, GGPR’s zkSNARK requires a per-statement trusted
setup that produces an Oλ(n)-sized structured common reference string and the
trapdoor used in the setup process must be kept secret to ensure soundness.
Relying on such a trusted setup is often infeasible, especially for applications
that do not have trusted authorities. There exist several advances atop GGPR,
but they retain a trusted setup [15,18,23,51,52,70], or require interaction [75].

1 Although we use the word “proof”, we mean proofs that are computationally
sound [30].

706 S. Setty

The above state of affairs has motivated another class of works, called trans-
parent zkSNARKs, that aim to eliminate the requirement of a trusted setup.
They prove security in the random oracle model, which is acceptable in practice.
First, Hyrax [84] extends a line of work [38,78–82] that refines the doubly-efficient
interactive proofs (IPs) of Goldwasser et al. [49]. Second, STARK [10] and
Aurora [16] build on interactive oracle proofs (IOPs) [17,71]. Third, Ligero [3]
builds on the “MPC in the head” paradigm [56]. Fourth, Bulletproofs [32] builds
on the work of Bootle et al. [27].

Unfortunately, they face the following problems.

• The computational model of Hyrax [83] is layered arithmetic circuits, where
the verifier’s costs and the proof sizes scale linearly in the depth of the cir-
cuit. Converting an arbitrary circuit into a layered form can increase its
size quadratically [49],2 so Hyrax is restricted to low-depth circuits. Also,
Hyrax [83] achieves sub-linear verification costs only for circuits with a uni-
form structure (e.g., data-parallel circuits).

• STARK [10] requires circuits with a sequence of identical sub-circuits, oth-
erwise it does not achieve sub-linear verification costs. Any circuit can be
converted to this form [13,15], but the transformation increases circuit sizes
by 10–1000×, which translates to a similar factor increase in the prover’s
costs [83].

• Ligero [3], Bulletproofs [33], and Aurora [16] incur O(n) verification costs.

Our work addresses these problems.

1.1 Summary of Contributions

This paper presents a new family of zkSNARKs, which we call Spartan, for prov-
ing the satisfiability of NP statements expressed in R1CS. Spartan offers the first
transparent zkSNARK that achieves sub-linear verification costs for arbitrary
NP statements.3 Spartan also offers zkSNARKs with a time-optimal prover, a
property that has remained difficult to achieve in nearly all prior zkSNARKs.

In a nutshell, Spartan introduces a new public-coin succinct interactive argu-
ment of knowledge where the verifier incurs sub-linear costs for arbitrary R1CS
instances by employing computation commitments (which we describe below).
Our argument makes a black box use of an extractable polynomial commitment
scheme in conjunction with an information-theoretic protocol, so its soundness
holds under the assumptions needed by the polynomial commitment scheme
(there exist many polynomial commitment schemes that can be instantiated
under standard cryptographic assumptions [32,84,86]). The interactive argument
is public-coin, so we add zero-knowledge using existing compilers [84,85,88],
2 For a depth-d circuit, converting to a layered form increases the circuit size by a

factor of O(d).
3 To our knowledge, short PCP-based transparent zkSNARKs [58,68] do not achieve

sub-linear verification costs unless one uses uniform circuits, which is undesirable as
noted above.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 707

which themselves build on prior theory [9,35,40]. We then make the result-
ing zero-knowledge argument of knowledge non-interactive in the random ora-
cle model using the Fiat-Shamir transform [45]. Since our interactive argument
employs a polynomial commitment scheme as a black box, we obtain a family
of zkSNARKs where each variant employs a different polynomial commitment
scheme.

In more detail, Spartan makes the following contributions.

(1) A new family of public-coin succinct interactive arguments
of knowledge. Our core insight is that the sum-check protocol [66], a sem-
inal interactive proof protocol (where soundness holds unconditionally), when
applied to a suitably-constructed low-degree polynomial yields a powerful—but
highly inefficient—interactive proof protocol, but the inefficiency can be tamed
with new techniques. Specifically, we introduce three techniques (Fig. 1 offers a
visual depiction of how these techniques work together):

Theorem
4.1

R1CS
instance

A degree-3
multivariate
polynomial

Theorem
5.1

PolyCommit (§2.3)

A public-coin,
succinct interactive

argument of
knowledge

Existing
compilers

A proof-succinct
NIZK

SPARK
(§7)

PolyCommit for
sparse multilinear

polynomials

Computation
commitments (§6)

zkSNARKs

Fig. 1. Overview of our techniques for constructing zkSNARKs.

(i) Computation commitments, a primitive for creating succinct cryptographic
commitments to a mathematical description of an NP statement, which is
critical for achieving sub-linear verification costs.
Achieving sub-linear verification costs appears fundamentally unrealizable
because the verifier must process an NP statement for which the proof is
produced before it can verify a purported proof. Our observation is that this
cost can be made sub-linear in the size of an NP statement by introducing
a public preprocessing step.
Specifically, our observation is that when verifying a proof under our inter-
active argument, the verifier must evaluate a low-degree polynomial that
encodes the NP statement, which incurs O(n) costs to the verifier. Our prim-
itive, computation commitments, enables verifiably delegating the necessary
polynomial evaluations to the prover. Specifically, in Spartan, the verifier
reads an R1CS instance (without the io component) for which the proof is
produced and retains a short cryptographic commitment to a set of sparse
multilinear polynomials that encode the R1CS structure. Later, when pro-
ducing a proof, the prover evaluates the necessary polynomials and proves
that the sparse polynomial evaluations are consistent with the commitment
retained by the verifier. While the verifier incurs O(n) cost to compute a

708 S. Setty

computation commitment, the cost is amortized over all future proofs pro-
duced for all R1CS instances with the same structure. This amortization
is similar to that of GGPR [47]. However, unlike GGPR’s trusted setup,
creating a computation commitment does not involve any secret trapdoors.
Section 6 provides details.

(ii) spark, a cryptographic compiler to transform any existing extractable
polynomial commitment scheme for multilinear polynomials to one that
efficiently handles sparse multilinear polynomials. Using the compiler, we
obtain schemes with time-optimal costs for both creating commitments
to sparse multilinear polynomials and to produce proofs of evaluations
of the committed polynomials. This compiler is crucial for achieving a
time-optimal prover in Spartan. In more detail, spark employs an existing
extractable polynomial commitment scheme as a black box, and uses it in
conjunction with a special-purpose zkSNARK and a carefully-constructed
circuit (that employs offline memory checking techniques [4,24,37,43,73])
to efficiently prove evaluations of sparse multilinear polynomials. Section 7
provides details.

(iii) A compact encoding of an R1CS instance as a degree-3 multivariate polyno-
mial that can be decomposed into four multilinear polynomials. The decom-
position into multilinear polynomials is critical for achieving a time-optimal
prover in the sum-check protocol by employing prior ideas [78,85]. Section 4
provides details.

(2) An optimized implementation and experimental evaluation. We
implement Spartan as a library in about 8,000 lines of Rust. We use the library to
build a transparent zkSNARK that employs an extractable polynomial commit-
ment scheme due to Wahby et al. [84] where soundness holds under the hardness
of computing discrete logarithms. Our experimental evaluation demonstrates
that, among schemes without trusted setup, Spartan offers the fastest prover
with speedups of 36–152× depending on the baseline, produces proofs that are
shorter by 1.2–416×, and incurs the lowest verification times with speedups
of 3.6–1326×. When compared to the state-of-the-art zkSNARK with trusted
setup, Spartan’s prover is 2× faster for arbitrary R1CS instances and 16× faster
for data-parallel workloads.

(3) A unified understanding of different strands of theory. Spartan
exposes inter-connections among different lines of work on probabilistic proofs—
from the perspective of zkSNARKs—including doubly-efficient IPs, MIPs, and
short PCPs [72, §3.2].

(4) Improvements in zkSNARKs with universal setup. While our focus
is transparent zkSNARKs, Spartan improves on prior zkSNARKs with universal
trusted setup.

By employing a different polynomial commitment scheme [69,87], which
requires q-type, knowledge of exponent assumptions, in spark, Spartan offers
an alternative to Libra [85]; we refer to this variant as Spartanke. Compared to
Libra, Spartanke supports arbitrary R1CS instances instead of layered arithmetic

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 709

circuits. Furthermore, unlike Libra, the proof sizes and the verifier’s running
times in Spartanke do not scale linearly with the circuit depth. Finally, Libra
achieves sub-linear verification costs only for low-depth uniform circuits whereas
Spartanke achieves sub-linear verification costs for arbitrary R1CS instances via
computation commitments.

Fig. 2. A comparison of prior and recent zkSNARKs, where n denotes the size of the NP
statement. For Hyrax [84], we assume a layered arithmetic circuit C of depth d, width
g, and β copies (i.e., n = d ·g ·β); w denotes the size of a witness to C; and m = d · log g.
Hyrax and Spartandl can achieve sub-sqrt proofs at the cost of increasing V’s time.
For Libra and Virgo, we assume a depth-d layered uniform circuit. The verifier incurs
O(|io|) additional cost in all schemes where io denotes the public inputs and outputs
of the NP relation being proved. Furthermore, all transparent zkSNARKs achieve non-
interactivity in the random oracle model using the Fiat-Shamir heuristic [45]. Private�

means that the trusted setup is universal. Ligero, Virgo, STARK, Aurora, Fractal,
and Spartanro are plausibly post-quantum secure. Finally, Spartancl applies spark to
the commitment scheme of Bünz et al. [32], but the commitment scheme requires an
adaptation (Sect. 5.1).

1.2 Additional Related Work

Figure 2 compares the asymptotic costs of Spartan-based zkSNARKs with other
schemes.

Recent schemes. Following our preprint, there are three transparent
zkSNARKs: Fractal [36], SuperSonic [32], and Virgo [86]. Virgo’s model of com-
putation is same as Hyrax’s, so it achieves sub-linear verification costs only for
low-depth, uniform circuits.

710 S. Setty

Fractal and SuperSonic achieve sub-linear verification costs for arbitrary
NP statements. In these schemes, the verifier preprocesses an NP statement—
without secret trapdoors—to create a commitment to the structure of the state-
ment. In other words, they instantiate the computation commitments primitive.
Unfortunately, both schemes incur orders of magnitude higher expense than
Spartan (Sect. 9).

2 Preliminaries

We use F to denote a finite field (e.g., the prime field Fp for a large prime p)
and λ to denote the security parameter. We use negl(λ) to denote a negligible
function in λ. Throughout the paper, the depicted asymptotics depend on λ,
but we elide this for brevity. We use “PPT algorithms” to refer to probabilistic
polynomial time algorithms.

2.1 Problem Instances in R1CS

Recall that for any problem instance x, if x is in an NP language L, there exists
a witness w and a deterministic algorithm Sat such that:

SatL(x, w) =

{
1 if x ∈ L
0 otherwise

Alternatively, the set of tuples of the form 〈x, w〉 form a set of NP relations.
The subset of those for which SatL(x, w) = 1 are called satisfiable instances,
which we denote as: RL = {〈x, w〉 : SatL(x, w) = 1}.

As an NP-complete language, we focus on the rank-1 constraint satisfiabil-
ity (R1CS). As noted earlier, R1CS is a popular target for compiler toolchains
that accept applications expressed in high-level languages [70,75,77,83]. R1CS
is implicit in the QAPs of GGPR [47], but it is used with (and without) QAPs
in subsequent works [16,64,75].

Definition 2.1 (R1CS instance). An R1CS instance is a tuple (F , A,B,C,
io,m, n), where io denotes the public input and output of the instance, A,B,C ∈
Fm×m, where m ≥ |io|+1 and there are at most n non-zero entries in each matrix.

Note that matrices A,B,C are defined to be square matrices for conceptual
simplicity. Below, we use the notation z = (x, y, z) (where each of x, y, z is a
vector over F) to mean that z is a vector that concatenates the three vectors in
a natural way. WLOG, we assume that n = O(m) throughout the paper.

Definition 2.2 (R1CS). An R1CS instance (F , A,B,C, io,m, n) is said to be
satisfiable if there exists a witness w ∈ Fm−|io|−1 such that (A·z)◦(B ·z) = (C ·z),
where z = (io, 1, w), · is the matrix-vector product, and ◦ is the Hadamard
(entry-wise) product.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 711

Note that R1CS generalizes arithmetic circuit satisfiability because the
entries in matrices A,B,C can be used to encode addition and multiplication
gates over F . Furthermore, they can be used to encode a class of degree-2 con-
straints of the form L(z) · R(z) = O(z), where L,R,O are degree-1 polynomials
over variables that take values specified by z = (io, 1, w). In other words, R1CS
supports arbitrary fan-in addition gates, and multiplication gates that verify
arbitrary bilinear relations over the entire z.

Definition 2.3. For an R1CS instance x = (F , A,B,C, io,m, n) and a pur-
ported witness w ∈ Fm−|io|−1, we define:

SatR1CS(x, w) =

{
1 (A · (io, 1, w) ◦ (B · (io, 1, w)) = (C · (io, 1, w))
0 otherwise

The set of satisfiable R1CS instances can be denoted as:

RR1CS = {〈(F , A,B,C, io,m, n), w〉 : SatR1CS((F , A,B,C, io,m, n), w) = 1}
Definition 2.4. For a given R1CS instance x = (F , A,B,C, io,m, n), the NP
statement that x is satisfiable (i.e., x ∈ RR1CS) is of size O(n).

2.2 Polynomials and Low-Degree Extensions

Definition 2.5 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 2.6 (Low-degree polynomial). A multivariate polynomial G over a
finite field F is called low-degree polynomial if the degree of G in each variable
is exponentially smaller than |F |.

Low-degree extensions (LDEs). Suppose g : {0, 1}m → F is a function that
maps m-bit elements into an element of F . A polynomial extension of g is a
low-degree m-variate polynomial g̃(·) such that g̃(x) = g(x) for all x ∈ {0, 1}m.

A multilinear polynomial extension (or simply, a multilinear extension, or
MLE) is a low-degree polynomial extension where the extension is a multilinear
polynomial (i.e., the degree of each variable in g̃(·) is at most one). Given a func-
tion Z : {0, 1}m → F , the multilinear extension of Z(·) is the unique multilinear
polynomial Z̃ : Fm → F . It can be computed as follows.

Z̃(x1, . . . , xm) =
∑

e∈{0,1}m

Z(e) ·
m∏

i=1

(xi · ei + (1 − xi) · (1 − ei))

=
∑

e∈{0,1}m

Z(e) · ẽq(x, e)

= 〈(Z(0), . . . , Z(2m − 1)), (ẽq(x, 0), . . . , ẽq(x, 2m − 1)〉

712 S. Setty

Note that ẽq(x, e) =
∏m

i=1(ei · xi + (1 − ei) · (1 − xi)), which is the MLE of
the following function:

eq(x, e) =

{
1 if x = e

0 otherwise

For any r ∈ Fm, Z̃(r) can be computed in O(2m) operations in F [78,80].

Dense representation for multilinear polynomials. Since the MLE of a
function is unique, it offers the following method to represent any multilinear
polynomial. Given a multilinear polynomial G(·) : Fm → F , it can be represented
uniquely by the list of evaluations of G(·) over the Boolean hypercube {0, 1}m

(i.e., a function that maps {0, 1}m → F). We denote such a representation of G
as DenseRepr(G).

Definition 2.7. A multilinear polynomial G : Fm → F is a sparse multilinear
polynomial if |DenseRepr(G)| is sub-linear in O(2m). Otherwise, it is a dense
multilinear polynomial.

2.3 A Polynomial Commitment Scheme for Multilinear Polynomials

We adopt our definitions from Bünz et al. [32] where they generalize the defi-
nition of Kate et al. [57] to allow interactive evaluation proofs. We also borrow
their notation: in a list of arguments or returned tuples, variables before the
semicolon are public and the ones after are secret; when there is no secret infor-
mation, semicolon is omitted.

WLOG, below, when algorithms accept as input a multilinear polynomial,
they use the dense representation of multilinear polynomials (Sect. 2.2).

A polynomial commitment scheme for multilinear polynomials is a tuple of
four protocols PC = (Setup,Commit,Open,Eval):

• pp ← Setup(1λ, μ): takes as input μ (the number of variables in a multilinear
polynomial); produces public parameters pp.

• (C; S) ← Commit(pp; G): takes as input a μ-variate multilinear polynomial
over a finite field G ∈ F [μ]; produces a public commitment C and a secret
opening hint S.

• b ← Open(pp, C,G,S): verifies the opening of commitment C to the μ-variate
multilinear polynomial G ∈ F [μ] with the opening hint S; outputs a b ∈ {0, 1}.

• b ← Eval(pp, C, r, v, μ; G,S) is an interactive public-coin protocol between a
PPT prover P and verifier V. Both V and P hold a commitment C, the number
of variables μ, a scalar v ∈ F , and r ∈ F μ. P additionally knows a μ-variate
multilinear polynomial G ∈ F [μ] and its secret opening hint S. P attempts to
convince V that G(r) = v. At the end of the protocol, V outputs b ∈ {0, 1}.

Definitions of properties of polynomial commitments as well as definitions of
interactive arguments of knowledge are in an extended report [72].

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 713

3 The Sum-Check Protocol: Opportunities and
Challenges

An interactive proof is an interactive argument, where the soundness holds
unconditionally. We now describe a seminal interactive proof protocol that we
employ in Spartan, called the sum-check protocol [66]. Suppose there is an μ-
variate low-degree polynomial, G : F μ → F where the degree of each variable in
G is at most �. Suppose that a verifier VSC is interested in checking a claim of
the following form by an untrusted prover PSC :

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xµ∈{0,1}
G(x1, x2, . . . , xμ)

Of course, given G(·), VSC can deterministically evaluate the above sum and
verify whether the sum is T . But, this computation takes time exponential in μ.

Lund et al. [66] describe the sum-check protocol that requires far less compu-
tation on VSC ’s behalf, but provides a probabilistic guarantee. In the protocol,
VSC interacts with PSC over a sequence of μ rounds. At the end of this inter-
action, VSC outputs b ∈ {0, 1}. The principal cost to VSC is to evaluate G at
a random point in its domain r ∈ F μ. We denote the sum-check protocol as
b ← 〈PSC ,VSC(r)〉(G, μ, �, T). For any μ-variate polynomial G with degree at
most � in each variable, the following properties hold.

• Completeness. If T =
∑

x∈{0,1}µ G(x), then for a correct PSC and for all
r ∈ {0, 1}∗, Pr{〈PSC(G),VSC(r)〉(μ, �, T) = 1} = 1.

• Soundness. If T 	= ∑
x∈{0,1}µ G(x), then for any P�

SC and for all r ∈ {0, 1}∗,
Prr{〈P�

SC(G),VSC(r)〉(μ, �, T) = 1} ≤ � · μ/|F |.
• Succinctness. The communication between PSC and VSC is O(μ·�) elements

of F .

An alternate formulation. In the rest of the paper, it is natural to
view the sum-check protocol as a mechanism to reduce a claim of the form∑

x∈{0,1}m G(x) ?= T to the claim G(r) ?= e. This is because in most cases, the
verifier uses an auxiliary protocol to verify the latter claim, so this formulation
makes it easy to describe our end-to-end protocols. We denote this reduction
protocol with e ← 〈PSC(G),VSC(r)〉(μ, �, T).

3.1 Challenges with Using the Sum-Check Protocol for Succinct
Arguments

To build a succinct interactive argument of knowledge for R1CS, we need an
interactive protocol for the verifier V to check if the prover P knows a witness w
to a given R1CS instance x = (F , A,B,C, io,m, n) such that SatR1CS(x, w) = 1.

At first glance, the sum-check protocol [66] seems to offer the necessary build-
ing block (it is public-coin, incurs succinct communication, etc.). However, to
build a succinct interactive argument of knowledge (that can in turn be compiled
into a zkSNARK), we must solve the following sub-problems:

714 S. Setty

1. Encode R1CS instances as sum-check instances. For any R1CS
instance x = (F , A,B,C, io,m, n), we must devise a degree-�, μ-variate poly-
nomial that sums to a specific value T over {0, 1}μ if and only if there exists
a witness w such that SatR1CS(x, w) = 1, where μ = O(log m) and � is a
small constant (e.g., 3).

2. Achieve communication-succinctness. Although the sum-check protocol
offers succinctness (if the first sub-problem is solved with constraints on μ
and � noted above), building a succinct interactive argument is non-trivial.
This is because after the sum-check reduction, V must verify G(r) ?= e. Unfor-
tunately, G(r) depends on the P’s witness w to x. Thus, a naive evaluation
of G(r) requires O(m) communication to transmit w. Transmitting w is also
incompatible with zero-knowledge.

3. Achieve verifier-succinctness. To compile an interactive argument to a
zkSNARK, V’s costs must be sub-linear in the size of an NP statement, but
evaluating G(r) requires O(n) computation if the statement has no structure
(e.g., data-parallelism). A potential way around this fundamental issue is for
V to preprocess the structure of the R1CS instance to accelerate all future
verification of proofs for different R1CS instances with the same structure.
However, to avoid any form of trusted setup, the preprocessing must not
involve secret trapdoors.

We describe prior solutions to the three sub-problems in an extended
report [72].

4 An Encoding of R1CS Instances as Low-Degree
Polynomials

This section describes a compact encoding of an R1CS instance as a degree-3
multivariate polynomial. The following theorem summarizes our result, which
we prove below.

Theorem 4.1. For any R1CS instance x = (F , A,B,C, io,m, n), there exists a
degree-3 log m-variate polynomial G such that

∑
x∈{0,1}log m G(x) = 0 if and only

if there exists a witness w such that SatR1CS(x, w) = 1 (except for a soundness
error that is negligible in λ) under the assumption that |F | is exponential in λ
and m = O(λ).

For a given R1CS instance x = (F , A,B,C, io,m, n), let s = �log m�. Thus,
we can view matrices A,B,C ∈ Fm×m as functions with the following signature:
{0, 1}s × {0, 1}s → F . Specifically, any entry in them can be accessed with a 2s-
bit identifier (or two s-bit identifiers). Furthermore, given a purported witness
w to x, let Z = (io, 1, w). It is natural to interpret Z as a function with the
following signature: {0, 1}s → F , so any element of Z can be accessed with an
s-bit identifier.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 715

We now describe a function Fio(·) that can be used to encode w such that
Fio(·) exhibits a desirable behavior if and only if SatR1CS(x, w) = 1.

Fio(x) =

⎛
⎝ ∑

y∈{0,1}s

A(x, y) · Z(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B(x, y) · Z(y)

⎞
⎠ −

∑
y∈{0,1}s

C(x, y) · Z(y)

Lemma 4.1. ∀x ∈ {0, 1}s, Fio(x) = 0 if and only if SatR1CS(x, w) = 1.

Proof. This follows from the definition of SatR1CS(x, w) (Sect. 2.1) and of
Z(·). ��

Unfortunately Fio(·) is a function, not a polynomial, so it cannot be directly
used in the sum-check protocol. But, consider its polynomial extension F̃io :
F s → F .

F̃io(x) =

⎛
⎝ ∑

y∈{0,1}s

Ã(x, y) · Z̃(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B̃(x, y) · Z̃(y)

⎞
⎠ −

∑
y∈{0,1}s

C̃(x, y) · Z̃(y)

Lemma 4.2. ∀x ∈ {0, 1}s, F̃io(x) = 0 if and only if SatR1CS(x, w) = 1.

Proof. For any x ∈ {0, 1}s, F̃io(x) = Fio(x), so the result follows from
Lemma 4.1. ��

Since F̃io(·) is a low-degree multivariate polynomial over F in s variables, a
verifier V could check if

∑
x∈{0,1}s F̃io(x) = 0 using the sum-check protocol with

a prover P. But, this is insufficient:
∑

x∈{0,1}s F̃io(x) = 0 does not imply that
Fio(x) is zero ∀x ∈ {0, 1}s. This is because the 2s terms in the sum might cancel
each other making the final sum zero—even when some of the individual terms
are not zero.

We addresses the above issue using a prior idea [8,25,34]. Consider:

Qio(t) =
∑

x∈{0,1}s

F̃io(x) · ẽq(t, x),

where ẽq(t, x) =
∏s

i=1(ti · xi + (1 − ti) · (1 − xi)).
Observe that Qio(·) is a multivariate polynomial such that Qio(t) = F̃io(t)

for all t ∈ {0, 1}s. Thus, Qio(·) is a zero-polynomial (i.e., it evaluates to zero for
all points in its domain) if and only if F̃io(·) evaluates to zero at all points in
the s-dimensional Boolean hypercube (and hence if and only if F̃io(·) encodes a
witness w such that SatR1CS(x, w) = 1). To check if Qio(·) is a zero-polynomial,
it suffices to check if Qio(τ) = 0 where τ ∈R F s. This introduces a soundness
error, which we quantify below.

Lemma 4.3. Prτ{Qio(τ) = 0|∃x ∈ {0, 1}s s.t. F̃io(x) 	= 0} ≤ log m/|F |

716 S. Setty

Proof. If ∃x ∈ {0, 1}s such that F̃io(x) 	= 0, then Qio(t) is not a zero-polynomial.
By the Schwartz-Zippel lemma, Qio(t) = 0 for at most d/|F | values of t in the
domain of Qio(·), where d is the degree of Qio(·). Here, d = s = log m. ��

Proof of Theorem 4.1. For a given R1CS instance x = (F , A,B,C, io,m, n),
define, Gio,τ (x) = F̃io(x) · ẽq(τ, x), so Qio(τ) =

∑
x∈{0,1}s Gio,τ (x). Observe that

Gio,τ (·) is a degree-3 s-variate polynomial if multilinear extensions of A,B,C, and
Z are used in F̃io(·). In the terminology of the sum-check protocol, T = 0, μ =
s = log m, and � = 3. Furthermore, if τ ∈R F s,

∑
x∈{0,1}s Gio,τ (x) = 0 if and

only F̃io(x) = 0 ∀x ∈ {0, 1}s—except for soundness error that is negligible in λ
under the assumptions noted above (Lemma4.3). This combined with Lemma 4.2
implies the desired result.

5 A Family of NIZKs with Succinct Proofs for R1CS

We first design an interactive argument with succinct communication costs and
then compile it into a family of NIZKs in the random oracle model using prior
transformations.

5.1 A New Public-Coin Succinct Interactive Argument of
Knowledge

The following theorem summarizes our result in this section.

Theorem 5.1. Given an extractable polynomial commitment scheme for mul-
tilinear polynomials, there exists a public-coin succinct interactive argument of
knowledge where security holds under the assumptions needed for the polynomial
commitment scheme and assuming |F | is exponential in λ and the size parameter
of R1CS instance n = O(λ).

To prove the above theorem, we first provide a construction of a public-coin
succinct interactive argument of knowledge, and then analyze its costs and secu-
rity. The proof of Theorem4.1 established that for V to verify if an R1CS instance
x = (F , A,B,C, io,m, n) is satisfiable, it can check if

∑
x∈{0,1}s Gio,τ (x) = 0.

By using the sum-check protocol, we can reduce the claim about the sum to
ex

?= Gio,τ (rx) where rx ∈ F s, so V needs a mechanism to evaluate Gio,τ (rx)—
without incurring O(m) communication from P to V.

Recall that Gio,τ (x) = F̃io(x) · ẽq(τ, x). Thus, to evaluate Gio,τ (rx), V must
evaluate F̃io(rx) and ẽq(τ, rx). The latter can be evaluated in O(log m) time.
Furthermore, recall:

F̃io(rx) =

⎛
⎝ ∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

⎞
⎠ ·

⎛
⎝ ∑

y∈{0,1}s

B̃(rx, y) · Z̃(y)

⎞
⎠ −

∑
y∈{0,1}s

C̃(rx, y) · Z̃(y)

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 717

To evaluate F̃io(rx), V needs to evaluate the following ∀y ∈ {0, 1}s: Ã(rx, y),
B̃(rx, y), C̃(rx, y), and Z̃(y). However, the evaluations of Z̃(y) for all y ∈ {0, 1}s

is the same as (io, 1, w), so the communication from P to V is ≥ O(|w|). We now
address this issue.

Our solution is a combination of three protocols: the sum-check protocol,
a randomized mini protocol, and a polynomial commitment scheme. Our first
observation is that the structure of the individual terms in Fx,y(·) evaluated at
rx are in a form suitable for the application of a second instance of the sum-check
protocol. Specifically, let F̃io(rx) = A(rx) · B(rx) − C(rx), where

A(rx) =
∑

y∈{0,1}s

Ã(rx, y) · Z̃(y)

B(rx) =
∑

y∈{0,1}s

B̃(rx, y) · Z̃(y)

C(rx) =
∑

y∈{0,1}s

C̃(rx, y) · Z̃(y)

This observation opens up the following solution: the prover can make three
separate claims to V, say that A(rx) = vA, B(rx) = vB , and C(rx) = vC . Then,
V can evaluate:

Gio,τ (rx) = (vA · vB − vC) · ẽq(rx, τ),

which in turn enables V to verify Gio,τ (rx) ?= ex. Of course, V must still verify

three new claims from P: A(rx) ?= vA, B(rx) ?= vB, and C(rx) ?= vC . To do so, V
and P can run three independent instances of the sum-check protocol to verify
these claims. Instead, we use a prior idea [35,84] to combine three claims into a
single claim:

• V samples rA, rB , rC ∈R F and computes c = rA · vA + rB · vB + rC · vC .

• V uses the sum-check protocol with P to verify rA ·A(rx)+rB ·B(rx)+rC ·C(rx)
?
= c.

In more detail, let L(rx) = rA · A(rx) + rB · B(rx) + rC · C(rx).

L(rx) =
∑

y∈{0,1}s

rA · Ã(rx, y) · Z̃(y) + rB · B̃(rx, y) · Z̃(y) + rC · C̃(rx, y) · Z̃(y)

=
∑

y∈{0,1}s

Mrx (y)

Mrx (y) is an s-variate polynomial with degree at most 2 in each variable. In the
terminology of the sum-check protocol, μ = s, � = 2, and T = c.

Lemma 5.1. PrrA,rB ,rC
{rA · A(rx) + rB · B(rx) + rC · C(rx) = c|A(rx) 	= vA ∨

B(rx) 	= vB ∨ C(rx) 	= vC} ≤ 1/|F |, where c = rA · vA + ry · vB + rC · vC .

718 S. Setty

Proof. The LHS is a polynomial in rA, rB , rC of total degree 1; the same holds
for the RHS. So, the desired result follows from the Schwartz-Zippel lemma. ��

V is not out of the woods. At the end of the second instance of the sum-check
protocol, V must evaluate Mrx

(ry) for ry ∈ F s:

Mrx
(ry) = rA · Ã(rx, ry) · Z̃(ry) + rB · B̃(rx, ry) · Z̃(ry) + rC · C̃(rx, ry) · Z̃(ry)

= (rA · Ã(rx, ry) + rB · C̃(rx, ry) + rC · C̃(rx, ry)) · Z̃(ry)

Observe that the only term in Mrx
(ry) that depends on the prover’s witness is

Z̃(ry). This is because all other terms in the above expression can be computed
locally by V using x = (F , A,B,C, io,m, n) in O(n) time (Sect. 6 discusses how to
reduce the cost of those evaluations to be sub-linear in n). Our second observation
is that to evaluate Z̃(ry) without incurring O(|w|) communication from P to V,
we can employ an extractable polynomial commitment scheme for multilinear
polynomials (Sect. 2.3). A similar observation was made by Zhang et al. [87] in
a different context.

In more detail, P sends a commitment to w̃(·) (i.e., a multilinear extension
of its purported witness) to V before the first instance of the sum-check protocol
begins using an extractable polynomial commitment scheme for multilinear poly-
nomials. To evaluate Z̃(ry), V does the following. WLOG, assume |w| = |io|+1.
Thus, by the closed form expression of multilinear polynomial evaluations, we
have:

Z̃(ry) = (1 − ry[0]) · w̃(ry[1..]) + ry[0] · (̃io, 1)(ry[1..]),

where ry[1..] refers to a slice of ry that excludes the the first element.

Putting things together. We assume that there exists an extractable poly-
nomial commitment scheme for multilinear polynomials PC = (Setup,Commit,
Open,Eval).

• pp ← Setup(1λ): Invoke pp ← PC.Setup(1λ, logm); output pp.
• b ← 〈P(w), V(r)〉(F , A, B, C, io, m, n):

1. P : (C, S) ← PC.Commit(pp, w̃) and send C to V.
2. V : τ ∈R F log m and send τ to P.
3. Let T1 = 0, μ1 = logm, �1 = 3.
4. V : Sample rx ∈R Fμ1

5. Sum-check#1. ex ← 〈PSC(Gio,τ), VSC(rx)〉(μ1, �1, T1)
6. P: Compute vA = A(rx), vB = B(rx), vC = C(rx); send (vA, vB , vC) to V.
7. V : Abort with b = 0 if ex �= (vA · vB − vC) · ẽq(rx, τ).
8. V: Sample rA, rB , rC ∈R F and send (rA, rB , rC) to P.
9. Let T2 = rA · vA + rB · vB + rC · vC , μ2 = logm, �2 = 2.

10. V : Sample ry ∈R Fμ2

11. Sum-check#2. ey ← 〈PSC(Mrx), VSC(ry)〉(μ2, �2, T2)
12. P: v ← w̃(ry [1..]) and send v to V.
13. be ← 〈PPC.Eval(w̃, S), VPC.Eval(r)〉(pp, C, ry , v, μ2)
14. V: Abort with b = 0 if be == 0.

15. V : vZ ← (1 − ry [0]) · w̃(ry [1..]) + ry [0] · (̃io, 1)(ry [1..])
16. V : v1 ← Ã(rx, ry), v2 ← B̃(rx, ry), v3 ← C̃(rx, ry)
17. V : Abort with b = 0 if ey �= (rA · v1 + rB · v2 + rC · v3) · vZ .
18. V : Output b = 1.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 719

Choice of a polynomial commitment scheme. There exist many extractable
polynomial commitment schemes for multilinear polynomials [69,84,86,87] that
suffice for our purposes. The particular choice impacts the costs of our protocol as
well as assumptions, so we review prior commitment schemes’ costs and assump-
tions (Fig. 3). An additional choice here is the scheme of Bünz et al [32] instan-
tiated with class groups, but it requires a modification for our setting where we
represent multilinear polynomials using their evaluations over a Boolean hyper-
cube (Sects. 2.2, 2.3).

Fig. 3. A comparison of candidate extractable polynomial commitment schemes for
multilinear polynomials. Here, Γ = 2μ where μ is the number of variables in the mul-
tilinear polynomial. Hyrax-PC refers to the scheme of Wahby et al. [84], which also
supports shorter commitments at the cost of increasing the verifier’s time. vSQL-VPD
refers to the zero-knowledge variant [88] of the scheme of Zhang et al. [87]. Virgo-VPD
refers to the scheme of Zhang et al. [86]. The communication column refers to the
amount of communication required in the interactive argument for PC.Eval.

Analysis of costs. Note that the polynomials over which the sum-check proto-
col is run in our interactive argument decompose into several multilinear poly-
nomials (four in the first sum-check protocol and two in the second sum-check
protocol), so by employing prior ideas [78,82,85] to implement a linear-time
prover for the sum-check protocol, the costs of our interactive argument are as
follows.

• P incurs: (1) O(n) costs to participate in the sum-check instances; (2) the cost
of PC.Commit and PC.Eval for a log m-variate multilinear polynomial w̃(·).

• V incurs: (1) O(log m) costs for the sum-check instances; (2) the cost of
PC.Eval for a log m-variate multilinear polynomial; and (3) O(n) costs to
evaluate Ã(·), B̃(·), C̃(·).

• The amount of communication is: (1) O(log m) in the sum-check instances;
(2) the size of the commitment to w̃(·) and the communication in PC.Eval for
w̃(·).

Proof of Theorem 5.1. The desired completeness of our interactive argument
of knowledge follows from the completeness of the sum-check protocol and of
the underlying polynomial commitment scheme. Furthermore, in all the four
candidate constructions for polynomial commitment schemes, the communica-
tion from P to V is sub-linear in m (Fig. 4), which satisfies succinctness. Thus,
we are left with proving witness-extended emulation, which we prove in the full
version of the paper [72].

720 S. Setty

Fig. 4. Costs of our public-coin succinct interactive argument of knowledge instantiated
with different polynomial commitment schemes. The depicted costs are for an R1CS
instance x = (F , A, B, C, io, m, n).

5.2 A Family of NIZKs with Succinct Proofs for R1CS

The interactive argument from the prior subsection is public coin, so we add
zero-knowledge using prior techniques [9,40]. There are two compilers that are
particularly efficient: (1) the one employed by Hyrax [84], which relies on a zero-
knowledge argument protocol for proving dot-product relationships and other
relationships in zero-knowledge (e.g., products); and (2) the compiler employed
by Libra [85] and Virgo [86], which relies on an extractable polynomial commit-
ment scheme. This transformation does not change asymptotics of P, V, or of
the amount of communication (Fig. 4).

Finally, since our protocol is public coin, it can be made non-interactive in the
random oracle model using the Fiat-Shamir transform [45], thereby obtaining a
family of NIZKs with succinct proofs for R1CS.

6 Computation Commitments: zkSNARKs for R1CS
from NIZK

The previous section constructed a family of NIZKs but not zkSNARKs. This is
because the verifier incurs costs linear in the size of the R1CS instance to evaluate
Ã, B̃, C̃ at (rx, ry). We now discuss how to achieve sub-linear verification costs.
At first blush, this appears impossible: The verifier incurs O(n) costs to evaluate
Ã, B̃, C̃ at (rx, ry) (step 16, Sect. 5.1), which is time-optimal [78,80] if x has no
structure (e.g., uniformity). We get around this impossibility by introducing a
preprocessing step for V. In an offline phase, V with access to non-io portions
of an R1CS instance x = (F , A,B,C, io,m, n) executes the following, where
ppcc ← PC.Setup(1λ, 2 log m) and PC is an extractable polynomial commitment
scheme for multilinear polynomials.

Encode(ppcc, (A, B, C)):

• (CA, SA) ← PC.Commit(ppcc, ˜A)

• (CB , SB) ← PC.Commit(ppcc, ˜B)

• (CC , SC) ← PC.Commit(ppcc, ˜C)
• Output (CA, CB , CC)

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 721

V retains commitments output by Encode (which need not hide the underly-
ing polynomials, so in practice SA = SB = SC = ⊥). The interactive argument
proceeds as in the prior section except that at step 16, instead of V evaluating
Ã, B̃, C̃, we have:

• P : v1 ← ˜A(rx, ry), v2 ← ˜B(rx, ry), v3 ← ˜C(rx, ry). Send (v1, v2, v3) to V.

• b1 ← 〈PPC.Eval(˜A, ⊥), VPC.Eval(r)〉(ppcc, CA, (rx, ry), v1, 2 log m)

• b2 ← 〈PPC.Eval(˜B, ⊥), VPC.Eval(r)〉(ppcc, CB , (rx, ry), v2, 2 log m)

• b3 ← 〈PPC.Eval(˜C, ⊥), VPC.Eval(r)〉(ppcc, CC , (rx, ry), v3, 2 log m)
• V: Abort with b = 0 if b1 = 0 ∨ b2 = 0 ∨ b3 = 0.

Lemma 6.1. The interactive argument from Sect. 5.1 where step 16 is replaced
with the above protocol is a public-coin succinct interactive argument of knowl-
edge assuming PC is an extractable polynomial commitment scheme for multi-
linear polynomials.

Proof. The result follows from the knowledge soundness property satisfied by
PC scheme used in the Encode algorithm. ��

If V’s costs to verify the three evaluations and the added communication are
sub-linear in O(n), the modified interactive argument leads to a zkSNARK (if
we add zero-knowledge and non-interactivity as before).

Unfortunately, existing polynomial commitment schemes do not satisfy the
desired efficiency properties: (1) to participate in Eval for any of Ã, B̃, C̃, P incurs
at least quadratic costs i.e., O(m2); and (2) in some schemes (e.g., Hyrax-PC),
the modified interactive argument does not offer improved asymptotics for the
verifier.

The next section describes a scheme that meets our efficiency requirements
and leads to asymptotics noted in Fig. 2.

7 The SPARK Compiler

This section describes spark, a new cryptographic compiler to transform an
existing extractable polynomial commitment scheme for dense multilinear poly-
nomials to one that can efficiently handle sparse multilinear polynomials.

For ease of exposition, we focus on describing spark that applies to 2 log m-
variate sparse polynomials Ã, B̃, C̃ (where their dense representation is of size
≤ n) from Sect. 5.1, but our result generalizes to other sparse multilinear poly-
nomials.

7.1 SPARK-naive: A Straw-Man Solution

To present our solution, we describe a straw-man that helps introduce the nec-
essary building blocks as well as articulate difficulties addressed by spark. We

722 S. Setty

recall Hyrax [84], a zkSNARK that achieves sub-linear verification costs for uni-
form circuits, specifically data-parallel circuits. The prover’s costs in Hyrax can
be made linear in the circuit size using subsequent ideas [85]. Furthermore, the
verifier’s costs are O(d log n + e) where d is the depth of the circuit and e is
the cost to the verifier to participate in PC.Eval to evaluate a log |w|-variate
multilinear polynomial where w is a witness to the circuit.

Details. Let M denote one of {A,B,C} and let s = log m, so μ = 2s. Recall
the closed-form expression for multilinear polynomial evaluations at r ∈ F μ.

M̃(r) =
∑

i∈{0,1}µ ::M(i) �=0

M(i) · ẽq(i, r) (1)

The above sum has at most n terms since M(i) 	= 0 for at most n values
of i. Also, each entry in the sum can be computed with O(μ) multiplications.
Consider the following circuit to evaluate M̃(r).

A O(log μ)-depth circuit with O(n · μ) gates that:

• Takes as witness the list of n tuples of the form (i, M(i))::M(i) �= 0, where
each i is represented with a vector of μ elements of F , so each entry in the list
is μ + 1 elements of F (in other words, the witness is a log(n · (μ + 1))-variate
multilinear polynomial whose dense representation is the above list of tuples);

• Takes as public input r ∈ F μ;
• Asserts that in each of the n tuples, the first μ elements are either 0 or 1.
• Computes v ← ˜M(r) using Equation 1;
• Outputs v

Note that the above circuit is uniform: there are n identical copies of a sub-
circuit, where each sub-circuit computes O(μ) multiplications; the outputs of
these sub-circuits is fed into a binary tree of addition gates to compute the final
sum. Furthermore, there is no sharing of witness elements across data-parallel
units, so it truly data-parallel.

Construction. Given an extractable polynomial commitment scheme PC for
multilinear polynomials, we build a scheme for sparse multilinear polynomials
as follows.

PCnaive:

• pp ← Setup(1λ, μ, n): PC.Setup(1λ, log((μ + 1) · n))

• (C; S) ← Commit(pp; ˜M): PC.Commit(pp, D), where D is the unique log((μ +
1) · n)-variate multilinear polynomial whose dense representation is the list of
tuples (i, M(i))::M(i) �= 0 and each entry is (μ + 1) elements of F .

• b ← Open(pp, C, ˜M, S): PC.Open(pp, C, D, S), where D is defined as above.

• b ← Eval(pp, C, r, v, μ, n; ˜M, S): P and V use Hyrax to verify the claim that
˜M(r) = v using the circuit described above.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 723

Analysis of costs. Recall that computing M̃(r) for M ∈ {A,B,C} and r ∈ F μ

takes O(n) costs. The principal downside of PCnaive is it imposes an asymptotic
overhead over its underlying commitment scheme for dense multilinear polyno-
mials.

For example, with Hyrax-PC as the underlying commitment scheme, the
prover with PCnaive incurs O(n log n) costs to prove an evaluation of a com-
mitted sparse multilinear polynomial. This is because the prover must prove
the satisfiability of a circuit of size O(n · μ) as well as prove the evaluations
of a constant number of (log (n · (μ + 1)))-variate multilinear polynomials. This
slowdown is also significant in practice (Sect. 8).

Lemma 7.1. PCnaive is a polynomial commitment scheme for multilinear poly-
nomials with the costs noted above.

Proof. Completeness follows from the completeness of PC and Hyrax. Binding
follows from the uniqueness of the dense representation of a sparse multilinear
polynomial. Knowledge soundness follows from the witness-extended emulation
offered by Hyrax and PC.Eval. The claimed prover’s slowdown follows from the
costs of Hyrax and PC applied to a constant number of (log (n · (μ + 1)))-variate
multilinear polynomials. ��

7.2 Eliminating Asymptotic Overheads by Leveraging Memory
Checking

We now improve on the straw-man scheme by devising an O(n)-sized circuit
for sparse polynomial evaluation. Naturally, the size of the witness to the cir-
cuit is also of size O(n). This allows spark to achieve a linear-time prover if
the underlying polynomial commitment scheme offers linear-time costs for the
prover [69,84]. More generally, when transforming an existing polynomial com-
mitment scheme that meets our requirements (Sect. 2.3), spark does not add
asymptotic overheads to the prover for proving the evaluations of committed
sparse multilinear polynomials.

Observe that for M ∈ {A,B,C}, M ∈ Fm×m and any r ∈ F μ, we can rewrite
the evaluation of M̃(r) as follows. In our context μ = 2 log m, interpret r as a
tuple (rx, ry) where rx, ry ∈ F s and s = log m = μ/2. Thus, we can rewrite Eq. 1
as:

M̃(rx, ry) =
∑

(i,j)∈({0,1}s,{0,1}s) ::M(i,j) �=0

M(i, j) · ẽq(i, rx) · ẽq(j, ry)

In our context, the above sum still contains n terms. Also, computing each
entry in the sum still requires (μ + 1) multiplications over F . However, it is
possible to compute a table of evaluations of ẽq(i, rx) for all i ∈ {0, 1}s in
O(2s) = O(m) time. Similarly, it is possible to compute evaluations of ẽq(j, ry)
for all j ∈ {0, 1}s in O(m) time.

Unfortunately, this observation is insufficient: even though these tables can be
computed in O(m) time, the sum is taken over the list of (i, j) ∈ ({0, 1}s, {0, 1}s)

724 S. Setty

where M(i, j) 	= 0 and for an arbitrary 2s-variate sparse multilinear polynomial,
such a list has no structure, so computing the sum requires n random accesses
into two tables each with m entries. We could attempt to build a circuit that
supports RAM operations. Unfortunately, existing techniques to encode RAM
in circuits incur a logarithmic blowup or constants that in practice are larger
than a logarithmic blowup.

For m RAM operations over a memory of size m,

• Pantry [31], using Merkle trees, trees [24,67], offers a circuit of size
O(m log m).

• Buffet [83], using permutation networks [13], offers a circuit of size O(m log m)
with constants smaller than the ones in Pantry.

• vRAM [89] offers an O(m)-sized circuit with a constant of log |F | (to encode
consistency checks over a memory transcript), so, in practice, this does not
improve on the straw-man. Other downsides: (1) it only supports 32-bit sized
memory cells, whereas we need a memory over elements of F ; (2) nearly all
of the circuit’s non-deterministic witness must be committed by P during
circuit evaluation.

Our solution specializes and improves upon a recent implementation of
offline memory checking techniques [24] in Spice [73], which builds circuits to
encode operations on persistent storage with serializable transactions. The stor-
age abstraction can be used as a memory abstraction where for m operations, the
circuit is of size O(m), but the constants are worse than those of VRAM: ≥ 1000
(to encode an elliptic-curve based multiset collision-resistant hash function for
each memory operation). We get around this issue by designing an offline mem-
ory checking primitive via a new randomized check that only uses public coins.
Furthermore, unlike a vRAM-based solution, most of the non-deterministic wit-
ness needed by the circuit can be created by PC.Commit (i.e., by the Encode
algorithm in the context of computation commitments).

7.2.1 An O(n)-sized Circuit for Evaluating M̃

We now describe an O(n)-sized circuit to compute an evaluation of M̃ . We prove
that the circuit indeed computes the correct evaluation of the sparse polynomial
in Lemma 7.5. In the description of the circuit, we assume hash functions H and
H, which are defined below (Eqs. 2 and 3). Before we describe the circuit for
polynomial evaluation, we specify an encoding of sparse polynomials that our
circuit leverages.

Encoding sparse polynomials. Given a sparse polynomial M̃ (e.g., M̃ ∈
{Ã, B̃, C̃}), we encode it using three vectors of size n as follows. Since M̃ is
represented by n tuples of the form (i, j,M(i, j)), where each tuple has 3 elements
of F such that M(i, j) 	= 0. Note that this encoding differs from the encoding in
the straw-man where each i and j were encoded using a vector of s elements of
{0, 1} ∈ F . The encoding here essentially packs s bits in i (or j) into a single
element of F in the obvious way, which works because s < log |F |. In some

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 725

canonical order, let row, col, val be three vectors that encode the above n tuples
such that for k ∈ [0, n − 1] row(k) = i, col(k) = j, val(k) = M(i, j).

Encoding metadata for memory checking: “Memory in the head”. The
circuit below takes as witness additional metadata about M̃ (besides row, col, val
introduced above). This metadata accelerates memory checking during the eval-
uation of M̃(r).

The metadata is in the form of six vectors: read-tsrow ∈ F n, write-tsrow ∈ F n,
audit-tsrow ∈ Fm, read-tscol ∈ F n, write-tscol ∈ F n, and audit-tscol ∈ Fm. We
specify how these are computed below with pseudocode. Note that comput-
ing this metadata only needs the following parameters: memory size (which
is determined by 2s = m) and the sequence of addresses at which the mem-
ory is accessed (which are provided by row and col). In a nutshell, read-tsrow

and write-tsrow denote the timestamps associated with read and write oper-
ations, and audit-tsrow denotes the final timestamps of memory cells in the
offline memory checking primitive [24, §4.1] for the address sequence specified
by row over a memory of size m = O(2s). Similarly, read-tscol, write-tscol, and
audit-tscol ∈ Fm denote timestamps for the address sequence specified by col.
They are computed as follows (vec! uses Rust notation).

MemoryInTheHead(m, n, addrs):

• read-ts ← vec![n; 0]; write-ts ← vec![n; 0]; audit-ts ← vec![m; 0]; ts ← 0
• for i in (0..addrs.len()):

• addr ← addrs[i]
• r-ts ← audit-ts[i]
• ts ← max(ts, r-ts) + 1
• read-ts[i] ← r-ts
• write-ts[i] ← ts
• audit-ts[addr] ← ts

• return (read-ts, write-ts, audit-ts)

Circuit description. The circuit below evaluates a sparse polynomial using
the encoding and preprocessed metadata described above. It relies multiset hash
functions, which we now define. Unlike ECC-based multiset hash functions in
Spice [73], we employ a public-coin hash function that verifies the desired multi-
set relationship. Specifically, we define two hash functions: (1) hγ : F 3 → F ; and
(2) Hγ : F ∗ → F , where F ∗ denotes a multiset with elements from F and γ ∈R F .

hγ(a, v, t) = a · γ2 + v · γ + t (2)

Hγ(M) = Πe∈M(e − γ) (3)

Given (A, V, T) ∈ (F �, F �, F �) for � > 0, we define a map Hγ : (F �, F �, F �) →
F �:

Hγ(A, V, T) = [hγ(A[0], V [0], T [0]), . . . , hγ(A[� − 1], V [� − 1], T [� − 1])]

726 S. Setty

We capture the soundness errors of these hash functions in Lemma 7.2 and
Lemma 7.3.

An O(n)-sized, O(log n)-depth circuit (Circuiteval-opt).

• Takes as witness the following lists (Hyrax can accept witness in separate
lists).

1. a succinct description of ˜M : three lists row, col, val, where each list has
n entries.

2. two lists erow, ecol, where each list contains n elements of F .
3. six lists: read-tsrow,read-tscol,write-tsrow, write-tscol,audit-tsrow, and

audit-tscol. The first four are of size n and the last two are of size m;
each entry is an element of F .

4. two challenges γ1, γ2 ∈ F .
• Takes as public input r = (rx, ry) ∈ F μ;

• Output ˜M(r) using v ← ∑n−1
k=0 val[k] · erow[k] · ecol[k].

• Memory checking for erow:
• memrow ← [ẽq(0, rx), . . . , ẽq(m − 1, rx)] ∈ Fm

• Initrow ← Hγ1([0, . . . , m − 1], memrow, [0, . . . , 0]) ∈ Fm

• RSrow ← Hγ1(row, erow, read-tsrow) ∈ Fn

• WSrow ← Hγ1(row, erow, write-tsrow) ∈ Fn

• Auditrow ← Hγ1([0, . . . , m − 1], memrow, audit-tsrow) ∈ Fm

• Assert Hγ2(Initrow) · Hγ2(WSrow) = Hγ2(RSrow) · Hγ2(Auditrow)
• Memory checking for ecol:

• memcol ← [ẽq(0, ry), . . . , ẽq(m − 1, ry)] ∈ Fm

• Let Initcol ← Hγ1([0, . . . , m − 1], memcol, [0, . . . , 0]) ∈ Fm

• Let RScol ← Hγ1(col, ecol, read-tscol) ∈ Fn

• Let WScol ← Hγ1(col, ecol, write-tscol) ∈ Fn

• Let Auditcol ← Hγ1([0, . . . , m − 1], memcol, audit-tscol) ∈ Fm

• Assert Hγ2(Initcol) · Hγ2(WScol) = Hγ2(RScol) · Hγ2(Auditcol)

Lemma 7.2. For any two pairs (a1, v1, t1) ∈ F 3 and (a2, v2, t2) ∈ F 3,
Prγ{hγ(a1, v1, t1) = hγ(a2, v2, t2)|(a1, v1, t1) 	= (a2, v2, t2)} ≤ 3/|F |.
Proof. This follows from the Schwartz-Zippel lemma. ��
Lemma 7.3. For any � > 0, (A1, V1, T1) ∈ (F �, F �, F �) and (A2, V2, T2) ∈
(F �, F �, F �) Prγ{∃i :: Hγ(A1, V1, T1)[i] = Hγ(A2, V2, T2)[i]|(A1, V1, T1) 	=
(A2, V2, T2)} ≤ 3 · �/|F |.
Proof. This follows from a standard union bound with the result of the
Lemma 7.2. ��
Lemma 7.4. For any two multisets M1,M2 of size � over F ,

Pr
γ

{Hγ(M1) = Hγ(M2)|M1 	= M2} ≤ �/|F |

Proof. This follows from the Schwartz-Zippel lemma. ��

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 727

Lemma 7.5. Assuming that |F | is exponential in λ and n = O(λ), for any
2 log m-variate multilinear polynomial M̃ whose dense representation is of size
at most n and for any given erow, ecol ∈ F n,

Pr
γ1,γ2

{Circuiteval-opt(w, (γ1, γ2), r) = v|M̃(r) 	= v} ≤ negl(λ),

where w = (row, col, val, erow, ecol,MemoryInTheHead(m,n, row),
MemoryInTheHead(m,n, col)) and (row, col, val) denotes the dense representa-
tion of M̃ .

Proof. This follows from the soundness of the memory checking primitive [24]
and the collision-resistance of the underlying hash functions used (Lemmas 7.4
and 7.3). ��

7.2.2 Construction of a Polynomial Commitment Scheme
Given an extractable polynomial commitment scheme PC for multilinear poly-
nomials, we build a scheme for sparse multilinear polynomials as follows.

Note that our focus is on designing a polynomial commitment scheme for
efficiently realizing computation commitments (Sect. 6). For this purpose, the
Spartan verifier runs the Commit algorithm (of the sparse polynomial commit-
ment scheme) as part of the Encode algorithm, so unlike the general setup of
polynomial commitments, the entity creating a commitment is the verifier itself
(not an untrusted entity). As a result, the additional memory-checking meta-
data about the sparse polynomial as part of Commit is created by the verifier,
so we do not need to verify that the timestamps are well-formed according to
its specification in the MemoryInTheHead procedure as required by Lemma7.5.
This is only an optimization and not a limitation. In the general setting where
Commit (of the sparse polynomial commitment scheme) is run by an untrusted
entity, we can require it to additionally produce a proof that proves that time-
stamps are well-formed. In the description below, given our focus on computation
commitments, we omit those proofs.

PCspark:

• pp ← Setup(1λ, μ, n): (PC.Setup(1λ, μ)),PC.Setup(1λ, log(n)))

• (C; S) ← Commit(pp; M̃):
• Let (ppm, ppn) ← pp

• Let (row, col, val) denote the dense representation of M̃ as described in text.
– (Crow, Srow) ← PC.Commit(ppn, r̃ow)

– (Ccol, Scol) ← PC.Commit(ppn, c̃ol)

– (Cval, Sval) ← PC.Commit(ppn, ṽal)
• Let (read-tsrow, write-tsrow, audit-tsrow) ← MemoryInTheHead(2μ/2, n, row)

– (Cread-tsrow , Sread-tsrow) ← PC.Commit(ppn, ˜read-tsrow)

– (Cwrite-tsrow , Swrite-tsrow) ← PC.Commit(ppn, ˜write-tsrow)

– (Caudit-tsrow , Saudit-tsrow) ← PC.Commit(ppm, ˜audit-tsrow)
• Let (read-tscol, write-tscol, audit-tscol) ← MemoryInTheHead(2μ/2, n, col)

728 S. Setty

– (Cread-tscol , Sread-tscol) ← PC.Commit(ppn, ˜read-tscol)

– (Cwrite-tscol , Swrite-tscol) ← PC.Commit(ppn, ˜write-tscol)

– (Caudit-tscol , Saudit-tscol) ← PC.Commit(ppm, ˜audit-tscol)
• Let C ← (Crow, Ccol, Cval, Cread-tsrow , Cwrite-tsrow , Caudit-tsrow , Cread-tscol ,

Cwrite-tscol , Caudit-tscol)

• Let S ← (Srow, Scol, Sval, Sread-tsrow , Swrite-tsrow , Saudit-tsrow , Sread-tscol ,
Swrite-tscol , Saudit-tscol)

• Output (C, S)

• b ← Open(pp, C, M̃ , S):
• Let (ppm, ppn) ← pp.

• Let row, col, val denote dense representation of M̃ as defined above.
• Output PC.Open(ppn, C.Crow, r̃ow, S.Srow) ∧ PC.Open(ppn, C.Ccol, c̃ol, S.Scol) ∧

PC.Open(ppn, C, Cval, ṽal, S.Sval)

• b ← Eval(pp, C, r, v, μ, n; M̃, S):
• Let (ppm, ppn) ← pp and let (rx, ry) = r, where rx, ry ∈ Fμ/2.

• Let row, col, val denote dense representation of M̃ as defined above.
• P :

– Compute erow and ecol with 2n lookups over a table of size m =
2μ/2. That is, erow = [ẽq(row(0), rx), . . . , ẽq(row(n − 1), rx)]; let ecol =
[ẽq(col(0), ry), . . . , ẽq(col(n − 1), ry)].

– (Cerow , Serow) ← PC.Commit(ppn, ẽrow); send Cerow to V.
– (Cecol , Secol) ← PC.Commit(ppn, ẽcol); send Cecol to V.

• V : (γ1, γ2) ∈R F 2. Send (γ1, γ2) to P.
• P and V use Hyrax (with PC as the extractable polynomial commitment scheme)

to verify the claim that M̃(r) = v using Circuiteval-opt.

Analysis of costs. Circuiteval-opt is uniform because computing H using a
binary tree of multiplications [78] constitutes nearly all of the work in the above
circuit. Figure 5 depicts the costs of PCspark with different choices for PC.

Fig. 5. Costs of PCspark with different choices for PC. Here, n is number of entries in
the dense representation of the multilinear polynomial.

Lemma 7.6. Assuming that PCspark.Commit is run by an honest entity, then
PCspark is a polynomial commitment scheme for multilinear polynomials with the
costs noted.

Proof. Completeness follows from the completeness of PC, Hyrax, and
Circuiteval-opt. Binding follows from the uniqueness of the dense representation

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 729

of the sparse multilinear polynomial as (row, col, val). Knowledge soundness fol-
lows from the witness-extended emulation offered by Hyrax and PC, and from
the negligible soundness error of Circuiteval-opt (Lemma 7.5). Finally, the claimed
costs follow from the cost model of Hyrax and of PC applied to a constant number
of O(log n)-variate multilinear polynomials. ��

7.2.3 Optimizations
We now describe many optimizations to spark to reduce constants.

1. Instead of using Hyrax as a black box, we tailor it for Circuiteval-opt using
prior ideas [78]. This reduces overall costs significantly. We also do not need
Hyrax’s zero-knowledge compiler for computation commitments.

2. For computation commitments, we build a single circuit that produces evalua-
tions of Ã, B̃, C̃ at (rx, ry). This enables reusing parts of the memory checking
circuit (related to the state of the memory) across evaluations.

3. In our particular context, we can set ∀0 ≤ i < n: write-tsrow[i] =
read-tsrow[i]+1 and write-tscol[i] = read-tsread[i]+1. This is because unlike
the traditional setting of offline memory checking, the read timestamps are
not untrusted. This avoids having to commit to ˜write-tsrow and ˜write-tscol.

4. During PCspark.Eval, at the witness layer in Hyrax, V needs to evaluate a num-
ber of multilinear polynomials at either rrow, rcol ∈ F log n or rmem ∈ F log m.
We avoid having to commit to them by leveraging their succinct representa-
tions.

• V can compute m̃emrow(rrow) and m̃emcol(rcol) in O(log m) as follows:

m̃emrow(rrow) ← ẽq(rrow, rx)

m̃emcol(rcol) ← ẽq(rcol, ry)

• We leverage the following facts: (1) ˜(0, 1, . . . ,m − 1)(rmem) =∑log m
i=0 2i · rmem[i]; (2) ˜(0, 0, . . . , 0)(rmem) = 0.

5. It is possible to combine k μ-variate multilinear polynomials into a single
multilinear polynomial over μ + log k variables. We employ this technique to
reduce the number of committed multilinear polynomials from 23 to 3.

8 Implementation and Optimizations

We implement Spartan as a modular library in about 8,000 lines of Rust includ-
ing optimizations listed throughout the paper as well as optimizations from prior
work [78,80,82,84,85]. We find that the prover under spark outperforms the
prover under spark-naive by >10× for R1CS instances with 220 constraints. We
also implement spark with and without our optimizations. At 220 constraints,
our optimizations reduce proof lengths from 3.1 MB to 138.4 KB, a improvement
of 23×; our optimizations also improve prover and verification times by about
10×.

730 S. Setty

In the next section, we present results from spark instantiated with Hyrax-
PC [84] i.e., we evaluate a zkSNARK whose security holds under the discrete
logarithm problem. For curve arithmetic, we use curve25519-dalek [1], which
offers an efficient implementation of a prime-order Ristretto group [2,53] called
ristretto255. The scalar arithmetic in the library is however slow since it
represents the underlying scalar elements as byte strings for fast curve arithmetic.
To cope with this, we optimize the underlying scalar arithmetic by ≈10× by
adapting other code [28].

9 Experimental Evaluation

This section experimentally evaluates our implementation of Spartan and com-
pares it with state-of-the-art zkSNARKs and proof-succinct NIZKs.

9.1 Metrics, Methodology, and Testbed

Our principal evaluation metrics are: (1) P’s costs to produce a proof; (2) V’s
costs to preprocess an R1CS instance; (3) V’s costs to verify a proof; and (4) the
size of a proof. We measure P’s and V’s costs using a real-time clock and the
size of proofs in bytes by serializing proof data structures. For Spartan, we use
cargo bench to run experiments, and for baselines, we use profilers provided
with their code.

We experiment with Spartan and several baselines (listed below) using a
Microsoft Surface Laptop 3 on a single CPU core of Intel Core i7-1065G7 with
16 GB RAM running Ubuntu 20.04 atop Windows 10. We report results from a
single-threaded configuration since not all our baselines leverage multiple cores.
As with prior work [16], we vary the size of the R1CS instance by varying the
number of constraints and variables m and maintain the ratio n/m to approxi-
mately 1. In all Spartan experiments |io| = 10.

Baselines. We compare Spartan with the following zkSNARKs and NIZKs.

1. Groth16 [51], the most efficient zkSNARK with trusted setup based on
GGPR [47].

2. Ligero [3], a prior proof-succinct NIZK with a light-weight prover.
3. Hyrax [84], a prior transparent zkSNARK that achieves sub-linear verification

costs for data-parallel computations.
4. Aurora [16], a prior proof-succinct NIZK.
5. Fractal [36], a recent transparent zkSNARK that instantiates computation

commitments to achieve sub-linear verification costs.

We provide a comparison with additional baselines in an extended report [72].

Methodology and parameters. For Spartandl, we report results from two
variants: Spartansnark (which incurs sub-linear verification) and Spartannizk
(which incurs linear-time verification). This is because several baselines offer only
a linear-time verifier. Also, for data-parallel workloads, the NIZK variant depicts

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 731

the performance that Spartansnark can achieve for the prover and proof sizes
since Spartansnark can amortize the costs of computation commitments across
data-parallel units.

For Groth16, we benchmark its implementation from libsnark with bn128
curve [64].

For Hyrax, we use its reference implementation with curve25519 [62]. To
compare Spartan with Hyrax, we transform R1CS instances to depth-1 arith-
metic circuits where the circuit evaluates constraints in the R1CS instance, and
outputs a vector of zeros when all constraints are satisfied. For an arbitrary
R1CS instance, this circuit has no structure, and hence Hyrax incurs linear-time
verification costs.

For Ligero, Aurora, and Fractal, we use their implementations from libiop
with a prime field of size ≈ 2256 [63]. The implementations of Aurora and Fractal
support two sets of parameters: proven and non-proven (also known as heuristic).
The default choice in their code is the heuristic parameters, which rely on non-
standard conjectures related to Reed-Solomon codes (e.g., in the FRI protocol)
for soundness [10, Appendix B]. Concretely, the heuristic parameters use ≈10×
fewer query repetitions of FRI compared to the proven parameters. As expected,
the heuristic versions achieve ≈10× lower verification costs and proof sizes than
the corresponding provable versions. Note that very recent work makes progress
toward proving some of these heuristics [11].

9.2 Performance Results

Prover. Figure 6 depicts the prover’s costs under Spartan and its baselines.
Spartan outperforms all its baselines. When compared to the most closely related
system, Spartansnark is 36× faster than Fractal at 218 constraints.4 When we
compare Ligero, Aurora, and Hyrax with Spartannizk (since all of them are
proof-succinct NIZKs and incur linear-time verification costs), Spartannizk is
24× faster than Ligero, 152× faster than Aurora, and 99× faster than Hyrax
at 220 instance sizes. Finally, compared to Groth16, Spartansnark is 2× faster
and Spartannizk is 16× faster for 220 constraints.

Proof sizes. Figure 7 depicts proof sizes under Spartan and its baselines.
Although Spartansnark’s proofs are asymptotically larger than Fractal (Fig. 2),
Spartansnark offers ≈23× shorter proofs at 218 constraints. When we com-
pare the proof-succinct NIZKs, Spartannizk offers proofs that are 1.2–416×
shorter than its baselines. All transparent zkSNARKs produce orders of magni-
tude longer proofs than Groth16.

4 Unfortunately, we could not run Fractal at 219 or 220 constraints because it crashes
by running out of memory.

732 S. Setty

Fig. 6. Prover’s performance (in seconds) for varying R1CS instance sizes under dif-
ferent schemes.

Fig. 7. Proof sizes in KBs for various zkSNARKs. Entries with “M” are in megabytes.
The proof sizes under Groth16 [51] is 128 bytes for all instance sizes.

Verifier. Figure 8 depicts the verifier times under different schemes. Groth16
offers the fastest verifier, but it requires a trusted setup. Among schemes with-
out trusted setup, Spartan offers the fastest verifier. Specifically, Spartansnark’s
verifier is 3.6× faster than Fractal (at the largest instance size Fractal can
run), and at 220 constraints, it is 1326× faster than Aurora, 383× faster than
Ligero, and 80× faster than Hyrax. This type of performance is expected
because Aurora, Ligero, and Hyrax incur linear costs for the verifier whereas
Spartansnark (and Fractal) incur sub-linear verification costs due to the use
of computation commitments, which requires preprocessing the non-io compo-
nent of an R1CS instance (we quantify the costs of that process below). Among
proof-succinct NIZKs, Spartannizk is 22× faster than Hyrax, 363× faster than
Aurora, and 105× faster than Ligero at 220 constraints.

Encoder. Figure 9 depicts the cost to the verifier to preprocess an R1CS instance
(without the io component) under Spartansnark, Fractal [36], and Groth16 [51].
We do not depict other baselines because they do not require any preprocessing.
Spartansnark’s encoder is up to 52× faster than Fractal’s encoder and about
4.7× faster than the trusted setup for Groth16 at the largest instance sizes.

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 733

Fig. 8. Verifier’s performance (in ms) under different schemes. Entries with “s” are in
seconds. The verifier under Groth16 [51] takes ≈ 2ms at all instance sizes.

Fig. 9. Encoder’s performance (in seconds) for varying R1CS instance sizes under
different schemes.

Acknowledgment. Comments from Sebastian Angel, Melissa Chase, Ben Fisch, Esha
Ghosh, Abhiram Kothapalli, Satya Lokam, Bryan Parno, Ioanna Tzialla, Ramarathnam
Venkatesan, and the CRYPTO reviewers helped improve this paper. Special thanks to
Justin Thaler, Riad Wahby, and Michael Walfish for their detailed attention and thor-
ough comments, which helped clarify several aspects of this work. We thank Jonathan
Lee for insightful discussions on various topics covered in this work.

References

1. A pure-Rust implementation of group operations on Ristretto and Curve25519.
https://github.com/dalek-cryptography/curve25519-dalek

2. The Ristretto group. https://ristretto.group/
3. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sub-

linear arguments without a trusted setup. In: CCS (2017)
4. Arasu, A., et al.: Concerto: a high concurrency key-value store with integrity. In:

SIGMOD (2017)
5. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)
6. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.

J. ACM 45(1), 70–122 (1998)
7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-

logarithmic time. In: STOC (1991)
8. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-

prover interactive protocols. Comput. Complex. 2(4), 374 (1992)

https://github.com/dalek-cryptography/curve25519-dalek
https://ristretto.group/

734 S. Setty

9. Ben-Or, M., et al.: Everything provable is provable in zero-knowledge. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York
(1990). https://doi.org/10.1007/0-387-34799-2 4

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. ePrint Report 2018/046 (2018)

11. Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for
Reed-Solomon codes. Cryptology ePrint Archive, Report 2020/654 (2020)

12. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from Bitcoin.
In: S&P (2014)

13. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs to
delegatable succinct constraint satisfaction problems: extended abstract. In: ITCS
(2013)

14. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of
probabilistically-checkable proofs. In: STOC, pp. 585–594 (2013)

15. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

16. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17653-2 4

17. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5 2

18. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security (2014)

19. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Short PCPs
verifiable in polylogarithmic time. In: Computational Complexity (2005)

20. Ben-Sasson, E., Sudan, M.: Simple PCPs with poly-log rate and query complexity.
In: STOC, pp. 266–275 (2005)

21. Ben-Sasson, E., Sudan, M.: Short PCPs with polylog query complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

22. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
(2012)

23. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

24. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. In: FOCS (1991)

25. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. ePrint Report 2014/846 (2014)

26. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear PCPs. ePrint Report 2019/188 (2019)

27. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49896-5 12

https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-662-49896-5_12

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 735

28. Bowe, S.: A BLS12-381 implementation. https://github.com/zkcrypto/bls12 381
29. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling

decentralized private computation. ePrint Report 2018/962 (2018)
30. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.

J. Comput. Syst. Sci. 37(2), 156–189 (1988)
31. Braun, B., Feldman, A.J., Ren, Z., Setty, S., Blumberg, A.J., Walfish, M.: Verifying

computations with state. In: SOSP (2013)
32. Bunz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.

ePrint Report 2019/1229 (2019)
33. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:

short proofs for confidential transactions and more. In: S&P (2018)
34. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and compo-

sition of succinct zero-knowledge proofs. ePrint Report 2019/142 (2019)
35. Chiesa, A., Forbes, M.A., Spooner, N.: A zero knowledge sumcheck and its appli-

cations. CoRR, abs/1704.02086 (2017)
36. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive

proofs from holography. ePrint Report 2019/1076 (2019)
37. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental mul-

tiset hash functions and their application to memory integrity checking. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 188–207. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 12

38. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: ITCS (2012)

39. Costello, C., et al.: Geppetto: versatile verifiable computation. In: S&P, May 2015
40. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic, or:

can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 424–441. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055745

41. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Parno, B.: Cinderella: turning
shabby X.509 certificates into elegant anonymous credentials with the magic of
verifiable computation. In: S&P (2016)

42. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3) (2007)
43. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can

memory checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–
520. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 30

44. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and
the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

45. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

46. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: CCS
(2016)

47. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

48. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: STOC, pp. 99–108 (2011)

49. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: STOC (2008)

https://github.com/zkcrypto/bls12_381
https://doi.org/10.1007/978-3-540-40061-5_12
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1007/978-3-642-00457-5_30
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

736 S. Setty

50. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 19

51. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

52. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-SNARKs. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 698–728. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 24

53. Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Gen-
naro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 705–723.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6 34

54. H̊astad, J.: Some optimal inapproximability results. In: STOC, pp. 1–10 (1997)
55. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs.

In: Computational Complexity (2007)
56. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure

multiparty computation. In: STOC, pp. 21–30 (2007)
57. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-

mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

58. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC (1992)

59. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: S&P (2016)

60. Kosba, A., Papamanthou, C., Shi, E.: xJsnark: a framework for efficient verifiable
computation. In: S&P (2018)

61. Lee, J., Nikitin, K., Setty, S.: Replicated state machines without replicated execu-
tion. In: S&P (2020)

62. libfennel. Hyrax reference implementation. https://github.com/hyraxZK/fennel
63. libiop. A C++ library for IOP-based zkSNARK. https://github.com/scipr-lab/

libiop
64. libsnark. A C++ library for zkSNARK proofs. https://github.com/scipr-lab/

libsnark
65. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-

knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–
189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

66. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. In: FOCS, October 1990

67. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

68. Micali, S.: CS proofs. In: FOCS (1994)
69. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:

Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

70. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: S&P, May 2013

71. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: STOC, pp. 49–62 (2016)

https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-662-47989-6_34
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://github.com/hyraxZK/fennel
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-642-36594-2_13

Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup 737

72. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
ePrint Report 2019/550 (2019)

73. Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent
services in zero-knowledge. In: OSDI, October 2018

74. Setty, S., Blumberg, A.J., Walfish, M.: Toward practical and unconditional verifi-
cation of remote computations. In: HotOS, May 2011

75. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving the
conflict between generality and plausibility in verified computation. In: EuroSys,
April 2013

76. Setty, S., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument systems
for outsourced computation practical (sometimes). In: NDSS, February 2012

77. Setty, S., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking
proof-based verified computation a few steps closer to practicality. In: USENIX
Security, August 2012

78. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 71–89. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 5

79. Thaler, J., Roberts, M., Mitzenmacher, M., Pfister, H.: Verifiable computation with
massively parallel interactive proofs. In: HotCloud (2012)

80. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for verifiable
computation. In: S&P (2013)

81. Wahby, R.S., Howald, M., Garg, S., Shelat, A., Walfish, M.: Verifiable ASICs. In:
S&P (2016)

82. Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: CCS (2017)
83. Wahby, R.S., Setty, S., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM and

control flow in verifiable outsourced computation. In: NDSS (2015)
84. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient

zkSNARKs without trusted setup. In: S&P (2018)
85. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-

knowledge proofs with optimal prover computation. ePrint Report 2019/317 (2019)
86. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and

its applications to zero knowledge proof. In: S&P (2020)
87. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: ver-

ifying arbitrary SQL queries over dynamic outsourced databases. In: S&P (2017)
88. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: A zero-

knowledge version of vSQL. ePrint Report 2017/1146 (2017)
89. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:

faster verifiable RAM with program-independent preprocessing. In: S&P (2018)

https://doi.org/10.1007/978-3-642-40084-1_5

NIZK from LPN and Trapdoor Hash
via Correlation Intractability
for Approximable Relations

Zvika Brakerski(B), Venkata Koppula, and Tamer Mour

Weizmann Institute of Science, Rehovot, Israel
{zvika.brakerski,venkata.koppula,tamer.mour}@weizmann.ac.il

Abstract. We present new non-interactive zero-knowledge argument
systems (NIZK), based on standard assumptions that were previously
not known to imply it. In particular, we rely on the hardness of both
the learning parity with noise (LPN) assumption, and the existence of
trapdoor hash functions (TDH, defined by Döttling et al., Crypto 2019).
Such TDH can be based on a number of standard assumptions, including
DDH, QR, DCR, and LWE.

We revisit the correlation intractability (CI) framework for convert-
ing Σ-protocols into NIZK, and present a different strategy for instan-
tiating it by putting together two new components. First, while prior
works considered the search-complexity of the relations for which CI is
sought, we consider their probabilistic representation. Namely, a distri-
bution over lower-complexity functions that bitwise-computes the target
function with all but small (constant) probability. The second component
is a new perspective for quantifying the class of relations for which CI is
achieved. We show that it is instructive to consider CI for approximable
relations (CI-Apx) which is quantified by a class of relations, but requires
CI to hold against any approximation of any relation in this class.

We show that CI-Apx for just constant-degree polynomials suffices
for NIZK, if the underlying Σ-protocol is implemented using a suitable
commitment scheme. We show that such a commitment scheme can be
constructed based on low noise LPN. We then show how to construct
CI-Apx for constant-degree polynomials from any suitable TDH (with
an enhanced correctness property that is satisfied by all existing TDH
constructions).

1 Introduction

Zero-Knowledge (ZK) [17] is one of the most celebrated and widely used notions
in modern cryptography. A ZK proof is a protocol in which a prover conveys the
validity of a statement to a verifier in a way that reveals no additional informa-
tion. In a non-interactive ZK proof system (NIZK), we wish to construct a singe-
message ZK proof system. Common setup is necessary for NIZK, and by default

A full version can be found at https://eprint.iacr.org/2020/258.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 738–767, 2020.
https://doi.org/10.1007/978-3-030-56877-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_26&domain=pdf
https://eprint.iacr.org/2020/258
https://doi.org/10.1007/978-3-030-56877-1_26

NIZK from LPN and Trapdoor Hash via CI-Apx 739

(and always in this work) NIZK is considered in the common random/reference
string (CRS) model. In the CRS model, a trusted string is sampled from a pre-
scribed distribution (preferably uniform) and made available to both the prover
and the verifier. Ideally, we would have liked to construct a NIZK proof system
for all NP languages (or equivalently for some NP-complete language).1 NIZK
for NP turns out to be extremely useful for many applications such as CCA secu-
rity [13,23], signatures [3,5], and numerous other applications, including recent
applications in the regime of cryptocurrencies [4]. From this point and on, we
use the term NIZK to refer to “NIZK for NP” unless otherwise stated.

While ZK proofs for all NP languages are known under the minimal assump-
tion that one-way functions exist, this is far from being the case for NIZK. We
focus our attention on constructions in the standard model and under standard
cryptographic assumptions. For many years, NIZK under standard assumptions
were only known based on Factoring [7] (or doubly enhanced trapdoor functions,
which are only known to exist based on Factoring [15]) or assumptions on groups
with bilinear maps [18].

More recently, constructions based on indistinguishability obfuscation were
presented as well [25]. Most recently, a new line of works, starting with [10,19,21],
focused on obtaining NIZK based on the notion of correlation intractability (CI)
[11]. In the CI framework, it was shown that in order to construct NIZK, it
suffices to construct a family of hash functions H with the following property.
For every efficient f , given a hash function H ← H from the family, it is compu-
tationally hard to find x s.t. f(x) = H(x). If such correlation intractable hash
(CIH) is constructed, then it can be used to securely instantiate the Fiat-Shamir
paradigm [16] and derive NIZK from so-called Σ-protocols. This line of works
culminated in two remarkable achievements. Canetti et al. [9] constructed NIZK
based on the existence of circular secure fully homomorphic encryption. Peikert
and Shiehian [24] constructed NIZK based on the hardness of the learning with
errors (LWE) problem.2

These recent results opened a new avenue in the study of NIZK and raised
hope that construction under additional assumptions can be presented. How-
ever, it appears that there is an inherent barrier to expanding known techniques
beyond LWE-related assumptions. The current approaches for constructing CI
hash from standard assumptions use the notion of somewhere statistical CI, in
which, for any f , it is possible to sample from a distribution Hf which is indis-
tinguishable from the real H, and for which the CI game is statistically hard to
win. Roughly speaking, this is achieved, in known constructions [9,24] by making
Hf perform some homomorphic evaluation of f on the input x. Thus, it appears
that homomorphic evaluation of complex functions f is essential to apply these
tools.

1 In this work we only consider ZK/NIZK proof systems where the honest prover is
computationally efficient given a witness to the NP language.

2 To be more accurate, [24] showed how to construct a CI hash function for size s
circuits, for any parameter s. This is slightly weaker than a single H for all functions,
but it suffices in order to instantiate the framework.

740 Z. Brakerski et al.

The starting point of our work is the observation that, under the learning par-
ity with noise (LPN) assumption, we can reduce the complexity of functions for
which achieving CIH implies NIZK down to functions with probabilistic constant-
degree representation. That is, ones that can be approximated by a distribution
on constant-degree polynomials.

We substantiate the usefulness of this approach by identifying a general con-
nection between correlation intractability for a function class F , which has prob-
abilistic representation by a class C (potentially of lower complexity), and CI for
relations that are approximable by C.

Correlation Intractability for relations approximable by C (denoted “CI-Apx
for C”) is a stronger notion than the one studied in prior works, namely CI
for relations searchable by C. In CI-Apx, we require that for all C ∈ C it is
hard not only to find x such that C(x) = H(x) but, rather, that it is hard to
find an x such that H(x) and C(x) are close in Hamming distance.3 When the
probabilistic representation C of our target class F is sufficiently simple, e.g.
constant-degree polynomials, then the reduction from CI for F to CI-Apx for C
opens the possibility for new constructions of CIH from standard assumptions.
Specifically from assumptions that are not known to apply fully-homomorphic
encryption or similarly strong primitives.

In particular, we show that CI-Apx for a function class C can be con-
structed based on a rate-1 trapdoor hash scheme for C. Trapdoor hash (TDH) is a
fairly new cryptographic primitive which was recently introduced by Döttling et
al. [14]. They also constructed rate-1 TDH for constant-degree polynomials from
a number of standard assumptions, including DDH, QR, and DCR (which are not
known to imply fully-homomorphic encryption) and also LWE. Consequently,
we obtain CI-Apx for constant-degree polynomials from such assumptions and,
therefore, CI for any class of functions with probabilistic constant-degree repre-
sentation. We note that we require a slightly stronger correctness property from
TDH, compared to the definition provided in [14], but it is satisfied by all known
constructions.

On an interesting remark, we point out that the construction by Piekert and
Shiehian [24] of CI for bounded-size circuits can be shown to satisfy the stronger
notion of CI-Apx for the corresponding class of relations.
Consequences. We get non-interactive (computational) zero knowledge argu-
ment systems for NP, in the common random string model, based on the exis-
tence of any rate-1 trapdoor hash for constant degree and further assuming low-
noise LPN. We stress that we can generically abstract the LPN requirement as
a requirement for an extractable commitment scheme with very low-complexity
approximate-extraction. By instantiating our construction using the rate-1 TDH
from [14], we get, in particular, the first NIZK from low-noise LPN and DDH.

3 Note that even non-searchable relations can potentially be approximable by a class of
functions. Thus via the notion CI-Apx we can extend our capabilities for constructing
CIH even beyond searchable relations. This is not of direct use in this work, but may
be useful for future works.

NIZK from LPN and Trapdoor Hash via CI-Apx 741

Open Questions. The main open question we leave unanswered is whether it is
possible to minimize the required assumptions for constructing NIZK using CI-
Apx. One may approach this problem either by constructing CI-Apx for constant
degree functions based on the LPN assumption, or by further extending the CI-
Apx framework to allow a more general utilization for NIZKs, possibly depending
on assumptions already implying CI-Apx.

Another open question is whether we can obtain stronger notions of NIZKs, in
particular NIZK proofs or NISZK, from a similar set of standard assumptions.
To achieve statistical ZK using our approach simply requires the underlying
commitment (with low-degree extraction) to be lossy. Getting statistically sound
proof systems via CI-Apx, however, seems to be inherently more difficult, as it
requires the resulting CI to be “somewhere statistical” for the approximated
class of functions.

Lastly, the new constructions of ZAPs [2,20,22] rely on the CI framework
but, unfortunately, we do not know how to extend them since the notion of
commitment that is required for the ZAPs is not known to be constructible
from LPN (or other assumptions with very low complexity extraction). At a high
level, these works requires the public parameters of the commitment scheme to
be statistically close to uniform (and this seems hard to achieve with our LPN
noise regime).

1.1 Overview of Our Techniques and Results

Our construction of NIZK instantiates the general Correlation Intractability (CI)
framework. The approach followed in prior work for constructing CI hash, for
relations searchable by a function class F , considers the straight-forward rep-
resentation of F as a class of circuits. In this work, we take a different angle,
and tackle the CI problem for relations searchable by F through its probabilistic
representation by a much simpler class C. Such an approach allows us to obtain
CI hash for classes of relations that are sufficiently rich to imply NIZK, while
avoiding the use of FHE or similar heavy machinery.

NIZK from Correlation Intractability. Our starting point for construct-
ing NIZK is similar to the approach in previous works of applying Fiat-Shamir
on ZK protocols, in a provably-sound manner, using CI hash. We start with a
public-coin trapdoor Σ-protocol that follows the natural “commit-then-open”
paradigm, where the prover first sends a set of commitments, then, upon receiv-
ing the verifier’s challenge bit e ∈ {0, 1}, he replies by opening some of the
commitments. Lastly, the verifier checks that the openings are valid, and then
performs an additional check over the opened values. An example of such a
protocol is the ZK protocol for Hamiltonicity from [6,15].

An important property of commit-then-open trapdoor-Σ protocols is the
unique bad challenge property : for any instance x not in the language, if (a, e, z)
is an accepting transcript, then e is uniquely determined by the first message a.
This connection is characterized by a function denoted by BadChallenge : a �→ e.

742 Z. Brakerski et al.

In the CI paradigm, we apply Fiat-Shamir over sufficiently many repetitions of
such a protocol, using a CI hash for the relation searchable by BadChallenge,
which is defined as follows. A vector of first messages a is in a relation with a
vector of verifier’s challenges e if on each coordinate, the corresponding e entry
is the unique bad challenge of that coordinate in a. If a cheating prover P∗

succeeds in breaking the soundness of the protocol, then he must have found a
BadChallenge correlation, i.e. vectors (a, e) in the relation, implying an attack
against the CI of the underlying hash family.

Prior work considered protocols where the bad challenge is efficiently com-
putable and, consequently, focused on constructing CI for all efficiently search-
able relations. These contain, in particular, the relations efficiently searchable
by BadChallenge. We deviate from this approach. We observe that BadChallenge
can be approximated by a distribution over constant-degree polynomials when
instantiating this template with an appropriate commitment scheme. This
reduces our CI task to achieving CIH for functions with constant-degree prob-
abilistic representation. Such CIH is implied by a special notion of correlation
intractability against constant-degree functions – CI for approximable relations,
or CI-Apx for short. Details follow.

Probabilistic Representation, Approximable Relations and CI. Assume
that a class of functions F : {0, 1}n → {0, 1}m has a probabilistic representation
by some simpler class of functions C. Namely, for any f ∈ F , there exists a
distribution Cf over C such that Pr[Δ(C(x), f(x)) ≤ εm] > 1 − negl(λ) for any

x and a random C
$←− Cf .

Let H : {0, 1}n → {0, 1}m be a hash family. An adversary A that is
able to find a correlation H(x) = f(x) for some f is able to find, with over-
whelming probability over a random C ← Cf , an “approximate correlation”
Δ(H(x), C(x)) ≤ εm for some small ε. It follows therefore that by considering
probabilistic representation, we can identify a connection between correlation
intractability against f and correlation intractability against any relation that
is approximable (or approximately searchable) by some function C ∈ Cf . We
denote this class of relations

Rε
C = {(x, y) ∈ {0, 1}n × {0, 1}m | Δ(y, C(x)) ≤ εm} .

More formally, an adversary that breaks the CI of H for a relation searchable
by f is able to break the CI of the same hash H for the relation Rε

C defined by
some C ∈ Cf . Hence, CI-Apx for C (i.e. CI for all relations Rε

C) implies CI for
F .

Theorem 1.1 (CI through Probabilistic Representation, Informal). Let
F be a class of functions with probabilistic representation by C. Then, any CI-
Apx hash family for C is a CI hash for F .

NIZK from LPN and Trapdoor Hash via CI-Apx 743

Probabilistic Constant-Degree Representation of the Bad Challenge
Function. Recall that in a commit-then-open trapdoor Σ-protocol, the verifi-
cation is either performed over a subset of commitment openings corresponding
to e = 0 or a subset of openings corresponding to e = 1. From the unique bad
challenge property, it is impossible that the verification on both subsets succeed
if x /∈ L. Thus, the BadChallenge function can be computed in two steps: an
extraction step, to extract the messages underlying the commitments of one of
the aforementioned subsets, say the one corresponding to e = 1, followed by
an efficient verification (for e = 1) over the extracted values. If the verification
accepts, then the bad challenge must be e = 1 and, otherwise, the bad chal-
lenge is either e = 0 or does not exist (in which case a is not in the relation
and the output may be arbitrary). Hence, we can split the task of probabilisti-
cally representing BadChallenge to two sub-tasks: extraction and post-extraction
verification.
Post-extraction Verification as a 3-CNF. The post-extraction verification
is an arbitrary polynomial computation and, generally, may not have probabilis-
tic constant-degree representation as is. The first step towards a constant-degree
approximation of BadChallenge is observing that, by relying on the Cook-Levin
approach for expressing the verification procedure as a 3-CNF satisfiability prob-
lem, we may reduce the complexity of the verification to 3-CNF as follows. Let
Φe denote the 3-CNF formula that captures the verification corresponding to
challenge e; that is, Φe has a satisfying witness we if and only if the verifier
accepts the prover’s second message for challenge bit e. The prover can compute
we efficiently (using the Cook-Levin approach, this witness simply consists of all
intermediate steps of the verification). Therefore, we let the prover also include
commitments to w0, w1 in his first message. When the verifier sends challenge e,
the prover also provides openings for we, and the verifier checks decommitments
then evaluates Φe. By transforming the protocol as described, the bad challenge
computation now consists, as before, of extraction, then an evaluation of the
3-CNF formula Φ1, rather than an arbitrary poly-time verification.

We can then use standard well-known randomization techniques to proba-
bilistically approximate any 3-CNF formula by constant-degree polynomials (see
Lemma 3.13).

Extraction via a Randomized Linear Function. For the extraction step, we
observe that by adapting the (low-noise) LPN-based PKE scheme of Damg̊ard
and Park [12] (which is closely related to the PKE scheme by Alekhnovich [1])
we can construct an extractable commitment scheme whose extraction algorithm
can be probabilistically represented by a linear function. The secret extraction
key is a matrix S, and the public key consists of a matrix A together with
B = A · S + E. Here, E is chosen from a noise distribution with suitably low
noise rate. To compute a commitment for bit x, the Commit algorithm chooses a
low Hamming weight vector r, and outputs u = rA and c = rB+x�. The opening
for the commitment is the randomness r, and the verification algorithm simply
checks that r has low Hamming weight, and that the Commit algorithm, using r,
outputs the correct commitment. Finally, note that using S, one can extract the

744 Z. Brakerski et al.

message underlying a commitment (u, c): simply compute uS+c = x� + rE. By
carefully setting the LPN-parameters (the noise distribution is Bernoulli with
parameter 1/nc for some fixed constant c ∈ (1/2, 1)), we ensure that if (u, c)
is a valid commitment (i.e. can be opened with some x and r), then rE has
sufficiently low Hamming weight. Therefore, by sampling a random column s in
S, we get that us + c = x with sufficiently high probability.

The Case of Invalid Commitments. We have shown that, using a distribu-
tion over linear functions, we can approximate extraction of valid commitments.
A cheating prover, however, may chose to send invalid commitments. We claim
that, in such a case, we may allow the probabilistic representation to behave
arbitrarily.

Fix some x /∈ L and a first message a. If there exist no bad challenge for a or
if the (unique) bad challenge is e = 1, then all commitments in a corresponding
to inputs of Φ1 must be valid (since the prover is able to open them in a way
that is accepted by the verifier). Thus, we potentially have a problem only in
the case where e = 0 is the bad challenge, i.e. the commitments of input bits
to Φ0 are valid and Φ0(w0) = 1 on their respective openings w0. Our concern is
that since our bad challenge function only looks at the Φ1 locations, which may
be arbitrary invalid commitments, we have no guarantee on the extraction, and
therefore our bad challenge function will output e = 1 even though the unique
bad challenge is e = 0. We show that this is not possible.

Let w′
1 be the arbitrary value computed by the approximate extraction algo-

rithm on the possibly invalid commitments in the locations of the Φ1 inputs. We
will see that it still must be the case that Φ1(w′

1) = 0 and therefore the bad
challenge function outputs e = 0 as required. The reason is that otherwise we
can put together valid commitments of both w0 and w′

1, so as to create a first
message a′ which refutes the soundness of the original Σ-protocol, since it can
be successfully opened both for e = 0 and for e = 1.

Constructing CI for Approximable Relations. The main idea behind
recent constructions of CI for relations searchable by some function class C
[9,24] is to construct a somewhere statistical CI hash family H. That is, one
where there exists, for any C ∈ C, a distribution of hash functions HC that are
indistinguishable from the real H, and are statistically CI for that specific C.
Namely, for any C, there exists no x such that HC(x) = C(x) or, equivalently,
the image of the “correlation function” x �→ HC(x) + C(x) mod 2 does not
contain 0.

Our Approach for CI-Apx: Sparse Correlations. Our first observation
is that if we are able to construct a hash family H where, for every C ∈ C,
the function x �→ HC(x) + C(x) actually has exponentially-sparse image (as a
fraction of the entire space), then we obtain (somewhere statistical) CI-Apx for
C.

To see this, consider the hash function Ĥ(x) = H(x) + r mod 2, where r
is a uniformly random string sampled together with the hash key. The task

NIZK from LPN and Trapdoor Hash via CI-Apx 745

of breaking CI of Ĥ(x) for some C ∈ C reduces to the task of finding x s.t.
HC(x) + C(x) = r mod 2. Clearly, with overwhelming probability, such x does
not exist when the image of HC(x)+C(x) is sufficiently small. We can push our
statistical argument even further to claim CI-Apx for C: an adversary that breaks
the CI-Apx of Ĥ for C finds x s.t. HC(x) is in a small Hamming-ball around C(x),
i.e HC(x) + C(x) + z = r mod 2, where z is a vector with relative Hamming
weight at most ε. If x �→ HC(x) + C(x) has exponentially-sparse image, then
(for properly set parameters) so does (x, z) �→ HC(x) + C(x) + z, and therefore
it is very unlikely that r is in the image.

Our goal is thus reduced to constructing a hash family H, with indistin-
guishable distributions HC as described above, such that, for every C ∈ C, the
function x �→ HC(x) + C(x) has exponentially-sparse image.

Construction from Trapdoor Hash. Our construction of CI-Apx is based on
trapdoor hash (TDH) [14]. At a high level, trapdoor hash allows us to “encrypt”
any function C : x �→ y to an encoding E : x �→ e such that C is computationally
hidden given a description of E and yet, for any input x, y = C(x) is almost
information-theoretically determined by e = E(x). More accurately, the range of
the correlation e+y (mod 2) is sparse. The idea is then to use such an encoding
as the hash function HC described above.

More specifically, in a rate-1 TDH for a function class C, we can generate,
for any C ∈ C, an encoding key ekC that comes with a trapdoor tdC . Using the
encoding key ekC , one can compute a value e ← E(ekC , x) which is essentially a
rate-1 encoding of C(x) (i.e. |e| = |C(x)|). There exists also a decoding algorithm
D which determines the value C(x) as C(x) = e + D(tdC , h, e), i.e. given e and
“little additional information” about x in the form of a hash value h = H(x)
whose length is independent of the length of x. The security property we are
interested in is function privacy : for any C,C ′ ∈ C, the encoding keys ekC and
ekC′ are indistinguishable.

We use rate-1 TDH to construct, for every C ∈ C, a hash family HC such
that: (i) the “correlation function” x �→ HC(x) + C(x) has exponentially-sparse
image for all C ∈ C, and (ii) HC and HC′ are indistinguishable, for all C �= C ′.
This suffices to construct CI hash for any class of functions F with probabilistic
representation in C, as outlined above.

In the heart of our construction is the following simple observation: from the
correctness of the TDH, it holds that E(ekC , x) + D(tdC ,H(x), e) = C(x). Put
differently, if we define HC(x) = E(ekC , x), then it holds that HC(x) + C(x) =
D(tdC ,H(x), e). This value depends on x only through its hash H(x). If the hash
function H is sufficiently compressing, i.e. the length of the hash is much smaller
than |C(x)|, then we obtain an exponentially-sparse image for HC(x)+C(x) and,
essentially, requirement (i) from above. Property (ii) follows from the function
privacy of the underlying TDH. Overall, we get the following result.

Theorem 1.2 (CI-Apx from TDH, Informal). Assume there exists a rate-1
TDH for C. Then, there exists a CI hash for relations approximable by C (CI-Apx
for C).

746 Z. Brakerski et al.

We note that the notion of TDH that we require deviates slightly from the
one defined in [14]. On one hand, they require properties that we do not, such
as input privacy, and they require that the decoding algorithm is efficiently
computable, whereas for our purposes inefficient decoding would have sufficed.
On the other hand, we require that the underlying TDH satisfies an enhanced
notion of correctness, which is satisfied by all known constructions of TDH.

We obtain CI-Apx for constant degree from standard assumptions by instanti-
ating Theorem 1.2 based on the work of Döttling et al. [14]. They construct rate-1
TDH scheme for linear functions from various standard assumptions, including
QR, DCR and LWE. Such a scheme can be easily bootstrapped to support poly-
nomials of constant degree d > 1. For the DDH assumption, they construct TDH
for a stricter class of “index functions”. We show in the full version [8] that their
construction can be slightly adjusted, based on existing ideas, to capture also
constant-degree functions and, hence, get an instantiation also from DDH.

1.2 Paper Organization

In Sect. 2, we provide some essential preliminaries. In Sect. 3, we present the
framework which allows using our CI constructions to obtain NIZK, starting
with the generic paradigm laid out by prior work. In Sect. 4, we show how to
exploit a simple probabilistic representation of a function class for obtaining CI
hash and, lastly, in Sect. 5, we show our construction of CI-Apx from TDH.

2 Preliminaries

Notation. For an integer n ∈ N, [n] denotes the set {1, . . . , n}. We use λ for the
security parameter and negl(λ) and poly(λ) for a negligible function and, resp., a
polynomial in λ. We use

c≡ and
s≡ to denote computational and, resp., statistical

indistinguishability between two distribution ensembles. For a distribution (or a

randomized algorithm) D we use x
$←− D to say that x is sampled according to D

and use x ∈ D to say that x is in the support of D. For a set S we overload the
notation to use x

$←− S to indicate that x is chosen uniformly at random from S.

2.1 Learning Parity with Noise

We hereby define the standard Decisional Learning Parity with Noise (DLPN)
assumption, which we use in this paper.

Definition 2.1 (Decisional LPN Assumption). Let τ : N → R be such that
0 < τ(λ) < 0.5 for all λ, and let n := n(λ) and m := m(λ) be polynomials such
that m(λ) > n(λ) for all λ. The (n,m, τ)-Decisional LPN ((n,m, τ)-DLPN)
assumption states that for any PPT adversary A, there exists a negligible func-
tion negl : N → R, such that

|Pr[A(A,As + e) = 1] − Pr[A(A,b) = 1]| < negl(λ)

where A $←− Z
m×n
2 , s $←− Z

n
2 , e $←− Bermτ and b $←− Z

m
2 .

NIZK from LPN and Trapdoor Hash via CI-Apx 747

It is well-known that DLPN remains secure even given polynomially many
samples of independent secrets and error vectors.

Proposition 2.2. Let τ , n and m be as in Definition 2.1 above, and let k :=
k(λ) be an aribitrary polynomial in the security parameter. Then, under the
(n,m, τ)-DLPN assumption, for any PPT adversary A, there exists a negligible
function negl such that

|Pr[A(A,AS + E) = 1] − Pr[A(A,B) = 1]| < negl(λ)

where A $←− Z
m×n
2 , S $←− Z

n×k
2 , E $←− Berm×k

τ and B $←− Z
m×k
2 .

2.2 Trapdoor Hash

We hereby recall the definition of trapdoor hash functions (TDH) from Döttling
et al. [14], with few minor modifications. First, we are fine with weakly correct
trapdoor hash schemes (as defined in [14]), where we allow the error in correct-
ness to be two-sided. This modification further allows us to simplify the syntax
of decoding for rate-1 schemes. Second, to construct correlation intractable hash,
we do not require the trapdoor hash scheme to be input-private (i.e. that the
hash of an input x hides x) and, consequently, we assume w.l.o.g. that the hash
and encoding functions, H and E, are deterministic (in the original definition, H
and E share the same randomness - this was necessary for achieving both input
privacy and correctness).

Definition 2.3 (Rate-1 Trapdoor Hash). A rate-1 trapdoor hash scheme
(TDH) for a function class C = {Cn : {0, 1}n → {0, 1}} is a tuple of five PPT
algorithms TDH = (S,G,H,E,D) with the following properties.

• Syntax:
– hk ← S(1λ, 1n). The sampling algorithm takes as input a security param-

eter λ and an input length n, and outputs a hash key hk.
– (ek, td) ← G(hk, C). The generating algorithm takes as input a hash key

hk a function C ∈ Cn, and outputs a pair of an encoding key ek and a
trapdoor td.

– h ← H(hk, x). The hashing algorithm takes as input a hash key hk and a
string x ∈ {0, 1}n, and deterministically outputs a hash value h ∈ {0, 1}η.

– e ← E(ek, x). The encoding algorithm takes as input an encoding key
ek and a string x ∈ {0, 1}n, and deterministically outputs an encoding
e ∈ {0, 1}.

– e′ ← D(td, h). The decoding algorithm takes as input a trapdoor td, a hash
value h ∈ {0, 1}η, and outputs a 0-encoding e′ ∈ {0, 1}.

• Correctness: TDH is (weakly) (1 − τ)-correct (or has two-sided τ error
probability), for τ := τ(λ) < 1, if there exists a negligible function negl(λ)
such that the following holds for any λ, n ∈ N, any x ∈ {0, 1}n and any
function C ∈ Cn.

Pr[e + e′ = C(x) mod 2] ≥ 1 − τ − negl(λ)

748 Z. Brakerski et al.

where hk ← S(1λ, 1n), (ek, td) ← G(hk, C), h ← H(hk, x), e ← E(ek, x), and
e′ ← D(td, h). When τ = 0 we say that the scheme is fully correct.

• Function Privacy: TDH is function-private if for any polynomial-length
{1nλ}λ∈N and any {fn}n∈N and {f ′

n}n∈N such that fn, f ′
n ∈ Fn for all n ∈ N,

it holds that
{(hkλ, ekλ)}λ∈N

c≡ {(hkλ, ek′
λ)}λ∈N

where hkλ
$←− S(1λ, 1nλ), (ekλ, tdλ) $←− G(hkλ, fnλ

) and (ek′
λ, td′

λ) $←−
G(hkλ, f ′

nλ
).

• Compactness: we require that the image length of the hash function, η, is
independent of n, and is bounded by some polynomial in the security param-
eter λ.

As pointed in [14] (Remark 4.2), we may consider a natural extension of
trapdoor hash for a general class of functions C = {Cn : {0, 1}n → {0, 1}m}
(where m := m(λ) > 1 is a fixed polynomial). Further, if any C ∈ Cn can be
represented as m parallel computations in some class C′

n : {0, 1}n → {0, 1}, then
a trapdoor hash scheme for C′ = {C′

n} directly implies a trapdoor hash scheme
for C with hash length independent in m.

2.3 Extractable Commitments

We hereby provide the definition of an extractable commitment scheme.4

Definition 2.4 (Extractable Commitment). An extractable (bit) commit-
ment scheme is a tuple of four PPT algorithms Com = (Gen,Commit,Verify,
Extract) with the following properties.

• Syntax:
– (pk, td) ← Gen(1λ): The key generation algorithm takes as input the secu-

rity parameter 1λ and outputs a pair of a public key pk and trapdoor td.
– com ← Commit(pk, x; r): The committing algorithm takes as input a public

key pk, a bit x ∈ {0, 1} and randomness r, and outputs a commitment
com.

– {0, 1} ← Verify(pk, com, x; r): The verification algorithm takes as input
a public key pk, a commitment com, a bit x ∈ {0, 1} and randomness
r ∈ {0, 1}∗, then either accepts or rejects.

– x′ ← Extract(td, com) : The extraction algorithm takes as input a trapdoor
td and a commitment com and outputs a bit x′ ∈ {0, 1} or ⊥.

• Correctness: Com is correct if there exists a negligible function negl, such
that for any x ∈ {0, 1},

Pr[Verify(pk,Commit(pk, x; r), x; r)] > 1 − negl(λ)

where (pk, ·) $←− Gen(1λ) and r
$←− {0, 1}∗.

4 The notion of extractable commitment is equivalent to standard public-key encryp-
tion. We use the commitment terminology since it is more natural for our setting.

NIZK from LPN and Trapdoor Hash via CI-Apx 749

• Hiding: Com is (computationally) hiding if it holds that

{Commit(pk, 0; r)}λ
c≡ {Commit(pk, 1; r)}λ

where (pk, ·) $←− Gen(1λ) and r
$←− {0, 1}∗ for all λ ∈ N.

• Binding: Com is (statistically) binding if there exists a negligible function
negl such that

Pr[∃com, r0, r1 s.t. Verify(pk, com, 0, r0) = Verify(pk, com, 1, r1) = 1] < negl(λ)

where (pk, ·) $←− Gen(1λ).
• Extraction: Com has correct extraction if there exists a negligible

function negl, such that for any x ∈ {0, 1} and r ∈ {0, 1}∗, if
Verify(pk,Commit(pk, x; r), x; r)

Pr[Verify(pk, com, x; r) = 1 ∧ Extract(td, com) �= x] < negl(λ)

where (pk, td) $←− Gen(1λ) and com = Commit(pk, x; r).

Remark 2.5. Throughout the paper, we will implicitly assume that if
Commit(pk, x; r) �= com then Verify(pk, x, r) �= 1. This is achieved by any com-
mitment scheme with a natural verification function (that possibly performs
additional verification). Notice that in such a case correct extraction implies
statistical binding.

2.4 Non-interactive Zero-Knowledge Arguments

We formally define non-interactive zero knowledge arguments as follows.

Definition 2.6 (Non-interactive Zero Knowledge). Let n := n(λ) be a
polynomial in the security parameter. A non-interactive zero knowledge (NIZK)
argument Π for an NP language L, with a corresponding instance-witness rela-
tion R, consists of three PPT algorithms Π = (Setup,P,V) with the following
properties.

• Syntax:
– crs ← Setup(1λ): the setup algorithm takes a security parameter 1λ and

ouputs a common reference string crs.
– π ← P(crs, x,w): the prover takes as input the common reference string

crs, a statement x ∈ {0, 1}n and a witness w such that (x,w) ∈ R, and
outputs a proof π.

– {0, 1} ← V(crs, x, π): the verifier takes as input the common reference
string crs, a statement x ∈ {0, 1}n and a proof π, and either accepts
(outputs 1) or rejects (outputs 0).

• Completeness: Π is complete if for every λ ∈ N and (x,w) ∈ R, it holds
that

Pr[V(crs, x,P(crs, x,w))] = 1

where crs
$←− Setup(1λ).

750 Z. Brakerski et al.

• Soundness: Π is sound if for every PPT cheating prover P∗, there exists a
negligible function negl, such that for every {xλ /∈ L}λ where xλ ∈ {0, 1}n for
all λ, it holds that

Pr[V(crs, xλ,P∗(crs)) = 1] < negl(λ)

where crs
$←− Setup(1λ).

• Zero Knowledge: Π is zero knowledge if there exists a PPT simulator Sim
such that for every {(xλ,wλ) ∈ R}λ, where xλ ∈ {0, 1}n for all λ ∈ N, it holds
that

{(crs,P(crs, xλ,wλ))}λ
c≡ {Sim(1λ, xλ)}λ

where crs
$←− Setup(1λ).

We further consider few optional stronger properties that a NIZK system can
satisfy:

• Adaptive Soundness: Π is adaptively sound if for every PPT cheating
prover P∗, there exists a negligible function negl, such that

Pr[x /∈ L ∧ V(crs, x, π) = 1] < negl(λ)

where crs
$←− Setup(1λ) and (x, π) ← P∗(crs).

• Adaptive Zero Knowledge: Π is adaptively zero knowledge if there exist
a (stateful) PPT simulator Sim such that for every PPT adversary A, it holds
that

{RealSim,A(1λ)}λ
c≡ {IdealSim,A(1λ)}λ

where RealSim,A and IdealSim,A are as defined in Fig. 1.

Fig. 1. RealSim,A and IdealSim,A

2.5 Correlation Intractability

Correlation intractable hash [11] constitutes one of the main building blocks in
our work. We hereby provide a formal definition.

NIZK from LPN and Trapdoor Hash via CI-Apx 751

Definition 2.7 (Correlation Intractable Hash). Let R = {Rλ} be a rela-
tion class. A hash family H = (Sample,Hash) is said to be correlation intractable
for R if for every non-uniform polynomial-time adversary A = {Aλ}, there exists
a negligible function negl(λ), such that for every R ∈ Rλ, it holds that

Pr[(x,Hash(k, x)) ∈ R] ≤ negl(λ)

where k
$←− Sample(1λ) and x = Aλ(k).

We further define an essential property for utilizing CI hash for obtaining
NIZK protocols.

Definition 2.8 (Programmable Hash Family). A hash family H =
(Sample,Hash), with input and output length n := n(λ) and, resp., m := m(λ),
is said to be programmable if the following two conditions hold:

– 1-Universality: For every λ ∈ N, x ∈ {0, 1}n and y ∈ {0, 1}m,

Pr[Hashk(x) = y] = 2−m

where k
$←− Sample(1λ).

– Programmability: There exists a PPT algorithm S̃ample(1λ, x, y) that sam-
ples from the conditional distribution Sample(1λ) | Hashk(x) = y.

3 Non-interactive Zero Knowledge from Correlation
Intractability

In this section, we provide the formal framework for constructing NIZK for NP
from the following building blocks:

(i) An extractable commitment scheme where the extraction function can be
probabilistically presented by constant-degree polynomials.

(ii) A correlation intractable hash function for relations probabilistically search-
able by constant-degree polynomials.

Our framework is essentially a special case of a more general paradigm that
was extensively investigated in prior works [9,10,21] for constructing NIZKs from
general correlation intractability. Our contribution in this part of the paper is
relaxing the requirement for correlation intractability, assuming a commitment
scheme with the above property exists.

3.1 A Generic Framework

We first recall the generic framework from Canetti et al. [9] for achieving non-
interactive zero knowledge systems from correlation intractable hash.

752 Z. Brakerski et al.

In its most general form, the paradigm applies the Fiat-Shamir transform [16]
over Σ-protocols, which are special honest-verifier ZK protocols (possibly in the
CRS model), using correlation intractable hash, in a provably-sound manner.

Roughly speaking, in Σ-protocols, for every prover’s first message a there
exists (if any) a unique verifier’s challenge e that may allow a cheating prover to
cheat. Thus, if we instantiate Fiat-Shamir using a hash family H that is CI for
the relation between such pairs (a, e), then the soundness of the transform can
be reduced to the correlation intractability of H: any prover who finds a first
message a where H(a) is the “bad challenge” e, essentially breaks H.

Therefore, the type of relations we target in the above outline is formally
specified as follows.

Definition 3.1 (Unique-Output Relations). We say that a class of relations
R ⊂ {0, 1}n × {0, 1}m is unique-output if for every x ∈ {0, 1}n there exists at
most one value y ∈ {0, 1}m such that (x, y) ∈ R. We sometimes use function
notation to describe such an R where every R ∈ R is denoted by a function
R : {0, 1}n → {0, 1}m ∪ ⊥ with R(x) = y for (x, y) ∈ R and R(x) = ⊥ if there
exists no such y.

As observed in [9], we can reduce the class of relations we target in the CI
to relations that are efficiently searchable, i.e. unique-output relations where
the unique output is efficiently computable. It is not the case, however, that
any Σ-protocol defines such a corresponding relation. This leads us to define
trapdoor Σ-protocols [9], which are Σ-protocol where the relation between a
prover’s first message and its unique “bad challenge” is efficiently computable
given a trapdoor. We formalize below.

Definition 3.2 (Searchable Relations). Let R : {0, 1}n → {0, 1}m ∪ ⊥ be a
unique-output class of relations. We say that R is searchable by a function class
F : {0, 1}n → {0, 1}m ∪ ⊥ if for every R ∈ R, there exists fR ∈ F such that

∀x s.t. R(x) �= ⊥, (x, fR(x)) ∈ R

We say that R is efficiently searchable if F is efficiently computable.

Definition 3.3 (Trapdoor Σ-Protocol [9]). Let Π = (Setup,P,V) be a
public-coin three-message honest-verifier zero knowledge proof system for a
language L in the common reference string model. Define the relation class
RΣ(Π) = {Rcrs,x | crs ∈ Setup(1λ), x /∈ L} where

Rcrs,x = {(a, e) | ∃z s.t. V(crs, x,a, e, z) = 1}

We say that Π for L is a trapdoor Σ-protocol if Rcrs,x is a unique-output
relation (see Definition 3.1) and there exist two PPT algorithms, tdSetup and
BadChallenge, with the following properties:

NIZK from LPN and Trapdoor Hash via CI-Apx 753

• Syntax:
– (crs, td) ← tdSetup(1λ) : The trapdoor setup algorithms takes as input a

security parameter 1λ and outputs a common reference string crs and a
trapdoor td.

– e ← BadChallenge(crs, td, x, a) : The bad challenge algorithm takes as
input a common reference string crs and its trapdoor td, an instance x,
and a first message a, and outputs a second message e or ⊥.

• CRS Indistinguishability: We require that a common reference string
crs

$←− Setup(1λ) is computationally indistinguishable from a random refer-

ence string crs′ sampled with a trapdoor by (crs′, td) $←− tdSetup(1λ).
• Correctness: We require that for all λ ∈ N and any instance x /∈ L, first

message a, and (crs, td), such that Rcrs,x(a) �= ⊥, it holds

BadChallenge(crs, td, x, a) = Rcrs,x(a)

Equivalently, we require that RΣ(Π) is searchable by

FΣ(Π) = {fcrs,td,x(a) = BadChallenge(crs, td, x, ·) | (crs, td) ∈ Setup(1λ), x /∈ L}

We recall the following theorem from [9].

Theorem 3.4 ([9]). Assume:

(i) Π is a trapdoor Σ-protocol for L.
(ii) H is a programmable correlation intractable hash family for relation search-

able by FΣ(Π).

Then, the Fiat-Shamir [16] transform over Π using H, FS(Π,H), is an NIZK
argument system for L with adaptive soundness and adaptive zero-knowledge.

Canetti et al. [9] show that any correlation intractable hash family for a
reasonable class of relations can be easily transformed to a programmable hash
family while preserving correlation intractability. We stress, however, that our
Construction of correlation intractable hash in Sect. 2.5 directly satisfies pro-
grammability.

3.2 Special Case: Commit-then-Open Protocols

Equipped with the generic framework laid by prior work, we may now present a
special case that comprises the starting point of our work.

Commit-then-Open Protocols. We consider protocols of a special form
called commit-then-open Σ-protocols. This notion captures a natural approach
for constructing ZK protocols. In particular, a variant of the ZK protocol for
Graph Hamiltonicity from [6,15] is a commit-then-open Σ-protocol.

Roughly speaking, commit-then-open Σ-protocols are protocols that use a
commitment scheme (possibly in the CRS model), where the prover’s first mes-
sage is a commitment on some proof string π, and his second message is always a

754 Z. Brakerski et al.

decommitment on a subset of π, which depends on the verifier’s challenge. Upon
receiving the decommitments, the verifier checks that they are valid, then runs
some verification procedure on the opened values. We hereby provide a formal
definition.

Definition 3.5 (Commit-then-Open Σ-Protocols). A commit-then-open
Σ-protocol is a Σ-protocol ΠCom = (SetupCom,PCom,VCom), with black-box access
to a commitment scheme Com (possibly in the CRS model), such that there exist
four PPT algorithms:

– crs′ ← Setup′(1λ, pk) : Takes as input a security parameter 1λ and a commit-
ment key pk, and outputs a common reference string crs′.

– (π, state) ← P1(crs, x,w) : Takes as input a common reference string crs,
an instance x and its witness w and outputs a proof π ∈ {0, 1}� (for some
polynomial � := �(λ)) and a local state state.

– I ← P2(crs, x,w, e, state) : Takes as input crs, x, w and state as above, and a
verifier’s challenge e ∈ {0, 1}∗, and outputs a subset I ⊆ [�].

– {0, 1} ← V′(crs, x, e, (I, πI)) : Takes as input crs, x, e ∈ {0, 1}∗, I ⊆ [�] as
above, and a substring of the proof πI ∈ {0, 1}|I|.

using which ΠCom is defined as follows:

– SetupCom(1λ) : Sample a commitment key pk ← Com.Gen(1λ) and possibly
additional output crs′ ← Setup′(1λ, pk), and output

crs = (crs′, pk)

– PCom(crs, x,w) : The prover computes (π, state) ← P1(crs, x,w), keeps the local
state state, and sends a commitment on the proof π to the verifier,

a = Com.Commit(pk, π)

– PCom(crs, x,w, e) : The prover’s second message consists of a decommitment
on the proof bits corresponding to locations I ← P2(crs, x,w, e, state),

z = (I,Com.Decommit(aI))

– VCom(crs, x, a, e, z) : The verifier verifies that z contains a valid decommitment
to πI and outputs

V′(crs, x, e, (I, πI))

We sometimes override notation and denote ΠCom = (Setup′,P1,P2,V
′).

Proposition 3.6 ([6,15]). There exists a commit-then-open Σ-protocol with
soundness 1/2 for an NP-complete language L.

It turns out that commit-then-open Σ-protocols allow us to relax the CI
requirement for a sound Fiat-Shamir to CI for relations that are probabilistically
searchable by constant-degree polynomials. We elaborate in the following.

NIZK from LPN and Trapdoor Hash via CI-Apx 755

3.3 Probabilistically Searchable Relations

We consider a standard notion of approximation, which we refer to as probabilis-
tic representation. Roughly speaking, a function f is probabilistically represented
by a function class C if there exists a randomized C ∈ C that computes f with
high probability, on any input.

Definition 3.7 (Probabilistic Representation). Let n,m ∈ N and 0 <
ε < 1. Let f : {0, 1}n → {0, 1}m ∪ ⊥ be a function and denote f(x) =
(f1(x), . . . , fm(x)) where fi : {0, 1}n → {0, 1} ∪ ⊥ for all i ∈ [m]. A (bit-by-bit)
ε-probabilistic representation of f by a class of functions C : {0, 1}n → {0, 1}
consists of m distributions C1, . . . ,Cm ⊆ C such that

∀i ∈ [m], ∀x s.t. f(x) �= ⊥, Pr
Ci

$←−Ci

[fi(x) = Ci(x)] > 1 − ε

The following simple lemma connects between probabilistic representation
and approximation. Its proof follows immediately from Chernoff’s tail bound.

Lemma 3.8 (From Probabilistic Representation to Approximation).
Let n ∈ N, ε := ε(λ) > 0, and m := m(λ) be a sufficiently large polynomial.
For any λ ∈ N, let f : {0, 1}n → {0, 1}m ∪ ⊥, and let C = (C1, . . . ,Cm) be an
ε-probabilistic representation of f by C : {0, 1}n → {0, 1}. Then, there exists a
negligible function negl, such that

∀x s.t. f(x) �= ⊥, Pr
C

$←−C

[Δ(f(x), C(x)) > 2εm] < negl(λ)

If a class of functions R is searchable by functions with probabilistic repre-
sentation by C, we say that R is probabilistically searchable by C.

Definition 3.9 (Probabilistically-Searchable Relations). Let R : {0, 1}n

→ {0, 1}m ∪ ⊥ be a unique-output class of relations. We say that R is ε-
probabilistically searchable by C : {0, 1}n → {0, 1} if it is searchable by F and,
for every R ∈ R, letting fR ∈ F be the corresponding search function (see Defi-
nition 3.2), fR ∈ F has an ε-probabilistic representation by C.

Notice that CI for relations searchable by F is a weaker notion than relation
probabilistically searchable by F . Our hope is to be able to probabilistically
represent F by a much simpler class of functions C such that the CI task is
actually simplified.

3.4 CI for Probabilistic Constant-Degree Is Sufficient for NIZK

Lastly, we show that through commit-then-open protocols, we can reduce our
task to achieving CI for relations probabilistically searchable by constant-degree
polynomials. More specifically, we show that any commit-then-open Σ-protocol
ΠCom can be transformed to a slightly different commit-then-open Σ-protocol
˜ΠCom such that:

756 Z. Brakerski et al.

– Assuming Com is extractable, ˜ΠCom is a trapdoor Σ-protocol.
– Assuming, further, that the extraction function ftd(a) = Com.Extract(td, a)

has probabilistic constant-degree representation, then so does the trapdoor
function BadChallenge, corresponding to ˜ΠCom and, therefore RΣ(˜ΠCom) is
probabilistically searchable by constant-degree polynomials.

We formalize below.

Theorem 3.10. Let ΠCom be a commit-then-open Σ-protocol for L with sound-
ness 1/2 where the output of P1 is of length � := �(λ). Let Com be a statistically-
binding extractable commitment scheme where, for any td, the function ftd(x) =
Com.Extract(td, x) has an ε-probabilistic representation by c-degree polynomials,
for a constant c ∈ N and 0 < ε(λ) < 1/�. Then, for any polynomial m := m(λ),
there exists a trapdoor Σ-protocol ˜ΠCom for L with soundness 2−m such that
RΣ(˜ΠCom) (see Definition 3.3) is ε′-probabilistically searchable by 6cc′-degree
polynomials, where c′ ∈ N is an arbitrary constant and ε′ = � · ε + 2−c′

.

Combining Proposition 3.6, Theorem 3.10, and Theorem 3.4, we obtain the
following.

Corollary 3.11 (Sufficient Conditions for NIZK for NP). The following
conditions are sufficient to obtain a NIZK argument system for NP (with adap-
tive soundness and adaptive zero-knowledge):

(i) A statistically-binding extractable commitment scheme where, for any td, the
function ftd(x) = Extract(td, x) has an ε-probabilistic representation by c-
degree polynomials, for a constant c ∈ N and 0 < ε(λ) < 1/�(λ) for an
arbitrarily large polynomial �.

(ii) A programmable correlation intractable hash family for relations ε-
probabilistically searchable by c′-degree polynomials, for some constant ε > 0
and arbitrarily large constant c′ ∈ N.

For instantiating Corollary 3.11 based on standard assumptions, we may use
a variant of the LPN-based PKE scheme of Damg̊ard and Park [12] to construct
a suitable extractable commitment scheme as required in (i). We discuss the
details of the commitment scheme in the full version [8] and, in the following
section, focus on how to obtain CI hash schemes satisfying (ii).

We now proceed and prove Theorem 3.10.

Proof of Theorem 3.10. We start by presenting the transformation from ΠCom

to ˜ΠCom. In fact, for simplicity, we first show how to construct a protocol ˜ΠCom
1

which has soundness 1
2 . The final protocol ˜ΠCom with amplified soundness sim-

ply consists of m parallel repetitions of ˜ΠCom
1 . We later show that all required

properties are preserved under parallel repetition and, therefore, we now focus
on ˜ΠCom

1 .
Using the Cook-Levin approach, we represent any (poly-size) circuit C as a

(poly-size) 3-CNF formula ΦC such that for any input x, C(x) = 1 if and only if
there exists an assignment w for which ΦC(x,w) = 1. We call such an assignment
w a Cook-Levin witness for C(x).

NIZK from LPN and Trapdoor Hash via CI-Apx 757

Construction 3.1. Let ΠCom = (Setup′,P1,P2,V
′) be a commit-then-open Σ-

protocol with soundness 1/2, i.e. where the verifier’s challenge e consists of
a single public coin. We construct a commit-then-open Σ-protocol ˜ΠCom

1 =
(Setup′, ˜P1, ˜P2, ˜V′) as follows.5

– ˜P1(crs, x,w) : The prover generates a proof π ← P1(crs, x,w) and computes
I0 ← P2(crs, x,w, 0) and I1 ← P2(crs, x,w, 1). Without loss of generality, we
assume that subsets I0, I1 ⊆ [�] are represented, in the natural way, as matri-
ces over Z2 such that Ie ·π = πIe

(for e ∈ {0, 1}). It then generates, for every
e ∈ {0, 1}, a Cook-Levin witness we for the computation Ccrs,x,e(Ie, πIe

) = 1
where

Ccrs,x,e(Ie, πIe
) := V′(crs, x, e, Ie, πIe

)

The prover then outputs

π̃ = (π, I0, I1, w0, w1)

– ˜P2(crs, x,w, e) : Outputs the subset Ĩe, which corresponds to the locations of
πIe

, Ie, and we in z.
– ˜V′(crs, x, e, (Ĩ , π̃Ĩ)): The verifier parses π̃Ĩ = (Ie, πIe

, we) then verifies that

Φcrs,x,e(Ie, πIe
, we) = 1

where Φcrs,x,e is the Cook-Levin 3-CNF formula for Ccrs,x,e verification.

We begin by showing that, if the underlying commitment scheme is
extractable, then Π̃Com

1 is a trapdoor Σ-protocol.

Lemma 3.12. Let Com = (Gen,Commit,Verify,Extract) be a statistically bind-
ing extractable commitment scheme, and let ΠCom = (Setup′,P1,P2,V

′) be
commit-then-open Σ-protocol with soundness 1/2. Then, ˜ΠCom

1 from Construc-
tion 3.1 is a trapdoor Σ-protocol with:

– tdSetup(1λ) : Sample (pk, td) ← Com.Gen(1λ) and crs′ ← Setup′(1λ, pk), then
output

((crs′, pk), td)

– BadChallenge(crs, td, x, a) : Compute π̃′ ← Extract(td, a), and parse π̃′ =
(π′, I0, I1, w0, w1) ∈ {0, 1,⊥}∗. For every e ∈ {0, 1}, if Ie ∈ {0, 1}∗, set
π̃′

e = (Ie, π
′
Ie

, we) and otherwise set π̃′
e = ⊥.

1. If π̃′
0 ∈ {0, 1}∗ and Φcrs,x,0(π̃′

0) = 1, output 0.
2. If π̃′

1 ∈ {0, 1}∗ and Φcrs,x,1(π̃′
1) = 1, output 1.

3. Otherwise, output ⊥.

5 Recall that the algorithms for the actual setup, prover and verifier, are obtained by
combining the algorithms in the construction with the commitment scheme Com, as
described in Definition 3.5.

758 Z. Brakerski et al.

Proof. It is evident that, based on the statistical binding of Com, the transfor-
mation preserves the soundness of the protocol and that, based on the com-
putational hiding of Com, it also preserves honest-verifier zero knowledge (the
honest-verifier uses the simulator of ΠCom in a straight-forward manner and
generates random commitments where necessary).

It is also clear that tdSetup(1λ) outputs a common reference string identical
to crs ← Setup(1λ). We therefore focus on proving correctness of BadChallenge.

Let x /∈ L, and crs, td and a be such that Rcrs,x(a) = e �= ⊥ (where
Rcrs,x ∈ RΣ(˜ΠCom

1) as defined in Definition 3.3). From definition of Rcrs,x, there
exists (Ĩ , π̃Ĩ) such that Ṽ(crs, x, a, e, (Ĩ , π̃Ĩ)) = 1. From the statistical binding
and correct extraction of Com, it necessarily holds that π̃Ĩ = Extract(aĨ) = π̃′

e.
Further, we have V′(crs, x, e, (Ĩ , π̃Ĩ)) = 1 and, therefore, Φcrs,x,e(π̃Ĩ) = 1 implying

Φcrs,x,e(π̃′
e) = 1 (1)

On the other hand, since Rcrs,x is a unique-output relation (due to
Lemma 3.12 and Definition 3.3), then there exists no (Ĩ , π̃Ĩ) such that
Ṽ(crs, x, a, 1 − e, (Ĩ , π̃Ĩ)) = 1 and, in particular, this holds for π̃′

1−e. Therefore,
if π̃′

1−e is a valid opening of aĨ (with Ĩ being the set of locations supposedly
corresponding to (I1−e, π

′
I1−e

, w1−e) in a), i.e. π̃′
1−e = Extract(aĨ), then

Φcrs,x,1−e(π̃′
1−e) = 0 (2)

By combining (1) and (2), we obtain that BadChallenge(crs, td, x, a) = e =
Rcrs,x(a) and we finish. ��

Having shown that the protocol is a trapdoor Σ-protocol, our goal now is to
show that the trapdoor function BadChallenge, which is specified in Lemma 3.12,
has probabilistic representation as constant degree polynomials. Observe that,
roughly speaking, BadChallenge is a composition of the extraction function, which
we assume has a probabilistic constant-degree representation, and an evaluation
of two CNF formulas. Since the protocol is a Σ-protocol, we show that, in fact,
the randomized polynomials need to (probabilistically) evaluate only one of these
formulas on the extracted value.

Thus, as a first step towards constructing efficient probabilistic constant-
degree representation for BadChallenge, we seek to evaluate CNF formulas using
randomized polynomials. This is done through the following lemma using stan-
dard randomization techniques. We refer the reader to the full version [8] for a
full proof.

Lemma 3.13 (k-CNF via Probabilistic Polynomials). Let �, k, c ∈ N. For
any k-CNF formula Φ : {0, 1}� → {0, 1}, there exists a 2−c-probabilistic repre-
sentation by c(k + 1)-degree polynomials PΦ.

We now use Lemma 3.13, and the assumption that Extract has probabilistic
constant-degree representation, to obtain such a representation for BadChallenge.

NIZK from LPN and Trapdoor Hash via CI-Apx 759

Lemma 3.14. Let c, c′ ∈ N be arbitrary constants, and let 0 < ε(λ) < 1/�(λ).
Let Com be an extractable commitment scheme where, for any td, the extraction
function Extract(td, ·) has an ε-probabilistic representation by c-degree polynomi-
als. Consider the protocol Π̃Com from Construction 3.1. Then, the function

fcrs,td,x(a) = BadChallenge(crs, td, x, a),

as defined in Lemma 3.12, has ε′-probabilistic representation by 6cc′-degree poly-
nomials, with ε′ = � · ε + 2−c′

.

Proof. Let Ptd be the efficient ε-probabilistic representation of Extract(td, ·) by
c-degree polynomials. We now show a probabilistic representation of fcrs,td,x by
c′-degree polynomials, denoted by Pcrs,td,x. For simplicity, we describe Pcrs,td,x

as a randomized algorithm.

Pcrs,td,x(a):

1. Sample Ptd
$←− P�

td, and compute z̃ = Ptd(a).
2. Parse z̃ = (z, I0, I1, w0, w1) and compute z̃1 = (I1, zI1 , w1).
3. Denote by PΦ the 2−c′

-probabilistic representation of Φcrs,x,1 by 3c′-degree

polynomials (due to Lemma 3.13). Sample PΦ
$←− PΦ, then output b =

PΦ(z̃e).

We know that Ptd and PΦ are random polynomials of degrees c and 3c′, respec-
tively. It is also clear that, from the representation of I1 as a matrix, then the
transformation (I1, z) �→ zI1 and, therefore, step 2 of Pcrs,td,x, can be described
using a fixed 2-degree polynomial. We conclude that Pcrs,td,x can be described
as a distribution over 6cc′-degree polynomials.

It remains to show that P probabilistically computes fcrs,td,x. From the cor-
rectness of Ptd and following Definition 3.7, if π̃′

1 = Extracttd(aI1) ∈ {0, 1}∗,
then

∀i ∈ I1,Pr[π̃′
i �= z̃i] ≤ ε

Applying union bound on the above, we get that Pr[π̃′ �= z̃] ≤ |I1| · ε ≤ � · ε.
Now, conditioning on π̃′ = z̃, and from the correctness of PΦ, we get that

Pr[b �= Φcrs,x,1(π̃′
1)] ≤ 2−c′

and, therefore, overall, we get that

Pr
P

$←−Pcrs,td,x

[P (a) �= Φcrs,x,1(π̃′
1)]

≤ Pr[π̃′ �= z̃] + Pr[P (a) �= Φcrs,x,1(π̃′
1) | π̃′ = z̃]

≤ � · ε + 2−c′
(3)

Now, if fcrs,td,x(a) = 1, then it must be the case that π̃′
1 ∈ {0, 1}∗ and

Φcrs,x,1(π̃′
1) = 1, and therefore, from (3), P (a) = 1 with the required proba-

bility. Otherwise, if fcrs,td,x(a) = 0, then π̃′
0 ∈ {0, 1}∗ and Φcrs,x,0(π̃′

0) = 1. Since
˜ΠCom is a Σ-protocol and RΣ(˜ΠCom) is unique output (Lemma 3.12), then there
exist no z̃1 ∈ {0, 1}∗ such that Φcrs,x,1(z̃1) = 1 and, therefore, P (a) = 0 with the
required probability. This completes the proof. ��

760 Z. Brakerski et al.

Combining Lemmas 3.12 and 3.14, we have so far proven Theorem 3.10
for the special case of m = 1. To derive the theorem for the general case,
consider the protocol ˜ΠCom that consists of m parallel repetitions of ˜ΠCom

1 .
Parallel repetition preserves honest-verifier zero knowledge and the Σ-protocol
property (RΣ being unique-output) and, consequently, amplifies soundness to
2−m. Further, if ˜ΠCom

1 is a trapdoor Σ-protocol with tdSetup and BadChallenge,
then ˜ΠCom is a trapdoor Σ-protocol with tdSetup and BadChallengem, where
BadChallengem(crs, td, x, a1, . . . , am) computes ei = BadChallenge(crs, td, x, ai)
for all i ∈ [m] then outputs (e1, . . . , em) if ∀i ei ∈ {0, 1} and outputs ⊥ otherwise.
By Definition 3.7, if BadChallenge has ε′-probabilistic 6cc′-degree representation,
then so does BadChallengem.

Hence, the proof of Theorem 3.10 is complete.

4 CI Through Probabilistic Representation

In this section, we show that if a function class F has a probabilistic represen-
tation by a potentially simpler class C (see Definition 3.7) then CI for relations
searchable by F can be reduced to CI for a class of relations that are “approx-
imated” by C. This is the first step we make towards constructing CI hash, as
required by Corollary 3.11, from standard assumptions.

4.1 Approximable Relations and CI-Apx

We start by defining the notion of approximable relations and a related special
case of correlation intractability, CI-Apx.

Definition 4.1 (CI-Apx). Let C = {Cλ : {0, 1}n(λ) → {0, 1}m(λ)} be a function
class and let 0 < ε < 1. For every C ∈ C, we define the relation ε-approximable
by C as follows

Rε
C = {(x, y) ∈ {0, 1}n × {0, 1}m | Δ(y, C(x)) ≤ εm}

A hash family that is CI for all relations {Rε
C | C ∈ C} is said to be CI-Apxε

for C.

4.2 From CI-Apx for C to CI for F
We now state and prove the following general theorem.

Theorem 4.2. Let F be a function class that has an ε-probabilistic representa-
tion by C. If H is CI-Apx2ε hash for C, then H is CI for relations searchable by
F (i.e. ε-probabilistically searchable by C).

NIZK from LPN and Trapdoor Hash via CI-Apx 761

Proof of Theorem 4.2. Suppose R is searchable by F : {0, 1}n → {0, 1}m.
Fix some R ∈ R and consider its corresponding search function f ∈ F . Let Cf

be the ε-probabilistic representation of f by C.
We start by defining a game Game0(A) against an adversary A as follows.

Game0(A):
1. k

$←− Sample(1λ).
2. x ← A(k).
3. Output 1 if and only if f(x) �= ⊥ and Hashk(x) = f(x).

It is clear that the probability of an adversary A to win Game0 upper bounds
the probability he breaks the correlation intractability of H for R (immediate
from Definition 3.2). Our goal, then, is to show that for any PPT adversary A,
there exists a negligible function negl such that Pr[Game0(A) = 1] < negl(λ).

We now reduce Game0 to Game1, which is defined below.

Game1(A):
1. C

$←− Cf .

2. k
$←− Sample(1λ).

3. x ← A(k).
4. Output 1 if and only if Δ(Hashk(x), C(x)) ≤ 2εm.

Lemma 4.3. For any (possibly unbounded) adversary A, there exists a negligible
function negl, such that

Pr[Game0(A) = 1] ≤ Pr[Game1(A) = 1] + negl(λ)

Proof. The proof is derived from the fact that C in Game1 is sampled indepen-
dently of the adversary’s choice x and from Lemma 3.8, as follows.

Pr[Game0(A) = 1] = Pr[f(x) �= ⊥ ∧ Hashk(x) = f(x)]
≤ Pr

C
$←−Cf

[f(x) �= ⊥ ∧ Δ(f(x), C(x)) > 2εm]

+ Pr
C

$←−Cf

[f(x) �= ⊥ ∧ Δ(Hashk(x), f(x)) ≤ 2εm]

≤ Pr[Game1(A) = 1] + negl(λ)

��
To complete the proof of Theorem 4.2, we show that Game1 is hard to win

with non-negligible probability, based on the correlation intractability of H for
relations 2ε-approximable C.

Lemma 4.4. If H is CI-Apx2ε for C then, for any f ∈ F and any PPT adver-
sary A, there exists a negligible function such that

Pr[Game1(A) = 1] < negl(λ)

762 Z. Brakerski et al.

Proof. Assume towards contradiction there exists f ∈ F and A for which the
above does not hold, namely Pr[Game1(A) = 1] > 1/poly(λ). Then, there exists
some fixed C ∈ Cf such that Pr[GameC

1 (A) = 1] > 1/poly(λ), where GameC
1

is defined as Game1 with C being fixed (rather than sampled from Cf). From
definition, such an adversary breaks the CI-Apx2ε of H for C. ��

We conclude the proof of the theorem by combining Lemmas 4.3 and 4.4.

5 CI-Apx from Trapdoor Hash

Having shown in the previous section that CI-Apx is a useful notion to obtain
CI for a function class that has a simple probabilistic representation, we now
show how to construct, from rate-1 trapdoor hash for any function class C [14],
an CI-Apx hash for C. In fact, in our proof of CI, we require that the underlying
TDH scheme satisfies the following stronger notion of correctness.

Definition 5.1. (Enhanced Correctness for TDH). We say that a (rate-
1) trapdoor hash scheme TDH for C = {Cn : {0, 1}n → {0, 1}} has enhanced
(1 − τ)-correctness for τ := τ(λ) < 1 if it satisfies the following property:

– Enhanced Correctness: There exists a negligible function negl(λ) such that
the following holds for any λ, n,∈ N, any h ∈ {0, 1}η(λ), any hk ∈ S(1λ, 1n),
and any function C ∈ Cn:

Pr[∀x ∈ {0, 1}n : H(hk, x) = h, e + e′ = C(x) mod 2] ≥ 1 − τ − negl(λ)

where (ek, td) ← G(hk, C), e = E(ek, x), e′ = D(td, h) and the probability is
over the randomness used by G.

Theorem 5.2. Assume there exists rate-1 trapdoor hash scheme TDH for C =
{Cn : {0, 1}n → {0, 1}m} with enhanced (1−τ)-correctness where the hash length
is η := η(λ). Then, for any ε s.t. ε + τ < ε0 (for some fixed universal constant
ε0), there exists a polynomial mε,η,τ (λ) = O((η + λ)/τ + log(1/ε)) such that, for
every polynomial m > mε, there exists a CI-Apxε hash family for C with output
length m(λ).6

Recalling Corollary 3.11, and using the result from Section 4, obtaining CI-
Apx for constant-degree functions is sufficient for our purpose of constructing
NIZK. To instantiate Theorem 5.2 for constant-degree functions from standard
assumption, we use the following result of Döttling et al. [14].

Theorem 5.3. (TDH from Standard Assumptions [14]). For any constant
c ∈ N and arbitrarily small τ := τ(λ) = 1/poly(λ), there exists a rate-1 trapdoor
hash scheme, for c-degree polynomials over Z2, with enhanced (1-τ)-correctness
and function privacy under the DDH/QR/DCR/LWE assumption7.
6 In fact, as implicitly implied by the proof of the theorem, our construction satisfies

the stronger notion of somewhere statistical CI for the corresponding hamming-ball
relations [9]. However, applying Theorem 4.2 on the construction does not preserve
this property.

7 The error probability in the QR, DCR, and LWE constructions is even negligible.

NIZK from LPN and Trapdoor Hash via CI-Apx 763

We note some gaps between the result from [14] and the theorem above. First,
the aforementioned work considers only linear functions (i.e. degree-1 polyno-
mials) over Z2. Second, their DDH-based construction supports even a stricter
class of functions, namely only “index functions” of the form fi(x) = xi. Third,
all known constructions are not proven to have enhanced correctness. In the
full version [8], we show how to close these gaps by simple adjustments to the
constructions and proofs from [14]. Combining Theorems 5.2 and 5.3, we obtain.

Corollary 5.4. Let c ∈ N. There exists a constant ε > 0 such that, for any
sufficiently large polynomial m := m(λ), there exists a programmable correlation
intractable hash family with output length m for all relations ε-approximable by
c-degree polynomials over Z2.

5.1 The Hash Family

We now present our construction of CI-Apx from rate-1 TDH. We note that we
do not use the full power of a TDH. Specifically, the decoding algorithm need
not be efficient and, further, we do not use input privacy (as defined in [14]).

Construction 5.1 (Correlation Intractability from TDH). Let n := n(λ)
and m := m(λ) be polynomials in the security parameter, and let ε := ε(λ) <
0.32. Let C : {0, 1}n → {0, 1} be a function class and let TDH = (S,G,H,E,D)
be a rate-1 trapdoor hash scheme for C. Our construction of CI-Apxε hash for C
consists of the following algorithms.

– Sample(1λ): Sample hk
$←− S(1λ) and, for all i ∈ [m], (eki, tdi)

$←− G(hk, C0)

for an arbitrary fixed C0 ∈ C, and a uniform r
$←− {0, 1}m, then output

k = ((ek1, . . . , ekm), r)

– Hash(k, x): The hash of an input x ∈ {0, 1}n under key k = ((eki)i∈[m], r) is
computed as follows

h = E((ek1, . . . , ekm), x) + r mod 2

5.2 Proof of Theorem 5.2

Programmability of the construction is trivial and, thus, we focus on proving CI.
Fix some C = (C1, . . . , Cm) ∈ Cm and consider the relation ε-probabilistically

searchable by C, Rε
C . The advantage of an adversary A in breaking the CI for

Rε
C is demonstrated in his advantage in winning in the following game.

Game0(A):

1. k
$←− Sample(1λ).

2. x ← A(k).
3. Output 1 if and only if Δ(Hashk(x), C(x)) ≤ 2εm.

764 Z. Brakerski et al.

To show Pr[Game0(A) = 1] < negl(λ), we define a different game, Game1, in
which we switch the encoding keys (ek1, . . . , ekm) in k to encoding keys corre-
sponding to the functions C1, . . . , Cm (rather than C0).

Game1(A):
1. Sample hk ← S(1λ, 1n) and (ek′

i, td
′
i) ← G(hk, Ci) for every i ∈ [m].

Sample a uniform r
$←− {0, 1}m, then set k = ((ek′

1, . . . , ek
′
m), r).

2. x ← A(k).
3. Output 1 if and only if Δ(Hashk(x), C(x)) ≤ 2εm.

We claim that, based on the function privacy of the underlying trapdoor
hash, we may reduce Game0 to Game1.

Lemma 5.5. Under the function privacy of TDH, for any PPT adversary A,
there exists a negligible function negl such that

Pr[Game0(A) = 1] ≤ Pr[Game1(A) = 1] + negl(λ)

Proof. Assume towards contradiction there exists an adversary A for which the
above does not hold.

We use A to construct an adversary ATDH that distinguishes between (hk,
(ek1, . . . , ekm)) and (hk, (ek′

1, . . . , ek
′
m)), where hk ← S(1λ, 1n), eki ← G(hk, C0)

and ek′
i ← G(hk, Cfi

) (for every i ∈ [m]), with non-negligible advantage. Such an
adversary breaks the function privacy of TDH via a standard hybrid argument.

On input (ek1, . . . , ekm, C), ATDH simply calls x ← A((ek1, . . . , ekm), r)),
and outputs 1 iff Δ(Hashk(x), C(x)) ≤ 2εm. It holds that

|Pr[ATDH(hk, (ek1, . . . , ekm)) = 1] − Pr[ATDH(hk, (ek′
1, . . . , ek

′
m)) = 1]|

= |Pr[Game1(A) = 1] − Pr[Game2(A) = 1]| ≥ 1/poly(λ) ��
Lastly, we show that Game1 is statistically hard to win. This, together with

Lemma 5.6, implies Theorem 5.2.

Lemma 5.6. For any (possibly unbounded) adversary A, there exists a negligible
function negl s.t.

Pr[Game1(A) = 1] < negl(λ)

Proof. It suffices to show that there exists a negligible function negl such that

Pr
k

[∃x : Δ(Hashk(x), C(x)) ≤ 2εm] < negl(λ)

where k is sampled as in Game1. We denote the above event by Bad and observe
that

Pr[Bad] = Pr
k

[∃x, z ∈ {0, 1}m : |z| ≤ 2εm ∧ C(x) + z = Hashk(x) mod 2]

For any hk ∈ S(1λ, 1n), let Badhk be the event Bad where the hash key is fixed
to hk, and the probability space is over random (eki, tdi) and r. It is sufficient,
then, to show that for all hk ∈ S(1λ, 1n), Pr[Badhk] ≤ negl(λ).

NIZK from LPN and Trapdoor Hash via CI-Apx 765

For any hk ∈ S(1λ, 1n), let TDHCorhk denote the following event:

TDHCorhk = [∀x,Δ(E(ek, x) + C(x),D(td, h)) ≤ 2τm].

Then Pr[Badhk] ≤ Pr[¬TDHCorhk]+Pr[Badhk∧TDHCorhk]. We will separately
show that both Pr[¬TDHCorhk] and Pr[Badhk ∧ TDHCorhk] are negligible in λ.

First, we bound Pr[¬TDHCorhk] based on the enhanced (1 − τ)-correctness
of TDH and Chernoff bound: for every fixed h ∈ {0, 1}η and hk ∈ S(1λ, 1n),

Pr[∃x : H(hk, x) = h, Δ(E(ek, x) + C(x),D(td, h)) > 2τm] ≤ e−τm/3

Applying union bound over all h ∈ {0, 1}η gives

Pr[¬TDHCorhk] = Pr[∃x, Δ(E(ek, x) + C(x),D(td,H(hk, x))) > 2τm] < eη−τm = negl(λ).

Second, note that Pr[Badhk ∧ TDHCorhk] ≤ Pr[∃x : Δ(r,D(td,H(hk, x))) ≤
2(τ + ε)] where the probability is over choice of td and r. Let ε′ = 2(ε + τ) and
(for fixed hk, td) let

Y = {D(td, hx) + z′ mod 2 | x ∈ {0, 1}n, hx = H(hk, x), z′ ∈ {0, 1}m s.t. |z′| ≤ ε′m}

For fixed hk, td, Prr[∃x : Δ(r,D(td, hx)) < ε′m] = 2−m|Y |. Thus, it suf-
fices to show that 2−m|Y | is negligible. Clearly, |{D(td, hx) : x ∈ {0, 1}n, hx =
H(hk, x)}| ≤ 2η. Further, we can bound

|{z′ ∈ {0, 1}m | |z′| ≤ ε′m}| =
ε′m
∑

i=1

(

m

i

)

≤
ε′m
∑

i=1

(me

i

)i

≤ (e/ε′)ε′m+1

and consequently, |Y | ≤ 2η · (e/ε′)ε′m+1. If ε′ is a (universally) sufficiently small
constant, and m ≥ (λ+η+log(e/ε′))/(1−ε′ log(e/ε′)) = O((η+λ)/τ +log(1/ε)),

2−m|Y | ≤ 2−m(e/ε)ε′m+12η < 2(ε
′ log(e/ε′)−1)m+log(e/ε′)+η < 2−λ.

��

Acknowledgments. We thank Brent Waters for pointing out an inaccuracy in a proof
in a previous version of this work, and for other comments. We thank the anonymous
reviewers of CRYPTO 2020 for their helpful feedback and pointers.

Research supported by the Binational Science Foundation (Grant No. 2016726),
and by the European Union Horizon 2020 Research and Innovation Program via ERC
Project REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).
Venkata Koppula was also supported by the Simons-Berkeley Fellowship. This work
was done in part while the author was visiting the Simons Institute for the Theory of
Computing.

766 Z. Brakerski et al.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: 44th Sym-
posium on Foundations of Computer Science (FOCS 2003), Proceedings, Cam-
bridge, MA, USA, 11–14 October 2003, pp. 298–307. IEEE Computer Society
(2003). https://doi.org/10.1109/SFCS.2003.1238204

2. Badrinarayan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical zap
arguments. Cryptology ePrint Archive, Report 2019/780 (2019)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

4. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474, May 2014

5. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

6. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of
the International Congress of Mathematicians, pp. 1444–1451 (1987)

7. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-
tions (extended abstract). In: 20th Annual ACM Symposium on Theory of Com-
puting, 2–4 May 1988, pp. 103–112. ACM Press, Chicago (1988)

8. Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash via
correlation intractability for approximable relations. Cryptology ePrint Archive,
Report 2020/258 (2020). https://eprint.iacr.org/2020/258

9. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
pp. 1082–1090. Association for Computing Machinery, New York (2019). https://
doi.org/10.1145/3313276.3316380

10. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004). https://doi.org/10.1145/1008731.1008734

12. Damg̊ard, I., Park, S.: How practical is public-key encryption based on LPN and
ring-LPN? Cryptology ePrint Archive, Report 2012/699 (2012). http://eprint.iacr.
org/2012/699

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: 23rd Annual ACM Symposium on Theory of Computing, 6–8 May 1991, pp.
542–552. ACM Press, New Orleans (1991)

14. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 1

15. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999). https://doi.org/
10.1137/S0097539792230010

https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://eprint.iacr.org/2020/258
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1145/1008731.1008734
http://eprint.iacr.org/2012/699
http://eprint.iacr.org/2012/699
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010

NIZK from LPN and Trapdoor Hash via CI-Apx 767

16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th Annual ACM Symposium on Theory
of Computing, pp. 291–304, 6–8 May 1985. ACM Press, Providence (1995)

18. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3) (2012). https://doi.org/10.1145/2220357.2220358

19. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: one-way product functions and their applications), pp. 850–858, October 2018.
https://doi.org/10.1109/FOCS.2018.00085

20. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. Cryptol-
ogy ePrint Archive, Report 2019/839 (2019)

21. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

22. Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifiable WI
from (subexponential) LWE. Cryptology ePrint Archive, Report 2019/808 (2019).
https://eprint.iacr.org/2019/808

23. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing,
14–16 May 1990, pp. 427–437. ACM Press, Baltimore (1990)

24. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learn-
ing with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 4

25. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory
of Computing, 31 May – 3 June 2014, pp. 475–484. ACM Press, New York (2014)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/2220357.2220358
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://eprint.iacr.org/2019/808
https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-030-26948-7_4

Shorter Non-interactive Zero-Knowledge
Arguments and ZAPs for Algebraic

Languages

Geoffroy Couteau1(B) and Dominik Hartmann2

1 CNRS, IRIF, Université de Paris, Paris, France
couteau@irif.fr

2 Ruhr-University Bochum, Bochum, Germany
Dominik.Hartmann@rub.de

Abstract. We put forth a new framework for building pairing-based
non-interactive zero-knowledge (NIZK) arguments for a wide class of alge-
braic languages, which are an extension of linear languages, containing
disjunctions of linear languages and more. Our approach differs from
the Groth-Sahai methodology, in that we rely on pairings to compile a
Σ-protocol into a NIZK. Our framework enjoys a number of interesting
features:

– conceptual simplicity, parameters derive from the Σ-protocol;
– proofs as short as resulting from the Fiat-Shamir heuristic applied

to the underlying Σ-protocol;
– fully adaptive soundness and perfect zero-knowledge in the common

random string model with a single random group element as CRS;
– yields simple and efficient two-round, public coin, publicly-verifiable

perfect witness-indistinguishable (WI) arguments(ZAPs) in the plain
model. To our knowledge, this is the first construction of two-
rounds statistical witness-indistinguishable arguments from pairing
assumptions.

Our proof system relies on a new (static, falsifiable) assumption over pair-
ing groups which generalizes the standard kernel Diffie-Hellman assump-
tion in a natural way and holds in the generic group model (GGM) and
in the algebraic group model (AGM).

Replacing Groth-Sahai NIZKs with our new proof system allows to
improve several important cryptographic primitives. In particular, we
obtain the shortest tightly-secure structure-preserving signature scheme
(which are a core component in anonymous credentials), the shortest
tightly-secure quasi-adaptive NIZK with unbounded simulation sound-
ness (which in turns implies the shortest tightly-mCCA-secure cryptosys-
tem), and shorter ring signatures.

Keywords: Zero-knowledge arguments · Non-interactive
zero-knowledge arguments · Satistical witness-indistinguishability ·
Pairing-based cryptography · Tight security · Structure-preserving
signatures

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 768–798, 2020.
https://doi.org/10.1007/978-3-030-56877-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_27

Shorter NIZK Arguments and ZAPs for Algebraic Languages 769

1 Introduction

Zero-knowledge proof systems, introduced in the seminal paper of Goldwasser,
Micali, and Rackoff [38], allow a prover to convince a verifier of the truth of a
statement, without revealing anything beyond this. Zero-knowledge proofs are
among the most fundamental cryptographic primitives, and enjoy a tremendous
number of applications. A particularly useful kind of zero-knowledge proof sys-
tems are non-interactive zero-knowledge proofs (NIZKs) [13], which consist of
a single flow from the prover to the verifier. NIZKs have found a wide variety
of applications in cryptography, ranging from low-interactions secure computa-
tion protocols to the design of advanced cryptographic primitives and proto-
cols such as verifiable encryption, group signatures, structure-preserving signa-
tures, anonymous credentials, KDM-CCA2 and identity-based CCA2 encryption,
among many others.

Early feasibility results for NIZKs were established in the 90’s, under stan-
dard assumptions such as factorization, or the existence of (doubly-enhanced)
trapdoor permutations [29]. While these results demonstrated the possibility of
building NIZKs under standard assumption for all NP languages (in the common
reference string model), they were typically built upon a reduction to an NP-
complete language such as graph hamiltonicity, and were concretely inefficient.

The Fiat-Shamir (FS) transform [30], which relies on a hash function to com-
pile an interactive ZK proof into a NIZK, provides a practical alternative to the
above, leading to efficient NIZK arguments; however, it only offers heuristic secu-
rity guarantees and any security proof for the FS transform must overcome sev-
eral barriers [7,37]1. Hence, for two decades after their introduction, essentially
two types of NIZKs coexisted: inefficient NIZKs provably secure in the standard
(common reference string) model, and heuristically secure practical NIZKs.

1.1 Pairing-Based NIZKs

With the advent of pairing-based cryptography, this somewhat unsatisfying sit-
uation changed. Starting with the celebrated work of Groth and Sahai [44], a
variety of pairing-based NIZK proof systems have been introduced. These proof
systems have in common that they handle directly a large class of languages
over abelian groups, avoiding the need for expensive reductions to NP-complete
problems. Due to its practical significance, the Groth-Sahai proof system (and
its follow-ups) initiated a wide variety of cryptographic applications. As of today,
all known practically efficient (publicly verifiable) NIZKs in the standard model
rely on pairing-based cryptography. Existing pairing-based NIZK proof systems
can be divided in two categories:

NIZKs Based on the Groth-Sahai (GS) Methodology. These NIZKs
directly rely on the techniques developed in [44], and enhance the seminal
1 Alternatively, the Fiat-Shamir transform offers provable security in the random ora-

cle model; we note that there have been recent developments regarding instantiating
Fiat-Shamir in the standard model under strong assumptions [16,55].

770 G. Couteau and D. Hartmann

construction in various ways [12,25,27,66]. Unfortunately, in spite of these opti-
mizations, Groth-Sahai proofs remain often unsatisfyingly inefficient, and are in
particular notably less efficient than (heuristic) NIZKs obtained with the Fiat-
Shamir transform. Furthermore, the design and analysis of a suitable NIZK,
taking into account all existing optimizations, is often a tedious and error-prone
task.

Quasi-Adaptive NIZKs for Linear Languages. In light of the above, an alter-
native line of research, starting with the work of [51] and culminating with [57],
has investigated a different strategy for building pairing-based NIZKs. Roughly,
the approach relies on a hash proof system [22] (HPS) for the target language
over some abelian group G1, which can be seen as a kind of designated-verifier
NIZK proof, and makes it publicly verifiable by embedding the secret hashing
key in the group G2. Verifying the proof is done with the help of a pairing opera-
tion between G1 and G2. The HPS-based approach leads to conceptually simple
and very efficient proofs (e.g. a membership proof for the DDH language can be
made as short as a single group element in [57]). However, this efficiency comes
with strong limitations: this approach can only handle linear languages, and only
provides a quasi-adaptive type of soundness, where the common reference string
is allowed to depend on the language.

1.2 Our Contribution

In this work, we introduce a new approach for building efficient, pairing-based
non-interactive zero-knowledge arguments for a large class of languages, where
soundness relies on a new (but plausible, static, and falsifiable) assumption,
which extends the kernel Diffie-Hellman assumption [63] in a natural way. Our
approach is very simple and natural; yet it has to our knowledge never been
investigated. It leads to proofs which are shorter and conceptually much simpler
than proofs obtained with the GS methodology. At the same time and unlike
the HPS-based methodology, our proof system is not limited to linear languages,
but handles a more general class of witness samplable languages where, roughly,
the language parameters can be sampled together with a trapdoor which can
be used to decide membership in the language (in particular, this captures the
important case of disjunctions of linear languages, from which one can build
linear-size NIZKs for circuit satisfiability using the GOS methodology [42]) and
achieves fully adaptive soundness with very short common random strings.

Statistical ZAPs and NIWIs. An additional benefit of our NIZK proof sys-
tem is that it works in the common random string model, where the CRS
is just a random bit string. Furthermore, we show that if we let the veri-
fier pick the CRS himself, our proof system still satisfies statistical witness-
indistinguishability. Therefore, we obtain the shortest two-round publicly-
verifiable witness-indistinguishable argument system in the plain model (i.e.,
a ZAP [26]) for witness-samplable algebraic languages. Our ZAPs can be turned
into fully non-interactive witness-indistinguishable arguments in the plain model,
using the derandomization method of [8]. We emphasize that the ZAPs obtained

Shorter NIZK Arguments and ZAPs for Algebraic Languages 771

with our method are statistically witness-indistinguishable; to our knowledge,
our construction is the first pairing-based statistical ZAP (it is in addition pub-
licly verifiable, and public coin). Existing constructions of statistical ZAPs rely
on the quasipolynomial hardness of LWE [6,49], or rely on subexponential vari-
ants of standard assumptions and are not public coin [54]. While our result comes
at the cost of basing soundness on a new pairing-based assumption, we believe
that it represents a significant contribution to the important and long standing
open question of building statistical ZAPs.

High Level Overview. At a high level, our approach consists in compiling
a three-move public coin zero-knowledge protocol (so called Σ-protocol) with
linear answers over an abelian group G1 into a non-interactive zero-knowledge
argument, by embedding the challenge e into a group G2 such that there is an
asymmetric pairing between G1 × G2 and a target group GT , and adding the
embedded challenge to the common reference string. Intuitively, correctness is
preserved because the pairing can be used to perform the verification procedure,
zero-knowledge is perfect, and soundness follows from the fact that a cheating
adversary must compute a value in G1 which has a non-trivial relation to e,
which is conjectured to be intractable. An important part of our work is devoted
to the analysis of the soundness property of our proof system, and the underlying
assumption.

In addition to the efficiency improvements it provides, an important con-
ceptual advantage of our approach over the Groth-Sahai methodology is that
it gives a very simple and natural way to construct NIZKs. The construction of
optimized Groth-Sahai proofs is generally cumbersome, and a significant amount
of expertise is often required for the design of the best-possible GS proof in a
given context. In contrast, Σ-protocols are typically straightforward to construct,
and require considerably less expertise to optimize. Building a NIZK with our
approach requires only to design an algebraic Σ-protocol for the target language
distribution, and compiling it into a NIZK (which essentially amounts to adding a
single group element to the CRS). Computation, communication and the under-
lying assumption can be obtained in a straightforward way from the parameters
of the underlying Σ-protocol. We believe that this conceptual simplicity is an
important feature toward making the use of pairing-based NIZKs accessible to a
wider spectrum of researchers and industrials.

1.3 Technical Overview

The starting point of our approach is a (somewhat folklore) Σ-protocol for
algebraic languages [10,17]. A Σ-protocol is a three-move public-coin honest-
verifier zero-knowledge proof system (i.e., the message of the verifier is a ran-
dom string, and the zero-knowledge property holds against verifiers that do
not deviate from the specifications of the protocol). In the following, we use
the implicit notations introduced in [28]: given a group G in additive form,
we fix a generator g and write [x] for x · g. Most, if not all, algebraic lan-
guages over abelian groups considered in the literature can be written as

772 G. Couteau and D. Hartmann

LM,Θ := {x ∈ G
l|∃w ∈ Z

t
p : M(x) · w = Θ(x)}, where M : G

l �→ G
n×t

and Θ : Gl �→ G
n are linear maps sampled according to a distribution Dpar .

This captures all algebraic languages defined by systems of polynomial equa-
tions between secret exponents. Most Σ-protocols for algebraic languages can
then be seen as particular instantiations of the generic Σ-protocol represented
on Fig. 1.

To compile this Σ-protocol into a NIZK, we assume that all computations
take place in a group G1, such that there exists another group G2 together
with an asymmetric pairing • : G1 × G2 �→ GT . We use the standard brackets
with subscripts [·]1, [·]2, [·]T to extend the implicit notation to the three groups
G1,G2,GT . The setup algorithm of our proof system picks a random e ∈ Zp

and sets the common reference string to [e]2. The prover computes [a]1 as in
the Σ-protocol, and obtains the value d embedded in G2 by computing [d]2 :=
w·[e]2+r·[1]2. Checking the verification equation can still be done, with the help
of the pairing: the verifier checks that [M(x)]1 • [d]2

?= [Θ(x)]1 • [e]2 +[a]1 • [1]2.
While this construction is relatively simple, the bulk of our technical contribution
is the detailed analysis of the security guarantees it provides.

Fig. 1. Generic Σ-protocol for algebraic languages LM,Θ from a distribution Dpar

The Extended-Kernel Matrix Diffie-Hellman Assumption. To prove the
soundness of our NIZK, we introduce a new family of assumptions, which we call
the extended-kernel Matrix Diffie-Hellman assumption (extKerMDH). The regu-
lar KerMDH assumption with respect to a distribution Dist over an asymmetric
pairing group states that, given a matrix [A]2 sampled from Dist, it is infeasible
to find a vector [v]1 where v is in the kernel of A. It is a natural computational
analogue of the decisional Matrix Diffie-Hellman assumption (which it implies),
and was introduced in [63]. Our new assumption further generalizes the KerMDH
assumption as follows: it states that it should be infeasible, given [A]2, to find
another matrix [A′]2 and a matrix [B]1 such that B spans the entire kernel of
A||A′. Intuitively, the adversary is allowed to extend the matrix [A]2, which
facilitates finding G1-vectors in its kernel; but each time the adversary extends
A by one column, he must provide an additional G1-vector (linearly independent
of the previous vectors) in the kernel of the extended matrix.

Shorter NIZK Arguments and ZAPs for Algebraic Languages 773

The extKerMDH assumption is a static, non-interactive assumption, which
generalizes the KerMDH assumption in a natural way. To provide further evi-
dence for the security of our assumption, we prove that it is unconditionally
secure in the generic group model [70] (GGM), and that it reduces to the discrete
logarithm assumption in the algebraic group model [31] (AGM). On the down-
side, the extKerMDH assumption might not in general be a falsifiable assump-
tion [36,64]: it states that it is infeasible to output [A′]2 and a basis [B]1 of
the kernel of A||A′, but verifying whether the G1-matrix [B]1 is full rank is not
efficiently feasible in general (indeed, the hardness of deciding whether a matrix
given in a group G is full rank is exactly the decisional matrix Diffie-Hellman
assumption). However, we show that for all witness-sampleable languages, there
is a language trapdoor which does allow to efficiently check whether B is full
rank (intuitively, the trapdoor allows to put [B]1 in triangular form, from which
the rank can be easily checked), turning our new assumption into a falsifiable
assumption.

Witness Samplable Languages. We give an intuition of the class of algebraic
languages which satisfy our requirements. Intuitively, an algebraic language L
admits a NIZK (using our compiler) where soundness reduces to a falsifiable
assumption if the parameters of L can be sampled together with a trapdoor
which allows to efficiently check language membership. For example, this cap-
tures the DDH language LDDH: given language parameters ([1]1, [s]1), the words
in LDDH are of the form ([x]1, [x · s]1), and the trapdoor s allows to verify that
a word (c1, c2) belongs to LDDH by checking whether s · c1 − c2 = [0]1. Witness
samplable languages need not be linear languages: for example, the language
of ElGamal encryptions (in the exponent) of a plaintext m ∈ {0, 1} is not a
linear language, yet the ElGamal secret key allows to efficiently check wether a
pair of group elements indeed encrypts a bit, hence it is also captured by our
methods. More generally, the conjunctions and disjunctions of witness samplable
languages are still witness samplable. On the other hand, some natural algebraic
languages are not witness-samplable; for example, the language of triples of the
form ([1]1, [x]1, [x2]1) does not seem to be witness samplable (since it is not
clear how one could generate a word-independent trapdoor allowing to check
membership to this language).

Witness-sampleable languages were originally introduced in [51], but were
restricted to linear languages. We extend this notion of witness-sampleability to
arbitrary algebraic languages, and will show that many languages of interest are
actually witness sampleable. For these languages, we therefore obtain shorter
NIZKs under a natural, static, falsifiable assumption. We note that for the case
of linear languages (such as the language of DDH tuple), our generalized notion
of witness-samplability is the same as the notion of [51], and applying our com-
piler to witness-samplable linear languages leads to NIZKs which are actually
secure under the standard KerMDH assumption (while still being shorter than
GS proofs).

774 G. Couteau and D. Hartmann

1.4 Applications

Our new NIZKs have several attractive features and can be used to improve the
efficiency of many NIZK-based primitives. We provide a non-exhaustive list of
some applications below. All applications we describe rely on witness-sampleable
algebraic languages, making the underlying extKerMDH assumption falsifiable.

Adaptive NIZKs for Linear Languages. We achieve the shortest and most
efficient adaptive NIZKs for (witness-sampleable) linear languages, with perfect
zero-knowledge and computational soundness under the kernel Diffie-Hellman
assumption: a Groth-Sahai proof for the language of DDH tuples consists of
four group elements, while our NIZK requires only three group elements, and
considerably less pairings. We note that in the quasi-adaptive setting, where the
common reference string is allowed to depend on the language, the work of [57]
gives NIZKs with two group elements (for non witness-sampleable languages),
or even a single group element (for witness-sampleable languages). Therefore,
our work can be seen as filling a remaining gap, providing a more complete pic-
ture of the size of NIZKs for linear languages, depending on whether we allow
quasi-adaptive soundness, and rely on witness-sampleability. In addition to pro-
viding a stronger soundness guarantee, full adaptivity also leads to increased
efficiency when many proofs are run in some high level application: it allows to
rely on a single CRS (which, in our case, consists of a single group element),
even when executing many linear subspace proofs for different languages. In con-
trast, QA-NIZKs have a language-dependent CRS; hence, a different CRS must
be generated for each language. The comparison is summarised in Table 1.

Table 1. Comparison of existing NIZKs for the DDH language (linear languages
described by an n × t matrix). CRS/Proof size denotes the number of group elements
in the common reference string/a proof. Pairings denotes the number of pairing oper-
ations in proof verification. “WS” indicates whether the proof system is restricted to
witness sampleable languages.

Scheme Assumption CRS Proof size Pairings WS Fully Adaptive

GS [44] SXDH 4 4(n + 2t) 24(n(4t + 8)) ✗ ✓

KW [57] KerMDH 6(n + 2t + 2) 2(2) 3(n + 1) ✗ ✗

KW [57] KerMDH 4(n + t + 1) 1(1) 2(n) ✓ ✗

Ours KerMDH 1 3(n + t) 6(n + nt + 2) ✓ ✓

Adaptive NIZKs for Disjunctions. Since our NIZKs are built by compiling a
Σ-protocol, they are compatible with the OR-trick of [21]. The OR-trick pro-
vides a general method to construct Σ-protocols of partial satisfiability, such as
“k of those n words belong to the language L”, from a Σ-protocol for proving
membership to L. Building upon this observation, we obtain shorter NIZKs for
disjunctions of statements. The state-of-the-art NIZK for partial satisfiability of
equations is the one in [66]. For the important case of the disjunction between

Shorter NIZK Arguments and ZAPs for Algebraic Languages 775

two (resp. n) DDH languages, it gives proofs of size 10 group elements under
the SXDH assumption (resp. 4n + 2 group elements for 1-out-of-n proofs). For
the same language, our approach leads to proofs of size 7 (resp. 3n + 1 group
elements for 1-out-of-n proofs). This is detailed in Table 2. NIZKs for disjunc-
tions of languages are a core component in several applications; we outline some
applications below.

Table 2. Comparison of existing NIZKs for the OR of two DDH languages (two linear
languages described by ni × ti matrices for i ∈ {1, 2}). CRS denotes the number of
group elements in the common reference string. “WS” indicates whether the proof
system deals only with witness sampleable languages. Note that our scheme can in fact
handle non-witness sampleable languages; however, this comes at the cost of making
the underlying extKerMDH assumption non-falsifiable.

Scheme Assumption CRS Proof size Pairings WS

[43,66] SXDH 4 10(
∑2

i=1 ni + 2ti + 2) 24(
∑2

i=1 4ni + 2niti) ✗

Ours extKerMDH 1 7(
∑2

i=1 ni + ti + 1) 12(
∑2

i=1 ni + niti + 4) ✓

Ring Signatures. Ring signatures [67] allow a signer to anonymously sign on
behalf of an ad-hoc group to which it belongs. They are a core component in
some e-voting and e-cash schemes [71] and anonymous cryptocurrencies such as
Monero [65]. A O(

√
N)-size proof of membership in a ring of size N was designed

by Chandran, Groth and Sahai [18] and subsequently improved in [66]; it relies
at its core on a NIZK for (� − 1)-out-of-� disjunction of DDH languages. Using
our improved NIZK for disjunction, we reduce the ring signature size by

√
N − 1

group elements, for rings of size N .
We observe that a O(log N)-size ring signature scheme was recently intro-

duced in [5]. The authors do not provide a concrete efficiency analysis and use
generic tools which would likely render concrete instantiations inefficient for
reasonable group sizes. We note, though, that our proof system can be used to
instantiate the non-interactive witness indistinguishable proof system they rely
upon, and would likely lead to efficiency improvements comparable to what we
get over the ring signature of [66], for concrete instantiations of their building
blocks.

Tightly-Secure QA-NIZKs with Unbounded Simulation Soundness. In
several applications in cryptography, the constructions require a NIZK for linear
languages which satisfies a stronger soundness guarantee: soundness should hold
even if the adversary is allowed to see an arbitrary number of simulated proofs.
This stronger notion is known as unbounded simulation-soundness. The recent
work of [3] introduced the first unbounded simulation-sound quasi-adaptive NIZK
(USS-QA-NIZK) which achieves simultaneously compact CRS, compact proof
size, and a tight security reduction. At the core of their construction is the

776 G. Couteau and D. Hartmann

disjunction NIZK of [66], which has 10 group elements; this accounts for most of
the size of their USS-QA-NIZK, which has 14 group elements. By replacing the
disjunction proof by our new NIZK, we reduce the size of their USS-QA-NIZK to
only 11 group elements, and also reduce the CRS size, at the cost of requiring
our new assumption. We provide a comparison to existing USS-QA-NIZKs for
linear languages on Table 3. In particular, our result allows to further reduce the
size of the tightly-secure IND-mCCA-secure public-key encryption scheme of [4]
(IND-mCCA refers to indistinguishability against chosen ciphertext attacks in
the multi-user, multi-challenge setting), with a security reduction independent
of the number of decryption-oracle requests of the CCA2 adversary, from 17
group elements to 14 group elements.

Table 3. Comparison of existing unbounded simulation-sound NIZKs for linear lan-
guages. The notation (x1, x2) denotes x1 elements in G1 and x2 elements in G2. Q
denotes the number of simulation queries, λ is the security parameter. (n, t) are the
parameters of the underlying linear language, defined by a matrix M ∈ Z

n×t
p , with

n > t.

CRS Size Proof Size Pairings Sec. Loss Assumption

[58] 2n + 3(t + λ) + 10 20 2n + 30 O(Q) DLIN

[57] (2t + 6, n + 6) (4, 0) t(n + t + 2) O(Q) SXDH

[59] 2n + 3t + 24λ + 55 42 2n + 10 3λ + 7 DLIN

[33] (t + 6λ + 1, n + 2) (3, 0) n + 4 4λ + 1 SXDH

[4] (3t + 14, n + 12) (n + 16, 2t + 5) 7n + 5t + 3nt + 121 36 log(Q) SXDH

[3] (4t + 4, 2n + 8) (8, 6) n + 30 6 log(Q) SXDH

Ours (4t + 8, 2n + 3) (8, 3) n + 18 6 logQ
SXDH,

extKerMDH

Tightly-Secure Structure-Preserving Signatures. The notion of structure-
preserving cryptography gives a paradigm for building modular protocols
designed to be naturally expressed as systems of pairing-product equations,
which makes them compatible with the Groth-Sahai methodology. Structure-
Preserving Signatures (SPS) are one of the most fundamental primitives in
structure-preserving cryptography. They are the core component in a variety
of important applications, such as anonymous credentials (see e.g. [9,14,15,19,
23,32,46,61], to name just a few), mixnets and voting systems [41], or simulation-
sound NIZKs [40,59].

A cryptographic scheme is tightly secure if its security loss is independent
of the number of users of the scheme. A tight security reduction gives guar-
antees that do not degrade with the size of the setting in which the system is
used. Tight security is especially important in structure-preserving cryptography,
where many components rely on the same cyclic group: if a non-tightly-secure
scheme is used and the number of users increases, this might require increasing

Shorter NIZK Arguments and ZAPs for Algebraic Languages 777

the group size to compensate for the security loss, degrading the performance
of all other schemes relying on the same cyclic group. There has been a long
sequence of works that seeked to obtain increasingly shorter structure preserv-
ing signatures with tight security reductions; we summarize them in Table 4.

The work of [34] provides a tightly-secure SPS with 14 group elements, which
combines an algebraic MAC scheme with the proof of [66] for the disjunction
of two DDH languages. The latter has proof size of 10 group elements. Replac-
ing the OR-NIZK in their work by the shorter proof which we introduce leads
to a tightly-secure SPS with 11 group elements, matching the size of the best
known tightly-secure SPS [3]. The work of [3] improves over [34] by replacing
the underlying OR-NIZK by a designated-prover OR-NIZK, which suffices in this
context. They show that in the designated-prover setting, the size of the OR-
NIZK can be reduced to 7 group elements. We observe that their technique is
actually compatible with our improved OR-NIZK, and leads to a quasi-adaptive
designated-prover OR-NIZK with only 5 group elements (which can be of inde-
pendent interest). Overall, this leads to a tightly-secure SPS with only 9 group
elements under (a falsifiable flavor of) the extKerMDH assumption, significantly
improving over the efficiency of the state-of-the-art. Considering a setting with
security parameter λ = 80, a large possible number of signing queries Q = 230,
and choosing a group G of order p ≈ 22(λ+log L) to account for the security loss of
L(Q) (assuming that the best attack on the group is the generic

√
p-time attack),

our scheme is actually computationally more efficient than the state-of-the-art
non-tightly-secure SPS of [52], and produces signatures which are only slightly
larger: 241 Bytes versus 201 Bytes.

Table 4. Comparison of existing structure-preserving signatures for message space G
n
1 ,

in their most efficient variant. For [4], n and t are defined as in Table 3. The notation
(x1, x2) denotes x1 elements in G1 and x2 elements in G2. Q denotes the number of
signing queries, λ is the security parameter. In the tree-based scheme of [47], � denotes
the depth of the tree (which limits the number of signing queries to 2�).

Scheme Sig. Size PK Size Pairings Sec. Loss Assumption

[47] 10� + 6 13 81l + 1 O(1) DLIN
[1] (7, 4) (5, n + 12) 16 Q SXDH,XDLIN
[60] (10, 1) (16, 2n + 5) 17 + 2n O(Q) SXDH,XDLINX
[56] (6, 1) (0, n + 6) 3n + 4 2Q2 SXDH
[52] (5, 1) (0, n + 6) n + 3 Q log Q SXDH
[2] (13, 12) (18, n + 11) n + 16 80λ SXDH
[50] (11, 6) (7, n + 16) n + 22 116λ SXDH
[34] (8, 6) (2, n + 9) n + 11 6 log Q SXDH
[4] (6, 6) (2, n + 5) 7n + 5t + 3nt + 121 36 log Q SXDH
[3] (7, 4) (2, n + 11) n + 31 6 log Q SXDH

Ours (7, 2) (7, n + 8) n + 23 6 log Q SXDH, extKerMDH

778 G. Couteau and D. Hartmann

1.5 Related Work

We already mentioned related works on NIZKs and SPS. Our work was partly
inspired by a line of work initiated in [17,24], which compiles Σ-protocols into
designated-verifier NIZKs, by encrypting the challenge with a malleable cryp-
tosystem, and putting the ciphertext in the CRS. The idea of hiding the chal-
lenge of an interactive protocol in a CRS was also used in different contexts; for
example, it bears similarity with methods used in [35,53].

1.6 Organization

In Sect. 2, we recall necessary preliminaries. Section 3 introduces our new NIZK
argument system. Section 4 is devoted to the security analysis of the new proof
system; to this end, it introduces the notion of algebraic witness sampleability
and the extKerMDH assumption. Section 5 extends our construction to disjunc-
tions of algebraic languages. We outline several applications of our results in
Sect. 6. The full version of this paper [20] introduces some missing preliminaries
for completeness, together with examples to illustrate some of the notions we
introduce, and includes a proof of security of our new assumption in the generic
group model and in the algebraic group model. It also describes a variant of our
compiler which yields (dual-mode) NIZK proofs based on the SXDH assumption
for arbitrary algebraic languages, shows how disjunctions of languages are in
fact directly captured by the framework of algebraic languages without going
through the OR-trick of [21], and gives an application of our compiler to the
designated-prover QA-NIZK from [3].

2 Preliminaries

Let P denote the set of all primes and λ ∈ N denote the security parameter. A
probabilistic polynomial time algorithm (PPT, also denoted efficient algorithm)
runs in time polynomial in the (implicit) security parameter λ. A function f is
negligible if for any positive polynomial p there exists a bound B > 0 such that,
for any integer k ≥ B, |f(k)| ≤ 1/|p(k)|. We will write f(λ) ≈ 0 to indicate that
f is a negligible function of λ; we also write f(λ) ≈ g(λ) for |f(λ) − g(λ)| ≈ 0.
For sampling an element according to a distribution or selecting it uniformly
random from a (finite) set, we write p

$←− S. We use the same notation for the
output of a probabilistic algorithm. For output y of a deterministic algorithm
A on input x, we will also use y := A(x). Matrices will always be bold, upper-
case letters and vectors will be bold, lower-case letters. For a matrix A let
span(A) := {x|∃r : x = Ar} and ker(A) := {x|xT A = 0} the left kernel of
A. All interactive protocols will be performed between a prover P and a verifier
V. If one party can deviate from the protocol, we will denote this by P̂ and V̂
respectively. Additionally, a simulator will be called S. For language parameters
ρ sampled from a language distribution D, let Lρ denote the language defined by
ρ and let Rρ denote its witness relation. Finally, for a distribution D, we write
Supp(D) for the support of the distribution.

Shorter NIZK Arguments and ZAPs for Algebraic Languages 779

2.1 Groups and Pairings

Throughout this work, let p ∈ P denote a prime with bit length polynomial
in the security parameter λ. Let G1, G2, GT be finite groups of prime order p
with generators g1, g2 respectively and e : G1 × G2 → GT a bilinear map. We
set gT := e(g1, g2), which is a generator of GT . PG = (p,G1,G2,GT , g1, g2, e)
is called a pairing group setting, if the following properties hold: e(g1, g2) �= 0T

(non-degenerate); e(ag1, bg2) = ab · e(g1, g2) (bilinearity); and e is efficiently
computable. Furthermore, we require the existence of a probabilistic algorithm
PGGen, which on input 1λ generates pairing parameters as above with a group
order close to 2λ, i.e. PG $←− PGGen(1λ).

Throughout this work, we will write all groups in implicit notation, i.e. for an
additive pairing group setting PG = (p,G1,G2,GT , g1, g2, e), we write [1]i := gi

and [x]i := x · gi for all x ∈ Zp and i ∈ {1, 2, T}. If the group is clear from
context, we will omit the index. We write [x]1 • [y]2 := e([x]1 , [y]2) = [xy]T
for pairings. The implicit notation also extends to matrices and vectors. For
A ∈ Z

n×t
p ,A = (aij), let [A]k = ([aij]k) ∈ G

n×t
k for k ∈ {1, 2, T} and we also

extend the pairing notation from above to [A]1 • [B]2 := e([A]1 , [B]2) = [AB]T
for matrices A ∈ Z

n×t
p ,B ∈ Z

t×m
p . Furthermore, we extend the implicit notation

to linear (multivariate) polynomials. Let Pl := {[a0]+
∑l

i=0 aiXi|ai ∈ Zp for i ∈
{0, . . . , l}} ⊂ G[x = (X1, . . . , Xl)] be the set of linear multivariate polynomials
over G in l variables. For f ∈ Pl and y = (y1, . . . , yl) ∈ Z

l
p, we define the

evaluation of f in y as applying the group operation in the exponent, i.e.

f([y]) := f(y) = [a0] +
l∑

i=1

ai[yi] = [a0] +
l∑

i=0

[aiyi]

This allows us (in a slight abuse of notation) to use polynomials from Pl inside
of matrices and equations in implicit notation without changing variable names,
i.e. [a0]X0 = [a0X0], since the evaluation of the polynomial is defined exactly
that way. For a matrix A = (ai,j) ∈ Pn×t

l , the evaluation of the matrix (or
vector) over Pl in a vector y ∈ G

l denotes the evaluation of all entries in the
given vector, i.e. A(y) := (ai,j(y)) ∈ G

n×t.
The assumptions used in this work are parametrised over matrix distribu-

tions. These are defined as follows.

Definition 1 (Matrix Distribution). Let k, l ∈ N with k < l. We call Dk,l a
matrix distribution, if it outputs matrices over G

l×k of full rank k in polynomial
time. If l = k + 1, we write Dk instead. Without loss of generality, we assume
that the first k rows of a matrix A ∈ Supp(Dk,l) form an invertible matrix.

780 G. Couteau and D. Hartmann

An example for a matrix distribution for which the KerMDH and MDDH
assumptions hold in the AGM is the following:

Lk : M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
e1 0 0 · · · 0
0 e2 0 0

0 0 e3
. . . 0

...
.

...
0 · · · 0 ek

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For k = 1, this distribution generates Diffie-Hellman matrices and for k ≥ 2
these matrices correspond to the k-Lin assumption [48]. We will only consider
the distribution Lk in this work as it is sufficient for all of our applications.

2.2 Σ-Protocols

A Σ-protocol for an NP language �L = {x : ∃w, |w| = poly(|x|) ∧ (x,w) ∈ R}
(where R is a polytime checkable relation) is a public-coin, three-move interactive
proof between a prover P with witness w and a verifier V, where the prover sends
an initial message a = P1(x,w), the verifier responds with a random e

$←− {0, 1}λ

and the prover concludes with a message d = P2(x,w, a, e). Lastly, the verifier
outputs 1, if it accepts and 0 otherwise.

Three properties are required for a Σ-protocol: completeness, special sound-
ness and special honest-verifier zero-knowledge.

Definition 2 (Completeness). A three-move protocol ΠR for a relation R
with prover P and verifier V is complete, if

Pr

[

out(V (x, a, e, d)) = 1

∣
∣
∣
∣
∣

(x,w) ∈ R, a
$←− P1(x,w),

e
$←− {0, 1}λ, d

$←− P2(x,w, a, e)

]

= 1

Definition 3 (Special soundness). A three-move protocol ΠR for a relation
R has the special soundness property, if a polynomial time algorithm E exists,
which for a statement x and two accepting transcripts (a, e, d), (a, e′, d′) of ΠR

with e �= e′ outputs a witness w, s.t. (x,w) ∈ R with overwhelming probability.

Definition 4 (Special honest-verifier zero-knowledge). A three-move pro-
tocol ΠR for a relation R is special honest-verifier zero-knowledge, if there exists
a polynomial-time simulator S such that the distributions of S(x, e) and the
transcript of an honest protocol execution between P and V are identical for
(x,w) ∈ R, e ∈ {0, 1}λ.

2.3 Non-interactive Zero-Knowledge Arguments

An adaptive NIZK Π for a family of language distribution {Dpar}par consists of
four probabilistic algorithms:

Shorter NIZK Arguments and ZAPs for Algebraic Languages 781

– CRSGen(1λ). On input 1λ generates public parameters par (such as group
parameters), a CRS and a trapdoor T . For simplicity of notation, we assume
that any group parameters are implicitly included in the CRS.

– Prove(CRS, ρ, x, w). On input of a CRS, a language description ρ ∈ Dpar and
a statement x with witness w, outputs a proof π for x ∈ Lρ.

– Verify(CRS, ρ, x, π). On input of a CRS, a language description ρ ∈ Dpar , a
statement and a proof, accepts or rejects the proof.

– SimProve(CRS, T , ρ, x). Given a CRS, the trapdoor T , a language description
ρ ∈ Dpar and a statement x, outputs a simulated proof for the statement
x ∈ Lρ.

Note that the CRS does not depend on the language distribution or language
parameters, i.e. we define fully adaptive NIZKs for language distributions.

The following properties need to hold for a NIZK argument (see e.g. [44]).

Definition 5 (Perfect Completeness:). A proof system Π for a family of
language distributions {Dpar}par is perfectly complete, if

Pr

[

Verify(CRS, ρ, x, π) = 1

∣
∣
∣
∣
∣

(par ,CRS, T) $←− CRSGen(1λ); ρ ∈ Supp(Dpar);

(x,w) ∈ Rρ;π
$←− Prove(CRS, ρ, x, w)

]

= 1

A proof system is sound, if it is hard to find proofs of incorrect statements.
This is captured in the following definition.

Definition 6 (Computational Soundness). A NIZK proof system Π for a
family of language distributions {Dpar}par is computationally sound, if for every
efficient adversary A

Pr

[
Verify(CRS, ρ, x, π) = 1

∧x �∈ Lρ

∣
∣
∣
∣
∣

(par ,CRS, T) $←− CRSGen(1λ);

ρ ∈ Supp(Dpar); (π, x) $←− A(CRS, ρ)

]

≈ 0

with the probability taken over CRSGen.

A proof system is zero knowledge, if it is impossible to distinguish between
the output of SimProve and Prove. This is formalised as follows.

Definition 7 (Perfect Zero Knowledge). A NIZK proof system Π for a
family of language distributions {Dpar}par is called perfectly zero-knowledge, if
for all λ, all (par ,CRS, T) ∈ Supp(CRSGen(1λ)), all ρ ∈ Supp(Dpar) and all
(x,w) ∈ Rρ, the distributions

Prove(CRS, ρ, x, w) and SimProve(CRS, T , ρ, x)

are identical.

We can relax the security of a NIZK argument to a Non-Interactive Witness
Indistinguishable (NIWI) argument by replacing the zero-knowledge property
with the following witness indistinguishability property. Note that unlike NIZKs,
which can only exist in the CRS model, NIWIs are possible in the plain model.

782 G. Couteau and D. Hartmann

Definition 8 (Statistical Witness Indistinguishability). A proof system
Π = (CRSGen, Prove, SimProve, Verify) for a family of language distributions
{Dpar}par is statistically witness indistinguishable, if for every adversary A,
every λ, every (par ,CRS, T) ∈ Supp(CRSGen(1λ)), all ρ ∈ Supp(Dpar) and all
x ∈ Lρ with witnesses w1, w2, we have

|Pr[A(CRS, ρ, x, π) = 1|π $←− Prove(CRS, ρ, x, w1)]

− Pr[A(CRS, ρ, x, π) = 1|π $←− Prove(CRS, ρ, x, w2)]| ≈ 0

The property adapts to interactive protocols in a natural way.

3 A Pairing-Based Compiler for NIZKs from Σ-Protocols

In this section, we will describe our new approach to pairing-based non-
interactive zero-knowledge arguments. Our starting point is a natural Σ-protocol
for algebraic languages over abelian groups, which was used (implicitly or explic-
itly) in previous works [11,17,45]. Before describing the protocol and our NIZK
construction, we formally introduce algebraic languages.

3.1 Algebraic Languages

We focus on languages that can be described by a set of algebraic equations
over an abelian group. More precisely, we will consider languages of the form
{x ∈ G

l|∃w ∈ Z
t
p : M(x) · w = Θ(x)}, where M : Gl �→ G

n×t and Θ : Gl �→
G

n are linear maps, which can be sampled efficiently according to a language
distribution Dpar . These languages have been used previously in several works on
zero-knowledge proofs and hash proof systems over abelian groups [11,17,45],
and are quite expressive: they capture a wide variety of languages, including
but not limited to, linear and polynomial relations between committed values
and the plaintexts of ElGamal-style ciphertexts, or polynomial relations between
exponents. We call these languages algebraic languages.

It will prove convenient in this work to view the linear maps M and Θ as
matrices and vectors over Pl, where Pl is the set of linear multivariate polynomial
in l variables, via the natural extension.

Definition 9 (Algebraic Languages). Let t, l, n ∈ N, n > t and Pl := {[a0]+∑l
i=1 aiXi} ⊂ G[X = (X1, . . . , Xl)] the set of linear multivariate polynomials

of degree at most 1. Let Dpar be a distribution that outputs pairs (M,Θ) ∈
Pn×t

l × Pn
l . We define the algebraic language LM,Θ ⊂ G

n:

LM,Θ := {x ∈ G
l|∃w ∈ Z

t
p : M(x) · w = Θ(x)}

where M(x) (resp. Θ(x)) denotes the matrix(resp. vector) received by evaluating
every entry of M(resp. Θ) in the points of x.

Shorter NIZK Arguments and ZAPs for Algebraic Languages 783

Example: Linear Languages. Linear languages, capturing e.g. DDH relations,
are obtained as a special case of algebraic languages by restricting M(x) to be a
constant matrix, independent of x and Θ to being the identity. NIZKs for linear
languages have been widely studied, see e.g. [51,57].

Definition 10 (Linear subspace languages). Let Dpar be a parameter dis-
tribution that outputs matrices from G

n×t. For A ∈ Supp(Dpar), we define the
language LA := {x|∃w : Aw = x}. Specifically, the relation RA is defined such
that (x,w) ∈ RA ⇔ x = Aw. We call Dpar witness samplable, if there is
a distribution D′

par which outputs matrices from Z
n×t
p s.t. the distributions of

A $←− Dpar and [B] $←− D′
par are indistinguishable.

Effectively, witness-samplability states that the language parameters can be
sampled together with a trapdoor matrix T which allows to check whether x ∈ L.
For linear languages, this trapdoor matrix is simply the exponents of all matrix
entries, so the original matrix can be computed from the trapdoor, hence we
only sample the latter in the distribution D′

par .

Σ-Protocol for Algebraic Languages. We introduce a generic Σ-protocol
ΠΣ for algebraic languages on Fig. 2.

Fig. 2. Σ-protocol ΠΣ for the generic language LM,Θ

Theorem 11. The Σ-protocol ΠΣ is complete, special honest-verifier zero-
knowledge and special sound.

For the proof of Theorem 11 refer to e.g. [62]. We will however recall the special
honest-verifier zero-knowledge simulation algorithm SΠ , since we need it in our
construction. The simulator receives as input ([x], e) and samples d $←− Z

t
p. Then

it sets [a] := M(x)d − e[Θ(x)] and returns ([a],d).

3.2 Compiling ΠΣ into a NIZK

The main idea of our construction is to keep the Σ-protocol in group G1 while
moving the challenge e to a group G2, which admits a bilinear pairing e : G1 ×

784 G. Couteau and D. Hartmann

G2 → GT . This keeps the challenge hidden while allowing verification due to
the pairing. For protocol ΠΣ , the compiled NIZK ΠC

Σ is described in Fig. 3. We
present a detailed security analysis in Sect. 4.

Fig. 3. Compiled protocol ΠC
Σ , where SΠ denotes the special honest-verifier simulator

of ΠΣ and ([M]1 , [Θ]1) ∈ Pn×t
l × Pn

l is sampled from Dpar .

3.3 Compiled NIZK as a ZAP

The CRS in our compiled NIZK consists of just one (random) group element
from G2; therefore, our protocol actually works in the common random string
model. Furthermore, we observe that by allowing the verifier to choose the CRS
himself and send it as its first flow, we can transform the NIZK into a statistical
ZAP in the plain model (i.e., a two-round publicly-verifiable statistical witness-
indistinguishable argument system, where the first flow can be reused for an
arbitrary (polynomial) number of proofs). We stress that this provides the first
known construction of statistical ZAPs from pairing-based assumptions; to our
knowledge, the only existing constructions rely on the quasipolynomial hardness
of LWE [6,49]. We can apply the derandomisation technique from [8] to obtain
a NIWI argument in the plain model. Since correctness and soundness carry over
directly from the NIZK case, it remains to show that our 2-round proof system
is witness-indistinguishable. This is shown in Lemma 12.

Lemma 12. The ZAP resulting from the protocol ΠC
Σ for a family of language

distributions {Dpar}par as described above is perfectly witness indistinguishable.

Proof. Let ρ := (M,Θ) ∈ Supp(Dpar) and x ∈ Lρ with two witnesses w1,w2

and let V̂ be a (potentially misbehaving) verifier. Let [e]2 be the CRS (i.e., first
flow) chosen by V̂. We have to show that the distributions Prove([e]2 , ρ,x,w1)
and Prove([e]2 , ρ,x,w2) are indistinguishable. A proof consists of the two vectors
[ai]1 = [M(x)]1 ri and [di]2 = [e]2 wi + [ri]2 for random vectors ri, witnesses
wi and e chosen by the verifier. Let w := w1 − w2. Note that M(x)w = 0,
since M(x)w = M(x)(w1 − w2) = Θ(x) − Θ(x) = 0. For i = 1, we have
π1 = ([a1]1 = [M(x)r1]1 , [d1]2 = [e]2 w1 + [r1]2). For i = 2 and by replacing w2

Shorter NIZK Arguments and ZAPs for Algebraic Languages 785

with w1 − w, we get π2 = ([a2]1 = [M(x)]1 r2, [d2]2 = [e]2 w1 + ([r2 − ew]2)).
Let r′ := −ew+r2 and consider a proof using witness w1 and random vector r′.
We get [a′]1 = [M(x)]1 r′ = [M(x)]1 (−ew+ r2) = −e [M(x)]1 w+[M(x)]1 r2 =
[M(x)]1 r2 = [a2]1 and [d′]2 = [e]2 w1 + [r′]2 = [d2]2. This is identical to the
proof using w2 and randomness r2. r1, r2, and r′ are distributed identically (i.e.
uniformly random), hence the proof distributions for witness w1 and w2 are
identical.

4 Security Analysis

4.1 Generalised Witness Samplablility

The definition of witness samplability for linear languages does not carry over to
the case of algebraic languages, since only linear languages can be in the span of
the kernel of their language trapdoor. To handle this issue, we adapt the witness
samplability by requiring the samplability of a language trapdoor T, sampled
together with the parameters of the language, which allows to efficiently check
the rank of (M||Θ)(x), which will be full for words not in the language, and lower
otherwise. We formally define our new notion of algebraic witness samplability
in Definition 13.

Definition 13 (Algebraic Witness Samplability). Let t, l, n ∈ N with
n > t. An algebraic language distribution Dpar , outputting pairs ρ = (M,Θ) ∈
Pn×t

l × Pn
l is called witness samplable, if there exists a second distribution D′

par

outputting pairs (ρ′ = (M′,Θ′),Tρ′ ∈ Z
n×n
p), with D′

par (1) denoting the distri-
bution of D′

par restricted to the first component, such that the following properties
hold.

1. The distributions (Dpar) and (D′
par (1)) are identical.

2. rank(Tρ′ · (M′||Θ′)(x)) =
{

t + 1 x �∈ Lρ′

l′ < t + 1 x ∈ Lρ′

3. ∃R,S permutation matrices such that (R · Tρ′ · (M′||Θ′) · S) (x) is an upper
triangular matrix

A family of language distributions {Dpar}par is witness samplable, if Dpar is
witness samplable for all possible par.

Note that R,S are efficiently computable from Tρ′ · (M||Θ)(x) (even with-
out knowledge of Tρ′), as they only rearrange the rows and columns of
Tρ′ · (M′||Θ′)(x) to a specific form.

The first property states that we can sample a distribution with or without
a trapdoor without altering the distribution. The second property is the rank
condition itself, which shows language membership. The last property guarantees
that the second condition can always be verified in polynomial time. To provide
a better intuition of this property, we illustrate it on the language of ElGamal
encryptions of a bit (which is a special case of the OR-language for DDH tuples)
in the full version of this paper [20].

786 G. Couteau and D. Hartmann

Definition 14 (Trapdoor Reducibility). Let t, l,m, n ∈ N with n > t and
Dpar be an algebraic language distribution which outputs pairs ρ = (M,Θ) ∈
Pn×t

l × Pn
l .

Dpar is m-trapdoor reducible, if it is witness samplable with trapdoor
distribution D′

par and for every language (ρ′,Tρ′) ∈ Supp(D′
par), we can instead

sample a reducibility trapdoor T′
ρ′ ∈ Z

(n−m)×n
p such that the following properties

hold.

– T′
ρ′ ⊂ Tρ′ , i.e. the rows of T′

ρ′ are a subset of the rows of Tρ′ .

– rank(T′
ρ′ · (M||Θ)(x)) =

{
n − m x �∈ Lρ′

m′ < n − m x ∈ Lρ′

– m columns of T′
ρ′ ·(M||Θ) are zero-columns and the last column is a non-zero

column.

A family of language distributions {Dpar}par is trapdoor reducible, if Dpar is
trapdoor reducible for all possible par.

Trapdoor reducibility captures a stronger notion of witness samplability
where in addition to checking the rank of the matrix, we can also reduce the size
of the check. Although this is not a necessary property, it allows us to perform
reductions to weaker-parametrised assumptions and therefore to strengthen the
security guarantees of our constructions for specific language distributions. We
illustrate it as well in the full version of this paper [20].

4.2 Extended-Kernel Matrix Diffie-Hellman Assumption

For the linear case, the security of our compiled NIZKs can be reduced to the
KerMDH assumption. However for OR-proofs or general algebraic languages,
it seems to be insufficient. Hence we propose a generalisation of the KerMDH
assumption, which we will call the extKerMDH assumption, and to which we can
reduce the soundness of our compiler for all algebraic languages.

Inadequacy of the KerMDH. Before we introduce our new assumption, we
want to argue why the existing KerMDH assumption is not sufficient for our
application. To do so we give an (informal) example.

For a linear language (described by matrix A), we can reduce soundness to
the L1-KerMDH assumption for matrix distribution L1 as follows. Suppose that
a verifier in the Σ-protocol for a linear language (Fig. 2) sends e as its challenge.
Then the verification equation is [Ad] = [x]e + [a]. If A is from a witness
samplable distribution, we can use the trapdoor to find a vector t in the kernel of
A, i.e. t·A = 0. Multiplying the above equation with t then yields 0 = [tx]e+[ta]
and if x and a are not in the span of A, we have a non-zero vector in the kernel

of [1e]2, namely
(

ta
tx

)T

and therefore a solution to the KerMDH problem for

[1e]2 ∈ Supp(L1). However for the simple binary OR proof from [21] (see Fig. 4
for more details), this approach already fails. Instead of one such equation, we get
two equations of the form 0 = [tixi]ei +[tiai] for i ∈ {0, 1} and with e = e0 +e1.

Shorter NIZK Arguments and ZAPs for Algebraic Languages 787

Since the two vectors consist of group elements, we can’t combine them to a
single solution for the matrix [1e]2. However, what we obtain are two linearly
independent vectors in the kernel of [1, e, e0]

ᵀ
2 , namely v1 = [t0a0, 0, t0x0]ᵀ and

v2 = [t1a1, t1x1,−t1x1]ᵀ. We assume that such a relation is also hard to compute
and we formalise it as the extKerMDH assumption.

The extKerMDH Assumption.

Definition 15 (Dk-l-extended Kernel Diffie-Hellman Assumption (Dk-

l-extKerMDH)). Let l, k ∈ N, PG = (p,G1,G2,GT , g1, g2, e)
$←− PGGen(1λ)

and Dk be a matrix distribution. The Dk-l-extKerMDH assumption holds in Gs

relative to PGGen, if for all efficient adversaries A, the following probability is
negligible.

Pr

⎡

⎢
⎣

[C]3−s ∈ G
l+1×k+l+1
3−s ∧ [B]s ∈ G

l×k
s

∧[C]3−s • [D′]s = 0
∧ rank(C) ≥ l + 1

∣
∣
∣
∣
∣
∣
∣

PG $←− PGGen(1λ),D $←− Dk

([C]3−s, [B]s)
$←− A(PG, [D]s)

[D′]s := [DB]
s

⎤

⎥
⎦

The probability is taken over then randomness of A, Dk and PGGen.
If in addition to the rank condition, C is also required to be an upper trian-

gular matrix (in which case the bound on the rank can be verified in polynomial
time), the assumption is called falsifiable Dk-l-extKerMDH.

This assumption is to the best of our knowledge new and so we want to give
an intuition on why we deem it reasonable. First, it is a natural extension of
the KerMDH assumption. We give the adversary more freedom by allowing it to
extend the given matrix but require it to output multiple, linearly independent
vectors in the kernel. As long as the number of linearly independent vectors is
strictly larger than the number of vectors the adversary gets to add, breaking
the assumption requires finding vectors in G1 which depend on [M]2 in a non-
trivial way. Second, it is a static family of assumptions (as opposed to Q-type
assumptions; once [M]2 is fixed, our proof system will rely on an extKerMDH
assumption with fixed parameters). Third, we consider the issue of falsifiability.
It turns out that the extKerMDH assumption is not always falsifiable: to check the
given matrix C for being a basis, one must break a DDH-like problem. However
in many concrete cases of interest (formally, each time we will consider witness
samplable languages), the matrix C can be brought in an upper triangular form
where the rank will be visible and we can instead reduce the security to the
falsifiable variant. Eventually, the assumption is unconditionally secure in the
Generic Group Model (GGM) and can be reduced to the discrete logarithm
problem in the Algebraic Group Model (AGM). For the proofs, refer to the full
version of this paper [20].

4.3 Security Proof

With the two definitions and the new extKerMDH assumption, we can now finally
prove the security of our construction.

788 G. Couteau and D. Hartmann

Theorem 16. 1. The protocol ΠC
Σ described in Fig. 3 is a NIZK argument for

any algebraic language distribution Dpar outputting pairs ρ = (M,Θ) ∈
Pn×t

l ×Pn
l , if the L1-t-extKerMDH assumption holds in G2 relative to PGGen.

2. If the language distribution is witness samplable with trapdoors Tρ ∈ Z
n×n
p ,

then it is a NIZK argument if the falsifiable L1-t-extKerMDH holds in G2

relative to PGGen.
3. If the language distribution is m-trapdoor reducible, then it is a NIZK argu-

ment if the falsifiable L1-(t−m)-extKerMDH holds in G2 relative to PGGen.

Proof. To prove theorem 16, we have to show completeness, perfect zero knowl-
edge and computational soundness. The first two properties are identical for all
parts of the theorem. For the second and third part, the witness samplability and
the trapdoor reducibility directly imply the soundness statements, if soundness
holds in the first part.

Perfect Completeness: Let ρ = (M,Θ) ∈ Supp(Dpar). If Θ(x) = M(x) · w and
a = M(x) · r, we get

[M(x)]1 • [d]2 = [M(x) · d]T
= [M(x) · (e · w + r)]T
= [M(x) · w · e]T + [M(x)r · 1]T
= [Θ(x) · e]T + [a · 1]T (since Θ(x) = M(x) · w)
= [Θ(x)]1 • [e]2 + [a]1 • [1]2

Perfect Zero Knowledge: We have to show that the distributions Prove and
SimProve are identical. This directly follows from the perfect honest-verifier zero-
knowledge property of the Σ-protocol, since we use its simulator in SimProve.

Computational Soundness: We will show that ΠC
Σ is computationally sound,

if the L1-t-extKerMDH holds in G2 relative to PGGen. Assume an adversary A
which forges a proof for ΠC

Σ with non-negligible probability. We will construct an
adversary B against the L1-t-extKerMDH assumption, that uses adversary A and
has the same success probability. B receives a challenge [1e]2 from its challenger.

B then sets [e]2 as the CRS and samples language parameters ρ
$←− Dpar . Now

B runs A(CRS, ρ) and receives a statement x and a proof π = ([a]1 , [d]2) which
are accepting with non-negligible probability, i.e.

[M(x)]1 • [d]2 = [Θ(x)]1 • [e]2 + [a]1 • [1]2
0 = [a]1 • [1]2 + [Θ(x)]1 • [e]2 − [M(x)]1 • [d]2
0 = [a||Θ(x)|| − M(x)]1 •

[
1 e d

]ᵀ
2

If C := (a||Θ(x)|| − M(x)) has at least rank(C) = t + 1, then ([C]1 , [d]2) is
a solution for the assumption, since d has length t. This can be seen with simple
linear algebra.

We know that M(x) has full rank t. By adding the two columns a and Θ(x),
the rank cannot decrease. Assume Θ(x) and a are not in the span of M, i.e.

Shorter NIZK Arguments and ZAPs for Algebraic Languages 789

A did produce a forgery. Then a and Θ(x) are completely independent of M
and therefore the rank of the matrix will be increased by at least 1 and B has a
solution. For a regular proof however, a and Θ(x) are in the span of M(x) and
therefore linearly dependant on the columns of M(x), therefore the rank can not
increase. This shows that C is full rank if and only if A outputs a valid forgery
and B wins in this exact case.

For the second part of the theorem, B samples (ρ,Tρ) from the trapdoor dis-
tribution D′

par , which is by definition indistinguishable from sampling ρ regularly.
The statement is seen exactly as the first one except for a multiplication with
the trapdoor matrix, which yields a full rank matrix in upper triangular form if
and only if the given word is not in the language and we get a falsifiable solution.
For the third part, B samples (ρ,T′

ρ) from the trapdoor reducibility distribution
(which is again indistinguishable from regular sampling) and B takes the matrix
received by the multiplication with the reducibility trapdoor. By removing the
zero columns and removing the corresponding elements from d, B can reduce d’s
size by exactly m and therefore gets a solution to the L1-(t − m)-extKerMDH.

5 Extension to Disjunctions of Languages

In this section, we will show how to obtain efficient OR-proofs by applying our
compiler to the generic Σ-protocols for k-out-of-n disjunctions of [21].

We briefly recall the method of [21] (for concreteness, we focus on 1-out-of-2
proofs; the general case is similar). It starts from two Σ-protocols for member-
ships into languages Lρ0 ,Lρ1 , and produces a Σ-protocol for the language Lρ0∨ρ1 .
Consider a prover knowing a witness w for xi ∈ Lρi

but not for x1−i ∈ Lρ(1−i) .

The prover chooses a random e1−i
$←− Zp and uses the special honest-verifier zero-

knowledge simulation algorithm to generate [a1−i], d1−i which form an accepting
proof for x1−i ∈ Lρ(1−i) . Additionally it computes an honest commitment [ai] for
the Σ-protocol for Lρi

and sends [a0], [a1] to the verifier, which returns a chal-
lenge e. The prover now sets ei := e − e1−i and continues the honest protocol
for xi ∈ Lρi

, calculating di and concludes the protocol by sending d0, d1 and e0.
The verifier can then calculate e1 := e− e0 and check both proofs. This protocol
can be seen in Fig. 4. While this does not immediately fit into the framework
of Sect. 3, our approach is still applicable: The prover again chooses a challenge
e1−i

$←− Zp and simulates the first proof as in the interactive variant and gets the
second challenge for the honest proof part only in G2 as [ei]2 = [e]2 − ([1]2 e1−i).
In addition to the two regular proofs, we have to include [e0]2 in the proof. This
is illustrated in Fig. 5. We get the following new, efficient OR-proof.

Theorem 17. Let D(0)
par ,D(1)

par be two algebraic language distributions outputting
matrices of dimension n0× t0 and n1× t1 respectively. Applying the construction
from Fig. 5 yields a fully adaptive NIZK argument for the OR-language of ρ0 ∈
Supp(D(0)

par), ρ1 ∈ Supp(D(1)
par) of size n0 + n1 + t0 + t1 + 1, if the L1 − (n0 + n1 +

1) − extKerMDH assumption holds in G2.

790 G. Couteau and D. Hartmann

If both language distributions are witness samplable, the above holds for the
falsifiable L1 − (n0 + n1 + 1) − extKerMDH assumption.

If D(0)
par resp. D(1)

par is m0- resp. m1-trapdoor reducible, the above holds for the
L1 − (n0 − m0 + n1 − m1 + 1) − extKerMDH assumption.

The proof for Theorem 17 is almost identical to one for Theorem 16. The
only difference lies in the soundness proof, where we apply the witness sampla-
bility (trapdoor reducibility) trapdoors of each language to the respective proofs
separately and then combine the results by expressing e1 as e − e0.

The construction naturally extends to the 1 out of n setting by letting the
prover choose n − 1 challenges itself and setting the last as the difference of e

Fig. 4. Sigma protocol ΠM0∨M1 for the or language LM0∨M1 from [21]

Fig. 5. Compiled protocol Πc
M0∨M1 . S(·) denotes the SHVZK-simulator for the respec-

tive language.

Shorter NIZK Arguments and ZAPs for Algebraic Languages 791

and the sum of all chosen challenges. With n matrices Mi, we get the following
size, as the prover has to send n − 1 challenges to uniquely determine the last
challenge:

∑n
i=1(ni + ti) + n − 1. In the special case of the disjunction of two

DDH languages (as needed in e.g [34]), the compiled OR-trick yields a proof
with 7 group elements. The construction can easily be adapted to the setting of
k-out-of-n disjunctions, by using a threshold secret sharing (e.g. [69]) to force
the adversary to choose at most n − k challenges by itself. Our compiler can be
applied in the same way as for the 1 out of n setting and yields NIZK arguments
of size

∑n
i=1(ni + ti) + n − k.

6 Applications

6.1 NIZK for Linear Languages

Let G be a finite group of prime order p and Dk,n be a matrix distribution. We
apply our compiler to the standard Σ-protocol for membership to the linear lan-
guage generated by A, for A ∈ Supp(Dk,n). This protocol was formally analyzed
in [62]. Applying our compiler yields the protocol ΠC

A shown in Fig. 6.

Fig. 6. Compiled protocol Πc
A.

Theorem 18. Protocol Πc
A is a NIZK for the language LA, if Dk,n is witness

samplable and the L1-kerMDH (= L1-0-extKerMDH) assumption holds in G2

relative to PG.

Proof. If we show that A is k-trapdoor reducible, then the proof follows from
Theorem 16. It is easy to see that all witness samplable matrix distributions
Dk,n are k-trapdoor reducible. We sample A ∈ Z

n×k
p and compute an element

in the kernel of A, which is exactly the reducibility trapdoor.

The construction above includes proofs for DDH tuples, the Schnorr pro-
tocol [68], and general linear subspace membership. We compare our construc-
tion instantiated for the DDH language (and asymptotic) with the Groth-Sahai

792 G. Couteau and D. Hartmann

framework [44] and the Kiltz-Wee proofs [57] on Table 1 from Sect. 1. Our con-
struction is more efficient than Groth-Sahai both in terms of proof size as well as
CRS size. For the verification, we also need less pairings (6 versus 24 for Groth-
Sahai). Of course this comes at the (mild) cost of assuming witness sampleabil-
ity of the language (Note that the security is based on the standard kerMDH
assumption). On the other hand, our proofs are longer than the proofs from [57]
(linear versus constant size). However our construction yields fully adaptive zero-
knowledge arguments, while theirs yields quasi-adaptive zero-knowledge argu-
ments and our CRS size is constant while theirs is linear. Our construction
closes a gap in characterizing the efficiency of NIZKs for linear languages (with
or without witness sampleability, with or without full adaptivity).

6.2 Disjunction of DDH Languages and Tight USS-QA-NIZKs

Using the construction of Sect. 5, we obtain a NIZK for the disjunction of two
DDH languages with only 7 group elements. This is three group elements less
than the best previously known NIZK for this language [66]. We provide a self-
contained description of the resulting proof system in Fig. 5. As discussed in
the introduction, combining this proof with the result of [3], we obtain shorter
tightly-secure QA-NIZKs with unbounded simulation-soundness (11 versus 14
group elements) and shorter IND-mCCA-secure PKE with tight security reduction
(14 versus 17 group elements).

6.3 Tightly-Secure Structure-Preserving Signatures

NIZKs arguments are an important building block in structure-preserving signa-
tures (SPS). Since our constructions yield shorter NIZK arguments for OR-proofs
and (in the fully adaptive case) for linear subspaces, substituting existing proofs
with our constructions directly improves various SPS schemes. For example, Gay
et al. [34] use an Or-proof for two DDH languages in their construction; using
our OR-proof reduces the size of their tightly-secure SPS from 14 group elements
to 11.

The same size was achieved recently by Abe et al. [3]. They use a new app-
roach in describing the used OR-language as a conjunction statement and build a
designated-prover quasi-adaptive NIZK from this formalization, which is shorter
than the (publicly-verifiable) OR-proof of [66] (7 versus 10 group elements). We
notice that their OR-proof is compatible with our compiler, which allows us to
reduce its size down to 5 group elements. This in turn reduces the size of the
SPS by 2, resulting in a size of 9 group elements per signature. The exact con-
struction is shown in the full version of this paper [20] and yields the following
lemma:

Lemma 19. There exists a structure-preserving signature scheme which reduces
to the SXDH assumption and the L1-1-extKerMDH assumption with security loss
6 log Q, where Q is the number of signing queries, with a signature size is 9 group
elements and a public key size of n + 15 elements (for length-n messages).

Shorter NIZK Arguments and ZAPs for Algebraic Languages 793

A comparison of the resulting SPS to existing schemes can be found in Table 4.
We note that our tight SPS can be converted into a bilateral tight SPS (where
messages can be from both G1 and G2) using the generic transform of [56],
leading to a bilateral tightly-secure SPS of size 12 group elements (versus 14 for
the best known bilateral tight SPS [3]).

6.4 Ring Signatures

An example of the use of k-out-of-n OR-proofs is the construction of sublinear
ring signatures in the standard model [18,66]. The two constructions produce
signatures of size O(

√
N), where N is the size of the ring. The previous works

reduce the size of the signature by rearranging the list of potential signers in the
ring into a square matrix, and commit to two bit vectors of weight one, where
one denotes the row and the other the column of the used key. Then, a NIZK is
used to show that the signature was produce with the key at the corresponding
(committed) coordinates in the matrix. This NIZK requires at its core a proof
that the two vectors are actually bit vectors and sum to 1. This can be rephrased
as an (n−1)-out-of-n proof of opening of the commitments to 0, together with a
proof that their sum opens to one. The proof given in [66] requires 4 ·

√
N group

elements, while our proof from Sect. 5 only requires 3 ·
√

N + 1 group elements.
We note that there are also constructions achieving sizes of 3

√
N [39], how-

ever these constructions are not compatible with our NIZK arguments, as they
require proofs of knowledge, which our construction does not provide. Further-
more, the constant factors of the construction are quite large, so improving

√
N

constructions might still be useful.

Acknowledgements. We would like to thank Dennis Hofheinz for discussions and
contributions to early stages of this work, Eike Kiltz for helpful comments and Carla
Ràfols for discussion and pointers.

The first author was supported by ERC Project PREP-CRYPTO (724307), and
the second author was funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under German’s Excellence Strategy – EXC 2092 CASA
– 390781972, and the German Federal Ministry of Education and Research (BMBF)
iBlockchain project.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

2. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-
preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 19

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-319-63715-0_19

794 G. Couteau and D. Hartmann

3. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part III. LNCS, vol. 11923, pp. 669–699. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-34618-8 23

4. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure
simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2 21

5. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures:
logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 281–311. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 10

6. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical
ZAP arguments. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 642–667. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3 22

7. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS,
pp. 106–115. IEEE Computer Society Press, October 2001

8. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 18

9. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and non-
interactive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 356–374. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 20

10. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-secure authenticated key-exchange for algebraic languages. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 272–291. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 18

11. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw,
M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 107–129. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 6

12. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.:
Batch Groth-Sahai. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
218–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 14

13. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May
1988

14. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

15. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

16. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 4

https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-34618-8_23
https://doi.org/10.1007/978-3-030-03326-2_21
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-030-45727-3_22
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-642-36362-7_18
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-13708-2_14
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-319-78381-9_4

Shorter NIZK Arguments and ZAPs for Algebraic Languages 795

17. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-
knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 7

18. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without
random oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73420-8 38

19. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14, pp.
1205–1216. ACM Press, November 2014

20. Couteau, G., Hartmann, D.: Shorter non-interactive zero-knowledge arguments and
zaps for algebraic languages. IACR Cryptology ePrint Archive 2020, 286 (2020)

21. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

22. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

23. Damg̊ard, I.B.: Payment systems and credential mechanisms with provable secu-
rity against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 328–335. Springer, New York (1990). https://doi.org/10.1007/0-387-
34799-2 26

24. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 3

25. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-
NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp.
314–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4 11

26. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293.
IEEE Computer Society Press, November 2000

27. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 36

28. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. J. Cryptol. 30(1), 242–288 (2017). https://doi.
org/10.1007/s00145-015-9220-6

29. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317.
IEEE Computer Society Press, October 1990

30. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

31. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

32. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS
2014. The Internet Society, February 2014

https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-319-78372-7_7
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/978-3-540-73420-8_38
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/0-387-34799-2_26
https://doi.org/10.1007/0-387-34799-2_26
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/s00145-015-9220-6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-96881-0_2

796 G. Couteau and D. Hartmann

33. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 1

34. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure
structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018, Part II. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 8

35. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. Cryptology ePrint Archive, Report 2012/215
(2012). http://eprint.iacr.org/2012/215

36. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

37. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press, October 2003

38. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

39. González, A.: Shorter ring signatures from standard assumptions. In: Lin, D., Sako,
K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 99–126. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17253-4 4

40. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 29

41. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2 4

42. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 6

43. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM (JACM) 59(3), 11 (2012)

44. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

45. Hamouda, F.B., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient
UC-Secure authenticated key-exchange for algebraic languages. Cryptology ePrint
Archive, Report 2012/284 (2012). http://eprint.iacr.org/2012/284

46. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45611-8 26

47. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

48. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
Cryptology ePrint Archive, Report 2007/288 (2007). http://eprint.iacr.org/2007/
288

49. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. Technical
report, Cryptology ePrint Archive, Report 2019/839 (2019). https://eprint.iacr.
org

https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-319-78375-8_8
https://doi.org/10.1007/978-3-319-78375-8_8
http://eprint.iacr.org/2012/215
https://doi.org/10.1007/978-3-030-17253-4_4
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/978-3-540-78967-3_24
http://eprint.iacr.org/2012/284
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-642-32009-5_35
http://eprint.iacr.org/2007/288
http://eprint.iacr.org/2007/288
https://eprint.iacr.org
https://eprint.iacr.org

Shorter NIZK Arguments and ZAPs for Algebraic Languages 797

50. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-
preserving signatures. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS,
vol. 10770, pp. 123–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76581-5 5

51. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 1

52. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilin-
ear assumptions. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 183–
209. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 7

53. Kalai, Y., Paneth, O., Yang, L.: On publicly verifiable delegation from standard
assumptions. Cryptology ePrint Archive, Report 2018/776 (2018). https://eprint.
iacr.org/2018/776

54. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and
more) in two messages. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part III. LNCS, vol. 10822, pp. 34–65. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78372-7 2

55. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0 8

56. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part
II. LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48000-7 14

57. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 4

58. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 29

59. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans-tightly
secure constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata,
T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 28

60. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving
signatures: standard model security from simple assumptions. In: Gennaro, R.,
Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 296–316.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7 15

61. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46513-8 14

62. Maurer, U.M.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

63. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 27

https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-319-76581-5_5
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-54388-7_7
https://eprint.iacr.org/2018/776
https://eprint.iacr.org/2018/776
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-78372-7_2
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-48797-6_28
https://doi.org/10.1007/978-3-662-48000-7_15
https://doi.org/10.1007/3-540-46513-8_14
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27

798 G. Couteau and D. Hartmann

64. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh,
D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 6

65. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint
Archive, Report 2015/1098 (2015). http://eprint.iacr.org/2015/1098

66. Ràfols, C.: Stretching Groth-Sahai: NIZK proofs of partial satisfiability. In: Dodis,
Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 10

67. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

68. Schnorr, C.P.: Efficient identification and signatures for smart cards (abstract)
(rump session). In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT 1989.
LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (1990). https://doi.org/10.1007/
3-540-46885-4 68

69. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–
613 (1979)

70. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

71. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and
attestation. In: Deng, R.H., Bao, F., Pang, H.H., Zhou, J. (eds.) ISPEC 2005.
LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31979-5 5

https://doi.org/10.1007/978-3-540-45146-4_6
http://eprint.iacr.org/2015/1098
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/3-540-46885-4_68
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-540-31979-5_5

Non-interactive Zero-Knowledge
Arguments for QMA, with Preprocessing

Andrea Coladangelo(B), Thomas Vidick, and Tina Zhang

Computing and Mathematical Sciences, Caltech, Pasadena, USA
acoladan@caltech.edu

Abstract. A non-interactive zero-knowledge (NIZK) proof system for
a language L ∈ NP allows a prover (who is provided with an instance
x ∈ L, and a witness w for x) to compute a classical certificate π for
the claim that x ∈ L such that π has the following properties: 1) π can
be verified efficiently, and 2) π does not reveal any information about
w, besides the fact that it exists (i.e. that x ∈ L). NIZK proof systems
have recently been shown to exist for all languages in NP in the common
reference string (CRS) model and under the learning with errors (LWE)
assumption.

We initiate the study of NIZK arguments for languages in QMA. An
argument system differs from a proof system in that the honest prover must
be efficient, and that it is only sound against (quantum) polynomial-time
provers. Our first main result is the following: if LWE is hard for quantum
computers, then any language in QMA has anNIZKargument with prepro-
cessing. The preprocessing in our argument system consists of (i) the gen-
eration of a CRS and (ii) a single (instance-independent) quantummessage
from verifier to prover. The instance-dependent phase of our argument sys-
tem, meanwhile, involves only a single classical message from prover to ver-
ifier. Importantly, verification in our protocol is entirely classical, and the
verifier needs not have quantum memory; its only quantum actions are in
the preprocessing phase. NIZK proofs of (classical) knowledge are widely
used in the construction of more advanced cryptographic protocols, and
we expect the quantum analogue to likewise find a broad range of appli-
cations. In this respect, the fact that our protocol has an entirely classical
verification phase is particularly appealing.

Our second contribution is to extend the notion of a classical proof
of knowledge to the quantum setting. We introduce the notions of argu-
ments and proofs of quantum knowledge (AoQK/PoQK), and we show
that our non-interactive argument system satisfies the definition of an
AoQK, which extends its domain of usefulness with respect to crypto-
graphic applications. In particular, we explicitly construct an extractor
which can recover a quantum witness from any prover who is successful
in our protocol. We also show that any language in QMA has an (interac-
tive) proof of quantum knowledge, again by exhibiting a particular proof
system for all languages in QMA and constructing an extractor for it.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-56877-1 28) contains supplementary material, which is
available to authorized users.

c© International Association for Cryptologic Research 2020
D. Micciancio and T. Ristenpart (Eds.): CRYPTO 2020, LNCS 12172, pp. 799–828, 2020.
https://doi.org/10.1007/978-3-030-56877-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56877-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-56877-1_28
https://doi.org/10.1007/978-3-030-56877-1_28
https://doi.org/10.1007/978-3-030-56877-1_28

800 A. Coladangelo et al.

Keywords: Zero-knowledge · Non-interactive proof · Argument
systems · QMA

1 Introduction

The paradigm of the interactive proof system is commonly studied in cryptogra-
phy and in complexity theory. Intuitively speaking, an interactive proof system is
a protocol in which an unbounded prover attempts to convince an efficient verifier
that some problem instance x is in some language L. The verifier represents an
entity less computationally powerful or less informed than the prover; the prover
holds some knowledge that the verifier does not (namely, that x ∈ L), and the
prover attempts to convince the verifier of this knowledge. We say that there is
an interactive proof system for a language L if the following two conditions are
satisfied. Firstly, for any x ∈ L, there must exist a prover (the ‘honest’ prover)
which causes the (honest) verifier to accept in the protocol with high probabil-
ity; and secondly, for any x /∈ L, there is no prover which can cause the honest
verifier to accept, except with some small probability. These two conditions are
commonly referred to as the ‘completeness’ and ‘soundness’ conditions. We can
also consider a relaxed soundness condition where, when x /∈ L, we require only
that it be computationally intractable (rather than impossible) to cause the ver-
ifier to accept. A protocol satisfying this relaxed soundness condition, and which
has an efficient honest prover, is known as an interactive argument system.

Some interactive proof and argument systems satisfy a third property known
as zero-knowledge [GMR85], which captures the informal notion that the verifier
(even a dishonest verifier) ‘learns no new information’ from an interaction with
the honest prover, except for the information that x ∈ L. This idea is formalised
through a simulator, which has the same computational powers as the verifier
V does, and can output transcripts that (for x such that x ∈ L) are indistin-
guishable from transcripts arising from interactions between V and the honest
prover. As such, V intuitively ‘learns nothing’, because whatever it might have
learned from a transcript it could equally have generated by itself. The prop-
erty of zero-knowledge can be perfect (PZK), statistical (SZK) or computational
(CZK). The difference between these three definitions is the extent to which
simulated transcripts are indistinguishable from real ones. In a PZK protocol,
the simulator’s output distribution is identical to the distribution of transcripts
that the honest prover and (potentially dishonest) verifier generate when x ∈ L.
In SZK, the two distributions have negligible statistical distance, and in CZK,
they are computationally indistinguishable. In this work we will primarily be
concerned with CZK.

A non-interactive proof system (or argument system) is a protocol in which
the prover and the verifier exchange only a single message that depends on the
problem instance x. (In general, an instance-independent setup phase may be

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 801

allowed in which the prover and verifier communicate, with each other or with a
trusted third party, in order to establish shared state that is used during the pro-
tocol execution proper. We discuss this setup phase in more detail in the following
paragraph.) Non-interactive zero-knowledge (NIZK) proofs and arguments have
seen widespread application in classical cryptography, often in venues where their
interactive counterparts would be impracticable—including, notably, in CCA-
secure public-key cryptosystems [NY90,Sah99], digital signature schemes [BG90,
CP92,BMW03], verifiable delegated computation [PHGR13] and, recently, a
number of blockchain constructions [GGPR13,Com14,Lab17]. A particularly
attractive feature of classical NIZK systems is that they can be amplified in
parallel to achieve better security parameters [BDSMP91], which is in general
not true of their interactive (private-coin) counterparts.

It is known [GO94] that NIZK proofs and arguments in the standard model
(namely, the model where the only assumption is that adversarial entities are
computationally efficient) exist only for languages in BPP. As such, in order
to construct NIZK protocols for more interesting languages, it is customary to
consider extended cryptographic models. Examples of these include the common
reference string (CRS) model, in which the verifier and the prover are assumed
to begin the protocol sharing access to a common string sampled from a specified
distribution; and the random oracle (RO) model, in which prover and verifier
have access to an efficiently evaluable function that behaves like a function sam-
pled uniformly at random from the set of possible functions with some specified,
and finite, domain and range. In these extended models, and under certain com-
putational hardness assumptions, non-interactive computational zero-knowledge
proof systems for all languages in NP are known. For instance, Blum, Santis,
Micali and Persiano [BDSMP91] showed in 1990 that NIZK proofs for all lan-
guages in NP exist in the CRS model, assuming that the problem of quadratic
residuosity is computationally intractable.

At this point, a natural question arises: what happens in the quantum set-
ting? Ever since Shor’s algorithm for factoring [Sho95] was published in 1995, it
has been understood that the introduction of quantum computers would render
a wide range of cryptographic protocols insecure. For example, quadratic residu-
osity is known to be solvable in polynomial time by quantum computers. Given
that this is so, it is natural to ask the following question: in the presence of quan-
tum adversaries, is it still possible to obtain proof systems for all languages in
NP that are complete and sound, and if it is, in which extended models is it feasi-
ble? This question has been studied in recent years. For example, Unruh showed
in [Unr15] that quantum-resistant NIZK proof systems for all languages in NP
exist in the quantum random oracle (QRO) model, a quantum generalisation of
the random oracle model. More recently, Peikert and Shiehian [PS19] achieved
a more direct analogue of Blum et al.’s result, by showing that NIZK proofs
for all languages in NP exist in the CRS model, assuming that learning with

802 A. Coladangelo et al.

errors (LWE)—a problem believed to be difficult for quantum computers—is
computationally intractable.1

However, the advent of large-scale quantum computers would not only ren-
der some cryptosystems insecure; it would also provide us with computational
powers that extend those of our current classical machines, and give rise to new
cryptographic tasks that were never considered in the classical literature. A sec-
ond natural question which arises in the presence of quantum computers is the
following: in which models is it possible to obtain a NIZK proof or argument sys-
tem not only for all languages in NP, but for all languages in ‘quantum NP’ (i.e.
QMA)? Loosely speaking, NIZK protocols for NP languages allow the prover
to prove any statement that can be checked efficiently by a classical verifier
who is given a classical witness. A NIZK protocol for QMA languages would,
analogously, allow the prover to prove to the verifier (in a non-interactive, zero-
knowledge way) the veracity of statements that require a quantum witness and
quantum computing power to check. To our knowledge, the question of achiev-
ing NIZK protocols for QMA has not yet been studied. In 2016, Broadbent, Ji,
Song and Watrous [BJSW16] exhibited a zero-knowledge proof system for QMA
with an efficient honest prover, but their protocol requires both quantum and
classical interaction.

In this work, our first contribution is to propose a non-interactive (computa-
tional) zero-knowledge argument system for all languages in QMA, based on the
hardness of LWE, in which both verifier and prover are quantum polynomial time.
The model we consider is the CRS (common reference string) model, augmented
by a single message of (quantum) preprocessing. (The preprocessing consists of
an instance-independent quantum message from the verifier to the prover.) The
post-setup single message that the prover sends to the verifier, after it receives the
witness, is classical; the post-setup verifier is also entirely classical; and, if we allow
the prover and verifier to share EPR pairs a priori, as in a model previously consid-
ered by Kobayashi [Kob02], we can also make the verifier’s preprocessing message
classical. Like classical NIZK protocols, our protocol shows itself to be receptive to
parallel repetition (see Sect. 2.3 of the supplementary material), which allows us
to amplify soundness concurrently without affecting zero-knowledge. Our model
and our assumptions are relatively standard ones which can be fruitfully compared
with those which have been studied in the classical setting. As such, this result pro-
vides an early benchmark of the kinds of assumptions under which NIZK can be
achieved for languages in QMA.

An example of an application in which the unique properties of our proto-
col might be useful is the setting of verifiable delegated computation, in which
a prover (who is generally a server to whom a client, the verifier, has delegated
1 Peikert and Shiehan construct, based on LWE, a NI(C)ZK proof system in the

common reference string model, and a NI(S)ZK argument system in the common
random string model. They do not explicitly consider the applications of either result
to the quantum setting. We show, however, for our own purposes, that the latter
of these results generalises to quantum adversaries. In other words, we show (in
Sect. 1.3 of the Supplementary Material) that the Peikert-Shiehan NIZK argument
system in the common random string model is adaptively sound against quantum
adversaries and adaptively (quantum computational) zero-knowledge.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 803

a quantum task) wishes to prove to the verifier a statement about a history
state representing a certain computation. Suppose that the prover and the veri-
fier complete the setup phase of our protocol when the delegation occurs. After
the setup phase is complete, the verifier does not need to preserve any quan-
tum information, meaning that it could perform the setup phase using borrowed
quantum resources, and thereafter return to the classical world. When it receives
the prover’s single-message zero-knowledge proof, the verifier can verify its del-
egated computation without performing any additional quantum operations—a
property that our protocol shares with protocols that have purely classical verifi-
cation, such as Mahadev’s classical-verifier argument system for QMA [Mah18].
An additional advantage of our protocol, however, is that the server can free
the quantum memory associated with the verifier’s computation immediately
after the computation terminates, rather than holding the history state until
the verifier is available to perform the verification.

Our second contribution is to show that our protocol also satisfies a notion
of argument of quantum knowledge. In the classical setting, some proof systems
and argument systems for NP languages satisfy a stronger notion of soundness
wherein a witness can be extracted from any prover P who convinces the verifier
to accept with high probability. More formally, in such a setting, there is an
extractor machine which—given black-box access to any P who convinces the
verifier to accept with high probability (on the input x)—is able to efficiently
compute a witness w that testifies that the problem instance x is in the language
L. Such protocols are known as proofs and arguments of knowledge (PoK and
AoK). Intuitively speaking, the notion of PoK/AoK is a framework for describ-
ing situations where the prover is not necessarily more powerful, but only better
informed, than the verifier. In these situations, the prover possesses knowledge
(the witness w, which could represent a password or some other form of private
information) that the verifier does not; and the prover wishes to convince the
verifier, possibly in a zero-knowledge way (i.e. without revealing sensitive infor-
mation), that it indeed ‘knows’ or ‘possesses’ the witness w (so that it might, for
example, be granted access to its password-protected files, or cash a quantum
cheque). The idea of a machine ‘knowing’ some witness w is formalised by the
existence of the extractor.

Until now, the witness w has always been classical, and the notion of a proof
of quantum knowledge (PoQK) has not been formally defined or studied. In this
paper, we formulate a definition for a PoQK that is analogous to the classical
definition of a PoK,2 and we exhibit a protocol that is an (interactive) PoQK for
any language in QMA.3 We also introduce the notion of an argument of quantum
knowledge (AoQK), and we prove that our NIZK protocol for QMA is (under
this definition) a zero-knowledge argument of quantum knowledge. We present
our definitions of PoQK and AoQK in Sect. 2.4.

There are two main difficulties in extending the classical notion of a PoK to
the quantum setting. The first is that we must precisely specify how the extractor

2 This definition is joint work with Broadbent and Grilo.
3 This result is also obtained in independent and concurrent work by Broadbent and

Grilo [BG19].

804 A. Coladangelo et al.

should be permitted to interact with the successful (quantum) prover. For this,
we borrow the formalism of quantum interactive machines that Unruh [Unr12]
uses in defining quantum proofs of classical knowledge. The second difficulty is to
give an appropriate definition of success for the extractor. In the classical setting,
the NP relation R which defines the set of witnesses w for a problem instance x is
binary: a string w is either a witness or it is not. In the quantum setting, on the
other hand—unlike in the classical case, in which any witness is as good as any
other—different witnesses might be accepted with different probabilities by some
verification circuit Q under consideration. In other words, some witnesses may be
of better ‘quality’ than others. In addition, because QMA is a probabilistic class,
the choice of Q (which is analogous to the choice of the NP relation R) is more
obviously ambiguous than it is in the classical case. Different (and equally valid)
choices of verifiers Q for a particular language L ∈ QMA might have different
probabilities of accepting a candidate witness ρ on a particular instance x. In our
definition, we define a ‘QMA relation’ with respect to a fixed choice of verifying
circuit (family) Q; we define the ‘quality’ of a candidate witness ρ for x to be the
probability that Q accepts (x, ρ); and we require that the successful extractor
returns a witness whose quality lies strictly above the soundness parameter for
the QMA relation.

The Interactive Protocol from [BJSW16]

Our protocol is inspired by the protocol exhibited in [BJSW16], which gives
a zero-knowledge (interactive) proof system for any language in QMA. The
[BJSW16] protocol can be summarized as follows. (For a more detailed exposi-
tion, see Sect. 2.2.)

1. The verifier and the prover begin with an instance x of some interesting
problem, the latter of which is represented by a (promise) language L =
(Lyes, Lno) ∈ QMA. The prover wishes to prove to the verifier that x ∈
Lyes. The first step is to map x to an instance H of the QMA-complete
local Clifford Hamiltonian problem. In the case that x is a yes instance, i.e.
x ∈ Lyes, the prover, who receives a witness state |Φ〉 for x as auxiliary input,
performs the efficient transformation that turns the witness |Φ〉 for x into
a witness |Ψ〉 for H. (The chief property that witnesses |Ψ〉 for H have is
that 〈Ψ |H |Ψ〉 is small—smaller than a certain threshold—which, rephrased
in physics terminology, means that |Ψ〉 has low energy with respect to H.) The
prover then sends an encoding of |Ψ〉 to the verifier (under a specified quantum
authentication code which doubly functions as an encryption scheme). The
prover also commits to the secret key of the authentication code.

2. The Clifford Hamiltonian H to which x has been mapped can be written as
a sum of polynomially many terms of the form C∗ |0k〉 〈0k|C, where C is a
Clifford unitary. (This is the origin of the name ‘Clifford Hamiltonian’.) The
verifier chooses a string r uniformly at random. r plays a role analogous to
that of the verifier’s choice of edge to check in the 3-colouring zero-knowledge
protocol introduced by [GMR85]: intuitively, r determines the verifier’s chal-
lenge to the prover. Each r corresponds to one of the terms C∗

r |0k〉 〈0k|Cr of
the Clifford Hamiltonian.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 805

The verifier then measures the term C∗
r |0k〉 〈0k|Cr on the encoded witness

(this can be done ‘homomorphically’ through the encoding). The outcome z
obtained by the verifier can be thought of as an encoding of the true mea-
surement outcome, the latter of which should be small (i.e. correspond to
low energy) if |Ψ〉 is a true witness. The verifier sends z (its measurement
outcomes) and r (its choice of Hamiltonian term) back the prover.

3. Finally, using a zero-knowledge NP proof system,4 the prover provides an
(interactive) ZK proof for the following NP statement: there exists an open-
ing to its earlier (perfectly binding) commitment such that, if the verifier
had the opened encoding keys, it would accept. This is an NP statement
because the witness string is the encoding keys. Proving that the verifier
‘would accept’ amounts to proving that the verifier’s measurement outcomes
z, decoded under the keys which were committed to earlier, would correspond
to a low-energy outcome. Because the proof that the prover provides is zero-
knowledge, the verifier learns nothing substantial from this exchange, but it
becomes convinced that it should accept.

In the protocol from [BJSW16], it is critical to soundness that the prover
sends the encoding of the witness to the verifier before the verifier chooses
r. The zero-knowledge property holds because the encoding that the prover
applies to the witness state functions like an authenticated encryption scheme:
its encryption-like properties prevent the verifier from learning anything substan-
tial about the witness while handling the encoded state, and its authentication
code–like properties ensure that the verifier cannot deviate very far from its
honest behaviour.

Our Non-interactive Protocol

We wish to make the protocol from [BJSW16] non-interactive. To start with,
we can replace the prover’s proof in step 3 with a NIZK proof in the CRS
model. NIZK proofs for all languages in NP have recently been shown to
exist [CLW19,PS19] based on the hardness of LWE only, and we prove that the
Peikert-Shiehian construction from [PS19] remains secure (i.e. quantum com-
putationally sound and zero-knowledge) against quantum adversaries, assuming
that LWE is quantum computationally intractable. However, the more substan-
tial obstacle to making the [BJSW16] protocol non-interactive is the following:
in order to do away with the verifier’s message in step 2, it seems that the
prover would have to somehow predict z (the verifier’s measurement outcomes)
and send a NIZK proof corresponding to this z. Unfortunately, in order for the
authentication code to work, the number of possible outcomes z has to be expo-
nentially large (and thus the prover cannot provide a NIZK proof of consistency
for each possible outcome). Even allowing for an instance-independent prepro-
cessing step between the verifier and the prover, it is unclear how this impasse
could be resolved.

Our first main idea is to use quantum teleportation. We add an instance-
independent preprocessing step in which the verifier creates a number of EPR
4 It is known that there are quantumly sound and quantumly zero-knowledge proof

systems for NP: see [Wat09].

806 A. Coladangelo et al.

pairs and sends half of each to the prover. We then have the verifier (prema-
turely) make her measurement from step 2 during the preprocessing step (and
hence independently of the instance!), and send the measurement outcomes z
to the prover. Once x is revealed, the prover teleports the encoded witness to
the verifier, and sends the verifier the teleportation outcomes d, along with a
commitment to his encoding keys. The prover then provides an NIZK proof of
an opening to the committed keys such that d, z and the encoding keys are con-
sistent with a low-energy outcome. The hope is that, because the prover’s and
the verifier’s actions commute (at least when the prover is honest), this proto-
col will be, in some sense, equivalent to one where the prover firstly teleports
the witness, then the verifier makes the measurements, and finally the prover
sends an NIZK proof. This latter protocol would be essentially equivalent to the
[BJSW16] protocol.

There are three main issues with this strategy:

1. In the preprocessing step, the verifier does not yet know what the instance x
(and hence what the Clifford Hamiltonian) is. Thus, she cannot measure the
term C∗

r |0k〉 〈0k|Cr, as she would have done in what we have called step 2 of
the protocol from [BJSW16].

2. The second issue is that the verifier cannot communicate her choice of r in
the preprocessing step in the clear. If she does, the prover will easily be able
to cheat by teleporting a state that passes the check for the rth Hamiltonian
term, but that would not pass the check for any other term.

3. The third issue is a bit more subtle. If the prover knows the verifier’s measure-
ment outcomes z before he teleports the witness state to the verifier, he can
misreport the teleportation outcomes d, and make a clever choice of d such
that d, z and the committed keys are consistent with a low-energy outcome
even when he does not possess a genuine witness.

The first issue is resolved by considering the (instance-independent) verifying
circuit Q for the QMA language L (recall that Q takes as input both an instance
x and a witness state), and mapping Q itself to a Clifford Hamiltonian H(Q).
(For comparison, in the protocol from [BJSW16], it is the circuit Q(x, ·) which is
mapped to a Clifford Hamiltonian.) In the instance-dependent step, the prover
will be asked to teleport a “history state” corresponding to the execution of
the circuit Q on input (x, |Ψ〉), where |Ψ〉 is a witness for the instance x. In
the preprocessing step, the verifier will measure a uniformly random term from
H(Q), and will also perform a special measurement (with some probability)
which is meant to certify that the prover put the correct instance x into Q when
it was creating the history state. Of course, the verifier does not know x at the
time of this measurement, but she will know x at the point where she needs to
verify the prover’s NIZK proof.

Our second main idea, which addresses the second and the third issues above
(at the price of downgrading our proof system to an argument system), is to
have the prover compute his NIZK proof homomorphically. During the prepro-
cessing step, we have the verifier send the prover a (computationally hiding)
commitment σ to her choice of r; and, in addition, we ask the verifier to send

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 807

the prover a homomorphic encryption of r, of the randomness s used to commit
to σ, and of her measurement outcomes z. At the beginning of the instance-
dependent step, the prover receives a witness |Ψ〉 for the instance x. During the
instance-dependent step, and after having received the verifier’s ciphertexts in
the preprocessing step, we ask the prover firstly to commit to some choice of
encoding keys, and then to teleport to the verifier (an encoding of) the history
state corresponding to the execution of Q on input (x, |Ψ〉). Let d be the out-
come of the teleportation measurements. After the prover has committed to his
encoding keys, we ask the prover to homomorphically encrypt d and his encoding
keys, and homomorphically run the following circuit: check that r, s is a valid
opening to σ, and (using the properties of the authentication code) check also
that the verifier performed the honest measurement during preprocessing. If all
the checks pass, then the prover homomorphically computes an NIZK proof that
there exist encoding keys consistent with his commitment such that these keys,
together with r, z, d, indicate that the verifier’s measurement result was a low-
energy outcome. The homomorphic encryption safeguards the verifier against a
malicious prover who may attempt to take advantage of knowing r, or of the
freedom to cleverly choose d, in order to pass in the protocol without holding a
genuine witness.

In summary, the structure of our protocol is as follows. Let Q be a QMA
verification circuit, and let H(Q) be the Clifford Hamiltonian obtained from Q
by performing a circuit-to-Clifford-Hamiltonian reduction.

1. (preprocessing step) The verifier creates a (sufficiently large) number of EPR
pairs, and divides them into ‘her halves’ and ‘the prover’s halves’. She inter-
prets her halves as the qubits making up (an encoding of) a history state
generated from an evaluation of the circuit Q. Then, the verifier samples r
(her ‘challenge’) uniformly at random, and according to its value, does one
of two things: either she measures a uniformly random term of H(Q) on ‘her
halves’ of the EPR pairs, or she makes a special measurement (on her halves
of the EPR pairs) whose results will allow her later to verify that the circuit
Q was evaluated on the correct instance x. Following this, the verifier samples
a public-key, secret-key pair (pk, sk) for a homomorphic encryption scheme.
She sends the prover:
(a) pk;
(b) the ‘prover’s halves’ of the EPR pairs;
(c) a commitment to her choice of challenge r;
(d) homomorphic encryptions of

i. r,
ii. the randomness s used in the commitment, and
iii. the measurement outcomes z.

2. (instance-dependent step) Upon receiving x, and a witness |Ψ〉, the prover
computes the appropriate history state, and samples encoding keys. Then,
he teleports an encoding of the history state to the verifier using the half
EPR pairs that he previously received from her. Notice that the verifier has
already measured the other half of the EPR pairs on her side during the

808 A. Coladangelo et al.

preprocessing step: hence the encoded history state is not being physically
teleported. Nonetheless, because the measurements of the verifier and the
prover commute, the net effect in terms of measurement outcome statistics
is the same. Let d be the teleportation measurement outcomes. The prover
sends to the verifier:
(a) d;
(b) a commitment σ to his encoding keys;
(c) a homomorphic encryption of a NIZK proof (homomorphically computed)

of the existence of an opening to σ such that the opened keys, together
with d, z, r, are consistent with a low-energy outcome.

Upon receiving d, σ, and an encrypted proof π̃ from the prover, the verifier
decrypts π̃ to obtain π, and checks that π is a valid proof and that it is
consistent with d and σ (i.e the d and σ from steps (a) and (b) are the same
that appear in the statement being proven).

Analysis

Our protocol is a non-interactive, zero-knowledge argument system in the CRS
model with a one-message preprocessing step. It is straightforward to see that
the protocol satisfies completeness.

Intuitively, soundness follows from the fact that the encryptions the prover
receives in the preprocessing step should be indistinguishable (assuming the
prover is computationally bounded) from encryptions of the zero string. As such,
the encryptions of z, r, s (and the commitment to r) cannot possibly be help-
ing the prover in guessing r or in selecting a false teleportation measurement
outcome d′ which makes z, r, d′ and the authentication keys consistent with a
low-energy outcome. Soundness then essentially reduces to soundness of the pro-
tocol in [BJSW16].

The zero-knowledge property follows largely from the properties of the proto-
col in [BJSW16] that allowed Broadbent, Ji, Song and Watrous to achieve zero-
knowledge. One key difference is that, in order to avoid rewinding the (quantum)
verifier, the authors of [BJSW16] use the properties of an interactive coin-flipping
protocol to allow the efficient simulator to recover the string r (recall that r
determines the verifier’s challenge) with probability 1. (The traditional alterna-
tive to this strategy is to have the simulator guess r, and rewind the verifier if
it guessed incorrectly in order to guess again. This is typical in classical proofs
of zero-knowledge [GMR85]. However, because quantum rewinding [Wat09] is
more delicate, the authors of [BJSW16] avoid it for simplicity.) As our protocol
is non-interactive, we are unable to take the same approach. Instead, we ask
the verifier to choose r and commit to it using a commitment scheme with a
property we call extractability. Intuitively, extractability means that the com-
mitment scheme takes a public key determined by the CRS. We then show that
the simulator can efficiently recover r from the verifier’s commitment by taking
advantage of the CRS. For an LWE-based extractable commitment scheme, see
Sect. 1.2 of the Supplementary Material.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 809

Another subtlety, unique to homomorphic encryption, is that the verifier may
learn something about the homomorphic computations performed by the prover
(and hence possibly about the encoding keys) by looking at the encryption ran-
domness in the encryption (of an NIZK proof) that the prover sends the verifier.
(Recall that the verifier possesses the decryption key sk for the homomorphic
encryption scheme.) This leads us to require the use of a fully homomorphic
encryption scheme which satisfies the property of circuit privacy. For a defini-
tion of this property, see Sect. 1.2 of the Supplementary Material.

Remark 1. The technique we proposed to remove interaction from the protocol
of [BJSW16] is based on two main ingredients: the use of quantum teleportation,
which allows the verifier to anticipate her measurements of the state she receives
from the prover in the instance-dependent step, and the use of classical homo-
morphic encryption to allow the prover to demonstrate (homomorphically) that
he has performed a certain computation correctly. These two ingredients work
in tandem to ensure that the soundness and the zero-knowledge property of the
[BJSW16] protocol are preserved. We believe that this technique could find use
more broadly. In particular, it may be applicable as a general (soundness and
zero-knowledge preserving) transformation to any interactive proof system for
QMA with an efficient honest prover. We leave a more thorough investigation of
this as a direction for future work.

A Non-interactive Argument of Quantum Knowledge

One desirable feature of our non-interactive argument system is that it is also
an argument of quantum knowledge. As we mentioned earlier, one of our con-
tributions is to generalize the definitions of PoKs and AoKs for NP-relations
to definitions of PoKs and AoKs for QMA relations. In the latter setting, the
prover wishes to convince the verifier that he ‘knows’ or ‘possesses’ the quan-
tum witness for an instance of a QMA problem. In order to show that our
protocol satisfies this additional property, we need to exhibit an extractor that,
for any yes instance x, and given quantum oracle access to any prover that is
accepted with high probability in our protocol, outputs a quantum state which
is a witness for x. In Sect. 6, we explicitly construct such an extractor K for
our non-interactive protocol. The intuition is the following. K (the extractor)
has oracle access to a prover P ∗, and it simulates an execution of the protocol
between P ∗ and the honest verifier V . We show that, if P ∗ is accepted in our
protocol with sufficiently high probability, then it must teleport to V (and hence
to K) the encoding ρ̃ of a witness state, and a commitment σ to the encoding
keys. If K knew the encoding keys, it would be able to decode ρ̃, but it is not
clear a priori how K could obtain such keys. Crucially, the same feature of our
protocol that allows the zero-knowledge simulator to extract r from the verifier’s
commitment to r also plays in K’s favour: when K simulates an execution of
the protocol, it samples a common reference string which is given to both V and
P ∗, and in our protocol, the CRS contains a public key which P ∗ uses to make
his commitment. As such, in order to extract a witness from P ∗, the extractor

810 A. Coladangelo et al.

samples a CRS containing a public key pk for which it knows the corresponding
secret key sk, and provides this particular CRS as input to P ∗. Then, when K
receives ρ̃ and σ from P ∗, it is able to extract the committed keys from σ, and
use these to decode ρ̃.

An Interactive Proof of Quantum Knowledge

Our non-interactive protocol is an argument system, which means that it is
sound only against computationally bounded provers. In Sect. 7, we introduce
a separate but complementary result to our NIZK argument (of knowledge)
for QMA by showing that the zero-knowledge proof system for QMA exhib-
ited in [BJSW16] (with some minor modifications) is also a proof of quantum
knowledge.

2 Preliminaries

2.1 Notation

For an integer � ≥ 1, [�] denotes the set {1, . . . , �}. We use poly(n) and negl(n)
to denote an arbitrary polynomial and negligible function of n respectively (a
negligible function f is any computable function such that f(n)q(n) →n→∞ 0
for all polynomials q). For an integer d ≥ 1, D(Cd) denotes the set of density
matrices on C

d, i.e. positive semidefinite ρ on C
d such that Tr(ρ) = 1. For a set

S and an element s ∈ S, we write s
$←− S to mean that s is sampled uniformly at

random from S. For an integer l, we denote by {0, 1}≤l the set of binary strings
of length at most l. We use the notation SN to denote the set of all permutations
of a set of N elements.

We use the terminology PPT for probabilistic polynomial time and QPT for
quantum polynomial time to describe algorithms.

2.2 The [BJSW16] Protocol

The following exposition is taken from [VZ19]. For an introduction to the Local
Hamiltonian problem, and the associated notation, we refer the reader to the
Supplementary Material.

In [BJSW16], Broadbent, Ji, Song and Watrous describe a protocol involv-
ing a quantum polynomial-time verifier and an unbounded prover, interacting
quantumly, which constitutes a zero-knowledge proof system for languages in
QMA. (Although it is sound against arbitrary provers, the system in fact only
requires an honest prover who is provided with a single witness state to perform
quantum polynomial-time computations.) We summarise the steps of their pro-
tocol below. For details and fuller explanations, we refer the reader to [BJSW16,
Section 3].

Notation. Let L be any language in QMA. For a definition of the k-local Clifford
Hamiltonian problem, see [BJSW16, Section 2] (this is the defined analogously to
the k-local Hamiltonian problem, except that the Hamiltonian instance consists

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 811

of Clifford terms, as introduced in the previous subsection). The k-local Clifford
Hamiltonian problem (with exponentially small ground state energy) is QMA-
complete for k = 5; therefore, for all possible inputs x, there exists a 5-local
Clifford Hamiltonian H (which can be computed efficiently from x) whose terms
are all operators of the form C∗ |0k〉 〈0k|C for some Clifford operator C, and
such that

– if x ∈ L, the ground energy of H is ≤ 2−p,
– if x /∈ L, the ground energy of H is ≥ 1

q ,

for some positive integers p and q which are bounded above by polynomials
in |x|.
Parties. The proof system involves a verifier, who implements a quantum
polynomial-time procedure; a prover, who is unbounded, but who is only required
by the protocol to implement a quantum polynomial-time procedure. The verifier
and the prover communicate quantumly.

Inputs
1. Input to the verifier: (a) The Hamiltonian H. (b) A quantum computation-

ally concealing, perfectly binding (classical) commitment protocol. In this
section, we refer to the commitment algorithm from this protocol as commit;
commit(μ, s) takes as input a message μ and a random string s and produces

Fig. 1. The authentication code

812 A. Coladangelo et al.

a commitment string z. (c) A proof system for NP sound against arbitrary
quantum provers.

2. Input to the prover: (a) The Hamiltonian H. (b) The n-qubit quantum state
ρ, where ρ is a ground state of the Hamiltonian H. (c) A quantum computa-
tionally concealing, perfectly binding (classical) commitment protocol. (d) A
proof system for NP sound against arbitrary quantum provers.

Protocol
1. The prover’s encoding step. The prover applies the following encoding to the

witness state ρ.
We refer to t, π, a, b as ‘the authentication keys’ or ‘the encoding keys’.
The prover’s encoding applied to ρ is denoted by E(ρ), and the procedure
E is fully determined by the encoding key (t, π, a, b) which the prover chose
to use. At this point, the prover sends the state E(ρ) to the verifier, along
with a commitment (using some perfectly binding, computationally conceal-
ing classical commitment protocol) to the tuple (π, a, b). (A commitment to
the sequence of trap qubits t is unnecessary because, in a sense, the trap
qubits exist only to check the verifier.) Let the prover’s commitment string
be denoted z.

2. Coin-flipping protocol. The prover and the verifier execute a coin-flipping
protocol, choosing a string r of fixed length uniformly at random. This random
string r determines a local Hamiltonian term Hr = C∗

r |0k〉 〈0k|Cr that is to
be tested. (This step can be implemented [DL09] using the same classical
commitment protocol that the prover employed in the previous step.)

3. Verifier’s challenge. The verifier applies the Clifford Cr transversally to the
qubits on which the k-local Hamiltonian term Hr acts nontrivially, and mea-
sures them in the standard basis. It then sends the measurement results
ui1 , . . . , uik

which it obtained to the prover. (Each ui is a 2N -bit string,
and i1, . . . , ik are the indices of the logical qubits on which the term Hr acts
nontrivially.)

4. Prover’s response. The prover receives the verifier’s measurement results u,
and firstly checks whether they cause a predicate Q̃(t, π, a, b, r, u) to be satis-
fied. (We will explain the predicate Q̃ in more detail shortly. Intuitively, Q̃ is
satisfied if and only if both verifier and prover behaved honestly. Note that
we have used the notation Q̃ to represent this predicate, while the authors
of [BJSW16] simply call it Q. We add the tilde in order to differentiate their
predicate from our predicate Q, the latter of which we define in Definition 13.)
If Q̃ is not satisfied, the prover aborts, causing the verifier to reject. If Q̃ is
satisfied, then the prover proves to the verifier, using an NP zero-knowledge
protocol, that there exists randomness sP and an encoding key (t, π, a, b) such
that z = commit((π, a, b), sP) and Q̃(t, π, a, b, r, u) = 1.

Here Q̃ represents the prover’s check after it has update the one-time pad
keys based on the Clifford Cr, and reversed the effects of the one-time pad keys.
We refer the reader to [BJSW16] for a formal definition of Q̃.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 813

2.3 Argument Systems

Interactive Quantum Machines. The definitions of interactive quantum
machines, their executions and oracle access to an interactive quantum machine
are taken from [Unr12], and are omitted from this version due to space con-
straints.

Oracle Access to an Interactive Quantum Machine. We say that a quan-
tum algorithm A has oracle access to an interactive quantum machine M (and
we write this as AM , or sometimes A|M〉 to emphasize that M is a quantum
machine and that oracle access includes the ability to apply the inverse of M) to
mean the following. Besides the security parameter and its own classical input
x, we allow A to execute the quantum circuit Mμx specifying M , and its inverse
(these act on the an “internal” register S and on a “network” register N of M).
Moreover, we allow A to provide and read messages from M (formally, we allow
A to act freely on the network register N). We do not allow A to act on the
internal register S of M , except via Mμx or its inverse.

Argument Systems with Setup. First we define the kinds of relations that
underlie our argument systems. Classically, a relation over finite sets X × Y is
a subset R ⊆ X × Y. An NP relation R = {(x,w) : V|x|(x,w) = 1} has the
additional property that given any x ∈ X and w ∈ Y, the claim that (x,w) ∈
R can be verified by a uniformly generated family of circuits V = {Vn} (the
“verifier”).

In the quantum case the “input” x (the first argument to the relation) remains
classical, but the “witness” w (the second argument) can be a quantum state |ψ〉.
Before we give our definition of a QMA relation we introduce some notation. Fix
a uniformly generated family of polynomial-size quantum circuits Q = {Qn}n∈N

such that for every n, Qn takes as input a string x ∈ {0, 1}n and a quantum
state σ on p(n) qubits (for some polynomial p(n)) and returns a single bit as
output. For any 0 ≤ γ ≤ 1 define

RQ,γ =
⋃

n∈N

{
(x, σ) ∈ {0, 1}n × D(Cp(n))

∣∣ Pr(Qn(x, σ) = 1) ≥ γ
}

and

NQ,γ =
⋃

n∈N

{
x ∈ {0, 1}n

∣∣ ∀σ ∈ D(Cp(n)), Pr(Qn(x, σ) = 1) < γ
}

.

Note the presence of the parameter γ, that quantifies the expected success prob-
ability for the verifier; γ can be thought of as a measure of the “quality” of a
witness |ψ〉 (or mixture theoreof, as represented by the density matrix σ) that
is sufficient for the witness to be acceptable with respect to the relation R.

Definition 1 (QMA relation). A QMA relation is specified by triple (Q,α, β)
where Q = {Qn}n∈N is a uniformly generated family of quantum circuits such

814 A. Coladangelo et al.

that for every n, Qn takes as input a string x ∈ {0, 1}n and a quantum state
|ψ〉 on p(n) qubits and returns a single bit, and α, β : N → [0, 1] are such that
α(n) − β(n) ≥ 1/p(n) for some polynomial p and all n ∈ N. The QMA relation
associated with (Q,α, β) is the pair of sets RQ,α and NQ,β.

We say that a language L = (Lyes, Lno) is specified by a QMA relation
(Q,α, β) if

Lyes ⊆
⋃

n∈N

{
x ∈ {0, 1}n|∃σ ∈ D(Cp(n)) s.t. (x, σ) ∈ RQ,α

}
, (1)

and Lno ⊆ NQ,β.

Note that in contrast to an NP relation, we define a QMA relation using two
sets: the first set, RQ,α, is the set of (instance, witness) pairs that are deemed to
form part of the relation. The second set, NQ,β , is the set of instances that are
deemed to be such that they are in relation to no witness. Some instances may
lie in neither (the projection of) RQ,α or NQ,β ; this is analogous to the necessity
for a “promise” between the completeness and soundness parameters α and β in
the definition of the class QMA, that do not appear in the definition of NP. In
particular, note that, whenever α−β > 1/poly(n), a language L that is specified
by (Q,α, β) lies in QMA. Conversely, any language in QMA is specified by some
QMA relation (of course such relation is not unique).

Definition 2 (protocol with setup). A protocol with setup is a triple of
interactive machines (S, P, V) with the following properties:

1. S = {Sμn}μ∈N depends on the security parameter μ and an instance size n,
takes no input and returns a classical output in the message registers NSP

and NSV . When the output in both registers is the same, we refer to it as
“common reference string”.

2. Each of P and V has two phases: P = (P1, P2) and V = (V1, V2). P1 =
{P1,μn} and V1 = {V1,μn} are interactive machines that depend on the security
parameter μ and an instance size parameter n, take a classical message input
in register NSP and NSV respectively and return a quantum message as output
in registers NP1P2 and NV1V2 respectively. P2 = {P2,μn} and V2 = {V2,μn} are
interactive machines that depend on the security parameter μ and an input
size n. V2 takes as input the output of V1, in register NV1V2 , as well as an
instance x such that |x| = n. P2 takes as input the output of P1, in register
NP1P2 , an instance x such that |x| = n, and a quantum state ρ. V2 returns a
single bit b ∈ {0, 1} as output, and P2 returns no output. If b = 1 then we say
that V accepts, and otherwise we say that it rejects.

We refer to the first phase of P and V as the preprocessing phase, and to the
second phase as the instance-dependent phase.

Definition 3 (argument system with completeness c and soundness s).
Let (Q,α, β) be a QMA relation and s, c : N → [0, 1]. An argument system (with
setup) for (Q,α, β), with completeness c and soundness s, is a protocol with
setup (S, P, V) such that S, P, V are quantum polynomial-time and, in addition,
the following hold:

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 815

1. (Completeness) For all (x, ρ) ∈ RQ,α, for all integer μ, the execution
(S, P (x, ρ), V (x)) returns 1 with probability at least c(μ).

2. (Soundness) For all x ∈ NQ,β, all integer μ and all polynomial-time P ∗ the
execution (S, P ∗(x), V (x)) returns 1 with probability at most s(μ) + negl(μ).

When the second phase of a protocol with setup (S, P, V) consists of a single
message from P to V we refer to it as a non-interactive protocol with setup. If it
is a an argument system with setup, we refer to it as a non-interactive argument
system with setup. When the first phase involves some communication between
P and V , we specify that it is a non-interactive argument system with setup and
preprocessing. When S outputs a common reference string (as defined in 2), we
refer to it as an argument system with CRS setup (possibly with preprocessing).

Note that Definition 3 requires that the execution (S, P (x, ρ), V (x)) returns
1 with probability at least c(μ). In the case of sequential or parallel repetition
of a protocol, it may not be possible for the prover to succeed with a single copy
of the witness ρ as input. In this case we may considering relaxing the definition
as follows.

Definition 4 (Completeness of argument system with setup—alter-
native definition). Let Qq be the circuit that runs Q on q registers, and
accepts if all executions accept. There exists a polynomial q > 0, such that for
all (x, ρ) ∈ RQq,α, for all integers μ, the execution (S, P (x, ρ), V (x)) returns 1
with probability at least c(μ).

We will clarify, whenever we refer to an argument system with setup, which
definition we refer to.

Finally, we define the notion of adaptive soundness, which captures security
against adversaries that are allowed to choose the common instance x after
having carried out the preprocessing phase.

Definition 5 (Adaptive soundness). An argument with setup (S, P, V) for a
QMA relation (Q,α, β) has adaptive soundness s(μ) if for every QPT algorithm
P ∗ = {(P ∗

1,μn, P ∗
2,μn)}, for all μ,

Pr
(σP V)←(Sμn,P ∗

1,μn,V1,μn),

(x,τ)←P ∗
2,μn(σP)

(
x ∈ NQ,β ∧ (P ∗

2,μn(x, τ), V2,μn(x, σV)) = 1
) ≤ s(μ) + negl(μ).

The terminology that follows Definition 3 is modified in the natural way in
the case of adaptive soundness.

2.4 Proofs and Arguments of Quantum Knowledge

The content of this subsection, as it pertains to proofs of quantum knowledge,
was written in collaboration with Broadbent and Grilo, and appears with slight
differences in [BG19].

A Proof of Knowledge (PoK) is an interactive proof system for some relation
R such that if the verifier accepts some input x with high enough probability,

816 A. Coladangelo et al.

then she is “convinced” that the prover “knows” some witness w such that
(x,w) ∈ R. This notion is formalized by requiring the existence of an efficient
extractor K that is able to return a witness for x when given oracle access to
the prover (including the ability to rewind its actions, in the classical case).

Definition 6 (Classical Proof of Knowledge). Let R ⊆ X ×Y be a relation.
A proof system (P, V) for R is a Proof of Knowledge for R with knowledge error
κ if there exists a polynomial p > 0 and a polynomial-time machine K such
that for any classical interactive machine P ∗, any μ ∈ N, any polynomial l > 0,
any instance x ∈ {0, 1}n for n = poly(μ) and any string y: if the execution
(P ∗(x, y), V (x)) returns 1 with probability ε > κ(μ), we have

Pr
((

x,KP ∗(x,y)(x)
)

∈ R
)

≥ p

(
ε − κ(μ),

1
μ

)
− negl(μ)

In this definition, y corresponds to the side information that P ∗ has, possibly
including some w such that (x,w) ∈ R.

PoKs were originally defined only considering classical adversaries, and this
notion was first studied in the quantum setting by Unruh [Unr12]. The first
issue that arises in the quantum setting is to formalize the type of query that the
extractor K is able to make. In order to do so, we assume that P ∗ always performs
a fixed unitary operation U when invoked. Notice that this can be assumed
without loss of generality since (i) we can always consider a purification of P ∗,
(ii) all measurements can be performed coherently, and (iii) P ∗ can keep track
of the round of communication in some internal register and U can implicitly
control on this value. Then, the quantum extractor K has oracle access to P ∗

in the sense that it may perform U and U† on the message register and private
register of P ∗, but has no direct access to the latter. We denote the extractor
K with such oracle access to P ∗ by K |P ∗(x,ρ)〉, where ρ is some (quantum) side
information held by P ∗.

Definition 7 (Quantum Proof of (Classical) Knowledge). Let R ⊆ X ×Y
be a relation. A proof system (P, V) for R is a Quantum Proof of Knowledge for
R with knowledge error κ if there exists a polynomial p > 0 and a quantum
polynomial-time machine K such that for any quantum interactive machine P ∗,
any μ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(μ) and
any state ρ: if the execution (P ∗(x, ρ), V (x)) returns 1 with probability ε > κ(μ),
we have

Pr
((

x,K|P ∗(x,ρ)〉(x)
)

∈ R
)

≥ p

(
ε − κ(μ),

1
μ

)
.

Remark 2. In the fully classical case of 6, the extractor could repeat the proce-
dure in sequence polynomially many times in order to increase the probability
of a successful extraction (which, in Definitions 6 and 7, is allowed to be inverse-
polynomially small in the security parameter). This is not known to be possible
for a general quantum P ∗, since the final measurement to extract the witness
could possibly disturb the internal state of P ∗, making it impossible to simulate
the side information that P ∗ had originally in the subsequent simulations.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 817

We finally move on to the full quantum setting, where we want a Proof of
Quantum Knowledge (PoQK). Intuitively, at the end of the protocol, we would
like the verifier to be ‘convinced’ that the prover ‘has’ a quantum witness for
the input x. The main difference from Quantum Proofs of (classical) Knowledge
is that in the case of QMA relations, as defined in Sect. 2.3, the notion of a
witness is not as unambiguous as in the case of NP relations. We introduce
a parameter q which quantifies the probability that the witness returned by
the extractor makes the verifying circuit accept. We refer to this parameter as
the “quality” of the PoQK. We also allow the extractor K to return a special
symbol “⊥” in a designated portion of the output register, and we require that
either the extractor returns “⊥” or it returns a witness of a certain quality.
Formally, we assume that the output of the extractor is measured according to
{|⊥〉 〈⊥|, I−|⊥〉 〈⊥|}. We ask that the outcome of this measurement be the latter
with at least inverse-polynomial probability, and that, conditioned on the latter
outcome, the post-measurement state be a witness (of a certain quality).

Definition 8 (Proof of Quantum Knowledge). Let (Q,α, β) be a QMA
relation. A proof system (P, V) is a Proof of Quantum Knowledge for (Q,α, β)
with knowledge error κ and quality q > β, if there exists a polynomial p > 0 and
a quantum polynomial-time machine K such that for any quantum interactive
machine P ∗, any μ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for
n = poly(μ) and any state ρ: if the execution (P ∗(x, ρ), V (x)) returns 1 with

probability ε > κ(μ), we have, letting σ = (I−|⊥〉 〈⊥|)K|P ∗(x,ρ)〉(x)(I−|⊥〉 〈⊥|)
Tr[(I−|⊥〉 〈⊥|)K|P ∗(x,ρ)〉(x)]

,

Tr[(I − |⊥〉 〈⊥|)K|P ∗(x,ρ)〉(x)] > p

(
ε − κ(μ),

1

μ

)
− negl(μ), and (x, σ) ∈ RQ,q(|x|,ε).

The intuition behind the last equation is that we want the probability that
the extractor K does not output ’⊥’ to be at least p, and we want the state
conditioned on not outputting ⊥ to be a good enough witness.

Remark 3. Note that quality of the witness returned by the extractor K in
Definition 8 may be lower than the quality of the witness used by the prover to
produce the proof. We suspect that this loss is inherent. Consider the following
simple example. Suppose the prover is given a witness ρ that has quality 0 <
c < 1 with respect to some QMA verification procedure. The prover uses ρ in a
protocol that executes one of two tests, each with probability 1/2: (i) an “energy
test” that is designed to check ρ, and (ii) a “structure test” that is designed to
check some property of the prover’s strategy.

Now consider two provers, P1 and P2, each of which succeeds in this protocol
with probability c′ = (1+ c)/2. P1 is given a witness of quality c and plays opti-
mally in the structure test. P2 is given a witness of quality 1 and purposefully
succeeds in the structure test with probability c only. Then because of the exis-
tence of P1, it would be unreasonable to expect that the extractor can extract
witnesses of quality > c from provers that succeed with probability ≤ c′. This
means that running P2 on a witness returned by the extractor will succeed with
probability c < c′ only.

818 A. Coladangelo et al.

We also define arguments of quantum knowledge (with a setup). The main
difference is that the proof system is replaced by an argument system with setup.
Moreover, the extractor is allowed to create the setup as they wish (they can
“impersonate” the setup procedure S).

Definition 9 (Quantum Argument of (Classical) Knowledge). Let R ⊆
X × Y be a relation. An argument system with setup Π = (S, P, V) for R is a
Quantum Argument of Knowledge with setup for R with knowledge error κ if
there exists a polynomial p > 0 and a quantum polynomial-time machine K such
that for any quantum polynomial-time interactive machine P ∗, any μ ∈ N, any
polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(μ) and any state ρ: if
the execution (S, P ∗(x, ρ), V (x)) returns 1 with probability ε > κ(μ), we have

Pr
((

x,K|P ∗(x,ρ)〉(x)
)

∈ R
)

≥ p

(
ε − κ(μ),

1
μ

)
− negl(μ) .

Definition 10 (Argument of Quantum Knowledge). Let (Q,α, β) be a
QMA relation. An argument system with setup Π = (S, P, V) is an Argument of
Quantum Knowledge with setup for (Q,α, β) with knowledge error κ and quality
q > β if there exists a polynomial p > 0 and a quantum polynomial-time interac-
tive machine K such that for any quantum polynomial-time interactive machine
P ∗, any μ ∈ N, any polynomial l > 0, any instance x ∈ {0, 1}n for n = poly(μ)
and any state ρ: if the execution (S, P ∗(x, ρ), V (x)) returns 1 with probability

ε > κ(μ), we have, letting σ = (I−|⊥〉 〈⊥|)K|P ∗(x,ρ)〉(x)(I−|⊥〉 〈⊥|)
Tr[(I−|⊥〉 〈⊥|)K|P ∗(x,ρ)〉(x)]

,

Tr[(I − |⊥〉 〈⊥|)K|P ∗(x,ρ)〉(x)] > p

(
ε − κ(μ),

1

μ

)
− negl(μ), and (x, σ) ∈ RQ,q(|x|,ε).

As for the several possible specializations to the definition of Argument
of Quantum Knowledge with setup based on the properties of the underlying
argument system (NIZK, CRS setup, preprocessing etc.), we naturally apply
the terminology introduced in Sect. 2.3, and in Sect. 1.3 of the Supplementary
Material.

Reducing the Knowledge Error Sequentially. One of the most natural
properties of Proofs of Knowledge that one investigates in the classical set-
ting is reducing the knowledge error by sequential repetition. Classically, it is
well-known that the knowledge error drops exponentially fast in the number of
sequential repetitions [BG92]. Just like in the classical case, sequential repetition
of a proof of quantum knowledge reduces the knowledge error exponentially fast.
This is an immediate consequence of the proof of a lemma from Unruh [Unr12]
for the case of quantum Proofs of (classical) Knowledge. We refer the reader to
the Supplementary Material for a formal statement.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 819

3 The Protocol

3.1 Notation and Predicates

For a circuit Qn, we denote by H(Qn) the local Clifford Hamiltonian obtained
by performing the circuit-to-Clifford-Hamiltonian reduction from [BJSW16,
Section 2]. In the rest of this section, Qn will always be taken from a family
Q = {Qn}n∈N, where Q specifies a QMA relation (Q,α, β), and we will let the
r-th term of the Clifford Hamiltonian H(Qn) be C∗

r |0k〉 〈0k|Cr. So,

H(Qn) =
m∑

r=1

C∗
r |0k〉 〈0k|Cr, (2)

where each Cr is a k-local Clifford unitary. (Following [BJSW16], we use the
short-hand |0k〉〈0k| to denote a projector which is |0〉 〈0| on at most k qubits
and identity everywhere else. As shown in [BJSW16], we can take k = 5 without
loss of generality.)

We denote by Hclock ⊗ Hinstance ⊗ Hwitness the Hilbert space that H(Qn) acts
on. For notational convenience, we assume in the rest of this section that Hinstance

is n qubits, that is, Hinstance = C
2n

.
For clarity and notational convenience, we define predicates Rr and Q below,

which we will refer to in our description of our protocol.

Remark 4. Predicates Q and Rr are defined with respect to a fixed problem
instance x and a fixed Clifford Hamiltonian H, where

H =
m∑

r=1

C∗
r |0k〉 〈0k|Cr

for some m that is polynomial in n.

Definition 11 (Definition of Rr). As in Sect. 2.2, we write DN to represent
the set of all valid (classical) N -bit codewords of a particular error-correcting
code. We will generally refer to this error-correcting code as ‘the concatenated
Steane code’. (This code is the same concatenated Steane code which is outlined
in [BJSW16, Appendix A.6].) We may write DN = D0

N ∪ D1
N , where D0

N is the
set of all codewords that encode 0, and D1

N is defined analogously.
We assume that r takes values in [m + 1], where m is the number of terms

in the Clifford Hamiltonian H. Our Rr is defined differently when r ∈ [m] and
when r = m + 1.

1. If r ∈ [m]: Let ui1 , . . . , uik
∈ {0, 1}2N , π ∈ S2N , and ti1 , . . . , tik

∈
{0,+,+y}N . For each i ∈ {i1, . . . , ik}, define strings pi, qi in {0, 1}N such
that π(pi‖qi) = ui (alternatively: π−1(ui) = pi‖qi). We define a predicate
R̃r(t, π, u) that takes value 1 if and only if the following two conditions are
met:

820 A. Coladangelo et al.

(a) pi ∈ DN for every i ∈ {i1, . . . , ik}, and pi ∈ D1
N for at least one index

i ∈ {i1, . . . , ik}. (DN = D0
N ∪ D1

N is the set of all valid classical N -bit
codewords of the concatenated Steane code).

(b) 〈qi1 · · · qik
|C⊗n

r |ti1 · · · tik
〉 �= 0.

Here |ti1 · · · tik
〉 is the state of kN qubits obtained by tensoring |0〉, |+〉 and

|+y〉 in the natural way. Then, we define Rr(t, π, u) = R̃r(t, π, u).
2. If r = m + 1, then we set Rr = Rm+1, where Rm+1 is defined below (Defini-

tion 12).

Definition 12 (Definition of Rm+1). Let u = uclock1 , uinstance1 , . . . , uinstancen

be a string in {0, 1}2N(n+1).

Remark 5. Each ulabel, for label ∈ {clock1, instance1, . . . , instancen}, is a 2N -bit
string, and intuitively represents the result of measuring the logical qubit with
an index specified by label. (For notational convenience in the exposition below,
we replace the iterator label by the iterator i.) For example, uclock1 is the string
that results from measuring the first logical qubit of the clock register. The logical
clock register consists of many logical qubits, and each logical qubit is encoded in
2N physical qubits as a result of applying the authentication code described in
Fig. 1.

For π ∈ S2N , and for each i ∈ {clock1, instance1, . . . , instancen}, define
strings pi, qi in {0, 1}N such that π(pi‖qi) = ui (alternatively: π−1(ui) = pi‖qi).
The predicate Rm+1(t, π, u) takes the value 1 if and only if the following two
conditions (1. and 2.) are met:

1. Either
pclock1 ∈ D1

N (this corresponds to the first qubit of the clock register,
expressed in unary, being in state 1, i.e. the clock register is not at time
0),

or
For every i ∈ {instance1, . . . , instancen}, pi ∈ Dxi

N .
2. 〈qclock1 qinstance1 · · · qinstancen

|tclock1 tinstance1 · · · tinstancen
〉 �= 0.

We now define our predicate Q in terms of the Rr defined in Definition 11.

Definition 13 (Definition of Q). Let d = (x1, . . . , x2Np(n), y1, . . . , y2Np(n))
be a string in {0, 1}4Np(n), for some polynomial p(n) of n. Define

Pm+1 =|0〉 〈0|clock1 ⊗ (
I − |x〉 〈x|)

instance
⊗ Iwitness

+(I − |0〉 〈0|)clock1 ⊗ Iinstance ⊗ Iwitness

where |x〉 〈x| is a shorthand for the projector onto the standard-basis bitstring
〈x〉, and

Cm+1 = Iclock ⊗ Iinstance ⊗ Iwitness.

For r ∈ [m + 1], define

Pr =

{
C∗

r |0k〉 〈0k|Cr r ∈ [m]
Pm+1 r = m + 1

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 821

Let i1, .., ik be the indices of the qubits on which Pr acts non-trivially. Let

d′ = (a′, b′)
= (a′

i1 , . . . , a
′
ik

, b′
i1 , . . . , b

′
ik

)
= (x2Ni1+1, . . . , x2Ni1+2N , . . . , x2Nik+1, . . . , x2Nik+2N ,

y2Ni1+1, . . . , y2Ni1+2N , . . . , y2Nik+1, . . . , y2Nik+2N)

be a string in {0, 1}4Nk. (The example below, wherein k = 2, N = 2, i1 = 1, i2 =
3, and d′ = (a′, b′) = 01001000, may clarify the notation.)

Let ei1 , . . . , eik
be the unique strings such that

C⊗2N
r (X(a⊕a′)i1 Z(b⊕b′)i1 ⊗ · · · ⊗ X(a⊕a′)ik Z(b⊕b′)ik)

= α(Xei1 Zfi1 ⊗ · · · ⊗ Xeik Zfik)C⊗2N
r

(3)

for some α ∈ {1, i,−1,−i} and some fi1 , . . . , fik
∈ {0, 1}2N . (It is possible

to efficiently compute e = ei1 , . . . , eik
and f = fi1 , . . . , fik

given a, b and Cr.)
Predicate Q is defined as follows:

Q(t, π, a, b, r, z, d) = Rr(t, π, z ⊕ ei1 · · · eik
).

3.2 The Protocol

Parties. The argument system involves

1. A (QPT) verifier V ,
2. A (QPT) prover P , and
3. A (classical PPT) setup machine S.

The verifier sends a single quantum message to the prover in the preprocessing
phase of the protocol, and the prover sends the verifier a single classical message
in the instance-dependent phase of the protocol. S sends an identical classical
message to both the prover and the verifier during the preprocessing phase.

Inputs. (Unless otherwise stated, all inputs are common to all three parties.)

1. Preprocessing stage:
(a) An instance size parameter n and a security parameter μ.

822 A. Coladangelo et al.

(b) A QMA relation (Q,α, β).
(c) The Clifford Hamiltonian H(Qn) (see Eq. (2)).
(d) Other parameters:

i. c(n), an upper bound on the number of qubits in a witness state;
ii. p(n), an upper bound on the number of qubits in a history state

corresponding to an execution of Qn on a witness state of length c(n)
and an instance of size n;

iii. m = poly(n), the number of terms in the Clifford Hamilto-
nian (Eq. (2));

iv. N = poly(n), the number of physical qubits per logical qubit in the
Steane code introduced in Sect. 2.2.

(e) A perfectly binding, quantum computationally concealing (classical) com-
mitment scheme Com = (Com.gen,Com.commit,Com.reveal,Com.verify,
Com.recover), of the form described in Sect. 1.2 of the Supplementary
Material.

(f) A NIZK argument system with setup for NP, such as the one described in
Sect. 1.3 of the Supplementary Material. We denote this argument system
by a triple (NIZK.S,NIZK.P,NIZK.V).

(g) A levelled fully homomorphic encryption scheme with circuit privacy,
FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval,FHE.Refresh).

2. Instance-dependent stage:
(a) The instance x.
(b) Auxiliary (private) input to the prover: a witness ρ for the claim that

x ∈ RQ,α.

Protocol
Refer to Fig. 2 for a diagram charting the essential structure of the protocol
below.

3.3 Preprocessing Step

(S) S samples γ ← NIZK.S(1q(n), 1μ), for a sufficiently large polynomial q > 0,
in addition to (pkP , skP), (pkV , skV) ← Com.gen(1μ) (the two pairs are
sampled independently). S then outputs (γ, pkP , pkV).

(i) V samples r′ $←− [m + n]. Sets r = r′ if r ≤ m, and r = m + 1 otherwise.
Computes σ ← Com.commit(pkV ; r). Let sV be the randomness used.

(ii) V creates 2Np(n) EPR pairs (2N for each qubit of the history state). The
second qubit of each EPR pair will be sent to P in step (iv). We refer to
the remaining qubits (i.e. the first qubit in each EPR pair) as “V ’s qubits”.

(iii) V interprets her 2Np(n) qubits as the encoding (according to the authen-
tication code of Fig. 1) of a history state for H(Qn).
– If r ∈ [m]: V applies Cr transversally to the subset of her 2Np(n) qubits

which encode the k logical qubits on which Cr acts. Measures those qubits
in the computational basis, obtaining an outcome string z.

– If r = m+1: V measures the subset of the 2Np(n) qubits corresponding to
the first qubit of Hclock and all the qubits of Hinstance in the computational
basis, obtaining an outcome string z.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 823

(iv) V samples (pkE , skE) ← FHE.Gen(1n). V sends to P :
– α ← FHE.Enc(pkE , (r, sV , z)).
– pkE and σ.

3.4 Instance-Dependent Step

– Prover’s message:
1. P computes the history state corresponding to an evaluation of the cir-

cuit Qn on the input |x〉 ⊗ |ψ〉. This is the state |Ψ〉 =
∑T

t=0|t〉clock ⊗
Πt

j=1Uj

(|x〉 ⊗ |ψ〉 ⊗ |0〉⊗n
)

for some unitary Uj , which can be computed
efficiently. P computes |Ψ̃〉 ← Auth.Enc(|Ψ〉) according to the authentica-
tion scheme of Fig. 1. Let the sampled authentication keys be:
(a) a = a1, .., ap(n), b = b1, .., bp(n) for a1, .., ap(n), b1, .., bp(n) ∈ {0, 1}2N ,
(b) π ∈ S2N ,
(c) t = t1, .., tp(n) where t1, .., tp(n) ∈ {0,+,+y}N .
P samples commitment randomness sP , and computes
σkeys ← Com.commit(pk, (t, π, a, b), sP).

2. P teleports the state ρ to V using his halves of the 2Np(n) shared
EPR pairs received in step (iv) of the preprocessing step. Let d =
(x1, . . . , x2Np(n), y1, . . . , y2Np(n)) ∈ {0, 1}4Np(n) be the Bell basis mea-
surement outcomes obtained during the teleportation.

3. P computes β ← FHE.Enc
(
pkE , (d, σ, σkeys, (t, π, a, b), sP)

)
, where σ is

the commitment received in step (iv) of the preprocessing step. P homo-
morphically evaluates the following circuit C using β and the ciphertext
α that it received from the verifier. (Recall that α is an encryption of
(r, sV , z).)

C takes as input d, σ, r, sV , z, σkeys, t, π, a, b, sP . It checks that
(r, sV) is a valid opening for σ, and that Q(t, π, a, b, r, z, d) = 1,
where Q is defined in Definition 13. If its checks pass, using
γ it computes an NIZK argument for the existence of an
opening to σkeys such that the opened value (t, π, a, b) satisfies
Q(t, π, a, b, r, z, d) = 1. If its checks do not pass, it outputs “⊥”.

4. Let π̃ be the encrypted proof that P obtains in step 4. P computes π̃′ ←
FHE.Refresh(π̃). Sends d, σkeys and π̃′ to V .

– Verifier’s check: V decrypts π̃′, and executes NIZK.V to check the decrypted
proof. It checks that the d received from P is the same d that appears in the
statement being proven.

Theorem 1. Assuming that LWE is intractable for quantum polynomial-time
(QPT) adversaries, every language in QMA has an adaptively zero-knowledge
non-interactive argument system with CRS setup and preprocessing (where com-
pleteness is according to Definition 4) with negl adaptive soundness. Moreover,
the preprocessing phase consists of a single quantum message from the verifier
to the prover.

824 A. Coladangelo et al.

We refer to the combination of the protocols of Sects. 3.3 and 3.4 as “the
protocol”.

To show Theorem 1 we start with an arbitrary language L ∈ QMA. Using
standard amplification techniques, for any polynomial t there is a family of
polynomial-size verification circuits Q such that L is the language associated with
the QMA relation (Q, 1−2−t, 2−t) as in Definition 1. We show that the protocol
associated to this relation is an NIZK argument with setup for (Q, 1− 2−t, 2−t).
Completeness is easy to verify, as for any (x, ρ) ∈ RQ,1−2−t the prover described
in Sect. 3.4 is accepted with probability negligibly close to 1, given access to ρ.
In Sect. 4 we prove soundness inverse polynomially close to 1, and in Sect. 2.3 of
the Supplementary Material we show how soundness can be amplified in parallel
to any 2−p for polynomial p (provided t is taken large enough compared to p).
After parallel amplification, completeness holds only if we allow the prover to
receive polynomially many copies of the witness (as in Definition 4). Finally, in
Sect. 5 we prove the zero-knowledge property.

4 Soundness

In this section we prove soundness of our protocol from Sect. 3.2. This is captured
by the following lemma.

Lemma 2. Assume that LWE is intractable for quantum polynomial-time
(QPT) adversaries. Let (Q,α, β) be a QMA relation. Then the non-interactive
protocol with setup and preprocessing for (Q,α, β) described in Sect. 3.2 has neg-
ligible adaptive soundness.

We give an overview of the proof of Lemma2 in the next subsection.

4.1 Overview

The structure of the proof is as follows. We show through a sequence of hybrids
that it is possible to transform an execution of our protocol on some instance
x, into an execution of the protocol from [BJSW16] on a specific local Clifford
Hamiltonian derived from x. We show that this transformation can at most negli-
gibly decrease the optimal acceptance probability of the prover. Thus, soundness
of our protocol reduces to soundness of the protocol from [BJSW16]. The main
steps in our sequence of hybrids are the following:

– Remove the encryption of V ’s choice of r, randomness sV and measurement
outcomes z sent in step (iv) of the preprocessing step.

– Replace the step where P teleports the encoded witness to V through shared
EPR pairs (step 2 in Sect. 3.4) with one where P directly sends the qubits of
the encoded witness to V .

– Remove the portion of the CRS corresponding to the NIZK argument, and
replace the NIZK argument sent by the prover in step 4 of Sect. 3.4 with a
ZK proof.

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 825

In Sect. 2.3 of the Supplementary Material, we amplify soundness by repeat-
ing the protocol in parallel. One can check that our proof goes through unchanged
for the case of adaptive soundness as well. In particular, the key is that the NIZK
proof system for NP employed in our protocol is adaptively sound.

5 Zero-Knowledge Property

Lemma 3. Assume that LWE is intractable for quantum polynomial-time
(QPT) adversaries. Let L be a language in QMA, let x ∈ {0, 1}∗ be a prob-
lem instance, and let V ∗ = {V ∗

μn} be an arbitrary QPT verifier for the protocol
of Sect. 3. There exists a QPT simulator S = {Sμn} such that, for any μ, n and
yes-instance x ∈ L with |x| = n, and for any auxiliary quantum input Z0 to the
verifier, the distribution of V ∗’s final output after its interaction with the honest
prover P in the protocol is quantum computationally indistinguishable from S’s
output distribution on auxiliary input Z0.

Furthermore, the simulator S only requires knowledge of the instance x after
the preprocessing phase has been executed (simulated) with V ∗. As such, the
zero-knowledge property holds in the adaptive setting.

Fig. 2. Diagram representing the original protocol execution between the honest prover
P and a cheating verifier V ∗. For visual clarity, the prover and the (cheating) verifier
have been split into parts {Pi} and {V ∗

i } with i ∈ {1, 2, 3, 4}, respectively, where parts
1 and 2 execute the preprocessing phase of the protocol, and parts 3 and 4 execute
the instance-dependent phase of the protocol. Communications between verifier and
prover are labelled in orange; internal communications on either side are labelled in
grey. In the two subsequent diagrams, we will omit the auxiliary input Z0 that the
cheating verifier receives, as well as the internal communications Z1, Z2, Z3 between
the different parts of the cheating verifier.

826 A. Coladangelo et al.

Due to space constraints, we provide the proof of Lemma 3 in Sect. 3 of
our supplementary material. In order to show that our protocol is (adaptively)
zero-knowledge, we proceed through the following hybrid argument, in which
we make a series of replacements, and show at each stage that the verifier’s
final output after the replacement is made is (computationally or statistically)
indistinguishable from its output before. Figure 2 is a diagram that numbers the
stages of the prover and the verifier in the original protocol. For convenience, we
use the numbering scheme presented in that figure.

1. In the original protocol, P4 offers an encryption (under a homomorphic
encryption scheme FHE) of a non-interactive NP proof π, which has been
computed homomorphically, to the last component of the potentially cheat-
ing verifier, V ∗

4 . We replace the encryption of the genuine proof π with the
encryption of a simulated proof π′. π′ is indistinguishable from π because the
proof system is zero-knowledge. We use the circuit privacy property of FHE
to show that the encryption of π′ is also indistinguishable from the encryption
of π.

2. Step 1 allows us (details of how are provided in supplementary material)
to replace the commitment to encoding keys that P3 sends to V ∗

4 with a
commitment to a fixed string, which the verifier could generate by itself.

3. After the replacement in step 2 has been made, we are then able to replace
the genuine witness ρ which the honest P3 receives with a simulated wit-
ness that can be efficiently prepared without knowledge of the real witness.
Arguing that the verifier’s final output after this replacement is (statistically)
indistinguishable from its output before is perhaps the most involved step in
the proof, and involves in particular making use of the extractability property
of the commitment scheme (see Sect. 1.2 of the supplementary material) that
the verifier uses to commit to its challenge r in order to argue that the sim-
ulator can efficiently recover r and then construct a simulated witness which
passes only the challenge determined by r.

6 NIZK Argument of Quantum Knowledge
with Preprocessing for QMA

In this section we show that for any QMA relation the NIZK argument system
with CRS setup and preprocessing described in Sect. 3 is also a NIZK Argu-
ment of Quantum Knowledge with CRS setup and preprocessing (as defined in
Sect. 2.4). The intuition for this is simple. From the proof of soundness of the
protocol from [BJSW16], to which soundness of our argument system reduces,
we are able to infer that any prover which is accepted in our protocol with high
probability must be teleporting to the verifier an encoding of a low-energy wit-
ness state for the given instance of the 5-local Clifford Hamiltonian problem.
Then, all that an extractor (given oracle access to such a prover) has to do in
order to output a good witness is:

– Simulate an honest verifier so as to receive (by teleportation) such an encoded
witness from the prover,

Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing 827

– Find a way to recover the committed encoding keys and use them to decode
the received state.

We formalize this sketch in Sect. 4 of the Supplementary Material.

7 Proofs of Quantum Knowledge for QMA

The interactive protocol that we show is a proof of quantum knowledge for
languages in QMA is identical to the protocol from [BJSW16], as recalled in
Sect. 2.2, except for one modification: at the same time as the prover sends the
encoded state E(ρ) and the commitment σ to the verifier (end of step 1 of the
protocol), the prover also sends a classical zero-knowledge PoK of an opening to
the commitment. More precisely, define a relation R such that R(σ, z) = 1 if z
is a valid opening for the commitment σ. V and P engage in a ZK PoK protocol
for the relation R on common input σ, as defined in Definition 6. If the verifier
rejects in this protocol, then the verifier outputs “reject” for the whole protocol;
otherwise the verifier proceeds to the next phase.

Informally, the extractor K first takes the quantum state ρ∗ sent by P ∗ in the
first message. It then executes an extractor K ′ for an opening to the commitment
sent in the first message, that must exist by the quantum proof of knowledge
property for the sub-protocol. If K ′ succeeds in recovering the committed keys,
K decodes the state received in the first message using these keys and returns
the decoded state. Otherwise, K returns an abort symbol “⊥”. We formalize
this sketch in Sect. 5 of the Supplementary Material.

References

[BDSMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-
knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

[BG90] Bellare, M., Goldwasser, S.: New paradigms for digital signatures and mes-
sage authentication based on non-interactive zero knowledge proofs. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer,
New York (1990). https://doi.org/10.1007/0-387-34805-0 19

[BG92] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BG19] Broadbent, A., Grilo, A.B.: Zero-knowledge for QMA from locally simu-
latable proofs (2019)

[BJSW16] Broadbent, A., Ji, Z., Song, F., Watrous, J.: Zero-knowledge proof systems
for QMA. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 31–40. IEEE (2016)

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group sig-
natures: formal definitions, simplified requirements, and a construction
based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-39200-9 38

[CLW19] Canetti, R., Lombardi, A., Wichs, D.: Fiat-Shamir: from practice to the-
ory, part II (2019)

https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38

828 A. Coladangelo et al.

[Com14] Electric Coin Company. Zcash Cryptocurrency (2014)
[CP92] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,

E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 7

[DL09] Damgaard, I., Lunemann, C.: Quantum-secure coin-flipping and applica-
tions. arXiv e-prints, arXiv:0903.3118, March 2009

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, STOC 1985, pp. 291–304. ACM,
New York (1985)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/
BF00195207

[Kob02] Kobayashi, H.: Non-interactive quantum statistical and perfect zero-
knowledge. arXiv e-prints, quant-ph/0207158, July 2002

[Lab17] O(1) Labs. Coda Cryptocurrency (2017)
[Mah18] Mahadev, U.: Classical verification of quantum computations. In: 2018

IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 259–267. IEEE (2018)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: Proceedings of the Twenty-second Annual
ACM Symposium on Theory of Computing, STOC 1990, pp. 427–437.
ACM, New York (1990)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: 2013 IEEE Symposium on Security and
Privacy, pp. 238–252. IEEE (2013)

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. IACR Cryptology ePrint Archive 2019:158
(2019)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, FOCS 1999, p. 543. IEEE Computer
Society, Washington, DC (1999)

[Sho95] Shor, P.W.: Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. arXiv e-prints, quant-
ph/9508027, August 1995

[Unr12] Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 10

[Unr15] Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random
oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46803-6 25

[VZ19] Vidick, T., Zhang, T.: Classical zero-knowledge arguments for quantum
computations. arXiv e-prints, arXiv:1902.05217, February 2019

[Wat09] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput.
39(1), 25–58 (2009)

https://doi.org/10.1007/3-540-48071-4_7
http://arxiv.org/abs/0903.3118
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/BF00195207
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
http://arxiv.org/abs/1902.05217

Author Index

Abdalla, Michel I-278, I-685
Aggarwal, Divesh II-274
Akshima I-157
Albrecht, Martin R. II-186
Alon, Bar II-677
Alwen, Joël I-248
Apon, Daniel III-389
Attema, Thomas II-470, III-513
Au, Man Ho I-590

Bai, Shi II-186
Ball, Marshall III-97, III-674
Barbosa, Manuel I-278
Barta, Ohad I-776
Bauer, Balthazar II-121
Baum, Carsten II-562
Beierle, Christof III-329, III-419
Belaïd, Sonia I-339
Bellizia, Davide I-369
Berman, Itay III-544
Beyne, Tim III-299
Biryukov, Alex III-419
Blum, Erica II-707
Bootle, Jonathan II-441
Boudot, Fabrice II-62
Boyd, Colin I-464
Boyle, Elette II-387
Bradley, Tatiana I-278
Brakerski, Zvika II-417, III-738
Brian, Gianluca III-127
Bronchain, Olivier I-369

Canetti, Ran I-807
Canteaut, Anne III-299
Cardoso dos Santos, Luan III-419
Carlini, Nicholas III-189
Cash, David I-157
Cassiers, Gaëtan I-369
Castryck, Wouter II-92
Chakraborty, Suvradip II-732
Chase, Melissa III-34
Chattopadhyay, Eshan III-97
Chen, Megan III-64
Chotard, Jérémy I-747

Cohen, Ran III-64
Coladangelo, Andrea III-799
Coretti, Sandro I-248
Coron, Jean-Sébastien I-339, II-3
Couteau, Geoffroy II-387, III-768
Cramer, Ronald III-513

Dachman-Soled, Dana II-329, III-674
Damgård, Ivan II-647
Davidson, Alex I-559
Davies, Gareth T. I-464
de Boer, Koen II-243
De Micheli, Gabrielle II-32
Deaton, Joshua III-279
Derbez, Patrick III-359
Ding, Jintai III-279
Dinur, Itai III-299
Dodis, Yevgeniy I-248
Doerner, Jack III-64
Don, Jelle III-602
Drucker, Andrew I-157
Ducas, Léo II-243, II-329
Dufour-Sans, Edouard I-747
Dziembowski, Stefan II-732

Eichlseder, Maria III-299
Escudero, Daniel II-823
Espitau, Thomas II-155

Faonio, Antonio III-127
Fehr, Serge III-602
Fouque, Pierre-Alain II-155, II-186
Fuchsbauer, Georg II-121

Gaudry, Pierrick II-32, II-62
Gay, Romain I-747
Ghosh, Satrajit II-823
Ghoshal, Ashrujit I-127
Gilboa, Niv II-387
Gini, Agnese II-3
Gjøsteen, Kristian I-464
Goldfeder, Steven III-451
Gong, Huijing II-329

Gong, Junqing I-685
Goyal, Rishab I-527, I-621
Goyal, Vipul II-618
Grosso, Vincent I-369
Großschädl, Johann III-419
Guillevic, Aurore II-62
Gunsing, Aldo I-187
Guo, Chun I-369, II-793
Guo, Qian II-359

Haitner, Iftach III-544
Hartmann, Dominik III-768
Hauck, Eduard II-500
Heath, David II-763
Heninger, Nadia II-62
Hoang, Viet Tung I-218
Hohenberger, Susan I-836
Huynh, Paul III-359

Ishai, Yuval I-776, II-387
Isobe, Takanori III-219

Jaeger, Joseph I-3, I-127
Jagielski, Matthew III-189
Jain, Aayush I-717
Jarecki, Stanisław I-278
Jiang, Yao I-464
Johansson, Thomas II-359
Jost, Daniel I-33
Juels, Ari III-451

Kalai, Yael Tauman III-652
Katsumata, Shuichi I-559
Katz, Jonathan I-278, II-793
Katzir, Liran III-574
Kelkar, Mahimna III-451
Keller, Marcel II-823
Kiltz, Eike II-500
Kirchner, Paul II-155, II-186
Kiyoshima, Susumu II-533
Kohl, Lisa II-387
Kolesnikov, Vladimir II-763
Kondi, Yashvanth III-64
Koppula, Venkata I-836, III-738
Korb, Alexis I-717
Kreuter, Ben I-308
Kulkarni, Mukul III-674

Lallemand, Virginie III-359
Leander, Gregor III-299, III-329
Lee, Eysa III-64
Lepoint, Tancrède I-308
Leurent, Gaëtan III-299
Li, Jianwei II-274
Li, Xin I-401
Liao, Jyun-Jie III-97
Liu, Feng-Hao II-296
Liu, Fukang III-219
Liu-Zhang, Chen-Da II-707
Lombardi, Alex III-632
Loss, Julian II-121, II-500, II-707
Lyubashevsky, Vadim II-441, II-470

Ma, Fermi I-401
Majenz, Christian III-602
Maji, Hemanta K. II-593
Malkin, Tal III-97
Manohar, Nathan I-717
Manurangsi, Pasin III-156
Maurer, Ueli I-33
Meier, Willi III-219
Mennink, Bart I-187
Miao, Peihan III-3, III-34
Mironov, Ilya III-189
Momin, Charles I-369
Moran, Tal I-494
Mour, Tamer III-738
Mukherjee, Tamalika II-213
Naya-Plasencia, María III-299, III-359

Nguyen, Ngoc Khanh II-441, II-500
Nguyen, Phong Q. II-274
Nielsen, Jesper Buus II-732
Nilsson, Alexander II-359
Nishimaki, Ryo I-559

Obremski, Maciej III-127
Omri, Eran II-677
Orlandi, Claudio II-647
Orrù, Michele I-308
Orsini, Emmanuela II-562
Ostrovsky, Rafail I-776

Paneth, Omer III-652
Park, Sunoo I-807

830 Author Index

Paskin-Cherniavsky, Anat II-677
Patel, Sarvar I-433, III-3
Patton, Christopher I-94
Pellet-Mary, Alice II-243
Pereira, Olivier I-369
Perlner, Ray III-389
Perrin, Léo III-299, III-359, III-419
Persiano, Giuseppe I-433
Peters, Thomas I-369
Peyrin, Thomas III-249
Phan, Duong Hieu I-747
Pierrot, Cécile II-32
Poburinnaya, Oxana I-807
Pointcheval, David I-747
Prouff, Emmanuel I-339

Quach, Willy I-401

Rachuri, Rahul II-823
Raykova, Mariana I-308, III-3
Rivain, Matthieu I-339
Robinson, Angela III-389
Rosefield, Schuyler III-64
Rossi, Mélissa II-329
Rotem, Lior III-481

Sahai, Amit I-717
Santini, Paolo III-389
Sasaki, Yu III-299
Schmidt, Kurt III-279
Scholl, Peter II-387, II-562, II-823
Schrottenloher, André III-359
Segev, Gil III-481
Seiler, Gregor II-441, II-470
Seth, Karn III-3
Setty, Srinath III-704
Shelat, Abhi III-64
Shen, Yaobin I-218
Shikhelman, Clara III-574
Shmueli, Omri II-417
Shrimpton, Thomas I-94
Simkin, Mark II-647, III-127
Song, Yifan II-618
Soria-Vazquez, Eduardo II-562
Sotáková, Jana II-92
Srinivasan, Akshayaram III-156
Standaert, François-Xavier I-369

Stehlé, Damien II-186
Stephens-Davidowitz, Noah II-213, II-274

Taleb, Abdul Rahman I-339
Tan, Li-Yang III-97
Tessaro, Stefano I-127
Thomé, Emmanuel II-62
Todo, Yosuke III-299, III-329
Tselekounis, Yiannis I-248
Tsfadia, Eliad III-544
Tyagi, Nirvan I-3

Udovenko, Aleksei III-419

Vaikuntanathan, Vinod III-632
Vasudevan, Prashant Nalini III-156
Velichkov, Vesselin III-419
Venturi, Daniele III-127
Vercauteren, Frederik II-92
Vidick, Thomas III-799
Vishakha III-279
Vusirikala, Satyanarayana I-527, I-621

Wang, Haoyang III-249
Wang, Mingyuan II-593
Wang, Qingju III-419
Wang, Xiao II-793
Wang, Zhedong II-296
Waters, Brent I-527, I-836
Wee, Hoeteck I-157, I-685
Wen, Weiqiang II-186
Weng, Chenkai II-793
Wesolowski, Benjamin II-243
Wichs, Daniel I-401, I-494
Wiemer, Friedrich III-299
Wu, David J. I-776

Xu, Jiayu I-278
Xu, Qiuliang I-590

Yamada, Shota I-559
Yamakawa, Takashi I-559
Yang, Lisa III-652
Yang, Rupeng I-590
Yeo, Kevin I-433
Yogev, Eylon III-574
Yu, Yu II-793

Author Index 831

Yu, Zuoxia I-590
Yung, Moti III-3

Zhandry, Mark I-63, I-652
Zhang, Cong I-63

Zhang, Fan III-451
Zhang, Tina III-799
Zhang, Zheng III-279
Zhu, Chenzhi II-618
Zimmermann, Paul II-62

832 Author Index

	Preface
	Organization
	Contents – Part III
	I Multi-party Computation
	Two-Sided Malicious Security for Private Intersection-Sum with Cardinality
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 Notation
	3.2 Computational Assumptions
	3.3 Cryptographic Tools
	3.4 Security Model

	4 Protocol Description
	5 Batching Techniques
	5.1 Batching Pedersen Commitments
	5.2 Batching Camenisch-Shoup Encryption
	5.3 Batching Sigma Protocols
	5.4 Multi-exponentiation Argument

	6 Communication, Computation and Monetary Costs
	References

	Private Set Intersection in the Internet Setting from Lightweight Oblivious PRF
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Security Model
	2.3 Oblivious Transfer
	2.4 Correlation Robustness

	3 Our PSI Protocol
	3.1 Construction
	3.2 Security Proof
	3.3 Parameter Analysis

	4 Implementation Details
	4.1 Parameters
	4.2 Instantiation of Cryptographic Primitives

	5 Performance Evaluation
	5.1 Benchmark Comparison
	5.2 Monetary Cost

	A Security Proof of PRF F
	References

	Multiparty Generation of an RSA Modulus
	1 Introduction
	1.1 Results and Contributions
	1.2 Overview of Techniques
	1.3 Additional Related Work
	1.4 Organization

	2 Preliminaries
	3 Assumptions and Ideal Functionality
	3.1 Factoring Assumptions
	3.2 The Distributed Biprime-Sampling Functionality

	4 The Distributed Biprime-Sampling Protocol
	4.1 High-Level Overview
	4.2 Ideal Functionalities Used in the Protocol
	4.3 The Protocol Itself
	4.4 Security Sketches

	5 Distributed Biprimality Testing
	5.1 The Malicious Setting

	References

	I Secret Sharing
	Non-malleability Against Polynomial Tampering
	1 Introduction
	1.1 Non-malleable Codes
	1.2 Non-malleable Secret Sharing
	1.3 Seedless Non-malleable Extractors

	2 Overview of Techniques
	3 Preliminaries
	3.1 Characters Sums over Finite Fields
	3.2 Useful Lemmas About Polynomials
	3.3 Non-malleable Codes and Seedless Non-malleable Extractors
	3.4 Non-malleable Codes via Seedless Non-malleable Extractors
	3.5 MDS Code
	3.6 Other Useful Lemmas

	4 Non-malleable Extractors Against Polynomials
	5 Efficient Sampling
	6 Non-malleable Secret Sharing
	7 Open Questions
	References

	Non-malleable Secret Sharing Against Bounded Joint-Tampering Attacks in the Plain Model
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Works
	1.4 Paper Organization

	2 Preliminaries
	2.1 Standard Notation
	2.2 Secret Sharing Schemes
	2.3 Non-interactive Commitments

	3 Our Leakage and Tampering Model
	3.1 Selective Partitioning
	3.2 Semi-adaptive Partitioning
	3.3 The Definition

	4 Selective Partitioning
	4.1 Non-malleability Implies Bounded Leakage Resilience
	4.2 Instantiations

	5 Semi-adaptive Partitioning
	5.1 Our New Secret Sharing Scheme
	5.2 Proof Overview
	5.3 Security Analysis
	5.4 Instantiation

	6 Applications
	6.1 Lower Bounds for Non-malleable Secret Sharing
	6.2 Bounded-Time Non-malleability

	7 Conclusions
	References

	Nearly Optimal Robust Secret Sharing Against Rushing Adversaries
	1 Introduction
	1.1 Technical Overview
	1.2 Comparison with Prior Work
	1.3 Concurrent Work

	2 Preliminaries
	2.1 Private MAC
	2.2 Secret Sharing Scheme
	2.3 Robust Secret Sharing

	3 Vertex Identification Algorithm
	3.1 Proof of Correctness of the Algorithm

	4 Construction of Robust Secret Sharing
	4.1 Basic Scheme
	4.2 Improved Parameters via Parallel Repetition

	References

	I Cryptanalysis
	Cryptanalytic Extraction of Neural Network Models
	1 Introduction
	1.1 Model Extraction as a Cryptanalytic Problem
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Adversarial Goals and Resources

	3 Overview of the Differential Attack
	4 Idealized Differential Extraction Attack
	4.1 Zero-Deep Neural Network Extraction
	4.2 One-Deep Neural Network Extraction
	4.3 k-Deep Contractive Neural Networks
	4.4 k-Deep Expansive Neural Networks

	5 Instantiating the Differential Attack in Practice
	5.1 Improving Precision of Extracted Layers
	5.2 Efficient Finite Differences
	5.3 Finding Witnesses to Critical Points
	5.4 Unification of Witnesses with Noisy Gradients
	5.5 Following Neuron Critical Points

	6 Evaluation
	6.1 Computing (,10-9)-Functional Equivalence
	6.2 Computing (,0)-Functional Equivalence

	7 Results
	8 Concluding Remarks
	References

	Automatic Verification of Differential Characteristics: Application to Reduced Gimli
	1 Introduction
	2 Description of Gimli
	2.1 SP-box
	2.2 Linear Layer
	2.3 Gimli-Hash

	3 Properties of the SP-box
	4 The MILP Model Capturing Difference and Value Transitions
	4.1 Difference-Value Relations Through the SP-box
	4.2 Constructing the MILP Model
	4.3 Detecting Contradictions

	5 Collision Attack on 6-Round Gimli-Hash
	5.1 Searching a Valid 6-Round Differential Characteristic
	5.2 Converting SFS Collision Attacks into Collision Attacks
	5.3 Finding a Valid Capacity Part
	5.4 Discussions on Our MILP Model

	6 SFS Collisions for Intermediate 8-Round Gimli-Hash
	6.1 Fulfilling S30,1=0, S51,3=0 and S52,3=0
	6.2 Fulfilling S70,0=0, S91,2=0 and S92,2=0
	6.3 Experimental Verification

	7 State Recovery Attack on 9-Round Gimli
	8 Conclusion
	References

	The MALICIOUS Framework: Embedding Backdoors into Tweakable Block Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Attacking Scenario
	2.2 Security Notions and More
	2.3 Notations

	3 The MALICIOUS Framework
	3.1 Block Ciphers with Partial Non-linear Layers
	3.2 Tweakable Block Ciphers
	3.3 Extendable-Output Function
	3.4 The MALICIOUS Construction
	3.5 The Backdoor Security
	3.6 Rationale Underlying the MALICIOUS Construction

	4 Instantiating the MALICIOUS Framework with LowMC
	4.1 LowMC
	4.2 Equivalent Representation of LowMC
	4.3 LowMC-M
	4.4 Embedding a Backdoor into LowMC-M
	4.5 Parameters

	5 Backdoor Security
	5.1 Undetectability
	5.2 Undiscoverability
	5.3 Untraceability and Practicability

	6 Cipher Security
	6.1 Attacks Based on Tweak
	6.2 Attacks Without Tweak

	7 Conclusion
	References

	Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme
	1 Introduction
	1.1 Background and Post-quantum Cryptography Standardization
	1.2 Multivariate Public Key Cryptosystems
	1.3 A Brief Sketch and History of Oil and Vinegar Schemes
	1.4 Lifted Unbalanced Oil Vinegar Scheme (LUOV)
	1.5 Our Contributions

	2 The Subfield Differential Attack on LUOV
	2.1 Transforming a LUOV Public by a Differential
	2.2 Forging a Signature
	2.3 The Choice of the Intermediate Field

	3 Complexity of the Attack
	3.1 Statement and Results of Thomae and Wolf
	3.2 Solving the Determined Systems
	3.3 Calculating the Complexity
	3.4 Toy Example

	4 The Inapplicability of the Subfield Differential Attack on Unbalanced Oil Vinegar
	5 New Parameter Sets for LUOV in Response to SDA
	6 Conclusion
	References

	Out of Oddity – New Cryptanalytic Techniques Against Symmetric Primitives Optimized for Integrity Proof Systems
	1 Introduction
	2 STARK-Friendly Primitives
	2.1 Expected Security Level
	2.2 Concrete Instances
	2.3 Specifications of GMiMC
	2.4 Specifications of HadesMiMC

	3 Integral Attacks over Fields of Any Characteristic
	4 Integral Distinguishers on the Full GMiMC
	4.1 Integral Distinguisher on GMiMC
	4.2 Zero-Sum Distinguishers on the Full Permutation
	4.3 Exploiting Integral Distinguishers over Multiplicative Subgroups

	5 Differential Attacks on Round-Reduced GMiMC
	5.1 Impossible Differential Attacks
	5.2 A Differential Distinguisher
	5.3 Algebraically Controlled Differential Attacks
	5.4 Reduced-Round Collision Attacks

	6 Attacks on HadesMiMC
	6.1 Integral Distinguishers
	6.2 Finding Preimages by Linearization of the Partial Rounds

	7 Conclusions
	References

	Improved Differential-Linear Attacks with Applications to ARX Ciphers
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Differential-Linear Attacks
	2.2 Partitioning Technique for ARX-Based Designs

	3 The Differential Part – Finding Many Right Pairs
	3.1 Fully Independent Parts
	3.2 Probabilistic Independent Parts

	4 The Linear Part – Advanced Partitioning and WHT-based Key-Recovery
	4.1 Multiple Linear Approximations and Partitioning
	4.2 A Simple Toy Example
	4.3 Another Toy Example Using Multiple Partition Points
	4.4 Analysis for Two Consecutive Modular Additions

	5 Application to Chaskey
	5.1 Overview of Our Attack
	5.2 Differential Part
	5.3 Linear Part

	6 Application to ChaCha
	6.1 Overview of Our Attack
	6.2 Differential Part
	6.3 Linear Part for 6-Round Attack
	6.4 The 7-Round Attack

	7 Conclusion and Future Work
	References

	Cryptanalysis Results on Spook
	1 Introduction
	2 Preliminaries
	2.1 Specification of Shadow-384 and Shadow-512
	2.2 Differential Distinguishers

	3 Structural Observations
	3.1 Super S-Box
	3.2 4-Identical States
	3.3 3-Identical States
	3.4 2-Identical States

	4 A Distinguisher Against Full Shadow-512 (and More)
	4.1 A 5-Step Truncated Differential Property
	4.2 A Distinguisher for 6- and 7-Step Shadow
	4.3 A Distinguisher for 6-Step Shadow-384

	5 Forgeries with 4-Step Shadow in the Nonce Misuse Setting
	6 Conclusion
	A Equations to Keep a 3-Identical State
	B Another High Probability Characteristic over 7 Steps
	References

	Cryptanalysis of LEDAcrypt
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview of Our New Attacks
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Parameters

	3 Existence of Weak Keys in LEDAcrypt
	3.1 Preliminary Considerations on Sparse Polynomials Multiplications
	3.2 Identifying Families of Weak Keys
	3.3 Results

	4 Explicit Attack on the Weakest Class of Keys
	4.1 Attacking an Example (sub)class of Ultra-Weak Keys
	4.2 Enumerating Ultra-Weak Keys for a Single Information Set
	4.3 Enumerating Ultra-Weak Keys for All Information Sets
	4.4 Estimating the Effect of More Advanced Information-Set Decoding
	4.5 Rejection Sampling Considerations
	4.6 Putting It All Together

	5 Attack on All Keys
	6 Conclusion
	References

	Alzette: A 64-Bit ARX-box
	1 Introduction
	2 The Design of Alzette
	2.1 Block and Word Sizes
	2.2 Round Structure and Number of Rounds
	2.3 Criteria for Choosing the Rotation Amounts
	2.4 On the Round Constants

	3 Analysis of Alzette
	3.1 On the Differential Properties
	3.2 On the Linear Properties
	3.3 On the Algebraic Properties
	3.4 Invariant Subspaces
	3.5 Nonlinear Invariants
	3.6 Summary of the Properties of Alzette

	4 Implementation Aspects
	4.1 Software Implementations
	4.2 Hardware Implementations

	5 Alzette as a Building Block
	5.1 Skeletons for a Family of (Tweakable) Block Ciphers
	5.2 Recommended Instances

	6 Conclusion
	References

	I Delay Functions
	Order-Fairness for Byzantine Consensus
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Definitions, Framework, and Preliminaries
	2.1 Protocol Execution Model
	2.2 Execution Environments
	2.3 The State Machine Replication Abstraction

	3 Building Blocks
	3.1 Set Byzantine Agreement
	3.2 FIFO Broadcast

	4 Defining Fair Ordering
	4.1 Condorcet Paradox and the Impossibility of Fair Ordering
	4.2 Environments that Support Receive-Order-Fairness
	4.3 Towards Weaker Definitions for Order-Fairness

	5 Overview of the Aequitas Protocols
	5.1 The Finalization Stage

	6 The Synchronous Aequitas Protocol
	6.1 Protocol Description
	6.2 Protocol Pseudocode
	6.3 Consistency, Liveness, and Order-Fairness Results

	References

	Generically Speeding-Up Repeated Squaring Is Equivalent to Factoring: Sharp Thresholds for All Generic-Ring Delay Functions
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organization

	2 The Generic-Ring Model
	3 Generic-Ring Delay Functions
	3.1 The Security of Generic-Ring Delay Functions
	3.2 The Depth of Generic-Ring Delay Functions

	4 A Sharp Sequentiality Threshold for Straight-Line Delay Functions
	4.1 From Speeding up Straight-Line Delay Functions to Factoring
	4.2 A Matching Upper Bound

	References

	I Zero Knowledge
	Compressed -Protocol Theory and Practical Application to Plug & Play Secure Algorithmics
	1 Introduction
	1.1 Summary of Our Contributions
	1.2 A More Detailed View of Our Program
	1.3 Comparison with Earlier Work

	2 Preliminaries
	3 The Basic Pivot
	3.1 The Basic -protocol
	3.2 Amortization over Many Commitments

	4 Compressing the Pivot
	4.1 Reduction from Relation R1 to Relation R2
	4.2 Logarithmic Size PoK for Linear Relation R2
	4.3 Composing the Building Blocks
	4.4 Compressed Pivot with Unconditional Soundness
	4.5 A Remark on Sublinear Communication Complexity

	5 The Compressed Pivot as a Black-Box
	5.1 Many Nullity Checks for the Price of One
	5.2 Opening Affine Maps
	5.3 Compactifying a Vector of Commitments

	6 Proving Nonlinear Relations via Arithmetic Circuits
	6.1 Basic Circuit Satisfiability
	6.2 Circuit ZK from Compactification

	7 Range Proofs
	8 Our Program from the Strong-RSA Assumption
	9 Our Program from the KEA
	References

	A Tight Parallel Repetition Theorem for Partially Simulatable Interactive Arguments via Smooth KL-Divergence
	1 Introduction
	1.1 Proving Parallel Repetition
	1.2 Skewed Distributions
	1.3 Smooth KL-divergence
	1.4 Main Results
	1.5 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Distributions and Random Variables
	2.3 KL-Divergence
	2.4 Concentration Bounds
	2.5 Interactive Arguments

	3 Smooth KL-Divergence
	3.1 Basic Properties
	3.2 Bounding Smooth KL-Divergence

	4 Skewed Distributions
	5 The Parallel Repetition Theorem
	5.1 Proving Lemma 6

	6 Bounding Smooth KL-Divergence of Skewed Distributions - Proof Sketch
	6.1 Eliminating the Assumptions

	References

	Interactive Proofs for Social Graphs
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Paper Organization

	2 Model Definition and Preliminaries
	2.1 Interactive Proofs
	2.2 The Graph Query Model
	2.3 Additional Preliminaries

	3 Set Cardinality Interactive Proof
	3.1 Lower Bound
	3.2 Upper Bound
	3.3 Using Explicit Hash Functions

	4 The General Framework
	5 Applications to Social Graphs
	5.1 Generating Random Samples
	5.2 The Average Degree
	5.3 Degree Distribution
	5.4 Local Clustering Coefficients
	5.5 Social Graphs and Society

	6 Non-interactive Succinct Arguments for Social Graphs
	References
	References

	The Measure-and-Reprogram Technique 2.0: Multi-round Fiat-Shamir and More
	1 Introduction
	2 Notation
	3 An Improved Single-Input Reprogramming Result
	4 Multi-input Reprogrammability
	4.1 The General Case
	4.2 The Time-Ordered Case

	5 The Multi-round Fiat-Shamir Transformation
	5.1 Public Coin Interactive Proofs and Multi-round Fiat-Shamir
	5.2 General Security of Multi-round Fiat-Shamir in the QROM

	6 Tightness of the Reductions
	7 Applications
	7.1 Digital Signature Schemes from Multi-round Fiat-Shamir
	7.2 Sequential OR Proofs

	A Quantum extractability of q2 identification schemes
	References

	Fiat-Shamir for Repeated Squaring with Applications to PPAD-Hardness and VDFs
	1 Reference to Full Version
	2 Introduction
	2.1 Our Results
	2.2 Comparison with Prior Work
	2.3 Additional Related Work
	2.4 Technical Overview

	References

	Delegation with Updatable Unambiguous Proofs and PPAD-Hardness
	1 Introduction
	2 Technical Overview
	2.1 The KPY Delegation Scheme
	2.2 Our Delegation Scheme
	2.3 Related Work

	3 Delegation
	4 PPAD-Hardness
	5 Our Results
	References

	New Techniques for Zero-Knowledge: Leveraging Inefficient Provers to Reduce Assumptions, Interaction, and Trust
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Definitions
	2.1 NIZK and Fine-Grained NIZK in the URS Model
	2.2 Fine-Grained Witness Indistinguishability
	2.3 ZAPs and Fine-Grained ZAPs
	2.4 Fine-Grained NIWI
	2.5 NIZK and Fine-Grained NIZK Without CRS and with Uniform Soundness

	3 ZAPs from NIZK
	4 Fine-Grained NIZK and ZAPs for NP
	4.1 Background on Randomized Encodings of ch24FOCS:IshKus00,ch24ICALP:IshKus02
	4.2 Statistical NIZK Protocol in the URS Model for L/poly
	4.3 G-extractable, F-Fine-Grained Commitments for NC1
	4.4 NC1-Fine-Grained NIZK for Circuit SAT
	4.5 NC1-Fine-Grained NIWI for NP
	4.6 NC1-Fine-Grained oNIZK with Uniform Soundness

	References

	Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup
	1 Introduction
	1.1 Summary of Contributions
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Problem Instances in R1CS
	2.2 Polynomials and Low-Degree Extensions
	2.3 A Polynomial Commitment Scheme for Multilinear Polynomials

	3 The Sum-Check Protocol: Opportunities and Challenges
	3.1 Challenges with Using the Sum-Check Protocol for Succinct Arguments

	4 An Encoding of R1CS Instances as Low-Degree Polynomials
	5 A Family of NIZKs with Succinct Proofs for R1CS
	5.1 A New Public-Coin Succinct Interactive Argument of Knowledge
	5.2 A Family of NIZKs with Succinct Proofs for R1CS

	6 Computation Commitments: zkSNARKs for R1CS from NIZK
	7 The SPARK Compiler
	7.1 SPARK-naive: A Straw-Man Solution
	7.2 Eliminating Asymptotic Overheads by Leveraging Memory Checking

	8 Implementation and Optimizations
	9 Experimental Evaluation
	9.1 Metrics, Methodology, and Testbed
	9.2 Performance Results

	References

	NIZK from LPN and Trapdoor Hash via Correlation Intractability for Approximable Relations
	1 Introduction
	1.1 Overview of Our Techniques and Results
	1.2 Paper Organization

	2 Preliminaries
	2.1 Learning Parity with Noise
	2.2 Trapdoor Hash
	2.3 Extractable Commitments
	2.4 Non-interactive Zero-Knowledge Arguments
	2.5 Correlation Intractability

	3 Non-interactive Zero Knowledge from Correlation Intractability
	3.1 A Generic Framework
	3.2 Special Case: Commit-then-Open Protocols
	3.3 Probabilistically Searchable Relations
	3.4 CI for Probabilistic Constant-Degree Is Sufficient for NIZK

	4 CI Through Probabilistic Representation
	4.1 Approximable Relations and CI-Apx
	4.2 From CI-Apx for C to CI for F

	5 CI-Apx from Trapdoor Hash
	5.1 The Hash Family
	5.2 Proof of Theorem 5.2

	References

	Shorter Non-interactive Zero-Knowledge Arguments and ZAPs for Algebraic Languages
	1 Introduction
	1.1 Pairing-Based NIZKs
	1.2 Our Contribution
	1.3 Technical Overview
	1.4 Applications
	1.5 Related Work
	1.6 Organization

	2 Preliminaries
	2.1 Groups and Pairings
	2.2 -Protocols
	2.3 Non-interactive Zero-Knowledge Arguments

	3 A Pairing-Based Compiler for NIZKs from -Protocols
	3.1 Algebraic Languages
	3.2 Compiling into a NIZK
	3.3 Compiled NIZK as a ZAP

	4 Security Analysis
	4.1 Generalised Witness Samplablility
	4.2 Extended-Kernel Matrix Diffie-Hellman Assumption
	4.3 Security Proof

	5 Extension to Disjunctions of Languages
	6 Applications
	6.1 NIZK for Linear Languages
	6.2 Disjunction of DDH Languages and Tight USS-QA-NIZKs
	6.3 Tightly-Secure Structure-Preserving Signatures
	6.4 Ring Signatures

	References

	Non-interactive Zero-Knowledge Arguments for QMA, with Preprocessing
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The ch28broadbent2016zero Protocol
	2.3 Argument Systems
	2.4 Proofs and Arguments of Quantum Knowledge

	3 The Protocol
	3.1 Notation and Predicates
	3.2 The Protocol
	3.3 Preprocessing Step
	3.4 Instance-Dependent Step

	4 Soundness
	4.1 Overview

	5 Zero-Knowledge Property
	6 NIZK Argument of Quantum Knowledge with Preprocessing for QMA
	7 Proofs of Quantum Knowledge for QMA
	References

	Author Index

