
Chapter 10
Risk and Bias in Portfolio Optimization

Thomas Holgersson and Martin Singull

Abstract In this paper we derive weighted squared risk measures for a commonly
used Stein-type estimator of the global minimum variance portfolio. The risk
functions are conveniently split in terms of variance and squared bias over different
weight matrices. It is argued that the common out-of-sample variance criteria
should be used with care and that a simple unweighted risk function may be more
appropriate.

10.1 Introduction

A financial portfolio is defined by a vector, w = (w1, . . . , wp), say, whose element
wj describes the fraction of the portfolio investment that is allocated to some
asset xj . The random return of the portfolio is obtained as r = x1w1 + · · · +
xpwp = w′x, where x is a vector of random returns. An investor is interested
in holding a portfolio that maximizes the expected return E[r] at a given level
of risk (var[r]) or, equivalently, minimizes the risk var[r] at a given level of the
expected return. A portfolio satisfying such a maximization/minimization is called
an optimal portfolio. Markowitz [20] developed a theory for such mean-variance
portfolio optimization that still plays a fundamental role. The theory considers a
fixed (non-random) portfolio w, which could be determined qualitatively, and gives
closed-form expressions for the optimal portfolio as a function of w, which in turn
depends on the mean vector and covariance matrix of x.

While Markowitz’s theory is concerned with analyses and conclusions drawn
from a fixed portfolio vector, there has been a growing interest during the last
fifty years in how one can use statistical methods to estimate w. Because the
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optimal portfolio is a function of certain population parameters, one obtains the so-
called standard estimator of w by substituting these unknown parameters by their
sample counterparts. Some basic sampling properties such as low-order moments
have long been known [6, 15], while the full normal-theory distribution of the
standard estimator was derived by [22]. It has since been recognized, both from
the theoretical distribution and from empirical findings, that the sampling variance
of the standard estimator may be too large to be useful in investment strategies
[4, 9, 17, 21].

As in most multivariate analyses, this applies in particular when the sample size
n is close to the dimension p. A number of alternatives to the standard estimator
have been derived recently. Jagannathan and Ma [13] noticed that imposing certain
moment constraints leads to a reduction of sampling variance, while [4] proposed
a generalized estimator that impose a threshold constraint on the portfolio vector.
Bayesian methods have been proposed by [15] and [16], while inference solutions
to the case of singular covariance have been derived by [1].

In this paper our interest lies in a particular family of estimators defined as a
weighted mean between the standard estimator and a constant vector. This type
of estimator, which is related to a family of estimators originally proposed by
James and Stein [14], has been considered by [2, 8] and [12]. One of the main
features of this weighted estimator is that it depends on a tuning coefficient, which
also introduces a bias in the estimator. We derive some properties of this Stein-
type estimator with respect to different kinds of weighted squared loss functions.
Particular focus is set on the bias term since this has been given little attention in
the literature previously. We will restrict ourselves to the specific case of the global
minimum variance portfolio (GMVP), although many of the concerns in the paper
also apply to more general portfolio optimizations. We will not attempt to derive
any explicit estimators. Our primary interest lies in deriving and comparing different
risk measures for a commonly used Stein-type estimator and discuss some of their
differences.

10.2 Preliminaries

Consider a vector x : p × 1 of excess returns of p financial assets. A financial
portfolio is defined as the weighted sum w′x, where w : p × 1 is called the portfolio
weight. The vector w can be determined “qualitatively”, i.e., based on expert
knowledge about the market, or it could be estimated from historical data of returns,
which is the objective of this article. An efficient portfolio is usually determined
by minimizing the portfolio variance subject to a mean portfolio premium return
and the additional constraint that investment proportions sum to one. According to
[20], an efficient portfolio weight w, assuming absence of short sale constraints, is
determined by

min
w∈Rp

{w′Σw | w′1 = 1}, (10.1)
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where Σ is the covariance matrix of x and 1 : p × 1 is a vector of ones. The well-
known solution to (10.1) is given by

w = Σ−11
1′Σ−11

. (10.2)

The vector w is known as the global minimum variance portfolio (GMVP). It is also
possible to define portfolios under more general constraints than those of (10.1), see
[15] and [4] for alternative formulations.

Since the quantity in (10.2) depends on an unknown parameter, it needs to be
estimated from data. We are thus concerned with the problem of using a set of n

observations on random returns, say x1, . . . , xn, to develop an estimator of w. We
will assume a common setting where xi ∼iid Np(μ,Σ) under the assumptions
maxj |μj | ≤ a1 < ∞, maxj λj (Σ) ≤ a2 < ∞, and 0 < a3 ≤ minj λj (Σ),
where μ = (μ1, . . . , μp)′ and λj (Σ) denote an eigenvalue of Σ . Although these
assumptions are not strictly necessary for making inference of the GMPV weight,
they simplify the technical treatments considerably.

An obvious estimator of w is obtained by replacing the unknown covariance
matrix by its sample counterpart. The resulting estimate is commonly referred to as
the standard estimator, henceforth denoted by ŵ0. This estimator is central in the
paper, and we state some basic properties for the sake of clarity.

Property 10.1 Assume xi ∼iid Np(μ,Σ), i = 1, . . . , n, p ≥ 4 and n ≥ p + 2. Let
S = n−1 ∑n

i=1(xi − x̄)(xi − x̄)′, where x̄ = n−1 ∑n
i=1 xi . Define

(i) w = Σ−11
1′Σ−11

,

(ii) σ 2 = 1

1′Σ−11
,

(iii) ŵ0 = (ŵ0(1), . . . , ŵ0(p))
′ = S−11

1′S−11
.

Then

ŵ0 ∼ tp

(

w,
σ 2Σ−1 − ww′

n − p + 1
, n − p + 1

)

,

where tp(·) denotes a p-dimensional singular t-distribution with n − p + 1
degrees of freedom, location vector w and dispersion matrix σ 2Σ−1 − ww′ with
rank(σ 2Σ−1 − ww′) = p − 1.

Proof ([18, 22]) See also [19, Chapter 1], for a definition of the multivariate t-
distribution. �	
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It is well known that the sampling variance of ŵ0 can be substantial when n is
small relative to the dimension p and hence of limited relevance to an investor. A
considerable amount of research has been concerned with development of improved
estimators of w [2, 4, 8, 12]. A common approach is to first decide a family of
estimators, which usually depends on some tuning coefficient, and then use a risk
function to identify the appropriate value of this coefficient. One concern with this
approach, however, is that two different risk functions usually produce two different
values of the tuning coefficient and hence that the distributional properties of our
portfolio weight estimator may strongly depend on which specific risk function that
is being used. The next section will discuss this matter further.

10.3 Risk Measures and Portfolio Estimation

The original view of portfolio optimization and risk as stated by [20] is that The wj ’s
are not random variables, but are fixed by the investor and that “Risk” is described
by the variance of the return. The “risk” an investor is facing is accordingly
determined by var[w′x] = w′Σw, where Σ = cov[xi ]. However, the definition
of “risk” is less obvious when w is estimated from data because of the additional
uncertainty of sampling variance and bias. From a perspective of statistical inference
the term “risk” refers to the sampling variance and bias of a parameter estimator (say
ŵ), while in portfolio theory “risk” primarily refers to variance of the return vector
x. Since the estimated portfolio return is defined by ri = ŵ′xi , it involves risk in
both senses.

Following Markowitz’s view of a fixed (non-random) portfolio, the Lagrangian
of the optimization problem in (10.1) may be formulated

L(w,Σ, λ0) = 1

2
w′Σw − λ0(w′1 − 1), (10.3)

where λ0 is a Lagrange multiplier. By taking derivatives of L(w,Σ, λ0) w.r.t. w and
equating at zero we get the condition

w = λ0Σ
−11. (10.4)

Since w′1 = 1 it follows that λ0 = (1′Σ−11)−1 and we obtain (10.2). Note that
the identity (10.4) is completely determined by Σ−11 in the sense that if we define
θ = Σ−11, then the solution to the optimization problem depends on θ only. When it
comes to random (estimated) portfolio weights, the optimization problem has been
formulated in different ways in the literature. Jagannathan and Ma [13] specify a
constrained portfolio variance minimization problem as

min
w∈Rp

{w′
̂Σw|w′1 = 1, 0 ≤ wj ,wj ≤ �, j = 1, . . . , p}, (10.5)
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where ̂Σ is some estimator of Σ and � is a finite constant such that wj ≤ �

defines an upper bound constraint for the weights. Let λ =
(

λ1 . . . λp

)

be the

Lagrange multiplier for 0 ≤ wj and δ =
(

δ1 . . . δp

)

the Lagrange multiplier for

wj ≤ � and define ˜Σ = ̂Σ + (δ1′ + 1δ′) − (λ1′ + 1λ′), where ̂Σ is the normal-
theory unconstrained maximum likelihood (ML) estimate of Σ . Jagannathan and
Ma [13] showed that ˜Σ is positive semidefinite, and that constructing a constrained
global minimum variance portfolio from ̂Σ (i.e., the solution to (10.5)) is equivalent
to constructing the unconstrained minimum variance portfolio from ˜Σ . Thus the
constraints can be imposed in the estimation stage instead of the optimization
stage and the result would be the same. This is a fundamental result in portfolio
theory because it connects Markowitz’s theoretical portfolio theory with statistical
inference theory, including both frequentistic and Bayesian treatments.

DeMiguel et al. [4] proposed a norm-constrained minimum variance portfolio as
one that solves minw∈Rp {w′Σw | w′1 = 1, ‖w‖ ≤ � }, where ‖w‖ denotes either
the L1 norm ‖w‖1 = ∑n

j=1 |wj | or the L2 norm ‖w‖2 = √
w′Qw, where Q is

some positive definite matrix. They showed that the solution under the constraint
‖w‖1 = 1 coincides with the shortsale constrained estimator.

[8] take a rather different view on the optimization problem and argue that, for
some estimator ŵ based on returns x1, . . . , xn, the quantity var[x′

n+1ŵ|Fn] =
ŵ′Σŵ, where Fn is the information set up to time n, represents the actual variance
of the return belonging to the portfolio ŵ. References [2] and [23] take on a similar
approach.

There currently seems to be no consensus, or unified theory, on how to
formulate a statistical version of Markowitz’s fixed-portfolio optimization problem.
In what follows we will discuss some consequences of the view one takes on the
optimization problem and the measure used to evaluate the properties of a weight
estimator.

Portfolio Weight Estimators The GMVP weight vector w = (1′Σ−11)−1Σ−1

only involves one unknown quantity, Σ−1. One can therefore specify w as a function
of Σ−1, say w = f (Σ−1) = (1′Σ−11)−1Σ−1. A portfolio estimator may thus
be obtained by substituting an estimator ̂Σ−1 into w and obtain ŵ = f ( ̂Σ−1) =
(1′

̂Σ−11)−1
̂Σ−1. Any estimator f ( ̂Σ−1) will be a sufficient statistic for w as long

as ̂Σ−1 is a sufficient statistic for Σ−1. Such “plug-in” estimators are therefore
completely legitimate from an inferential point of view. The literature on estimation
of Σ−1 is, in turn, extensive. Some important references include [5, 7, 10–12, 24,
26]. A comprehensive survey of improved estimators of Σ−1, including Bayesian
frameworks, is given in [25]. We will, however, not proceed on this path but instead
consider a more restricted class of estimators.

Let ŵ0 denote the standard estimator defined in Property 10.1 and wref denote
some pre-determined reference portfolio, which could be fixed or random (but
independent of ŵ0). We denote a weighted mean between these two quantities as
follows

ŵα = (1 − α)ŵ0 + αwref , 0 ≤ α ≤ 1. (10.6)
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The estimator ŵα , which is closely related to a family of estimators proposed by
[14], has been used by [2, 8, 18]. In order to determine an appropriate value of the
tuning coefficient α one usually applies a loss function. A common square loss is
defined by l = (ŵ − w)′Q(ŵ − w), where Q is a p.d. matrix. Taking the expected
value of l we obtain a quadratic risk function for ŵα as

R(ŵα,Q) = E[(ŵα − w)′Q(ŵα − w)]. (10.7)

The value of α that minimizes R is then defined as the optimal α. By different
choices of Q we obtain several common risk functions as special cases of (10.7).
For example, R(ŵα, I) is the common mean squared error (MSE), which consists
of the variance plus squared bias. The particular risk function R(ŵα,Σ) has been
used by [8] and [18] while [2] used l = (ŵα − w)′Σ(ŵα − w) directly, rather
than its expected value, to derive an optimal portfolio estimator. Yet another way
to evaluate the properties of a portfolio weight estimator is through its predictive,
or out-of-sample properties. The predicted return of some estimator ŵ is obtained
by ŵ′xt , where xt is a vector of returns not used in ŵ, i.e., xt /∈ {x1, . . . , xn}. The
mean squared error of prediction (MSEP) of ŵ may then be evaluated by E[(ŵ′xt −
w′xt )

2]. Note that MSEP is also a special case of (10.7), for

E[(ŵ′xt − w′xt )
2] = E[(ŵ − w)′xt x′

t (ŵ − w)]
= E[(ŵ − w)′(Σ + μμ′)(ŵ − w)] = R(ŵ,Σ + μμ′).

In what follows we give explicit expressions of R(ŵα,Q) for some particular values
of Q.

Proposition 10.1 Let ŵα = (1 − α)ŵ0 + αp−11 for some 0 ≤ α ≤ 1, and let

E[ŵ0] = w, R = cov[ŵ0] = σ 2Σ−1 − ww′

n − p − 1
, where σ 2 = (1′Σ−11)−1. Let xt

be an out-of-sample vector of returns, and define μ = E[xt ], μw = w′μ and μ̄ =
p−11′μ. Then the following risk identities hold

(a) R(ŵα, I) = (1 − α)2tr{R} + α2(w′w − p−1),

(b) R(ŵα,Σ) = (1 − α)2

n − p − 1
σ 2(p − 1) + α2(p−21′Σ1 − σ 2),

(c) R(ŵα, μμ′) = (1 − α)2μ′Rμ + α2(μw − μ̄)2,

(d) R(ŵα,Σ+μμ′) = (1 − α)2

n − p − 1
(σ 2(p−1)+σ 2μ′Σ−1μ+μ2

w)+α2((p−21′Σ1−
σ 2) + (μw − μ̄)2).

Before the proof of Proposition 10.1 we will state a useful identity in the following
lemma.
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Lemma 10.1 Let ŵα = (1 − α)ŵ0 + αp−11 for some 0 ≤ α ≤ 1, and let E[ŵ0] =
w, cov[ŵ0] = R. Then it holds that

E[(ŵα − w)(ŵα − w)′] = (1 − α)2R + α2(w − p−11)(w − p−11)′.

Proof See Appendix. �	
We are now ready to give the proof of Proposition 10.1.

Proof Proof of Proposition 10.1. From Lemma 10.1 we find that

E[(ŵα − w)(ŵα − w)′] = tr{E[(ŵα − w)ŵα − w′]} = (1 − α)2tr{R} + α2(w′w − p−1),

which establishes (a). Applying Lemma 10.1 again we obtain (b) since

tr{E[(ŵα − w)(ŵα − w)′Σ]} = (1 − α)2tr{RΣ} + α2(p−21′Σ1 − σ 2)

and

tr{RΣ} = tr{(σ 2Σ−1 − ww′)Σ}
n − p − 1

= tr{σ 2I − ww′Σ}
n − p − 1

= p − 1

n − p − 1
σ 2.

The identity (c) is similarly obtained by

tr{E[(ŵα − w)(ŵα − w)′μμ′]} = (1 − α)2μ′Rμ + α2(w′μ − p−11′μ)2,

while (d) is obtained by adding (b) and (c) and simplifying terms. �	
Remark 10.1 The MSEP measure in (d), i.e., E[(ŵ′

αxt − w′xt )
2], describes the

variability of ŵ′
αxt around the random term w′xt . An alternative way of defining

MSEP is by E[(ŵ′
αxt − w′μ)2] which describes the variability of ŵ′

αxt around the
non-random point w′E[xt ]. These two differ in that

E[(ŵ′
αxt − w′μ)2] = E[(ŵ′

αxt − w′xt )
2] + (1′Σ−11)−1.

See Appendix for a proof of this identity. Note that the smallest possible return
prediction variance for any of the risks (a)–(d) of Proposition 10.1 is 0, which is
attained at α = 1, whereas for E[(ŵ′

αxt − w′μ)2] the minimum prediction variance
is determined by (1′Σ−11)−1 regardless of the value of α.

For purposes of deriving an estimator of w, the choice between E[(ŵ′
αxt−w′xt )

2]
and E[(ŵ′

αxt − w′μ)2] makes no difference, but for calculation of prediction
intervals our view of the centre point does matter.

Remark 10.2 The bias terms vanish trivially if α = 0 and/or Σ = I . More
generally, the bias terms for R(ŵα, I), R(ŵα,Σ), and R(ŵα, μμ′) vanish when
p1′Σ−21 = (1′Σ−11)2, p−21′Σ1 = σ 2 and μw − μ̄ = 0, respectively. While
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the first two conditions are almost identical to the condition Σ = I , the identity
μw = μ̄, holds when the portfolio return equals the average asset mean.

Remark 10.3 The optimal value of the tuning coefficient α may be derived by

equating
∂R(ŵα,Q)

∂α
at zero and solving for α. The resulting value, say αopt , then

yields an adaptive estimator ŵαopt = (1 − αopt )ŵ0 + αoptp
−11. However, αopt is

by necessity a function of unknown population parameters. Operational, or “bona-
fide”, estimators are usually obtained by substituting these unknown parameters by
some estimators to obtain an approximation α̂. The adapted portfolio estimator is
then defined by ŵα̂ = (1 − α̂)ŵ0 + α̂p−11. The coefficient α̂ is hence random,
which in turn distorts the otherwise known distribution of ŵα . It is still possible to
conduct inferential analysis (interval estimation, etc.) through the theory of oracle
inequalities but at the price of becoming more technically involved (see [3] for a
comprehensive survey of the topic). Another option is to determine α qualitatively,
for example based on expert knowledge of the financial market. This method has
the appealing property of retaining the sampling distribution of ŵα.

Remark 10.4 The original portfolio problem as posed by [20] considers the return
of a non-random portfolio at data point t (e.g., a time point), determined by
w′xt with variance var[w′xt ] = tr{cov[xt ]ww′} = w′Σw, which is void of
concerns about consistency and bias, etc. The fixed-portfolio theory uses Lagrange

multipliers to derive the global minimum weight portfolio w = Σ−11
1′Σ−11

, which is

the minimum of var[w′xt ] subject to the constraint
∑p

j=1 wj = 1. How to proceed
from there to statistical estimation is less obvious. It is customary to apply the
criterion R(ŵα,Σ) = E[(ŵ − w)′Σ(ŵ − w)] to derive estimators of w, but it
is not clear what is gained by minimizing this risk instead of the unweighted risk

R(ŵα, I) = E[(ŵ − w)′(ŵ − w)]. For any consistent estimator, say ŵ = ̂Σ−11

1′ ̂Σ−11
,

where ̂Σ−1 some consistent estimator of Σ−1, the asymptotic return variance is
limn→∞ var[ŵ′xt ] = w′Σw regardless of which risk function was used to obtain
ŵ. The weight Q = Σ has already been used in the minimization of w′Σw to

obtain the functional form
Σ−11

1′Σ−11
, and there is no apparent gain in using the

weighting (ŵ− w)′Σ(ŵ − w) once again in the estimation stage. In fact, Σ−1 is the

only unknown parameter in
Σ−11

1′Σ−11
. Knowing Σ (up to a scalar multiplication) is

therefore equivalent to knowing w. Since Σ is a one-to-one transformation of Σ−1,
the weighted loss (ŵ − w)′Σ(ŵ − w) in a sense uses the true parameter to derive its
own estimator. In this view the unweighted risk R(ŵα, I) = E[(ŵ − w)′(ŵ − w)]
may better reflect the actual risk of an estimator ŵ.

Acknowledgments The authors would also like to thank the reviewer for several valuable and
helpful suggestions and comments to improve the presentation of the paper.
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Appendix

First we give the proof of Lemma 10.1.

Proof Note that

ŵα − E[ŵα] = ŵ0 − α(ŵ0 − p−11) − w − α(w − p−11) = (α − 1)(ŵ0 − w).

Hence,

cov[ŵα] = (α − 1)2E[(ŵ0 − w)(ŵ0 − w)′] = (α − 1)2cov[ŵ0] = (α − 1)2R.

Similarly, define the bias term b = E[ŵα] − w. Then

E[ŵ0] − α(E[ŵ0] − p−11) − w = −α(w − p−11).

Hence it follows that bb′ = α2(w − p−11)(w − p−11)′ and

E[(ŵα − w)(ŵα − w)′] = cov[ŵα] + bb′ = (1 − α)2R + α2(w − p−11)(w − p−11)′.

�	
Next we give the proof of the identity in Remark 10.1.

Proof We have

E[(ŵ′
αxt − w′μ)2] = E[((ŵ′

αxt − w′xt ) + (w′xt − w′μ))2]
= tr{E[(ŵα − w)x′

t xt (ŵα − w)]}
+ 2tr{E[(ŵ′

αxt − w′xt )(w′xt − w′μ)]}
+ E[w′(xt − μ)(xt − μ)′w]

= A + 2B + D,

say. The identities A = tr{(Σ + μμ′)E[(ŵα − w)(ŵα − w)′]} and D = tr{E[(xt −
μ)(xt − μ)′ww′]} = tr{Σww′} = w′Σw are immediate. For the middle term B we
have

B = tr{E[xtx′
twŵα − xtx′

tww′ − μμ′wŵ′
α + μμ′ww′]}

= tr{E[xtx′
t (w(w + α(w − p−11))′ − ww′) − μμ′(w(w + α(w − p−11))′ − ww′)]}

= tr{αE[xtx′
t − μμ′]w(w − p−11)′} = α(w − p−11)′Σw = 0. �	
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