
Chapter 7
Some Tests for the Extended Growth
Curve Model and Applications in the
Analysis of Clustered Longitudinal Data

Jemila S. Hamid and Sayantee Jana

Abstract The Growth Curve Model (GCM) is a Generalized Multivariate Analysis
of Variance (GMANOVA) model especially useful in the analysis of longitudinal
data, growth curves as well as other response curves. The model is a natural
extension of the classical Multivariate Analysis of Variance (MANOVA) model and
among other assumptions, relies on the assumption that the mean for each group
can be represented as a polynomial of degree q . The assumption that the mean
over time for all groups follows a polynomial of the same degree is not always
satisfied, since individuals across the different groups may respond differently. An
excellent scenario is when we have clustered longitudinal data, where the response
over time can be represented by polynomials of different degrees. In such situations,
the natural extension is to use the Extended Growth Curve Model (EGCM), where
one can assume different shapes to represent different groups or clusters. In this
paper, we formulate hypotheses motivated by real life scenarios involving clustered
longitudinal data, and propose tests that are motivated by residuals in the EGCM. We
then mathematically derive the tests and evaluate performances using simulations.
We provide real data examples as illustrations.

7.1 Introduction

The Extended Growth Curve Model (EGCM) is an extension of the Growth Curve
Model (GCM), and arises in situations where there are linear restrictions on the
mean parameter of the model [22, 26, 27, 30, 31]. Both the GCM and EGCM
are also referred to as Generalized Multivariate Analysis of Variance (GMANOVA)
models, simply because they are indeed generalizations of the classical Multivariate
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Analysis of Variance (MANOVA) models [1, 9–12, 26]. The term bilinear regres-
sion will be used frequently in describing the GCM and its extensions, to indicate
the presence of two design matrices: the within and between design matrices, and to
describe the bilinear nature of the projections corresponding to these two design
matrices. The linear restrictions on MANOVA models lead to a bilinear model,
where the model involves projections with respect to two design matrices, as already
mentioned [3, 4, 16, 30].

The GCM has been demonstrated to be useful in the analysis of longitudinal data,
especially for short to moderate time series, and the analysis is performed assuming
that the mean for each of the groups follows a polynomial of degree q [11, 21, 23].
There is extensive literature in the area and various distributions and covariance
structures have been considered [6, 13, 14, 18–20, 28]. High-dimensional extensions
have also been considered in recent years [5, 8, 24, 25]. In practical applications,
however, the mean for different groups might be represented by polynomials of
different degrees. This, for instance, happens when we have clustered longitudinal
data, where the response over time follows different shapes for different clusters or
groups. In such situations, the EGCM is useful since it allows different degrees of
polynomials to be fitted within one modeling framework [3, 7, 15, 17, 26, 31].

Consider a GCM with m groups, where measurements are taken from each of the
n individuals at p different time points. Suppose also, that the mean (across time)
for the ith (i = 1, 2, . . . , k) group can be represented by a polynomial function of
degree q − 1 and can be described as

b0,i + b1,i t + +b2,i t
2 · · · + bq,it

q−1, t = t1, t2, . . . , tp.

The GCM in matrix format, is given as

Y = ZBX + E,

where Y : p×n represents the observation (outcome) matrix, Z : p×q and X : m×n

are the between and within individual design matrices, and B : q ×m represents the
parameter matrix with the coefficients of the polynomials. The columns of the error
matrix E : p × n are assumed to be distributed as a p-variate normal distribution
with mean zero and positive definite covariance matrix Σ . Description of the various
matrices in the model above are given by

Z′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
t1 t2 t3 · · · tp

t2
1 t2

2 t2
3 · · · t2

p

...
...

...
. . .

...

t
q−1
1 t

q−1
2 t

q−1
3 · · · t

q−1
p

⎞
⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1n1 0n2 0n3 · · · 0nm

0n1 1n2 0n3 · · · 0nm

0n1 0n2 1n3 · · · 0nm

...
...

...
. . .

...

0n1 0n2 0n3 · · · 1nm

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y11 y12 y13 · · · y1n

y21 y22 y23 · · · y2n

y31 y32 y33 · · · y3n

...
...

...
. . .

...

yp1 yp2 yp3 · · · ypn

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

b01 b02 b03 · · · b0m

b11 b12 b13 · · · b1m

b21 b22 b23 · · · b2m

...
...

...
. . .

...

b(q−1)1 b(q−1)2 b(q−1)3 · · · b(q−1)m

⎞
⎟⎟⎟⎟⎟⎟⎠

and it is assumed that q ≤ p and rank(X) + p ≤ n and n = n1 + n2 + . . . + nm.
Inferences for the GCM have been considered by many, and likelihood estimators

for both the mean parameter and covariance matrices are already available [4, 6, 11].
The likelihood ratio test for testing the general linear hypotheses was also derived
by Khatri [11], under some full rank restrictions. Residuals in the GCM were
considered and mathematical decompositions were performed to provide some
insights on the characteristics of the various components [29, 30]. This work was
further extended to the EGCM, where better understanding of the design space as
well as the residual space were achieved [3, 30].

Consider now the decomposed residuals in the GCM [29] and the simple
hypothesis B = 0 (mean is zero), an extension of the well-known Lawley-Hotelling
trace test was previously derived for testing this hypothesis [4]. The test turned out
to be functions of the decomposed residuals, which in turn facilitated appropriate
interpretations of the decomposed residuals as well as better understanding of the
distribution of the test statistic. In their paper, Hamid and colleagues showed that
the distributions of the test statistics for the simple hypothesis of B = 0 as well
as the general linear hypothesis GBF = 0 are free of the unknown covariance
matrix Σ [4]. This means that the distributions can be generated empirically and
the critical value for the tests can be calculated through simulations or parametric
bootstrapping. Furthermore, the authors also showed that the distribution of the test
can be represented as weighted sums of chi-square random variables, which allowed
the authors to provide appropriate approximations.

In this paper, we consider the EGCM and provide some tests for the special
case of the model, where we assume the mean growth curves to be clustered in
two categories. The mean (over time) for the two clusters follow polynomials of
different degrees, e.g., one cluster consisting of groups with linear growth curves
and the other cluster consisting of groups with quadratic curves. We first present
and discuss the decomposed residuals in the EGCM [3, 30], and formulate two
hypotheses based on their practical relevance in analysis of clustered longitudinal
data, requiring fitting of the EGCM. We propose potential statistical tests motivated
by the residuals, and using a formulation similar to the trace test in the GCM, which
as mentioned above is an extension of the well-known Lawley-Hotelling trace test
in the MANOVA model. We then provide formal mathematical derivation using
restricted maximum likelihood approach and provide some distributional properties
of the test statistics. We evaluate performance using extensive simulations and
provide real data illustration.
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7.2 Residuals in the Extended Growth Curve Model

Suppose we have m groups and a total of n individuals from whom measurements
are taken at p time points. Without loss of generality, consider the EGCM,
where groups can be categorized into two clusters. Suppose, again without loss
of generality, that the mean for the first cluster, consisting of m1 groups, follows
a polynomial of degree q1 − 1 and the mean for the second cluster (consisting of
m2 groups) follows a polynomial of degree q1 + q2 − 1. For presentation purposes,
let m = m1 + m2 and q = q1 + q2. The EGCM, in matrix formulations, can be
represented as

Y = Z1B1X1 + Z2B2X2 + E, (7.1)

where q1, q2 ≤ p, rank(X1) + p ≤ n and C (X′
2) ⊆ C (X′

1), where C (.) represents
the column space of a matrix. The observation matrix Y has the same dimension
and representation as the one described above for the GCM, and the n columns
of the error matrix E are assumed to be distributed as a p-variate normal random
variable with mean 0 and covariance Σ . The within individual design matrix Z1,
now of dimension p × q1, also has the same representation as Z in GCM, but
with q1 replacing q; the parameter matrix B1, of dimension q1 × m represents the
coefficients of the q1 polynomials that are common for both clusters consisting of
all m groups. The between individual design matrix X1, of dimension m × n, has
the same representation as X in GCM. The descriptions of the remaining matrices
involved in the EGCM are given as

Z2
′ : q2 × p =

⎛
⎜⎜⎜⎜⎜⎜⎝

t
q1
1 t

q1
2 t

q1
3 · · · t

q1
p

t
q1+1
1 t

q1+1
2 t

q1+1
3 · · · t

q1+1
p

t
q1+2
1 t

q1+2
2 t

q1+2
3 · · · t

q1+2
p

...
...

...
. . .

...

t
q1+q2−1
1 t

q1+q2−1
2 t

q1+q2−1
3 · · · t

q1+q2−1
p

⎞
⎟⎟⎟⎟⎟⎟⎠

,

X2 : m2 × n =

⎛
⎜⎜⎜⎜⎝

0n1 0n2 · · · 1nm1+1 0nm1+2 · · · 0nm

0n1 0n2 · · · 0nm1+1 1nm1+2 · · · 0nm

...
...

...
...

...
. . .

...

0n1 0n2 · · · 0nm1+1 0nm1+2 · · · 1nm

⎞
⎟⎟⎟⎟⎠

,

B2 : q2 × m2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

bq11 bq12 bq13 · · · bq1m2

b(q1+1)1 b(q1+1)2 b(q1+1)3 · · · b(q1+1)m2

b(q1+2)1 b(q1+2)2 b(q1+2)3 · · · b(q1+2)m2
...

...
...

. . .
...

b(q1+q2−1)1 b(q1+q2−1)2 b(q1+q2−1)3 · · · b(q1+q2−1)m2

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Considerable literature is available on GMANOVA models in general, and EGCM
in particular [3, 7, 12, 15, 26, 30, 31]. Solutions to the likelihood functions are
also provided, and explicit formulae for the estimators are provided [12, 26].
Nevertheless, there is limited work related to hypothesis testing in the context of
the mean parameters of EGCM, and hence limited applications of the model exist
despite the fact that longitudinal data in practice follow different functions over
time across the different groups. The focus of this paper is, therefore, to contribute
towards hypothesis testing for the mean parameters of the EGCM. In doing so, we
are particularly interested in the decomposed residuals, and we consider a special
case of the model, without loss of generality. We use the residuals as motivations to
formulate hypotheses relevant to real world applications. We then mathematically
derive corresponding test statistics. As such, let us first consider the estimated
model, derived using the maximum likelihood (ML) approach, which is always
unique [3, 26, 27]. The mathematical expression for the estimated model is given
by

Ŷ = Z1B̂1X1 + Z2B̂2X2

= (I − T1)YX′
1(X1X′

1)
−X1 + (I − T2)YX′

2(X2X′
2)

−X2, (7.2)

where A− represents a generalized inverse of any matrix A and

T1 = I − Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 ,

T2 = I − T1Z2(Z′
2T′

1S−1
2 T1Z2)

−Z′
2T′

1S−1
2 ;

S1 = Y(I − X′
1(X1X′

1)
−X1Y′;

S2 = S1 + T1YX′
1(X1X′

1)
−X1(I − X′

2(X2X′
2)

−X2)

×X′
1(X1X′

1)
−X1Y′T′

1.

In vectorized form, this can be re-written as

VecŶ = [PX1 ⊗ PZ1]VecY + [PX2 ⊗ PZ2]VecY = PVecY,

where V ec represents a vectorized form a matrix, ⊗ represents the Kronecker
product and

PX1 = X′
1(X1X′

1)
−X1,

PX2 = X′
2(X2X′

2)
−X2,

PZ1 = Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 ,

PZ2 = T1Z2(Z′
2T′

1S−1
2 T1Z2)

−Z′
2T′

1S−1
2 .
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It is evident that the estimated model is a bilinear projection with respect to the four
design matrices, which is equivalent to the column space of the matrix P [3, 30].
This column space can be represented as sum of two tensor product spaces

C (P) = C (X′
1) ⊗ CS1(Z1) + C (X′

2) ⊗ CS2(T1Z2),

where ⊗ represents tensor product between two spaces. The relationship between
Kronecker product of two matrices and tensor product space are presented in more
details in Kollo and von Rosen [12], and its applications in decomposition of
residuals in GMANOVA models is provided in Hamid and von Rosen [3].

Now consider the residuals in the EGCM, which are defined on the orthogonal
complement of the design space, that is a projection onto (C (X′

1) ⊗ CS1(Z1) +
C (X′

2)⊗CS2(T1Z2))
⊥ [3, 30]. This space was mathematically decomposed and

four residuals are provided in a previous work. Graphical elucidation of the design
and residual spaces as well as the corresponding formulas for the residuals are
provided below (Fig. 7.1). More mathematical details about the residuals in the
EGCM can be found in Hamid and von Rosen [3].

Note that, some of the spaces in Fig. 7.1 can be decomposed further (e.g., note
the broken lines across R2 and R3). Although further decompositions can also be
interpreted in terms of the model characteristics with respect to what the model
was not able to explain (i.e., residuals), we focused on these four residuals for now,
mainly because of their practical relevance in applications of GMANOVA models:

R1 = (I − T1)Y(I − X′
1(X1X′

1)
−X1),

R2 = T1Y(I − X′
1(X1X′

1)
−X1),

R3 = T1Y(X′
1(X1X′

1)
−X1 − X′

2(X2X′
2)

−X2),

R4 = (T1 + T2 − I)YX′
2(X2X′

2)
−X2.

4

3 2

1

( ′ )

( ′ )

( ′ )⊥

(
)

(
)

         +
(

)
(

+
)⊥

Fig. 7.1 The spaces representing the fitted model (design space) and the residuals in the EGCM
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As we can see from the figure and mathematical characteristics of the residuals,
R12 = R1 + R2 is equivalent to the residual in MANOVA models and appears
in the GCM as a sum of two of the decomposed residuals [29, 30]. This
residual represents the difference between the observations and the group mean
(Y − YX′

1(X1X′
1)

−X1) = Y(I − X′
1(X1X′

1)
−X1) and is distributed as a multi-

variate normal random variable, and hence useful in assessing between individual
assumptions as well as distributional assumptions. Note further, that R12R′

12 = S1,
and that the sample covariance matrix is 1

n−1 S1. On the other hand, R34 = R3 + R4
provides information about overall model fit, while R3 and R4 individually provide
information on different components of the polynomial fit.

For instance, consider two clusters, where the mean for one of the clusters can
be represented by a linear function over time and the mean of the second cluster
follows a quadratic curve. For this scenario, R3 provides information on the linear
component of the model (for both clusters) and R4 provides information on the
quadratic component of the second cluster. More on this will come while deriving
and evaluating the proposed tests.

7.3 Some Tests for the Extended Growth Curve Model

Consider the EGCM defined in (7.1). Without loss of generality, consider only two
groups, where each group is considered as a cluster. Suppose measurements from
each group are taken at different time points. Suppose the mean for the first group
can be represented by a linear function over time and the mean for the second group
follows quadratic curve. Note that, this is just to simplify presentation in this paper,
nevertheless the tests are derived under general assumptions, and are not restricted
to two groups or linear/quadratic polynomials.

Consider now the simple hypothesis that the mean is zero (testing overall
significance of the model), which can be formulated as

Ho : B1 = 0, B2 = 0,

H1 : B1 �= 0, B2 �= 0. (7.3)

Recall the Lawley-Hotelling trace test for MANOVA and GCM [4, 5]. Both tests are
weighted functions of the observed mean and the corresponding residuals (the part
of the observed mean that is left unexplained by the fitted model), where the weight
is the between individual variation represented by the sample variance-covariance
matrix in GCM, which is a function of S. Using analogous arguments, one can
suggest that a test statistic for the simple hypothesis presented above, in the EGCM
framework, will be a weighted function of YX′

1(X1X′
1)

−X1Y′ and R34R′
34, and will

have the format

f (YX′
1(X1X′

1)
−X1Y′)

f (R34R′
34)

.
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Below, we will provide mathematical derivation for the test. In doing so, we write
the likelihood function as a product of three independent terms. We maximize a
certain part of the likelihood to get an estimator for the unknown covariance matrix,
which then replaces the covariance matrix in the likelihood function to give the
estimated likelihood.

Consider first the EGCM in (7.1), we can rewrite it as

Y = Z1(B11 : B12)

(
X11

X12

)
+ Z2B2X2 + E

= Z1B11X11 + Z1B12X12 + Z2B2X2 + E, (7.4)

where B1 = (B11 : B12) and X′
1 = (X′

11 : X′
12). Considering the two clusters (in

our case, two groups as well) separately, the model reduces to

Y1 = Z1B11X1
11 + E1,

and

Y2 = Z1B12X2
12 + Z2B2X22 + E2,

for Group I and Group II, respectively. Here Y1, X1
11 and E1 are matrices consisting

of the first n1 columns of Y, X11 and E, respectively. The matrices Y2, X2
12, X22

and E2 consist of the last n2 columns of Y, X12, X2 and E, respectively. Observe
that X12 = X2. Moreover, it is possible to show that

X′
11(X11X′

11)
−X11 = X′

1(X1X′
1)

−X1 − X′
2(X2X′

2)
−X2.

Now consider the likelihood function for the EGCM

L = γ |Σ |− n
2 e− 1

2 t r{Σ−1(Y−(Z1B1X1+Z2B2X2))(Y−(Z1B1X1+Z2B2X2))
′}, (7.5)

where γ = (2π)− 1
2 np. It can be rewritten as a product of three terms,

L = L1 × L2 × L3,

where

L1 = γexp{−1

2
tr{Σ−1(YX′

2(X2X′
2)

−X2 − (Z1B12X12 + Z2B2X2))

× (YX′
2(X2X′

2)
−X2 − (Z1B12X12 + Z2B2X2))

′}},

L2 = exp{−1

2
tr{Σ−1(Y(X′

1(X1X′
1)

−X1 − X′
2(X2X′

2)
−X2) − (Z1B11X11))

× (Y(X′
1(X1X′

1)
−X1 − X′

2(X2X′
2)

−X2) − (Z1B11X11))
′}},

L3 = |Σ |− n
2 exp{−1

2
tr{Σ−1Y(I − X′

1(X1X′
1)

−X1)Y′}}.
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Let us now consider L3, which is free of the parameters specified in the hypothesis
and maximize the expression to get an estimator for the unknown covariance matrix
Σ . It is possible to show that the estimator that maximizes L3 is (n − 1)Σ̂ = S1.
We now replace Σ in (7.5) by its estimator, to get the estimated likelihood, denoted
by EL, and then maximize EL under Ho and Ho ∪ H1, to get the desired test. The
maximum of the EL under Ho and Ho ∪ H1 are respectively given by

γ1|S1|− n
2 e− 1

2 t r{nS−1
1 YX′

1(X1X′
1)

−X1Y′} (7.6)

and

γ1|S1|− n
2 exp{−1

2
ntr{S−1

1 (YX′
1(X1X′

1)
−X1 − (Z1B̂1X1 + Z2B̂2X2))

× (YX′
1(X1X′

1)
−X1 − (Z1B̂1X1 + Z2B̂2X2))

′}}, (7.7)

where γ1 = n
n
2 (2π)− 1

2 npe− 1
2 np . Note that we can rewrite R3 and R4 as follows:

R3 = S1Zo
1(Z

o′
1 S1Zo

1)
−Zo′

1 Y(X′
1(X1X′

1)
−X1 − X′

2(X2X′
2)

−X2), (7.8)

R4 = S2Zo(Zo′S2Zo)−Zo′YX′
2(X2X′

2)
−X2,

where Zo
1 and Zo are matrices of full rank spanning the orthogonal complements

of the column spaces of the matrices Z1 and Z = (Z1 : T1Z2), respectively. It is
possible to show that R34, which denotes the sum of the residuals R3 and R4, can
be written as a difference between the observed and estimated means, i.e.,

R34 = YX′
1(X1X′

1)
−X1 − (Z1B̂1X1 + Z2B̂2X2).

A test statistic is defined by taking the ratio between (7.6) and (7.7), which can be
simplified as

e− 1
2 ntr{S−1

1 YX′
1(X1X′

1)
−X1Y′}

e− 1
2 ntr{S−1

1 R34R′
34}

, (7.9)

where the hypothesis is rejected when the value of the ratio is small, i.e., close to
zero. Note that the ratio has values between zero and one. One can also define an
equivalent test by taking the logarithm of the test statistic, which can be re-written
as

tr{S−1
1 YX′

1(X1X′
1)

−X1Y′} − tr{S−1
1 R34R′

34}, (7.10)

and the hypothesis will be rejected for large values of (7.10). This formulation
allows a relatively easier understanding of some distributional characteristics of the
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proposed test. As such, consider the first term in (7.10) and write it as a sum of two
terms as follows:

tr{S−1
1 YX′

1(X1X′
1)

−X1Y′} = tr{S−1
1 YX′

11(X11X′
11)

−X11Y′}
+ tr{S−1

1 YX′
2(X2X′

2)
−X2X′

2}, (7.11)

where X11 is as in (7.4). Similarly, use the expressions for R3 and R4 and write the
second term in (7.10) as

tr{S−1
1 R34R′

34} = tr{YX′
11(X11X′

11)
−X11Y′S−1

1 Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 }

+ tr{YX′
2(X2X′

2)
−X2Y′S−1

2 Z(Z′S−1
1 Z)−Z′S−1

1 }. (7.12)

By subtracting (7.12) from (7.11), the test statistic reduces to

φ1(Y) = tr{YX′
11(X11X′

11)
−X11Y′S−1

1 Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 }

+ tr{YX′
2(X2X′

2)
−X2Y′S−1

2 Z(Z′S−1
1 Z)−Z′S−1

1 }, (7.13)

where Z = (Z1 : T1Z2). The hypothesis is rejected when the value of φ1(Y) is large.
Here it is important to note that the column spaces of (Z1 : Z2) and (Z1 : T1Z2) are
identical [2, 3].

The test statistic given in (7.13) is always greater or equal to zero. Moreover, it
is possible to see from the expression in (7.9) that the numerator is a function of
YX′

1(X1X′
1)

−X1, which is the observed mean. On the other hand, in the denom-
inator we have a function of R34, which is the residual obtained by subtracting
the estimated mean from the observed mean. This shows that the test compares
the observed and estimated means, in some weighted fashion, and rejects the
hypothesis when the difference between them is “small”, which is quite intuitive
and in agreement with the formulation of the Lawley-Hotelling trace tests in the
MANOVA and GMANOVA models.

Below, we show that the distribution of φ1(Y) under the null hypothesis is
independent of the unknown covariance matrix, Σ . This is extremely important in
applications, since the empirical distribution can be generated without the knowl-
edge of the covariance matrix, and hence significance testing can be performed and
p-values can be provided. Performance evaluation through simulations can also be
performed by assuming, without loss of generality, that Σ = I. On the other hand,
it is possible to show that the distribution under the alternative depends on Σ , and
hence the power of the test depends on the variance-covariance matrix. We will
empirically show this through the simulations.

Now, to show that the distribution of the test statistic in (7.13) under the null is
independent of Σ , consider the first part of the expression and let Zo

1 be a matrix of
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full rank spanning the orthogonal complement to the space generated by the columns
of Z1. We can write first expression in (7.13) as

tr{YX′
11(X11X′

11)
−X11Y′S−1

1 }
− tr{YX′

11(X11X′
11)

−X11Y′Zo
1(Z

o
1
′S1Zo

1)
−1Zo

1
′}. (7.14)

The first term in (7.14) is invariant under the transformation Σ− 1
2 Y. It is, therefore,

possible to replace Y by Σ− 1
2 Y, which shows that the distribution of this term in is

independent of Σ . For the second term, by using the property of the trace function,
we can rewrite it as

tr{X′
11(X11X′

11)
−X11Y′Zo

1(Z
o
1
′S1Zo

1)
−1Zo

1
′Y}.

Now, write Zo
1
′Y as

(Zo
1
′
ΣZo

1)
1
2 (Zo

1
′
ΣZo

1)
− 1

2 Zo
1
′Y

and observe that we can rewrite (Zo
1
′ΣZo

1)
1
2 (Zo

1
′S1Zo

1)
−1(Zo

1
′ΣZo

1)
1
2 as

((Zo
1
′
ΣZo

1)
− 1

2 Zo
1
′Y(I − X11

′(X11X11
′)−X11)Y′Zo

1(Z
o
1
′
ΣZo

1)
− 1

2 )−1.

Consequently, it remains to show that the distribution of (Z1
o′ΣZ1

o)− 1
2 Z1

o′Y is
independent of Σ . Note that the expression is a linear function of a multivariate
normal random variable. As a result, it is enough to show that the mean and
dispersion matrices are independent of Σ , which are shown below.

Under the null hypothesis E[Y] = Z1B1X1 + Z2B2X2 = 0 which implies

E[(Z1
o′

ΣZ1
o)−

1
2 Z1

o′Y] = 0.

The dispersion matrix, D, is given by

D[(Z1
o ′

ΣZ1
o)−

1
2 Z1

o′Y] = (Z1
o′

ΣZ1
o)−

1
2 Z1

o′
ΣZ1

o(Z1
o′

ΣZ1
o)−

1
2 = I.

Suppose now, that we want to check if the quadratic term in the growth curves of
the individuals in the second group (cluster) is significantly different from zero. We
can formulate the hypotheses (in terms of the mean parameters) as

Ho : B2 = 0

H1 : B2 �= 0. (7.15)

Note that this hypothesis is associated with the residual, R4. Using a similar
motivation as in the Lawley-Hotelling trace test in MANOVA, the trace test in the
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GCM and the test provided in (7.13), one can argue that the statistic for testing the
hypothesis in (7.15) should have the format

f (YX′
2(X2X′

2)
−X2Y′)

f (R4R′
4)

.

In order to provide a formal derivation, recall the likelihood function of the EGCM
given in (7.5) and maximize the product, L2 ×L3, which is independent of R4. This
gives us the estimator S2 for nΣ . Update the likelihood by using the estimator and
proceed by taking the ratio of the maximum of the estimated likelihood under Ho

and Ho ∪ H1. The test statistic provided in (7.17) can be obtained by taking the
logarithm of the ratio and doing some algebraic manipulations similar to φ1(Y),
including using the property of the trace function (e.g., for any two matrices
tr(AB) = tr(BA)) as well as the fact that

I − Z1(Z′
1S2

−1Z1)
−Z′

1S−1
2 = T1Z2(Z2

′T1
′S2

−1T1Z2)
−Z2

′T1
′S2

−1

+ S2Zo(Zo ′S2Zo)Zo′
, (7.16)

where T1 and Z1
o are as presented in (7.2) and (7.8), respectively. Note that the two

terms on the right hand side of (7.16) are orthogonal to each other. The test statistic
for testing the hypothesis in (7.15) can be formally written as

φ2(Y) = tr{YX′
2(X2X′

2)
−X2Y′S−1

2 T1Z2(Z′
2T′

1S−1
2 T1Z2)

−Z′
2T′

1S−1
2 }, (7.17)

and the hypothesis is rejected when the value of φ2(Y) is large. The above test
statistic is always greater or equal to zero. Similar to φ1(Y), the distribution of
φ2(Y) is under the null hypothesis independent of the unknown covariance matrix,
Σ . To show this, note that the test statistic in (7.17) can be written as the difference
between two terms as

tr{YX′
2(X2X′

2)
−X2Y′G1(G′

1W2G1)
−1G′

1}
− tr{YX′

2(X2X′
2)

−X2Y′G2(G′
2W2G2)

−1G′
2}, (7.18)

where

Gr+1 = Gr (G′
rZr+1)

o, G0 = I,

Wr+1 = Y(I − X′
r (XrX′

r )
−Xr )Y′, r = 0, 1, 2, . . .m − 1.

Such approaches have been discussed in a more general form in von Rosen [27].
For special cases, we refer to Hamid [2] and Hamid and von Rosen [3]. The two
terms in (7.18) can be, respectively, rewritten as

tr{X′
2(X2X′

2)
−X2Y′G1(G′

1W2G1)
−1G′

1Y}



7 Some Tests for the Extended Growth Curve Model 115

and

tr{X′
2(X2X′

2)
−X2Y′G2(G′

2W2G2)
−1G′

2Y}.

In order to show that the distribution of φ2(Y) under the null hypothesis is
independent of Σ , we want to show that the distributions of the above two
expressions under the null hypothesis are independent of Σ , which is equivalent
to showing that the distributions of G′

1Y and G′
2Y under the null hypothesis are

independent of Σ . As such, we write G′
1Y as

(G1ΣG′
1)

1
2 (G1ΣG′

1)
− 1

2 G′
1Y′,

and it remains to show that the distribution of (G1ΣG′
1)

− 1
2 G′

1Y′, which is a linear
function of a multivariate normal random variable, is independent of Σ . Once again,
because of normality, it is enough to show that the mean and dispersion matrices are
independent of Σ .

Under the null hypothesis, B2 = 0, we have that G′
1Z1 = Zo

1
′Z1 = 0.

Consequently,

E[(G1ΣG′
1)

− 1
2 G′

1Y] = (G1ΣG′
1)

− 1
2 G′

1(Z1B1X1 + Z2B2X2) = 0.

Furthermore,

D[G1ΣG′
1)

− 1
2 G′

1Y] = (G1ΣG′
1)

− 1
2 G′

1ΣG1(G1ΣG′
1)

− 1
2 = I.

Similar calculations can show that the distribution of G′
2Y is independent of Σ .

7.4 Simulations

We performed simulations to evaluate the performance of the tests. We first
generated the empirical distributions of both tests under the corresponding null
hypotheses, and calculated the critical values for the tests based on 50,000 simu-
lations. The empirical level and power of the tests were then calculated from second
sets of 10,000 simulations. Several scenarios were considered in terms of sample
size (n), departure from the null hypotheses and number of time points, p. We have
also considered several scenarios in terms of the covariance matrix Σ .

For the null hypothesis in (7.3), the distribution of the test statistic, φ1(Y) under
the null hypothesis is skewed to the left (Fig. 7.2), which is consistent across
different sample sizes, dimensions of p, degrees of polynomial q and magnitudes
of Σ .
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Fig. 7.2 The null distribution of φ1(Y ), where p = 8, and (a) n=20, (b) n=30, (c) n=40 and (d)
n=50. The arrows show the critical values corresponding to the tests

The results of the simulation show that φ1(Y ) performs well and possesses all
the desirable properties of a test statistic. Similar to the trace test in the GCM, our
simulation results show that the test maintains the nominal level α = 0.05 (Fig. 7.3),
for all the scenarios considered.

The results also show that the test is unbiased, symmetric, monotone with respect
to both n and departures from the null hypothesis (Fig. 7.4). Similar to our previous
studies on the GCM and EGCM, departure from the null hypotheses is measured
using the Euclidean norm of the parameter matrix [5–8]. The results also show that
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Fig. 7.3 Empirical level of φ1(Y ) and the corresponding 95% confidence bands
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Fig. 7.4 Empirical power of φ1(Y ) with x-axis depicting (a) positive and negative scenarios to
show symmetry, (b) Euclidean norm of the parameter matrix, used to measure departures from the
null

the test has a reasonably good statistical power, where the test detects very small
departures from the null hypothesis, even with relatively small sample sizes (Fig. 7.4
and Table 7.1). Please note, the results are consistent across all the scenarios we
considered.
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Table 7.1 Empirical power of φ1(Y) for multiple n, p and B

p = 8 p = 4

Euclidean distance n = 20 n = 30 n = 40 n = 50 n = 20 n = 30 n = 40 n = 50

0 0.052 0.064 0.04 0.042 0.045 0.06 0.051 0.042

0.054 0.349 0.729 0.918 0.979 0.112 0.167 0.221 0.32

0.061 0.551 0.891 0.985 1.000 0.157 0.234 0.333 0.415

0.069 0.726 0.988 0.998 1.000 0.188 0.304 0.417 0.556

0.077 0.859 0.999 1.000 1.000 0.239 0.395 0.521 0.684

0.086 0.945 1.000 1.000 1.000 0.289 0.501 0.669 0.795

0.095 0.971 1.000 1.000 1.000 0.371 0.593 0.757 0.884

0.104 0.992 1.000 1.000 1.000 0.42 0.723 0.859 0.944

0.113 1.000 1.000 1.000 1.000 0.521 0.800 0.935 0.981
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Fig. 7.5 (a) Empirical level and (b) empirical power, of φ2(Y )

Similar results were also obtained for φ2(Y), where the simulation results show
that the distribution of the test statistic is skewed to the left. The test statistic
maintains the nominal level and has all the other desirable properties such as
unbiasedness, symmetry and monotonicity (Figs. 7.5 and 7.6). Furthermore, our
simulations demonstrate that the test has a very good performance, as it detects
extremely small departures from the null hypothesis, with a reasonably small sample
size (Fig. 7.6).
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Fig. 7.6 Empirical power of φ2(Y ) with respect to Euclidean norm of the parameter matrix across
four sample sizes

7.5 Empirical Example

As an empirical illustration, we consider the glucose data [32]. Data consists of
measurements taken at 8 time points from 13 controls and 20 obese patients. The
mean profile plots for the two groups are provided in Fig. 7.7 below. For illustration
purposes, we assume two clusters, where the mean of one of the clusters (consisting
of individuals in the obese group) follows a quadratic growth curve and the mean
for the second cluster (consisting of individuals in the control group) follows a cubic
growth curve.

Results show that the null hypothesis of zero mean for both groups (i.e., B1 = 0,
B2 = 0) is rejected, with observed test statistic = 62.76, critical value = 0.80, and
p-value r < 0.0001. For the hypothesis that the coefficient of the cubic term is zero,
the observed test statistic value is 0.142 and the critical value is 0.173 (Fig. 7.8),
indicating that there is no evidence to reject the null hypothesis (p-value = 0.07328)
at 5% level of significance.
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7.6 Summary

We considered the Extended Growth Curve Model, which can be applied in
situations where longitudinal measurements from groups of individuals can be
clustered into several groups. Using decomposed residuals as a motivation, we
derived test statistics for two hypotheses related to the mean parameters of the
model. The two corresponding tests can be shown to be extensions of the trace test
in the Growth Curve Model, which in turn is the Lawley-Hotelling trace test.

Simulation results showed that the two tests possess all the desirable properties
such as unbiasedness, symmetry and monotonicity with respect to both sample
size and departures from the null hypotheses, where departure is measured using
Euclidean norm. Results also demonstrate that the tests have good performances,
where the tests were able to detect very small departures from the null hypotheses.
The results were consistent under all scenarios considered (e.g., different covariance
matrices, different values of p and q).

Although the tests are derived under special scenarios, where we assumed two
clusters, the approach used in our manuscript allows extensions to several clusters
(the general EGCM) to be made. Moreover, the formulation we provided in this
study can also be extended to allow a more general linear hypothesis to be tested.
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