
Chapter 6
Classification in X-Ray Testing

Abstract In this chapter, we will cover known classifiers that can be used in
X-ray testing. Several examples will be presented using Python. The reader can
easily modify the proposed implementations in order to test different classification
strategies. We will then present how to estimate the accuracy of a classifier using
hold-out, cross-validation and leave-one-out. Finally, we will present an example
that involves all steps of a pattern recognition problem, i.e., feature extraction, fea-
ture selection, classifier’s design, and evaluation. We will thus propose a general
framework to design a computer vision system in order to select—automatically—
from a large set of features and a bank of classifiers, those features and classifiers
that can achieve the highest performance.

Ideal detection of a handgun superimposed onto a laptop (X-ray image B0019_0001 colored
with ‘sinmap’).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_6

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_6

228 6 Classification in X-Ray Testing

6.1 Introduction

Considerable research efforts in computer vision applied to industrial applications
have been developed in recent decades. Many of them have been concentrated on
using or developing tailored methods based on visual features that are able to solve a
specific task. Nevertheless, today’s computer capabilities are giving us new ways to
solve complex computer vision problems. In particular, a new paradigm on machine
learning techniques has emerged posing the task of recognizing visual patterns as a
search problem based on training data and a hypothesis space composed of visual
features and suitable classifiers. Furthermore, now we are able to extract, process,
and test in the same time more image features and classifiers than before. In our
book, we propose a general framework that designs a computer vision system auto-
matically, i.e., it finds—without human interaction—the features and the classifiers
for a given application avoiding the classical trial and error framework commonly
used by human designers. The key idea of the proposed framework is to design a
computer vision system as shown in Fig. 6.1 in order to select—automatically—
from a large set of features and a bank of classifiers, those features and classifiers
that achieve the highest performance.

Whereas Chap. 5 covered feature extraction and selection, the focus of this
chapter will be the classification. Once the proper features are selected, a classi-

Fig. 6.1 Supervised pattern recognition schema. In the training stage, features are extracted and
selected (see Chap. 5 and details in Fig. 5.28). In addition, a classifier is designed. In the testing
stage, selected features are extracted and the test image is classified

6.1 Introduction 229

fier can be designed. Typically, the classifier assigns a feature vector x with n fea-
tures (x1 . . . xn) to one class. In case of defects detection, for example, there are two
classes: flaws or no-flaws. In case of baggage screening, there can be more classes:
knives, handguns, razor blades, etc. In pattern recognition, classification can be per-
formed using the concept of similarity: patterns that are similar are assigned to the
same class [12]. Although this approach is very simple, a good metric defining the
similarity must be established. Using representative samples, we can make a super-
vised classification finding a discriminant function h(x) that provides us information
on how similar a feature vector x is to a class representation.

In this chapter, we will cover many known classifiers (such as linear discrim-
inant analysis, Bayes, support vector machines, neural networks among others).
Several examples will be presented using Python. The reader can easily modify
the proposed implementations in order to test different classification strategies.
Afterwards, we present how to estimate the accuracy of a classifier using hold-out,
cross-validation, and leave-one-out. The well-known confusion matrix and receiver-
operation-characteristic curve will be outlined as well. We will explain by detailing
the advantages and disadvantages of each one. Finally, we will present an exam-
ple that involves all steps of a pattern recognition problem, i.e., feature extraction,
feature selection, classifier’s design, and evaluation.

6.2 Classifiers

In this section, the most relevant classifiers are explained with several examples.
Before we start with the explanation of the classifiers, let us review the syntax of
some basic functions of pyxvis Library. The implementation of this functions is
based on sklearn library.

Python Example 6.1 The basic syntax of how to use classification algorithms
in pyxvis Library is given in this code. Examples that use these commands are shown
in this section (e.g., see Example 6.2).

Listing 6.1 : Basic syntax of classification with pyxvis Library.

[INPUT] X : training features (matrix of N x p elements)
d : vector of training labels (vector of N elements)
Xt : testing features (matrix of Nt x p elements)
dt : vector of training labels (vector of Nt elements)
s : string with the name of the model
[OUTPUT] ds : classification (vector of Nt elements)
clf: trained classifier

from pyxvis.io.data import load_features
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier
from pyxvis.io.plots import print_confusion

Definition of input variables
(X,d,Xt,dt) = load_features(’../data/G3/G3’)

230 6 Classification in X-Ray Testing

s = ’knn5’

Training and Testing
(name,params) = clf_model(s) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
ds = test_classifier(clf,Xt) # clasification on testing

Evaluation of performance
print_confusion(dt,ds)

The training and testing stages of a classification process is given in following
four steps (see Fig. 6.18):

1. We load in name,params the name and the parameters of the classifier using
function clf_model with the string s 1

2. We define a classifier using function define_classifier with the name and parame-
ters of the model [name,params]. The defined classifier is stored in clf.

3. Classifierclfistrainedusingtrainingdata(X,d)withfunctiontrain_classifier.
The defined classifier is stored in clf.

4. Trainedclassifierclfistestedontestingdata(Xt)usingfunctiontest_classifier.
Theclassification, i.e., labelsof the testingsamples, are stored invectords.Toeval-
uate the effectiveness of the classifier, we can count the number of coincidences
between dt (real labels of testing data) and ds (classification using trained classi-
fier).2 �

6.2.1 Minimal Distance

The simplest classifier is probably based on the concept of ‘minimal distance’. In
this classifier, each class is represented by its center of mass that can be viewed as a
template [10]. Thus, a mean value x̄k of each class is calculated on the training data:

x̄k = 1

Nk

Nk∑

i=1

x jk, (6.1)

where x jk is the j th sample of class ωk of the training data, and Nk is the number
of samples of the kth class. A test sample x is assigned to class ωk if the Euclidean
distance ‖ x − x̄k ‖ is minimal. Formerly,

hdmin(x) = argmin
k

{‖ x − x̄k ‖} . (6.2)

1The available names of models are: ‘LR’ (logistic regression), ‘dmin’ (Minimal Distance),
‘LDA’ (linear discriminant analysis), ‘QDA’ (quadratic discriminant analysis), ‘KNN’ (nearest
neighbors), ‘RF’ (random forest), ‘NN’ (neural network), ‘AdaBoost’ (AdaBoost), ‘SVM-LIN’
(SVM classifier with linear kernel), ‘SVM-RBF’ (SVM classifier with RBF kernel).
2Usually, for this end we can use the accuracy metric explained in Sect. 6.3.

6.2 Classifiers 231

A useful formulation is defining the distance function ddmin(x, k) =‖ x − x̄k ‖. Thus,
we can write (6.2) as

hdmin(x) = argmin
k

{ddmin(x, k)} . (6.3)

This formulation based on minimal distances will be used in the following sections.
In pyxvis Library, this classifier is implemented using function clf_modelwith param-

eter ‘dmin’. Python Example 6.2 In this example, we show how to train and
test a classifier based on Euclidean minimal distance. We use data that was simu-
lated using a mixture of Gaussian distributions. The data consists of 800 samples for
training and 400 samples for testing purposes. Each sample has two features x1 and
x2 and it belongs to class ω1 or ω0. Figure 6.2 shows the feature spaces for training
and testing.

Listing 6.2 : Classification using Euclidean minimal distance

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
cl_name = ’dmin’ # generic name of the classifier
(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # show performance and feature space

The output of this code is shown in Fig. 6.5. In this case, the accuracy, defined
as the ratio of samples correctly classified, is 85.50% in the testing dataset. The
low performance of this classifier is because the decision line is a straight line.
The reader can imagine that the decision line can be computed in three steps: (i)
Compute the centers of mass of each class distribution in the training set as x̄1 and
x̄0 according to (6.1). (ii) Compute �C the straight line that contains both centers
of mass. (iii) Compute the decision line � as the line that is perpendicular to �C

and equidistant to x̄1 and x̄0. The decision line is shown in Fig. 6.5. Obviously, the
straight line is not able to separate these curved distributions.

The syntax of the use of the classification functions in pyxvis Libraryis explained
in Listing 6.1. �

6.2.2 Mahalanobis Distance

TheMahalanobis classifier employs the same concept as minimal distance (see Sect.
6.2.1), however, it uses a distance metric based on the ‘Mahalanobis distance’, in
which, by means of the covariance matrix, the features to be evaluated are weighted
according to their variances. A test sample x is assigned to class ωk if the Maha-
lanobis distance of x to class ωk , denoted as dmaha(x, k), is minimal. TheMahalanobis

232 6 Classification in X-Ray Testing

Fig. 6.2 Simulated data that is used in Sect. 6.2. [→ Example 6.2]

distance is defined as

dmaha(x, k) = (x − x̄k)
TC−1

k , (x − x̄k), (6.4)

where Ck is the covariance matrix of the kth class. It can be estimated as

Ck = 1

Nk − 1

Nk∑

j=1

(xk j − x̄k)(xk j − x̄k)
T, (6.5)

where x jk is the j th sample of class ωk of the training data, and Nk is the number of
samples of the kth class. Some examples are illustrated in Fig. 6.3. Formerly,

hmaha(x) = argmin
k

{dmaha(x, k)} , (6.6)

where distance dmaha is defined in (6.4). In pyxvis Library, this classifier is imple-
mented using function clf_model with parameter ‘maha’. An example of this classi-
fier is presented in Example 6.4.

6.2.3 Bayes

In Bayes classifier the idea is to assign the test sample x to the most probable class.
For this purpose, we use the conditional probability p(ωk |x), that gives the probabil-
ity of class ωk occurs given sample x. Thus, if p(ωk |x) is maximal the x is assigned
to class ωk :

hBayes(x) = argmax
k

{p(ωk |x)} . (6.7)

6.2 Classifiers 233

Fig. 6.3 Examples of three different Gaussian distributions p(x|ωk) in 2D. The black point repre-
sents the mean μk and the 2 × 2 matrices the covariances �k

Using Bayes theorem we can write the conditional probability as

p(ωk |x) = p(ωk)
p(x|ωk)

p(x)
, (6.8)

where p(ωk |x) is known as ‘posterior’, p(ωk) as ‘prior’, p(x|ωk) as ‘likelihood’ and
p(x) as ‘evidence’. Since p(x) is the same by evaluating p(ωk |x) for all k we can
re-write (6.7) as follows:

hBayes(x) = argmax
k

{p(x|ωk)p(ωk)} . (6.9)

In order to evaluate (6.9) properly, we need good estimations for p(x|ωk) and p(ωk).
There are several known approaches to estimate these, some of which will be cov-
ered in the following sections under the assumption of Gaussian distributions of the
classes (see Sects. 6.2.4 and 6.2.5).

In Naïve Bayes approach, each feature xi is assumed to make an independent and
equal contribution to our output. Obviously, this assumption is not correct in real
world, however, in many practical cases it works well enough. Using this assump-
tion, Eq. (6.8) can be formulated as

p(ωk |x) = p(ωk)
p(x1|ωk)p(x2|ωk) · · · p(xn|ωk)

p(x1)p(x2) · · · p(xn)
, (6.10)

and the classification rule for this case is

hNaïve-Bayes(x) = argmax
k

{
p(ωk)

n∏

i=1

p(xi |ωk)

}
. (6.11)

The prior p(ωk) can be estimated by the number of available samples in the train-
ing dataset of each class. Thus, p(ωk) = Nk/N , where Nk is the number of samples
that belong to class ωk and N = ∑

k Nk the total number of samples. Neverthe-
less, in many cases of X-ray testing the available samples are not balanced, e.g., in
defect detection problems there are a reduced number of flaws in comparison with

234 6 Classification in X-Ray Testing

Fig. 6.4 Estimation of p(x|ωk) using Kernel Density Estimation (KDE) for distributions of the

training set of Fig. 6.2. [→ Example 6.3]

the large number of non-flaws [7]. If we use the estimation p(ωk) = Nk/N then the
most important class to be detected will have a very low prior, and it will be very
difficult to detect. In such cases, the prior must be considerably increased in order
to be the more probable.

In order to estimate p(x|ωk), we can use an approach based on Kernel Density
Estimation (KDE) [22]:

p̂(x|ωk) = αk

Nk∑

j=1

K

(
x − x jk

�

)
, (6.12)

where K is a kernel function such as a Gaussian, that has a mean zero and variance
of one, � is the bandwidth, and αk is a normalization factor equal to 1/(Nk�).
Since K (x/�) integrates to�, with this normalization factor we ensure that p̂(x|ωk)

integrates to one. Example of KDE can be found in Fig. 5.21 that were estimated
using the training data of Fig. 5.23. In pyxvis Library, this classifier is implemented
using function clf_model with parameter ‘bayes-kde’ (for KDE implementation)
or ‘bayes-naive’ (for a naive estimation of the probability density function,
where each variable is considered to be statistically independent) (Fig. 6.4).

Python Example 6.3 In this example, we show how to train and test a Bayes
classifier using Kernel Density Estimation and Naive Bayes Estimation. We use the
same simulated data addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.3 : Classification using Bayes

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’bayes−naive’,’bayes−kde’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training

6.2 Classifiers 235

Fig. 6.5 Classification using Bayes and dmin. [→ Example 6.3]

d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is shown in Fig. 6.5. In this case, the accuracy, defined as
the ratio of samples correctly classified, is 93.00% and 90.75% for Naive–Bayes
and KDE-Bayes respectively. The reader can compare this result with the accuracy
obtained by classifier of Example 6.2. �

236 6 Classification in X-Ray Testing

6.2.4 Linear Discriminant Analysis

For Gaussian distributions with x ∈ R
n :

p(x|ωk) = 1

(2π)n/2|�k |1/2 exp
{
−1

2
(x − μk)

T�−1
k (x − μk)

}
, (6.13)

where a good estimation for center of mass μk and covariance �k of class ωk can
be taken from (6.1) and (6.5) respectively. Since the logarithm is a monotonically
increasing function argmaxk {p} = argmaxk {log(p)}. Thus, (6.9) can be written as

h(x) = argmax
k

{log {p(x|ωk)p(ωk)}} . (6.14)

Using some manipulation,

log {p(x|ωk)p(ωk)} = log {p(x|ωk)} + log {p(ωk)} (6.15)

= −1

2
(x − μk)

T�−1
k (x − μk)

︸ ︷︷ ︸
1

−1

2
log(|�k |)

︸ ︷︷ ︸
2

−n

2
log(2π)

︸ ︷︷ ︸
3

+ log(p(ωk))︸ ︷︷ ︸
4

. (6.16)

It is clear, that we do not need to evaluate 3 because this term is constant and the
location of the maximum does not change.

In Linear Discriminant Analysis (LDA) [11], we assume �k = � (constant) for
all k, i.e., term 2 in (6.16) is constant as well, and it is not necessary to be evalu-
ated. Consequently,

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)

T�−1(x − μk) + log(p(ωk))
︸ ︷︷ ︸

−dLDA(x,k)

+C, (6.17)

where constant C corresponds to terms 2 + 3 . Covariance matrix � can be com-
puted from training data. A good estimation is the average of the individual covari-
ance matrices � = 1

K

∑
k Ck . Formerly, the LDA classifier is defined as follows:

hLDA(x) = argmin
k

{dLDA(x, k)} , (6.18)

where dLDA(x, k) is defined in (6.17). In pyxvis Library, the LDA classifier is imple-
mented using function clf_modelwith parameter ‘LDA’. An example of this classifier
is presented in Example 6.4.

6.2 Classifiers 237

A variant of Mahalanobis classifier is obtained by assuming that not only �k is
constant, but also p(ωk) is constant.3 Thus, �k = � and p(ωk) = pc for all k. That
means that in (6.16) terms 4 is constant as well:

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)

T�−1(x − μk)
︸ ︷︷ ︸

−dmaha(x,k)

+C, (6.19)

where constant C corresponds to terms 2 + 3 + 4 . The classification is per-
formed by (6.6) where dmaha(x, k) is defined in (6.19). The reader can observe that if
we assume that � = I we obtain the Minimal Distance classifier (6.3).

6.2.5 Quadratic Discriminant Analysis

In Quadratic Discriminant Analysis (QDA) [11], we assume that �k and p(ωk) are
not constant for all k, i.e., in (6.16) only term 3 is constant:

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)T�−1(x − μk) − 1

2
log(|�k |) + log(p(ωk))

︸ ︷︷ ︸
−dQDA(x,k)

+C,

(6.20)
where constant C corresponds to terms 3 . Formerly,

hQDA(x) = argmin
k

{dQDA(x, k)} , (6.21)

where dQDA(x, k) is defined in (6.20). In pyxvis Library, QDA classifier is imple-
mented using function clf_model with parameter ‘QDA’.

Python Example 6.4 In this example, we show how to train and test three
different classifiers: Mahalanobis (see Sect. 6.2.2), LDA (see Sect. 6.2.4) and QDA
(see Sect. 6.2.5). We use the same simulated data addressed in Example 6.2 and
illustrated in Fig. 6.2.

Listing 6.4 : Classification using Mahalanobis, LDA and QDA

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’lda’,’qda’,’maha−0’,’maha’]

3In pyxvis Library, this classifier is implemented using function clf_model with parameter
‘maha-0’.

238 6 Classification in X-Ray Testing

Fig. 6.6 Classification using LDA, QDA and Mahalanobis. [→ Example 6.4]

for cl_name in ss_cl:
(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

6.2 Classifiers 239

The output of this code is shown in Fig. 6.6. In these cases on the testing data,
we obtain 85.25%, 84.25%, 86.75%, and 89.00% for LDA, QDA, Mahalanobis and
Mahalanobis-0 respectively. It is clear that Mahalanobis and QDA achieve a bet-
ter performance than LDA and Mahalanobis-0 because they can model the curved
distributions. �

6.2.6 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric approach, in which the K most
similar training samples to a given test feature vector x are determined [11]. The
assigned class is the most frequent class from those K samples [8]. In other words,
we find—in the training set—the K nearest neighbors of x and we evaluate the
majority vote of their classes:

hknn(x) = mode(y(x1), . . . y(xK)), (6.22)

where {xi }K
i=1 are the K nearest neighbors of x, and y(xi) the labeled class of (xi).

KNN can be implemented (avoiding the exhaustive search of all samples of the
training set) by a search using a k−d tree structure [2] to search the nearest neigh-
bors. In pyxvis Library, KNN classifier is implemented with function clf_model with
parameter ‘knn K ’ where K is the number of neighbors to consider.

Python Example 6.5 In this example, we show how to train and test a
Bayes classifier using Kernel Density Estimation. We use the same simulated data
addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.5 : Classification using KNN

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’knn1’,’knn3’,’knn7’,’knn15’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is Fig. 6.7 for different number of neighbors. In this case,
we obtain 90.75%, 93.50%, 94.25%, and 93.75% for 1, 3, 7, and 15 neighbors
respectively. It is clear that KNN classifier can properly model any distribution.
The hyper-parameter K , i.e., the number of neighbors is to be estimated for the best
performance on the testing dataset. �

240 6 Classification in X-Ray Testing

Fig. 6.7 Classification using KNN. [→ Example 6.5]

6.2 Classifiers 241

Fig. 6.8 Simple neural network with 3 inputs x = (x1, x2, x3), one output ŷ and two hidden layers
(one with 6 nodes and the another with 2). In this example, the input can be classified as class ω1
if ŷ > 0.5, and otherwise as class ω0

6.2.7 Neural Networks

Artificial neuronal networks are mathematical tools derived from what is known
about the mechanisms and physical structure of biological learning, based on the
function of a neuron. They are parallel structures for the distributed processing of
information [3]. A neural networks consists of artificial neurons connected in a net-
work that is able to classify a test feature vector x evaluating a linear weighted sum
of non-linear functions as illustrated in Fig. 6.8. The weights, the functions, and the
connections are estimated in a training phase by minimizing the classification error
[3, 4]. In this section, we only mention that neural networks have been established
as one of the best classification approaches in pattern recognition. The basic struc-
ture of the neural networks and the learning strategies developed for training neural
networks are the basis of deep learning models. Nowadays, it is well known that
deep learning has been successfully used in image and video recognition. For these
reasons, we decided to dedicate in this book an entire chapter to deep learning (see
Chap. 7), and in Sect. 7.2 of this chapter, we address the theory of neural networks
and give some examples.

Python Example 6.6 In this example, we show how to train and test a Neu-
ral Network. We use the same simulated data addressed in Example 6.2 and illus-
trated in Fig. 6.2. In pyxvis Library, neural networks are implemented with function
clf_model with parameter ‘nn (n1, · · · , n p) ’ where ni is the number of nodes of
hidden layer for an architecture of p hidden layers.

242 6 Classification in X-Ray Testing

Fig. 6.9 Classification using Neural Networks (NN). [→ Example 6.6]

Listing 6.6 : Classification using NN

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’nn(10,)’,’nn(12,6)’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is Fig. 6.9 for different configurations of hidden layers:
nn(10,) means one hidden layer with 10 nodes, whereas nn(12,6) means two
hidden layers with 12 and 6 nodes respectively.4 In this case, we obtain 94.50% and
93.25% respectively. The reader can compare this result with the accuracy obtained
by classifier of Examples 6.2, 6.3, 6.4, and 6.5. It is clear that classifiers based on
neural networks can properly model the curved distributions. �

4For the configuration of Fig. 6.8 is nn(6,2).

6.2 Classifiers 243

Fig. 6.10 Key idea of support vector machine: a Given a two-class problem, find a decision line
�. b There are many possible decision lines that can separate both classes. c In SVM, we search
decision line �SVM so that the margin b is maximized. The support vectors are defined as those
samples that belong to the margin lines

6.2.8 Support Vector Machines

The original Support Vector Machines (SVM) find a decision line that separate two
classes (ω1 and ω0) as illustrate in Fig. 6.10a. In this example, we can see that there
are many possible decision lines like �1, �2, and �3 among others (see Fig. 6.10b). A
relevant question arises: which decision line � can separate both classes at ‘best’? In
SVM strategy, we define the ‘margins’ b1 and b0 as the minimal distance from the
decision line to a sample of class ω1 and ω0 respectively. After SVM criterion, the
‘best’ separation line �SVM is one that (i) it is in the middle, i.e., b1 = b0 = b, and (ii)
its margin is maximal, i.e., b = bmax. Thus, decision line �SVM is equidistant to the
margin lines and the margin is maximal.

In R
2 we have a decision line, however, in general, in R

n , we have a hyperplane
that is defined as

�SVM : g(x) = aTx + a0 = 0, (6.23)

where x = [x1 . . . xn]T is our feature vector and a = [a1 . . . an]T and a0 are the linear
parameters to be estimated. The solution for

{
a j

}n

i=0 can be found following an
optimization approach [21]. In the solution,

{
a j

}n

i=0 depends only on the support
vectors, i.e., the samples of both classes that belong to the margin lines as shown in
Fig. 6.10c. The solution of this optimization problem consists of parameter values
λi corresponding to i th support vector:

a =
m∑

i=1

λi zixi , (6.24)

for m support vectors, where zi = ±1 if xi belongs to ω1 and ω0 respectively. In
addition, a0 can be calculated from any support vector as a0 = zi − aTxi [11]. In
SVM, the classification of a test sample x can be formulated as follows:

244 6 Classification in X-Ray Testing

Fig. 6.11 Key idea of support vector machine with overlapping: a Given a two-class problem with
overlapping, find a decision line �SVM. bBy choosing a decision line �SVM there will be misclassified
samples. c The misclassified samples are the support vectors. Each of them has an error ei defined
as the perpendicular distance to the decision line �SVM. In SVM, we search decision line �SVM so
that the total error

∑
ei is minimized

hSVM(x) =
{
1 if aTx + a0 > 0
0 otherwise

. (6.25)

In practice, however, there is some overlapping between the classes as shown in
Fig. 6.11a. If we have a decision line that separates the feature space, we will have
misclassified samples. In SVM strategy, we consider only the misclassified samples
as illustrated in Fig. 6.11b. They will be the support vectors. The i th support vector
has a distance ei to the decision line that corresponds to an error (see Fig. 6.11c).
After SVM criterion, the ‘best’ decision line �SVM is one that minimizes the total
error e = ∑

i ei . Again, the solution for {ai }n
i=0 depends only on the support vectors,

and they can be estimated using an optimization approach [21]. The classification is
performed according to (6.25).

The previous approach estimates a straight line decision boundary in feature
space. In many cases, however, it is convenient to find a curve that separates the
classes as illustrated in Fig. 6.12a. In order to use SVM linear classification, the fea-
ture space can be transformed into a new enlarged feature space (Fig. 6.12b) where
the classification boundary can be linear. Thus, as shown in Fig. 6.12c, a simple
linear classification (6.25) can be designed in the transformed feature space in order
to separate both classes [21].

The original feature space is transformed using a function f (x). Thus, according
to (6.23) and (6.24) we obtain:

g(f (x)) = aT f (x) + a0

= ∑
i λi zi 〈 f (xi), f (x)〉 + a0,

(6.26)

6.2 Classifiers 245

Fig. 6.12 Non-linear decision line. a Feature space with two classes that can be separated using a
curve. b The feature space can be described in a new coordinate system. c Transformed coordinate
system in which a linear decision line can be used

Fig. 6.13 The kernel trick: the original 2D space is transformed into a 3D space where the sepa-
ration of the classes is linear (this case can be found in Example 6.7 using dataset ‘P2’)

where 〈 f (xi), f (x)〉 is the inner product [f (xi)]T f (x). In (6.26), we can observe
that for the classification, only the kernel function 〈 f (xi), f (x)〉 = K (xi , x) that
computes inner products in the transformed space is required. Consequently, using
(6.26) we can write (6.25) in general as

hSVM(x) =
{
1 if

∑
i λi zi K (xi , x) + a0 > 0

0 otherwise
. (6.27)

Table 6.1 shows typical kernel functions that are used by SVM classifiers. They
should be a symmetric positive (semi-) definite function [11]. In pyxvis Library,
SVM classifier is implemented with function clf_model with parameter ‘svm-lin’,
‘svm-pol’, ‘svm-rbf’, ‘svm-sig’ for the four kernels of Table 6.1.

Python Example 6.7 In this example, we show how to train and test SVM
classifiers. We use the same simulated data addressed in Example 6.2 and illustrated
in Fig. 6.2.

246 6 Classification in X-Ray Testing

Table 6.1 Kernel functions used by SVM

Name K (xi , x)

Linear 〈xi , x〉
qth degree polynomial (1 + 〈xi , x〉)q

Radial basis (RBF) exp(−γ ||xi − x||2)
Sigmoid tanh(α1〈xi , x〉 + α2)

Listing 6.7 : Classification using SVM

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
(X,d,Xt,dt) = loadFeatures(’../data/P2/P2’) # data for the donut example
ss_cl = [’svm−lin’,’svm−rbf(0.1,0.05)’,’svm−rbf(0.03,1)’,’svm−pol(0.1,0.5,2)’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is Fig. 6.13 (for the donut example) and Fig. 6.14 (for the
general example). In this case, we obtain 86.75%, 91.50%, 93.50%, and 91.25%
for SVM-LIN, SVM-RBF (gamma=0.1, C=0.05), SVM-RBF (gamma=0.03, C=1),
and SVM-POL (gamma=0.1, C=0.5, degree=2).5 The reader can compare this
result with the accuracy obtained by classifier of Examples 6.2, 6.3, 6.4, 6.5, and
6.6. It is clear that (no-linear) SVM classifiers can properly model the curved
distributions. �

Python Example 6.8 In this example, we show how easy is to compare
many classifiers in pyxvis Library. The idea of this example is to train and test a list
of 30 classifiers given in variable ss_cl. We use now a dataset of 3 classes and 2
features as illustrated in Fig. 6.15.

Listing 6.8 : Classification using many classifiers

import numpy as np
from sklearn.metrics import accuracy_score
from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

5In sklearn library, ‘gamma’ defines the influence of the single training examples, ‘C’ is like a regu-
larization parameter in the optimization, and ‘degree’ is the the degree of the polynomial for SVM-
POL. See https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html for further
details.

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

6.2 Classifiers 247

Fig. 6.14 Classification using SVM. [→ Example 6.7]

248 6 Classification in X-Ray Testing

List of classifiers
ss_cl = [’dmin’,’lda’,’qda’,’maha’,’knn3’,’knn5’,’knn7’,’knn11’,’knn15’,

’bayes−naive’,’bayes−kde’,’adaboost’,’lr’,’rf’,’tree’,
’svm−lin’,’svm−rbf(0.1,1)’,’svm−rbf(0.1,0.5)’,’svm−rbf(0.5,1)’,
’svm−pol(0.05,0.1,2)’,’svm−pol(0.05,0.5,2)’,’svm−pol(0.05,0.5,3)’,
’svm−sig(0.1,1)’,’svm−sig(0.1,0.5)’,’svm−sig(0.5,1)’,
’nn(10,)’,’nn(20,)’,’nn(12,6)’,’nn(20,10,4)’]

(X,d,Xt,dt) = load_features(’../data/G3/G3’) # load training and testing data

n = len(ss_cl)
acc_train = np.zeros((n,))
acc_test = np.zeros((n,))
for k in range(n):

(name,params) = clf_model(ss_cl[k]) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
acc_train[k] = accuracy_score(d,d0) # accuracy in training
acc_test[k] = accuracy_score(dt,ds) # accuracy in testing
print(f’{k:3d}’+’) ’+f’{ss_cl[k]:20s}’+ ’: ’ +

f’Acc−Train = {acc_train[k]:.4f}’+ ’ ’ + f’Acc−Test = {acc_test[k]:.4f}’)
ks = np.argmax(acc_test)
print(’−−−’)
print(’Best Classifier:’)
print(f’{ks:3d}’+’) ’+f’{ss_cl[ks]:20s}’+ ’: ’ +

f’Acc−Train = {acc_train[ks]:.4f}’+ ’ ’ + f’Acc−Test = {acc_test[ks]:.4f}’)
print(’−−−’)
(name,params) = clf_model(ss_cl[ks]) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,ss_cl[ks]) # display results and decision lines

The output of this code is the evaluation of the accuracy on training and testing
subsets of the 30 classifiers as follows:

0) dmin : Acc-Train = 0.8717 Acc-Test = 0.8833
1) lda : Acc-Train = 0.8758 Acc-Test = 0.8883
2) qda : Acc-Train = 0.8808 Acc-Test = 0.8700
3) maha : Acc-Train = 0.9075 Acc-Test = 0.9050
4) knn3 : Acc-Train = 0.9467 Acc-Test = 0.9383
5) knn5 : Acc-Train = 0.9425 Acc-Test = 0.9417
6) knn7 : Acc-Train = 0.9483 Acc-Test = 0.9433
7) knn11 : Acc-Train = 0.9442 Acc-Test = 0.9383
8) knn15 : Acc-Train = 0.9400 Acc-Test = 0.9383
9) bayes-naive : Acc-Train = 0.9250 Acc-Test = 0.9367

10) bayes-kde : Acc-Train = 0.9083 Acc-Test = 0.9133
11) adaboost : Acc-Train = 0.7750 Acc-Test = 0.7867
12) lr : Acc-Train = 0.8558 Acc-Test = 0.8667
13) rf : Acc-Train = 0.9975 Acc-Test = 0.9317
14) tree : Acc-Train = 0.9175 Acc-Test = 0.9083
15) svm-lin : Acc-Train = 0.8842 Acc-Test = 0.8933
16) svm-rbf(0.1,1) : Acc-Train = 0.9342 Acc-Test = 0.9400
17) svm-rbf(0.1,0.5) : Acc-Train = 0.9358 Acc-Test = 0.9383
18) svm-rbf(0.5,1) : Acc-Train = 0.9367 Acc-Test = 0.9450

6.2 Classifiers 249

Fig. 6.15 Best classification by evaluating many classifiers 6.8. [→ Example 6.8]

19) svm-pol(0.05,0.1,2) : Acc-Train = 0.8700 Acc-Test = 0.8600
20) svm-pol(0.05,0.5,2) : Acc-Train = 0.8933 Acc-Test = 0.9033
21) svm-pol(0.05,0.5,3) : Acc-Train = 0.8908 Acc-Test = 0.8917
22) svm-sig(0.1,1) : Acc-Train = 0.2567 Acc-Test = 0.2617
23) svm-sig(0.1,0.5) : Acc-Train = 0.2692 Acc-Test = 0.2700
24) svm-sig(0.5,1) : Acc-Train = 0.0058 Acc-Test = 0.0083
25) nn(10,) : Acc-Train = 0.9358 Acc-Test = 0.9333
26) nn(20,) : Acc-Train = 0.9342 Acc-Test = 0.9383
27) nn(12,6) : Acc-Train = 0.9375 Acc-Test = 0.9367
28) nn(20,10,4) : Acc-Train = 0.9367 Acc-Test = 0.9417

Best Classifier:
18) svm-rbf(0.5,1) : Acc-Train = 0.9367 Acc-Test = 0.9450

In addition, Fig. 6.15 shows the classifier that achieves the best accuracy on testing
subset. In this case, the best classifier is #19 – ‘svm-rbf(0.5,1)’with an accuracy
of 94.50%. �

6.2.9 Classification Using Sparse Representations

In this kind of classifier, the strategy is to use sparse representations of the original
data to perform the classification. Thus, the features are first transformed into a
sparse representation (see Sect. 5.5) and afterwards, the sparse representation is used
by the classifier.

According to Eq. (5.38) it is possible to learn the dictionary D and estimate the
most important constitutive components Z = {zi }N

i=1 of the representative signals
X = {xi }N

i=1. In a supervised problem—with labeled data (xi , di), where di is the
class of sample xi—, naturally the classification problem can be stated as follows
[1]: given training data (xi , di), design a classifier h—with parameters θ—which

250 6 Classification in X-Ray Testing

maps the transformed samples zi to its classification label di , thus, h(zi , θ) should be
di . In order to classify a new sample data x, it is transformed into z using dictionary
D and then it is classified as d = h(z, θ). Nevertheless, since Z is estimated to rep-
resent the original data efficiently, there is no reason to accept as true that this new
representation can ensure an optimal separation of the classes. Another classifica-
tion strategy uses one dictionary Dk per class [15], that is learned using the set Xk ,6

that contains only the samples of class ωk of the training data: Xk = {xi |di = k}.
With this strategy, using (5.39) a test sample x is codified by z = zk with dictio-
nary D = Dk for all classes k = 1 . . . K , and a reconstruction error is computed as
ek = ||x − Dkzk ||. Finally, sample x is assigned to the class with the smallest recon-
struction error:

hSPAr(x) = argmin
k

||x − Dkzk ||. (6.28)

This test strategy, however, does not scale well for a large number of classes.
For these reasons, new strategies have been developed in order to learn at the same
time reconstructive and discriminative dictionaries (for robustness to noise and for
efficient classification respectively) [24]. This can be achieved by adding a new
discrimination term in the objective function that includes the representation that is
also the most different from the one of signals in other data classes:

argmin
D,Z,θ

[||X − DZ||22 + γ J (D,Z,d, θ)] subject to ||z||0 ≤ T . (6.29)

The discrimination term J (D,Z, c, θ) depends on the dictionary, the coefficient vec-
tors, the labels of the samples d, and the parameters θ of the model used for classifi-
cation. Parameter γ weights the trade-off between approximation and classification
performance. This strategy with a common dictionary has the advantage of sharing
some atoms of the dictionary when representing samples of different classes. Equa-
tion (6.29) can be solved efficiently by fixed-point continuation methods when the
classifier is based on logistic regression methods [16].

Another approach that can be used to classify samples in X-ray testing is based
on sparse representations of random patches. This approach, called Adaptive Sparse
Representation of Random Patches (ASR+), has been successfully used in other
recognition problems [17, 18]. The method consists of two stages (see Fig. 6.16): In
the training stage, random patches are extracted from representative images of each
class (e.g., in baggage screening we can have handguns, razor blades, etc.) in order
to construct representative dictionaries. A stop list is used to remove very common
words from the dictionaries [23]. In the testing stage, random test patches of the
query image are extracted, and for each non-stopped test patch a dictionary is built
concatenating the ‘best’ representative dictionary of each class. Using this adapted
dictionary, each non-stopped test patch is classified following the Sparse Repre-

6There are some approaches that define the dictionary as the original samples (see Sparse Repre-
sentation Classification (SRC) [26]), where Dk = Xk .

6.2 Classifiers 251

Fig. 6.16 Overview of the proposed method. The figure illustrates the recognition of three dif-
ferent objects. The shown classes are three: clips, razor blades, and springs. There are two stages:
Learning and Testing. The stop list is used to filter out patches that are not discriminating for these
classes. The stopped patches are not considered in the dictionaries of each class and in the testing
stage

Fig. 6.17 Images used in our experiments. The five classes are: handguns, shuriken, razor blades,
clips, and background

sentation Classification (SRC) methodology [26] by minimizing the reconstruction
error. Finally, the query image is classified by patch voting. Thus, this approach is
able to learn a model for each recognition task dealing with a larger degree of vari-
ability in contrast, pose, expression, occlusion, object size, and distance from the
X-ray detector.

This method was tested in the recognition of five classes in baggage screening:
handguns, shuriken, razor blades, clips, and background (see some samples in Fig.
6.17). In our experiments, there are 100 images per class. All images were resized to

252 6 Classification in X-Ray Testing

128 × 128 pixels. The evaluation is performed using leave-one-out (see Sect. 6.3.3).
The obtained accuracy was η = 97.17%.

6.3 Performance Evaluation

In this section, we will see how to evaluate the performance of a classifier and how to
build the datasets ‘training data’ and ‘testing data’. In general, there is a set D that
contains all available data, that is the features of representative samples and their
corresponding labels. Sometimes, from set D a subset X ⊂ D is chosen, however, in
most casesX = D. We call subsetX the ‘used data’ because it is used to evaluate the
performance of a classifier as illustrated in Fig. 6.18. Set X consists of (i) a matrix
X of size N × p, for N samples and p features; and (ii) a vector d of N elements
with the labels (one label per sample).

In order to estimate the accuracy of a classifier, we can follow this general strat-
egy:

1. From X, select training data (Xtrain,dtrain) and testing data (Xtest,dtest):

(Xtrain,dtrain,Xtest,dtest) = DataSelection(X) (6.30)

Typically, a given percentage S of X is used for training and the rest (100-S)
for testing. That means, we have Ntrain = N × S/100 samples for training and
Ntest = N − Ntrain for training. There are many ways to perform the data selec-
tion:

• Random (yes/no): we can choose randomly Ntrain of X or, for example, the
first Ntrain samples of X.

Fig. 6.18 Estimation of the accuracy of a classifier. Figures 6.19, 6.20, and 6.21 show different
strategies

6.3 Performance Evaluation 253

• Stratified (yes/no): in stratified case, we select the same S percentage of each
class (so the relative number of samples for each class is the same in orig-
inal dataset and selected dataset), whereas in unstratified cases we select S
percentage of X (so the relative number of samples for each class is not nec-
essarily the same in original dataset and selected dataset).

• Replacement (with/without): Data selection without replacement means that
once a sample has been selected, it may not be selected again. In data selec-
tion with replacement a sample of X is allowed to be replicated. It must be
ensured that samples in the training data are not in the testing data and vicev-
ersa.

2. Using training data (Xtrain,dtrain) train a classifier:

θ = ClassifierTrain(Xtrain,dtrain), (6.31)

where θ is a vector that contains all parameters of the classifier that was trained.
For instance, in a simple classifier like Euclidean minimal distance (see Sect.
6.2.1) we store in θ only the centers of mass of each class in the training set.

3. Using the features of the testing data Xtest, the classifier and its parameters θ ,
we predict the labels of each testing sample and store them in vector ds of Ntest
elements:

ds = Classify(Xtest, θ). (6.32)

It is worth mentioning that in this step it is not allowed to use the labels of the
testing data dtest.

4. Now, we can compute the accuracy of the testing data defined as

ηi = # test samples correctly predicted

Ntest
. (6.33)

5. In (6.33), we use index i because the procedure from steps 1 to 4 can be repeated
n times, for i = 1 . . . n. Thus, we can compute the final estimation of the accu-
racy as

η = 1

n

n∑

i=1

ηi . (6.34)

In the following section, we will explain typical strategies used in the literature.

6.3.1 Hold-Out

In hold-out, we take a percentage S ofX for training and the rest for testing as shown
in 6.19. In our general methodology, this strategy corresponds to n = 1 in (6.34).
This is the simplest way how to evaluate the accuracy. It is recommended just in case

254 6 Classification in X-Ray Testing

Fig. 6.19 Estimation of the accuracy of a classifier using hold-out. The figure follows the color
representation of Fig. 6.18 for training and testing data

the computational time is so enormous that the cost of training a classifier several
times is prohibitive. Hold-out can be a good starting point to test if the features and
classifier that we are designing are suitable for the recognition task. Nevertheless,
the standard deviation of the accuracy estimation can be very high as we will see in
next example. An example that evaluates 30 classifiers using hold-out methodology
has already been shown in Example 6.8. Additionally, in this section we show a very
simple example that evaluates only one classifier.

Python Example 6.9 In this example, we show how to evaluate a classifier
using hold-out strategy. We use the same simulated data addressed in Example 6.2
and illustrated in Fig. 6.2.

Listing 6.9 : Hold-out

from pyxvis.learning.classifiers import clf_model
from pyxvis.learning.evaluation import hold_out
from pyxvis.io.data import load_features
from pyxvis.io.plots import show_confusion_matrix
from sklearn.model_selection import train_test_split

load available dataset
(X0,d0) = load_features(’../data/F2/F2’,full=1)

definition of training and testing data
X,Xt,d,dt = train_test_split(X0,d0,test_size=0.2, stratify=d0)

definition of the classifier
cl_name = ’svm−rbf(0.1,1)’ # generic name of the classifier
(name,params) = clf_model(cl_name) # function name and parameters

Hold−out (train on (X,d), test on (Xt), compare with dt)
ds,acc,_ = hold_out([name,params],X,d,Xt,dt) # hold out
print(cl_name+ ’: ’ + f’Accuracy = {acc:.4f}’)
display confusion matrix
show_confusion_matrix(dt,ds,’Testing subset’)

The output of this code is the value of the estimated accuracy. This number should
be around 93%. This method is implemented in function hold_out in pyxvis Library.
If we repeat this experiment 1000 times, the mean of the accuracy is 0.9287, the
standard deviation is 0.0152, the maximal value is 0.9708 and the minimal value is
0.8792, i.e., the estimation is not very accurate because there is a variation of 9.2%
between maximal and minimal value! �

6.3 Performance Evaluation 255

Fig. 6.20 Estimation of the accuracy of a classifier using cross-validation with v folds. The figure
follows the color representation of Fig. 6.18 for training and testing data

6.3.2 Cross-Validation

Cross-validation is widely used in machine learning problems [13]. In cross-valida-
tion, the data is divided into v folds. A portion s = (v − 1)/v of the whole data is
used to train and the rest (1/v) for test. This experiment is repeated v times rotating
train and test data to evaluate the stability of the classifier as shown in Fig. 6.20.
Then, when training is performed, the samples that were initially removed can be
used to test the performance of the classifier on these test data. Thus, one can eval-
uate the generalization capabilities of the classifier by testing how well the method
will classify samples that have not already been examined. The estimated perfor-
mance, η, is calculated as the mean of the v percentages of the true classifications
are tabulated in each case, i.e., n = v (6.34). In our experiments, we use v = 10
folds.7 Confidence intervals, where the classification performance η expects to fall,
are obtained from the test sets. These are determined by the cross-validation tech-
nique, according to a t—Student test [20]. Thus, the performance and also the con-
fidence can be assessed.

Python Example 6.10 In this example, we show how to evaluate 30 clas-
sifiers using cross-validation strategy with 10 folds. We use the same simulated

7The number of folds v can be another number, for instance 5-fold or 20-fold cross-validation
estimate offers very similar performances. In our experiments, we use 10-fold cross-validation
because it has become the standard method in practical terms [25].

256 6 Classification in X-Ray Testing

data addressed in Example 6.8 with three classes and two features as illustrated in
Fig. 6.15.

Listing 6.10 : Cross-validation with many classifiers

import numpy as np
from pyxvis.learning.classifiers import clf_model
from pyxvis.learning.evaluation import cross_validation
from pyxvis.io.data import load_features

List of classifiers
ss_cl = [’dmin’,’lda’,’qda’,’maha’,’knn3’,’knn5’,’knn7’,’knn11’,’knn15’,

’bayes−naive’,’bayes−kde’,’adaboost’,’lr’,’rf’,’tree’,
’svm−lin’,’svm−rbf(0.1,1)’,’svm−rbf(0.1,0.5)’,’svm−rbf(0.5,1)’,
’svm−pol(0.05,0.1,2)’,’svm−pol(0.05,0.5,2)’,’svm−pol(0.05,0.5,3)’,
’svm−sig(0.1,1)’,’svm−sig(0.1,0.5)’,’svm−sig(0.5,1)’,
’nn(10,)’,’nn(20,)’,’nn(12,6)’,’nn(20,10,4)’]

(X,d) = load_features(’../data/G3/G3’,full=1) # load training and testing data

n = len(ss_cl)
folds = 10
acc = np.zeros((n,))
for k in range(n):

(name,params) = clf_model(ss_cl[k]) # function name and parameters
acc[k] = cross_validation([name,params],X,d,folds=folds)
print(f’{k:3d}’+’) ’+f’{ss_cl[k]:20s}’+ ’: ’ + f’CV−Accuracy = {acc[k]:.4f}’)

ks = np.argmax(acc)
print(’−−−’)
print(’Best Classifier:’)
print(f’{ks:3d}’+’) ’+f’{ss_cl[ks]:20s}’+ ’: ’ + f’CV−Accuracy = {acc[ks]:.4f}’)
print(’−−−’)

The output of this code is the estimated accuracy of each classifier. They are pre-
sented as follows:

0) dmin : CV-Accuracy = 0.8800
1) lda : CV-Accuracy = 0.8828
2) qda : CV-Accuracy = 0.8811
3) maha : CV-Accuracy = 0.9067
4) knn3 : CV-Accuracy = 0.9250
5) knn5 : CV-Accuracy = 0.9278
6) knn7 : CV-Accuracy = 0.9356
7) knn11 : CV-Accuracy = 0.9344
8) knn15 : CV-Accuracy = 0.9378
9) bayes-naive : CV-Accuracy = 0.9228

10) bayes-kde : CV-Accuracy = 0.9161
11) adaboost : CV-Accuracy = 0.7961
12) lr : CV-Accuracy = 0.8628
13) rf : CV-Accuracy = 0.9328
14) tree : CV-Accuracy = 0.9056
15) svm-lin : CV-Accuracy = 0.8833
16) svm-rbf(0.1,1) : CV-Accuracy = 0.9339
17) svm-rbf(0.1,0.5) : CV-Accuracy = 0.9344
18) svm-rbf(0.5,1) : CV-Accuracy = 0.9367
19) svm-pol(0.05,0.1,2) : CV-Accuracy = 0.8739
20) svm-pol(0.05,0.5,2) : CV-Accuracy = 0.9033

6.3 Performance Evaluation 257

Fig. 6.21 Estimation of the accuracy of a classifier using leave-one-out. The figure follows the
color representation of Fig. 6.18 for training and testing data

21) svm-pol(0.05,0.5,3) : CV-Accuracy = 0.9017
22) svm-sig(0.1,1) : CV-Accuracy = 0.2583
23) svm-sig(0.1,0.5) : CV-Accuracy = 0.2661
24) svm-sig(0.5,1) : CV-Accuracy = 0.0089
25) nn(10,) : CV-Accuracy = 0.9333
26) nn(20,) : CV-Accuracy = 0.9350
27) nn(12,6) : CV-Accuracy = 0.9367
28) nn(20,10,4) : CV-Accuracy = 0.9372

Best Classifier:

8) knn15 : CV-Accuracy = 0.9378

The best result has been achieved by classifier KNN with 15 neighbors. The
reader can compare these results with the accuracies presented in Example 6.8.
This method is implemented in function cross_validation in pyxvis Library. In order
to compare Hold-Out with Cross-Validation variations we can repeat the cross-
validation 1000 times for classifier KNN with 15 neighbors. The results are: mean
of the accuracy is 93.80%, the standard deviation is 1.65%, the maximal value is
94.28%, and the minimal value is 93.11%, i.e., the estimation is more accurate
because there is a variation of 1.2% between maximal and minimal. In hold-out
the variation for a similar classifier was 9.2%. �

258 6 Classification in X-Ray Testing

6.3.3 Leave-One-Out

In leave-one-out strategy, we perform the cross-validation technique with N folds
(the number of samples of X). That means, we leave one sample out for testing and
we train with the rest (N − 1 samples). The operation is repeated for each sample
as illustrated in 6.21. The estimated accuracy is the average over the N estimations.

This method is implemented in function leave_one_out in pyxvis Library. In
order to illustrate the estimation accuracy using leave-one-out, we can change—in
Example 6.10—the line dedicated to cross-validation by the following line:

acc[k] = leave_one_out([name,params],X,d)

The results are given as follows:

--
0) dmin : LOO-Accuracy = 0.8800
1) lda : LOO-Accuracy = 0.8828
2) qda : LOO-Accuracy = 0.8811
3) maha : LOO-Accuracy = 0.9067
4) knn3 : LOO-Accuracy = 0.9272
5) knn5 : LOO-Accuracy = 0.9300
6) knn7 : LOO-Accuracy = 0.9367
7) knn11 : LOO-Accuracy = 0.9372
8) knn15 : LOO-Accuracy = 0.9383
9) bayes-naive : LOO-Accuracy = 0.9233

10) bayes-kde : LOO-Accuracy = 0.9133
11) adaboost : LOO-Accuracy = 0.8572
12) lr : LOO-Accuracy = 0.8661
13) rf : LOO-Accuracy = 0.9294
14) tree : LOO-Accuracy = 0.9094
15) svm-lin : LOO-Accuracy = 0.8844
16) svm-rbf(0.1,1) : LOO-Accuracy = 0.9350
17) svm-rbf(0.1,0.5) : LOO-Accuracy = 0.9356
18) svm-rbf(0.5,1) : LOO-Accuracy = 0.9378
19) svm-pol(0.05,0.1,2) : LOO-Accuracy = 0.8778
20) svm-pol(0.05,0.5,2) : LOO-Accuracy = 0.9061
21) svm-pol(0.05,0.5,3) : LOO-Accuracy = 0.9033
22) svm-sig(0.1,1) : LOO-Accuracy = 0.2589
23) svm-sig(0.1,0.5) : LOO-Accuracy = 0.2656
24) svm-sig(0.5,1) : LOO-Accuracy = 0.0067
25) nn(10,) : LOO-Accuracy = 0.9333
26) nn(20,) : LOO-Accuracy = 0.9350
27) nn(12,6) : LOO-Accuracy = 0.9356
28) nn(20,10,4) : LOO-Accuracy = 0.9400

--
Best Classifier:
28) nn(20,10,4) : LOO-Accuracy = 0.9400

--

In this example, the best accuracy was achieved by classifier ‘nn(20,10,4)’ with
an accuracy of 94.00%. The reader can compare these results with the accuracies
presented in Examples 6.8 and 6.10. It is not necessary to repeat it, because Leave-
one-out always obtains the same result. That means, there is no variation of the

6.3 Performance Evaluation 259

computed performance, however, leave-one-out is very time-consuming because the
number of trainings and testings is very large.

6.3.4 Confusion Matrix

The confusion matrix, T, is a K × K matrix, where K is the number of classes
of our data. The element T (i, j) of the confusion matrix is defined as the number
of samples that belong to class ωi and were classified as ω j . A perfect classifica-
tion means that T (i, i) is Ni and T (i, j) = 0 for i 	= j , where Ni is the number of
samples of class ωi .

Python Example 6.11 In this example, we show how to compute the con-
fusion matrix for two classifiers DMIN and SVM-RBF. We use the same simulated
data addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.11 : Confusion matrix

from pyxvis.learning.classifiers import clf_model,define_classifier
from pyxvis.learning.classifiers import train_classifier,test_classifier
from pyxvis.io.plots import show_confusion_matrix
from pyxvis.io.data import load_features

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data

Classifier definition
ss_cl = [’dmin’,’svm−rbf(0.1,1)’]
n = len(ss_cl)
for k in range(n):

(name,params) = clf_model(ss_cl[k]) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
ds = test_classifier(clf,Xt) # clasification of testing
show_confusion_matrix(dt,ds,ss_cl[k]) # display confusion matrix

The output of this code is two confusion matrices that are illustrated in Fig. 6.22.
This method is implemented in function plot_confussion_matrix in pyxvis Library that
calls function confusion_matrix of sklearn library. �

Typically, in X-ray testing, there are two classes: ω1 known as the target or object
of interest, and ω0 known as the no-target or background. In this two-class recog-
nition problem (known as ‘detection’), we are interested in detecting the target cor-
rectly. It is very helpful to build a 2 × 2 confusion matrix as shown in Table 6.2. We
distinguish

• True Positive (T P): number of targets correctly classified.
• True Negative (T N): number of non-targets correctly classified.
• False Positive (F P): number of non-targets classified as targets. The false posi-
tives are known as ‘false alarms’ and ‘Type I error’.

• False Positive (F N): number of targets classified as no-targets. The false nega-
tives are known as ‘Type II error’.

260 6 Classification in X-Ray Testing

Fig. 6.22 Visualization of confusion matrix of LDA and SVM-RBF. [→ Example 6.11]

Table 6.2 Confusion matrix for two classes

predicted → ω1 ω0

actual ↓
ω1 T P F N

ω0 F P T N

Fig. 6.23 Detection of a target: the ground truth (ideal detection given by an expert) is called in
this figure as ‘target’ (the positive instances). The achieved detection is not a perfect match. For
this reason, there are false positives and false negatives

6.3 Performance Evaluation 261

From these statistics, we can obtain following definitions (see Fig. 6.23):
Positive instances:

P = T P + F N (6.35)

Negative instances:
N = T N + F P (6.36)

Detections:
D = T P + F P (6.37)

True positive rate, known as Sensitivity or Recall:

T P R = Sn = Re = T P

P
= T P

T P + F N
(6.38)

Precision or Positive Predictive Value:

Pr = T P

D
= T P

T P + F P
(6.39)

True negative rate, known as Specificity:

T N R = Sp = T N

N
= T N

T N + F P
(6.40)

False positive rate, known as 1-Specificity:

F P R = 1 − Sp = F P

N
= F P

T N + F P
(6.41)

False negative rate, known as Miss Rate:

F N R = M R = F N

P
= F N

T P + F N
(6.42)

Accuracy:

ACC = T P + T N

P + N
(6.43)

F1-score:

F1 = 2
Pr · Re

Pr + Re
(6.44)

262 6 Classification in X-Ray Testing

Fig. 6.24 Performance curves for a detection problem (see Fig. 6.23). Left) ROC curve. Right)
Precision/Recall curve

Ideally, a perfect detection means all existing targets are correctly detected with-
out any false alarms, i.e., T P = P and F P = 0. It is equivalent to: (i) T P R = 1
and F P R = 0, or (ii) Pr = 1 and Re = 1, or (ii) F N = F P = 0.

6.3.5 ROC and Precision-Recall Curves

It is clear, that the performance of a detector depends on some parameters, e.g., the
value of a threshold θ when segmenting a defect in an X-ray image (see Fig. 6.23).
An example to see this phenomenon is shown in Fig. 6.24: increasing the sensitivity
of the method the target will be 100% detected, however, the false positives will be
increased as well. Typically, there is a trade-off between increasing the true posi-
tives and decreasing the false positives, because by increasing the first, the second
increases as well. In a detector, i.e., a binary classification task, we can analyze the
performance of the detector by variating its parameter θ .

As a measure of the performance of a detector, two curves can be plotted:
ROC curve: We can analyze the values T P R and F P R as defined in (6.38) and
(6.41) respectively (see Fig. 6.24). In this case, we obtain T P R(θ) and F P R(θ)

because the values of these variables depend on parameter θ .
The receiver operation characteristic (ROC) curve is a plot of T P R(θ) versus

F P R(θ). Thus, we choose different values {θi }n
i=1 and for each value θi we plot the

corresponding point (xi , yi), where xi = F P R(θi) and yi = T P R(θi). An example
is illustrated in Fig. 6.25. A measure of performance of the detector is the area under
the curve (AUC) [6].

6.3 Performance Evaluation 263

Fig. 6.25 ROC curves (right) for different class distributions (left). The area under the curve
(AUC) gives a good measure of the performance of the detection. The obtained points (xi , yi)

are used to fit the ROC curve to y = (1 − aγ xb
)/(1 − aγ). In each ROC curve, the ‘best operation

point’ is shown as spscolorred *. This point is defined as the closest point to ideal operation point
(0,1)

Precision/Recall curve: We can analyze the values Pr and Re as defined in (6.41)
and (6.38) respectively (see Fig. 6.24). In this case, we obtain Pr(θ) and Re(θ)

because the values of these variables depend on parameter θ . As in ROC curve,
we choose different values {θi }n

i=1 and for each value θi we plot the corresponding
point (xi , yi), where xi = Re(θi) and yi = Pr(θi). A measure of performance of
the detector is the area under the curve, called average precision (PA) [5].

264 6 Classification in X-Ray Testing

Fig. 6.26 Intersection over Union (IoU). For a perfect detection the normalized area A equals 1

It is worthwhile to mention that the precision and recall values do not depend on
the true negatives, like the false positive rate in ROC curve. This is a great advan-
tage when the negative class can be immensely large, e.g., in defect detection, the
number of positive instances is limited (there are usually few cases available), and
the number of negative instances can be very large. In those cases, F P R will be
extremely low, and erroneously we could think that the number of false positives is
very low. This is a typical mistake when using ROC curves. In this kind of computer
vision problem, typically the precision/recall curve is used.

In object detection, for example, [14], it is very important how to give a measure
of the performance of a detector. For this end, there is a set of images with objects
to detect, and for each one a bounding box that encloses it has been annotated by a
group of human operators. For simplicity, the annotation consists of drawing rect-
angles (instead of marking every single pixel of the objects). A very established
metric in the computer vision community is the ‘intersection over union’ (IoU) and
the PASCAL criterion [9]. For this metric, we need to define two bounding boxes
according to Fig. 6.26: GT, the bounding box of the ground truth, i.e., a rectan-
gle that encloses the target region (P), and DT, the bounding box of the detection,
i.e., a rectangle that encloses the detection (D). The PASCAL criterion considers a
detected object if the normalized area of overlap ‘A’ between the detected bounding
box DT and the ground truth bounding box GT exceeds 0.5, where A is defined as
follows:

A = area(GT ∩ DT)

area(GT ∪ DT)
, (6.45)

withGT ∩ DT the intersection of the detected and ground truth bounding boxes and
GT ∪ DT their union. An example in the detection of defects in aluminum castings
is illustrated in Fig. 6.27.

6.3 Performance Evaluation 265

Fig. 6.27 Detection on a single image. A detection is considered as true positive is the normalized
area of overlap (6.45) is greater than 50%. In this example, the true positives are shown in green,
the false positives in red, and the ground truth in yellow

With PASCAL criterion, the statistics of true positives and negatives, and false
positives and negatives are measured, and the precision/recall values are computed
in different scenarios. The mean average precision (mPA) is typically used to com-
pare the performance of different object detection algorithms (see details in [14]).

Python Example 6.12 In this example, we show how to compute the ROC
curves and Precision/Recall curves for three classifiers based on neural networks
in the classification of a two-class problem with two features. We use the same
simulated data addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.12 : ROC and Precision/Recall curves

from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics import precision_recall_curve, average_precision_score
from pyxvis.learning.classifiers import clf_model,define_classifier,train_classifier
from pyxvis.io.plots import plot_features, plot_ROC, plot_precision_recall
from pyxvis.io.data import load_features

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load train/test data
plot_features(X,d,’F2 dataset’) # plot of feature space

ss_cl = [’nn(3,)’,’nn(4,)’,’nn(8,)’] # classifiers to evaluate

266 6 Classification in X-Ray Testing

Fig. 6.28 ROC curve and Precision/Recall curve for different neural networks using data distribu-

tion of Fig. 6.2. [→ Example 6.12]

curve = 1 # 0 = ROC curve,
1 = precision/recall curve

for k in range(len(ss_cl)):
cl_name = ss_cl[k]
(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
p = clf.predict_proba(Xt)[:,1] # classification probabilities
if curve == 0: # ROC curve

auc = roc_auc_score(dt, p) # area under curve
fpr,tpr,_ = roc_curve(dt, p) # false and true positive rates
plot_ROC(fpr,tpr,cl_name,auc,[k,n]) # ROC curve

else: # precision/recall curve
ap = average_precision_score(dt, p) # area under curve
pr,re,_ = precision_recall_curve(dt, p) # precision and recall values
plot_precision_recall(pr,re,cl_name,ap,[k,n]) # precision/recall curve

The output of this code are the curves of Fig. 6.28. Variable curve must be set to
0 or 1 for ROC curve or Precision/Recall curve respectively. This method is imple-
mented with functions roc_auc_score, roc_curve, precision_recall_curve,
and average_precision_score of sklearn library and functions plot_ROC and
plot_precision_recall of pyxvis Library. �

6.4 Classifier Selection

In order to select the best classifier, we explain in this section a methodology using
two examples. Our examples are implemented using powerful functions of pyxvis
Library. With these functions, easily, we can (i) extract features, (ii) select features
and (iii) select a classifier. Thus, the user can: choose the feature groups that will
be extracted, choose the feature selection algorithms to be used, the maximal num-
ber of features to be selected, and choose the classifiers that will be evaluated and
the number of folds of the cross-validation technique. Using these simple functions,

6.4 Classifier Selection 267

it is possible to design the computer vision system automatically according to the
general computer vision framework explained in these three chapters (image pro-
cessing, image representation and classification, and summarized in Fig. 5.28).

Using this methodology, with a representative set of X-ray images and their
labels, we can know which features and which classifier can be used to obtain the
best performance. The idea is to find a classification strategy (feature extraction,
features selection, and classification as shown in Fig. 6.1) that maximizes the accu-
racy in this dataset. The proposed methodology (based on [19]) evaluates a set of
combinations of features (selected by may feature selection algorithms) and trains
and tests a set of classifiers to find best strategy, i.e., the highest accuracy.

In order to show this methodology, we show two examples, Example 6.13 for
the detection of fishbones (that uses intensity features), and Example 6.14 for the

Algorithm 1 Feature and Classifier Selection

Input: (X,d):Training subset; (Xt ,dt): Testing subset
Input: p = [p1 · · · pn]: number of features to be selected
Input: f = [f1 · · · fm]: feature selectors algorithms
Input: h = [h1 · · · hq]: classification algorithms
1: η̂ = 0//Initialization of the highest accuracy in training subset
2: η̂t = 0//Initialization of the highest accuracy in testing subset
3: for i = 1 to n do
4: for j = 1 to m do
5: s = FeatureSelection(f j , pi ,X, d) //Selection of pi features of X using f j

6: X′ = X[:, s] //Training subset using selected features
7: X′

t = Xt [:, s] //Testing subset using selected features
8: for k = 1 to q do
9: η = CrossValidation(hk,X′,d) //Accuracy of classifier hk on data X′
10: ηt = HoldOut(hk,X′,d,X′

t ,dt) //Accuracy of classifier hk on data X′
t

11: if η > η̂ then
12: η̂ = η //Highest performance in training
13: if ηt > η̂t then
14: η̂t = ηt //Highest performance in testing
15: ŝ = s //Indices of the best selected features
16: p̂ = pi //Number of selected features
17: ĵ = j //Index of the best feature selector
18: k̂ = k //Index of the best feature classifier
19: end if
20: end if
21: end for
22: end for
23: end for
Output: η̂, η̂t , ŝ, p̂, ĵ, k̂

268 6 Classification in X-Ray Testing

classification of three threat objects (that uses geometric features extracted after a
segmentation of the threat objects).

In order to find the best classification strategy, we use an exhaustive search
(Algorithm 1) as follows: we define q classifiers, n feature selection algorithms,
and m different numbers of selected features. That means, we valuate the perfor-
mance of the q classifiers on the m × n subsets of selected features. For instance,
we could have: q = 3 classifiers (LDA, KNN with 3 neighbors, and SVM with
RBF), m = 2 feature selection algorithms (SFS with Fisher criterion and SFS with
QDA criterion) with 5, 10, 15, and 20 selected features (n = 4). The accuracy is
measured on the training dataset using cross-validation, and on the testing dataset
using hold-out. According to Algorithm 1, the highest achieved accuracy on training
datase (searching in all q × m × n) is computed as η̂. In case a maximal value for
η̂, the accuracy on testing dataset is evaluated as η̂t . This algorithm is implemented
in function best_features_classifier of pyxvis Library.

Python Example 6.13 In this example, we can see the whole process of
Algorithm 1: (i) feature extraction, (ii) feature selection, and (ii) classifier selection.
pyxvis Library provides a suite of helpful commands that can be used in this pro-
cess. The idea is to design a classifier that can be used to detect fish bones in X-ray
images of salmon filets (see details of the dataset in Example 5.9). In this code, we
show how to automatically design a computer vision system for this application. For
this example, (i) we extract basic intensity, Gabor, LBP, Haralick with distance of
2 pixels, Fourier and HOG features; (ii) we evaluate four different feature selection
algorithms based on Fisher, QDA, SVM-LIN and SVM-RBF with 3, 5, 10, 12, and
15 features to be selected; and (iii) we train and test 8 different classifiers: Maha-
lanobis, Bayes-KDE, SVM-LIN, SVM-RBF, QDA, LDA, KNN-3, KNN-7, and a
Neural Network.

Listing 6.13 : Feature extraction, feature selection and classification selection - 1

import numpy as np
from pyxvis.io.data import load_features,save_features
from pyxvis.learning.evaluation import best_features_classifier
from pyxvis.features.selection import clean_norm,clean_norm_transform
from pyxvis.features.extraction import extract_features_labels

dataname = ’fbdata’ # prefix of npy files of training and testing data
fxnew = 1 # the features are (0) loaded or (1) extracted and saved
if fxnew:

features to extract
fx = [’basicint’,’gabor−ri’,’lbp−ri’,’haralick−2’,’fourier’,’hog’]
feature extraction in training images
path = ’../images/fishbones/’
X,d = extract_features_labels(fx,path+’train’,’jpg’)
feature extraction in testing images
Xt,dt = extract_features_labels(fx,path+’test’,’jpg’)
backup of extracted features
save_features(X,d,Xt,dt,dataname)

else:
X,d,Xt,dt = load_features(dataname)

X,sclean,a,b = clean_norm(X)
Xt = clean_norm_transform(Xt,sclean,a,b)

6.4 Classifier Selection 269

Fig. 6.29 Examples of Algorithm 1 for feature and classification selection. [→ Example 6.13

] [→ Example 6.14]

Classifiers to evaluate
ss_cl = [’maha’,’bayes−kde’,’svm−lin’,’svm−rbf’,’qda’,’lda’,’knn3’,’knn7’,’nn’]
Number of features to select
ff = [3,5,10,12,15]
Feature selectors to evaluate
ss_fs = [’fisher’,’qda’,’svm−lin’,’svm−rbf’]

clbest,ssbest = best_features_classifier(ss_fs,ff,ss_cl,X,d,Xt,dt,
’Accuracy in Fishbones’)

print(’ Selected Features: ’+str((np.sort(sclean[ssbest]))))

The result of this algorithm is illustrated in Fig. 6.29-Top. We can see that the
best performance was achieved by classifier SVM-RBF using 10 features that were
selected using SFS algorithm with Fisher criterion. The accuracy on testing dataset
is in this case 97.50%. The indices of the selected features are shown in following
output:

270 6 Classification in X-Ray Testing

--
Best iteration: 7 (maximum of testing accuracy)

Feature Selector: fisher with 10 features
: (Fisher,)

Classifier: svm-rbf
: (SVC, kernel = "rbf", gamma=0.1,C=1) CrossVal with 5 folds

Training-Acc: 0.9734
Testing-Acc: 0.9750

Selected Features: [3 20 21 39 51 57 63 65 69 71]
--

�

Python Example 6.14 In this example, we can see the whole process of
Algorithm 1 using geometric features: (i) feature extraction, (ii) feature selection,
and (ii) classifier selection using pyxvis Library. The idea is to design a classifier that
can be used to recognize threat objects in X-ray images (see details of the dataset
in Example 5.10). In this code, we show how to automatically design a computer
vision system for this application. For this example, (i) we extract basic geomet-
ric features, Hu, Flusser and Gupta moments, and Fourier descriptors (the features
extracted from the segmented image, for this end we use function seg_bimodal of
pyxvis Library as explained in Sect. 4.5.1); (ii) we evaluate four different feature
selection algorithms based on Fisher, QDA, SVM-LIN, and SVM-RBF with 2, 3, 5,
10, 15, and 20 features to be selected; and (iii) we train and test 8 different classifiers:
Mahalanobis, Bayes-KDE, SVM-LIN, SVM-RBF, QDA, LDA, KNN-3, KNN-7,
and a Neural Network.

Listing 6.14 : Feature extraction, feature selection and classification selection - 2

import numpy as np
from pyxvis.io.data import load_features,save_features
from pyxvis.learning.evaluation import best_features_classifier
from pyxvis.features.selection import clean_norm,clean_norm_transform
from pyxvis.features.extraction import extract_features_labels

dataname = ’thdata’ # prefix of npy files of training and testing data
fxnew = 1 # the features are (0) loaded or (1) extracted and saved
if fxnew:

features to extract
fx = [’flusser’,’hugeo’,’basicgeo’,’fourierdes’,’gupta’]
feature extraction in training images
path = ’../images/threatobjects/’
X,d = extract_features_labels(fx,path+’train’,’jpg’,segmentation = ’bimodal’)
feature extraction in testing images
Xt,dt = extract_features_labels(fx,path+’test’,’jpg’,segmentation = ’bimodal’)
backup of extracted features
save_features(X,d,Xt,dt,dataname)

else:
X,d,Xt,dt = load_features(dataname)

Nx = X.shape[1]
X,sclean,a,b = clean_norm(X)
Xt = clean_norm_transform(Xt,sclean,a,b)
Classifiers to evaluate
ss_cl = [’maha’,’bayes−kde’,’svm−lin’,’svm−rbf’,’qda’,’lda’,’knn3’,’knn7’,’nn’]
Number of features to select

6.4 Classifier Selection 271

ff = [2,3,5,10,15,20]
Feature selectors to evaluate
ss_fs = [’fisher’,’qda’,’svm−lin’,’svm−rbf’]

clbest,ssbest = best_features_classifier(ss_fs,ff,ss_cl,X,d,Xt,dt,
’Accuracy in Threat Objects’)

print(’ Extracted Features: ’+str(Nx))
print(’ Cleaned Features: ’+str(len(sclean)))
print(’ Selected Features: ’+str(len(ssbest))+ ’ > ’+str((np.sort(sclean[ssbest]))))

The result of this algorithm is illustrated in Fig. 6.29-Bottom. We can see that the
best performance was achieved by classifier KNN-3 using 5 features selected using
QDA criterion. The accuracy on testing dataset is in this case 97.67%. The indices
of the selected features are shown in following output:

--
Best iteration: 7 (maximum of testing accuracy)

Feature Selector: qda with 5 features
: (QuadraticDiscriminantAnalysis,)

Classifier: knn3
: (KNeighborsClassifier, n_neighbors=3) CrossVal with 5 folds

Training-Acc: 0.9909
Testing-Acc: 0.9767

Extracted Features: 48
Cleaned Features: 44

Selected Features: 5 > \cite{
--

�

6.5 Summary

In this chapter, we covered the following classifiers:

• Minimal distance (using Euclidean and Mahalanobis distance)
• Bayes
• Linear and quadratic discriminant analysis
• K-nearest neighbors
• Neural networks
• Support vector machines
• Classifiers using sparse representations

In addition, several simple examples were presented using simulated data and
real data. The reader can easily modify the proposed implementations in order to
test different classification strategies or real data.

Afterwards, we presented how to estimate the accuracy of a classifier using
hold-out, cross-validation, and leave-one-out. We covered the well-known confu-
sion matrix and receiver-operation-characteristic curve will be outlined as well.

Finally, we presented an example that involves all steps of a pattern recognition
problem, i.e., feature extraction, feature selection, classifier’s design, and evaluation.

272 6 Classification in X-Ray Testing

All steps can be designed automatically using a simple code program of a couple of
lines.

References

1. Bar, L., Sapiro, G.: Hierarchical dictionary learning for invariant classification. In: 2010 IEEE
International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3578–
3581 (2010)

2. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975)

3. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (2005)
4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
5. Boyd, K., Eng, K.H., Page, C.D.: Area under the precision-recall curve: point estimates and

confidence intervals. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 451–466. Springer, Berlin (2013)

6. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning
algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)

7. Carvajal, K., Chacón, M., Mery, D., Acuna, G.: Neural network method for failure detection
with skewed class distribution. Insight 46(7), 399–402 (2004)

8. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)
9. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual

object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
10. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Inc.,

San Diego (1990)
11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edn. Springer, Berlin (2009)
12. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Patt. Anal.

Mach. Intell. 22(1), 4–37 (2000)
13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selec-

tion. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Cite-
seer (1995)

14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.:
Microsoft COCO: common objects in context. In: European Conference on Computer Vision,
pp. 740–755. Springer, Berlin (2014)

15. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries
for local image analysis. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2008)

16. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. Tech.
Rep. 6652, INRIA (2008)

17. Mery, D., Bowyer, K.: Face recognition via adaptive sparse representations of random patches.
In: IEEE Workshop on Information Forensics and Security (WIFS 2014) (2014)

18. Mery, D., Bowyer, K.: Recognition of facial attributes using adaptive sparse representations
of random patches. In: 1st International Workshop on SoftBiometrics, in Conjunction with
European Conference on Computer Vision (ECCV 2014) (2014)

19. Mery, D., Pedreschi, F., Soto, A.: Automated design of a computer vision system for visual
food quality evaluation. Food Bioprocess Technol. 6(8), 2093–2108 (2013)

20. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
21. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University

Press, Cambridge (2004)
22. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press,

Boca Raton (2003)

References 273

23. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos.
In: International Conference on Computer Vision (ICCV 2003), pp. 1470–1477 (2003)

24. Tosic, I., Frossard, P.: Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)
25. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd

edn. Morgan Kaufmann, Burlington (2005)
26. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse

representation. IEEE Trans. Patt. Anal. Mach. Intell. 31(2), 210–227 (2009)

	6 Classification in X-Ray Testing
	6.1 Introduction
	6.2 Classifiers
	6.2.1 Minimal Distance
	6.2.2 Mahalanobis Distance
	6.2.3 Bayes
	6.2.4 Linear Discriminant Analysis
	6.2.5 Quadratic Discriminant Analysis
	6.2.6 K-Nearest Neighbors
	6.2.7 Neural Networks
	6.2.8 Support Vector Machines
	6.2.9 Classification Using Sparse Representations

	6.3 Performance Evaluation
	6.3.1 Hold-Out
	6.3.2 Cross-Validation
	6.3.3 Leave-One-Out
	6.3.4 Confusion Matrix
	6.3.5 ROC and Precision-Recall Curves

	6.4 Classifier Selection
	6.5 Summary
	References

