
Chapter 13
Variable Selection in Joint Mean
and Covariance Models

Chaofeng Kou and Jianxin Pan

Abstract In this paper, we propose a penalized maximum likelihood method for
variable selection in joint mean and covariance models for longitudinal data. Under
certain regularity conditions, we establish the consistency and asymptotic normality
of the penalized maximum likelihood estimators of parameters in the models. We
further show that the proposed estimation method can correctly identify the true
models, as if the true models would be known in advance. We also carry out real data
analysis and simulation studies to assess the small sample performance of the new
procedure, showing that the proposed variable selection method works satisfactorily.

13.1 Introduction

In longitudinal studies, one of the main objectives is to find out how the average
value of the response varies over time and how the average response profile is
affected by different treatments or various explanatory variables of interest. Tra-
ditionally the within-subject covariance matrices are treated as nuisance parameters
or assumed to have a very simple parsimonious structure, which inevitably leads to a
misspecification of the covariance structure. Although the misspecification need not
affect the consistency of the estimators of the parameters in the mean, it can lead to a
great loss of efficiency of the estimators. In some circumstances, for example, when
missing data are present, the estimators of the mean parameters can be severely
biased if the covariance structure is misspecified. Therefore, correct specification of
the covariance structure is really important.

On the other hand, the within-subject covariance structure itself may be of
scientific interest, for example, in prediction problems arising in econometrics and
finance. Moreover, like the mean, the covariances may be dependent on various
explanatory variables. A natural constraint for modelling of covariance structures
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is that the estimated covariance matrices must be positive definite, making the
covariance modelling rather challenging. Chiu et al. [2] proposed to solve this
problem by using a matrix logarithmic transformation, defined as the inverse of
the matrix exponential transformation by taking the spectral decomposition of the
covariance matrix. Since there are no constraints on the upper triangular elements
of the matrix logarithm, any structures of interest may be imposed on the elements
of the matrix logarithm. But the limitation of this approach is that the matrix
logarithm is lack a clear statistical interpretation. An alternative method to deal with
the positive definite constraint of covariance matrices is to work on the modified
Cholesky decomposition advocated by Pourahmadi [9, 10], and use regression
formulations to model the unconstrained elements in the decomposition. The key
idea is that any covariance matrix can be diagonalized by a unique lower triangular
matrix with 1’s as its diagonal elements. The elements of the lower triangular matrix
and the diagonal matrix enjoy a very clear statistical interpretation in terms of
autoregressive coefficients and innovation variances, see, e.g., Pan and MacKenzie
[8]. Ye and Pan [13] proposed an approach for joint modelling of mean and
covariance structures for longitudinal data within the framework of generalized
estimation equations, which does not require any distribution assumptions and
only assumes the existence of the first four moments of the responses. However,
a challenging issue for modelling joint mean and covariance structures is the high-
dimensional problem, which arises frequently in many fields such as genomics, gene
expression, signal processing, image analysis and finance. For example, the number
of explanatory variables may be very large. Intuitively, all these variables should
be included in the initial model in order to reduce the modelling bias. But it is
very likely that only a small number of these explanatory variables contribute to
the model fitting and the majority of them do not. Accordingly, these insignificant
variables should be excluded from the initial model to increase prediction accuracy
and avoid overfitting problem. Variable selection thus can improve estimation
accuracy by effectively identifying the important subset of the explanatory variables,
which may be just tens out of several thousands of predictors with a sample size
being in tens or hundreds.

There are many variable selection criteria existing in the literature. Traditional
variable selection criteria such as Mallow’s Cp criteria, Akaike Information Cri-
terion (AIC) and Bayes Information Criterion (BIC) all involve a combinatorial
optimization problem, with computational loads increasing exponentially with the
number of explanatory variables. This intensive computation problem hampers
the use of traditional procedures. Fan and Li [4] discussed a class of penalized
likelihood based methods for variable selection, including the bridge regression by
Frank and Friedman [6], Lasso by Tibshirani [11] and smoothly clipped absolute
deviation by Fan and Li [4]. In the setting of finite parameters, [4] further studied
oracle properties for non-concave penalized likelihood estimators in the sense that
the penalized maximum likelihood estimator can correctly identify the true model as
if we would know it in advance. Fan and Peng [5] extended the results by letting the
number of parameters have the order o(n1/3) and showed that the oracle properties
still hold in this case. Zou [14] proposed an adaptive Lasso in a finite parameter
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setting and showed that the Lasso does not have oracle properties as conjectured by
Fan and Li [4], but the adaptive Lasso does.

In this paper we aim to develop an efficient penalized likelihood based method
to select important explanatory variables that make a significant contribution to
the joint modelling of mean and covariance structures for longitudinal data. We
show that the proposed approach produces good estimation results and can correctly
identify zero regression coefficients for the joint mean and covariance models,
simultaneously. The rest of the paper is organized as follows. In Sect. 13.2, we first
describe a reparameterisation of covariance matrix through the modified Cholesky
decomposition and introduce the joint mean and covariance models for longitudinal
data. We then propose a variable selection method for the joint models via
penalized likelihood function. Asymptotic properties of the resulting estimators are
considered. The standard error formula of the parameter estimators and the choice
of the tuning parameters are provided. In Sect. 13.3, we study the variable selection
method and its sample properties when the number of explanatory variables tends
to infinity with the sample size. In Sect. 13.4, we illustrate the proposed method via
a real data analysis. In Sect. 13.5, we carry out simulation studies to assess the small
sample performance of the method. In Sect. 13.6, we give a further discussion on the
proposed variable selection method. Technical details on calculating the penalized
likelihood estimators of parameters are given in Appendix A, and theoretical proofs
of the theorems that summarize the asymptotic results are presented in Appendix B.

13.2 Variable Selection via Penalized Maximum Likelihood

13.2.1 Joint Mean and Covariance Models

Suppose that there are n independent subjects and the ith subject has mi repeated
measurements. Let yij be the j th measurement of the ith subject and tij be the
time at which the measurement yij is made. Throughout this paper we assume that
yi = (yi1, . . . , yimi )

T is a random sample of the ith subject from the multivariate
normal distribution with the mean μi and covariance matrix Σi , where μi =
(μi1, . . . , μimi )

T is an (mi×1) vector and Σi is an (mi×mi) positive definite matrix
(i = 1, . . . , n). We consider the simultaneous variable selection procedure for the
mean and covariance structures using penalized maximum likelihood estimation
methods.

To deal with the positive definite constraint of the covariance matrices, we design
an effective regularization approach to gain statistical efficiency and overcome the
high dimensionality problem in the covariance matrices. We actually use a statisti-
cally meaningful representation that reparameterizes the covariance matrices by the
modified Cholesky decomposition advocated by Pourahmadi [9, 10]. Specifically,
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any covariance matrix Σi (1 ≤ i ≤ n) can be diagonalized by a unique lower
triangular matrix Ti with 1’s as its diagonal elements. In other words,

TiΣiT
T
i = Di, (13.1)

where Di is a unique diagonal matrix with positive diagonal elements. The elements
of Ti and Di have a very clear statistical interpretation in terms of autoregressive
least square regressions. More precisely, the below-diagonal entries of Ti = (−φijk)

are the negatives of the regression coefficients of ŷij = μij +∑j−1
k=1 φijk(yik −μik),

the linear least square predictor of yij based on its predecessors yi1, . . . , yi(j−1),
and the diagonal entries of Di = diag(σ 2

i1, . . . , σ
2
imi

) are the prediction error

variances σ 2
ij = var(yij − ŷij ) (1 ≤ i ≤ n, 1 ≤ j ≤ mi). The new parameters

φijk’s and σ 2
ij ’s are called generalized autoregressive parameters and innovation

variances, respectively. By taking log transformation to the innovation variances, the
decomposition (13.1) converts the constrained entries of {Σi : i = 1, . . . , n} into
two groups of unconstrained autoregressive regression parameters and innovation
variances, given by {φijk : i = 1, . . . , n; j = 2, . . . ,mi; k = 1, . . . , (j − 1)} and
{log σ 2

ij : i = 1, . . . , n, j = 1, . . . ,mi}, respectively.
Based on the modified Cholesky decomposition, the unconstrained parameters

μij , φijk and log σ 2
ij are modelled in terms of the linear regression models

μij = xT
ij β, φijk = zT

ijkγ and log σ 2
ij = hT

ijλ, (13.2)

where xij , zijk and hij are (p × 1), (q × 1) and (d × 1) covariates vectors, and β,
γ and λ are the associated regression coefficients. The covariates xij , zijk and hij

may contain baseline covariates, polynomials in time and their interactions, etc. For
example, when modelling stationary growth curve data using polynomials in time,
the explanatory variables may take the forms xij = (1, tij , t

2
ij , . . . , t

p−1
ij )T , zijk =

(1, (tij − tik), (tij − tik)
2, . . . , (tij − tik)

q−1)T and hij = (1, tij , t
2
ij , . . . , t

d−1
ij )T .

An advantage of the model (13.2) is that the resulting estimators of the covariance
matrices can be guaranteed to be positive definite. In this paper we assume that
the covariates xij , zijk and hij may be of high dimension and we would select the
important subsets of the covariates xij , zijk and hij , simultaneously. We first assume
all the explanatory variables of interest, and perhaps their interactions as well, are
already included into the initial models. We then aim to remove the unnecessary
explanatory variables from the models.

13.2.2 Penalized Maximum Likelihood

Many traditional variable selection criteria can be considered as a penalized
likelihood which balances modelling biases and estimation variances [4]. Let �(θ)
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denote the log-likelihood function. For the joint mean and covariance models (13.2),
we propose the penalized likelihood function

Q(θ) = �(θ) − n

p
∑

i=1

pτ(1)(|βi |) − n

q
∑

j=1

pτ(2)(|γj |) − n

d
∑

k=1

pτ(3)(|λk|), (13.3)

where θ = (θ1, . . . , θs)
T = (β1, . . . , βp; γ1, . . . , γq; λ1, . . . , λd)T with s =

p+q +d and pτ(l)(·) is a given penalty function with the tuning parameter τ (l) (l =
1, 2, 3). Here we use the same penalty function p(·) for all the regression coefficients
but with different tuning parameters τ (1), τ (2) and τ (3) for the mean parameters,
generalized autoregressive parameters and log-innovation variances, respectively.
The function form of pτ (·) determines the general behavior of the estimators.
Antoniadis [1] defined the hard thresholding rule for variable selection by taking
the hard thresholding penalty function as Pτ (|t|) = τ 2 − (|t|−τ )2I (|t| < τ), where
I (.) is the indicator function. The penality function pτ (·) may also be chosen as Lp

penalty. Especially, the use of L1 penalty, defined by pτ (t) = τ |t|, leads to the least
absolute shrinkage and selection operator (Lasso) proposed by Tibshirani [11]. Fan
and Li [4] suggested using the smoothly clipped absolute deviation (SCAD) penalty
function, which is defined by

pτ (|t|) =

⎧

⎪

⎨

⎪

⎩

τ |t| if 0 ≤ |t| < τ

−(|t|2 − 2aτ |t| + τ 2)/{2(a − 1)} if τ ≤ |t| < aτ

(a + 1)τ 2/2 if |t| ≥ aτ

(13.4)

for some a > 2. This penalty function is continuous, symmetric and convex on
(0,∞) but singular at the origin. It improves the Lasso by avoiding excessive
estimation biases. Details of penalty functions can be found in [4].

The penalized maximum likelihood estimator of θ , denoted by ̂θ , maximizes the
function Q(θ) in (13.3). With appropriate penalty functions, maximizing Q(θ) with
respect to θ leads to certain parameter estimators vanishing from the initial models
so that the corresponding explanatory variables are automatically removed. Hence,
through maximizing Q(θ) we achieve the goal of selecting important variables and
obtaining the parameter estimators, simultaneously. In Appendix A, we provide the
technical details and an algorithm for calculating the penalized maximum likelihood
estimator̂θ .

13.2.3 Asymptotic Properties

In this subsection we consider the consistency and asymptotic normality of the
penalized maximum likelihood estimator ̂θ . To emphasize its dependence on the
subject number n, we also denote it by ̂θn. We assume that the number of the
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parameters, s = p + q + d , is fixed in the first instance. In the next section
we will consider the case when s is a variable tending to infinity with n. Denote
the true value of θ by θ0. Without loss of generality, we assume that θ0 =
((θ

(1)
0 )T , (θ

(2)
0 )T )T where θ

(1)
0 and θ

(2)
0 are the nonzero and zero components of

θ0, respectively. Otherwise the components of θ0 can be reordered. Denote the
dimension of θ

(1)
0 by s1. In what follows we first show that the penalized maximum

likelihood estimator ̂θn exists and converges to θ0 at the rate Op(n−1/2), implying
that it has the same consistency rate as the ordinary maximum likelihood estimator.
We then prove that the

√
n-consistent estimator ̂θn has the asymptotic normal

distribution and possesses the oracle property under certain regularity conditions.
The results are summarized in the following two theorems and the detailed proofs
are provided in Appendix B. To prove the theorems in this paper, we require the
following regularity conditions:

(A1) The covariates xij , zijk and hij are fixed. Also, for each subject the number
of repeated measurements, mi , is fixed (i = 1, . . . , n; j = 1, . . . ,mi; k =
1, . . . , j − 1).

(A2) The parameter space is compact and the true value θ0 is in the interior of the
parameter space.

(A3) The design matrices xi , zi and hi in the joint models are all bounded, meaning
that all the elements of the matrices are bounded by a single finite real number.

(A4) The dimensions of the parameter vectors β, γ , and λ, that is, pn, qn and dn,
have the same order as sn.

(A5) The nonzero components of the true parameters θ
(1)
01 , . . . , θ

(1)
0s1

satisfy

min
1≤j≤s1

⎧

⎨

⎩

|θ(1)
0j |
τn

⎫

⎬

⎭

→ ∞ (as n → ∞),

where τn is equal to either τ
(1)
n , τ

(2)
n or τ

(3)
n , depending on whether θ

(1)
0j is a

component of β0, γ 0, and λ0 (j = 1, . . . , s1).

Theorem 13.1 Let

an = max
1≤j≤s

{p′
τn

(|θ0j |) : θ0j �= 0} and bn = max
1≤j≤s

{|p′′
τn

(|θ0j |)| : θ0j �= 0},

where θ0 = (θ01, . . . , θ0s)
T is the true value of θ , and τn is equal to either τ

(1)
n ,

τ
(2)
n or τ

(3)
n , depending on whether θ0j is a component of β0, γ 0 or λ0 (1 ≤ j ≤ s).

Assume an = Op(n−1/2), bn → 0 and τn → 0 as n → ∞. Under the conditions
(A1)–(A3) above, with probability tending to 1 there must exist a local maximizer̂θn

of the penalized likelihood function Q(θ) in (13.3) such that ̂θn is a
√

n-consistent
estimator of θ0.
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We now consider the asymptotic normality property of ̂θn. Let

An = diag(p
′′
τn

(|θ(1)
01 |), . . . , p′′

τn
(|θ(1)

0s1
|)),

cn = (p′
τn

(|θ(1)
01 |)sgn(θ

(1)
01 ), . . . , p′

τn
(|θ(1)

0s1
|)sgn(θ

(1)
0s1

))T ,

where τn has the same definition as that in Theorem 13.1, and θ
(1)
0j is the j th

component of θ
(1)
0 (1 ≤ j ≤ s1). Denote the Fisher information matrix of θ by

In(θ).

Theorem 13.2 Assume that the penalty function pτn(t) satisfies

lim inf
n→∞ lim inf

t→0+
p′

τn
(t)

τn

> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix I (θ0) as
n → ∞. Under the same mild conditions as these given in Theorem 13.1, if τn → 0

and
√

nτn → ∞ as n → ∞, then the
√

n-consistent estimator̂θn = (̂θ
(1)T

n ,̂θ
(2)T

n )T

in Theorem 13.1 must satisfy ̂θ
(2)

n = 0 and

√
n(Ī (1)

n )−1/2(Ī (1)
n + An)

{

(̂θ
(1)

n − θ
(1)
0 ) + (Ī (1)

n + An)
−1cn

}

→ Ns1(0, Is1)

in distribution, where Ī (1)
n is the (s1 × s1) submatrix of Īn corresponding to the

nonzero components θ
(1)
0 and Is1 is the (s1 × s1) identity matrix.

Note for the SCAD penalty we can show

p′
τn

(t) = τn

{

I (t ≤ τn) + (aτn − t)+
(a − 1)τn

I (t > τn)

}

,

p
′′
τn

(t) = 1

1 − a
I (τn < t ≤ aτn)

for t > 0, where a > 2 and (x)+ = xI (x > 0). Since τn → 0 as n → ∞, we then
have an = 0 and bn = 0 so that cn = 0 and An = 0 when the sample size n is large
enough. It can be verified that in this case the conditions in Theorems 13.1 and 13.2
are all satisfied. Accordingly, we must have

√
n(Ī (1)

n )1/2(̂θ
(1)

n − θ
(1)
0 ) → Ns1(0, Is1)

in distribution. This means that the estimator̂θ
(1)

n shares the same sampling property

as if we would know θ
(2)
0 = 0 in advance. In other words, the penalized maximum

likelihood estimator of θ based on the SCAD penalty can correctly identify the
true model as if we would know it in advance. This property is the so-called
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oracle property by Fan and Li [4]. Similarly, the parameter estimator based on
the hard thresholding penalty also possesses the oracle property. For the Lasso
penalty, however, the parameter estimator does not have the oracle property. A
brief explanation for this is given as follows. Since pτn(t) = τnt for t > 0 and
then p′

τn
(t) = τn, the assumption of an = Op(n−1/2) in Theorem 13.1 implies

τn = Op(n−1/2), leading to
√

nτn = Op(1). On the other hand, one of the
conditions in Theorem 13.2 is

√
nτn → ∞ as n → ∞, which conflicts the

assumption of
√

nτn = Op(1). Hence the oracle property cannot be guaranteed
in this case.

13.2.4 Standard Error Formula

As a consequence of Theorem 13.2, the asymptotic covariance matrix of ̂θ
(1)

n is

Cov(̂θ
(1)

n ) = 1

n
(Ī (1)

n + An)
−1Ī (1)

n (Ī (1)
n + An)

−1 (13.5)

so that the asymptotic standard error for ̂θ
(1)

n is straightforward. However, Ī (1)
n and

An are evaluated at the true value θ
(1)
0 , which is unknown. A natural choice is to

evaluate Ī (1)
n and An at the estimator ̂θ

(1)

n so that the estimator of the asymptotic

covariance matrix of ̂θ
(1)

n is obtained through (13.5).
Corresponding to the partition of θ0, we assume θ = (θ (1)T , θ (2)T )T . Denote

�′(θ (1)
0 ) =

[

∂�(θ)

∂θ (1)

]

θ=θ0

and �′′(θ (1)
0 ) =

[

∂2�(θ)

∂θ (1)∂θ (1)T

]

θ=θ0

,

where θ0 = (θ
(1)T
0 , 0)T . Also, let

Στn(θ
(1)
0 ) = diag

⎧

⎪

⎨

⎪

⎩

p′
τ

(1)
n

(|θ(1)
01 |)

|θ(1)
01 |

, . . . ,

p′
τ

(s1)
n

(|θ(1)
0s1

|)
|θ(1)

0s1
|

⎫

⎪

⎬

⎪

⎭

.

Using the observed information matrix to approximate the Fisher information

matrix, the covariance matrix of ̂θ
(1)

n can be estimated through

̂Cov(̂θ
(1)

n ) =
{

�′′(̂θ (1)

n ) − nΣτn(
̂θ

(1)

n )
}−1

̂Cov
{

�′(̂θ (1)

n )
}{

�′′(̂θ (1)

n ) − nΣτn(
̂θ

(1)

n )
}−1

,

where ̂Cov{�′(̂θ (1)

n )} is the covariance of �′(θ (1)) evaluated at θ (1) = ̂θ
(1)

n .
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13.2.5 Choosing the Tuning Parameters

The penalty function pτ(l) (·) involves the tuning parameter τ (l) (l = 1, 2, 3) that
controls the amount of penalty. We may use K-fold cross-validation or generalized
cross-validation [4, 11] to choose the most appropriate tuning parameters τ ’s. For
the purpose of fast computation, we prefer the K-fold cross-validation approach,
which is described briefly as follows. First, we randomly split the full dataset D into
K subsets which are of about the same sample size, denoted by Dv (v = 1, . . . ,K).
For each v, we use the data in D −Dv to estimate the parameters and Dv to validate
the model. We also use the log-likelihood function to measure the performance of
the cross-validation method. For each τ = (τ (1), τ (2), τ (3))T , the K-fold likelihood
based cross-validation criterion is defined by

CV(τ ) = 1

K

K
∑

v=1

⎧

⎨

⎩

∑

i∈Iv

log(| ̂Σ−v
i |) +

∑

i∈Iv

(yi − xi
̂β

−v
)T ( ̂Σ−v

i )−1(yi − xi
̂β

−v
)

⎫

⎬

⎭

,

where Iv is the index set of the data in Dv , and ̂β
−v

and ̂Σ−v
i are the estimators

of the mean parameter β and the covariance matrix Σi obtained by using the
training dataset D − Dv . We then choose the most appropriate tuning parameter
τ by minimizing CV(τ ). In general, we may choose the number of data subsets as
K = 5 or K = 10.

13.3 Variable Selection when the Number of Parameters
s = sn → ∞

In the previous section, we assume that the numbers of the parameters β, γ , and λ,
i.e., p, q and d and therefore s, are fixed. In some circumstances, it is not uncommon
that the number of explanatory variables increase with the sample size. In this
section we consider the case where the number of parameters sn is a variable, which
goes to infinity as the sample size n tends to infinity. In what follows, we study the
asymptotic properties of the penalized maximum likelihood estimator in this case.

As before, we assume that θ0 = (θ
(1)T
0 , θ

(2)T
0 )T is the true value of θ where

θ
(1)
0 and θ

(2)
0 are the nonzero and zero components of θ0, respectively. Also, we

denote the dimension of θ0 by sn, which increases with the sample size n this time.
Similar to the previous section, we first show that there exists a consistent penalized
maximum likelihood estimator ̂θn that converges to θ0 at the rate Op(

√
sn/n).

We then show that the
√

n/sn-consistent estimator ̂θn has an asymptotic normal
distribution and possesses the oracle property.
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Theorem 13.3 Let

a∗
n = max

1≤j≤sn
{p′

τn
(|θ0j |) : θ0j �= 0} and b∗

n = max
1≤j≤sn

{|p′′
τn

(|θ0j |)| : θ0j �= 0},

where θ0 = (θ01, . . . , θ0sn)
T is the true value of θ , and τn is equal to either τ

(1)
n ,

τ
(2)
n or τ

(3)
n , depending on whether θ0j is a component of β0, γ0 or λ0 (1 ≤ j ≤ s).

Assume a∗
n = Op(n−1/2), b∗

n → 0, τn → 0 and s4
n/n → 0 as n → ∞. Under

the conditions (A1)–(A5) above, with probability tending to one there exists a local
maximizer ̂θn of the penalized likelihood function Q(θ) in (13.3) such that ̂θn is a√

n/sn-consistent estimator of θ0.

In what follows we consider the asymptotic normality property of the estimator
̂θn. Denote the number of nonzero components of θ0 by s1n(≤ sn). Let

A∗
n = diag(p

′′
τn

(|θ(1)
01 |), . . . , p′′

τn
(|θ(1)

0s1n
|)),

c∗
n = (p′

τn
(|θ(1)

01 |)sgn(θ
(1)
01 ), . . . , p′

τn
(|θ(1)

0s1n
|)sgn(θ

(1)
0s1n

))T ,

where τn is equal to either τ
(1)
n , τ

(2)
n or τ

(3)
n , depending on whether θ0j is a

component of β0, γ 0 or λ0 (1 ≤ j ≤ s), and θ
(1)
0j is the j th component of θ

(1)
0

(1 ≤ j ≤ s1n). Denote the Fisher information matrix of θ by In(θ).

Theorem 13.4 Assume that the penalty function pτn(t) satisfies

lim inf
n→∞ lim inf

t→0+
p′

τn
(t)

τn

> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix I (θ0) as
n → ∞. Under the same mild conditions as these in Theorem 13.3, if τn → 0,
s5
n/n → 0 and τn

√
n/sn → ∞ as n → ∞, then the

√
n/sn-consistent estimator

̂θn = (̂θ
(1)T

n ,̂θ
(2)T

n )T in Theorem 13.3 must satisfy ̂θ
(2)

n = 0 and

√
nMn(Ī

(1)
n )−1/2(Ī (1)

n + A∗
n)

{

(̂θ
(1)

n − θ
(1)
0 ) + (Ī (1)

n + A∗
n)

−1c∗
n

}

→ Nk(0,G)

in distribution, where Ī (1)
n is the (s1n × s1n) submatrix of Īn corresponding to the

nonzero components θ
(1)
0 , Mn is an (k × s1n) matrix satisfying MnM

T
n → G as

n → ∞, G is an (k × k) positive definite matrix and k(≤ s1n) is a constant.

The technical proofs of Theorems 13.3 and 13.4 are provided in Appendix B.
Similar to the finite parameters setting, for the SCAD penalty and hard thresholding
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penalty functions, it can be verified that the conditions in Theorems 13.3 and 13.4
are all satisfied. In this case, we have

√
nMn(Ī

(1)
n )1/2(̂θ

(1)

n − θ
(1)
0 ) → Nk(0,G)

in distribution. That means the estimator ̂θ
(1)

n shares the same sampling property as

if we would know θ
(2)
0 = 0 in advance. In other words, the estimation procedures

based on the SCAD and hard thresholding penalty have the oracle property.
However, the L1-based penalized maximum likelihood estimator like Lasso does
not have this property. Based on Theorem 13.4, similar to the finite parameters case

the asymptotic covariance estimator of ̂θ
(1)

can also be constructed but the details
are omitted.

13.4 Real Data Analysis

In this section, we apply the proposed procedure to the well known CD4+ cell
data analysis, of which the data details can be found in [3]. The human immune
deficiency virus (HIV) causes AIDS by reducing a person’s ability to fight infection.
The HIV attacks an immune cell called the CD4+ cell which orchestrates the body’s
immunoresponse to infectious agents. An uninfected individual usually has around
1100 cells per millilitre of blood. When infected, the CD4+ cells decrease in number
with time and an infected person’s CD4+ cell number can be used to monitor the
disease progression. The data set we analyzed consists of 369 HIV-infected men.
Altogether there are 2376 values of CD4+ cell numbers, with several repeated
measurements being made for each individual at different times covering a period
of approximately eight and a half years.

For this unbalanced longitudinal data set, information from several explanatory
variables is recorded, including X1 =time, X2 =age, X3 =smoking habit (the
number of packs of cigarettes smoked per day), X4 =recreational drug use (1, yes; 0,
no), X5 =number of sexual partners, and X6 =score on center for epidemiological
studies of depression scale. The objectives of our analysis are: (a) to identify
covariates that really affect the CD4+ cell numbers in the sense that they are
statistically significant in either the mean or covariance models, and (b) to estimate
the average time course for the HIV-infected men by taking account of measurement
errors in the CD4+ cell collection. Ye and Pan [13] analyzed the CD4+ count data
with a focus on the second objective and did not include the explanatory variables
except the time. Following [13], we propose to use three polynomials in time, one
of degree 6 and two cubics, to model the mean μij , the generalized autoregressive
parameters φijk and the log-innovation variances log σ 2

ij . In the meantime, the
explanatory variables X2, . . . , X6 above and the intercept X0 are also included
in the initial models for the selection purpose. The ordinary maximum likelihood
estimation and the penalized maximum likelihood estimation methods using the
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Table 13.1 Estimated tuning
parameters

Parameters SCAD LASSO Hard-thresholding

τ (1) 0.42 0.01 0.79

τ (2) 0.21 0.01 0.46

τ (3) 0.84 0.04 0.88

Table 13.2 Estimators of the mean parameters β

Coefficient MLE SCAD LASSO Hard-thresholding

β1 (X0) 776.60(20.96) 776.68(20.31) 775.35 (20.96) 776.60(20.96)

β2 (X1) −209.05(14.24) −209.10(9.40) −209.04(14.25) −209.05(14.24)

β3 (X2
1) −14.47(8.36) −14.49(8.04) −14.51(8.37) −14.47(8.36)

β4 (X3
1) 32.68(5.93) 32.74(2.17) 32.72 (5.93) 32.68(5.93)

β5 (X4
1) −1.97(1.05) −1.97(1.02) −1.96(1.05) −1.97(1.05)

β6 (X5
1) −1.84(0.57) −1.84(0.21) −1.85(0.55) −1.84(0.57)

β7 (X6
1) 0.25(0.08) 0.26(0.02) 0.26 (0.08) 0.25(0.08)

β8 (X2) 0.88(1.34) 0.88(0.007) 0.88 (1.35) 0.88(1.34)

β9 (X3) 61.27(5.36) 61.32(6.35) 61.04 (6.30) 61.27(6.36)

β10 (X4) 45.70(18.84) 45.71(18.71) 45.61 (18.84) 45.70(18.84)

β11 (X5) −3.61(2.09) −3.60(2.09) −3.64(2.09) −3.61(2.09)

β12 (X6) −2.24(0.80) −2.30(0.82) 0(−) −2.24(0.80)

SCAD, Lasso and Hard-thresholding penalty functions are all considered. The
unknown tuning parameters τ (l) (l = 1, 2, 3) of the penalty functions are estimated
through using the 5-fold cross-validation principle described in Sect. 13.2.5, and the
resulting estimators are summarized in Table 13.1. It is noted that the SCAD penalty
function given in (13.4) also involves another parameter a. Here we choose a = 3.7
as suggested by Fan and Li [4].

For the mean, generalized autoregressive parameters and log-innovation vari-
ances, the estimated regression coefficients and their associated standard errors, in
parentheses, by different penalty estimation methods, are presented in Tables 13.2,
13.3, and 13.4. It is noted that in Table 13.3 γ1, . . . , γ4 correspond to the coef-
ficients of the cubic polynomial in time lag, γ5 is associated with the time-
independent covariate X2, and the other coefficients γ6, . . . , γ13 correspond to
the time-dependent covariates X3, . . . , X6 measured at two different time points,
denoted by (X31,X32),. . . ,(X61,X62).

From Tables 13.2, 13.3, and 13.4, it is clear that for the mean structure the
estimated regression coefficients of the sixth power polynomial in time are statis-
tically significant. For the generalized autoregressive parameters and the innovation
variances, the estimated regression coefficients of cubic polynomials in time are
significant. This confirms the conclusion drawn by Ye and Pan [13]. Furthermore,
Table 13.2 shows that there is little evidence for the association between age and
immune response, but the smoking habit and the use of recreational drug have
significant positive effects on the CD4+ numbers. In addition, the number of sexual
partners seems to have little effect on the immune response, although it shows
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Table 13.3 Estimators of the generalized autoregressive parameters γ

Coefficient MLE SCAD LASSO Hard-thresholding

γ1 (X0) 0.29(0.06) 0.29 (0.02) 0.29 (0.06) 0.29 (0.06)

γ2 (X1) −0.33(0.09) −0.33(0.02) −0.33(0.09) −0.33(0.09)

γ3 (X2
1) 0.20(0.04) 0.20 (0.01) 0.20 (0.04) 0.20 (0.04)

γ4 (X3
1) −0.03(0.004) −0.03(0.002) −0.03(0.003) −0.03(0.004)

γ5 (X2) −0.001(0.0008) 0(−) 0(−) 0(−)

γ6 (X31) −0.01(0.008) −0.01(0.005) −0.01(0.007) −0.01(0.007)

γ7 (X32) 0.007(0.008) 0(−) 0(−) 0(−)

γ8 (X41) −0.01(0.02) 0.01 (0.06) 0.01 (0.01) 0.01 (0.02)

γ9 (X42) 0.02(0.02) 0.02 (0.07) 0.02 (0.01) 0.02 (0.02)

γ10 (X51) 0.001(0.002) 0(−) 0(−) 0(−)

γ11 (X52) −0.005(0.003) 0(−) 0(−) 0(−)

γ12 (X61) 0.004(0.0009) 0(−) 0(−) 0(−)

γ13 (X62) 0.006(0.001) 0(−) 0(−) 0(−)

Table 13.4 Estimators of the log-innovation variance parameters λ

Coefficient MLE SCAD LASSO Hard-thresholding

λ1 (X0) 11.64(0.07) 11.63 (0.04) 11.63 (0.08) 11.64 (0.07)

λ2 (X1) −0.22(0.03) −0.22(0.01) −0.22(0.03) −0.22(0.03)

λ3 (X2
1) −0.03(0.01) −0.03(0.04) −0.03(0.01) −0.03(0.01)

λ4 (X3
1) −0.02(0.003) −0.02(0.001) −0.02(0.004) −0.02(0.003)

λ5 (X2) −0.005(0.004) 0(−) 0(−) 0(−)

λ6 (X3) 0.21(0.02) 0.21 (0.01) 0.21 (0.02) 0.21 (0.02)

λ7 (X4) −0.12(0.07) −0.12(0.005) −0.12(0.06) −0.12(0.07)

λ8 (X5) −0.02(0.008) −0.02(0.004) −0.02(0.008) −0.02(0.009)

λ9 (X6) −0.006(0.003) 0(−) 0(−) 0(−)

some evidence of negative association. Also, there is a negative association between
depression symptoms (score) and immune response.

Interestingly, Table 13.3 clearly indicates that except the cubic polynomial in
time lag all other covariates do not have significant influences to the generalized
autoregressive parameters, implying that the generalized autoregressive parameters
are characterized only by the cubic polynomial in time lag. For the log-innovation
variances, however, Table 13.4 shows that in addition to the cubic polynomial in
time, the smoking habit, the use of recreational drug, and the number of sexual
partners do have significant effects, implying that the innovation variances and
therefore the within-subject covariances are not homogeneous and are actually
dependent on the covariates of interests. Finally, we notice that in this data example
the SCAD, Lasso and Hard thresholding penalty based methods perform very
similarly in terms of the selected variables.
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13.5 Simulation Study

In this section we conduct a simulation study to assess the small sample performance
of the proposed procedures. We simulate 100 subjects, each of which has five
observations drawn from the multivariate normal distribution N5(μi,Σi), where
the mean μi and the within-subject covariance matrix Σi are formed by the joint
models (13.2) in the framework of the modified Cholesky decomposition. We
choose the true values of the parameters in the mean, generalized autoregressive
parameters and log-innovation variances to be β = (3, 0, 0,−2, 1, 0, 0, 0, 0,−4)T ,
γ = (−4, 0, 0, 2, 0, 0, 0)T and λ = (0, 1, 0, 0, 0,−2, 0)T , respectively. We
form the mean covariates xij = (xij t )

10
t=1 by drawing random samples from the

multivariate normal distribution with mean 0 and covariance matrix of AR(1)
structure with σ 2 = 1 and ρ = 0.5 (i = 1, 2, . . . , 100; j = 1, 2, . . . , 5). We
then form the covariates zijk = (xij t − xikt )

7
t=1 and hij = (xij t )

7
t=1 for the

generalized autoregressive parameters and the log-innovation variances. Using these
values, the mean μi and covariance matrix Σi are constructed through the modified
Cholesky decomposition. The responses yi are then drawn from the multivariate
normal distribution N (μi,Σi) (i = 1, 2, . . . , 100).

In the simulation study, 1000 repetitions of random samples are generated by
using the above data generation procedure. For each simulated data set, the proposed
estimation procedures for finding out the ordinary maximum likelihood estimators
and penalized maximum likelihood estimators with SCAD, Lasso and Hard-
thresholding penalty functions are considered. The unknown tuning parameters
τ (l), l = 1, 2, 3 for the penalty functions are chosen by a 5-fold cross-validation
criterion in the simulation. For each of these methods, the average of zero
coefficients over the 1000 simulated data sets is reported in Table 13.5. Note that
‘True’ in Table 13.5 means the average number of zero regression coefficients that
are correctly estimated as zero, and ‘Wrong’ depicts the average number of non-
zero regression coefficients that are erroneously set to zero. In addition, the non-zero
parameter estimators, and their associated standard errors as well, are provided in
Table 13.6. From those simulation results, it is clear that the SCAD penalty method
outperforms the Lasso and Hard thresholding penalty approaches in the sense of
correct variable selection rate, which significantly reduces the model uncertainty
and complexity.

Table 13.5 Average number of zero regression coefficients

SCAD LASSO Hard-thresholding

Parameter True Wrong True Wrong True Wrong

β 5.42 0.00 4.76 0.00 4.92 0.00

γ 4.18 0.06 3.28 0.08 3.55 0.21

λ 4.53 0.00 3.70 0.00 4.06 0.00
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Table 13.6 Estimators of non-zero regression coefficients

Coefficient True value SCAD LASSO Hard-thresholding

β1 3 3.08(0.95) 3.08(0.95) 3.09(0.93)

β4 −2 −1.94(0.68) −1.93(0.63) −1.95(0.65)

β5 1 0.95(0.32) 0.96(0.39) 0.97(0.39)

β10 −4 −4.12(1.65) −4.13(1.74) −4.14(1.75)

γ1 −4 −4.13(1.88) −4.07(2.14) −4.10(2.14)

γ4 2 1.77(0.79) 1.71(0.85) 1.75(0.85)

λ2 1 1.05(0.05) 1.03(0.06) 1.03(0.06)

λ6 −2 −2.20(0.83) −2.11(0.81) −2.11(0.82)

13.6 Discussion

Within the framework of joint modelling of mean and covariance structures for
longitudinal data, we proposed a variable selection method based on penalized
likelihood approaches. Like the mean, the covariance structures may be dependent
on various explanatory variables of interest so that simultaneous variable selection
to the mean and covariance structures becomes fundamental to avoid the modelling
biases and reduce the model complexities.

We have shown that under mild conditions the proposed penalized maximum
likelihood estimators of the parameters in the mean and covariance models are
asymptotically consistent and normally distributed. Also, we have shown that the
SCAD and Hard thresholding penalty based estimation approaches have the oracle
property. In other words, they can correctly identify the true models as if the true
models would be known in advance. In contrast, the Lasso penalty based estimation
method does not share the oracle property. We also considered the case when the
number of explanatory variables goes to infinity with the sample size and obtained
similar results to the case with finite number of variables.

The proposed method differs from [7] where they only addressed the issue of
variable selection in the mean model without modelling the generalized autore-
gressive parameters and innovation variances. It is also different from [12] where
a different decomposition of the covariance matrix, namely moving average coeffi-
cient based model, was employed, and the variable selection issue was discussed
under the decomposition but with the number of explanatory variables fixed.
In contrast, the proposed models and methods in this paper are more flexible,
interpretable and practicable.
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Appendix A: Penalized Maximum Likelihood Estimation

Firstly, note the first two derivatives of the log-likelihood function �(θ) are con-
tinuous. Around a given point θ0, the log-likelihood function can be approximated
by

�(θ) ≈ �(θ0) +
[

∂�(θ0)

∂θ

]T

(θ − θ0) + 1

2
(θ − θ0)

T

[

∂2�(θ0)

∂θ∂θT

]

(θ − θ0).

Also, given an initial value t0 we can approximate the penalty function p′
r (t) by a

quadratic function [4]

[pτ (|t|)]′ = p′
τ (|t|)sgn(t) ≈ p′

τ (|t0|)t
t0

, for t ≈ t0.

In other words,

pτ (|t|) ≈ pτ (|t0|) + 1

2
p′

τ (|t0|)
t2 − t2

0

|t0| , for t ≈ t0.

Therefore, the penalized likelihood function (13.3) can be locally approximated,
apart from a constant term, by

Q(θ) ≈ �(θ0) +
[

∂�(θ0)

∂θ

]T

(θ − θ0)

+ 1

2
(θ − θ0)

T

[

∂2�(θ0)

∂θ∂θT

]

(θ − θ0) − n

2
θT Στ (θ0)θ ,

where

Στ (θ0) = diag
{p′

τ (1)(|β01|)
|β01| , . . . ,

p′
τ (1) (|β0p|)

|β0p| ,
p′

τ (2)(|γ01|)
|γ01| , . . . ,

p′
τ (2)(|γ0q |)

|γ0q | ,

p′
τ (3) (|λ01|)

|λ01| , . . . ,
p′

τ (3)(|λ0d |)
|λ0d |

}

,

where θ = (θ1, . . . , θs)
T = (β1, . . . , βp, γ1, . . . , γq, λ1, . . . , λd)T and θ0 =

(θ01, . . . , θ0s)
T = (β01, . . . , β0p, γ01, . . . , γ0q, λ01, . . . , λ0d )T . Accordingly, the

quadratic maximization problem for Q(θ) leads to a solution iterated by

θ1 ≈ θ0 +
{

∂2�(θ0)

∂θ∂θT
− nΣτ (θ0)

}−1 {

nΣτ (θ0)θ0 − ∂�(θ0)

∂θ

}

.
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Secondly, as the data are normally distributed the log-likelihood function �(θ)

can be written as

−2�(θ) =
n

∑

i=1

log |Σi | +
n

∑

i=1

(yi − xiβ)T Σ−1
i (yi − xiβ),

=
n

∑

i=1

log |Di | +
n

∑

i=1

(r i − ziγ )T D−1
i (r i − ziγ ),

=
n

∑

i=1

mi
∑

j=1

log σ 2
ij +

n
∑

i=1

mi
∑

j=1

(rij − r̂ij )
2

σ 2
ij

,

where

r i = yi − xiβ = (ri1, . . . , rimi )
T ,

r̂ij =
j−1
∑

k=1

φijkrik, (j = 2, . . . ,mi)

zi = (zi1, . . . , zimi )
T ,

zij =
j−1
∑

k=1

rikzijk, (j = 2, . . . ,mi)

xi = (xi1, . . . , ximi )
T , (i = 1, . . . , n).

Therefore, the resulting score functions are

U(θ) = ∂�(θ)

∂θ
= (UT

1 (β), UT
2 (γ ), UT

3 (λ))T

where

U1(β) =
n

∑

i=1

xT
i Σ−1

i (yi − xiβ),

U2(γ ) =
n

∑

i=1

zT
i D−1

i (r i − ziγ ),

U3(λ) = 1

2

n
∑

i=1

hT
i D−1

i (ε2
i − Σ2

i ),
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where

hi = (hi1, . . . , himi )
T ,

ε2
i = (ε2

i1, . . . , ε
2
imi

)T ,

ε2
ij = (rij − r̂ij )2, (j = 1, . . . ,mi)

Σ2
i = (σ 2

i1, . . . , σ
2
imi

)T .

According to [13], the Fisher information matrix In(θ) must be block diagonal. In
other words, In(θ) = diag(I11,I22,I33), where

I11 =
n

∑

i=1

xT
i Σ−1

i xi ,

I22 =
n

∑

i=1

E(zT
i D−1

i zi ),

I33 = 1

2

n
∑

i=1

hT
i hi .

By using the Fisher information matrix to approximate the observed information
matrix, we obtain the following iteration solution

θ1 ≈ θ0 +
{

∂2�(θ0)

∂θ∂θT
− nΣτ (θ0)

}−1 {

nΣτ (θ0)θ0 − ∂�(θ0)

∂θ

}

≈ θ0 + {In(θ0) + nΣτ (θ0)}−1 {U(θ0) − nΣτ (θ0)θ0}
= {In(θ0) + nΣτ (θ0)}−1 {U(θ0) + In(θ0)θ0} .

Since In(θ) is block diagonal, the above iteration solution is equivalent to

β1 =
⎧

⎨

⎩

n
∑

i=1

xT
i Σ−1

i xi + nΣτ(1) (β0)

⎫

⎬

⎭

−1 ⎧

⎨

⎩

n
∑

i=1

xT
i Σ−1

i yi

⎫

⎬

⎭

,

γ 1 =
⎧

⎨

⎩

n
∑

i=1

zT
i D−1

i zi + nΣτ(2) (γ 0)

⎫

⎬

⎭

−1 ⎧

⎨

⎩

n
∑

i=1

zT
i D−1

i r i

⎫

⎬

⎭

,

λ1 =
⎧

⎨

⎩

n
∑

i=1

hT
i hi + 2nΣτ(3)(λ0)

⎫

⎬

⎭

−1 ⎧

⎨

⎩

n
∑

i=1

hT
i D−1

i (ε2
i − Σ2

i + Di log Σ2
i )

⎫

⎬

⎭

,
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where all the relevant quantities on the right hand side are evaluated at θ = θ0, and

Στ(1) (β0) = diag{p
′
τ (1)(|β01|)

|β01| , . . . ,
p′

τ (1) (|β0p|)
|β0p| },

Στ(2) (γ0) = diag{p
′
τ (2)(|γ01|)

|γ01| , . . . ,
p′

τ (2)(|γ0q |)
|γ0q | },

Στ(3) (λ0) = diag{p
′
τ (3)(|λ01|)

|λ01| , . . . ,
p′

τ (3)(|λ0d |)
|λ0d | }.

Finally, the following algorithm summarizes the computation of the penalized
maximum likelihood estimators of the parameters in the joint mean and covariance
models.

Algorithm

0. Take the ordinary least squares estimators (without penalty) β(0), γ (0) and λ(0)

of β, γ and λ as their initial values.
1. Given the current values {β(s), γ (s),λ(s)}, update

r
(s)
i = yi − xiβ

(s), φ
(s)
ijk = zT

ijkγ
(s), log[(σ 2

ij )
(s)] = hT

ijλ
(s),

and then use the above iteration solutions to update γ and λ until convergence.
Denote the updated results by γ (s+1) and λ(s+1).

2. For the updated values γ (s+1) and λ(s+1), form

φ
(s+1)
ijk = zT

ijkγ
(s+1), and log[(σ 2

ij )(s+1)] = hT
ijλ

(s+1),

and construct

Σ
(s+1)
i = (T

(s+1)
i )−1D

(s+1)
i [(T (s+1)

i )T ]−1.

Then update β according to

β(s+1) =
⎧

⎨

⎩

n
∑

i=1

xT
i (Σ

(s+1)
i )−1xi + nΣτ(1) (β

(s))

⎫

⎬

⎭

−1 ⎧

⎨

⎩

n
∑

i=1

xT
i (Σ

(s+1)
i )−1yi

⎫

⎬

⎭

.

3. Repeat Step 1 and Step 2 above until certain convergence criteria are satisfied.
For example, it can be considered as convergence if the L2-norm of the difference
of the parameter vectors between two adjacent iterations is sufficiently small.
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Appendix B: Proofs of Theorems

Proof of Theorem 13.1 Note that pτn(0) = 0 and pτn(·) > 0. Obviously, we have

Q(θ0+n−1/2u) − Q(θ0)

≤ [�(θ0 + n−1/2u) − �(θ0)] − n

s1
∑

j=1

[pτn(|θ0j + n−1/2uj |) − pτn(|θ0j |)]

= K1 + K2.

We consider K1 first. By using Taylor expansion, we know

K1 = �(θ0 + n−1/2u) − �(θ0)

= n−1/2uT �′(θ0) + 1

2
n−1uT �

′′
(θ∗)u

= K11 + K12,

where θ∗ lies between θ0 and θ0 + n−1/2u. Note the fact that n−1/2‖�′(θ0)‖ =
Op(1). By applying Cauchy-Schwartz inequality, we obtain

K11 = n−1/2uT �′(θ0) ≤ n−1/2‖�′(θ0)‖‖u‖ = Op(1).

According to Chebyshev’s inequality, we know that for any ε > 0,

P

{

1

n
‖�′′

(θ0) − E�
′′
(θ0)‖ ≥ ε

}

≤ 1

n2ε2 E

⎧

⎨

⎩

s
∑

j=1

s
∑

l=1

(

∂2�(θ0)

∂θj∂θl

− E
∂2�(θ0)

∂θj∂θl

)2
⎫

⎬

⎭

≤ Cs2

nε2
= o(1)

so that n−1‖�′′
(θ0) − E�

′′
(θ0)‖ = op(1). It then follows directly that

K12 = 1

2
n−1uT �

′′
(θ∗)u = 1

2
uT {n−1[�′′

(θ0) − E�
′′
(θ0) − In(θ0)]}u[1 + op(1)]

= −1

2
uT I (θ0)u[1 + op(1)].

Therefore we conclude that K12 dominates K11 uniformly in ‖u‖ = C if the
constant C is sufficiently large.
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We then study the term K2. It follows from Taylor expansion and Cauchy-
Schwartz inequality that

K2 = −n

s1
∑

j=1

[pτn(|θ0j + n−1/2uj |) − pτn(|θ0j |)]

= −
s1

∑

j=1

{n1/2p′
τn

(|θ0j |)sgn(θ0j )uj + 1

2
p

′′
τn

(|θ0j |)u2
j [1 + op(1)]}

≤ √
s1n

1/2‖u‖ max
1≤j≤s

{p′
τn

(|θ0j |) : θ0j �= 0} + 2‖u‖2 max
1≤j≤s

{|p′′
τn

(|θ0j |)| : θ0j �= 0}

= √
s1n

1/2‖u‖an + 2‖u‖2bn.

Since it is assumed that an = Op(n−1/2) and bn → 0, we conclude that K12
dominates K2 if we choose a sufficiently large C. Therefore for any given ε > 0,
there exists a large constant C such that

P

{

sup
‖u‖=C

Q(θ0 + n−1/2u) < Q(θ0)

}

≥ 1 − ε,

implying that there exists a local maximizer ̂θn such that ̂θn is a
√

n-consistent
estimator of θ0. The proof of Theorem 13.1 is completed. �
Proof of Theorem 13.2 First, we prove that under the conditions of Theorem 13.2,
for any given θ (1) satisfying θ (1) − θ

(1)
0 = Op(n−1/2) and any constant C > 0, we

have

Q{((θ (1))T , 0T )T } = max
‖θ (2)‖≤Cn−1/2

Q{((θ (1))T , (θ (2))T )T }.

In fact, for any θj (j = s1 + 1, . . . , s), using Taylor’s expansion we obtain

∂Q(θ)

∂θj

= ∂�(θ)

∂θj

− np′
τn

(|θj |)sgn(θj )

= ∂�(θ0)

∂θj

+
s

∑

l=1

∂2�(θ∗)
∂θj∂θl

(θl − θ0l) − np′
τn

(|θj |)sgn(θj )

where θ∗ lies between θ and θ0. By using the standard argument, we know

1

n

∂�(θ0)

∂θj

= Op(n−1/2) and
1

n

{

∂2�(θ0)

∂θj ∂θl

− E

(

∂2�(θ0)

∂θj∂θl

)}

= op(1).
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Note ‖θ − θ0‖ = Op(n−1/2). We then have

∂Q(θ)

∂θj

= nτn{−τ−1
n p′

τn
(|θj |)sgn(θj ) + Op(n−1/2τ−1

n )}.

According to the assumption in Theorem 13.2, we obtain

lim inf
n→∞ lim inf

t→0+
p′

τn
(t)

τn

> 0 and n−1/2τ−1
n = (

√
nτn)

−1 → 0,

so that

∂Q(θ)

∂θj

{

< 0, for 0 < θj < Cn−1/2;
> 0, for − Cn−1/2 < θj < 0.

Therefore Q(θ) achieves its maximum at θ = ((θ (1))T , 0T )T and the first part of
Theorem 13.2 has been proved. �

Second, we discuss the asymptotic normality of̂θ
(1)

n . From Theorem 13.1 and the
first part of Theorem 13.2, there exists a penalized maximum likelihood estimator
̂θ

(1)

n that is the
√

n-consistent local maximizer of the function Q{((θ (1))T , 0T )T }.
The estimator ̂θ

(1)

n must satisfy

0 = ∂Q(θ)

∂θj

∣

∣

∣

∣

θ=(
̂θ
(1)
n
0 )

= ∂�(θ)

∂θj

∣

∣

∣

∣

θ=(
̂θ
(1)
n
0 )

− np′
τn

(|̂θ(1)
nj |)sgn(̂θ

(1)
nj )

= ∂�(θ0)

∂θj

+
s1

∑

l=1

{

∂2�(θ0)

∂θj∂θl

+ op(1)

}

(̂θ
(1)
nl − θ

(1)
0l )

−np′
τn

(|θ(1)
0j |)sgn(θ

(1)
0j ) − n{p′′

τn
(|θ(1)

0j |) + op(1)}(̂θ(1)
nj − θ

(1)
0j ).

In other words, we have

{

− ∂2�(θ0)

∂θ (1)∂(θ (1))T
+ nAn + op(1)

}

(̂θ
(1)

n − θ
(1)
0 ) + cn = ∂�(θ0)

∂θ (1)
.

Using the Liapounov form of the multivariate central limit theorem, we obtain

1√
n

∂�(θ0)

∂θ (1)
→ Ns1(0,I (1))
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in distribution. Note that

1

n

{

∂2�(θ0)

∂θ (1)∂(θ (1))T
− E

(

∂2�(θ0)

∂θ (1)∂(θ (1))T

)}

= op(1),

it follows immediately by using Slustsky’s theorem that

√
n(Ī (1)

n )−1/2(Ī (1)
n + An)

{

(̂θ
(1)

n − θ
(1)
0 ) + (Ī (1)

n + An)
−1cn

}

→ Ns1(0, Is1)

in distribution. The proof of Theorem 13.2 is complete. �
Proof of Theorem 13.3 Let αn = (n/sn)

−1/2. Note pτn(0) = 0 and pτn(·) > 0. We
then have

Q(θ0 + αnu) − Q(θ0) ≤ [�(θ0 + αnu) − �(θ0)] − n

s1n
∑

j=1

[pτn(|θ0j + αnuj |) − pτn(|θ0j |)]

= K1 + K2.

Using Taylor’s expansion, we obtain

K1 = �(θ0 + αnu) − �(θ0)

= αnuT �′(θ0) + 1

2
α2

nuT �
′′
(θ∗

0)u

= K11 + K12,

where θ∗
0 lies between θ0 and θ0 + αnu. Note that ‖�′(θ0)‖ = Op(

√
nsn). By using

Cauchy-Schwartz inequality, we conclude that

|K11| = |αnuT �′(θ0)| ≤ αn‖�′(θ0)‖‖u‖ = Op(αn(nsn)
1/2)‖u‖ = Op(nα2

n)‖u‖.

According to Chebyshev’s inequality, for any ε > 0 we have

P {
∥

∥

∥

∥

sn

n

(

�
′′
(θ0) − E�

′′
(θ0)

)

∥

∥

∥

∥

≥ ε} ≤ 1

ε2 E

(

∥

∥

∥

∥

sn

n

(

�
′′
(θ0) − E�

′′
(θ0)

)

∥

∥

∥

∥

2
)

= s2
n

n2ε2 E

⎧

⎨

⎩

sn
∑

j=1

sn
∑

l=1

(

∂2�(θ0)

∂θj ∂θl

− E
∂2�(θ0)

∂θj∂θl

)2
⎫

⎬

⎭

≤ Cs4
n

nε2 = o(1),
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which implies that sn
n

∥

∥

∥�
′′
(θ0) − E�

′′
(θ0)

∥

∥

∥ = op(1). It then follows that

K12 = 1

2
α2

nuT �
′′
(θ∗

0)u = 1

2
nα2

nuT

{

[ 1

n
(�

′′
(θ0) − E�

′′
(θ0)) − In(θ0)]

}

u[1 + op(1)]

= −1

2
nα2

nuT I (θ0)u[1 + op(1)].

Therefore we know that K12 dominates K11 uniformly in ‖u‖ = C for a sufficiently
large constant C.

We now turn to K2. It follows from Taylor’s expansion that

K2 = −n

s1n
∑

j=1

[pτn(|θ0j + αnuj |) − pτn(|θ0j |)]

= −
s1n
∑

j=1

{nαnp
′
τn

(|θ0j |)sgn(θ0j )uj + 1

2
nα2

np
′′
τn

(|θ0j |)u2
j [1 + op(1)]}

≤ √
s1nnαn‖u‖ max

1≤j≤sn
{p′

τn
(|θ0j |) : θ0j �= 0}

+2nα2
n‖u‖2 max

1≤j≤sn
{|p′′

τ
(j)
n

(|θ0j |)| : θ0j �= 0}

≤ √
snnαn‖u‖a∗

n + 2nα2
n‖u‖2b∗

n

= nα2
n‖u‖Op(1) + 2nα2

n‖u‖2b∗
n.

Since b∗
n → 0 as n −→ 0, it is clear that K12 dominates K2 if a sufficiently large

constant C is chosen. In other words, for any given ε > 0 there exists a large
constant C such that

P

{

sup
‖u‖=C

Q(θ0 + αnu) < Q(θ0)

}

≥ 1 − ε

as long as n is large enough. This implies that there exists a local maximizer ̂θn in
the ball {θ0 + αnu : ‖u‖ ≤ C} such that ̂θn is a

√
n/sn-consistent estimator of θ0.

The proof of Theorem 13.3 is completed. �
Proof of Theorem 13.4 The proof of Theorem 13.4 is similar to that of Theo-
rem 13.2. In what follows we only give a very brief proof. First, it is easy to
show that under the conditions of Theorem 13.4, for any given θ (1) satisfying
‖θ (1) − θ

(1)
0 ‖ = Op((n/sn)

−1/2) and any constant C, the following equality holds

Q{((θ (1))T , 0T )T } = max
‖θ (2)‖≤C(n/sn)−1/2

Q{((θ (1))T , (θ (2))T )T }.
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Based on this fact and Theorem 13.3, there exists an
√

n/sn-consistent estimator
̂θ

(1)

n that is the local maximizer of Q{((θ (1))T , 0T )T }. Let Ī (1)
n = I (1)

n /n. Similar
to the proof of Theorem 13.2, we can show that

(Ī (1)
n + A∗

n)(
̂θ

(1)

n − θ
(1)
0 ) + c∗

n = 1

n

∂�(θ0)

∂θ (1)
+ op(

1√
n
),

so that

√
nMn(Ī

(1)
n )−1/2(Ī (1)

n + A∗
n){(̂θ (1)

n − θ
(1)
0 ) + (Ī (1)

n + A∗
n)

−1c∗
n}

= 1√
n
Mn(Ī

(1)
n )−1/2 ∂�(θ0)

∂θ (1)
+ op(Mn(Ī

(1)
n )−1/2).

By using Lindeberg-Feller central limit theorem, we can show that

1√
n
Mn(Ī

(1)
n )−1/2 ∂�(θ0)

∂θ (1)

has an asymptotic multivariate normal distribution. The result in Theorem 13.4
follows immediately according to Slustsky’s theorem. The proof of Theorem 13.4
is complete. �
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