
Chapter 9
Applications in X-ray Testing

Abstract In this chapter, relevant applications on X-ray testing are described. We
cover X-ray testing in (i) castings, (ii) welds, (iii) baggage, (iv) natural products, and
(v) others (like cargos and electronic circuits). For each application, the state of the
art is presented. Approaches in each application are summarized showing how they
use computer vision techniques. A detailed approach is shown in each application
and some examples using Python are given in order to illustrate the performance of
the methods.

Cover Image: 3D representation of the X-ray image of a wheel (X-ray image C0023_0001 colored
with ‘sinmap’ colormap).
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9.1 Introduction

In this chapter, we review some relevant applications in X-ray testing such as (i)
castings, (ii) welds, (iii) baggage, (iv) natural products, and (v) others (like cargos and
electronic circuits). For the first four application applications, in which the authors
have been undertaking research over the last decades, we will present a description,
the state of the art, a detailed approach and an example in Python. For the last
application, different techniques are mentioned.

9.2 Castings

Light-alloy castings produced for the automotive industry, such as wheel rims, steer-
ing knuckles, and steering gear boxes are considered important components for over-
all roadworthiness. Non-homogeneous regions can be formed within the work piece
in the production process. These are manifested, for example, by bubble-shaped
voids, fractures, inclusions, or slag formation. To ensure the safety of construction, it
is necessary to check every part thoroughly usingX-ray testing. In casting inspection,
automated X-ray systems have not only raised quality, through repeated objective
inspections and improved processes, but have also increased productivity and con-
sistency by reducing labor costs. Some examples are illustrated in Fig. 9.1.

9.2.1 State of the Art

Different methods for the automated detection of casting discontinuities using com-
puter vision have been described in the literature over more than thirty years [22,
42]. In the past, the published approaches to detecting were divided into three groups
[100]:

Fig. 9.1 Real defects in X-ray images of wheels
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• Reference methods: In reference methods, it is necessary to take still images at
selected programmed inspection positions. A test image is then compared with the
reference image. If a significant difference is identified, the test piece is classified
as defective.

• Methods without apriori knowledge of the structure: These approaches using
pattern recognition, expert systems, artificial neural networks, general filters or
multiple-views analyzes to make them independent of the position and structure
of the test piece.

• Computed tomography: These approaches use computed tomography to make a
reconstruction of the cast piece and thereby detect discontinuities.

Nowadays, computed tomography and multiple views for the inspection of cast-
ings are rarely used. It is clear that the methods that achieve the best performance
are based on deep learning using single views. Deep learning has been successfully
used in image and video recognition (see, for example, [20, 77, 155]), and it has
been established as the state of the art in many areas of computer vision. The key
idea of deep learning, as we show in Chap.7, is to replace handcrafted features with
features that are learned efficiently using a hierarchical feature extraction approach.

Selected approaches are summarized in Table 9.1. In this table, we follow the 3X-
strategy outlined in Sect. 1.8, in which we distinguish (i) the X-ray energy used to
generate the X-ray images (monochromatic, dual-, or multi-energy), (ii) the number
of views used by the algorithms (single-view, multi-views, or computed tomogra-
phy) and complexity of the algorithms (simple, medium, and complex—here, deep
learning methods–). In this area, the automated systems are very effective, because
the inspection task is fast and obtains a high performance.

9.2.2 An Application

In this section, we present a method for the automated detection of flaws based on
tracking principle in an X-ray image sequence, i.e., first, it identifies potential defects
in each image of the sequence, and second, it matches and tracks these from image
to image. The key idea is to consider as false alarms those potential defects which
cannot be tracked in the sequence [107]. The method for automated flaw detection
presented here has basically two steps (see Fig. 9.2): identification and tracking of
potential flaws. These will be described in this section.

Identification of Potential Flaws
A digital X-ray image sequence of the object test is acquired (see, for example, series
C0001 of GDXray+). In order to ensure the tracking of flaws in the X-ray images,
similar projections of the specimen must be achieved along the sequence. For this
reason, the sequence consists of X-ray images taken by the rotation of the casting
at small intervals (e.g., 50). Since many images are captured, the time of the data
acquisition is reduced by taking the images without frame averaging. The position of
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Table 9.1 State of art in inspection of castings

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Bandara et al. 2020 [13] � � � � � � � � �

Carrasco and Mery 2011 [24] � � � � � � � � �

Cogranne and Retraint 2014 [27] � � � � � � � � �

Du et al. 2019 [34] � � � � � � � � �

Ferguson et al. 2017 [40] � � � � � � � � �

Ferguson et al. 2017 [41] � � � � � � � � �

Jin et al. 2020 [66] � � � � � � � � �

Kamalakannan and
Rajamanickam

2017 [68] � � � � � � � � �

Li et al. 2006 [81] � � � � � � � � �

Li et al. 2015 [80] � � � � � � � � �

Li et al. 2019 [79] � � � � � � � � �

Lin et al. 2018 [86] � � � � � � � � �

Mery and Filbert 2002 [107] � � � � � � � � �

Mery et al. 2013 [114] � � � � � � � � �

Mery 2015 [103] � � � � � � � � �

Mery and Arteta 2017 [105] � � � � � � � � �

Mery 2020 [104] � � � � � � � � �

Pieringer and Mery 2010 [136] � � � � � � � � �

Pizarro et al. 2008 [137] � � � � � � � � �

Ramirez and Allende 2013 [138] � � � � � � � � �

Ren et al. 2019 [139] � � � � � � � � �

Tang et al. 2019 [163] � � � � � � � � �

Tang et al. 2009 [162] � � � � � � � � �

Yahaghi et al. 2020 [179] � � � � � � � � �

Yong et al. 2016 [182] � � � � � � � � �

Zhao et al. 2014 [189] � � � � � � � � �

Zhao et al. 2015 [190] � � � � � � � � �

Zhang et al. 2018 [187] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used
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Fig. 9.2 Automated flaw detection in aluminum castings based on the tracking of potential defects
in anX-ray image sequence: PF=potential flaws,RS=potential flaws classified as regular structures,
F = detected flaws [107]

Fig. 9.3 X-ray image C0001_0030 of an aluminum wheel (see zoom in Fig. 9.4)

the casting, provided on-line by the manipulator is registered at each X-ray image to
calculate the perspective projectionmatrixP p (for details see Sect. 3.3.4 andExample
3.5). An X-ray image sequence is shown in Fig. 9.5.

The detection of potential flaws identifies regions in X-ray images that may cor-
respond to real defects. This process takes place in each X-ray image of the sequence
without considering information about the correspondence between them. Two gen-
eral characteristics of the defects are used for identification purposes: (i) a flaw can
be considered as a connected subset of the image, and (ii) the gray level difference
between a flaw and its neighborhood is significant. However, as the signal-to-noise
ratio in our X-ray images is low, the flaws signal is slightly greater than the back-
ground noise, as illustrated in Fig. 9.4. In our experiments, the mean gray level of
the flaw signal (without background) was between 2.4 and 28.8 gray values with a
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Fig. 9.4 Zoom of Fig. 9.3 and gray level profile along three rows crossing defects

Fig. 9.5 X-ray image sequence with three flaws (image 5 is shown in Fig. 9.4)

standard deviation of 6.1. Analyzing a homogeneous background in different areas
of interest of normal parts, we found that the noise signal was within±13 gray values
with a standard deviation of 2.5. For this reason, the identification of real defects with
poor contrast can also involve the detection of false alarms.

According to the mentioned characteristics of the real flaws, our method of iden-
tification has the following two steps (see Fig. 9.6):
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Fig. 9.6 Identification of potential flaws: a X-ray image with a small flaw at an edge of a regular
structure, b Laplacian-filtered image with σ = 1.25 pixels (kernel size = 11 × 11), c zero-crossing
image, d gradient image, e edge detection after adding high gradient pixels, and f potential flaws

Edge Detection: A Laplacian-of-Gaussian (LoG) kernel and a zero-crossing algo-
rithm [37] are used to detect the edges of the X-ray images. The LoG-operator
involves a Gaussian low-pass filter which is a good choice for the pre-smoothing
of our noisy images. The resulting binary edge image should produce at real flaws
closed and connected contours which demarcate regions. However, a flaw may not
be perfectly enclosed if it is located at an edge of a regular structure as shown in Fig.
9.6c. In order to complete the remaining edges of these flaws, a thickening of the
edges of the regular structure is performed as follows: (a) the gradient image1 of the
original image is computed (see Fig. 9.6d); (b) by thresholding the gradient image
at a high gray level a new binary image is obtained; and (c) the resulting image is
added to the zero-crossing image (see Fig. 9.6e).

Segmentation and Classification of Potential Flaws: Afterwards, each closed region
is segmented and classified as a potential flaw if (a) itsmean gray level is 2.5%greater
than the mean gray level of its surroundings (to ensure the detection of the flaws with
a poor contrast); and (b) its area is greater than 15 pixels (very small flaws are
permitted). A statistical study of the classification of potential flaws using more than
70 features can be found in [108].

1The gradient image is computed by taking the square root of the sum of the squares of the gradient
in a horizontal and vertical direction. These are calculated by the convolution of the X-ray image
with the first derivative (in the corresponding direction) of the Gaussian low-pass filter used in the
LoG-filter.



382 9 Applications in X-ray Testing

Fig. 9.7 Identification of potential flaws (the arrows indicate real flaws)

This is a very simple detector of potential flaws (see implementation in Example
5.6). However, the advantages are as follows: (a) it is a single detector (it is the same
detector for each image), and (b) it is able to identify potential defects independent
of the placement and the structure of the specimen.

Using this method, some real defects cannot be identified in all X-ray images in
which they appear if the contrast is very poor or the flaw is not enclosed by edges.
For example, in Fig. 9.7 one can observe that the biggest real flaw was identified
in images 1, 2, 3, 4, and 6, but not in image 5 where only two of the three real
flaws were identified (compare with Fig. 9.4). Additionally, if a flaw is overlapped
by edges of the structure of the casting, not all edges of the flaw can be detected. In
this case, the flaw will not be enclosed and therefore not be segmented. Furthermore,
a small flaw that moves in front (or behind) a thick cross section of the casting, in
which the X-rays are highly absorbed, may cause an occlusion. In our experiments,
this detector identified the real flaws in four or more (not necessarily consecutive)
images of the sequence.

Multiple-View Detection
In the previous step, n1 potential regions were segmented and described in the entire
image sequence I. Each segmented region is labeled with a unique number r ∈ T1 =
{1, ..., n1}. In view i , there are mi segmented regions that are arranged in a subset
ti = {ri,1, ri,2, ..., ri,mi }, i.e., T1 = t1 ∪ t2 ∪ ...tm .

The matching and tracking algorithms combine all regions to generate consistent
tracks of the object’s parts of interest across the image sequence. The algorithm has
the following steps:

Matching in Two Views: All regions in view i that have corresponding regions in
the next p views are searched, i.e., regions r1 ∈ ti that have corresponding regions
r2 ∈ t j for i = 1, ..., m − 1 and j = i + 1, ...,min(i + p, m). In our experiments,
we use p = 3 to reduce the computational cost. The matched regions (r1, r2) are
those that meet similarity and location constraints. The similarity constraint means
that corresponding descriptors yr1 and yr2 must be similar enough such that
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||yr1 − yr2 || < ε1. (9.1)

The location constraint means that the corresponding locations of the regions must
meet the epipolar constraint. In this case, the Sampson distance between xr1 and xr2
is used, i.e., the first-order geometric error of the epipolar constraint must be small
enough such that:

|xTr2Fi jxr1 |
⎛
⎝ 1√

a2
1 + a2

2

+ 1√
b2
1 + b2

2

⎞
⎠ < ε2, (9.2)

withFi jxr1 = [a1 a2 a3]T andFT
i jxr2 = [b1 b2 b3]T. In this case,Fi j is the fundamental

matrix between views i and j calculated from projection matrices Pi and P j [56]
(see Sect. 3.5.1). In addition, the location constraint used is as follows:

||xr1 − xr2 || < ρ( j − i), (9.3)

because the translation of corresponding points in these sequences is smaller than ρ

pixels in consecutive frames.
If we have 3D information about the space where our test object should be, it is

worth to evaluating whether the 3D point reconstructed from the centers of mass of
the regions must belong to the space occupied by the casting. From ma

p and mb
q the

corresponding 3D point M̂ is estimated using the linear approach of Hartley in [56].
For two views this approach is faster than the least squares technique. It is necessary
to examine if M̂ resides in the volume of the casting, the dimensions of which are
usually known a priori (e.g., a wheel is assumed to be a cylinder)2.

Finally, a newmatrixT2 sized n2 × 2 is obtained with all matched duplets (r1, r2),
one per row. If a region is found to have no matches, it is eliminated. Multiple match-
ing, i.e., a region that is matched with more than one region, is allowed. Using this
method, problems like non-segmented regions or occluded regions in the sequence
can be solved by tracking if a region is not segmented in consecutive views.

Matching in 3 Views: Based on the matched regions stored in matrixT2, we look for
triplets (r1, r2, r3), with r1 ∈ ti , r2 ∈ t j , r3 ∈ tk for views i , j , and k. We know that a
rowa inmatrixT2 has amatchedduplet [T2(a, 1) T2(a, 2)] = [r1 r2].We then look for
rows b inT2 in which the first element is equal to r2, i.e., [T2(b, 1) T2(b, 2)] = [r2 r3].
Thus, amatched triplet (r1, r2, r3) is found if the regions r1, r2, and r3 meet the trifocal
constrain:

||x̂r3 − xr3 || < ε3, (9.4)

2It is possible to use a CAD model of the casting to evaluate this criterion more precisely. Using
this model we could discriminate a small hole of the regular structure that is identified as a potential
flaw. Additionally, the CAD model can be used to inspect the casting geometry, as shown in [129].
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Fig. 9.8 Matching of potential flaws in two views

This means that xr3 must be similar enough to the re-projected point x̂r3 computed
from the points in views i and j (xr1 and xr2 ), and the trifocal tensors T jk

i of views
i, j, k calculated from projection matrices Pi , P j , and Pk [56] (see (3.76)). A new
matrix T3 sized n3 × 3 is built with all matched triplets (r1, r2, r3), one per row.
Regions in which the three views do not match are eliminated.

The results of our example are shown in Fig. 9.8.

Matching in More Views: For v = 4, ..., q ≤ m views, we can build the matrix
recursively Tv, sized nv × v, with all possible v-tuplets (r1, r2, ..., rv) that fulfill
[Tv−1(a, 1) ... Tv−1(a, v − 1)] = [r1 r2 ... rv−1] and [Tv−1(b, 1) ... Tv−1(b, v − 1)] =
[r2 ... rl−1 rv], for j, k = 1, ..., nv−1. No more geometric constraints are required
because it is redundant. The final result is stored in matrix Tq . For example, for
q = 4 we store in matrix T4 the matched quadruplets (r1, r2, r3, r4) with r1 ∈ ti ,
r2 ∈ t j , r3 ∈ tk , r4 ∈ tl for views i , j , k and l.

Figure 9.10 shows the tracked regions of our example that fulfill this criterion.
Only two false trajectories are observed (see arrows).

As our detector cannot guarantee the identification of all real flaws in more than
four views, a tracking in five views could lead to the elimination of those real flaws
that were identified in only four views. However, if a potential flaw is identified in
more than four views, more than one quadruplet can be detected. For this reason,
these corresponding quadruplets are joined in a trajectory that contains more than
four potential flaws (see trajectory with arrows in Fig. 9.10).

The matching condition for building matrix Ti , i = 3, ..., q, is efficiently eval-
uated (avoiding an exhaustive search) by using a k-d tree structure [21] to search
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Fig. 9.9 Tracking example with m = 6 views. In each view there are 2, 4, 2, 2, 3, and 3 segmented
regions, i.e., there are n1 = 16 regions in total. For each region we seek corresponding regions in
the next p = 3 views (see matching arrows inT1: region 1 with regions (3, 4, 5, 6) in view 2, regions
(7, 8) in view 3, and (9, 10) in view 4). We observe that after tracking in 2, 3, and 4 views there are
only two tracks in T6 that could be tracked in 5 and 4 views respectively. The regions that were not
segmented can be recovered by reprojection (see gray circles in views 2, 4, and 6). Finally, each set
of tracked regions are analyzed in order to take the final decision
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Fig. 9.10 Tracking in more views (the arrows indicate false detections)

the nearest neighbors for zero Euclidean distance between the first and last i − 2
columns in Ti−1.

Merging Tracks: Matrix Tq defines tracks of regions in q views. It can be observed
that some of these tracks correspond to the same region. For this reason, it is possible
to merge tracks that have q − 1 common elements. In addition, if a new track has
more than one region per view, we can select the region that shows the minimal
reprojection error after computing the corresponding 3D location. In this case, a
3D reconstruction of X̂ is estimated from tracked points [56]. Finally, matrix Tm is
obtained with all merged tracks in the m views. See an example of the whole tracking
algorithm in Fig. 9.9.

Analysis: The 3D reconstructed point X̂ from each set of tracked points ofTm can be
reprojected in views where the segmentation may have failed to obtain the complete
track in all views. The reprojected points of X̂ should correspond to the centroids of
the non-segmented regions. It is then possible to calculate the size of the projected
region as an average of the sizes of the identified regions in the track. In each view,
a small window centered in the computed centroids is defined. These corresponding
small windows, referred to as tracked part, will be denoted asW = {W1, ...,Wm}. In
each view a small window is defined with the estimated size in the computed centers
of gravities (see Fig. 9.11). Afterwards, the corresponding windows are averaged.
Thus, the attempt is made to increase the signal-to-noise ratio by the factor

√
n,

where n is the number of averaged windows. As flaws must appear as contrasted
zones relating to their environment, we can verify if the contrast of each averaged
window is greater than 2.5%. With this verification it is possible to eliminate all
remaining false detections. Figure 9.11 shows the detection in our sequence using
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Fig. 9.11 Reconstruction and verification: the false detections (indicated by the arrows) are elim-
inated after the verification in all images of the sequence

this method. Our objective is then achieved: the real defects were separated from the
false ones.

Experimental Results
In this section, results of automatic inspection of cast aluminum wheels using the
outlined approach are presented. These results have been achieved recently on syn-
thetic flaws and real data. The parameters of our method have been manually tuned,
giving σ = 1.25 pixels (for LoG-operator), ε2 = 0.75 mm, εs = 0.7, and ε3 = 0.9
mm. These parameters were not changed during these experiments. A wheel was
considered to be a cylinder with the following dimensions: 470 mm diameter and
200mmheight. The focal length (distance between X-ray source and entrance screen
of the image intensifier) was 884 mm. The bottom of a wheel was 510 mm from the
X-ray source. Thus, a pattern of 1 mm in the middle of the wheel is projected in
the X-ray projection coordinate system as a pattern of 1.73 mm, and in the image
coordinate system as a pattern of 2.96 pixels. The sequences of X-ray images were
taken by rotation of the casting at 50.

The detection performance will be evaluated by computing the number of True
Positives (TP) and False Positives (FP). They are respectively defined as the number
offlaws that are correctly classified and thenumber ofmisclassified regular structures.
The TP and FPwill be normalized by the number of existing flaws (E) and the number
of identified potential flaws (I). Thus, we define the following percentages: TPP =
TP / E ×100 and FPP = FP / I ×100. Ideally, TPP = 100% and FPP = 0%.



388 9 Applications in X-ray Testing

Fig. 9.12 Detection on synthetic flaws: a X-ray image and evaluated area, b flaw sizes, and c TPP
and FPP

Synthetic Flaws: To evaluate the performance of our method in critical cases, real
data in which synthetic flaws have been added were examined (see Sect. 8.4.3). A
simple 3D modeled flaw (a spherical bubble) was projected and superimposed on
real X-ray images of an aluminum wheel according to the law of X-ray absorption
[98]. In our experiment, a flaw is simulated in 10 X-ray images of a real casting, in an
area that included an edge of the structure (see Fig. 9.12a). In this area the synthetic
flaw was located in 24 different positions in a regular grid manner. At each position
TPP and FPP were tabulated. This test was repeated for different sizes of the flaws
(∅ = 1.5 ∼ 7.5 mm) which are illustrated in Fig. 9.12b. The results are shown in
Fig. 9.12c. It was observed that the FPP was always zero. The TPP was 100% for
∅ ≥ 2.5 mm, and greater than 95% for ∅ ≥ 2.1 mm. However, the identification of
the flaw may fail (and therefore also its detection) if it is very small and is located at
the edge of the structure of the casting. In this case one may choose a smaller value of
the parameter σ in the LoG operator of the edge detection, which will unfortunately
increment the FPP. Other non-critical experiments, where the area of the simulation
does not include an edge of the structure, have led to perfect results (TPP = 100%,
FPP = 0%) for ∅ ≥ 1.5 mm (≥ 4.4 pixels). Usually, the minimum detectable defect
size according to inspection specifications is in the order of ∅ = 2 mm. In X-ray
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Table 9.2 Detection of flaws on real data

X-ray Flaws in
the

Flaws in
the

Identification Detection

Seq. Images Sequence Images
(E)

TP FP Total (I) TP FP

1 10 2 12 12 249 261 2 0

2 9 1 9 8 238 246 1 0

3 9 3 23 19 253 272 3 0

4 8 1 8 4 413 417 1 0

5 6 1 6 6 554 560 1 0

6 8 1 8 8 196 204 1 0

7 6 3 18 14 445 459 3 0

8 6 0 0 0 178 178 0 0

9 9 0 0 0 256 256 0 0

10 8 0 0 0 150 150 0 0

11 8 0 0 0 345 345 0 0

12 6 0 0 0 355 355 0 0

13 6 0 0 0 365 365 0 0

14 9 0 0 0 313 313 0 0

Total 108 12 84 71 4310 4381 12 0

Percentage 85% 98% 100% 0%

testing, smaller flaws can be detected by decreasing the distance of the object test to
the X-ray source.

Real Data: FourteenX-ray image sequences of aluminumwheels with twelve known
flaws were inspected. Three of these defects were existing blow holes (with ∅ =
2.0 ∼ 7.5 mm). They were initially detected by a visual (human) inspection. The
remaining nine flaws were produced by drilling small holes (∅ = 2.0 ∼ 4.0 mm) in
positions of the casting which were known to be difficult to detect. Casting flaws are
present only in the first seven sequences. The results are summarized in Table 9.2,
Figs. 9.13, and 9.14. In the identification of potential flaws, it was observed that the
FPP was 98% (4310/4381). Nevertheless, the TPP in this experiment was good, and
it was possible to identify 85% (71/84) of all projected flaws in the sequences (13 of
the existing 84 flaws were not identified because the contrast was poor or they were
located at edges of regular structures). It was observed that in the next steps, the FPP
was reduced to nil. The detection of the real flaws was successful in all cases. The
first six images of sequence 3 and its results were already illustrated in Figs. 9.5, 9.7,
9.8, 9.9, 9.10 and 9.11. The results on the other sequences with flaws are shown in
Fig. 9.13.

Comparison with Other Methods: In this section, we present a comparison of our
proposed algorithmwith othermethods that can be used to detect defects in aluminum
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Fig. 9.13 Detected flaws in sequences 1, 2, 4, 5, 6, and 7 (sequence 3 is shown in Fig. 9.11)

Fig. 9.14 False positive percentage on real data in the fourteen real sequences (the number of
identified potential flaws corresponds to 100%). The mean of each step is given over the fourteen
curves

castings. In this comparison, we evaluate the same real fourteen sequences used in
the previous section. The results are summarized in Table 9.3.

Firstly, we compared the first step of ourmethod (identification of potential flaws).
The objective of this step is the use of a single filter, instead of a set of filters adapted
to the regular structure of the specimen. We evaluated the well-known Canny filter
(see, for example, [37]). As this filter detects sparse edge pixels that not necessarily
produce at real flaws closed and connected contours, the TPP of this detector was
unacceptable, only 4% of the real flaws were identified (‘Canny I’ in Table 9.3). In
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Table 9.3 Comparison with other methods

Identification Detection

Method TPP FPP TPP FPP

Canny I 4% 97% 0% –

Canny II 40% 99% 17% 40%

Median I 55% 85% 33% 36%

Median II 88% 98% 92% 45%

Tracking in 3 85% 98% 100% 25%

Tracking in 5 85% 98% 83% 0%

PXV-5000 – – 100% 0%

Proposed 85% 98% 100% 0%

order to increase the number of closed regions a dilation of the edges using a 3 × 3
mask was performed. Although the TPP is improved to 40% (‘Canny II’ in Table
9.3), many flaws were not detected in any of the images of the sequence. For this
reason, only 17% of the real flaws were detected after the tracking and verification.

Another detection of potential flaws can be performed using a region-based seg-
mentation. Median filtering is normally used to generate an error-free image, since
defect structures are essentially eliminated, while design features of the test piece
are normally preserved [109]. Once the error-free reference image is computed, an
error difference image between original and error-free images is calculated. Casting
defects are then identified when a sufficiently large gray level in the error difference
image occurs. The best results were obtained using a median filter with a 11 × 11
mask. We evaluated two thresholds: θ = 6 and θ = 2—by 256 gray levels—(see
‘Median I’ and ‘Median II’ in Table 9.3). In the first case the TPP was only 55%.
By decreasing the threshold value we increased the TPP to 88%, that is slightly
better than our detector (85%). However, systematic false alarms were detected at
the corners of the regular structures. Since these false alarms satisfy the multifocal
conditions, they can be tracked in the sequence. For this reason, this detector can
only be used if the median filter is adapted to the regular structures of the specimen
using a priori information. Normally, a set of median filters is used for each X-ray
image [42, 58, 59].

In order to evaluate the second step of our method (tracking of potential flaws),
we tested the method by tracking the potential flaws in 3 and in 5 views, instead
of 4 views (see ‘Tracking in 3’, ‘Tracking in 5’, and ‘Proposed’ in Table 9.3). By
considering only three views we obtained so many false alarms that the verification
step detected 4 false alarms (25%). In the other case, by tracking the potential flaws
in five views, real flaws that were segmented in only four views of the sequences
were not tracked. For this reason, only 83% of the real flaws were detected.

Finally, we inspected the test castings using a classic image processingmethod. In
our experiments, we used the industrial software PXV-5000 [110]. The results were
excellent: 100% of the real flaws were detected without false alarms. As a result of
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its peak detection performance, the classic image processing methods have become
themost widely established in industrial applications. However, thesemethods suffer
from the complicated configuration of the filtering, which is tailored to the test piece.
In our experiments, the configuration process has taken two weeks. Nevertheless, as
our method requires only a few number of parameters, the configuration could be
carried out in hours.

Conclusions
A new method for automated flaw detection in aluminum castings using multiple-
view geometry has been developed. Our method is very efficient because it is based
on a two-step analysis: identification and tracking. The idea was to try to imitate
the way a human inspector inspects X-ray images: first relevant details (potential
defects) are detected, followed by tracking them in the X-ray image sequence. In this
way, the false detections can be eliminated without discriminating the real flaws.

The great advantage of our first step is the use of a single filter to identify potential
defects, which is independent of the structure of the specimen. Nevertheless, its
disadvantages are as follows: (a) the false positive percentage is enormous; (b) the
true positive percentage could be poor if the flaws to be detected are very small
and located at the edge of a structure; and (c) the identification of regions is time-
consuming. Contrarily, the second step is highly efficient in both discrimination of
false detections and tracking of real defects, and is not time-consuming, due to the
use of the multiple-view tensors.

To inspect a whole wheel our method requires approximately 100 views of 256
× 256 pixels, that can be processed in one minute. The required computing time is
acceptable for practical applications because a typical inspection process takes about
one minute, independently of whether it is performed manually or automatically.

We have shown that these preliminary results are promising. However, given
that the performance of the method has been verified on only a few X-ray image
sequences, an evaluation on a broader data base is necessary.

It is possible to combine our second step with existing defect detection technolo-
gies, which use a priori information of the regular structures of the casting to detect
flaws in single images (see, for example [110]). This method could also be used in
the automated flaw detection of other objects. In the adaptation of our method, one
must determine the number of views in which a flaw must be tracked. If the false
positive percentage by identifying potential flaws is low (or high), one may track a
flaw in fewer (or more) views of the sequence. However, one must guarantee that the
real flaws will be identified as potential flaws in these views.
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9.2.3 An Example

In this section, an implementation that can be used for defect detection of castings
in single views is presented. It consists of features that are extracted from positive
class (the defects) and negative class (the background).

An example of using detection in multiple views can be found in Sect. 9.4.3.

Python Example 9.1: In this example, we show how to implement a classifier
that is able to defect casting defects in single X-ray images. For this end we use
series C0002 that contains small images with and without defects. In addition, for
this series we have the ground truth for all defects. The strategy of this example is
the strategy that we proposed in Algorithm 1, that means we extract many features
the proposed algorithm searches the combination of features and a classifier that
maximizes the accuracy.

Listing 9.1 : Defect detection in castings

import numpy as np
import numpy as np
from pyxvis . io . data import load_features , save_features
from pyxvis . learning . evaluation import best_features_classifier
from pyxvis . features . selection import clean_norm,clean_norm_transform
from pyxvis . features . extraction import extract_features_labels

dataname = ’c32’ # prefix of npy fi les of training and testing data
fxnew = 1 # the features are (0) loaded or (1) extracted and saved
if fxnew:

# features to extract
fx = [ ’basicint ’ , ’gabor−r i ’ , ’lbp−r i ’ , ’haralick−2’ , ’ fourier ’ , ’hog’ , ’clp ’ ]
# feature extraction in training images
path = ’ . . / images/ castings / ’
X,d = extract_features_labels (fx , path+’ train ’ , ’jpg ’ )
# feature extraction in testing images
Xt, dt = extract_features_labels (fx , path+’ test ’ , ’jpg ’ )
# backup of extracted features
save_features (X,d,Xt, dt ,dataname)

else :
X,d,Xt, dt = load_features (dataname)

X, sclean ,a ,b = clean_norm(X)
Xt = clean_norm_transform(Xt, sclean ,a ,b)
# Classifiers to evaluate
ss_cl = [ ’maha’ , ’bayes−kde’ , ’svm−l in ’ , ’svm−rbf ’ , ’qda’ , ’lda ’ , ’knn3’ , ’knn7’ , ’nn’ ]
# Number of features to select
ff = [3,5,10,12,15]
# Feature selectors to evaluate
ss_fs = [ ’ fisher ’ , ’qda’ , ’svm−l in ’ , ’svm−rbf ’ ]

clbest , ssbest = best_features_classifier ( ss_fs , ff , ss_cl ,X,d,Xt, dt ,
’Accuracy in Castings ’ )

print ( ’ Selected Features : ’+str ((np. sort ( sclean[ ssbest ]) ) ) )
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Fig. 9.15 Accuracy on training and testing dataset for castings defect detection. In this example

we use the strategy proposed in Algorithm 1. [→ Example 9.1 ]

The output of this code is the estimated accuracy:

----------------------------------------------------------------------------------
Best iteration: 8 (maximum of testing accuracy)

Feature Selector: fisher with 10 features
: (Fisher, )

Classifier: knn3
: (KNeighborsClassifier, n_neighbors=3) CrossVal with 5 folds

Training-Acc: 0.9676
Testing-Acc: 0.9609

Selected Features: [ 1 2 3 16 20 24 25 26 38 72]
----------------------------------------------------------------------------------

The accuracy of the selected classifier (knn with 3 neighbors) is 96.76% with 10
features (Fig. 9.15). In this code we used best_features_classifier of pyxvis Library.
The reader can use additional series of GDXray+, that contain annotated defects in
aluminum wheels. �

9.3 Welds

In welding process, a mandatory inspection using X-ray testing is required in order to
detect defects like porosity, inclusion, lack of fusion, lack of penetration, and cracks.
Industrial X-ray images of welds is widely used for detecting those defects in the
petroleum, chemical, nuclear, naval, aeronautics and civil construction industries,
among others. An example is illustrated in Fig. 9.20.
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9.3.1 State of the Art

Over the last 35 years, substantial research has been performed on automated detec-
tion and classification of welding defects in continuous welds using X-ray imaging
[152, 153]. Typically, the approaches follow a classical computer vision schema:
(i) image acquisition—an X-ray digital imFage is taken and stored in the computer,
(ii) pre-processing—the digital image is improved in order to enhance the details,
(iii) segmentation—potential welding defects are found and isolated, (iv) feature
extraction/selection—significant features of the potential welding defects and their
surroundings are quantified, and (v) classification—the extracted features are inter-
preted automatically using a priori knowledge of the welding defects in order to
separate potential defects into detected welding defects or false alarms. In the last
fewyears, somemethods based on deep learning have been developedwith promising
results. Selected approaches are summarized in Table 9.4. In this table, we follow the
3X-strategy outlined in Sect. 1.8, in which we distinguish (i) the X-ray energy used to
generate the X-ray images (monochromatic, dual-, or multi-energy), (ii) the number
of views used by the algorithms (single-view,multi-views, or computed tomography)
and complexity of the algorithms (simple, medium, and complex—here, deep learn-
ing methods–). As we can see there is much research on weld inspection. Achieved
performance of the developed algorithms is still not high enough, thus it is not suitable
for fully automated inspection.

9.3.2 An Application

In computer vision, many object detection and classification problems have been
solved without classic segmentation using sliding-windows. Sliding-window
approaches have established themselves as state of the art in computer vision prob-
lems where an object must be separated from the background (see, for example,
successful applications in face detection [171] and human detection [30]). In sliding-
window methodology, a detection window (see black square in Fig. 9.16) is sledded
over an input image in both horizontal and vertical directions, and for each localiza-
tion of the detection window a classifier decides to which class the corresponding
portion of the image belongs to according to its features. In this section, an approach
to detect defects based on sliding-windows in welds is presented [102].

Overview
Wedeveloped anX-ray computer vision approach to detectwelding defects using this
methodology yielding promising results.Wewill differentiate between the ‘detection
of defects’ and the ‘classification of defects’ [82]. In the detection problem, the
classes that exist are only two: ‘defects’ and ‘no-defects’, whereas the recognition of
the type of the defects (e.g., porosity, slag, crack, lack of penetration, etc.) is known
as classification of flaw types. This section describes our approach on detection only
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Table 9.4 State of art in inspection of welds

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Ajmi et al. 2018 [4] � � � � � � � � �

Anand et al. 2009 [11] � � � � � � � � �

Baniukiewicz 2014 [14] � � � � � � � � �

Gao and Yu 2014 [47] � � � � � � � � �

Hassan et al. 2012 [57] � � � � � � � � �

Hou et al. 2018 [61] � � � � � � � � �

Hou et al. 2019 [62] � � � � � � � � �

Kaftandjian et al. 2003 [67] � � � � � � � � �

Kumar et al. 2014 [74] � � � � � � � � �

Kumar et al. 2014 [75] � � � � � � � � �

Liao 2008 [83] � � � � � � � � �

Liao 2009 [84] � � � � � � � � �

Lindgren 2014 [87] � � � � � � � � �

Liu et al. 2017 [88] � � � � � � � � �

Mery and Berti 2003 [106] � � � � � � � � �

Mery 2011 [102] � � � � � � � � �

Mu et al. 2011 [120] � � � � � � � � �

Muniategui et al. 2019 [121] � � � � � � � � �

Muravyov and
Pogadaeva

2020 [122] � � � � � � � � �

Pan et al. 2020 [135] � � � � � � � � �

Shao et al. 2014 [149] � � � � � � � � �

Shi et al. 2007 [150] � � � � � � � � �

da Silva et al. 2009 [154] � � � � � � � � �

Suyama et al. 2019 [161] � � � � � � � � �

Tong et al. 2012 [164] � � � � � � � � �

Vilar et al. 2009 [170] � � � � � � � � �

Wang et al. 2008 [174] � � � � � � � � �

Wang et al. 2019 [173] � � � � � � � � �

Yiron et al. 2015 [181] � � � � � � � � �

Zapata et al. 2008 [185] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used
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Fig. 9.16 Sliding window approach: A detection window (see black square) is sledded over the X-
ray image starting at place ‘a’ and ending at ‘c’. For each position, e.g., at ‘b’, features are extracted
only from the sub-image defined by the square, and a classifier determines the class of this portion
of the image

Fig. 9.17 Feature extraction: from each detection window several features are extracted (see black
path). Additionally, the same features are extracted from a saliency map of the sub-window (see
gray path)

and the corresponding validation experiments. The classification of defects can be
developed by the reader using a similar methodology.

The key idea of this example is to use a computer vision methodology, as shown
in Figs. 9.16 and 9.17, to automatically detect welding defects. In the following,
feature extraction, feature selection, classification, and validation will be explained
in further detail.

Feature Extraction, Selection, and Classification
Features provide information about the intensity of a sub-image. In our approach, p
features per intensity channel were extracted. The used intensity channels in ourwork
are only two: the grayscale X-ray image (I) and a saliency map (J) computed from I,
i.e., , p × 2 features for two intensity channels. In order to reduce the computational
time, we restricted the feature extraction for these only two channels, however, other
channels, like Harris transform [55] or other saliency maps, can be used.

The saliencymap J is obtained using a center-surround saliencymechanism based
on a biologically inspired attention system [118]3. In order to achieve faster process-
ing, this theory proposes that the human visual system uses only a portion of the
image, called focus of attention, to deal with complex scenes. In our approach, we

3The saliency function is implemented in saliency of pyxvis Library.
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Fig. 9.18 X-ray images used in our experiments (series W0001 of GDXray+)

use the off-center saliency map that measures the different dark areas surrounded by
a bright background, as shown in Fig. 9.17.

In a training phase, using a priori knowledge of the welding defects, the detec-
tion windows are manually labeled as one of two classes: ‘defects’ and ‘no-defect’.
The first class corresponds to those regions where the potential welding defects are
indeed welding defects. Alternatively, the second class corresponds to false alarms.
For this end, we use series W0001 and W0002 of GDXray+. In the first series,
we have the X-ray images, whereas in the second one we have the corresponding
binary images representing the ground truth. Thus, the ideal segmentation of image
W0001_00i.png is binary image W0002_00i.png, for i = 01 . . . 10.. Inten-
sity features of each channel are extracted for both classes. Features extracted from
each area of an X-ray image region are divided into four groups: basic intensity fea-
tures (see Sect. 5.3.1), statistical features (see Sect. 5.3.5), Fourier and DCT features
(see Sect. 5.3.7), Gabor features (see Sect. 5.3.6), and Local Binary Patterns (see
Sect. 5.4.1). Afterwards, the extracted features are selected using feature selection
approaches (see Sect. 5.6, and several classifiers (see Sect. 6.2) were evaluated using
cross-validation (see Sect. 6.3.2). indexGabor features

Experiments
We experimented with 10 representative X-ray images (see Fig. 9.18). The average
size of the imagewas1.35mega-pixels. For eachX-ray image, 250detectionwindows
with detects and 250 without defects were selected, yielding 2 × 250 × 10 = 5000
detection windows. Each detection window was labeled with ‘1’ for class defects
and ‘0’ for no-defects. The size of the detection windows were 24 × 24 pixels. For
each detection window 586 features were extracted. This means that 586 features
were extracted from 5000 samples (2500 with defects and 2500 without defects) .

After the feature extraction, 75% of the samples from each class were randomly
chosen to perform the feature selection. The best performance was achieved using
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Fig. 9.19 Classification performance using the first p features

Sequential Forward Selection. The best 14 features are shown in Fig. 9.19 in ascend-
ing order.

The performance of the classification using the SVM classifier and the first p
selected features was validated using an average of ten cross-validation with 10
folds. The results are shown in Fig 9.19. We observe that by using 14 features, the
performance was almost 94% with a 95% confidence interval between 93.0 and
94.5%.

In order to test thismethodology onX-ray images, the techniquewas implemented
using a slidingwindow sized 24× 24 pixels that was shifted by 4 pixels. Thus, in each
position a sub-window of 24× 24 pixels was defined and the corresponding features
were extracted. The sub-window was marked if the trained classifier detected it as a
discontinuity. Using a size of 24 × 24 pixel and a shift of 4 pixels, an image pixel
could be marked from 0 to 36 times. Finally, if a pixel of the image was marked more
than 24 times, then the pixel was considered as a discontinuity. The aforementioned
parameters were set using an exhaustive search. The described steps are shown in
Fig. 9.20 for one X-ray image. The results on other X-ray images are shown in Fig.
9.21. From these, one can see the effectiveness of the proposed technique.

Conclusions
In this section, we presented a new approach to detecting weld defects without
segmentation based on sliding-windows and novel features. The promising results
outlined in our work show that we achieved a very high classification rate in the
detection of welding defects using a large number of features combinedwith efficient
feature selection and classification algorithms. The key idea of the proposed method
was to select, from a large universe of features, namely 572 features, only those
features that were relevant for the separation of the two classes.We tested ourmethod
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Fig. 9.20 Weld inspection using a sliding-window: aX-ray image,b detectedwindows, c activation
map, d detection [102]

on 10 representative X-ray images yielding a performance of 94% in accuracy using
only 14 features and support vector machines. It is important to note that local
binary pattern features extracted from the saliency map play an important role in the
performance of the classifier. The method was implemented and tested on real X-ray
images showing high effectiveness.

9.3.3 An Example

In this section, we present a Python code that can be used to detect defects in welds
according to sliding-windows approach explained above.

Python Example 9.2: In this example, we show how to implement—for a simple
perspective—the strategy explained in the previous section using CNN. We will use
one part of image W0001_0001.png as training, and another part as testing. Using
a sliding windows strategy, we will extract patches of 32× 32 pixels on the right side
of the image for training and on the left side for testing. These patches are stored in
file welds32x32.mat. In this example, there are around 10,000 patches for training
and other 10,000 for testing. The reader canmodify this dataset includingmoreX-ray
images of GDXray+ in order to achieve better results. The reader will note that this
example has pedagogical purposes only. In order to develop a real application, more
training images must be taken into account.

Listing 9.2 : Detection of weld defects using CNN

from pyxvis . learning .cnn import CNN

# execution type
type_exec = 0 # training & testing

# pacthes ’ f i le for training and testing
patches_file = ’ . . / data /weld32x32.mat’
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Fig. 9.21 Detection of defects on X-ray images

# architechture
p = [9 ,7 ,5 ,3] # Conv2D mask size
d = [32,64,128,256] # Conv2D channels
f = [64,32] # fully connected

# training and testing
CNN(patches_file , type_exec ,p,d, f )

The output of this code is shown in Fig. 9.22.We can see the final detection on testing
image. In this example, we use CNN of pyxvis Libraryto train the convolutional neural
network as explained in Sect. 7.3. The patches are extracted only in the region of
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Fig. 9.22 Detection of defects on X-ray images using sliding windows. a Testing image. bGround
truth (binary image). c Ground truth (sliding windows patches of targe class). d Activation map of
the detection. e Detection (after thresholding) and testing image f Boundary of the detection and

binary ground truth. [→ Example 9.2 ]

Fig. 9.23 Detection of a handgun based on the trigger identification in multiple views [112]

interest defined by the segmentation of the weld using seg_bimodal of pyxvis Library.
The reader can observe the effectiveness of this strategy. However, it is clear that
better results can be achieved by considering more features, classifiers, and training
images. �
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9.4 Baggage

Since the September 11 attacks, automated (or semi-automated) 3D recognition using
X-ray images have become a very important element in baggage screening. The
inspection process, however, is complex, basically because threatening items are
very difficult to detect when placed in close-packed bags, superimposed by other
objects, and/or rotated showing an unrecognizable view [186]. In baggage screening,
where human security plays an important role and inspection complexity is very high,
human inspectors are still used. Nevertheless, during peak hours in airports, human
screeners have only a few seconds to decidewhether a bag contains or not a prohibited
item, and detection performance is only about 80–90% [117].

9.4.1 State of the Art

Before 9/11, the X-ray analysis of luggage mainly focused on capturing the images
of their content: the reader can find in [123] an interesting analysis carried out in
1989 of several aircraft attacks around the world, and the existing technologies to
detect terrorist threats based on Thermal-Neutron Activation (TNA), Fast-Neutron
Activation (FNA), and dual-energy X-rays (used in medicine since the early 70s). In
the 90s, Explosive Detection Systems (EDS) were developed based on X-ray imag-
ing [124], and computed tomography through elastic scatter X-ray (comparing the
structure of irradiated material, against stored reference spectra for explosives and
drugs) [160]. All these works were concentrated on image acquisition and simple
image processing; however, they lacked advanced image analysis to improve detec-
tion performance. Nevertheless, the 9/11 attacks increased the security measures
taken at airports, which in turn stimulated the interest of the scientific community in
the research of areas related to security using advanced computational techniques.
Over the last decade, the main contributions were: analysis of human inspection
[172], pseudocoloring of X-ray images [1, 25], enhancement and segmentation of
X-ray images [156], and detection of threatening items in X-ray images, based on
texture features (detecting a 9mm Colt Beretta automatic (machine) pistol) [131],
neural networks and fuzzy rules (yielding about 80% of performance) [89], and SVM
classifier (detecting guns in real time) [126].

In baggage screening, the use of multiple-view information yields a significant
improvement in performance as certain items are difficult to recognize using only one
viewpoint. As reported in a study that measures the human performance in baggage
screening [17], (human) multiple-view X-ray inspection leads to a higher detection
performance of prohibited items under difficult conditions, however, there are no sig-
nificant differences between the detection performance (single versus multiple view)
for difficult-easy multiple-view conditions, i.e., two difficult or two easy views are
redundant. We observed that for intricate conditions, multiple-view X-ray inspection
is required.
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Recently, some algorithms based on multiple X-ray views were reported in the
literature. For example: synthesis of new X-ray images obtained from Kinetic Depth
Effect X-ray (KDEX) images based on SIFT features in order to increase detection
performance [2]; an approach for object detection in multi-view dual-energy X-ray
with promising preliminary results [45]; X-ray active vision that is able to adequate
the viewpoint of the target object in order to obtain better X-ray images to analyze
[142]; and tracking across multiple X-ray views in order to verify the diagnoses
performed using a single view [101, 103, 112, 114].

Finally, methods based on deep learning have been proposed in the last years and
they have established themselves as state of the art in baggage inspection. In single
views, we can mention [115] using mono-energy and [7–9, 12, 116] using dual-
energy. In addition, there are some contributions based on GAN’s (see Sect. 7.6) to
generate synthetic X-ray images that can be used as data augmentation in the training
stage [5, 146, 180]. A review of deep learning method in baggage inspection can be
found in [6].

An example is illustrated in Fig. 9.23. A survey on explosives detection can be
found in [157, 176]. Selected approaches are summarized in Table 9.5. In baggage
screening, where human security plays an important role and inspection complexity
is very high, human inspectors are still used. For intricate conditions, multiple-view
X-ray inspection using dual-energy is required.

9.4.2 An Application

In this section, we present the use of an automated method based on multiple X- ray
views to recognize certain regular objects with highly defined shapes and sizes. The
method consists of two steps: ‘monocular analysis’, to obtain possible detections in
each view of a sequence, and ‘multiple-view analysis’, to recognize the objects of
interest usingmatchings in all views. The search formatching candidates is efficiently
performed using a lookup table that is computed off-line. In order to illustrate the
effectiveness of the proposed method, experimental results on recognizing regular
objects (clips, springs, and razor blades) in pen cases are shown. In this section, we
explain in further detail the proposed method. The strategy consists of two main
stages: off-line and on-line.

Off-Line Stage
The first stage, performed off-line, consists of two main steps: (i) learning a model
that is used for the recognition and (ii) estimation of amultiple-view geometricmodel
that is used for data association.

Learning: In this step, we learn a classifier h to recognize parts of the objects that we
are attempting to detect. It is assumed that there are C + 1 classes (labeled as ‘0’ for
non-object class, and ‘1’, ‘2’, . . . ‘C’ for C different objects). Images are taken of
representative objects of each class fromdifferent points of view. In order tomodel the
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Table 9.5 State of art in baggage inspection

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Abusaeeda et al. 2011 [2] � � � � � � � � �
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details of the objects from different poses, several keypoints per image are detected,
and for each keypoint a descriptord is extracted using, for example, LBP, SIFT,HOG,
and SURF, among others (see Sect. 5.4). In this supervised approach, each descriptor
d ismanually labeled according to its corresponding class c ∈ {0, 1, . . . C}. Given the
training data (dt , ct ), for t = 1, . . . , N , where N is the total number of descriptors
extracted in all training images, a classifier h is designed which maps dt to their
classification label ct , thus, h(dt ) should be ct . This classifier will be used in the
on-line stage by monocular and multiple-view analysis.

Geometry: Our strategy deals with multiple monocular detections in multiple views.
In this problem of data association, the aim is to find the correct correspondence
among different views. For this reason, we use multiple-view geometric constraints
to reduce the number of matching candidates between monocular detections. For
an image sequence with n views I1 . . . In , the fundamental matrices {Fi j } between
consecutive frames Ii and I j=i+1 are computed for i = 1, . . . n − 1. In our approach,
the fundamental matrix Fi j is calculated from projection matrices Pi and P j that can
be estimated using calibration (see Sect. 3.4) or bundle adjustment algorithms (see
Sect. 9.4.3).

The geometric constraints are expressed in homogeneous coordinates. Therefore,
given a pointmi = [xi yi 1]T in image Ii , a corresponding pointm j = [x j y j 1]T in
image I j must fulfill: (i) epipolar constraint (see Sect. 3.5.1): m j must lie near the
epipolar line � = Fi jmi , and (ii) location constraint: for small variations of the point
of views between Ii and I j ,m j must lie near mi . Thus, a candidate m j must fulfill:

|mT
j Fi jmi |√
�21+�22

< e and ||mi − m j || < r. (9.5)

In order to accelerate the search of candidates, we propose the use of a lookup table
as follows: Points in images Ii and I j are arranged in a grid format with rows and
columns. For each grid point (x, y) of image Ii , we look for the grid points of image
I j that fulfill (9.5), as illustrated in Fig. 9.24. Therefore, the possible corresponding
points of (x, y) will be the set Sxy = {(x p, yp)}q

p=1, where x p = X (x, y, p), yp =
Y (x, y, p) and q = Q(x, y) are stored (off-line) in a lookup table. In the on-line
stage, given a point mi (in image Ii ), the matching candidates in image I j are those
that lie near to Sxy , where (x, y) is the nearest grid point to mi . This search can be
efficiently implemented using k-d tree structures [21].

In a controlled and calibrated environment, we can assume that the fundamental
matrices are stable and we do not need to estimate them in each new image sequence,
i.e., the lookup tables are constant. Additionally, when the relativemotion of the point
of view between consecutive frames is the same, the computed fundamental matrices
are constant, i.e., Fi j = F, and we need to store only one lookup table.

On-Line Stage
The on-line stage is performed in order to recognize the objects of interest in a
test image sequence of n images {Ii }, for i = 1, . . . n. The images are acquired by
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Fig. 9.24 Given the grid point illustrated as the red point at (x, y), in image Ii , the set of possible
corresponding points in image I j can be those grid points (yellow points) represented by the inter-
section of the epipolar region (blue rectangle) and neighborhood around (x, y) (orange circle with
radius r centered at red point). The use of grid points allows us to use a lookup table in order to
search the matching candidates in I j efficiently

Fig. 9.25 Monocular analysis for each image of the sequence, i.e., for i = 1, . . . n. In this example,
the class of interest is ‘razor blade’

rotation of the object being tested at β degrees (in our experiments we used n = 4,
and β = 100). This stage consisted of two main steps: monocular and multiple-view
analysis that will be described in further detail as follows.

Monocular Analysis: This step is performed in each image Ii of the test image
sequence, as illustrated inFig. 9.25 in a real case. Thewhole object contained in image
Ii is segmented from the background using threshold and morphological operations.
SIFT–keypoints (or other descriptors)— are only extracted in the segmented portion.
The descriptor d of each keypoint is classified using classifier h(d) trained in the
off-line stage, and explained above. All keypoints classified as class c, where c is
the class of interest, with c ∈ {1 . . . C} are selected. As we can see in Fig. 9.25 for
the classification of ‘razor blade’, there are many keypoints misclassified. For this
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Fig. 9.26 Multiple-view analysis. An explanation of last step (final analysis) is illustrated in Fig.
9.27

reason, neighbor keypoints are clustered in the 2D space using Mean Shift algorithm
[28]. Only those clusters that have a large enough number of keypoints are selected.
They will be called detected monocular keypoints.

Multiple-View Analysis: Multiple view analysis performs the recognition of objects
of interest in three steps (see Fig. 9.26): (i) data association, (ii) 3D analysis, and
(iii) final analysis. The input is the detected monocular keypoints obtained by the
mentioned monocular analysis explained above. The output is c′, the assigned class
for each detected object.
• Data Association: In this step, we find matchings for all detected monocular key-
points in all consecutive images Ii and I j=i+1, for i = 1, . . . n − 1, as follows:

+ For each detected monocular keypoint in image Ii (located at position (xi , yi )

with descriptor di ), we seek in a dense grid of points, the nearest point (x, y)

(see red point in Fig. 9.24-left) using a k-d tree structure.
+ We determine Sxy , the set of matching candidates in image I j=i+1 arranged in a

grid manner by reading the lookup table explained above (see yellow points in
Fig. 9.24-right).

+ We look for the detected monocular keypoints in image I j that are located in
the neighborhood of Sxy , again using a k-d tree structure. They will be called
neighbor keypoints.When no neighbor keypoint is found, nomatch is established
for (xi , yi ).

+ From neighbor keypoints, we select that one (located at position (x j , y j ) with
descriptor d j ) with minimum distance ||di − d j ||. In order to ensure the simi-
larity between matching points, the distance should be less than a threshold ε. If
this constraint is not satisfied, again no match is established for (xi , yi ).

• 3D analysis: From each pair of matched keypoints (xi , yi ) in image Ii and (x j , y j )

in image I j=i+1 established in the previous step, a 3D point is reconstructed using
the projection matrices Pi and P j of our geometric model (see Sect. 3.6). Similar to



9.4 Baggage 409

Fig. 9.27 Final analysis: using the geometric model, the reconstructed 3D points in each cluster
are reprojected in each view (blue points). The keypoints that are near to the reprojected points are
identified (red points). The descriptors of these keypoints (orange histograms) are classified using
trained classifier h. The class c′ of this cluster is determined by majority vote. In this example of
n = 4 views, only the green cluster is represented

the monocular detection approach, neighbor 3D points are clustered in the 3D space
using Mean Shift algorithm [28], and only those clusters that have a large enough
number of 3D points are selected.
• Final analysis: For each selected 3D cluster, all 3D reconstructed points belonging
to the cluster are re-projected onto all images of the sequence using the projection
matrices of geometric model (see Fig. 9.27). The extracted descriptors of the key-
points locatednear these re-projected points are classified individually using classifier
h. The cluster will be classified as class c′ if there is a large number of keypoints
individually classified as c′, and this number represents a majority in the cluster.

This majority vote strategy can overcome the problem of false monocular detec-
tions when the classification of the minority fails. A cluster can be misclassified if
the part that we are trying to recognize is occluded by a part of another class. In
this case, there will be keypoints in the cluster assigned to both classes; however, we
expect that the majority of keypoints will be assigned to the true class if there are a
small number of keypoints misclassified.
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Fig. 9.28 Recognition of a razor blade using our approach. a original sequence,
b keypoints, c classified keypoints, d detected monocular keypoints, e matched keypoints, f repro-
jected 3D points (blue) and neighbor keypoins (red), g final detection

Experiments and Results
In our experiments, the taskwas to recognize three different classes of objects that are
present in a pencil case (see, for example, a sequence in Fig. 9.28a). These classes
are: ‘clips’, ‘springs’, and ‘razor blades’. We followed the recognition approach
explained above.

In the off-line stage we used a structure from a motion algorithm in order to
estimate the projectionmatrices of each view4.Additionally, in the learning phase,we
used only 16 training images of each class.Due to the small intra-class variation of our
classes, this number of training images was deemed sufficient. The training objects
were posed at different angles. SIFT descriptors were extracted as explained in [91],
and a k-Nearest Neighbor (KNN) classifier with k = 3 neighbors was ascertained

4We use in our experiments a fast implementation of multiple-view geometry algorithms from Balu
Toolbox [97].



9.4 Baggage 411

Fig. 9.29 Recognition using our approach in cases with some degree of overlap: a one spring, b
two springs, c one clip, d one clip. Each figure shows a part of one image of the whole sequence

using the SIFTdescriptors of the four classes5. Other descriptors (like LBP andHOG)
and other classifiers (like SVM or KNN with other values of k) were also tested,
although the best performance was achieved with the aforementioned configuration.

In order to illustrate step by step the on-line stage, the recognition of a razor blade
is illustrated in Fig. 9.28a–d for monocular analysis and in Fig. 9.28e–g for multiple-
view analysis6. It is worth mentioning that in monocular detection there are false
alarms, however, they can be filtered out after multiple-view analysis. The reason
is because false alarms cannot be tracked in the sequence or because the tracked
points, when validating the corresponding points in other views of the sequence, do
not belong to the class of interest. Other results with some degree of overlap, where
the task was the recognition of springs and clips, are illustrated in Fig 9.29.

Testing experiments were carried out by recognizing the three mentioned classes
(‘clips’, ‘springs’, and ‘razor blades’) in 45 different sequences of 4 views (15
sequences for each class)7. The size of an individual image was 1430 ×900 pix-
els. In these experiments there were 30 clips, 75 springs and 15 razor blades to be
recognized. A summary of the results using the proposed algorithm is presented in
Table 9.6, in which the performance in the recognition of each class is presented
in two different parts of our algorithm: after monocular analysis (Mono) and after
multiple-view analysis (Multi). These parts are illustrated in Fig. 9.28d and 9.28g
respectively for a razor blade. In this table, Ground Truth (GT) is the number of
existing objects to be recognized. The number of detected objects by our algorithm
is D = TP + FP, including False Positives (FP) and true positives (TP). Ideally, FP
= 0 and TP = GT. In our experiments, precision (PR), computed as PR=TP/D, is
71.4% and 95.7% in each part; and recall (RE), computed as RE=TP/GT, is 90.8%
and 92.5% in each step. If we compare single versus multiple view detection, both
precision and recall are incremented. Precision, however, is drastically incremented
because our approach achieves good discrimination from false alarms.

The amount of time required in our experiments was about 15 minutes for the off-
line stage and about 16s for testing each sequence on a iMac OS X 10.7.3, processor
3.06 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3 memory. The code of the
program—implemented in Matlab—is available on our website.

5We used in our experiments fast implementations of SIFT and KNN (based on k-d tree) from
VLFeat Toolbox [169].
6We used in our experiments a fast implementation of Mean Shift from PMT Toolbox [32].
7The images tested in our experiments come from public GDXray database [113].
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Table 9.6 Recognition performance

Mono Multi

Class TP FP GT TP FP GT

Clip 114 127 120 26 2 30

Spring 263 30 300 71 3 75

Blade 59 18 60 14 0 15

Total 436 175 480 111 5 120

Precision 71.4% 95.7%

Recall 90.8% 92.5%

Conclusions
In this section, we presented a newmethod that can be used to recognize certain parts
of interest in complex objects using multiple X-ray views. The proposed method fil-
ters out false positives resulting frommonocular detection performed on single views
by matching information across multiple views. This step is performed efficiently
using a lookup table that is computed off-line. In order to illustrate the effectiveness
of the proposed method, experimental results on recognizing regular objects—clips,
springs, and razor blades—in pen cases are shown achieving around 93% accuracy
in the recognition of 120 objects. We believe that it would be possible to design an
automated aid in a target detection task using the proposed algorithm. In our future
work, the approach will be tested in more complex scenarios recognizing objects
with a larger intra-class variation.

9.4.3 An Example Using Multiple Views

In this example, we show how to detect objects in a non-calibrated image sequence
as illustrated in Fig. 9.31. The approach has two parts: structure estimation and
parts detection8. The approach follows the same strategy of method explained in
Sect. 9.2.2. The results are shown in Fig. 9.32.

Structure Estimation
In case the X-ray imaging system is not calibrated, a geometric model must be
estimated. The estimation of the geometric model is based on well-known structure-
from-motion (SfM) methodologies. For the sake of completeness, a brief description
of this model is presented here. In our work, SfM is estimated from a sequence of m
images taken from a rigid object at different viewpoints. The original image sequence
is stored in m images J1, ..., Jm .

8See implementation in Matlab at https://github.com/domingomery/Xvis - function Xtrgui.

https://github.com/domingomery/Xvis
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Fig. 9.30 Detection of objects in a pencil case using the proposed method: a Unsorted sequence
with six X-ray images. The images are sorted according to their similarity (see arrows). b Sorted
sequence, keypoints (points) and structure from motion (lines across the sequence). c Detection in
the sequence and tracked regions. d Detection of parts of interest in the last image in the sequence
(three of them are used in this example to illustrate the next sub-figures). e Tracked example regions
in each view of the sequence (1: pencil sharpener, 2: clip, and 3: zipper slider body and pull-tab)

Keypoints: For each image, SIFTkeypoints are extracted because they are very robust
against scale, rotation, viewpoint, noise, and illumination changes [91]. Thus, not
only a set of 2D image positions x, but also descriptors y, are obtained. Although this
method is based on SIFT descriptors, there is no limitation to use other descriptors,
e.g., SURF [18].

Image Sorting: If the images are not sorted, a visual vocabulary tree is constructed for
fast image indexing. Thus, a new image sequence I1, ..., Im is established from J1, ...,
Jm bymaximizing the total similarity defined as

∑
sim(Ii , Ii+1), for i = 1, ..., m − 1,

where the similarity function ‘sim’ is computed from a normalized scalar product
obtained from the visual words of the images [158]. See an example in Fig. 9.30a
and 9.30b.

Matching Points: For two consecutive images, Ii and Ii+1, SIFT keypoints are
matched using the algorithm suggested by Lowe [91] that rejects too ambiguous
matches. Afterwards, the Fundamental Matrix between views i and i + 1, Fi,i+1, is
estimated using RANSAC [56] to remove outliers. If keypoint k of Ii is matched
with keypoint k ′ of Ii+1, the match will be represented as xi,k → xi+1,k ′ .

Structure Tracks: We look for all possible structure tracks—with one keypoint in
each image of sequence—that belong to a family of the following matches:

x1,k1 → x2,k2 → x3,k3 → ... → xm,km .

There are many matches that are eliminated using this approach, however, having
a large number of keypoints there are enough tracks to perform the bundle adjustment.
We define n as the number of tracks.
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Fig. 9.31 Block diagram of the proposed approach

Bundle Adjustment: The determined tracks define n image point correspondences
over m views. They are arranged as xi, j for i = 1, ..., m and j = 1, ...n. Bundle
adjustment estimates 3D points X̂ j and camera matrices Pi so that

∑ ||xi, j − x̂i, j ||
is minimized, where x̂i, j is the projection of X̂ j by Pi . If n ≥ 4, we can use the
factorization algorithm [56] to perform an affine reconstruction because for our
purposes the affine ambiguity of 3D space is irrelevant9. This method gives a fast
and closed-form solution using SVD decomposition. A RANSAC approach is used
to remove outliers.

Multiple-View Tensors: Bundle adjustment provides amethod for computing bifocal
and trifocal tensors from projection matrices Pi [56], that will be used in the next
section.

Parts Detection
In this section, we give details of the algorithm that detects the object parts of interest.
The algorithmconsists of four steps: segmentation, description, tracking, and analysis
as shown in Fig. 9.31.

9In this problem, the projective factorization can be used as well [56], however, our simplifying
assumption is that only small depth variations occur and an affine model may be used.
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Fig. 9.32 Detection of objects in a pen case using graphic user interface Xtrgui [103]. In this
example, we can see the zipper slider body and pull-tab in six different views

Segmentation: Potential regions of interest are segmented in each image Ii of the
sequence. It is an ad-hoc procedure that depends on the application. For instance, one
can be interested in detecting razor blades or pins in a bag, or flaws in a material, etc.
This step ensures the detection of the object parts of interest allowing false detections.
The discrimination between these two classes takes place by tracking them across
multiple views (see steps 2c and 2d). In our experiments we tested three segmentation
approaches.
• Spots detector: The X-ray image is filtered using a 2Dmedian filter. The difference
between original and filtered images is thresholded obtaining a binary image. A
potential region r is segmented if size, shape, and contrast criteria are fulfilled. This
approach was used to detect small parts (like pen tips or pins in a pencil case).
• Crossing line profile (CLP): Laplacian of Gaussian edges are computed from the
X-ray image. The closed and connected contours of the edge image define region
candidates. Gray level profiles along straight lines crossing each region candidate
in the middle are extracted. A potential region r is segmented if the profile that
contains the most similar gray levels in the extremes fulfills contrast criteria [99].
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This approach was used to detect discontinuities in a homogeneous material, e.g.,
flaws in automotive parts.
• SIFT matching: SIFT descriptors are extracted from the X-ray image. They are
compared with SIFT descriptors extracted from the image of a reference object of
interest. A potential region r is segmented if the descriptors fulfill similarity criteria
[49, 91]. This approach was used to detect razor blades in a bag.

Other general segmentation approaches can be used aswell. For example,methods
based on saliency maps [118], Haar basis features [171], histogram of oriented gra-
dients [30], corner detectors [55], SURF descriptors [18], Maximally Stable regions
[95], Local Binary Patterns [133], etc.

Description: Each segmentedpotential region r is characterizedusing aSIFTdescrip-
tor. The scale of the extracted descriptor, i.e., the width in pixels of the spatial his-
togram of 4 × 4 bins is set to

√
Ar , where Ar is the corresponding area of the region

r .

Tracking and Analysis: The tracking and analysis algorithms were covered in detail
in Sect. 9.2.2. Results are shown in Fig. 9.30.

9.4.4 Example Using Deep Learning

In Sect. 7.7.6, we illustrated already many examples in baggage inspection using
deep learning methods for object detection. The reader is referred to those examples
and Sect. 7.7 to see the detection methods that are proposed for baggage inspection.
Here, we include additional results in Fig. 9.33 to illustrate an example using deep
learning.

9.5 Natural Products

In order to ensure food safety inspection, several applications have been developed
by the natural products industry. The difficulties inherent in the detection of defects
and contaminants in food products have limited the use of X-ray into the packaged
foods sector. However, the need for NDT hasmotivated a considerable research effort
in this field spanning many decades [54].

9.5.1 State of the Art

The most important advances are: detection of foreign objects in packaged foods
[76]; detection of fish bones in fishes [111]; identification of insect infestation in
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Fig. 9.33 Object detection on GDXray+ image B0046_0016 using detection methods RetinaNet,
YOLOv2, YOLOv3, SSD7, and SSD300 explained in Sect. 7.7

citrus [65]; detection of codling moth larvae in apples [54]; fruit quality inspection
like split-pits, water content distribution and internal structure [132]; and detection of
larval stages of the granary weevil in wheat kernels [53]. In these applications, only
single-view analysis is required. An example is illustrated in Fig. 9.34. The reader is
referred to following survey papers for further analysis of the state of the art in the
field: detection of contaminants [54], quality inspection of agricultural product using
compute tomography [35], and inspection using X-ray fluorescence [39]. In Table



418 9 Applications in X-ray Testing

Fig. 9.34 Detection of fish bones using sliding-windows [111]

9.7, some applications are summarized. We observe that deep learning methods in
this field are rarely used. This trend is sure to change in the next few years.

9.5.2 An Application

In countries where fish is often consumed, fish bones are some of the most frequently
ingested foreign bodies encountered in foods. In the production of fish fillets, fish
bone detection is performed by human inspection using their sense of touch and
vision which can lead to misclassification. Effective detection of fish bones in the
quality control process would help avoid this problem. For this reason, an X-ray
machine vision approach to automatically detect fish bones in fish fillets was devel-
oped. This section describes our approach to detect fish bones automatically and the
corresponding experiments with salmon and trout fillets based on [111].

Pre-Processing and Segmentation
The fish bones are only present in certain space frequencies of the spectrum: they
are not too thin (minimal 0.5mm) nor too thick (maximal 2mm). The segmentation
of potential fish bones is based on a band-pass filter to enhance the fish bones with
respect to their surroundings as shown in Fig. 9.35. The proposed approach to detect
potential fish bones has four steps:

Enhancement: The original X-ray image X (Fig. 9.35b) is enhanced linearly by
modifying the original histogram in order to increase contrast [50]: The enhanced
image Y is

Y = aX + b (9.6)

Band-Pass Filtering: The enhanced image Y is filtered using a radial symmetric
17×17 pixels mask H (Fig. 9.35a). Mask H was estimated from 20 X-ray images
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Table 9.7 State of art on natural products

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Bej et al. 2015 [19] � � � � � � � � �

van Deal et al. 2016 [29] � � � � � � � � �

van Deal et al. 2019 [168] � � � � � � � � �

Douarre et al. 2016 [33] � � � � � � � � �

Guelpa et al. 2015 [52] � � � � � � � � �

Haff and Slaughter 2004 [53] � � � � � � � � �

Jiang et al. 2008 [65] � � � � � � � � �

Karunakaran et al. 2004 [69] � � � � � � � � �

Kelkar et al. 2015 [70] � � � � � � � � �

Kotwaliwale et al. 2014 [73] � � � � � � � � �

Kwon et al. 2008 [76] � � � � � � � � �

Mathanker et al. 2011 [96] � � � � � � � � �

Mery et al. 2011 [111] � � � � � � � � �

Neethirajan et al. 2014 [125] � � � � � � � � �

Nielsen et al. 2014 [128] � � � � � � � � �

Nugraha et al. 2019 [130] � � � � � � � � �

Ogawa et al. 2003 [132] � � � � � � � � �

Orina et al. 2018 [134] � � � � � � � � �

Schoeman et al. 2016 [148] � � � � � � � � �

van Deal et al. 2019 [168] � � � � � � � � �

Zhong et al. 2019 [191] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

by minimizing the error rate as mention in [23] and applied to fish bones (all fish
bones should be found and there should be no false alarms). The filtered image Z
(Fig. 9.35c) is then the convolution of Y with mask H:

Z = Y ∗ H (9.7)

Thresholding: Those pixels inZ that have gray values greater than a certain threshold
θ are marked in a binary image B. The threshold is defined to ensure that all fish
bones are detected, i.e., false alarms are allowed in this step. The pixels of B are
defined as

Bi j =
{
1 if Zi j > θ

0 else
(9.8)
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Fig. 9.35 Segmentation of potential fish bones: a Convolution maskH in space domain, b original
X-ray imageX of a salmon fillet, c filtered imageZ,d potential fish bones imageP after thresholding
and removing objects deemed too small

Removal of Small Objects: All connected pixels inB containing fewer than A pixels
are removed as shown in Fig. 9.35d. This image, called P, defines the potential fish
bones.

Feature Extraction, Selection, And Classification
The segmented potential fish bones—contained in image P—are divided into small
10×10 pixels windows called detection windows. In a training phase, using a priori
knowledge of the fish bones, the detection windows are manually labeled as one
of two classes: bones and no-bones. The first class corresponds to those regions
where the potential fish bones are indeed fish bones. Alternatively, the second class
corresponds to false alarms. Intensity features of the enhanced X-ray image Y are
extracted for both classes.We use enhanced imageY, instead of pre-processed image
X, because after our experiments the detection performance was higher. Features
extracted from each area of an X-ray image region are divided into four groups
as shown in Sect. 9.3.2. In these experiments, 279 features are extracted from each
detection window. Afterwards, the features are selected in order to decide on the
relevant features for the two defined classes. In addition, a classifier is designed. The
best results, after evaluation a 10-fold cross-validation was achieved by Sequential
Forward Selection (as feature selection technique) and Support Vector Machine with
RBF kernel (as classifier).

Experimental Results
First, the proposed method was tested with 20 representative salmon fillets obtained
at a local fish market. The average size of these fillets was 15×10 cm2. According
to pre-processing and segmentation techniques explained above, several regions of
interest were obtained where fish bones could be located. The area occupied by these
regions of interest corresponds to approx. 12% of the salmon fillets as shown in Fig.
9.35. More results are presented in Fig. 9.36.

From the mentioned regions of interest 7697, detection windows of 10×10 pixels
were obtained (available in series N0003 of GDXray+). Each window was labeled
with ‘1’ for class bones and ‘0’ for no-bones (see file labels.txt in directory of
N0003). From each window, 279 features were extracted. After the feature extrac-
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Fig. 9.36 Results obtained in four X-ray images. The columns correspond to enhanced images,
classified fish bones and post processed fish bones. The first row corresponds to the example shown
in Fig. 9.35
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Fig. 9.37 Results obtained on 3878 samples using cross-validation with five folds. See results in
Table 9.8

Table 9.8 Performance in the detection of fishbones

Fishbone Sensibility (%) 1-Specificity (%) Size

Large (red) 100 0 >0.64 mm × 12 mm

Medium (blue) 100 3 Between

Small (green) 93 6 <0.48 mm × 8.5 mm

tion, 75%of the samples fromeach classwere randomly chosen to perform the feature
selection. The best performance was achieved using Sequential Forward Selection.
24 features were selected. The features gave information about the spatial distribu-
tion of pixels, i.e., how coarse or fine the texture is. The selected features correspond
mainly to statistical features (12) and filter banks (7), however, it is worth nothing
that the two most discriminative features are LBP features (in this case LBP 48 and
LBP 11). On the other hand, from the standard features there is only one feature
(standard deviation of the intensity).

In order to investigate the sensibility (Sn) and 1-specificity (1 − Sp) of the fish
bones depending on their largeness, three size groups were constructed: large for fish
bones larger than 12mm, small for fish bones smaller than 8.5mm, andmedium for fish
bones betweenboth sizes. In this experiment, 3878fishbonesweremanually selected.
The performance was calculated using a cross-validation with 5 folds. The results
are summarized in Fig. 9.37 and Table 9.8. All medium and large fish bones were
detected (with 1 − Sp = 0% and 3% respectively), whereas 93% of small fish bones
were correctly detected with 1 − Sp = 6%. This means that cross-validation yielded
a detection performance of 100%, 98.5%, and 93.5% (computed using (Sn + Sp)/2)
for large, medium, and small fish bones respectively.

Finally, in order to validate the proposed methodology, the last experiment was
carried out using representative fish bones and representative trout fillets provided
by a Chilean salmon industry. The size of the fish bones were between 14 and 47 mm
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Fig. 9.38 Results obtained on a trout fillet using a fish bone strip with 33 fish bones: a strip, b strip
over the fillet, c X-ray image, d segmentation, e classification, f post-processing. All fish bones
were detected (Sn = 1), in this example there was no false alarm (1 − Sp = 0)

(larger than the small-size and mid-size groups considered above). The fish bones
were arranged in strips that were superimposed onto trout fillets. Thus, the number
of fish bones to be detected was a priori known. According to the absorption law,
an X-ray image of a fillet with a fish bone inside, and an X-ray image with a fish
bone laid on the fillet top are almost identical. Similar methodologies are used in
industrial X-ray inspection of materials in order to simulate discontinuities [98]. The
only difference could be that the position of a real fish bone (inside of a fillet) achieves
a more realistic location related to the fish tissues, however, after our experience, the
obtained images were found to be very similar. Fig. 9.38 shows the detection of one
fish bone strip on a trout fillet. Using the same classifier trained in the last experiment,
i.e., no new training was necessary, the proposed method was able to detect all fish
bones with a 1% false positive rate. In this case, 15 X-ray images were tested, with
459 bones and 10413 no–bones.

Conclusion
The need formore information on the quality control of several fish types bymeans of
quantitativemethods can be satisfied usingX-ray testing, a non-destructive technique
that can be used to objectively measure intensity and geometric patterns in non-
uniform surfaces. In addition the method can also determine other physical features
such as image texture, morphological elements, and defects in order to automatically
determine the quality of a fish fillet. The promising results outlined in this work show
that a very high classification rate was achieved in the quality control of salmon and
trout when using a large number of features combined with efficient feature selection
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and classification. The key idea of the proposed method was to select, from a large
universe of features, only those features that were relevant for the separation of
the classes. Cross-validation yielded a detection performance of 100%, 98.5%, and
93.5% for large, medium, and small fish bones respectively. The proposed method
was validated on trout with representative fish bones provided by a Chilean salmon
industry yielding a performance of 99%. Although the method was validated with
salmon and trout fillets only, we believe that the proposed approach opens new
possibilities not only in the field of automated visual inspection of salmons and
trout, but also in other similar fish.

9.5.3 An Example

In order to illustrate the methodology explained in the previous section, the reader
can see Example 6.13, where the whole process is presented. In this example, 200
small X-ray images (100 × 100 pixels) of salmon filets, 100 with fish bones and 100
without fish bones are used. The images are available in series N0002 ofGDXray+.

9.6 Further Applications

There are many applications in which X-rays can be used as a NDT and E method.
In this section, we mention only cargos and electronic circuits.

9.6.1 Cargo Inspection

With the ongoing development of international trade, cargo inspection becomesmore
and more important. X-ray testing has been used for the evaluation of the contents
of cargo, trucks, containers, and passenger vehicles to detect the possible presence
of many types of contraband. See an example in Fig. 9.39. Some approaches are
presented in Table 9.9. There still is not much research on cargo inspection, and the
complexity of this inspection task is very high. Nowadays, there are some approaches
that use dual-energy, computed tomography, and deep learning. For this reason,X-ray
systems are still only semi-automatic, and they require human supervision.

9.6.2 Electronic Circuits

In this industrial application of X-rays, the idea is to inspect circuit boards or inte-
grated circuits in order to detect flaws in manufacturing, e.g., broken traces, missing
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Fig. 9.39 X-ray image of a cargo. Collected by U.S. Customs and Border Protection a bureau of
the United States Department of Homeland Security, via Wikimedia Commons

Table 9.9 State of art on cargo inspection

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Duan 2008 [36] � � � � � � � � �

Frosio 2011 [46] � � � � � � � � �

Kolkoori 2014 [71] � � � � � � � � �

Kolokytha et al. 2018 [72] � � � � � � � � �

Jaccard et al. 2016 [63] � � � � � � � � �

Jaccard et al. 2017 [64] � � � � � � � � �

Lee et al. 2018 [78] � � � � � � � � �

Rogers et al. 2017 [144] � � � � � � � � �

Zhu 2008 [193] � � � � � � � � �

Zhu 2010 [192] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used , � used

Fig. 9.40 X-ray image of a printed circuit board. By SecretDisc (Own work) via Wikimedia
Commons

components, cracks, dilapidations, etc. An example is shown in Fig. 9.40. Some
approaches are presented in Table 9.10. In this area, automated systems are very
effective, and the inspection task is very fast and obtains a high performance.

http://upload.wikimedia.org/wikipedia/commons/d/d7/VACIS_Gamma-ray_Image_with_stowaways.GIF
http://upload.wikimedia.org/wikipedia/commons/0/0a/X-Ray_Circuit_Board_Zoom.jpg
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Table 9.10 State of art on electronic circuit boards

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views 1 2 3 X

∗
3 algorithms

1 2 3

Adato et al. 2016 [3] � � � � � � � � �

Alam et al. 2017 [10] � � � � � � � � �

Ghosh et al. 2018 [48] � � � � � � � � �

Goto et al. 2019 [51] � � � � � � � � �

Favata and
Shahbazmo-
hamadi

2018 [38] � � � � � � � � �

Lin et al. 2017 [85] � � � � � � � � �

Mahmood et
al.

2015 [93] � � � � � � � � �

Uehara et al. 2013 [166] � � � � � � � � �

Wang et al. 2014 [175] � � � � � � � � �

Wu et al. 2014 [177] � � � � � � � � �

Zakaria et al. 2020 [184] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

9.7 Summary

In this chapter, relevant applications on X-ray testing were described. We covered
X-ray testing in:

• Castings:Toensure the safety of the constructionof automativeparts, it is necessary
to check every part thoroughly using X-ray testing. We presented the state of
the art, a defect detection approach based on a tracking principle, and a Python
implementation of a classifier that is able to defect casting defects in single X-ray
images.

• Welds: In welding processes, a mandatory inspection using X-ray testing is
required in order to detect defects like porosity, inclusion, lack of fusion, lack
of penetration, and cracks. We presented the state of the art, a defect detection
approach based on sliding windows, and a Python implementation of a classifier
that is able to detect defects using sliding windows methodology in single X-ray
images.

• Baggage: In baggage screening, every piece of luggage must be inspected using
X-ray testing in order to detect dangerous objects. We presented the state of the
art, a recognition approach based on multiple-view analysis, and a Matlab imple-
mentation of tracking principle that is able to detect objects in the sequence X-ray
images of a pen case.
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• Natural products:We presented some applications of X-ray testing in natural prod-
ucts, such as inspection of fruit, identification of infections, and detection of fish
bones. We reviewed the state of the art, a fish bones detection approach based on
sliding windows, and a Python implementation of a classifier that is able to detect
fish bones in cropped images with and without fish bones.

• Others: There are several industrial applications that use X-ray testing. We men-
tioned only cargos and electronic circuits giving some references of the state of
art.
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