
Chapter 7
Deep Learning in X-ray Testing

Abstract Deep learning has been inspired by ideas from neuroscience. The key
idea of deep learning is to replace handcrafted features (explained in details in
Chap. 5) with features that are learned efficiently using a hierarchical feature extrac-
tion approach. Usually, the learned features are so discriminative that no sophisti-
cated classifiers are required. In last years, deep learning has been successfully used
in image and video recognition, and it has been established as the state of the art
in many areas such as computer vision, machine translation, and natural language
processing. In comparison with other computer vision applications, we have seen
that the introduction of techniques based on deep learning in computer vision for
X-ray testing has been rather slow. However, there are many methods based on deep
learning that have been designed and tested in some X-ray testing applications. In
this chapter, we review many relevant concepts of deep learning that can be used
in computer vision for X-ray testing. We covered the theory and practice of deep
learning techniques in real X-ray testing problems. The chapter explained neural
networks, Convolutional Neural Network (CNN) that can be used in classification
problems, pre-trained models, transfer learning that are used in sophisticated mod-
els, Generative Adversarial Networks (GANs) to generate synthetic images, and
modern detection methods that are used to classify and localize objects in an image.
In addition, for every method, we give not only the basic concepts but also practical
details in real X-ray testing examples that have been implemented in Python.

Cover image: Synthetic X-ray mages generated by a GAN model that has been trained using X-ray
images of backpacks with no threat objects (from series B0082 colored with ‘jet’ colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_7

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_7

276 7 Deep Learning in X-ray Testing

7.1 Introduction

Originally, deep learning is inspired by ideas from neuroscience [19]. In last years,
deep learning has been successfully used in image and video recognition (see, for
example, [3, 31, 58]), and it has been established as the state of the art in many areas
such as computer vision, machine translation, and natural language processing [57].

The key idea of deep learning is to replace handcrafted features (explained in
details in Chap. 5) with features that are learned efficiently using a hierarchical fea-
ture extraction approach. Usually, the learned features are so discriminative that no
sophisticated classifiers are required. In recent years, we have witnessed tremendous
improvements in many fields of computer vision by using complex deep neural net-
work architectures trained with thousands or millions of images (e.g., face recog-
nition [10], object recognition and detection [35, 71], diagnosis of prostate can-
cer [44], classification of skin cancer [14], among others). Methods based on deep
learning have become fundamental in these fields, however, an enormous number
of images used for training purposes are required in order to achieve satisfactory
results.

In comparison with other computer vision applications, we have seen that the
introduction of techniques based on deep learning in computer vision for X-ray
testing has been rather slow. In our opinion, this is due to three reasons. The first
has to do with the availability of public databases that can be used for these pur-

7.1 Introduction 277

poses. While in some areas of computer vision (e.g., face recognition), there are
hundreds of databases since the 1990s, in X-ray testing, there is only one public
database for X-ray testing for general purposes [40] created in the last 5 years with
around 20.000 X-ray images, and another one for baggage inspection [42] created
recently with around 1 million X-ray images. The rest of the datasets used in the
experiments reported by the industry and academia are private. In many cases, the
entities (industry, government, or academia) that fund research in X-ray testing do
not allow databases to be made public. Sometimes this happens in baggage inspec-
tion research (for security reasons) or in other industrial applications (to prevent
competitors from having access to data that could improve their processes). The
second reason is related to the number of experts working in this field. While in
other areas of computer vision almost anyone can be an expert (such as in object
recognition), in nondestructive testing the relative number of people working on
these subjects is rather low and usually, their work is expensive. In this kind of com-
puter applications, experts are necessary to label the data (make annotations, define
bounding boxes, etc.). It is very simple to find people that detect bicycles in pho-
tographs, however, it is not so easy to find human operators that can distinguish the
anomalies in a welding process by observing an X-ray image. Finally, the last rea-
son is that, in other applications of computer vision, color photos can be acquired
with inexpensive equipment (often a cell phone), whereas in X-ray testing, we need
expensive equipment.

In this chapter, we review many relevant concepts of deep learning that can be
used in computer vision for X-ray testing. This chapter should be considered as an
introduction to the subject rather than an in-depth treatise.1 We will cover many
relevant topics, so the reader will be able to understand and apply these techniques
in real X-ray testing problems. The chapter begins with the basics, i.e., neural net-
works (see Sect. 7.2). Afterwards, we will review the Convolutional Neural Network
(CNN) (see Sect. 7.3) that can be used in a classification problem. CNNs can be
trained from scratch or using pre-trained models (see Sect. 7.4) or transfer learning
(see Sect. 7.5). In addition, we cover the Generative Adversarial Networks (GANs)
(see Sect. 7.6) that have been proposed to generate synthetic images. Finally, we give
an overview of more complex architectures that can be used as detection methods
(see Sect. 7.7), i.e., when we want to classify and localize an object in an image. For
every section, we will cover the basic concepts, give practical details (e.g., training
and testing) and show some examples in X-ray testing using Python.

7.2 Neural Networks

Artificial neuronal networks are mathematical tools derived from what is known
about the mechanisms and physical structure of biological learning, based on the
function of a neuron. They are parallel structures for the distributed processing of
information [4]. A neural network consists of artificial neurons connected in a net-

1Recommendation for further reading: [1, 18, 31].

278 7 Deep Learning in X-ray Testing

Fig. 7.1 Simple neural network with three inputs x = (x1, x2, x3), one output ŷ, and two hidden
layers (one with 8 nodes and the another with 4). In this example, the input can be classified as
class ω1 if ŷ > 0.5, and otherwise as class ω0

work that is able to classify a test feature vector x evaluating a linear weighted sum
of non-linear functions as illustrated in Fig. 7.1. The weights, the functions, and
the connections are estimated in a training phase by minimizing the classification
error [4, 5]. Neural networks have been established as one of the best classification
approaches in pattern recognition. The basic structure of the neural networks and
the learning strategies developed for training neural networks are the basis of deep
learning models.

7.2.1 Basics of Neural Networks

The basic processing unit is the neuron, made up of multiple inputs and only one
output as shown in Fig. 7.2. This output is determined by an activation function
that operates on input values, and a transfer function that operates on the activation
value. In other words, if we consider the input vector x = [x1 . . . xn]T, the weight
vector w = [w1 . . . wn]T, the activation value z, and the output value of the neuron
a, the values of z and a can be described by a linear projection and an a non-linear
function:

z = wTx + b a = σ(z), (7.1)

7.2 Neural Networks 279

Fig. 7.2 Single neuron with three inputs (x1, x2, x3), three weights, one weight for each input,
(w1, w2, w3), one bias value (b), and one output a

Fig. 7.3 Two typical sigmoids as activation functions

where b is the bias value and σ(z) is the so-called transfer function or activation
function and is generally a sigmoid such as (see Fig. 7.3)

σ(z) = 1

1 + e−z
or σ(z) = tanh(z) + 1

2
. (7.2)

A very simple structure, called logistic regression, is defined for two classes and
no hidden layer, i.e., the output of the model is y = a. Thus, class ω1 is determined
when y > 0.5, and ω0 otherwise. This is a linear approach because the separation
of both classes corresponds to a hyperplane (or a straight line for a feature space of
two dimensions).

280 7 Deep Learning in X-ray Testing

Fig. 7.4 Multi-Layer
Perceptron (MLP) with one
input layer with two inputs,
two hidden layers (Layer 1
and Layer 2) with 6 and 12
nodes respectively and one
output layer with four
outputs. [→ Example 7.1

] [→ Example 7.2]

The structure of a neuronal network can have one or more neurons and depending
on the type of problem and the training, these networks receive different names.
They have the capacity to associate and classify patterns, compress data, perform
process control, and approximate non-linear functions [43].

The most often used type of neural network in classification is the Multi-Layer
Perceptron (MLP) which consists of sequential layers of neurons. The structure of
an MLP is shown in Fig. 7.4 where each neuron has Eq. (7.1) associated to it. It
consists of a input layer, hidden layers, and an output layer (in Fig. 7.4, there are two
hidden layers, a1 and a2). In a classification problem based on neural networks, the
input x corresponds to the feature vector, and the output ŷ that is the classification of
x. Output ŷ is defined as a vector of K elements for a classification into K classes.
The value ŷi can be understood as the probability that sample x is classifies a class
ωi . Formerly,

hnn(x) = argmax
i

{
ŷ1, . . . , ŷK

}
. (7.3)

Usually, an index k = 0, . . . , m is used to denote a layer, where k = 0 is the
input layer and k = m is the output layer (in Fig. 7.4, m = 3). In addition, index
i = 1, . . . , nk is used to denote the node i of layer k. In Fig. 7.4, the two hidden
layers have n1 = 6 and n2 = 12 nodes respectively. We define the output of layer k
as vector ak , and it is a vector with nk elements. In this definition, a0 corresponds to
x, i.e., the input vector of the neural network with n0 elements (in Fig. 7.4, n0 = 2
for two inputs). Similarly, am corresponds to ŷ, i.e., the output vector of the neural
network (in Fig. 7.4, nm = 4 for four outputs). Thus, in general, layer k is defined
by

7.2 Neural Networks 281

ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ak(1)

ak(2)

:

ak(nk)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (7.4)

where the input and output layers are respectively:

x = a0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1

x2

:

xn0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a0(1)

a0(2)

:

a0(n0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(7.5)

ŷ = am =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ŷ1

ŷ2

:

ŷnk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

am(1)

am(2)

:

am(nm)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (7.6)

With these definitions, it is simple to write the equation of each node according to
(7.1) for k = 1, . . . , m:

zk = Wkak−1 + bk , ak = σ(zk). (7.7)

In this equation, zk, ak , and bk are nk-element vectors, ak−1 is a nk−1-element vec-
tor, and Wk is a matrix of nk × nk−1 elements, where wk(i, j) is the weight of the
connection between node i of layer k and node j of layer k − 1.

For our example of Fig. 7.4 with m = 3, output y can easily computed using
following steps: ⎡

⎣
z1 = W1a0 + b1 , a1 = σ(z1)
z2 = W2a1 + b2 , a2 = σ(z2)
z3 = W3a2 + b3 , a3 = σ(z3).

⎤

⎦ (7.8)

with a0 = x and a3 = ŷ.
This procedure is called forward-propagation, and it is used to compute output ŷ

from input x and parameters Θ , where the parameters are defined as Θ = {θ k}m
k=1

withe θ k = (Wk ,bk), i.e., the parameters of each layer. The reader can observe that

282 7 Deep Learning in X-ray Testing

the computation of ŷ is very fast, because in these equations, there are only multi-
plications and additions of vectors and matrices.

7.2.2 Training of Neural Networks

In order to train a neural network, parameters Θ are to be estimated. For this end,
we have a training dataset of N samples {xi }N

i=1 and its corresponding ideal classi-
fication {yi }N

i=1. We distinguish between the ground truth yi (ideal classification for
sample xi) and the output of the neural network ŷi (real classification of xi). The
idea of the training is to find parameters Θ so that the difference between yi and
ŷi is minimal for i = 1, . . . , N . In neural networks, a loss function, floss(yi , ŷi) is
used too compute the difference between ideal (yi) and real (ŷi), so the training pro-
cess can be stated as an optimization problem in which an objective function is to
be minimized:

J (Θ) = 1

N

N∑

i=1

floss(ŷi , yi) → min . (7.9)

Intuitively, the loss function (7.9) can be based on the norm:

floss(ŷi , yi) = 1

2
||ŷi − yi ||2, (7.10)

however, more sophisticated loss functions, like cross-entropy that minimizes the
distance between both probability distributions are typically used [1, 4]:

floss(ŷi , yi) = −yi log(ŷi) − (1 − yi) log(1 − ŷi) (7.11)

for a two-class problem.2 In order to find the parameters, i.e., to minimize objec-
tive function J , a method based on gradient descent can be used. We choose start
parameters with random values (Wk ,bk) for each layer, and they will be updated
iteratively by small increments using the opposite direction of the gradient of the
objective function J . The iterative method is summarized as follows:

1. Parameters θ k = (Wk ,bk), for k = 1, . . . , m, are initialized with random values.

Wk := random matrix(nk × nk−1) , bk := random vector(nk × 1). (7.12)

2. Layer outputs are computed for each training sample i using (7.7):

zk,i = Wkak−1,i + bk , ak,i = σ(zk,i). (7.13)

2For a multi-class problem, we sum the loss for each class.

7.2 Neural Networks 283

3. Derivatives of the parameters are computed:

ΔWk = ∂ J

∂Wk
, Δbk = ∂ J

∂bk
. (7.14)

4. Parameters are updated using a learning rate α:

Wk := Wk − αΔWk , bk := bk − αΔbk . (7.15)

5. The procedure is repeated from step 2 until convergence. For example, when

J (W1, . . . ,Wm,b1, . . . ,bm) < ε. (7.16)

We observe that step 2 corresponds to the forward-propagation of the neural net-
work, that means we have an input xi = a0,i , and we evaluate forwards (from left
to right) the layers of the network until we have the output ŷi = am,i , and the out-
put ak depends on input ak−1 and parameters Wk and bk . On the other hand, step
3 computes the increments ΔWk and Δbk that are required in step 4 to update
the parameters. Step 3 is performed using a backward-propagation approach, that
means, we compute the derivatives at the output and we propagate them backwards
(from right to left) through the layers using the chain rule for derivatives. The idea
is that in the backward-propagation, we will have in each layer the increments ΔWk

and Δbk that depends on ∂ J/ak and parametersWk and bk as illustrated in Fig. 7.5.
Formerly,

Fig. 7.5 Backward-propagation strategy

284 7 Deep Learning in X-ray Testing

ΔWk = ∂ J

∂Wk
= ∂ J

∂ak

∂ak

∂zk︸ ︷︷ ︸
γk

∂zk

∂Wk︸ ︷︷ ︸
ak−1

= γk ak−1 (7.17)

Δbk = ∂ J

∂bk
= ∂ J

∂ak

∂ak

∂zk︸ ︷︷ ︸
γk

∂zk

∂bk︸︷︷︸
1

= γk (7.18)

The last derivatives (∂zk/∂Wk and ∂zk/∂bk) are computed from (7.7), and the term
γk can be written as:

γk = ∂ J

∂ak︸︷︷︸
input

∂ak

∂zk︸︷︷︸
σ ′

k

= ∂ J

∂ak
ak(1 − ak), (7.19)

where the last term is the derivative of the activation function a = σ(z) = 1/(1 +
e−z) and σ ′(z) = a(1 − a). In this approach, the derivative ∂ J/∂am , that is the input
of the most right node of the backward-propagation schema, is computed directly
from (7.9) and (7.10) with ŷ = am :

∂ J

∂am
= ∂

∂am

{
1

N

N∑

i=1

1

2
||ŷi − yi ||2

}

= 1

N

N∑

i=1

(am,i − yi). (7.20)

Thus, the last four equations can be used to estimate the increments ΔWk and
Δbk of step 3 and the updates of the parameters Wk and bk in step 4, for k =
m, m − 1, . . . , 1.

We observe in the backward-propagation approach (Fig. 7.5), that the next layer,
at the left, i.e., layer (k − 1), needs ∂ J/ak−1, that can be expressed as follows:

∂ J

∂ak−1
= ∂ J

∂ak

∂ak

∂zk︸ ︷︷ ︸
γk

∂zk

∂ak−1︸ ︷︷ ︸
Wk

= γk Wk . (7.21)

Typically, the iteration is stopped when the increments are small enough, that
means that no significant update takes place.

Backpropagation is the learning algorithm normally used to train this type of
network. Its goal is to minimize the error function constructed from the difference
between the desired (y) and modeled (ŷ) output. In this section, we explained a
simple backpropagation approach in four steps, where the increments Wk and bk

can be computed in an easy way.

7.2 Neural Networks 285

7.2.3 Examples of Neural Networks

In this section, we give two examples:

1. The first one can be used to understand the basic operation and training of a
neural network. The idea of this example is to design a neural network from
scratch. Here, the reader can find all the details of the implementation of forward-
and backward-propagation of a network with no sophisticated neural network
library, only linear algebra is required (in our implementation for this end, we
use the well-known numpy library3 [47]). [→ Example 7.1]

2. The second example is to show, how we can design a neural network using a
well-known library dedicated to machine learning, called ‘sklearn’.4 The idea of
this example is to give details of the practice in typical applications that can be
implemented with a neural network. [→ Example 7.2]

Python Example 7.1: In this example, we present a classification problem using
simulated with using Gaussian distributions: four classes (ω1, . . . , ω4) for two fea-
tures (x1, x2) (see Fig. 7.6). For this classification problem, we design a neural net-
work with two hidden layers as shown in our example of Fig. 7.4. That means, the
input layer has two entries, the hidden layers has 6 and 12 nodes respectively and the
output layer as four elements (ŷ1, . . . , ŷ4). This example is provided for those read-
ers that want to learn how a neural network is designed from scratch showing the
general five steps explained in Eqs. (7.12)–(7.16): (1) random initialization of the
parameters, (2) forward-propagation, (3) backward-propagation, (4) update of the
parameters, and (5) repeat from step 2 until convergence. The details of all training
steps can be found in classifiers.py of pyxvis Library, where the implementa-
tion is performed using only ‘numpy’ library. In this example, we used 80% of the
available data for training and 20% for validation purposes.

Listing 7.1 : Neural network from scratch.

import numpy as np
from pyxvis.learning.classifiers import nn_definition
from pyxvis.learning.classifiers import nn_forward_propagation, nn_backward_propagation
from pyxvis.learning.classifiers import nn_parameters_update, nn_loss_function
from pyxvis.io.plots import plot_features_y,show_confusion_matrix, plot_loss
from pyxvis.io.data import load_features

Load training and testing data
(Xtrain,Ytrain,Xtest,Ytest) = load_features(’../data/G4/G4’,categorical=1)
plot_features_y(Xtrain,Ytrain,’Training Subset’)

Definitions
N = Xtrain.shape[1] # training samples
n_0 = Xtrain.shape[0] # number of inputs (X)
n_m = Ytrain.shape[0] # number of outputs (Y)
tmax = 1000 # max number of iterations
alpha = 10 # learning rate
loss_eps = 0.01 # stop if loss<loss_eps

3See https://numpy.org.
4See https://scikit-learn.org [48].

https://numpy.org
https://scikit-learn.org

286 7 Deep Learning in X-ray Testing

nh = [6,12] # nodes of hidden layers
n = [n_0]+nh+[n_m] # nodes of each layer
m = len(n)−1
ltrain = np.zeros([tmax,1]) # training loss

Training
t = −1
train = 1
W,b = nn_definition(n,N) # (step 1)
while train:

t = t+1
a = nn_forward_propagation(Xtrain,W,b) # (step 2)
dW,db = nn_backward_propagation(Ytrain,a,W,b) # (step 3)
W,b = nn_parameters_update(W,b,dW,db,alpha) # (step 4)
ltrain[t] = nn_loss_function(a,Ytrain) # (step 5)
train = ltrain[t]>=loss_eps and t<tmax−1

Loss function on training and validation subsets
plot_loss(ltrain)

Evaluation on training and testing subsets
a = nn_forward_propagation(Xtrain,W,b) # output layer is a[m]
show_confusion_matrix(a[m],Ytrain,’Training’,categorical=1)
a = nn_forward_propagation(Xtest,W,b) # output layer is a[m]
show_confusion_matrix(a[m],Ytest,’Testing’,categorical=1)

Fig. 7.6 Feature space, loss function, and confusion matrices on training and testing subsets of a

four-class problem using a neural network. [→ Example 7.1]

7.2 Neural Networks 287

The output of this code is in Fig. 7.6. We can see how the loss function is minimized
and how are the samples of each classified (see confusion matrix). In this example,
the accuracy in the testing dataset was 92.25%. It is difficult to obtain better results
due to the overlapping of the classes. The reader can evaluate the performance of a
new network with only one layer with 12 nodes (the line for nh definition should be
nh = [12]). �

The initially developed backward-propagation algorithm used the steepest
descent first-order method as the learning rule. Nonetheless, other more powerful
optimization approaches are in common use today. The reader is referred to [1] for
more training approaches based on gradient descent strategies, like second-order
methods, and stochastic methods like Adam [28], etc.

Python Example 7.2: This example is very similar to the previous one [→
Example 7.1] with two hidden layers as shown in Fig. 7.4. However, the imple-
mentation is given using sklearn library. The reader can study the syntax of Python
class MLPClasifier for MLP neural networks. The training stage is performed
by function fit and the prediction that evaluates the trained network on input
data is performed by function predic. The optimization approach is performed
by a solver that is in charge of estimate the parameters of the objective function.
Similar to previous example, we use two hidden layers (with 6 and 12 nodes)
respectively. In MLPClasifier, there are three possible solvers: (1) ’lbfgs’ for
quasi-Newton methods, (2) ’sgd’ for stochastic gradient descent methods, and (3)
’adam’ stochastic gradient descent method based on Adam approach [28].

Listing 7.2 : Neural network using sklearn library.

from sklearn.neural_network import MLPClassifier
from pyxvis.io.plots import plot_features2,show_confusion_matrix, plot_loss
from pyxvis.io.data import load_features

Load training and testing data
(Xtrain,Ytrain,Xtest,Ytest) = load_features(’../data/G4/G4’)
plot_features2(Xtrain,Ytrain,’Training+Testing Subsets’)

Definitions
alpha = 1e−5 # learning rate
nh = (6,12) # nodes of hidden layers
tmax = 2000 # max number of iterations
solver = ’adam’ # optimization approach (’lbfgs’,’sgd’, ’adam’)

Training
net = MLPClassifier(solver=solver, alpha=alpha,hidden_layer_sizes=nh,

random_state=1,max_iter=tmax)
print(Xtrain.shape)
print(Ytrain.shape)
net.fit(Xtrain, Ytrain)

Evaluation
Ym = net.predict(Xtrain)
show_confusion_matrix(Ym,Ytrain,’Training’)

Ys = net.predict(Xtest)
show_confusion_matrix(Ys,Ytest,’Testing’)

288 7 Deep Learning in X-ray Testing

The output of this code is the accuracy and confusion matrix evaluated on training
and testing data. The results of the confusion matrices are very similar to the results
given in the last example (see Fig. 7.6). The reader can evaluate the performance of
a new network with only one layer with 12 nodes (the line for nh definition should
be nh = (12,)). �

Some examples of neural networks in pyxvis Library are given in previous chapter
(see Examples 6.6, 6.12, 6.13, and 6.14). In Example 6.6, the reader can append
’lr’ to list ss_cl to evaluate the performance of a logistic regression in the classi-
fication of a two-class problem.

7.3 Convolutional Neural Network (CNN)

There are several deep architectures such as deep neural networks, convolutional
neural networks, energy-based models, Boltzmann machines, deep belief networks,
among others [3]. CNN (CNN), which were inspired by a biological model [30], is
a very powerful method for image recognition [29].

In previous chapters, we studied how an X-ray image X can be classified: in the
control quality of salmons, a region of an X-ray image has a fishbone or not, in
baggage inspection, a region of interest shows a knife, a razor blade, a shuriken,
and so on. The idea is to extract features of X and to classify them according to a
classification strategy (see Fig. 7.7). In a problem of K classes, the output can be
a value y ∈ {1 . . . K } that gives the number of the class, or sometimes the output
can be a K -element vector y, where element yk gives the probability that the image
belongs to class k. If we use a classical neural network to solve the whole problem
(representation and classification), the number of parameters to be learned could
be so high, that the training process turns completely impractical (see Fig. 7.8). For
this reason, CNNs have been developed, in which a strategy of concatenated layers
is used (see Fig. 7.9). Using CNN, the number of parameters decreases considerably,
the model is trained faster and the classification is more effective.

In this section, we review the basic concepts of CNN, and how a model is trained
and tested. Finally, we give an example that can be used in the automated detection
of casting defects (Fig. 7.10).

7.3.1 Basics of CNN

An X-ray testing method based on CNNs can be used to recognize an object of
interest in an X-ray image. For example, we can have a region of interest X of an
X-ray image of a casting to determine if this region has a defect or not. In this case,
the CNN replaces feature extraction and classification with a single neural network.

7.3 Convolutional Neural Network (CNN) 289

Fig. 7.7 An image X classified as vector y after a pattern recognition approach where features are
extracted and classified using a classification strategy

Fig. 7.8 Using a classical neural network approach (as shown in Fig. 7.4), every pixel of an image
X can be connected to a node of a neural network of some hidden layers, however, the numbers of
parameters of this architecture can be prohibited (in the first layer it could be N 4 connections for a
N × N -pixel input image) and a layer with N × N nodes

Fig. 7.9 Image classification using a convolutional neural network (CNN): concatenation of layers

290 7 Deep Learning in X-ray Testing

Fig. 7.10 Example of defects (lefts) and no-defects (right). It is clear that there are some patterns
that can be easily detected (see, for example, defects that are bright bubbles with dark background
and no-defects that are regular structures with edges), however, the recognition of both classes can
be very difficult for low-contrast defects because they are very similar to homogenous no-defects

Thus, the CNN maps an input image X onto an output vector y of K elements, for
K classes:

y = FL(X,w). (7.22)

Typically, element yk gives the probability that image X belongs to class k. In our
example, K = 2 (for two classes: defects and no-defects), and image X will be clas-
sified as defect if y1 > y2. FunctionFL can be viewed as feed-forward network with
L linear and non-linear layers fl , for l = 1 . . . L . The functions contain parameters

w = (w1, . . . ,wL) (7.23)

that can be discriminatively learned from training data: a set of input images Xi and
their corresponding labels zi , for i = 1, . . . , n, so that

∑

i

floss(FL(Xi ,w), zi)/n → min . (7.24)

Ideally, for an input of training data (Xi) the output of the network (yi = FL(Xi ,w))
should be the the corresponding label (zi). Thus, floss is defined as loss function that
gives a measurement of the error of the classification. This optimization problem can
be solved using the backward-propagation approach [1, 18].

A method based on CNN can be understood as a set of L layers. Layer l (for
l = 1 . . . L), is a function fl (with parameters wl) that processes an input image
Xl−1 in order to obtain an output image Xl (see Fig. 7.11):

Xl = fl(Xl−1,wl), (7.25)

7.3 Convolutional Neural Network (CNN) 291

Fig. 7.11 Structure of layer l of a CNN according to (7.25): input image Xl−1 is transformed into
output image Xl using function fl with parameters wl

where X0 = X is the input image of the whole CNN that we want to recognize. In
our case, X0 is a grayscale X-ray image,5 for this reason, the number of channels is
one, c0 = 1.

In our example, the input image corresponds to a cropped image of (e.g., 32 × 32
pixels as illustrated in Fig. 7.10 for two classes). In this CNN, the output of a layer is
the input of the next layer. Thus, the output of each layer of the CNN can be defined
as follows:

Xl = Fl(X,w) = fl(fl−1(. . . f1(X,w1), . . . ,wl−1),wl)), (7.26)

that is a concatenation of l functions f1 . . . fl . Without loss of generality, we will
assume that the images are square, where the height and the width are nl pixels.
The images have one or more channels, i.e., image Xl is a 3D data structure with
nl × nl × cl pixels, where cl is the number of channels. Channel k of Xl is a matrix
of nl × nl elements, and it is denoted as Xk,l , for k = 1 . . . cl . The key idea of the
CNN is that the output of the last layers correspond to high-level representations of
the input image X. These representations can be used in a classification process to
recognize automatically the class of X.

There are several types of layers that are normally used in CNN. Typically, the
used layers are: convolution layer, pooling layer, rectified linear unit, and fully con-
nected layer. They will be explained in further details.
• Convolution Layer [conv]: This layer corresponds to a linear convolution of
input image Xl−1 with a bank filter Fl and a bias bl . The filter bank Fl consists of a
set of ml 3D filters Fk,l of pl × pl × ql elements and a bias bk,l for k = 1 . . . ml . The
parameters wl of this layer are the elements of Fl and bl . Therefore, the number of
parameters of each filter is pl × pl × ql + 1, that means that the filter bank of layer
l has ml(p2

l ql + 1) parameters. These parameters are to be estimated in a learning
process (as shown in Sect. 7.3.2). It is worth noting that the number of channels of
the filter bank is the number of channels of the input image (ql = cl−1), and the

5For an X-ray image with pseudocolors, the number of channels of the input image can be three,
c0 = 3.

292 7 Deep Learning in X-ray Testing

Fig. 7.12 Linear convolution: channel k of the output image Xl is computed as the convolution of
the input image Xl−1 with a filter Fk,l adding a bias bk,l . In this example, cl−1 = 2 and pl = 3

number of channels of the output image is the number of filters of the filter bank
(cl = ml). Thus, the output for filter k is channel k of image Xl :

Xk,l = Xl−1 ∗ Fk,l + bk,l for k = 1 . . . ml, (7.27)

where ‘∗’ denotes the convolution operator. In other words, pixel (i, j) of channel k
of the output image Xl is

Xk,l(i, j) = bk,l +
pl∑

u=1

pl∑

v=1

ql∑

w=1

Xw,l−1(i + u, j + v)Fk,l(u, v, w) (7.28)

That means, that the size of the output image Xl will be a 3D matrix of nl × nl × cl ,
with nl = nl−1 − pl + 1. The filtering process (for one channel of the output image)
is illustrated in Fig. 7.12.
• Pooling Layer [pool]: This process is independently performed for each channel
of input image Xl−1. Therefore, the number of channels of input and output images
are the same (cl = cl−1). In this case, the size of the image is reduced by representing
a region of a channel with a scalar value. The output for each channel is defined as

Xk,l(i, j) = fpool{Xk,l−1(u, v) : (u, v) ∈ Ω(i, j)}. (7.29)

Typically, the set of pixels Ω(i, j) is a sub-window of Xk,l−1 of size pl × pl pixels
which first pixel corresponds to the pixel (i, j) as illustrated in Fig. 7.13. The fpool
function can be the maximum, the mean, the �2 norm, etc. In our approach, we use
the maximum operator, known as max-pooling’, with no overlap, that means, each

7.3 Convolutional Neural Network (CNN) 293

Fig. 7.13 Pooling. In this example, the dimension nl−1 × nl−1 of channel k of input image Xl−1
is 12 × 12, and the dimension n × n of the neighborhood Ω is 3 × 3. Hence, the size of channel k
of the output image Xl is 4 × 4, i.e., nl = 4. Function fpool could be in this example the maximum

channel is down-sampled non-linearly. Therefore, the use of this layer can efficiently
reduce the computational time for upper layers.
• Rectified Linear Unit [relu]: Similar to pooling layer, this process is indepen-
dently performed for each channel of input image Xl−1 (cl = cl−1). In this case, the
information of Xl−1 is rectified by setting to zero all negative values. The key idea
of a ReLU layer is to produce more discriminative representations avoiding negative
scores [45]. Thus,

Xk,l(i, j) = max{0, Xk,l−1(i, j)}. (7.30)

The ReLU process is illustrated in Fig. 7.14 for channel k.
• Fully Connected Layer [fc]: This layer corresponds to a classic layer in a neu-
ronal network (multi-layer perceptron), in which each output of previous layer is
connected to new layer as explained in Sect. 7.2 and shown in Fig. 7.4: that means,
each input node of a fully connected layer is the weighted sum of all outputs of
previous layer plus a bias, and the output is this result after an activation function
(see Fig. 7.15). The output is considered as a vector of nl elements. Thus, if input
layer has nl−1 × nl−1 × cl−1, then there are nl × n2

l−1 × cl−1 weights and nl bias
parameters that must be learned.

294 7 Deep Learning in X-ray Testing

Fig. 7.14 Rectified linear unit. In this example, channel k of input image Xl is rectified. Channel
k of the output image Xl+1 has the same dimension: 6 × 6

Fig. 7.15 Fully connected layer: all outputs of previous layer are connected one to one to the
next layer. In this example, the input (green) and output (red) layers have 5 × 5 × 2 and 4 pixels
respectively that means, there are 5 × 5 × 2 × 4 = 200 connections (see gray lines)

In [39], a CNN model called Xnet is proposed to detect defects in aluminum
castings (in Sect. 7.3.4, a similar example is given in Python).6 The whole CNN
is shown in Fig. 7.16. It includes a dropout block (dropout) that randomly turns
off connections of the neural network during training. It has been shown that this
technique reduces significantly the overfitting [59]. Typically, in a CNNmodel, layer
L − 1 corresponds to a vector s with K elements, [s1 . . . sK]:

6Another use of CNN in defects detection in castings can be found in [62].

7.3 Convolutional Neural Network (CNN) 295

Fig. 7.16 XNet: CNN architecture proposed for automated detection of defects in castings [39]

s = XL−1 (7.31)

In the detection of defects, K = 2 because there are only two classes: defects and
no-defects. In this approach, the output layer (layer L) is a ‘softmax’ block that
is used to convert the scores of s into probabilities. Thus, XL = y = [y1 . . . yK]T,
where

yk = fsoftmax(sk) = esk

∑K
j=1 esi

for k = 1 . . . K . (7.32)

Using (7.26), it is clear that

y = FL(X,w) and s = FL−1(X,w). (7.33)

Table 7.1 summarizes Xnet [39], where the input image X0 = X is an image of
32 × 32 × 1 pixels. The CNN consists of ten layers with five linear convolutional
layers (C1, . . . , C5), two pooling layers with maximum operator (P1, P2), one ReLU
layer (R1), one dropout layer (D1), and one softmax layer (S1). As we can see in
Table 7.1, our CNN has 5.7 × 105 parameters that must be estimated in a learning
stage.

7.3.2 Learning in CNN

As we mentioned in previous section, CNN maps an input image X on an output
vector y = FL(X,w), where function FL can be viewed as a sequence of linear

296 7 Deep Learning in X-ray Testing

Table 7.1 Convolutional neural network Xnet [39]

Layer Function fl Output Xl

l Name Type ml(pl × pl × ql) Parameters nl × nl × cl

0 Input – – – 32 × 32 × 1

1 C1 conv 64(7 × 7 × 1) 3.200 26 × 26 × 64

2 P1 pool-max 2 × 2 0 13 × 13 × 64

3 C2 conv 128(5 × 5 × 64) 204.928 9 × 9 × 128

4 P2 pool-max 2 × 2 0 4 × 4 × 128

5 C3 conv 256(3 × 3 × 128) 295.168 2 × 2 × 256

6 R1 relu – 0 2 × 2 × 256

7 D1 dropout – 0 2 × 2 × 256

8 C4 conv 64(2 × 2 × 256) 65.600 1 × 1 × 64

9 C5 conv 2(1 × 1 × 64) 130 1 × 2 × 1

10 S1 softmax – 0 1 × 2 × 1

Total 569.026

and non-linear functions f1, . . . , fL , that depend on parameters w = (w1, . . . ,wL)

as defined in (7.26) and (7.33).
Learning consists of estimating parameters w from ‘learning data’. The output of

this process is the set of parameters w. On the other hand, testing is used to evaluate
the performance of the trained model on ‘testing data’, i.e., the learned model (with
fixed parameters w) is used to classify new data. The output of this process is the
classification of each testing sample. For this end, a set of annotated X-ray images is
available. Thus, for each image,X, vector z—the ground truth of the classification—
is given by an expert. Similar to vector y, the output of the CNN, vector z has K
elements. The value zk is ‘1’ if image X belongs to class k, otherwise zk is ‘0’.

In order to reduce the computation time of learning process, typically, a hold-
out protocol is used. The standard hold-out evaluation protocol is based on disjoint
learning and testing data, i.e., images that are present in the learning set are not
allowed to be in the testing set. We denote the X-ray images and their labels (X, z)
as

• Learning: {X(i)
learn, z

(i)
learn}nlearn

i=1 , with nlearn learning samples.
• Testing: {X(i)

test, z
(i)
test}ntest

i=1 , with ntest testing samples.

The learning set is subdivided into two disjoint subsets: training set (X(i)
train, z

(i)
train),

for i = 1, . . . , ntrain, and validation set (X
(i)
val, z

(i)
val), for i = 1, . . . , nval, with nlearn =

ntrain + nval. Typically, 75–80% of the learning data for training and 25–20% for
validation.

7.3 Convolutional Neural Network (CNN) 297

The training data is used to estimate the parameters w of our model as follows.
The output of the CNN is y(i)

train = FL(X(i)
train,w). It is clear, that ideally y(i)

train should
be z(i)

train. Thus, parameters w can be estimated by minimizing the objective function:

etrain = 1

ntrain

ntrain∑

i=1

floss(y
(i)
train, z

(i)
train), (7.34)

where floss is a loss function. This optimization problem can be iteratively solved
using the backward-propagation approach [1, 18] as explained for a classic neural
network in Sect. 7.2: We start with initial random values w(0) for the first iteration,
and the parameters in epoch j are estimated according to the parameters in previous
epoch j − 1 and an incremental update:

w(j) = w(j−1) + Δw(j). (7.35)

For each epoch of the training process, a new version of the parameters w(j) is
estimated. For validation purposes, the subset (X(i)

val, z
(i)
val) for i = 1, . . . , nval is used.

The error

eval = 1

nval

nval∑

i=1

floss(y
(i)
val, z

(i)
val), (7.36)

is computed, with y(i)
val = FL(X(i)

val,w), where FL is evaluated using w = w(j). At
the beginning of the training, both errors etrain and eval usually decrease. Neverthe-
less, when the learning process starts overfitting, the error eval starts to increase.
This epoch will be denoted by j∗. Thus, the training process is stopped when eval is
minimum, and our parameter vector will be w = w(j∗).

7.3.3 Testing in CNN

After learning stage, we can test the CNN using the testing dataset: (X(i)
test, z

(i)
test)

for i = 1, . . . , ntest. The images of this dataset were not used in the learning stage.
There are several approaches that can be used to classify X(i)

test. Obviously, one of
them is to use the representation of the last layer:

class(X(i)
test) = argmax

k

{
y(i)
test(k)

}
(7.37)

where y(i)
test(k) is the kth element of y(i)

test = FL(X(i)
test,w).

In addition, the high-level representations that are present in layers l < L can be
used in a classification approach as well. For this purpose, a descriptor d can be

298 7 Deep Learning in X-ray Testing

defined as a vector of n2
l cl × 1 elements that contains all elements of Xl by stacking

its columns:
d = s(Xl ,w) = s(Fl(X,w)), (7.38)

where s(·) is the stack function. Descriptor d can be used to train another kind
of classifier (a KNN, for example). In [39], the best results were obtained using
d = s(X7), i.e., l = L − 3.

A classifier h can be designed using the descriptors and the labels of the learning
set. Thus, the classifier can be learned using (d(i)

learn, z
(i)
learn), where d

(i)
learn = s(X(i)

learn)

for i = 1 . . . nlearn according to (7.38). After training, h(d(i)
learn) should ideally be

z(i)
learn.

7.3.4 Example of CNN

Python Example 7.3: In this example, we test a very simple CNN architecture
for the detection of casting defects. The dataset used in this example, called C1, is
a subset of the dataset used in [39].7 It contains the easiest patches of the original
dataset, i.e., those patches that are easy to classify. In this example, there are 8200
patches of 32 × 32 pixels, 80% for testing and 20% for testing (both subsets with
50% defects and 50% no-defects). The idea of this example is to train an easy dataset
with a simple CNN architecture. Thus, the reader in less than 2 min (with around 20–
30 epochs) can have a trained model with excellent performance. After this training,
it is possible to train more complex architectures with more challenging datasets.
In this example, we define the CNN architecture using CNN of pyxvis Library. In
this definition, there are n typical 2D convolutional blocks of layers with Keras8

functions Conv2Dwith a ReLU activation, BatchNormalization, MaxPooling2D,
and Dropout with a rate of 25%. The 2D convolution of block i , for i = 1, . . . , n,
is with di kernels of pi × pi pixels. In our example, we define the three blocks using
variables p = [7, 5, 3] and d = [4, 12, 8]. After the n blocks of convolutional layers,
we add m fully connected layers, each layer has f j elements. In our case, m = 1 and
f = [12]. If we want to have two fully connected layers, one with 12 elements and
another with 4, we define f = [12, 4]. Finally, CNN of pyxvis Library includes a fully
connected layer of the number of classes to be recognized (in our case is 2), and a
‘softmax’ block. In Fig. 7.17, we can see the architecture.

7The original dataset has 47.520 patches, and it can be downloaded from https://domingomery.ing.
puc.cl/material/.
8Keras is a library built on top of TensorFlow. It consists of a set of API functions written in Python
for building deep learning models. See https://keras.io.

https://domingomery.ing.puc.cl/material/
https://domingomery.ing.puc.cl/material/
https://keras.io

7.3 Convolutional Neural Network (CNN) 299

Fig. 7.17 CNN architecture, learning curves, and confusion matrix. In this example, all defects

and no-defects from testing subset are correctly classified. [→ Example 7.3]

Listing 7.3 : Convolutional Neural Network.

from pyxvis.learning.cnn import CNN

execution type
type_exec = 0 # training & testing

patches’ file for training and testing
patches_file = ’../data/C1/C1’

architecture
p = [7,5,3] # Conv2D mask size
d = [4,12,8] # Conv2D channels
f = [12] # fully connected

training and testing
CNN(patches_file,type_exec,p,d,f)

The first output of this code is the definition of the architecture (that corresponds to
the diagram of Fig. 7.17):

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 4, 32, 32) 200

batch_normalization_1 (Batch (None, 4, 32, 32) 128

300 7 Deep Learning in X-ray Testing

max_pooling2d_1 (MaxPooling2 (None, 4, 16, 16) 0

dropout_1 (Dropout) (None, 4, 16, 16) 0

conv2d_2 (Conv2D) (None, 12, 16, 16) 1212

batch_normalization_2 (Batch (None, 12, 16, 16) 64

max_pooling2d_2 (MaxPooling2 (None, 12, 8, 8) 0

dropout_2 (Dropout) (None, 12, 8, 8) 0

conv2d_3 (Conv2D) (None, 8, 8, 8) 872

batch_normalization_3 (Batch (None, 8, 8, 8) 32

max_pooling2d_3 (MaxPooling2 (None, 8, 4, 4) 0

dropout_3 (Dropout) (None, 8, 4, 4) 0

flatten_1 (Flatten) (None, 128) 0

dense_1 (Dense) (None, 12) 1536

batch_normalization_4 (Batch (None, 12) 48

activation_1 (Activation) (None, 12) 0

dropout_4 (Dropout) (None, 12) 0

dense_2 (Dense) (None, 2) 26

activation_2 (Activation) (None, 2) 0

===

Total params: 4,118.0

Trainable params: 3,982.0

Non-trainable params: 136.0

The architecture of our model has almost 4000 trainable parameters. The learning
curves and the confusion matrix are shown in Fig. 7.17. We can see that in this very
simple example, the accuracy is 100% (a perfect detection). The reader that wants
to try a more difficult example can download the dataset of [39] (see footnote 7)

7.3 Convolutional Neural Network (CNN) 301

and implement a network similar to Xnet (see Table 7.1). In the original code of
Example 7.3, the lines of the new code should be:

execution type

type_exec = 0 # training & testing

patches’ file for training and testing

patches_file = ’wacv_castings.mat’

architecture

p = [7,5,3] # Conv2D mask size

d = [64,128,256] # Conv2D channels

f = [64,32] # fully connected

training and testing

CNN(patches_file,type_exec,p,d,f)

For this dataset, the model is trained after 1 h (and 30 epochs)> The achieved accu-
racy is 87.78% very similar to the reported accuracy in [39]. �

7.4 Pre-trained Models

Pre-trained models are deep learning models that have been already trained on large
datasets of one domain and can be used as-is on other domains with no additional
training. In this section, we explain how to use pre-trained models in X-ray testing.

7.4.1 Basics of Pre-trained Models

In X-ray testing, it is possible to use sophisticated models that have been already
trained on other domains (e.g., recognition of common objects in color images).
The idea is to use part of the trained model on new domains, such as X-ray images.
One of the most popular datasets of color images of common objects is ImageNet
[55]. ImageNet consists of an annotated collection of color images of very common
objects (like cars, bicycles, trucks, cat, dogs, etc.). ImageNet has 1000 classes of
objects with approx. 1000 images per class for training purposes. The dataset has
been widely used in competitions of object recognition algorithms. The trained mod-
els are typically available as open-source models. The architecture of these models
has many layers, and the last one corresponds to a structure of 1000 elements that are
used to distinguish the 1000 classes. In the testing stage, if an input image contains

302 7 Deep Learning in X-ray Testing

Fig. 7.18 Classification strategy using a pre-trained model

a dog, the output, i.e., a vector with 1000 element, should have the element corre-
sponding to the class ‘dog’ the maximal value as illustrated in Fig. 7.18-Top. This
pre-trained model can be used not only to recognize images that content objects that
belong to these 1000 classes but also to recognize other objects. The key idea of this
approach is as follows: The last layer of the pre-trained models is not used because
it has been trained to recognize objects that do not belong to the new domain. The
last layer is replaced by a new fully connected layer or a simple classifier, such as
KNN or a SVM, that is designed to classify the classes of the new domain.

The strategy behind this idea is that the pre-trained model should extract in the
first layers relevant visual information of the input image and could give us a good
representation of the images of the new domain.

To illustrate this idea, we present now a well-known approach that shows what
happens inside the layers of a CNN [13, 67]. This approach can visualize how the
images are represented in the network and give insight into the layers. It consists of
the estimation of a synthetic input image that maximizes the activation of a certain
element (pixel) of a layer.

Thus, we can visualize what kind of images activates each element of our net-
work. The estimation is an optimization problem, that starts with a random input
image, and after some iterations, the solution converges using a gradient descent
algorithm.9 In this process, the weights of the CNN are fixed, i.e., we do not train
the CNN, we only find an input image that maximizes a certain pixel of a layer of
the CNN. To illustrate this visualization, we use a pre-trained CNN called VGG16
[58]. The architecture of VGG16 is the following:

9An implementation of this idea can be found in https://keras.io/examples/
conv_filter_visualization/. The Figs. 7.19 and 7.23 were done using this implementation.

https://keras.io/examples/conv_filter_visualization/
https://keras.io/examples/conv_filter_visualization/

7.4 Pre-trained Models 303

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, None, None, 3) 0

block1_conv1* (Conv2D) (None, None, None, 64) 1792

block1_conv2 (Conv2D) (None, None, None, 64) 36928

block1_pool (MaxPooling2D) (None, None, None, 64) 0

block2_conv1 (Conv2D) (None, None, None, 128) 73856

block2_conv2 (Conv2D) (None, None, None, 128) 147584

block2_pool (MaxPooling2D) (None, None, None, 128) 0

block3_conv1* (Conv2D) (None, None, None, 256) 295168

block3_conv2 (Conv2D) (None, None, None, 256) 590080

block3_conv3 (Conv2D) (None, None, None, 256) 590080

block3_pool (MaxPooling2D) (None, None, None, 256) 0

block4_conv1* (Conv2D) (None, None, None, 512) 1180160

block4_conv2 (Conv2D) (None, None, None, 512) 2359808

block4_conv3 (Conv2D) (None, None, None, 512) 2359808

block4_pool (MaxPooling2D) (None, None, None, 512) 0

block5_conv1 (Conv2D) (None, None, None, 512) 2359808

block5_conv2* (Conv2D) (None, None, None, 512) 2359808

block5_conv3 (Conv2D) (None, None, None, 512) 2359808

block5_pool (MaxPooling2D) (None, None, None, 512) 0

===

304 7 Deep Learning in X-ray Testing

Table 7.2 Images of GDXray+ used in our experiments

Set Gun Shuriken Blade Others

Training Series B0049 B0050 B0051 B0078

Images 1–200 1–100 1–100 1–500

Validation Series B0079 B0080 B0081 B0082

Images 1–50 1–50 1–50 1–200

Testing Series B0079 B0080 B0081 B0082

Images 51–150 51–150 51–150 201–600

VGG16 was developed in the year 2014 and it is one of the most powerful CNN
architecture for vision problems.10 It consists of five blocks with conv and pool-
max layers (the last fully connected layers are not given in the previous description).
In Fig. 7.19, we show some images that activate certain elements of the layers that
have a ‘*’ in this description, i.e., block1_conv1, block3_conv1, block4_conv1,
and block5_conv2. In this case, VGG16 was trained for ImageNet [55]. We can
observe in this figure, the complexity of the generated patterns: the more complex
is the image, the deeper is the layer. Moreover, for the last layers, we can recognize
some patterns like birds and feathers!

The idea of using pre-trained models is simple and powerful as we will show in
our examples. Simple because the weights of the pre-trained models are available
in public repositories or deep learning libraries (like Keras (see footnote 8)) and
powerful because good results can be achieved with no implementation difficulty.

7.4.2 Example of Pre-trained Models

In this section, we show how to use pre-trained models in the recognition of threat
objects (in baggage inspection). In our experiments, there are three objects: hand-
guns, shuriken (ninja stars), and razor blades. Each category of objects defines a
class (Gun, Shuriken, and Blade). Furthermore, there is a fourth class called Other
for other objects and background. All X-ray images used in our experiments belong
to the GDXray+. As shown in Table 7.2, there are three different sets of images:
training, testing, and validation sets. For training, X-ray images of GDXray+ series
B0049, B0050, B0051, and B0078 must be used for classes Gun, Shuriken, Blade,
and Others respectively. For validation, in case that a method has some parameters to
be tuned, it is allowed to use the first 50 images of GDXray+ series B0079, B0080,
and B0081 for Gun, Shuriken, and Blade respectively and the first 200 images of
folder B0082 for Others. For testing, the last 100 images ofGDXray+ series B0079,
B0080 and B0081 for Gun, Shuriken, and Blade respectively and the last 400 images
of folder B0082 for Others have to be used.

10See an application in the automated weld defect recognition based on VGG16 in [34].

7.4 Pre-trained Models 305

Fig. 7.19 Generated input images that maximizes the activation of 16 elements (pixels) of some
layers in VGG16. A zoom of image with a blue square is presented in Fig. 7.19

306 7 Deep Learning in X-ray Testing

Fig. 7.20 Some training X-ray images used in our experiments. Each row represents a labeled
class (handguns, shuriken, razor blades, and others respectively)

The GDXray+ dataset is especially challenging due to the high intra-class vari-
ability between training and testing images of positive classes (see some examples
for guns, shuriken, and razor blades in Figs. 7.20 and 7.21 for training and testing
respectively). Indeed, training images of positive classes contain just the object with
a clean background. In contrast, testing images corresponding to these classes show
a noisy background that may allow any discriminative model to classify them as the
class Others.

In our example, we follow the experimental protocols defined in [41] for two
recognition tasks:

• Four-class Classification: In the first task, we have to design a classifier that is
able to recognize the four mentioned classes: (1) Gun, (2) Shuriken, (3) Blade,
and (4) Others. We define K = 4 as the number of classes. The classifier has to
be trained using the trained data. The parameters of the classifier (if any) can
be tuned using the validation only. The performance of the method is reported
using the testing data as follows: The elements of the m × m confusion matrix
are defined as C(i, j) for i = 1 . . . K and j = 1 . . . K , where C(i, j) means the
number of images of class i (in the testing data) classified as class j . The accuracy
of each class is defined as

ηi = C(i, i)
∑4

j=1 C(i, j)
. (7.39)

The total accuracy is the average:

7.4 Pre-trained Models 307

Fig. 7.21 Some testing X-ray images used in our experiments. Each row represents a labeled class
(handguns, shuriken, razor blades, and others respectively)

η = 1

4

4∑

i=1

ηi . (7.40)

• Detection of three threat objects: In the second task, we have to design three dif-
ferent detectors (binary classifiers) : (1) one for Gun, (2) one for Shuriken, and (3)
one for Blade. For each detector, there is a target (e.g., Shuriken for second detec-
tor). Each detector can be understood as a two-class problem: one class (called
the positive class) is the target, and the another class (called the negative class)
is the rest. Similar to previous problem, training data must be used to train the
detectors, validation data can be used to tune the detectors’ parameters (if any),
and testing data have to be used to measure the final performance of the detectors.
For the second detector (i.e., Shuriken), for example, in our database according to
Table 7.2, there are 100 images for the positive class and 200 + 100 + 500 = 800
images for the negative class that can be used for training purposes. In this exam-
ple, the validation can be performed using 50 images for the positive class and
50 + 50 + 200 = 300 images for the negative class. Finally, for the testing of
the second detector, there 100 images for the positive class and 100 + 100 + 400
for the negative class. The performance must be given in terms of precision–
recall (Pr, Re) considering all images of the testing set. The variables preci-
sion and recall are defined in Eqs. (6.41) and (6.38) respectively. Ideally, a per-
fect detection means all existing targets are correctly detected without any false
alarms, i.e., Pr = 1 and Re = 1. The values (Pr, Re) that maximizes the score
Q = √

Pr × Re are reported. As average performance, we define

308 7 Deep Learning in X-ray Testing

Table 7.3 Precision and recall for each detector using pre-trained models [→ Example 7.4]

Method∗ Classifier Features Gun Shuriken Blade Q All

Pr Re Pr Re Pr Re ηQ η

AlexNet2 [29] svm-rbf 4096 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DenseNet1212 [24] svm-rbf 1024 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GoogleNet2 [60] svm-lin 1024 1.00 1.00 1.00 1.00 0.86 1.00 0.98 0.99

InceptionV30 [61] svm-rbf 2048 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MobileNet2 [23] svm-rbf 1280 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RCNN_ILSVRC2
13 [16] knn1 4096 1.00 1.00 1.00 1.00 0.62 0.70 0.89 0.95

ResNet502 [20] svm-rbf 2048 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ShuffleNet2 [69] svm-rbf 544 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SqueezeNet2 [25] svm-rbf 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VGG161 [58] svm-rbf 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VGG191 [58] knn1 1000 0.97 1.00 0.99 1.00 0.93 1.00 0.98 1.00

Xception0 [8] knn1 2048 0.71 0.50 0.89 0.85 0.57 0.40 0.65 0.80

ZfNet5122 [67] nn 1024 1.00 1.00 1.00 1.00 0.91 1.00 0.98 1.00

AISM [41, 54]∗∗ – – 0.97 0.97 0.95 0.96 0.99 0.99 0.94 0.96

(*)Output layer 0: Keras, layer before softmax, 1: ONNX, layer after softmax, 2:
ONNX, layer before softmax
(**)Best non-deep-learning method

ηQ = 1

3

3∑

i=1

Qi , (7.41)

where i = 1 . . . 3 means the classes Gun, Shuriken and Blade respectively.

Python Example 7.4: In this example, we follow the experimental protocol
defined above according to Table 7.2 in two recognition tasks: four-class clas-
sification and detection three threat objects. For these tasks, we evaluate pre-
trained model MobilNet [23] using five different classifiers (knn1, knn3, svm-lin,
svm-rbf, and nn). The idea is to use the pre-trained model to extract features of
each image, and classify the images according to the extracted features as illus-
trated in Fig. 7.18. The features are extracted by function extract_prt_features11 of
pyxvis Library. Other pre-trained models (such as AlexNet [29], GoogleNet [60],
VGG16 and VGG19 [58] among others) are implemented in pyxvis Library as well.
In the following code, the reader can see how easy is to define the training, valida-
tion, and testing datasets (see Table 7.2) using init_data and append_data of pyxvis
Library. In this implementation, the validation set is used to evaluate the perfor-
mance of each classifier (defined as the average of η in (7.40) and ηQ in (7.41)).
Thus, the classifier that achieves the best performance on validation subset is used
to report the performance on testing dataset.

11This function is used to extract the features of all images that are in a folder. For a single image,
function extract_prt_features_img of pyxvis Library can be used.

7.4 Pre-trained Models 309

Listing 7.4 : Pre-trained models.

import numpy as np
from sklearn.metrics import accuracy_score
from pyxvis.learning.pretrained import prt_model, extract_prt_features
from pyxvis.io.gdxraydb import DatasetBase
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier
from pyxvis.learning.evaluation import precision_recall
from pyxvis.io.data import init_data, append_data
from pyxvis.io.plots import print_confusion

gdxray = DatasetBase()
path = gdxray.dataset_path + ’/Baggages/’
model_id = 6 # 0 ResNet50, 1 VGG16, 2 VGG19, ... 6 MobileNet, ... 13 RCNN_ILSVRC13
output_layer = 2 # 0 Keras−Last, 1 ONNX−Last, 2 ONNX−Previous

Classifiers to evaluate
ss_cl = [’knn1’,’knn3’,’svm−lin’,’svm−rbf’,’nn’]
(model,size,model_name) = prt_model(model_id,output_layer)
X49 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0049/’)
X50 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0050/’)
X51 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0051/’)
X78 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0078/’)
X79 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0079/’)
X80 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0080/’)
X81 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0081/’)
X82 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0082/’)

best_performance = 0 # initial value
for i in range(len(ss_cl)):

cl_name = ss_cl[i]
print(’\nEvaluation of ’+cl_name+’ using ’+model_name+’...’)
(Q_v,Q_t) = (0,0) # initial score Q values for validation and testing
for j in range(4):

if j==0:
(c0,c1,c2,c3) = (1,0,0,0)
st = ’Gun’

elif j==1:
(c0,c1,c2,c3) = (0,1,0,0)
st = ’Shuriken’

elif j==2:
(c0,c1,c2,c3) = (0,0,1,0)
st = ’Blade’

elif j==3:
(c0,c1,c2,c3) = (0,1,2,3)
st = ’All’

print(’building dataset for ’+st+’ using ’ + model_name +’ ...’)
Training data
(X,d) = init_data(X49[0:200],c0) # Gun
(X,d) = append_data(X,d,X50[0:100,:],c1) # Shuriken
(X,d) = append_data(X,d,X51[0:100,:],c2) # Blade
(X,d) = append_data(X,d,X78[0:500,:],c3) # Other
Validation data
(Xv,dv) = init_data(X79[0:50,:],c0) # Gun
(Xv,dv) = append_data(X,d,X80[0:50,:],c1) # Shuriken
(Xv,dv) = append_data(X,d,X81[0:50,:],c2) # Blade
(Xv,dv) = append_data(X,d,X82[0:200,:],c3) # Other
Testing data
(Xt,dt) = init_data(X79[50:150],c0) # Gun
(Xt,dt) = append_data(X,d,X80[50:150,:],c1) # Shuriken
(Xt,dt) = append_data(X,d,X81[50:150,:],c2) # Blade
(Xt,dt) = append_data(X,d,X82[200:600,:],c3) # Other

print(’training ’+cl_name+’ for ’+st+’ using ’ + model_name +’ ...’)

310 7 Deep Learning in X-ray Testing

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
ds_v = test_classifier(clf,Xv) # clasification of validation
ds_t = test_classifier(clf,Xt) # clasification of testing
print(’Results − ’ + st + ’ (’+cl_name+’) for the detectors:’)
if j<3: # detection of three treat objects

performance on validation subset
(pr_v,re_v) = precision_recall(dv,ds_v)
Q_v = Q_v + np.sqrt(pr_v*re_v)
print(f’Pr_val = {pr_v:.4f}’)
print(f’Re_val = {re_v:.4f}’)
performance on testing subset
(pr_t,re_t) = precision_recall(dt,ds_t)
Q_t = Q_t + np.sqrt(pr_t*re_t)
print(f’Pr_test = {pr_t:.4f}’)
print(f’Re_test = {re_t:.4f}’)

else:
summary of three detections
Q_v = Q_v/3 # score Q on validation
print(f’Q_val = {Q_v:.4f} of all detectors’)
Q_t = Q_t/3 # score Q on testing
print(f’Q_test = {Q_v:.4f} of all detectors’)
four−class classification
print(’Results − ’ + st + ’ (’+cl_name+’) for the 4−class classifier:’)
acc_v = accuracy_score(dt,ds_t)
print(f’Acc_val = {acc_v:.4f}’)
acc_t = accuracy_score(dv,ds_v)
print(f’Acc_test = {acc_t:.4f}’)
print(f’Acc_t = {acc_t:.4f}’)
print_confusion(dt,ds_t)

performance = (acc_v+Q_v)/2
if performance>best_performance:

print(f’performance = {performance:.4f} *** new max ***’)
best_performance = performance
best_Q = Q_t
best_acc = acc_t
best_clf = cl_name

print(’Best result: classifier = ’+best_clf)
print(f’ Q_test = {best_Q:.4f}’)
print(f’ acc_test = {best_acc:.4f}’)

The output of this pre-trained model and other ones implemented in pyxvis Library
is shown in Table 7.3. We can see that many of the pre-trained models achieve a
perfect performance of 100%. This result is very relevant because the implementa-
tion of this solution can be performed in a couple of hours (the pre-trained models
are already trained, we only need to extract the features and train a classifier like
SVM). It is worthwhile to mention that the best non-deep learning method based on
handcrafted features (see AISM [54] in Table 7.3), developed after several months
of work for this task, achieves 4–6% less of performance. �

7.5 Transfer Learning

The use of transfer learning in X-ray testing is similar to the use of pre-trained
models (explained in Sect. 7.4). Here, however, the pre-trained model is re-trained
in a smart way using a low number of X-ray images [66].

7.5 Transfer Learning 311

Fig. 7.22 Classification strategy using a transfer learning (see explanation in Sect. 7.5.2)

7.5.1 Basics of Transfer Learning

The idea is to use, in X-ray images, models that have been trained on other domains
(e.g., ImageNet [55]). The main difference with pre-trained models (see Sect. 7.4)
is that we can re-train the models using a fine-tuning approach. In fine-tuning, we
re-train a model for the new domain using as initial weights the pre-trained weights
of the model (instead of random initial values). Thus, we can take advantage of the
pre-trained weights that have been obtained after a sophisticated training process
with millions of images. In fine-tuning, the initial (pre-trained) weights are updated
using a training approach with images of the new domain (X-ray images). A good
example is given in [2], where transfer learning has been used in baggage inspection
by fine-tuning AlexNet and GoogleNet.

Usually, sophisticated deep learning models can be trained successfully thanks
to the great power of today’s computers and also because there are a huge number
of annotated images available. However, sometimes it is very difficult to have both
of them. For example, in X-ray testing, it is very common to have datasets with
hundreds or thousands (and not millions) of X-ray images. In addition, there are
many students or universities that do not have access to such a powerful computer.
For these reasons, transfer learning is a very attractive alternative: we can re-train a
sophisticated model using a low number of X-ray images on a regular computer.

312 7 Deep Learning in X-ray Testing

7.5.2 Training in Transfer Learning

In order to train a deep learning model using a transfer learning strategy, we can
use the approach illustrated in Fig. 7.22. Before starting to re-train the model it is
necessary to clone the first layers of the pre-trained model (as we do in the pre-
trained model strategy outlined in Sect. 7.4). Following Fig. 7.22, we add new layers
(typically fully connected layers) to the cloned model (see layers 1©). Now, we
divided the cloned model into two parts: the not frozen layers (see layers 2©) and the
frozen layers (see layers 3©). Usually, in the training stage, we can use the following
three steps:

1. Layers 1© are trained and the rest of the weights (layers 2© and 3©) are not
changed during training, i.e., their weights are the original pre-trained weights
(they remain constant during training).

2. Layers 1© + 2© are fine-tuned (using weights of first step as initial weight values)
and the rest of the weights (layers 3©) are not changed during training.

3. (Optional Step) Layers 1© + 2© + 3© are fine-tuned (using weights of second
step as initial weight values). This step can be performed in case we have enough
images to train the whole model.

Using the same approach addressed in Sect. 7.4.1 to visualize the activation of the
elements of the CNN layers, in Fig. 7.23, we show the synthetic input image gener-
ated for a specific element of one of the last layers for the original VGG16 model
(trained for ImageNet) and for the fine-tuned model (trained with threat objects).
The reader can observe that the patterns are very similar, however, the second one
seems to be adapted to the new domain.

7.5.3 Example of Transfer Learning

Python Example 7.5: In this example, we follow the strategy outlined in
Fig. 7.22 for transfer learning in a problem of recognition of threat objects. For this
end, we use a set of images of threat objects that has four classes (Guns, Shuriken,
Blades, and Others) divided into training (with 600 images per class) and testing
subsets (with 100, 100, 100, and 400 images for each corresponding class). In our
example, we use MobileNet [23] as base model (that has 87 layers) and four extra
layers: the first one is GlobalAveragePooling2D (that joins the base model with
the extra fully connected layers), two fully connected layers defined by variable
fc_layers with 32 and 16 nodes each, and a final fully connected layer with soft-
max as output with 4 nodes (because, in this example, there are four classes). Thus,
the new model has totally 91 layers. In this example, we have 1© the new layers,
2© the not frozen layers, and 3© the frozen layers. The training strategy follows the
method mentioned above in three steps: in 1©, we train 4 layers, in 1© + 2©, we train
9 layers, and in 1© + 2© + 3©, we train 91 layers. The number of epochs in each step

7.5 Transfer Learning 313

Fig. 7.23 Generated synthetic input images for VGG16 that maximize the activation of layer
block5_conv2 filter ‘0’: (left) using base model VGG16 trained with ImageNet, (right) using
VGG16 fine-tuned with threat objects, the shapes of the shuriken are remarkable. Left image is
illustrated in Fig. 7.19 in a blue square

is defined by variable nb_epochs, in our case is [40,40,40]. We could decide that
the last step is not necessary by defining nb_epochs =[40,40,0].

Listing 7.5 : Transfer learning.

from pyxvis.learning.transfer import generate_training_set, tfl_train
from pyxvis.learning.transfer import tfl_model, tfl_define_model, tfl_testing_accuracy
from pyxvis.io.plots import plot_confusion

Definitions
path_dataset = ’../images/objects’
nb_classes = 4 # number of classes of the recognition problem
batch_size = 10 # batch size in training
nb_epochs = [40,40,40] # epochs for Training−1, Training−2, Training−3

1st value: epochs for new layers only,
2nd value: epochs for new and top layers of base model,
3rd value: epochs for all layers
(eg [50,0,0], [40,50,0], etc.)

train_steps = 10
val_steps = 5
fc_layers = [32, 16] # fully connected layers after froozen layers
img_size = [224,224] # size of the used images
val_split = 0.2 # portion of training set dedicated to validation,

0 means path_dataset/val is used for validation
opti_method = 1 # optimzer > 1: Adam, 3: SGD
base_model = 1 # 1: MobileNet, 2: InceptionV3, 3: VGG16, 4: VGG19,

5: ResNet50, 6: Xception, 7: MobileNetV2,
8: DenseNet121, 9: NASNetMobile, 10: NASNetLarge

nb_layers = −5 # layers 0... nb_layers−1 will be frozen, negative
number means the number of top layers to be unfrozen

augmentation = 0.05 # 0 : no data augmentation, otherwise it is range for
augmentation (see details in generate_training_set)

Base model (last layer is not included removed)

314 7 Deep Learning in X-ray Testing

Fig. 7.24 Confusion matrix and accuracy on testing subset using transfer learning: after training-
1 (layers 1©), the accuracy is 80.43%, training-2 (layers 1© + 2©), the accuracy is 91.71%, and
training-3 (layers 1© + 2© + 3©), the accuracy is 95.71% according to diagram of Fig. 7.22. [→
Example 7.5]

bmodel = tfl_model(base_model)

New model with dense fully connected layers
model = tfl_define_model(bmodel,fc_layers,nb_classes)

Training and validation sets
(train_set,
val_set) = generate_training_set(val_split, augmentation, batch_size,

path_dataset, img_size)

Training: Transfer learning
(model,
confusion_mtx,
acc) = tfl_train(bmodel,model,opti_method, nb_layers,

train_set,train_steps,val_set,val_steps,nb_epochs,
path_dataset,nb_classes,img_size)

Accuracy in testing set using best trained model
plot_confusion(confusion_mtx,acc,’Top Model: Testing in Threat Objects’,0,nb_classes)

The output of this code is in Fig. 7.24 in which we show the confusion matrices and
accuracy on testing dataset after each training step. We observe how the accuracy is
incremented after each step. �

7.6 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) have been used successfully in the last
years to generate realistic synthetic data [7, 9, 27]. In X-ray testing, we use GAN
to simulate X-ray images, for example, as data augmentation in training data to
increase the number of samples of some underrepresented class, or as new data in a
training course for human inspectors. Some applications of simulated X-ray images
using GAN can be found in [38] for the simulation of casting defects12 and in [56,
65, 70, 72] for the simulation of threat objects. The simulated X-ray images using
GAN are very realistic as we can see in Figs. 7.25 and 7.26 for defects and shuriken
respectively.

12GAN solutions have been used in other kinds of defects, see for example, [46].

7.6 Generative Adversarial Networks (GANs) 315

Fig. 7.25 Simulated defects in aluminium castings using GAN. [→ Example 7.6]

7.6.1 Basics of GAN

The key idea of GAN is simple as we can see in Fig. 7.27: it consists of a generator
and a discriminator working together. The generator will be used to produce a syn-
thetic X-ray image from a noise source, whereas the discriminator will be in charge
to determine if an input image is real or fake. Thus, the discriminator should differ-
entiate the real (training) images from the synthetic ones generated by the generator.

Both generator and discriminator are trained following a zero-sum game schema
[17]. In the zero-sum game schema, the generator and the adversary (discriminator)
compete against other. For this end, we define a noise source as an image Z of p × p
pixels. The generator (G) is a neural network function based on auto-encoders [1]
that takes noise image Z and transforms it into a fake image XF of n × n pixels:

XF = G (Z). (7.42)

On the other hand, the discriminator (D) is a function based on a neural network that
takes an input imageX of n × n pixels and gives as output a value y that corresponds
to the probability that X is a real image; 1 means that X is real, 0 is fake:

y = D(X). (7.43)

316 7 Deep Learning in X-ray Testing

Fig. 7.26 Simulated shuriken using DCGAN from 0 to 15000 iterations. [→ Example 7.6]

7.6 Generative Adversarial Networks (GANs) 317

Fig. 7.27 Diagram of a GAN model. The generator produces a fake image from a noise source,
whereas the discriminator distinguishes real from fake images. In the training stage, the error is
used to increase the performance of both generator and discriminator (see dashed lines). Once the
model is learned, the generator alone can be used to generate realistic synthetic images

7.6.2 Training of GAN

In training stage, two sets are available: (i) a set of m real images, XR(1) . . .XR(m),
and (ii) a set of m noisy images Z(1) . . .Z(m), from them a set of m fake images
are computed XF(1) . . .XF(m) using (7.42). Thus, the discriminator is learned by
maximizing:

JD =
m∑

i=1

log [D(XR(i)] +
m∑

i=1

log [1 − D(XF(i)] → max (7.44)

The first sum is maximal when the real images are classified as ‘real’, whereas the
second sum is maximal when the synthetic images are classified as ‘fake’. Thus, the
idea of (7.44) is to classify as 1 the real images and as 0 the synthetic ones.

The aim of the generator is to model the distribution of the training dataset.
Since the goal of the generator is to generate fake images that fool the discriminator,
the generator will do a good job if the generated fake images are classified by the
discriminator as ‘real’. Thus, the generator is trained by minimizing the following
objective function:

JG =
m∑

i=1

log [1 − D(XF(i)] → min . (7.45)

In this case, the sum is minimal when the synthetic images are classified as ‘real’.
That means that the generated fake images will be so realistic that the discriminator
will classify them as ‘real’. In the training stage, objective functions JD and JG are
playing a min-max game, the reader can see that the second sum of (7.44) is equal

318 7 Deep Learning in X-ray Testing

to the sum of (7.45), however, in the first case, we are trying to maximize it (the
discriminator should recognize that the synthetic images are fake), whereas in the
second one, the aim is to minimize it (the generator wants to fool the discriminator).

7.6.3 Implementation of GAN

GAN models can be easily implemented using Deep Convolutional Generative
Adversarial Networks (DCGAN) [49], where both generator and discriminator are
sequential models [49]. In DCGAN, the architectures of discriminator D and gen-
erator G are CNNs as illustrated in Figs. 7.9 and 7.28 respectively. In each step of
the generator, the Z is upsampled and convoluted. The upsampling process can be
achieved using the 2D Transposed Convolution [68]:
• 2D Transposed Convolution [trans_conv]: This layer corresponds to a convo-
lution that increases the dimension of the input image as illustrated in Fig. 7.29. In
general, for an input imageX of n × n pixels and a convolutional kernelK of m × m
pixels, the output Y = X K is defined as follows:

Y(i1 : i2, j1 : j2) = Y(i1 : i2, j1 : j2) + X (i, j)K, (7.46)

where

Fig. 7.28 Architecture of a generator based on deep convolutional neural networks in a GAN
model. Input Z is a small noise image, and output XF is a (larger) synthetic image

7.6 Generative Adversarial Networks (GANs) 319

Fig. 7.29 Example of 2D transposed convolution: (Top) with stride r = 1, (Bottom) with stride
r = 2

i1 = (i − 1)r + 1
i2 = (i − 1)r + m
j1 = (j − 1)r + 1
j2 = (j − 1)r + m

(7.47)

for i = 1 . . . n and j = 1 . . . n. The stride, i.e., the number of pixels that the kernel
moves to right and down in each step, is given by variable r . As shown in Fig. 7.29,
by setting r to m (the size of the kernel), and defining all elements ofK as 1, we can
repeat the rows and columns of X by size m × m.

7.6.4 Example of GAN

Python Example 7.6: In this example, we simulate X-ray images of shuriken
using class DCGAN13 of pyxvis Library. As training data, we use a dataset of 10.640
real images of shuriken of 32 × 32 pixels (stored in file shuriken_32x32.npy).
The real images were extracted from GDXray+ and augmented using rotation and
reflection.

13Based on the implementation of https://github.com/eriklindernoren/Keras-GAN/blob/master/
dcgan/dcgan.py.

https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py
https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py

320 7 Deep Learning in X-ray Testing

Listing 7.6 : Generative Adversarial Network.

from pyxvis.learning.gan import DCGAN

gan_proc = 0 # 0 training , # 1 testing

Training
if gan_proc == 1: # Training

path_file = ’../data/shuriken_32x32.npy’ # file of real patches
epochs = 15000 # number of epochs
interval = 250 # saving intervals
dcgan = DCGAN(path_file)
dcgan.train(epochs=epochs, batch_size=32, save_interval=interval)

else: # Testing (one generation of simulated images)
size = 32 # size of the image, eg. 32 for 32x32 pixels
trained model h5 file
gan_weights_file = ’../output/GAN/models/gan_model_015000.h5’
N = 200 # number of synthetic images to be generated
dcgan = DCGAN(size)
dcgan.load_gan_model(gan_weights_file)
dcgan.save_gan_examples()
dcgan.save_synthetic_images(’output’,N)

The output of this code is in Fig. 7.26. We can see that the similarity of the syn-
thetic generated X-ray images with trained GAN model is very high after 5000
iterations. In the generation, only the generator is used (and not the discrimina-
tor). If we want to generate N new images with the trained generator, in our code,
variable gan_proc must be set to 1 and variable N must be set to the number N
(e.g., N = 200). Figure 7.25 shows a GAN simulation of casting defects with this
code, in which the dataset casting_defects_28x28.npy14 was use. �

7.7 Detection Methods

In this section, we address relevant methods of object detection that have been pub-
lished in the last years. The idea of the detection methods is to locate and recognize
object instances in real images.

7.7.1 Basics of Object Detection

In computer vision, we distinguish between image classification and image detec-
tion as shown in Fig. 7.30. In X-ray testing, both concepts can be explained as fol-
lows:

• Image classification: The purpose of image classification in X-ray testing is to
assign an X-ray image to one class. For example, in image classification, an X-ray

14The file can be downloaded from https://domingomery.ing.puc.cl/material/.

https://domingomery.ing.puc.cl/material/

7.7 Detection Methods 321

image can be classified as a ‘handgun’, that means, in the X-ray image the classi-
fier has found a handgun (here, the classes could be ‘handgun’, ‘knife’, and other
threat objects), or, in another example, a small sub-image of an X-ray image of an
aluminum castings is classified as ‘defect’ (here, the classes could be ‘defect’ and
‘no-defect’). Image classification is typically used when there is only one object
per image to be recognized. An example is illustrated in Fig. 7.30a. The location
of the recognized object is not given in image classification, it is well assumed
that the object is in the center of the image, but obviously, this is not always true.
In image classification using deep learning, as explained in Sect. 7.3, the input
image is fed into a CNN that gives a feature vector (of dimension 4096, for exam-
ple). The vector is the input of a classifier, e.g., a fully connected layer, with K
outputs, where K is the number of classes to be recognized. Thus, the input is an
image and the output is a category label. In case that both classification and local-
ization of the object in the input image are required, there are some approaches
with one fully connected layer for the classification and another fully connected
layer for the localization that gives the coordinates and the dimensions of a rect-
angle that contains the recognized object [26], where the second fully connected
layer is treated as a regression problem, where the output is continuous values
instead of a class.

• Image Detection: On the other hand, in image detection, more than one object
can be recognized in an X-ray image and the location of each recognized object
is given by a bounding box, i.e., a rectangle that encloses the detected object
defined by the coordinates of the center of the rectangle (x, y) and its dimen-

Fig. 7.30 Image detection and image classification

322 7 Deep Learning in X-ray Testing

Fig. 7.31 Object detection using CNN and sliding-windows: The original X-ray image ‘A’ with
three defects (see red rectangles) is processed by f1 using a sliding-window approach. For each
position of the detection windows (orange square), a patch is extracted and classified as ‘defect’ or
‘no-defect’ by a trained CNN. The dots of image ‘B’ show in red and green the center of the patches
that were classified as ‘defect’ and ‘no-defect’ respectively. Using image processing approaches the
dots of image ‘B’ are processed by f2 to detect the ‘defect’ regions. In this example, all defects
were correctly detected with no false alarm

sions, width and height, (w, h), where all four variables are given in pixels (see
for example, the red rectangle of the shuriken in Fig. 7.30b, where the center is
in (x = 748, y = 405) and the dimensions are w = 323 and h = 505 pixels). In
example of Fig. 7.30b, image detection is able to recognize a set of objects (see
table and red bounding boxes). Typically, a probability of detection is computed
for each recognized object (that can be understood as a new column in the table),
so that the final output corresponds to those objects that have a probability greater
than a threshold.

A simple strategy based on sliding-window methodology has been proposed
some years ago for image detection based on image classification. An example
is illustrated in Fig. 7.31 for defect detection in aluminum castings [38]. In this
approach, a detection window (see the orange square in Fig. 7.31-A) is sledded over
an input image in both horizontal and vertical directions, and for each localization of
the detection window, a classifier decides to which class belongs the corresponding
portion of the image according to its representation. Here, the classifier is a CNN,
as explained in Sect. 7.3.4, that is used to identify one of two classes: ‘defects’ or
‘no-defects’. For this end, a huge number of patches of each class is used to train the
CNN model. The patches have the same size of the detection window, and they can
contain a defect (for the ‘defect’ class) or not (for the ‘no-defect’ class) as shown
in Fig. 7.10. Finally, the locations of the X-ray image that have been detected as
‘defects’ (see green dots in Fig. 7.31-B) are analyzed using image processing. Thus,
we can determine which regions of the image are defects or not (see detected regions
in Fig. 7.31-C).

It is worthwhile to mention, that this approach requires the classification of a
huge number of patches. In addition, if the size of the objects to be detected varies,
the sliding-windows approach must be performed for different patch-sizes. In this
case, the computational time could be prohibited. For these reasons, new approaches
that overcome this problem have been developed in the last years. In this section,
we will cover them. They can be subdivided into two groups [26]:

7.7 Detection Methods 323

Fig. 7.32 R-CNN strategy

(i) Detection in two stages: In the first step of these approaches, called region
proposal, a method is used to determine regions of the input image in which
an object can be present. In sliding-windows, for example (explained above),
this step corresponds to an exhaustive search, however, there are other methods,
e.g., R-CNN [16] that propose some regions instead of analyzing all possible
patches of the input image. In the second step of these approaches, called final
classification, a CNN is used to classify the regions that have been proposed
by the first step. In Sect. 7.7.2 of this chapter, we address these region-based
methods like R-CNN [16], Fast R-CNN [15], and Faster R-CNN [53] that uses
this two-stage strategy.

(ii) Detection in one stage: In these approaches, there is a single CNN that is
trained to both location and classification, i.e., prediction of bounding boxes and
estimation of the class probabilities of the detected bounding boxes. This group
of approaches corresponds to the state of the art in detection methods because
they are very effective and very fast. They are the best-performing and most
representative deep learning-based object detection models, as stated in [71]. In
this chapter, we address most representative methods, namely, YOLO [52] in
Sect. 7.7.3 (versions YOLOv2 [50], YOLOv3 [51] and YOLOv4 [6]), SSD [37]
in Sect. 7.7.4 and RetinaNet [32] in Sect. 7.7.5. We give a brief description of
these detection models and their principal differences.

7.7.2 Region Based Methods

In this section, we address those methods from the first group that perform object
detection in two stages. These methods are region-based methods because the first
step is the region proposal, and the second is the final classification. To this group
belong R-CNN [16], Fast R-CNN [15] and Faster R-CNN [53]. We include in this
section an additional method called Mask R-CNN [22] that is an instance segmen-
tation approach. They will be described in further details.
• R-CNN: In R-CNN (Regions with CNN features), there is a step that proposes
potential regions and another step that classify them into the classes to be recog-
nized [16], as shown in Fig. 7.32. By selecting regions in the first step, we avoid to

324 7 Deep Learning in X-ray Testing

classify of a huge number of patches as mentioned in Sect. 7.7.1 for sliding-windows
approach.

The first step of R-CNN, called Selective Search, is based on a method proposed
in [63] that generates candidates of bounding boxes for use in object recognition,
i.e., they are regions that have high probability of being an object. They are called
regions of interest or RoIs. The method uses complementary image regions that
consider many image conditions. Selective search is based on image processing
and it consists of three stages: (i) Capture all scales: Many potential regions are
generated in all possible scales. (ii) Diversification: a diverse set of strategies is used
to merge similar regions together. (iii) Fast to compute: Final regions are proposed
in a hierarchical order. In the proposed approach [16], 2000 RoIs are selected, many
of them are noisy, but the recall is high, that means that most of the true objects
are selected. One of the problems of this method is that the selective search is not
learned, it is fixed, and it could be useful to learn which regions are relevant for a
given application. In addition, the approach can be very slow because each of the
2000 RoIs must be analyzed independently. In order to speed up this step, sharing
computing with Spatial Pyramid Pooling networks (SPP) can be used as proposed
in [21]. In the second step of R-CNN, a trained CNN model based on AlexNet [29]
is used to extract from each RoI a feature vector of 4096 elements as explained in
Sect. 7.4. All RoIs are warped to 227 × 227 pixels because the CNN requires a fixed
square size for the input images. The 4096-element feature vector extracted of a RoI
is used by a SVM classifier that is trained to determine the class of the region. In
addition, CNN predicts a correction of the bounding boxes because originally they
are not correctly located by the selective search approach. Thus, SVM classifier
is in charge of class determination, whereas the location is given by the corrected
location of the original RoI that has been detected by the SVM.

R-CNN is much faster than a sliding-window approach, however, to analyze 2000
RoIs is still very computationally expensive and cannot be implemented in real time.
It has been reported that for the testing stage, it requires around 50 s per image [16].

• Fast R-CNN: In order to avoid the mentioned problems, the same author proposed
a faster approach called Fast R-CNN [15], as shown in Fig. 7.33. In this approach,
two improvements are presented: (i) The selective selection of RoIs is performed by
using a CNN that gives a feature map of the same size of the input image. The RoIs
are partitions of this feature map that are warped into fixed-length vectors using a
‘RoI pooling layer’, i.e., a max-pooling layer with a pool size that does not depend
on the input size. (ii) Instead of a SVM that classifies the extracted feature vector
for every single RoI, fully connected layers are used for each RoI to determine
both the category and the location of the object. Thus, the objects in the image are
detected by using two sibling output layers, one for establishing the category of the
detected bounding box, and another to correct the location of the bounding box. In
comparison with R-CNN, the computational time of Fast R-CNN is significantly
decreased (to 2.3 s per image) mainly because the CNN is executed just once for
the input image and not for every RoI. Moreover, the accuracy of the detection is
increased and the training time is around ten times faster.

7.7 Detection Methods 325

Fig. 7.33 Fast R-CNN strategy

Fig. 7.34 Faster R-CNN and mask R-CNN strategies

• Faster R-CNN: The main drawback of Fast R-CNN is the computational time of
the first step dedicated to region proposal, it is around 85% of the total detection
time. In order to speed up the first step, Faster R-CNN (see Fig. 7.34) was proposed
in [53]. Faster R-CNN includes an attention mechanism called Region Proposal
Network (RPN), that is used to predict the RoIs from CNN features. That means the
input image is fed into a CNN to obtain a feature map that is fed into the RPN that
is trained to infer regions proposal. RPN outputs are two for each RoI: (i) a proba-
bility that the proposal is an object (it is a score that is used to determine whether
the detection is an object or not) and (ii) a preliminary bounding box. Afterwards,
a RoI pooling layer makes the final classification of the object in one of the cate-
gories and gives a correction of the preliminary bounding box. In Faster R-CNN,
the detection time is decreased to 0.2 s per image. An example of Faster R-CNN in
defect detection in aluminum casting can be found in [11, 12] very good results.

326 7 Deep Learning in X-ray Testing

• Mask R-CNN: Another approach that is related to R-CNN is the well-known
Mask R-CNN [22]. Mask R-CNN is a method that belongs to the category of
‘Instance Segmentation’. Whereas in object detection the goal is to detect bounding
boxes, in instance segmentation, the goal is to perform a segmentation of an object
at a pixel level. That means, the output is not a bounding box, it is the boundaries
of the detected object. Mask R-CNN is a combination of R-CNN and Fully Con-
volutional Network (FCN). It consists of a faster attention mechanism (like Faster
R-CNN) to generate RoIs with a FCN that runs on each of the RoIs. The FCN has
convolutional layers that are used to predict the mask on the RoI, i.e., a binary image
of the same size of the RoI where a pixel equals 1 (or 0) means that the pixel of the
RoI belongs (or does not belong) to the detected object. An example is illustrated in
Fig. 7.34.

7.7.3 YOLO

In region-based approaches, as explained in Sect. 7.7.2, object detection is per-
formed in two stages: region proposal and final classification. That means the clas-
sification is not performed by looking at the complete image but at selected regions
of the image. In order to overcome this disadvantage, a new method called YOLO,
You-Only-Look-Once was proposed [52]. YOLO is a single (and powerful) convo-
lutional neural network that looks the image once, i.e., the input image is fed into a
single CNN which output is the simultaneous prediction of both the bounding boxes
(localization) and the category probabilities (classification) of the detected objects.
It is very fast because the input image is processed in a single pass by the CNN.

The key idea of YOLO is very simple: The input image is divided into a grid
of S × S cells, and for each cell, YOLO can detect B objects. For each detected
bounding box, YOLO computes:

• (x, y, w, h): variables that define the detected bounding box, i.e., location (x, y)

and dimension (width, height),
• p: confidence score that gives the probability that the bounding box encloses an
object (Pr(Object)), and

• pi : for i = 1 . . . K : probability distribution over all K possible classes, i.e., pi is
a conditional class probability (Pr(Classi |Object)).

That means, for each bounding box, YOLO provides an array of R = 4 + 1 + K
elements: (x, y, w, h, p, p1, p2, . . . , pK), as illustrated in Fig. 7.35. In testing stage,
an object of class i is detected if Pr(Object) × Pr(Classi |Object) is greater than a
threshold.

Since in a grid cell, B bounding boxes can be detected, for each cell, an array of
Q = B × R elements is computed.

The simplicity of YOLO (see Fig. 7.35) is due to (i) the architecture has only
standard convolution layers with 3 × 3 kernes and max-pooling layers with 2 × 2
kernels, and (ii) the output of the CNN is a tensor of S × S × Q, that means, for

7.7 Detection Methods 327

Fig. 7.35 YOLO strategy

each grid cell we have 5 + K elements per bounding box that give us information
about the localization of the bounding box and the category probability.

In the last years, many versions of YOLO have been developed. In this section,
we address the most relevant of them: YOLOv2 [50], YOLOv3 [51], and YOLOv4
[6].
• YOLOv2: The improvements proposed in YOLOv2 [50] focus on expanding the
subdivision of the image, and the use of anchor boxes of different dimensions in
each subdivision of the image (as proposed in the Faster R-CNN [53] model). These
anchor boxes are pre-configured using the ‘k-means’ algorithm with Euclidean dis-
tance in the training set. Then, for each cell of the feature map extracted using the
DarkNet-19 model, its anchor boxes are created with predictions for the objects
inside [50].

Python Example 7.7: In this example, we show how to use YOLOv2 in the
detection of threat objects. For this task, we use the implementation of [56] (see
footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.7 : Threat object detection in baggage inspection using YOLOv2.

Pre−trained model
python3 predict_yolo2.py −c config_full_yolo2_infer.json −i input_path/folder −o save/

folder/detection

Training
python3 train_yolo2.py −c config_full_yolo2.json

328 7 Deep Learning in X-ray Testing

Testing
python3 predict_yolo2.py −c config_full_yolo2.json −i input_path/folder −o save/folder/

detection

Evaluation
python3 evaluate_yolo2.py −c config_full_yolo2.json

The output of this code is in Figs. 7.36 and 7.37. �
• YOLOv3: In comparison with previous versions, YOLOv3 [51] includes two
main updates: (i) the use of different scales (three scales) using a pyramidal archi-
tecture that aims to solve the problem of detection of small objects, and (ii) the
use of a new feature extractor architecture called DarkNet-53 that improves upon
DarkNet-19.

Python Example 7.8: In this example, we show how to use YOLOv3 in the
detection of threat objects. For this task we use the implementation of [56] (see
footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.8 : Threat object detection in baggage inspection using YOLOv3.

Pre−trained model
python3 predict_yolo3.py −c config_full_yolo3_infer.json −i input_path/folder −o save/

folder/detection

Training
python3 train_yolo3.py −c config_full_yolo3.json

Testing
python3 predict_yolo3.py −c config_full_yolo3.json −i input_path/folder −o save/folder/

detection

Evaluation
python3 evaluate_yolo3.py −c config_full_yolo3.json

The output of this code is in Figs. 7.36 and 7.37. �
• YOLOv4: YOLOv4 has recently proposed in [6]. In this version, the feature
map is extracted using a new architecture called Cross Stage Partial Network [64]
that decreases the computation by reducing redundant gradient information. In
YOLOv4, this network is called CSPDarknet-53. An additional increment of the
performance is obtained by using Spatial Pyramid Pooling networks (SPP) [21] for
sharing computing for pyramid features and a Path Aggregation Network (PAN)
[36] for parameter aggregation from different levels of the CSPDarknet-53. Finally,
the final prediction is performed as in YOLOv3 [51]. With these improvements, in
comparison to YOLOv3, the accuracy is increased by 10% and the computation
time is reduced by 11%.15

15In the last week (June 2020), YOLOv5 was released. See https://github.com/ultralytics/yolov5.

https://github.com/ultralytics/yolov5

7.7 Detection Methods 329

7.7.4 SSD

Another architecture contemporary to Faster R-CNN [53] and YOLO [52] is the
SSD (Single-Shot Multi-Box Detector) [37]. Using direct image transformations,
like YOLO, it predicts the location of the desired objects. The major difference is
the use of map features in different depths, in order to obtain the analysis at different
scales of the image. SSD combines the use of anchor boxes, like Faster R-CNN [53]
and YOLOv2 [50], to predict the desired frames and uses a loss function for multi-
tasking, as in the aforementioned detectors.

Python Example 7.9: In this example, we show how to use SSD7 in the detec-
tion of threat objects. For this task, we use the implementation of [56] (see footnote
17). In this implementation, there are four options: (i) object detection using a model
that has been already trained for this task, (ii) training a new model using a set of
training images, (iii) testing the model trained in the previous step, and (iv) evalua-
tion of a model on a set of images:

Listing 7.9 : Threat object detection in baggage inspection using SSD7.

Pre−trained model
python3 predict_ssd.py −c config_7_infer.json −i input_path/folder −o save/folder/

detection

Training
python3 train_ssd.py −c config_7.json

Testing
python3 predict_ssd.py −c config_7.json −i input_path/folder −o save/folder/detection

Evaluation
python3 evaluate_ssd.py −c config_7_infer.json

The output of this code is in Figs. 7.36 and 7.37. �

Python Example 7.10: In this example, we show how to use SSD300 in the
detection of threat objects. For this task we use the implementation of [56] (see
footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.10 : Threat object detection in baggage inspection using SSD300.

Pre−trained model
python3 predict_ssd.py −c config_300_infer.json −i input_path/folder −o save/folder/

detection

Training
python3 train_ssd.py −c config_300.json

Testing
python3 predict_ssd.py −c config_300.json −i input_path/folder −o save/folder/detection

330 7 Deep Learning in X-ray Testing

Evaluation
python3 evaluate_ssd.py −c config_300_infer.json

The output of this code is in Figs. 7.36 and 7.37. �

7.7.5 RetinaNet

Together with YOLOv3 [51] and YOLOv4 [6], the RetinaNet architecture [32] is
one of the most recent object detection models and combines the pyramidal fea-
ture extraction structure [33] with a residual architecture (ResNet) [20] that has
obtained promising results in image classification. The pyramidal approach consists
of decreasing the size of the image several times and making predictions for each of
those sizes. Another novelty of this architecture is the shift from the typical cross-
entropy to a ‘focal loss’-based objective that reduces the penalty for well classified
classes while punishing misclassifications more aggressively for the rest.16

Python Example 7.11: In this example, we show how to use RetinaNet in
the detection of threat objects. For this task, we use the implementation of [56]
(see footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.11 : Threat object detection in baggage inspection using RetinaNet.

Pre−trained model
python3 predict_retinanet.py −c config_resnet50_infer.json −i input_path/folder −o save/

folder/detection

Training
python3 train_retinanet.py −c config_resnet50.json

Testing
python3 predict_retinanet.py −c config_resnet50.json −i input_path/folder −o save/folder/

detection

Evaluation
python3 evaluate_retinanet.py −c config_resnet50.json

The output of this code is in Figs. 7.36 and 7.37. �

16An implementation of RetinaNet for casting defect detection in GDXray+, can be found on
https://github.com/aurotripathy/GDXray-retinanet by Auro Tripathy.

https://github.com/aurotripathy/GDXray-retinanet

7.7 Detection Methods 331

Fig. 7.36 Object detection on GDXray+ image B0046_0151

332 7 Deep Learning in X-ray Testing

Fig. 7.37 Object detection on GDXray+ image B0046_0184

7.7.6 Examples of Object Detection

In this section, we show detection of threat objects in GDXray+ using the imple-
mentation of [56].17 This implementation contains the following four detectors for
use in the detection of threat objects in baggage inspection:

17See https://github.com/dlsaavedra/Detector_GDXray. In addition, all examples are implemented
in Google Colab on https://github.com/computervision-xray-testing/pyxvis.

https://github.com/dlsaavedra/Detector_GDXray
https://github.com/computervision-xray-testing/pyxvis

7.8 Summary 333

• Yolov2 (see Sect. 7.7.3 and Example 7.7)
• Yolov3 (see Sect. 7.7.3 and Example 7.8)
• SSD7 (see Sect. 7.7.4 and Example 7.9)
• SSD300 (see Sect. 7.7.4 and Example 7.10)
• RetinaNet (see Sect. 7.7.5 and Example 7.11)

In order to compare the implemented methods, in Figs. 7.36 and 7.37 we can
observe the performance of each method visually. The reader is referred to [56] for
more details of the training and the evaluation protocol.

7.8 Summary

In this chapter, we review many relevant concepts of deep learning that can be used
in computer vision for X-ray testing. We covered the theory and practice of deep
learning techniques in real X-ray testing problems. The chapter explained

• Neural Networks,
• Convolutional Neural Network (CNN) that can be used in classification problems,
• Pre-trained Models,
• Transfer Learning that is used in sophisticated models,
• Generative Adversarial Networks (GANs) to generate synthetic images, and
• modern detection methods that are used to classify and localize objects in an
image.

In addition, for every method, we gave not only basic concepts but also practical
details in real X-ray testing examples implemented in Python.

References

1. Aggarwal, C.C.: Neural Networks and Deep Learning. Springer International Publishing,
Cham (2018)

2. Akçay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using con-
volutional neural networks for object classification within X-ray baggage security imagery.
In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1057–1061. IEEE
(2016)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (2005)
5. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
6. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object

detection (2020)
7. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural

image synthesis. In: The International Conference on Learning Representations (ICLR 2019),
pp. 1–35 (2019)

334 7 Deep Learning in X-ray Testing

8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

9. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Gener-
ative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

10. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face
recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4690–4699 (2019)

11. Du, W., Shen, H., Fu, J., Zhang, G., He, Q.: Approaches for improvement of the X-ray image
defect detection of automobile casting aluminum parts based on deep learning. NDT & E Int.
107, 102,144 (2019)

12. Du, W., Shen, H., Fu, J., Zhang, G., Shi, X., He, Q.: Automated detection of defects with low
semantic information in X-ray images based on deep learning. J. Intell. Manuf. 1–16 (2020)

13. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep
network. Technical report, Univeriste de Montreal (2009)

14. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.:
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542(7639), 115–118 (2017)

15. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1440–1448 (2015)

16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587 (2014)

17. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems, pp. 2672–2680 (2014)

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
19. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial

intelligence. Neuron 95(2), 245–258 (2017)
20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR

(2015). arXiv:1512.03385
21. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks

for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE

International Conference on Computer Vision, pp. 2961–2969 (2017)
23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,

Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications
(2017). arXiv:1704.04861

24. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR
(2016). arXiv:1608.06993

25. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1mb model size. CoRR (2016).
arXiv:1602.07360

26. Jiang, X., Hou, Y., Zhang, D., Feng, X.: Deep learning in face recognition across variations
in pose and illumination. Deep Learning in Object Detection and Recognition, pp. 59–90.
Springer, Berlin (2019)

27. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 4401–4410 (2019)

28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980
29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional

neural networks. In: NIPS, pp. 1106–1114 (2012)
30. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recogni-

tion. In: Proceedings of the Third International Conference on Research in Air Transportation
(1998)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1412.6980

References 335

31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
32. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection.

CoRR (2017). arXiv:1708.02002
33. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid net-

works for object detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2117–2125 (2017)

34. Liu, B., Zhang, X., Gao, Z., Chen, L.: Weld defect images classification with VGG16-based
neural network. In: International Forum on Digital TV and Wireless Multimedia Communica-
tions, pp. 215–223. Springer (2017)

35. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning
for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

36. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8759–8768 (2018)

37. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD: single
shot multibox detector. CoRR (2015). arXiv:1512.02325

38. Mery, D.: Aluminum casting inspection using deep learning: a method based on convolutional
neural networks. J. Nondestruct. Eval. 39(1), 12 (2020)

39. Mery, D., Arteta, C.: Automatic defect recognition in X-ray testing using computer vision. In:
2017 IEEEWinter Conference on Applications of Computer Vision (WACV), pp. 1026–1035.
IEEE (2017)

40. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco,
M.: GDXray: the database of X-ray images for nondestructive testing. J. Nondestruct. Eval.
34(4), 1–12 (2015)

41. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision
techniques for X-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybern.: Syst.
47(4), 682–692 (2016)

42. Miao, C., Xie, L., Wan, F., Su, C., Liu, H., Jiao, J., Ye, Q.: SIXray: a large-scale security
inspection X-ray benchmark for prohibited item discovery in overlapping images. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119–
2128 (2019)

43. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
44. Nagpal, K., Foote, D., Liu, Y., Chen, P.H.C., Wulczyn, E., Tan, F., Olson, N., Smith, J.L.,

Mohtashamian, A., Wren, J.H., et al.: Development and validation of a deep learning algorithm
for improving Gleason scoring of prostate cancer. NPJ Digit. Med. 2(1), 1–10 (2019)

45. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814
(2010)

46. Niu, S., Li, B., Wang, X., Lin, H.: Defect image sample generation with GAN for improving
defect recognition. IEEE Trans. Autom. Sci. Eng. (2020)

47. Oliphant, T.E.: A Guide to NumPy, vol. 1. Trelgol Publishing, New York (2006)
48. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

49. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolu-
tional generative adversarial networks. CoRR (2015). arXiv:1511.06434

50. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR (2016). arXiv:1612.08242
51. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR (2018).

arXiv:1804.02767
52. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time

object detection. CoRR (2015). arXiv:1506.02640
53. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with

region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99
(2015)

http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.02640

336 7 Deep Learning in X-ray Testing

54. Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model.
IEEE Trans. Syst. Man Cybern.: Syst. 46(4), 472–482 (2016)

55. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-
0816-y

56. Saavedra, D., Banerjee, S., Mery, D.: Detection of threat objects in baggage inspection with
X-ray images using deep learning. Neural Comput. Appl. pp. 1–17. Springer (2020)

57. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE
Access 7, 53040–53065 (2019)

58. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. CoRR (2014). arXiv:1409.1556

59. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

60. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: CVPR 2015 (2015)

61. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architec-
ture for computer vision. CoRR (2015). arXiv:1512.00567

62. Tang, Z., Tian, E., Wang, Y., Wang, L., Yang, T.: Non-destructive defect detection in castings
by using spatial attention bilinear convolutional neural network. IEEE Trans. Ind. Inform. 1–1
(2020)

63. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object
recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

64. Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y., Hsieh, J.W.: CSPNet: A new
backbone that can enhance learning capability of CNN (2019). arXiv:1911.11929

65. Yang, J., Zhao, Z., Zhang, H., Shi, Y.: Data augmentation for X-ray prohibited item images
using generative adversarial networks. IEEE Access 7, 28894–28902 (2019)

66. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural
networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

67. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision, pp. 818–833. Springer (2014)

68. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into deep learning. Unpublished draft.
Retrieved 3, 319 (2019)

69. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural
network for mobile devices. CoRR (2017). arXiv:1707.01083

70. Zhao, Z., Zhang, H., Yang, J.: A GAN-based image generation method for X-ray security pro-
hibited items. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV),
pp. 420–430. Springer (2018)

71. Zhao, Z., Zheng, P., Xu, S., Wu, X.: Object detection with deep learning: a review. IEEE Trans.
Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019). https://doi.org/10.1109/TNNLS.2018.
2876865

72. Zhu, Y., Zhang, Y., Zhang, H., Yang, J., Zhao, Z.: Data augmentation of X-ray images in
baggage inspection based on generative adversarial networks. IEEE Access 8, 86536–86544
(2020)

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1911.11929
http://arxiv.org/abs/1707.01083
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865

	7 Deep Learning in X-ray Testing
	7.1 Introduction
	7.2 Neural Networks
	7.2.1 Basics of Neural Networks
	7.2.2 Training of Neural Networks
	7.2.3 Examples of Neural Networks

	7.3 Convolutional Neural Network (CNN)
	7.3.1 Basics of CNN
	7.3.2 Learning in CNN
	7.3.3 Testing in CNN
	7.3.4 Example of CNN

	7.4 Pre-trained Models
	7.4.1 Basics of Pre-trained Models
	7.4.2 Example of Pre-trained Models

	7.5 Transfer Learning
	7.5.1 Basics of Transfer Learning
	7.5.2 Training in Transfer Learning
	7.5.3 Example of Transfer Learning

	7.6 Generative Adversarial Networks (GANs)
	7.6.1 Basics of GAN
	7.6.2 Training of GAN
	7.6.3 Implementation of GAN
	7.6.4 Example of GAN

	7.7 Detection Methods
	7.7.1 Basics of Object Detection
	7.7.2 Region Based Methods
	7.7.3 YOLO
	7.7.4 SSD
	7.7.5 RetinaNet
	7.7.6 Examples of Object Detection

	7.8 Summary
	References

