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To Dietrich



Preface

Dietrich von Rosen received his PhD in Mathematical Statistics from the Stockholm
University in 1985 with his dissertation “Multivariate Linear Normal Models with
Special References to the Growth Curve Model.” He stayed at the same university
as assistant professor until 1990, after which he worked as a senior lecturer in
Mathematical Statistics at the Uppsala University. In 1998, he obtained a full
professorship in Statistics at the Swedish University of Agricultural Sciences. Since
2009, he has been also active as an adjoined professor in Mathematical Statistics at
the Linköping University. Furthermore, von Rosen has been working at the medical
university in Stockholm, Karolinska Institutet, for 6 years and is an Honorary
Doctor at the University of Tartu, Estonia, since 2014. Professor von Rosen has
written more than 120 peer-reviewed articles and 2 books (1 together with Professor
Tõnu Kollo, University of Tartu) and has been a supervisor for more than 20 PhD
theses in areas such as statistics, mathematical statistics, and biometry. He is a
frequently invited speaker at international conferences, the editor-in-chief of Journal
of Multivariate Analysis, and the associate editor of four other journals.

This volume is a tribute to Professor von Rosen on the occasion of his 65th
birthday. It contains a collection of 20 papers (ordered alphabetically by the first
author) by 45 colleagues and researchers, some of whom are his former students,
from 16 countries. The contents of the papers evolve around multivariate analysis
and random matrices with topics such as high-dimensional analysis, goodness-of-
fit measures, variable selection and information criteria, inference of covariance
structures, the Wishart distribution, and, of course, growth curve models. Although
a scientific book perhaps is rarely read in its full length, we hope and believe that
Professor von Rosen cannot resist reading this one from front to back. Indeed, each
of the contributions is founded on his own work in one way or another.

It would not be right to characterize von Rosen only by his academic and
scientific merits. Although any successful scientist will receive a certain amount
of attention, much of von Rosen’s popularity among colleagues and friends is due
to his kind and relaxed attitude. He is always eager to interact with his audience but
yet very polite and respectful with everyone.
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viii Preface

When taking on the task of launching a project like this, one never knows how it
will progress. In our case, it happened that a few invited contributors were unable to
send in a manuscript before deadline. Because of this, we decided to contribute with
more than a single paper each. Our sincere thanks go to all authors of the papers
for their contributions and commitment to this Festschrift. We would also like to
convey our apologies to those we may have overlooked or failed to contact and who
would also have liked to be a part of this volume. Just drop an email to us, and we
will include you in the forthcoming Festschrift to von Rosen’s 75th birthday!

In closing, we wish Dietrich a joyful 65th birthday and are looking forward to
many more years of cooperation and friendship.

Växjö, Sweden Thomas Holgersson
Linköping, Sweden Martin Singull
July 2020
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Chapter 1
Spectral Analysis of Large Reflexive
Generalized Inverse and Moore-Penrose
Inverse Matrices

Taras Bodnar and Nestor Parolya

Abstract A reflexive generalized inverse and the Moore-Penrose inverse are often
confused in statistical literature but in fact they have completely different behaviour
in case the population covariance matrix is not a multiple of identity. In this paper,
we study the spectral properties of a reflexive generalized inverse and of the Moore-
Penrose inverse of the sample covariance matrix. The obtained results are used to
assess the difference in the asymptotic behaviour of their eigenvalues.

1.1 Introduction

Let Yn = (y1, y2, . . . , yn) be the p × n data matrix which consists of n column
vectors of dimension p with E(yi ) = 0 and Cov(yi ) = Σ for i ∈ 1, . . . , n.
We assume that p/n → c ∈ (1,+∞) as n → ∞. This type of limiting
behavior is also referred to a “large dimensional asymptotics” or “the Kolmogorov
asymptotics”. In this case, the traditional estimators perform very poorly and tend
to over/underestimate the unknown parameters of the asset returns, i.e., the mean
vector and the covariance matrix.

Throughout this paper it is assumed that there exists a p × n random matrix
Xn which consists of independent and identically distributed (i.i.d.) real random
variables with zero mean and unit variance such that

Yn = Σ1/2Xn , (1.1)

where the matrix Σ1/2 denotes the symmetric square root of the population
covariance matrix Σ . Other square roots of Σ , like the lower triangular matrix

T. Bodnar (�)
Department of Mathematics, Stockholm University, Stockholm, Sweden
e-mail: taras.bodnar@math.su.se

N. Parolya
Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
e-mail: n.parolya@tudelft.nl

© Springer Nature Switzerland AG 2020
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2 T. Bodnar and N. Parolya

of the Cholesky decomposition, can also be used. Note that the observation
matrix Yn consists of dependent rows although its columns are independent. It is
worth mentioning that although the assumption of time independence looks quite
restrictive in real-life applications, the model can be extended to dependent variables
(for instance, causal AR(1) models)1 by imposing more complicated conditions on
the elements of Yn (see, [2] for details) or by assuming an m-dependent structure
(e.g., [11] for a finite number of dependent entries, and [9] and [16] for a
possibly increasing number). Nevertheless, this will not change the main results of
our paper and would only make the proofs more technical. That is why we assume
independence for the sake of brevity and transparency.

The sample covariance matrix is given by (e.g., [13])

Sn = 1

n
YnY′

n = 1

n
Σ1/2XnX′

nΣ
1/2. (1.2)

Throughout the paper it is assumed that the sample size n is smaller than the
dimension p of random vectors yi , i = 1, . . . , n, that is p/n → c > 1 as n → ∞.
In this case the sample covariance matrix is singular and its inverse does not exist
(cf., [4, 6, 12]). On the other side, the inverse of the population covariance matrix
Σ is present in many applications from finance, signal processing, biostatistics,
environmentrics, etc. (see, e.g., [7, 8, 10]). In practice, the Moore-Penrose inverse
is usually employed (cf., [5, 12]), while the other types of the generalize inverse
(see, [15]) can also be used.

In this paper we compare the spectral properties of two generalized inverses of
the singular sample covariance matrix given by:

• Moore-Penrose inverse:

S+
n =

(
1

n
YnY′

n

)+
= 1

n
Yn

(
1

n
Y′
nYn

)−2

Y′
n = 1

n
Σ1/2Xn

(
1

n
X′
nΣXn

)−2

X′
nΣ

1/2

(1.3)

• Reflexive inverse

S−
n = Σ−1/2

(
1

n
XnX′

n

)+
Σ−1/2 = 1

n
Σ−1/2Xn

(
1

n
X′
nXn

)−2

X′
nΣ

−1/2

(1.4)

Although the Moore-Penrose inverse S+ can directly be computed from the
observation matrix Yn, the derivation of its stochastic properties might be chal-
lenging in some practical problems. On the other side, the computation of the
considered reflexive inverse S− is not possible in practice, but the derivation of

1Bai and Zhou [2] define a general dependence structure in the following way: for all
k, E(YjkYlk) = σlj , and for any non-random matrix B with bounded norm, it holds that

E
∣∣y�
k Byk − tr(BΣ)

∣∣2 = o (n2
)

where Σ = (σlj ).
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the stochastic properties is considerably simplified. The goal of this paper is to
quantify the difference between the two generalized inverse matrices with the aim
to develop a statistical methodology to assess the estimation errors when the Moore-
Penrose inverse is used. To this end, we note that a reflexive inverse is not uniquely
defined and that the stochastic properties of the reflexive inverse will be derived in
the special case of (1.4).

The rest of the paper is structured as follows. In the next section, we study
the asymptotic properties of S+ and S− by deriving two integral equations whose
solutions are the Stieltjes transforms of the limiting spectral distributions of S+ and
S−. These findings are used in Sect. 1.3, where the asymptotic behaviour of the
Frobenius norm of the difference between S+ and S− is investigated. Section 1.4
presents the results of a numerical illustration, while concluding remarks are
provided in Sect. 1.5.

1.2 Asymptotic Properties of S+ and S−

For a symmetric matrix A we denote by λ1(A) ≥ . . . ≥ λp(A) its ordered
eigenvalues and by FA(t) the corresponding empirical distribution function (e.d.f.),
that is

FA(t) = 1

p

p∑
i=1

1{λi(A) ≤ t},

where 1{·} is the indicator function. Furthermore, for a function G : R → R of
bounded variation the Stieltjes transform is introduced by

mG(z) =
+∞∫

−∞

1

λ− zdG(λ); z ∈ C+ ≡ {z ∈ C : 
z > 0} .

Note that there is a direct connection between mG(z) and moment generating
function of G, ΨG(z) given by

ΨG(z) = −1

z
mG

(
1

z

)
− 1.

In Theorem 1.1 we present the expressions of the Stieltjes transform for S+ and S−.

Theorem 1.1 Let the p × n noise matrix Xn consist of i.i.d. real random variables
with zero mean and unit variance. Assume that Σ is nonrandom symmetric and
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positive definite with a bounded spectral norm and the e.d.f. Hn = FΣ converges
weakly to a nonrandom distribution function H . Then

(i) the e.d.f. F S+
n converges weakly almost surely to some deterministic c.d.f. P+

whose Stieltjes transformation mP satisfies the following equation:

mP+(z) = −1

z

(
2 − c−1 +

∫ +∞

−∞
dH(τ)

zτc(zmP+(z)+ 1)− 1

)
;

(ii) the e.d.f. F S−
n converges weakly almost surely to some deterministic c.d.f. P−

whose Stieltjes transformation mP− satisfies the following equation:

mP−(z) = −1

z
− 1

z

+∞∫
−∞

dH(τ)

τcz2mP−(z)
(

1 − c
1−c−czmP− (z)

)
− 1

.

Proof

(i) The result of part (i) of the theorem was derived in Theorem 2.1 of [5].
(ii) In order to prove the asymptotic result in the case of S−

n , whose eigenvalues
are the same as those of the product of two matrices Σ−1 and S̃+

n =
1/nXn

(
1
n

X′
nXn

)−2
X′
n, we use subordination results of free probability (see,

e.g., [3]). Namely for two Borel probability measures μ and ν on [0,+∞)
(both are limits of F S̃

+
n and FΣ−1

, respectively), there exist two unique analytic
functions F1, F2 : C \ [0,+∞)→ C \ [0,+∞) such that

F1(z)F2(z)

z
= ημ(F1(z)) = ην(F2(z)) = η(z) , (1.5)

where η(z) = 1− z
gP− (1/z) is the eta transform and gP− is the Cauchy transform

(the negative Stieltjes transform), i.e., gP−(z) = −mP−(z), for the limit of F S−
n

denoted by P−. In particular, from the first and the second equalities in (1.5)
we get that for any z ∈ C+ = {z : 
(z) > 0} such that F2 is analytic at z, the
function F2(z) satisfies the following equation:2

ην(F2(z)) = ημ
(
ην(F2(z))z

F2(z)

)
. (1.6)

2In fact, a similar equation also holds for F1 when one replaces μ and ν in (1.6) but for our purposes
it is enough to know one of them.
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On the other hand, from the last equality in (1.5) we have that gP−(z) satisfies
the equality

gP−(z) = 1

zF2(1/z)
gν

(
1

F2(1/z)

)
. (1.7)

Thus, we need first to find the so called subordination function F2(z) from (1.6)
and plug it into (1.7). For simplicity we further suppress the subindex of gP− .

Let

Θ(z) = F2(z)

zη(z)
(1.8)

and rewrite (1.6) using η(z) = ην(F2(z)) in the following way

η(z) = ημ
(
η(z)z

F2(z)

)
= ημ

(
1

Θ(z)

)
. (1.9)

Using the definition of the eta transform we get

1 − 1
1
z
g(1/z)

= 1 − 1

Θ(z)

1

gμ(Θ(z))

and, hence,

1

z
g(1/z) = Θ(z)gμ(Θ(z)) . (1.10)

From [5] we get that

gμ(z) = −mP−(z) = 1

z

(
2 − c−1 + mMP (1/z)

z

)
, (1.11)

where mMP (z) is the Stieltjes transformation of the Marchenko-Pastur law
given by (see, e.g., [1])

mMP (z) = 1

2cz

(
1 − c − z+

√
(1 + c − z)2 − 4c

)
. (1.12)
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Thus, Eq. (1.10) becomes

1

z
g(1/z) = Θ(z) 1

Θ(z)

(
2 − c−1 + mMP (1/Θ(z))

Θ(z)

)

= 2 − c−1 +
1 − c − 1

Θ(z)
+

√
(1 + c − 1

Θ(z)
)2 − 4c

Θ(z)2c 1
Θ(z)

= 1

2c

⎛
⎝2c− 2 + (1 + c − 1

Θ(z)
)+

√
(1 + c − 1

Θ(z)
)2 − 4c

⎞
⎠ ,

or, equivalently, by rearranging terms we obtain

2

(
c(

1

z
g(1/z)− 1)+ 1

)
− (1 + c − 1

Θ(z)
) =

√
(1 + c − 1

Θ(z)
)2 − 4c ,

(1.13)

where by squaring of both sides, we get

(
c(

1

z
g(1/z)− 1)+ 1

)2

−
(
c(

1

z
g(1/z)− 1)+ 1

)
(1 + c − 1

Θ(z)
)+ c = 0

or,

1 + c2(
1

z
g(1/z)− 1)2 + 2c(

1

z
g(1/z)− 1)− 1 + 1

Θ(z)

− c(1
z
g(1/z)− 1)(1 + c − 1

Θ(z)
) = 0,

which yields

c(
1

z
g(1/z)− 1)+ (1 − c)+ 1

Θ(z)c( 1
z
g(1/z)− 1)

+ 1

Θ(z)
= 0 . (1.14)

From (1.14) we find Θ(z) as a function of g(1/z) expressed as

Θ(z) = 1 + c( 1
z
g(1/z)− 1)

c( 1
z
g(1/z)− 1)(c− 1 − c( 1

z
g(1/z)− 1))

(1.15)
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or, in terms of F2(z) given by

F2(z) = z− cz+ cg(1/z)
c( 1
z
g(1/z)− 1)(c− 1 − c( 1

z
g(1/z)− 1))

1
z
g(1/z)− 1
1
z
g(1/z)

= z− cz+ cg(1/z)
c(−z+ 2cz− cg(1/z))

z2

g(1/z)
. (1.16)

At last, we use the property gν(z) = 1/z−1/z2gH (1/z) and plug F2(z) in (1.7).
This leads to

g(z) = 1

zF2(1/z)

(
F2(1/z) − F 2

2 (1/z)gH (F2(1/z))
)

= 1

z
− F2(1/z)

z
gH (F2(1/z)) = 1

z
− F2(1/z)

z

+∞∫
−∞

dH(τ)

F2(1/z) − τ

= 1

z
+

+∞∫
−∞

dH(τ)

τz/F2(1/z)− z = 1

z
+

+∞∫
−∞

dH(τ)

−τcz3g(z)
(

1 − c
1−c+czg(z)

)
− z

.

The latter can be rewritten in terms of Stieltjes transformmP−(z) by

mP−(z) = −1

z
− 1

z

+∞∫
−∞

dH(τ)

τcz2mP−(z)
(

1 − c
1−c−czmP− (z)

)
− 1

(1.17)

and the second part of theorem is proved.

Although the Stieltjes transforms of two generalize inverse matrices are quite
different, they have one in common: besides the fact that they are equal for Σ = I,
we also observe that they become close to each other in case c tends to one from
the right. Thus, if p/n is close to one from the right, then there should be no
large difference in using the Moore-Penrose inverse S+ or the generalized reflexive
inverse S− asymptotically.

1.3 Quantification the Difference Between the Asymptotic
Behaviour of S+ and S−

Using the Stieltjes transforms computed in the case of S+ and S−, we are able
to compare their moments. In order to quantify this difference more carefully we
consider the quadratic or the so-called Frobenius norm of the difference between
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S+ and S− given by

‖S− − S+‖2
F = tr

(
(S− − S+)(S− − S+)�

)

= tr
(
S−S−) − 2tr

(
S+S−) + tr

(
S+S+)

= tr
(
S−S−) − tr

(
S+S+)

= ‖S−‖2
F − ‖S+‖2

F .

In Theorem 1.2 the asymptotic equivalents for both Frobenius norms are
provided.

Theorem 1.2 Under assumptions of Theorem 1.1 it holds almost surely as p/n→
c > 1

1/p‖S+‖2
F −→ c−1

⎛
⎜⎝ 1

m2
F (0)

− c
+∞∫

−∞

τ 2dH(τ)

(1 + τmF (0))2

⎞
⎟⎠

−1

,

(1.18)

1/p‖S−‖2
F −→ (1 + c(c − 1))

c2(c − 1)3

⎛
⎜⎝

+∞∫
−∞

dH(τ)

τ

⎞
⎟⎠

2

+ 1

(c(c− 1))2

+∞∫
−∞

dH(τ)

τ 2 ,

(1.19)

where mF (0) satisfies the following equation

1

mF (0)
= c

+∞∫
−∞

τdH(τ)

1 + τmF (0) .

Proof In order to prove the statement of the theorem, we rewrite the Frobenius norm
of random matrix A for all z ∈ C+ in the following way

1/p‖A‖2
F = 1/ptr(A2) = − 1

2

∂2

∂z2

1

p

tr(A − 1/zI)−1

z

∣∣∣∣∣
z=0

= − 1

2

∂2

∂z2

mFA(1/z)

z

∣∣∣∣∣
z=0

. (1.20)

We start with A = S+. Let

Γn(z) = m
F S+ (1/z)

z
.
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Due to Theorem 1.1.i we get that Γ +
n (z) converges almost surely to deterministic

Γ +(z), which satisfies the following asymptotic equation

Γ +(z) = −
(

2 − c−1 +
∫ +∞

−∞
zdH(τ)

τc(Γ +(z)+ 1)− z

)
. (1.21)

For the computation of 1/p‖S+‖2
F , the quantities Γ +(z), ∂

∂z
Γ +(z) and

∂2

∂z2Γ
+(z) should be evaluated at zero. We rewrite (1.21) in an equivalent way

Γ +(z) = −1 − c−1zmF (z), (1.22)

where mF (z) is the limiting Stieltjes transform of m
F 1/nY�Y , which satisfies the

following equation (see, e.g., [14])

mF(z) =
⎛
⎜⎝c

+∞∫
−∞

τdH(τ)

1 + τmF (z) − z
⎞
⎟⎠

−1

. (1.23)

The advantage of (1.22) over (1.21) lies in the calculation of the derivatives,
which can be done easier by the former. Since the quantity mF (z) is bounded at
zero for c > 1, we immediately obtain

Γ +(0) ≡ lim
z→0+ Γ

+(z) = −1 . (1.24)

The first derivative of Γ +(z) is given by

∂

∂z
Γ +(z) = −c−1mF (z)− c−1z

∂

∂z
mF (z) (1.25)

and, thus, taking the limit z → 0+ and using that ∂
∂z
mF (z) = O(1) as z → 0+, we

get

Γ ′ +(0) ≡ lim
z→0+

∂

∂z
Γ +(z) = −c−1mF (0) , (1.26)

wheremF (0) satisfies the equation

1

mF(0)
= c

+∞∫
−∞

τdH(τ)

1 + τmF (0) . (1.27)
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The second derivative of Γ +(z) is equal to

∂2

∂z2Γ
+(z) = −2c−1 ∂

∂z
mF (z)− c−1z

∂2

∂z2mF(z). (1.28)

Denoting m′
F (z) = ∂

∂z
mF (z) and using (1.23) together with (1.27), we obtain

m′
F (0) ≡ lim

z→0+m
′
F (z) = lim

z→0+

c
+∞∫
−∞

τ2m′
F (z)dH(τ)

(1+τmF (z))2 + 1

(
c

+∞∫
−∞

τdH(τ)
1+τmF (z)

)2 =
m′
F (0)c

+∞∫
−∞

τ2dH(τ)

(1+τmF (0))2 + 1

1
m2
F (0)

or, equivalently,

m′
F (0) =

⎛
⎜⎝ 1

m2
F (0)

− c
+∞∫

−∞

τ 2dH(τ)

(1 + τmF (0))2

⎞
⎟⎠

−1

. (1.29)

Finally, the application of (1.28) and (1.29) together with ∂2

∂z2mF (z) = O(1) as

z→ 0+ leads to

Γ ′′ +(0) ≡ lim
z→0+

∂2

∂z2Γ
+(z) = −2

c−1

1
m2
F (0)

− c
+∞∫
−∞

τ 2dH(τ)

(1+τmF (0))2
.

Now, the first result of the theorem follows from (1.20).
Similarly, for the second identity of Theorem 1.2 we denote Γ −(z) as a limit of

Γ −
n (z) = m

F S− (1/z)

z
. (1.30)

Then using Theorem 1.1, the limiting function Γ −(z) satisfies the following
asymptotic equation

Γ −(z) = −1 −
+∞∫

−∞

zdH(τ)

τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z

. (1.31)
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Here we immediately get that Γ −(z) is bounded at zero and it holds that

lim
z→0+ Γ

−(z) = −1, (1.32)

lim
z→0+

∂

∂z
Γ −(z) = − 1

c(c− 1)

+∞∫
−∞

dH(τ)

τ
, (1.33)

where, the result for the first derivative of Γ −(z) follows from the identity

⎛
⎜⎝1 − z

+∞∫
−∞

τc
(

1 − c(1−c)
(1−c−cΓ −(z))2

)
dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

⎞
⎟⎠ ∂

∂z
Γ −(z)

= −
+∞∫

−∞

τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

= −
+∞∫

−∞

dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)

−
+∞∫

−∞

zdH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

.

For the second derivative we get the following equality

(1 +O(z)) ∂
2

∂z2
Γ −(z) = 2

∂

∂z
Γ −(z)

+∞∫
−∞

τc
(

1 − c(1−c)
(1−c−cΓ −(z))2

)
dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

− 2

+∞∫
−∞

dH(τ)

(τcΓ −(z)
(

1 − c
1−c−cΓ −(z)

)
− z)2

+O(z)

and taking the limit z→ 0+ from both sides leads to

lim
z→0+

∂2

∂z2Γ
−(z) = 2

∂

∂z
Γ −(z)

c(1 − c(1 − c))
c2(c − 1)2

+∞∫
−∞

dH(τ)

τ
− 2

1

(c(c − 1))2

+∞∫
−∞

dH(τ)

τ 2

= −2
(1 + c(c − 1))

c2(c − 1)3

⎛
⎜⎝

+∞∫
−∞

dH(τ)

τ

⎞
⎟⎠

2

− 2
1

(c(c − 1))2

+∞∫
−∞

dH(τ)

τ 2 .

(1.34)

The second statement of the theorem follows now from (1.34) and (1.20).
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For a better visualization of the results of Theorem 1.2 from the statistical point
of view, we present its empirical counterpart. Here, the almost sure convergence of
the asymptotic equivalents are summarize in Corollary 1.1.

Corollary 1.1 Under assumptions of Theorem 1.1 for p/n → c > 1 holds almost
surely

1/p

∣∣∣∣∣∣‖S+‖2
F − c−1

(
p

m2
F (0)

− c||(Σ +mF (0)I)−1||2F
)−1

∣∣∣∣∣∣ → 0,

(1.35)

1/p

∣∣∣∣‖S−‖2
F − (1 + c(c − 1))

c2(c − 1)3
1

p

(
tr(Σ−1)

)2 − 1

(c(c− 1))2
||Σ−1||2F

∣∣∣∣ → 0,

(1.36)

where mF (0) satisfies asymptotically (approximately) the following equation

p

mF (0)
= c · tr(Σ +mF (0)I)−1 .

The results of Corollary 1.1 show how the Frobenius norms of both inverses
are connected with their population counterpart ||Σ−1||2F . Namely, looking on the
asymptotic behavior of ‖S+‖2

F one can easily deduce that it is not possible to
estimate ||Σ−1||2F consistently using the Moore-Penrose inverse because of the
nonlinearity which is present in (Σ + mF(0)I)−1. On the other side, it is doable
by reflexive generalized inverse S−

n . Indeed, using the proof of Theorem 1.2 one can
find that

1/p

∣∣∣∣tr(S−
n )−

1

c(c− 1)
tr(Σ−1)

∣∣∣∣ → 0 ,

which together with (1.36) implies that

1/p

∣∣∣∣(c(c− 1))2
[
‖S−‖2

F −
(

1

(c− 1)
+ c

)
1

p

(
tr(S−)

)2
]

− ||Σ−1||2F
∣∣∣∣ → 0,

(1.37)

almost surely.
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1.4 Numerical Illustration

Using the results of the previous section, we present several numerical results to
quantify the difference ‖S− − S+‖2

F = ‖S−‖2
F − ‖S+‖2

F for some Σ . In order
to avoid the normalization 1/p we will use the normalized Frobenius loss (NFL)
expressed as

NFL = ‖S− − S+‖2
F

‖S+‖2
F

= ‖S−‖2
F

‖S+‖2
F

− 1, (1.38)

which measures the difference between S− and S+ normalized by the Frobenius
norm of the Moore-Penrose inverse. The application of (1.38) with S+ and S− as
in (1.3) and (1.4) leads to the so called empirical NFL, while the usage of the results
of Theorem 1.2 corresponds to the asymptotic NFL. The latter can be interpreted
how much both Frobenius norms differ asymptotically.

In Fig. 1.1 we present the results of a simulation study where the normalized
Frobenius losses are computed for several values of the concentration ratio c > 1
as a function of dimension p. For the sake of illustration, we provide the results
obtained for the samples generated from the multivariate normal distribution, while
similar values were also obtained for other multivariate distributions. We set the
mean vector to zero and, without loss of generality, use the diagonal covariance
matrix Σ with 20% of eigenvalues equal to one, 40% equal to three and the rest
equal to ten. The results for c = 1.07 confirm our expectations discussed after the
proof of Theorem 1.1, namely there is no large difference between both norms: NFL
is small and the empirical NFL converges quite fast to its asymptotic counterpart. By
increasing c we observe that the NFL increases indicating that both norms deviate
from each other. For example, in case c = 2 the asymptotic and empirical NFLs
are close to 1.2 what means that the Frobenius norm for reflexive inverse is more
than a double of the Frobenius norm of the Moore-Penrose inverse. This observation
becomes more severe for larger values of c. Moreover, for c = 10 we observe a bit
slower convergence of the sample NFL to its asymptotic value.

The obtained findings indicate that the usage of S+
n instead of S−

n must be done
with much care and are only reliable if the concentration ratio p/n is close to
one. Otherwise, one can not expect neither a good approximation of functionals
depending on the inverse covariance matrix nor consistent estimators for them.
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1.5 Summary

In many statistical applications the dimension of the data-generating process is
larger than the sample size. However, one still needs to compute the inverse of the
sample covariance matrix, which is present in many expressions. There are a plenty
of ways how to define a generalized inverse with the Moore-Penrose inverse and
reflexive generalized inverse matrices be the mostly used ones. While the former is
easily computable and is unique, the latter can not be calculated from the data. On
the other side, the behavior of the Moore-Penrose inverse in many high-dimensional
applications is far away from a satisfactory one, whereas the reflexive inverse obeys
very convenient statistical and asymptotic properties. Namely, the application of the
reflexive inverse allows to estimate functionals of the precision matrix (the inverse
of population covariance matrix) consistently in high-dimension.

In this work we study spectral properties of both inverses in detail. The almost
sure limits of the Stieltjes transforms of their empirical distribution functions of
eigenvalues (so-called limiting spectral distributions) is provided in the case the
dimension p and the sample size n increase to infinity simultaneously such that
their ratio p/n tends to a positive constant c greater than one. We discover that
both limiting spectral distributions differ considerably and only coincide when c
tends to one. The results are illustrated via the calculation of asymptotic normalized
Frobenius loss of both inverse matrices. Finally, we justify the obtained theoretical
findings via a simulation study.
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presentation of the paper.
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Chapter 2
Testing for Double Complete Symmetry

Carlos A. Coelho and Martin Singull

Abstract In this paper the authors take an approach over the likelihood ratio test
for double complete symmetry, which enables a particularly simple implementation
of the test as well as a particularly adequate way towards obtaining very sharp
approximations for the exact distribution of the test statistic. Numerical studies show
the very good performance of the near-exact distributions derived, namely their very
good performance for very small sample sizes and their asymptotic behavior for
increasing numbers of variables involved.

2.1 Introduction

Patterned covariance matrices arise in a variety of contexts and have been studied
by many authors. In a seminal paper Wilks [18] considered patterned structures
when dealing with measurements on k equivalent psychological tests. This led to
a covariance matrix with equal diagonal elements and equal off-diagonal elements,
i.e., a covariance matrix given by

Σ = σ 2 ((1 − ρ)Ip + ρJp
) : p×p,

with − 1
p−1 < ρ < 1 and where Ip denotes the identity matrix of order p and

Jp a p×p matrix of ones. This structure is called complete symmetry, uniform
or intraclass covariance structure. In [18] Wilks developed statistical test criteria
for testing equality in means, equality in variances and equality in covariances.
The structure implies that both the inverse and the determinant have closed form
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expressions and the maximum likelihood estimators can easily be calculated [10, p.
114].

Votaw [17] extended the complete symmetry model to a model with blocks
called compound symmetry, type I and type II. The compound symmetry covariance
matrices are, for the p = 4 case, given as

ΣI =

⎡
⎢⎢⎢⎣
α β β β

β γ δ δ

β δ γ δ

β δ δ γ

⎤
⎥⎥⎥⎦ and ΣII =

⎡
⎢⎢⎢⎣
α β κ σ

β α σ κ

κ σ γ δ

σ κ δ γ

⎤
⎥⎥⎥⎦ .

In [17] Votaw considered different psychometric and medical research problems
where the compound symmetry is applicable. In [14] and [15] Szatrowski discusses
block compound symmetry and the model is applied to the analysis of an educa-
tional testing problem.

A circular stationary model, where variables are thought of as being equally
spaced around a circle was considered by Olkin and Press [12]. The covariance
between two variables in the circular stationary model depends on the distance
between the variables and the covariance matrices for p = 4 and p = 5 have
the structures

Σ = σ 2

⎡
⎢⎢⎢⎣

1 ρ1 ρ2 ρ1

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ1 ρ2 ρ1 1

⎤
⎥⎥⎥⎦ and Σ = σ 2

⎡
⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 ρ2 ρ1

ρ1 1 ρ1 ρ2 ρ2

ρ2 ρ1 1 ρ1 ρ2

ρ2 ρ2 ρ1 1 ρ1

ρ1 ρ2 ρ2 ρ1 1

⎤
⎥⎥⎥⎥⎥⎦
.

Olkin and Press [12] considered three symmetries, namely circular, complete
symmetrical and spherical and derived likelihood ratio tests and the asymptotic
distributions under the null hypothesis and under the alternative. Olkin [11]
generalizes the circular stationary model with a multivariate version in which each
element was a vector and the covariance matrix can be written as a block circular
matrix.

The covariance symmetries investigated by for example Wilks [18], Votaw [17]
and Olkin and Press [12] are all special cases of invariant normal models considered
by Anderson [2]. The invariant normal models include not only all models specified
by symmetries of the covariance matrix, but also the linear models for the mean. The
symmetry model defined by a group G is the family of covariance matrices given by

S +
G = {

Σ|Σ > 0,GΣG′ = Σ for all G ∈ G
}
,

i.e., this implies that if x is a random vector with cov(x) = Σ such that Σ ∈
S +

G then there are symmetry restrictions on the covariance matrix, namely that
cov(x) = cov(Gx) for all G ∈ G . Perlman [13] summarizes and discusses
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the group symmetry covariance models suggested by Anderson [2]. Furthermore,
several examples of different symmetries, maximum likelihood estimators and
likelihood ratio tests are given in [13].

In this paper we consider a special case of the block compound symmetry
discussed by Szatrowski in [14] and [15]. We will say that the symmetric positive-
definite matrixΣ of dimensionsmp×mp has a double complete symmetric structure
if we may write

Σ = (Ip ⊗ R0)+ (Jp − Ip)⊗ R1, (2.1)

where

R1 = cJm , (2.2)

and where R0 is itself a positive-definite complete symmetric matrix, of dimensions
m×m

R0 = aIm + b(Jm − Im) = (a − b)Im + bJm , with a > max(0, b, (1 − p)b) .
(2.3)

For example for m = 4 and p = 3 the matrixΣ would have the following aspect

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b b c c c c c c c c

b a b b c c c c c c c c

b b a b c c c c c c c c

b b b a c c c c c c c c

c c c c a b b b c c c c

c c c c b a b b c c c c

c c c c b b a b c c c c

c c c c b b b a c c c c

c c c c c c c c a b b b

c c c c c c c c b a b b

c c c c c c c c b b a b

c c c c c c c c b b b a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Restriction relations among a, b and c, in order to makeΣ a positive-definite matrix,
may be derived from the structure of R0 and the result in Proposition 2.1 below, and
these are stated in Appendix 1.

We are interested in testing the null hypothesis that Σ has the double complete
symmetric structure given in (2.1), the alternative hypothesis being that Σ is just
positive-definite, with no particular structure. In carrying out this test, the following
Proposition is important.
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Proposition 2.1 To test

H0 : Σ = (Ip ⊗ R0)+ (Jp − Ip)⊗ R1 (2.4)

for R1 in (2.2) and R0 in (2.3), is equivalent to test

H0 : ΓΣΓ ′ = diag(λ1, λ2, . . . , λ2︸ ︷︷ ︸
m−1

, λ3, . . . , λ2, . . . , λ2︸ ︷︷ ︸
m−1

, λ3

︸ ︷︷ ︸
p−1 groups

, λ2, . . . , λ2︸ ︷︷ ︸
m−1

)

(2.5)

for

Γ = Qp ⊗Qm,

whereQp andQm are Helmert matrices of order p and m respectively, and

λ1 = a − b +m(b − c)+mpc , λ2 = a − b , and λ3 = a − b +m(b − c) .

Proof We may write, under H0 in (2.4),

Σ = Ip ⊗
(
(a − b)Im + bJm

)
+ c(Jp − Ip)⊗ Jm

= (a − b)(Ip ⊗ Im)+ b(Ip ⊗ Jm)+ c(Jp ⊗ Jm − Ip ⊗ Jm)
= (a − b)(Ip ⊗ Im)+ (b − c)(Ip ⊗ Jm)+ c(Jp ⊗ Jm) .

Let us now take

Γ = Qp ⊗Qm,

whereQr is a Helmert matrix of order r , with

Qr =
[
r−1/2 1′

r

Q̃r

]

where 1r = [ 1, 1, . . . , 1 ]′ : r×1, and

Q′
rQr = QrQ′

r = Ir , Q̃r1r−1 = 0r−1 , Q̃rQ̃
′
r = Ir−1.
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Hence, we will have

QrJrQ
′
r = Qr1r1′

rQ
′
r =

[
r−1/2 1′

r

Q̃r

]
1r1

′
r

[
r−1/2 1r Q̃

′
r

]

=
[
r1/2

0r−1

][
r1/2 0′

r−1

]
= r r1r

′
1,

(2.6)

where

r1
(r×1)

=

⎡
⎢⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎥⎦ , r1r

′
1 = diag(r1) , (2.7)

and we may write

ΓΣΓ ′ = (a − b)(Ip ⊗ Im)+ (b − c)(Ip ⊗ (QmJmQ′
m)

) + c((QpJpQ′
p)⊗ (QmJmQ′

m)
)

= (a − b)Imp +m(b − c)(Ip ⊗m1m
′
1)+mpc

(
(p

1
p′

1
)⊗ (m1m

′
1)
)
, (2.8)

where (p
1
p′

1
)⊗ (m1m

′
1) = mp

1
(mp

1
)′ = diag(mp

1
), which makes (2.8) the same

as the expression in (2.5).
Since Γ = Qp ⊗Qm, the transpose of the matrix of eigenvalues of Σ , is not a

function of the elements in Σ but only of the dimensions of its constituent blocks,
that is, p and m, testing H0 in (2.4) is equivalent to test H0 in (2.5). �

2.2 Decomposition of the Null Hypothesis and Formulation
of the Likelihood Ratio Test

The null hypothesis in (2.5) may be decomposed as

H0 ≡ H0b|a ◦H0a , (2.9)

where ‘◦’ means ‘after’ and the hypotheses in the decomposition are

H0a : ΓΣΓ ′ = diag(λ∗
1, . . . , λ

∗
mp) (2.10)
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and

H0b|a : λ∗
2 = · · · = λ∗

m︸ ︷︷ ︸
m−1

= λ∗
m+2 = · · · = λ∗

2m︸ ︷︷ ︸
m−1

= · · · = λ∗
(p−1)m+2 = · · · = λ∗

pm︸ ︷︷ ︸
m−1︸ ︷︷ ︸

p groups

and λ∗
m+1 = λ∗

2m+1 = · · · = λ∗
(p−1)m+1︸ ︷︷ ︸

p−1

,

assuming H0a .

(2.11)

See the note in Appendix 2 about the composition and decomposition of hypotheses.
In case the matrix ΓΣΓ ′ is taken as the variance-covariance matrix of a pm-

multivariate normal random vector, the hypothesis H0a in (2.10) is the hypothesis
of independence of those pm random variables, and the likelihood ratio test (l.r.t.)
statistic used to test H0a, based on a sample of size n > pm, will be [1, Sec. 9.2]

Λa =
(

|A|∏pm

j=1 |aj |

)n/2
,

where A = Γ A+Γ ′ is the maximum likelihood estimator (m.l.e.) of ΓΣΓ ′ (with
A+ being the m.l.e. ofΣ), and aj its j -th diagonal element.

Then H0b|a in (2.11) is the composition of two hypotheses, the first one of
equality of (p − 1)(m− 1) variances and the second one of p − 1 variances, each
one based on a sample of size n, and whose m.l.e.’s, once assumed H0a , will be
independent. As such, the l.r.t. statistic to test H0b|a in (2.11) will be [1, Sec. 10.2]

Λb = Λb1Λb2, (2.12)

where

Λb1 =
(
(p(m− 1))p(m−1)

∏p

�=1

∏m−1
k=1 a(�−1)m+1+k
(a∗

1)
p(m−1)

)n/2
, (2.13)

and

Λb2 =
(
(p − 1)p−1

∏p−1
k=1 akm+1

(a∗
2)
p−1

)n/2
, (2.14)
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with

a∗
1 =

p∑
�=1

m−1∑
k=1

a(�−1)m+1+k , and a∗
2 =

p−1∑
k=1

akm+1 .

Then, through an extension of Lemma 10.3.1 in [1], the l.r.t. statistic to test H0
in (2.2) will be

Λ = ΛaΛb =
⎛
⎝(p(m− 1))p(m−1) (p − 1)p−1 |A|

a1
(
a∗

1

)p(m−1) (
a∗

2

)p−1

⎞
⎠
n/2

,

(2.15)

with

E
(
Λh

)
= E

(
Λha

)
E
(
Λhb1

)
E
(
Λhb2

)
, (2.16)

since on one hand, under H0a Λa is independent of
∏pm
j=1 aj [6, 8], which makes

Λa independent of Λb1 and Λb2, while on the other hand, under H0a, the aj
(j = 1, . . . , pm) are independent among themselves, which makes Λb1 and Λb2
independent because they are built on different aj ’s.

2.3 On the Exact Distribution of the l.r.t. Statistic

Using the results in [4, 7, 9] we may write the h-th moment of Λa as

E
(
Λha

) =
pm−1∏
k=1

Γ
(
n−1

2

)
Γ

(
n−1−(pm−k)

2 + n
2h

)

Γ
(
n−1−(pm−k)

2

)
Γ

(
n−1

2 + n
2h

)

=
⎧⎨
⎩
pm∏
j=3

(
n− j
n

)rj (n− j
n

+ h
)−rj

⎫⎬
⎭

︸ ︷︷ ︸
=Φa,1(h)

⎛
⎜⎝Γ

(
n−1

2

)
Γ

(
n−2

2 + n
2h

)

Γ
(
n−1

2 + n
2h

)
Γ

(
n−2

2

)
⎞
⎟⎠
k∗

︸ ︷︷ ︸
=Φa,2(h)

,

(2.17)

where

k∗ =
⌊
pm

2

⌋
(2.18)
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and

rj =
{
hj−2 + (−1)jk∗, for j = 3, 4,
rj−2 + hj−2, for j = 5, . . . , pm,

(2.19)

with

hj =
{
pm− 1, for j = 1,

−1, for j = 2, . . . , pm − 2 .
(2.20)

Using the results in [1, Sec. 10.2] we obtain the expression for the h-th moment of
Λb1 as

E
(
Λhb1

)
=
p(m−1)∏
k=2

Γ
(
n−1

2 + k−1
p(m−1)

)
Γ

(
n−1

2 + n
2h

)

Γ
(
n−1

2 + k−1
p(m−1) + n

2h
)
Γ

(
n−1

2

)
︸ ︷︷ ︸

=Φb1(h)

(2.21)

while the h-th moment of Λb2 may be obtained as

E
(
Λhb2

)
=
p−1∏
k=2

Γ
(
n−1

2 + k−1
p−1

)
Γ

(
n−1

2 + n
2h

)

Γ
(
n−1

2 + k−1
p−1 + n

2h
)
Γ

(
n−1

2

)
︸ ︷︷ ︸

=Φb2(h)

. (2.22)

Since the supports of Λa , Λb1 and Λb2 are delimited, their distributions are
determined by their moments, and as such, from the first expression in (2.17) we
may write

Λa
st∼
pm−1∏
k=1

(Xk)
n/2 , with Xk ∼ Beta

(
n− 1 − (pm− k)

2
,
(pm− k)m

2

)
,

(2.23)

where ‘
st∼’ means ‘stochastically equivalent’ and Xk (k = 1, . . . , pm− 1) are

independent random variables, while from (2.21) we may write

Λb1
st∼
p(m−1)∏
k=2

(
X∗
k

)n/2
, with X∗

k ∼ Beta
(
n− 1

2
,
k − 1

p(m− 1)

)
, (2.24)
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where X∗
k (k = 1, . . . , p(m− 1)) are independent, and from (2.22) we may write

Λb2
st∼
p−1∏
k=2

(
X∗∗
k

)n/2
, with X∗∗

k ∼ Beta
(
n− 1

2
,
k − 1

p − 1

)
, (2.25)

whereX∗∗
k (k = 1, . . . , p − 1) are independent. Hence, we may write for the overall

l.r.t. statistic, under H0 in (2.9),

Λ
st∼

⎧⎪⎨
⎪⎩
⎛
⎝pm−1∏
k=1

Xk

⎞
⎠
n/2

×

⎛
⎝p(m−1)∏

k=2

X∗
k

⎞
⎠
n/2

×

⎛
⎝p−1∏
k=2

X∗∗
k

⎞
⎠
n/2

⎫⎪⎬
⎪⎭ , (2.26)

where all random variables are independent.
On the other hand, based on the results in Appendix 3 and from the second

expression in (2.17) we may write, for Λa ,

Λa
st∼

⎛
⎝ pm∏
j=3

e−Zj
⎞
⎠×

⎛
⎝ k∗∏
j=1

(
Wj

)n/2
⎞
⎠ , (2.27)

where k∗ is given by (2.18) and

Zj ∼ Γ
(
rj ,
n− j
n

)
and Wj ∼ Beta

(
n− 2

2
,

1

2

)
(2.28)

are all independent random variables.
Thus, we have the following Theorem.

Theorem 2.1 The exact distribution of the overall l.r.t. statisticΛ in (2.15), used to
test H0 in (2.4) or (2.5) is, for general p and m, the same as that of

⎛
⎝ pm∏
j=3

e−Zj
⎞
⎠×

⎛
⎝ k∗∏
j=1

Wj

⎞
⎠
n/2

×

⎛
⎝p(m−1)∏

k=2

X∗
k

⎞
⎠
n/2

×

⎛
⎝p−1∏
k=2

X∗∗
k

⎞
⎠
n/2

, (2.29)

where k∗ is given by (2.18) and where the distributions of Zj and Wj are given
in (2.28) and those of X∗

k and X∗∗
k are respectively given in (2.24) and (2.25).

Proof The proof of the above theorem is rather trivial, from the previously
established results. �
For either p = 1 or m = 1 the present test reduces to the common complete
symmetry or equivariance-equicorrelation Wilks test [18]. The following Corollary
gives the distribution of Λ for this case.
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Corollary 2.1 For p = 1 and m > 1, the statistic Λb2 vanishes and the statistic
Λb1 assumes in this case the same distribution as that of the statistic Λb2 for the
case p > 1, while for m = 1 and p > 1 the statistic Λb1 vanishes. As such, let us
denote by q the value of the parameter, either p orm, that is greater than one. Then,
for either p = 1 or m = 1, the exact distribution of the statistic Λ in (2.15) is the
same as that of

⎛
⎝ q∏
j=3

e−Zj
⎞
⎠×

⎛
⎝ k∗∏
j=1

Wj

⎞
⎠
n/2

×

⎛
⎝q−1∏
k=2

W∗
k

⎞
⎠
n/2

, (2.30)

where Zj andWj still have the distributions in (2.28), k∗ = �q/2�, and

W∗
k ∼ Beta

(
n− 1

2
,
k − 1

q − 1

)
.

The particular case of p = 2 should also be addressed since also in this case the
statistic Λb2 vanishes, and as such we have the following Corollary.

Corollary 2.2 For p = 2, the statistic Λb2 vanishes and as such, in this case the
statistic Λ in (2.15) has the same distribution as that of

⎛
⎝ 2m∏
j=3

e−Zj
⎞
⎠×

⎛
⎝ k∗∏
j=1

Wj

⎞
⎠
n/2

×

⎛
⎝2(m−1)∏

k=2

X∗
k

⎞
⎠
n/2

, (2.31)

where Zj and Wj have the distributions in (2.28), k∗ = m, and the distribution of
X∗
k is given by (2.24).

2.4 The Characteristic Function of W = − log Λ

The reason why in the previous section we actually obtain two equivalent repre-
sentations for the exact distribution of Λ, which are the one in (2.26) and the one
in Theorem 2.1 is because the first of these neither does it yield a manageable
cumulative distribution function (c.d.f.) nor is it adequate to lead to a sharp
approximation to the exact distribution of Λ.

In order to be able to obtain a very sharp and manageable approximation to the
exact distribution of Λ, we will base our developments in the representation given
by Theorem 2.1 and Corollaries 2.1 and 2.2.
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From Theorem 2.1 and expressions (2.17)–(2.22) we may write the characteristic
function (c.f.) ofW = − log Λ as

ΦW(t) = E
(
eitW

)
= E

(
Λ−it

)

=
⎧⎨
⎩
pm∏
j=3

(
n−j
n

)rj (n−j
n

− it

)−rj
⎫⎬
⎭

︸ ︷︷ ︸
=ΦW,1(t)

× Φa,2(−it) Φb1(−it) Φb2(−it)︸ ︷︷ ︸
=ΦW,2(t)

,

(2.32)

where the rj are given by (2.19) and (2.20),Φa,2( · ),Φb1( · ) andΦb2( · ) are defined
in (2.17)–(2.22), and ΦW,1(t) is equal to Φa,1(−it).

For p = 1 or m = 1, according to Corollary 2.1 in the previous section ΦW(t)
reduces to

ΦW(t) =
⎧⎨
⎩
q∏
j=3

(
n− j
n

)rj (n− j
n

− it

)−rj
⎫⎬
⎭

︸ ︷︷ ︸
=ΦW,1(t)

× Φa,2(−it) Φb2(−it)︸ ︷︷ ︸
=ΦW,2(t)

,

(2.33)

for rj given by (2.19)–(2.20), k∗ = �q/2� in Φa,2( · ), and where in Φb2( · ) we
replace p by q , where q represents the value of the parameter, either m or p, which
is not equal to 1.

For p = 2, according to Corollary 2.2 in the previous section ΦW(t) reduces to

ΦW(t) =
⎧⎨
⎩

2m∏
j=3

(
n− j
n

)rj (n− j
n

− it

)−rj
⎫⎬
⎭

︸ ︷︷ ︸
=ΦW,1(t)

× Φa,2(−it) Φb1(−it)︸ ︷︷ ︸
=ΦW,2(t)

,

(2.34)

for rj given by (2.19)–(2.20), k∗ = m in Φa,2( · ), and p = 2 in Φb1( · ).
Expressions (2.32)–(2.34), together with expressions (2.29) and (2.30), show that

the exact distribution of W = − log Λ is the same as that of the sum of pm − 2
independent Gamma random variables with an independent sum of a number of
independent Logbeta random variables.

As such, in building the near-exact distributions we will keepΦW,1(t) untouched
and we will approximate ΦW,2(t) asymptotically by the c.f. of a finite mixture of
Gamma distributions.
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2.5 Near-Exact Distributions

Indeed, based on the result in Section 5 of [16], we may, for increasing values of
a, asymptotically replace the distribution of any Logbeta(a, b) distributed random
variable by an infinite mixture of Γ (b+ �, a) distributions (� = 0, 1, . . . ). As such,
we could replace ΦW,2(t) in either (2.32), (2.33) or (2.34) by the c.f. of the sum
of infinite mixtures of Gamma distributions, which would be the same as the c.f.
of an infinite mixture of sums of Gamma distributions. Although it happens that
these Gamma distributions would have different rate parameters, these parameters
would anyway be of comparable magnitude. As such, in building our near-exact
distributions forW = − log Λ and Λ, while we will leave ΦW,1(t) unchanged, we
will replace ΦW,2(t) in either (2.32), (2.33) or (2.34), by

Φ∗(t) =
m∗∑
�=0

π� λ
r+�(λ− it)−(r+�), (2.35)

which is the c.f. of a finite mixture ofΓ (r+�, λ) distributions, where, for the general
case in (2.32), with p > 2 and m > 1, we will take

r = 1

2

⌊
pm

2

⌋
+
p(m−1)∑
k=2

k − 1

p(m− 1)
+
p−1∑
k=2

k − 1

p − 1
= 1

2

(⌊
pm

2

⌋
+ pm− 3

)
,

(2.36)

which is the sum of all the second parameters of the Logbeta distributions inΦW,2(t)
in (2.32), while for the particular case in (2.33), for q > 1, we will take

r = 1

2

⌊
q

2

⌋
+
q−1∑
k=2

k − 1

q − 1
= 1

2

(⌊
q

2

⌋
+ q

)
− 1, (2.37)

which is the sum of all the second parameters of the Logbeta distributions inΦW,2(t)
in (2.33), and for the particular case in (2.34), form > 1,

r = m

2
+

2(m−1)∑
k=2

k − 1

2(m− 1)
= 3

2
(m− 1) . (2.38)

The parameter λ in (2.35) is then taken as the rate parameter in

Φ∗∗(t) = θ λs1(λ− it)−s1 + (1 − θ)λs2(λ− it)−s2,
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where θ , λ, s1 and s2 are determined in such a way that

∂ΦW,2(t)

∂th

∣∣∣∣∣
t=0

= ∂Φ∗∗(t)
∂th

∣∣∣∣
t=0

for h = 1, . . . , 4 ,

while the weights π� (� = 0, . . . ,m∗ − 1) in (2.35) will then be determined in such
a way that

∂ΦW,2(t)

∂th

∣∣∣∣∣
t=0

= ∂Φ∗(t)
∂th

∣∣∣∣
t=0

for h = 1, . . . ,m∗ ,

with πm∗ = 1 − ∑m∗−1
�=0 π�.

This procedure yields near-exact distributions for W which will match he first
m∗ exact moments ofW and which have c.f.

ΦW,1(t)Φ
∗(t) ,

with ΦW,1(t) given by (2.32), (2.33) or (2.34), according to the case, and Φ∗(t)
by (2.35), where r , given by (2.36), (2.37) or (2.38) is always either an integer or a
half-integer.

As such, the near-exact distributions developed yield, forW , distributions which,
for non-integer r , are mixtures, with weights π� (� = 0, . . . ,m∗), of m∗ + 1 Gen-
eralized Near-Integer Gamma (GNIG) distributions of depth pm− 1 with integer
shape parameters rj (j = 3, . . . , pm) and real shape parameter r and corresponding
rate parameters (n − j)/n (j = 3, . . . , pm) and λ, and which, for integer r , are
similar mixtures but of Generalized Integer Gamma (GIG) distributions, with the
same shape and rate parameters (see [3, 4] and Appendix 4 for further details
on the GIG and GNIG distributions and their probability density and cumulative
distribution functions).

Using the notation in Appendix 4 for the probability density and cumulative
distribution functions of the GNIG distribution, the near-exact distributions obtained
for W = − logΛ, for the general case of p > 2 and m > 1 and for the case of
non-integer r , will have probability density and cumulative distribution functions
respectively of the form

f ∗
W(w) =

m∗∑
�=0

π� f
GNIG

(
w

∣∣∣ r3, . . . , rpm; r + �; n− 3

n
, . . . ,

n− pm
n

;λ;pm− 1

)
,

and

F ∗
W (w) =

m∗∑
�=0

π� F
GNIG

(
w

∣∣∣ r3, . . . , rpm; r + �; n− 3

n
, . . . ,

n− pm
n

;λ;pm− 1

)
,
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for w > 0, while the near-exact probability density and cumulative distribution
functions ofΛ are respectively given by

f ∗
Λ(z) =

m∗∑
�=0

π� f
GNIG

(
− log z

∣∣∣ r3, . . . , rpm; r + �; n−3

n
, . . . ,

n−pm
n

; λ;pm−1

)
1

z
,

and

F ∗
Λ(z) =

m∗∑
�=0

π�

(
1−FGNIG

(
− log z

∣∣∣ r3, . . . , rpm; r+�; n−3

n
, . . . ,

n−pm
n

; λ;pm−1

))
,

for 0 < z < 1.
For the case p = 1 orm = 1 all we have to do is to use r given by (2.37), instead

of r given by (2.36) and replace pm by q , while for the case of p = 2 we have to
use r given by (2.38).

For integer r , all we have to do is to replace the GNIG probability density
and cumulative distribution functions by their GIG counterparts (see Appendix 4),
yielding near-exact distributions forW , for the general case, with probability density
and cumulative distribution functions respectively of the form

f ∗
W(w) =

m∗∑
�=0

π� f
GIG

(
w; r3, . . . , rpm, r + �; n− 3

n
, . . . ,

n− pm
n

, λ;pm − 1

)
,

and

F ∗
W(w) =

m∗∑
�=0

π� F
GIG

(
w; r3, . . . , rpm, r + �; n− 3

n
, . . . ,

n− pm
n

, λ;pm − 1

)
,

for w > 0, while the near-exact probability density and cumulative distribution
functions ofΛ are respectively given by

f ∗
Λ(z) =

m∗∑
�=0

π� f
GIG

(
− log z ; r3, . . . , rpm, r + �; n− 3

n
, . . . ,

n− pm
n

, λ;pm− 1

)
1

z
,

and

F ∗
Λ(z) =

m∗∑
�=0

π�

(
1−FGIG

(
− log z ; r3, . . . , rpm, r+�; n−3

n
, . . . ,

n−pm
n

, λ;pm−1

))
,
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for 0 < z < 1, and where, similar to what happens for the case of non-integer r ,
for the case p = 1 or m = 1 we have to use r given by (2.37), instead of r given
by (2.36) and for the case p = 2 to use r given by (2.38).

2.6 Numerical Study

In order to assess the performance of the near-exact distributions developed we will
use

Δ = 1

2π

∫ +∞

−∞

∣∣∣∣∣
ΦW(t)−ΦW,1(t)Φ∗(t)

t

∣∣∣∣∣ dt

with

Δ ≥ max
w

∣∣FW(w)− F ∗
W(w)

∣∣ ,
as a measure of proximity between the exact and the near-exact distributions, where
ΦW(t) is the exact c.f. of W in (2.32), (2.33) or (2.34) and FW ( · ) and F ∗

W( · )
represent respectively the exact and near-exact cumulative distribution functions of
W , corresponding respectively to ΦW(t) and ΦW,1(t)Φ

∗(t).
In Table 2.1 we may analyze values of Δ for different combinations of values of

p and m and different sample sizes.
For each combination of values of p and m, at least three different sample

sizes, that is, values of n, were used, exceeding pm by 2, 30 and 100. For larger
combinations of values of p and m, some larger values of n were also used to
illustrate the asymptotic behavior of the near-exact distributions in what concerns
the sample size. For all near-exact distributions, values of m∗ equal to 4, 6 and
10 were used, that is, we used for each case near-exact distributions matching the
first 4, 6 and 10 exact moments of W = − logΛ. Smaller values of Δ indicate a
closer agreement with the exact distribution and as such, a better performance of the
corresponding near-exact distribution.

We may see how the near-exact distributions developed show not only very sharp
approximations to the exact distribution even for very small samples, that is, for
sample sizes hardly exceeding the total number of variables involved, as well as
they show clear asymptotic behaviors not only for increasing sample sizes, but also
for increasing values of p and m, with the asymptotic behavior in terms of sample
size being apparent for larger sample sizes as the values of p and m get larger.
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Table 2.1 Values of the measure Δ for the near-exact distributions

m∗ m∗

n 4 6 10 n 4 6 10

p = 1 , m = 2 p = 1 , m = 5

4 7.93×10−3 3.10×10−3 3.22×10−5 7 1.32×10−10 5.31×10−12 2.99×10−15

32 2.52×10−7 8.54×10−10 3.36×10−14 35 1.73×10−13 6.75×10−17 6.56×10−23

102 5.71×10−10 1.75×10−13 9.18×10−20 105 7.70×10−16 2.46×10−20 2.30×10−28

p = 2 , m = 2 p = 1 , m = 10

6 4.11×10−7 1.90×10−8 2.85×10−10 12 6.41×10−13 2.03×10−15 1.47×10−19

34 3.33×10−11 5.05×10−14 4.14×10−19 40 2.01×10−14 9.00×10−18 9.11×10−24

104 1.28×10−13 2.47×10−17 5.64×10−24 110 1.82×10−16 8.64×10−21 1.88×10−28

p = 2 , m = 5 p = 2 , m = 10

12 2.33×10−14 3.21×10−15 3.43×10−19 22 1.09×10−15 7.93×10−20 2.31×10−27

40 4.86×10−15 1.79×10−17 1.90×10−23 50 5.03×10−16 1.37×10−20 2.78×10−28

110 7.37×10−17 1.75×10−20 4.27×10−28 120 1.17×10−17 5.63×10−23 4.49×10−32

p = 5 , m = 2 p = 5 , m = 5

12 2.38×10−13 1.44×10−15 1.81×10−19 27 8.86×10−17 1.09×10−21 2.34×10−31

40 3.90×10−15 8.92×10−18 9.32×10−24 55 8.10×10−17 5.71×10−22 3.54×10−32

110 1.48×10−17 8.78×10−21 2.17×10−28 125 2.76×10−18 4.42×10−24 1.36×10−35

p = 5 , m = 10 p = 10 , m = 2

52 9.99×10−20 1.18×10−25 4.47×10−37 22 8.08×10−16 4.52×10−20 1.07×10−27

80 4.46×10−19 6.12×10−25 3.02×10−36 50 3.63×10−16 7.82×10−21 1.41×10−28

150 5.89×10−20 3.02×10−26 2.00×10−38 120 8.34×10−18 3.24×10−23 2.30×10−32

p = 10 , m = 5 p = 10 , m = 10

52 9.62×10−20 1.13×10−25 4.39×10−37 102 1.01×10−22 1.14×10−29 1.09×10−43

80 4.31×10−19 5.86×10−25 2.97×10−36 130 9.85×10−22 1.90×10−28 5.36×10−42

150 5.69×10−20 2.89×10−26 1.96×10−38 200 4.69×10−22 5.55×10−29 6.24×10−43

500 1.28×10−23 3.05×10−31 1.48×10−46

2.7 Another View over the Double Compound Symmetry
Test

The following Proposition shows another possible approach over the double com-
plete symmetry test, which enables us to better place the test among other related
tests.

Proposition 2.2 To test the null hypothesisH0 in (2.4), that is, to test

H0 : Σ = (Ip ⊗ R0)+ (Jp − Ip)⊗ R1
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for R1 in (2.2) and R0 in (2.3), is equivalent to test

H0 : Γ ∗Σ(Γ ∗)′ = block − diagonal(Δ1,Δ2, . . . ,Δp), (2.39)

where

Δ1 = R0 + (p − 1)R1,

Δ2 = · · · = Δp = R0 − R1

and

Γ ∗ = Qp ⊗ Im ,

whereQp is a Helmert matrix of order p.

Proof The proof is very simple and it is only based on taking into account the
relation in (2.6) and the notation used in (2.6) and (2.7), and writing

Γ ∗Σ(Γ ∗)′ = (Qp ⊗ Im)
(
(Ip ⊗ R0)+ (Jp − Ip)⊗ R1

)
(Qp ⊗ Im)′

= (Ip ⊗ R0)+ (QpJpQ′
p − Ip)⊗ R1

= (Ip ⊗ R0)+ (p p1
p′

1
− Ip)⊗ R1

= (Ip ⊗ R0)− Ip ⊗ R1 + p diag(p
1
)⊗ R1

= block-diagonal(R0 + (p − 1)R1, R0 − R1, . . . , R0 − R1︸ ︷︷ ︸
p−1

)
.

Since the elements in Γ ∗ = Qp⊗Im are not a function of the elements inΣ but only
of the dimensions of its constituent blocks, testing H0 in (2.4) will be equivalent to
test H0 in (2.39). �

The result in Proposition 2.2 clearly shows that the double complete symmetry
test may indeed be addressed in the framework of the eigenblock-eigenmatrix
decomposition in [5], and as such, clearly related with the other tests mentioned
in that same reference. In Fig. 2.1 we may see that the present test appears as test
# 7 in a chart that tries to encompass the double complete symmetry test into a set
of other tests very much adequate to be addressed using the eigenblock-eigenmatrix
decomposition in [5], where test # 1 is addressed.

However, it happens that in this case the matrices Λα in expression (2) in
[5] do themselves have a compound or complete symmetric structure, being as
such themselves suitable to be diagonalized. This is indeed what is done in
Proposition 2.1, where Σ is actually submitted to a double diagonalization, say,
the first of which is the one in Proposition 2.2 and a second one that diagonalizes
the Δ matrices in Proposition 2.2.
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In order to keep the present manuscript focused, test 10, which, being the test
to the hypothesis of c = 0, is also a test of interest, is intended to be addressed in
future studies, together with tests 8 and 9 in Fig. 2.1.

2.8 Conclusions

We may see how the method used to handle the null hypothesis in (2.4), by first
bringing it to the form in (2.5) and then using the decomposition in (2.9), enabled the
development of very accurate near-exact distributions for the l.r.t. statistic. Actually
the technique used to bring the null hypothesis in (2.4) to its form in (2.5) is a
particular case of the eigenblock-eigenmatrix decomposition in [5].

From the results of the numerical studies carried out we see that the near-
exact distributions developed show an interesting set of nice features. They not
only have a good asymptotic behavior for increasing sample sizes but also an
extraordinary performance for very small sample sizes, as for example for sample
sizes exceeding only by 2 the overall number of variables. Furthermore, these
near-exact distributions also display a marked asymptotic behavior for increasing
values of p and m. All these features, together with their easy implementation, add
up to make the near-exact approximations developed the best choice for practical
applications of the test studied.

Moreover, given the results in Sections 9.11 and 10.11 of [1], the results
presented concerning the exact distribution of the l.r.t. statistic as well the near-exact
distributions developed may be made extensive to all cases where the underlying
random vector has an elliptically contoured distribution.

For either p = 1 or m = 1, the present test reduces to the common test for
compound symmetry or equivariance-equicorrelation developed by Wilks in [18].
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The authors would also like to thank the reviewer of this paper for many valuable and helpful
comments and suggestions.

Appendix 1: Restriction Relations Among a, b and c in Order
to Keep Σ as a Positive-Definite Matrix

In order to keep Σ as a positive-definite matrix the following restrictions apply to
the parameters a, b and c:

(I) for given a > 0 and a
1−m < b < a we need to have a+b(m−1)

m(1−p) < c <
a+b(m−1)

m

(II) for given a > 0 and a
1−p < c < a we need to have max

(
cm−a
m−1 ,

cm(1−p)−a
m−1

)
<

b < a
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(III) for given b < 0, c < 0 we need to have a > max(0, b, c, c(1−p), (c−b)m+
b − cmp, (c− b)m+ b).

These restrictions may be easily derived from the facts that a is a variance, the
matrix R0 has to be a positive-definite matrix, and all three eigenvalues λ1, λ2 and
λ3 in Proposition 2.1 have to be positive.

Appendix 2: Brief Note on the Composition and
Decomposition of Hypotheses

LetH0 andH1 denote respectively the null and the alternative hypothesis for a given
test. Let thenΩH0 andΩH1 denote respectively the parameter space for H0 and the
union of the parameter space forH0 with the parameter space for H1.

Then, to test H0 versus H1 will be the same as to test

H0b|a ◦H0a versus H1 ,

where ‘◦’ means ‘after’, that is, to test the hypothesis H0 will be equivalent to test
the sequence of hypothesesH0b|a ◦H0a, if and only if

ΩH0 ≡ ΩH0b|a , ΩH1b|a ≡ ΩH0a , ΩH1a ≡ ΩH1 ,

that is, if and only if

ΩH0 ≡ ΩH0b|a ⊂ ΩH1b|a ≡ ΩH0a ⊂ ΩH1a ≡ ΩH1(≡ Ω),

whereΩH1b|a ≡ ΩH0a is assured by the correct nesting of the hypothesesH0b|a and
H0a and whereH1b|a denotes the alternative hypothesis when testing H0b|a .

Appendix 3: Gamma Distribution and Some Related Results

We say that the random variable X follows a Gamma distribution with shape
parameter r > 0 and rate parameter λ > 0, if the p.d.f. of X is

fX(x) = λr

Γ (r)
e−λx xr−1, (x > 0)

and we will denote this fact by X ∼ Γ (r, λ). Then we know that the moment
generating function of X is

MX(t) = λr (λ− t)−r ,
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so that if we define Z = e−X we will have

E(Zh) = E
(
e−hX

)
= MX(−h) = λr(λ+ h)−r .

Appendix 4: The GIG and GNIG Distributions

We will say that a r.v. Y has a GIG (Generalized Integer Gamma) distribution of
depth p, with integer shape parameters rj and rate parameters λj (j = 1, . . . , p), if

Y =
p∑
j=1

Yj ,

where

Yj ∼ Γ (rj , λj ) , rj ∈ N, λj > 0, j = 1, . . . , p

are p independent Gamma r.v.’s, with λj �= λj ′ for all j �= j ′, with j, j ′ ∈
{1, . . . , p}.

The r.v. Y has p.d.f. and c.d.f. respectively given by (see [3]),

f GIG(y; r1, . . . , rp; λ1, . . . , λp;p) = K

p∑
j=1

Pj (y) e
−λj y , (y > 0)

and

FGIG(y; r1, . . . , rp; λ1, . . . , λp;p) = 1 −K
p∑
j=1

P ∗
j (y) e

−λj y , (y > 0)

whereK = ∏p
j=1 λ

rj
j ,

Pj (y)=
rj∑
k=1

cj,k y
k−1 , P ∗

j (y)=
rj∑
k=1

cj,k

k−1∑
i=0

yi (k−1)!
i! λk−ij

,

with

cj,rj = 1

(rj − 1)!
p∏

i=1,i �=j
(λi − λj )−ri , j = 1, . . . , p ,
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and, for k = 1, . . . , rj − 1; j = 1, . . . , p,

cj,rj−k = 1

k

k∑
i=1

(rj − k + i − 1)!
(rj − k − 1)! R(i, j, p) cj,rj−(k−i) ,

where

R(i, j, p) =
p∑

k=1,k �=j
rk

(
λj − λk

)−i
(i = 1, . . . , rj − 1) .

If Yp has a Gamma distribution with a non-integer shape parameter rp , then we will
say that the r.v. Y has a GNIG (Generalized Near-Integer Gamma) distribution of
depth p. The p.d.f. and c.d.f. of Y are, for y > 0, respectively given by (see [4])

f GNIG( y | r1, . . . , rp−1; rp; λ1, . . . , λp−1;λp;p) =

Kλ
rp
p

p−1∑
j=1

e−λj y
rj∑
k=1

{
cj,k

Γ (k)

Γ (k+r) y
k+rp−1

1F1(rp, k+rp,−(λp−λj )y)
}
,

and

FGNIG( y | r1, . . . , rp−1; rp; λ1, . . . , λp−1; λp;p) = λ
rp
p z

rp

Γ (rp+1)
1F1(rp, rp+1,−λpz)

−Kλrpp
p−1∑
j=1

e−λj y
rj∑
k=1

cj,kΓ (k)

λkj

k−1∑
i=0

zrp+iλij
Γ (rp+1+i) 1F1(rp, rp+1+i,−(λp − λj )y),

with K = ∏p−1
j=1 λ

rj
j .
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Chapter 3
Convexity of Sets Under Normal
Distribution in the Structural Alloy Steel
Standard

Kai-Tai Fang, Zhen Luo, and Yung Liang Tong

Abstract The paper is motivated by the structural alloy steel standard that has
been used in China for a long period. This standard indicates the scope of several
chemical elements in the steel and requests several mechanical properties for
qualification. Fang and Wu (Acta Math Appl Sin 2:132–148, 1979) established
the relationships between the percents of the controlled chemical elements and
testing mechanical properties by a multivariate regression model, and proposed the
algorithm for calculating qualification rate. Moreover, they proved the existence of
the optimal chemical element combination. However, the uniqueness of the optimal
solution for high dimensional case has been left. This open question is equivalent
to showing the convexity of a type of probability sets under multivariate normal
distribution. This paper proves that the open question is true.

3.1 Motivation

In 1973, the first author of this paper was invited to join an important project by the
Ministry of Metallurgy of China to review the national standard for the structural
alloy steel 20CrMnTi. In addition to controlling the carbon element, the structural
alloy steel also needs chromium (Cr), manganese (Mn), nickel (Ni), molybdenum
(Mo), silicon (Si), and titanium (Ti). The content of these elements must fall into
the scope according to the national standards. Furthermore, the five mechanical
properties such as strength, elasticity, etc., must exceed a certain threshold. Let
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X1, . . . , Xp denote the respective percents of the controlled chemical elements in
the steel, and Y1, . . . , Yq the requested mechanical properties. The national standard
indicates the range of the p elements X = {ai ≤ Xi ≤ bi, i = 1, . . . , p}.
It is reasonable to consider that the q mechanical properties have a regression
relationship with the p chemical elements, denoted as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Y1 = β10 + β11X1 + β12X2 + · · · + β1pXp + ε1,

Y2 = β20 + β21X1 + β22X2 + · · · + β2pXp + ε2,
...

Yq = βq0 + βq1X1 + βq2X2 + · · · + βqpXp + εq,

where ε1, . . . , εq are random errors. This can be expressed as

y = Bx + ε, (3.1)

where x = (1,X1, . . . , Xp)
T , y = (Y1, . . . , Yq)

T , ε = (ε1, . . . , εq)
T and B =

(βij , i = 1, . . . , q, j = 0, 1, . . . , p) is a q × (p + 1) matrix. Assume that the
random errors ε follows a multivariate normal distribution Nq(0,Σ), where Σ is
positive definite covariance matrix. It is required by the national standard that a
batch of steel material is qualified if

Yi ≥ Ti, i = 1, . . . , q, (3.2)

where Ti’s are given by the national standard. If one or more Yi < Ti , this batch of
steel is unqualified.

Let B̂ denote the least squares estimator of B. Then y ∼ Nq(Bx,Σ) and ŷ = B̂x
is an estimate of y. The domain of ŷ = B̂x, denoted by Y , is a polyhedron as the
domain of x is a rectangle X = [a1, b1] × · · · × [ap, bp] in Rp . Therefore, the
qualification rate (QR) for some given x0 = (1, x10, . . . , xp0)

T can be calculated by

QR(x0) =
∫ ∞

T1

· · ·
∫ ∞

Tq

fq(u; B̂x0,Σ)du

=
∫ ∞

T1

· · ·
∫ ∞

Tq

fq(u; ŷ0,Σ)du ≡ QR(̂y0), (3.3)

where ŷ0 = B̂x0 and the multivariate normal distribution density

fq(u; μ,Σ) = (2π)−q/2[det (Σ)]−1/2 exp{−1

2
(u − μ)T Σ−1(u − μ)}, (3.4)

with μ = B̂x0 = ŷ0. If Σ is unknown, it can be estimated from the theory of
regression analysis. For simplicity, we assume Σ is known in the paper. From
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formula (3.3) QR(x) varies over X . One wishes to find a maximum x∗ such that
QR(x∗) = maxx∈X QR(x). Let ŷ∗ = B̂x∗ ∈ Y , the latter is the domain of y.

The national standard had been used by more than ten factories all over the
country to produce the same kind of structure alloy steel 20CrMnTi. However,
the results were inconsistent. While some steel mills produced a high proportion
of qualified alloy steel, other steel mills had low proportions of qualified alloy
steel even if percents of the controlled chemical elements were in full compliance
with the national standard. For example, one steel mill can produced about 97%
qualified steel while another mill only reach 38%. Thus, many steel mills entertained
doubts about the national standard for the scope of chemical elements contents.
This standard was introduced from the Soviet Union in 1950s. At that time, no
one knew its principles, or the reasons for the inconsistent production qualified
rate. Since refining a batch of low quality structural alloy steel is very expensive,
the manufacturers not meeting the national standard would suffer heavy economic
losses. Therefore, it was important and urgent to study whether the standard being
used was reasonable or whether there was room for improvement.

In 1973, the Ministry of Metallurgy of China formed a team to review the national
standard of structural alloy steel. The team involved senior engineers in metallurgy
from different institutions and two statisticians from the Institute of Mathematics,
Chinese Academy of Sciences including the last author of this paper.

Due to the lack of theory in metallurgy, the team decided to use statistics for
checking whether the current standard is reasonable or not. They collected data from
all the plants where the structural alloy steel had been produced. It was indeed a big
dataset at the time of collection. After cleaning the data, a regression model (3.1)
can be established that can fit all the data from different plants.

For calculation of QR in (3.3), denote Σ = (σij ) and the corresponding
correlation matrix R = (ρij , i, j = 1, . . . , q). Then σij = √

σiiσiiρij , i, j =
1, . . . , q and ŷ = (ŷ1, . . . , ŷq)

T . By the transformation vi = (ui − ŷ1)/
√
σii , i =

1, . . . , q ,

QR(̂y) =
∫ ∞

w1

· · ·
∫ ∞

wq

fq(v; 0,R)dv, (3.5)

where wi = (Ti − ŷi)/√σii , i = 1, . . . , q . Fang and Wu [3] proved existence of
maximum of QR in Y . For uniqueness of maximum of QR in Y , they raised the
following conjecture:

Theorem 3.1 For given a > 0 and positive definite matrix Σ of order q, q ≥ 2,
the following equation on a convex set C in Rq

∫ ∞

x1

· · ·
∫ ∞

xq

exp

(
−1

2
tT Σ−1t

)
dt = a (3.6)

defines a function, x1 = h(x2, . . . , xq) say, and this function is concave in Rq−1.
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This conjecture was proven by Fang and Wu [3] for q ≤ 2 but remained open
for q > 2. However, their approach can’t solve the above conjecture for q > 2.
Therefore, Fang [4] proposed this open question in the journal, but without any
valid solutions so far. In fact, this conjecture is equivalent to

Theorem 3.2 For every a > 0 the set

Wa =
{

x ∈ Rq :
∫ ∞

x1

· · ·
∫ ∞

xq

nq(t; μ,Σ)dt ≥ a
}

(3.7)

is convex in Rq .

Theorem 3.2 holds true for any covariance matrix as long as it is positive definite
because there is no other conditions imposed on it in the proof in Sect. 3.2.2. The
main purpose of the paper is to give proofs for these two theorems and related
discussion. First we introduce some concepts that are useful in the proofs.

3.2 Main Results

This section gives proofs of Theorems 3.1 and 3.2 separately.

Definition 3.1 A set C ∈ Rq is convex, if for any pair x, y ∈ C and λ ∈ (0, 1) we
have

λx + (1 − λ)y ∈ C.

Definition 3.2 A real function f on a convex set C ∈ Rq is said to be convex on
C if for any pair x, y ∈ C and λ ∈ (0, 1) we have

f (λx + (1 − λ)y) ≤ λf (x)+ (1 − λ)f (y).

If −f (x) is a convex function on C, the function f (x) is called a concave function.
For q = 1 a concave function f (x) can be defined by

f (λx + (1 − λ)y) ≥ λf (x)+ (1 − λ)f (y),

where x, y ∈ C, λ ∈ (0, 1).
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3.2.1 Proof of Theorem 3.1

Lemma 3.1 Let p(x) be a continuous density function in Rq and let C is a convex
set in Rq . Denote

F̄ (x) = F̄ (x1, x2) =
∫ ∞

x1

· · ·
∫ ∞

xq

p(t)dt, (3.8)

where x = (x1 . . . , xq) ≡ (x1, x2), x2 = (x2 . . . , xq), t = (t2, . . . , tq ). For any
a > 0 let x1 = h(x2) satisfy

F̄ (x1, x2) = a. (3.9)

Then we have the following equivalence relationships:

(a) If A = {x|F̄ (x) ≥ a} is a convex set in Rq , then x1 = h(x2) is a concave
function for any a > 0;

(b) Conversely, if h(x2) is a concave function, then A = {x|F̄ (x) ≥ a} is a convex
set.

Proof Let x = (x1, x2) and y = (y1, y2) satisfy

F̄ (x1, x2) = F̄ (y1, y2) = a.

For any fixed λ ∈ (0, 1), let

z = λ(x1, x2)+ (1 − λ)(y1, y2) ≡ (z1, z2).

Then z ∈ A, so F̄ (z1, z2) ≥ a. Let z∗ = (z∗1, z2) be such that F̄ (z∗1, z2) = a.

Since for every fixed z2, F̄ (u, z2) is a nonincreasing function for u, one must have
z∗1 ≥ z1. That is

z∗1 = h(z2) = h(λx2 + (1 − λ)y2) ≥ z1 = λx1 + (1 − λ)y1 = λh(x2)+ (1 − λ)h(y2).

So h is a concave function. The proof of (b) is similar. �
Applying Lemma 3.1 to the density of multivariate normal distributionNq(0,Σ),

the assertion of Theorem 3.1 follows. By a similar approach, we have the following.

Corollary 3.1 Let p(x) be a continuous density function in Rq and let C be a
convex set in Rq . Consider the function

F(x) = F(x1, x2) =
∫ x1

−∞
· · ·

∫ xq

−∞
p(t)dt (3.10)
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on C. Let x1 = h(x2) satisfy F(x1, x2) = a > 0. Then h is a concave function if
and only if Ac = {x|F(x) ≤ a} for any a ∈ (0, 1) is a convex set.

3.2.2 Proof of Theorem 3.2

At first, we need more concepts given below. The reader can refer Eaton [2] for
more details.

Definition 3.3 A function f (x), x ∈ Rq , is called A-unimodal if for any real
number a the set {x ∈ Rq : f (x) ≥ a} is convex in Rq .

Definition 3.4 A function f (x) from Rq to [0,∞) is called log-concave if for any
x, y ∈ Rq and λ ∈ (0, 1) we have

f (λx + (1 − λ)y) ≥ f λ(x)f 1−λ(y). (3.11)

Lemma 3.2 Assume h1(x) and h2(x) are two log-concave functions on Rq and for
each x ∈ Rq the function

g(x) ≡
∫
h1(x − z)h2(z)dz (3.12)

exists. Then the function g is a log-concave function on Rq .

The proof can refer to Theorem 5.2 of Eaton [2]. The following lemma is easy to
prove.

Lemma 3.3 If f (x) is a log-concave function from Rq to [0,∞), then the function
f is A-unimodal.

Proof of Theorem 3.2 We prove that the set Wa is convex for every a ≥ 0. It is
equivalent to show that the function

Q(x) =
∫ ∞

x1

· · ·
∫ ∞

xq

nq(t; μ,Σ)dt ≥ a,

is A-unimodal from Definition 3.3. From Lemma 3.2, we have to prove that the
functionQ(x) is log-concave. Rewrite Q(x) as

Q(x) =
∫
Rq
I ([x1,∞)× · · · × [xq,∞))(t)fq(t; μ,Σ)dt,
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where fq(t) = fq(t; μ,Σ) in (3.4), I (A)(t) is the index function of the set A:
I (A)(t) = 1 if t ∈ A, otherwise I (A)(t) = 0. The functionQ(x) can be expressed
as

Q(x) =
∫
Rq
I ((−∞, 0]q)(t)(x − t)fq(t)dt.

Note that

log fq(t) = −1

2
(t − μ)T Σ−1(t − μ)+ constant

is a concave function in t, and (−∞, 0]q is a convex set in Rq and I ((−∞, 0]q)(t)
is log-concave function of t on Rq . Both the functions fq(t) and I ((−∞, 0]q)(t)
are log-concave. From Lemma 3.2, the function g is log-concave. Hence, the proof
is complete. �

3.2.3 Approach by Generalized Brunn-Minkowski Inequality

This subsection gives some discussion on the problem in the paper by the general-
ization of Brunn-Minkowski-Lusternik inequality [1] as below.

Lemma 3.4 Let f0 and f1 be two nonnegative measurable functions on Rq with
non-empty supports S0 and S1, respectively. Assume that f0 and f1, are integrable
with respect to the Lebesgue measureμn onRq . Let θ(0 < θ < 1) be a fixed number
and f be a non-negative, measurable function on Rq such that

f (x) ≥ Mα[f0(x0), f1(x1); θ ],

whenever x = (1 − θ)x0 + θx1 with x0 ∈ S0, x1 ∈ S1; −1/n ≤ α ≤ ∞. Then

∫
(1−θ)S0+θS1

f (x)dx ≥Mα∗
q

[∫
Rq
f0(x)dx

∫
Rq
f1(x)dx; θ

]
,

where

αq
∗ =

⎧⎪⎨
⎪⎩
α/(1 + qα), for −1/q < α <∞,
1/q, for α = +∞,
−∞, for α = −1/q.

(3.13)
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The generalized mean functionMα, is defined as

Mα(a0, a1; θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[(1 − θ)aα0 + θaα1 ]1/α, if 0 < α <∞ or if − ∞ < α < 0
and a0a1 �= 0,

0, if − ∞ < α < 0 and a0a1 �= 0,
a1−θ

0 aθ1 , if α = 0,
max(a0, a1), if α = ∞,
min(a0, a1), if α = −∞.

Definition 3.5 Let g be a non-negative function in Rq which satisfies

g((1 − θ)x0 + θx1) ≥Mα[g(x0), g(x1); θ ],∀θ ∈ (0, 1), x0, x1 ∈ Rq. (3.14)

Then g is called an α-unimodal function.

It is easy to see that a (−∞)-unimodal function is a A-unimodal function and
that 0-unimodal function is a log-concave function. For α1 > α2, if a function is an
α1-unimodal function then it is an α2-unimodal function. The following Lemma is
from Theorem 3 of Das Gupta [1].

Lemma 3.5 Let g be a probability density function on Rq such that for 0 < θ < 1

g(x) ≥Mα[g(x0), g(x1); θ ], (3.15)

whenever x = (1−θ)x0+θx1 and x0, x1 are in the support S of g and − 1
q

≥ α ≥ ∞.
Then for any two non-empty measurable sets A0 and A1 in Rq

∫
(1−θ)A0+θA1

g(x)dx ≥Mα∗
q

[∫
A0

g(x)dx,
∫
A1

g(x)dx; θ
]
, (3.16)

where α∗
q is defined in (3.13), if − 1

q
≤ α ≤ 0, or 0 < α ≤ ∞ and either bothA0 ∩S

and A1 ∩ S are non-empty or both are empty.

Take

A0 = [x0
1 ,∞)× · · · × [x0

q,∞)
A1 = [x1

1 ,∞)× · · · × [x1
q,∞).

Then

(1 − θ)A0 + θA1 = [(1 − θ)x0
1 + θx1

1 ,∞)× · · · × [(1 − θ)x0
q + θx1

q,∞).

From Lemma 3.5 we have the following corollary.
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Corollary 3.2 Assume that f (x) is an α-unimodal probability density function in
Rq , then

g(x) =
∫

[x1,∞)×···×[xq,∞)
f (t)dt

is an α∗
q -unimodal function.

This corollary can be used in the proof Theorem 3.2.
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Chapter 4
Comments on Maximum Likelihood
Estimation and Projections Under
Multivariate Statistical Models

Katarzyna Filipiak, Mateusz John, and Augustyn Markiewicz

Abstract Under the multivariate model with linearly structured covariance matrix
with unknown variance components and known mean parameters (Szatrowski, Ann
Stat 8:802–810, 1980) showed that the maximum likelihood estimators of variance
components have explicit representation if and only if the space of covariance matrix
is a quadratic subspace. The aim of this paper is to rewrite these results for models
with unknown expectation and to give sufficient conditions for maximum likelihood
estimator of covariance matrix to be a projection of the maximum likelihood
estimator of unstructured covariance onto the space of structured matrices. The
results will be illustrated by examples of structures suitable for multivariate models
with general mean, growth curve models as well as doubly multivariate models.

4.1 Introduction and Preliminaries

Let Y be the n × p matrix of observations of a feature in p time points on n
independent experimental subjects, with expectation E(Y) = 1nμ′, where μ is a
p-dimensional vector of means (the same for each subject), and with covariance
matrixD(Y) = � ⊗ In, where � is a p×p symmetric positive-definite covariance
matrix of time points (the same for each subject) and ⊗ denotes the Kronecker
product. Such a model will be called standard multivariate model.

In the literature several specific structures of � are considered, linear, such
as e.g., compound symmetry (CS), (banded, circular) Toeplitz, or nonlinear, such
as e.g., first-order autoregression (AR(1)). Identification of the covariance matrix
structure as well as its estimation are commonly studied recently; cf. Cui et al. [1],
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Filipiak, Klein [4], Filipiak et al. [9], Filipiak et al. [10], John, Mieldzioc [14], Lin
et al. [18]. Note that the specification of the covariance structure very often allows
to overcome the overparameterization problem which appears if p ≥ n.

Besides a very general expectation structure, we may also assume e.g., a growth
curve model, in which E(Y) = XBZ, where X and Z are some known design
matrices of proper size and B : n1 × p1 is a matrix of unknown parameters.
Estimation of parameters in the growth curve model with unstructured covariance
matrix was considered e.g., by [15], while under assumption of CS covariance
structure by e.g., Kopčová, Žežula [16] or under the assumption of CS and AR(1)
covariance structure by e.g., Žežula [31].

Each model can be further extended for doubly-multivariate data, in which
instead of one, q features are observed in p time/location points on n independent
experimental subjects. Then, the observations can be presented in the form of three-
indices n×q×pmatrix (tensor of order three),� . A q×pmatrix of means of each
subject is usually denoted by M. A qp × qp covariance matrix of observations (the
same for each subject) may have various structures, depending on the character of
experiment. For example, if the covariance of features, say �, does not change with
time/location points, and the covariance of time/location points, �, does not change
with features, the covariance D(� ) = � ⊗ � ⊗ In and such a structure is often
called separable. Some estimators of a separable structure under the model with
general mean were given e.g., by Lu and Zimmerman[19], by Filipiak et al. [7] in
more compact form, or by Srivastava et al. [26] with the assumption of uniqueness
of Kronecker product. Obviously, the matrices � and � may remain unstructured,
or can have some structure (for example one of the mentioned above). If one of
the component of the Kronecker product, say �, is for example CS, then �CS ⊗ �

is a natural extension of a classical CS covariance matrix of multivariate data for
doubly-multivariate case.

Also some other separable covariance matrices with components structured in a
specific way are considered in the literature; see e.g., Hao et al. [13], Szczepańska
et al. [29].

Another covariance structure of doubly-multivariate data commonly studied in
the literature is the block exchangeable structure (BCS), being a generalization of
compound symmetry into the block case; cf. Olkin [22], Roy et al. [23], Roy et
al. [24]. It means that any change of columns of the observation matrix of the ith
subject does not change the covariance matrix. In contrast to separability, block
exchangeable covariance structure remains linear. In the same way Toeplitz matrices
can be extended into the doubly-multivariate case. The MLEs of block-circular
Toeplitz were proposed e.g., by Olkin [22], Szatrowski [28, p. 808].

In this paper we are mainly interested in linear structures of the covariance
matrix. Necessary and sufficient conditions for the existence of the maximum
likelihood estimators (MLEs) of a linearly structured covariance matrix in explicit
form, and for obtaining this explicit form in one iteration, under the model with
known expectation, is given by Szatrowski [28]. In this paper we formulate sufficient
conditions to ensure explicit representation of the MLE of linear covariance
structure under the model with unknown expectation. Note that, in the case of
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separable structures, even if one component of separability is linear, the Kronecker
product is not linear anymore, which often causes problems with estimation.

Similarly as in the standard multivariate model, in doubly-multivariate case some
specific structure of expectation can be also considered. Estimation of unknown
parameters under the generalized growth curve model with separable structure was
considered by e.g., Filipiak, Klein [3], Srivastava et al. [27].

It should be pointed out that the number of unknown parameters to be estimated
in unstructured covariance matrix increases very rapidly with the increase of either
the number of features q , or the number of time/location points p. Moreover, when
the sample size is not large enough, the sample covariance matrix or the MLE
of true covariance matrix is singular or ill-conditioned. To avoid this problem,
researchers usually rely on the structured covariance matrices which depend on a
smaller number of unknown parameters. The problem, though, is to recognize the
true structure using some regularization techniques: graphical, e.g., neural networks
or mapping (Gilson et al. [12]) or graphical lasso algorithm (Devijver, Gallopin
[2]) as well as algebraic (see e.g., Cui et al. [1], Lin et al. [18] for multivariate
data, and Filipiak, Klein [4], Filipiak et al. [10] for doubly-multivariate data) can be
used. On the other hand in many experiments the underlying structure follows from
experimenter a-priori knowledge about the variables behavior which comes e.g.,
from the nature of the data. Nevertheless, in both cases the structure (regularized
or a-priori identified) should be then tested. Filipiak et al. [5], Filipiak et al. [6]
and Roy et al. [24] compared two procedures (based on likelihood ratio and Rao
score) for testing one of the following structures: separability, separability with one
component additionally structured as CS or AR(1), or BCS.

Since in the testing procedures very often the MLEs of unknown parameters are
required, the normality of observations is assumed and the models are respectively
denoted as

Y ∼ Nn,p
(
1nμ′, In,�

)
, (4.1)

Y ∼ Nn,p (XBZ, In,�) , (4.2)

Y ∼ Nn,qp
(
1nvec′ M, In,�

)
(4.3)

with � ∈ G is a specific structure of relevant order and Y in (4.3) being a
transformation of a third order tensor � into the n× pq matrix; cf. Filipiak, Klein
[3] for more details. We call the models (4.1), (4.2) and (4.3) respectively standard
multivariate model, growth curve model and doubly multivariate model.

Zehna [30] showed the invariance property of MLE. Briefly stating it was proven,
that if θ̂ is the MLE of θ, then for arbitrary function u, not necessarily one-to-
one, u(̂θ) is the MLE of u(θ). Thus, if by S we denote the MLE of unstructured
covariance matrix, one can expect that the MLE of each structure should be
expressed as a function of S. The aim of this paper is to propose such a function
(if exists in direct form) and to verify, under which conditions the MLE can be
expressed as the projection of S onto the space of covariance structures.
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Recall, that the projection of S onto the m-dimensional linear space with
orthonormal basis B can be expressed as

m∑
i=1

〈S,Bi〉Bi ,

where Bi ∈ B, or as the minimum of Frobenius norm of the difference between S
and the set of structures, G , that is

min
Γ∈G

||S − �||2F

where ||A||2F = tr(AA′).
Note that, in the literature in which the MLEs of covariance structures are

considered, it usually does not matter whether the MLE has an explicit form or not.
The question is whether the likelihood function attains the maximum in the interior
of the parameter space. The aim of this paper is to formulate conditions under which
the MLEs are projections of some matrix onto the covariance structures space, and
thus possessing an explicit form which in turn allows for the MLE to be obtained in
a single iteration.

We now give the notations used throughout the paper. The orthogonal projection
onto the column space of a matrix A is denoted by PA, that is PA = A(A′A)−A′,
while its orthocomplement is QA = I−PA, where I is the identity matrix of relevant
order. In the very specific situation when A = 1n, we use the notations Pn and Qn.
For a symmetric positive definite (p.d.) B we denote PA;B = A(A′BA)−A′B and
QA;B = I − PA;B . Vectorization of a matrix A, that is rearrangement of A into the
vector by writing one column under another in a sequence is denoted by vec A.

The block trace and partial trace operators on pq×pq block matrix A, are defined
respectively as the sum of q × q diagonal blocks of A, denoted BTrq(A), and the
matrix with q × q blocks replaced by their traces, denoted PTrq(A); cf. Filipiak et
al. [8]. Similarly, the notation BSumq(A) is used for the sum of all q × q blocks of
A.

This paper is organized as follows. Under the standard multivariate model (4.1)
with a linearly structured covariance matrix, the sufficient conditions for MLE
being the projection are presented as Theorem 4.1 in Sect. 4.2. The theorem is
then illustrated by several examples. In Sect. 4.3 the MLE of a separable covariance
structure is compared with projection under the growth curve model (4.2). Finally, in
Sect. 4.4, the thesis of Theorem 4.1 is applied to the doubly-multivariate model (4.3).
It is shown that, if in the standard multivariate model the linear structure coefficients
(scalars) are replaced by matrices and matrix multiplications are replaced by
Kronecker products, then all results can be extended to a doubly-multivariate model.
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4.2 Parameterization, MLE and Projection Under
the Standard Multivariate Model

In the mixed model theory, that is y = Xβ + ∑k
i=1 Ziβi + e, it is usually assumed

that the covariance matrix has a linear structure, say V = ∑k
i=1 σiVi , with unknown

parameters σi and known symmetric p.d. matrices Vi . Such a model is called
variance components model and the problem under consideration is the estimation
of σi . Note that, if in the above model every σi > 0 and Vi are pairwise orthogonal,
then V is p.d.

In the multivariate model E(Y) = XB, which can be transformed by vectoriza-
tion to the univariate case, that is E(y) = Xβ (where y = vec Y and β = vec B)
with D(y) = �, the problem of estimating the covariance matrix can be expressed
in similar way as in variance components model as long as � has linear structure
depending on the vector of coefficients σ.

It is known that if the projection onto the space of expectation commutes
with the covariance matrix, then the likelihood equation for expectation does not
depend on the covariance matrix and thus its solution is an ordinary least squares
estimator. Indeed, in the model with covariance matrix V the likelihood equation for
expectation has the form

X′V−1(y − Xβ) = 0,

which can be equivalently expressed as

PXV−1(y − Xβ) = 0,

and if PXV = VPX the MLE of β is obtained as

Xβ̂ = PXy.

Summing up, the Theorem 4 by Szatrowski [28] can be rewritten for unknown
expectation satisfying commutativity assumption as follows.

Proposition 4.1 Let y be a normally distributed random vector, with E(y) = Xβ

and covariance matrix V = V(σ) belonging to the linear space, V , with unknown
vector of linear combinations coefficients, σ. If PXV = VPX, then the following two
conditions are equivalent:

(1) there exists an MLE of σ in explicit form;
(2) V is a quadratic subspace, that is if V ∈ V then V2 ∈ V .

Moreover, the following theorem holds.
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Theorem 4.1 Let y be a normally distributed random vector, with E(y) = Xβ and
covariance matrix V = V(σ) belonging to the linear space, V , with unknown vector
of linear combinations coefficients, σ. Assume, that

PXV = VPX and V is a quadratic subspace.

Then the MLE of V is the projection of S onto V , where S is the MLE of an
unstructured covariance matrix, that is S = QXyy′QX.

Proof From the commutativity condition and V being a quadratic subspace we have
from Proposition 4.1 that the MLE of σ has an explicit form. Now, since V2 ∈ V ,
also V−1 ∈ V (cf. Seely [25]), and hence V−1 is a linear combination of the basis
vectors ofV , with the vector of combination coefficients, say α. If k is the dimension
of V and if we denote by Vi the elements of orthonormal basis of V , then the log-
likelihood function can be expressed as

lnL(α) = −n
2

ln(2π)+ 1

2
ln

∣∣∣∣∣∣
k∑
i=1

αiVi

∣∣∣∣∣∣ − 1
2

(
y − Xβ̂

)⎛⎝ k∑
i=1

αiVi

⎞
⎠(

y − Xβ̂
)′
,

and the derivatives with respect to each αk gives the likelihood equations of the form

Tr

[(∑
αiVi

)−1
Vj

]
= Tr

(
SVj

)
.

Since
(∑
αiVi

)−1 = ∑
σiVi and from orthonormality Tr

(
ViVj

) = 0 for i �= j

and Tr
(
V2
i

) = 1, we obtain

σ̂i = Tr (ViS) .

On the other hand, projection of S onto the space V gives

V =
∑

〈S,Vi 〉Vi =
∑

Tr (SVi )Vi

which ends the proof. �
Let us consider now model (4.1), whose vectorization gives

vec Y ∼ Nnp
(
vec(1nμ′),� ⊗ In

)
. (4.4)

Since vec(1nμ′) = (Ip ⊗ 1n)μ and PIp⊗1n = Ip ⊗ Pn, we have PIp⊗1n(� ⊗ In) =
� ⊗ Pn = (� ⊗ In)PIp⊗1n , and by analogy to variance components models the
MLE of μ does not depend on �. Moreover, (Ip ⊗ 1n) vec μ̂′ = PIp⊗1n vec Y
which implies 1nμ̂′ = PnY and, after multiplication by 1′

n, nμ̂
′ = 1′

nY giving
finally μ̂ = 1

n
Y′1n, the sample mean.
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Let us assume that � has CS structure, that is

� = �CS = σ 2
[
(1 − �)Ip + �1p1′

p

]
. (4.5)

Then the parameter � is a correlation coefficient and should belong to the interval
(−1/(p − 1), 1) (to assume positive definiteness of �CS). In such a case the
maximum likelihood estimators have the form

σ̂ 2 = 1

p
TrS, �̂ = 1

p − 1

(
1′
pS1p
TrS

− 1

)
,

with S = 1
n

YQnY′, the MLE of unstructured �.
Note, that the equivalent form of �CS is

�CS = αIp + β(1p1′
p − Ip). (4.6)

The MLEs of the parameters α and β can then be easily computed as

α̂ = 1

p
TrS, β̂ = 1

p(p − 1)

(
1′
pS1p − TrS

)
,

with S defined as above. Moreover, from this parameterization it can be easily seen
that the space of CS matrices is linear, it is a quadratic subspace as �2

CS is also a

CS matrix and the matrices 1√
p

Ip and 1√
p(p−1)

(
1p1′

p − Ip
)

forms the orthonormal

basis. Thus, due to Theorem 4.1, the MLEs of α and β should be the projections of
S onto the space generated by Ip and 1p1′

p− Ip. Indeed, the projection has the form

�̂CS = 〈S, 1√
p

Ip〉 1√
p

Ip + 〈S, 1√
p(p − 1)

(
1p1′

p − Ip
)
〉 1√
p(p − 1)

(
1p1′

p − Ip
)

= 1

p
Tr S · Ip + 1

p(p − 1)
Tr

[
S
(

1p1′
p − Ip

)] (
1p1′

p − Ip
)

= 1

p
Tr S · Ip + 1

p(p − 1)

(
1′
pS1p − Tr S

) (
1p1′

p − Ip
)
. (4.7)

Another parameterization is the following:

�CS = γPp + δQp. (4.8)

In such a case the MLEs of γ and δ computed from log-likelihood function are of
the form

γ̂ = 1

p
1′
pS1p, δ̂ = 1

p(p − 1)

(
p TrS − 1′

pS1p
)
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with S defined as above. Similarly as in parameterization (4.6) it can be seen that
the space of CS matrices is a quadratic subspace, and Pp and 1√

p−1
Qp form an

orthonormal basis. Thus, again from Theorem 4.1 it follows that

�̂CS = 〈S,Pp〉Pp + 〈S, 1√
p − 1

Qp〉 1√
p − 1

Qp

= Tr(SPp)Pp + 1

p − 1
Tr(SQp)Qp

= 1

p
1′
pS1p Pp + 1

p(p − 1)

(
p Tr S − 1′

pS1p
)

Qp.

Obviously, all the different parameterizations give the same MLE of the covariance
matrix, that is

p(p − 1)�̂CS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(p − 1)TrS 1′
pS1p − TrS 1′

pS1p − TrS . . . 1′
pS1p − TrS

1′
pS1p − TrS (p − 1)TrS 1′

pS1p − TrS . . . 1′
pS1p − TrS

...
...

. . .
...

...
...

. . .
...

1′
pS1p − TrS 1′

pS1p − TrS . . . (p − 1)TrS

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

which follows from invariance property of MLE shown by Zehna [30]. Thus, all
the parameterizations can be expressed by e.g., γ̂ and δ̂. Observe, however, that the
complexity of procedures to obtain estimators from log-likelihood function differ
with the parameterization. Note that (4.5) gives nonlinear likelihood equations while
in the remaining parameterizations it is enough to solve linear equations. Moreover,
in view of Theorem 4.1 it is not necessary to differentiate log-likelihood, but it is
enough to project S, the MLE of unstructured �, onto the relevant space.

It should be also observed that the basis in parameterization (4.8) is orthogonal
in the strong sense, that is PpQp = 0, and both matrices are idempotent with Pp +
Qp = Ip. By analogy to the variance components model, the estimators γ̂ and δ̂
are nonnegative. Due to [25, Lemma 6] the necessary and sufficient condition for
the existence of such an orthogonal basis is commutativity and quadracy of this
subspace, that is for V1,V2 ∈ V we have V1V2 = V2V1 and Vi ∈ V , i = 1, 2. It
can be easily seen that the space of CS matrices is a commutative quadratic subspace
and hence the existence of a relevant basis follows.

A similar situation can be observed for circular Toeplitz covariance structure,
that is

�CT = α0Ip +
�p/2�∑
i=1

αi(Hi + H′i )
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if p is odd and

�CT = α0Ip +
p/2−1∑
i=1

αi(Hi + H′i )+ αp/2Hp/2

if p is even, where H is a binary matrix with 1s on the first supradiagonal and
hp1 = 1. Then the MLE of αi , i = 0, 1, . . . , �p/2�, is an average of elements
from ith diagonal of S, the MLE of unstructured �; cf. Szatrowski [28, p. 808].
Observe that we can also obtain these estimators from Theorem 4.1, as the space of
CT matrices is a quadratic subspace and matrices 1√

p
Ip and 1√

2p
(Hi + H′i ) (and

additionally Hp/2 for even p) form an orthonormal basis. Indeed

�̂CT = 〈S, 1√
p

Ip〉 1√
p

Ip +
�p/2�∑
i=1

〈S, 1√
2p
(Hi + H′i )〉 1√

2p
(Hi + H′i )

= 1

p
Tr S · Ip + 1

2p

�p/2�∑
i=1

Tr
[
S(Hi + H′i )

]
(Hi + H′i )

if p is odd and

Ψ̂CT = 〈S, 1√
p

Ip〉 1√
p

Ip

+
p/2−1∑
i=1

〈S, 1√
2p
(Hi + H′i )〉 1√

2p
(Hi + H′i )+ 〈S, 1√

p
Hp/2〉 1√

p
Hp/2

= 1

p
Tr S · Ip + 1

2p

p/2−1∑
i=1

Tr
[
S(Hi + H′i )

]
(Hi + H′i )+ 1

p
Tr

(
SHp/2

)
Hp/2

if p is even.
Note that the above basis is orthogonal in weak sense, that is the trace of the

product of two different basic matrices is equal to zero. Nevertheless, the space
of circular Toeplitz matrices can be also expressed in terms of unique idempotent
and pairwise orthogonal matrices (cf. Marin, Dhorne [20]) which follows from
the commutativity of this space (cf. Seely [25]). Observe that when estimating a
structured � in a multivariate model, the parameterization is not important (only
orthogonality in weak sense is required), while in the case of variance components
models nonnegative estimates of variance components are of interest and thus
parameterization by unique idempotent basis should be more convenient. Summing
up, commutativity of the space of covariance matrix is not a necessary condition for
MLE to be a projection.
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The last example which we present in this section is a block diagonal covariance
structure,

�d =
(

�1 0
0 �2

)
,

with �i , i = 1, 2, being symmetric p.d. matrices. Obviously this space is a quadratic
subspace, but not commutative. Due to Theorem 4.1 we have that the minimum of
the Frobenius norm of S − �d is obtained for �̂i equal to relevant diagonal blocks
of S.

The invariance property of MLE given by Zehna [30] shows that each function
of MLE is also the MLE of this function. Thus, if the function transforming
unstructured � into the structured one is known (for example the projection), the
MLE of the structure can be obtain by application of this function to S, the MLE
of unstructured �. On the other hand, due to Szatrowski [28, Theorem 4] or due to
Proposition 4.1 of this paper, explicit solution exists only under special conditions,
and thus projection (which gives explicit form of MLE) can be used if the space
of covariance structures is a quadratic subspace. If the space is not a quadratic
subspace, projection does not preserve definiteness (cf. Fuglede, Jensen [11]).

As an example, let us consider a banded version of a CT matrix, that is

�CT = α0Ip +
k∑
i=1

αi(Hi + H′i ),

with k < �p/2�. Obviously, this space is not quadratic. The projection of S onto this
space has the relevant form but does not need to be p.d. As the example let us assume
that S is a 4 × 4 symmetric p.d. matrix with 1 on the diagonal and − 1

3 < a < 1
off-diagonal. Then the projection of S onto the space of tridiagonal circular Toeplitz
matrices has the form

⎛
⎜⎜⎜⎝

1 a 0 a
a 1 a 0
0 a 1 a
a 0 a 1

⎞
⎟⎟⎟⎠ ,

which is indefinite for a > 0.5. A similar situation appears when we consider
non-circular Toeplitz matrices (not necessarily banded); cf. Filipiak et al. [9]. One
possible function transforming an unstructured covariance matrix into a structured
one would be a projection onto the cone of symmetric p.d. structured matrices.
However, such a transformation may not need to have explicit representation and,
moreover, the cone of symmetric p.d. matrices is not a closed cone and thus the
projection onto the closure of the cone may give a nonnegative definite (singular)
matrix or a projection onto the open cone may result in an ill-conditioned matrix.
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4.3 MLE and Projection Under the Growth Curve Model

Let us consider a growth curve model with

E (Y) = XBZ,

with Y : n × p being a matrix of observations, X : n1 × p1—matrix of unknown
parameters, and A : n × n1 and B—known design matrices. Vectorizing of this
model gives

E(y) = (Z′ ⊗ X)β,

where y = vec X and β = vec B. To be consistent with the variance components
model defined in the previous section, let us assume that there is no structure for
the covariance matrix, that is D(y) = �, with � being symmetric, positive definite.
Then, the MLE of � is of the form S = QZ′⊗Xyy′QZ′⊗X.

Assume now that the covariance matrix has the form of a Kronecker product,
� ⊗ In. Then, the MLE of � is of the form

S∗ = 1

n

(
Y′QXY + QZ′;S̃−1Y′PXYQ′

Z′;S̃−1

)
,

where S̃ = Y′QXY; cf. Kollo, von Rosen [15], Kopčová, Žežula [16], Ohlson, von
Rosen [21].

Let us now consider � = �CS and assume that 1p belongs to the column space
of Z′. Then the MLEs of CS coefficients can be expressed through the reduced form
of the above MLE, that is through

S∗∗ = 1

n

(
Y′QXY + QZ′Y′PXYQZ′

)
,

cf. Žežula [31].
Let us now project S, the MLE of completely unstructured �, onto the space of

Kronecker product matrices, � ⊗ In. Then we shall minimize the Frobenius norm
of S−� ⊗In. Differentiating this function with respect to � we obtain the equation

n vec � = (Ip2 ⊗ vec′ In)(Ip ⊗ Kp,n ⊗ In) vec S,

with Kp,n being a commutation matrix; cf. Kollo, von Rosen [15]. It can be seen
from Filipiak et al. [8, Lemma 2.9] that the right hand side of the above can be
expressed as a partial trace of S. Thus we obtain

n� = PTrn S.
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If we now represent S in terms of the original observation matrix instead of its
vectorized version, and if we use Lemma 2.8 of Filipiak et al. [8], we get

PTrn S = Y′Y − PZ′Y′PXY − Y′PXYPZ′ + PZ′Y′PXYPZ′

= (
Y′QXY + QZ′Y′PXYQZ′

) = n S∗∗.

Similarly as in previous section, if we project now S∗∗ onto the space of CS matrices,
we obtain the MLE of �CS given e.g., in Žežula [31].

Observe that the space of Kronecker products of symmetric p.d. matrix with
identity, � ⊗ In, is a quadratic subspace. However, there is no commutativity
between the space of expectation and �. Nevertheless, the MLE of � has an explicit
form; cf. Kollo, von Rosen [15]. However, an orthogonal projection of the MLE of
unstructured � onto the space generated by � ⊗ In is not an MLE of � ⊗ In. It
shows that commutativity of the expectation space and covariance matrix might be
a necessary condition for MLE to be a projection of S onto the space of covariance
structures.

Let us assume now that � is additionally structured as �CS and that the condition
1p ∈ C (Z′) holds. Then �CS commutes with PZ′ (since PZ′1p = 1p) and
is obviously a quadratic subspace. Therefore, the conditions of Theorem 4.1 are
satisfied and

�̂CS = 〈S∗∗, 1√
p

Ip〉 1√
p

Ip + 〈S∗∗, 1√
p(p − 1)

(
1p1′

p − Ip
)
〉 1√
p(p − 1)

(
1p1′

p − Ip
)

= 1

p
Tr S∗∗ · Ip + 1

p(p − 1)
Tr

[
S∗∗ (1p1′

p − Ip
)] (

1p1′
p − Ip

)

= 1

p
Tr S∗∗ · Ip + 1

p(p − 1)

(
1′
pS∗∗1p − Tr S∗∗) (1p1′

p − Ip
)
,

which gives the same formula as (4.7) with S replaced by S∗∗.

4.4 Doubly Multivariate Models

In this section we consider the doubly-multivariate model (4.3). For this model
E(Y) = 1n vec′ M, with M : q × p being a mean matrix of each subject.
Assume now that the covariance matrix of y = vec Y is � ⊗ In. Then, similarly
as in model (4.4), the space of expectation commutes with the space of covariance
matrices, � ⊗ In generates a quadratic subspace. Hence, due to Theorem 4.1 the
MLE of � can be expressed as the projection of

S = QIqp⊗1n vec y vec′ y QIqp⊗1n = vec(QnY) vec′(QnY),
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the MLE of unstructured covariance matrix, onto the space of Kronecker products,
that is (by analogy to considerations from previous section, with the use of
Lemmas 2.9 and 2.8 of Filipiak et al. [8])

�̂ = 1

n
Y′QnY.

Assume now that � is additionally structured as separability, that is
� = � ⊗ �. Note that this space is not linear anymore, and thus, even if (� ⊗ �)2

still belongs to the space of separable structures, it is not a quadratic subspace (it
is just a quadratic set). In such a case Theorem 4.1 is not applicable. It should be
pointed out, however, that the MLEs of � and � do not exist in explicit form, but
they can be expressed in terms of �̂ = S# as

q �̂ = PTrq
[(

Ip ⊗ �̂
−1

)
S#

]
, p �̂ = BTrq

[(
�̂

−1 ⊗ Iq
)

S#
]

(cf. Filipiak et al. [7]). Obviously, if we assume additional structure for � or �,
even the simplest (but different than proportional to identity and p �= 1, q �= 1),
separable structure remains nonlinear. It should be noted that to determine the MLEs
of unstructured separability components, iterative procedures are usually involved.
However, for (without loss of generality) � = �CS, also non-iterative procedure can
be proposed to find solutions of likelihood equations; for more details see Filipiak
et al. [7].

Assume now that the covariance matrix � has a BCS structure, that is

�BCS = Ip ⊗ �0 +
(

1p1′
p − Ip

)
⊗ �1,

where the q×q matrices �0 and �1 represent covariance matrices of the q response
variables at any given time/location point, and between any two time/location points.
To ensure positive definiteness of � it must be assumed that �0 is a symmetric p.d.
matrix, while �1 only has to be symmetric. To verify positive definiteness as well as
to determine the maximum likelihood estimators of � it is convenient to work with
another parameterization, namely

� = Qp ⊗ 	1 + Pp ⊗ 	2,

where 	1 = �0 − �1 and 	2 = �0 + (p − 1)�1. To ensure positive definiteness it
is enough now to assume positive definiteness of 	1 and 	2.

Observe that in this case the expectation space commutes with BCS covariance
structure, and BCS is a quadratic subspace. Thus, due to Theorem 4.1, the MLE of
�BCS is an orthogonal projection of S# onto the space of BCS matrices. Indeed, if
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we differentiate the Frobenius norm of S# − �BCS with respect to 	1 and 	2, we
obtain the equations

⎧⎨
⎩
(p − 1) vec 	1 =

(
vec′ Qp ⊗ Iq2

)
(Ip ⊗ Kp,q ⊗ Iq ) vec S#

vec 	2 =
(

vec′ Pp ⊗ Iq2

)
(Ip ⊗ Kp,q ⊗ Iq) vec S#,

which from Corollary 2.10 and Lemma 2.7 of [8] is equivalent to

{
(p − 1)	̂1 = BTrq

[(
Qp ⊗ Iq

)
S#

]
	̂2 = BTrq

[(
Pp ⊗ Iq

)
S#

]
.

These estimators are exactly the same as the MLEs obtained by differentiating log-
likelihood function, presented e.g., by Roy et al. [24]. Note that the estimators also
can be expressed in terms of �̂0 and �̂1 as

�̂0 = 1

p
BTrq S# and �̂1 = 1

p(p − 1)

(
BSumqS# − BTrq S#

)
.

Summing up, to obtain the MLEs of blocks of BCS covariance matrix it is enough
to average all diagonal and all off-diagonal blocks of S#, which is also confirmed by
Szatrowski [28].

It is worth noting that the separable structure �CS ⊗ � is a special case of BCS,
with the additional parameter space restriction �1 = ��0.

In a similar way we may determine the MLE of block circular Toeplitz (BCT)
structure, in the which scalars αi of CT structure are replaced by matrices Ai and the
standard matrix products by Kronecker products (with the order of components as
in BCS structure). Note that the space of BCT structures is a quadratic subspace and
thus again Theorem 4.1 can be applied. Again, by projecting S# onto the space of
BCT matrices we obtain that the MLE of Ai from BCT structure can be expressed
as the average of blocks of S# from ith supra- and sub-diagonal.

Observe that the space of covariance structures of the form

k∑
i=1

Mi ⊗ �i , (4.9)

where Mi are symmetric idempotent and pairwise orthogonal matrices (Mi are
orthogonal in strong sense) with

∑k
i=1 Mi = Ip and �i are symmetric matrices,

is a quadratic subspace. Therefore, as long as commutativity of expectation space
and the space of such covariance structures holds, Theorem 4.1 can be applied.
Note that the mentioned structures, BCS and BCT are of the form (4.9). Moreover,
when for example the three-level multivariate model with doubly BCS covariance
structure is considered (see e.g., Kozioł et al. [17]), the MLE of covariance matrix
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can be obtained by a simple projection of a covariance matrix being an MLE of
unstructured covariance matrix onto the space of doubly BCS structures.

Note that the structures of the form (4.9) are quadratic, but not commutative,
subspaces, unless the order of symmetric �i is equal to 1. It follows from the
fact that two arbitrary symmetric matrices are not necessarily commuting. We may
also see the lack of commutativity in a basis. The basis of (4.9) is a Kronecker
product of every Mi , i = 1, . . . , k, and the basis of symmetric matrices, which
is not orthogonal in the strong sense. From Lemma 6 of Seely [25] these two
conditions are equivalent. Summing up, it can be seen that commutativity of the
space of covariance structures is not a necessary condition for the existence of
explicit representation of the MLE of a covariance matrix.
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Chapter 5
Growth Curve Model with Orthogonal
Covariance Structure

Miguel Fonseca and Martin Singull

Abstract In this paper we study the Growth Curve model with orthogonal covari-
ance structure and derive estimators for all parameters. The orthogonal covariance
structure is a generalization of many known structures, e.g., compound symmetry
covariance structure. Hence, we compare our estimators with earlier results found
in the literature.

5.1 Introduction

Multivariate repeated measures data, which correspond to multiple measurements
that are taken over time on each unit or subject, are common in various applications
such as medicine, pharmacy, environmental research, engineering, business and
finance etc. The Growth Curve model is a generalization of the multivariate analysis
of variance model (MANOVA) and can be used to model repeated measures data
with a mean which, for example, is polynomial in time.

The Growth Curve model introduced by Potthoff and Roy [15] has been
extensively studied over many years. It is a generalized multivariate analysis of
variance model (GMANOVA) which belongs to the curved exponential family. The
mean structure for the Growth Curve model is bilinear in contrary to the ordinary
MANOVA model where it is linear. For more details about the Growth Curve model
see e.g., [7, 24].

For the Growth Curve model, when no assumption about the covariance matrix
was made, Potthoff and Roy [15] originally derived a class of weighted estimators
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for the mean parameter matrix. Khatri [4] extended this result and showed that
the maximum likelihood estimator is also a weighted estimator. Under a certain
covariance structure, Rao [17] and Reinsel [19] have shown that the unweighted
estimator is also the maximum likelihood estimator (MLE). Furthermore, Chinchilli
and Walter Jr [2] have derived the likelihood ratio test for this type of covariance
matrix.

In the MANOVA model, when dealing with measurements on k equivalent
psychological tests, Wilks [26] was one of the first to consider patterned covariance
matrices. A covariance matrix with equal diagonal elements and equal off-diagonal
elements, i.e., a so-called compound symmetry (also known as uniform or intraclass)
covariance structure, was studied. For the Growth Curve model, Khatri [5] derived
the likelihood ratio test for the compound symmetry covariance structure and Lee
[9] considered the model for prediction purposes.

More recently, Klein and Žežula [6], Žežula [31], and Ye and Wang [27] used
the unbiased estimating equations to find estimators for the compound symmetry
covariance structure, and Kopčová and Žežula [8] compared these with the MLEs
for the structure under normality. Also, Srivastava and Singull [22] considered
testing compound symmetry covariance structure under a Growth Curve model in
high dimension.

Furthermore, Ohlson and von Rosen [14] gave a general estimation procedure
for the class of linearly structured covariance matrices which can be applied to the
compound symmetry structure. The idea in [14] was applied to the extended Growth
Curve model by Nzabanita et al. [12, 13].

Closely connected to the intraclass covariance structure, with positive covari-
ances, is the random effects covariance structure studied by Rao [16, 18], Reinsel
[19, 20], Ware [25] and recently by Srivastava and Singull [21] for a parallel profile
model. The random-effect covariance structure has also been considered for the
mixed MANOVA-GMANOVA models and the Extended Growth Curve models, see
e.g., [28–30].

In this paper we will study a model class with orthogonal covariance structure
first proposed for univariate models in [10, 11] and further developed, for example,
in [1, 3]. Several of the above discussed structures are special cases of the orthogonal
covariance structure.

The paper is organized as follows. In Sect. 5.2 the Growth Curve model is given
together with the maximum likelihood estimators without any extra structure on the
design or covariance matrices. In Sect. 5.3 the Growth Curve model with orthogonal
covariance structure is presented and in Sect. 5.4 the maximum likelihood estimators
for this model is derived. In Sect. 5.5 an orthogonal structure on the design matrices
is considered and in Sect. 5.6, the compound symmetry covariance structure, which
is a special cases of the orthogonal covariance structure, is considered for the
Growth Curve model and the result is compared with the one by Khatri [5] for
the same model.
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5.2 Growth Curve Model and Maximum Likelihood
Estimators

As discussed in the introduction the Growth Curve (GC) model is a generalization
of the multivariate analysis of variance (MANOVA) model and can be used to model
repeated measures data. The GC model is given as

Yp×n = Ap×sBs×qCq×n + Ep×n,

consisting of n multivariate observations with for p repeated measurements. The
design matricesAp×s andCq×n are known, andBs×q is unknown. The matrixEp×n
has a multivariate normal distribution

Ep×n ∼ MNp,n(0p×n,Σp×p,Ψn×n),

meaning that it has a null expected value matrix, the covariance matrix for elements
in each column is Σp×p and the covariance matrix for elements in each row is
Ψn×n. Both of these matrices are symmetric positive definite and unknown. Hence,
this model has an observations matrix with distribution

Y ∼ MNp,n(ABC,Σ,Ψ ).

For many situations we assume that we have independent observations, i.e., Ψ = I ,
where I is the identity matrix. Under this model the maximum likelihood estimator
(MLE) for the mean parameter B in the GC model is given by many authors, e.g.,
see [4, 7, 24], and equals

B̂ =
(
A′S−1A

)−
A′S−1XC′ (CC′)− + (A′)oZ1 + A′Z2C

o ′, (5.1)

where Z1 and Z2 are arbitrary matrices and the matrix S is given by

S = X
(
I − C′ (CC′)− C)X′ = XP⊥

C ′X′, (5.2)

where P⊥
C ′ = I − PC ′ and PC ′ = C′ (CC′)− C. We have used the notation Ao for

any matrix of full rank which is spanning the orthogonal complement to C (A), i.e.,
C (Ao) = C (A)⊥. If A and C are of full rank, i.e., rank(A) = s and rank(C) = q ,
the estimator in (5.1) reduces to the unique estimator

B̂ =
(
A′S−1A

)−1
A′S−1XC′ (CC′)−1

.
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Furthermore, the maximum likelihood estimator of Σ is given by

nΣ̂ = (
X − AB̂C) (X − AB̂C)′ = S + (

I − PA,S
)
XPC ′X′ (I − PA,S

)
,

where PA,S = A
(
A′S−1A

)−
A′S−1 which always is unique since one can show

that AB̂C is unique for all choices of g-inverse.

5.3 GC Model with Orthogonal Covariance Structure

The above definition for the GC model is general, with no restrictions on the
unknown parameters. Despite the fact that inference for the fixed effects B is
established (see [7]), estimation for the covariance components Σ and Ψ can be
difficult and unstructured covariance components may not adequately reflect the
nature of data. In light of this problem, an often used model class is the orthogonal
covariance structure (OCS) first proposed for univariate models in [10, 11] and
further developed, for example, in [1, 3]. In this model class, a covariance matrix V
is expressed as

V =
∑
j

Pj ⊗Σj,

where ⊗ is the Kronecker product and Pj are orthogonal projection matrices such
that

∑
j

Pj = I

and Σj are positive definite arbitrary matrices which are symmetric. Therefore,
assume now that

Σ =
w∑
i=1

Qi ⊗ Γi, (5.3)

where Γi : p0 ×p0 are unknown matrices,Qi are idempotent and symmetric known
matrices with rank(Qi) = pi such that

QiQi′ = 0, i �= i ′;
w∑
i=1

Qi = Ip∗ ,
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and matrix Hi , of size p∗ × pi , is such that HiH ′
i = Qi and H ′

iHi = Ipi with
p∗p0 = p.

Similarly, let

Ψ =
m∑
j=1

Rj ⊗Δj,

with Δj : n0 × n0 are unknown matrices, Rj are idempotent and symmetric known
matrices with rank(Rj ) = qj such that

RjRj ′ = 0, j �= j ′;
m∑
j=1

Rj = In∗ ,

and matrix Gj , of size n∗ × nj , is such that GjG′
j = Rj and G′

jGj = Inj with
n∗n0 = n. To guarantee estimability of the covariance structure, assume that

w
p0(p0 + 1)

2
+mn0(n0 + 1)

2
+ sq < pn(pn + 1)

2

and that Ψ is a correlation matrix (ψll = 1, l = 1, . . . , n).
Consider now the matrices Yij = (H ′

i ⊗ Ip0)Y (Gj ⊗ In0), i = 1 . . . , w, j =
1, . . . ,m. Then,

Yij ∼ MN
(
(H ′
i ⊗ Ip0)ABC(Gj ⊗ In0), Ipi ⊗ Γi, Inj ⊗Δj

)
, (5.4)

which are independent when i �= i ′ or j �= j ′.
Consider also the matrices

H∗ =
[
H1 ⊗ Ip0 · · · Hw ⊗ Ip0

]
,

G∗ =
[
G1 ⊗ In0 · · · Gm ⊗ In0

]
,

and the transformation

Y∗ = H ′∗YG∗ ∼ MN(A∗BC∗, Γ∗,Δ∗), (5.5)

with the new design matrices

A∗ = H ′∗A, (5.6)

C∗ = CG∗, (5.7)
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and covariance matrices

Γ∗ = H ′∗ΣH∗ = diag(Ip1 ⊗ Γ1, . . . , Ipw ⊗ Γw), (5.8)

Δ∗ = G′∗ΨG∗ = diag(In1 ⊗Δ1, . . . , Inm ⊗Δm). (5.9)

In the next section will we find the MLEs for the parameters of model (5.5).

5.4 MLEs for GCM with OCS

In this paper we will assume a special form for matrices A and C. Matrices A and
C will actuate on multivariate observations homogeneously.

Assume that A and C take the forms A = A0 ⊗ Ip0 and C = C0 ⊗ In0 , where
A0 and C0 are arbitrary matrices. Then the log-likelihood of Yij given in (5.4) is

Lij = n log
(|Ipi ⊗ Γi |

) + p log
(|Inj ⊗Δj |

)
+ tr

(
(Ipi ⊗ Γ −1

i )(Yij − AiBCj )(Inj ⊗Δ−1
j )(Yij − AiBCj )′

)
,

with

Ai = (H ′
iA0)⊗ Ip0;

Cj = (C0Gj)⊗ In0 .

Furthermore, the log-likelihood of Y∗ given in (5.5) follows as

L∗ = n log
(|Γ∗|

) + p log
(|Δ∗|

) + tr
(
Γ −1∗ (Y∗ − A∗BC∗)Δ−1∗ (Y∗ − A∗BC∗)′

)

=
w∑
i=1

Li∗

=
w∑
i=1

n∗n0 log
(|Ipi ⊗ Γi |

) + pip0 log
(|Δ∗|

)

+ tr
(
(Ipi ⊗ Γ −1

i )(Yi∗ − AiBC∗)Δ−1∗ (Yi∗ − AiBC∗)′
)
,

where

Yi∗ =
[
Yi1 · · · Yim

]
. (5.10)

Note that

PAi = PH ′
i A0

⊗ Ip0 = (
H ′
i A0(A

′
0A0)

−1
A′

0Hi
) ⊗ Ip0,

PC ′
j

= PC ′
0G

′
i
⊗ Ip0 = (

G′
jC

′
0(C0C

′
0)

−1
C0Gj

) ⊗ Ip0 .
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Without loss of generality, take Ψ (and consequentlyΔ∗) to be known. Hence,

w∑
i=1

Li∗ =
w∑
i=1

n∗n0 log
(|Ipi ⊗ Γi |

) + pip0 log
(|Δ∗|

)

+ tr
(
(Ipi ⊗ Γ −1

i )(Yi∗ − AiBC∗)Δ−1∗ (Yi∗ − AiBC∗)′
)

=
w∑
i=1

n∗n0 log
(|Ipi ⊗ Γi |

) + pip0 log
(|Δ∗|

)

+ tr
(
(Ipi ⊗ Γ −1

i )(Yi∗Δ
− 1

2∗ − AiBC∗Δ
− 1

2∗ )()′
)

=
w∑
i=1

n∗n0 log
(|Ipi ⊗ Γi |

) + pip0 log
(|Δ∗|

)

+ tr
(
(Ipi ⊗ Γ −1

i )(Yi∗Δ
− 1

2∗ P⊥
C ′∗)()

′)

+ tr
(
(Ipi ⊗ Γ −1

i )(Yi∗Δ
− 1

2∗ PC ′∗ − AiBC∗Δ
− 1

2∗ )()′
)

=
w∑
i=1

n∗n0 log
(|Ipi ⊗ Γi |

) + pip0 log
(|Δ∗|

)

+ tr
(
(Ipi ⊗ Γ −1

i )
(
(Hi ⊗ Ip0)(Yi∗Δ

− 1
2∗ P⊥
C∗)()

′

+ (P⊥
A∗Yi∗Δ

− 1
2∗ PC ′∗)()

′(H ′
i ⊗ Ip0)

))

+ tr
(
(Ipi ⊗ Γ −1

i )(PA∗Yi∗Δ
− 1

2∗ PC ′∗ − AiBC∗Δ
− 1

2∗ )()′
)
,

where (A)(A)′ = (A)()′ for simplicity and P⊥
X = I − PX . Defining

Si =
pi∑
l=1

(
δ′
p∗
(
p̄(i − 1)+ l) ⊗ Ip0

)(
(Hi ⊗ Ip0)(Yi∗Δ

− 1
2∗ P⊥
C∗ )()

′

+ (P⊥
A∗Yi∗Δ

− 1
2∗ PC′∗)(P

⊥
A∗Yi∗Δ

− 1
2∗ PC′∗ )

′(H ′
i ⊗ Ip0)

)(
δ′
p∗
(
p̄(i − 1)+ l) ⊗ Ip0

)

=
pi∑
l=1

(
δ′
p∗
(
p̄(i − 1)+ l) ⊗ Ip0

)
(Qi ⊗ Ip0)

(
Y
(
Ψ−1 − Ψ −1C ′(C ′Ψ−1C)

−1
CΨ−1)Y ′

+ P⊥
A YΨ

−1C ′(C ′Ψ −1C)
−1
CΨ−1Y ′P⊥

A

)
(Qi ⊗ Ip0)

(
δp∗

(
p̄(i − 1)+ l) ⊗ Ip0

)
,

(5.11)
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where δp∗(l) is a vector of size p∗ with the lth component equal to 1 and all others
equal to 0, and

p̄(i) =
i∑
k=1

pi and p̄(0) = 0,

which is invariant for the choice of eigenvectors ofQi , one gets

w∑
i=1

Li∗ =
w∑
i=1

n∗n0 log
(|Ipi ⊗ Γi |

) + pip0 log
(|Δ∗|

) + tr(Γ −1
i Si )

+ tr
(
(Ipi ⊗ Γ −1

i )(PA∗Yi∗Δ
− 1

2∗ PC ′∗ − AiBC∗Δ
− 1

2∗ )()′
)
.

For estimation of Γi minimization of Li∗ gives the partial estimates

B̂i = (A′∗A∗)−1
A′∗Yi∗Δ−1∗ C′∗(C∗Δ−1∗ C′∗)

−1
,

Γ̂i = 1

pin
Si,

whereA∗, C∗,Δ∗ and Yi∗ are respectively given in (5.6), (5.7), (5.9) and (5.10), and
Si is given in (5.11). A full estimate for B can be obtained by the GLS as

B̂ = (A′∗Γ̂ −1∗ A∗)
−1
Γ̂ −1∗ Y∗Δ−1∗ C′∗(C∗Δ−1∗ C′∗)

−1

= (A′Σ̂−1A)
−1
Σ̂−1YΨ−1C′(CΨ−1C′)−1

, (5.12)

with Γ̂∗ as the estimator of Γ∗ in (5.8) as

Γ̂∗ = diag(Ip1 ⊗ Γ̂1, . . . , Ipw ⊗ Γ̂w).

Furthermore, the estimator of the covariance matrix Σ with OCS (5.3) is given by

Σ̂ =
w∑
i=1

Qi ⊗ Γ̂i . (5.13)

To get an estimate for Δi , if unknown, one calculates the former estimates taking
Δi = In0 , repeats the procedure for the data matrix Y ′∗, taking Γ∗ = Γ̂∗, and then
the initial step again with Δ∗ = Δ̂∗. This cycle is continued using the estimates of
the previous iteration until all the estimates converge. This procedure is known as
the flip-flop algorithm and more details can be found in [23].

We summarize the above results in a theorem.
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Theorem 5.1 Consider the GC model Y ∼ MNp,n(ABC,Σ,Ψ ), with OCS for Σ ,
i.e., Σ is given as (5.3) and Ψ known. Assume that the design matrices A and C
take the forms A = A0 ⊗ Ip0 and C = C0 ⊗ In0 . Then the MLEs for B and Σ is
given by (5.12) and (5.13).

5.5 Orthogonal Model

In this section, an orthogonal model is considered, i.e., taking the orthogonal
covariance structure (5.3) and the additional properties

PA(Qi ⊗ Γi) = (Qi ⊗ Γi)PA, i = 1, . . . , w, (5.14)

PC ′(Rj ⊗Δj) = (Rj ⊗Δj)PC ′ , j = 1, . . . ,m. (5.15)

One way to ensure this is restricting A and C to take the forms

A = A0 ⊗ Ip0 ,

C = C0 ⊗ In0 ,

so that

PA0Qi = QiPA0 , i = 1, . . . , w,

PC ′
0
Rj = RjPC ′

0
, j = 1, . . . ,m.

Then, the log-likelihood will be given as

L∗ = n log
(|Γ∗|

) + p log
(|Δ∗|

) + tr
(
Γ −1∗ (Y∗ − A∗BC∗)Δ−1∗ (Y∗ − A∗BC∗)′

)

and we can see that

tr
(
Γ −1∗ (Y∗ − A∗BC∗)Δ−1∗ (Y∗ − A∗BC∗)′

)
= tr

(
Γ −1∗ (Y∗ − A∗BC∗)PC ′∗Δ

−1∗ PC ′∗(Y∗ − A∗BC∗)′
)

+ tr
(
Γ −1∗ (Y∗ − A∗BC∗)(In − PC ′∗)Δ

−1∗ (In − PC ′∗)(Y∗ − A∗BC∗)′
)

= tr
(
Γ −1∗ (PA∗Y∗PC ′∗ − A∗BC∗)Δ−1∗ (PA∗Y∗PC ′∗ − A∗BC∗)′

)
+ tr

(
Γ −1∗ Y∗(In − PC ′∗)Δ

−1∗ (In − PC ′∗)Y
′∗
)

+ tr
(
Γ −1∗ (Ip − PA∗)Y∗PC ′∗Δ

−1∗ PC ′∗Y
′∗(Ip − PA∗)

)
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= tr
(
Γ −1∗ (PA∗Y∗PC ′∗ − A∗BC∗)Δ−1∗ (PA∗Y∗PC ′∗ − A∗BC∗)′

)

+
w∑
i=1

pi∑
l=1

tr

(
Γ −1
i

(
δp∗

(
p̄(i − 1)+ l) ⊗ Ip0

)(
Y∗(In − PC ′∗)Δ

−1∗ (In − PC ′∗)Y
′∗

+ (Ip − PA∗)Y∗PC ′∗Δ
−1∗ PC ′∗Y

′∗(Ip − PA∗)
)(

δ′
p∗
(
p̄(i − 1)+ l) ⊗ Ip0

))
,

where

p̄(i) =
i∑
k=1

pi and p̄(0) = 0.

The estimator for Γi is

Γ̂i = 1

npi

pi∑
l=1

(
δp∗

(
p̄(i − 1)+ l) ⊗ Ip0

)(
Y∗(In − PC ′∗)Δ

−1∗ (In − PC ′∗)Y
′∗

+ (Ip − PA∗)Y∗PC ′∗Δ
−1∗ PC ′∗Y

′∗(Ip − PA∗)
)(

δ′
p∗
(
p̄(i − 1)+ l) ⊗ Ip0

)
(5.16)

and the estimator for B is

B̂ = (A′∗A∗)−1
A′∗Y∗C′∗(C∗C′∗)

−1
, (5.17)

where Y∗, A∗ and C∗ are given in (5.5), (5.6), and (5.7), respectively. Again, we
summarize the results in a theorem.

Theorem 5.2 Given the orthogonal GC model Y ∼ MNp,n(ABC,Σ,Ψ ), with
known Ψ , OCS for Σ , i.e., Σ = ∑w

i=1Qi ⊗ Γi, as in (5.3), and (5.14) and (5.15)
are fulfilled, then the MLEs for B and Γi are given by (5.17) and (5.16).

5.6 GC Model with Compound Symmetry Covariance
Structure

5.6.1 General Model

Consider the particular case of the Growth Curve model, the compound symmetry
model, i.e.,

Y ∼ MNt,r
(
ABC,Σt×t , Ir

)
, (5.18)
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consisting of r multivariate observations with t components, and where

Σ = (ω0 − ω1)It + ω1tJt = γ1Kt + γ2Jt = γ1It + (γ2 − γ1)Jt , (5.19)

with Js = s−11s1′
s . Putting Ks = Is − Js , one gets

Q1 = Kt ; Γ1 = γ1 = ω0 − ω1; H1 = Mt ;
Q2 = Jt ; Γ2 = γ2 = ω0 − (t − 1)ω1; H2 = Lt ;

A∗ =
[
M ′
t

L′
t

]
A;

C∗ = C;

I − PA∗ =
[
M ′
t

L′
t

]
A(A′A)−1

A′ [Mt Lt
]

denoting Lt = (√t)−1
1t andMt as a t × (t − 1) matrix such thatMtM ′

t = Kt and
M ′
tMt = It−1 with

p0 = 1; p1 = t − 1; p2 = 1;
n0 = 1; n1 = r.

Using Theorem 5.1 we have the following corollary.

Corollary 5.1 Given the GC model Y ∼ MNt,r
(
ABC,Σt×t , Ir

)
, with compound

symmetry covariance structure Σ = γ1Kt + γ2Jt , the MLEs for the variance
components γ1 and γ2 are given by

γ̂1 = 1

(t − 1)n
tr
(
Kt

(
S + (I − PA)YPC ′Y ′(I − PA)

)
Kt

)
,

γ̂2 = 1

tn
1′
t

(
S + (I − PA)YPC ′Y ′(I − PA)

)
1t ,

where S = XP⊥
C X

′ as in (5.2).

One can easily conclude that the estimators γ̂1 and γ̂2 in Corollary 5.1 coincide
with the estimators derived by Khatri [5].
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5.6.2 Orthogonal Model

Consider the particular case of the Growth Curve model, the compound symmetry
model with orthogonal mean structure

Y ∼ MNt,r
(
(1t ⊗ 1′

r )β,Σt×t , Ir
)
, (5.20)

which are r multivariate observations with t components, and where

Σ = (ω0 − ω1)It + ω1tJt = γ1Kt + γ2Jt , (5.21)

with Kt = It − Jt and Jt = t−11t1′
t . Translating the above model in the notation of

the previous sections, we have

A = 1t ; B = β; C = 1′
r .

Following the notation above, one gets

Q1 = Kt ; Γ1 = γ1 = ω0 − ω1; H1 = Mt ;
Q2 = Jt ; Γ2 = γ2 = ω0 − (t − 1)ω1; H2 = Lt ;
A∗ = (0′

p−1
√
p)′;

C∗ = 1′
n;

I − PA∗ = diag(1, . . . , 1, 0)

denoting Lt = (√t)−1
1t andMt as a t × (t − 1) matrix such thatMtM ′

t = Kt and
M ′
tMt = It−1 with

p0 = 1; p1 = t − 1; p2 = 1;
n0 = 1; n1 = r.

Through some computation,

Y∗(In − PC ′∗)Δ
−1∗ (In − PC ′∗)Y

′∗ = Y∗KrY ′∗ =
[
M ′
t

L′
t

]
YKrY

′ [Mt Lt
]
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and

(It − PA∗)Y∗PC′∗Δ
−1∗ PC′∗Y

′∗(It − PA∗) = (It − PA∗)Y∗JrY ′∗(It − PA∗)

= (It − PA∗)

[
M ′
t

L′
t

]
YJrY

′ [
Mt Lt

]
(It − PA∗)

=
[
M ′
t

0′
t

]
YJrY

′ [
Mt 0t

]
.

Hence, following Theorem 5.2 we have

γ̂1 = 1

r(t − 1)

t−1∑
l=1

δ′
t (l)

([
M ′
t

L′
t

]
YKrY

′ [Mt Lt
]

+
[
M ′
t

0′
t

]
YJrY

′ [Mt 0t
])

δt (l)

= 1

r(t − 1)
tr(M ′

t YKrY
′Mt +M ′

t Y∗JrY ′∗Mt) = 1

r(t − 1)
tr(M ′

t Y Y
′Mt)

= 1

r(t − 1)
tr(Y ′KtY ),

γ̂2 = 1

r
δ′
t (t)

([
M ′
t

L′
t

]
YKrY

′ [
Mt Lt

]
+

[
M ′
t

0′
t

]
YJrY

′ [
Mt 0t

])
δt (t)

= 1

r
tr
(
L′
t YKrY

′Lt
) = 1

rt
tr
(
1′
tYKrY

′1t
)

and

β̂ = 1

rt
1′
t Y1r .

We can conclude with a final corollary.

Corollary 5.2 Given the compound symmetry model with orthogonal mean struc-
ture Y ∼ MNt,r

(
(1t ⊗ 1′

r )β,Σ, Ir
)
, with Σ = γ1Kt + γ2Jt , the estimators for the

variance components γ1 and γ2 are given by

γ̂1 = 1

r(t − 1)
tr(Y ′KtY ),

γ̂2 = 1

rt
tr
(
1′
tYKrY

′1t
)

and for the mean parameter β̂ = 1

rt
1′
t Y1r .

One can easily conclude that the estimators given in Corollary 5.2 just are the
OLS estimators.
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Chapter 6
Holonomic Gradient Method
for the Cumulative Distribution Function
of the Largest Eigenvalue of a Complex
Wishart Matrix with Noncentrality
Matrix of Rank One

Yuta Fukasawa and Akimichi Takemura

Abstract We apply the holonomic gradient method for evaluation of the cumulative
distribution function of the largest eigenvalue of a complex Wishart matrix with
the noncentrality matrix of rank one. This problem appears in the context of
Rician fading of multiple-input/multiple-output (MIMO) wireless communications
systems. We also give a brief survey of the use of multivariate analysis in wireless
communication and the holonomic gradient method for statistical problems of
performance evaluation in wireless communication.

6.1 Introduction

In this paper we present an application of the holonomic gradient method for a
distributional problem in the study of MIMO wireless communication systems.
In statistical evaluation of wireless communication systems the complex normal
distribution and the complex Wishart distribution are used, because the signal and
the noise are modeled by complex normal distribution. Some notable results on
complex normal distribution have been discovered in wireless communication area,
because statisticians usually study the real normal distribution and the real Wishart
distribution. In this paper we look at the result of Kang and Alouini [7] on the
distribution of the largest eigenvalue of a complex noncentral Wishart distribution
and discuss how to compute the distribution function by the holonomic gradient
method.
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The holonomic gradient method (HGM) was proposed in [9] and since then it
was applied to many distributional problems in statistics. In particular we were
successful to apply HGM to the evaluation of the hypergeometric function 1F1 of
a matrix argument [2]. We also applied the holonomic gradient method to wireless
communication in [13] and [14]. This paper gives another application of HGM to a
problem in MIMO wireless communication.

In Sect. 6.2 we give a brief summary of the statistical setup of MIMO problems
and in Sect. 6.3 we give a short introduction to HGM. In Sect. 6.4 we apply HGM
to the result of Kang and Alouini [7]. Our main result is the Pfaffian equations in
Sect. 6.4.6. Finally in Sect. 6.5 we show results of some numerical experiments.

6.2 Multivariate Distribution Theory Used in the Study
of MIMO Wireless Communication Systems

Nowadays multiple antennas are commonly used both in the transmitting and receiv-
ing stations because of practical advantages. Suppose that there are m transmitting
antennas sending an m-dimensional signal x and there are n antennas receiving an
n-dimensional signal y. Then the relations between x and y are modeled as y =
Ax+v, whereA is an n×m “channel matrix” and v is a n-dimensional noise vector
following a complex normal distribution. In a particular communication between a
transmitting station and a receiving station, the channel matrix A is considered to
be fixed. However when the communications are repeated with different conditions,
A is considered a random matrix and usually the elements of A are also assumed
to follow complex normal distribution. Then the performance of the MIMO system
is evaluated in terms of the distribution of AHA, where AH denotes the conjugate
transpose of A. Under standard assumptions AHA follows a complex noncentral
Wishart distribution. Hence the study of complex Wishart distribution is important
for MIMO communication. In [11] and [12] we studied Schur complement of a
complex Wishart matrix, which is important for MIMO “Zero-Forcing detection”
analysis. In this paper we study the largest eigenvalue of a complex Wishart matrix,
which is important for MIMO “Maximal-Ratio Combining” analysis.

Note that the distributions of real noncentral Wishart distribution is difficult,
often involving zonal polynomials and hypergeometric function of a matrix argu-
ment (e.g., [6, 8, 15]). Results are often easier in the complex case than the real
case and this may be one reason that complex noncentral Wishart distribution is
studied in wireless communication literature. For example, the Schur polynomial
for the complex case has an explicit determinantal expression, whereas the zonal
polynomial for the real case does not have such an expression.

For general introduction to MIMO systems see [3] and [5].
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6.3 The Holonomic Gradient Method in the Study
of Multivariate Distribution Theory

The holonomic gradient method can be used to distributional problems when the
density function is “holonomic”. A holonomic function satisfies a system of partial
differential equations with rational function coefficients. For example, the bivariate
normal density

f (x1, x2) = c × exp(−x
2
1

2
− x

2
2

2
)

is holonomic because it satisfies the following differential equations

∂x1f (x1, x2) = −x1f (x1, f2), ∂x2f (x1, x2) = −x2f (x1, f2).

In this paper we write these two equations as

(∂x1 + x1) • f = 0, (∂x2 + x2) • f = 0,

where • means the operation of the differential operator ∂xi + xi , i = 1, 2.
More precisely a smooth function f (x1, . . . , xn) = f (x) is holonomic if there

are differential operators l1, . . . , lN (N ≥ n) such that {l1, . . . , lN } generates
“a zero-dimensional left ideal” in the ring of differential operators with rational
function coefficients. When f is holonomic, then by Gröbner basis computation of
l1, . . . , lN , we can find a finite set (called “standard monomials”) of lower order
partial derivatives of f

f = (f, ∂x1f, . . . , ∂xnf, ∂
2
x1
f, . . . , ∂α1

x1
· · · ∂αnxn f )′, (6.1)

such that

∂xi f = Qi f + ui , i = 1, . . . , n, (6.2)

where Qi is a square matrix with rational function elements and ui is a vector of
smooth functions. (6.2) are called Pfaffian equations. When ui = 0 for all i the
equations are homogeneous and when ui �= 0 for some i they are inhomogeneous.
In this paper we need inhomogeneous equations. Our main result of this paper
in Sect. 6.4.6 is the Pfaffian equations for a function appearing in the cumulative
distribution function of the largest eigenvalue of a complex Wishart matrix with
noncentrality matrix of rank one.

The Gröbner basis computation is very useful, because the set of standard
monomials in (6.1) can be algorithmically obtained from the set of differential
operators {l1, . . . , lN } by the Gröbner basis computation. Often this derivation
is too difficult for hand computation and we need to use a symbolic computer



86 Y. Fukasawa and A. Takemura

algebra system. In the problem studied in this paper, we can compute the set
of standard monomials without resorting to a symbolic computer algebra system,
although our derivation is somewhat lengthy. Once the set of standard monomials
is obtained, the Pfaffian system (6.2) can be mechanically obtained by applying the
differential operators {l1, . . . , lN } to the set of standard monomials, although this
process may also be cumbersome. Given the Pfaffian equations, we can numerically
integrate (6.2) to obtain the value of f at any point x starting from a convenient
initial point x0.

See Chapter 6 of [4] for a comprehensive treatment of the Gröbner basis theory
of the ring of differential operators with rational function coefficients. Section 2 of
[10] gives a readable introduction to HGM for statisticians.

6.4 Distribution of the Largest Eigenvalue of Non-central
Wishart Matrix

In this section we apply the holonomic gradient method to the result of Kang and
Alouini [7] for the case of the complex Wishart matrix with noncentrality matrix of
rank one. First in Sect. 6.4.1 we setup some notation needed for stating our results. In
Sect. 6.4.2 we present the result of Kang and Alouini [7]. In Sect. 6.4.3 we transform
their result so that the noncentrality is separated into a function F(x, λ; n,m, h)
defined in Sect. 6.4.1. In Sects. 6.4.4 and 6.4.5 we obtain the set of differential
operators for F(x, λ; n,m, h) and its integral g(x, λ; n,m, h) with respect to x.
Finally in Sect. 6.4.6 we obtain the Pfaffian equations for g(x, λ; n,m, h), which is
the main result of this paper.

6.4.1 Some Notation

First we setup some notation used in this section. The incomplete gamma function
is denoted by

γ (k, x) =
∫ x

0
yk−1e−ydy.

We define F(x, λ; n,m, h) by

F(x, λ; n,m, h) =
∞∑
k=0

λke−λ

(k + n− 1)!(k +m− 1)!γ (n+ k +m− 1 − h, x)
(6.3)
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and its integral by

g(x, λ; n,m, h) =
∫ x

0
F(y, λ; n,m, h)dy. (6.4)

We also define the followingm×m determinant.

Hm(n1, . . . , nm; x)

=

∣∣∣∣∣∣∣∣∣∣

γ (n1 +m− 1, x) γ (n2 +m− 1, x) . . . γ (nm +m− 1, x)
γ (n1 +m− 2, x) γ (n2 +m− 2, x) . . . γ (nm +m− 2, x)

...
... . . .

...

γ (n1, x) γ (n2, x) . . . γ (nm, x)

∣∣∣∣∣∣∣∣∣∣
. (6.5)

6.4.2 The Result of Kang and Alouini

Here we present the result of Kang and Alouini [7]. Let A denote an n × m

random matrix with independent rows having the m-dimensional complex normal
distribution CNm(μi,Σ), i = 1, . . . , n, with common covariance matrix Σ . Let
M := (μ1, . . . , μn)

′ denote the mean matrix. In the following we assume m ≤ n.
The case m > n can be treated by interchanging the roles of m and n. In this paper
we consider the distribution of the largest eigenvalue of S = Σ−1AHA. Note that by
the left-multiplication of AHA by Σ−1, we are effectively considering the special
case of Σ = I .

Denote the nonzero eigenvalues of S by 0 < φ1 < φ2 < · · · < φm. Kang
and Alouini [7] derived the cumulative distribution function Pr(φm ≤ x) of the
largest eigenvalue φm when Σ−1MHM have m distinct nonzero eigenvalues 0 <
λ1 < λ2 < · · · < λm. As a corollary Kang and Alouini [7] derived the cumulative
distribution function of φm for the case of 1 = rankΣ−1MHM = rankM , by a
limiting argument. The rank one case is of some practical importance as discussed
in [14].

We studied the holonomic gradient method for the case ofm distinct eigenvalues
in [16] form = 2 andm = 3. Unfortunately obtaining results for general dimension
m is very difficult. Hence in this paper we study the case of rank oneM and derive
results applicable for general m. For the rank one case we denote 0 = λ1 = · · · =
λm−1, λm = λ > 0 and the cumulative distribution function as F(x, λ) = Pr(φm ≤
x). Then the result by Kang and Alouini [7] is given as follows.

Proposition 6.1 ([7]) Suppose that Σ−1MHM has only one nonzero eigenvalue λ.
Then the cumulative distribution function F(x, λ) of the largest eigenvalue φm of S
is given by

F(λ, x) = 1

Γ (n−m+ 1)
∏m−1
l=1 Γ (n− l)Γ (m− l) × e−λ

λm−1 |Ψ (x, λ)|, (6.6)
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where Ψ (x, λ) is an m×m matrix with the elements

Ψ (x, λ)i1 =
∫ x

0
yn−ie−y0F1(n−m+ 1; λy)dy, i = 1, . . . ,m,

Ψ (x, λ)ij = γ (n+m− i − j + 1, x), i = 2, . . . ,m, j = 1, . . . ,m.

6.4.3 Transformation of the Cumulative Distribution Function

Here we transform (6.6) into the form where the noncentrality is separated into
F(x, λ; n,m, h) of (6.3). Then we can apply HGM to F(x, λ; n,m, h), independent
of the dimensionm.

In (6.6), the elements of the first column Ψ (x, λ) involves the hypergeometric
function 0F1(·; ·) and it is difficult to directly derive the differential equation
satisfied by F(x, λ). We first rewrite F(x, λ) as an infinite series. By the definition
of 0F1(·; ·),

Ψ (x, λ)i1 =
∫ x

0
yn−i e−y

∞∑
k=0

1

(n−m+ 1)k

λk

k! y
kdy

=
∞∑
k=0

1

(n−m+ 1)k

λk

k!
∫ x

0
yn−i+ke−ydy

=
∞∑
k=0

1

(n−m+ 1)k

λk

k! γ (n− i + 1 + k, x).

Hence by linearity of the determinant we have

|Ψ (x, λ)| =

∣∣∣∣∣∣∣∣∣∣∣

∑∞
k=0

1
(n−m+1)k

λk

k! γ (n+ k, x) γ (n+m− 2, x) . . . γ (n, x)∑∞
k=0

1
(n−m+1)k

λk

k! γ (n− 1 + k, x) γ (n+m− 3, x) . . . γ (n− 1, x)
.
.
.

.

.

. . . .
.
.
.∑∞

k=0
1

(n−m+1)k
λk

k! γ (n−m+ 1 + k, x) γ (n− 1, x) . . . γ (n−m+ 1, x)

∣∣∣∣∣∣∣∣∣∣∣

=
∞∑
k=0

1

(n−m+ 1)k

λk

k!

×

∣∣∣∣∣∣∣∣∣∣∣

γ (n+ k, x) γ (n+m− 2, x) . . . γ (n, x)

γ (n− 1 + k, x) γ (n+m− 3, x) . . . γ (n− 1, x)
.
.
.

.

.

. . . .
.
.
.

γ (n−m+ 1 + k, x) γ (n− 1, x) . . . γ (n−m+ 1, x)

∣∣∣∣∣∣∣∣∣∣∣
.
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Note that the determinant for k = 0, . . . ,m− 2 vanishes, because in these matrices
the first column is equal to the (m−k)-th column. Therefore by replacing the running
index k by k −m− 1, |Ψ (x, λ)| is written as

|Ψ (x, λ)| =
∞∑

k=m−1

1

(n−m+ 1)k

λk

k!Hm(n+ k, n− 1, . . . , n−m+ 1; x)

and F(x, λ) is expressed as

F(x, λ) = C
∞∑
k=0

λke−λ

(k + n− 1)!(k +m− 1)!Hm(n+ k, n− 1, . . . , n−m+ 1; x),
(6.7)

where C = 1/(
∏m−1
l=1 Γ (n− l)Γ (m− l)).

We now want to separate n + k in Hm and replace Hm by Hm−1 We express the
incomplete gamma function in the integral form and again use the linearity of the
determinant on the right-hand side of (6.7). Then we obtain

Hm(n+ k, n− 1, . . . , n−m+ 1; x)

=

∣∣∣∣∣∣∣∣∣∣∣

∫ x
0 y

n+m−2+k
1 e−y1dy1 γ (n+m− 2, x) . . . γ (n, x)∫ x

0 y
n+m−3+k
1 e−y1dy1 γ (n+m− 3, x) . . . γ (n− 1, x)

...
... . . .

...∫ x
0 y

n−1+k
1 e−y1dy1 γ (n− 1, x) . . . γ (n−m+ 1, x)

∣∣∣∣∣∣∣∣∣∣∣

=
∫ x

0
yn+k−1

1 e−y1

∣∣∣∣∣∣∣∣∣∣∣

ym−1
1 γ (n+m− 2, x) . . . γ (n, x)

ym−2
1 γ (n+m− 3, x) . . . γ (n− 1, x)
..
.

..

. . . .
..
.

1 γ (n− 1, x) . . . γ (n−m+ 1, x)

∣∣∣∣∣∣∣∣∣∣∣
dy1

=
∫ x

0
. . .

∫ x
0
yn+k−1

1 yn−2
2 . . . yn−mm e−y1−···−ym

∣∣∣∣∣∣∣∣∣∣∣

ym−1
1 ym−1

2 . . . ym−1
m

ym−2
1 ym−2

2 . . . ym−2
m

.

..
.
.. . . .

.

..

1 1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
dy1 . . . dym

=
∫ x

0
. . .

∫ x
0
yn+k−1

1 yn−2
2 . . . yn−mm e−y1−···−ym ∏

i<j

(yi − yj )dy1 . . . dym.
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We expand the Vandermonde determinant with respect to y1 as

∏
1≤i<j≤m

(yi − yj ) =
m∏
j=2

(y1 − yj )
∏

2≤i<j≤m
(yi − yj )

=
(
ym−1

1 − ym−2
1 e′1 + ym−3

1 e′2 + · · · + (−1)m−1e′m−1

)

×
∏

2≤i<j≤m
(yi − yj ),

where e′h is the h-th elementary symmetric function of y2, . . . , yn

e′h =
∑

2≤i1<···<ih≤n
yi1 · · · yih .

We now separate y1 and evaluate

∫ x

0
. . .

∫ x

0
e′hy

n−2
2 · · · yn−mm e−y2−···−ym ∏

2≤i<j≤m
(yi − yj )dy2 . . . dym. (6.8)

By anti-symmetry of
∏

2≤i<j≤m(yi−yj ) it is easily seen that in e′h only the leftmost
term y2 . . . y2+h−1 remains and other terms vanish by integration. Hence (6.8) is
equal to

Hm−1(n, . . . , n− h+ 1, n− h− 1, . . . , n−m+ 1; x)

and we have the following result.

Proposition 6.2 The cumulative distribution function F(x, λ) is written as

F(x, λ) =
m−1∑
h=0

(−1)hF (x, λ;n,m, h)Hm−1(n, . . . , n− h+ 1, n− h− 1, . . . , n−m+ 1; x),

(6.9)

where F(x, λ; n,m, h) is defined in (6.3) and Hm is defined in (6.5).

Note that this expression involves 2m functions F(x, λ; n,m, h),
Hm−1(n, . . . , n−h+ 1, n−h− 1, . . . , n−m+ 1; x). The difficulty with large λ is
now separated to F(x, λ; n,m, h) in (6.3). We found that computing the determinant
Hm−1 is relatively straightforward for moderate m. Hence we apply the holonomic
gradient method for F(x, λ; n,m, h). Our approach is a hybrid approach, where
HGM is applied only to F(x, λ; n,m, h).
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6.4.4 Partial Differential Equation for F(x, λ;n,m,h)

Here we derive partial differential equations satisfied by F(x, λ; n,m, h).
By differentiating (6.10) by x

f (x, λ; n,m, h) = ∂xF (x, λ; n,m, h) = e−λ−x
∞∑
k=0

λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)! .
(6.10)

Define an infinite series in x and λ by

q(x, λ; n,m, h) =
∞∑
k=0

λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)! . (6.11)

For an infinite series we can use the Euler’s method [1] for deriving the partial
differential equations satisfied by the series. Let θλ = λ∂λ, θx = x∂x denote the
Euler operators. From

θλ • q =
∞∑
k=0

k × λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)! ,

θx • q =
∞∑
k=0

(n+ k +m− h− 2)× λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)! ,

we have

(θx − θλ) • q = (n+m− h− 2)q. (6.12)

Furthermore

(θλ +m− 1) • q =
∞∑
k=0

(k +m− 1)× λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)! ,

(θx − (m− 1 − h)) • q =
∞∑
k=0

(n+ k − 1)× λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)! ,

implies

(θλ +m− 1)(θx − (m− 1 − h)) • q(x, λ; n,m, h)

=
∞∑
k=0

(k + n− 1)(k +m− 1)× λkxn+k+m−h−2

(k + n− 1)!(k +m− 1)!
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= xλ
∞∑
k=1

λk−1xn+k+m−h−3

(k + n− 2)!(k +m− 2)! + xn+m−h−2

(n− 2)!(m− 2)!

= xλq(x, λ; n,m, h)+ xn+m−h−2

(n− 2)!(m− 2)! . (6.13)

By the relation

f (x, λ; n,m, h) = e−λ−xq(x, λ; n,m, h)

we have

∂xq = eλ+x(1 + ∂x)f, θx • q = eλ+x(x + x∂x)f,
∂λq = eλ+x(1 + ∂λ)f, θλ • q = eλ+x(λ+ λ∂λ)f.

By substituting this into (6.12), (6.13) and by dividing by eλ+x we obtain the partial
differential equations satisfied by f .

(x∂x − λ∂λ + x − λ− (n+m− h− 2)) • f = 0,

(xλ∂x∂λ + x(λ+m− 1)∂x + λ(x − (m− h− 1))∂λ

+x(m− 1)− λ(m− h− 1)− (m− 1)(m− h− 1)) • f = xn+m−h−2e−x−λ

(n− 2)!(m− 2)! .

Hence if we define differential operators l1, l2 and function u1, u2 by

l1 :=x∂x − λ∂λ + x − λ− (n+m− h− 2),

l2 :=xλ∂x∂λ + x(λ+m− 1)∂x + λ(x − (m− h− 1))∂λ,

+ x(m− 1)− λ(m− h− 1)− (m− 1)(m− h− 1),

u1 :=0,

u2 := x
n+m−h−2e−x−λ

(n− 2)!(m− 2)! ,

then we can concisely write the above differential equations as

l1 • f = u1, l2 • f = u2. (6.14)

Let R2 = C(x, λ)〈∂x, ∂λ〉 denote the ring of differential operators with rational
function coefficients. We adopt the the graded reverse lexicographic order with
x � λ.
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We now compute the Gröbner bases of the left ideal generated by l1, l2 in R2. By
the Buchberger’s algorithm, if we add

l3 := λ∂2
λ + (2λ+ (m+ n− 1))∂λ − xλ− λ2 − (m+ n− 1)λ− (n− 1)(m− 1)

λ
,

then {l1, l2, l3} is a Gröbner basis. Also we can check that {l1, l3} is a reduced
Gröbner basis. Hence the system of differential equations (6.14) is equivalent to

l1 • f = u1, l3 • f = u3,

where

u3 =l3 • f = −
(
∂λ + λ+ (m− 1)

λ

)
l1 • f + 1

λ
l2 • f

= 1

(n− 2)!(m− 2)!
xn+m−h−2

λ
e−x−λ.

6.4.5 Partial Differential Equations for g(x, λ;n,m,h)

Here we derive partial differential equations satisfied by g(x, λ; n,m, h) of (6.4).
We integrate l1 • f = u1, l3 • f = u3, which are written as

(x∂x − λ∂λ + x − λ− (n+m− h− 2)) • f = 0, (6.15)(
λ∂2
λ + (2λ+ (m+ n− 1))∂λ − xλ− λ2 − (m+ n− 1)λ− (n− 1)(m− 1)

λ

)

• f = 1

(n− 2)!(m− 2)!
xn+m−h−2

λ
e−x−λ,

(6.16)

with respect to x in the interval [0, x]. By integration by parts we have

∫ x

0
y∂yF (y)dy = xF(x)−

∫ x

0
F(y)dy,
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and f = ∂xF , integrating (6.15) and (6.16), we obtain

xf − F − λ∂λF + xF −
∫ x

0
Fdx − λF − (n+m− h− 2)F = 0, (6.17)

λ∂2
λF + (2λ+ (n+m− 1))∂λF − xF +

∫ x

0
Fdx (6.18)

+ λF + (m+ n− 1)F + (n− 1)(m− 1)

λ
F = γ (n+m− h− 1, x)

(n− 2)!(m− 2)!
e−λ

λ
.

Let g(x, λ; n,m, h) be defined as in (6.4). Then by F = ∂xg,= ∂2
xg, we can

express (6.17), (6.18) as the differential equations:

(x∂2
x − λ∂x∂λ + (x − λ− (n+m− h− 1)∂x − 1) • g = 0, (6.19)(

λ∂x∂
2
λ + (2λ+ (n+m− 1))∂x∂λ

−
(
x − λ− (m+ n− 1)− (n− 1)(m− 1)

λ

)
∂x + 1

)
(6.20)

• g = γ (n+m− h− 1, x)

(n− 2)!(m− 2)!
e−λ

λ
. (6.21)

Defining

L1 :=x∂2
x − λ∂x∂λ + (x − λ− (n+m− h− 1)∂x − 1,

L3 :=λ∂x∂2
λ + (2λ+ (n+m− 1))∂x∂λ

−
(
x − λ− (m+ n− 1)− (n− 1)(m− 1)

λ

)
∂x + 1,

U1 :=0,

U3 :=γ (n+m− h− 1, x)

(n− 2)!(m− 2)!
e−λ

λ
,

we can concisely express (6.19), (6.21) as

L1 • g = U1, L3 • g = U3.

We compute the Gröbner bases of the left ideal generated by L1, L3 ∈ R2. By
Buchberger’s algorithm, we add

L4 :=∂2
λ + x

λ
∂x + λ+ (m+ n− 1)

λ
∂λ + (h− 1)λ+ (n− 1)(m− 1)

λ2 .
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Then {L1, L3, L4} is a Gröbner basis. We can check that {L1, L4} is the reduced
Gröbner basis. Also we can show

L4 • g = −
(
∂2
λ + 2λ+ (m+ n − 1)

λ
∂λ − xλ− λ2 − (m+ n − 1)λ− (n− 1)(m − 1)

λ2

)
U1

+
(
x

λ
∂x − ∂λ + x − λ− (m+ n− h− 1)

λ

)
U3

= 1

(n− 2)!(m− 2)!
(
xn+m−h−1e−x + (

x − (m+ n− h− 1)
)
γ (n +m− h− 1, x)

) e−λ
λ2

= : U4.

6.4.6 Pfaffian Equations

Now we are going to derive the Pfaffian equations for g(x, λ; n,m, h) of (6.4),
which is the main result of this paper.

We compute the normal form of

∂x, ∂
2
x , ∂x∂λ, ∂

2
x ∂λ, ∂λ, ∂

2
λ, ∂x∂

2
λ,

when they are divided by the Gröbner basis {L1, L3, L4}. The normal forms
are expressed as linear combinations of 1, ∂x, ∂λ, ∂x∂λ with rational function
coefficients.

First, ∂x, ∂x∂λ, ∂λ are themselves in the normal form. Furthermore by the
definition of L1, L2, L4 we easily obtain

∂2
x = 1

x
L1 + λ

x
∂x∂λ − x − λ− n−m+ h+ 1

x
∂x + 1

x
,

∂2
λ = L4 − x

λ
∂x − λ+ (m+ n− 1)

λ
∂λ − (h− 1)λ+ (n− 1)(m− 1)

λ2 ,

∂x∂
2
λ = 1

λ
L3 − (2λ+ (m+ n− 1))

λ
∂x∂λ

+ xλ− λ2 − (m+ n− 1)λ− (n− 1)(m− 1)

λ2
∂x − 1

λ
.

The normal form of ∂2
x ∂λ needs actual division as

∂2
x ∂λ = 1

x
∂xL1 + 1

x
L3

− x + λ+ h− 1

x
∂x∂λ
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+ xλ− λ2 − (m+ n− 2)λ− (n− 1)(m− 1)

xλ
∂x + 1

x
∂λ − 1

x
.

Summarizing above computations, we have the following theorem.

Theorem 6.1 Pfaffian equations for g are given as

∂x

⎡
⎢⎢⎢⎣
g

∂xg

∂λg

∂x∂λg

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
1
x

− x−λ−n−m+h+1
x

0 λ
x

0 0 0 1

− 1
x
xλ−λ2−(m+n−2)λ−(n−1)(m−1)

xλ
1
x

− x+λ+h−1
x

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
g

∂xg

∂λg

∂x∂λg

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
0
0

γ (n+m−h−1,x)e−λ
(n−2)!(m−2)!xλ

⎤
⎥⎥⎥⎦ , (6.22)

∂λ

⎡
⎢⎢⎢⎢⎣

g

∂xg

∂λg

∂x∂λg

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

− (h−1)λ+(n−1)(m−1)
λ2 − x

λ
− λ+(m+n−1)

λ
0

− 1
λ

xλ−λ2−(m+n−1)λ−(n−1)(m−1)
λ2 0 − 2λ+(m+n−1)

λ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

g

∂xg

∂λg

∂x∂λg

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0

0
1

(n−2)!(m−2)!
(
xn+m−h−1e−x + (

x − (m + n− h− 1)
)
γ (n +m− h− 1, x)

)
e−λ
λ2

γ (n+m−h−1,x)e−λ
(n−2)!(m−2)!λ2

⎤
⎥⎥⎥⎥⎥⎦
.

(6.23)

Note that F = ∂xg is obtained as the second element when we numerically
solve (6.22) and (6.23).

6.5 Numerical Results

In this section we present some numerical experiments.



6 HGM for the Largest Eigenvalue of a Complex Wishart Matrix 97

6.5.1 Series Expansion and Initial Values

By the Pfaffian equations obtained in the last section, once we have the initial values
(g, ∂xg, ∂λg, ∂x∂λg)|x=x0,λ=λ0 at some point (x0, λ0), we can use the standard ODE
solver, such as the Runge-Kutta method, to evaluate (g, ∂xg, ∂λg, ∂x∂λg) at any
point (x, λ). Since

g(x, λ; n,m, h) = xF(x, λ; n,m, h)− F(x, λ; n,m, h− 1),

g, ∂xg, ∂λg, ∂x∂λg are written as the following infinite series.

g(x, λ; n,m, h) =
∞∑
k=0

λke−λ
(k + n− 1)!(k +m− 1)!

×
(
xγ (n+ k +m− 1 − h, x) − γ (n+ k +m− h, x)

)
,

∂xg(x, λ; n,m, h) =
∞∑
k=0

λke−λ
(k + n− 1)!(k +m− 1)!γ (n+ k +m− 1 − h, x),

∂λg(x, λ; n,m, h) =
∞∑
k=0

(kλk−1 − λk)e−λ
(k + n− 1)!(k +m− 1)!

×
(
xγ (n+ k +m− 1 − h, x) − γ (n+ k +m− h, x)

)
,

∂x∂λg(x, λ; n,m, h) =
∞∑
k=0

(kλk−1 − λk)e−λ
(k + n− 1)!(k +m− 1)!γ (n+ k +m− 1 − h, x).

For the initial values at (x0, λ0), we choose a sufficiently large positive integer K
and truncate the above infinite series by K terms.

By the truncation we have numerical errors in the initial values, in particular
when λ0 is larger than 1. In Fig. 6.1 we compute the successive truncations of the
infinite series expression of

F(x, λ) = C
∞∑
k=0

λke−λ

(k + n− 1)!(k +m− 1)!Hm(n+ k, n− 1, . . . , n−m+ 1; x),
(6.24)

C = 1∏m−1
l=1 Γ (n− l)Γ (m− l)

for k = 0, 1, . . . ,K . From this figure we see that for λ� 1 we need a largeK .
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Fig. 6.1 CDF for x = 20, n = 3,m = 2. The horizontal axis is λ with the red line for K = 10
and the blue line for K = 100. We see that we need large K for λ� 1

6.5.2 Numerical Integration by HGM

6.5.2.1 Integration with Respect to x

We use the statistical software R with the package “deSolve” with Δx = 0.01
in (6.22). The numerical solution of (6.22) is presented in Fig. 6.2. Furthermore
by G2(x, λ; n,m, h) = ∂xg(x, λ; n,m, h) = F(x, λ; n,m, h) we can compute the
cumulative distribution function byG and

F(x, λ) =
m−1∑
h=0

(−1)hF (x, λ;n,m, h)Hm−1(n, . . . , n − h+ 1, n − h− 1, . . . , n −m+ 1; x)

(6.25)

as in Fig. 6.3. Figure 6.3 shows that the cumulative distribution function converges
to 1 as x → ∞.

6.5.2.2 Integration with Respect to λ

For checking the accuracy of HGM, we compare the values of the cumulative
distribution function by HGM in Fig. 6.4 and a truncation of the infinite series

F(x, λ; n,m, h) =
∞∑
k=0

λke−λ

(k + n− 1)!(k +m− 1)!γ (n+ k +m− 1 − h, x)
(6.26)
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Fig. 6.2 Computation of G by integration of x, n= 5,m= 2, h= 1, λ= 10−7, x0 = 10−7,K =
100,Δx=0.01. Recall G1=g,G2=∂xg,G3=∂λg,G4=∂x∂λg
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Fig. 6.3 CDF for the case m=2, λ=10−7 by HGM. CDF converges to 1 as x → ∞
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Fig. 6.4 CDF by HGM. We used K = 10 terms at x0 = 20, λ0 = 10−7

Table 6.1 Values of CDF

x = 20 HGM Series (K = 10) Series (K = 100)

λ = 10−7 0.9999921 0.9999921 0.9999921

λ = 10 0.8788772 0.5658010 0.8793867

in Fig. 6.1.
As discussed above, the series (6.26) converges slowly for large noncentrality

λ. We take K = 10 terms and compare the values of the cumulative distribution
function at 10−7 < λ ≤ 10. For parameter values m = 2, n = 3, x = 20, the
results of HGM is depicted in Fig. 6.4 and the truncation at K = 10 terms of (6.26)
is depicted in Fig. 6.1. In Fig. 6.1 we overlay the result of truncation at K = 100.

Table 6.1 shows the numerical values. For λ = 10−7,the difference of truncations
of the infinite series at K = 10 and at K = 100 is smaller than 10−7. However for
λ = 10 these truncations are totally different. On the other hand, HGM with the
initial value at λ = 10−7 computed with the truncation K = 10 and Δλ = 0.01,
coincides with the series truncated at K = 100 at λ = 10 with two digits.

From these results we see that HGM needs only small number of terms for the
initial value at small λ and gives an accurate values for large λ, whereas the infinite
series needs large K for large λ.
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Chapter 7
Some Tests for the Extended Growth
Curve Model and Applications in the
Analysis of Clustered Longitudinal Data

Jemila S. Hamid and Sayantee Jana

Abstract The Growth Curve Model (GCM) is a Generalized Multivariate Analysis
of Variance (GMANOVA) model especially useful in the analysis of longitudinal
data, growth curves as well as other response curves. The model is a natural
extension of the classical Multivariate Analysis of Variance (MANOVA) model and
among other assumptions, relies on the assumption that the mean for each group
can be represented as a polynomial of degree q . The assumption that the mean
over time for all groups follows a polynomial of the same degree is not always
satisfied, since individuals across the different groups may respond differently. An
excellent scenario is when we have clustered longitudinal data, where the response
over time can be represented by polynomials of different degrees. In such situations,
the natural extension is to use the Extended Growth Curve Model (EGCM), where
one can assume different shapes to represent different groups or clusters. In this
paper, we formulate hypotheses motivated by real life scenarios involving clustered
longitudinal data, and propose tests that are motivated by residuals in the EGCM. We
then mathematically derive the tests and evaluate performances using simulations.
We provide real data examples as illustrations.

7.1 Introduction

The Extended Growth Curve Model (EGCM) is an extension of the Growth Curve
Model (GCM), and arises in situations where there are linear restrictions on the
mean parameter of the model [22, 26, 27, 30, 31]. Both the GCM and EGCM
are also referred to as Generalized Multivariate Analysis of Variance (GMANOVA)
models, simply because they are indeed generalizations of the classical Multivariate
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Analysis of Variance (MANOVA) models [1, 9–12, 26]. The term bilinear regres-
sion will be used frequently in describing the GCM and its extensions, to indicate
the presence of two design matrices: the within and between design matrices, and to
describe the bilinear nature of the projections corresponding to these two design
matrices. The linear restrictions on MANOVA models lead to a bilinear model,
where the model involves projections with respect to two design matrices, as already
mentioned [3, 4, 16, 30].

The GCM has been demonstrated to be useful in the analysis of longitudinal data,
especially for short to moderate time series, and the analysis is performed assuming
that the mean for each of the groups follows a polynomial of degree q [11, 21, 23].
There is extensive literature in the area and various distributions and covariance
structures have been considered [6, 13, 14, 18–20, 28]. High-dimensional extensions
have also been considered in recent years [5, 8, 24, 25]. In practical applications,
however, the mean for different groups might be represented by polynomials of
different degrees. This, for instance, happens when we have clustered longitudinal
data, where the response over time follows different shapes for different clusters or
groups. In such situations, the EGCM is useful since it allows different degrees of
polynomials to be fitted within one modeling framework [3, 7, 15, 17, 26, 31].

Consider a GCM withm groups, where measurements are taken from each of the
n individuals at p different time points. Suppose also, that the mean (across time)
for the ith (i = 1, 2, . . . , k) group can be represented by a polynomial function of
degree q − 1 and can be described as

b0,i + b1,i t + +b2,i t
2 · · · + bq,itq−1, t = t1, t2, . . . , tp.

The GCM in matrix format, is given as

Y = ZBX + E,

where Y : p×n represents the observation (outcome) matrix, Z : p×q and X : m×n
are the between and within individual design matrices, and B : q×m represents the
parameter matrix with the coefficients of the polynomials. The columns of the error
matrix E : p × n are assumed to be distributed as a p-variate normal distribution
with mean zero and positive definite covariance matrix Σ . Description of the various
matrices in the model above are given by

Z′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
t1 t2 t3 · · · tp
t21 t22 t23 · · · t2p
...

...
...
. . .

...

t
q−1
1 t

q−1
2 t

q−1
3 · · · tq−1

p

⎞
⎟⎟⎟⎟⎟⎟⎠
, X =

⎛
⎜⎜⎜⎜⎜⎜⎝

1n1 0n2 0n3 · · · 0nm
0n1 1n2 0n3 · · · 0nm
0n1 0n2 1n3 · · · 0nm
...
...
...
. . .

...

0n1 0n2 0n3 · · · 1nm

⎞
⎟⎟⎟⎟⎟⎟⎠
,
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Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y11 y12 y13 · · · y1n

y21 y22 y23 · · · y2n

y31 y32 y33 · · · y3n
...

...
...
. . .

...

yp1 yp2 yp3 · · · ypn

⎞
⎟⎟⎟⎟⎟⎟⎠
, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

b01 b02 b03 · · · b0m

b11 b12 b13 · · · b1m

b21 b22 b23 · · · b2m
...

...
...

. . .
...

b(q−1)1 b(q−1)2 b(q−1)3 · · · b(q−1)m

⎞
⎟⎟⎟⎟⎟⎟⎠

and it is assumed that q ≤ p and rank(X)+ p ≤ n and n = n1 + n2 + . . .+ nm.
Inferences for the GCM have been considered by many, and likelihood estimators

for both the mean parameter and covariance matrices are already available [4, 6, 11].
The likelihood ratio test for testing the general linear hypotheses was also derived
by Khatri [11], under some full rank restrictions. Residuals in the GCM were
considered and mathematical decompositions were performed to provide some
insights on the characteristics of the various components [29, 30]. This work was
further extended to the EGCM, where better understanding of the design space as
well as the residual space were achieved [3, 30].

Consider now the decomposed residuals in the GCM [29] and the simple
hypothesis B = 0 (mean is zero), an extension of the well-known Lawley-Hotelling
trace test was previously derived for testing this hypothesis [4]. The test turned out
to be functions of the decomposed residuals, which in turn facilitated appropriate
interpretations of the decomposed residuals as well as better understanding of the
distribution of the test statistic. In their paper, Hamid and colleagues showed that
the distributions of the test statistics for the simple hypothesis of B = 0 as well
as the general linear hypothesis GBF = 0 are free of the unknown covariance
matrix Σ [4]. This means that the distributions can be generated empirically and
the critical value for the tests can be calculated through simulations or parametric
bootstrapping. Furthermore, the authors also showed that the distribution of the test
can be represented as weighted sums of chi-square random variables, which allowed
the authors to provide appropriate approximations.

In this paper, we consider the EGCM and provide some tests for the special
case of the model, where we assume the mean growth curves to be clustered in
two categories. The mean (over time) for the two clusters follow polynomials of
different degrees, e.g., one cluster consisting of groups with linear growth curves
and the other cluster consisting of groups with quadratic curves. We first present
and discuss the decomposed residuals in the EGCM [3, 30], and formulate two
hypotheses based on their practical relevance in analysis of clustered longitudinal
data, requiring fitting of the EGCM. We propose potential statistical tests motivated
by the residuals, and using a formulation similar to the trace test in the GCM, which
as mentioned above is an extension of the well-known Lawley-Hotelling trace test
in the MANOVA model. We then provide formal mathematical derivation using
restricted maximum likelihood approach and provide some distributional properties
of the test statistics. We evaluate performance using extensive simulations and
provide real data illustration.
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7.2 Residuals in the Extended Growth Curve Model

Suppose we have m groups and a total of n individuals from whom measurements
are taken at p time points. Without loss of generality, consider the EGCM,
where groups can be categorized into two clusters. Suppose, again without loss
of generality, that the mean for the first cluster, consisting of m1 groups, follows
a polynomial of degree q1 − 1 and the mean for the second cluster (consisting of
m2 groups) follows a polynomial of degree q1 + q2 − 1. For presentation purposes,
let m = m1 + m2 and q = q1 + q2. The EGCM, in matrix formulations, can be
represented as

Y = Z1B1X1 + Z2B2X2 + E, (7.1)

where q1, q2 ≤ p, rank(X1)+ p ≤ n and C (X′
2) ⊆ C (X′

1), where C (.) represents
the column space of a matrix. The observation matrix Y has the same dimension
and representation as the one described above for the GCM, and the n columns
of the error matrix E are assumed to be distributed as a p-variate normal random
variable with mean 0 and covariance Σ . The within individual design matrix Z1,
now of dimension p × q1, also has the same representation as Z in GCM, but
with q1 replacing q; the parameter matrix B1, of dimension q1 × m represents the
coefficients of the q1 polynomials that are common for both clusters consisting of
all m groups. The between individual design matrix X1, of dimension m × n, has
the same representation as X in GCM. The descriptions of the remaining matrices
involved in the EGCM are given as

Z2
′ : q2 × p =

⎛
⎜⎜⎜⎜⎜⎜⎝

t
q1
1 t

q1
2 t

q1
3 · · · t

q1
p

t
q1+1
1 t

q1+1
2 t

q1+1
3 · · · t

q1+1
p

t
q1+2
1 t

q1+2
2 t

q1+2
3 · · · t

q1+2
p

...
...

...
. . .

...

t
q1+q2−1
1 t

q1+q2−1
2 t

q1+q2−1
3 · · · tq1+q2−1

p

⎞
⎟⎟⎟⎟⎟⎟⎠
,

X2 : m2 × n =

⎛
⎜⎜⎜⎜⎝

0n1 0n2 · · · 1nm1+1 0nm1+2 · · · 0nm
0n1 0n2 · · · 0nm1+1 1nm1+2 · · · 0nm
...
...
...

...
...

. . .
...

0n1 0n2 · · · 0nm1+1 0nm1+2 · · · 1nm

⎞
⎟⎟⎟⎟⎠ ,

B2 : q2 ×m2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

bq11 bq12 bq13 · · · bq1m2

b(q1+1)1 b(q1+1)2 b(q1+1)3 · · · b(q1+1)m2

b(q1+2)1 b(q1+2)2 b(q1+2)3 · · · b(q1+2)m2
...

...
...

. . .
...

b(q1+q2−1)1 b(q1+q2−1)2 b(q1+q2−1)3 · · · b(q1+q2−1)m2

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Considerable literature is available on GMANOVA models in general, and EGCM
in particular [3, 7, 12, 15, 26, 30, 31]. Solutions to the likelihood functions are
also provided, and explicit formulae for the estimators are provided [12, 26].
Nevertheless, there is limited work related to hypothesis testing in the context of
the mean parameters of EGCM, and hence limited applications of the model exist
despite the fact that longitudinal data in practice follow different functions over
time across the different groups. The focus of this paper is, therefore, to contribute
towards hypothesis testing for the mean parameters of the EGCM. In doing so, we
are particularly interested in the decomposed residuals, and we consider a special
case of the model, without loss of generality. We use the residuals as motivations to
formulate hypotheses relevant to real world applications. We then mathematically
derive corresponding test statistics. As such, let us first consider the estimated
model, derived using the maximum likelihood (ML) approach, which is always
unique [3, 26, 27]. The mathematical expression for the estimated model is given
by

Ŷ = Z1B̂1X1 + Z2B̂2X2

= (I − T1)YX′
1(X1X′

1)
−X1 + (I − T2)YX′

2(X2X′
2)

−X2, (7.2)

where A− represents a generalized inverse of any matrix A and

T1 = I − Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 ,

T2 = I − T1Z2(Z′
2T′

1S−1
2 T1Z2)

−Z′
2T′

1S−1
2 ;

S1 = Y(I − X′
1(X1X′

1)
−X1Y′;

S2 = S1 + T1YX′
1(X1X′

1)
−X1(I − X′

2(X2X′
2)

−X2)

×X′
1(X1X′

1)
−X1Y′T′

1.

In vectorized form, this can be re-written as

VecŶ = [PX1 ⊗ PZ1]VecY + [PX2 ⊗ PZ2]VecY = PVecY,

where V ec represents a vectorized form a matrix, ⊗ represents the Kronecker
product and

PX1 = X′
1(X1X′

1)
−X1,

PX2 = X′
2(X2X′

2)
−X2,

PZ1 = Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 ,

PZ2 = T1Z2(Z′
2T′

1S−1
2 T1Z2)

−Z′
2T′

1S−1
2 .
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It is evident that the estimated model is a bilinear projection with respect to the four
design matrices, which is equivalent to the column space of the matrix P [3, 30].
This column space can be represented as sum of two tensor product spaces

C (P) = C (X′
1)⊗ CS1(Z1)+ C (X′

2)⊗ CS2(T1Z2),

where ⊗ represents tensor product between two spaces. The relationship between
Kronecker product of two matrices and tensor product space are presented in more
details in Kollo and von Rosen [12], and its applications in decomposition of
residuals in GMANOVA models is provided in Hamid and von Rosen [3].

Now consider the residuals in the EGCM, which are defined on the orthogonal
complement of the design space, that is a projection onto (C (X′

1) ⊗ CS1(Z1) +
C (X′

2)⊗CS2(T1Z2))
⊥ [3, 30]. This space was mathematically decomposed and

four residuals are provided in a previous work. Graphical elucidation of the design
and residual spaces as well as the corresponding formulas for the residuals are
provided below (Fig. 7.1). More mathematical details about the residuals in the
EGCM can be found in Hamid and von Rosen [3].

Note that, some of the spaces in Fig. 7.1 can be decomposed further (e.g., note
the broken lines across R2 and R3). Although further decompositions can also be
interpreted in terms of the model characteristics with respect to what the model
was not able to explain (i.e., residuals), we focused on these four residuals for now,
mainly because of their practical relevance in applications of GMANOVA models:

R1 = (I − T1)Y(I − X′
1(X1X′

1)
−X1),

R2 = T1Y(I − X′
1(X1X′

1)
−X1),

R3 = T1Y(X′
1(X1X′

1)
−X1 − X′

2(X2X′
2)

−X2),

R4 = (T1 + T2 − I)YX′
2(X2X′

2)
−X2.

4

3 2

1

( ′ )

( ′ )

( ′ )⊥

(
)

(
)

         +
(

)
(

+
)⊥

Fig. 7.1 The spaces representing the fitted model (design space) and the residuals in the EGCM
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As we can see from the figure and mathematical characteristics of the residuals,
R12 = R1 + R2 is equivalent to the residual in MANOVA models and appears
in the GCM as a sum of two of the decomposed residuals [29, 30]. This
residual represents the difference between the observations and the group mean
(Y − YX′

1(X1X′
1)

−X1) = Y(I − X′
1(X1X′

1)
−X1) and is distributed as a multi-

variate normal random variable, and hence useful in assessing between individual
assumptions as well as distributional assumptions. Note further, that R12R′

12 = S1,
and that the sample covariance matrix is 1

n−1 S1. On the other hand, R34 = R3 + R4
provides information about overall model fit, while R3 and R4 individually provide
information on different components of the polynomial fit.

For instance, consider two clusters, where the mean for one of the clusters can
be represented by a linear function over time and the mean of the second cluster
follows a quadratic curve. For this scenario, R3 provides information on the linear
component of the model (for both clusters) and R4 provides information on the
quadratic component of the second cluster. More on this will come while deriving
and evaluating the proposed tests.

7.3 Some Tests for the Extended Growth Curve Model

Consider the EGCM defined in (7.1). Without loss of generality, consider only two
groups, where each group is considered as a cluster. Suppose measurements from
each group are taken at different time points. Suppose the mean for the first group
can be represented by a linear function over time and the mean for the second group
follows quadratic curve. Note that, this is just to simplify presentation in this paper,
nevertheless the tests are derived under general assumptions, and are not restricted
to two groups or linear/quadratic polynomials.

Consider now the simple hypothesis that the mean is zero (testing overall
significance of the model), which can be formulated as

Ho : B1 = 0,B2 = 0,

H1 : B1 �= 0,B2 �= 0. (7.3)

Recall the Lawley-Hotelling trace test for MANOVA and GCM [4, 5]. Both tests are
weighted functions of the observed mean and the corresponding residuals (the part
of the observed mean that is left unexplained by the fitted model), where the weight
is the between individual variation represented by the sample variance-covariance
matrix in GCM, which is a function of S. Using analogous arguments, one can
suggest that a test statistic for the simple hypothesis presented above, in the EGCM
framework, will be a weighted function of YX′

1(X1X′
1)

−X1Y′ and R34R′
34, and will

have the format

f (YX′
1(X1X′

1)
−X1Y′)

f (R34R′
34)

.
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Below, we will provide mathematical derivation for the test. In doing so, we write
the likelihood function as a product of three independent terms. We maximize a
certain part of the likelihood to get an estimator for the unknown covariance matrix,
which then replaces the covariance matrix in the likelihood function to give the
estimated likelihood.

Consider first the EGCM in (7.1), we can rewrite it as

Y = Z1(B11 : B12)

(
X11

X12

)
+ Z2B2X2 + E

= Z1B11X11 + Z1B12X12 + Z2B2X2 + E, (7.4)

where B1 = (B11 : B12) and X′
1 = (X′

11 : X′
12). Considering the two clusters (in

our case, two groups as well) separately, the model reduces to

Y1 = Z1B11X1
11 + E1,

and

Y2 = Z1B12X2
12 + Z2B2X22 + E2,

for Group I and Group II, respectively. Here Y1, X1
11 and E1 are matrices consisting

of the first n1 columns of Y, X11 and E, respectively. The matrices Y2, X2
12, X22

and E2 consist of the last n2 columns of Y, X12, X2 and E, respectively. Observe
that X12 = X2. Moreover, it is possible to show that

X′
11(X11X′

11)
−X11 = X′

1(X1X′
1)

−X1 − X′
2(X2X′

2)
−X2.

Now consider the likelihood function for the EGCM

L = γ |Σ |− n
2 e−

1
2 t r{Σ−1(Y−(Z1B1X1+Z2B2X2))(Y−(Z1B1X1+Z2B2X2))

′}, (7.5)

where γ = (2π)− 1
2np. It can be rewritten as a product of three terms,

L = L1 × L2 × L3,

where

L1 = γexp{−1

2
tr{Σ−1(YX′

2(X2X′
2)

−X2 − (Z1B12X12 + Z2B2X2))

× (YX′
2(X2X′

2)
−X2 − (Z1B12X12 + Z2B2X2))

′}},

L2 = exp{−1

2
tr{Σ−1(Y(X′

1(X1X′
1)

−X1 − X′
2(X2X′

2)
−X2)− (Z1B11X11))

× (Y(X′
1(X1X′

1)
−X1 − X′

2(X2X′
2)

−X2)− (Z1B11X11))
′}},

L3 = |Σ |− n
2 exp{−1

2
tr{Σ−1Y(I − X′

1(X1X′
1)

−X1)Y′}}.
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Let us now consider L3, which is free of the parameters specified in the hypothesis
and maximize the expression to get an estimator for the unknown covariance matrix
Σ . It is possible to show that the estimator that maximizes L3 is (n − 1)Σ̂ = S1.
We now replace Σ in (7.5) by its estimator, to get the estimated likelihood, denoted
by EL, and then maximize EL under Ho and Ho ∪ H1, to get the desired test. The
maximum of the EL underHo and Ho ∪H1 are respectively given by

γ1|S1|− n
2 e−

1
2 t r{nS−1

1 YX′
1(X1X′

1)
−X1Y′} (7.6)

and

γ1|S1|− n
2 exp{−1

2
ntr{S−1

1 (YX′
1(X1X′

1)
−X1 − (Z1B̂1X1 + Z2B̂2X2))

× (YX′
1(X1X′

1)
−X1 − (Z1B̂1X1 + Z2B̂2X2))

′}}, (7.7)

where γ1 = nn2 (2π)− 1
2npe− 1

2np . Note that we can rewrite R3 and R4 as follows:

R3 = S1Zo1(Z
o′
1 S1Zo1)

−Zo′1 Y(X′
1(X1X′

1)
−X1 − X′

2(X2X′
2)

−X2), (7.8)

R4 = S2Zo(Zo′S2Zo)−Zo′YX′
2(X2X′

2)
−X2,

where Zo1 and Zo are matrices of full rank spanning the orthogonal complements
of the column spaces of the matrices Z1 and Z = (Z1 : T1Z2), respectively. It is
possible to show that R34, which denotes the sum of the residuals R3 and R4, can
be written as a difference between the observed and estimated means, i.e.,

R34 = YX′
1(X1X′

1)
−X1 − (Z1B̂1X1 + Z2B̂2X2).

A test statistic is defined by taking the ratio between (7.6) and (7.7), which can be
simplified as

e− 1
2ntr{S−1

1 YX′
1(X1X′

1)
−X1Y′}

e− 1
2ntr{S−1

1 R34R′
34}

, (7.9)

where the hypothesis is rejected when the value of the ratio is small, i.e., close to
zero. Note that the ratio has values between zero and one. One can also define an
equivalent test by taking the logarithm of the test statistic, which can be re-written
as

tr{S−1
1 YX′

1(X1X′
1)

−X1Y′} − tr{S−1
1 R34R′

34}, (7.10)

and the hypothesis will be rejected for large values of (7.10). This formulation
allows a relatively easier understanding of some distributional characteristics of the
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proposed test. As such, consider the first term in (7.10) and write it as a sum of two
terms as follows:

tr{S−1
1 YX′

1(X1X′
1)

−X1Y′} = tr{S−1
1 YX′

11(X11X′
11)

−X11Y′}
+ tr{S−1

1 YX′
2(X2X′

2)
−X2X′

2}, (7.11)

where X11 is as in (7.4). Similarly, use the expressions for R3 and R4 and write the
second term in (7.10) as

tr{S−1
1 R34R′

34} = tr{YX′
11(X11X′

11)
−X11Y′S−1

1 Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 }

+ tr{YX′
2(X2X′

2)
−X2Y′S−1

2 Z(Z′S−1
1 Z)−Z′S−1

1 }. (7.12)

By subtracting (7.12) from (7.11), the test statistic reduces to

φ1(Y) = tr{YX′
11(X11X′

11)
−X11Y′S−1

1 Z1(Z′
1S−1

1 Z1)
−Z′

1S−1
1 }

+ tr{YX′
2(X2X′

2)
−X2Y′S−1

2 Z(Z′S−1
1 Z)−Z′S−1

1 }, (7.13)

where Z = (Z1 : T1Z2). The hypothesis is rejected when the value of φ1(Y) is large.
Here it is important to note that the column spaces of (Z1 : Z2) and (Z1 : T1Z2) are
identical [2, 3].

The test statistic given in (7.13) is always greater or equal to zero. Moreover, it
is possible to see from the expression in (7.9) that the numerator is a function of
YX′

1(X1X′
1)

−X1, which is the observed mean. On the other hand, in the denom-
inator we have a function of R34, which is the residual obtained by subtracting
the estimated mean from the observed mean. This shows that the test compares
the observed and estimated means, in some weighted fashion, and rejects the
hypothesis when the difference between them is “small”, which is quite intuitive
and in agreement with the formulation of the Lawley-Hotelling trace tests in the
MANOVA and GMANOVA models.

Below, we show that the distribution of φ1(Y) under the null hypothesis is
independent of the unknown covariance matrix, Σ . This is extremely important in
applications, since the empirical distribution can be generated without the knowl-
edge of the covariance matrix, and hence significance testing can be performed and
p-values can be provided. Performance evaluation through simulations can also be
performed by assuming, without loss of generality, that Σ = I. On the other hand,
it is possible to show that the distribution under the alternative depends on Σ , and
hence the power of the test depends on the variance-covariance matrix. We will
empirically show this through the simulations.

Now, to show that the distribution of the test statistic in (7.13) under the null is
independent of Σ , consider the first part of the expression and let Zo1 be a matrix of
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full rank spanning the orthogonal complement to the space generated by the columns
of Z1. We can write first expression in (7.13) as

tr{YX′
11(X11X′

11)
−X11Y′S−1

1 }
− tr{YX′

11(X11X′
11)

−X11Y′Zo1(Z
o
1
′S1Zo1)

−1Zo1
′}. (7.14)

The first term in (7.14) is invariant under the transformation Σ− 1
2 Y. It is, therefore,

possible to replace Y by Σ− 1
2 Y, which shows that the distribution of this term in is

independent of Σ . For the second term, by using the property of the trace function,
we can rewrite it as

tr{X′
11(X11X′

11)
−X11Y′Zo1(Z

o
1
′S1Zo1)

−1Zo1
′Y}.

Now, write Zo1
′Y as

(Zo1
′
ΣZo1)

1
2 (Zo1

′
ΣZo1)

− 1
2 Zo1

′Y

and observe that we can rewrite (Zo1
′ΣZo1)

1
2 (Zo1

′S1Zo1)
−1(Zo1

′ΣZo1)
1
2 as

((Zo1
′
ΣZo1)

− 1
2 Zo1

′Y(I − X11
′(X11X11

′)−X11)Y′Zo1(Zo1
′
ΣZo1)

− 1
2 )−1.

Consequently, it remains to show that the distribution of (Z1
o′ΣZ1

o)− 1
2 Z1

o′Y is
independent of Σ . Note that the expression is a linear function of a multivariate
normal random variable. As a result, it is enough to show that the mean and
dispersion matrices are independent of Σ , which are shown below.

Under the null hypothesis E[Y] = Z1B1X1 + Z2B2X2 = 0 which implies

E[(Z1
o′ΣZ1

o)−
1
2 Z1

o′Y] = 0.

The dispersion matrix, D, is given by

D[(Z1
o ′ΣZ1

o)−
1
2 Z1

o′Y] = (Z1
o′ΣZ1

o)−
1
2 Z1

o′ΣZ1
o(Z1

o′ΣZ1
o)−

1
2 = I.

Suppose now, that we want to check if the quadratic term in the growth curves of
the individuals in the second group (cluster) is significantly different from zero. We
can formulate the hypotheses (in terms of the mean parameters) as

Ho : B2 = 0

H1 : B2 �= 0. (7.15)

Note that this hypothesis is associated with the residual, R4. Using a similar
motivation as in the Lawley-Hotelling trace test in MANOVA, the trace test in the
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GCM and the test provided in (7.13), one can argue that the statistic for testing the
hypothesis in (7.15) should have the format

f (YX′
2(X2X′

2)
−X2Y′)

f (R4R′
4)

.

In order to provide a formal derivation, recall the likelihood function of the EGCM
given in (7.5) and maximize the product,L2 ×L3, which is independent of R4. This
gives us the estimator S2 for nΣ . Update the likelihood by using the estimator and
proceed by taking the ratio of the maximum of the estimated likelihood under Ho
and Ho ∪ H1. The test statistic provided in (7.17) can be obtained by taking the
logarithm of the ratio and doing some algebraic manipulations similar to φ1(Y),
including using the property of the trace function (e.g., for any two matrices
tr(AB) = tr(BA)) as well as the fact that

I − Z1(Z′
1S2

−1Z1)
−Z′

1S−1
2 = T1Z2(Z2

′T1
′S2

−1T1Z2)
−Z2

′T1
′S2

−1

+ S2Zo(Zo ′S2Zo)Zo′, (7.16)

where T1 and Z1
o are as presented in (7.2) and (7.8), respectively. Note that the two

terms on the right hand side of (7.16) are orthogonal to each other. The test statistic
for testing the hypothesis in (7.15) can be formally written as

φ2(Y) = tr{YX′
2(X2X′

2)
−X2Y′S−1

2 T1Z2(Z′
2T′

1S−1
2 T1Z2)

−Z′
2T′

1S−1
2 }, (7.17)

and the hypothesis is rejected when the value of φ2(Y) is large. The above test
statistic is always greater or equal to zero. Similar to φ1(Y), the distribution of
φ2(Y) is under the null hypothesis independent of the unknown covariance matrix,
Σ . To show this, note that the test statistic in (7.17) can be written as the difference
between two terms as

tr{YX′
2(X2X′

2)
−X2Y′G1(G′

1W2G1)
−1G′

1}
− tr{YX′

2(X2X′
2)

−X2Y′G2(G′
2W2G2)

−1G′
2}, (7.18)

where

Gr+1 = Gr (G′
rZr+1)

o, G0 = I,

Wr+1 = Y(I − X′
r (XrX

′
r )

−Xr )Y′, r = 0, 1, 2, . . .m− 1.

Such approaches have been discussed in a more general form in von Rosen [27].
For special cases, we refer to Hamid [2] and Hamid and von Rosen [3]. The two
terms in (7.18) can be, respectively, rewritten as

tr{X′
2(X2X′

2)
−X2Y′G1(G′

1W2G1)
−1G′

1Y}
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and

tr{X′
2(X2X′

2)
−X2Y′G2(G′

2W2G2)
−1G′

2Y}.

In order to show that the distribution of φ2(Y) under the null hypothesis is
independent of Σ , we want to show that the distributions of the above two
expressions under the null hypothesis are independent of Σ , which is equivalent
to showing that the distributions of G′

1Y and G′
2Y under the null hypothesis are

independent of Σ . As such, we write G′
1Y as

(G1ΣG′
1)

1
2 (G1ΣG′

1)
− 1

2 G′
1Y′,

and it remains to show that the distribution of (G1ΣG′
1)

− 1
2 G′

1Y′, which is a linear
function of a multivariate normal random variable, is independent of Σ . Once again,
because of normality, it is enough to show that the mean and dispersion matrices are
independent of Σ .

Under the null hypothesis, B2 = 0, we have that G′
1Z1 = Zo1

′Z1 = 0.
Consequently,

E[(G1ΣG′
1)

− 1
2 G′

1Y] = (G1ΣG′
1)

− 1
2 G′

1(Z1B1X1 + Z2B2X2) = 0.

Furthermore,

D[G1ΣG′
1)

− 1
2 G′

1Y] = (G1ΣG′
1)

− 1
2 G′

1ΣG1(G1ΣG′
1)

− 1
2 = I.

Similar calculations can show that the distribution of G′
2Y is independent of Σ .

7.4 Simulations

We performed simulations to evaluate the performance of the tests. We first
generated the empirical distributions of both tests under the corresponding null
hypotheses, and calculated the critical values for the tests based on 50,000 simu-
lations. The empirical level and power of the tests were then calculated from second
sets of 10,000 simulations. Several scenarios were considered in terms of sample
size (n), departure from the null hypotheses and number of time points, p. We have
also considered several scenarios in terms of the covariance matrix Σ .

For the null hypothesis in (7.3), the distribution of the test statistic, φ1(Y) under
the null hypothesis is skewed to the left (Fig. 7.2), which is consistent across
different sample sizes, dimensions of p, degrees of polynomial q and magnitudes
of Σ .
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Fig. 7.2 The null distribution of φ1(Y ), where p = 8, and (a) n=20, (b) n=30, (c) n=40 and (d)
n=50. The arrows show the critical values corresponding to the tests

The results of the simulation show that φ1(Y ) performs well and possesses all
the desirable properties of a test statistic. Similar to the trace test in the GCM, our
simulation results show that the test maintains the nominal level α = 0.05 (Fig. 7.3),
for all the scenarios considered.

The results also show that the test is unbiased, symmetric, monotone with respect
to both n and departures from the null hypothesis (Fig. 7.4). Similar to our previous
studies on the GCM and EGCM, departure from the null hypotheses is measured
using the Euclidean norm of the parameter matrix [5–8]. The results also show that
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Fig. 7.3 Empirical level of φ1(Y ) and the corresponding 95% confidence bands
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Fig. 7.4 Empirical power of φ1(Y ) with x-axis depicting (a) positive and negative scenarios to
show symmetry, (b) Euclidean norm of the parameter matrix, used to measure departures from the
null

the test has a reasonably good statistical power, where the test detects very small
departures from the null hypothesis, even with relatively small sample sizes (Fig. 7.4
and Table 7.1). Please note, the results are consistent across all the scenarios we
considered.



118 J. S. Hamid and S. Jana

Table 7.1 Empirical power of φ1(Y) for multiple n, p and B

p = 8 p = 4

Euclidean distance n = 20 n = 30 n = 40 n = 50 n = 20 n = 30 n = 40 n = 50

0 0.052 0.064 0.04 0.042 0.045 0.06 0.051 0.042

0.054 0.349 0.729 0.918 0.979 0.112 0.167 0.221 0.32

0.061 0.551 0.891 0.985 1.000 0.157 0.234 0.333 0.415

0.069 0.726 0.988 0.998 1.000 0.188 0.304 0.417 0.556

0.077 0.859 0.999 1.000 1.000 0.239 0.395 0.521 0.684

0.086 0.945 1.000 1.000 1.000 0.289 0.501 0.669 0.795

0.095 0.971 1.000 1.000 1.000 0.371 0.593 0.757 0.884

0.104 0.992 1.000 1.000 1.000 0.42 0.723 0.859 0.944

0.113 1.000 1.000 1.000 1.000 0.521 0.800 0.935 0.981
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Fig. 7.5 (a) Empirical level and (b) empirical power, of φ2(Y )

Similar results were also obtained for φ2(Y), where the simulation results show
that the distribution of the test statistic is skewed to the left. The test statistic
maintains the nominal level and has all the other desirable properties such as
unbiasedness, symmetry and monotonicity (Figs. 7.5 and 7.6). Furthermore, our
simulations demonstrate that the test has a very good performance, as it detects
extremely small departures from the null hypothesis, with a reasonably small sample
size (Fig. 7.6).
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Fig. 7.6 Empirical power of φ2(Y ) with respect to Euclidean norm of the parameter matrix across
four sample sizes

7.5 Empirical Example

As an empirical illustration, we consider the glucose data [32]. Data consists of
measurements taken at 8 time points from 13 controls and 20 obese patients. The
mean profile plots for the two groups are provided in Fig. 7.7 below. For illustration
purposes, we assume two clusters, where the mean of one of the clusters (consisting
of individuals in the obese group) follows a quadratic growth curve and the mean
for the second cluster (consisting of individuals in the control group) follows a cubic
growth curve.

Results show that the null hypothesis of zero mean for both groups (i.e., B1 = 0,
B2 = 0) is rejected, with observed test statistic = 62.76, critical value = 0.80, and
p-value r < 0.0001. For the hypothesis that the coefficient of the cubic term is zero,
the observed test statistic value is 0.142 and the critical value is 0.173 (Fig. 7.8),
indicating that there is no evidence to reject the null hypothesis (p-value = 0.07328)
at 5% level of significance.



120 J. S. Hamid and S. Jana

l

l

l

l

l

l

l

l

0 1 2 3 4 5

3.
0

3.
5

4.
0

4.
5

Time in hours

gl
uc

os
e 

gr
ow

th

l control
obese

Fig. 7.7 Mean profile plots for the glucose data

values of the test statistic

pr
ob

ab
ilit

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

observed test statistic
critical value

Fig. 7.8 The null distribution of φ2(Y) for the glucose data



7 Some Tests for the Extended Growth Curve Model 121

7.6 Summary

We considered the Extended Growth Curve Model, which can be applied in
situations where longitudinal measurements from groups of individuals can be
clustered into several groups. Using decomposed residuals as a motivation, we
derived test statistics for two hypotheses related to the mean parameters of the
model. The two corresponding tests can be shown to be extensions of the trace test
in the Growth Curve Model, which in turn is the Lawley-Hotelling trace test.

Simulation results showed that the two tests possess all the desirable properties
such as unbiasedness, symmetry and monotonicity with respect to both sample
size and departures from the null hypotheses, where departure is measured using
Euclidean norm. Results also demonstrate that the tests have good performances,
where the tests were able to detect very small departures from the null hypotheses.
The results were consistent under all scenarios considered (e.g., different covariance
matrices, different values of p and q).

Although the tests are derived under special scenarios, where we assumed two
clusters, the approach used in our manuscript allows extensions to several clusters
(the general EGCM) to be made. Moreover, the formulation we provided in this
study can also be extended to allow a more general linear hypothesis to be tested.
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Chapter 8
Properties of BLUEs and BLUPs
in Full vs. Small Linear Models
with New Observations

Stephen J. Haslett, Augustyn Markiewicz, and Simo Puntanen

Abstract In this article we consider the partitioned linear model M12 =
{y, X1β1 + X2β2, V}, where μ = X1β1 + X2β2, and the corresponding small
model M1 = {y, X1β1, V}, where μ1 = X1β1. These models are supplemented
with the new unobservable random vector y∗, coming from y∗ = Kβ1 + ε∗, where
the covariance matrix of y∗ is known as well as the cross-covariance matrix between
y∗ and y. We focus on comparing the BLUEs of μ1 and μ, and BLUPs of y∗ and ε∗
under M12 and M1.

8.1 Introduction

In this paper we consider the partitioned linear model y = X1β1 + X2β2 + ε and
so-called small model (submodel) y = X1β1 + ε, or shortly

A12 = {y, Xβ, V} = {y, X1β1 + X2β2, V} , A1 = {y, X1β1, V} . (8.1)

Here y is an n-dimensional observable response variable, and ε is an unobservable
random error with a known covariance matrix cov(ε) = V = cov(y) and
expectation E(ε) = 0. The matrix X is a known n × p matrix, i.e., X ∈ R

n×p ,
partitioned columnwise as X = (X1 : X2), Xi ∈ R

n×pi , i = 1, 2. Vector
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β = (β ′
1,β

′
2)

′ ∈ R
p is a vector of fixed (but unknown) parameters; here symbol

′ stands for the transpose.
Let the new unknown q-dimensional future response y∗ be

y∗ = X∗β + ε∗ = Kβ1 + ε∗ , X∗ = (K : 0) , K ∈ R
q×p1, (8.2)

and

cov

(
y
y∗

)
=

(
V V12

V21 V22

)
. (8.3)

Of course, the word “new” need not be taken here literally. Putting A12, A1 and (8.2)
together, we can denote the models shortly as

M1 =
{(

y
y∗

)
,

(
X1

K

)
β1,

(
V V12

V21 V22

)}
, (8.4a)

M12 =
{(

y
y∗

)
,

(
X
X∗

)
β,

(
V V12

V21 V22

)}

=
{(

y
y∗

)
,

(
X1 X2

K 0

)
β,

(
V V12

V21 V22

)}
. (8.4b)

Thus: M12 is the full model with new observations and M1 is the small model with
new observations. We may drop off the subscripts from M12 if the partitioning is not
essential in the context. We are interested in estimating μ∗ = X∗β and predicting
y∗ and ε∗ on the basis of y.

As for notations, the symbols r(A), A−, A+, C (A), and C (A)⊥, denote,
respectively, the rank, a generalized inverse, the (unique) Moore–Penrose inverse,
the column space, and the orthogonal complement of the column space of the
matrix A. By A⊥ we denote any matrix satisfying C (A⊥) = C (A)⊥. Furthermore,
we will write PA = PC (A) = AA+ = A(A′A)−A′ to denote the orthogonal
projector (with respect to the standard inner product) onto C (A). The orthogonal
projector onto C (A)⊥ is denoted as QA = Ia − PA, where Ia refers to the a × a
identity matrix and a is the number of rows of A. It appears convenient to use the
short notations

M = In − PX , Mi = In − PXi , i = 1, 2. (8.5)

One obvious choice for X⊥ is M.
When using generalized inverses it is important to know whether the expressions

are independent of the choice of the generalized inverses involved. Lemma 8.1
below gives some invariance conditions; cf. Rao and Mitra [21, Lemma 2.2.4].
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Lemma 8.1 For nonnull matrices A and C the following holds:

(a) AB−C = AB+C for all B− ⇐⇒ C (C) ⊂ C (B) & C (A′) ⊂ C (B′).
(b) AA−C = C for some (and hence for all) A− ⇐⇒ C (C) ⊂ C (A).

Let the set W of nonnegative definite matrices be defined as

W = {
W ∈ R

n×n : W = V + XUU′X′, C (W) = C (X : V)
}
. (8.6)

In (8.6), U can be any matrix comprising p rows as long as C (W) = C (X : V)
is satisfied. Lemma 8.2 collects together some important properties of the class W ;
see, e.g., Baksalary et al. [1, Th. 2] and Puntanen et al. [18, Sect. 12.3].

Lemma 8.2 Let V be an n×n nonnegative definite matrix, let X be an n×p matrix,
and define W as W = V + XUU′X′, where U is a p×p matrix, i.e., W ∈ W . Then
the following statements are equivalent:

(a) C (X : V) = C (W) ,
(b) C (X) ⊂ C (W) ,
(c) C (X′W−X) = C (X′) for any choice of W−,
(d) X(X′W−X)−X′W−X = X for any choices of W− and (X′W−X)−.

For the partitioned linear model M12 we will say that W ∈ W if the following
properties hold:

W = V + XUU′X′ = V + X1U1U′
1X′

1 + X2U2U′
2X′

2 , (8.7a)

Wi = V + XiUiU′
iX

′
i , i = 1, 2, (8.7b)

C (W) = C (X : V) , C (Wi ) = C (Xi : V) , i = 1, 2. (8.7c)

The particular choice of U = (X1 : U2) does not matter in our considerations and
for simplicity we have put U′

1U2 = 0.
By the consistency of the model M it is meant that y lies in C (X : V) with

probability 1; see, e.g., Baksalary et al. [2]. Hence we assume that under the
consistent model M the observed numerical value of y satisfies

y ∈ C (X : V) = C (X : VX⊥) = C (X : VM) = C (X)⊕ C (VM) , (8.8)

where “⊕” refers to the direct sum, implying that C (X) ∩ C (VX⊥) = {0}. For the
equality C (X : V) = C (X : VM), we refer to Rao [20, Lemma 2.1]. There is a
related decomposition, see, e.g., Puntanen et al. [18, Th. 8]: for any conformable
matrices A and B we have

C (A : B) = C (A : QAB) , and thereby P(A:B) = PA + PQAB . (8.9)

Thus we can obtain part (a) of Lemma 8.3 below.
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Lemma 8.3 Consider X = (X1 : X2) and let M2 = In − PX2 . Then

(a) M = In − P(X1:X2) = In − (PX2 + PM2X1) = M2QM2X1 = QM2X1M2 ,
(b) C (X2) ⊂ C (X1 : V) ⇐⇒ C (M1X2) ⊂ C (M1V) .

For the following lemma, see, e.g., Isotalo et al. [12], Puntanen et al. [18,
Prop. 15.2] and Markiewicz and Puntanen [16, Sec. 4].

Lemma 8.4 Consider the partitioned linear model {y,X1β1 + X2β2,V}, let W =
V + XUU′X′ ∈ W and denote M1 = In − PX1 and

Ṁ = M(MVM)−M , Ṁ1 = M1(M1VM1)
−M1 . (8.10a)

Then the following equalities hold:

(a) X(X′W−X)−X′W+ = PW − VM(MVM)−MPW
= PW − VṀPW
= PW − VM(MVM)+
= PW − VM(MVM)+M .

(b) Replacing X,W,M and Ṁ with X1,W1,M1 and Ṁ1 in (a), the corresponding
expressions for X1(X′

1W−
1 X1)

−X′
1W+

1 can be obtained.

A couple of clarifying words about Lemma 8.4 may be in place. We observe that

VM(MVM)−MPW = VM(MVM)−PMV

= VM(MVM)+PMV

= VM(MVM)+, (8.11)

where we have used Lemmas 8.1 and 8.3, which gives

MPW = M(PX + PMV) = MPMV = PMV . (8.12)

In addition, it is noteworthy that the matrix Ṁ = M(MVM)−M is unique with
respect to the choice of (MVM)− if and only if Rn = C (X : V), see Isotalo et al.
[12, p. 1439]. For the Moore–Penrose inverse the following holds:

M(MVM)+M = (MVM)+M = M(MVM)+ = (MVM)+. (8.13)

Let A and B be arbitrary m × n matrices. Then, in the consistent linear model
M , the estimators Ay and By are said to be equal with probability 1 if

Ay = By for all y ∈ C (X : V) = C (W) , (8.14)

where W ∈ W . Thus, if A and B satisfy (8.14), then A−B = CQW for some matrix
C. When talking about the equality of estimators like Ay = By, we often drop off
the phrase “with probability 1”.
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The properties of the BLUE deserve particular attention when C (X : V) = R
n

does not hold: then there is an infinite number of multipliers B such that By is BLUE
but for all such multipliers the vector By itself is unique (with probability 1, which
is the phrase in this context). In the case of two linear models, Bi = {y,Xβ,Vi},
i = 1, 2,Mitra and Moore [17] divide the problems into three questions:

(a) When is a specific linear representation of the BLUE of μ = Xβ under B1 also
a BLUE under B2?

(b) When does μ = Xβ have a common BLUE under B1 and B2?
(c) When is the BLUE of μ = Xβ under B1 irrespective of the linear representa-

tion used in its expression, also a BLUE under B2?

The purpose of this paper is to do considerations in the spirit of Mitra and Moore
[17] regarding the models M12 and M1. We pick up particular fixed representations
for the BLUEs and BLUPs under these two models, study the conditions under
which they are equal for all values of y ∈ C (X1 : X2 : V) or y ∈ C (X1 : V).
Moreover, we review the conditions under which all representations of the BLUEs
and BLUPs in one model continue to be valid in the other model. Corresponding
relations between the covariance matrices of the BLUEs, BLUPs and prediction
errors are characterized. The well-known (or pretty well-known) results are given
as Lemmas, while the new (or at least not so well-known) results are represented as
Propositions. As this paper is more like a review-type, though providing some new
characterizations, we provide a reasonable background and matrix tools, to make
the article more self-contained, i.e., easier to read. Most of this background material
is in the first two sections.

8.2 Fundamental BLUE and BLUP Equations

A linear statistic By is said to be linear unbiased estimator (LUE) for μ∗ = X∗β in
M12 if its expectation is equal to μ∗, which happens if and only if X′∗ = X′B′. For
our purposes, the parametric function μ∗ = Kβ1 must be estimable in M12 and M1
as well. Now, see, e.g., Groß and Puntanen [4, Lemma 1],

μ∗ = X∗β = (K : 0)β = Kβ1 is estimable under M12 (8.15)

if and only if C (K′) ⊂ C (X′
1M2), i.e., K = JM2X1. Thus

X∗ = (K : 0) = (JM2X1 : 0) = JM2X = LX , where L = JM2 . (8.16)

This means that for our purpose it is essential to consider the best LUE, i.e., the
BLUE of M2X1β1. Obviously (8.16) means that Kβ1 is estimable also under M1.
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The LUE By is the best linear unbiased estimator, BLUE, of estimable X∗β if
By has the smallest covariance matrix in the Löwner sense among all LUEs of X∗β:

cov(By) ≤L cov(B#y) for all B# : B#X = X∗ . (8.17)

Correspondingly, the linear predictor Ay is said to be unbiased for y∗ if the expected
prediction error is zero, i.e., E(y∗ − Ay) = 0 for all β ∈ R

p, which happens if and
only if X′∗ = X′A′.When C (X′∗) ⊂ C (X′) holds, we will say that y∗ is predictable
under M . Now a linear unbiased predictor Ay is the best linear unbiased predictor,
BLUP, for y∗, if we have the Löwner ordering

cov(y∗ − Ay) ≤L cov(y∗ − A#y) for all A# : A#X = X∗ . (8.18)

Consider then the BLUP of ε∗. Obviously Dy is an unbiased predictor for ε∗ if
and only if DX = 0, i.e., D = FM for some L. Thus the unbiased Dy is the BLUP
for ε∗ if and only if

cov(ε∗ − Dy) ≤L cov(ε∗ − FMy) for all F ∈ R
q×n. (8.19)

For Lemma 8.5, characterizing the BLUE, see, e.g., Rao [19, p. 282], and the
BLUP, see, e.g., Christensen [3, p. 294], and Isotalo and Puntanen [11, p. 1015].
For part (d), see Isotalo et al. [10, Th. 3.1]. For the general reviews of the BLUP-
properties, see, e.g., Tian [23, 24], [9], and Markiewicz and Puntanen [15].

Lemma 8.5 Consider the linear model with new observations defined as M12
where C (X′∗) ⊂ C (X′), i.e., y∗ is predictable. Then the following statements
hold:

(a) Ay = BLUP(y∗) ⇐⇒ A(X : VX⊥) = (X∗ : V21X⊥) , i.e., A ∈ {Py∗|M12} .
(b) By = BLUE(X∗β) ⇐⇒ B(X : VX⊥) = (X∗ : 0) , i.e., B ∈ {PX∗|M12} .
(c) Cy = BLUE(Xβ) ⇐⇒ C(X : VX⊥) = (X : 0) , i.e., C ∈ {PX|M12} .
(d) Dy = BLUP(ε∗) ⇐⇒ D(X : VX⊥) = (0 : V21X⊥) , i.e., D ∈ {Pε∗|M12} .

The sets {Py∗|M1} , {PX1|M1} and {Pε∗|M1} are defined in the corresponding way.
Putting (b) and (d) of Lemma 8.5 together yields

(
B
D

)
(X : VX⊥) =

(
X∗ 0
0 V21X⊥

)
, (8.20)

which implies that

A(X : VX⊥) = (B + D)(X : VX⊥) = (X∗ : V21X⊥) , (8.21)

and thereby (B + D)y is the BLUP for y∗ and we have

BLUP(y∗) = BLUE(X∗β)+ BLUP(ε∗) , i.e., ỹ∗ = μ̃∗ + ε̃∗ . (8.22)



8 Properties of BLUEs and BLUPs 129

Using Lemma 8.2 we can obtain, for example, the following well-known
solutions to B and C in Lemma 8.5:

X∗(X′W−X)−X′W− ∈ {PX∗|M } , X(X′W−X)−X′W− ∈ {PX|M } , (8.23)

where W ∈ W and we can freely choose the generalized inverses involved.
Expression X(X′W−X′)−X′W− is not necessarily unique with respect to the choice
of W− but

G = X(X′W−X′)−X′W+ ∈ {PX|M } (8.24)

is unique whatever choice of W− we have. The general solution for C in Lemma 8.5,
can be expressed, for example, as

PX|M = G + NQW , where N ∈ R
n×n is free to vary, (8.25)

and QW = In−PW. Thus the solution for C is unique if and only if C (X : V) = R
n.

In particular, in view of Lemma 8.4, we have the following:

G = X(X′W−X)−X′W+ = PW − VM(MVM)−MPW

= PW − VM(MVM)+ = PW − VM(MVM)+M , (8.26)

and thus

In − G = QW + VM(MVM)−MPW = QW + VM(MVM)+M . (8.27)

Corresponding expressions for G1 can be obtained by replacing X, M and W with
X1, M1 and W1, respectively, in (8.26). Premultiplying (8.26) by PX gives

G = PX − PXVM(MVM)+M , (8.28)

and correspondingly,

G1 = PX1 − PX1VM1(M1VM1)
+M1 . (8.29)

Notice that by Lemma 8.1,

• G = X(X′W−X)−X′W+ is unique for any choice of W− and (X′W−X)−,
• VM(MVM)−MPW is unique for any choice of (MVM)−,
• VM(MVM)−M is unique for any choice of (MVM)− if and only if r(MV) =

r(M), i.e., r(X : V) = n.

In order to consider the BLUP(ε∗) under M12 , we observe that

V21V+(In − G)(X : VM) = (0 : V21M) , (8.30)
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and thus V21V+(In − G) ∈ {Pε∗|M12} . On the other hand, in view of (8.27),

V21V+(In − G) = V21M(MVM)−MPW = V21M(MVM)+M , (8.31)

and so

ε̃∗ = BLUP(ε∗ | M12) = V21V+(In − G)y

= V21M(MVM)−MPWy

= V21M(MVM)+My

= Ey, (8.32)

where we have denoted

E = V21V+(In − G) = V21M(MVM)+M ∈ {Pε∗|M12} . (8.33)

Equation (8.32) holds for any y ∈ R
n. In particular, if y ∈ C (W), then we can

replace (MVM)+ with any (MVM)−. In the case of the small model we denote

E1 = V21V+(In − G1) = V21M1(M1VM1)
+M1 ∈ {Pε∗|M1} . (8.34)

Moreover, it can be observed that

E = V21W+(In − G) , E1 = V21W+
1 (In − G1) . (8.35)

Let us denote L = JM2 and S = L − V21V+. Then we can write

ỹ∗ = BLUP(ỹ∗ | M12)

= LGy + V21V+(y − Gy) = LGy + Ey

= (L − V21V+)Gy + V21V+y = SGy + V21V+y

= Ty, (8.36)

where

T = LG + V21M(MVM)−MPW = LG + E

= SG + V21V+ ∈ {Py∗|M12} . (8.37)

Let us put our results together:

Lemma 8.6 Let y∗ be predictable under M12, so that

X∗ = (K : 0) = JM2X = LX = (JM2X1 : 0) = (LX1 : 0) (8.38)
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for some J ∈ R
q×n, L = JM2, S = L − V21V+ and

G = X(X′W−X′)−X′W+, G1 = X1(X′
1W−X1)

−X′
1W+, (8.39a)

E = V21M(MVM)+M , E1 = V21M1(M1VM1)
−M1 . (8.39b)

Then the BLUP(y∗) under M12 can be written as

BLUP(y∗ | M12) = ỹ∗

= LGy + V21V+(In − G)y

= LGy + V21M(MVM)−MPWy

= LGy + V21M(MVM)+My

= LGy + Ey

= (L − V21V+)Gy + V21V+y

= SGy + V21V+y

= Ty, (8.40)

or shortly,

ỹ∗ = μ̃∗ + ε̃∗ . (8.41)

Corresponding expressions for the BLUP(y∗) under M1, i.e., for ỹ∗1 = T1y can
be obtained by replacing G, X, M and W with G1, X1, M1 and W1, respectively,
in (8.40); shortly,

ỹ∗1 = μ̃∗1 + ε̃∗1 . (8.42)

For the covariance matrices we get

cov(μ̃) = cov(Gy) = GVG′ = V − VM(MVM)−MV, (8.43a)

cov(μ̃∗) = cov(LGy) = LGVG′L′, (8.43b)

cov(ε̃∗) = cov(Ey) = EVE′ = V21M(MVM)−MV12 . (8.43c)

For an extensive review of the BLUE’s covariance matrix, see Isotalo et al. [13].
The random vectors μ̃∗ and ε̃∗ are uncorrelated,

cov(μ̃∗, ε̃∗) = cov(LGy,Ey) = LGVM(MVM)+M = 0 , (8.44)
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where we have used the fact that GVM = 0 and thereby

cov(ỹ∗) = cov(μ̃∗)+ cov(ε̃∗) = LGVG′L′ + V21M(MVM)−MV12 . (8.45)

8.3 Equalities of the BLUEs Under the Full and Small
Models

Let us start by considering the equality between cov(Gy) and cov(G1y). In light of
GG1 = G1 , we have

cov(μ̃1 | M1) = G1VG′
1 = GG1VG′

1G′, (8.46)

and thus

cov(μ̃ | M12)− cov(μ̃1 | M1) = GVG′ − GG1VG′
1G′

= G(V − G1VG′
1)G

′

= GVM1(M1VM1)
−M1VG′

= GVṀ1VG′, (8.47)

where we have used

cov(G1y) = G1VG′
1 = V − VM1(M1VM1)

−M1V. (8.48)

Clearly GVṀ1VG′ is nonnegative definite and thereby

cov(μ̃1 | M1) ≤L cov(μ̃ | M12) . (8.49)

It is obvious that the equality cov(μ̃1 | M1) = cov(μ̃ | M12) holds if and only if

GVM1 = 0 . (8.50)

Actually, the above equality (8.50) is a necessary and sufficient condition for Gy
being the BLUE for μ1 under the small model M1. Recall that the fundamental
BLUE equation in this case is

G(X1 : VM1) = (X1 : 0) , (8.51)

where the left-hand part GX1 = X1 trivially holds. Thus (8.50) is equivalent to
G ∈ {PX1|M1} . The general expression for a member of the class {PX|M } is

PX|M = G + NQW , where N is free to vary. (8.52)
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It is easy to confirm that {PX|M } ⊂ {PX1|M1} if and only if GVM1 = 0. In other
words, every representation of the BLUE of μ under M12 is BLUE also under M1,
for which we can use notation

{BLUE(μ | M12)} ⊂ {BLUE(μ1 | M1)} , i.e., {PX|M12} ⊂ {PX1|M1} .
(8.53)

It may be mentioned that writing up the condition GVM1 = 0 we obtain

X(X′W−X′)−X′W+VM1 = 0 , (8.54)

which is equivalent to

X′W+VM1 = 0 . (8.55)

Consider then the covariance matrix of Gy − G1y:

cov(Gy − G1y) = GVG′ + G1VG′
1 − GVG′

1 − G1VG′. (8.56)

In view of G1 = PW1 − VM1(M1VM1)
+M1 , we have

G1VG′ = [PW1 − VM1(M1VM1)
+M1]VG′

= [V − VM1(M1VM1)
+M1V]G′

= G1VG′
1G′ = G1VG′

1 , (8.57)

where we have used GG1 = G1 and G1VG′
1 = V − VṀ1V. Thus

cov(Gy − G1y) = cov(Gy)− cov(G1y)

= GVM1(M1VM1)
−M1VG′

= cov |GVM1(M1VM1)
−M1y] . (8.58)

Notice that the matrix GVṀ1 may not be unique but cov(GVṀ1y) is unique with
respect to the choice of (M1VM1)

− in Ṁ1 = M1(M1VM1)
−M1.

We can now put our findings together:

Proposition 8.1 The following statements are equivalent:

(a) Gy = G1y for all y ∈ C (W1) = C (X1 : VM1) ,
(b) cov(μ̃1 | M1) = cov(μ̃ | M12) ,
(c) GVM1 = 0 ,
(d) X′W+VM1 = 0 ,
(e) G ∈ {PX1|M1} ,
(f) {PX|M12} ⊂ {PX1|M1}, i.e., {BLUE(μ | M12)} ⊂ {BLUE(μ1 | M1)}.
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Moreover, the following properties hold:

(g) G1VG′ = G1VG′
1 ,

(h) cov(Gy − G1y) = cov(Gy)− cov(G1y) = cov(GVṀ1y) ,
(i) cov(G1y) ≤L cov(Gy) .

What about the equality

Gy = G1y for all y ∈ C (W) = C (X1 : X2 : VM) , (8.59)

i.e.,

G1(X1 : X2 : VM) = (X1 : X2 : 0) . (8.60)

Noting that G1X1 = X1 and G1VM = G1VM1QM1X2 = 0, we conclude that (8.60)
holds, i.e., G1 ∈ {PX|M12} , if and only if

G1X2 = X2 , i.e., X1(X′
1W−

1 X′
1)

−X′
1W+

1 X2 = X2 . (8.61)

It is clear that (8.61) implies

C (X2) ⊂ C (X1) . (8.62)

On the other hand, if (8.62) holds then X2 = X1A for some A which further
implies (8.61). Assuming that (8.62) holds, i.e., C (X) = C (X1), we can use (8.28)
and (8.29) and conclude that G = G1 holds if and only if (8.62) holds.

Let us consider the general expression for the member of the class {PX1|M1}:

PX1|M1 = G1 + NQW1 for some N . (8.63)

The equality

Gy = (G1 + NQW1)y for all y ∈ C (X1 : X2 : VM) , (8.64)

i.e., (G1 + NQW1)(X1 : X2 : VM) = (X1 : X2 : 0), simplifies to

G1X2 + NQW1X2 = X2 . (8.65)

Requesting (8.65) to hold for any N yields C (X2) ⊂ C (W1), and consequently,
G1X2 = X2. Thus we conclude the following:

{PX1|M1} ⊂ {PX|M12} ⇐⇒ C (X2) ⊂ C (X1) . (8.66)
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Moreover, the inclusion C (X2) ⊂ C (X1) implies that GVM1 = 0, which further,
by Proposition 8.1, implies that {PX|M12} ⊂ {PX1|M1}.

We can also pose a question under which the set {PX|M12} ∩ {PX1|M1} is not
empty. This happens whenever the equation

A(X1 : X2 : VM : X1 : VM1) = (X1 : X2 : 0 : X1 : 0) , (8.67)

i.e., A(X1 : X2 : VM1) = (X1 : X2 : 0) has a solution for A. This happens if and
only if

C

(
X′
0

)
⊂ C

(
X′

M1V

)
, (8.68)

which can be expressed equivalently as C (X)∩C (VM1) = {0}; see Puntanen et al.
[18, Ch. 16].

Thus we have proved the following:

Proposition 8.2 The following statements are equivalent:

(a) Gy = G1y for all y ∈ C (W) = C (X1 : X2 : VM) ,
(b) Gy = G1y for all y ∈ R

n,
(c) G1X2 = X2 ,
(d) G1 ∈ {PX|M12} ,
(e) C (X2) ⊂ C (X1) ,

(f) {PX1|M1} ⊂ {PX|M12} , i.e., {BLUE(μ1 | M1)} ⊂ {BLUE(μ | M12)} ,
(g) {PX1|M1} = {PX|M12}, i.e., {BLUE(μ1 | M1)} = {BLUE(μ | M12)} .

Moreover,

(h) {PX|M12} ∩ {PX1|M1} �= {∅} ⇐⇒ C (X) ∩ C (VM1) = {0}.
In this context it is convenient to refer to the possible equality of μ̃1(M1) and

μ̃1(M12). Notice that in this section we have put our attention on the equality
between μ̃1(M1) and μ̃(M12). Haslett and Puntanen Haslett and Puntanen [7]
showed that if μ1 = X1β1 is estimable under M12 and C (X2) ⊂ C (W1), then

μ̃1(M12) = μ̃1(M1)− X1(X′
1W−

1 X1)
−X′

1W+
1 μ̃2(M12) . (8.69)

From (8.69) it can be concluded that μ̃1(M12) = μ̃1(M1) holds if and only if
X′

1W+
1 X2 = 0; see, e.g., Markiewicz and Puntanen [16, Sec. 4]. Some related

considerations, using different approach, appear in Lu et al. [14] and Tian and Zhang
[25].
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8.4 Equalities of the BLUPs of the Error Term

The covariance matrices for ε̃1 and ε̃∗1 are

cov(ε̃∗) = EVE′ = V21M(MW1M)−MV12 , (8.70a)

cov(ε̃∗1) = E1VE′
1 = V21M1(M1W1M1)

−M1V12 . (8.70b)

Thus the the difference cov(ε̃∗1)− cov(ε̃∗) can be expressed as

cov(ε̃∗1)− cov(ε̃∗) = V21W+1/2
1 (PW1/2

1 M1
− PW1/2

1 M)W
+1/2
1 V12

= V21W+1/2
1 PAW+1/2

1 V12 , (8.71)

where

C (A) = C (W1/2
1 M1) ∩ C (W1/2

1 M)⊥. (8.72)

In (8.71) W1/2
1 refers to the nonnegative definite square root of W1 and W+1/2

1 is

the Moore–Penrose inverse of W1/2
1 , and so W1/2

1 W+1/2
1 = PW1 . For the difference

of two orthogonal projectors, see, e.g., Puntanen et al. [18, Ch. 7].
In light of (8.71), we observe that cov(ε̃∗) ≤L cov(ε̃∗1) , while cov(ε̃∗) =

cov(ε̃∗1) holds if and only if

C (W+1/2
1 V12) ⊂ C (A)⊥ = C [(W1/2

1 M1)
⊥ : W1/2

1 M] . (8.73)

In view of Lemma 4 of Markiewicz and Puntanen [16],

C (W1/2
1 M1)

⊥ = C (W+1/2
1 X1 : QW1) . (8.74)

Thus the equality cov(ε̃∗) = cov(ε̃∗1) holds if and only if

C (W+1/2
1 V12) ⊂ C [(W1/2

1 M1)
⊥ : W1/2

1 M]
= C (W+1/2

1 X1 : QW1 : W1/2
1 M) . (8.75)

Premultiplying (8.75) by W1/2
1 yields

C (V12) ⊂ C (X1 : W1M) = C (X1 : VM) , (8.76)

which is a necessary and sufficient condition for the equality cov(ε̃∗) = cov(ε̃∗1).
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We can further show the following:

cov(ε̃∗1, ε̃∗) = E1VE′

= V21M1(M1VM1)
+M1VM(MVM)+MV12

= V21M1(M1VM1)
+M1VM1M(MVM)+MV12

= V21M1M(MVM)+MV12

= EVE′ = cov(ε̃∗) , (8.77)

where we have used M = M1M and V21M1(M1VM1)
+M1VM1 = V21M1 . Thus

we have proved the following:

Proposition 8.3 Denote

E = V21M(MVM)+M , E1 = V21M1(M1VM1)
+M1 . (8.78)

The following statements are equivalent:

(a) cov(ε̃∗) = cov(ε̃∗1) , i.e., EVE′ = E1VE′
1 ,

(b) C (V12) ⊂ C (X1 : VM) .

Moreover, the following statements hold:

(c) E1VE′ = EVE′ ,
(d) cov(ε̃∗1 − ε̃∗) = cov(ε̃∗1)− cov(ε̃∗) ,
(e) cov(ε̃∗) ≤L cov(ε̃∗1) .

Here is an extended version of Proposition 8.3.

Proposition 8.4 The following statements are equivalent:

(a) Ey = E1y for all y ∈ C (W1) = C (X1 : VM1) ,
(b) EVM1 = V21M1 ,

(c) cov(ε̃∗) = cov(ε̃∗1) , i.e., EVE′ = E1VE′
1 ,

(d) C (V12) ⊂ C (X1 : VM) ,
(e) E ∈ {Pε∗|M1} ,
(f) {Pε∗|M12} ⊂ {Pε∗|M1} , i.e., {BLUP(ε∗ | M12)} ⊂ {BLUP(ε∗ | M1)} ,

(g) C

(
VM1

V21M1

)
⊂ C

(
X1 X2 VM
0 0 V21M

)
.

Proof Consider the equality Ey = E1y for all y ∈ C (X1 : VM1) . Now

E(X1 : VM1) = E1(X1 : VM1) = (0 : V21M1) (8.79)

holds if and only if

EVM1 = V21M(MVM)+MVM1 = V21M1 . (8.80)
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Postmultiplying (8.80) by (M1VM1)
−M1V12 yields

EVE′
1 = EVE′ = E1VE′

1 , (8.81)

i.e., cov(ε̃∗) = cov(ε̃∗1) . On the other hand, suppose that the equality cov(ε̃∗) =
cov(ε̃∗1) holds. Then by part (b) of Proposition 8.3,

V12 = X1A + VMB for some A and B . (8.82)

Straightforward calculation shows that (8.82) implies (8.80). Thus we have shown
the equivalence of (a), . . . , (e).

An arbitrary member of {Pε∗|M12} can be expressed as Pε∗|M12 = E + NQW ,

where N is free to vary. Clearly

(E + NQW)(X1 : VM1) = (0 : V21M1) (8.83)

for any N if and only if EVM1 = V21M1. This proves the equivalence between (b)
and (f).

Obviously C (VM1) ⊂ C (W) and so

VM1 = (X1 : X2 : VM)D , (8.84)

for some D = (A′ : B′ : C′)′. Thus EVM1 = V21M1 gets the form

EVM1 = E(X1 : X2 : VM)D = (0 : 0 : V21M)D

= V21MC = V21M1 , (8.85)

and thereby (g) is a necessary condition for (b). Its sufficiency follows by postmul-
tiplying

E(X1 : X2 : VM) = (0 : 0 : V21M) (8.86)

by

⎛
⎜⎝

Ip1 A
0 B
0 C

⎞
⎟⎠ (8.87)

which yields E(X1 : VM1) = (0 : V21M1) . �
Consider then the equality

Ey = E1y for all y ∈ C (W) = C (X1 : X2 : VM) , (8.88)
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i.e.,

E1(X1 : X2 : VM) = (0 : 0 : V21M) . (8.89)

In view of M = M1QM1X2 , we have

E1VM = E1VM1QM1X2 = V21M1QM1X2 = V21M , (8.90)

and thus (8.89) becomes

E1X2 = V21M1(M1VM1)
+M1X2 = 0 . (8.91)

In this context we may mention that requesting

V21M1(M1VM1)
−M1X2 = 0 for any (M1VM1)

−, (8.92)

yields C (M1X2) ⊂ C (M1V) , i.e., C (X2) ⊂ C (X1 : V) , where we have used
Lemma 8.3.

An arbitrary member of the class {Pε∗|M1} can be expressed as

Pε∗|M1 = E1 + NQW1 , (8.93)

where N is free to vary. Thereby, if the equality

(E1 + NQW1)(X1 : X2 : VM) = (0 : 0 : V21M) (8.94)

holds for any matrix N, then necessarily

C (X2) ⊂ C (W1) , (8.95)

in which case (8.94) simplifies to

E1X2 = V21M1(M1VM1)
+M1X2 = 0 . (8.96)

In view of (8.95), we have

X2 = X1A + VM1B (8.97)

for some A and B. Substituting (8.97) into (8.96) yields

E1X2 = V21M1(M1VM1)
+M1VM1B

= V21M1B

= 0 . (8.98)
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Putting (8.97) and (8.98) together, gives

C

(
X2

0

)
⊂ C

(
X1 VM1

0 V21M1

)
. (8.99)

Thus (8.99) is a necessary condition for {Pε∗|M1} ⊂ {Pε∗|M12}. Its sufficiency is
straightforward to show. Thus we have proved the following:

Proposition 8.5 The following statements are equivalent:

(a) Ey = E1y for all y ∈ C (W) = C (X1 : X2 : VM) ,
(b) E1X2 = 0 .

Moreover, the following statements are equivalent:

(c) Ey = (E1 + NQW1)y for all y ∈ C (W) and for all N ,
(d) E1X2 = 0 and C (X2) ⊂ C (W1) ,

(e) E1X2 = V21M1(M1VM1)
−M1X2 = 0 for all (M1VM1)

−,
(f) {Pε∗|M1} ⊂ {Pε∗|M12} ,

(g) C

(
X2

0

)
⊂ C

(
X1 VM1

0 V21M1

)
.

The following result can be straightforwardly confirmed.

Proposition 8.6 The following statements are equivalent:

(a) {Pε∗|M1} = {Pε∗|M12} ,

(b) C

(
X1 X2 VM
0 0 V21M

)
= C

(
X1 VM1

0 V21M1

)
.

8.5 Properties of the BLUPs of the Future Response

Let us recall the notations ỹ∗ = Ty and ỹ∗1 = T1y, where

T = LG + E = SG + V21V+, (8.100a)

T1 = LG1 + E1 = SG1 + V21V+, (8.100b)

and S = L − V21V+. Thus ỹ∗ = Ty is one representation for the BLUP(y∗ | M12)

and y∗ − ỹ∗ is the corresponding prediction error. In this section we pay particular
attention on the covariance matrices of ỹ∗ and ỹ∗1 and of the corresponding
prediction errors.

In view of (8.45), we have

cov(ỹ∗) = cov(μ̃∗)+ cov(ε̃∗) = LGVG′L′ + EVE′, (8.101a)
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cov(ỹ∗1) = cov(μ̃∗1)+ cov(ε̃∗1) = LG1VG′
1L′ + E1VE′

1 . (8.101b)

Moreover,

cov(ỹ∗, ỹ∗1) = cov(LGy + Ey, LG1y + E1y)

= LGVG1L′ + LGVE′
1 + EVG′

1L′ + EVE′
1

= LG1VG1L′ + EVE′ + LGVE′
1 , (8.102)

where we have used GVG′
1 = G1VG′

1, EVE′
1 = EVE′, and

EVG′
1 = V21M(MVM)+MVW+

1 X1(X′
1W+

1 X1)
−X′

1

= V21M(MVM)+MW1W+
1 X1(X′

1W+
1 X1)

−X′
1

= 0 . (8.103)

Thus the equality

cov(ỹ∗ − ỹ∗1) = cov(ỹ∗)+ cov(ỹ∗1)− cov(ỹ∗, ỹ∗1)− cov(ỹ∗1, ỹ1)

= cov(ỹ∗)− cov(ỹ∗1)+ [2 cov(ỹ∗1)− cov(ỹ∗, ỹ∗1)− cov(ỹ∗1, ỹ1)]
= cov(ỹ∗)− cov(ỹ∗1) , (8.104)

holds if and only if 2 cov(ỹ∗1) = cov(ỹ∗, ỹ∗1)+ cov(ỹ∗1, ỹ1) , i.e.,

2(LG1VG′
1L′ + E1VE′

1) = 2(LG1VG1L′ + EVE′)+ LGVE′
1 + E1VG′L′,

(8.105)

which further can be written as

2(E1VE′
1 − EVE′) = LGVE′

1 + E1VG′L′. (8.106)

In passing we may mention that it be shown that

GVE′
1 = V(E1 − E)′. (8.107)

Let us calculate cov(ỹ∗ − ỹ∗1) in another way. In view of

ỹ∗ − ỹ∗1 = Ty − T1y = S(G − G1)y, (8.108)

and (8.58), we have

cov(ỹ∗ − ỹ∗1) = SGVM1(M1VM1)
−M1VG′S′. (8.109)
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We observe from (8.109) that cov(ỹ∗ − ỹ∗1) = 0 if and only if SGVM1 = 0 .
Moreover, the equality ỹ∗ = ỹ∗1 holds for all y ∈ C (W1) if and only if

SG(X1 : VM1) = SG1(X1 : VM1) = S(X1 : 0) , (8.110)

i.e., SGVM1 = 0. Correspondingly, the equality ỹ∗ = ỹ∗1 for all y ∈ C (W) yields
the requirement SG1X2 = SX2.

Following Sengupta and Jammalamadaka [22, p. 292] and Haslett et al. [5,
p. 553], we can write the prediction errors as

y∗ − ỹ∗ = y∗ − Ty = (y∗ − V21V+y)− SGy, (8.111a)

y∗ − ỹ∗1 = y∗ − T1y = (y∗ − V21V+y)− SG1y. (8.111b)

The random vectors y∗ − V21V+y and SGy are uncorrelated,

cov(SGy, y∗ − V21V+y) = SGV12 − SGVV+V12 = 0 , (8.112)

and hence

cov(y∗ − ỹ∗) = cov(y∗ − V21V+y)+ cov(SGy)

= V22 − V21V+V12 + SGVG′S′

= Σ22·1 + SGVG′S′. (8.113)

The first term Σ22·1 = V22 − V21V+V12 in (8.113) is the Schur complement of V
in

Σ =
(

V V12

V21 V22

)
, (8.114)

and as Sengupta and Jammalamadaka [22, p. 293] point out, it is the covariance
matrix of the prediction error associated with the best linear predictor (supposing
that Xβ were known) while the second term represents the increase in the covariance
matrix of the prediction error due to estimation of Xβ.

Remark 5.1 Suppose that μ = Xβ = E(y) and μ∗ = X∗β = E(y∗) are known.
Then the Best Linear Predictor of y∗ on the basis of y is the following:

BLP(y∗ | y) = μ∗ − V21V+(y − μ) . (8.115)

The prediction error is

ey∗|y = y∗ − BLP(y∗ | y) = y∗ − [μ∗ − V21V+(y − μ)] , (8.116)
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with

cov(ey∗|y) = Σ22·1 = V22 − V21V+V12 . (8.117)

Notice that Σ22·1 ≤L cov(y∗ − Ny) for all N. �
Next we consider the difference between the covariance matrices of the predic-

tion errors. We have

cov(y∗ − ỹ∗) = Σ22·1 + SGVG′S′ =: C12 , (8.118a)

cov(y∗ − ỹ∗1) = Σ22·1 + SG1VG′
1S′ =: C1 , (8.118b)

and thereby, on account of (8.47),

C12 − C1 = SGVG′S′ − SG1VG′
1S′

= SGVG′S′ − SGG1VG′
1G′S′

= SGVM1(M1VM1)
−M1VG′S′

= cov(ỹ∗ − ỹ∗1) . (8.119)

Obviously C1 ≤L C12 and C12 = C1 if and only if SGVM1 = 0. Conclusion: If
we add X2 into the model, observe the resulting y, predict y∗ on the basis of this
particular y, the resulting prediction error has a bigger covariance matrix (in the
Löwner sense) than that error which is based on X1 only.

We omit the consideration of the inclusion of the type {BLUP(y∗ | M1)} ⊂
{BLUP(y∗ | M12)}. Some related results appear in Haslett and Puntanen [6, 8].

The proposition below collects together the results obtained in this section.

Proposition 8.7 Denote ỹ∗ = Ty and ỹ∗1 = T1y, where T and T1 are defined as
in (8.100a)–(8.100b). Then the following statements hold:

(a) cov(ỹ∗ − ỹ∗1) = SGVṀ1VG′S′,
(b) cov(y∗ − ỹ∗)− cov(y∗ − ỹ∗1) = cov(ỹ∗ − ỹ∗1) ,

(c) cov(y∗ − ỹ∗1) ≤L cov(y∗ − ỹ∗) .

The following statements are equivalent:

(d) cov(ỹ∗ − ỹ∗1) = 0 ,
(e) cov(y∗ − ỹ∗1) = cov(y∗ − ỹ∗) ,
(f) ỹ∗ = ỹ∗1 for all y ∈ C (W1) = C (X1 : VM1) ,

(g) SGVM1 = 0 .

Moreover, the following statements are equivalent:

(h) cov(ỹ∗ − ỹ∗1) = cov(ỹ∗)− cov(ỹ∗1) ,

(i) 2(E1VE′
1 − EVE′) = LGVE′

1 + E1VG′L′.
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8.6 Conclusions

In this article we consider the partitioned linear modelM12 = {y, X1β1+X2β2, V}
and the small model M1 = {y, X1β1, V}. Both models are supplemented with the
new unobservable random vector y∗, coming from y∗ = Kβ1 + ε∗, where Kβ1 is
estimable under both models. The covariance matrix of y∗ is known as well as the
cross-covariance matrix between y∗ and y.

Our aim to predict y∗ on the basis of M12 and M1 and consider the resulting
differences in the BLUEs and BLUPs. We consider the situation using given fixed
multipliers of the response y yielding the BLUEs and BLUPs, and in addition,
we characterize the whole class of multipliers in one model yielding the BLUEs
and BLUPs that continue providing the BLUEs and BLUPs in the other model.
Corresponding relations between the covariance matrices of the BLUEs, BLUPs and
prediction errors are characterized. Particular attention is paid on the cases whether
the response y lies in C (X1 : X2 : V) or in C (X1 : V).

We may mention, see, e.g., Isotalo et al. [10], that the results regarding the
model M12 with new observations can be applied to the mixed linear model
y = Xβ + Zu + e , where Xn×p and Zn×q are known matrices, β ∈ R

p is
a vector of unknown fixed effects, u is an unobservable vector (q elements) of
random effects with E(u) = 0, cov(u) = Δ, e is a random error vector with
E(e) = 0, cov(e) = Φ, and cov(e,u) = 0. Denoting g = Xβ + Zu, we have
cov(y) = cov(Zu + e) = ZΔZ′ + Φ , and the mixed linear model can be expressed
as a version of the model with “new observations” corresponding y∗ in (8.2) being
in g = Xβ + Zu.
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Chapter 9
A Collection of Moments of the Wishart
Distribution

Thomas Holgersson and Jolanta Pielaszkiewicz

Abstract Moments of functions of Wishart distributed matrices appear frequently
in multivariate analysis. Although a considerable number of such moments have
long been available in the literature, they appear in rather dispersed sources and
may sometimes be difficult to locate. This paper presents a collection of moments
of the Wishart and inverse Wishart distribution, involving functions such as traces,
determinants, Kronecker, and Hadamard products, etc. Moments of factors resulting
from decompositions of Wishart matrices are also included.

9.1 Introduction

The Wishart distribution plays an important role in multivariate statistics and
random matrix theory and is still subject to research and further development nearly
100 years after the original publication of J. Wishart [48]. The literature in the field
is extensive, with findings appearing in books and journals across almost all fields
of research involving statistics and probability. Introductions to Wishart matrices
and their properties may be found in [8, 25], and [2]. The Wishart distribution
is intimately connected with the multivariate normal distribution which in turn
is one of the foundations stones in multivariate analysis and random matrices.
Problems involving Wishart matrices thus arise frequently, and it is indeed difficult
to find a textbook on these subjects that does not involve the Wishart distribution.
Research in this field, however, usually does not require the full specification of
the distribution but only its moments, typically the expectation, the dispersion, and
perhaps third- or fourth-order moments. Although this only comprises a handful
of moments, research problems are often concerned with functions of Wishart
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matrices such as the trace, the determinant, or its submatrices. We will refer,
somewhat imprecisely, to moments of such functions as Wishart moments. These
may sometimes be calculated trivially. For example, the expected value of the trace
of a Wishart matrix is obtained by simply taking the trace of the expected value.
But the Wishart distribution is generally not closed under the transformation being
conducted, and one may search the literature for available results on some specific
moment. However, there presently does not seem to be any single source to consult
in the matter, and it can be tedious to find the result sought for. The purpose of
this paper is to list a number of moments of functions of Wishart moments in a
convenient format for easy access.

When taking on such a task, there is an obvious need to constrain the types
of moments included, in order to keep the size of the paper within reasonable
bounds. We will not attempt to be comprehensive. Results that are cumbersome or
involve the complex, the non-central or the singular Wishart distributions are thus
not included. We will be content with only supplying references to these subjects
for further reading.

Another concern is how to group the results. Should, for example, the results be
categorized according to their dimension (scalars, vectors, etc.) or according to the
type of transformation involved? In what follows we shall list the moments through
classes of functions. This arrangement will naturally lead to some repetitions. For
example, E[Tr{W2}] can be obtained by taking the trace of E[W2] or equivalently
fromE[1′(W(W)1], and so on. However, since ease of access is given high priority,
we consider such redundancies worthwhile.

The paper develops as follows: in Sect. 9.2 we give some preliminaries and
definitions. Section 9.3 presents the promised Wishart moments, divided into
separate sections for easy access. Finally, we give references to important properties
not treated in the paper.

9.2 Preliminaries

9.2.1 Definitions

D.1 (a)k = a(a + 1) . . . (a + k − 1) = (a + k − 1)!/(a − 1)!
D.2 Γm(a) = πm(m−1)/4 ∏m

j=1 Γ
(
a − j−1

2

)
, R(a) > m−1

2 , where R(a) denotes

the real part of a
D.3 Given a set Λ = {λ1, . . . , λp} we define the elementary symmetric functions

of Λ as follows:

• Tr1{Λ} = Tr{Λ} = λ1 + . . .+ λp
• Tr2{Λ} = ∑p

i<j λiλj
• . . .

• Trp{Λ} = det (Λ) = |Λ| = λ1λ2 · · · λp
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D.4 Some basic sets are defined as follows:

• L
+
p = {T ∈ R

p×p : T is lower triangular, tjj > 0, j = 1, . . . , p}
• U

+
p = {T ∈ R

p×p : T is upper triangular, tjj > 0, j = 1, . . . , p}
• Op = {H ∈ R

p×p : H′H = HH′ = I}
• O

+
p = {H ∈ Op : |H| = 1}

• Sp−1 = {x ∈ R
p−1 : x ′x = 1}

D.5 Consider some matrices A : m × n, B : p × q , C : p × p, D : p × p. The
Kronecker product and the Hadamard product are defined by

A ⊗ B =
⎡
⎢⎣
a11B . . . a1nB
. . . . . . . . .

am1B . . . amnB

⎤
⎥⎦ : pm× qn,

C ( D =
⎡
⎢⎣
c11d11 . . . c1pd1p

. . . . . . . . .

cp1dp1 . . . cppdpp

⎤
⎥⎦ : p × p.

D.6 The commutation matrix is defined as

Kp,q =
p∑
i=1

q∑
j=1

eid
′
j ⊗ dj e′i ,

where ei and dj are unit basis vectors of size p and q , respectively.
D.7 Kronecker delta function: the scalar δij is defined by

δij =
{

1 : i = j
0 : i �= j.

We shall use the symbol ∼ to denote the distribution of a random quantity, e.g., y ∼
χ2(n), without distinguishing a formal distribution and a stochastic representation.
For example, the two statements y ∼ χ2(n) and y ∼ (z2

1 + z2
2 + . . . + z2

n), where

zi
iid∼ N(0, 1), will be used to denote the same thing.

9.2.2 The Wishart Distribution

The Wishart distribution appeared for the first time in [48], a publication which is
sometimes considered as defining the birth of the theory of random matrices [28]. It
describes the distributional properties of a sample covariance matrix calculated from
a set of n (iid) normally distributed random vectors in R

p. The density function is
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given by

fW(W) = |W|(n−p−1)/2exp{− 1
2 Tr{Σ−1W}}

2np/2|Σ|n/2Γp
(
n
2

) , n ≥ p, Σ > 0 (9.1)

[2]. We will write W ∼ W(Σp, n) for a random matrix W distributed according
to (9.1), where n is the degrees of freedom parameter, which together with the matrix
parameter Σ determine the distribution. The density f (W) does not describe the
joint density of all p2 elements in W because it is symmetric, i.e., Wij = Wji
[48]. The density is usually defined through the unique p(p + 1)/2 elements by
specifying the density (9.1) with respect to the Lebesgue measure

∏p

I≤j dwij in

R
p(p+1)/2 ([19, 28, 34]). The characteristic function is given by

φ(T) = E[exp{iTr{T′W}}] = E[exp{ i

2
Tr{M(T)W}}] = |I − iM(T)Σ|−n/2,

where M(T) = ∑p

1≤i≤j tij (eie′j + ej e′i ), see [19, 25]. The inverse of a Wishart

matrix, say U = W−1, often appears in similar kinds of analyses as does W. The
density function is given by

fU(U) = |U|−(n+p+1)/2exp{− 1
2 Tr{Σ−1U−1}}

2np/2|Σ|n/2Γp
(
n
2

) , (9.2)

see [25]. An alternative parameterization for the density of the inverse Wishart is
given in [19] and in [14].

There are several techniques available for obtaining moments arising from the
Wishart distribution. Some results may be derived by algebraic treatments due to its
close relation to the normal distribution. The Wishart class of distributions is closed
under addition, i.e., for two independent Wishart matrices W1 and W2 having a
common scale matrix, the sum W1 + W2 is again a Wishart matrix. Moreover, the
class is closed under multiplication by some non-random B, which allows us to
derive the moments of BWB′ from the moments of W etc. More general moments
of linear structure, on the other hand, require different tools. Differentiation of the
characteristic function is a commonly used method. [19] developed differentials of
symmetric matrices defined through a vectorizing operator that extracts the unique
(non-repeated) elements only. Moments of more general transformations of Wishart
matrices usually involve Jacobian transformations of the density function, see [15,
16, 25, 40] and [19] for general treatments. A comprehensive source of Jacobian
transformations is available in [23].

Asymptotic results may be attractive when closed form results are unavailable
or too complicated to be useful. A particularly important case involves high-
dimensional settings, where p/n → c as n, p → ∞. Recent developments in the
theory of Free Probability have shown to be useful for deriving high-dimensional
limiting behaviour of sample moments. Closed form recursive expressions for
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arbitrary moments in this line where proposed in [31] and further utilized by the
authors of [32]. Some of the moments included in this paper have been derived
from these formulas, which are also included in the appendix.

In this paper, we will not give any attention to the specific methods used for
deriving Wishart moments. We shall merely specify the conditions necessary for the
results to be valid (assumptions on n, p, Σ etc) and provide references for further
readings.

9.3 Moments of Functions of the Wishart Distribution

9.3.1 Moments of the Type E[AWBW−1]

Let W ∼ W(Σp, n), p < n and d = (n− p)(n− p − 1)(n− p − 3). Then

(9.3.1.a) E[W] = nΣ;
(9.3.1.b) E[WAW] = nΣA′Σ + n2ΣAΣ + nTr{ΣA}Σ;
(9.3.1.c) E[W−1] = 1

n−p−1Σ
−1 for n− p − 1 > 0;

(9.3.1.d) E[W−1AW−1] = 1
d

Tr{Σ−1A}Σ−1 + n−p−1
d
Σ−1AΣ−1 for A′ = A;

(9.3.1.e) E[W−1AW−1] = 1
d

Tr{Σ−1A}Σ−1 + n−p−2
d
Σ−1AΣ−1 + 1

d
Σ−1A′Σ−1;

(9.3.1.f) E[WAW−1] = 1
n−p−1

[
nΣAΣ−1 − A′ − Tr{A}Ip

]
;

(9.3.1.g) D[W] = E[vecWvec′W]−E[vecW]E[vecW]′ = n(Ip2 +Kp,p)(Σ⊗Σ);
(9.3.1.h) D[W−1] = 2

d(n−p−1)vecΣ−1vec′Σ−1 + 1
d
(Ip2 +Kp,p)(Σ−1 ⊗Σ−1)

for n− p − 3 > 0;
(9.3.1.i) E[W2] = (n2 + n)Σ2 + nTr{Σ}Σ;
(9.3.1.j) E[W−2] = n−p−1

d
Σ−2 + 1

d
Tr{Σ−1}Σ−1 for n− p − 3 > 0;

(9.3.1.k) E[W3] = (n3+3n2+4n)Σ3+(2n2+2n)(Tr{Σ})Σ2+n(n+1)Tr{Σ2}Σ+
(Tr{Σ})2Σ;

(9.3.1.l) E[W−3] = n2−2n(p+1)+p(p+2)+9
(n−p−1)d1

Σ−3 + 4(n−p−2)
(n−p−1)d1

(Tr{Σ−1})Σ−2

− 1
d1
(Tr{Σ−2})Σ−1 − 2

(n−p−1)d1
(Tr{Σ−1})2Σ−1,

for n− p− 5 > 0 and d1 = (n− p− 5)(n− p− 3)(n− p)(n− p+ 1);

Proof For (9.3.1.a), (9.3.1.b), (9.3.1.d) we refer to [14]. The results (9.3.1.c),
(9.3.1.g), (9.3.1.h) and (9.3.1.j) can be found in [19]. (9.3.1.e) and (9.3.1.f) are
due to [22] and [41], respectively. (9.3.1.i) and (9.3.1.k) are results of [7], while
for (9.3.1.l) see [45]. �
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9.3.2 Moments of the Type E[Tr{AW}BW−1]

Let W ∼ W(Σp, n), p < n and let A be a non-random matrix of size p × p. Then

(9.3.2.a) E[Tr{W−1}W−1] = n−p−2
(n−p−3)(n−p−1)(n−p)(Tr{Σ−1})Σ−1

+ 2
(n−p−3)(n−p−1)(n−p)Σ

−2 for n− p − 3 > 0;

(9.3.2.b) E[Tr{W−1}W] = n
n−p−1 (Tr{Σ−1})Σ − 2

n−p−1 Ip for n− p − 1 > 0;

(9.3.2.c) E[Tr{AW−1}W−1] = 1
(n−p−3)(n−p−1)(n−p) [Σ−1A′Σ−1 +Σ−1AΣ−1]

+ n−p−2
(n−p−3)(n−p−1)(n−p)Tr{AΣ−1}Σ−1 for n−p− 3 > 0;

(9.3.2.d) E[Tr{AΣ}W] = nΣAΣ + nΣA′Σ + n2Tr{AΣ}Σ;
(9.3.2.e) E[Tr{W−2}W−1] = 2

c1
Σ−3 + 3n−3p−7

(n−p−1)c1
(Tr{Σ−1})2Σ−1

+ n2−2n(p+2)+p(p+4)+5
(n−p−1)c1

Tr{Σ−2}Σ−1 + 4
(n−p−1)c1

Tr{Σ−1}Σ−2, where
n− p − 5 > 0 and c1 = (n− p − 5)(n− p − 3)(n− p)(n− p + 1).

Proof For (9.3.2.a), (9.3.2.b), (9.3.2.e) see [45]. (9.3.2.c) was proven in [22].
(9.3.2.d) can be found in [14]. �

9.3.3 Moments of the Type E[AW ⊗ BW−1]

Let W ∼ W(Σp, n), p < n. Define P = Ip ⊗Kp,p, Q = Kp,p ⊗ Ip,
V = (

vec(Σ)(vec(Σ))′
) ⊗Σ and U = (

vec(Σ−1)(vec(Σ−1))′
) ⊗Σ−1. Then

(9.3.3.a) E[W ⊗ W] = n2Σ ⊗Σ + nvecΣvec′Σ + nKpg,p(Σ ⊗Σ);
(9.3.3.b) E[W−1 ⊗ W−1] = n−p−2

(n−p−3)(n−p−1)(n−p)Σ
−1 ⊗Σ−1

+ 1
(n−p−3)(n−p−1)(n−p)

(
vecΣ−1vec′Σ−1 +Kp,p(Σ−1 ⊗Σ−1)

)
for n− p − 3 > 0;

(9.3.3.c) E[W−1 ⊗ W] = n
n−p−1Σ

−1 ⊗ Σ − 1
n−p−1

(
vecIp(vecIp)′ +Kp,p

)
for

n− p − 1 > 0;
(9.3.3.d) E[W−1 ⊗ W−1 ⊗ W−1] = (n−p−2)(n−p−3)

(n−p−1)c1
(Σ−1)⊗3 + 3n−3p−7

(n−p−1)c1
U + 1

c1
Q(Σ−1)⊗3

+ n−p−3
(n−p−1)c1

PUP + n−p−3
(n−p−1)c1

PQ(Σ−1)⊗3P + 1
c1

P(Σ−1)⊗3

+ 2
(n−p−1)c1

PQ(Σ−1)⊗3+ 4
(n−p−1)c1

UPQ− 1
c1
Kp,ppUKpp,p− 2

(n−p−1)c1
QPU,where

c1 = (n− p − 5)(n− p − 3)(n− p)(n− p + 1);
(9.3.3.e) E[W⊗3] = n3

(
Σ⊗3

) + n2V + n2Q
(
Σ⊗3

) + nQPVP + nPQ
(
Σ⊗3

)
+ n2QPVPQ + nQPV + n2QP

(
Σ⊗3

) + nVP + nVPQ
+ n2P

(
Σ⊗3

) + nPV + nPVPQ + n2PVP + n2QPQ
(
Σ⊗3

) ;
(9.3.3.f) E[(W − E[W])⊗3] =

n
(
PV + VP + QPV + VPQ + PVPQ + QPVP + PQ

(
Σ⊗3

))
+ n2

(
PVP − PQVQP + QP

(
Σ⊗3

)) − 2n3
(
Σ⊗3

)
.

Proof (9.3.3.b) can be found in [19], while for (9.3.3.d) and (9.3.3.c) see [14].
(9.3.3.e) is given by [43] and its alternative in [19]. (9.3.3.f) is result by [18]. �
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9.3.4 Moments Involving
[
Tr{AW−1}a, . . . , Tr{(AW−1)l}k

]

Let W ∼ W(Σp, n) such that Σ−1
p exists and let A : p × p be a fixed symmetric

matrix. Define the constants d1 = p − 1, d2 = p(p − 1)(p − 3) and d3 = (p +
1)p(p − 1)(p − 3)(p − 5). Then the following hold:

(9.3.4.a) E[Tr{AW−1}] = d1Tr{AΣ−1};
(9.3.4.b) E

[(
Tr{AW−1})2

Tr{(AW−1)2}

]
= d2

(
n− p − 2 2

1 n− p − 1

)( (
Tr{AΣ−1})2

Tr{(AΣ−1)2}

)
;

(9.3.4.c) E

⎡
⎢⎣
(
Tr{AW−1})3

Tr{(AW−1)2}Tr{AW−1}
Tr{(AW−1)3}

⎤
⎥⎦ = d3 ·

·
⎛
⎝ (n − p)2 − 5(n − p) + 2 6(n − p − 3) 16

n− p − 3 (n− p)2 − 4(n − p)+ 7 4(n − p − 1)
2 3(n − p − 1) (n − p − 1)2

⎞
⎠

·
⎛
⎝

(
Tr{AΣ−1})3

Tr{(AΣ−1)2}Tr{AΣ−1}
Tr{(AΣ−1)3}

⎞
⎠;

(9.3.4.d) Cov

⎡
⎢⎢⎣
n
p

Tr{(Σ−1W)−1}
1
np

Tr{Σ−1W}
1
pn2 Tr{(Σ−1W)2}

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2(n−1)n2

e1

2
e2

4
e2

−− 2
np

4(n+p+1)
pn2

−− −− 8(n2+p2)+20(n+1)(p+1)
pn3

⎤
⎥⎥⎦ ,

where e1 = p(n− p − 3)(n− p)(p − n+ 1)2 and e2 = (p − n+ 1)p.

Proof [47] derived expressions for E
[
(Tr{AW−1})v1(Tr{(AW−1)2})v2 · · · ] of

degree k where v = (1v12v23v3 · · · ) is a partition of k consisting of v1 ones, v2
twos etc. The moments are expressed in terms of zonal polynomials where the
scalars dj and the matrices Dj are tabulated up to order 6. The first 3 are given
in (9.3.4.a)–(9.3.4.c) above. For the result (9.3.4.d) see [30]. �

9.3.5 Moments Involving a′(W − W−1)b

Let W ∼ W(Σp, n) and a, b ∈ R
p be non-random vectors. Let Da = diag(a) and

Db = diag(b). Let Iχ2
(df ) denote the inverse chi-square distribution and let k ∈ Z

+.
Then:

(9.3.5.a) E

[
a′W−1a

a′W−2a

]
= αγ
α+β , where α = n−p+2

2 , β = p−1
2 , γ = n− p + 1;

(9.3.5.b) E

[(
a′W−1a
a′W−2a

)2
]

= αγ (γ+2)(β+(α+β+1)α)
(α+β)2(α+β+1)

;

(9.3.5.c) E

[
a′W−1aa′W−2a

(a′a)2
]

= n−1
(n−p)(n−p−1)(n−p−3)(n−p−5) , n > p+5 for a′a �= 0.
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(9.3.5.d) E

[(
a′Wa
a′Σa

)k] = E[(χ2
(n))

k];

(9.3.5.e) E

[(
a′Σ−1a

a′W−1a

)k] = E[(χ2
(n−p+1))

k], n > p;

(9.3.5.f) E

[(
a′(W −Σ)a)k] = (a′Σa)kE

[
(χ2
(n)

− 1)k
]
;

(9.3.5.g) E

[(
a′(W−1 −Σ−1)a

)k] = (a′Σ−1a)kE
[
Iχ2
(n−p+1) − 1)k

]
, n > p;

(9.3.5.h) E
[
1′(W −Σ)(21

] = npTr{Σ} − (n− 1)Tr{Σ2};
(9.3.5.i) E

[
1′(W−1 −Σ−1)(21

] = (
Tr{Σ−1})2

((n− p − 1)(n− p − 3))−1 +
Tr{Σ−2}

(
((n− p)(n− p − 3))−1 − 2(n− p − 1)−1 + 1

)
for n− p − 3 > 0;

(9.3.5.j) E
[
a′(W ( W)b

] = n(1 + n)a′(Σ (Σ)b + nTr{DbΣ}Tr{DaΣ};
(9.3.5.k) E

[
a′(W−1 ( W−1)b

] = 1
(n−p)(n−p−3)a

′(Σ−1 (Σ−1)b

+ 1
(n−p)(n−p−1)(n−p−3)Tr{Σ−1Db}Tr{DaΣ−1};

(9.3.5.l) E
[
a′(W−1 ( W)b

] = 1
n−p−1 (na

′(Σ−1 (Σ)b − a′(I + 11′)b).

Proof Let r = a′W−1a

a′W−2a
. Gupta and Nagar [14] derived the stochastic representation

r ∼ xy, where x ∼ BetaI (
n−p+2

2 ,
p−1

2 ), y ∼ χ2
(n−p+1) and x and y are

independent. Hence E[rk] = E[xk]E[yk], k = 1, 2, . . .. Using well-known
moments of the beta and chi-square distribution (see [17]) we get (9.3.5.a)–(9.3.5.c).
The expressions for E[r−k] may be obtained similarly by using moments of inverse
chi-square and inverse beta.

(9.3.5.d)–(9.3.5.g) are simple consequences of the facts that a′Wa ∼ a′Σaχ2
(n)

and (a′W−1a)−1 ∼ (a′Σ−1a)−1χ2
(n−p+1), [25]. Using E[W] etc from Sect. 9.3.1

and the fact that for some symmetric matricesA andB there holds that a′(A(B)b =
Tr{DaADbB}, formulas (9.3.5.h)–(9.3.5.l) are obtained. �

9.3.6 Moments Involving |W|, Trj {W}, Tr{Wk}

Let W ∼ W(Σp, n). Then:

(9.3.6.a) E[|W|] = |Σ|n(n− 1) · · · (n− (p − 1));
(9.3.6.b) E[|W|2] = |Σ|2n(n− 1) · · · (n− (p− 1))(n+ 2)(n+ 1)n · · · (n− (p−

1)+ 2) = |Σ|2 Γ (n+1)Γ (n+3)
Γ (n−p+1)Γ (n−p+3) ;

(9.3.6.c) E[|W|Tr{Σ−1W}] = 2|Σ|p(n+2)
2 n(n− 1) · · · (n− (p − 1));

(9.3.6.d) E[|W|2(Tr{Σ−1W})2] = 22|Σ|2 (pn2 + 2p
)

2
Γ (n+1)Γ (n+3)

Γ (n−p+1)Γ (n−p+3) ;
(9.3.6.e) E[Trj {W}] = n(n− 1) . . . (n− j + 1)Trj {Σ};
(9.3.6.f) E[Tr{W}Tr2{W}] = n(n− 1)(n+ 2)Tr{Σ}Tr2{Σ} − 6n(n− 1)Tr3{Σ};
(9.3.6.g) E[(Tr2{W})2] = n(n+ 2)(n− 1)(n+ 1)(Tr2{Σ})2

− 4n(n− 1)(n+ 2)Tr{Σ}Tr3{Σ} − 4n(n− 1)(2n− 5)Tr4{Σ};
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(9.3.6.h) E[Tr{W}Tr3{W}] = n(n− 1)(n+ 2)(n− 2)Tr{Σ}Tr3{Σ}
− 8n(n− 1)(n− 2)Tr4{Σ};

(9.3.6.i) E[(Tr{W})2Tr2{W}] = n(n+ 2)(n+ 4)(n− 1)(Tr{Σ})2Tr2{Σ}
− 4n(n− 1)(n+ 2)(Tr2{Σ})2 − 12n(n− 1)(n+ 2)Tr{Σ}Tr3{Σ}
+ 48n(n− 1)Tr4{Σ};

(9.3.6.j) E[Tr{AW}Tr{BW}] = nTr{AΣBΣ} + nTr{A′ΣBΣ}
+ n2Tr{AΣ}Tr{BΣ};

(9.3.6.k) E[Tr{AW−1}Tr{BW−1}] = n−p−2
(n−p−3)(n−p−1)(n−p)Tr{AΣ−1}Tr{BΣ−1}

+ 1
(n−p−3)(n−p−1)(n−p)

[
Tr{A′Σ−1BΣ−1} + Tr{AΣ−1BΣ−1}];

(9.3.6.l) E[Tr{W2}] = (n+ n2)Tr{Σ2} + n(Tr{Σ})2 Σ=I= np(1 + n+ p);
(9.3.6.m) E[(Tr{Σ−1W})k] = ∑

(i)∈Ik
k!

i1!×···×ik !1i1 ×···×kik (np)
i1+···+ik2k−

∑k
j=1 ij ,

where the set Ik consists of k-tuples (i) = (i1, . . . , ik) such that i1 +
2i2 + . . .+ kik = k and ij , j = 1, . . . , k are non-negative integers;

(9.3.6.n) E[(Tr{Σ−1W})k] = (np + 2(k − 1))E[(Tr{Σ−1W})k−1];
(9.3.6.o) E[Tr{(Σ−1W)

−1}] = p
n−p−1 ;

(9.3.6.p) E[(Tr{(Σ−1W)
−1})2] = p(p(n−p−2)+2)

(n−p−3)(n−p−1)(n−p);
(9.3.6.q) E[Tr{(Σ−1W)

−2}] = (n−1)p
(n−p−3)(n−p−1)(n−p);

(9.3.6.r) E[Tr{Σ−1W}Tr{(Σ−1W)k}] = (np + 2k)E[Tr{(Σ−1W)k}];
(9.3.6.s) E[Tr{Σ−1W}Tr{(Σ−1W)2}] = np(np + 4)(n+ p + 1);
(9.3.6.t) E[(Tr{Σ−1W})2] = np(np + 2)(n+ p + 1);
(9.3.6.u) E[Tr{(Σ−1W)3}] = np(n2 + p2 + 3np + 3n+ 3p + 4);
(9.3.6.v) E[Tr{(Σ−1W)4}] = np(n3 +p3 + 6n2p+ 6np2 + 6n2 + 6p2 + 17np+

21n+ 21p + 20);
(9.3.6.w) E[Tr{(Σ−1W)5}] = np(p4 + n4 + 10np3 + 10n3p + 20n2p2 + 65n2 +

65p2 + 175np+ 10n3 + 10p3 + 55n2p+ 55np2 + 160n+ 160p+ 148);
(9.3.6.x) E[Tr{(Σ−1W)2}Tr{(Σ−1W)k}] = (n+p+1)(np+2k)E[Tr{(Σ−1W)k}]

+ 2kE[Tr{(Σ−1W)k+1}];
(9.3.6.y) E[Tr{(Σ−1W)2}Tr{(Σ−1W)2}] = (n+p+ 1)(np+ 4)np(1 +p+ n)+

4np(n2 + p2 + 3np + 3n+ 3p + 4).

Proof [26] derived the expression:

E[(Tr{Σ−1W})k|W|h] = 2ph+k|Σ|h
(

1

2
np + ph

)
k

Γp

(
1
2n+ h

)

Γp

(
1
2n

) ,

which gives (9.3.6.a)–(9.3.6.d). de Waal and Nel [7] gave a number of moments for
E[Tr{W}Trj {W}], including those in (9.3.6.e)–(9.3.6.i). Results (9.3.6.j)–(9.3.6.k)
can be found in [14]. For (9.3.6.l) see [10]. Letac and Massam [20] proved for-
mula (9.3.6.m). Relation (9.3.6.n), (9.3.6.r), (9.3.6.x) as well as formulas (9.3.6.s)–
(9.3.6.w), (9.3.6.y) are derived from (A.i), see [31]. (9.3.6.o)–(9.3.6.q) are derived
from (A.iii) and (A.iv) that were proven in [30]. �



156 T. Holgersson and J. Pielaszkiewicz

9.3.7 Bartlett Decompositions

Let W ∼ W(Ip, n), W = TT′, B = (T′T)−1 where T = {tij } ∈ L
+
p . Then the

following holds:

(9.3.7.a) E[tij ] = 0, Var[tij ] = 1, 1 ≤ j < i ≤ p;
(9.3.7.b) E[(tii )2] = n− i + 1, Var[(tii)2] = 2(n− i + 1), 1 ≤ i ≤ p;
(9.3.7.c) E[bjj ] = n−1

(n−j−1)(n−j) , bij = 0, i �= j , 1 ≤ j ≤ p;
Proof (9.3.7.a) and (9.3.7.b) follows from the well-known property that tij ∼
N(0, 1), 1 ≤ j < i ≤ p and t2ii ∼ χ2

(n−i+1), 1 ≤ i ≤ p (see [25] for details)
while (9.3.7.c) is given in [9]. �

9.3.8 The Spectral Decomposition

Let W = {Wij } where W ∼ W(Ip, n), p > 2. Let the spectral decomposition be
defined by V′WV = L, where V ∈ Op and L is a diagonal matrix of eigenvalues
of W. Define two index sets by i = (i1, . . . , i2k), j = (j1, . . . , j2k). The following
holds:

(9.3.8.a) E[Vi1j1Vi2j2 · · ·Vikjk ] = 0 for k odd;
(9.3.8.b) E[V1j1V1j2V2j3V2j4] = 1

p(p+2)(p−1)((p + 1)δj1j2δj3j4 − δj1j3δj2j4 −
δj1j4δj2j3),
p > 2, j1, j2, j3, j4 ≤ p;

(9.3.8.c) E[V 2
11V

2
22] = p+1

p(p+2)(p−1);

(9.3.8.d) E[V 4
11] = 3

p(p+2) ;

Let W ∼ W(Σp, n), where Π ′ΣΠ = Λ is a diagonal matrix of the eigenvalues
λ1, · · · , λp which are strictly unequal. Denote the vectors of eigenvalues of Σ and
W by λ = (λ1, . . . , λp)

′ and l = (l1, . . . , lp)
′ respectively. Then, for some fixed

finite p, there holds that
√
n(l − λ) law→ N(0, 2Λ2). In particular,

(9.3.8.e) limn→∞ E[l] = λ;
(9.3.8.f) limn→∞ Cov[√nl] = 2Λ2.

Proof It is well known that V ∼ hp , where hp denotes the unique Haar measure on
Op, [5]. Matsumoto [24] gave a general formula for E[Vi1j1Vi2j2 · · ·Vikjk ] in terms
of orthogonal Weingarten functions, of which (9.3.8.a)–(9.3.8.d) are special cases.
For (9.3.8.e) and (9.3.8.f) see [1, 2]. �
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Remark Most results on distributional properties of the eigenmatrix V involves
the Haar distribution. Although it is well-known that that the eigenmatrix from a
standard Wishart distribution (i.e., whenΣ = I) is distributed according to the Haar
measure, much less is known for the case of generalΣ [3, 36, 37].

9.3.9 Some Asymptotic Moments

Although exact moments are available in the above sections, they are sometimes
lengthy and simpler expressions may be more attractive.

Let W ∼ W( 1
n

Ip, n). Assume p
n

→ c ∈ (0, 1) as n, p → ∞. Then the following
limits hold:

(9.3.9.a) E[p−1Tr{W}] → c;
(9.3.9.b) E[p−1Tr{W2}] → 1 + c;
(9.3.9.c) E[p−1Tr{W3}] → 1 + 3c+ c2;
(9.3.9.d) E[p−1Tr{W4}] → 1 + 6c+ 6c2 + c3;
(9.3.9.e) E[p−1Tr{W5}] → 1 + 10c+ 20c2 + 10c3 + c4;
(9.3.9.f) E[p−1Tr{W−1}] → (1 − c)−1;
(9.3.9.g) E[p−1Tr{W−2}] → (1 − c)−3;
(9.3.9.h) E[p−1Tr{W−3}] → (1 + c)(1 − c)−5;
(9.3.9.i) E[p−1Tr{W−4}] → (1 + 3c + c2)(1 − c)−7;
(9.3.9.j) E[p−1Tr{W−5}] → (1 + 6c + 6c2 + c3)(1 − c)−9;
(9.3.9.k) E[p−2Tr{Wk}Tr{W}] → limn,p→∞ E[p−1Tr{Wk}];
(9.3.9.l) E[p−2Tr{W2}Tr{W}] → 1 + c;

(9.3.9.m) E[p−2Tr{W3}Tr{W}] → 1 + 3c+ c2;
(9.3.9.n) E[p−2Tr{W4}Tr{W}] → 1 + 6c+ 6c2 + c3;
(9.3.9.o) E[p−2Tr{Wk}Tr{W2}] → (1 + c) limn,p→∞ E[p−1Tr{Wk}];
(9.3.9.p) E[p−2Tr{W2}Tr{W2}] → (1 + c)2;
(9.3.9.q) E[p−2Tr{W2}Tr{W3}] → (1 + c)(1 + 3c + c2);
(9.3.9.r) E[p−2Tr{W2}Tr{W4}] → (1 + c)(1 + 6c + 6c2 + c3);
(9.3.9.s) E[p−3Tr{W}Tr{W3}Tr{W4}] → 1 + 9c + 25c2 + 25c3 + 9c4 + c5;
(9.3.9.t) E[p−2Tr{Wk}Tr{W−1}] → (1 − c)−1 limn,p→∞ E[p−1Tr{Wk}];
(9.3.9.u) E[p−2Tr{W2}Tr{W−1}] → (1 − c)−1(1 + c);
(9.3.9.v) E[p−2Tr{W3}Tr{W−1}] → (1 − c)−1(1 + 3c + c2);
(9.3.9.w) E[p−2Tr{Wk}Tr{W−2}] → 1

1−c limn,p→∞ E[p−2Tr{Wk}Tr{W−1}] +
c

1−c limn,p→∞ E[p−3Tr{Wk}Tr{W−1}Tr{W−1}].
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Proof The limiting moments in (9.3.9.a)–(9.3.9.j) are derived trough a general
recursive expression in [35]. An alternative, non-recurrent formula is available in
[29]. (9.3.9.k)–(9.3.9.s) are derived using the recursive formula in (A.ii), which is
due to [31]. The expressions (9.3.9.t)–(9.3.9.w)are derived from the general formula
in (A.iv) which in turn is due to [30]. �

9.3.10 Moments for Non-central, Singular or Complex Wishart
Distributions

The moments listed in Sects. 9.3.1–9.3.9 are only selections of results, restricted to
matrices W ∈ R

p×p with rank(W) ≥ p and zero non-centrality parameter. More
general results for Wishart moments can often be obtained in a manner similar to
the regular case. Linear structured moments for the non-central Wishart distribution
(say, WΘ ) are fairly straightforward to obtain due to its close relation to the non-
central multivariate normal distribution. Var[vec(WΘ)] has been derived by [21],
and [12] derived the expected value and variance of the trace of a non-central
Wishart. Gupta and Nagar [14] has derived E[|WΘ |h] as well as the distribution
of T, where TT′ = WΘ is the Bartlett decomposition for the non-central Wishart.
Expressions for E[Trj {Σ−1WΘ }] are available in [33].

Another special case arises when the dimension of the Wishart matrix exceeds
the degrees of freedom, i.e., when p > n in the notation of (9.1). Singular Wishart
matrices play an important role in typical low-dimensional settings such as in
analysis of linear models but also arise in analysis of high-dimensional data, i.e.,
when p/n → c > 1 as n, p → ∞. The density for singular Wishart matrices has
been derived by [44] and [39]. References [49] and [4] derived expressions for the
density of the generalized inverse W− of singular Wishart distribution. The first-
and second- order moments for W−, Tr{W−}, and vec{W−} have been derived by
[6] in a manner analogous to [46].

The case of complex Wishart matrices, WC ∈ C
p×p , arises primarily from the

complex normal distribution; some early references include [13] and [38]. Many
kinds of moments of the complex Wishart have been derived since then. Sultan
and Tracy [42] found the first four moments of the central and noncentral complex
Wishart distributions. Nagar and Gupta [27] provided a number of results for
moments of the complex and inverse complex Wishart including first- and second-
order matrix moments, an expression for E[|WC |h], moments of traces Tr{WC},
Tr{W−1

C }, Tr{(Σ−1WC)
h|WC |k}, and the distribution of T, where TT∗ = WC .

Díaz-García and Gutiérrez-Jáimez [11] proposed a unified approach that enables
the Wishart distribution to be studied simultaneously in the real, complex, quater-
nion, and octonion cases.
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Appendix

(A.i) The following recursive expression is due to [31]. Let W ∼ W(Ip, n), n >
p − 1. Then the following recursive formula holds for all k ∈ N and all m0,
m1, . . . ,mk such that m0 = 0, mk ∈ N, mi ∈ N0, i = 1, . . . , k − 1:

E

[ k∏
i=0

Tr{(Σ−1W)mi }
]

= (n− p +mk − 1)E

[
Tr{(Σ−1W)mk−1}

k−1∏
i=0

Tr{(Σ−1W)mi }
]

+2
k−1∑
i=0

miE

[
Tr{(Σ−1W)mk+mi−1}

k−1∏
j=0
j �=i

Tr{(Σ−1W)mj }
]

+
mk−1∑
i=0

E

[
Tr{(Σ−1W)i}Tr{(Σ−1W)mk−1−i}

k−1∏
j=0

Tr{(Σ−1W)mj }
]
;

(A.ii) The following non-recursive asymptotic expression is due to [31]. Let W ∼
W(Ip, n), n > p − 1. Define

(k)Q(mk,m) := lim
n,p→∞

1

pk+1ns
E
[ k∏
i=0

Tr{Wmi }].

Then for all k ∈ N and all mk , m = {m0, . . . ,mk−1} such that m0 = 0,
mk ∈ N, mi ∈ N0 for i = 1, . . . , k − 1; and s = ∑k

i=0mi the following
holds:

(k)Q(mk,m) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( 1
c

+ 1)(k)Q(mk − 1,m)
+ 1
c

∑mk−2
i=1 (k+1)Q(i, {m0, . . . , mk−1,mk − 1 − i}), mk > 2, k ≥ 1,

( 1
c

+ 1)(k)Q(1,m), mk = 2, k ≥ 1,

(k−1)Q(mk−1, {m0, . . . , mk−2}), mk = 1, k > 1,
1, mk = 1, k = 1.

(A.iii) The following recursive expression is due to [30]. Let W ∼ W(Ip, n). Then
the following recursive formula holds for all k ∈ N and all m0, m1, . . . ,mk
such that m0 = 0, mk ∈ N, mi ∈ N0, i = 1, . . . , k − 1:

(n − p −mk)E
[ k∏
i=0

Tr{(Σ−1W)−mi }
]

= E

[
Tr{(Σ−1W)−mk+1}

k−1∏
i=0

Tr{(Σ−1W)−mi }
]

+2
k−1∑
i=0

miE

[
Tr{(Σ−1W)−mk−mi }

k−1∏
j=0
j �=i

Tr{(Σ−1W)−mj }
]

+
mk−2∑
i=0

E

[
Tr{(Σ−1W)−i−1}Tr{(Σ−1W)−mk+1+i}

k−1∏
j=0

Tr{(Σ−1W)−mj }
]
;
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(A.iv) Under same assumptions as in (A.iii) the following recursive formula holds:

(n− p −mk)E
[

Tr{(Σ−1W)−mk }
k−1∏
i=0

Tr{(Σ−1W)mi }
]

= E

[
Tr{(Σ−1W)−mk+1}

k−1∏
i=0

Tr{(Σ−1W)mi }
]

−2
k−1∑
i=0

miE

[
Tr{(Σ−1W)−mk+mi }

k−1∏
j=0
j �=i

Tr{(Σ−1W)mj }
]

+
mk−2∑
i=0

E

[
Tr{(Σ−1W)−i−1}Tr{(Σ−1W)−mk+1+i}

k−1∏
j=0

Tr{(Σ−1W)mj }
]
.

The result is due to [30].
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Chapter 10
Risk and Bias in Portfolio Optimization

Thomas Holgersson and Martin Singull

Abstract In this paper we derive weighted squared risk measures for a commonly
used Stein-type estimator of the global minimum variance portfolio. The risk
functions are conveniently split in terms of variance and squared bias over different
weight matrices. It is argued that the common out-of-sample variance criteria
should be used with care and that a simple unweighted risk function may be more
appropriate.

10.1 Introduction

A financial portfolio is defined by a vector, w = (w1, . . . , wp), say, whose element
wj describes the fraction of the portfolio investment that is allocated to some
asset xj . The random return of the portfolio is obtained as r = x1w1 + · · · +
xpwp = w′x, where x is a vector of random returns. An investor is interested
in holding a portfolio that maximizes the expected return E[r] at a given level
of risk (var[r]) or, equivalently, minimizes the risk var[r] at a given level of the
expected return. A portfolio satisfying such a maximization/minimization is called
an optimal portfolio. Markowitz [20] developed a theory for such mean-variance
portfolio optimization that still plays a fundamental role. The theory considers a
fixed (non-random) portfolio w, which could be determined qualitatively, and gives
closed-form expressions for the optimal portfolio as a function of w, which in turn
depends on the mean vector and covariance matrix of x.

While Markowitz’s theory is concerned with analyses and conclusions drawn
from a fixed portfolio vector, there has been a growing interest during the last
fifty years in how one can use statistical methods to estimate w. Because the
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optimal portfolio is a function of certain population parameters, one obtains the so-
called standard estimator of w by substituting these unknown parameters by their
sample counterparts. Some basic sampling properties such as low-order moments
have long been known [6, 15], while the full normal-theory distribution of the
standard estimator was derived by [22]. It has since been recognized, both from
the theoretical distribution and from empirical findings, that the sampling variance
of the standard estimator may be too large to be useful in investment strategies
[4, 9, 17, 21].

As in most multivariate analyses, this applies in particular when the sample size
n is close to the dimension p. A number of alternatives to the standard estimator
have been derived recently. Jagannathan and Ma [13] noticed that imposing certain
moment constraints leads to a reduction of sampling variance, while [4] proposed
a generalized estimator that impose a threshold constraint on the portfolio vector.
Bayesian methods have been proposed by [15] and [16], while inference solutions
to the case of singular covariance have been derived by [1].

In this paper our interest lies in a particular family of estimators defined as a
weighted mean between the standard estimator and a constant vector. This type
of estimator, which is related to a family of estimators originally proposed by
James and Stein [14], has been considered by [2, 8] and [12]. One of the main
features of this weighted estimator is that it depends on a tuning coefficient, which
also introduces a bias in the estimator. We derive some properties of this Stein-
type estimator with respect to different kinds of weighted squared loss functions.
Particular focus is set on the bias term since this has been given little attention in
the literature previously. We will restrict ourselves to the specific case of the global
minimum variance portfolio (GMVP), although many of the concerns in the paper
also apply to more general portfolio optimizations. We will not attempt to derive
any explicit estimators. Our primary interest lies in deriving and comparing different
risk measures for a commonly used Stein-type estimator and discuss some of their
differences.

10.2 Preliminaries

Consider a vector x : p × 1 of excess returns of p financial assets. A financial
portfolio is defined as the weighted sum w′x, where w : p× 1 is called the portfolio
weight. The vector w can be determined “qualitatively”, i.e., based on expert
knowledge about the market, or it could be estimated from historical data of returns,
which is the objective of this article. An efficient portfolio is usually determined
by minimizing the portfolio variance subject to a mean portfolio premium return
and the additional constraint that investment proportions sum to one. According to
[20], an efficient portfolio weight w, assuming absence of short sale constraints, is
determined by

min
w∈Rp

{w′Σw | w′1 = 1}, (10.1)
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where Σ is the covariance matrix of x and 1 : p × 1 is a vector of ones. The well-
known solution to (10.1) is given by

w = Σ−11
1′Σ−11

. (10.2)

The vector w is known as the global minimum variance portfolio (GMVP). It is also
possible to define portfolios under more general constraints than those of (10.1), see
[15] and [4] for alternative formulations.

Since the quantity in (10.2) depends on an unknown parameter, it needs to be
estimated from data. We are thus concerned with the problem of using a set of n
observations on random returns, say x1, . . . , xn, to develop an estimator of w. We
will assume a common setting where xi ∼iid Np(μ,Σ) under the assumptions
maxj |μj | ≤ a1 < ∞, maxj λj (Σ) ≤ a2 < ∞, and 0 < a3 ≤ minj λj (Σ),
where μ = (μ1, . . . , μp)

′ and λj (Σ) denote an eigenvalue of Σ . Although these
assumptions are not strictly necessary for making inference of the GMPV weight,
they simplify the technical treatments considerably.

An obvious estimator of w is obtained by replacing the unknown covariance
matrix by its sample counterpart. The resulting estimate is commonly referred to as
the standard estimator, henceforth denoted by ŵ0. This estimator is central in the
paper, and we state some basic properties for the sake of clarity.

Property 10.1 Assume xi ∼iid Np(μ,Σ), i = 1, . . . , n, p ≥ 4 and n ≥ p+ 2. Let
S = n−1 ∑n

i=1(xi − x̄)(xi − x̄)′, where x̄ = n−1 ∑n
i=1 xi . Define

(i) w = Σ−11
1′Σ−11

,

(ii) σ 2 = 1

1′Σ−11
,

(iii) ŵ0 = (ŵ0(1), . . . , ŵ0(p))
′ = S−11

1′S−11
.

Then

ŵ0 ∼ tp
(

w,
σ 2Σ−1 − ww′

n− p + 1
, n− p + 1

)
,

where tp(·) denotes a p-dimensional singular t-distribution with n − p + 1
degrees of freedom, location vector w and dispersion matrix σ 2Σ−1 − ww′ with
rank(σ 2Σ−1 − ww′) = p − 1.

Proof ([18, 22]) See also [19, Chapter 1], for a definition of the multivariate t-
distribution. �
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It is well known that the sampling variance of ŵ0 can be substantial when n is
small relative to the dimension p and hence of limited relevance to an investor. A
considerable amount of research has been concerned with development of improved
estimators of w [2, 4, 8, 12]. A common approach is to first decide a family of
estimators, which usually depends on some tuning coefficient, and then use a risk
function to identify the appropriate value of this coefficient. One concern with this
approach, however, is that two different risk functions usually produce two different
values of the tuning coefficient and hence that the distributional properties of our
portfolio weight estimator may strongly depend on which specific risk function that
is being used. The next section will discuss this matter further.

10.3 Risk Measures and Portfolio Estimation

The original view of portfolio optimization and risk as stated by [20] is that Thewj ’s
are not random variables, but are fixed by the investor and that “Risk” is described
by the variance of the return. The “risk” an investor is facing is accordingly
determined by var[w′x] = w′Σw, where Σ = cov[xi ]. However, the definition
of “risk” is less obvious when w is estimated from data because of the additional
uncertainty of sampling variance and bias. From a perspective of statistical inference
the term “risk” refers to the sampling variance and bias of a parameter estimator (say
ŵ), while in portfolio theory “risk” primarily refers to variance of the return vector
x. Since the estimated portfolio return is defined by ri = ŵ′xi , it involves risk in
both senses.

Following Markowitz’s view of a fixed (non-random) portfolio, the Lagrangian
of the optimization problem in (10.1) may be formulated

L(w,Σ, λ0) = 1

2
w′Σw − λ0(w′1 − 1), (10.3)

where λ0 is a Lagrange multiplier. By taking derivatives of L(w,Σ, λ0) w.r.t. w and
equating at zero we get the condition

w = λ0Σ
−11. (10.4)

Since w′1 = 1 it follows that λ0 = (1′Σ−11)−1 and we obtain (10.2). Note that
the identity (10.4) is completely determined by Σ−11 in the sense that if we define
θ = Σ−11, then the solution to the optimization problem depends on θ only. When it
comes to random (estimated) portfolio weights, the optimization problem has been
formulated in different ways in the literature. Jagannathan and Ma [13] specify a
constrained portfolio variance minimization problem as

min
w∈Rp{w

′Σ̂w|w′1 = 1, 0 ≤ wj ,wj ≤  , j = 1, . . . , p}, (10.5)
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where Σ̂ is some estimator of Σ and  is a finite constant such that wj ≤  

defines an upper bound constraint for the weights. Let λ =
(
λ1 . . . λp

)
be the

Lagrange multiplier for 0 ≤ wj and δ =
(
δ1 . . . δp

)
the Lagrange multiplier for

wj ≤  and define Σ̃ = Σ̂ + (δ1′ + 1δ′) − (λ1′ + 1λ′), where Σ̂ is the normal-
theory unconstrained maximum likelihood (ML) estimate of Σ . Jagannathan and
Ma [13] showed that Σ̃ is positive semidefinite, and that constructing a constrained
global minimum variance portfolio from Σ̂ (i.e., the solution to (10.5)) is equivalent
to constructing the unconstrained minimum variance portfolio from Σ̃ . Thus the
constraints can be imposed in the estimation stage instead of the optimization
stage and the result would be the same. This is a fundamental result in portfolio
theory because it connects Markowitz’s theoretical portfolio theory with statistical
inference theory, including both frequentistic and Bayesian treatments.

DeMiguel et al. [4] proposed a norm-constrained minimum variance portfolio as
one that solves minw∈Rp {w′Σw | w′1 = 1, ‖w‖ ≤  }, where ‖w‖ denotes either
the L1 norm ‖w‖1 = ∑n

j=1 |wj | or the L2 norm ‖w‖2 = √
w′Qw, where Q is

some positive definite matrix. They showed that the solution under the constraint
‖w‖1 = 1 coincides with the shortsale constrained estimator.

[8] take a rather different view on the optimization problem and argue that, for
some estimator ŵ based on returns x1, . . . , xn, the quantity var[x′

n+1ŵ|Fn] =
ŵ′Σŵ, where Fn is the information set up to time n, represents the actual variance
of the return belonging to the portfolio ŵ. References [2] and [23] take on a similar
approach.

There currently seems to be no consensus, or unified theory, on how to
formulate a statistical version of Markowitz’s fixed-portfolio optimization problem.
In what follows we will discuss some consequences of the view one takes on the
optimization problem and the measure used to evaluate the properties of a weight
estimator.

Portfolio Weight Estimators The GMVP weight vector w = (1′Σ−11)−1Σ−1

only involves one unknown quantity,Σ−1. One can therefore specify w as a function
of Σ−1, say w = f (Σ−1) = (1′Σ−11)−1Σ−1. A portfolio estimator may thus
be obtained by substituting an estimator Σ̂−1 into w and obtain ŵ = f (Σ̂−1) =
(1′Σ̂−11)−1Σ̂−1. Any estimator f (Σ̂−1) will be a sufficient statistic for w as long
as Σ̂−1 is a sufficient statistic for Σ−1. Such “plug-in” estimators are therefore
completely legitimate from an inferential point of view. The literature on estimation
of Σ−1 is, in turn, extensive. Some important references include [5, 7, 10–12, 24,
26]. A comprehensive survey of improved estimators of Σ−1, including Bayesian
frameworks, is given in [25]. We will, however, not proceed on this path but instead
consider a more restricted class of estimators.

Let ŵ0 denote the standard estimator defined in Property 10.1 and wref denote
some pre-determined reference portfolio, which could be fixed or random (but
independent of ŵ0). We denote a weighted mean between these two quantities as
follows

ŵα = (1 − α)ŵ0 + αwref , 0 ≤ α ≤ 1. (10.6)
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The estimator ŵα , which is closely related to a family of estimators proposed by
[14], has been used by [2, 8, 18]. In order to determine an appropriate value of the
tuning coefficient α one usually applies a loss function. A common square loss is
defined by l = (ŵ − w)′Q(ŵ − w), where Q is a p.d. matrix. Taking the expected
value of l we obtain a quadratic risk function for ŵα as

R(ŵα,Q) = E[(ŵα − w)′Q(ŵα − w)]. (10.7)

The value of α that minimizes R is then defined as the optimal α. By different
choices of Q we obtain several common risk functions as special cases of (10.7).
For example, R(ŵα, I) is the common mean squared error (MSE), which consists
of the variance plus squared bias. The particular risk function R(ŵα,Σ) has been
used by [8] and [18] while [2] used l = (ŵα − w)′Σ(ŵα − w) directly, rather
than its expected value, to derive an optimal portfolio estimator. Yet another way
to evaluate the properties of a portfolio weight estimator is through its predictive,
or out-of-sample properties. The predicted return of some estimator ŵ is obtained
by ŵ′xt , where xt is a vector of returns not used in ŵ, i.e., xt /∈ {x1, . . . , xn}. The
mean squared error of prediction (MSEP) of ŵ may then be evaluated by E[(ŵ′xt −
w′xt )2]. Note that MSEP is also a special case of (10.7), for

E[(ŵ′xt − w′xt )2] = E[(ŵ − w)′xtx′
t (ŵ − w)]

= E[(ŵ − w)′(Σ + μμ′)(ŵ − w)] = R(ŵ,Σ + μμ′).

In what follows we give explicit expressions of R(ŵα,Q) for some particular values
ofQ.

Proposition 10.1 Let ŵα = (1 − α)ŵ0 + αp−11 for some 0 ≤ α ≤ 1, and let

E[ŵ0] = w, R = cov[ŵ0] = σ 2Σ−1 − ww′

n− p − 1
, where σ 2 = (1′Σ−11)−1. Let xt

be an out-of-sample vector of returns, and define μ = E[xt ], μw = w′μ and μ̄ =
p−11′μ. Then the following risk identities hold

(a) R(ŵα, I) = (1 − α)2tr{R} + α2(w′w − p−1),

(b) R(ŵα,Σ) = (1 − α)2
n− p − 1

σ 2(p − 1)+ α2(p−21′Σ1 − σ 2),

(c) R(ŵα, μμ′) = (1 − α)2μ′Rμ+ α2(μw − μ̄)2,

(d) R(ŵα,Σ+μμ′) = (1 − α)2
n− p − 1

(σ 2(p−1)+σ 2μ′Σ−1μ+μ2
w)+α2((p−21′Σ1−

σ 2)+ (μw − μ̄)2).
Before the proof of Proposition 10.1 we will state a useful identity in the following
lemma.
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Lemma 10.1 Let ŵα = (1 − α)ŵ0 + αp−11 for some 0 ≤ α ≤ 1, and let E[ŵ0] =
w, cov[ŵ0] = R. Then it holds that

E[(ŵα − w)(ŵα − w)′] = (1 − α)2R + α2(w − p−11)(w − p−11)′.

Proof See Appendix. �
We are now ready to give the proof of Proposition 10.1.

Proof Proof of Proposition 10.1. From Lemma 10.1 we find that

E[(ŵα − w)(ŵα − w)′] = tr{E[(ŵα − w)ŵα − w′]} = (1 − α)2tr{R} + α2(w′w − p−1),

which establishes (a). Applying Lemma 10.1 again we obtain (b) since

tr{E[(ŵα − w)(ŵα − w)′Σ]} = (1 − α)2tr{RΣ} + α2(p−21′Σ1 − σ 2)

and

tr{RΣ} = tr{(σ 2Σ−1 − ww′)Σ}
n− p − 1

= tr{σ 2I − ww′Σ}
n− p − 1

= p − 1

n− p − 1
σ 2.

The identity (c) is similarly obtained by

tr{E[(ŵα − w)(ŵα − w)′μμ′]} = (1 − α)2μ′Rμ+ α2(w′μ− p−11′μ)2,

while (d) is obtained by adding (b) and (c) and simplifying terms. �
Remark 10.1 The MSEP measure in (d), i.e., E[(ŵ′

αxt − w′xt )2], describes the
variability of ŵ′

αxt around the random term w′xt . An alternative way of defining
MSEP is by E[(ŵ′

αxt − w′μ)2] which describes the variability of ŵ′
αxt around the

non-random point w′E[xt ]. These two differ in that

E[(ŵ′
αxt − w′μ)2] = E[(ŵ′

αxt − w′xt )2] + (1′Σ−11)−1.

See Appendix for a proof of this identity. Note that the smallest possible return
prediction variance for any of the risks (a)–(d) of Proposition 10.1 is 0, which is
attained at α = 1, whereas for E[(ŵ′

αxt − w′μ)2] the minimum prediction variance
is determined by (1′Σ−11)−1 regardless of the value of α.

For purposes of deriving an estimator of w, the choice betweenE[(ŵ′
αxt−w′xt )2]

and E[(ŵ′
αxt − w′μ)2] makes no difference, but for calculation of prediction

intervals our view of the centre point does matter.

Remark 10.2 The bias terms vanish trivially if α = 0 and/or Σ = I . More
generally, the bias terms for R(ŵα, I), R(ŵα,Σ), and R(ŵα, μμ′) vanish when
p1′Σ−21 = (1′Σ−11)2, p−21′Σ1 = σ 2 and μw − μ̄ = 0, respectively. While
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the first two conditions are almost identical to the condition Σ = I , the identity
μw = μ̄, holds when the portfolio return equals the average asset mean.

Remark 10.3 The optimal value of the tuning coefficient α may be derived by

equating
∂R(ŵα,Q)

∂α
at zero and solving for α. The resulting value, say αopt , then

yields an adaptive estimator ŵαopt = (1 − αopt )ŵ0 + αoptp−11. However, αopt is
by necessity a function of unknown population parameters. Operational, or “bona-
fide”, estimators are usually obtained by substituting these unknown parameters by
some estimators to obtain an approximation α̂. The adapted portfolio estimator is
then defined by ŵα̂ = (1 − α̂)ŵ0 + α̂p−11. The coefficient α̂ is hence random,
which in turn distorts the otherwise known distribution of ŵα . It is still possible to
conduct inferential analysis (interval estimation, etc.) through the theory of oracle
inequalities but at the price of becoming more technically involved (see [3] for a
comprehensive survey of the topic). Another option is to determine α qualitatively,
for example based on expert knowledge of the financial market. This method has
the appealing property of retaining the sampling distribution of ŵα.

Remark 10.4 The original portfolio problem as posed by [20] considers the return
of a non-random portfolio at data point t (e.g., a time point), determined by
w′xt with variance var[w′xt ] = tr{cov[xt ]ww′} = w′Σw, which is void of
concerns about consistency and bias, etc. The fixed-portfolio theory uses Lagrange

multipliers to derive the global minimum weight portfolio w = Σ−11
1′Σ−11

, which is

the minimum of var[w′xt ] subject to the constraint
∑p
j=1 wj = 1. How to proceed

from there to statistical estimation is less obvious. It is customary to apply the
criterion R(ŵα,Σ) = E[(ŵ − w)′Σ(ŵ − w)] to derive estimators of w, but it
is not clear what is gained by minimizing this risk instead of the unweighted risk

R(ŵα, I) = E[(ŵ − w)′(ŵ − w)]. For any consistent estimator, say ŵ = Σ̂−11

1′Σ̂−11
,

where Σ̂−1 some consistent estimator of Σ−1, the asymptotic return variance is
limn→∞ var[ŵ′xt ] = w′Σw regardless of which risk function was used to obtain
ŵ. The weight Q = Σ has already been used in the minimization of w′Σw to

obtain the functional form
Σ−11

1′Σ−11
, and there is no apparent gain in using the

weighting (ŵ− w)′Σ(ŵ − w) once again in the estimation stage. In fact,Σ−1 is the

only unknown parameter in
Σ−11

1′Σ−11
. Knowing Σ (up to a scalar multiplication) is

therefore equivalent to knowing w. Since Σ is a one-to-one transformation ofΣ−1,
the weighted loss (ŵ − w)′Σ(ŵ − w) in a sense uses the true parameter to derive its
own estimator. In this view the unweighted risk R(ŵα, I) = E[(ŵ − w)′(ŵ − w)]
may better reflect the actual risk of an estimator ŵ.

Acknowledgments The authors would also like to thank the reviewer for several valuable and
helpful suggestions and comments to improve the presentation of the paper.
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Appendix

First we give the proof of Lemma 10.1.

Proof Note that

ŵα − E[ŵα] = ŵ0 − α(ŵ0 − p−11)− w − α(w − p−11) = (α − 1)(ŵ0 − w).

Hence,

cov[ŵα] = (α − 1)2E[(ŵ0 − w)(ŵ0 − w)′] = (α − 1)2cov[ŵ0] = (α − 1)2R.

Similarly, define the bias term b = E[ŵα] − w. Then

E[ŵ0] − α(E[ŵ0] − p−11)− w = −α(w − p−11).

Hence it follows that bb′ = α2(w − p−11)(w − p−11)′ and

E[(ŵα − w)(ŵα − w)′] = cov[ŵα] + bb′ = (1 − α)2R + α2(w − p−11)(w − p−11)′.

�
Next we give the proof of the identity in Remark 10.1.

Proof We have

E[(ŵ′
αxt − w′μ)2] = E[((ŵ′

αxt − w′xt )+ (w′xt − w′μ))2]
= tr{E[(ŵα − w)x′

txt (ŵα − w)]}
+ 2tr{E[(ŵ′

αxt − w′xt )(w′xt − w′μ)]}
+ E[w′(xt − μ)(xt − μ)′w]

= A+ 2B +D,

say. The identities A = tr{(Σ + μμ′)E[(ŵα − w)(ŵα − w)′]} and D = tr{E[(xt −
μ)(xt − μ)′ww′]} = tr{Σww′} = w′Σw are immediate. For the middle term B we
have

B = tr{E[xtx′
twŵα − xtx′

tww′ − μμ′wŵ′
α + μμ′ww′]}

= tr{E[xtx′
t (w(w + α(w − p−11))′ − ww′)− μμ′(w(w + α(w − p−11))′ − ww′)]}

= tr{αE[xtx′
t − μμ′]w(w − p−11)′} = α(w − p−11)′Σw = 0. �
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Chapter 11
Approximating Noncentral Chi-Squared
to the Moments and Distribution
of the Likelihood Ratio Statistic
for Multinomial Goodness of Fit

Björn Holmquist, Anna Sjöström, and Sultana Nasrin

Abstract The chi-square distribution is often assumed to hold for the asymptotic
distribution of two times the log likelihood ratio statistic under the null hypothesis.
Approximations are derived for the mean and variance of G2, the likelihood ratio
statistic for testing goodness of fit in a s category multinomial distribution. The first
two moments of G2 are used to fit the distribution of G2 to a noncentral chi-square
distribution. The fit is generally better than earlier attempts to fit to scaled versions
of asymptotic central chi-square distributions. The results enlighten the complex
role of the dimension of the multivariate variable in relation to the sample size, for
asymptotic likelihood ratio distribution results to hold.

11.1 Introduction

Let us consider repeated independent observations, of a categorical distribution in
s categories (or classes or cells) whose summation will end up in an observation
from a multinomial distribution. The likelihood ratio test for goodness of fit in a
multinomial distribution rejects if

G2 = 2
s∑
i=1

Yi ln(Yi/(Npi)) (11.1)

is large, where N is the number of trials, s is the number of category cells, pi is
the hypothesized probability of the ith cell. The null hypothesis is that the category
probabilities are given by the quantities {pi} where

∑s
i=1 pi = 1.

Our setup is thus a N × s matrix of zeros and ones and where each row sum up
to one, and column j sum up to Yj , for j = 1, 2, . . . , s, and where

∑s
j=1 Yj = N .
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An often used approximation is that G2, for large N , is chi-squared distributed
with s − 1 degrees of freedom (df) when the null distribution is true, which follows
from general theory, [15]. The standard asymptotic theory for likelihood ratio tests
[12, p. 417] implies that as N → ∞, P [G2 ≤ x] → P [χ2(s − 1) ≤ x].

Despite the fact that the log likelihood ratio statistic is often used in practice,
in preference to the Pearson chi-square statistic, the distributions of these statistics
for small, or moderate sample sizes are not very well known. The asymptotic (large
sample) approximation is often used in practice even for small sample sizes. Chen et
al. [2] made (among other things) a comparison of the asymptotic distribution and a
Monte Carlo implementation of the maximum likelihood ratio test for homogeneity
of the class probabilities (the equiprobable case) in a situation with moderate sample
size, indicating deviations in the finite size distribution from the asymptotic one.

Studies of the distribution of this statistic appears to have started with [9], who
gave cumulative probabilities for certain trinomial distributions.

Our study involves the investigation of the mean and variance of the statistic
G2 and approximations of the distribution of the statistic. Especially the influence
on these characteristics from the relation between the ‘dependence’ dimension s and
the ‘independence’ dimensionN is emphasized, which is of importance in situations
where there may be an increase in both these dimensions.

11.2 Mean and Variance of the G2 Statistic

An approximate expression of the mean of G2, given by Williams [16, p. 34], is in
our notation

(s − 1)

(
1 + s2 − 1

6(s − 1)N

)
.

For non-equiprobable cases this will be

e(W) := s − 1 +
⎛
⎝
⎛
⎝ s∑
i=1

1

pi

⎞
⎠ − 1

⎞
⎠ /6N . (11.2)

These will be denoted e(W) in Table 11.1 below.
Williams [16] suggested a multiplicative adjustment of the log-likelihood ratio

statistic to achieve better fit to the chi-square distribution for small N . Using a
multiplier

q(W) = 1 + [6N(s − 1)]−1[(
∑
i

p−1
i )− 1] (11.3)
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the suggestion of Williams implies that P [G2 ≤ x] should be approximated by
P [q(W)χ2(s − 1) ≤ x].

The multiplicative factor of Williams comes from the expansion of the expected
value of G2, shown to be s − 1 + [6N]−1[(∑i p

−1
i )− 1] when neglecting terms of

orderN−2, and its ratio to the degrees of freedom s−1 in the asymptotic chi-square
distribution.

Smith et al. [14] derived expansions of the mean and variance of G2,

e(Sc) := s − 1 + [(
∑
i

p−1
i )− 1]/6N + [(

∑
i

p−2
i )− (

∑
i

p−1
i )]/6N2 (11.4)

and

v(Sc) := 2(s − 1)+ (2/3N)[(
∑
i

p−1
i )− 1] + (4/3N2)[(

∑
i

p−2
i )− (

∑
i

p−1
i )]
(11.5)

([14], (2.1) and (2.2) when neglecting terms of order N−3 and corrected for the
misprinted sign in the N−2 term), and suggested a multiplier

q(Sc) = 1 + [6N(s − 1)]−1 × [(
∑
i

p−1
i )− 1 +N−1[(

∑
i

p−2
i )− (

∑
i

p−1
i )]]

(11.6)

(also corrected for misprinted sign in the N−2 term in their notation q ′) to be used
in χ2 fit to G2/q(Sc). The expressions in (11.4) and (11.5) will be denoted e(Sc)

and v(Sc) in Table 11.1.
Lyons et al. [8] list some moments of G2 (denoted L in their paper) for some

special cases. They also give some higher order approximations of the mean and
variance of G2:

E(G2) ≈ e(L) := (s − 1) + (R1 − 1)/6N + (R2 − R1)/6N2

+ (19R3/60 − R2/2 + R1/6 + 1/60)/N3

+ (9R4/10 − 19R3/10 + 7R2/6 − R1/6)/N
4

+ (863R5/252 − 9R4 + 95R3/12 − 5R2 + R1/6 − 1/126)/N5

+ (1375R6/84 − 4315R5/84 + 117R4/2 − 57R3/2 + 31R2/6 − R1/6)/N6

+ (33953R7

360
− 1375R6

4
+ 431R5

9
− 315R4

+ 5719R3

60
− 21R2

2
+ R1

6
+ 1

120
)/N7 (11.7)
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and

V(G2) ≈ v(L) := 2(s − 1)+ 2(R1 − 1)/3N + 4(R2 − R1)/3N
2

+ (701R3/180 − 6R2 − R2
1/36 + 2/15)/N3, (11.8)

where Rj = ∑s
i=1 p

−j
i . These approximating expressions will be denoted e(L) and

v(L) in Table 11.1.
The accuracy in these expressions is not necessarily good. For small probabilities

pi , the terms Rj for large j can be quite large and compensate for the reduction
due to Nj in the denominator. This is clearly seen in Table 11.1 for the case
N = 15, s = 10 and pi = 1/s, i = 1, . . . , s where the approximations for both
mean and variance are very far away from the correct values. Another example is
the case N = 40, s = 8, and p = (0.1, 0.1, 0.3, 0.3, 0.05, 0.05, 0.05, 0.05) where
the approximations give considerably larger values than the ones obtained from the
simulations which probably are closer to the true values. A term Rj is bounded

from above by s/pjmin and the magnitude of the ratio (Npmin)
j /s determines very

much the accuracy that can be obtained in the approximations. For the first case
(15 · 0.1)7/15 = 17.09/15 = 1.14 which is not very large, and for the second
case (40 · 0.05)7/8 = 128/8 = 16. In case of N = 300, s = 8 and p =
(0.1, 0.1, 0.3, 0.3, 0.05, 0.05, 0.05, 0.05)we have (300 · 0.05)7/8 ≈ 171 · 106/8 ≈
21 · 106, which is large enough to give good accuracy in the mean in a 7th order
approximation.

Similar calculations can be performed for the variance approximations, for the
first case (15·0.1)3/15 = 3.375/15 = 0.225 and for the second case (40·0.05)3/8 =
8/8 = 1 while for the last case (300 · 0.05)3/8 = 3375/8 ≈ 422. It is in the last
situation thus doubtful if the accuracy is more than a couple of units in the first
decimal digit. In the remaining cases accuracy is considerably lower.

11.2.1 Exact Means and Variances of the G2 Statistic

Hutcheson [6, p. 75 (5.3.2)] acknowledge [13], for the approximations

E(G2) ≈ e(SH) := (s − 1)+ (R1 − 1)/6N + (R2 − R1)/6N2, (11.9)

V(G2) ≈ v(SH) := 2(s − 1)+ 2(R1 − 1)/3N + 4(R2 − R1)/3N2, (11.10)

where Rj = ∑s
i=1(1/pi)

j of the mean and variance of the G2 statistic, i.e. L in
original papers notation.

In [6] these approximations were compared with exact values of mean and
variance of L derived in some special cases.
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In mentioned paper H̄ = −∑s
i=1

Yi
N

ln(Yi/N) is defined that allows to rewrite
statistic as

G2 = 2
s∑
i=1

Yi ln(Yi/Npi) = −2N(H̄ +
s∑
i=1

Yi

N
lnpi) . (11.11)

Explicit expressions are given [6, p. 78] for mean and variance of H̄ :

E[H̄ ] = lnN −
⎡
⎣N−2∑
j=0

(
N − 1

j

)⎛
⎝ s∑
i=1

p
N−j
i (1 − pi)j

⎞
⎠ ln(N − j)

⎤
⎦

and

V[H̄ ] =

=
N−2∑
a=0

(
N − 1

a

)⎛
⎝ s∑
i=1

pN−a
i (1 − pi)a

⎞
⎠

⎡
⎣N−1∑
b=a

(
N − 1

b

)⎛
⎝ s∑
i=1

pN−b
i (1 − pi)b

⎞
⎠

(
ln
N − b
N − a

)2
⎤
⎦−

N − 1

N

N−3∑
b=0

(
N − 2

b

)⎡
⎣ B∑
a=0

(
N − b − 2

a

)

∑
i �=j
pN−a−b−1
i pa+1

j (1 − pi − pj )b
(

ln
N − a − b − 1

a + 1

)2
⎤
⎦

where B is the integer part of (N − b − 2)/2.
The expression for the mean can through (11.11) be directly applied toG2, giving

E(G2) = 2N

⎡
⎣N−2∑
j=0

(
N − 1

j

)⎛
⎝ s∑
i=1

p
N−j
i (1 − pi)j

⎞
⎠ ln(N − j)

⎤
⎦ − 2N

s∑
i=1

pi ln(Npi)

(11.12)

which is then an exact expression for the mean of G2.
Hutcheson [6, p. 78], also give an approximation for the expected value of H̄

E[H̄ ] ≈ −
∑
pi lnpi−(s−1)/2N−(

∑
i

p−1
i −1)/12N2−(

∑
i

p−2
i −

∑
i

p−1
i )/12N3+O(1/N4)
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which, when using (11.11), gives

E[G2] ≈ (s − 1)+ (
∑
i

p−1
i − 1)/6N + (

∑
i

p−2
i −

∑
i

p−1
i )/6N

2 +O(1/N3)

which is the Schäffer approximation in (11.9).
Exact general expressions for the mean and variance of the G2 statistic were

derived by Hutcheson and Lyons [7]. The expression they give [7, below Eq. (9)]
for the mean

−2N lnN + 2N

⎡
⎣ s∑
i=1

N−1∑
a=0

(
N − 1

a

)
pa+1
i (1 − pi)N−1−a ln(

a + 1

pi
)

⎤
⎦

is expressed in another order of the summations than in (11.12), but they are
equivalent.

The expression they give [7, Eq. below (10)] for the variance is

4N2
s∑
i=1

s∑
j=1

N−2∑
a=0

N−1∑
b=a+1

(
N − 1

a

)(
N − 1

b

)
pN−a
i (1 − pi )apN−b

j (1 − pi )b
(

ln(
pi(N − b)
pj (N − a) )

)2

+

+4N2
∑
i �=j

N−1∑
a=0

((
N − 1

a

))2

(pipj )
N−a((1 − pi)(1 − pj ))a lnpi ln(

pi

pj
)+

− 4N(N − 1)
∑
i �=j

N−2∑
a=0

(
N − 2

a

)
(1 − pi − pj )a

A∑
b=0

(
A

b

)
pBi p

b+1
j ln(pi(b + 1)) ln(

pi (b + 1)

pjB
),

(11.13)

where A = N − 2 − a and B = N − 1 − a − b.
Calculations using two presented exact formulas are rather computationally

intensive for large N since they are of order N and N2, respectively.

11.2.2 Comparison of Approximate Means and Variances
of the G2 Statistic

The values denoted by e(Sc) and v(Sc) in Table 11.1 are the corrected versions of
equations (2.1) and (2.2) of [14]. These corrected versions also coincide with e(SH)

and v(SH) given by Hutcheson [6, p. 75 (5.3.2)], and attributed to [13].
The exact values of the mean and the variance of theG2 statistic given in Table 1

of [14] (also given in Table 11.1) have successfully been replicated with sufficient
accuracy through simulation experiments based on 100,000 repetitions of the G2

statistic. The differences obtained from these simulations are at most a number of
digits in the first or the second decimal places. Moments obtained via simulations
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are often more accurate than any of these approximating expressions. Simulation
experiments may be fairly easy to perform for moderate values of N , while for very
large N the computation time may be quite extensive. On the other hand, for very
large N , the approximate chi-square approximation may be valid with fairly good
accuracy. It is hence for moderateN relative to s that the non-central approximation
may give some advantage in determining critical values and p-values, as compared
with the asymptotic (central) chi-square distribution. For such situations it may be
quite easy (through simulation experiments) to obtain parameters for the non-central
chi-square distribution approximation.

11.3 Approximate Mean and Variance of the G2 Statistic
Based on Central Moments

We give in this section a series of approximations of the mean and the variance of the
G2 statistic in (11.1). The derivation is through the relation to the Kullback-Leibler
divergence statistic for the empirical distribution against the specific category
distribution {pi} given by

KL =
s∑
i=1

Yi ln(
Yi

Npi
) (11.14)

for which then G2 = 2KL. (Strictly speaking, the Kullback-Leibler divergence
would be the above given KL divided by N .)

By expanding the logarithmic function we can construct a series of approxima-
tions to the expectation (eKL

j ) and variance (vKL

j ) of the Kullback-Leibler divergence
expressed in terms of central moments of various order of the multinomial distribu-
tion:

eKL

1 =
s∑
i=1

ν
(2)
i

Npi

1

2
, (11.15)

eKL

2 =
s∑
i=1

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6

]
, (11.16)

eKL

3 =
s∑
i=1

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6
+ ν

(4)
i

(Npi)3

1

12

]
, (11.17)

eKL

4 =
s∑
i=1

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6
+ ν

(4)
i

(Npi)3

1

12
− ν

(5)
i

(Npi)4

1

20

]
, (11.18)



184 B. Holmquist et al.

eKL
5 =

s∑
i=1

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6
+ ν

(4)
i

(Npi)3

1

12
− ν

(5)
i

(Npi)4

1

20
+ ν

(6)
i

(Npi)5

1

30

]
,

(11.19)

eKL
6 =

s∑
i=1

⎡
⎣ ν(2)i
Npi

1

2
− ν

(3)
i

(Npi)
2

1

6
+ ν

(4)
i

(Npi)
3

1

12
− ν

(5)
i

(Npi)
4

1

20
+ ν

(6)
i

(Npi)
5

1

30
− ν

(7)
i

(Npi)
6

1

42

⎤
⎦ ,

(11.20)

vKL
1 = (

s∑
i=1

s∑
j=1

ν
(2,2)
i,j

2Npi2Npj
)− (eKL

1 )
2, (11.21)

vKL
2 =

s∑
i=1

s∑
j=1

ν
(2,2)
i,j

2Npi2Npj
− ν

(2,3)
i,j

2(Npi)6(Npj )2
− ν

(3,2)
i,j

6(Npi)22(Npj )
+ ν

(3,3)
i,j

6(Npi)26(Npj )2
−(

eKL
2

)2
.

(11.22)

The moments and central moments of the multinomial distribution are given
in Appendix 1. The details of the derivation of the approximate expressions are
deferred to Appendix 2.

Based on these approximations, we get approximations of the mean (eG
2

j ) and of

the variance (vG
2

j ) of G2 = 2KL, through

eG
2

j = 2eKL
j

and

vG
2

j = 4vKL

j .

The expectation approximations 2eKL

j are presumably more accurate for larger j
although the effect from the alternating sign in the additional term (see Appendix
2) is clearly seen, when turning from approximation j to approximation j + 1.
Especially for small or moderate N relative to s, very large j is needed to get a
good approximation of the true mean. There are clear indications (from Table 11.1)
that the mean of 2KL is larger than s − 1. If this can be shown to be generally valid,
based on (11.12), remains to be settled. Whether the difference decreases with larger
N for any configuration p, is also a question that remains to be settled. However
the difference can be considerable when s is relative large relative to N for certain
configurations p, as is seen in Table 11.1.

From the explicit expression for the KL approximations in Appendix 2 we get
from (11.28)

eG
2

1 = s − 1
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and from (11.29)

eG
2

2 = s − 1 + (s − 1)/N − (
∑
i

p−1
i − 1)/3N = (s − 1)(1 + 1

N
)− (R1 − 1)/3N

which is somewhat similar to (but not identical to) Williams’ approximation (11.2).
We have also

eG
2

3 = s − 1 + (s − 1)/N − (
∑
i

p−1
i − 1)/3N + [3(2(s − 1)

− (
∑
i

p−1
i − 1))(2N−2 −N−1)+N−2(

∑
i

p−2
i −

∑
i

p−1
i )]/6

(see Appendix (11.30)), which by rearranging gives

eG
2

3 = s − 1 + (s − 1)/N − (
∑
i

p−1
i − 1)/3N + (s − 1)(2N−2 −N−1)

+ [−3(
∑
i

p−1
i − 1))(2N−2 −N−1)+N−2(

∑
i

p−2
i −

∑
i

p−1
i )]/6

= s − 1 + 2(s − 1)/N2 − (
∑
i

p−1
i − 1)/3N

+ [−3(
∑
i

p−1
i − 1)(2N−2 −N−1)+N−2(

∑
i

p−2
i −

∑
i

p−1
i )]/6.

This expression bear similarities with both the approximation by Smith et al. (11.4)
and Schäffer’s approximation (11.9) but is not exactly the same.

The behaviour of 2eKL

6 is almost the same as those given by e(L) given by Lyons et
al. [8], but is less influenced (see Table 11.1) by the small values of pi which means
to say that they are more accurate than e(L) for a larger class of probabilities p.

11.4 Approximation by Noncentral Chi-Square Distribution

The approximate distributions suggested for the G2 statistic under the null hypoth-
esis (i.e. that the category probabilities are those given by p) involve, in addition
to the asymptotic chi-square distribution, different scaling adjustments of the chi-
square distribution as previously mentioned.

We suggest here the use of a non-central chi-square distribution as a (serious)
competitor to the chi-square or scaled chi-square as an approximate distribution
under the null hypothesis.
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The suggestion comes primarily from the observation that simulation studies of
the statistic G2 tend to give means above the nominal s − 1 as well as variance
above the nominal 2(s− 1), see Esim and Vsim in Table 11.1. The same effects in the
mean and variance are observed for many of the studied approximate expressions,
see Table 11.1. This indicates that a non-central chi-square distribution would
probably fit better to the statisticsG2 for relatively smallN than a central chi-square
distribution. Moreover, one can verify statement via calculation of exact values of
the mean and variance for the studied cases.

We verify the appropriateness of this suggestion through analysis of improve-
ment in upper tail quantiles for non-central chi-square distribution in comparison
to ones obtained from the previously suggested chi-square and scaled chi-squared
distributions.

Although the non-central distribution is often used when the alternative is true, it
is to our knowledge a novelty approach to consider the non-central chi-squared also
when the null hypothesis is true. The difference between non-central chi-square
distribution under the alternative and under the null hypothesis is, of course, in the
distributions’ parameters.

11.4.1 Degrees of Freedom and Non-centrality Parameter

The non-central chi-squared distribution, here denoted χ2(k, λ) depends on two
parameters k and λ, referred to as degrees of freedom (df) and non-centrality
parameter (nc) respectively. When λ = 0, this is the (ordinary) chi-squared
distribution with k degrees of freedom. The non-central chi-square distribution has
a probability density function at x which may be written as

f (x) = e−x/2e−λ/2

2k/2

∞∑
j=0

xk/2+j−1λj

22j j !Γ (k/2 + j) ,

and the rth cumulant being κr = 2r−1(r − 1)!(k + rλ).
This distribution has been thoroughly investigated very early by Fisher [3],

and tables of percentage points have been given by Fix [4]. Several methods of
approximation have been given by Patnaik [10] and Abdel-Aty [1]. Here we will
rely on the percentage points as given by the function qchisq in the R-package
stats version 3.1.0 [11].

The expected value (E) and the variance (V ) in a χ2(k, λ) distribution are

E = k + λ,
V = 2(k + λ)+ 2λ.
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Hence the parameters are directly related to mean and variance through

λ = V/2 − E, (11.23)

k = 2E − V/2 . (11.24)

11.4.2 Noncentral Chi-Squared Approximation of G2

The values of the df (i.e. k) and the non-centrality parameter (i.e., λ) were, in
Table 11.2, calculated on the basis of the mean and variance obtained from the
Monte-Carlo simulations:

λ0 = Vsim/2 − Esim,

k0 = 2Esim − Vsim/2 .

The parameter estimates can be calculated from any estimates of the mean and vari-
ance. Especially, if simple and accurate estimates can be obtained (i.e., calculated)
from the particular design, i.e.,N, s,p = (p1, . . . , ps), the appropriate values k and
λ is then easily obtained.

As seen from Table 11.1, the approximations given there, are fairly good with
respect to the mean, but the estimates of the variances may differ considerably from
what is seen from the simulations (or the exact values given by Smith et al. [14] for
certain cases).

Smith et al. [14] however claim that their multiplicative factor q(Sc) will make the
mean of G2/q(Sc) agree with the mean of the approximating chi-square, neglecting
terms of order N−3.

In Table 11.2 are listed quantiles from certain specific distributions, that may be
used as approximating distribution for the G2 statistic. The quantiles listed are the
90%, 95%, and 99% percentiles of the distributions which are denoted by x90, x95
and x99 respectively.

The three quantiles of the scaled chi-square distribution, a gamma distribution,
are given in Table 11.2 under the column header q(Sc)χ2(s− 1), while the quantiles
of the central chi-square distribution are given under the column header χ2(s − 1).

Under the column header ‘Simulations’ we list the empirical percentiles obtained
from simulation studies in each certain case based on 100,000 replications.

As seen from Table 11.2, the quantiles based on the central chi-square distri-
bution in many cases under-estimate those given by the simulations. The quantiles
based on the scaled chi-square distribution, in many cases give improvements, but
still often under-estimates those given by the simulations.

The quantiles, in Table 11.2, based on the χ2(k0, λ0) distribution are generally
much closer to the simulation quantiles, compared to those obtained from the
scaled chi-square distribution. It may hence serve as a good approximation of the
distribution of G2.
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It however rely on sufficiently accurate parameters k0 and λ0, here based on
simulation estimates of mean and variance. One could hence argue that if a
simulation is needed to obtain mean and variance of G, then the full distribution
of G2 (also the percentiles needed) could be obtained from this simulation in
the particular case, so that the noncentral chi-square approximation would be
superfluous.

Hence it would be worthwhile to use the valuesE(Sc) = q(Sc)(s−1) and V (Sc) =
(q(Sc))22(s − 1) of mean and variance in the distribution of q(Sc) times a χ2(s −
1) distributed random variable, to see what quantiles are being obtained from the
noncentral chi-squared distribution χ2(k(Sc), λ(Sc)), where

λ(Sc) = V (Sc)/2 − E(Sc) = ((q(Sc))2 − q(Sc))(s − 1),

k(Sc) = 2E(Sc) − V (Sc)/2 = (2q(Sc) − (q(Sc))2)(s − 1) .

It turns out, see Table 11.2, that these quantiles obtained with this choice of
parameters are almost identical to those obtained by the q(Sc)-scaled χ2(s − 1)
distribution, a gamma distribution, and are thus no improvement compared to those
obtained from the χ2(k0, λ0) distribution. The reason for this can be seen from
Table 11.2, in thatE(Sc) and V (Sc) in almost all cases under-estimates the true values
of the mean and variance ofG2 (which are found in Table 11.1). The multiplicative
factor q(Sc) is not ‘accurate enough’ to give more accurate approximations of the
mean and variance in the particular situations. These are instead more accurately
estimated through the Monte Carlo simulations.

The possibility still remains to calculate the exact mean and variance of G2

through (11.12) and (11.13) to obtain parameters λ and k in the noncentral chi-
square approximation through (11.23) and (11.24).

11.5 Discussion

The poor fit of theG2 statistic to central χ2 distribution for very small sample sizes
(i.e. small N in relation to s leading to many empty cells), have led to suggested
improvements in ‘smoothed’ G2 obtained by adding nonnegative constants to all
class frequencies, cf. [5]. This effect may however not be so much connected with
the log likelihood ratio statistic as being an asymmetric statistic (i.e. overly skewed
and over-dispersed), which is the case considered here. Instead this may be related
to that the distribution is more discrete in nature for small N since the averaging
effect has not had any large impact for the very few combinations that are possible
for this very few number of outcome possibilities.

In order to obtain appropriate critical values for theG2 test statistic it is suggested
that the non-central chi-square approximation should be used in preference to the
standard chi-squared approximation or scaled chi-squared approximation. This sug-
gested approximation requires accurate values of the expected value and variance
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of the G2 statistic for the particular statistical design. Such values can be obtained
from exact expressions, accurate approximating expressions, or accurate simulation
estimates, whichever is most convenient to use in the particular situation.

This approach is also appropriate under an alternative distribution. If {qi}
represent category probabilities under the alternative then

G2 = 2
s∑
i=1

Yi ln(Yi/(Nqi))+ 2
s∑
i=1

Yi ln(qi/pi)

and the moments and the distribution of G2 will essentially be the ones determined
by the first term on the right hand side, which will depend on the {qi}, and with
the mean increased by 2N

∑s
i=1 qi ln(qi/pi), i.e., 2N times the Kullback-Leibler

divergence from the null categorical distribution to the alternative categorical
distribution.

Acknowledgments We thank the referee for the insightful suggestions that substantially improved
the presentation of the results in this paper.

Appendix 1: Moments of a Multinomial Distribution

The multinomial distribution is given by the probability mass function

P(Y1 = y1, . . . , Ys = ys) = N !
y1! · · · ys ! p

y1
1 · · ·pyss

for y1 +· · ·+ys = N and 0 otherwise, for pi ≥ 0, i = 1, . . . , s, and p1 +· · ·+ps =
1. We write (Y1, . . . , Ys) ∈ Multinomial(N, p1, . . . , ps).

The moment generating function (mgf) is given by

E[et1Y1+t2Y2+···+tsYs ] = (p1e
t1 + p2e

t2 + · · · + psets )N .

Raw Moments

The ith raw moment of order k, denoted μ(k)i , is defined by μ(k)i = E[(Yi)k] for
i = 1, . . . , s. The raw moments are obtained as derivatives with respect to ti of the
moment generating function, and evaluated at tj = 0 for a j , and are

μ
(1)
i = Npi

μ
(2)
i = N(2)p2

i +N(1)p1
i
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μ
(3)
i = N(3)p3

i + 3N(2)p2
i +N(1)p1

i

μ
(4)
i = N(4)p4

i + 6N(3)p3
i + 7N(2)p2

i +N(1)p1
i

μ
(5)
i = N(5)p5

i + 10N(4)p4
i + 25N(3)p3

i + 15N(2)p2
i +N(1)p1

i

μ
(6)
i = N(6)p6

i + 15N(5)p5
i + 65N(4)p4

i + 90N(3)p3
i + 31N(2)p2

i + N(1)p1
i

μ
(7)
i = N(7)p7

i+21N(6)p6
i+140N(5)p5

i+350N(4)p4
i+301N(3)p3

i+63N(2)p2
i+N(1)p1

i

where N(a) = N(N − 1)(N − 2) · · · (N − a + 1).
A general raw moment is given by

μ
(k)
i =

k−1∑
j=0

ak,jN
(k−j)pk−ji

where

ak,j = (k − j)ak−1,j−1 + ak−1,j .

The coefficients ak,j for the first values of k, up to 12 are given in Table 11.3.

Central Moments

The ith central moment of order k, denoted ν(k)i , is defined by ν(k)i = E[(Yi−Npi)k]
for i = 1, . . . , s. The central moments are most easily expressed in terms of raw
moments, using binomial expansions.

We have ν(1)i = 0, and

ν
(2)
i = μ(2)i − 2μ(1)i μ

(1)
i + (μ(1)i )2

ν
(3)
i = μ(3)i − 3μ(2)i μ

(1)
i + 3μ(1)i (μ

(1)
i )

2 − (μ(1)i )3

ν
(4)
i = μ(4)i − 4μ(3)i μ

(1)
i + 6μ(2)i (μ

(1)
i )

2 − 4μ(1)i (μ
(1)
i )

3 + (μ(1)i )4

ν
(5)
i = μ(5)i − 5μ(4)i μ

(1)
i + 10μ(3)i (μ

(1)
i )

2 − 10μ(2)i (μ
(1)
i )

3 + 5μ(1)i (μ
(1)
i )

4 − (μ(1)i )5

ν
(6)
i = μ(6)i − 6μ(5)i μ

(1)
i + 15μ(4)i (μ

(1)
i )

2 − 20μ(3)i (μ
(1)
i )

3

+ 15μ(2)i (μ
(1)
i )

4 − 6μ(1)i (μ
(1)
i )

5 + (μ(1)i )6
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ν
(7)
i = μ(7)i − 7μ(6)i μ

(1)
i + 21μ(5)i (μ

(1)
i )

2 − 35μ(4)i (μ
(1)
i )

3

+ 35μ(3)i (μ
(1)
i )

4 − 21μ(2)i (μ
(1)
i )

5 + 6(μ(1)i )
7 .

A general central moment is

ν
(k)
i =

k∑
j=0

(
k

j

)
(−1)jμ(k−j)i (μ

(1)
i )

j , (11.25)

where μ(0)i = 1.

Appendix 2: Approximate Moments of the Kullback-Leibler
Statistic

The Kullback-Leibler statistic for the empirical distribution against the category
distribution {pi} is given by

KL =
s∑
i=1

Yi ln(
Yi

Npi
) . (11.26)

By expansion of the logarithmic function we may write

s∑
i=1

Yi ln(
Yi

Npi
) =

s∑
i=1

∞∑
k=2

(−1)k

k(k − 1)

(Yi −Npi)k
(Npi)k−1 . (11.27)

The alternating power series on the right hand side converges, as is seen using
Leibnitz Criterion (limk→∞ 1

k(k−1) = 0) and the radius of convergence is

r = lim
k→∞ | ak

ak+1
| = lim

k→∞
(k + 1)k

k(k − 1)
= 1

where ak = (k(k − 1))−1.
From the expansion (11.27) we immediately have

E[KL] =
s∑
i=1

∞∑
k=2

(−1)k

k(k − 1)

E[(Yi − Npi)k]
(Npi)k−1

=
s∑
i=1

μ
(1)
i

∞∑
k=2

(−1)k

k(k − 1)

ν
(k)
i

(μ
(1)
i )

k
,

where ν(k)i = E[(Yi −Npi)k] = E[(Yi − μ(1)i )k].
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By stopping at different specific orders of the central moment we get a series of
different approximations of the expectation of KL:

eKL
1 =

s∑
i=1

ν
(2)
i

Npi

1

2

eKL
2 =

∑
i

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6

]

eKL

3 =
∑
i

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6
+ ν

(4)
i

(Npi)3

1

12

]

eKL

4 =
∑
i

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6
+ ν

(4)
i

(Npi)3

1

12
− ν

(5)
i

(Npi)4

1

20

]

eKL

5 =
∑
i

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)2

1

6
+ ν

(4)
i

(Npi)3

1

12
− ν

(5)
i

(Npi)4

1

20
+ ν

(6)
i

(Npi)5

1

30

]

eKL
6 =

∑
i

[
ν
(2)
i

Npi

1

2
− ν

(3)
i

(Npi)
2

1

6
+ ν

(4)
i

(Npi)
3

1

12
− ν

(5)
i

(Npi)
4

1

20
+ ν

(6)
i

(Npi)
5

1

30
− ν

(7)
i

(Npi)
6

1

42

]

with

eKL
k = eKL

k−1 +
∑
i

(−1)k+1 ν
(k+1)
i

(Npi)k

1

(k + 1)k
.

Using (11.25) we may write

E[KL] =
s∑
i=1

μ
(1)
i

∞∑
k=2

(−1)k

k(k − 1)

k∑
j=0

(
k

j

)
(−1)jμ(k−j)i (μ

(1)
i )

j−k

in terms of the raw moments {μ(k)i }.
An alternative form is obtained by reversing the order of summation,

E[KL] =
s∑
i=1

μ
(1)
i [

∞∑
k=2

(−1)k

k(k − 1)
μ
(k)
i (μ

(1)
i )

−k −
∞∑
k=2

(−1)k

(k − 1)
μ
(k−1)
i (μ

(1)
i )

1−k

+
∞∑
j=2

∞∑
k=j

(−1)k

k(k − 1)

(
k

j

)
(−1)jμ(k−j)i (μ

(1)
i )

j−k] .
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Different approximations are obtained stopping the summation at various stages in
the infinite series expressions.

Some Explicit Expressions

1. Here it generally holds for any {pi}, that

eKL

1 =
s∑
i=1

ν
(2)
i

Npi

1

2
=

s∑
i=1

μ
(2)
i − (μ(2)i )2
Npi

1

2
=

s∑
i=1

N(2)p2
i +Npi − (Npi)2

Npi

1

2

=
s∑
i=1

Npi(1 − pi)
Npi

1

2
= (s − 1)

1

2
. (11.28)

2. Looking at the additional term in eKL

2 we have ν(3)i = μ
(3)
i − 3μ(2)i μ

(1)
i +

2(μ(1)i )
3 = (N(3)p3

i + 3N(2)p2
i +Npi)− 3(N(2)p2

i +Npi)(Npi)+ 2(Npi)3 =
(N(3) − 3NN(2) + 2N3)p3

i + (3N(2) − 3N2)p2
i +Npi = (N(N − 1)(N − 2)−

3NN(N−1)+2N3)p3
i −3Np2

i = (N(N2 −3N+2)−3N(N2 −N)+2N3)p3
i −

3Np2
i +Npi = 2Np3

i − 3Np2
i +Npi = −Np2

i (3 − 2pi)+ Npi and thus

−
∑
i

ν
(3)
i

(Npi)2

1

6
=

∑
i

(3−2pi)
1

N · 6
−
∑
i

1

Npi

1

6
= (6N)−1(3s−2)−

∑
i

1

Npi

1

6

= 1

6N
(3s − 3 − (

∑
i

1

pi
− 1)) = s − 1

2N
− (

∑
i

1

pi
− 1)/6N . (11.29)

If pi = 1/s, the last of these two terms is −(s2−1)/6N and the whole expression
is s−1

2 (1 − s+1
3 )/N which is negative (for s > 2), and the magnitude of the term

is hence strongly depending on the ratio s/N . For non-homogeneous category
probabilities {pi}, the magnitude of the term is even more accentuated. Hence

eKL

2 = (s − 1)
1

2
+ s − 1

2N
− (

∑
i

1

pi
− 1)/6N

which is strongly influenced by mini pi .
3. For the additional term in eKL

3 we have

ν
(4)
i 6 = μ(4)i − 4μ(3)i μ

(1)
i + 6μ(2)i (μ

(1)
i )

2 − 3(μ(1)i )
4

= (N(4)p4
i + 6N(3)p3

i + 7N(2)p2
i +N(1)p1

i )− 4(N(3)p3
i + 3N(2)p2

i + Npi)Npi
+ 6(N(2)p2

i + Npi)(Npi)2 − 3(Npi)4
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= (N(4) − 4NN(3) + 6N2N(2) − 3N4)p4
i + (6N(3) − 4 · 3NN(2) + 6N3)p3

i

+ (7N(2) − 4N2)p2
i +N(1)p1

i

= (3N2 − 6N)p4
i + (12N − 6N2)p3

i + (3N2 − 7N)p2
i + Np1

i .

Hence,

ν
(4)
i

(Npi)3

1

12
= (3N−1 − 6N−2)pi + (12N−2 − 6N−1)+ (3N−1 − 7N−2)p−1

i +N−2p−2
i

12

and

∑
i

ν
(4)
i

(Npi)3

1

12

= (3N−1 − 6N−2)+ (12N−2 − 6N−1)s + (3N−1 − 7N−2)
∑
i p

−1
i + N−2 ∑

i p
−2
i

12

=
(2N−2 −N−1)3

(
2(s − 1)− (∑i p

−1
i − 1)

)
+ N−2(

∑
i p

−2
i − ∑

i p
−1
i )

12
.

(11.30)

When pi = 1/s the first of these two terms is −(2N−2 − N−1)3(s − 1)2/12
which is positive for N > 3. The second term is also positive and for pi = 1/s it
equals s2(s − 1)/12N2 and the whole expression in (11.30) is

(s − 1)2

4N
+ (s − 1)

12N2 (s
2 − 6(s − 1)) .

This expression depends on the two dimensions s andN , but not in a simple way
of the ratio s/N only.
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Chapter 12
Covariance Structure Tests
for t-distribution

Tõnu Kollo and Marju Valge

Abstract We derive expressions of statistics for testing covariance structures when
the population is t-distributed. The likelihood ratio test, Rao’s score test and Wald’s
score test are derived for basic covariance structures. Expressions of all three
statistics are obtained under the general null-hypothesis H01 : Σ = Σ0, using
matrix derivative technique. Here p × p-matrix Σ is a dispersion/scale parameter.
The special cases H02 : Σ = Ip and H03 : Σ = γ0Ip where γ0 > 0 is
a known constant are also considered. Expressions of the statistics are obtained
as approximations using first terms from Taylor expansions. The method can be
carried over to other continuous multivariate elliptical distributions which have
power function in the expression of the density function.

12.1 Introduction

In data analysis and modelling one is often interested in testing hypotheses about
mean or presence of a specific covariance structure. In a simple case the hypothized
covariance matrix is an identity matrix, whereas in more complex situations e.g.
when analysing spacial-temporal data the Kronecker product structure is present
[15, for example]. When population distribution is elliptical the covariance matrix is
a product of a univariate multiplier which characterizes the distribution and a scale
matrix, denoted by Σ . The test statistics are derived for the parameter Σ which
determines the structure of the corresponding covariance matrix. Probably the most
commonly used test is the likelihood ratio test (LRT) under assumption of normality
of the population [1, 3, for example]. Profound study of basic likelihood ratio tests
about covariance structures under normality is presented in [12, Ch. 8]. However,
it is known that when the number of parameters to be tested is large the likelihood
ratio test will almost always reject the null hypothesis. In order to overcome this
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problem, corrections to the test have been made so that it could be used in a high-
dimensional setup as well, see [2], for example. In practice one still carries on
using the uncorrected test. In [9] it is shown that instead of the likelihood ratio
test or Wald’s score test (WST) more consistent Rao’s score test (RST) should be
used to test a particular covariance structure under normality. In practice empirical
distribution with heavier than normal tail area is quite common. In this paper we
develop these three tests for a multivariate t-distributed population.

In Sect. 12.2 notation and necessary notions are presented. In Sect. 12.3 we will
find the likelihood ratio test statistic, in Sect. 12.4 Rao’s score test statistic and in
Sect. 12.5 Wald’s score test statistic are derived for testing covariance structures
under a multivariate t-distribution. Both, the general formula for testing H01 : Σ =
Σ0 and specific formulae for the sphericity test and for testing if the covariance
matrix is an identity matrix, are derived.

Finally, in Sect. 12.6 we summarize the results and discuss directions of further
research. Expressions of the test statistics for t-distributed observations are more
complicated than in the normal case and found as approximations using first terms
from Taylor expansions.

12.2 Notation and Notions

The derivations in the paper utilize a matrix technique which is based on the vec-
operator, the Kronecker product and matrix derivatives. For deeper insight into this
technique an interested reader is referred to [6, 11] or [8]. The following two vec-
operator rules are frequently used

vec (ABC) = (C′ ⊗ A)vec B,

tr(AB) = vec ′A′vec B,

where tr denotes the trace function.
Later on we shall use matrix derivatives repeatedly, and the definition of [8],

p. 127, is applied.

Definition 12.1 Let the elements of Y ∈ R
r×s be functions of X ∈ R

p×q . The
matrix dY

dX ∈ R
pq×rs is called matrix derivative of Y by X in a set A, if the partial

derivatives ∂ykl
∂xij

exist, are continuous in A, and

dY
dX

= d

dvec X
vec ′Y

where

d

dvec X
=

(
∂

∂x11
, . . . ,

∂

∂xp1
,
∂

∂x12
, . . . ,

∂

∂xp2
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)′
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and vec (·) is the usual vectorization operator.

Further, the following properties of the matrix derivative are used [8, p. 149]

(a) dX
dX = Ipq ;

(b) dY+Z
dX = dY

dX + dZ
dX ;

(c) dAXB
dX = B ⊗ A′;

(d) When Z = Z(Y), Y = Y(X) then dZ
dX = dY

dX
dZ
dY ;

(e) When W = YZ, Z ∈ R
s×t then dW

dX = dY
dX (Z ⊗ Ir )+ dZ

dX (It ⊗ Y′);
(f) When X ∈ R

p×p then dX−1

dX = −X−1 ⊗ (X′)−1;

(g) When X ∈ R
p×p then d |X|

dX = |X|vec (X−1)′, where |·| denotes the determinant;

(h) d tr(A′X)
dX = vec A.

Let x be a continuous random vector with distribution Px(θ) and density function
f (x, θ), where θ is a vector of unknown parameters.

Definition 12.2 The score vector of random vector x is given by the matrix
derivative

u(x, θ) = d

dθ
ln f (x, θ).

Definition 12.3 The information matrix of random vector x is the covariance matrix
of the score vector u(x, θ):

I(x, θ) = D(u(x, θ)) = E(u(x, θ)u′(x, θ)).

Definition 12.4 The Hessian matrix of random vector x is given by the second order
matrix derivative

H(x, θ) = d2

dθ2 ln f (x, θ) = du(x, θ)
dθ

.

Note that when the distribution of the random vector x is regular, then the
information matrix of x can be calculated as an expectation:

I(x, θ) = −E(H(x, θ)).

Let X = (x1, . . . , xn) denote the theoretical sample from the distribution Px(θ).

Then the log-likelihood function of the sample is given by l(X , θ) =
n∑
i=1

ln f (xi, θ )

and the score function of the sample, u(X , θ ), is given by u(X , θ) =
n∑
i=1

u(xi , θ).

The information matrix of the sample is given by I(X , θ ) = n · I(x, θ).

The convergence in distribution is denoted by
D

−→ .
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In this paper the random vector x has multivariate t-distribution.

Definition 12.5 Let random p-vector y be normally distributed, y ∼ Np(0,Σ) and
Z2 ∼ χ2

ν independent of y. Then x = √
ν

y
Z

+ μ is multivariate t-distributed with
parameters μ and Σ , x ∼ tν,p(μ,Σ), with ν degrees of freedom.

Remark When μ = 0 and instead of Σ we have correlation matrix R as the
parameter of the normal distribution, we get in the univariate case standard t-
distribution. From Definition 12.5 we get a member of the location-scale family
of the univariate t-distribution.

The density function of x is given by Kotz and Nadarajah [10, Ch. 5]

fν(x,μ,Σ) = cp|Σ |− 1
2
[
1 + 1

ν
(x − μ)′Σ−1(x − μ)

]− ν+p
2 (12.1)

where cp = Γ
(
ν+p

2

)
(πν)

p
2 Γ

(
ν
2

) .

The first moments of x ∼ tν,p(μ,Σ) are [10, p. 104]

E x = μ,

D x = ν

ν − 2
Σ , ν > 2.

12.3 Likelihood Ratio Test

For testing the hypothesis

{
H0 : θ = θ0,

H1 : θ �= θ0
(12.2)

we use the likelihood ratio test (LRT) in logarithmic form

LRT (X , θ0) = −2 ln

(
L(X , θ0)

maxθ L(X , θ)

)
= −2[lnL(X , θ0)−lnL(X , Tθ (X ))],

where L(·) is the likelihood function of x, X = (x1, . . . , xn) is a random sample
from Px(θ), θ = (θ1, . . . , θr)

′ and Tθ is the maximum likelihood estimator of θ .

When sample size n→ ∞ and H0 holds then LRT (X , θ)
D

−→χ2
r .
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When under the null hypothesis there are k parameters not fixed then the LRT in
logarithmic form has the representation

LRT (X , θ0) = −2 ln

(
maxθ1 L(X , θ0)

maxθ L(X , θ)

)

= −2[lnL(X , Tθ1(X ))− lnL(X , Tθ (X ))],

where θ1 is the set of (r − k) fixed parameters and LRT (X , θ)
D

−→χ2
r−k when the

sample size n→ ∞ and H0 holds (see [14, §6e, for instance]).
Let us find the likelihood ratio test statistic for testing hypothesis (12.2) when

the population is multivariate t-distributed with ν degrees of freedom. Let x ∼
tν,p(μ,Σ), with μ = (μ1, . . . , μp)

′, the scale parameter Σ > 0 : p × p and
let θ = (μ′, vec ′Σ)′. The likelihood function L(X , θ) is

L(X , θ) = cnp|Σ|− n
2

n∏
i=1

[
1 + 1

ν
(xi − μ)′Σ−1(xi − μ)

]− ν+p
2

where cp = Γ
(
ν+p

2

)
(πν)

p
2 Γ

(
ν
2

) . The log-likelihood function

l(X , θ) = n ln cp − n
2

ln |Σ | − ν + p
2

n∑
I=1

ln
[
1 + 1

ν
(xi − μ)′Σ−1(xi − μ)

]
.

The logarithmic likelihood ratio test statistic for testing H01 : Σ = Σ0 when no
constraints are imposed on μ has the following form

LRT (X ,Σ0) = −2 ln
[( |Σ̂ |

|Σ0|
) n

2
n∏
i=1

(1 + 1
ν
(xi − x)′Σ−1

0 (xi − x)

1 + 1
ν
(xi − x)′Σ̂−1

(xi − x)

)− ν+p
2
]
,

(12.3)

where x = 1
n

∑n
i=1 xi and Σ̂ is the maximum likelihood estimator of Σ : Σ̂ = ν−2

ν
S

where S = 1
n

∑n
i=1(xi − x)(xi − x)′ is the maximum likelihood estimator of D x.

Then we get from (12.3) the equality

LRT (X ,Σ0) = −n ln
(ν − 2

ν

|S|
|Σ0|

)

+ (ν + p)
[ n∑
i=1

(
ln

(
1 + 1

ν
(xi − x)′Σ−1

0 (xi − x)
)

− ln
(
1 + 1

ν − 2
(xi − x)′S−1(xi − x)

))]
.
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We can formulate the following result.

Proposition 12.1 The likelihood ratio test statistic for testing H01 : Σ = Σ0 when
no constraints are imposed on μ is given by

LRT (X ,Σ0) = −n ln
(ν − 2

ν

|S|
|Σ0|

)

+ (ν + p)
[ n∑
i=1

(
ln

(
1 + 1

ν
(xi − x)′Σ−1

0 (xi − x)
)

− ln
(
1 + 1

ν − 2
(xi − x)′S−1(xi − x)

))]
(12.4)

where X = (x1, . . . , xn) is a sample from tν,p(μ,Σ). When n→ ∞ and H01 holds

then LRT (X ,Σ0)
D

−→χ2 with degrees of freedom df = p(p+1)
2

The proof of convergence to the chi-square distribution follows from the general
theory of LRT, see [4, §8.4.1], for example.

Corollary 12.1 Under the assumptions of Proposition 12.1 an approximation of
the likelihood ratio test statistic is of the form

LRT (X ,Σ0) ≈ −n ln
(ν − 2

ν

|S|
|Σ0|

)
+ n(ν + p)

[1

ν
tr(Σ−1

0 S)− p

ν − 2

]
.

Proof Let us expand logarithmic function of the sum in (12.4) into power series and
take the first term from the expansion

LRT (X ,Σ0) ≈ −n ln
(ν − 2

ν

|S|
|Σ0|

)
+ (ν + p)

[ n∑
i=1

(1

ν
tr(Σ−1

0 (xi − x)(xi − x)′)

− 1

ν − 2
tr(S−1(xi − x)(xi − x)′)

)]

= −n ln
(ν − 2

ν

|S|
|Σ0|

)
+ n(ν + p)

[1

ν
tr(Σ−1

0 S)− 1

ν − 2
tr(Ip)

)]
.

As trace of the identity matrix equals p, the statement is proved. �
Remark When ν → ∞, then tν,p(μ,Σ)-distribution tends to the normal distri-
bution Np(μ,Σ) and the approximation of the LRT statistic in Corollary 12.1
converges to the corresponding LRT statistic for the normal population [9, for
example]

LRT = n[tr(Σ−1
0 S)− p − ln(|Σ−1

0 ||S|)].
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Corollary 12.2 The likelihood ratio test statistic for testing H02 : Σ = Ip when no
constraints are imposed on μ has the following form

LRT (X , Ip) = −n ln
(ν − 2

ν
|S|

)

+ (ν + p)
[ n∑
i=1

(
ln
(
1 + 1

ν
(xi − x)′(xi − x)

)

− ln
(
1 + 1

ν − 2
(xi − x)′S−1(xi − x)

))]
(12.5)

where X = (x1, . . . , xn) is a sample from tν,p(μ,Σ). When n → ∞ and H02

holds then the LRT (X , Ip) ∼ χ2 with degrees of freedom df = p(p+1)
2 . An

approximation of the test statistic is of the form

LRT (X , Ip) ≈ −n ln
(ν − 2

ν
|S|

)
+ n(ν + p)

[1

ν
tr(S)− p

ν − 2

]
.

Proof Expression (12.5) we get directly from (12.4) by replacing Σ0 with Ip. The
approximation comes straightforwardly from Corollary 12.1. �
Next, the LRT statistic for testing sphericity is given in Corollary 12.3 in the case of
specified γ = γ0.

Corollary 12.3 In the assumptions of Proposition 12.1 the likelihood ratio test
statistic for testing H03 : Σ = γ0Ip for a fixed value γ0 > 0, when no constraints
are imposed on μ, has the following form

LRT (X , γ0Ip) = −n ln
(ν − 2

νγ
p

0

|S|
)

+ (ν + p)
[ n∑
i=1

(
ln
(
1 + 1

νγ0
(xi − x)′(xi − x)

)

− ln
(
1 + 1

ν − 2
(xi − x)′S−1(xi − x)

))]
. (12.6)

When n → ∞ and H03 holds then the LRT (X , γ0Ip)
D

−→χ2 with degrees of

freedom df = p(p+1)
2 . An approximation of the test statistic is of the form

LRT (X , γ0Ip) ≈ −n ln
(ν − 2

νγ
p

0

|S|
)

+ n(ν + p)
[ 1

νγ0
tr(S)− p

ν − 2

]
.

Proof Statement (12.6) follows directly from (12.4) by replacing Σ0 with γ0Ip.
The approximation we get from Corollary 12.1. �
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Remark For the general sphericity test Σ = γ Ip explicit expression of the statistic
is not available as maximum likelihood estimate for γ has to be found iteratively.

12.4 Rao’s Score Test

Definition 12.6 Rao’s score test statistic (RST) for testing hypothesis (12.2) is of
the form

RST (X , θ0) = u′(X , θ0)I(X , θ0)
−1u(X , θ0),

where X = (x1, . . . , xn) is a theoretical sample from Px(θ) and θ = (θ1, . . . , θr )′.

When the sample size n→ ∞ and H0 holds then RST (X , θ)
D

−→χ2
r [13].

Let us derive Rao’s score test statistic for testing (12.2) for the multivariate t-
distributed population. The logarithm of the density (12.1) is given by

l(x, θ) = ln cp − 1

2
ln |Σ | − ν + p

2
ln
[
1 + 1

ν
(x − μ)′Σ−1(x − μ)

]
,

where cp is a constant that does not depend on the parameter θ = (μ′, vec ′Σ)′.
According to Definition 12.2 the score vector can be derived as the matrix

derivative

u(x, θ) = d

dθ
l(x, θ),

where d
dθ

=
(

d
dμ
d

dvecΣ

)
: (p + p2)× 1.

Using the differentiation rules in Sect. 12.2 the derivative dl
dμ

equals

dl

dμ
= −ν + p

2

d
(
1 + 1

ν
(x − μ)′Σ−1(x − μ)

)
dμ

d ln
(
1 + 1

ν
(x − μ)′Σ−1(x − μ)

)
d
(
1 + 1

ν
(x − μ)′Σ−1(x − μ)

)

= ν + p
2

1

ν
2Σ−1(x − μ)

1

1 + 1
ν
(x − μ)′Σ−1(x − μ)

= ν + p
ν

Σ−1(x − μ)

1 + 1
ν
(x − μ)′Σ−1(x − μ)

. (12.7)
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The derivative of l(·) by Σ we get from the following row of equalities

d

dvec Σ
l(x, θ) = −1

2
vec Σ−1 − ν + p

2

dΣ−1

dΣ

d
(
1 + 1

ν
(x − μ)′Σ−1(x − μ)

)
dΣ−1

× d ln
(
1 + 1

ν
(x − μ)′Σ−1(x − μ)

)
d
(
1 + 1

ν
(x − μ)′Σ−1(x − μ)

)

= −1

2
vec Σ−1 + ν + p

2
(Σ−1 ⊗ Σ−1)

1

ν
vec M

× 1

1 + 1
ν
(x − μ)′Σ−1(x − μ)

= −1

2
vec Σ−1 + ν + p

2ν

vec (Σ−1MΣ−1)

1 + 1
ν

tr(Σ−1M)
, (12.8)

where

M = (x − μ)(x − μ)′. (12.9)

Hence the score vector we get from (12.7)–(12.9) as a partitioned matrix

u(x, θ) =
(

u1

u2

)
=

⎛
⎜⎝

ν+p
ν

Σ−1(x−μ)

1+ 1
ν tr(Σ−1M)

− 1
2 vec Σ−1 + ν+p

2ν
vec (Σ−1MΣ−1)

1+ 1
ν tr(Σ−1M)

⎞
⎟⎠ .

The score vector for the sample equals

u(X , θ) =
⎛
⎜⎝

(ν+p)
ν

∑n
i=1

Σ−1(xi−μ)

1+ 1
ν

tr(Σ−1Mi )

−n
2 vec Σ−1 + (ν+p)

2ν

∑n
i=1

vec (Σ−1MiΣ
−1)

1+ 1
ν

tr(Σ−1Mi )

⎞
⎟⎠ , (12.10)

where

Mi = (xi − μ)(xi − μ)′. (12.11)

Next, the Hessian matrix H(x, θ) is derived following to Definition 12.4

H(x, θ) = d

dθ
u(x, θ) =

(
du1
dμ

du2
dμ

du1
dΣ

du2
dΣ

)
=:

(
H1,1 H1,2

H2,1 H2,2

)
: (p + p2)× (p + p2).
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First, let us derive H1,1

H1,1 = (ν + p)
ν

d

dμ

( Σ−1(x − μ)

1 + 1
ν

tr(Σ−1M)

)

= (ν + p)
ν

(dΣ−1(x − μ)

dμ

1

1 + 1
ν

tr(Σ−1M)

+ d(1 + 1
ν
(x − μ)′Σ−1(x − μ))−1

dμ
(x − μ)′Σ−1

)

= (ν + p)
ν

( −Σ−1

1 + 1
ν

tr(Σ−1M)
+ 2

ν

Σ−1MΣ−1

(1 + 1
ν

tr(Σ−1M))2

)

= − (ν + p)
ν(1 + 1

ν
tr(Σ−1M))

(
Σ−1 − 2

ν

Σ−1MΣ−1

(1 + 1
ν

tr(Σ−1M))

)
. (12.12)

Next we derive H2,1

H2,1 = du1

dΣ
= (ν + p)

ν

d

dΣ

( Σ−1(x − μ)

1 + 1
ν

tr(Σ−1M)

)

= −(Σ−1 ⊗ Σ−1)((x − μ)⊗ Ip)
1

1 + 1
ν

tr(Σ−1M)

+ 1

(1 + 1
ν

tr(Σ−1M))2
1

ν
(Σ−1 ⊗ Σ−1)(M ⊗ Ip)vec Ip(x − μ)′Σ−1

= −(Σ−1(x − μ)⊗ Σ−1)
1

1 + 1
ν

tr(Σ−1M)
+ vec (Σ−1MΣ−1)(x − μ)′Σ−1

ν(1 + 1
ν

tr(Σ−1M))2
.

(12.13)

Because of symmetry of matrix H we have equality H1,2 = H′
2,1.

Finally, we derive H2,2

H2,2 = du2

dΣ
= 1

2
(Σ−1 ⊗ Σ−1)+ ν + p

2ν

d

dΣ

(vec (Σ−1MΣ−1)

1 + 1
ν

tr(Σ−1M)

)

= 1

2
(Σ−1 ⊗ Σ−1)+ ν + p

2ν

(−(Σ−1 ⊗ Σ−1MΣ−1)− (Σ−1MΣ−1 ⊗ Σ−1)

(1 + 1
ν

tr(Σ−1M))

+ vec (Σ−1MΣ−1)vec ′(Σ−1MΣ−1)
1

ν(1 + 1
ν

tr(Σ−1M))2

)
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= 1

2
(Σ−1 ⊗ Σ−1)+ (ν + p)

2ν(1 + 1
ν

tr(Σ−1M))

(vec (Σ−1MΣ−1)vec ′(Σ−1MΣ−1)

ν(1 + 1
ν

tr(Σ−1M))

− (Σ−1 ⊗ Σ−1MΣ−1)− (Σ−1MΣ−1 ⊗ Σ−1)
)
. (12.14)

The information matrix I(x, θ) is of the form

I(x, θ) = −E(H(x, θ)) =
(

I11(μ) I12(μ,Σ)

I21(μ,Σ) I22(Σ)

)
,

where

Ii,j = −E(Hi,j )

and Hi,j are given in (12.12)–(12.14). Expressions of Hi,j are complicated and
explicit expressions of the expectations can not be found. Instead we use the first
term from the Taylor expansion of Hi,j at E x = μ, E[(x − μ)(x − μ)′] =
D x = ν

ν−2Σ as an approximation of the expectation. We keep the notation of the
expectation Ii,j also for the obtained approximation

I1,1(μ) = ν + p
ν

1

1 + 1
ν

tr( ν
ν−2 Ip)

(
Σ−1 − 2

ν

ν
ν−2Σ−1(

1 + 1
ν

tr( ν
ν−2 Ip)

)) = a1Σ
−1,

(12.15)

where

a1 = (ν − 2)

ν

(ν + p)(ν + p − 4)

(ν + p − 2)2
. (12.16)

At x = μ the matrix H1,2 = H′
2,1 = 0 and therefore the matrix I(x, θ) is block-

diagonal. It remains to find I2.2

I2.2(Σ) = − ν + p
2ν(1 + 1

ν
tr( ν
ν−2 Ip))

[vec ( ν
ν−2Σ−1)vec ′( ν

ν−2Σ−1)

ν(1 + 1
ν

tr( ν
ν−2 Ip))

− 2ν

ν − 2
(Σ−1 ⊗ Σ−1)

]
− 1

2
(Σ−1 ⊗ Σ−1)

= (ν + p)
(ν + p − 2)

[
(Σ−1 ⊗ Σ−1)− 1

2(ν + p − 2)
vec Σ−1vec ′Σ−1

]

− 1

2
(Σ−1 ⊗ Σ−1)
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=
( (ν + p)
ν + p − 2

− 1

2

)
(Σ−1 ⊗ Σ−1)− (ν + p)

2(ν + p − 2)2
vec Σ−1vec ′Σ−1

= 1

2
(Σ−1 ⊗ Σ−1)− a2vec Σ−1vec ′Σ−1, (12.17)

where

a2 = (ν + p)
2(ν + p − 2)2

. (12.18)

Remark When ν → ∞ then I1,1 → Σ−1 and I2,2 → 1
2 (Σ

−1 ⊗ Σ−1) which are
the corresponding expressions of the blocks of the information matrix when we have
a normal population Np(μ,Σ) [9, for instance]. This indicates that we have got a
reasonable approximation of the information matrix.

For a sample of size n

I(X , θ) = nI(x, θ)

and we have I(X , θ) in the block-diagonal form. Summarizing we can formulate
the following result.

Proposition 12.2 Let X = (x1, . . . , xn) be a sample from tν,p-distribution with
density (12.1). Under the null hypothesis H01 : Σ = Σ0 approximation of the
information matrix of the sample has the form

I(X ,Σ0) = n
(
a1Σ

−1
0 0

0 1
2 (Σ

−1
0 ⊗ Σ−1

0 )− a2vec Σ−1
0 vec ′Σ−1

0

)
.

Under the hypothesis H02 : Σ = Ip we have

I(X , Ip) = n
(
a1Ip 0

0 1
2 Ip2 + a2vec Ipvec ′Ip

)
.

Under H03 : Σ = γ0Ip where γ0 > 0 is a known constant, we have

I(X , γ0Ip) = n
⎛
⎝ a1
γ0

Ip 0

0 1
γ 2

0
( 1

2 Ip2 − a2vec Ipvec ′Ip)

⎞
⎠ ,

where a1 and a2 are defined by (12.16) and (12.18), respectively.

For deriving Rao’s statistic we need expression of the score function u(X , θ0).
We shall find an approximation of u(X , θ0) by using the first two terms from the
Taylor expansion of its expression in (12.10) by substituting Σ with Σ0. We use
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notation u(X ,Σ0) also for the approximation. The result is presented in the next
proposition.

Proposition 12.3 The score vector u(X , θ0) when no constraints have been
imposed to μ, equals

u(X , θ0) =
(

u1(X ,μ)

u2(X ,Σ0)

)

≈ n

2

(
0

(a3vec Σ−1
0 + a4tr(Σ−1

0 S))vec (Σ−1
0 )+ a5vec (Σ−1

0 SΣ−1
0 )

)
, (12.19)

where a3 = p(ν+p)
(ν+p−2)2

− 1, a4 = (ν−2)(ν+p)
ν(ν+p−2)2

and a5 = (ν+p)(ν−2)
ν(ν+p−2) .

Proof We expand u(X , θ0) at (μ′, vec ′( ν
ν−2Σ0))

′. When there are no restrictions
put on μ then maximum likelihood estimate of μ is inserted into score vector to
replace μ (see [5]). Then the part of the score vector corresponding to μ turns to
zero and hence only the second part of the score vector u2(X ,Σ0) contributes to
the calculation of the test statistic. Taylor expansion of the second block is

u2(X ,Σ0) = u2(X ,Σ0)

∣∣∣
Mi= ν

ν−2 Σ0

+ ν + p
2ν

n∑
i=1

d

dMi

(vec (Σ−1
0 MiΣ

−1
0 )

1 + 1
ν

tr(Σ−1
0 Mi )

)∣∣∣
Mi= ν

ν−2 Σ0
vec (Mi − ν

ν − 2
Σ0)+ . . .

where Mi is defined in (12.11).
Let us find the terms step-by-step. The first term equals

u2(X ,Σ0)

∣∣∣
Mi= ν

ν−2 Σ0
= −n

2
vec Σ−1

0 + ν + p
2ν

n∑
i=1

vec ( ν
ν−2Σ−1

0 )

1 + 1
ν

tr( ν
ν−2 Ip)

= n

2
vec Σ−1

0

( ν + p
ν + p − 2

− 1
)

= n

ν + p − 2
vec Σ−1

0 .

Let us find the derivative below the sum

d

dMi

(vec (Σ−1
0 MiΣ

−1
0 )

1 + 1
ν

tr(Σ−1
0 Mi )

)∣∣∣
Mi= ν

ν−2 Σ0

= d

dMi

(
vec (Σ−1

0 MiΣ
−1
0 )

1

1 + 1
ν
ν
ν−2 tr(Σ−1

0 Mi )

)∣∣∣
Mi= ν

ν−2 Σ0

+ d(1 + 1
ν

tr(Σ−1
0 Mi ))

dMi

d(1 + 1
ν

tr(Σ−1
0 Mi ))

−1

d(1 + 1
ν

tr(Σ−1
0 Mi ))

vec ′(Σ−1
0 MiΣ

−1
0 )

∣∣∣
Mi= ν

ν−2 Σ0
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= 1

1 + p
ν−2

(Σ−1
0 ⊗ Σ−1

0 )−
1

ν

1

(1 + p
ν−2 )

2
(Ip ⊗ Σ−1

0 )vec Ipvec ′( ν

ν − 2
Σ−1

0 )

= ν − 2

ν + p − 2
(Σ−1

0 ⊗ Σ−1
0 )−

ν − 2

(ν + p − 2)2
vec Σ−1

0 vec ′Σ−1
0 .

When we plug-in the obtained expressions into the Taylor expansion, we get

u2(X ,Σ0) = n

ν + p − 2
vec Σ−1

0 + ν + p
2ν

n
[ ν − 2

ν + p − 2
(Σ−1

0 ⊗ Σ−1
0 )

− (ν − 2)

(ν + p − 2)2
vec Σ−1

0 vec ′Σ−1
0

]
vec

(
S − ν

ν − 2
Σ0

)
+ . . .

= n

ν + p − 2

[
vec Σ−1

0 + (ν + p)(ν − 2)

2ν
(Σ−1

0 ⊗ Σ−1
0 )vec

(
S − ν

ν − 2
Σ0

)

− (ν + p)(ν − 2)

2ν(ν + p − 2)
vec Σ−1

0 vec ′Σ−1
0 vec

(
S − ν

ν − 2
Σ0

)]
+ . . .

= n

ν + p − 2

[
vec Σ−1

0 + (ν + p)(ν − 2)

2ν
vec (Σ−1

0 SΣ−1
0 )−

ν + p
2

vec Σ−1
0

− (ν + p)(ν − 2)

2ν(ν + p − 2)
vec Σ−1

0 · tr(Σ−1
0 S)+ (ν + p)(p)

2(ν + p − 2)
vec Σ−1

0

]
+ . . .

= n

ν + p − 2

[(
1 − ν + p

2
+ (ν + p)(p)

2(ν + p − 2)

)
vec Σ−1

0

+ (ν + p)(ν − 2)

2ν
vec (Σ−1

0 SΣ−1
0 )−

(ν + p)(ν − 2)

2ν(ν + p − 2)
tr(Σ−1

0 S)vec Σ−1
0

]
+ . . .

We have obtained u2(X ,Σ0) of the form

u2(X ,Σ0) = n

2

[( p(ν + p)
ν + p − 2)2

− 1
)

vec Σ−1
0 − (ν − 2)(ν + p)

ν(ν + p − 2)2
tr(Σ−1

0 S)vec Σ−1
0

+ (ν − 2)(ν + p)
ν(ν + p − 2)

vec (Σ−1
0 SΣ−1

0 )
]

+ . . .

where S is the maximum likelihood estimator of D x

S = 1

n

n∑
i=1

(xi − x)(xi − x)′.

We have got the expression (12.19) where multipliers of vec Σ−1
0 and

vec (Σ−1
0 SΣ−1

0 ) are equal to the constants defined in proposition. The proposition
is proved. �
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Remark The obtained approximate expression of u2(X ,Σ0) is in concordance
with the expression of the score vector for the normal population. When ν → ∞,
then

u2(X ,Σ0)→ n

2
vec ((Σ−1

0 S + Ip)Σ
−1
0 ).

This is the expression of the score vector when population distribution is Np(μ,Σ)
[9].

Corollary 12.4 When H02 : Σ = Ip, approximation of the score vector is of the
form

u2(X , Ip) ≈ n

2
(a3 + a4trS)vec Ip + a5vec S,

where ai , i = 3, 4, 5 are given in Proposition 12.3.

Corollary 12.5 Under the null hypothesis H03 : Σ = γ0Ip where γ0 > 0 is a
known constant, approximation of the score vector is of the form

u2(X , γ0Ip) ≈ n

2
(a3 + a4

γ 2
0

trS)vec Ip + a5

γ 2
0

vec S,

where ai , i = 3, 4, 5 are given in Proposition 12.3.

Now, Rao’s score test (RST) statistic for testing H0 : θ = θ0 can be calculated using
the expressions of u(X , θ0) and I(X , θ), substituting Σ with Σ0, and noting that
the inverse of a block-diagonal matrix is a block-diagonal matrix with the inverses
of the diagonal blocks.

Proposition 12.4 Rao’s score test statistic for testing H01 : Σ = Σ0 when no
constraints are imposed on μ is approximated by the following equality

RST (X ,Σ0) = u2(X ,Σ0)
′(I2.2(Σ0))

−1u2(X ,Σ0), (12.20)

where u2(X ,Σ0) is given in Proposition 12.3 and I2.2 by equalities (12.17)
and (12.18).

Remark Note that while deriving Rao’s score test statistic we have taken derivatives
by vec Σ , not by vech Σ which consists of the non-repeated elements of the lower
triangle of Σ . A transformation via the duplication matrix which is used in the
literature (see [17, for example]) complicates derivation and is not necessary. It
turns out that both approaches lead to the same expression of the test statistic. This
statement is proved in [9] and is a corollary of a more general result in [7] for
patterned matrices.
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Corollary 12.6 An approximation of the Rao’s score test statistic for testing H02 :
Σ = Ip when no constraints are imposed on μ has the following form

RST (X , Ip) = u2(X , Ip)′(I2.2(Ip))−1u2(X , Ip), (12.21)

where X = (x1, . . . , xn) is a sample from tν,p(μ,Σ), u2(X , Ip) is given in
Corollary 12.4 and I2.2(Ip) in Proposition 12.2.

Proof Equality (12.21) follows directly from (12.20). �
Corollary 12.7 An approximation of the Rao’s score test statistic for testing H03 :
Σ = γ0Ip when no constraints are imposed on μ has the following form

RST (X , γ0Ip) = u2(X , γ0Ip)′(I2.2(γ0Ip))−1u2(X , γ0Ip), (12.22)

where γ0 > 0 is a known constant, X = (x1, . . . , xn) is a sample from
tν,p(μ,Σ), score vector u2(X , γ0Ip) is given in Corollary 12.5 and I2.2(γ0Ip) in
Proposition 12.2.

Proof Equality (12.22) we get from (12.20) when substituting Σ0 by γ0Ip . �

12.5 Wald’s Score Statistic

Definition 12.7 Wald’s score test statistic for testing hypothesis (12.2) is given by

WST (X , θ0) = (Tθ (X )− θ0)
′ · I (X , Tθ (X )) · (Tθ (X )− θ0), (12.23)

where θ = (θ1, . . . , θr )′, Tθ is the maximum likelihood estimator of θ and X is a
random sample.

When sample size n → ∞ and H0 holds then WST (X , θ0) in (12.23) converges
to χ2

r -distribution [16].
Compared with the likelihood ratio test LRT and Rao’s score test RST the Wald’s

score test WST has simpler form for the multivariate tν,p-distributed observations.
As D x = ν

ν−2Σ , the maximum likelihood estimator of Σ is

Σ̂ = ν − 2

ν
S.

Using the results obtained above in Sects. 12.3 and 12.4 one can calculate Wald’s
score test statistic for H0 : Σ = Σ0 by substituting μ with maximum likelihood
estimator x and Σ with maximum likelihood estimator Σ̂ in the expression of
I2,2(X , Tθ (X )).
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Proposition 12.5 Wald’s score test statistic for testing H01 : Σ = Σ0 when no
constraints are imposed on μ has the following form

WST (X ,Σ0) = n

2

(
tr(Σ0Σ̂

−1
)2 − 2a2

(
tr(Σ0Σ̂

−1
)
)2

+ (1 − 2a2p)(p − 2tr(Σ0Σ̂
−1
)
)
, (12.24)

where X = (x1, . . . , xn) is a sample from tν,p(μ,Σ) and Σ̂
−1 = ν

ν−2 S−1.

Proof When there are no restrictions put on μ then Tθ (X ) is replaced by Σ̂ , θ0 by
Σ0 and I(X , Tθ (X )) by I2,2(X , Σ̂) in (12.17) and (12.18). Then

WST (X ,Σ0) = vec ′(Σ̂ − Σ0)I2,2(Σ̂)vec (Σ̂ − Σ0),

where

I2,2(Σ̂) = n

2
(Σ̂

−1 ⊗ Σ̂
−1
)− na2vec Σ̂

−1
vec ′Σ̂−1

,

a2 is given in (12.18).
Using properties of vec -operator the Wald’s statistic can be simplified

WST (X ,Σ0) = vec ′(Σ̂ − Σ0)
[n

2
vec (Σ̂

−1
(Σ̂ − Σ0)Σ̂

−1
)

− na2vec Σ̂
−1

tr(Σ̂
−1
(Σ̂ − Σ0))

]

= n

2

[
tr(Σ̂

−1
(Σ̂ − Σ0))

2 − 2a2(tr(Σ̂
−1
(Σ̂ − Σ0)))

2
]
.

When we open the brackets around Σ̂ − Σ0 the statistic takes the following form:

WST (X ,Σ0) = n

2

(
tr(Σ0Σ̂

−1
)2 − 2a2

(
tr(Σ0Σ̂

−1
)
)2

+ (1 − 2a2p)(p − 2tr(Σ0Σ̂
−1
))
)
.

The statement is proved. �
Remark When ν → ∞, coefficient a2 → 0 and WST statistic tends to the
corresponding expression for the normal population [9].

Corollary 12.8 Wald’s score test statistic for testing H02 : Σ = Ip when no
constraints are imposed on μ has the following form

WST (X , Ip) = n

2

(
tr(Σ̂

−1
)2 − 2a2

(
trΣ̂

−1)2 + (1 − 2a2p)(p − 2trΣ̂
−1

)
,

(12.25)
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where X = (x1, . . . , xn) is a sample from tν.p(μ,Σ) and Σ̂
−1 = ν

ν−2 S−1.

Proof The expression of WST in (12.25) follows directly from (12.24). �
Corollary 12.9 Wald’s score test statistic for testing H03 : Σ = γ0Ip, γ0 > 0 is a
known constant, when no constraints are imposed on μ, has the following form

WST (X , γ Ip) = nγ0

2

(
γ0tr(Σ̂−1

)2 − 2a2γ0
(
trΣ̂−1)2 + (1 − 2a2p)(

p

γ0
− 2trΣ̂−1

)
)
,

(12.26)

where X = (x1, . . . , xn) is a sample from tν,p(μ,Σ) and Σ̂
−1 = ν

ν−2 S−1.

Proof The expression of WST in (12.26) follows directly from (12.24) when
substituting Σ0 by γ0Ip. �

12.6 Summary and Discussion

We have derived test statistics for classical tests about covariance structure for the
tν,p-distributed population. In Sect. 12.3 we derived the likelihood ratio test statistic
LRT, Rao’s score test statistic RST in Sect. 12.4 and Wald’s score test statistic WST
in Sect. 12.5 under the null hypothesis H01 : Σ = Σ0 and got expressions of these
statistics in the special cases H02 : Σ = Ip and H03 : Σ = γ0Ip where γ0 >

0 is known. In the derivation of the LRT and RST statistics we used first terms
from Taylor expansions and the expressions were obtained as approximations of the
statistics. The obtained results are in concordance with the expressions of these test
statistics in the normal case. When the number of degrees of freedom ν → ∞ the
tν,p-distribution tends to the normal distribution Np(μ,Σ) and the expressions of
all derived statistics converge to the corresponding expressions of the statistics for
normal observations. The used approximation technique can be applied also to other
continuous elliptical distributions which have power function in the expression of
the density function (Kotz type distributions, for instance).

The behaviour of the derived test statistics will be examined in a later paper. It
is necessary to compare speed of convergence of the statistics to the chi-square
distribution depending on the ratio of the dimension p and the sample size n.
Also the power properties of the test statistics have to be examined for the tν,p-
distributed population. At the same time it will be interesting to see how robust the
corresponding normality-based statistics in [9] are, when the data comes from a t-
distribution, for instance. It is also necessary to get information about the behaviour
of the statistics in an increasing dimension situation when both the sample size
n and the dimensionality p grow simultaneously. In a simulation experiment [9]
Rao’s score test was more consistent that LRT and Wald’s score test. It would be
interesting to know if Rao’s score test still performs better than the other two tests
in the case of tν,p-distributed sample. In the paper the sample size n → ∞, when
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n > p. A challenging but complicated problem is to test covariance structures in
high-dimensional set-up when the number of variables p can be greater than the
sample size n.
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Chapter 13
Variable Selection in Joint Mean
and Covariance Models

Chaofeng Kou and Jianxin Pan

Abstract In this paper, we propose a penalized maximum likelihood method for
variable selection in joint mean and covariance models for longitudinal data. Under
certain regularity conditions, we establish the consistency and asymptotic normality
of the penalized maximum likelihood estimators of parameters in the models. We
further show that the proposed estimation method can correctly identify the true
models, as if the true models would be known in advance. We also carry out real data
analysis and simulation studies to assess the small sample performance of the new
procedure, showing that the proposed variable selection method works satisfactorily.

13.1 Introduction

In longitudinal studies, one of the main objectives is to find out how the average
value of the response varies over time and how the average response profile is
affected by different treatments or various explanatory variables of interest. Tra-
ditionally the within-subject covariance matrices are treated as nuisance parameters
or assumed to have a very simple parsimonious structure, which inevitably leads to a
misspecification of the covariance structure. Although the misspecification need not
affect the consistency of the estimators of the parameters in the mean, it can lead to a
great loss of efficiency of the estimators. In some circumstances, for example, when
missing data are present, the estimators of the mean parameters can be severely
biased if the covariance structure is misspecified. Therefore, correct specification of
the covariance structure is really important.

On the other hand, the within-subject covariance structure itself may be of
scientific interest, for example, in prediction problems arising in econometrics and
finance. Moreover, like the mean, the covariances may be dependent on various
explanatory variables. A natural constraint for modelling of covariance structures
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is that the estimated covariance matrices must be positive definite, making the
covariance modelling rather challenging. Chiu et al. [2] proposed to solve this
problem by using a matrix logarithmic transformation, defined as the inverse of
the matrix exponential transformation by taking the spectral decomposition of the
covariance matrix. Since there are no constraints on the upper triangular elements
of the matrix logarithm, any structures of interest may be imposed on the elements
of the matrix logarithm. But the limitation of this approach is that the matrix
logarithm is lack a clear statistical interpretation. An alternative method to deal with
the positive definite constraint of covariance matrices is to work on the modified
Cholesky decomposition advocated by Pourahmadi [9, 10], and use regression
formulations to model the unconstrained elements in the decomposition. The key
idea is that any covariance matrix can be diagonalized by a unique lower triangular
matrix with 1’s as its diagonal elements. The elements of the lower triangular matrix
and the diagonal matrix enjoy a very clear statistical interpretation in terms of
autoregressive coefficients and innovation variances, see, e.g., Pan and MacKenzie
[8]. Ye and Pan [13] proposed an approach for joint modelling of mean and
covariance structures for longitudinal data within the framework of generalized
estimation equations, which does not require any distribution assumptions and
only assumes the existence of the first four moments of the responses. However,
a challenging issue for modelling joint mean and covariance structures is the high-
dimensional problem, which arises frequently in many fields such as genomics, gene
expression, signal processing, image analysis and finance. For example, the number
of explanatory variables may be very large. Intuitively, all these variables should
be included in the initial model in order to reduce the modelling bias. But it is
very likely that only a small number of these explanatory variables contribute to
the model fitting and the majority of them do not. Accordingly, these insignificant
variables should be excluded from the initial model to increase prediction accuracy
and avoid overfitting problem. Variable selection thus can improve estimation
accuracy by effectively identifying the important subset of the explanatory variables,
which may be just tens out of several thousands of predictors with a sample size
being in tens or hundreds.

There are many variable selection criteria existing in the literature. Traditional
variable selection criteria such as Mallow’s Cp criteria, Akaike Information Cri-
terion (AIC) and Bayes Information Criterion (BIC) all involve a combinatorial
optimization problem, with computational loads increasing exponentially with the
number of explanatory variables. This intensive computation problem hampers
the use of traditional procedures. Fan and Li [4] discussed a class of penalized
likelihood based methods for variable selection, including the bridge regression by
Frank and Friedman [6], Lasso by Tibshirani [11] and smoothly clipped absolute
deviation by Fan and Li [4]. In the setting of finite parameters, [4] further studied
oracle properties for non-concave penalized likelihood estimators in the sense that
the penalized maximum likelihood estimator can correctly identify the true model as
if we would know it in advance. Fan and Peng [5] extended the results by letting the
number of parameters have the order o(n1/3) and showed that the oracle properties
still hold in this case. Zou [14] proposed an adaptive Lasso in a finite parameter
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setting and showed that the Lasso does not have oracle properties as conjectured by
Fan and Li [4], but the adaptive Lasso does.

In this paper we aim to develop an efficient penalized likelihood based method
to select important explanatory variables that make a significant contribution to
the joint modelling of mean and covariance structures for longitudinal data. We
show that the proposed approach produces good estimation results and can correctly
identify zero regression coefficients for the joint mean and covariance models,
simultaneously. The rest of the paper is organized as follows. In Sect. 13.2, we first
describe a reparameterisation of covariance matrix through the modified Cholesky
decomposition and introduce the joint mean and covariance models for longitudinal
data. We then propose a variable selection method for the joint models via
penalized likelihood function. Asymptotic properties of the resulting estimators are
considered. The standard error formula of the parameter estimators and the choice
of the tuning parameters are provided. In Sect. 13.3, we study the variable selection
method and its sample properties when the number of explanatory variables tends
to infinity with the sample size. In Sect. 13.4, we illustrate the proposed method via
a real data analysis. In Sect. 13.5, we carry out simulation studies to assess the small
sample performance of the method. In Sect. 13.6, we give a further discussion on the
proposed variable selection method. Technical details on calculating the penalized
likelihood estimators of parameters are given in Appendix A, and theoretical proofs
of the theorems that summarize the asymptotic results are presented in Appendix B.

13.2 Variable Selection via Penalized Maximum Likelihood

13.2.1 Joint Mean and Covariance Models

Suppose that there are n independent subjects and the ith subject has mi repeated
measurements. Let yij be the j th measurement of the ith subject and tij be the
time at which the measurement yij is made. Throughout this paper we assume that
yi = (yi1, . . . , yimi )

T is a random sample of the ith subject from the multivariate
normal distribution with the mean μi and covariance matrix Σi , where μi =
(μi1, . . . , μimi )

T is an (mi×1) vector andΣi is an (mi×mi) positive definite matrix
(i = 1, . . . , n). We consider the simultaneous variable selection procedure for the
mean and covariance structures using penalized maximum likelihood estimation
methods.

To deal with the positive definite constraint of the covariance matrices, we design
an effective regularization approach to gain statistical efficiency and overcome the
high dimensionality problem in the covariance matrices. We actually use a statisti-
cally meaningful representation that reparameterizes the covariance matrices by the
modified Cholesky decomposition advocated by Pourahmadi [9, 10]. Specifically,
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any covariance matrix Σi (1 ≤ i ≤ n) can be diagonalized by a unique lower
triangular matrix Ti with 1’s as its diagonal elements. In other words,

TiΣiT
T
i = Di, (13.1)

whereDi is a unique diagonal matrix with positive diagonal elements. The elements
of Ti and Di have a very clear statistical interpretation in terms of autoregressive
least square regressions. More precisely, the below-diagonal entries of Ti = (−φijk)
are the negatives of the regression coefficients of ŷij = μij +∑j−1

k=1 φijk(yik−μik),
the linear least square predictor of yij based on its predecessors yi1, . . . , yi(j−1),
and the diagonal entries of Di = diag(σ 2

i1, . . . , σ
2
imi
) are the prediction error

variances σ 2
ij = var(yij − ŷij ) (1 ≤ i ≤ n, 1 ≤ j ≤ mi). The new parameters

φijk’s and σ 2
ij ’s are called generalized autoregressive parameters and innovation

variances, respectively. By taking log transformation to the innovation variances, the
decomposition (13.1) converts the constrained entries of {Σi : i = 1, . . . , n} into
two groups of unconstrained autoregressive regression parameters and innovation
variances, given by {φijk : i = 1, . . . , n; j = 2, . . . ,mi; k = 1, . . . , (j − 1)} and
{logσ 2

ij : i = 1, . . . , n, j = 1, . . . ,mi}, respectively.
Based on the modified Cholesky decomposition, the unconstrained parameters

μij , φijk and log σ 2
ij are modelled in terms of the linear regression models

μij = xTijβ, φijk = zTijkγ and log σ 2
ij = hTijλ, (13.2)

where xij , zijk and hij are (p × 1), (q × 1) and (d × 1) covariates vectors, and β,
γ and λ are the associated regression coefficients. The covariates xij , zijk and hij
may contain baseline covariates, polynomials in time and their interactions, etc. For
example, when modelling stationary growth curve data using polynomials in time,
the explanatory variables may take the forms xij = (1, tij , t2ij , . . . , t

p−1
ij )T , zijk =

(1, (tij − tik), (tij − tik)2, . . . , (tij − tik)q−1)T and hij = (1, tij , t2ij , . . . , t
d−1
ij )T .

An advantage of the model (13.2) is that the resulting estimators of the covariance
matrices can be guaranteed to be positive definite. In this paper we assume that
the covariates xij , zijk and hij may be of high dimension and we would select the
important subsets of the covariates xij , zijk and hij , simultaneously. We first assume
all the explanatory variables of interest, and perhaps their interactions as well, are
already included into the initial models. We then aim to remove the unnecessary
explanatory variables from the models.

13.2.2 Penalized Maximum Likelihood

Many traditional variable selection criteria can be considered as a penalized
likelihood which balances modelling biases and estimation variances [4]. Let �(θ)
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denote the log-likelihood function. For the joint mean and covariance models (13.2),
we propose the penalized likelihood function

Q(θ) = �(θ)− n
p∑
i=1

pτ(1)(|βi |)− n
q∑
j=1

pτ(2)(|γj |)− n
d∑
k=1

pτ(3)(|λk|), (13.3)

where θ = (θ1, . . . , θs)
T = (β1, . . . , βp; γ1, . . . , γq; λ1, . . . , λd)

T with s =
p+q+d and pτ(l)(·) is a given penalty function with the tuning parameter τ (l) (l =
1, 2, 3). Here we use the same penalty functionp(·) for all the regression coefficients
but with different tuning parameters τ (1), τ (2) and τ (3) for the mean parameters,
generalized autoregressive parameters and log-innovation variances, respectively.
The function form of pτ (·) determines the general behavior of the estimators.
Antoniadis [1] defined the hard thresholding rule for variable selection by taking
the hard thresholding penalty function as Pτ (|t|) = τ 2 − (|t|−τ )2I (|t| < τ), where
I (.) is the indicator function. The penality function pτ (·) may also be chosen as Lp
penalty. Especially, the use of L1 penalty, defined by pτ (t) = τ |t|, leads to the least
absolute shrinkage and selection operator (Lasso) proposed by Tibshirani [11]. Fan
and Li [4] suggested using the smoothly clipped absolute deviation (SCAD) penalty
function, which is defined by

pτ (|t|) =

⎧⎪⎨
⎪⎩
τ |t| if 0 ≤ |t| < τ
−(|t|2 − 2aτ |t| + τ 2)/{2(a − 1)} if τ ≤ |t| < aτ
(a + 1)τ 2/2 if |t| ≥ aτ

(13.4)

for some a > 2. This penalty function is continuous, symmetric and convex on
(0,∞) but singular at the origin. It improves the Lasso by avoiding excessive
estimation biases. Details of penalty functions can be found in [4].

The penalized maximum likelihood estimator of θ , denoted by θ̂ , maximizes the
functionQ(θ) in (13.3). With appropriate penalty functions, maximizingQ(θ) with
respect to θ leads to certain parameter estimators vanishing from the initial models
so that the corresponding explanatory variables are automatically removed. Hence,
through maximizingQ(θ) we achieve the goal of selecting important variables and
obtaining the parameter estimators, simultaneously. In Appendix A, we provide the
technical details and an algorithm for calculating the penalized maximum likelihood
estimator θ̂ .

13.2.3 Asymptotic Properties

In this subsection we consider the consistency and asymptotic normality of the
penalized maximum likelihood estimator θ̂ . To emphasize its dependence on the
subject number n, we also denote it by θ̂n. We assume that the number of the
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parameters, s = p + q + d , is fixed in the first instance. In the next section
we will consider the case when s is a variable tending to infinity with n. Denote
the true value of θ by θ0. Without loss of generality, we assume that θ0 =
((θ

(1)
0 )

T , (θ
(2)
0 )

T )T where θ
(1)
0 and θ

(2)
0 are the nonzero and zero components of

θ0, respectively. Otherwise the components of θ0 can be reordered. Denote the
dimension of θ

(1)
0 by s1. In what follows we first show that the penalized maximum

likelihood estimator θ̂n exists and converges to θ0 at the rate Op(n−1/2), implying
that it has the same consistency rate as the ordinary maximum likelihood estimator.
We then prove that the

√
n-consistent estimator θ̂n has the asymptotic normal

distribution and possesses the oracle property under certain regularity conditions.
The results are summarized in the following two theorems and the detailed proofs
are provided in Appendix B. To prove the theorems in this paper, we require the
following regularity conditions:

(A1) The covariates xij , zijk and hij are fixed. Also, for each subject the number
of repeated measurements, mi , is fixed (i = 1, . . . , n; j = 1, . . . ,mi; k =
1, . . . , j − 1).

(A2) The parameter space is compact and the true value θ0 is in the interior of the
parameter space.

(A3) The design matrices xi , zi and hi in the joint models are all bounded, meaning
that all the elements of the matrices are bounded by a single finite real number.

(A4) The dimensions of the parameter vectors β, γ , and λ, that is, pn, qn and dn,
have the same order as sn.

(A5) The nonzero components of the true parameters θ(1)01 , . . . , θ
(1)
0s1

satisfy

min
1≤j≤s1

⎧⎨
⎩

|θ(1)0j |
τn

⎫⎬
⎭ → ∞ (as n→ ∞),

where τn is equal to either τ (1)n , τ (2)n or τ (3)n , depending on whether θ(1)0j is a
component of β0, γ 0, and λ0 (j = 1, . . . , s1).

Theorem 13.1 Let

an = max
1≤j≤s

{p′
τn
(|θ0j |) : θ0j �= 0} and bn = max

1≤j≤s
{|p′′

τn
(|θ0j |)| : θ0j �= 0},

where θ0 = (θ01, . . . , θ0s)
T is the true value of θ , and τn is equal to either τ (1)n ,

τ
(2)
n or τ (3)n , depending on whether θ0j is a component of β0, γ 0 or λ0 (1 ≤ j ≤ s).

Assume an = Op(n
−1/2), bn → 0 and τn → 0 as n → ∞. Under the conditions

(A1)–(A3) above, with probability tending to 1 there must exist a local maximizer θ̂n
of the penalized likelihood function Q(θ) in (13.3) such that θ̂n is a

√
n-consistent

estimator of θ0.
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We now consider the asymptotic normality property of θ̂n. Let

An = diag(p
′′
τn
(|θ(1)01 |), . . . , p′′

τn
(|θ(1)0s1

|)),
cn = (p′

τn
(|θ(1)01 |)sgn(θ(1)01 ), . . . , p

′
τn
(|θ(1)0s1

|)sgn(θ(1)0s1
))T ,

where τn has the same definition as that in Theorem 13.1, and θ(1)0j is the j th

component of θ
(1)
0 (1 ≤ j ≤ s1). Denote the Fisher information matrix of θ by

In(θ).

Theorem 13.2 Assume that the penalty function pτn(t) satisfies

lim inf
n→∞ lim inf

t→0+
p′
τn
(t)

τn
> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix I (θ0) as
n→ ∞. Under the same mild conditions as these given in Theorem 13.1, if τn → 0

and
√
nτn → ∞ as n→ ∞, then the

√
n-consistent estimator θ̂n = (̂θ (1)Tn , θ̂

(2)T
n )T

in Theorem 13.1 must satisfy θ̂
(2)
n = 0 and

√
n(Ī (1)

n )
−1/2(Ī (1)

n + An)
{
(̂θ
(1)
n − θ

(1)
0 )+ (Ī (1)

n + An)−1cn

}
→ Ns1(0, Is1)

in distribution, where Ī (1)
n is the (s1 × s1) submatrix of Īn corresponding to the

nonzero components θ
(1)
0 and Is1 is the (s1 × s1) identity matrix.

Note for the SCAD penalty we can show

p′
τn
(t) = τn

{
I (t ≤ τn)+ (aτn − t)+

(a − 1)τn
I (t > τn)

}
,

p
′′
τn
(t) = 1

1 − a I (τn < t ≤ aτn)

for t > 0, where a > 2 and (x)+ = xI (x > 0). Since τn → 0 as n → ∞, we then
have an = 0 and bn = 0 so that cn = 0 and An = 0 when the sample size n is large
enough. It can be verified that in this case the conditions in Theorems 13.1 and 13.2
are all satisfied. Accordingly, we must have

√
n(Ī (1)

n )
1/2(̂θ

(1)
n − θ

(1)
0 )→ Ns1(0, Is1)

in distribution. This means that the estimator θ̂
(1)
n shares the same sampling property

as if we would know θ
(2)
0 = 0 in advance. In other words, the penalized maximum

likelihood estimator of θ based on the SCAD penalty can correctly identify the
true model as if we would know it in advance. This property is the so-called
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oracle property by Fan and Li [4]. Similarly, the parameter estimator based on
the hard thresholding penalty also possesses the oracle property. For the Lasso
penalty, however, the parameter estimator does not have the oracle property. A
brief explanation for this is given as follows. Since pτn(t) = τnt for t > 0 and
then p′

τn
(t) = τn, the assumption of an = Op(n

−1/2) in Theorem 13.1 implies
τn = Op(n

−1/2), leading to
√
nτn = Op(1). On the other hand, one of the

conditions in Theorem 13.2 is
√
nτn → ∞ as n → ∞, which conflicts the

assumption of
√
nτn = Op(1). Hence the oracle property cannot be guaranteed

in this case.

13.2.4 Standard Error Formula

As a consequence of Theorem 13.2, the asymptotic covariance matrix of θ̂
(1)
n is

Cov(̂θ
(1)
n ) = 1

n
(Ī (1)
n + An)−1Ī (1)

n (Ī
(1)
n + An)−1 (13.5)

so that the asymptotic standard error for θ̂
(1)
n is straightforward. However, Ī (1)

n and

An are evaluated at the true value θ
(1)
0 , which is unknown. A natural choice is to

evaluate Ī (1)
n and An at the estimator θ̂

(1)
n so that the estimator of the asymptotic

covariance matrix of θ̂
(1)
n is obtained through (13.5).

Corresponding to the partition of θ0, we assume θ = (θ (1)T , θ (2)T )T . Denote

�′(θ (1)0 ) =
[
∂�(θ)

∂θ (1)

]
θ=θ0

and �′′(θ (1)0 ) =
[

∂2�(θ)

∂θ (1)∂θ (1)T

]
θ=θ0

,

where θ0 = (θ (1)T0 , 0)T . Also, let

Στn(θ
(1)
0 ) = diag

⎧⎪⎨
⎪⎩
p′
τ
(1)
n

(|θ(1)01 |)
|θ(1)01 |

, . . . ,

p′
τ
(s1)
n

(|θ(1)0s1
|)

|θ(1)0s1
|

⎫⎪⎬
⎪⎭ .

Using the observed information matrix to approximate the Fisher information

matrix, the covariance matrix of θ̂
(1)
n can be estimated through

Ĉov(̂θ
(1)
n ) =

{
�′′(̂θ (1)n )− nΣτn (̂θ (1)n )

}−1
Ĉov

{
�′(̂θ (1)n )

}{
�′′(̂θ (1)n )− nΣτn (̂θ (1)n )

}−1
,

where Ĉov{�′(̂θ (1)n )} is the covariance of �′(θ (1)) evaluated at θ (1) = θ̂
(1)
n .
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13.2.5 Choosing the Tuning Parameters

The penalty function pτ(l) (·) involves the tuning parameter τ (l) (l = 1, 2, 3) that
controls the amount of penalty. We may use K-fold cross-validation or generalized
cross-validation [4, 11] to choose the most appropriate tuning parameters τ ’s. For
the purpose of fast computation, we prefer the K-fold cross-validation approach,
which is described briefly as follows. First, we randomly split the full dataset D into
K subsets which are of about the same sample size, denoted by Dv (v = 1, . . . ,K).
For each v, we use the data in D −Dv to estimate the parameters and Dv to validate
the model. We also use the log-likelihood function to measure the performance of
the cross-validation method. For each τ = (τ (1), τ (2), τ (3))T , the K-fold likelihood
based cross-validation criterion is defined by

CV(τ ) = 1

K

K∑
v=1

⎧⎨
⎩
∑
i∈Iv

log(|Σ̂−v
i |)+

∑
i∈Iv
(yi − xi β̂

−v
)T (Σ̂−v

i )
−1(yi − xi β̂

−v
)

⎫⎬
⎭ ,

where Iv is the index set of the data in Dv , and β̂
−v

and Σ̂−v
i are the estimators

of the mean parameter β and the covariance matrix Σi obtained by using the
training dataset D − Dv . We then choose the most appropriate tuning parameter
τ by minimizing CV(τ ). In general, we may choose the number of data subsets as
K = 5 or K = 10.

13.3 Variable Selection when the Number of Parameters
s = sn → ∞

In the previous section, we assume that the numbers of the parameters β, γ , and λ,
i.e., p, q and d and therefore s, are fixed. In some circumstances, it is not uncommon
that the number of explanatory variables increase with the sample size. In this
section we consider the case where the number of parameters sn is a variable, which
goes to infinity as the sample size n tends to infinity. In what follows, we study the
asymptotic properties of the penalized maximum likelihood estimator in this case.

As before, we assume that θ0 = (θ
(1)T
0 , θ

(2)T
0 )T is the true value of θ where

θ
(1)
0 and θ

(2)
0 are the nonzero and zero components of θ0, respectively. Also, we

denote the dimension of θ0 by sn, which increases with the sample size n this time.
Similar to the previous section, we first show that there exists a consistent penalized
maximum likelihood estimator θ̂n that converges to θ0 at the rate Op(

√
sn/n).

We then show that the
√
n/sn-consistent estimator θ̂n has an asymptotic normal

distribution and possesses the oracle property.
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Theorem 13.3 Let

a∗
n = max

1≤j≤sn
{p′
τn
(|θ0j |) : θ0j �= 0} and b∗

n = max
1≤j≤sn

{|p′′
τn
(|θ0j |)| : θ0j �= 0},

where θ0 = (θ01, . . . , θ0sn)
T is the true value of θ , and τn is equal to either τ (1)n ,

τ
(2)
n or τ (3)n , depending on whether θ0j is a component of β0, γ0 or λ0 (1 ≤ j ≤ s).

Assume a∗
n = Op(n

−1/2), b∗
n → 0, τn → 0 and s4n/n → 0 as n → ∞. Under

the conditions (A1)–(A5) above, with probability tending to one there exists a local
maximizer θ̂n of the penalized likelihood function Q(θ) in (13.3) such that θ̂n is a√
n/sn-consistent estimator of θ0.

In what follows we consider the asymptotic normality property of the estimator
θ̂n. Denote the number of nonzero components of θ0 by s1n(≤ sn). Let

A∗
n = diag(p

′′
τn
(|θ(1)01 |), . . . , p′′

τn
(|θ(1)0s1n

|)),
c∗
n = (p′

τn
(|θ(1)01 |)sgn(θ(1)01 ), . . . , p

′
τn
(|θ(1)0s1n

|)sgn(θ(1)0s1n
))T ,

where τn is equal to either τ (1)n , τ (2)n or τ (3)n , depending on whether θ0j is a

component of β0, γ 0 or λ0 (1 ≤ j ≤ s), and θ(1)0j is the j th component of θ
(1)
0

(1 ≤ j ≤ s1n). Denote the Fisher information matrix of θ by In(θ).

Theorem 13.4 Assume that the penalty function pτn(t) satisfies

lim inf
n→∞ lim inf

t→0+
p′
τn
(t)

τn
> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix I (θ0) as
n → ∞. Under the same mild conditions as these in Theorem 13.3, if τn → 0,
s5n/n → 0 and τn

√
n/sn → ∞ as n → ∞, then the

√
n/sn-consistent estimator

θ̂n = (̂θ (1)Tn , θ̂
(2)T
n )T in Theorem 13.3 must satisfy θ̂

(2)
n = 0 and

√
nMn(Ī

(1)
n )

−1/2(Ī (1)
n + A∗

n)
{
(̂θ
(1)
n − θ

(1)
0 )+ (Ī (1)

n + A∗
n)

−1c∗
n

}
→ Nk(0,G)

in distribution, where Ī (1)
n is the (s1n × s1n) submatrix of Īn corresponding to the

nonzero components θ
(1)
0 , Mn is an (k × s1n) matrix satisfying MnMTn → G as

n→ ∞, G is an (k × k) positive definite matrix and k(≤ s1n) is a constant.

The technical proofs of Theorems 13.3 and 13.4 are provided in Appendix B.
Similar to the finite parameters setting, for the SCAD penalty and hard thresholding
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penalty functions, it can be verified that the conditions in Theorems 13.3 and 13.4
are all satisfied. In this case, we have

√
nMn(Ī

(1)
n )

1/2(̂θ
(1)
n − θ

(1)
0 )→ Nk(0,G)

in distribution. That means the estimator θ̂
(1)
n shares the same sampling property as

if we would know θ
(2)
0 = 0 in advance. In other words, the estimation procedures

based on the SCAD and hard thresholding penalty have the oracle property.
However, the L1-based penalized maximum likelihood estimator like Lasso does
not have this property. Based on Theorem 13.4, similar to the finite parameters case

the asymptotic covariance estimator of θ̂
(1)

can also be constructed but the details
are omitted.

13.4 Real Data Analysis

In this section, we apply the proposed procedure to the well known CD4+ cell
data analysis, of which the data details can be found in [3]. The human immune
deficiency virus (HIV) causes AIDS by reducing a person’s ability to fight infection.
The HIV attacks an immune cell called the CD4+ cell which orchestrates the body’s
immunoresponse to infectious agents. An uninfected individual usually has around
1100 cells per millilitre of blood. When infected, the CD4+ cells decrease in number
with time and an infected person’s CD4+ cell number can be used to monitor the
disease progression. The data set we analyzed consists of 369 HIV-infected men.
Altogether there are 2376 values of CD4+ cell numbers, with several repeated
measurements being made for each individual at different times covering a period
of approximately eight and a half years.

For this unbalanced longitudinal data set, information from several explanatory
variables is recorded, including X1 =time, X2 =age, X3 =smoking habit (the
number of packs of cigarettes smoked per day),X4 =recreational drug use (1, yes; 0,
no), X5 =number of sexual partners, and X6 =score on center for epidemiological
studies of depression scale. The objectives of our analysis are: (a) to identify
covariates that really affect the CD4+ cell numbers in the sense that they are
statistically significant in either the mean or covariance models, and (b) to estimate
the average time course for the HIV-infected men by taking account of measurement
errors in the CD4+ cell collection. Ye and Pan [13] analyzed the CD4+ count data
with a focus on the second objective and did not include the explanatory variables
except the time. Following [13], we propose to use three polynomials in time, one
of degree 6 and two cubics, to model the mean μij , the generalized autoregressive
parameters φijk and the log-innovation variances log σ 2

ij . In the meantime, the
explanatory variables X2, . . . , X6 above and the intercept X0 are also included
in the initial models for the selection purpose. The ordinary maximum likelihood
estimation and the penalized maximum likelihood estimation methods using the
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Table 13.1 Estimated tuning
parameters

Parameters SCAD LASSO Hard-thresholding

τ (1) 0.42 0.01 0.79

τ (2) 0.21 0.01 0.46

τ (3) 0.84 0.04 0.88

Table 13.2 Estimators of the mean parameters β

Coefficient MLE SCAD LASSO Hard-thresholding

β1 (X0) 776.60(20.96) 776.68(20.31) 775.35 (20.96) 776.60(20.96)

β2 (X1) −209.05(14.24) −209.10(9.40) −209.04(14.25) −209.05(14.24)

β3 (X2
1) −14.47(8.36) −14.49(8.04) −14.51(8.37) −14.47(8.36)

β4 (X3
1) 32.68(5.93) 32.74(2.17) 32.72 (5.93) 32.68(5.93)

β5 (X4
1) −1.97(1.05) −1.97(1.02) −1.96(1.05) −1.97(1.05)

β6 (X5
1) −1.84(0.57) −1.84(0.21) −1.85(0.55) −1.84(0.57)

β7 (X6
1) 0.25(0.08) 0.26(0.02) 0.26 (0.08) 0.25(0.08)

β8 (X2) 0.88(1.34) 0.88(0.007) 0.88 (1.35) 0.88(1.34)

β9 (X3) 61.27(5.36) 61.32(6.35) 61.04 (6.30) 61.27(6.36)

β10 (X4) 45.70(18.84) 45.71(18.71) 45.61 (18.84) 45.70(18.84)

β11 (X5) −3.61(2.09) −3.60(2.09) −3.64(2.09) −3.61(2.09)

β12 (X6) −2.24(0.80) −2.30(0.82) 0(−) −2.24(0.80)

SCAD, Lasso and Hard-thresholding penalty functions are all considered. The
unknown tuning parameters τ (l) (l = 1, 2, 3) of the penalty functions are estimated
through using the 5-fold cross-validation principle described in Sect. 13.2.5, and the
resulting estimators are summarized in Table 13.1. It is noted that the SCAD penalty
function given in (13.4) also involves another parameter a. Here we choose a = 3.7
as suggested by Fan and Li [4].

For the mean, generalized autoregressive parameters and log-innovation vari-
ances, the estimated regression coefficients and their associated standard errors, in
parentheses, by different penalty estimation methods, are presented in Tables 13.2,
13.3, and 13.4. It is noted that in Table 13.3 γ1, . . . , γ4 correspond to the coef-
ficients of the cubic polynomial in time lag, γ5 is associated with the time-
independent covariate X2, and the other coefficients γ6, . . . , γ13 correspond to
the time-dependent covariates X3, . . . , X6 measured at two different time points,
denoted by (X31,X32),. . . ,(X61,X62).

From Tables 13.2, 13.3, and 13.4, it is clear that for the mean structure the
estimated regression coefficients of the sixth power polynomial in time are statis-
tically significant. For the generalized autoregressive parameters and the innovation
variances, the estimated regression coefficients of cubic polynomials in time are
significant. This confirms the conclusion drawn by Ye and Pan [13]. Furthermore,
Table 13.2 shows that there is little evidence for the association between age and
immune response, but the smoking habit and the use of recreational drug have
significant positive effects on the CD4+ numbers. In addition, the number of sexual
partners seems to have little effect on the immune response, although it shows
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Table 13.3 Estimators of the generalized autoregressive parameters γ

Coefficient MLE SCAD LASSO Hard-thresholding

γ1 (X0) 0.29(0.06) 0.29 (0.02) 0.29 (0.06) 0.29 (0.06)

γ2 (X1) −0.33(0.09) −0.33(0.02) −0.33(0.09) −0.33(0.09)

γ3 (X2
1) 0.20(0.04) 0.20 (0.01) 0.20 (0.04) 0.20 (0.04)

γ4 (X3
1) −0.03(0.004) −0.03(0.002) −0.03(0.003) −0.03(0.004)

γ5 (X2) −0.001(0.0008) 0(−) 0(−) 0(−)
γ6 (X31) −0.01(0.008) −0.01(0.005) −0.01(0.007) −0.01(0.007)

γ7 (X32) 0.007(0.008) 0(−) 0(−) 0(−)
γ8 (X41) −0.01(0.02) 0.01 (0.06) 0.01 (0.01) 0.01 (0.02)

γ9 (X42) 0.02(0.02) 0.02 (0.07) 0.02 (0.01) 0.02 (0.02)

γ10 (X51) 0.001(0.002) 0(−) 0(−) 0(−)
γ11 (X52) −0.005(0.003) 0(−) 0(−) 0(−)
γ12 (X61) 0.004(0.0009) 0(−) 0(−) 0(−)
γ13 (X62) 0.006(0.001) 0(−) 0(−) 0(−)

Table 13.4 Estimators of the log-innovation variance parameters λ

Coefficient MLE SCAD LASSO Hard-thresholding

λ1 (X0) 11.64(0.07) 11.63 (0.04) 11.63 (0.08) 11.64 (0.07)

λ2 (X1) −0.22(0.03) −0.22(0.01) −0.22(0.03) −0.22(0.03)

λ3 (X2
1) −0.03(0.01) −0.03(0.04) −0.03(0.01) −0.03(0.01)

λ4 (X3
1) −0.02(0.003) −0.02(0.001) −0.02(0.004) −0.02(0.003)

λ5 (X2) −0.005(0.004) 0(−) 0(−) 0(−)
λ6 (X3) 0.21(0.02) 0.21 (0.01) 0.21 (0.02) 0.21 (0.02)

λ7 (X4) −0.12(0.07) −0.12(0.005) −0.12(0.06) −0.12(0.07)

λ8 (X5) −0.02(0.008) −0.02(0.004) −0.02(0.008) −0.02(0.009)

λ9 (X6) −0.006(0.003) 0(−) 0(−) 0(−)

some evidence of negative association. Also, there is a negative association between
depression symptoms (score) and immune response.

Interestingly, Table 13.3 clearly indicates that except the cubic polynomial in
time lag all other covariates do not have significant influences to the generalized
autoregressive parameters, implying that the generalized autoregressive parameters
are characterized only by the cubic polynomial in time lag. For the log-innovation
variances, however, Table 13.4 shows that in addition to the cubic polynomial in
time, the smoking habit, the use of recreational drug, and the number of sexual
partners do have significant effects, implying that the innovation variances and
therefore the within-subject covariances are not homogeneous and are actually
dependent on the covariates of interests. Finally, we notice that in this data example
the SCAD, Lasso and Hard thresholding penalty based methods perform very
similarly in terms of the selected variables.
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13.5 Simulation Study

In this section we conduct a simulation study to assess the small sample performance
of the proposed procedures. We simulate 100 subjects, each of which has five
observations drawn from the multivariate normal distribution N5(μi,Σi), where
the mean μi and the within-subject covariance matrix Σi are formed by the joint
models (13.2) in the framework of the modified Cholesky decomposition. We
choose the true values of the parameters in the mean, generalized autoregressive
parameters and log-innovation variances to be β = (3, 0, 0,−2, 1, 0, 0, 0, 0,−4)T ,
γ = (−4, 0, 0, 2, 0, 0, 0)T and λ = (0, 1, 0, 0, 0,−2, 0)T , respectively. We
form the mean covariates xij = (xij t )

10
t=1 by drawing random samples from the

multivariate normal distribution with mean 0 and covariance matrix of AR(1)
structure with σ 2 = 1 and ρ = 0.5 (i = 1, 2, . . . , 100; j = 1, 2, . . . , 5). We
then form the covariates zijk = (xij t − xikt )

7
t=1 and hij = (xij t )

7
t=1 for the

generalized autoregressive parameters and the log-innovation variances. Using these
values, the mean μi and covariance matrixΣi are constructed through the modified
Cholesky decomposition. The responses yi are then drawn from the multivariate
normal distribution N (μi,Σi) (i = 1, 2, . . . , 100).

In the simulation study, 1000 repetitions of random samples are generated by
using the above data generation procedure. For each simulated data set, the proposed
estimation procedures for finding out the ordinary maximum likelihood estimators
and penalized maximum likelihood estimators with SCAD, Lasso and Hard-
thresholding penalty functions are considered. The unknown tuning parameters
τ (l), l = 1, 2, 3 for the penalty functions are chosen by a 5-fold cross-validation
criterion in the simulation. For each of these methods, the average of zero
coefficients over the 1000 simulated data sets is reported in Table 13.5. Note that
‘True’ in Table 13.5 means the average number of zero regression coefficients that
are correctly estimated as zero, and ‘Wrong’ depicts the average number of non-
zero regression coefficients that are erroneously set to zero. In addition, the non-zero
parameter estimators, and their associated standard errors as well, are provided in
Table 13.6. From those simulation results, it is clear that the SCAD penalty method
outperforms the Lasso and Hard thresholding penalty approaches in the sense of
correct variable selection rate, which significantly reduces the model uncertainty
and complexity.

Table 13.5 Average number of zero regression coefficients

SCAD LASSO Hard-thresholding

Parameter True Wrong True Wrong True Wrong

β 5.42 0.00 4.76 0.00 4.92 0.00

γ 4.18 0.06 3.28 0.08 3.55 0.21

λ 4.53 0.00 3.70 0.00 4.06 0.00
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Table 13.6 Estimators of non-zero regression coefficients

Coefficient True value SCAD LASSO Hard-thresholding

β1 3 3.08(0.95) 3.08(0.95) 3.09(0.93)

β4 −2 −1.94(0.68) −1.93(0.63) −1.95(0.65)

β5 1 0.95(0.32) 0.96(0.39) 0.97(0.39)

β10 −4 −4.12(1.65) −4.13(1.74) −4.14(1.75)

γ1 −4 −4.13(1.88) −4.07(2.14) −4.10(2.14)

γ4 2 1.77(0.79) 1.71(0.85) 1.75(0.85)

λ2 1 1.05(0.05) 1.03(0.06) 1.03(0.06)

λ6 −2 −2.20(0.83) −2.11(0.81) −2.11(0.82)

13.6 Discussion

Within the framework of joint modelling of mean and covariance structures for
longitudinal data, we proposed a variable selection method based on penalized
likelihood approaches. Like the mean, the covariance structures may be dependent
on various explanatory variables of interest so that simultaneous variable selection
to the mean and covariance structures becomes fundamental to avoid the modelling
biases and reduce the model complexities.

We have shown that under mild conditions the proposed penalized maximum
likelihood estimators of the parameters in the mean and covariance models are
asymptotically consistent and normally distributed. Also, we have shown that the
SCAD and Hard thresholding penalty based estimation approaches have the oracle
property. In other words, they can correctly identify the true models as if the true
models would be known in advance. In contrast, the Lasso penalty based estimation
method does not share the oracle property. We also considered the case when the
number of explanatory variables goes to infinity with the sample size and obtained
similar results to the case with finite number of variables.

The proposed method differs from [7] where they only addressed the issue of
variable selection in the mean model without modelling the generalized autore-
gressive parameters and innovation variances. It is also different from [12] where
a different decomposition of the covariance matrix, namely moving average coeffi-
cient based model, was employed, and the variable selection issue was discussed
under the decomposition but with the number of explanatory variables fixed.
In contrast, the proposed models and methods in this paper are more flexible,
interpretable and practicable.



234 C. Kou and J. Pan

Appendix A: Penalized Maximum Likelihood Estimation

Firstly, note the first two derivatives of the log-likelihood function �(θ) are con-
tinuous. Around a given point θ0, the log-likelihood function can be approximated
by

�(θ) ≈ �(θ0)+
[
∂�(θ0)

∂θ

]T
(θ − θ0)+ 1

2
(θ − θ0)

T

[
∂2�(θ0)

∂θ∂θT

]
(θ − θ0).

Also, given an initial value t0 we can approximate the penalty function p′
r (t) by a

quadratic function [4]

[pτ (|t|)]′ = p′
τ (|t|)sgn(t) ≈ p′

τ (|t0|)t
t0

, for t ≈ t0.

In other words,

pτ (|t|) ≈ pτ (|t0|)+ 1

2
p′
τ (|t0|)

t2 − t20
|t0| , for t ≈ t0.

Therefore, the penalized likelihood function (13.3) can be locally approximated,
apart from a constant term, by

Q(θ) ≈ �(θ0)+
[
∂�(θ0)

∂θ

]T
(θ − θ0)

+ 1

2
(θ − θ0)

T

[
∂2�(θ0)

∂θ∂θT

]
(θ − θ0)− n

2
θT Στ (θ0)θ ,

where

Στ (θ0) = diag
{p′

τ (1)
(|β01|)

|β01| , . . . ,
p′
τ (1)
(|β0p|)

|β0p| ,
p′
τ (2)
(|γ01|)

|γ01| , . . . ,
p′
τ (2)
(|γ0q |)

|γ0q | ,

p′
τ (3)
(|λ01|)

|λ01| , . . . ,
p′
τ (3)
(|λ0d |)

|λ0d |
}
,

where θ = (θ1, . . . , θs)
T = (β1, . . . , βp, γ1, . . . , γq, λ1, . . . , λd)

T and θ0 =
(θ01, . . . , θ0s)

T = (β01, . . . , β0p, γ01, . . . , γ0q, λ01, . . . , λ0d )
T . Accordingly, the

quadratic maximization problem forQ(θ) leads to a solution iterated by

θ1 ≈ θ0 +
{
∂2�(θ0)

∂θ∂θT
− nΣτ (θ0)

}−1 {
nΣτ (θ0)θ0 − ∂�(θ0)

∂θ

}
.
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Secondly, as the data are normally distributed the log-likelihood function �(θ)
can be written as

−2�(θ) =
n∑
i=1

log |Σi | +
n∑
i=1

(yi − xiβ)T Σ−1
i (yi − xiβ),

=
n∑
i=1

log |Di | +
n∑
i=1

(r i − ziγ )T D−1
i (r i − ziγ ),

=
n∑
i=1

mi∑
j=1

log σ 2
ij +

n∑
i=1

mi∑
j=1

(rij − r̂ij )2
σ 2
ij

,

where

r i = yi − xiβ = (ri1, . . . , rimi )T ,

r̂ij =
j−1∑
k=1

φijkrik, (j = 2, . . . ,mi)

zi = (zi1, . . . , zimi )T ,

zij =
j−1∑
k=1

rikzijk, (j = 2, . . . ,mi)

xi = (xi1, . . . , ximi )T , (i = 1, . . . , n).

Therefore, the resulting score functions are

U(θ) = ∂�(θ)

∂θ
= (UT1 (β), UT2 (γ ), UT3 (λ))T

where

U1(β) =
n∑
i=1

xTi Σ
−1
i (yi − xiβ),

U2(γ ) =
n∑
i=1

zTi D
−1
i (r i − ziγ ),

U3(λ) = 1

2

n∑
i=1

hTi D
−1
i (ε

2
i −Σ2

i ),
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where

hi = (hi1, . . . ,himi )T ,
ε2
i = (ε2

i1, . . . , ε
2
imi
)T ,

ε2
ij = (rij − r̂ij )2, (j = 1, . . . ,mi)

Σ2
i = (σ 2

i1, . . . , σ
2
imi
)T .

According to [13], the Fisher information matrix In(θ) must be block diagonal. In
other words, In(θ) = diag(I11,I22,I33), where

I11 =
n∑
i=1

xTi Σ
−1
i xi ,

I22 =
n∑
i=1

E(zTi D
−1
i zi ),

I33 = 1

2

n∑
i=1

hTi hi .

By using the Fisher information matrix to approximate the observed information
matrix, we obtain the following iteration solution

θ1 ≈ θ0 +
{
∂2�(θ0)

∂θ∂θT
− nΣτ (θ0)

}−1 {
nΣτ (θ0)θ0 − ∂�(θ0)

∂θ

}

≈ θ0 + {In(θ0)+ nΣτ (θ0)}−1 {U(θ0)− nΣτ (θ0)θ0}
= {In(θ0)+ nΣτ (θ0)}−1 {U(θ0)+ In(θ0)θ0} .

Since In(θ) is block diagonal, the above iteration solution is equivalent to

β1 =
⎧⎨
⎩

n∑
i=1

xTi Σ
−1
i xi + nΣτ(1) (β0)

⎫⎬
⎭

−1 ⎧⎨
⎩

n∑
i=1

xTi Σ
−1
i yi

⎫⎬
⎭ ,

γ 1 =
⎧⎨
⎩

n∑
i=1

zTi D
−1
i zi + nΣτ(2) (γ 0)

⎫⎬
⎭

−1 ⎧⎨
⎩

n∑
i=1

zTi D
−1
i r i

⎫⎬
⎭ ,

λ1 =
⎧⎨
⎩

n∑
i=1

hTi hi + 2nΣτ(3)(λ0)

⎫⎬
⎭

−1 ⎧⎨
⎩

n∑
i=1

hTi D
−1
i (ε

2
i −Σ2

i +Di logΣ2
i )

⎫⎬
⎭ ,
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where all the relevant quantities on the right hand side are evaluated at θ = θ0, and

Στ(1) (β0) = diag{p
′
τ (1)
(|β01|)

|β01| , . . . ,
p′
τ (1)
(|β0p|)

|β0p| },

Στ(2) (γ0) = diag{p
′
τ (2)
(|γ01|)

|γ01| , . . . ,
p′
τ (2)
(|γ0q |)

|γ0q | },

Στ(3) (λ0) = diag{p
′
τ (3)
(|λ01|)

|λ01| , . . . ,
p′
τ (3)
(|λ0d |)

|λ0d | }.

Finally, the following algorithm summarizes the computation of the penalized
maximum likelihood estimators of the parameters in the joint mean and covariance
models.

Algorithm

0. Take the ordinary least squares estimators (without penalty) β(0), γ (0) and λ(0)

of β, γ and λ as their initial values.
1. Given the current values {β(s), γ (s),λ(s)}, update

r
(s)
i = yi − xiβ(s), φ

(s)
ijk = zTijkγ

(s), log[(σ 2
ij )
(s)] = hTijλ

(s),

and then use the above iteration solutions to update γ and λ until convergence.
Denote the updated results by γ (s+1) and λ(s+1).

2. For the updated values γ (s+1) and λ(s+1), form

φ
(s+1)
ijk = zTijkγ

(s+1), and log[(σ 2
ij )
(s+1)] = hTijλ

(s+1),

and construct

Σ
(s+1)
i = (T (s+1)

i )−1D
(s+1)
i [(T (s+1)

i )T ]−1.

Then update β according to

β(s+1) =
⎧⎨
⎩

n∑
i=1

xTi (Σ
(s+1)
i )−1xi + nΣτ(1) (β(s))

⎫⎬
⎭

−1 ⎧⎨
⎩

n∑
i=1

xTi (Σ
(s+1)
i )−1yi

⎫⎬
⎭ .

3. Repeat Step 1 and Step 2 above until certain convergence criteria are satisfied.
For example, it can be considered as convergence if theL2-norm of the difference
of the parameter vectors between two adjacent iterations is sufficiently small.
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Appendix B: Proofs of Theorems

Proof of Theorem 13.1 Note that pτn(0) = 0 and pτn(·) > 0. Obviously, we have

Q(θ0+n−1/2u)−Q(θ0)

≤ [�(θ0 + n−1/2u)− �(θ0)] − n
s1∑
j=1

[pτn(|θ0j + n−1/2uj |)− pτn(|θ0j |)]

= K1 +K2.

We considerK1 first. By using Taylor expansion, we know

K1 = �(θ0 + n−1/2u)− �(θ0)

= n−1/2uT �′(θ0)+ 1

2
n−1uT �

′′
(θ∗)u

= K11 +K12,

where θ∗ lies between θ0 and θ0 + n−1/2u. Note the fact that n−1/2‖�′(θ0)‖ =
Op(1). By applying Cauchy-Schwartz inequality, we obtain

K11 = n−1/2uT �′(θ0) ≤ n−1/2‖�′(θ0)‖‖u‖ = Op(1).

According to Chebyshev’s inequality, we know that for any ε > 0,

P

{
1

n
‖�′′
(θ0)− E�′′

(θ0)‖ ≥ ε
}

≤ 1

n2ε2E

⎧⎨
⎩

s∑
j=1

s∑
l=1

(
∂2�(θ0)

∂θj∂θl
− E∂

2�(θ0)

∂θj∂θl

)2
⎫⎬
⎭

≤ Cs2

nε2
= o(1)

so that n−1‖�′′
(θ0)− E�′′

(θ0)‖ = op(1). It then follows directly that

K12 = 1

2
n−1uT �

′′
(θ∗)u = 1

2
uT {n−1[�′′

(θ0)− E�′′
(θ0)− In(θ0)]}u[1 + op(1)]

= −1

2
uTI (θ0)u[1 + op(1)].

Therefore we conclude that K12 dominates K11 uniformly in ‖u‖ = C if the
constant C is sufficiently large.
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We then study the term K2. It follows from Taylor expansion and Cauchy-
Schwartz inequality that

K2 = −n
s1∑
j=1

[pτn(|θ0j + n−1/2uj |)− pτn(|θ0j |)]

= −
s1∑
j=1

{n1/2p′
τn
(|θ0j |)sgn(θ0j )uj + 1

2
p

′′
τn
(|θ0j |)u2

j [1 + op(1)]}

≤ √
s1n

1/2‖u‖ max
1≤j≤s{p

′
τn
(|θ0j |) : θ0j �= 0} + 2‖u‖2 max

1≤j≤s{|p
′′
τn
(|θ0j |)| : θ0j �= 0}

= √
s1n

1/2‖u‖an + 2‖u‖2bn.

Since it is assumed that an = Op(n
−1/2) and bn → 0, we conclude that K12

dominates K2 if we choose a sufficiently large C. Therefore for any given ε > 0,
there exists a large constant C such that

P

{
sup

‖u‖=C
Q(θ0 + n−1/2u) < Q(θ0)

}
≥ 1 − ε,

implying that there exists a local maximizer θ̂n such that θ̂n is a
√
n-consistent

estimator of θ0. The proof of Theorem 13.1 is completed. �
Proof of Theorem 13.2 First, we prove that under the conditions of Theorem 13.2,
for any given θ (1) satisfying θ (1) − θ

(1)
0 = Op(n−1/2) and any constant C > 0, we

have

Q{((θ (1))T , 0T )T } = max
‖θ (2)‖≤Cn−1/2

Q{((θ (1))T , (θ (2))T )T }.

In fact, for any θj (j = s1 + 1, . . . , s), using Taylor’s expansion we obtain

∂Q(θ)

∂θj
= ∂�(θ)

∂θj
− np′

τn
(|θj |)sgn(θj )

= ∂�(θ0)

∂θj
+

s∑
l=1

∂2�(θ∗)
∂θj∂θl

(θl − θ0l)− np′
τn
(|θj |)sgn(θj )

where θ∗ lies between θ and θ0. By using the standard argument, we know

1

n

∂�(θ0)

∂θj
= Op(n−1/2) and

1

n

{
∂2�(θ0)

∂θj ∂θl
− E

(
∂2�(θ0)

∂θj∂θl

)}
= op(1).
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Note ‖θ − θ0‖ = Op(n−1/2). We then have

∂Q(θ)

∂θj
= nτn{−τ−1

n p
′
τn
(|θj |)sgn(θj )+Op(n−1/2τ−1

n )}.

According to the assumption in Theorem 13.2, we obtain

lim inf
n→∞ lim inf

t→0+
p′
τn
(t)

τn
> 0 and n−1/2τ−1

n = (√nτn)−1 → 0,

so that

∂Q(θ)

∂θj

{
< 0, for 0 < θj < Cn−1/2;
> 0, for − Cn−1/2 < θj < 0.

Therefore Q(θ) achieves its maximum at θ = ((θ (1))T , 0T )T and the first part of
Theorem 13.2 has been proved. �

Second, we discuss the asymptotic normality of θ̂
(1)
n . From Theorem 13.1 and the

first part of Theorem 13.2, there exists a penalized maximum likelihood estimator

θ̂
(1)
n that is the

√
n-consistent local maximizer of the function Q{((θ (1))T , 0T )T }.

The estimator θ̂
(1)
n must satisfy

0 = ∂Q(θ)

∂θj

∣∣∣∣
θ=(̂θ

(1)
n
0 )

= ∂�(θ)

∂θj

∣∣∣∣
θ=(̂θ

(1)
n
0 )

− np′
τn
(|θ̂ (1)nj |)sgn(θ̂ (1)nj )

= ∂�(θ0)

∂θj
+

s1∑
l=1

{
∂2�(θ0)

∂θj∂θl
+ op(1)

}
(θ̂
(1)
nl − θ(1)0l )

−np′
τn
(|θ(1)0j |)sgn(θ(1)0j )− n{p

′′
τn
(|θ(1)0j |)+ op(1)}(θ̂ (1)nj − θ(1)0j ).

In other words, we have

{
− ∂2�(θ0)

∂θ (1)∂(θ (1))T
+ nAn + op(1)

}
(̂θ
(1)
n − θ

(1)
0 )+ cn = ∂�(θ0)

∂θ (1)
.

Using the Liapounov form of the multivariate central limit theorem, we obtain

1√
n

∂�(θ0)

∂θ (1)
→ Ns1(0,I

(1))
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in distribution. Note that

1

n

{
∂2�(θ0)

∂θ (1)∂(θ (1))T
− E

(
∂2�(θ0)

∂θ (1)∂(θ (1))T

)}
= op(1),

it follows immediately by using Slustsky’s theorem that

√
n(Ī (1)

n )
−1/2(Ī (1)

n + An)
{
(̂θ
(1)
n − θ

(1)
0 )+ (Ī (1)

n + An)−1cn

}
→ Ns1(0, Is1)

in distribution. The proof of Theorem 13.2 is complete. �
Proof of Theorem 13.3 Let αn = (n/sn)−1/2. Note pτn(0) = 0 and pτn(·) > 0. We
then have

Q(θ0 + αnu)−Q(θ0) ≤ [�(θ0 + αnu)− �(θ0)] − n
s1n∑
j=1

[pτn(|θ0j + αnuj |)− pτn(|θ0j |)]

= K1 +K2.

Using Taylor’s expansion, we obtain

K1 = �(θ0 + αnu)− �(θ0)

= αnuT �′(θ0)+ 1

2
α2
nu
T �

′′
(θ∗

0)u

= K11 +K12,

where θ∗
0 lies between θ0 and θ0 + αnu. Note that ‖�′(θ0)‖ = Op(√nsn). By using

Cauchy-Schwartz inequality, we conclude that

|K11| = |αnuT �′(θ0)| ≤ αn‖�′(θ0)‖‖u‖ = Op(αn(nsn)1/2)‖u‖ = Op(nα2
n)‖u‖.

According to Chebyshev’s inequality, for any ε > 0 we have

P {
∥∥∥∥ snn

(
�

′′
(θ0)− E�′′

(θ0)
)∥∥∥∥ ≥ ε} ≤ 1

ε2E

(∥∥∥∥ snn
(
�

′′
(θ0)− E�′′

(θ0)
)∥∥∥∥

2
)

= s2n

n2ε2E

⎧⎨
⎩
sn∑
j=1

sn∑
l=1

(
∂2�(θ0)

∂θj ∂θl
− E∂

2�(θ0)

∂θj∂θl

)2
⎫⎬
⎭

≤ Cs4n

nε2 = o(1),
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which implies that sn
n

∥∥∥�′′
(θ0)− E�′′

(θ0)

∥∥∥ = op(1). It then follows that

K12 = 1

2
α2
nuT �

′′
(θ∗

0)u = 1

2
nα2
nuT

{
[ 1

n
(�

′′
(θ0)− E�′′

(θ0))− In(θ0)]
}

u[1 + op(1)]

= −1

2
nα2
nu
TI (θ0)u[1 + op(1)].

Therefore we know thatK12 dominatesK11 uniformly in ‖u‖ = C for a sufficiently
large constant C.

We now turn to K2. It follows from Taylor’s expansion that

K2 = −n
s1n∑
j=1

[pτn(|θ0j + αnuj |)− pτn(|θ0j |)]

= −
s1n∑
j=1

{nαnp′
τn
(|θ0j |)sgn(θ0j )uj + 1

2
nα2
np

′′
τn
(|θ0j |)u2

j [1 + op(1)]}

≤ √
s1nnαn‖u‖ max

1≤j≤sn
{p′
τn
(|θ0j |) : θ0j �= 0}

+2nα2
n‖u‖2 max

1≤j≤sn
{|p′′

τ
(j)
n

(|θ0j |)| : θ0j �= 0}

≤ √
snnαn‖u‖a∗

n + 2nα2
n‖u‖2b∗

n

= nα2
n‖u‖Op(1)+ 2nα2

n‖u‖2b∗
n.

Since b∗
n → 0 as n −→ 0, it is clear that K12 dominates K2 if a sufficiently large

constant C is chosen. In other words, for any given ε > 0 there exists a large
constant C such that

P

{
sup

‖u‖=C
Q(θ0 + αnu) < Q(θ0)

}
≥ 1 − ε

as long as n is large enough. This implies that there exists a local maximizer θ̂n in
the ball {θ0 + αnu : ‖u‖ ≤ C} such that θ̂n is a

√
n/sn-consistent estimator of θ0.

The proof of Theorem 13.3 is completed. �
Proof of Theorem 13.4 The proof of Theorem 13.4 is similar to that of Theo-
rem 13.2. In what follows we only give a very brief proof. First, it is easy to
show that under the conditions of Theorem 13.4, for any given θ (1) satisfying
‖θ (1) − θ

(1)
0 ‖ = Op((n/sn)−1/2) and any constant C, the following equality holds

Q{((θ (1))T , 0T )T } = max
‖θ (2)‖≤C(n/sn)−1/2

Q{((θ (1))T , (θ (2))T )T }.
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Based on this fact and Theorem 13.3, there exists an
√
n/sn-consistent estimator

θ̂
(1)
n that is the local maximizer of Q{((θ (1))T , 0T )T }. Let Ī (1)

n = I (1)
n /n. Similar

to the proof of Theorem 13.2, we can show that

(Ī (1)
n + A∗

n)(̂θ
(1)
n − θ

(1)
0 )+ c∗

n = 1

n

∂�(θ0)

∂θ (1)
+ op( 1√

n
),

so that

√
nMn(Ī

(1)
n )

−1/2(Ī (1)
n + A∗

n){(̂θ (1)n − θ
(1)
0 )+ (Ī (1)

n + A∗
n)

−1c∗
n}

= 1√
n
Mn(Ī

(1)
n )

−1/2 ∂�(θ0)

∂θ (1)
+ op(Mn(Ī (1)

n )
−1/2).

By using Lindeberg-Feller central limit theorem, we can show that

1√
n
Mn(Ī

(1)
n )

−1/2 ∂�(θ0)

∂θ (1)

has an asymptotic multivariate normal distribution. The result in Theorem 13.4
follows immediately according to Slustsky’s theorem. The proof of Theorem 13.4
is complete. �

Acknowledgments We would like to thank the editors and an anonymous referee for their very
constructive comments and suggestions, which makes the paper significantly improved. This
research is supported by a research grant from the Royal Society of the UK (R124683).

References

1. Antoniadis, A.: Wavelets in statistics: a review (with discussion). J. Ital. Stat. Assoc. 6, 97–144
(1997)

2. Chiu, T.Y.M., Leonard, T., Tsui, K.W.: The matrix-logarithm covariance model. J. Am. Stat.
Assoc. 91, 198–210 (1996)

3. Diggle, P.J., Heagerty, P.J., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data, 2nd edn.
Oxford University, Oxford (2002)

4. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties.
J. Am. Stat. Assoc. 96, 1348–60 (2001)

5. Fan, J., Peng, H.: Nonconcave Penalized likelihood with a diverging number of parameters.
Ann. Stat. 32, 928–61 (2004)

6. Frank, I.E., Friedman, J.H.: A statistical view of some chemometrics regression tools.
Technometrics 35, 109–148 (1993)

7. Lee, J., Kim, S., Jhong, J., Koo, J.: Variable selection and joint estimation of mean and
covariance models with an application to eQTL data. Comput. Math. Methods Med. 2018,
13 (2018)

8. Pan, J., MacKenzie, G.: Model selection for joint mean-covariance structures in longitudinal
studies. Biometrika 90, 239–44 (2003)



244 C. Kou and J. Pan

9. Pourahmadi, M.: Joint mean-covariance models with applications to lontidinal data: uncon-
strained parameterisation. Biometrika 86, 677–90 (1999)

10. Pourahmadi, M.: Maximum likelihood estimation fo generalised linear models for multivariate
normal covariance matrix. Biometrika 87, 425–35 (2000)

11. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 58, 267–88
(1996)

12. Xu, D., Zhang, Z., Wu, L.: Joint variable selection of mean-covariance model for longitudinal
data. Open J. Stat. 3, 27–35 (2013)

13. Ye, H.J., Pan, J.: Modelling of covariance structures in generalized estimating equations for
longitudinal data. Biometrika 93, 927–41 (2006)

14. Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418–29 (2006)



Chapter 14
On Shrinkage Estimators and “Effective
Degrees of Freedom”

Lynn R. LaMotte, Julia Volaufova, and Simo Puntanen

Abstract Explicit expressions for the estimated mean ỹk = Xβ̃k = Hky and
effective degrees of freedom νk = tr(Hk) by penalized least squares, with penalty
k||Dβ||2, can be found readily when X′X + D′D is nonsingular. We establish
them here in general under only the condition that X be a non-zero matrix, and
we show that the monotonicity properties that are known when X′X is nonsingular
also hold in general, but that they are affected by estimability of Dβ . We establish
the relation between these penalized least squares estimators and least squares under
the restriction that Dβ = 0.

14.1 Introduction

For an n-vector response y with mean vector μ, variance-covariance matrix σ 2In,
and a model Xβ , the least-squares (OLS) estimate of μ is

ŷ = Xβ̂ = X(X′X)−X′y = PXy = H0y. (14.1)

X is a fixed, known n × p matrix, β is a p-vector of unknown parameters, and β̂

satisfies Xβ̂ = H0y. The dimension of the column space of X is ν0 = rank(X) =
tr(H0): that is, the model provides ν0 degrees of freedom to fit μ to y. To state the
link directly, the dimension of the model space R(X) = R(H0) is its degrees of
freedom.

The term degrees of freedom (used here as a singular noun) has been in use
since the beginnings of applied statistics. It has also been used in linear algebra
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for the dimension of the solution set for a system of linear equations. Thus SS =∑n
i=1(yi − ȳ)2 has n− 1 degrees of freedom because the n terms squared, yi − ȳ,

which satisfy the single equation
∑n
i=1(yi − ȳ) = 0, can be represented linearly in

terms of n− 1 independent linear functions of y1, . . . , yn.
Degrees of freedom shows up wherever a chi-squared random variable is

involved, where it is the number of independent normal random variables squared
and summed. Consequently it shows up in Student’s t and F statistics. In all these
uses, it can be directly defined as the dimension of a linear subspace, and hence also
as the trace of an orthogonal projection matrix, that is, of a symmetric idempotent
matrix.

Given a matrixD and constant k ≥ 0, penalties for departures ofDβ from 0 can

be introduced by regressing

(
y
0

)
on

(
X√
kD

)
(see [2]). The penalized least squares

estimate of μ is then

ỹk = Xβ̃k = X(X′X + kD′D)−X′y = Hky. (14.2)

Increasing the smoothing parameter k increases the penalty kβ ′D′Dβ and so pushes
Dβ̃k toward zero. Other possibilities include replacing

√
kD with

√
KD, with

diagonal matrix
√
K = Diag(

√
ki ≥ 0), permitting separate controls in multiple

dimensions.
Often νk = tr(Hk) is called the effective degrees of freedom of the penalized

model: see [3, p. 153], for example. It is supposed to index, somehow, the
complexity and flexibility of the model. Ruppert et al. [6] say that it “has the rough
interpretation as the equivalent number of parameters and can be calibrated with
polynomial fits.”

Estimates like (14.2) have been called shrinkage estimates, because ||Hky||2 ≤
||H0y||2. The notion of shrinkage dates back at least to Stein’s seminal paper, [7]. A
later version, ridge regression, received widespread attention (see [1]). It is (14.2)
with D = I. In that case, X′X + kI is nonsingular when k > 0, and its shrinkage
property is apparent. It can be shown that ridge regression shrinkage is monotone:
for k2 > k1, both Hk1 − Hk2 and H 2

k1
− H 2

k2
are nnd, and hence νk2 < νk1 and

||ỹk2
||2 < ||ỹk1

||2. In the limit as k → ∞, ỹk → 0.
Extant accounts ([3, 6], for example) implicitly assume that X′X + kD′D is

nonsingular in order to establish these properties ofHk,H 2
k , and νk , and their limits.

Models widely used in practice entail X and D matrices such that X′X + D′D
is singular. Models that include effects of one or more treatment factors often
are formulated with dummy, or indicator, variables, in which case the columns of
the X matrix are linearly dependent. Further, main effects and interaction effects
are formulated correspondingly, and imposing conditions like “no AB interaction
effects” takes the formDβ = 0 with non-full-column-rankD. Similarly, differences
(first order, second order) can also take the form Dβ with linearly dependent
columns of D. Questions of estimability and effects arise when X has less than
full column rank. For example, increasing penalties on Dβ in some directions may
have no effect at all, as if D or k were zero.
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Our objective here is to assess these same properties in general, when X′X +
D′D is not necessarily positive definite. We will show that νk and Hk are monotone
decreasing functions of k, and we will show that ỹk shrinks toward the least-squares
estimate under the restriction that Dβ̃ = 0. Furthermore, we will show that the
dimension of the space over which ỹk ranges is the same for all k, and hence that νk
has no relation to the dimension of the model space.

14.2 Propositions

Assume throughout that matrices (all real here) are conformable for the operations
and expressions in which they appear. For matrices A and B, matrix sum, product,
transpose, trace, generalized inverse, Moore-Penrose pseudoinverse, and inverse are
denoted by A+B, AB, A′, tr(A), A−, A+, and A−1, respectively. For a symmetric,
non-negative definite (nnd) matrix A, A1/2 denotes a symmetric matrix such that
A1/2A1/2 = A. Diag(αi) denotes an r × r diagonal matrix with diagonal entries αi ,
i = 1, . . . , r . The orthogonal complement of a set S of vectors in *n is denoted
S ⊥. Denote the column space ofM by R(M) = {Mx : x ∈ *c} and the null space
of M by N(M) = {x ∈ *c : Mx = 0} = R(M ′)⊥. PA denotes the orthogonal
projection matrix onto the column space of A.

Let X and D be matrices, both with p ≥ 1 columns. We shall use D without
√
k

to simplify notation in the following propositions. As the results hold for any D,
they hold for

√
kD too.

Proposition 14.1 H = X(X′X+D′D)−X′ is invariant to the choice of generalized
inverse, and R(H) = R(X).

Proof Clearly R(X′) ⊂ R(X′,D′) = R(X′X + D′D), so there exists a matrix M
such thatX′ = (X′X+D′D)M . Then, with (X′X+D′D)† an arbitrary generalized
inverse of (X′X +D′D),

H = X(X′X +D′D)−X′

= M ′(X′X +D′D)(X′X +D′D)−(X′X +D′D)M

= M ′(X′X +D′D)M

= M ′(X′X +D′D)(X′X +D′D)†(X′X +D′D)M

= X(X′X +D′D)†X′, hence the invariance.

It is clear that R(H) ⊂ R(X). Because H = M ′(X′X + D′D)M is nnd, H z = 0
,⇒ (X′X + D′D)Mz = X′z = 0, and so it follows that R(H)⊥ ⊂ R(X)⊥, and
hence R(X) ⊂ R(H). �
Proposition 14.8 in Sect. 14.4 is a re-statement of Theorem 6.2.3, p. 122,
in [5]. Here, with both A = X′X and B = D′D nnd, the condition that
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R(N ′A) ⊂ R(N ′AN) is satisfied. Then there exists a nonsingular matrix T such
that T ′X′XT = Δ1 = Diag(δ1i) and T ′D′DT = Δ2 = Diag(δ2i ). Note that the
diagonal entries of both Δ1 and Δ2 are nonnegative. Let Δ = Δ1 + Δ2. Note that
TΔ+T ′ is a generalized inverse of T ′−1

ΔT −1 = X′X +D′D. It follows that

H = X(T ′−1
ΔT −1)−X′

= XTΔ+T ′X′

= XT (Δ1 +Δ2)
+T ′X′.

Keep in mind that when we replace D by
√
kD, only Δ2 is affected, and it is

replaced by kΔ2.
Rearrange the columns of T as T = (T++, T+0, T0+, T00) to correspond to

column numbers J++ = {j : δ1j > 0 and δ2j > 0} , J+0 = {j : δ1j > 0 and δ2j =
0}, J0+ = {j : δ1j = 0 and δ2j > 0}, and J00 = {j : δ1j = 0 and δ2j = 0},
respectively. With X �= 0, not both J++ and J+0 are empty; ifD �= 0, not both J++
and J0+ are empty. All other configurations are possible. With these conventions,

T ′X′XT =

⎛
⎜⎜⎜⎝
T ′++X′XT++ T ′++X′XT+0 T

′++X′XT0+ T ′++X′XT00

T ′+0X
′XT++ T ′+0X

′XT+0 T
′+0X

′XT0+ T ′+0X
′XT00

T ′
0+X′XT++ T ′

0+X′XT+0 T
′

0+X′XT0+ T ′
0+X′XT00

T ′
00X

′XT++ T ′
00X

′XT+0 T ′
00X

′XT0+ T ′
00X

′XT00

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
Δ1++ 0 0 0

0 Δ1+0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ . (14.3)

Similar notation will be applied to submatrices of Δ2, that is,

T ′D′DT = Δ2 =

⎛
⎜⎜⎜⎝
Δ2++ 0 0 0

0 0 0 0
0 0 Δ20+ 0
0 0 0 0

⎞
⎟⎟⎟⎠ . (14.4)

From (14.3) we get immediately that XT0+ = 0 and XT00 = 0. Analogously,
DT+0 = 0 and DT00 = 0.



14 On Shrinkage Estimators and “Effective Degrees of Freedom” 249

Proposition 14.2

X(X′X +D′D)−X′ = XT (Δ1 +Δ2)
+T ′X′

= XT

⎛
⎜⎜⎜⎝
(Δ1++ +Δ2++)−1 0 0 0

0 Δ−1
1+0 0 0

0 0 Δ−1
20+ 0

0 0 0 0

⎞
⎟⎟⎟⎠ T ′X′

= XT++(Δ1++ +Δ2++)−1T ′++X′

+XT+0Δ
−1
1+0T

′+0X
′. (14.5)

Proposition 14.3 N(D′D) = R(T+0, T00).

Proof Note that (T+0, T00)
′D′D(T+0, T00) = 0 ,⇒ D′D(T+0, T00) = 0 ,⇒

R(T+0, T00) ⊂ N(D′D).
Let u ∈ N(D′D). Since T is nonsingular, u = T v, with v = T −1u; andD′Du =

D′DT v = 0 ,⇒ v′T ′D′DT v = v′Δ2v = v′++Δ2++v++ + v′
0+Δ20+v0+ = 0 ,⇒

v++ = 0 and v0+ = 0. Therefore u = T v = T (0′, v′+0, 0
′, v′

00)
′ = T+0v+0 +

T00v00 ∈ R(T+0, T00). �
The linear subspace {Xβ : β ∈ *p and Dβ = 0} is the restricted model Xβ under
the condition that Dβ = 0. The following proposition establishes that it is the same
as R(XT+0).

Proposition 14.4 {Xβ : β ∈ *p andDβ = 0} = R(XT+0).

Proof If μ = Xβ0 andDβ0 = 0 then β0 ∈ N(D′D), and so there exist v+0 and v00
such that β0 = T+0v+0 + T00v00, and hence Xβ0 = XT+0v+0 because XT00 = 0.

If μ ∈ R(XT+0) then ∃ v+0 such that μ = XT+0v+0; and DT+0 = 0, so
μ ∈ {Xβ : β ∈ *p andDβ = 0}. �
Now replaceD by

√
kD, k ≥ 0, so that

Hk = XT++(Δ1++ + kΔ2++)−1T ′++X′

+XT+0Δ
−1
1+0T

′+0X
′, (14.6)

and

νk = tr(Hk) = p+0 + tr[(Δ1++ + kΔ2++)−1Δ1++], (14.7)

where p+0 is the column dimension of T+0.
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Proposition 14.5

lim
k→∞Hk = XT+0Δ

−1
1+0T

′+0X
′ = PXT+0 and

lim
k→∞ νk = p+0.

Proposition 14.6

d

dk
Hk = −XT++(Δ1++ + kΔ2++)−2Δ2++T ′++X′,

and

dνk

dk
= d

dk
tr(Hk) = −tr[(Δ1++ + kΔ2++)−2Δ1++Δ2++].

Proposition 14.7 If Δ2++ �= 0, then for any k2 > k1 ≥ 0, both Hk1 − Hk2 and
H 2
k1

−H 2
k2

are non-zero and nnd.

14.3 Discussion

Some parts of the partition of T can be absent, depending onX andD. If columns of
X are linearly independent, then both J0+ and J00 are void, and so T = (T++, T+0).
If D′D is pd, then both J+0 and J00 are void, and T = (T++, T0+). In general,
whether or not X has full column rank, if R(D′) ⊂ R(X′), it can be seen that
δ1j = 0 ,⇒ δ2j = 0, and so J0+ is empty, and T = (T++, T+0, T00). Then positive
entries in Δ2 occur only with positive entries of Δ1. On the other hand, if none of
Dβ is estimable, so that R(D′) ∩ R(X′) = {0}, it can be shown that Hk = PX and
ỹk = ŷ for all k ≥ 0; positive entries in Δ2 occur only with 0 entries in Δ1. More
generally, it can be shown that Hk is affected only by the estimable part of D, the
part of R(D′) that is contained in R(X′).

Proposition 14.1 establishes that, for any k ≥ 0, R(Hk) = R(X), and hence the
set of possibilities for the shrinkage estimator ỹk is the same as the set of possibilities
for the ordinary least squares estimator. The dimension of R(Hk) is ν0 = rank(X)
for all k. Only at k = 0, when νk = ν0 = rank(X), is νk the dimension of any linear
subspace that appears in this setting.

The partitioning of T provides a full-column-rank reparametrization of the model
Xβ that provides restricted model and full model estimates and sums of squares for
the restrictionDβ = 0. This follows from the fact thatX(T++, T+0) has full column
rank, R(X) = R[X(T++, T+0)] is the orthogonal sum of R(XT++) and R(XT+0),
and that the latter is the restricted model {Xβ : β ∈ *p and Dβ = 0}. It follows
that y′PXT++y is the numerator sum of squares, with p++ degrees of freedom, for
the F -statistic that tests the testable part of H0 : Dβ = 0.
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The expression (14.6) and Propositions 14.5 and 14.7 establish that ỹk shrinks
monotonically toward PXT+0y, which is the least-squares estimate of Xβ under the
restrictionDβ = 0, by Proposition 14.4.

Both Propositions 14.6 and 14.7 establish that νk is a strictly decreasing function
of k if Δ2++ �= 0. At k = 0 it is ν0 = rank(X), and it decreases with k to approach
its limit from above, which is p+0. Proposition 14.7 establishes the shrinkage
property, that the squared norm of the estimate ỹk is also strictly decreasing in k
if Δ2++ �= 0.

It has been suggested in some settings (e.g., [3, p. 158]) that the value of k be
chosen so that νk is some chosen value, say p∗. The expression for the derivative of
νk with respect to k in Proposition 14.6 can be used in Newton’s method to solve
the nonlinear equation νk = p∗.

The limiting behavior of Hk may seem abrupt: for all k ≥ 0, R(Hk) = R(X)
and its rank stays undiminished as ν0, but it approaches PXT+0 , which has rank
p+0. However, this reflects a fundamental property of closed convex cones of
nnd matrices: in the relative interior (as here with finite k) of such a cone, all
matrices have the same rank, and the rank can decrease only at the relative boundary.
(See Lemma 2 in [4].) Here, Hk follows a path within the relative interior, and it
approaches a matrix on the relative boundary that has lesser rank.

14.4 Construction of T

Proposition 14.8 is a slight re-statement of Theorem 6.2.3 in [5, p. 122]. The proof
we have included shows in detail how to construct T .

Proposition 14.8 LetA andB be symmetric n×nmatrices, B nnd, and let columns
of N comprise an orthonormal basis of R(N) = R(B)⊥ = {x ∈ *n : Bx = 0}. Let
r denote the rank of B.

(a) If R(N ′A) = R(N ′AN) then there exists a nonsingular matrix T such that
T ′AT = Δ1 = Diag(δ1i) and T ′BT = Δ2 = Diag(δ2i).

(b) If there exists a nonsingular matrix T such that T ′AT and T ′BT are both
diagonal, then R(N ′A) = R(N ′AN).

Proof (a) By spectral decomposition ofB, there exists a matrixL such thatL′BL =
Ir . (With B = PΛP ′ = (P+, P0)

(
Λ+ 0
0 0

)
P ′ = P+Λ+P ′+, with P ′P = PP ′ = I,

let L = P+Λ−1/2
+ . P+ has r columns and P0 has n− r columns.) Let N = P0.

Let S = ((I −N(N ′AN)−N ′A)L,N). Then, withM such thatN ′A = N ′ANM
because R(N ′A) = R(N ′AN),

N ′A(I −N(N ′AN)−N ′A) = N ′A−N ′AN(N ′AN)−N ′ANM) = N ′A−N ′ANM = 0.
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Then

S′AS =
(
L′(I − AN(N ′AN)−′

N ′)
N ′

)
A((I −N(N ′AN)−N ′A)L,N),

and

L′(I − AN(N ′AN)−′
N ′)A(I −N(N ′AN)−N ′A)L

= L′AL− L′AN(N ′AN)−′
N ′AL− L′AN(N ′AN)−N ′AL

+ L′AN(N ′AN)−′
N ′AN(N ′AN)−N ′AL

= L′AL− L′AN(N ′AN)−N ′AL

because all the terms involving AN(N ′AN)−N ′A are invariant to the choice of
generalized inverse, and (N ′AN)−′ is a generalized inverse of N ′AN . Then

S′AS =
(
L′(A− AN(N ′AN)−N ′A)L 0

0 N ′AN

)
.

Because BN = 0, B(I −N(N ′AN)−N ′A) = B, so that

L′(I − AN(N ′AN)−′
N ′)B((I −N(N ′AN)−N ′A)L = L′BL = Ir .

Then

S′BS =
(
L′BL 0

0 0

)
=

(
Ir 0
0 0

)
.

Turning back to S′AS, the two matrices on the diagonal are symmetric, and so there
exist orthonormal matricesM andQ such that

M ′L′(A− AN(N ′AN)−N ′A)LM = Φ1 and

Q′N ′ANQ = Φ2,

where both Φ1 and Φ2 are diagonal. Let

T = S
(
M 0
0 Q

)
= ((I −N(N ′AN)−N ′A)LM,NQ).

Then

T ′AT =
(
M ′ 0
0 Q′

)
S′AS

(
M 0
0 Q

)
=

(
Φ1 0
0 Φ2

)
= Δ1,
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and

T ′BT =
(
M ′ 0
0 Q′

)
S′BS

(
M 0
0 Q

)
=

(
M ′ 0
0 Q′

)(
Ir 0
0 0

)(
M 0
0 Q

)

=
(
M ′M 0

0 0

)
=

(
I 0
0 0

)
= Δ2.

To show that the columns of T are linearly independent, suppose that T

(
u
v

)
= 0.

Then

T

(
u
v

)
= (I −N(N ′AN)−N ′A)LMu +NQv = 0

implies that

BT

(
u
v

)
= B(I −N(N ′AN)−N ′A)LMu + BNQv = BLMu = 0

because BN = 0. That implies that u′M ′L′BLMu = 0 ,⇒ u′u = 0 because
M ′L′BLM = I, hence u = 0. That leaves NQv = 0, which implies that
v′Q′N ′NQv = v′Q′Qv = v′v = 0, which implies that v = 0. �
For the proof of (b), let T be a nonsingular matrix such that T ′AT = Δ1 and
T ′BT = Δ2, where both Δ1 and Δ2 are diagonal. Order columns of T = (T+, T0)

so that

T ′BT =
(
T ′+BT+ T ′+BT0

T ′
0BT+ T ′

0BT0

)
=

(
Δ2+ 0

0 0

)

and

T ′AT =
(
T ′+AT+ T ′+AT0

T ′
0AT+ T ′

0AT0

)
=

(
Δ1+ 0

0 Δ10

)
.

Also, since B is symmetric and nnd ,⇒ T ′
0BT0 = 0 ,⇒ BT0 = 0. Therefore

R(T0) ⊂ R(B)⊥. With T nonsingular, z ∈ R(B)⊥ ,⇒ ∃ x,w such that Bz = 0 =
B(T0x + T+w) = BT+w ,⇒ w′T ′+BT+w = 0 ,⇒ w′Δ2+w = 0 ,⇒ w = 0 ,⇒
z = T0x ∈ R(T0). Hence, R(T0) = R(B)⊥ and R(B) = R(BT+). Define N to be
T0(T

′
0T0)

−1/2, so that N ′N = I and R(N) = R(B)⊥.

Proof (b) With A, B, T = (T+, T0), and N as defined above, proposition (b) is
equivalent to

R(N ′AN)⊥ = R(N ′A)⊥.
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Clearly R(N ′AN) ⊂ R(N ′A), and so it remains to prove that, for any x ∈ *n−r ,
N ′ANx = 0 ,⇒ ANx = 0.

Suppose N ′ANx = 0. Then ANx ∈ R(N)⊥ = R(B) = R(BT+) ,⇒ ∃ w such
that

ANx = BT+w.

Then

w′T ′+BT+w = w′T ′+ANx = 0,

because T ′+AN = 0; and this implies that BT+w = 0 because B is nnd. Therefore
ANx = 0. �
Given A and B, defining T entails the following steps.

(a) Spectrally decompose B to get P+, Λ+, L = P+Λ−1/2
+ , N = P0, and

(N ′AN)−. Check whether R(N ′A) ⊂ R(N ′AN) (one way is whether
(N ′AN)(N ′AN)−N ′A = N ′A).

(b) Spectrally decompose L′(A − AN(N ′AN)−N ′A)L and N ′AN to get M and
Q.

(c) Compute

T = ((I − N(N ′AN)−N ′A)LM,NQ).

(d) ForA = X′X and B = D′D, both nnd, compute T ′AT = Δ1 and T ′BT = Δ2;
permute the columns of T to correspond to the sets J++, J+0, J0+, and J00 that
are non-void.
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Chapter 15
On Explicit Estimation of the Growth
Curve Model with a Block Circular
Covariance Structure

Yuli Liang and Deliang Dai

Abstract Estimation of mean parameters in the growth curve model, when the
covariance matrix has a block circular Toeplitz structure, is considered. The purpose
of this article is to find the appropriate design matrices so that explicit mean
estimators can be obtained.

15.1 Introduction

Nowadays it is very common to collect data hierarchically. Hierarchically structured
data naturally arise in various applications including sociology, education, biology
and life sciences. In particular, for each subject, there may be p variables measured
at different sites or positions. The variables may have variations that differ within
sites or positions and across subjects, which implies the presence of different block
structures in the covariance matrices and the inference should take care concerning
this. The area of block patterned covariance matrices has been intensively developed
since the 1970s by Olkin [15, 16], Khatri [5], Anderson [1], Arnold [2], Krishnaiah
and Lee [7], Arnold [3], among others. Olkin [16] considered a multivariate
normal model in which the covariance matrix exhibits circularity in blocks, as an
extension of the circularly symmetric model considered by Olkin and Press [17].
Although multivariate normal models with block covariance structures were studied
extensively many decades ago, there is a variety of questions still to be addressed.
Viana and Olkin [27] considered a statistical model with a block covariance matrix
that can be used in medical stuides of paired organs. Roy and coauthors [22, 23]
studied different block covariance structures which are present at two-level and
three-level multivariate data. Liang et al. [11, 12] studied the problem of estimation
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in balanced multilevel models with a block circular symmetric covariance structure
and showed that explicit maximum likelihood estimators (MLE) of variance-
covariance components exist under certain restrictions on the parameter space and
derived sufficient conditions for obtaining explicit and unique estimators.

The growth curve model (GCM), which is also known as generalized multivariate
analysis of variance (GMANOVA) or bilinear regression model, was introduced in
[18]. It has been studied for a long time and applied in many different areas [29].
As later defined in (15.1) the GCM has two design matrices: the within individual
design matrix A takes care of the time dependency within the individuals, whereas
the between individual design matrix C takes into account the group effects. For
the GCM with an unstructured covariance matrix, von Rosen [28] derived the
explicit MLEs. Lee [8] considered both estimation and prediction of GCM with the
uniform covariance structure. Ohlson and von Rosen [14] proposed a residual based
approach to obtain explicit estimators for a linearly structured covariance matrix in
GCM. Rao and Reinsel [20, 21] have shown that under a certain covariance structure
(called Rao’s simple covariance structure in Sect. 15.3), the unweighted ordinary
least estimator (OLS) is also the MLE. Explicit estimators are often meaningful
because one can study their basic properties straightforwardly, in particular their
sampling distributions, without worrying about convergence problems as in the case
of numerical estimation methods. The GCM was later extended by Verbyla and
Venables [26] in order to model different growth profiles and it is also called the
“sum of profiles” model or extended bilinear regression model or extended growth
curve model (EGCM). ECGM has been extensively studied by Kollo and von Rosen
[6] in Chapter 4.

The aim of this paper is to extend the patterned covariance model in [12] to
also include patterned mean structure, i.e., a bilinear mean structure, and study the
explicit mean estimators of the growth curve model with a so-called block circular
covariance structure. Our focus is to find the design matrices A and C so that an
explicit estimator of B can be obtained. The structure of the paper is organized
as follows. Section 15.2 introduces GCM and notation, as well as some results
concerning explicit MLEs for mean parameters in multivariate normal models. In
Sect. 15.3, the necessary and sufficient condition that the OLS is the BLUE (best
linear unbiased estimator) for the classical GCM with a block circular covariance
structure is presented. The results concerning EGCM with the sum of two profiles
are derived in Sect. 15.4. A simulation study is given in Sect. 15.5 and conclusion
and discussion are given in Sect. 15.6.

15.2 Preliminaries

In this section a GCM with block circular covariance structure is introduced and
the existence of explicit MLEs for means in multivariate normal models is also
presented.
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15.2.1 GCM with Block Circular Covariance Structure

A GCM with block circular covariance matrix is defined by

Yp×n = Ap×qBq×kCk×n + E, (15.1)

where Y is the response matrix of n subjects measured at p time points. A and
C are within- and between-subject design matrices with ranks q (< p) and k (<
n), respectively. The regression coefficient matrix B is unknown, and the error
matrix E ∼ Np,n(0,Σ, In), i.e., Cov(vecE) = In ⊗ Σ , where vec(•) denotes
the vectorization of a matrix. In model (15.1) we suppose that the covariance matrix
Σ : p × p has a block compound symmetric pattern with a symmetric circular
Toeplitz (SC-Toeplitz) matrix in each block, i.e.

Σ = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2), (15.2)

where In2 is the n2 ×n2 identity matrix, Jn2 = 1n21′
n2

and 1n2 is the n2-dimensional

vector of ones. The SC-Toeplitz matrix Σ(h) = (σ
(h)
ij ) depends on [n1/2] + 1

parameters, the symbol [•] stands for the integer part, and for i, j = 1, . . . , n1, h =
1, 2,

σ
(h)
ij =

{
τ|j−i|+(h−1)([n1/2]+1), if |j − i| ≤ [ n1

2 ],
τn1−|j−i|+(h−1)([n1/2]+1), otherwise,

(15.3)

and τ ′
qs are unknown parameters, q = 0, . . . , 2[n1/2] + 1. For example, when

n1 = 4,

Σ(1) =

⎛
⎜⎜⎜⎝
τ0 τ1 τ2 τ1

τ1 τ0 τ1 τ2

τ2 τ1 τ0 τ1

τ1 τ2 τ1 τ0

⎞
⎟⎟⎟⎠ , Σ(2) =

⎛
⎜⎜⎜⎝
τ3 τ4 τ5 τ4

τ4 τ3 τ4 τ5

τ5 τ4 τ3 τ4

τ4 τ5 τ4 τ3

⎞
⎟⎟⎟⎠ .

15.2.2 Explicit MLEs for Mean Parameters: Zyskind’s
Condition

Consider the general linear model

y = Xβ + ε, (15.4)

where y : n× 1 is a response vector; matrices X : n ×m and β : m× 1 is a vector
of unknown parameters; and ε : n × 1 is a vector of random errors. Moreover, we
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assume that E(ε) = 0, V ar(ε) = Σ . Under a normality assumption on ε, we have
y ∼ Nn(Xβ,Σ), where Σ is assumed to be nonsingular.

Let Xβ̂ denote the MLE of Xβ . Using the normal equation X′Σ−1Xβ =
X′Σ−1y, we have

Xβ̂ = X(X′Σ−1X)−1X′Σ−1y. (15.5)

For (15.5), several authors have discussed the conditions of loosening dependence
on Σ in Xβ̂; for example, see [13, 19] and [31]. If Xβ̂ does not depend on Σ , then
Xβ̂ results in an ordinary least square estimator in model (15.4). According to the
result in [25], a necessary and sufficient condition for

(X′Σ−1X)−1X′Σ−1 = (X′X)−1X′

is that there exists a subset of r orthogonal eigenvectors ofΣ which form a basis of
C (X), where r = rank(X) andC (•) denotes the column vector space. Alternatively,
one can state that C (X) has to be Σ-invariant in order to obtain explicit estimators,
i.e., β in (15.4) has explicit MLE if and only if C (ΣX) ⊆ C (X). In the work
of [19], an easy condition to check the invariance in practice is PXΣ = ΣPX ,
where PX = X(X′X)−1X′. This is to say the projection matrix PX commutes
with the covariance matrix Σ . We refer to this necessary and sufficient condition
as Zyskind’s condition.

15.3 Explicit Mean Parameters in the Growth Curve Model

We now present the corresponding Zyskind’s condition for the explicit estimator of
the matrix B in model (15.1).

Theorem 15.1 Assuming the covariance structure given in (15.2), the OLS estima-
tor of the matrix B in model (15.1), i.e.,

v̂ecB = (CC′ ⊗A′A)−1(C ⊗ A′)vecY, (15.6)

is the BLUE if and only if the matrixA isΣ-invariant or equivalentlyPAΣ = ΣPA.

Proof After vectorizing the model in (15.1) we get

vecY = (C′ ⊗ A)vecB + vecE,

where vecE ∼ Npn(0, In ⊗ Σ). The condition for the existence of the explicit
estimator of vecB becomes

C
(
(In ⊗Σ)(C′ ⊗ A)) = C (C′ ⊗ΣA) ⊆ C (C′ ⊗ A), (15.7)
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i.e., C′ ⊗A is (In⊗Σ)-invariant. Using the result of [6] on page 55, it can be shown
that (15.7) holds if and only if C (ΣA) ⊆ C (A), which implies that vecB has the
explicit estimator given in (15.6) if and only if A is Σ-invariant. Equivalently, the
Zynkind’s condition is given by

PC ′⊗A(In ⊗Σ) = (In ⊗Σ)PC ′⊗A, (15.8)

where PC ′⊗A = (C′⊗A) [(C ⊗ A′)(C′ ⊗A)]−1
(C⊗A′). Using the result of [6] on

page 96, it can be shown that PC ′⊗A = PC ′ ⊗ PA. The condition in (15.8) becomes
PC ′ ⊗ PAΣ = PC ′ ⊗ΣPA, which implies the equality PAΣ = ΣPA. �
For the GCM, Rao [20] has showed that for certain covariance structures, the MLE
of B is identical to the unweighted estimator (OLS) given in (15.6) if and only if Σ
belongs to the class of so-called Rao’s simple covariance (RSC) structure,

Σ = AΓA′ +QΘQ′, (15.9)

where Γ andΘ are q×q and (p−q)× (p−q) unknown positive definite matrices,
and Q is a p × (p − q) matrix orthogonal to the design matrix A, i.e., Q′A = 0.
The covariance structure given in (15.9) contains many parsimonious structures. For
example, [8, 9] showed that the compound symmetry structure (uniform covariance
structure)Σ = σ 2

[
(1 − ρ)Ip + ρJp

]
is a special case of the RSC structure, where

σ 2 > 0 and −1/(p − 1) < ρ < 1, if and only if A′1p1′
pQ = 0, which means

that 1p is in the space generated by A or Q. In the next theorem we show that the
block circular covariance structure given in (15.2) belongs to the class of the RSC
structure.

Theorem 15.2 The Rao’s simple covariance structure Σ = AΓA′ + QΘQ′
includes the covariance structure given in (15.2) as a special case with

Γ = X
[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

]
X′, (15.10)

Θ = D
[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

]
D′, (15.11)

if and only if PAΣ = ΣPA, where X = (A′A)−1A′ andD = (Q′Q)−1Q′.

Proof We use similar techniques as in [9] to prove this theorem. With Γ and Θ
given in (15.10) and (15.11) respectively, we have

Σ = AX
[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

]
X′A′

+ QD
[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

]
D′Q′,
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= PA
[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

]
PA

+ PQ
[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

]
PQ.

Since PAΣ = ΣPA and using the fact PA + PQ = Ip , we have

Σ = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2),

which implies that the “only if” part of the theorem is true. The “if” part can be
shown due to the structure of Σ . Suppose that

Σ = AΓA′ +QΘQ′ = In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2).

Since PA + PQ = Ip , we have

(
A Q

)−1 =
(
X

D

)
.

Moreover,

AΓA′ +QΘQ′ =
(
A Q

)(
Γ 0
0 Θ

)(
A′
Q′

)
,

therefore we have
(
Γ 0
0 Θ

)
=

(
X

D

)[
In2 ⊗Σ(1) + (Jn2 − In2)⊗Σ(2)

] (
X′ D′

)
,

which implies PAΣD′ = DΣPA = 0, i.e., PAΣ = ΣPA, where Σ is given
in (15.2). Hence, the proof is completed. �
From Theorem 15.2 it can be observed that the condition PAΣ = ΣPA coincides
with the Zyskind’s condition given in Theorem 15.1.

15.4 Explicit Mean Parameters in the Extended Growth
Curve Model

In this section we consider the following extended growth curve model (EGCM):

Y = A1B1C1 + A2B2C2 + E, (15.12)
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where B1 and B2 are unknown matrices. von Rosen [28] derived the MLEs of B1
and B2 by assuming the nested subspace condition C (C′

2) ⊆ C (C′
1). In [4] the

explicit MLEs are presented with the nested subspace condition on the within design
matrices C (A2) ⊆ C (A1). We first consider the model with the condition C (A2) ⊆
C (A1) and it is called EBRM2

W in [29]. All design matrices A1, A2, C1 and C2 are
assumed to have full rank. Vectorizing the model (15.12) we get

vecY = (C′
1 ⊗ A1)vecB1 + (C′

2 ⊗ A2)vecB2 + vecE,

=
(
C′

1 ⊗ A1 C
′
2 ⊗A2

)
︸ ︷︷ ︸

Z

(
vecB1

vecB2

)
+ vecE,

where vecE ∼ Npn(0, In⊗Σ). To derive Zyskind’s condition in model (15.12), we
need the expression of PZ . Using the similar techniques as in [30], we have

PZ = [
(C′

1 ⊗ A1)(a + bdc)− (C′
2 ⊗ A2)dc

]
(C1 ⊗ A′

1)

+ [
(C′

2 ⊗ A2)d − (C′
1 ⊗A1)bd

]
(C2 ⊗A′

2),

where

a = (C1C
′
1)

−1 ⊗ (A′
1A1)

−1,

b = (C1C
′
1)

−1C1C
′
2 ⊗ (A′

1A1)
−1A′

1A2,

c = C2C
′
1(C1C

′
1)

−1 ⊗ A′
2A1(A

′
1A1)

−1,

d = (C2C
′
2 ⊗ A′

2A2 − C2PC ′
1
C′

2 ⊗ A′
2PA1A2)

−1.

Since C (A2) ⊆ C (A1) implies that both PA1A2 = A2 and PA2 = PA1PA2 hold,
the expression of d becomes (C2(I − PC ′

1
)C′

2)
−1 ⊗ (A′

2A2)
−1 and PZ becomes

PZ = PC ′
1
⊗ PA1 + PC ′

2,(I−PC′
1
)−1 ⊗ PA2 ,

where PC ′
2,(I−PC′

1
)−1 = (I − PC ′

1
)C′

2(C2(I − PC ′
1
)C′

2)
−1C2(I − PC ′

1
). Therefore,

the Zynkind’s condition in model (15.12) becomes

PC ′
1
⊗ PA1Σ + PC ′

2,(I−PC′
1
)−1 ⊗ PA2Σ

= PC ′
1
⊗ΣPA1 + PC ′

2,(I−PC′
1
)−1 ⊗ΣPA2 ,

which implies that PA1Σ = ΣPA1 and PA2Σ = ΣPA2 . These two conditions can
be simplified to one condition of PA1Σ = ΣPA1 due to the facts PA1A2 = A2 and
PA2 = PA1PA2 . The result is formulated in the next theorem.
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Theorem 15.3 Assuming the covariance structure given in (15.2), the OLS estima-
tor of the matrices B1 and B2 in model (15.12), i.e.,

B̂1 = (A′
1A1)

−1A′
1(Y − A2B̂2C2)C

′
1(C1C

′
1)

−1 (15.13)

B̂2 = (A′
2A2)

−1A′
2Y (I − PC ′

1
)C′

2(C2(I − PC ′
1
)C′

2)
−1 (15.14)

is the BLUE if and only if the matrix A1 is Σ-invariant or equivalently PA1Σ =
ΣPA1 .

It has been shown in Theorem 15.2 that the block circular Toeplitz covariance
matrix belongs to the class of RSC structure and the results can also be applied to
model (15.12) when Σ in (15.2) is assumed.

Corollary 15.1 Suppose C (A2) ⊆ C (A1) in model (15.12) with a covariance
matrix Σ given in (15.2). Then Σ belongs to the class of RSC structure if and only
if PA1Σ = ΣPA1 .

Proof Model (15.12) can be rewritten as

Y =
(
A1 A2

)
︸ ︷︷ ︸

A

(
B1 0
0 B2

)(
C1

C2

)
+ vecE.

Based on Theorem 15.2, the correspondingly necessary and sufficient condition for
model (15.12) is P(A1 A2)Σ = ΣP(A1 A2). The nested subspace condition C (A2) ⊆
C (A1) implies that P(A1 A2) = PA1 . The proof is complete. �

Model (15.12) with another nested subspace conditionC (C′
2) ⊆ C (C′

1) is further
discussed. It is called EBRM2

B in [29]. At first, from C (C′
2) ⊆ C (C′

1) indicates
C2 = QC1 for some matrixQ, we have

Y = A1B1C1 + A1B2Q
′C1 + E = (A1 A2 )

(
B1

B2Q

)
C1 + E with FBG = 0,

where B =
(
B1

B2Q

)
, F = (0 I ), G′ = Qo, and Qo denotes any matrix of full

rank spanning the orthogonal complement to the space C (Q).

Solving the linear equation,B = θ1Go
′ +(F ′)oθ2G′ = θ1Q+

(
I

0

)
θ2Q

o. Thus,

Y = (A1 A2 )︸ ︷︷ ︸
A∗

1

θ1︸︷︷︸
B∗

1

QC1︸︷︷︸
C∗

1

+ (A1 A2 )

(
I

0

)

︸ ︷︷ ︸
A∗

2

θ2︸︷︷︸
B∗

2

QoC1︸ ︷︷ ︸
C∗

2

+E, (15.15)

and C (A∗
2) ⊆ C (A∗

1). Model (15.12) under the condition C (C′
2) ⊆ C (C′

1) is
equivalent to the condition C (A2) ⊆ C (A1) and Theorem 15.3 can be applied.
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The equivalence between EBRMm
B and EBRMm

W , where m is the number of profile
expressions, is presented by von Rosen [29] in Section 3.5.

15.5 Simulation Study

In this section a simulation study is conducted as a summary of the derived results.
Three mean structures are studied and for each case, 500 replicates of the following
procedure are performed.

1. Randomly generate a sample of size n = 27 from a growth curve model with
a block circular Toepitz covariance structure given in (15.2) with n2 = 3 and
n1 = 4.

2. Calculate the explicit mean estimates in each replicate.
3. Calculate the average values of the obtained estimates after 500 replicates.

For the mean structure A12×2B2×2C2×27, data is generated with parameters

A = 13 ⊗

⎛
⎜⎜⎜⎝

1 1
1 1
1 −1
1 −1

⎞
⎟⎟⎟⎠ , B =

(
1 1
1 1

)
, C =

(
1′

11 0′
16

0′
11 1′

16

)
.

The condition PAΣ = ΣPA is satisfied here. The explicit OLS estimates of the
matrix B is calculated according to (15.6) and based on 500 replicates the average
estimates are given by

B̂ =
(

0.9982 0.9991
1.0001 0.9964

)
.

For the mean structure A1B1C1 + A2B2C2, where C (A2) ⊆ C (A1), data is
generated with parameters

A1 = 13 ⊗

⎛
⎜⎜⎜⎝

1 1
1 1
1 −1
1 −1

⎞
⎟⎟⎟⎠ , B1 =

(
1
1

)
, C1 =

(
1′

11 0′
16

)
,

A2 = 112, B2 = 1, C2 =
(

0′
11 1′

16

)
.



264 Y. Liang and D. Dai

Here C (A2) ⊆ C (A1) is satisfied and PA1Σ = ΣPA1 . The explicit OLS
estimates of the matrices B1 and B2 are calculated according to (15.13) and based
on 500 replicates the average estimates are given by

B̂1 =
(

0.9982
1.0001

)
, B̂2 = 0.9991.

For the mean structure A1B1C1 + A2B2C2, where C (C′
2) ⊆ C (C′

1), data is
generated with parameters

A1 = 13 ⊗

⎛
⎜⎜⎜⎝

1 1
1 1
1 −1
1 −1

⎞
⎟⎟⎟⎠ , B1 =

(
1 1
1 1

)
, C1 =

(
1′

11 0′
16

0′
11 1′

16

)
,

A2 = 13 ⊗

⎛
⎜⎜⎜⎝

1
−1
1

−1

⎞
⎟⎟⎟⎠ , B2 = 1, C2 =

(
0′

11 1′
16

)
.

Note that C (C′
2) ⊆ C (C′

1) holds. After a reparametrization the model under
C (C′

2) ⊆ C (C′
1) can be converted to C (A∗

2) ⊆ C (A∗
1), where A∗

1 = (A1 A2 ) and

A∗
2 = (A1 A2 )

(
I2

0′
2

)
. Based on (15.15) we haveB =

(
B1

B2Q

)
, whereQ = (0 1).

Moreover, C∗
1 = QC1 and C∗

2 = QoC1, where Qo = (−1 0). The explicit OLS
estimates of the matrices B∗

1 and B∗
2 were calculated according to (15.13) and based

on 500 replicates the average estimates of B are given by

B̂ =
⎛
⎜⎝

0.9982 0.9991
1.0001 0.9964
0.0000 0.9980

⎞
⎟⎠ .

From the above simulations one conclusion is that with appropriate design
matrices, the explicit estimates perform very well and are close to the true values.

15.6 Conclusion and Discussion

The explicit mean estimators of the patterned covariance GCM and EGCM are
studied in this paper. It has been shown that the class of RSC structure contains
the block circular covariance matrix in (15.2) as a special case and the explicit
MLEs of the mean parameters are equal to the unweighted estimators and they are
BLUE. It is worth mentioning that the eigenvectors of Σ in (15.2) are functionally
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independent of the Σ elements [11], which makes it is somehow easier to find
the within design matrices that satisfy the necessary and sufficient conditions in
Theorems 15.1 and 15.3. The methodology presented in Sects. 15.3 and 15.4 can be
extended to the situation where the covariance matrixΣ has other block covariance
structures, e.g., block compound symmetry (BCS) structure (see [24], for example)
and circular blocks with compound symmetry matrices inside [10]. We hope to
communicate the relevant results in a future correspondence.
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Chapter 16
Space Decomposition and Estimation
in Multivariate Linear Models

Joseph Nzabanita and Innocent Ngaruye

Abstract Linear models are important in statistical analysis. In many real situa-
tions, these models become more and more complex, as such the estimation of
model parameters constitutes a big challenge. To overcome this challenge many
approaches have been proposed and space decomposition has emerged as a powerful
tool in handling these complex models. This work gives a comprehensive review
of some of challenges related to complex multivariate models and how the space
decomposition has been successfully used. In this review, we first present the space
decomposition as a tool to decompose complex models into tractable models that
are easy to handle for estimation and testing. On the other hand, we give another
space decomposition approach used for obtaining explicit estimators in multivariate
linear models. Some examples on how this decomposition is performed for specific
multivariate linear models are presented for both approaches.

16.1 Introduction

The problems of estimation and testing, in linear models, were relatively straight
forward until Pottoff and Roy [10] introduced the Generalized Multivariate Analysis
of Variance (GMANOVA) model, which is also known as the Growth Curve Model.

Definition 16.1 LetX : p×n,A : p×q , q ≤ p, B : q×k, C : k×n, r(C)+p ≤ n,
where r(·) represents the rank of a matrix. The growth curve model is given by

X = ABC + E, (16.1)
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where columns of E are assumed to be independently distributed as a multivariate
normal distribution with mean zero and a positive definite dispersion matrixΣ; i.e.,
E ∼ Np,n(0,Σ, In).
The matrices A and C, often called, respectively, within-individuals and between-
individuals design matrices, are known matrices whereas matrices B and Σ are
unknown parameter matrices.

The aim of Pottoff and Roy [10] was to build a model that is particularly useful
to study many growth curve problems. They considered the problem of estimating
parameters in GMANOVA model and testing hypothesis of the form

GBH = 0, (16.2)

whereG and H are known matrices.
The strategy adopted to estimate and test the hypothesis in (16.2) was to reduce

the model to the MANOVA model, which by the time had been already treated in
literature. This transformation was achieved by pre-multiplying the model in ( 16.1)
with (AG−1A′)−1AG−1, whereG : p×p was allowed to be any symmetric positive
definite matrix or any other non-singular matrix such that AG−1A′ is invertible.
Then, the model becomes the usual MANOVA with a new covariance matrix for
each column of the form

Ω = (AG−1A′)−1AG−1ΣG−1A′(AG−1A′)−1. (16.3)

What they actually did was to decompose model (16.1) into two models one of
which is a usual MANOVA.

Due to the complexity of data from various fields of applied research, it is
inevitable that complex multivariate linear models are to be considered. For such
kind of models, the estimation of model parameters and hypotheses testing often
constitutes a big issue. For this class of multivariate linear models, it is essential
to make a decomposition of subspaces in order to obtain simpler models that are
easy to handle when estimating parameters or performing some hypothesis testing.
This decomposition is based on some subspace relations about matrix algebra of
vector spaces such as linear transformations and basic relations for column vector
spaces. This consists of vector space decomposition into orthogonal direct sum
of subspaces. Common applications induce the decomposition of the whole space
according to design matrices and the estimators are obtained by projections of
observations using induced space decomposition. The aim of this chapter is to
illustrate, using examples, how the space decomposition is a powerful tool for
estimating and testing in complex multivariate linear models.

Throughout this work the following notations will be used. C (A), r(A) and tr(A)
denote the column space, the rank and the trace of a matrix A, respectively. For a
positive definite matrix S and any matrix A, PA,S = A(A′S−1A)−A′S−1 defines
the projector onto the space CS(A), where the subscript S in CS(A) indicates that
the inner products are defined via the positive definite matrix S−1. Note that PoA,S =
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I − P ′
A,S = PAo,S−1 is a projector onto the space C (A)⊥ = C (Ao), where Ao

denotes any matrix of full rank spanning the orthogonal complement to the space
C (A). If S = I , we simply write PA instead of PA,I . The symbol ⊗ denotes the
Kronecker product of matrices or the tensor product of linear spaces. The symbol ⊕
denotes the direct sum of linear spaces, while the symbol � denotes the direct sum
of tensor spaces.

16.2 Decomposition of Complex Models to Simpler Models

In this section a comprehensive review on how to decompose complex multivariate
linear models to simpler ones is presented. The class of models considered are
bilinear regression models that include random effects with and without latent
variables [8, 13].

16.2.1 Multivariate Linear Model for Repeated Measures Data

Consider a multivariate linear regression model for repeated measurements over p
time points for n units divided into k non-overlapping group units, which is given
by

Y =ABC + B1C1 + UZ + E, (16.4)

where Y : p×n is a data matrix, B : q×k, B1 : p×k1 andU : p×m are unknown
parameter matrices, while C1 : k1 × n is known matrix of covariables. Moreover,
E ∼ Np,n(0,Σe, In) and U ∼ Np,m(0,Σu, Im) are independently distributed.

The matrices A : p × q , C : k × n and Z : m × n are known design matrices
of full row rank such that C (Z′) ⊆ C (C′) and ZZ′ = Im, where C (A) denotes the
column vector space generated by the columns of an arbitrary matrixA. This model
has been considered in [8] for small area estimation of repeated measures data. For
simplicity and without loss of generality, let us assume that A = I .

In order to perform the estimation of model parameters, we make an orthogonal
transformation of model in (16.4) and partition it into three independent models. We
make a one-one transformation by post-multiplying the model in (16.4) by a matrix
M : n× n

M = [M1 :M2] : (n× r n× (n− r))
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such that

C (M1) = C (C′ : Z′) and C (M2) = C (C′ : Z′)⊥,

M ′
1M1 = Iq , M ′

2M2 = In−r andM ′
1M2 = 0,

where r = rank(C′ : Z′) with r > m and C (A)⊥ stands for the column space
spanning the orthogonal complement of the matrix A.

Lemma 16.1 Consider the orthogonal transformation obtained by post-
multiplying the model in (16.4) by the matrixM .

(i) The matrixW =M ′
1Z

′ZM1 is idempotent.
(ii) Let W be diagonalized by W = ΩDΩ ′ with Ω = [

Ω1 : Ω2
]
, where Ω1 and

Ω2 are orthogonal matrices of eigenvectors form and n−m elements. Denote
by

Ki = CRi, and Ri = M1Ωi, i = 1, 2,

then with this orthogonal transformation, we obtain the three independently
distributed models

YR1 ∼ Np,m
(
BK1 + B1C1R1,Σu +Σe, Im

)
,

YR2 ∼ Np,r−m
(
BK2 + B1C1R2,Σe, Ir−m

)
,

YM2 ∼ Np,n−r
(
B1C1M2,Σe, In−r

)
.

Proof

(i) Straightforward calculations show that

WW = M ′
1Z

′ZM1M
′
1Z

′ZM1.

But C (Z′) ⊆ C (M1) and ZZ′ = I implies that ZM1M1Z
′ = I and hence

WW = W . Moreover, since C (M1) = C (C′ : Z′) and C (M2) = C (C′ : Z′)⊥,
it follows that CM2 = 0 and ZM2 = 0 and thus

YM2 = B1C1M2 + EM2.

Furthermore,

YR1 =BK1 + B1C1R1 + (UZ + E)R1

YR2 =BK2 + B1C1R2 + ER2,
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and

R′
1Z

′ZR1 = Ω ′
1ΩDΩ

′Ω1 = Im,
R′

2Z
′ZR2 = Ω ′

2ΩDΩ
′Ω2 = In−r

M ′
2M2 = In−r .

Hence,

YR1 ∼ Np,m
(
BK1 + B1C1R1,Σu +Σe, Im

)
,

YR2 ∼ Np,r−m
(
BK2 + B1C1R2,Σe, Ir−m

)
,

YM2 ∼ Np,n−r
(
B1C1M2,Σe, In−r

)
.

The independence of YR1, YR2 and YM2 follows by the fact that the matrices
Ω1, Ω1 andM2 are pairwise orthogonal. �

The following theorem summarize the estimation of mean and covariance which is
performed using a likelihood based approach while the prediction of random effect
is performed using Henderson’s approach consisting of the maximization of the joint
density f (Y,U) with respect to U under the assumption of knownΣe and Σu [3].

Theorem 16.1 Consider the model (16.4). Assume that the matrices C1 andKo2
′K1

are of full rank. Then the maximum likelihood estimators for B1,B, Σu and the
predictor of U are given by

B̂1 =YP1C
′
1(C1P1C

′
1)

−1,

B̂ =YR2K
′
2(K2K

′
2)

− − YP1C
′
1(C1P1C

′
1)

−1C1R2K
′
2(K2K

′
2)

− + TKo′2 ,

Σ̂u = 1

m− 1
YP2R1QK ′

1K
o
2
R′

1P
′
2Y

′ −Σe,

Û =(Σe + Σ̂u)−1Σ̂uYP2R1QK ′
1K

o
2
R′

1Z
′,

where

P1 =M2M
′
2 + R2QK ′

2
R′

2,

P2 =In − R2K
′
2(K2K

′
2)

−C,

and T is an arbitrary matrix.

Proof We consider the likelihood of joint density function of YR2 and YM2.
Differentiating its log-likelihood with respect to B1 and B leads to the likelihood
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equations

YM2M
′
2C

′
1 + YR2R

′
2C

′
1 − BK2R

′
2C

′
1 − B1(C1M2M

′
2C

′
1 + C1R2R

′
2C

′
1) =0

(YR2 − BK2 − B1C1R2)K
′
2 =0.

These equations lead to

B1C1(M2M
′
2 + R2R

′
2)C

′
1 =Y (M2M

′
2 + R2R

′
2)C

′
1 − BK2R

′
2C

′
1 (16.5)

B =YR2K
′
2(K2K

′
2)

− − B1C1R2K
′
2(K2K

′
2)

− + TKo′2 ,

(16.6)

for arbitrary matrix T . Insertingx the expression of B from Eq. (16.6) into Eq. (16.5)
yields

B1C1(M2M
′
2 + R2QK ′

2
R′

2)C
′
1 = Y (M2M

′
2 + R2QK ′

2
R′

2)C
′
1.

Therefore, for matrix C1 of full rank, we obtain

B̂1 =YP1C
′
1(C1P1C

′
1)

−1,

B̂ =YR2K
′
2(K2K

′
2)

− − YP1C
′
1(C1P1C

′
1)

−1C1R2K
′
2(K2K

′
2)

− + TKo′2 ,

where

P1 =M2M
′
2 + R2QK ′

2
R′

2.

Further, to estimate the covariance matrixΣu, we maximize the likelihood function
of YR1 with respect to Σu after inserting the expressions of B1 and B. The
prediction of random effect matrix U is derived by maximizing the joint density
f (Y,U) with respect to U assuming the other parameters B, B1 and Σu to be
known. Straightforward calculations show that

Σ̂u = 1

m− 1
Y
(
In − R2K

′
2(K2K

′
2)

−C
)
R1QK ′

1K
o
2
R′

1

(
In − R2K

′
2(K2K

′
2)

−C
)′
Y ′ −Σe,

Û =(Σe + Σ̂u)−1Σ̂uY
(
In − R2K

′
2(K2K

′
2)

−C
)
R1QK ′

1K
o
2
R′

1Z
′,

which completes the proof. �
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16.2.2 Reduced Rank Bilinear Regression Model

We consider a bilinear regression model that includes random effects and latent
variables. The vector space decomposition is then applied to remove random effects,
in order to derive explicit estimators. This model is expressed as

Y = ABC + B1C1 + ΓX + UZ + E, (16.7)

where A : p × q , C : k × n, C1 : k1 × n, X : k2 × n are all known matrices

with C (X′) ⊆ C (C′) and rank(Γ ) < min(p, r). Moreover,U ∼ Np,m
(

0,Σu, Im
)

and E ∼ Np,m
(

0,Σe, Ψ
)

are independently distributed. The matrix Z : m × n
is standardized in such a way that ZΨ−1Z′ = Im. The covariance matrix Ψ is
assumed to be known and the parameters of the model, which are to be estimated
are B,B1, Γ,Σu,U and Σe. This model has been considered in [13] to produce
small area estimates for repeated surveys with latent variables.

Similarly to the previous model, we can make a one-one transformation by post-
multiplying the model (16.7) by a matrixM : n× n

M = [M1 :M2] : (n× r n× (n− r))

such that

C (M1) = C (Ψ−1/2C′ : Ψ−1/2C′
1 : Z′) and C (M2) = C (C′ : C′

1 : Z′)⊥,

assuming that M ′
1M1 = Ir , where r = rank(C′ : C′

1 : Z′) with r > m and Ψ−1/2

stands for a symmetric square root of Ψ .
Since the matrixW =M ′

1Ψ
−1/2Z′ZΨ−1/2 is idempotent, it can be diagonalized

by consideringW = ΩDΩ ′ withΩ = [
Ω1 : Ω2

]
, whereΩ1 andΩ2 are orthogonal

matrices of eigenvectors form and n−m elements.
Denote by

Ri = Ψ−1/2MiΩi, i = 1, 2.

Then the one-one transformation of model (16.7) yields three independent models

YR1 ∼ Np,m
(
ABCR1 + B1C1R1,Σu +Σe, Im

)
, (16.8)

YR2 ∼ Np,r−m
(
ABCR2 + B1C1R2,Σe, Ir−m

)
, (16.9)

YM2 ∼ Np,n−r
(

0,Σe, In−r
)
. (16.10)
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The estimation is performed by utilizing model (16.9) and (16.10) to estimate
B,B1, Γ and Σe, and then inserting these estimators in model (16.8) to estimate
Σu. The prediction of random effects matrix U can be done by the maximizing of
the joint density f (vecY, vecU) with respect to vecU assuming other parameters to
be known, where vecA denotes the columnwise vectorization of the matrix A. More
details and further considerations can be found in [13].

16.3 Space Decomposition for Explicit Estimators in the
Extended GMANOVA When the Covariance Matrix is
Linearly Structured

This section gives another space decomposition approach used for obtaining explicit
estimators in multivariate linear models. The example given on the extended
GMANONVA when the covariance matrix is linearly structured has been treated in
[9]. The GMANOVA model, also known as the classical growth curve model (GCM)
by Pottoff and Roy [10] has emerged as a powerful tool to deal with the growth curve
problems related to short time series. The GMANOVA model was extended later
on by Verbyla and Venables [11] to handle different growth profiles. The resulted
model was called sum of profiles model, also known as extended growth curve
model (EGCM) or extended GMANOVA model in statistical literature. In [11] an
iterative algorithm to obtain the maximum likelihood estimators (MLEs), which
could not be obtained explicitly, was proposed. Later, von Rosen [12] studied the
model and derived explicit MLEs under the additional nested subspaces condition
on the between design matrices as in Definition 16.2.

Definition 16.2 Let X : p × n, Ai : p × qi , Bi : qi × ki , Ci : ki × n, r1 + p ≤ n,
i = 1, 2, . . . ,m, C (C′

i ) ⊆ C (C′
i−1), i = 2, 3, . . . ,m, where ri = r(Ci). The

Extended Growth Curve Model is given by

X =
m∑
i=1

AiBiCi + E,

where columns of E are assumed to be independently distributed as a p-variate
normal distribution with mean zero and a positive definite dispersion matrixΣ; i.e.,
E ∼ Np,n(0,Σ, In). The matrices Ai and Ci , often called design matrices, are
known matrices whereas matrices Bi and Σ are unknown parameter matrices.

The model in Definition 16.2 has been extensively studied by several authors and
the book by [7] [Chapter 4] contains useful detailed information about uniqueness,
estimability conditions, moments and approximative distributions of the maximum
likelihood estimators. Some other authors considered the model with slightly
different conditions. For example in [2] the explicit MLEs were presented with
the nested subspace conditions on the within design matrices instead. In [4, 5]
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the extended GMANOVA model without nested subspace conditions but with
orthogonal design matrices was considered and generalized least-squares estimators
and their properties were studied. Nzabanita et al. [9] derived explicit estimators of
parameters in the extended growth curve model with a linearly structured covariance
matrix, which means that for Σ = (σij ) the only linear structure between the
elements is given by |σij | = |σkl | �= 0 and there exist at least one (i, j) �= (k, l)

so that |σij | = |σkl| �= 0. The proposed estimation procedure was based on the
decomposition of the residual space into m + 1 subspaces, and on the study of
residuals obtained from projecting observations onto those subspaces. In this section
this idea is illustrated.

16.3.1 Main Idea on Space Decomposition

We start with recalling the result established in [12] about the estimation of the mean
structure in the extended GMANOVA model.

Theorem 16.2 Let B̂i ’s be the maximum likelihood estimators of Bi ’s in the model
as in Definition 16.2. Then

Pr

m∑
i=r
AiB̂iCi =

m∑
i=r
(I − Ti)XC′

i (CiC
′
i )

−Ci,

where

Pr = Tr−1Tr−2 × · · · × T0, T0 = I, r = 1, 2, . . . ,m+ 1,

Ti = I − PiAi(A′
iP

′
i S

−1
i PiAi)

−A′
iP

′
i S

−1
i , i = 1, 2, . . . ,m,

Si =
i∑
j=1

Kj , i = 1, 2, . . . ,m,

Kj = PjX(C′
j−1(Cj−1C

′
j−1)

−Cj−1 − C′
j (CjC

′
j )

−Cj)X′P ′
j , C0 = I.

A useful result is the corollary of this theorem when r = 1, which gives the
estimated mean structure, i.e.,

Ê[X] =
m∑
i=1

AiB̂iCi =
m∑
i=1

(I − Ti)XC′
i (CiC

′
i )

−Ci. (16.11)
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Replacing Ti in (16.11) by its expression given in Theorem 16.2 we get

Ê[X] =
m∑
i=1

PiAi(A
′
iP

′
i S

−1
i PiAi)

−A′
iP

′
i S

−1
i XC

′
i (CiC

′
i )

−Ci,

or equivalently

Ê[X] =
m∑
i=1

PPiAi ,SiXPC ′
i
. (16.12)

Noticing that the matrices PPiAi ,Si and PC ′
i

are projector matrices, we see that
estimators of the mean structure are based on a projection of the observations on
the space generated by the design matrices. Naturally, the estimators of the variance
parameters are based on a projection of the observations on the residual space, that
is the orthogonal complement to the design space.

If Σ was known, we would have obtained from the least squares theory the best
linear estimator (BLUE) given by

Ẽ[X] =
m∑
i=1

PP̃iAi ,ΣXPC
′
i
, (16.13)

where Si in Pi is replaced with Σ to get P̃i . Thus, we see that in the projections, if
Σ is unknown, the parameter has been replaced with Si ’s, which according to their
expressions are not maximum likelihood estimators. However, Si ’s define consistent
estimators of Σ in the sense that n−1Si → Σ in probability.

Applying the vec-operator on both sides of (16.13) we get

vec(Ẽ[X]) =
m∑
i=1

(PC ′
i
⊗ PP̃iAi ,Σ)vecX.

The next theorem is essential for the development of the sequel of this paper.

Theorem 16.3 Let P = ∑m
i=1 PC ′

i
⊗ PP̃iAi,Σ and Vi = CΣ(P̃iAi), i =

1, 2, . . . ,m. Then,

(i) The subspaces Vi’s are mutually orthogonal and

V1 ⊕ V2 ⊕ · · · ⊕ Vi = CΣ(A1 : A2 : · · · : Ai), i = 1, 2, . . . ,m;

(ii) The matrix P is a projection matrix;
(iii) C (P ) = ∑m

i=1 C (C
′
i )⊗ Vi .
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Proof

(i) From the definition of P̃i ’s and using Theorem 1.2.16. and Proposition 1.2.2.
in [7], we have the following

V1 = CΣ(P̃1A1) = CΣ(A1),

V2 = CΣ(P̃2A2)

= CΣ((I − PA1,Σ)A2)

= CΣ(A1 : A2) ∩ CΣ(A1)
⊥,

V3 = CΣ(P̃3A3)

= CΣ((I − PP̃2A2,Σ
)P̃2A3)

= CΣ(P̃2(A2 : A3)) ∩ CΣ(P̃2A2)
⊥,

= CΣ((I − PA1,Σ)(A2 : A3)) ∩ CΣ((I − PA1,Σ)A2)
⊥,

= (CΣ(A1)
⊥ ∩ CΣ(A1 : A2 : A3)) ∩ (CΣ(A1 : A2) ∩ CΣ(A1)

⊥)⊥,

= (CΣ(A1)
⊥ ∩ CΣ(A1 : A2 : A3)) ∩ (CΣ(A1 : A2)

⊥ + CΣ(A1)),

= CΣ(A1 : A2 : A3) ∩ (CΣ(A1)
⊥ ∩ CΣ(A1 : A2)

⊥ + CΣ(A1)
⊥ ∩ CΣ(A1)),

= CΣ(A1 : A2 : A3) ∩ CΣ(A1 : A2)
⊥,

and in general

Vi = CΣ(A1 : A2 : · · · : Ai) ∩ CΣ(A1 : A2 : · · · : Ai−1)
⊥, i = 1, 2, . . . ,m,A0 = 0.

This shows that the subspaces Vi’s are mutually orthogonal. Now we prove the
second assertion. Clearly

V1 ⊕ V2 ⊕ · · · ⊕ Vi ⊆ CΣ(A1 : A2 : · · · : Ai).

Since CΣ(A1 : A2 : · · · : Ai−1) ⊂ CΣ(A1 : A2 : · · · : Ai),

dim(Vi ) = r(A1 : · · · : Ai)− r(A1 : · · · : Ai−1),

so that

i∑
j=1

dim(Vj ) = r(A1)+ r(A1 : A2)− r(A1)+ · · · + r(A1 : · · · : Ai)− r(A1 : · · · : Ai−1)

= r(A1 : · · · : Ai).
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This proves that the dimension of V1 ⊕ V2 ⊕ · · · ⊕ Vi equals the dimension of
CΣ(A1 : A2 : · · · : Ai) and hence the result follows.

(ii) We need to show that P is an idempotent matrix. Let Hi = PP̃iAi ,Σ and Gi =
PC ′

i
⊗Hi . Then, P = ∑m

i=1Gi and

PP =
m∑
i=1

G2
i +

∑
i �=j
GiGj .

On one hand,Gi is obviously an idempotent matrix as PC ′
i

and Hi are. On the
other hand, from calculations in (i), Hi may be rewritten as

Hi = PAi ,Σ − PAi−1,Σ ,

where Ai = (A1 : · · · : Ai) and thus,

m∑
i=1

Hi = PAm,Σ and
m∑
i=1

r(Hi) = r(PAm,Σ) = r(Am).

So, from Lemma 3 in [6] it follows that HiHj = 0 for i �= j , which in turn
implies that GiGj = 0 for i �= j since GiGj = PC ′

i
PC ′

j
⊗ HiHj . Hence

P 2 = P and P is a projector.
(iii) With notations and calculations introduced in the proof of (ii) it is clear that

C (P ) = ∑m
i=1 C (Gi). But,

C (Gi) = C (PC ′
i
⊗Hi) = C (PC ′

i
)⊗ C (Hi) = C (PC ′

i
)⊗ Vi ,

which completes the Proof of Theorem 16.3. �
We refer to the space C (P ) as the mean space and it is used to estimate the

mean parameters whereas C (P )⊥ is referred to as the residual space and it is used
to create residuals.

When Σ is not known it should be estimated. The general idea is to use the
variation in the residuals. For our purposes we decompose the residual space into
m+ 1 orthogonal subspaces and Theorem 16.4 shows how such a decomposition is
made.

Theorem 16.4 Let C (P ) and Vi be given as in Theorem 16.3. Then

C (P )⊥ = I1 � I2 � · · · � Im+1,
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where

Ir = Wm−r+2 ⊗ (⊕r−1
i=1Vi )

⊥, r = 1, 2, . . . ,m+ 1,

Wr = C (C′
m−r+1) ∩ C (C′

m−r+2)
⊥, r = 1, . . . ,m+ 1,

in which by convenience (⊕0
i=1Vi )

⊥ = ∅⊥ = V0 = R
p, C0 = I and Cm+1 = 0.

Proof On one hand, the conditions C (C′
i ) ⊆ C (C′

i−1), i = 2, 3, . . . ,m, imply that
C (C′

1) can be decomposed as a sum of orthogonal subspaces as follows:

C (C′
1) = [C (C′

1) ∩ C (C′
2)

⊥] ⊕ [C (C′
2) ∩ C (C′

3)
⊥] ⊕ · · ·

⊕[C (C′
m−1) ∩ C (C′

m)
⊥] ⊕ C (C′

m).

On the other hand, by Theorem 16.3, the subspaces Vi , i = 1, 2, . . . ,m; are
orthogonal. Hence, the result follows by letting

W1 = C (C′
m), W2 = C (C′

m−1) ∩ C (C′
m)

⊥, . . . ,

Wm = C (C′
1) ∩ C (C′

2)
⊥, Wm+1 = C (C′

1)
⊥,

Vm+1 = (⊕mi=1Vi )
⊥, V0 = ⊕mi=1Vi ⊕ Vm+1,

which completes the proof. �
The residuals obtained by projecting data to these subspaces are

Hr = (I −
r−1∑
i=1

PP̃iAi,Σ)X(PC
′
r−1

− PC ′
r
), (16.14)

r = 1, 2, 3, . . . ,m+ 1, and here we use for convenience
∑0
i=1 PPiAi ,Si = 0.

In practice Σ is not known and should be estimated. A natural way to get an
estimator of Σ is to use the sum of the squared estimated residuals. If Σ is not
structured, we estimate the residuals in (16.14) with

Rr = (I −
r−1∑
i=1

PPiAi,Si )X(PC ′
r−1

− PC ′
r
), r = 1, 2, 3, . . . ,m+ 1,

where Pi and Si are given as in Theorem 16.2. Thus, a natural estimator of Σ is
obtained from the sum of the squared residuals, i.e.,

nΣ̂ = R1R
′
1 + R2R

′
2 + · · · + Rm+1R

′
m+1,

which is the maximum likelihood estimator.
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16.3.2 Estimators When the Covariance Matrix is Linearly
Structured

This section considers the extended growth curve model as in Definition 16.2, but
with a linearly structured covariance matrixΣ . ThisΣ will be denotedΣ(s) so that
E ∼ Np,n(0,Σ(s), In).

The estimation procedure presented here was proposed in [9] and relies on the
decomposition of the spaces done in Sect. 16.3.1. The inner products in the spaces
Vi (i = 1, 2, . . . ,m), the residuals in (16.14) are estimated sequentially, and finally
the covariance matrix is estimated using all estimated residuals.

To start with, it is natural to use Q1 = H1H
′
1, H1 = X(I − PC ′

1
), to estimate

the inner product in the space V1. We apply the general least squares approach

and minimize tr
{
(Q1 − (n− r1)Σ(s))( )′

}
with respect to Σ(s), where the notation

(Y )( )′ stands for (Y )(Y )′. This is done in Lemma 16.2.
By vecΣ(K) we mean the patterned vectorization of the linearly structured

matrixΣ(s), that is the columnwise vectorization ofΣ(s) where all 0’s and repeated
elements (by modulus) have been disregarded. Then there exists a transformation
matrix T such that

vecΣ(K) = T vecΣ(s) or vecΣ(s) = T +vecΣ(K), (16.15)

where T + denotes the Moore-Penrose generalized inverse of T . Furthermore, from
[7], we have

dΣ(s)

dΣ(K)
= (T +)′. (16.16)

Lemma 16.2 Let Q1 = H1H
′
1 = X(I − PC ′

1
)X′, Υ̂1 = (n − r1)I . Then, the

minimizer of

f1(Σ
(s)) = tr

{
(Q1 − (n− r1)Σ(s))( )′

}

is given by

vecΣ̂(s)1 = T + (
(T +)′Υ̂ ′

1Υ̂1T
+)− (T +)′Υ̂ ′

1vecQ1.

Proof We may write

tr
{(
Q̂1 − (n− r1)Σ(s)

)
()′

}
=

(
vec

(
Q̂1 − (n− r1)Σ(s)

))′ ()

=
(

vecQ̂1 − Υ̂1vecΣ(s)
)′ ()

,
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and thus

f1(Σ
(s)) =

(
vecQ̂1 − Υ̂1vecΣ(s)

)′ ()
. (16.17)

Differentiating the expression in the right hand side of (16.17) with respect to
vecΣ(K) and equalizing to 0, we get

− 2
dΣ(s)

dΣ(K)
Υ̂ ′

1(vecQ̂1 − Υ̂1vecΣ(s)) = 0. (16.18)

From (16.15), (16.16) and (16.18) we obtain the linear equation

(T +)′Υ̂ ′
1Υ̂1T

+vecΣ(K) = (T +)′Υ̂ ′
1vecQ̂1,

which is consistent and a general solution is given by

vecΣ(K) = (
(T +)′Υ̂ ′

1Υ̂1T
+)− (T +)′Υ̂ ′

1vecQ̂1 + ((T +)′Υ̂ ′
1Υ̂1T

+)oz,

where z is an arbitrary vector. Hence, using (16.15) we obtain a unique minimizer
of (16.17) given by

vecΣ̂(s)1 = T + (
(T +)′Υ̂ ′

1Υ̂1T
+)− (T +)′Υ̂ ′

1vecQ̂1, (16.19)

and the proof is complete. �
Lemma 16.2 gives the first estimator of Σ(s). Assuming that Σ̂(s)1 is positive

definite (which always holds for large n), we can use Σ̂(s)1 to define the inner product
in the space V1. Therefore we consider C

Σ̂
(s)
1
(A1) instead of CΣ(s) (A1). At the same

time, an estimator of M1 and H2 are obtained by projecting the observations on
C (C′

1)⊗ V1 and
(
C (C′

1) ∩ C (C′
2)

⊥) ⊗ V ⊥
1 respectively, i.e.,

M̂1 = P
A1,Σ̂

(s)
1
XPC ′

1
, (16.20)

Ĥ2 = (I − P
A1,Σ̂

(s)
1
)X(PC ′

1
− PC ′

2
).

At the second step, the estimator of Σ(s) is obtained using the sum of Q1 and
Ĥ2Ĥ

′
2. Note that

Ĥ2Ĥ
′
2 = (I − P

A1,Σ̂
(s)
1
)X(PC ′

1
− PC ′

2
)X′(I − P

A1,Σ̂
(s)
1
)′.
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Put T̂1 = I−P
A1,Σ̂

(s)
1

andW1 = X(PC ′
1
−PC ′

2
)X′. Then Ĥ2Ĥ

′
2 = T̂1W1T̂ ′

1 andQ1

is independent of W1. Therefore, the conditional distribution of Ĥ2Ĥ
′
2 with respect

toQ1 is

Ĥ2Ĥ
′
2|Q1 ∼ Wp

(
T̂1Σ

(s)T̂ ′
1 , r1 − r2

)
,

whereWp(·, ·) stands for the Wishart matrix.
The following lemma gives a second estimator of Σ(s) where again the general

least squares approach is employed.

Lemma 16.3 Let Q̂2 = Q1 + Ĥ2Ĥ
′
2, Υ̂2 = (n − r1)I + (r1 − r2)T̂1 ⊗ T̂1. Then,

the minimizer of

f2(Σ
(s)) = tr

{
(Q̂2 − [(n− r1)Σ(s) + (r1 − r2)T̂1Σ

(s)T̂ ′
1 )( )

′}

is given by

vecΣ̂(s)2 = T + (
(T +)′Υ̂ ′

2Υ̂2T
+)− (T +)′Υ̂ ′

2vecQ̂2.

Proof Similar as in Lemma 16.2. �
Now assume that Σ̂(s)2 is positive definite and use it to define the inner product in

V2, i.e., considerC
Σ̂
(s)
2
(T̂1A2) instead of CΣ(s) (T1A2). This gives us an estimator of

M2 and an estimator ofH3 by projecting the observations on C (C′
2)⊗C

Σ̂
(s)
2
(T̂1A2)

and (C (C′
2) ∩ C (C′

3)
⊥)⊗

(
C
Σ̂
(s)
1
(A1)+ C

Σ̂
(s)
2
(T̂1A2)

)⊥
respectively, i.e.,

M̂2 = P
T̂1A2,Σ̂

(s)
2
XPC ′

2
,

Ĥ3 = T̂2X(PC ′
2
− PC ′

3
),

T̂2 = I − P
A1,Σ̂

(s)
1

− P
T̂1A2,Σ̂

(s)
2
.

To derive a third estimator of Σ(s), the idea is to use the sum Q̂3 = Q̂2 + Ĥ3Ĥ
′
3

in a similar way as in Lemma 16.2 or Lemma 16.3. We continue the same process
until all residuals are estimated and then use the sum of the estimated residuals to
estimate the covariance matrix that can be understood as a dispersion matrix. After
the (r − 1)th stage of the process, we have already r − 1 estimates of Σ(s). In
Lemma 16.4, we show how to obtain the rth estimate of Σ(s). Before we state it,
note that after the (r − 1)th stage, we have also the following quantities:

Wi = X(PC ′
i
− PC ′

i+1
)X′ ∼ Wp(Σ(s), ri − ri+1), (16.21)

i = 0, 1, 2, . . . ,m,
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P̂j = T̂j−1T̂j−2 × · · · × T̂0, T̂0 = I, j = 1, 2, . . . , r − 1, (16.22)

T̂i = I − P
P̂iAi,Σ̂

(s)
i

, i = 1, 2, . . . , r − 1, (16.23)

T̂i = I −
i∑
j=1

P
P̂jAj ,Σ̂

(s)
j

, i = 1, 2, . . . , r − 1, (16.24)

ĤiĤ
′
i = T̂i−1Wi−1T̂

′
i−1, T̂0 = I, i = 1, 2, . . . , r, (16.25)

Q̂i =
i∑
j=1

Ĥj Ĥ
′
j =

i∑
j=1

T̂j−1Wj−1T̂
′
j−1, (16.26)

i = 1, 2, . . . , r,

Υ̂i =
i∑
j=1

(rj−1 − rj )T̂j−1 ⊗ T̂j−1, i = 1, 2, . . . , r. (16.27)

Lemma 16.4 Let T̂i , Q̂r and Υ̂r be defined as in (16.24), (16.26) and (16.27),
respectively. Then, the minimizers of

fr(Σ
(s)) = tr

⎧⎨
⎩
⎛
⎝Q̂r −

r∑
i=1

(ri−1 − ri )T̂i−1Σ
(s)T̂ ′

i−1

⎞
⎠ ()′

⎫⎬
⎭ , r = 1, 2, . . . ,m+ 1,

are given by

vecΣ̂(s)r = T + (
(T +)′Υ̂ ′

r Υ̂rT
+)− (T +)′Υ̂ ′

r vecQ̂r .

Proof Similar as in Lemma 16.2. �
Lemma 16.4 gives the rth estimate of Σ(s) and the (m + 1)th estimate of

Σ(s) can be understood as the estimator for the dispersion matrix as it uses all
information that we have in the residuals. Now the results at our disposal permit
us to propose estimators of parameters in the extended growth curve model with a
linearly structured covariance matrix.

Theorem 16.5 Consider the extended growth curve model given by (16.2). Then

(i) A consistent estimator of the structured covariance matrix Σ(s) is given by

vecΣ̂(s)m+1 = T + (
(T +)′Υ̂ ′

m+1Υ̂m+1T
+)− (T +)′Υ̂ ′

m+1vecQ̂m+1. (16.28)
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(ii) An unbiased estimator of the mean is given by

Ê[X] =
m∑
i=1

(I − T̂i)XC′
i (CiC

′
i )

−Ci, (16.29)

where T̂i , Q̂r and Υ̂r are defined as in (16.23), (16.26) and (16.27), respectively.

Proof

(i) The consistency of the estimator in (16.28) is established through the following

implications, where the notation ‘
p−→’ means convergence in probability.

1

n− r1Q1
p−→ Σ(s)

⇓
Σ̂
(s)
1

p−→ Σ(s)

⇓
Σ̂
(s)
2

p−→ Σ(s)

⇓
...

⇓
Σ̂
(s)
m+1

p−→ Σ(s).

The above implications can be easily checked. The first line follows from the
well known fact that the sample covariance matrix is a consistent estimator
of the true covariance matrix. The rest is established using Cramér-Slutsky’s
theorem [1].

(ii) Next we establish the unbiasedness of the estimator given in (16.29). From (i)
Theorem 16.3, and using uniqueness property of projectors, it is possible to
rewrite the estimated mean as

Ê[X] =
m∑
i=1

P
Ai ,Σ̂

(s)
i

X(PC ′
i
− PC ′

i+1
).
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Using the linearity of the expectation operator and independence of P
Ai ,Σ̂

(s)
i

and X(PC ′
i
− PC ′

i+1
), we have

E[Ê[X]] =
m∑
i=1

E

[
P
Ai ,Σ̂

(s)
i

]
E
[
X(PC ′

i
− PC ′

i+1
)
]

= E
[
P
Am,Σ̂

(s)
m

]
E
[
XPC ′

m

]

+E
[
P
Am−1,Σ̂

(s)
m−1

]
E
[
X(PC ′

m−1
− PC ′

m
)
]

+E
[
P
Am−2,Σ̂

(s)
m−2

]
E
[
X(PC ′

m−2
− PC ′

m−1
)
]

+ · · ·

+E
[
P
A1,Σ̂

(s)
1

]
E
[
X(PC ′

1
− PC ′

2
)
]
.

Since E[X] = ∑m
i=1 AiBiCi , using the facts that C (C′

i ) ⊆ C (C′
i−1) and

P
An,Σ̂

(s)
n

⎛
⎝ n∑
i=1

AiBiCi

⎞
⎠ =

n∑
i=1

AiBiCi,

we get

E[Ê[X]] =
⎛
⎝ m∑
i=1

AiBiCi

⎞
⎠PC ′

m
+

⎛
⎝m−1∑
i=1

AiBiCi

⎞
⎠ (PC ′

m−1
− PC ′

m
)+ · · ·

+
⎛
⎝ 2∑
i=1

AiBiCi

⎞
⎠ (PC ′

2
− PC ′

3
)+ A1B1C1(PC ′

1
− PC ′

2
)

= AmBmCm +
⎛
⎝m−1∑
i=1

AiBiCi

⎞
⎠PC ′

m
+ Am−1Bm−1Cm−1

+
⎛
⎝m−2∑
i=1

AiBiCi

⎞
⎠PC ′

m−1
−

⎛
⎝m−1∑
i=1

AiBiCi

⎞
⎠PC ′

m
+ · · ·

+A2B2C2 + A1B1C1PC ′
2
−

⎛
⎝ 2∑
i=1

AiBiCi

⎞
⎠PC ′

3

+A1B1C1 − A1B1C1PC ′
2
.

Canceling the opposite terms in the last expression, we get the desired result.
�
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16.4 Concluding Remarks

We considered a class of multivariate models that present some challenges about
estimation of model parameters and hypothesis testing. We systematically reviewed
how space decomposition has been successful to address these challenges. The
multivariate models presented is this work are some extensions of Generalized
Multivariate Analysis of Variance (GMANOVA) namely the bilinear regression
that include random effects and latent variables and the extended GMANOVA with
linearly structured covariance matrix. In this review, we pointed out two approaches
used by several authors. The first consists on the decomposition of complex models
into tractable ones easy to handle for estimation and testing. The main idea used
in this approach is to make an orthogonal decomposition of the working model and
partition it into independent models. The second approach is about obtaining explicit
estimators where the estimation of the mean structure is based on the projection of
the observations on the space generated by the design matrices while the estimation
of the covariance parameters is based on the projection of the observations on the
residual space that is orthogonal complement to the design matrices.
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Chapter 17
Detection of Sparse and Weak Effects
in High-Dimensional Feature Space,
with an Application to Microbiome Data
Analysis

Tatjana Pavlenko, Annika Tillander, Justine Debelius, and Fredrik Boulund

Abstract We present a family of goodness-of-fit (GOF) test statistics specifically
designed for detection of sparse-weak mixtures, where only a small fraction of the
observational units are contaminated arising from a different distribution. The test
statistics are constructed as sup-functionals of weighted empirical processes where
the weight functions employed are the Chibisov-O’Reilly functions of a Brownian
bridge. The study recovers and extends a number of previously known results on
sparse detection using a weighted GOF (wGOF) approach. In particular, the results
obtained demonstrate the advantage of our approach over a common approach that
utilizes a family of regularly varying weight functions. We show that the Chibisov-
O’Reilly family has important advantages over better known approaches as it allows
for optimally adaptive, fully data-driven test procedures. The theory is further
developed to demonstrate that the entire family is a flexible device that adapts
to many interesting situations of modern scientific practice where the number of
observations stays fixed or grows very slowly while the number of automatically
measured features grows dramatically and only a small fraction of these features are
useful. Numerical studies are performed to investigate the finite sample properties
of the theoretical results. We shown that the Chibisov-O’Reilly family compares
favorably to related test statistics over a broad range of sparsity and weakness
regimes for the Gaussian and high-dimensional Dirichlet types of sparse mixture.
Finally, an example of human gut microbiome data set is presented to illustrate
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that the family of tests has found applications in real-life sparse signal detection
problems where the sample size is small in relation to the features dimension.

17.1 Introduction

One of the problems of sparse signal detection is to detect a small fraction of
relatively weak signals hidden among the large number of those which are pure
noise. In its generally, this is a problem of sparse-weak mixture detection which
is stated as follows. Let X be a set of independent observational units, X =
(X1,X2 . . . , Xn). The goal is to assess the validity of the null hypothesis that X
follows a known and fully specified continuous distribution F , against an alternative
where a small proportion εn of the variables are contaminated and have a different,
usually unknown distribution Qn �= F . More precisely, given a random sample X

the corresponding hypothesis to test is given as

H0 : Xi iid∼ F, (17.1)

versus H1,n : Xi iid∼ (1 − εn)F + εnQn,

where Qn can be thought as a distribution modeling the statistical variation of the
non-null effects, i.e., sparse contamination phenomena. The contamination effect is
calibrated according to εn = n−β , with 1/2 < β < 1.

In what follows, we will call a relevant feature a signal and irrelevant feature
noise.

The problem of sparse signal recovery, or what is known in the literature as
variable selection, is of fundamental importance for the theory of statistical learning
in infinite or high dimensions. The development of learning techniques that can
accommodate sparsity is driven by the a general phenomenon arising in many areas
of modern applied science and engineering: the number of feature variables is much
higher than the number of observations, but the degree of freedom of the underlying
model is relatively low.

A theoretical analysis of this problem can be found in, e.g., Arias-Castro [2, 4]
and references therein, and related applications in signal detection and processing
are extensive, see, e.g., [3] and [5].

17.1.1 Hypothesis Testing Based Sparse Signal Detection

Let us briefly review some specific examples where the sparse signal detection
problem is formulated as a hypothesis testing problem.
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Example 17.1 Theory of radar, sparse signal detection in the presence of noise in
n frequency diapasons. A very early study on sparse mixture detection is the paper
by Dobrushin, [13], where the hypothesis testing based approach was exploited to
solve the problem of multi-channel signal detection in radio-location. Specifically,
the data observed were assumed to be a sample of independent random variables
X1, . . . , Xn, representing the voltages measured over n frequency diapasons and
following the Rayleigh distribution with the density

fXi (x|γi) = 2x

γi
exp(−x2/γi), x ≥ 0,

where γi = E(X2
i ), i ∈ �n� and �n� denotes the set {1, . . . , n}. In communication

theory, Rayleigh distributions are used to model scattered signals that reach a
receiver by multiple paths. In the absence of noise, γis are all equal to 1, whereas
in the presence of signal, exactly one of γis becomes a known value γ > 1. Hence,
there are two competing hypothesis concerning γi :

H0 : γi = 1, i ∈ �n� (17.2)

versus H1,n : γi = 1 + (γ − 1)1i=J , J ∼ Un,

where Un denotes the uniform distribution defined on �n�. In words, H0 states the
absence of signals, meaning that the source of voltage observed in all n channels is
noise.H1,n states that all but one γi is equal a known value γ , i.e., the signal appears
only in channel j , where index j follows the uniform distribution Un defined on �n�.
To have the signal distinguishable from noise given that the signal appears only in
one channel, it is necessary that the strength of the signal, γ , grows with the number
of channels observed. In [13], Dobrushin derived a sharp, growing n asymptotic
boundary for the minimum signal strength to be reliably detected.

Example 17.2 Sparse-weak, two-components Gaussian mixture. Theoretical devel-
opments in sparse signal detection have largely been concentrated on Gaussian
signals. Specifically, in the context of general testing problem (17.1), the sparse non-
Gaussianity detection problem is formulated as follows. By setting F = N (0, 1)
andQn = N (μn, σ

2) in (17.1), the goal is to test

H0 : Xi iid∼ N (0, 1), (17.3)

versus H1,n : Xi iid∼ (1 − εn)N (0, 1)+ εnN (μn, σ
2).

Interesting cases correspond to specification of (εn, μn) that are calibrated with a
pair of parameters (β, r) as follows

εn = n−β, μn = √
2r log(n), 1/2 < β < 1, 0 < r < 1, (17.4)
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where β is the sparsity index and r may be thought as the signal strength or weakness
parameter. This parametrization can be explained as follows: recall first that for large
n, the maximum of n iid standard Gaussian random variablesZ1, Z2, . . . , is sharply
concentrated around

√
2 logn and

P

(
max

1≤i≤n
|Zi | ≥ √

2 logn

)
→ 0, as n→ ∞.

Hence, for any fixed εn, as n→ ∞, the contamination strength of the level of μn >√
2 logn(1 + δ) would be perfectly detectable by for example, the maximum-type

statistics. In the same way, for any fixed μn = μ, sparsity levels of εn � n−1/2 are
perfectly detectable by the sum-type statistics. These properties explain the choice
of εn = n−β and the contamination strength in the sparse Gaussian model, which
makes the problem very hard but yet solvable. Since any mixture parametrized with
such (r, β) where either r > 1 or β < 0.5 are easily detectable, the interesting
regime is in the region of sparsity and weakness, i.e., where both 0 < r < 1 and
0.5 < β < 1. The testing problem (17.3) can be extended to the case where μn
varies under the sparse-mixture alternative with some distribution.

The asymptotic optimality theory developed for these types of detection prob-
lems provides a benchmark for the development of data-driven procedures. It turns
out that there is a general phase transition phenomena, meaning that in the two-
dimensional parametric phase space {(β, r) : 1/2 < β < 1, r > 0} there is
a demarcation line which splits the whole space into two separate regions where
detection problem is distinctly different. Ingster [18] and later, Donoho and Jin [14]
derived the class of sparse and weak settings in (17.4) where the true signals are so
sparse and so weak that reliable detection is impossible.

Recent developments in detecting sparse and weak signals are also motivated
by modern experiments in astronomy and cosmology where the data produced
can be interpreted as images and where there is a well-defined null hypothesis.
Examples given by, e.g., Vielva [37] and Bennet et al. [6] deal with studies of
the Cosmic Microwave Background (CMB) which is a relic of radiation emitted
when the Universe was about 370,000 years old. Using the easiest inflation model
CMB temperature fluctuations should behave as a realization of a zero-mean
Gaussian random variable in each pixel of an images. The resulting Gaussian field
is completely determined by its power spectrum and the goal is to detect sparsely
scattered non-Gaussian signatures (e.g., hot and cold spots) in the CMB.

Example 17.3 High-dimensional classification when relevant features are sparse
and weak. In applied classification problems, examples include but are not restricted
to genomic and metabolomics, (see e.g., [23, 24] and [25]) the number of feature
variables p is large compared to the number of training samples, n. This so-called
high-dimensional scenario when p � n (for example, p = 10,000, n = 100)
usually means that the informative features are sparse, and a small n relates to weak
separation power. In this setting, the problem of detection and identification of a set
of informative features is closely related to the testing problem in Example 17.2.
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For illustration, assume that we have the training samples (Xi, ci), i ∈ �n� from
two different classes and the goal is to predict the class label c ∈ {−1,+1} for a
fresh feature vectorX. To model the high-dimensional setting with p � n, consider
a sequence of classification problems indexed by (n, p) where feature vectorsXi ∼
Np(ci · μ, Ip) with Yi = ±1 denoting the class label and vector μ denoting the
constant mean. Using a vector of feature scores Z = (√n)−1 ∑n

i=1(Xi · ci) which
contains the evidence in favor of each feature informativeness, we note that Z ∈
Np(

√
nμ, Ip). Furthermore, let the number of features p be the driving index, the

sparse and weak model for classification is then

√
nμj

iid∼ (1 − εp)δ0 + εpδμτ , j ∈ �p�,

where sparsity and weakness parameters are calibrated as

εp = p−β, μp = √
2r logp, and n = np = pτ ,

for τ ∈ (0, 1) (regular growth regime), r > 0 and 0 < β < 1 − τ . This asymptotics
is called regular growth regime: when p → ∞, np grows with p but is still much
smaller than p. In this regime, only a small fraction of entries of μ is non-zero,
and the non-zero entries are individually low informative, contributing weakly to
the classification decision. The goal is to survey many features simultaneously and
identify a few useful ones allowing successful classification.

Calibrating the classification model with four parameters, p, n, β and r , Ingster
et al. [19] and later Fan et al. [17] and Ji et al. [22], show that the detection
boundary phenomenon which has been proved for the sparse Gaussian mixture of
Example 17.2, extends to high-dimensional classification. Specifically, the sparsity-
weakness domain (β, r) ∈ (0, 1) splits by a so-called classification boundary, which
is a curve such that certain classification procedures succeed asymptotically with
n and p tending to infinity, when (β, r) lies above the curve and fail if (β, r) is
below the curve. These asymptotic results are further extended by Tillander [36]
and Stepanova and Pavlenko [35] to the sparse χ2- and F -types mixtures which are
exploited for detection group-sparse signals in classification settings.

Despite very different nature of the signal detection examples above, all of them
can be viewed as a particular case of the general problem of testing goodness-
of-fit (GOF) to a presumptive model. Using a random sample or a set of input
statistics which is the data summary, the goal is to determine whether there is a
significant statistical evidence for the presence of signals. A common approach in
such problems is based on the deviations of the empirical distribution functions
(EDF) resulting in the classical Kolmogorov-Smirnov (KS) test statistic, which
has a number of attractive theoretical properties such as consistency, high power
in detecting the a shift in the median of the distribution and existing of efficient
procedures to computep-values. In what follows, we give analytical arguments why
the KS does not have power enough to detect the sparse-weak contamination, i.e.,
when only a few of n signals are contaminated and the contamination strength is
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small. In words, this flaw stems from poor sensitivity of the tests to the quality of
the fit in the tails of the tested distribution, when these tail events are primarily
concerned with in the detection of sparse-weak mixture.

Hypothesis testing based approach to sparse signal detection is extensively
studied in the literature, see, e.g., [2, 3] and [28] for theoretical results, and [5, 27]
and [40] and references therein, for related applied problems of sparse signal
detection and processing. We contribute to this line of research by taking the
weighted empirical process view point on the GOF tests, we show that in the context
of sparse alternatives, certain classical tests, including KS and Anderson-Darling
tests [1], may benefit essentially from using properly selected weight functions.
Specifically, we study a class of GOF test statistics based on the supremum of
weighted empirical processes.

17.1.2 Content

On the theoretical front, in Sect. 17.2, we describe our analytical framework, relate
the KS family of sup-norm statistics to the weighted empirical processes and
provide a general consistency result for the weighted KS. We further define a family
of wGOF statistics where the weighting procedure is governed by the Chibisov-
O’Reilly type of functions and investigate theoretical properties of the family of
tests. In Sect. 17.3, we show that the proposed family may be considered as a
competitor to the so-called Higher Criticism (HC) statistic, presented in [14] and
widely used in the literature. Section 17.4 provides results of empirical study. We
point out that the whole Chibisov-O’Reilly family of statistics is optimally adaptive,
i.e., its use does not require knowledge of sparsity and weakness parameters.
Using this property, we perform systematic power comparisons among the related
optimally adaptive tests and develop a general framework for applying the wGOF
tests under high-dimensional, sparse-weak Dirichlet mixture. For the latter we
specify the empirical detection boundary and showcase scenarios when Chibisov-
O’Reilly’s test has improved power compared to other wGOF tests commonly used
in the literature.

Recent advances in biotechnological analysis methods, including high-
throughput sequencing, proteomics, and metabolomics, provide new opportunities
for sparse signal detection. To illustrate the utility of our approach, we apply it to
human microbiome data from the American Gut Project. A common goal of the
data analysis is to detect differentially abundant features.

Sparse feature detection in microbiome data has proven to be a challenging
statistical problem [30, 38]. Because of several non-quantitative steps in the sample
processing, microbiome data becomes inherently compositional; it is constrained to
the unit p-dimensional simplex [23] where all feature observations are interdepen-
dent. Analysis is further hampered by the large number of zero-counts in the data
[25]. These zeros are likely structural, sampling, and outlier zeros, present due to
the biological realities of free-living organisms and technological under-sampling
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(under-sampled because of the current technical inability to exhaustively capture
all DNA fragments in microbiome sample). Finally, the data is high-dimensional,
where a study of even a few hundred samples may contain ten times that many
features, adding to challenges for power and detection. As a result, microbiome
studies present a potentially interesting application of sparsity signal detection.

17.1.3 Notational Convention

Some notations used throughout the paper are as follows. The symbols
D= and

a.s.=
are used for equality in distribution and almost surely, respectively. The symbols
D−→ and

P−→ denote convergence in distribution and convergence in probability,
respectively. We denote by an = o(bn) if lim supn→∞

|an|
|bn| = 0 and an = O(bn) if

lim supn→∞
|an|
|bn| < ∞, these asymptotic notations extend naturally to probabilistic

setups, denoted by oP and OP where limits are in the sense of convergence in
probability.

17.2 The Weighted Kolmogorov-Smirnov Statistics

For the following, we need some further notations. For a given sequence X =
(X1,X2, . . . , Xn, . . . ) of i.i.d random variables with the continuous cumulative
distribution function (CDF) F on R, we let Fn(x) = n−1 ∑n

i=1 1(Xi ≤ x) be
the EDF based on a given sample X1, . . . , Xn. The goal is to test the hypothesis
of GOF H0 : F = F0, some specific CDF, versus either a two-sided alternative
H1 : F �= F0 or a one-sided alternative H

′
1 : F > F0. The KS statistics the

two-sided version is defined by an L∞-distance (a sup-norm metrics) measuring
discrepancy of the observed data from the postulated CDF F0) over a continuous
variable x as

KSn = √
n‖Fn − F0‖∞ = sup

x∈R
√
n |Fn(x)− F0(x)| (17.5)

To explain the problem with poor tail sensitivity to deviations from a null distribu-
tion, observe first that the difference |Fn(x)− F0(x)| is considered without taking
into account the value of F0(x) at x. Indeed, since under the joint null hypothesis
that all Xi follow the same distribution F0, we have nFn(x) ∼ Bin(n, F0(x)) for
any fixed x ∈ R and Var(Fn(x)) = 1

n
F0(x)(1 − F0(x)). The variance of Fn(x)

varies considerably throughout the range of x, having a maximum at the median
of the distribution and smaller values around the tails. This implies that the EDF
Fn is a moderate distance away from the hypothesized F0(x) over large parts of
the R. This phenomena is of special importance for reliable detection of sparse
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and weak effects where all the actions takes place at the tails and where the KS
statistic may fail to detect the falsity of the postulated null hypothesis. Rényi [33]
proposed that, instead of the absolute deviations |Fn(x)−F0(x)|, the relative values
|Fn(x) − F0(x)|/F0(x) should be considered. In the same spirit, Anderson and
Darling [1] analyses asymptotic properties of the statistics like

sup
a≤x≤b

√
n
∑n
i=1(1(F0(Xi) ≤ x)− x)√

x(1 − x) , 0 < a < b < 1,

and their two-sided versions, measuring distances in terms of their standard
deviation.

A conceivable idea of the more general nature is to consider a variance stabilizing
or a kind of weighted versions of the classical KS in order to accentuate its
behavior at the tails. The problem of specification of the weighting function such
that the resulting test statistic provides a desirable tail sensitivity can be solved
by exploiting weighted empirical processes techniques along with the related weak
convergence theory. However it turns out that the limiting behavior of the weighted
EDF-based test statistics in sparse and weak regimes is a delicate area so that
adapting of conventional asymptotic theory to newly proposed test statistics is
not straightforward. On the other hand, there are a number of results in weak
convergence of the weighted empirical processes whose potential use in deriving
methods for detecting sparse-weak effects has not been fully explored. In this
study, we show that a reasonable compromise between the statistics focusing on
the center of the distribution and statistics demonstrating sensitivity on the tails can
be achieved by using the Chibisov-O’Reilly weight function of the sup-functional
metrics in (17.5) and the characterization of the weighted weak convergence
provided first by Chibisov (see Theorem 3 in [8]) and later by O’Reilly (see
Theorem 2 in [32]) .

Before presenting the main object of our study, the class of test statistics based
on the Chibisov-O’Reilly weight function, we need to introduce some auxiliary
concepts, definitions and results.

17.2.1 Weighted Empirical Processes and Properties of Weight
Functions

By the CLT for iid random variables with a finite variance, for any fixed x, and with
n→ ∞

√
n(Fn(x)− F0(x))

D−→N (0, F0(x)(1 − F0(x)) .

Thinking now of x ∈ R as a running time parameter, we can interpret
√
n(Fn(x)−

F0(x)) as the one-dimensional (normalized) empirical process. Further, let U be a
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U [0, 1] random variable. The function of U defined as X = F−1
0 (U) is called the

quantile transformation of U and has exactly the CDF F0; see, e.g., [12, Chapter 1].
Now, if H0 is true, i.e., all Xi follow F0 on R the quantile transformation shows that
for any n, the distribution of KSn is the same for all F0.

A useful reduction which will help us in pinning down finer properties of ‖Fn −
F0‖∞ is achieved by the probability integral transformation: let Ui = 1−F0(Xi). If
all Xi ’s have the same continuous distribution F0 then Ui’s are iid uniform U(0, 1)
random variables and for each n, we have

KSn
D= sup

0<u<1

√
n|Un(u)− u|,

where Un(u) = n−1 ∑n
i=1 1(Ui ≤ u). The construction under the supremum,

ξn(u) = √
n(Un(u) − u), 0 < u < 1, is the classical uniform empirical process

whose weak convergence to the Brownian bridge was shown by Donsker in [15].
We thus have that

KSn
D→ sup

0<u<1
|B(u)| as n→ ∞,

where {B(u), 0 ≤ u ≤ 1} denotes a Brownian bridge process on [0, 1].
Let w be strictly positive function defined on (0, 1) with the property w(u) =

w(1 − u) for u ∈ (0, 1/2), nondecreasing in a neighborhood of zero and non-
increasing in a neighborhood of one. We consider the weighted empirical process
and define the corresponding family of weighted KS statistics as

KSn(w) := sup
x∈R

√
n|Fn(x)− F0(x)|
w(F0(x))

, KS+
n (w) := sup

x∈R

√
n(Fn(x)− F0(x))

w(F0(x))
.

(17.6)

If H0 is true, then by the probability integral transformation, for each n,

KSn(w)
D= sup

0<u<1

√
n|Un(u)− u|
w(u)

= sup
0<u<1

|ξw,n(u)|,

KS+
n (w)

D= sup
0<u<1

√
n(Un(u)− u)
w(u)

= sup
0<u<1

ξw,n(u), (17.7)

where ξw,n(u) := ξn(u)/w(u) is a weighted uniform empirical process.
In what follows, for functions Q, G on [0, 1] and the weight function w, we

define the weighted sup-norm metric ‖ · /w‖ by

‖(Q −G)/w‖ := sup
0<u<1

|(Q(u)−G(u))/w(u)|
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whenever it is well defined, i.e., when lim supu→0 |(Q(u) − G(u))/w(u)| is finite.
The weighted sup-norm metric appeared in, e.g., [9]. We note that ‖(Q − G)/w‖
with w = 1 coincides with the sup-norm metric we have used so far for functions
Q, G on [0, 1].

The convergence results (17.7) suggest to use KSn(w) and KS+
n (w) to conduct

the tests of significance for a prescribed level 0 < α < 1 as follows. One would
reject H0 in favor of H1 when KSn(w) > h(n, α), where the critical point h(n, α)
is chosen to have Pr(KSn(w) > h(n, α)) = α; and one would reject H0 in favor
of H

′
1 when KS+

n (w) > h
+(n, α), where h+(n, α) is determined by Pr(KS+

n (w) >

h+(n, α)) = α.
The test procedures are consistent against both alternatives H1 : F �= F0 and

H ′
1 : F > F0, respectively. Indeed, testingH0 : F = F0 versus two-sided alternative
H1 : F �= F0 we observe that for any fixed alternative F �= F0 the statistic ‖(Fn −
F0)/w(F0)‖∞ := sup0<F0(t)<1 |Fn(t)− F0(t)|/w(F0(t)) satisfies

∥∥∥∥Fn − F0

w(F0)

∥∥∥∥∞
≥

∥∥∥∥F − F0

w(F0)

∥∥∥∥∞
+ oP (1),

implying KSn(w)
P→ ∞ whenever F �= F0. From this,

KSn(w) = √
n‖(Fn − F0)/w(F0)‖∞ = OP (√n),

and we get for any α ∈ (0, 1)

PrH1 (KSn(w) > h(n, α))→ 1 as n→ ∞,

where h(n, α) is the top α-percentile of the null distribution of KSn(w) which in
turn is given by the distribution of sup0<u<1 |ξw,n(u)| and h(n, α) = O(1). The
case of the one-sided alternative is treated similarly.

17.2.2 Theoretical Properties of ChOR Statistic

Statistical properties of the family of test statistics defined in (17.6) are essentially
determined by the behavior of the used weighting functions. Specifically, variance
stabilizing weighting poses the problem of weak convergence of the empirical
processes in the ‖ · /w‖ metric, i.e., in the weighted sup-norm metric to a Brownian
bridge process B. The idea of considering a weighted version of KS in order to
shift actions to the middle of the distribution while properly regulated on the tails is
useful but the limiting behavior of weighted sup-functionals of GOF statistics is not
always what one can expect intuitively. For example, KSn(w) does not necessarily
converge in distribution to the supremum of |B(x)|/w(x). In words, in order to
achieve a non-degenerate asymptotic null-distribution of KSn(w), i.e., to be able to
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control the probability of Type I Error when using (17.6), the tails of the weighting
function w in (17.6) must behave in such a way that |B(x)|/w(x) does not blow
up in the vicinity of zero and one. More precisely, if we denote W the class of
positive functions on (0, 1) that are bounded away from zero on (η, 1 − η) for all
0 ≤ η < 1/2), the goal is to characterize those functions w ∈ W for which we
have a weak convergence of the weighted uniform empirical processes ξn(x)/w(x)
to |B(x)|/w(x), i.e., for which the tests statistics (17.6) admit nontrivial asymptotic
distribution. This characterization is available from the following facts:

Fact 1 Let W be the class of strictly positive functions defined on (0, 1) with
the property w(u) = w(1 − u) for u ∈ (0, 1/2), which are nondecreasing in a
neighborhood of 0 and non-increasing in the a neighborhood of one. Such class
of functions is called Chibisov-O’Reilly weight functions of a Brownian bridge
{B(u), 0 ≤ u ≤ 1} if

lim sup
u→0

|B(u)|
w(u)

a.s.= 0.

Fact 2 (see [8], [32]) Let w ∈ W . The sequence of random variables

sup
0<u<1

√
n
|Un(u)− u|
w(u)

converges in distribution to a non-degenerate random variable if and only if

I (w, ε) =
∫ 1

0

exp
(
−ε w2(t)

t (1−t )
)

t (1 − t) dt <∞ for some ε > 0,

in which case

sup
0<u<1

√
n|Un(u)− u|
w(u)

D−→ sup
0<u<1

|B(u)|
w(u)

.

The integral I (w, ε) appeared for the first time in Chibisov [8], and later in [32]. A
special case of Chibisov-O’Reilly theorem is given below.

Fact 3 (See [12, Theorem 16.4, p. 535.]) For each 0 < ν < 1/2,

(a) sup0<u<1
|B(u)|

[u(1−u)]ν <∞, a.s.
(b) and, the following result holds true

sup
x∈R

√
n|(F(x)− F0(x))|

[F0(x)(1 − F0(x))]ν
D−→ sup

0<u<1

|B(u)|
[u(1 − u)]ν as n→ ∞.



298 T. Pavlenko et al.

The above convergence results suggest the function w = wν in the weighted KS
statistics (17.6) to be selected as

wν(u) = [u(1 − u)]1/2−ν, where 0 < ν < 1/2. (17.8)

Using this family of functions we define the two-sided and one-sided Chibisov-
O’Reilly (ChOR) statistics as

ChORn(wν) := sup
x∈R

√
n|Fn(x) − F0(x)|
wν(F0(x))

, ChOR+
n (wν) := sup

x∈R

√
n (Fn(x)− F0(x))

wν(F0(x))
.

(17.9)

The parameter ν in (17.8) will be used as a tuning parameter to guarantee a balanced
behavior ofB(u) near zero and one. In practical applications, ν must be chosen from
the data. In Sect. 17.3, we show that this structure of the weight function makes it
possible to construct fully adapted procedure which optimally fits the data at hand.

17.3 Connection of Anderson-Darling and HC-like
Constructions

Some of the earliest works on modifications of the classical KS statistic date
back to Anderson and Darling [1] and Rényi [33] who suggested a variance
stabilizing transformation and a weighted version of KSn(w) measuring distances
in terms of their standard deviations. Specifically, Anderson and Darling studied the
asymptotics of the weighted sup-norm statistics as

ADn(w) := sup
x∈R

√
n (Fn(x)− F(x))
w(F (x))

(17.10)

and their two-sided versions, where w(u) = √
u(1 − u) for u ∈ (0, 1) by its

construction, is called standard deviation proportional (SDP) weight function.
The weighted KS test statistic (17.10) standardized by the SDP have further been
extensively studied in the literature (see for example [10, 14, 16, 20, 21]).

Closely related to (17.10) is the popular family of Tukey’s Higher Criticism (HC)
statistic, which in its one-sided version is defined as

HCn := sup
0<u<α0

√
n(Un(u)− u)√
u(1 − u) , 0 < α0 < 1, (17.11)

where 0 < α0 < 1 defines the range of significance levels in the multiple-
comparisons testing and therefore is a number like 0.1 or 0.2. HCn was introduced
by Donoho and Jin [14] for multiple testing settings where dominating part of
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the component problems correspond to the null hypothesis and a small proportion
correspond to non-null hypotheses. Indeed, by setting α0 = 1 in (17.11) we obtain
a one-sided version of (17.10) with the weighting function w(u) = √

u(1 − u).
By Fact 1, we immediately observe that HC-statistics does not have a non-

degenerated asymptotic null distribution. Precisely, under H0, the statistic HCn (as
well as its two-sided version) tend to infinity in probability (see [20] and [16]), and
even almost surely, (see Chapter 16 in [34]). Theoretically, the problem stems from
the normalizing factor 1/

√
u(1 − u) of the SDP weight function which grows too

quickly in the vicinity of u = 0 and 1 for the supremum of the weighted empirical
process to settle down. The almost sure rate at which HCn blows up is studied by
Shorak and Wellner, see [34, Chapter 16].

As a computationally simple and non-expensive procedure, the HCn-type statis-
tics attracts a lot of attention in the recent literature on the sparsity detection and
variable selection in high dimensions. A number of recent studies (see, e.g., [31]
and [28]) exploited the sup-norm construction with SDP weight functions and
admitted the problems with the finite sample behavior of (17.11), providing in
fact, a numerical justification to the theoretical properties of HCn. As noticed in
Remark on p. 611 of [11], “It is not clear for what n the asymptotics start to give
reasonably accurate description of the actual finite sample performance and actual
finite sample comparison. . . ”, which complicates the use of HCn in practice. But
the fact that the limiting null distribution is degenerated has never been recognized
as the actual cause of the problem.

A number of strategies to alleviate the problems with weak convergence of AD
and HC has been discussed in the literature. A seemingly better modification of HCn
suggested in [21] has the form

HC∗
n := sup

u(1)<u<u([α0·n])

√
n(Un(u)− u)√
u(1 − u) , 0 < α0 < 1, (17.12)

where u(i) are observed values of the corresponding order statistics U(1) < · · · <
U(n). A general idea of truncating the domain over which supremum is taken
in (17.11) is also addressed in [40], where the focus was placed on the computational
efficiency rather than the degenerated limiting null distribution.

Viewing the problem of finding the distribution of HC as a computationally
intensive numerical problem, Wu et al. [39] device a system of two Volterra-type
integral equations for Pr(KSn(w) < x), x > 0 withw from the class of SDP weight
functions.

Unfortunately, neither truncating the range as in (17.12) nor integral equations-
type approach eliminate the problem of weak convergence of (17.11). But this
phenomenon of normalizing the process

√
n(Un(u) − u) by SDP family of weight

functions, seems to be well known for experts in the theory of empirical processes.
See for example results by Eicker [16, Theorem 2] and Jaeshke [20] which show
that the finite limit distribution can be obtained by an appropriate normalization
of (17.11). The precise statement of the asymptotic result is the following: for any
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0 < α0 < 1 and any x ∈ R

lim
n→∞ Pr

(
an sup

0<u<α0

√
n(Un(u)− u)√
u(1 − u) − bn ≤ x

)
= E(x), (17.13)

where

an = √
2 log logn, bn = 2 log logn+ 1

2
log log logn− 1

2
logπ,

and E(x) = exp(−exp(−x)) is the CDF of Gumbel or extreme value distribution.
In words, result (17.13) implies that an appropriately normalized version of HC-
statistic, under the null hypothesis, will always have the same extreme value
distribution regardless of a particular value of 0 < α0 < 1. Jager and Wellner
[21] also study an appropriately normalized version of (1/2)(HC∗

n)
2 with HC∗

n as
in (17.13) in terms of an extreme value distribution, see Theorem 3.1 of [21].

The main problem of using these limiting results in practical applications is that
the convergence in distribution in (17.13) is very slow. Jaeschke [20] showed that the
convergence rate is O((logn)−1/2), so that the asymptotic approximation (17.13)
can be inaccurate for n as large as 106, which even with this correct normalization
makes the asymptotic theory-based p-values of HC-statistics unreliable.

All this leads us to study a different type of weight functions in the sup-norm
scenario, namely the class of Chibisov-O’Railly functions which provide a more
modest weighting and result in a non-trivial limit for the wGOF statistics.

17.4 Empirical Study

In this section, we present simulation results, where we study the finite sample
performance of three wGOF tests: the ChOR+

n (wν), the HC∗ and the CsCsHM+
n

(which stands for Csörgő et al. [9] family of statistics; to be defined below). The
ChOR+

n (wν) is defined in (17.9), where the tuning parameter ν is taken to be optimal
the value in the interval 0.05–0.45 with increment 0.05, that results in the smallest
sum of Type I and Type II errors; the HC∗ is defined in (17.12), where α0 is set to
0.1 in the truncation domain.

17.4.1 Gaussian Mixture

For the specific model (17.3) in Example 17.2, in the idealized case where εn, μn
and σ are known, bothH0 andH1,n are simple hypothesis, and the Neyman-Pearson
lemma asserts that the optimal test is obtained with the likelihood ratio approach.
Its performance was studied first by Ingster [18] for the homoscedastic case, and
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later by Cai et al. [7], who determine the fundamental detection limits in testing as
follows: when testing the hypothesis (17.3), the strict region of detectability in the
(β, r) plane is specified by the function curve

β∗(r, σ 2) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
+ r

2 − σ 2
if 2

√
r + σ 2 ≥ 2

1 − (1 − √
r)2+

σ 2 if 2
√
r + σ 2 < 2,

(17.14)

which gives the smallest possible β such that hypothesis in (17.3) can be distin-
guished in the sense that the sum of Type-I and II error probabilities goes to zero as
n → ∞ and x+ denotes max(x, 0). Namely, the detectable region is given by the
set {(β, r) : β < β∗(r, σ 2)}.

While being optimal, the likelihood ratio-based test is inapplicable in practice
since it requires explicit knowledge of the model parameters, εn, μn and σ . It
is desirable therefore to design adaptive test procedures that are simultaneously
optimal for a class of alternatives over the whole region of detectability. A general
asymptotic theory of optimal adaptivity for the GOF tests based on the sup-
functionals of the weighted empirical processes was developed by Stepanova and
Pavlenko [35] for a broad class of sparse mixture problems. Specifically, the family
of weight functions W was defined by the Erdős Feller Kolmogorov Petrovski
(EFKP) upper-class function of a Brownian bridge {B(u), 0 ≤ u ≤ 1}, assuming
that there exists a constant 0 ≤ b <∞ such that

lim sup
u→0

|B(u)|
w(u)

a.s.= b. (17.15)

Two specific examples of this family are defined by

CsCsHMn(w) := sup
x∈R

√
n|Fn(x)− F0(x)|
w(F0(x))

, CsCsHM+
n (w) := sup

x∈R

√
n (Fn(t)− F0(x))

w(F0(x))
,

(17.16)

where w belongs to the family of the EFKP upper-class functions of a Brownian
bridge {B(u), 0 ≤ u ≤ 1}. Since CsCsHMn(w), in this generality, appeared for
the first time in the paper of Csörgő, Csörgő, Horváth, and Mason [9], the statistics
CsCsHMn(w) and CsCsHM+

n (w) are called the two-sided and one-sided Csörgő
Csörgő Horváth Mason (CsCsHM) statistics, respectively.

It was shown that the test statistics of type (17.16) constructed by w from
the EFKP class of weight functions distinguish between H0 and H1,n without
knowledge of εn and μn and are therefore optimally adaptive over the whole region
of detectability; (see Theorem 4.1 of [35]). One can see that the Chibisov-O’Reilly
weight function is a special case of the EFKP weight for which b = 0, and therefore
the optimal adaptivity holds for the whole family of ChOR-type statistics.



302 T. Pavlenko et al.

Now, using optimal adaptivity of ChORn(wν)we can investigate its finite sample
performance in comparison with other adaptive techniques. Theoretical studies have
proposed a number of test statistics that are asymptotically optimal in the sense
that they can asymptotically reach the detection boundary (17.14), see, e.g., [35]
for CsCsHM and ChOR families, and [21] for the φ-divergence family of statistics
which includes both the square of the supremum form of the Anderson-Darling
statistic defined by (17.10) as well as its classical integral form introduced in [1].
However, while sharing the same optimality property with n → ∞, they could
have different detection power in practical data analysis, where n is always finite
and can be small. To compare the finite sample performance, we consider the
problem of detecting the change of the mean stated in Example 17.2 assuming
homoscedasticity.

The practical, fully data-driven, mixture detection procedures for the optimally
adaptive tests can be readily obtained using the following simulation steps. First,
fixing parameters (n, β, r) in the region of detectability according to (17.14) with
σ = 1, we let μn = √

2r logn, εn = p−β for β > 1/2. Second, we set σ = 1
in (17.3) and draw n = 10,000 samples from N(0, 1) for the null hypothesis; for
the alternative hypothesis, we first draw n(1 − εn) samples from N(0, 1), and then
draw nεn samples from N(μn, 1). Third, we implement all three tests for the two
levels of sparsity, εn = 0.008 and εn = 0.01, and for μ ranging from 0 to 2.5 with
an increment of 0.05.

All the considered test statistics involve a supremum over x ∈ R. In what follows
we use an equivalent discrete formulation, whereby supx∈R will be replaced by
max1≤i≤n, and

√
n(Fn(x) − F0(x)) will be replaced by

√
n(i/n − u(i)). Recall

that ui’s denote realizations of n iid samples Ui ∈ U [0, 1] and U(i) are the
corresponding order statistics. By the probability integral transform, Ui = 1 −
F0(Xi) are equivalent to p-values for each of the individual hypothesis, which are
iid U [0, 1] under H0. This collection is the input p-values to be used to form a
summary of the test statistics HC∗

n, ChOR+
n (wν) and CsCsHM+

n (w).
To capture the evidence against the joint null of (17.3) with each test, we need to

find the critical value so that the Type I error is controlled at a specified level α for
any fixed α ∈ (0, 1) and n. This is done in the following way. For each of the three
tests, we simulate the corresponding test statistics under the null for a large number
M such thatMα � 1, (e.g.,Mα = 50) and denote by h(n, α) the top α percentile
of empirical distribution of the simulated scores representing the critical value. The
null hypotheses is then rejected if the test score exceeds h(n, α). For each test score,
the empirical distribution is obtained by generating data under H0 for n = 10,000
withM = 1000 replicates, averaged over 100 iterations.

The empirical way of determining the critical value for a α-level test seems to
be most suitable for performing a fair comparison of the test procedures discussed
above: the precise form of limit distribution of HCn is not specified even for its
truncated version (17.12) and the distribution of CsCsHM+

n statistic is tabulated
only for the specific choice of w(u) from the class of EFKP upper-class functions,
namely w(u) = √

(u(1 − u) log log(1/u(1 − u)). See [35] for more details.
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Fig. 17.1 Power comparison among one-sided wGOF tests for detecting sparse-weak Gaussian
mixture (1−εn)N (0, 1)+εnN (μn, 1) versus N (0, 1) at significance level α = 0.05. Left panel:
εn = 0.008. Right panel: εn = 0.01

With the significance level α = 0.05, the left and right panels of Fig. 17.1 provide
the empirical power of ChORn(wν), CsCsHM and HC∗

n (all one-sided) under the
two sparse alternatives. For detecting a change in the mean, the ChORn(wν) test
with the optimal value ν has high detection power and outperforms both CsCsHM
and the improved version of HC, HC∗

n of (17.12) for higher contamination levels
μn. As seen in the figure, the gap in detection power is not very large. This is due to
the specific normalization of the deviations at the extreme indices is HC∗

n applied to
avoid the situations where the test power is very close to zero. We also observe an
accurate size control for all the tests for both sparsity levels. In all the simulations,
the estimated standard errors of the results are generally small, this is because each
point on the power curves is the mean of 100 iterations.

Observe that for some low (μ, εn) values CsCsHM+
n achieves better perfor-

mance, whereas for higher ν, ChOR+
n (wν) with the optimally selected value

of ν is performing better. The natural questions is how to compare the finite
sample performance of the tests simultaneously over both sparsity and weakness
parameters? Borrowing ideas from [31], we study this question by conducting
an extensive simulation which exploits the mis-detection evaluation technique.
Specifically, for a variety of different values of (εn, μ), we empirically computed
the detection power of these tests at a significance level α = 0.05 for sample sizes
n = 1000 and n = 10,000. For each value of μ and εn, we state that a test T1 is a
clear winner if mink=2,3,4 PrH1(Tk = H0)/PrH1(T1 = H0) > 1.1. In words, T1 is a
clear winner if its mis-detection rate is significantly lower.

Figure 17.2 shows the regions of the phase space (μ, εn) where the different
colors represent the tests which are asserted as clear winners. As seen in the left
panel of the figure, at the upper left part of the phase space (μ, ε), CsCsHM is the
best statistic. This is due to relatively high εn which corresponds to a more dense
contamination regime, where CsCsHM is shown to better capture denser signals;
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Fig. 17.2 Comparison of tests for detecting sparse and weak Gaussian mixture (1−εn)N (0, 1)+
εnN (μn, 1) versus N (0, 1). Colored patterns show regions where the mis-detection level with
the second-best testing procedure divided by that of the best one exceeds 1.1. Color intensity
signifies the regions where this ratio exceeds 1.5. The grey color represent the regions where the
mis-detection level is in the range 0.1–80%. Left panel: ChOR with parameter ν = 0.05. Right
panel: ChOR with two values of ν = 0.05 and ν = 0.15

see, e.g., [35]. At the other extreme, in the lower right parts of both left and right
panels, where εn is small but μ is high (sparse and strong signals regime), the HC∗

n

works best with the ChOR+
n (wν) statistic with ν = 0.05 being a close second. In the

intermediate regions of both panes, which represent the sparse and weak regime, it is
ChOR+

n (wν) with both ν = 0.15 and ν = 0.05 outperforms the other tests. Finally,
in this simulation study the HCn statistic defined by (17.11) (i.e., without truncation
of the range of p-values) performed worse than at least one the other tests over the
whole phase space.

17.4.2 Sparse and Weak Effects in High Dimensions: Dirichlet
Mixture

Motivated by the problem of detecting sparse microbiome features (e.g., microbial
taxa, certain genes, etc.) exhibiting differences in abundance between samples, we
exploit the hypothesis testing signal detection technique based on wGOF statistics
constructed as sup-functionals of weighted empirical processes. Spectroscopy-based
metabolomic sequencing, the method used to quantitatively characterize micro-
biomes, tends to screen as many features as possible, while truly highly informative
features often have a relatively small number, and their effects (signal strength) are
often low. Therefore, it is appealing to apply a sparse-weak setting when modeling
microbiome data. A specific example where detecting of a sparse-weak mixture is
combined with high-dimensional, low-sample regime is the problem of detection
and identification of the covariates highly affecting the microbiome composition.

We develop the modeling framework to mimic a real microbiome data set which
we further analyze in Sect. 17.4.3. Suppose that we have n microbiome samples
measured on p distinct bacterial taxa/species whose counts for each sample are
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modeled by a vector of random variables Y = (Y1, . . . , Yp) where Y+ = ∑p
i=1 Yi

and p � n.
The total taxon count, Y+ is in part determined by the sequencing depth and

will be treated as an ancillary statistic whose distribution does not depend on
the parameters in the model. The standard statistical model for count data is the
multinomial distribution but in the microbiome composition samples the variation
in the data is usually larger than that what would be predicted by the multinomial
model with the fixed underlying proportions. This effect of increased variation stems
from the combination of heterogeneity of microbiome samples and high sparsity
of the underlying proportions which vary among n samples. To account for this
combined effect, a sparse-weak mixture model for compositional data analysis is
designed.

Specifically, we let X = (X1, . . . , Xp) to denote the composition vector of
species proportions obtained by normalizing Y with Y+. Then the elements of the
compositionXi ’s are themselves positive random variables subject to the constraint
that

∑p
j=1Xj = 1 where Xj ∈ (0, 1), j ∈ �p� and the support of X is the p-

dimensional simplex. The most suitable model for the data on bounded domain is
the p-dimensional Dirichlet distribution whose density is given by

fX(x1, . . . , xp; θ) = Γ (
∑p

j=0 θj )∏p

j=1 Γ (θj )

⎡
⎣1 −

p∑
j=1

⎤
⎦
θ0−1

p∏
j=1

x
θj−1
j , xj ≥ 0,

p∑
j=1

xj ≤ 1,

where θ = (θ0, θ1, . . . , θp), are positive shape parameters, θ+ = ∑p
j=1 θj and Γ (·)

denotes the Gamma function.
In what follows, we will write X ∼ Dir(θ0, . . . , θp) and let Yn = (Yij )n×p

denote the observed count matrix for n samples and Xn = (Xij )n×p be the
corresponding matrix of estimated proportions.

The straightforward way to model sparse-weak effects in Dirichlet distribution
would be to calibrate parameters θj in a way similar to Example 17.3, where the
signal strength, i.e., a proportion level of a specific bacterial taxon and a fraction of
informative taxons must be linked to both p and n assuming a specific regime of
growth of p relative to n.

Due to its structure, the Dirichlet distribution with the parameter vector having
θj = 1 for j ∈ �p� would represent the null hypothesis that all p bacterial
taxa/species are entirely non-informative in n given samples. The alternative
hypothesis would be represented by a mixture of large amount 1 − εp of non-
informative covariates and a small fraction εp of those which have significantly
elevated values of θj .

The main problem with this approach to sparse mixture modeling is that
covariates Xj in X are negatively correlated (see, e.g., Kotz et al. [26, Chapter 49])
and to avoid the highly non-trivial problem of incorporating covariance into the
mixture parametrization, we suggest to use the following characterization of the
Dirichlet distribution: the random variables Zj = Xj/

∑p
�=1X�, are mutually
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independent standard Beta-distributed random variable with parameters θj and∑p
�=j+1 θ�, respectively, i.e., if X ∼ Dir(θ0, . . . , θp) then the vector of transformed

variables Z consists ofZj ∼ Beta(θj ,∑p

�=j+1 θ�)which are mutually independent
for j ∈ �p�; see Kotz et al. [26, Chapter 25]. Hence, it is possible to simulate a
p-dimensional Dirichlet random vector by simulating (p + 1) independent Beta
variables.

An alternative, a computationally efficient way to simulate from a Dirichlet
distribution is by using the systematic scan Gibbs sampler, which uses the fact that
the full conditionals ofDir(θ0, . . . , θp) are simply Beta distributions, see, e.g., [12].

Now, to detect the presence of informative signals (relevant taxa), we test the
null hypothesis that X ∼ Dir(θ) where θj = 1, j ∈ �p�, that is taxa proportions
are uniformly distributed in the p-dimensional simplex. We calibrate each (taxa)
proportion θ with nθj ∼ (1 − εp)δ1 + εpδθτ , where δ1 denotes the point mass at
1 and θτ > 1, i.e., the distribution δθτ has no mass at 1. To link the sample size
n to the number of proportions in the high-dimensional asymptotics discussed in
Example 17.3, we use p as the driving index, let np = pτ for τ ∈ (0, 1) and allow
θτ to depend on p. Recall that εp is parametrized as p−β for β ∈ (1/2, 1), hence
as p → ∞ the informative signals become increasingly rare being asymptotically
negligible fraction of the coordinates in the vector X.

To represent a finite sample scenario of the high-dimensional asymptotics, we
set p = 5000 and n = 50, which corresponds the case of regular growth of p with
τ = 0.4593. We further generate n Dirichlet samples using the systematic scan
Gibbs sampler and obtain the data matrix Zn = (Zij )n×p . For each j ∈ �p�, we

test whether Z1j , . . . , Znj
iid∼ Beta(1, ·) and obtain a collection of the KS-based p-

values to be used as the input statistics for construction of HC∗
n, ChOR+

n (wν) and
CsCsHM+

n scores.
The significance thresholds h(p, α) are obtained using the simulation scheme

of Sect. 17.4.1 as the top α percentile of the null empirical distribution of each
of the three test scores. The empirical distributions are obtained with M = 500
replicates averaged over 200 iterations for each test procedure. The values of the
test scores exceeding the empirical threshold h(p, α) are interpreted as evidence for
the presence of informative signals sparsely scattered in the X vector.

For the power computation, we generate a sparse-weak mixture Dirichlet data
under H1,n as a function of θτ varying from 1 to 1.5 with the two levels of sparsity
εp = 0.02 and 0.01, and using M = 50 replicates repeated over 500 iterations.
From both panels of Fig. 17.3, we observe power of ChORn(wν) with optimal value
of ν slightly higher than its competitors where the curves comes very close for
lower values of θ and have more pronounced gaps for higher signal levels. This
phenomena is very similar to the Gaussian mixture case as well as the accurate size
control for all the tests, as may be observed in Fig. 17.3.

To study the power as a function of both sparsity and weakness parameters,
we consider θ ranging from 1 to 1.5 and εp ranging from 0 to 0.1, both with
the increment of 0.05. Figure 17.4 show the regions of the phase space (θ, εp)
where the different colors represent the tests which are asserted as clear winners
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Fig. 17.3 Power comparison of one-sided tests for detecting sparse-weak Dirichlet mixture at
significance level α = 0.05. Left panel: εp = 0.01. Right panel: εp = 0.02
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Fig. 17.4 Comparison of tests for detecting sparse-weak Dirichlet mixture. Colored patterns show
regions where the mis-detection level with the second-best testing procedure divided by that of the
best one exceeds 1.1. Color intensity with the dark centers signify the regions where this ratio
exceeds 1.5. The grey color represent the regions where the mis-detection level is in the range 0.1–
80%. Left panel: ChOR+

n (wν) with parameter ν = 0.1. Right panel: ChOR+
n (wν) with two values

of ν = 0.15 and ν = 0.05

according to the evaluation technique described in Sect. 17.4.1. It is seen that the
pattern of comparative performance of the tests is similar to the Gaussian mixture,
but the choice of parameter ν effects the detection accuracy. With increasing ν, the
performance of ChORn(wν) is par with CsCsHM which is known to perform well
for very wreak but denser signals, whereas with ν decreasing the performance of
ChORn(wν) approaches HC∗

n.

17.4.3 Human Gut Microbiome Composition

For illustration, we employ the sparse-weak signal detection methodologies to
analyze differentially abundant features in the gut microbiome. The data came from
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the American Gut Project, which is a crowd sourced characterization of the human
gut microbiome with samples from more than 10,000 participants in total [29].
In the project, fecal samples are collected at home and sent to a central lab for
sequencing. Sequencing data is deposited in the publicly available Qiita database
[24].

In the present study, we conduct the analysis focusing the 150 nucleotide
denoised sequences available under Qiita study ID 10317, from which we used
the first fecal sample from individuals who had completed a food frequency
questionnaire. The amplicon sequence variant (ASV) table represents the observed
count matrix Yn = (Yij )n×p comprising n = 2821 observation over p = 11,496
features. We are interested in testing hypothesis that there are systematic changes
in microbial features which are not due to random noise originating from inter-
individual differences.

In the light of shortcomings of count data modeling in microbiome study
discussed in Sect. 17.4.2, we transform Yn to get a composition data Xn where each
X is modeled as p-dimensional Dirichlet distribution Dir(θ ) with the vector of
shape parameters θ . After this transformation, the null hypothesis of pure noise is
expressed in terms of the shape parameter: θj = 1 for j ∈ �p� in θ , meaning that
the taxa proportions are uniformly distributed in the unit p-dimensional simplex.

We further transform Xn×p to Zn×p and obtain a collection of p-values by
testing for each j ∈ �p� the GOF of (Z1j , . . . , Znj ) with Beta(1, ·) as explained in
Sect. 17.4.2.

The obtained p-values are used as the input statistics to calculate the three wGOF
scores, resulting in HC∗ = 488.8456, CsCsHM+ = 1269.217, and ChOR+ varying
between 1249.1 for ν = 0.05 and 97.9 for ν = 0.45. To make the tests run smoothly
and avoid division with 0, p-values of 0 or 1 were recoded to 0.0001 and 0.999,
respectively.

The test significance thresholds are obtained using the simulation scheme of
Sect. (17.4.1) as the top α = 0.05 percentile of the null empirical distribution of
each of the three test scores obtained with M = 500 replicates averaged over 200
iterations for each test procedure. The resulting values are hHC* = 3.6, hCsCsHM = 5.2,
and hChORν varying between 3.6 for ν = 0.05 and and 1.6 for ν = 0.45. By the results
above, for all three tests of significance, the null hypothesis is rejected providing
statistical evidence for the presence of informative signals sparsely scattered over
the composition vector X.

17.5 Discussion and Scope for the Future

By analyzing wGOF-based approach to detection of sparse-weak effects, we have
shown that the Chibisov-O’Reilly is the class of weight functions for which the
weak convergence of the empirical processes in the ‖ · /w‖-metrics to a Brownian
bridge process holds. This is an important result, which in turn guarantees that the
corresponding ChOR family of tests statistics admits a non-degenerated asymptotic
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null distribution, unlike the class of wGOF tests which exploits SDP weight
functions, such as for example statistics with HC-like constructions.

Our study provided a thorough framework for applying and comparing existing
wGOF test statistics for detection of sparse-weak signals in number of high-
dimensional scenarios far beyond the standard zero-inflated, Gaussian distribution
mixture. In particular, we have shown that our methodology is suitable for detec-
tion of sparse-weak effects in the high-dimensional models with compositional
constrains, such as Dirichlet mixture which is used to model microbiome data
residing on in a unite p-dimensional simplex, where p � n. Unlike the log-ratio
transformation which is conventionally used in the literature to remove the simplex
constraint in the compositional data, we exploited a theoretical characterization
of the Dirichlet distribution and propose a transformation which alleviates the
interdependence among the microbiome features. This make it possible to operate
with the sparse-weak detection techniques using a set independent p-values as the
input statistics for any of the wGOF tests.

The attractive feature of the ChOR family is that is forms a broad family of
supremum-based, one- and two-sided tests statistics which only requires a group of
input statistics (or, which is equivalent, the input p-values) to device an adaptive,
fully data-driven procedure for the sparse-weak signal detection.

The signal detection problem studied in this paper is closely connect to other
important problems in large-scale inference under sparsity, including estimation of
non-null effects and signal identification. This latter problem, while being more
complex than the signal detection is in fact more interesting from the practical
point of view. Indeed, after detecting the presence of signals, a natural next step
is to identify the location of informative signals. While the scope of this paper is
limited to the detection problem, we are currently working on extension of ChOR
strategy to the problem of signal identification as well as to another closely related
problem of feature selection in high-dimensional classification models discussed in
Example 17.3.
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Chapter 18
Exploring Consistencies of Information
Criterion and Test-Based Criterion
for High-Dimensional Multivariate
Regression Models Under Three
Covariance Structures

Tetsuro Sakurai and Yasunori Fujikoshi

Abstract In this paper, we consider the high-dimensional consistency properties of
an information criterion and a test-based criterion (KOO method) for the selection
of variables in multivariate regression models with covariance structures. The
covariance structures considered are (1) an independent covariance structure, (2) a
uniform covariance structure and (3) an autoregressive covariance structure. In our
model the sample size is not necessarily larger than the dimensionality (number)
of response variables. Sufficient conditions for these criteria to be consistent are
derived under a high-dimensional asymptotic framework such that the sample size
and the dimensionality proceed to infinity together, with their ratio converging
to a finite nonzero constant. Our results, and tendencies therein, are explored
numerically through a Monte Carlo simulation.

18.1 Introduction

We consider a multivariate linear regression of p response variables y1, . . . , yp on a
subset of k explanatory variables x1, . . . , xk . Suppose that there are n observations
on y = (y1, . . . , yp)

′ and x = (x1, . . . , xk)
′, and let Y : n× p and X : n× k be the

observation matrices of y and x, respectively, for a sample size n. The multivariate
linear regression model including all explanatory variables is written as

Y = X� + E, (18.1)
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where � is a k×p unknown matrix of regression coefficients and E = (e1, . . . , en)
′

is an error matrix. It is assumed that e1, . . . , en are independently and identically
distributed as a p-dimensional normal distribution Np(0,�). The multivariate
normal linear regression model is also written as

Y ∼ Nn×p(X�,� ⊗ In). (18.2)

The notation Nn×p(·, ·) denotes the matrix normal distribution such that the mean of
Y is X� and the covariance matrix of vec (Y) is � ⊗ In. Here, vec(Y) is the np× 1
column vector obtained by vertically stacking the columns of Y.

An important issue in theoretically and empirical contexts concerns selecting
the best or true model from a suite of candidate models all specified by a linear
regression of y on subvectors of x. When � is an unknown positive definite matrix,
a well-known and often applied method involves using one or more information
information criteria, principally AIC or BIC. It has been shown that AIC has
consistency properties when p/n → c ∈ (0, 1), under some conditions, but BIC
is not necessarily consistent, [8, 17]. It may be noted that such a property does
not transfer to the large sample case since BIC under a large-sample framework is
consistent, but AIC is not consistent, (see, e.g., [11]).

In the context of high-dimensional data, it is important to consider the selection
of regression variables for the case wherep is larger than n, and k is also large. When
p is large, it is natural to consider the covariance structure, since the covariance
matrix with no structures involves many unknown parameters. One approach to
this involves employing a sparse method or joint regularization of the regression
parameters and the inverse covariance matrix (see, e.g., [12, 13]). Another approach,
considered herein, would be to select the regression variables, assuming a simple
covariance structure.

In this paper, we first consider the variable selection problem by a general infor-
mation criterion including AIC and BIC, under three simple covariance structures;
(i) an independent covariance structure, (ii) a uniform covariance structure, and (iii)
an autoregressive covariance structure. An information criterion including AIC and
BIC as special cases is proposed. A sufficient condition for the general information
to be consistent is provided. However, this criterion is computationally onerous
when k is large. To circumvent this issue, we consider a test-based criterion drawing
on the significance of each variable, which was used in [5]. The idea of this method
is based on [18] and [11], in which they consider a selection method based on
comparing information criterion for the subset removing each variable and the full
set of variables. The method is called a KOO (Kick One Out) method by [2]. In this
paper it is shown that the variable selection methods are also consistent in a high-
dimensional context. Our results are validated numerically by conducting a Monte
Carlo simulation.

Our high-dimensional consistency property is derived when p/n → c ∈ (0, 1)
and k is fixed, though it is hoped that the condition on k is extended to k/n → c̃ ∈
(0, 1). From a practical point, there are many high-dimensional data with large k,
but there are also high-dimensional data with small or moderate k. As examples of
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the latter, see (1) DNA finger print data ([7, 16]) with p = 84, n = 89 and k = 4,
and (2) Arabidopsis thaliana data [10] with p = 795, n = 118 and k = 39.

The remainder of the present paper is organized as follows. In Sect. 18.2,
we present the relevant notation and preliminaries for the test-based method. In
Sects. 18.3, 18.4 and 18.5, we focus on the high-dimensional consistencies of
information criteria under covariance structures (i), (ii) and (iii), respectively. These
are also numerically studied. In Sect. 18.6, their test-based criteria are proposed
and shown to be consistent under the same condition as in the case of information
criteria. In Sect. 18.7, conclusions are offered. All proofs of our results are provided
in the Appendix.

18.2 Notation and Preliminaries

This paper is concerned with the selection of explanatory variables in multivariate
regression model (18.1). Suppose that j denotes a subset of ω = {1, . . . , k}
containing kj elements, and Xj denotes the n× kj matrix consisting of columns of
X indexed by elements of j . Then, Xω = X. Further, we assume that the covariance
matrix � have a covariance structure �s . A generic candidate model can then be
expressed as

Ms,j : Y ∼ Nn×p(Xj�j ,�s ⊗ In), (18.3)

where �j is a kj × p unknown matrix of regression coefficients. We assume
that rank(X) = k(< n). The selection of the i-th explanatory variable xi is
corresponding to whether the i-th row of � is the null vector or not. Note that
the row vectors of � are p dimension, and asymptotic properties of our selection
methods closely depend on p.

As a model selection method, let us consider an information criterion based on
AIC [1]. When �s is a p × p unknown covariance matrix, the AIC (see, e.g., [3, 4]
forMs,j is given by

AICg,j = n log |�̂s,j | + np(log 2π + 1)+ 2

{
kjp + 1

2
p(p + 1)

}
, (18.4)

where n�̂s,j = Y′(In − Pj )Y and Pj = Xj (X′
jXj )

−1X′
j . The sum of the first two

terms, “n log |�̂s,j | + np(log 2π + 1)” is “−2 log maxMs,j f (Y; �j ,�s,j )”, where
f (Y; �j ,�s,j ) is the density function of Y under Ms,j . The AIC was introduced
as an asymptotic unbiased estimator for the risk function defined as the expected
log-predictive-likelihood or equivalently the Kullback-Leibler information, for a
candidate model Ms,j (see, e.g., [4]. When j = ω, model Ms,ω is the full model.
Note that �̂s,ω and Pω are defined from �̂s,j and Pj as j = ω, kω = k and Xω = X.
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We consider the case where the covariance matrix � is described by each of the
following three classes:

(i) Independent covariance structure (IND); �v = σ 2
v Ip,

(ii) Uniform covariance structure (UNIF); �u = σ 2
u (ρ

1−δii′
u )1≤i, i′≤p,

(iii) Autoregressive covariance structure (AUTO) ; �a = σ 2
a (ρ

|i−i′ |
a )1≤i, i′≤p.

The candidate model can be expressed as (18.3) with Σv , Σu or Σa for Σs . For
deriving the maximum likelihood under Ms,j , we use the fact that for any positive
definite �s ,

max
�j
f (Y; �j ,�s) = np log |�s | + np(log 2π + 1)

+ min
�j

tr�−1
s (Y − Xj�j )

′(Y − Xj�j ) (18.5)

= np log |�g,j | + np log 2π + tr�−1
s Y(In − Pj )Y.

Let �̂s,j be the quantity minimizing the right side of (18.5). Then, in our problem,
it satisfies

tr�̂
−1
s,jY(In − Pj )Y = np.

We consider a general information criterion defined by

ICd,s,j = −2 log f (Y; �̂j , �̂s,j )+ dms,j
= np log |�s,j | + np(log 2π + 1)+ dms,j , (18.6)

wherems,j is the number of independent unknown parameters underMs,j , and d is
a positive constant which may depend on n. When d = 2 and d = logn,

IC2,s,j = AICs,j , IClogn,s,j = BICs,j .

For each of the three covariance structures, consider that the objective is to select
the best model from all candidate models or a subset from the candidate models. Let
Fω be the entire suite of candidate models, denoted by

Fω = {{1}, . . . , {k}, {1, 2}, . . . , {1, . . . , k}},
or its subfamily F . Then, our model selection criterion is to select the modelMj or
subset j minimizing ICs,d,j , which is written as

ĵICd,s = arg min
j∈F

ICd,s,j . (18.7)



18 Exploring Consistencies of Information Criterion 317

To explore the consistency properties of ĵICd,s , it is assumed that the true model
Ms,∗ is included in the full model, i.e.,

Ms,∗ : Y ∼ Nn×p(X∗�∗,�s,∗ ⊗ In). (18.8)

Let us denote the minimum model including the true model byMs,j∗ . The true mean
of Y is expressed as

X∗�∗ = Xj∗�j∗ (18.9)

for some kj∗ × p matrix �j∗ , so the notation Xj∗�j∗ is also used for the true mean
of Y. Let F separate into two mutually exclusive sets: a set of overspecified models,
F+ = {j ∈ F | j∗ ⊆ j } and a set of underspecified models, F− = F c+ ∩ F .

Here we list our main assumptions:

A1 (The true model): Ms,∗ ∈ F .
A2 (The asymptotic framework): p → ∞, n→ ∞, p/n→ c ∈ (0,∞).
A general model selection criterion ĵICd,s is called consistent if

lim
p/n→c∈(0,∞)Pr(ĵICd,s = j∗) = 1.

To obtain ĵICd,s , ICs,d needs to be calculated for all subsets of F . When F =
Fω, there are 2k − 1 subsets. This is computationally onerous as k becomes large.
To overcome this challenge, we consider a test-based criterion (TC) based on a
significance test of each θ i , where � = (θ1, . . . , θk)

′. Note that a critical region for
testing “θ i = 0” based on the likelihood ratio principle and AIC is expressed as

IC2,s,(−i) − IC2,s,ω > 0, (18.10)

where (−i) is the subset of ω = {1, . . . , k} obtained by omitting the i (1 ≤ i ≤ k)
from ω. According to [5], we consider a TCd,s defined to select

ĵTCd,s = {i ∈ ω | ICd,s,(−i) > ICd,s,ω, i = 1, . . . , k}. (18.11)

The idea has hitherto been considered by [18]. [11] have studied a consistency
property in a large-sample asymptotic framework. In Sect. 18.6, we identify the
consistency property of ĵTCd,s .



318 T. Sakurai and Y. Fujikoshi

18.3 IC Under an Independent Covariance Structure

In this section, we consider the problem of selecting variables in a multivariate
regression model under the assumption that the covariance matrix has an indepen-
dent covariance structure. A generic candidate model can be expressed as

Mv,j : Y ∼ Nn×p(Xj�j ,�v ⊗ In), (18.12)

where �v = σ 2
v Ip and σv > 0. Then, we have

−2 logf (Y; �j , σ
2
v ) = np log(2π)+ np log σ 2

v

+ 1

σ 2
v

tr(Y − Xj�j )
′(Y − Xj�j ).

Therefore, it is straighforward to identify that the maximum likelihood estimators
of �j and σ 2

v underMv,j are given as

�̂j = (X′
jXj )

−1X′
jY, σ̂ 2

v,j = 1

np
trY′(In − Pj )Y. (18.13)

The information criterion (18.6) is given by

ICv,d,j = np log σ̂ 2
v,j + np(log 2π + 1)+ dmv,j , (18.14)

where d is a positive constant, which may depend on n, andmv,j = kjp+1. Assume
that the true model is expressed as

Mv,∗ : Y ∼ Nn×p(X∗�∗, σ 2
v,∗Ip ⊗ In), (18.15)

with (18.9), denoting the minimum model including the true modelMv,∗ byMv,j∗ .
In general, Y′(In − Pj )Y is distributed as a nocentral Wishart distribution, more
precisely

Y′(In − Pj )Y ∼ Wp(n− kj ,�v,∗; (Xj∗�j∗)
′(In − Pj )Xj∗�j∗),

which implies the following lemma.

Lemma 18.1 Under (18.15), npσ̂ 2
v,j /σ

2
v,∗ is distributed as a noncentral chi-square

distribution χ2
(n−kj )p(δ

2
v,j ), where

δ2
v,j = 1

σ 2
v,∗

tr(Xj∗�j∗)
′(Pω − Pj )Xj∗�j∗ . (18.16)
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Here we write tr(ABC) as trABC simply. If j ∈ F+, then δ2
v,j = 0.

For a sufficient condition for the consistency of ICd,v , we assume

A3v : For any j ∈ F−, δ2
v,j = O(np), and lim

p/n→c
1

np
δ2
v,j = η2

v,j > 0. (18.17)

Theorem 18.1 Suppose that assumptions A1, A2, and A3v are satisfied. Then, the
information criteria ICd,v defined by (18.14) is consistent if d > 1 and d/n→ 0.

AIC and BIC satisfy conditions “d > 1 and d/n → 0”, and we have the
following result.

Corollary 18.1 Under assumptions A1, A2, and A3v, AIC and BIC are consistent.

Next we numerically explore the validity of our claims. The true model was
assumed as

Mv,∗ : Y ∼ Nn×p(X∗�∗, σ 2
v,∗Ip ⊗ In).

Here �∗ : 3 × p was determined by random sampling from a uniform distribution
on the interval (1, 2), i.e., i.i.d. from U(1, 2). The first column of Xω : n × 10
is 1n, and the other elements are i.i.d. from U(−1, 1). The true variance was set
as σ 2

v,∗ = 2. In this paper we consider to select the true model from the set of
all candidate models or from its subset. Here, we considered a selection from five
candidate models Mjα , α = 1, 2, . . . , 5 , where jα = {1, . . . , α}. We focused on
selection percentages of the true model for 104 replications under AIC and BIC for

(n, p) = (50, 15), (100, 30), (200, 60), (50, 100), (100, 200), (200, 400).

Results are shown in Table 18.1. The true model is selected in all cases except for
(n, p) = (50, 15) of AICv . In the case (n, p) = (50, 15) of AICv , the selection
percentage is not 100, but it is still very high.

We do not present the selection percentages of AICv and BICv for p/n = 2,
n = 50, 100, 200, since the selection percentage was 100.

Table 18.1 Selection percentages of AICv and BICv for p/n = 0.3

AICv BICv
j (50, 15) (100, 30) (200, 60) (50, 15) (100, 30) (200, 60)

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 97.3 99.9 100.0 100.0 100.0 100.0

4 2.4 0.1 0.0 0.0 0.0 0.0

5 0.3 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0
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18.4 IC Under a Uniform Covariance Structure

In this section we consider the model selection criterion when the covariance matrix
has a uniform covariance structure

�u = σ 2
u (ρ

1−δii′
u ) = σ 2

u {(1 − ρu)Ip + ρu1p1′
p}. (18.18)

The covariance structure is expressed as

�u = τ1
(

Ip − 1

p
Gp

)
+ τ2 1

p
Gp,

where

τ1 = σ 2
u (1 − ρu), τ2 = σ 2

u {1 + (p − 1)ρu}, Gp = 1p1′
p,

and 1p = (1, . . . , 1)′. Noting that Ip − 1
p

Gp and 1
p

Gp are orthogonal idempotent
matrices, we have

|�u| = τ2τp−1
1 , �−1

u = 1

τ1

(
Ip − 1

p
Gp

)
+ 1

τ2

1

p
Gp.

Now, consider the modelMu,j given by

Mu,j : Y ∼ Nn×p(Xj�j ,�u ⊗ In), (18.19)

where �u = τ1
(
Ip − p−1Gp

) + τ2p−1Gp. Let H = (h1,H2) be an orthogonal
matrix where h1 = p−1/21p, and let

Uj = H′WjH, Wj = Y′(In − Pj )Y.

The density function of Y under Mu,j is denoted by f (Y; �, τ1, τ2). From (18.5)
we have

g(τ1, τ2) = −2 log max
�j
f (Y; �j , τ1, τ2)

= np log(2π)+ n log τ2 + n(p − 1) log τ1 + tr�−1Uj ,

where � = diag(τ2, τ1, . . . , τ1). Then, it can be shown that the maximum likelihood
estimators of τ1 and τ2 underMu,j are given by

τ̂1j = 1

n(p − 1)
tr D1Uj = 1

n(p − 1)
trH′

2Y′(In − Pj )YH2,

τ̂2j = 1

n
tr D2Uj = 1

n
h′

1Y′(In − Pj )Yh1,
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where D1 = diag(0, 1, . . . , 1) and D2 = diag(1, 0, . . . , 0). The number of
independent parameters under Mu,j is mj = kjp + 2. Noting that � is diagonal,
we can derive the information criterion (18.6) as

ICd,u,j = n(p − 1) log τ̂1j + n log τ̂2j + np(log 2π + 1)+ d(kjp + 2).
(18.20)

Assume that the true model is expressed as

Mu,∗ : Y ∼ Nn×p(X∗�∗,�u,∗ ⊗ In), (18.21)

with (18.9), denoting the minimum model including the true modelMu,∗ byMu,j∗ ,
where �u,∗ = τ1∗

(
Ip − p−1Gp

) + τ2∗p−1Gp. In general, it holds that Uj ∼
Wp(n− kj ,�∗; 	j ), where

	j = (Xj∗�j∗H)′(In − Pj )Xj∗�j∗H,

and �∗ = diag(τ2∗, τ1∗, . . . , τ1∗). Therefore, we have the following Lemma (see,
e.g., [9]).

Lemma 18.2 Under the true model (18.21), it holds that

(1) n(p − 1)τ−1
1∗ τ̂1j is noncetrally distributed as χ2

(p−1)(n−kj )(δ
2
1j ), where

δ2
1j = 1

τ1∗
trH′

2(Xj∗�j∗)
′(In − Pj )(Xj∗�j∗)H2.

(2) nτ−1
2∗ τ̂2j is noncentrally distributed as χ2

n−kj (δ
2
2j ), where

δ2
2j = 1

τ2∗
trh′

1(Xj∗�j∗)
′(In − Pj )(Xj∗�j∗)h1.

(3) If j ∈ F+, then δ1j = 0 and δ2j = 0.

To identify a sufficient condition for the consistency of ICd,u, we assume
A3u: For any j ∈ F−, δ2

1j = O(np), δ2
2j = O(n) and

lim
p/n→c

1

np
δ2

1j = η2
1j > 0, lim

p/n→c
1

n
δ2

2j = η2
2j > 0. (18.22)

Theorem 18.2 Suppose that assumptions A1, A2 and A3u are satisfied. Then, the
information criteria ICd,u defined by (18.20) is consistent if d > 1 and d/n→ 0.

Corollary 18.2 Under assumptions A1, A2 and A3u, AIC and BIC are consistent.

We ran a numerical experiment under the same settings as in the independence
covariance structure case except for the covariance structure itself. The true-uniform
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Table 18.2 Selection percentages of AIC and BIC for p/n = 0.3

AIC BIC

j (50, 15) (100, 30) (200, 60) (50, 15) (100, 30) (200, 60)

1 0.2 0.0 0.0 72.8 1.3 0.0

2 0.6 0.0 0.0 7.6 3.0 0.0

3 96.5 99.9 100.0 19.6 95.7 100.0

4 2.4 0.1 0.0 0.0 0.0 0.0

5 0.3 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 18.3 Selection percentages of AIC and BIC for p/n = 2

AIC BIC

j (50, 100) (100, 200) (200, 400) (50, 100) (100, 200) (200, 400)

1 0.1 0.0 0.0 100.0 99.6 0.0

2 3.1 0.0 0.0 0.0 0.4 0.0

3 96.9 100.0 100.0 0.0 0.0 100.0

4 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

covariance structure was set as σ 2
u,∗ = 2, ρu,∗ = 0.2. Results are given in Tables 18.2

and 18.3. In general, AIC selects the true model with a high probability even in a
finite setting. probability. However, BIC does not always select the true model when
(n, p) is small, though it exhibits a consistency property.

18.5 IC Under an Autoregressive Covariance Structure

In this section, we consider the model selection criterion when the covariance matrix
� has an autoregressive covariance structure

�a = σ 2
a (ρ

|i−i′|
a )1≤i, j≤p. (18.23)

Then, it is well-known that (see, e.g., [6])

|�a | = (σ 2
a )
p(1 − ρ2

a )
p−1, �−1

a = 1

σ 2
a (1 − ρ2

a )
(ρ2
aC1 − 2ρaC2 + C0),
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where C0 = Ip ,

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .
...
...

0 0 · · · 1 0
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, C2 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0
1 0 · · · 0 0
...
...
. . .
...
...

0 0 · · · 0 1
0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Now, consider the modelMa,j given by

Ma,j : Y ∼ Nn×p( Xj�j ,�a ⊗ In), (18.24)

where �a = σ 2
a (ρ

|i−i′|
a ). Then, from (18.5) the maximum likelihood estimator of

�j is given by

�̂j = (X′X)−1X′Y,

and the maximum likelihood estimators of ρa and σ 2
a under Ma,j can be obtained

through the minimization of

− 2 logf (Y; �̂a,j , σ
2
a , ρ) = np log(2π)+ np log σ 2

a + n(p − 1) log(1 − ρ2
a )

+ 1

σ 2
a (1 − ρ2

a )
+ tr(ρ2

aC1 − 2ρaC2 + C0)Y′(In − Pj )Y

with respect to σa and ρa . Therefore, the maximum likelihood estimators σ̂a,j and
ρ̂a,j of σ 2

a and ρa underMa,j are given as solutions to the following two equations
(see [6]):

σ̂ 2
a,j = n− kj

n

1

p(1 − ρ̂2
a,j )
(a1j ρ̂

2
a,j − 2a2j ρ̂a,j + a0j ), (18.25)

(p − 1)a1j ρ̂
3
a,j − (p − 2)a2j ρ̂

2
a,j − (pa1j + a0j )ρ̂a,j + pa2j = 0, (18.26)

where aij = trCiSj , i = 0, 1, 2, and Sj = (n − kj )
−1Y′(In − Pj )Y. The

information criterion ICd,a,j can then be written as

ICd,a,j = np log σ̂ 2
a,j + n(p − 1) log(1 − ρ̂2

a,j )+ np(log 2π + 1)+ d(kjp + 2).
(18.27)



324 T. Sakurai and Y. Fujikoshi

Note that the maximum likelihood estimators of ρ and σ 2 are expressed in terms of
a0j , a1j and a2j or

b0j = trC0Wj , b1j = trC1Wj , b2j = trC2Wj , (18.28)

where

Wj = (n− kj )Sj = Y′(In − Pj )Y. (18.29)

Assume that the true model is expressed as

Ma,∗ : Y ∼ Nn×p(X∗�∗,�a,∗ ⊗ In), (18.30)

with (18.9) denoting the minimum model including the true model M∗ by Mj∗ ,

where �a,∗ = σ 2
a,∗(ρ

|i−i′|
a,∗ ). Then,

Wj = Y′(In − Pj )Y ∼ Wp(n− kj ,�a,∗; �j ),

where �j = (Xj∗�j∗)
′(In − Pj )Xj∗�j∗ . To relate to the noncentrality matrix �j ,

we use the following three quantities:

δij = trCi�j , i = 0, 1, 2. (18.31)

As a sufficient condition for consistency, we assume A3a: For any j ∈ F−, the
order of each element of �j is O(n), δ2

ij = O(np), and

lim
p/n→c

1

np
δ2
ij = η2

ij > 0, i = 0, 1, 2. (18.32)

Theorem 18.3 Suppose that the assumptions A1, A2 and A3a are satisfied. Then,
the information criteria ICd,a defined by (18.27) are consistent if d > 1 and
d/n→ 0.

Corollary 18.3 Under assumptions A1, A2 and A3a, AIC and BIC are consistent.

We ran a numerical experiment under the same settings as in the independence
covariance structure and the uniform covariance structure cases except for the
covariance structure itself. Here the true covariance structure was set as the
autoregressive covariance structure �a,∗ = σ 2

a,∗(ρ
|i−i′|
a,∗ ) with σ 2

a,∗ = 2, ρa,∗ = 0.2.
Results are shown in given Tables 18.4 and 18.5 and indicate that AIC and BIC
select the true model in all cases.
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Table 18.4 Selection percentages of AIC and BIC for p/n = 0.3

AIC BIC

j (50, 15) (100, 30) (200, 60) (50, 15) (100, 30) (200, 60)

1 0.0 0.0 0.0 0.5 0.0 0.0

2 0.0 0.0 0.0 0.1 0.0 0.0

3 97.2 99.9 100.0 99.4 100.0 100.0

4 2.4 0.1 0.0 0.0 0.0 0.0

5 0.3 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

Table 18.5 Selection percentages of AIC and BIC for p/n = 2

AIC BIC

j (50, 100) (100, 200) (200, 400) (50, 100) (100, 200) (200, 400)

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 100.0 100.0 100.0 100.0 100.0 100.0

4 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0

≥ 6 0.0 0.0 0.0 0.0 0.0 0.0

18.6 Consistency Properties of TC

In this section, we explore the consistency properties of three TC: TCd,v , TCd,u,
and TCd,a in (18.11), based on ICd,v, ICd,u, and ICd,a, respectively. Note that
consistency properties of ICd,v , ICd,u, and ICd,a are given in Theorems 18.1–
18.3. Using a part of conditions used in the proofs of these consistencies, it is
expected that TCd,v , TCd,u and TCd,a have similar consistency properties. In fact,
we use the following assumptions Ã3v, Ã3u and Ã3a instead of A3v, A3u and A3a,
respectively.

Ã3v : For any i ∈ j∗, δ2
v,j(−i) = O(np), and

lim
p/n→c

1

np
δ2
v,j(−i) = η2

v,j(−i) > 0. (18.33)

Ã3u : For any i ∈ j∗, δ2
1j(−i) = O(np), δ2

2j(−i) = O(n), and

lim
p/n→c

1

np
δ2

1j(−i) = η2
1j(−i) > 0, lim

p/n→c
1

n
δ2

2j(−i) = η2
2j(−i) > 0. (18.34)

Ã3a : For anyi ∈ j∗, �j = O(n), δ2
ij(−i) = O(np), and

lim
p/n→c

1

np
δ2
ij = η2

ij > 0, i = 0, 1, 2. (18.35)
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The assumption Ã3s is more weaker than the assumption A3s for s = v, u, a.

Theorem 18.4 Suppose that assumptions A1 and A2 are satisfied. Then it holds
that

(1) the test-based criterion TCd,v is consistent under assumption Ã3v if d > 1 and
d/n→ 0.

(2) the test-based criterion TCd,u is consistent under assumption Ã3u if d > 1 and
d/n→ 0.

(3) the test-based criterion TCd,a is consistent under assumption Ã3a if d > 1 and
d/n→ 0.

To explore both the validity of the results and the convergence speeds, we ran
a numerical experiment. The simulation settings are similar to the cases of ICd,v ,
ICd,u, and ICd,a except in two respects. First, the following points: The total
number of explanatory variables to be selected is 5 rather than 10. Second, the true
covariance structures were set as follows:

(i): � = σ 2
v,∗Ip, σ 2

v,∗ = 2.

(ii): � = σ 2
u,∗(ρ

1−δii′
u,∗ ), σ 2

u,∗ = 2, ρu,∗ = 0.9.

(iii): � = σ 2
a,∗(ρ

|i−i′|
a,∗ ), σ 2

a,∗ = 2, ρa,∗ = 0.9.

Let TCA and TCB be the test-based criteria based on AIC and BIC, respectively.
The selection rates associated with these criteria are given in Tables 18.6, 18.7 and
18.8 for each of the three covariance structures. Therein, column xi denotes the

Table 18.6 Selection percentages of TCA and TCB for (n, p) = (20, 10)

n = 20, p = 10 Under True Over x1 x2 x3 x4 x5

TCA IND 0.03 0.74 0.23 1.00 1.00 0.97 0.13 0.12

UNIF 0.36 0.47 0.17 1.00 0.83 0.73 0.14 0.12

AUTO 0.40 0.44 0.17 1.00 0.84 0.68 0.14 0.13

TCB IND 0.21 0.77 0.02 1.00 1.00 0.79 0.01 0.01

UNIF 0.78 0.22 0.01 1.00 0.50 0.37 0.01 0.01

AUTO 0.81 0.18 0.01 1.00 0.49 0.30 0.01 0.01

Table 18.7 Selection percentages of TCA and TCB for (n, p) = (200, 100)

n = 200, p = 100 Under True Over x1 x2 x3 x4 x5

TCA IND 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

UNIF 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

AUTO 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

TCB IND 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

UNIF 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00

AUTO 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00
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Table 18.8 Selection percentages of TCA and TCB for (n, p) = (10, 20)

n = 10, p = 20 Under True Over x1 x2 x3 x4 x5

TCA IND 0.07 0.41 0.53 1.00 1.00 0.94 0.37 0.34

UNIF 0.47 0.15 0.38 0.97 0.85 0.62 0.39 0.35

AUTO 0.47 0.15 0.38 0.95 0.81 0.65 0.37 0.35

TCB IND 0.15 0.54 0.31 1.00 0.99 0.86 0.20 0.19

UNIF 0.68 0.15 0.17 0.93 0.70 0.43 0.20 0.20

AUTO 0.71 0.13 0.15 0.87 0.63 0.46 0.20 0.20

selection rate for the i-th explanatory variable xi . “Under”, “True”, and “Over”
denote the underspecified models, the true model, and the over-specified models,
respectively. When (n, p) = (200, 100) or (100, 200), the probabilities of selecting
the true model are equal almost one. However, when (n, p) = (20, 10) or (10, 20),
the probabilities are not so large and depend on the covariance structures. It is seen
that the probabilities in the case of independence covariance structure are larger than
the ones in the case of uniform and autoregressive covariance structures.

We do not present the selection percentages of TCA and TCB for (n, p) =
(100, 200), since it was the same as Table 18.7.

18.7 Concluding Remarks

This paper is concerned with the problem of variable selecting in p variate
regression models with one of three covariance structures: (i) an independent
covariance structure (IND); (ii) a uniform covariance structure (UNIF); (iii) an
autoregressive covariance structure (AUTO). As a selection method, an information
ICd,s was considered for each of the three covariance structures, where d is a
positive constant and may depend on the sample size n. When d = 2 and logn,
ICg,d becomes equal to the AIC and BIC. Under a high-dimensional asymptotic
framework p/n → c ∈ (0,∞), it was shown that ICd,s with s = v, u, or a is
consistent under assumption A3s if d/n → 0 and d > 1. It may be noted that
the sufficient condition does not depend on the covariance structures. Numerical
experiments were done for a restrictive case of F = {{1}, {1, 2}, . . . , {1, . . . , k}}.
However, we do not examine for all the subsets. To circumvent computational
complexities associated with ICd,s , we examined TCd,s . It was identified that TCd,s
has a consistency property similar to ICd,s . The result was first obtained by assuming
that the number k of explanatory variables is fixed and the distribution of errors is
normal. It is expected that the results extend to the cases when k is large and the
distribution of errors is non-normal. It is also important to weaken condition A3.

In addition to the three covariance structures (i), (ii) and (iii) focused on in this
research, there are additional such structures including [6]; general independent
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covariance structure and [7]; no covariance structure. These cases also warrants
exploration but are left for future research.

Acknowledgments We thank a referee for careful reading of our manuscript and many helpful
comments which improved the presentation of this paper.

Appendix

Outline of Proofs and Preliminary Lemma

First, we provide an outline of our proofs of Theorems 1, 2, and 3. In general, let
F be a finite set of candidate models j (or Mj ). Assume that j∗ is the minimum
model including the true model and j∗ ∈ F . Let Tj (n) be a general criterion
for model j , which depends on parameters p and n. The best model chosen by
minimizing Tj (p, n) is written as ĵT(p, n) = arg minj∈F Tj (p, n). Suppose that

we are interested in the asymptotic behavior of ĵT(p, n) when p/n tends to c > 0.
To show the consistency of Tj (p, n), we may check a sufficient condition such that
for any j �= j∗ ∈ F , there exists a sequence {ap,n} with ap,n > 0,

ap,n
{
Tj (p, n)− Tj∗(p, n)

} p→ bj > 0.

In fact, the condition implies that for any j �= j∗ ∈ F ,

P(ĵT(p, n) = j) ≤ P(Tj (p, n) < Tj∗(p, n))→ 0,

and

P(ĵT(p, n) = j∗) = 1 −
∑

j �=j∗∈F
P(ĵT(p, n) = j)→ 1.

For the Proofs of Theorems 18.1–18.3, we use the following lemma frequently.

Lemma 18.3 Suppose that a p × p symmetric random matrix W follows a
noncentral Wishart distribution Wp(n − k,�; �). Let A be a given p × p positive
semidefinite matrix. We consider the asymptotic behavior of trAW when p and n
are large such that p/n→ c ∈ (0,∞), where k is fixed. Suppose that

lim
1

p
trA� = a2 > 0, lim

1

np
trA� = η2 > 0. (18.36)
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Then, it holds that

Tp,n = 1

np
trAW

p→ a2 + η2. (18.37)

Proof Let m = n− k. We write W as W = �1/2(z1z
′
1 + · · · + zmz′

m)�
1/2, where

zi ∼ Np(ζ i , Ip), i = 1, . . . ,m and zi ’s are independent. Here, � = μ1μ
′
1 +

· · · + μmμ′
m and ζ i = �−1/2μi , i = 1, . . . ,m. Note that trAW is expressed as a

quadratic form of z = (z
′
1, . . . , z

′
m)

′ as follows: trAW = z′Bz, where B = Im ⊗
�1/2A�1/2. Note also that z ∼ Nmp(ζ , Imp), where ζ = (ζ 1, . . . , ζ

′
m)

′. Then, it is
known (see, e.g., [15]) that for any symmetric matrix B,

E[z′Bz] = trB + ζ ′Bζ , Var(z′Bz) = 2trB2 + 4ζ ′B2ζ .

Especially, when B = Im ⊗ �1/2A�1/2, we have

E[z′Bz] = mtrA� + trA�, Var(z′Bz) = 2mtr (A�)2 + 4trA�A�.

Under assumption (18.36), we have

E(Tp,n) = m

np
trA� + 1

np
trA� → a2 + η2.

Further, using trA�A� ≤ trA�trA� (see, e.g., [15]),

Var(Tp,n) = 2m

(np)2
tr(A�)2 + 4

(np)2
trA�A�

≤ 2m

(np)2
(trA�)2 + 4

(np)2
trA�trA� → 0.

These imply our conclusion. �
In the special case A = Ip and � = σ 2Ip , the assumptions in (18.36) become

lim
1

p
trA� = lim

1

p
pσ 2 = σ 2, lim

1

np
trA� = lim

1

np
tr�

p→ η2.

The conclusion is that

Tp,n = 1

np
trW → σ 2(1 + δ2), (18.38)
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where δ2 = (1/σ 2)η2. Note that (1/σ 2)trW ∼ χ2
(n−k)p(δ2). This implies that if

(np)−1tr� → η2, 1
σ 2 trW ∼ χ2

(n−k)p(δ2). Therefore, under a high-dimensional
asymptotic framework p/n→ c ∈ (0,∞),

1

np
χ2
(n−k)p(δ

2)
p→ 1 + η2, (18.39)

if (np)−1δ2 → η2. More generally, we use the following result.

1

np
χ2
(n−k)(p−h)(δ2)

p→ 1 + η2, (18.40)

if (np)−1δ2 → η2, where k and h are constants or more generally, they may be
constants satisfying k/n→ 0 and h/n→ 0. Further, we use the following property
of a noncentral χ2-square distribution.

1

n
χ2
n−k(δ2)

p→ 1 + η2, (18.41)

if n−1δ2 → η2.

Proof of Theorem 18.1

Using (18.14) we can write

ICv,d,j − ICv,d,j∗ = np log σ̂ 2
v,j − np log σ̂ 2

v,j∗ + d(kj − kj∗)p.

Lemma 18.1 shows that

np

σ 2 σ̂
2
j ∼ χ2

(n−kj )p(δ
2
j ), δ2

j = 1

σ 2 tr(Xj∗�j∗)
′(In − Pj )(Xj∗�j∗).

In particular,

np

σ 2 σ̂
2
j∗ ∼ χ2

(n−kj∗ )p.

First, consider the case j �⊃ j∗. Under assumption A3v,

1

np

np

σ 2 σ̂
2
j = (n− kj )p

np

1

(n− kj )p
1

σ 2 σ̂
2
j

p→ 1 + η2
j ,

1

np

np

σ 2 σ̂
2
j∗ = (n− kj∗)p

np

1

(n− kj∗)p
1

σ 2 σ̂
2
j∗

p→ 1.
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Therefore,

1

np

(
ICv,g,j − ICv,g,j∗

) = log σ̂ 2
j − log σ̂ 2

j∗ + d
n
(kj − kj∗)

= log

(
1

np

np

σ 2
σ̂ 2
j

)
− log

(
1

np

np

σ 2
σ̂ 2
j∗

)
+ d
n
(kj − kj∗)

p→ log(1 + η2
j )+ log 1 + 0 = log(1 + η2

j ) > 0,

when d/n→ 0.
Next, consider the case j ⊃ j∗. Then

ICv,g,j − ICv,g,j∗ = np log
σ̂ 2
v,j

σ̂ 2
v,j∗

+ d(kj − kj∗)p.

Further, σ̂ 2
j /σ̂

2
j∗ = trY′(In − Pj )Y/trY′(In − Pj∗)Y, and we have

log
σ̂ 2
j

σ̂ 2
j∗

= − log

⎛
⎝1 +

χ2
(kj−kj∗ )p
χ2
(n−kj )p

⎞
⎠ .

Given χ2
m/m→ 1 as m→ ∞, we have

n log
σ̂ 2
j

σ̂ 2
j∗

= −n log

⎧⎨
⎩1 + (kj − kj∗)

(n− kj )
χ2
(kj−kj∗ )p/((kj − kj∗)p)
χ2
(n−kj )p/((n− kj )p)

⎫⎬
⎭ → −(kj − kj∗),

and hence

1

p
{ICv,d,j − ICv,d,j∗} = n log

σ̂ 2
j

σ̂j∗
+ d(kj − kj∗)

p→ −(kj − kj∗)+ d(kj − kj∗) = (d − 1)(kj − kj∗) > 0,

if d > 1.

Proofs of Theorems 18.2 and 18.3

The results can be proved by the same line as in the Proof of Theorem 18.1. For
details, see [14].
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Proof of Theorem 18.4

For a notational simplicity, let ICd,s,j and TCd,s be denoted by IC(j) and TC,
respectively. Further, ω = {1, 2, . . . , k} and (−i) are also denoted by jω and j(−i),
respectively. Note that k is finite. Without loss of generality, we may assume that
the true model is j∗ = {1, . . . , b} and b = kj∗ . Under the assumption A1, A2 and
A3(v,u,a), it was shown that our information criterion ĵIC has a high-dimensional
consistency property under some condition. The consistency property was shown
by proving that

(1) for j ∈ F−,

1

m1
{IC(j)− IC(j∗)} p→ γj > 0, (18.42)

and
(2) for j ∈ F+ and j �= j∗,

1

m2
{IC(j)− IC(j∗)} p→ (d − 1)(kj − kj∗) > 0, (18.43)

where d > 1, m1 = np and m2 = p. Further, we use the following inequality
(see, e.g., [5]):

P(ĵTC = j∗) ≥1 −
∑
i∈j∗

{1 − P(IC(j(−i))− IC(jω) ≥ 0)}

−
∑
i∈jω/j∗

{1 − P(IC(j(−i))− IC(jω) ≤ 0)}. (18.44)

Now, consider to evaluate the following probabilities:

i ∈ j∗, P (IC(j(−i))− IC(jω) ≥ 0),

i ∈ jω/j∗, P (IC(j(−i))− IC(jω) ≤ 0).

When i ∈ j∗, j(−i) ∈ F−, and hence, using (18.42), it holds that

1

m1
(IC(j(−i))− IC(jω)) = 1

m1
(IC(j(−i))− IC(j∗))− 1

m1
(IC(jω)− IC(j∗))

p→ γi + 0 = γi > 0.
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When i ∈ jω/j∗, j(−i) ∈ F+ and hence, using (18.43), it holds that

1

m2
(IC(j(−i))− IC(jω)) = 1

m2
(IC(j(−i))− IC(j∗)) − 1

m2
(IC(jω)− IC(j∗))

p→ (d − 1)(k − 1 − b)− (d − 1)(k − b) = −(d − 1) < 0.

These results imply that

i ∈ j∗, limP(IC(j(−i))− IC(jω) > 0) = 1,

i ∈ jω/j∗, limP(IC(j(−i))− IC(jω) < 0) = 1.

Using the above results, we can see that the right-hand side of (18.44) tends to

1 −
[∑
j∈j∗

{1 − 1} +
∑
j∈jk/j∗

{1 − 1}
]

= 1,

and P(ĵTC = j∗)→ 1. This completes the Proof of Theorem 18.4.
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Chapter 19
Mean Value Test for Three-Level
Multivariate Observations with Doubly
Exchangeable Covariance Structure

Ivan Žežula, Daniel Klein, and Anuradha Roy

Abstract We consider matrix-valued multivariate observation model with three-
level doubly-exchangeable covariance structure. We derive estimators of unknown
parameters and their distributions under multivariate normality assumption. Test
statistic for testing a mean value is proposed, and its exact distribution is derived.
Several methods of computing p-values and critical values of the distribution are
compared in real data example.

19.1 Introduction

Multivariate data are very common in current scientific research. If the dimension of
the data is large, we often cannot use classical methods of multivariate analysis due
to insufficient sample size. On the other hand, the design of the experiment and/or
properties of the investigated individuals may induce a special covariance structure
in the data. We have to respect such special covariance structure in order to get
valid results. Also, such a structure reduces (sometimes substantially) the number
of parameters to be estimated, so that the requirement on the sample size decreases.

One of the special covariance structures we can meet in experiments, is the
doubly exchangeable covariance structure. Let us consider a pqr-dimensional
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random vector x consisting of pq r-dimensional subvectors xij such that

cov
[
xij ; xkl

] =

⎧⎪⎪⎨
⎪⎪⎩

U0 if i = k and j = l,
U1 if i = k and j �= l,
U2 if i �= k,

where U0, U 1 and U 2 are symmetric r × r matrices. The mean value of x

will be denoted by μ. Should the structure bear the name “doubly exchangeable”
legitimately, we must suppose that p, q ≥ 2.

This kind of dependence structure can be met in some repeated measurements
designs. E.g., r-dimensional measurements are done in p times at q locations in such
a way that times and locations are exchangeable. It implies the overall covariance
matrix of x to be

Γ =

⎛
⎜⎜⎜⎜⎝

Γ 0 Γ 1 . . . Γ 1

Γ 1 Γ 0 . . . Γ 1
...
...
. . .

...

Γ 1 Γ 1 . . . Γ 0

⎞
⎟⎟⎟⎟⎠ , Γ 0 =

⎛
⎜⎜⎜⎜⎝

U 0 U 1 . . . U 1

U 1 U 0 . . . U 1
...
...
. . .

...

U 1 U 1 . . . U 0

⎞
⎟⎟⎟⎟⎠ , Γ 1 =

⎛
⎜⎜⎝

U 2 . . . U2
...
. . .

...

U 2 . . . U2

⎞
⎟⎟⎠ ,

so that

Γ = Ipq ⊗ (U0 − U1)+Ip ⊗J q ⊗ (U 1 − U 2)+Jpq ⊗U 2, (19.1)

where I a is the a × a identity matrix, J a = 1a1′
a , 1a is the a−vector of ones, and

⊗ denotes the Zehfuss (Kronecker) product.
The problem we are interested in is testing whether the mean value of a normal

distribution with doubly exchangeable covariance structure assumes a specific given
value, i.e., a generalization of the one-sample t-test for this situation. Useful
algebraic tools are derived in Sect. 19.2. Precise formulation of the hypothesis is
given at the beginning of Sect. 19.3. Estimators of parameters of interest, their
distributions, the proposed test statistic and its distribution are also derived in
Sect. 19.3. Application of the method to real data is the content of Sect. 19.4.

It is important to note that the matrix Γ can be decomposed into three mutually
orthogonal parts:

Γ = Ip ⊗ Qq ⊗ Δ1 + Qp ⊗ P q ⊗ Δ2 + P p ⊗ P q ⊗ Δ3, (19.2)

where P a = 1
a
J a and Qa = I a − P a are mutually orthogonal projectors on the

linear subspace generated by the vector 1a and its orthogonal complement, and

Δ1 = U 0 − U 1, (19.3)

Δ2 = U 0 + (q − 1)U 1 − qU2 = (U0 − U1)+ q (U1 − U2) , (19.4)

Δ3 = U 0 + (q − 1)U 1 + (p − 1) qU2 = (U 0 − U 1)+ q (U 1 − U 2)+ pqU2.

(19.5)
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Moreover, it is clear that Γ is a positive definite matrix iff Δ1, Δ2, and Δ3 are all
positive definite matrices. One can also note that these matrices are the result of
a canonical transformation using Helmert matrices (denoted by H a): it holds that(
Hp ⊗ H q ⊗ I r

)
Γ

(
H ′
p ⊗ H ′

q ⊗ I r

)
is a block diagonal matrix with blocks

[
Δ3 0
0 I q−1 ⊗ Δ1

]
, and p − 1 times

[
Δ2 0
0 I q−1 ⊗ Δ1

]
. (19.6)

Due to the orthogonality of the components and positive definiteness of the Δ’s, it
is easy to verify that

Γ −1 = Ip ⊗ Qq ⊗ Δ−1
1 + Qp ⊗ P q ⊗ Δ−1

2 + P p ⊗ P q ⊗ Δ−1
3 . (19.7)

19.2 Algebraic Tools

Definition 19.1 Let A be a square matrix of order bc, consisting of b × b square
blocks of order c:

A =

⎛
⎜⎜⎜⎜⎜⎝

A11 A12 . . . A1b
...
. . .

...
...

. . .
...

Ab1 Ab2 . . . Abb

⎞
⎟⎟⎟⎟⎟⎠
.

The block-trace and block-sum operators are defined by the relations:

BTrc[A] =
b∑
i=1

Aii and BSumc[A] =
b∑
i=1

b∑
j=1

Aij .

We will use these operators for the estimation of blocks of covariance matrices.
First, we derive some basic properties.

Lemma 19.1 Let A = (
Aij

)
ij

for i, j = 1, 2, . . . , q be a block matrix with mp ×
mp square blocks. Let further each block Aij = (

Aijkl
)
kl

for k, l = 1, 2, . . . , p be
a block matrix with m×m square blocks. Then

(i) BTrm
[
BTrmp [A]

] = BTrm [A],
(ii) BSumm[BTrmp[A]] = BTrm

[
(I q ⊗ Jp ⊗ Im)A

]
,

(iii) BSumm[BSummp[A]] = BTrm[(J q ⊗ J p ⊗ Im)A].
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Proof

(i) According to the definition we have

BTrm[BTrmp[A]] = BTrm

⎡
⎣ q∑
i=1

Aii

⎤
⎦ =

q∑
i=1

BTrm[Aii ] =
q∑
i=1

p∑
j=1

Aiijj = BTrm[A].

(ii) For the left-hand side we have

BSumm[BTrmp[A]] = BSumm

⎡
⎣ q∑
i=1

Aii

⎤
⎦ =

q∑
i=1

BSumm[Aii ] =
q∑
i=1

p∑
k=1

p∑
l=1

Aiikl .

Now, observe that on the main diagonal of the matrix (I q ⊗J p⊗ Im)A the
m×m blocks are

∑p

l=1 Aiikl for i = 1, . . . , q and k = 1, . . . , p. Therefore

BTrm[(I q ⊗ J p ⊗ Im)A] =
q∑
i=1

p∑
k=1

p∑
l=1

Aiikl .

(iii) Observe that BSumm[A] = BTrm[(J n⊗Im)A] for anymn×mn block matrix
A. Then

BSumm[BSummp[A]] = BSumm[BTrmp[(J q ⊗ Ip ⊗ Im)A]] =
= BTrm[(I q ⊗ J p ⊗ Im)(J q ⊗ Ip ⊗ Im)A] = BTrm[(J q ⊗ J p ⊗ Im)A].

�
More properties of block-trace operator can be found in [1]. Now, we can derive the
following useful relations:

Lemma 19.2 For a doubly exchangeable covariance matrix

Γ = Ipq ⊗ (U 0 − U 1)+Ip ⊗J q ⊗ (U1 − U2)+J pq ⊗U 2

it holds

U 0 = 1

pq
BTrr [Γ ],

U 1 = 1

pq(q − 1)
BTrr [(Ip ⊗ (J q − I q)⊗ I r )Γ ], and

U 2 = 1

p(p − 1)q2 BTrr [((Jp − Ip)⊗ J q ⊗ I r )Γ ].
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Proof It is easy to see that

Γ 0 = 1

p
BTrrq [Γ ], and Γ 1 = 1

p(p − 1)

(
BSumrq [Γ ] − BTrrq [Γ ]

)
.

Then using Lemma 19.1 we have

U 0 = 1

q
BTrr [Γ 0] = 1

pq
BTrr [BTrrq [Γ ]] = 1

pq
BTrr [Γ ],

U 1 = 1

q(q − 1)

(
BSumr [Γ 0] − BTrr [Γ 0]

)

= 1

pq(q − 1)

(
BSumr [BTrrq [Γ ]] − BTrr [BTrrq[Γ ]]

)

= 1

pq(q − 1)
BTrr [(Ip ⊗ (J q − I q)⊗ I r )Γ ],

and

U 2 = 1

q2 BSumr [Γ 1]

= 1

p(p − 1)q2

(
BSumr [BSumrq [Γ ]] − BSumr [BTrrq [Γ ]]

)

= 1

p(p − 1)q2
BTrr [((Jp − Ip)⊗ J q ⊗ I r )Γ ]. �

Lemma 19.3 It holds:

Δ1 = 1

p(q − 1)
BTrr [(Ip ⊗ Qq ⊗ I r )Γ ], (19.8)

Δ2 = 1

p − 1
BTrr

[(
Qp ⊗ P q ⊗ I r

)
Γ
]
, (19.9)

Δ3 = BTrr [(P p ⊗ P q ⊗ I r )Γ ]. (19.10)

Proof

Δ1 = U 0 − U 1 = 1

pq
BTrr [Γ ] − 1

pq(q − 1)
BTrr [(Ip ⊗ (J q − I q)⊗ I r )Γ ]

= 1

pq
BTrr

[(
Ip ⊗

(
I q − 1

q − 1
J q + 1

q − 1
I q

)
⊗ I r

)
Γ

]

= 1

p(q − 1)
BTrr [(Ip ⊗ Qq ⊗ I r )Γ ],
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Δ2 = (U0 − U1)+ q (U 1 − U2) = Δ1 + q (U1 − U 2)

= 1

p(q − 1)
BTrr [(Ip ⊗ Qq ⊗ I r )Γ ] + 1

p(q − 1)
BTrr [(Ip ⊗ (J q − I q)⊗ I r )Γ ]

− 1

p(p − 1)q
BTrr [((J p − Ip)⊗ J q ⊗ I r )Γ ]

= 1

pq
BTrr [(Ip ⊗ J q ⊗ I r )Γ ] − 1

p(p − 1)q
BTrr [((Jp − Ip)⊗ J q ⊗ I r )Γ ]

= 1

p
BTrr [(Ip ⊗ P q ⊗ I r )Γ ] − 1

p(p − 1)
BTrr [((Jp − Ip)⊗ P q ⊗ I r )Γ ]

= 1

p
BTrr

[((
Ip − 1

p − 1
Jp + 1

p − 1
Ip

)
⊗ P q ⊗ I r

)
Γ

]

= 1

p − 1
BTrr

[(
Qp ⊗ P q ⊗ I r

)
Γ
]
,

Δ3 = (U0 − U1)+ q (U 1 − U2)+ pqU 2 = Δ2 + pqU 2

= 1

p − 1
BTrr

[(
Qp ⊗ P q ⊗ I r

)
Γ
]

+ 1

(p − 1)q
BTrr [((Jp − Ip)⊗ J q ⊗ I r )Γ ]

= 1

p − 1
BTrr

[(
Qp ⊗ P q ⊗ I r

)
Γ
]

+ 1

p − 1
BTrr [((Jp − Ip)⊗ P q ⊗ I r )Γ ]

= BTrr [(P p ⊗ P q ⊗ I r )Γ ]. �

19.3 Mean Value Test

The very basic test needed for almost any kind of data is a test for a given mean
value. Our data are pqr-dimensional, and—as the first step—we have to choose a
reasonable mathematical representation of them. The most natural representation
would be a p × q × r tensor, but general 3D tensor structures do not have as many
elegant and powerful mathematical tools as matrices and vectors do. That is why we
will use for the representation of such data either r × pq matrices (denoted by X),
or pqr-vectors (denoted by x = vec X).

Let X1, . . . ,Xn be a random sample from Nr×pq (M,Γ ), where Γ has the
doubly exchangeable structure (19.1), and X be the sample mean. Equivalently, we
will write a vectorized form of the sample as x1, . . . , xn i.i.d. Npqr (μ,Σ) and x

for the sample mean. We want to test the hypothesis

H0 : M = M0 against H1 : M �= M0. (19.11)
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Let � = (x1, . . . , xn) be the (pqr × n)-dimensional data matrix (see [7],
Section 3.3, p. 64).

It is easy to see that the (pqr × pqr)-dimensional sample variance-covariance
matrix S can be expressed in the form

S = 1

n− 1
�Qn� ′ =

⎛
⎜⎜⎜⎜⎝

S11 S12 . . . S1p

S21 S22 . . . S2p
...

...
. . .

...

Sp1 Sp2 . . . Spp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

S1,1 S1,2 . . . S1,pq

S2,1 S2,2 . . . S2,pq
...

...
. . .

...

Spq,1 Spq,2 . . .Spq,pq

⎞
⎟⎟⎟⎟⎠,

where Sij are blocks of order qr and Si,j are blocks of order r .
Using Corollary 3.3.3.2 of Theorem 3.3.3 from [7] Section 3.3, p. 66, we

conclude that x = 1
n
� 1n is independent of S = 1

n−1�Qn� ′. From 8b.2(ii) in [12]

we know that S ∼ Wpqr
(
n− 1, 1

n−1Γ
)

(even if possibly singular), therefore S is

an unbiased estimator of Γ . However, it has not the structure of Γ . For finding an
unbiased estimator of Γ with the desired structure we need find unbiased estimators
of U0, U1, and U 2, or Δ1, Δ2, and Δ3.

19.3.1 Unbiased Estimators of Covariance Matrix Blocks

Since S is an unbiased estimator of Γ and both matrix multiplication and block-
trace are linear operators, we can use Lemma 19.2 to immediately conclude that
unbiased estimators of U0, U 1, and U2 are

Û0 = 1

pq
BTrr [S],

Û1 = 1

pq(q − 1)
BTrr [(Ip ⊗ (J q − I q)⊗ I r )S],

and

Û 2 = 1

p(p − 1)q2 BTrr [((Jp − Ip)⊗ J q ⊗ I r )S].

By the same logic, using Lemma 19.3, unbiased estimators of Δ1, Δ2 and Δ3 are

Δ̂1 = 1

p(q − 1)
BTrr [(Ip ⊗ Qq ⊗ I r )S], (19.12)

Δ̂2 = 1

p − 1
BTrr

[(
Qp ⊗ P q ⊗ I r

)
S
]
, (19.13)

Δ̂3 = BTrr [(P p ⊗ P q ⊗ I r )S]. (19.14)
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One can note that all three estimators are non-singular with probability 1 if and only
if n− 1 ≥ r .

19.3.2 Distributions of Estimators Δ̂1, Δ̂2 and Δ̂3

The Blocks U0, U1, and U2 are easily interpretable, and so are their estimators, but
a canonical transformation makes things much better tractable. It is shown in the
following theorem.

Theorem 19.1 The estimators Δ̂1, Δ̂2 and Δ̂3 are mutually independent and

(n− 1)p(q − 1)Δ̂1 ∼ Wr ((n− 1)p(q − 1),Δ1) ,

(n− 1)(p − 1)Δ̂2 ∼ Wr ((n− 1)(p − 1),Δ2) ,

(n− 1)Δ̂3 ∼ Wr (n− 1,Δ3) .

Proof Denoting R1 = (Ip ⊗ Qq ⊗ I r )� , R2 = (Qp ⊗ P q ⊗ I r )� and
R3 = (P p ⊗ P q ⊗ I r )� the statistics Δ̂1, Δ̂2 and Δ̂3 are mutually independent
iff R1QnR

′
1, R2QnR

′
2 and R3QnR

′
3 are mutually independent, and this is true iff

R1, R2 and R3 are mutually independent. However, the independence of R1, R2
and R3 is implied by the following facts:

• vec R1, vec R2 and vec R3 are normally distributed random vectors,
• cov[vec R1, vec R2] = In ⊗ (Ip ⊗ Qq ⊗ I r )Γ (Qp ⊗ P q ⊗ I r ) = 0,
• cov[vec R1, vec R3] = In ⊗ (Ip ⊗ Qq ⊗ I r )Γ (P p ⊗ P q ⊗ I r ) = 0,
• cov[vec R1, vec R2] = In ⊗ (Qp ⊗ P q ⊗ I r )Γ (P p ⊗ P q ⊗ I r ) = 0.

Let ei,q be the i-th column of I q . Then for any r-dimensional vector t we have

(n− 1)t ′ BTrr [(Ip ⊗ Qq ⊗ I r )S]t = (n− 1)t ′ BTrr [(Ip ⊗ Qq ⊗ I r )S(Ip ⊗ Qq ⊗ I r )]t

= (n− 1)t ′
p∑
i=1

q∑
j=1

(e′
i,p ⊗ e′

j,qQq ⊗ I r )S(ei,p ⊗ Qqej,q ⊗ I r )t

= (n− 1)
p∑
i=1

q∑
j=1

(e′
i,p ⊗ e′

j,qQq ⊗ t ′)S(ei,p ⊗ Qqej,q ⊗ t)

= (n− 1)Tr
[
(Ip ⊗ Qq ⊗ t ′)S(Ip ⊗ Qq ⊗ t)

]
.

Since (Ip ⊗ Qq ⊗ t ′)Γ (Ip ⊗ Qq ⊗ t) = t ′Δ1t · (Ip ⊗ Qq ) is a multiple of an
idempotent matrix, its only positive eigenvalue is t ′Δ1t with multiplicity r(Ip ⊗
Qq) = p(q − 1). Therefore from Lemma 2 from [3] it follows that

(n− 1)Tr
[
(Ip ⊗ Qq ⊗ t ′)S(Ip ⊗ Qq ⊗ t)

]
∼ t ′Δ1t · χ2

(n−1)p(q−1).
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Hence, we have that

(n− 1)p(q − 1)Δ̂1 ∼ Wr ((n− 1)p(q − 1),Δ1) .

Similarly, for any r-dimensional vector t we have

(n− 1)t ′ BTrr [(Qp ⊗ P q ⊗ I r )S]t = (n− 1)Tr
[
(Qp ⊗ P q ⊗ t ′)S(Qp ⊗ P q ⊗ t)

]
.

Since (Qp ⊗ P q ⊗ t ′)Γ (Qp ⊗ P q ⊗ t) = t ′Δ2t · (Qp ⊗ P q) is a multiple of an
idempotent matrix, its only positive eigenvalue is t ′Δ2t with multiplicity r(Qp ⊗
P q) = p − 1. Therefore (n− 1)Tr

[
(Qp ⊗ P q ⊗ t ′)S(Qp ⊗ P q ⊗ t)

]
∼ t ′Δ2t ·

χ2
(n−1)(p−1). Then it follows that

(n− 1)(p − 1)Δ̂2 ∼ Wr ((n− 1)(p − 1),Δ2) .

Finally, for any r-dimensional vector t we have

(n− 1)t ′ BTrr [(P p ⊗ P q ⊗ I r )S]t = (n− 1)Tr
[
(P p ⊗ P q ⊗ t ′)S(P p ⊗ P q ⊗ t)

]
.

Since (P p ⊗ P q ⊗ t ′)Γ (P p ⊗ P q ⊗ t) = t ′Δ3t · (P p ⊗ P q) is a multiple of an
idempotent matrix, its only positive eigenvalue is t ′Δ3t with multiplicity r(P p ⊗
P q) = 1. Therefore (n−1)Tr

[
(P p ⊗ P q ⊗ t ′)S(P p ⊗ P q ⊗ t)

] ∼ t ′Δ3t ·χ2
(n−1).

Then it follows that

(n− 1)Δ̂3 ∼ Wr (n− 1,Δ3) . �

19.3.3 The Test Statistic

To test the hypothesis (19.11), we can now use a Mahalanobis-type test statistic
since the covariance matrix has explicit-form inversion and we know the distribution
of its estimator components. To distinguish it from Hotelling T 2, we denote it D2:

D2 = n (x − μ0
)′

Γ̂
−1 (

x − μ0
)

= n (x − μ0
)′ [

Ip ⊗ Qq ⊗ Δ̂
−1
1 + Qp ⊗ P q ⊗ Δ̂

−1
2 + Pp ⊗ P q ⊗ Δ̂

−1
3

] (
x − μ0

)

= nTr
[
Δ̂

−1
1

(
x − M0

) (
Ip ⊗ Qq

) (
x − M0

)′]

+ nTr
[
Δ̂

−1
2

(
x − M0

) (
Qp ⊗ P q

) (
x − M0

)′]

+ nTr
[
Δ̂

−1
3

(
x − M0

) (
Pp ⊗ P q

) (
x − M0

)′]
, (19.15)

where μ0 = vec M0.
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Theorem 19.2 Let X1, . . . ,Xn be a random sample from Nr×pq (M0,Γ ),
where Γ has the structure (19.2), and let estimators Δ̂1, Δ̂2, and Δ̂3 are given
by (19.12), (19.13), and (19.14), respectively. Let D2 be given by (19.15). Then it
holds

D2 ∼ T 2
0 (r;p(q−1), (n−1)p(q−1))⊕T 2

0 (r;p−1, (n−1)(p−1))⊕T 2
0 (r; 1, n−1),

where ⊕ denotes convolution and T 2
0 (r; a, b) r-dimensional Lawley-Hotelling trace

distribution with a and b degrees of freedom.

Proof Let us denote b = (
Hp ⊗ H q ⊗ I q

) (
x − μ0

)
. We consider the vector b to

be partitioned in pq subvectors as b = (b′
11, b

′
12 . . . , b

′
pq)

′, where bij , i = 1, . . . , p,
j = 1, . . . , q , is r-dimensional subvector. Then, the relation (19.6) implies that
b11, . . . , bpq are independently normally distributed with

b11 ∼ Nr
(

0; 1

n
Δ3

)
,

bi1 ∼ Nr
(

0; 1

n
Δ2

)
for i = 2, . . . , p,

bij ∼ Nr
(

0; 1

n
Δ1

)
for i = 1, . . . , p, j = 2, . . . , q,

under the null hypothesisH0. Since

H aP aH
′
a =

⎛
⎝

1 0 ··· 0
0 0 ··· 0
...
...
. . .
...

0 0 ··· 0

⎞
⎠ = e1,ae

′
1,a,

and

H aQaH
′
a =

⎛
⎝

0 0 ··· 0
0 1 ··· 0
...
...
. . .
...

0 0 ··· 1

⎞
⎠ =

a∑
i=2

ei,ae
′
i,a ,

where ei,a is the i-th column of I a , the statistic D2 can be written in the form

D2 = n
(
x − μ0

)′ [
Ip ⊗ Qq ⊗ Δ̂

−1
1 + Qp ⊗ P q ⊗ Δ̂

−1
2 + P p ⊗ P q ⊗ Δ̂

−1
3

] (
x − μ0

)

= nb′ (Hp ⊗ H q ⊗ I q
) [

Ip ⊗ Qq ⊗ Δ̂
−1
1 + Qp ⊗ P q ⊗ Δ̂

−1
2 + P p ⊗ P q ⊗ Δ̂

−1
3

]

× (
Hp ⊗ H q ⊗ I q

)′
b

= nb′ [Ip ⊗ H qQqH
′
q ⊗ Δ̂

−1
1 + HpQpH

′
p ⊗ H qP qH

′
q ⊗ Δ̂

−1
2

+HpP pH
′
p ⊗ H qP qH

′
q ⊗ Δ̂

−1
3

]
b
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= n

p∑
i=1

q∑
j=2

b′
ij Δ̂

−1
1 bij + n

p∑
i=2

b′
i1Δ̂

−2
2 bi1 + nb′

11Δ̂
−1
3 b11

= Tr

⎡
⎣ p∑
i=1

q∑
j=2

nbijb
′
ij Δ̂

−1
1

⎤
⎦ + Tr

⎡
⎣ p∑
i=2

nbi1b
′
i1Δ̂

−1
2

⎤
⎦ + Tr

[
nb11b

′
11Δ̂

−1
3

]
(19.16)

df= T 2
01 + T 2

02 + T 2
03.

Clearly T 2
01, T 2

02, and T 2
03 are independent, so that the resulting distribution is

the convolution of the three ones. Taking into account independence of all bij ’s
and parameters of their distributions, it is clear that nb11b

′
11 ∼ Wr (1,Δ3),∑p

i=2 nbi1b
′
i1 ∼ Wr (p − 1,Δ2), and

∑p
i=1

∑q
j=2 nbijb

′
ij ∼ Wr (p(q − 1),Δ1).

Using Theorem 19.1, we can immediately conclude that T 2
01 has the Lawley-

Hotelling trace (LH-trace) distribution T 2
0 (r;p(q − 1), (n − 1)p(q − 1)) if (n −

1)p(q − 1) ≥ r , T 2
02 has the LH-trace distribution T 2

0 (r;p − 1, (n − 1)(p − 1))
if (n − 1)(p − 1) ≥ r , and T 2

03 has the LH-trace distribution T 2
0 (r; 1, n − 1)) if

n− 1 ≥ r . �
Thus, the distribution of D2 is the convolution of three LH-trace distributions. Let
us note that since p, q ≥ 2, all three distributions exist if n− 1 ≥ r , which is a very
mild condition. To compare, the standard Hotelling test for the same dimension but
with general covariance matrix would require n− 1 > pqr .

Unfortunately, there is no simple way of obtaining critical values of this
convolution. One possibility is to use simulations. The other possibility is to
approximate the LH-trace distribution by an F -distribution

(
see [8]

)
and then

use the characteristic function inversion method (see [18]). Witkovský [18] also
developed a freely available software package enabling such computations. Using
this package is the most easy way of carrying out the test. That is why we have
investigated the precision of the McKeon’s approximation in the section on a real
data example.

The approximations are as follows:

• T 2
0 (r;p(q − 1), (n− 1)p(q − 1)) can be approximated by

(n− 1)p2(q − 1)2r

((n− 1)p(q − 1)− r − 1)

b1 − 2

b1
F (p(q − 1)r, b1) ,

where b1 = 4 + (p(q − 1)r + 2)((n− 1)p(q − 1)− r − 3)((n− 1)p(q − 1)− r)
(n− 1)p2(q − 1)2 + p(q − 1)(nr + n− r − 2)− (r − 1)2 + 2

;

• T 2
0 (r;p − 1, (n− 1)(p − 1)) can be approximated by

(n− 1)(p − 1)2r

np − n− p − r
b2 − 2

b2
F ((p − 1)r, b2) ,

where b2 = 4 + (pr − r + 2)(np − n− p − r − 2)(np − n− p − r + 1)

(np − n− p)(p + r)− (r − 1)(r + 2)
;
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• T 2
0 (r; 1, n− 1) is equal to the usual Hotelling T 2

r,n−1, which is equivalent to
(n−1)r
n−r F (r, n− r).

Note that all multiplicative constants and degrees of freedom in these approxima-
tions are positive for n− 1 ≥ r ≥ 1 and p, q ≥ 2.

19.4 A Real Data Example

To illustrate our proposed testing method, we test the hypothesis (19.11) on a
real data set. The data set is from the textbook [2]. An investigator measured the
mineral content of bones (radius, humerus, and ulna) by photon absorptiometry to
examine whether dietary supplements would slow bone loss in 25 older women.
Measurements were recorded for the three bones on the dominant and non-dominant
sides ([2], p. 43). Thus, the data is two-level multivariate and clearly q = 2 and
r = 3.

The bone mineral contents for the first 24 women 1 year after their participation
in an experimental program is also given in [2], p. 353. Thus, for our analysis we
take only the first 24 women in the first data set, and combine these two data sets
side by side into a new one. Adding a time factor, this new data set has a three-level
multivariate structure with p = 2, q = 2 and r = 3.

We rearrange the variables in the new data set by grouping together the mineral
content of the dominant sides of radius, humerus, and ulna as the first three variables,
that is, the variables in the first location (s = 1) and then the mineral contents for
the non-dominant side of the same bones (s = 2) in the first year (t = 1) of the
experiment, and then the same thing in the second year (t = 2) of the experiment.

We test the hypothesis (19.11) for one sample. To do this we take the three-level
data of 24 women as the population and we randomly sample 12 women from this
population and call this set of 12 women our sample. We test whether the mean of
12 women from our sample is equal

• to the mean of 24 women from our population, which is

MI
0 =

⎛
⎜⎝

0.841 0.813 0.841 0.810
1.785 1.729 1.778 1.717
0.698 0.687 0.713 0.687

⎞
⎟⎠ , (19.17)

where the rows corresponds to three bones (radius, humerus, and ulna); the first
two columns correspond to measurements on dominant and non-dominant side,
respectively, at the start of the experiment and similarly last two columns to
measurements on both sides after 1 year;
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• to the value

MII
0 =

⎛
⎜⎝

0.85 0.85 0.85 0.85
1.75 1.75 1.75 1.75
0.70 0.70 0.70 0.70

⎞
⎟⎠ , (19.18)

which corresponds to the hypothesis of the same values of dominant and non-
dominant sides and also the same values before and after the experimental
treatment, while we assume that the values are given by the experimenter.

Our sample consists of women with subject number 2, 3, 4, 7, 9, 10, 11, 15, 17, 19,
21 and 23, and we want to test whether these 12 women have the mean equal to
MI

0 and MII
0 given in (19.17) and (19.18), respectively. The calculated mean and

covariance components are

X =
⎛
⎜⎝

0.824 0.813 0.833 0.790
1.702 1.635 1.690 1.623
0.685 0.690 0.694 0.693

⎞
⎟⎠ ,

Δ̂1 =
⎛
⎜⎝

0.00324 0.00475 0.00145
0.00475 0.01206 0.00195
0.00145 0.00195 0.00305

⎞
⎟⎠ ,

Δ̂2 =
⎛
⎜⎝

0.00047 0.00096 −0.00024
0.00096 0.00495 −0.00081

−0.00024 −0.00081 0.00090

⎞
⎟⎠ ,

Δ̂3 =
⎛
⎜⎝

0.05861 0.08768 0.03514
0.08768 0.24712 0.06886
0.03514 0.06886 0.03040

⎞
⎟⎠ .

The values of the calculated test statistics from (19.15) are D2
I = 8.66048 and

D2
II = 14.4572. We have compared three different methods to calculate the critical

values and p-values (in simulations we have used 100 000 trials):

(A) simulating directly the test statistic D2;
(B) simulating the convolution of the approximating F -distributions of the inde-

pendent components of D2;
(C) calculating the critical value and p-value by the method of [18], i.e., calculating

numerically the values of cumulative distribution function of linear combina-
tion of three independent approximating F -distributions from its characteristic
function.

The results are given in Table 19.1. As it can be seen, the critical values and p-
values are very close to each other, so that all three methods can be viewed as
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Table 19.1 Critical values of
the test statistic D2 for
n = 12, r = 3, p = 2 and
q = 2 and corresponding
p-values

p-values

Critical values D2
I D2

II

(A) 33.2492 0.8521 0.5225

(B) 33.4572 0.8510 0.5229

(C) 33.4991 0.8524 0.5235
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Fig. 19.1 Approximating and simulated distribution of the D2-statistic

equivalent. Neither hypothesis has been rejected. Figure 19.1 shows very good fit
of the approximating and simulated distribution of the D2-statistic.

19.5 Conclusion

The doubly exchangeable covariance structure is a realistic assumption in many
cases, and substantially reduces the number of parameters that have to be estimated.
Hence, in our case pqr = 12, so that n = 12 would be an insufficient number
of observations for estimating the unstructured covariance matrix. Moreover, the
proposed method increases the power of the test by using information about the
covariance structure. The test is readily applicable with current software means.
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Chapter 20
Estimation of the Common Mean of Two
Multivariate Normal Distributions Under
Symmetrical and Asymmetrical Loss
Functions

Dan Zhuang, S. Ejaz Ahmed, Shuangzhe Liu, and Tiefeng Ma

Abstract In this paper, the estimation of the common mean vector of two mul-
tivariate normal populations is considered and a new class of unbiased estimators
is proposed. Several dominance results under the quadratic loss and LINEX
loss functions are established. To illustrate the usefulness of these estimators, a
simulation study with finite samples is conducted to compare them with four
existing estimators, including the sample mean and the Graybill-Deal estimator.
Based on the comparison studies, we found that the numerical performance of the
proposed estimators is almost as good as μ̃CC proposed by Chiou and Cohen (Ann
Inst Stat Math 37:499–506, 1985) in terms of the risks. Its theoretical dominance
over the sample mean of a single population under the sufficient conditions given is
also established.

20.1 Introduction

Issues in the estimation and inference of the common mean of several distributions
are very important. They are involved, for example, in balanced incomplete block
design (BIBD) with uncorrelated random block effects and fixed treatment effects,
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as well as in meta-analysis with applications. They are studied in normal and other
distributions; see, for example, [1, 6, 18, 22], and the references therein.

Let Xi for i = 1, 2, . . . , n be a random sample of size n from a p-dimensional
multivariate normal distribution with mean vector μ and covariance matrix Σx ,
denoted as X ∼ N(μ,Σx), and let Yi for i = 1, 2, . . . , n be a random sample
of size n from a p-dimensional multivariate normal distribution with the same mean
vector μ and covariance matrix Σy . Assuming the X-sample and Y -sample are
independent, we consider the problem of estimating the common mean vector μ
whenΣx andΣy are unknown. This is because the multivariate normal distributions
with unknown covariance matrices lay the essential ground work for multivariate
statistics, see [21].

For simplicity, we introduce

Sx = 1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′, Sy = 1

n− 1

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )′, (20.1)

where X̄ = 1
n

∑n
i=1Xi and Ȳ = 1

n

∑n
i=1 Yi are p × 1 vectors, and Sx and Sy are

p × p matrices.
When p = 1, this estimation problem has been extensively studied and a number

of estimators have been proposed. It is well known that the estimator proposed by
Graybill and Deal [4] is given by

μ̂GD = (SyX̄ + SxȲ )/(Sx + Sy),

which is unbiased and has a smaller variance than either X̄ or Ȳ as long as n > 10.
Brown and Cohen [2] also presented unbiased estimators with a smaller variance
than X̄. Misra and Van der Meulen [12] proposed a simple estimator which is better
than μ̂GD in terms of stochastic dominance and the Pitman measure of closeness
with order-restricted unknown variances. Pal et al. [17] considered the maximum
likelihood estimator of the common mean and its properties, compared to those of
μ̂GD.

For the discussion of the finite sample properties of μ̂GD, the variance is very
important. However the expression for the variance of μ̂GD is very complex (see
[13], for a detailed discussion of its complexities), so some simple approximations
of it were derived by Nanayakkara and Cressie [14] and Pal and Lim [16]. But,
it is impossible to obtain accurate finite sample properties based on approximate
variance expression. In order to discuss the properties of finite samples, another
popular technique is to construct unbiased estimation of variance of estimators.
Some unbiased estimators of the variance of μ̂GD were given by Sinha [19] and
Hartung [5]. For more than two populations, [15] investigated the properties of
μ̂GD, and [11] extended their studies and presented several results of μ̂GD under
the LINEX loss function.
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For the multivariate case (p ≥ 2), the Graybill-Deal estimator is given by

μ̃MGD = Sy(Sx + Sy)−1X̄ + Sx(Sx + Sy)−1Ȳ . (20.2)

It is difficult to find a uniformly dominated result for (20.2). Chiou and Cohen [3]
made progress by showing that for every n there is some (Σx,Σy) for which neither
X̄ nor Ȳ is dominated by (20.2) under a covariance criterion. They considered an
alternative class of estimators μ̃CC which do not dominate X̄ or Ȳ . It is presented in
the following three steps:

(i) Let U = (uij ) be an n × n known orthogonal matrix with n-th row u(n) =
(1/

√
n, . . . , 1/

√
n). Define Ui = ∑n

k=1 uikXk so that Ui ∼ N(0,Σx) for
i = 1, . . . , n− 1 and Un ∼ N(√nμ,Σx). Similarly, let V = (vik) be an n×n
orthogonal matrix with random vectors Vi = ∑n

k=1 vikYk , i = 1, . . . , n. So
Ui , Uj , Vk and Vl are independent for i �= j and k �= l.

(ii) Let r be an integer satisfying 1 ≤ r ≤ n − 7 and define S̄ = ∑n−1
i=r+1(Ui +

Vi)(Ui + Vi)′ and S̄x = ∑r
i=1 UiU

′
i . Note that S̄ ∼ Wp(n − r − 1,Σx +

Σy), S̄x ∼ Wp(r,Σx), and S̄x is independent of S̄, whereWp(n,Σ) denotes a
Wishart distribution with n degrees of freedom and the mean matrix nΣ .

(iii) Then let Chiou and Cohen’s [3] estimator be defined by

μ̃CC = X̄ + bS̄−1S̄x(Ȳ − X̄), (20.3)

where b is a positive constant.

However, [3] only gave some theoretical results in the case of p = 2 based on
some limit assumptions.

Different from what [3] did, [8] also gave a better estimator than X̄ based on a
special construction. Consider the transformation Gi = Xi − Yi, i = 1, 2, . . . , n.
Define Ḡ = 1

n

∑n
i=1Gi and SG = ∑n

i=1(Gi−Ḡ)(Gi−Ḡ)′/(n−1). Based on these,
a simple unbiased estimator proposed by Krishnamoorthy [8] is given as follows

μ̃K = X̄ − dSxS−1
G Ḡ, (20.4)

where d is a positive constant. It has risk lower than X̄, for any p ≥ 1 and n ≥ p+5,
only under the quadratic loss function (20.6) given below.

The two approaches mentioned above have no symmetry, so we cannot give the
dominance result under which they uniformly dominate Ȳ . Apart from these, to
our knowledge, no dominance results have been reported. In order to establish such
results in this paper, we propose the following class of unbiased estimators in the
multivariate case:

μ̃x = X̄ + cS̄x S̄−1(Ȳ − X̄), (20.5)
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where c is a positive constant, X̄, Ȳ , S̄x and S̄ are defined above (20.3). Note that
μ̃x is a transformation of μ̃CC, with the locations of S̄x and S̄−1 swapped. As we
can see below, this swap makes a significant improvement in terms of theoretical
derivation and risk comparison, although being a very simple alteration.

It is well known that the quadratic loss is a useful comparison criterion to evaluate
point estimators. However, the use of asymmetric loss functions is quite common
in many practical cases where overestimation is considered more serious than
underestimation, or vice-versa. For instance, central banks, while lending money,
are likely to have asymmetric preferences. The LINEX loss function proposed by
Varian [20] is a widely used asymmetric loss function in this kind of scenario.
Therefore, in this paper, we consider the following four loss functions:

(a) Quadratic loss

L1(μ̂, μ) = (μ̂− μ)′Σ−1
x (μ̂− μ), (20.6)

L2(μ̂, μ) = (μ̂− μ)′Σ−1
y (μ̂− μ), (20.7)

L3(μ̂, μ) = (μ̂− μ)′(Σx +Σy)−1(μ̂− μ), (20.8)

(b) LINEX loss

L4(μ̂, μ) = exp {a′(μ̂− μ)} − a′(μ̂− μ)− 1, (20.9)

where a is a non-zero constant vector. For this loss function, see [10] and [23,
24].

We calculate the risk of μ̂ by

Ri(μ̂, μ) = E[Li(μ̂, μ)] (i = 1, 2, 3, 4). (20.10)

The structure of the rest of this paper will be as follows: In Sect. 20.2, we study
finite sample properties of our advocated class of estimators μ̃x under the quadratic
and LINEX loss functions. In Sect. 20.3, we conduct a simulation study to illustrate
the performance of μ̃x , compared with the existing estimators mentioned above.
Finally, we make concluding remarks in Sect. 20.4. The Appendix contains all the
proofs.

20.2 Main Results

In this section, we present our results giving sufficient conditions for μ̃x to dominate
X̄ and Ȳ under the quadratic and LINEX loss functions respectively.
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20.2.1 Quadratic Loss

Before giving out the main theorems, the following lemmas are useful; see e.g.,
[7, 10] and [21].

Lemma 20.1 Let S ∼ Wp(n,Σ) and D be a known positive definite matrix, then

E(S) = nΣ,
E(SDS) = n tr (DΣ)Σ + n(n+ 1)ΣDΣ,

E(S−1) = 1

n− p − 1
Σ−1,

E(S−1DS−1) = c1Σ−1DΣ−1 + c2 tr (DΣ−1)Σ−1, (20.11)

where c1 = 1/((n− p)(n− p− 3)) and c2 = 1/((n− p)(n− p− 1)(n− p− 3)).

Lemma 20.2 Let a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn, then

ntr(AB) ≥ tr(A)tr(B) (20.12)

for the special matrices A = diag(a1, a2, . . . , an) and B = diag(b1, b2, . . . , bn).

Lemma 20.3 ForX ∼ N(μ, σ 2), a normal distribution with mean μ and variance
σ 2, we have E[ exp (bX)] = exp (μb + 1

2b
2σ 2).

Lemma 20.4 (Jensen Inequality) Let X be a random variable, and let the expecta-
tions E(X) and E(g(X)) exist. If g is a convex function, then E(g(X)) ≥ g(E(X)).
If g is a concave function, then E(g(X)) ≤ g(E(X)).
Here, we compare μ̃x with X̄ and then with Ȳ . First we present sufficient conditions
for μ̃x to be better than X̄ in terms of the risks under three different quadratic loss
functions. By defining T = Σx(Σx + Σy)−1 and c0 = (n−r−p−1)(n−r−p−4)

(n−r−2)(r+p+1) , the
theorems are given as follows.

Theorem 20.1 If 0 ≤ c ≤ 2c0, then the risk of μ̃x is less than X̄ under the loss
function L1(μ̂, μ) in (20.6).

Proof Using the unbiased property of (20.5), we get

R1(X̄, μ)− R1(μ̃x, μ)

= −2cE[X̄′Σ−1
x S̄x S̄

−1(Ȳ − X̄)] − c2E[(Ȳ − X̄)′S̄−1S̄xΣ
−1
x S̄x S̄

−1(Ȳ − X̄)]
= −2c tr {E[Σ−1

x S̄x S̄
−1(Ȳ − X̄)X̄′]}

− c2 tr {E[S̄−1S̄xΣ
−1
x S̄x S̄

−1(Ȳ − X̄)(Ȳ − X̄)′]}. (20.13)
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As X̄, Ȳ , S̄x and S̄ are mutually independent, it follows from (20.13) that

R1(X̄, μ)− R1(μ̃x, μ)

= −2c tr [Σ−1
x E(S̄x)E(S̄

−1)E((Ȳ − X̄)X̄′)]
− c2 tr [E(S̄xΣ−1

x S̄x)E(S̄
−1E((Ȳ − X̄)(Ȳ − X̄)′)S̄−1)]

= 2c

n
tr [Σ−1

x E(S̄x)E(S̄
−1)Σx ]

− c
2

n
tr [E(S̄xΣ−1

x S̄x)E(S̄
−1(Σx +Σy)S̄−1)]. (20.14)

By Lemma 20.1, after some manipulation, we get

R1(X̄, μ)− R1(μ̃x, μ) = tr (Σx(Σx +Σy)−1)

×
[

2cr

n(n− r − p − 2)
− c2r(n− r − 2)(r + p + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

]
.

(20.15)

One can then see thatR1(X̄, μ)−R1(μ̃x, μ) ≥ 0 for 0 ≤ c ≤ 2(n−r−p−1)(n−r−p−4)
(n−r−2)(r+p+1) .

This completes the proof. �
Theorem 20.2 If 0 ≤ c ≤ 2c0, then the risk of μ̃x is less than X̄ under the loss
function L2(μ̂, μ) in (20.7).

Theorem 20.3 If 0 ≤ c ≤ 2c0, then the risk of μ̃x is less than X̄ under the loss
function L3(μ̂, μ) in (20.8).

Remark 20.1 The intervals of c in the above three theorems are all the same
0 ≤ c ≤ 2(n−r−p−1)(n−r−p−4)

(n−r−2)(r+p+1) . In Theorem 20.1, it can be shown that c = c0 =
(n−r−p−1)(n−r−p−4)
(n−r−2)(r+p+1) is the optimal selection and the degree of risk reduction is the

largest and is given as follows

R1(X̄, μ)− R1(μ̃x, μ)

= r(n− r − p − 1)(n− r − 4)

n(n− r − p − 2)(n− r − 2)(r + p + 1)
tr (Σx(Σx +Σy)−1). (20.16)

Although c0 is not the optimal selection for c under loss functions L2(μ̂, μ) and
L3(μ̂, μ), it is still a good selection in practice.
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Next we present sufficient conditions for μ̃x to dominate Ȳ in terms of the risks
under the three quadratic loss functions. Note that (20.5) can also be written as

μ̃x = Ȳ + (cS̄x S̄−1 − Ip)(Ȳ − X̄). (20.17)

Unfortunately, there are no uniform dominance results, as indicated by our simula-
tion in Sect. 20.3 where we can see that μ̃x is always better than X̄ but not always
better than Ȳ . However, we find the following theorems with those conditions for
μ̃x to dominate Ȳ .

Theorem 20.4 Let cm = r(n−r−p−1)(n−r−p−4)
(n−r−p−2)(n−r−2)(r+p+1) . If c = c0 and

tr (T ) ≤
⎛
⎝ 1

cm
−

√
1

cm
− cm

⎞
⎠p,

then the risk of μ̃x is less than Ȳ under the loss function L1(μ̂, μ) in (20.6).

Theorem 20.5 Let ct = (n−r−p−1)(n−r−p−4)
2(r+1)(n−r−2) and cs = r(n−r−p−1)(n−r−p−4)

2(r+1)(n−r−2)(n−r−p−2) . If

c = ct and tr (ΣxΣ−1
y ) ≤ p√

1−cs , then the risk of μ̃x is less than Ȳ under the loss

function L2(μ̂, μ) in (20.7).

Theorem 20.6 If c = c0 and tr (T ) ≤ 1
1+√

1−cm p, then the risk of μ̃x is less than

Ȳ under the loss function L3(μ̂, μ) in (20.8).

Remark 20.2 Unlike the Graybill-Deal estimator (20.2), our estimator (20.5) is
asymmetrical. It has only uniform dominance properties against X̄, but needs extra
conditions to dominate Ȳ . However, similar to (20.5), another unbiased estimator

μ̃y = Ȳ + cS̄y S̄−1(X̄ − Ȳ ), (20.18)

can be proposed and given similar dominance results against Ȳ corresponding to
Theorems 20.1–20.6.

Remark 20.3 Consider the unbiased estimator

μ̃∗ = c(S̄yS̄−1X̄ + S̄x S̄−1Ȳ ). (20.19)

It is unbiased when c = n−r−p−2
r

. Unfortunately, it cannot be proven to uniformly
dominate X̄ or Ȳ under the loss functions (20.6) through (20.8), as the risk functions
are all dependent on μ.
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20.2.2 LINEX Loss

A dominance result for μ̃x under the LINEX loss function is given in the following
theorem.

Theorem 20.7 If 0 ≤ c ≤ 2c0, then the risk of μ̃x is less than X̄ under the loss
function L4(μ̂, μ) in (20.9).

Proof Note that

R4(μ̃x, μ) − R4(X̄, μ)

= E[ exp {a′(μ̂x − μ)} − a′(μ̂x − μ)− 1] − E[ exp {a′(X̄ − μ)} − a′(X̄ − μ)− 1]
= E[ exp {a′(μ̂x − μ)} − exp {a′(X̄ − μ)}]
= E[ exp {a′(X̄ − μ+ cS̄xS̄−1(Ȳ − X̄))} − exp {a′(X̄ − μ)}]
= E[E[ exp {a′(X̄ − μ+ cS̄xS̄−1(Ȳ − X̄))}|S̄x , S̄]] − E[ exp {a′(X̄ − μ)}].

(20.20)

After some manipulation, we have

a′(μ̂x − μ)|S̄x , S̄ ∼ N(0, σ 2
1 ), a

′(X̄ − μ) ∼ N(0, σ 2
2 ),

where σ 2
1 = 1

n
a′ [Σx − cS̄x S̄−1Σx − cΣxS̄−1S̄x + c2S̄x S̄

−1(Σx +Σy)S̄−1S̄x
]
a

and σ 2
2 = 1

n
a′Σxa.

By using Lemma 20.3, it follows from (20.20) that

R4(μ̃x, μ)− R4(X̄, μ) = E( exp {1

2
σ 2

1 })− exp {1

2
σ 2

2 }

= exp {1

2
σ 2

2 }
⎛
⎝E

⎛
⎝ exp { c2

n
a′S̄x S̄−1(Σx +Σy)S̄−1S̄xa}

exp { c
n
a′(S̄x S̄−1Σx +ΣxS̄−1S̄x)a}

⎞
⎠ − 1

⎞
⎠ .

(20.21)

To get R4(μ̃x, μ)− R4(X̄, μ) ≤ 0, we only need to prove

E

⎛
⎝ exp { c2

n
a′S̄x S̄−1(Σx +Σy)S̄−1S̄xa}

exp { c
n
a′(S̄x S̄−1Σx +ΣxS̄−1S̄x)a}

⎞
⎠ ≤ 1,

which is equivalent to

E

(
exp { c

n
a′(S̄x S̄−1Σx +ΣxS̄−1S̄x)a}

exp { c2

n
a′S̄x S̄−1(Σx +Σy)S̄−1S̄xa}

)
≥ 1. (20.22)
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As the exponential function is convex, a sufficient condition for (20.22) is given by
using Lemma 20.4:

E

(
c

n
a′(S̄x S̄−1Σx +ΣxS̄−1S̄x)a − c

2

n
a′S̄x S̄−1(Σx +Σy)S̄−1S̄xa

)
≥ 0.

(20.23)

Similar to the proof of Theorem 20.1, it can easily be shown that R4(μ̃x, μ) −
R4(X̄, μ) ≤ 0 for any non-zero vector a when 0 ≤ c ≤ 2(n−r−p−1)(n−r−p−4)

(n−r−2)(r+p+1) .
The proof is completed. �

Remark 20.4 From Theorem 20.7, we can see that the dominance result does not
depend on non-zero vector a and a good selection of c is also c = c0.

Remark 20.5 Under the LINEX loss function, μ̃x is still not uniformly better
than Ȳ .

20.3 Numerical Comparison

In this section we simulate and use three settings of (finite) samples to numerically
compare the performances of X̄ (sample mean), Ȳ (sample mean), μ̃MGD (Graybill-
Deal estimator), μ̃K (unbiased estimator proposed by Krishnamoorthy [8] unbiased
estimator), μ̃CC (unbiased estimator proposed by Chiou and Cohen [3] and μ̃x
(proposed in this paper).

For d in (20.4), we use d = (n−p)(n−p−3)
(n−1)(n+p+1) given by Krishnamoorthy [8], where

n is the sample size and p is the dimension of X. As [3] did not give a value of b in
(20.5), we choose b to be c0 = (n−r−p−1)(n−r−p−4)

(n−r−2)(r+p+1) in our simulations. For μ̃CC in
(20.3) and μ̃x in (20.5), we choose r to be the maximum odd number smaller than
n/2. For these six estimators, we report the risk values Ri (i = 1, 2, 3, 4) in (20.10)
in three tables; since the dominance result of μ̃x does not depend on a under LINEX
loss, a is chosen to be a unit vector for R4. We use n = 20 and p = 2 in Table 20.1,
n = 30 and p = 5 in Table 20.2, and n = 60 and p = 20 in Table 20.3.

For all these calculations, we first set Σx = Σ1 and Σy = λΣ2, where λ is
chosen to be 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 and 30. We then simulate 10,000
p-dimensional X-samples and Y -samples of size n using Σx and Σy , respectively,
to calculate the risks. For the simulations in Tables 20.1, we consider a simple case
with Σ1 = Ip and Σ2 = Ip, where Ip is an p × p identity matrix. In Table 20.2,
we setΣ1 = (σ1(ij)) = (0.6|i−j |) andΣ2 = (σ2(ij)) = ((−0.6)|i−j |). In Table 20.3,
we use two p × p positive definite matricesΣ1 andΣ2 randomly generated for the
computations.
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Table 20.1 The risks of six estimators

n = 20, p = 2 R1 R2 R3 R4 R1 R2 R3 R4

λ = 0.05 X̄ 0.1010 2.0207 0.0962 0.0525 λ = 2 0.0983 0.0492 0.0328 0.0515

Ȳ 0.0051 0.1012 0.0048 0.0025 0.1964 0.0982 0.0655 0.1035

μ̃MGD 0.0049 0.0984 0.0047 0.0024 0.0706 0.0353 0.0235 0.0360

μ̃K 0.0202 0.4044 0.0193 0.0101 0.0731 0.0365 0.0244 0.0374

μ̃CC 0.0577 1.1548 0.0550 0.1479 0.0787 0.0393 0.0262 0.0393

μ̃x 0.0544 1.0886 0.0518 0.0408 0.0784 0.0392 0.0261 0.0392

λ = 0.1 X̄ 0.0984 0.9844 0.0895 0.0504 λ = 5 0.1002 0.0200 0.0167 0.0506

Ȳ 0.0101 0.1013 0.0092 0.0050 0.5051 0.1010 0.0842 0.2958

μ̃MGD 0.0096 0.0960 0.0087 0.0047 0.0887 0.0177 0.0148 0.0454

μ̃K 0.0240 0.2399 0.0218 0.0121 0.0873 0.0175 0.0146 0.0445

μ̃CC 0.0547 0.5468 0.0497 0.0302 0.0731 0.0365 0.0244 0.0374

μ̃x 0.0506 0.5065 0.0460 0.0273 0.0932 0.0186 0.0155 0.0473

λ = 0.2 X̄ 0.0992 0.4958 0.0826 0.0503 λ = 10 0.0992 0.0099 0.0090 0.0512

Ȳ 0.0198 0.0992 0.0165 0.0101 1.0111 0.1011 0.0919 0.0664

μ̃MGD 0.0173 0.0865 0.0144 0.0088 0.0945 0.0094 0.0086 0.0484

μ̃K 0.0301 0.1503 0.0251 0.0152 0.0930 0.0093 0.0085 0.0477

μ̃CC 0.0586 0.2931 0.0488 0.0302 0.0943 0.0094 0.0086 0.0489

μ̃x 0.0560 0.2799 0.0466 0.0304 0.0943 0.0094 0.0086 0.0488

λ = 0.5 X̄ 0.0999 0.1998 0.0666 0.0512 λ = 20 0.1002 0.0050 0.0048 0.0515

Ȳ 0.0502 0.1003 0.0334 0.0254 1.9991 0.1000 0.0952 1.6968

μ̃MGD 0.0358 0.0717 0.0239 0.0181 0.0979 0.0049 0.0047 0.0505

μ̃K 0.0457 0.0915 0.0305 0.0231 0.0969 0.0048 0.0046 0.0499

μ̃CC 0.0629 0.1258 0.0419 0.0416 0.0973 0.0049 0.0046 0.0494

μ̃x 0.0616 0.1233 0.0411 0.0440 0.0974 0.0049 0.0046 0.0494

λ = 1 X̄ 0.0989 0.0989 0.0494 0.0503 λ = 30 0.1015 0.0034 0.0033 0.0527

Ȳ 0.1011 0.1011 0.0506 0.0512 2.9615 0.0987 0.0955 3.3075

μ̃MGD 0.0541 0.0541 0.0271 0.0271 0.1002 0.0033 0.0032 0.0523

μ̃K 0.0602 0.0602 0.0301 0.0300 0.0985 0.0033 0.0032 0.0505

μ̃CC 0.0713 0.0713 0.0357 0.0374 0.0984 0.0033 0.0032 0.0505

μ̃x 0.0700 0.0700 0.0350 0.0375 0.0983 0.0033 0.0032 0.0504

It can be seen from the above tables that μ̃MGD is far better than μ̃K, μ̃CC and
μ̃x when λ is small. However, the gaps between μ̃MGD and μ̃K, μ̃CC or μ̃x become
very small when λ is big. Although μ̃MGD has no known uniform dominance results
against X̄ or Ȳ , it is the most robust and performs the best overall. After we swap
the positions of S̄x and S̄−1, the performance of μ̃x becomes significantly better
than μ̃CC. Unfortunately, when λ is small, the performances of μ̃CC and μ̃x are not
as good as μ̃K. We think that this is the price we have to pay for S̄x and S̄−1 to be
independent. When λ is big, all the estimators perform almost the same.
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Table 20.2 The risks of six estimators

n = 30, p = 5 R1 R2 R3 R4 R1 R2 R3 R4

λ = 0.05 X̄ 0.1678 8.5381 0.1488 0.0338 λ = 2 0.1656 0.2331 0.0650 0.0336

Ȳ 0.0256 0.1670 0.0188 0.0006 0.9402 0.1673 0.1018 0.0230

μ̃MGD 0.0205 0.1561 0.0153 0.0006 0.1110 0.0729 0.0286 0.0086

μ̃K 0.0545 2.1106 0.0462 0.0082 0.1194 0.1075 0.0359 0.0141

μ̃CC 0.3564 5.8702 0.2866 0.0181 0.1531 0.1431 0.0478 0.0188

μ̃x 0.0908 4.3684 0.0798 0.0175 0.1271 0.1446 0.0437 0.0199

λ = 0.1 X̄ 0.1653 4.5366 0.1369 0.0330 λ = 5 0.1658 0.0931 0.0427 0.0338

Ȳ 0.0465 0.1661 0.0285 0.0011 2.3208 0.1659 0.1231 0.0580

μ̃MGD 0.0316 0.1467 0.0203 0.0009 0.1335 0.0473 0.0248 0.0151

μ̃K 0.0619 1.1782 0.0471 0.0084 0.1359 0.0554 0.0277 0.0186

μ̃CC 0.2739 2.9410 0.2005 0.0168 0.1535 0.0657 0.0325 0.0224

μ̃x 0.0927 2.3253 0.0748 0.0171 0.1398 0.0663 0.0317 0.0232

λ = 0.2 X̄ 0.1656 2.3377 0.1231 0.0343 λ = 10 0.1675 0.0469 0.0287 0.0341

Ȳ 0.0933 0.1671 0.0430 0.0022 4.7380 0.1670 0.1387 0.1239

μ̃MGD 0.0472 0.1335 0.0248 0.0016 0.1490 0.0316 0.0204 0.0207

μ̃K 0.0733 0.6513 0.0472 0.0092 0.1479 0.0333 0.0212 0.0225

μ̃CC 0.2424 1.4826 0.1540 0.0186 0.1572 0.0367 0.0232 0.0253

μ̃x 0.1011 1.2594 0.0718 0.0201 0.1505 0.0377 0.0235 0.0264

λ = 0.5 X̄ 0.1678 0.9428 0.1022 0.0342 λ = 20 0.1672 0.0232 0.0174 0.0338

Ȳ 0.2305 0.1658 0.0647 0.0057 9.3910 0.1672 0.1496 0.2566

μ̃MGD 0.0725 0.1113 0.0284 0.0033 0.1578 0.0191 0.0145 0.0267

μ̃K 0.0921 0.3032 0.0446 0.0104 0.1554 0.0190 0.0144 0.0267

μ̃CC 0.1913 0.5600 0.0941 0.0176 0.1590 0.0198 0.0150 0.0281

μ̃x 0.1100 0.5099 0.0612 0.0181 0.1558 0.0200 0.0151 0.0284

λ = 1 X̄ 0.1662 0.4671 0.0834 0.0335 λ = 30 0.1676 0.0156 0.0127 0.0339

Ȳ 0.4509 0.1649 0.0816 0.0112 13.7716 0.1661 0.1534 0.3925

μ̃MGD 0.0917 0.0928 0.0292 0.0055 0.1620 0.0137 0.0113 0.0289

μ̃K 0.1055 0.1758 0.0406 0.0117 0.1592 0.0135 0.0111 0.0285

μ̃CC 0.1727 0.2806 0.0682 0.0178 0.1625 0.0139 0.0114 0.0297

μ̃x 0.1191 0.2747 0.0536 0.0203 0.1596 0.0140 0.0115 0.0299

20.4 Concluding Remarks

In this paper we have proposed a class of estimators μ̃x and studied its finite sample
properties. Numerically its performance is almost as good as μ̃CC in terms of the
risks. Theoretically its dominance over the sample mean of a single population under
the sufficient conditions given is established. There are no such results for μ̃CC and
μ̃MGD. We have designed the structure of μ̃x in order to make these results possible.
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Ȳ
0.

21
97

0.
33

31
0.

10
92

4.
78

63
×

10
−5

10
.0

23
8

0.
33

19
0.

31
06

8.
35

71
×

10
−4

μ̃
M
G
D

0.
13

39
0.

27
08

0.
07

53
2.

37
75

×
10

−5
0.

34
77

0.
02

49
0.

02
20

3.
07

76
×

10
−5

μ̃
K

0.
21

69
0.

69
41

0.
13

90
2.

96
43

×
10

−5
0.

32
28

0.
02

28
0.

02
02

2.
84

58
×

10
−5

μ̃
C
C

0.
47

06
1.

25
32

0.
27

47
6.

18
86

×
10

−5
0.

33
45

0.
02

39
0.

02
11

4
2.

91
77

×
10

−5

μ̃
x

0.
26

44
0.

94
34

0.
17

58
3.

30
23

×
10

−5
0.

32
57

0.
02

35
0.

02
08

2.
86

47
×

10
−5



20 Estimation of the Common Mean of Two Multivariate Normal Distributions 363

λ
=

0.
5

X̄
0.

33
37

0.
54

72
0.

16
80

3.
27

73
×

10
−5

λ
=

20
0.

33
34

0.
01

39
0.

01
28

3.
67

11
×

10
−5

Ȳ
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Appendix

Proof of Lemma 20.2
Proof We prove it by mathematical induction principle. Here we deal with the open
statement

S(n) : ntr(AB) ≥ tr(A)tr(B),

that is

S(n) : n
n∑
i=1

aibi ≥
n∑
i=1

ai

n∑
i=1

bi.

Basic Step It is easy to get that S(1) is true.

Inductive Step Now we assume the validity of S(k) for some k ∈ N
+. That is we

assume that

k

k∑
i=1

aibi ≥
k∑
i=1

ai

k∑
i=1

bi, (20.24)

holds (n is replaced by k). Based on this assumption, next we need to verify the truth
of

S(k + 1) : (k + 1)
k+1∑
i=1

aibi ≥
k+1∑
i=1

ai

k+1∑
i=1

bi. (20.25)

For the left of inequality (20.25), we have

Left = (k + 1)
k+1∑
i=1

aibi = (k + 1)

⎛
⎝ k∑
i=1

aibi + an+1bn+1

⎞
⎠ .

According to inequality (20.24), the formula above have

Left ≥ k + 1

k

k∑
i=1

ai

k∑
i=1

bi + (k + 1)ak+1bk+1. (20.26)
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For the right of inequality (20.25), we have

Right =
k+1∑
i=1

ai

k+1∑
i=1

bi =
⎛
⎝ k∑
i=1

ai + ak+1

⎞
⎠

⎛
⎝ k∑
i=1

bi + bk+1

⎞
⎠

=
k∑
i=1

ai

k∑
i=1

bi +
k∑
i=1

aibk+1 +
k∑
i=1

biak+1 + ak+1bk+1.

Since a1 ≥ a2 ≥ · · · ≥ an, b1 ≥ b2 ≥ · · · ≥ bn, it can easily be seen that
( 1
k

∑k
i=1 ai−an+1)(

1
k

∑k
i=1 bi−bn+1) ≥ 0, and then it obviously has Left ≥ Right.

The proof is completed. �
Proof of Theorem 20.2
Proof Consider the difference between R2(X̄, μ) and R2(μ̃x, μ):

R2(X̄, μ)− R2(μ̃x, μ)

= −2cE[X̄′Σ−1
y S̄x S̄

−1(Ȳ − X̄)] − c2E[(Ȳ − X̄)′S̄−1S̄xΣ
−1
y S̄x S̄

−1(Ȳ − X̄)]
= −2c tr [E(Σ−1

y S̄x S̄
−1(Ȳ − X̄)X̄′)]

− c2 tr [E(S̄−1S̄xΣ
−1
y S̄x S̄

−1(Ȳ − X̄)(Ȳ − X̄)′)]. (20.27)

Since X̄, Ȳ , S̄x and S̄ are mutually independent, it follows from (20.27) that

R2(X̄, μ)− R2(μ̃x, μ) = 2c

n
tr [Σ−1

y E(S̄x)E(S̄
−1)Σx ]

− c2

n
tr [E(S̄xΣ−1

y S̄x)E(S̄
−1(Σx +Σy)S̄−1)].

(20.28)

Using Lemma 20.1, after some manipulation, we get

R2(X̄, μ)− R2(μ̃x, μ)

= 2cr

n(n− r − p − 2)
tr (Σ−1

y Σx(Σx +Σy)−1Σx)

− c2(n− r − 2)

n(n− r − p − 1)(n − r − p − 2)(n− r − p − 4)

× tr {[(r − 1) tr (ΣxΣ−1
y )Σx + r(r − 1)Σx(Σx +Σy)−1Σx ](Σx +Σy)−1}

=
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)r(r + 1)

n(n− r − p − 1)(n − r − p − 2)(n − r − p − 4)

]
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× tr (Σ−1
y Σx(Σx +Σy)−1Σx)

− c2(n− r − 2)r

n(n− r − p − 1)(n − r − p − 2)(n− r − p − 4)

× tr (ΣxΣ
−1
y ) tr (Σx(Σx +Σy)−1)

=
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)r(r + 1)

n(n− r − p − 1)(n − r − p − 2)(n − r − p − 4)

]

× tr (W−1(Ip +W)−1)

− c2(n− r − 2)r

n(n− r − p − 1)(n − r − p − 2)(n− r − p − 4)
tr (W−1) tr ((Ip +W)−1),

(20.29)

whereW = Σ−1
x Σy . Since

tr (W−1) tr ((Ip +W)−1) = tr (A−1
2 A

−1
1 ) tr (Ip + A1A2)

−1

= tr (A−1/2
2 A−1

1 A
−1/2
2 ) tr (A−1/2

2 A
1/2
2 (Ip + A1A2)

−1)

= tr (D−1) tr (A1/2
2 (Ip + A1A2)

−1A
−1/2
2 )

= tr (D−1) tr ((Ip +D)−1),

where A1 = Σ−1
x , A2 = Σy , D = A1/2

2 A1A
1/2
2 , Furthermore, we have

tr (W−1(Ip +W)−1) = tr (A−1
2 A

−1
1 (Ip + A1A2)

−1)

= tr (A−1/2
2 A−1

1 A
−1/2
2 A

1/2
2 (Ip + A1A2)

−1A
−1/2
2 )

= tr ((A1/2
2 A1A

1/2
2 )−1(Ip + A1/2

2 A1A
1/2
2 )−1)

= tr (D−1(Ip +D)−1)

Obviously D is a positive definite matrix. By the spectral decomposition, we have
D = UΛU ′, so Λ is a diagonal matrix. Now it is easy to verify that

tr (D−1) = tr (Λ−1),

tr ((Ip +D)−1) = tr ((Ip +Λ)−1),

tr (D−1(Ip +D)−1) = tr (UΛ−1U ′(Ip + UΛU ′)−1) = tr (Λ−1(Ip +Λ)−1)

and by Lemma 20.2, we can obtain that p tr (W−1(Ip+W)−1) ≥ tr (W−1) tr ((Ip+
W)−1).
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It follows from (20.29) that

R2(X̄, μ)− R2(μ̃x, μ) ≥ tr (W−1(Ip +W)−1)

×
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)(r + p + 1)r

n(n− r − p − 1)(n − r − p − 2)(n − r − p − 4)

]
.

(20.30)

Then we have that R2(X̄, μ) − R2(μ̃x, μ) ≥ 0 for 0 ≤ c ≤ 2(n−r−p−1)(n−r−p−4)
(n−r−2)(r+p+1) .

This completes the proof. �
Proof of Theorem 20.3
Proof Consider the difference between R3(X̄, μ) and R3(μ̃x, μ):

R3(X̄, μ)− R3(μ̃x, μ)

= −2cE[X̄′(Σx +Σy)−1S̄x S̄
−1(Ȳ − X̄)]

− c2E[(Ȳ − X̄)′S̄−1S̄x(Σx +Σy)−1S̄x S̄
−1(Ȳ − X̄)]

= −2c tr [E((Σx +Σy)−1S̄x S̄
−1(Ȳ − X̄)X̄′)]

− c2 tr [E(S̄−1S̄x(Σx +Σy)−1S̄x S̄
−1(Ȳ − X̄)(Ȳ − X̄)′)]. (20.31)

As X̄, Ȳ , S̄x and S̄ are mutually independent, it follows from (20.31) that

R3(X̄, μ)− R3(μ̃x, μ)

= 2c

n
tr [(Σx +Σy)−1E(S̄x)E(S̄

−1)Σx]

− c
2

n
tr [E(S̄x(Σx +Σy)−1S̄x)E(S̄

−1(Σx +Σy)S̄−1)]. (20.32)

Using Lemma 20.1, after some manipulation, we get

R3(X̄, μ)− R3(μ̃x, μ) = 2cr

n(n− r − p − 2)
tr ((Σx +Σy)−1Σx(Σx +Σy)−1Σx)

− c2(n− r − 2)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

× tr [(r tr (Σx(Σx +Σy)−1)Σx + r(r + 1)Σx(Σx +Σy)−1Σx)(Σx +Σy)−1]

=
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)r(r + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

]

× tr ((Σx +Σy)−1Σx(Σx +Σy)−1Σx)
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− c2(n− r − 2)r

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

× tr (Σx(Σx +Σy)−1) tr (Σx(Σx +Σy)−1)

=
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)r(r + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

]
tr (T 2)

− c2(n− r − 2)r

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
tr 2(T )

≥
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)r(p + r + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

]
tr (T 2),

(20.33)

where the inequality holds because of Lemma 20.2 and spectral decomposition
(similar proof as in the Proof of Theorem 20.2).

It can be seen thatR3(X̄, μ)−R3(μ̃x, μ) ≥ 0 for 0 ≤ c ≤ 2(n−r−p−1)(n−r−p−4)
(n−r−2)(p+r+1) .

This completes the proof. �
Proof of Theorem 20.4
Proof The difference between R1(μ̃x, μ) and R1(Ȳ , μ) is given by

R1(μ̃x, μ)− R1(Ȳ , μ)

= 2 tr [E(Ȳ ′Σ−1
x (cS̄x S̄

−1 − Ip)(Ȳ − X̄))]
+ tr [E((Ȳ − X̄)′(cS̄−1S̄x − Ip)Σ−1

x (cS̄x S̄
−1 − Ip)(Ȳ − X̄))]

= 2 tr [Σ−1
x (cE(S̄x)E(S̄

−1)− Ip)E((Ȳ − X̄)Ȳ ′)]
+ tr [E((cS̄−1S̄x − Ip)Σ−1

x (cS̄x S̄
−1 − Ip))E((Ȳ − X̄)(Ȳ − X̄)′)]

= 2 tr [Σ−1
x (

cr

n− r − p − 2
Σx(Σx +Σy)−1 − Ip)Σy/n]

+ tr {[c2E(S̄−1S̄xΣ
−1
x S̄x S̄

−1)− 2cE(S̄−1S̄x)Σ
−1
x +Σ−1

x ](Σx +Σy)/n}.
(20.34)

Using Lemma 20.1, we get

R1(μ̃x, μ)− R1(Ȳ , μ)

= 2cr

n(n− r − p − 2)
tr (Σy(Σx +Σy)−1)− 2

n
tr (ΣyΣ−1

x )

− 2cpr

n(n− r − p − 2)
+ 1

n
tr (Σ−1

x (Σx +Σy))
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+ c2r(n− r − 2)(r + p + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
tr (Σx(Σx +Σy)−1)

=
[

c2r(n− r − 2)(r + p + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
− 2cr

n(n− r − p − 2)

]

× tr (Σx(Σx +Σy)−1)+ 1

n
tr (Σ−1

x (Σx −Σy)). (20.35)

Obviously, the best selection of c is c0. Substituting it in (20.35), we obtain

R1(μ̃x, μ)− R1(Ȳ , μ) = 1

n
[p − tr (Σ−1

x Σy)]

− r(n− r − p − 1)(n− r − p − 4)

n(n− r − p − 2)(n− r − 2)(r + p + 1)
tr (Σx(Σx +Σy)−1).

(20.36)

By Cauchy-Schwartz Inequality [9], we get

tr (Σx(Σx +Σy)−1) ≥ p2

p + tr (Σ−1
x Σy)

. (20.37)

Using cm = r(n−r−p−1)(n−r−p−4)
(n−r−p−2)(n−r−2)(r+p+1) , we get from (20.36) and (20.37) that

R1(μ̃x, μ)− R1(Ȳ , μ)

≤ 1

n

[
2p − p2

tr (Σx(Σx +Σy)−1)
− cm tr (Σx(Σx +Σy)−1)

]
. (20.38)

Then it can be seen that R1(μ̃x, μ)−R1(Ȳ , μ) ≤ 0 when cm tr 2(T )− 2p tr (T )+
p2 ≥ 0. A sufficient condition is found to be tr (T ) ≤

(
1
cm

−
√

1
cm

− cm
)
p. This

completes the proof. �
Proof of Theorem 20.5
Proof Note that

R2(μ̃Ax, μ)− R2(Ȳ , μ)

= 2 tr [Σ−1
y (c(r − 1)Σx(Σx +Σy)−1/(n− r − p − 2)− Ip)Σy/n]

+ tr {[c2E(S̄−1S̄xΣ
−1
y S̄x S̄

−1)− 2cE(S̄−1S̄x)Σ
−1
y +Σ−1

y ](Σx +Σy)/n}

= 2

n
tr [c(r − 1)Σx(Σx +Σy)−1/(n− r − p − 2)− Ip]
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+ c
2

n
tr [E(S̄xΣ−1

y S̄x S̄
−1(Σx +Σy)S̄−1)]

− 2c

n
tr [E(S̄−1S̄x)Σ

−1
y (Σx +Σy)] + 1

n
tr [Σ−1

y (Σx +Σy)]. (20.39)

Using Lemma 20.1, we get

R2(μ̃Ax,μ) − R2(Ȳ , μ)

= 2cr

n(n− r − p − 2)
tr (Σx(Σx +Σy)−1)− 2p

n

− 2cr

n(n− r − p − 2)
tr (ΣxΣ−1

y )+
1

n
tr [Σ−1

y (Σx +Σy)]

+ c2(n− r − 2)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
tr [E(S̄xΣ−1

y S̄x(Σx +Σy)−1)].
(20.40)

Using Lemma 20.1 again, we get

R2(μ̃Ax,μ)− R2(Ȳ , μ)

= 2cr

n(n− r − p − 2)
tr (T )− 2p

n
− 2cr

n(n− r − p − 2)
tr (Q)+ 1

n
( tr (Q)+ p)

+ c2(n− r − 2)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
[r tr (Q) tr (T )+ r(r + 1) tr (TQ)]

= 2cr

n(n− r − p − 2)
tr (T )− p

n
− 2cr

n(n− r − p − 2)
tr (Q)+ 1

n
tr (Q)

+ c2(n− r − 2)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

× [r tr (Q) tr (T )+ r(r + 1)( tr (Q)− tr (T ))]

=
[

2cr

n(n− r − p − 2)
− c2(n− r − 2)r(r + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

]
tr (T )− p

n

+
[

c2(n− r − 2)r(r + 1)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
− 2cr

n(n− r −p− 2)
+ 1

n

]
tr (Q)

+ c2(n− r − 2)r

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
tr (Q) tr (T ), (20.41)

whereQ = ΣxΣ−1
y and T = Σx(Σx +Σy)−1 = Q(Ip +Q)−1.
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From (20.41), we have the following result

R2(μ̃Ax , μ) − R2(Ȳ , μ)

≤
[

2cr

n(n − r − p − 2)
− c2(n − r − 2)r(r + 1)

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)

]
tr (T )− p

n

+
[

c2(n − r − 2)r(r + 1)

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)
− 2cr

n(n − r − p − 2)
+ 1

n

]
tr (Q)

+ c2p(n − r − 2)r

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)
( tr (Q)− tr (T ))

=
[

2cr

n(n − r − p − 2)
− 2c2(n− r − 2)r(r + 1)

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)

]
tr (T )− p

n

+
[

2c2(n− r − 2)r(r − 1)

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)
− 2cr

n(n − r − p − 2)
+ 1

n

]
tr (Q)

≤
[

2cr

n(n − r − p − 2)
− 2c2(n− r − 2)r(r + 1)

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)

]
(p − p2

p + tr (Q)
)

− p

n
+

[
2c2(n− r − 2)r(r + 1)

n(n − r − p − 1)(n − r − p − 2)(n − r − p − 4)
− 2cr

n(n − r − p − 2)
+ 1

n

]
tr (Q).

(20.42)

Obviously, a good value of c to select is c = ct = (n−r−p−1)(n−r−p−4)
2(r+1)(n−r−2) . Using cs =

r(n−r−p−1)(n−r−p−4)
2(r+1)(n−r−2)(n−r−p−2) , it is easy to show that a sufficient condition is tr (Q) ≤
p√

1−cs . This completes the proof. �
Proof of Theorem 20.6
Proof Note that

R3(μ̃x, μ)− R3(Ȳ , μ)

= 2 tr [E(Ȳ ′(Σx +Σy)−1(cS̄x S̄
−1 − Ip)(Ȳ − X̄))]

+ tr [E((Ȳ − X̄)′(cS̄−1S̄x − Ip)(Σx +Σy)(cS̄xS̄−1 − Ip)(Ȳ − X̄))]
= 2 tr [(Σx +Σy)−1(cE(S̄x)E(S̄

−1)− Ip)E((Ȳ − X̄)Ȳ ′)]
+ tr [E((cS̄−1S̄x − Ip)(Σx +Σy)−1(cS̄xS̄

−1 − Ip))E((Ȳ − X̄)(Ȳ − X̄)′)]

= 2 tr [(Σx +Σy)−1(
c(r − 1)

n− r − p − 2
Σx(Σx +Σy)−1 − Ip)Σy/n]

+ c2 tr {E(S̄−1S̄x(Σx +Σy)−1S̄x S̄
−1)(Σx +Σy)/n}

− 2c tr {E(S̄−1S̄x)/n} + p/n. (20.43)
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Using Lemma 20.1, from (20.43) we have

R3(μ̃x, μ)− R3(Ȳ , μ)

= 2cr

n(n− r − p − 2)
tr (Σy(Σx +Σy)−1Σx(Σx +Σy)−1)

− 2

n
tr (Σy(Σx +Σy)−1)+ p

n
− 2cr

n(n− r − p − 2)
tr (Σx(Σx +Σy)−1)

+ c2(n− r − 2)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

× tr {[r tr (Σx(Σx +Σy)−1)Σx + r(r + 1)Σx(Σx +Σy)−1Σx](Σx +Σy)−1}

= 2cr

n(n− r − p − 2)
tr (T − T 2)− 2

n
tr (Ip − T )+ p

n
− 2cr

n(n− r − p − 2)
tr (T )

+ c2(n− r − 2)

n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
[r tr 2(T )+ r(r + 1) tr (T 2)]

= − 2cr

n(n− r − p − 2)
tr (T 2)+ 2

n
tr (T )− p

n

+ c2(n− r − 2)[r tr 2(T )+ r(r + 1) tr (T 2)]
n(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)

, (20.44)

where T = Σx(Σx +Σy)−1.
By Lemma 20.2 and spectral decomposition (similar proof as in the Proof of

Theorem 20.2), we have tr (T 2) ≥ tr 2(T )
p

. From (20.44), we have

R3(μ̃x, μ)− R3(Ȳ , μ) ≤ 2

n
tr (T )− p

n

+
[

c2(n− r − 2)(r + p + 1)r

(n− r − p − 1)(n− r − p − 2)(n− r − p − 4)
− 2cr

(n− r − p − 2)

]
tr 2(T )

np
.

(20.45)

Obviously, a good value of c to select is c= c0. Using cm= r(n−r−p−1)(n−r−p−4)
(r+p+1)(n−r−2)(n−r−p−2) ,

we see from (20.45) that a sufficient condition can be tr (T ) ≤ 1
1+√

1−cm p. This

completes the proof. �
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