
Chapter 1
X-ray Testing

Abstract X-ray testing has been developed for the inspection of materials or
objects, where the aim is to analyze—nondestructively—those inner parts that are
undetectable to the naked eye. Thus, X-ray testing is used to determine if a test
object deviates from a given set of specifications. Typical applications are the
inspection of automotive parts, quality control of welds, baggage screening, anal-
ysis of food products, inspection of cargos, and quality control of electronic cir-
cuits. In order to achieve efficient and effective X-ray testing, automated and semi-
automated systems based on computer vision algorithms are being developed to
execute this task. In this book, we present a general overview of computer vision
approaches that have been used in X-ray testing in the last decades. In this chapter,
we offer an introduction to our book by covering relevant issues of X-ray testing.
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2 1 X-ray Testing

1.1 Introduction

Since Röntgen discovered in 1895 [90] that X-rays can be used to identify inner
structures, X-rays have been developed not only for their use in medical imaging
for human beings, but also in non-destructive testing (NDT) for materials or objects,
where the aim is to analyze (non-destructively) the inner parts that are undetectable
to the naked eye [44]. NDT with X-rays, known as X-ray testing, is used in many
applications such as the inspection of automotive parts, quality control of welds,
baggage screening, analysis of food products, inspection of cargos, and quality con-
trol of electronic circuits among others. X-ray testing usually involves measurement
of specific part features such as integrity or geometric dimensions in order to detect,
recognize, or evaluate wanted (or unwanted) inner parts. Thus, X-ray testing is a
form of NDT defined as a task that uses X-ray imaging to determine if a test object
deviates from a given set of specifications, without changing or altering that object
in any way.

The most widely used X-ray imaging systems employed in X-ray testing are
Digital Radiography (DR) and Computed Tomography (CT) imaging.1 On the one
hand, DR emphasizes high throughput. It uses electronic sensors (instead of tradi-
tional radiographic film) to obtain a digital X-ray projection of the target object,
consequently it is simple and quick. A flat amorphous silicon detector can be used
as an image sensor in X-ray testing systems. In such detectors, and using a semi-
conductor, energy from the X-ray is converted directly into an electrical signal that
can be digitalized into an X-ray digital image [91]. On the other hand, CT imaging
provides a cross-sectional image of the target object so that each object is clearly
separated from any others, however, CT imaging requires a considerable number of
projections to reconstruct an accurate cross-sectional image, which is time consum-
ing.

In order to achieve efficient and effective X-ray testing, automated and semi-
automated systems are being developed to execute this task that can be difficult
(e.g., recognition of very small defects), tedious (e.g., inspection of thousand of sim-
ilar items) and sometimes dangerous (e.g., explosive detection in baggage screen-
ing). Compared to manual X-ray testing, automated systems offer the advantages of
objectivity and reproducibility for every test. Fundamental disadvantages are, how-
ever, the complexity of their configuration, the inflexibility to any change in the
evaluation process, and sometimes the inability to analyze intricate images, which
is something that people can generally do well. Research and development is, how-
ever, ongoing into automated adaptive processes to accommodate modifications.

X-ray testing is one of the more accepted ways for examining an object without
destroying it. The purpose of this non-destructive method is to detect or recognize
certain parts of interest that are located inside a test object and are thus not detectable
to the naked eye. A typical example is the inspection of castings [70, 73]. The

1Computed tomography is beyond the scope of this book due to space considerations, however,
some simple examples and basic concepts are covered (see Sect. 1.6.5). For NDT applications
using CT, the reader is referred to [18, 34].
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Fig. 1.1 Simple model of an X-ray computer vision system. In this example, a computer vision
algorithm is used to detect a defect inside the test object automatically

material defects occurring in the casting process such as cavity, gas, inclusion, and
sponge must be detected to satisfy the security requirements; consequently, it is
necessary to check 100% of the parts.

The principle aspects of an X-ray testing system is illustrated in Fig. 1.1. Typi-
cally, it comprises the following steps:

• The test object is located in the desired position.
• The X-ray source generates X-rays which pass through the test object.
• The X-rays are detected and converted (e.g., by a flat panel or by an image inten-
sifier and CCD-camera) in order to obtain a digital X-ray image.

• Computer vision algorithms are used to evaluate the X-ray image.

In last decades, flat detectors made of amorphous silicon have been widely used as
image sensors in some industrial inspection systems [38, 83]. In these detectors, the
energy from the X-ray is converted directly into an electrical signal by a semicon-
ductor (without an image intensifier). However, using flat detectors is not always
feasible because of their high cost compared to image intensifiers.

The properties of the X-rays that are used in X-ray testing are summarized in the
following:

• X-rays can penetrate light blocking materials (e.g., metal) depending on a mate-
rial’s thickness;

• X-rays can be detected by photographic materials or electronic sensors;
• X-rays can spread a straight line; and
• X-rays can use many substances to stimulate fluorescence (fluoroscopy).

1.2 History

The discovery of X-rays by Röntgen in November 1895 [90] defines the beginning
of the X-ray testing of metallic parts. A couple of days after the discovery of the ‘X’
radiation, he made radiographs of balance-weights in a closed box and a chamber of
a shotgun (see Fig. 1.2). Röntgen observed that using X-rays, one can look not only
into the inside of a human body, but also into metallic articles, if the strength and
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Fig. 1.2 X-ray image of balance-weights in a closed box and a shotgun taken by Wilhelm Conrad
Röntgen in the summer of 1896. Courtesy of the Deutsches Röntgen-Museum in Würzburg

intensity of the X-rays are strong enough [62]. The potential use in the detection
of hidden defects within armor-plates and machine parts was already envisioned at
Yale University in 1896 [88].

The industrial use of X-rays began in Germany only two decades after their dis-
covery. X-ray testing took place at that time with the help of radiographic films
[92]. Radioscopy with fluorescent screens was developed only toward the end of
the 1930s and at the beginning of the 1940s. In the following years, closed cabinets
were already being used for X-ray testing of aluminum castings in the automobile
industry [82].

In 1948 the image intensifier was developed, which converts X-rays into a visi-
ble light [106]. Image intensifier technology was originally developed as a low-light
enhancer for military night-vision devices [41]. The introduction of the image inten-
sifier led to considerable progress in the inspection technique, since otherwise the
examiner would have to regard the X-ray image on a fluorescent screen. The bright-
ness of the image was so small that the eyes needed a long time to adapt to the dark.
Into the image amplifier an examiner could always look in the radiograph directly
with the help of special optics. Image intensifiers, television equipment, and elec-
trically controlled manipulators were developed further in the 1960s as radioscopic
systems, which were widely used for casting and welding inspection in the 70s [88].

X-ray testing systems for baggage inspection were already developed in the 70s
[25, 80] and the 80s [26, 58]. The object under test was scanned using fluoroscopy
and the images were inspected on a a fluorescent screen.
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Computer Tomography (CT) was developed in 1972 [16, 106]. With 2D-CT
cross-sectional pictures of the object computed from its projections. These slices,
which represent a reconstruction of the local distribution of the absorption coeffi-
cients of the object, are processed in order to find objects of interest in the test object.
However, one disadvantage of the procedure is the high time requirement: for the
reconstruction of meaningful slice images, both a minimum gate time per object
position is necessary for a sufficient signal/noise ratio along with a minimum num-
ber of projections. For this reason, the use of computer tomography is so far limited
in X-ray testing to the material development and research range, as well as to the
examination of particularly important and expensive parts [49]. Later 3D-CT was
developed, with which the whole object is reconstructed as voxels. State-of-the-art
industrial computer tomography used this kind of CT [34, 110].

Approaches to the automatic image evaluation as well as image restoration were
already used in the 80s with the help of the image processing techniques and CCD-
cameras [82]. The first fully automatic X-ray testing systems were installed in the
industry at the beginning of the 90s. One example can be found in the quality con-
trol of aluminum wheels performed by Alumetall Co. in Nuremberg, in which an
automatic casting part recognition is also integrated using bar codes for the adjust-
ment of the image analysis algorithms for different types of wheel [88]. At the
end of the 90s, flat panel detectors from amorphous silicon were industrially used
in some test systems [9, 50]. With these detectors the X-rays are converted by a
semiconductor directly into electrical signals (without image intensifier). However,
the X-ray testing with flat detectors was not always profitable due to their high costs
(in the comparison to the image intensifier).

Before 9/11, X-ray testing of luggage mainly focused on capturing the images
of their content: the reader can find in [74] an interesting analysis done in 1989
of several aircraft attacks in the world, and the existing technologies to detect the
terrorists’ threats based on Thermal-Neutron Activation (TNA), Fast-Neutron Acti-
vation (FNA), and dual-energy X-rays (used in medicine since early 70). In the 90s,
Explosive Detection Systems (EDS) were developed based on X-ray imaging [75],
and computed tomography through elastic scatter X-ray (comparing the structure
of irradiated [99] advanced image analysis) to improve the detection performance.
Nevertheless, the 9/11 attacks increased the security policies at airports, which also
produced the interest of the scientific community for researching topics related to
security using advanced computational techniques using pseudocoloring of X-ray
images, for example, [96]. It has not been easy for X-ray baggage inspection to
deal with low-density, often organic, materials (very important in baggage and food
inspection). This is because typical X-ray inspection systems use conventional pho-
ton integration detectors that are unable to record the incoming X-ray energy. How-
ever, state-of-the-art multicolor detector technology could assist to overcome this
problem. Thanks to recent advances in the development of photon counting detec-
tors, multicolour X-ray imaging has become possible. Today, novel X-ray detectors
have been developed. For example, detectors based on new semiconductors like
CdTe or CZT [48, 101] that can count photons at high rates by discriminating dif-
ferent energy channels, in which image noise can be decreased, contrast can be



6 1 X-ray Testing

enhanced and specific materials can be imaged; or wafer-scale CMOS flat panels
with a pixel size of 100 µm × 100 µm in an array of 1220 × 12000 pixels [21].

In the last few decades, fully automatic and semi-automatic test systems have
been used in many applications as we will cover in Chap. 9.

1.3 Physics of the X-rays

In general, X-rays are from same physical nature as visible light, radiowaves,
microwaves, ultraviolet, or infrared. They are all electromagnetic waves, which
spread at the speed of light, although with different wavelengths (see Table 1.1)

In the following, the formation of X-rays and their interaction with matter are
explained. These principles of physics can be found in many textbooks (see, for
example, [6, 64]).

1.3.1 Formation of X-rays

The formation of X-rays is performed in an X-ray tube in five steps as shown in
Fig. 1.3:

1. A high DC voltage U is applied between cathode and anode.
2. The cathode is strongly heated by the voltage Uh , so that the kinetic energy of

the heat is transferred to the mobile electrons in the cathode. The electrons are
thus in a position to withdraw from the cathode.

3. The electrons emitted by the hot cathode are accelerated by high voltage U .
4. These high-energy electrons, which are called cathode rays, are incident on the

anode.

Table 1.1 Electromagnetic spectrum [56]

Electromagnetic- Radio- Micro- Infra- Visible Ultra- X-rays Gamma-

waves −→ waves waves red light violet rays

Wavelength in (m) 1 ∼ 10−3 ∼ 7, 7 ·
10−7 ∼

3, 9 ·
10−7 ∼

10−8 ∼ 10−12 ∼ 10−14 ∼

104 1 10−3 7, 7 ·
10−7

3, 9 ·
10−7

10−8 10−12

Frequency in (Hz) 3 · 108 ∼ 3 ·
1011 ∼

3, 9 ·
1014 ∼

7, 7 ·
1014 ∼

3 ·
1016 ∼

3 ·
1020 ∼

3 ·
1022 ∼

3 · 104 3 · 108 3 · 1011 3, 9 ·
1014

7, 7 ·
1014

3 · 1016 3 · 1020

Energy in (eV) 1, 2 ·
10−6 ∼

1, 2 ·
10−3 ∼

1, 6 ∼ 3, 2 ∼ 1, 2 ·
102 ∼

1, 2 ·
106 ∼

1, 2 ·
108 ∼

1, 2 ·
10−10

1, 2 ·
10−6

1, 2 ·
10−3

1, 6 3, 2 1, 2 · 102 1, 2 · 106
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Fig. 1.3 Basic diagram of an X-ray tube

5. X-rays are produced when electrons of sufficiently high-energy incident on the
anode are suddenly decelerated.

There is a distinction between discrete and continuous X-rays (commonly
known as Bremsstrahlung).

Discrete X-rays
These result in transitions of electrons in the inner shells of an atom (see Fig. 1.4a).
This happens when a highly accelerated electron e− 1© knocks an electron e−

1 from
the atomic shell. Since both electrons leave the atom 2©, a hole is formed (where
e−
1 was) that is immediately filled by an outer electron (e.g., e−

2 ) 3©. In an atom,
the electrons may be shown only on certain bands with a precisely specified energy
level. The deeper the band is in the atom, the greater is the energy of that electron.
When jumping from the electron to a lower band (in our example e−

2 ) the energy
difference between the two energy levels is emitted as electromagnetic radiation.
Energy transitions in the region of the inner electron shells which have high binding
energies lead to the emission of X-rays 4©. Therefore, the spectrum of this radiation
consists of lines at specific wavelengths or energies that are exclusively dependent
on the nature of the atom (see Fig. 1.4c). These are called characteristic X-ray lines.

Continuous X-rays (Bremsstrahlung)
In addition to the discrete X-rays, there is a continuos radiation called Brems-
strahlung. This occurs when a highly accelerated electron approaches the domain of
attraction of the atomic nucleus of the anode and are deflected due to the Coulomb
force (Fig. 1.4b). There is no collision between nucleus and electron. Since the elec-
tron interacts with the Coulomb force, the direction and velocity of the electron are
changed. In this deceleration, the electron loses some or all of the kinetic energy
that is emitted in the form of X-rays to the outside. The closer the electron is to the
nucleus, the greater is the deceleration and thus the energy of the Bremsstrahlung.
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Fig. 1.4 X-ray formation and spectrum

As electrons can come close to the nucleus at any distance, this electromagnetic
radiation has a continuous spectrum with an upper cut-off frequency Emax (see
Fig. 1.4c). The maximum energy is obtained when an electron is completely deceler-
ated, i.e., when the kinetic energy of the electron (Ekin = e ·U ) is converted entirely
into photon energy (Ephoto = h · ν), where e is the electric charge,U the anode volt-
age, h Planck’s constant, and ν the frequency of the electromagnetic wave. The
smallest possible X-ray wavelength becomes of Ekin = Ephoto(= Emax) and c = λν

with:

λmin = h · c
Emax

= h · c
e ·U (1.1)

where c is the speed of light in vacuum. Changes to the heating of the cathode Ih
(see Fig. 1.3) result in a proportional change of the energy flux density. An increase
in the high-voltageU leads to the displacement of the maximum energy flux density
to a higher energy.

1.3.2 Scattering and Absorption of X-rays

One aspect particularly important for X-ray testing is the attenuation of the inten-
sity of X-rays when passing through matter. The attenuation is a function of X-ray
energy and the material structure of the irradiated material (considerably in terms
of density and thickness). The attenuation occurs by two processes: scattering and
absorption. The scattering via classical scattering (Rayleigh scattering and Compton
effect); and absorption through the photoelectric effect, pair production, and partly
by the Compton effect. In the following, these are explained as interactions of X-
rays with atoms.
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Fig. 1.5 Interaction of X-rays with matter

Rayleigh Scattering
In this process, there is a scattering of X-rays from their original path, in which the
radiation loses no energy. The lower the energy of the radiation, the more they are
deflected from the original path of the rays.

Photo Effect
The photoelectric effect that occurs is likely to happen when the radiation energy
just exceeds the binding energy of the electron. In the photoelectric effect, the energy
of the incident photon is completely transferred to an electron, and mainly on one
of the inner electron shells. The electron takes over the energy that the quantum
of radiation it emits as kinetic energy and leaves the atomic union (Fig. 1.5a). This
effect increases proportionally to E−3Z5, where E is the energy of the radiation
and Z is the atomic number. The photoelectric effect plays a role in the small and
medium energies of X-rays.

Compton Effect
In case the radiation energy is very much larger than the binding energy of the
atomic electron, the X-ray radiation strikes out the electron from the atom. A portion
of the energy of the X-ray radiation is transferred to the electron and converted
into kinetic energy. The radiation is scattered and loses energy (see Fig. 1.5b). This
results in a scattering due to the change of direction of the photons at the same
time and absorption due to the energy loss. This effect is proportional to the atomic
number of the atom Z and inversely proportional to the energy of the radiation to
E .

Pair Production
In case the radiation energy is greater than 1.022 MeV and passes it straight into
the proximity of the nucleus, the radiation can be turned into matter, producing an
electron e− and e+ positron (see Fig. 1.5c), whose masses are me− = me+ = 511
keV/c2. The pair production is more frequent, the greater the quantum energy and
the higher the atomic number of the irradiated material. In cases, where X-rays
come from X-ray tubes there is no pair production, as the energy is always in the
keV range.
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a

b

Fig. 1.6 X-ray image formation according to absorption law: a X-ray image of a homogenous
object, and b X-ray image of an object with two different materials

Absorption and scattering can be described mathematically by the X-ray absorp-
tion law, which characterizes the intensity distribution of X-rays through matter:

ϕ(x) = ϕ0e
−μx (1.2)

with ϕ0 incident energy flux density, μ absorption coefficient, x thickness of the
irradiated matter and ϕ energy flux density after passage through matter with the
thickness of x (see Fig. 1.6a). The absorption coefficient μ depends on the incident
photon energy and the density and atomic number of the irradiated material. It is
composed of the coefficients of the classical dispersion σR , the photoelectric effect
τ , the Compton effect σC , and the pair production χ :

μ = σR + τ + σC + χ (1.3)

Because of the continuous distribution of the energy of the Bremsstrahlung (see
Fig. 1.4c) X-rays contain photons of different energies. In practice, therefore, the
course of the absorption curve can only be determined empirically. In the case of
aluminum, the course of the absorption coefficient in Fig. 1.7.
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Fig. 1.7 Absorption coefficient for aluminum [56]

Fig. 1.8 X-ray testing systems. There are two kinds of image acquisition system: based on
image intensifiers (top) and based on flat panels (bottom). In this example, an aluminum wheel
is inspected using a manipulator

1.4 X-ray Testing System

The essential components of an automatic X-ray testing system (see Fig. 1.8), such
as X-ray source, manipulator, image intensifier, and CCD-camera, are explained
below.
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1.4.1 X-ray Source

There are six requirements for an X-ray source [42]:

1. Adjustable quantum energy.
2. Possible large adjustable dose rate.
3. Intensity of the radiation as uniform as possible in the field of the object to be

irradiated.
4. Smallest possible intensity of radiation outside the area to be irradiated.
5. Acceptable price.
6. Long life with constancy of features.

In this section, we describe the essential components of an X-ray source that
fulfill the conditions mentioned. An explanation of the formation of X-rays can be
found in Sect. 1.3.1.

Hot Cathode
The cathode is made of a filament from which the electrons emerge through the
thermoelectric effect in the vacuum of the X-ray tube. Usually, tungsten (W), also
known as wolfram, is used because of its high melting point (about 33800C). An
influence of the dose rate (independent of the quantum energy of the X-rays) is
achieved by controlling the electron emission over the heating current (Figs. 1.3 and
1.9). The quantum energy is adjusted by the high voltage between electrodes. Using
an aperture that surrounds the filament, a thin, sharply defined electron beam is
generated.

Anode
At the anode surface, the kinetic energy of the cathode beam is converted 99%
into heat and only 1% into the desired X-rays. To reduce the geometric blur of the
imaging process a small focal spot is required. In the focal spot of an X-ray tube,
however, so much heat is created that the anode material may melt if the heat is not
dissipated quickly and effectively. In order to increase the performance of an X-ray
source and at the same time to reduce the focal spot, the anodes are constructed as
follows:

Anode Material
The surface layer should be made of materials with a high melting point, high atomic
number, and high thermal conductivity. The element tungsten (W) best meets the
three criteria. In order to reduce the roughening during the operation, as well as to
avoid cracking, it is alloyed with rhenium (Re).

Line Focus
To reduce the optical focus, the electron beam strikes the anode surface in the focal
spot inclined by about α = 70 ∼ 200 from the vertical axis.

Rotating Anode
By rotating the anode the applied heat can be distributed over an entire ring with-
out changing the size of the optical spot (see Fig. 1.9). The distribution of the high
thermal load is better the larger the diameter of the ring and the higher the rotation
speed.
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Fig. 1.9 Basic structure of an anode

Envelope
Given that between the electrodes the voltage is high voltage, anode, and cathode
must be electrically isolated from each other. In addition, the tube envelope forms
the vacuum vessel and the mechanical attachment of the tube components. Up until
now, glass has been used for this purpose. However, in recent years envelopes made
of metal and ceramics have been used.

1.4.2 Manipulator

A manipulator is a device that can be handled with the test objects in the desired
manner without the operator using his/her hands to touch [93]. In an X-ray computer
vision system, the task of the manipulator is the handling of the test objects as
illustrated in Fig. 1.10. Due to the possibilities of movement, degrees of freedom
of the manipulator, the test object can be brought into the desired position. For a
manual inspection, the axes of a manipulator are moved by means of one or more
joysticks. When an automatic inspection of this task is undertaken, it is handled by
a Programmable Logic Controller (PLC) or an industrial computer.

A manipulator consists of sliding elements and rotary elements with which a
translation or rotation of the object test can be performed. Previously, the manip-
ulator moved the test object through the X-ray beam [54]. This solution resulted
in a complicated mechanical construction with a high mechanical load, wear, and
increased maintenance. Today it is possible to move the X-ray tube and the detec-
tor that is rigidly connected to it by a C-arm manipulator. These manipulators are
much easier to control and are faster and cheaper [9, 50]. An example of such a
manipulator is described in Sect. 3.3.4 (see Fig. 3.14).
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Fig. 1.10 X-ray system with a manipulator ABB-Picker: the manipulator can rotate and translate
the test object to generate projections from different points of view

1.4.3 Image Intensifier

The X-ray image intensifier has two functions: (i) possible lossless conversion of
X-ray projection information into a visible image and (ii) its brightness gain [41]. On
the basis of the structure of an X-ray image intensifier shown in Fig. 1.11, the oper-
ation is explained. The X-ray radiation enters through an input screen into a vacuum
tube. As the radiolucent input screen has to withstand the atmospheric pressure, it
should not be too thin. Here metals are used with low atomic numbers that are trans-

Fig. 1.11 Schematic illustration of the operation of an image intensifier
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parent to X-rays, in which the absorption and scattering are relatively small. There-
after, the radiation incident on the X-ray fluoroscopy screen, in which the conversion
of X-radiation into visible light takes place. The X-rays are absorbed and about 2000
photons per X-ray quantum are triggered. The light strikes the photocathode and sets
photoelectrons. These electrons are accelerated by approximately 25 kV, which are
represented with reduced electron optics on an output phosphor screen. The output
image of the image intensifier is then captured by a CCD-camera.

The disadvantage of the image intensifier is the geometric distortion due to the
curvature of the input screen; details for this can be found in Sect. 3.3.2.

1.4.4 CCD-Camera

CCD-cameras use solid-state imaging sensors based on Charge-coupled device
(CCD) arrays. In these imaging sensors, the active detector surface is divided into
individual pixels in the CCD-sensor, while incident light is converted and trans-
ported into an electrical charge. The principle of the charge transport is based on the
charge transfer that takes place in the shift registers (Fig. 1.12).

The CCD-cameras are characterized by very good image geometry, high light-
sensitivity and several megapixels for conventional cameras. In modern days, there
are High Definition Television (HDTV) cameras up to 2,200,000 pixels. Further-
more, a CCD-camera can achieve a resolution of 46 megapixels and the exposure
time can be in a range between seconds and 1/8,000 s.

Due to the low sensitivity of the CCD-image sensor for direct X-ray radiation,
the radiation must be converted into visible light. In an X-ray testing system with
CCD-camera, this conversion happens in the image intensifier (see Sect. 1.4.3).

Fig. 1.12 Operation of a CCD-Array
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Fig. 1.13 Flatpanel: a Basic structure [46] und b Example: Canon, model CXDI-50G (resolution:
2208 × 2688 pixels and 4,096 grayscale image). In this example, the X-ray emitter tube is Poskom,
model PXM-20BT

1.4.5 Flat Panel

A second possible image acquisition system is the flat panel detector based on amor-
phous silicon (a-Si), in which the X-ray, without going through an image intensifier
with CCD-camera, is converted from a semiconductor directly into electrical signals
(see Fig. 1.13). In this technology, a thin view of a-Si is deposited on a glass plate
as a support. As in a CCD-chip, a pixel array with switching elements is generated
in the silicon layer so that the charge which is stored in the individual pixels can be
read out serially and electronically [16].

The advantages of this detector are larger image receiving surface, no geometric
distortion, a high gray level resolution (12 ∼ 16 Bit/Pixel), that is very light and
small. Due to the high gray level resolution and greater imaging surface less test
positions are required for the inspection. The low weight allows for easier and faster
mechanics [9, 50]. An flat detector is shown in Fig. 1.13.

1.4.6 Computer

In the context of X-ray testing, a computer system is typically used for the following
tasks:

1. To control the image acquisition system.
2. To store acquired X-ray images.
3. To run computer vision algorithms that evaluate X-ray images.
4. To compute statistical analysis.
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5. To display results.
6. To control the X-ray source.
7. To control the manipulator.

1.5 X-ray Imaging

In this section we present image formation, acquisition, and visualization.

1.5.1 X-ray Image Formation

In X-ray testing, X-ray radiation is passed through the test object, and a detec-
tor captures an X-ray image corresponding to the radiation intensity attenuated
by the object.2 According to the principle of photoelectric absorption (1.2): ϕ =
ϕ0 exp(−μx), where the transmitted intensity ϕ depends on the incident radiation
intensity ϕ0, the thickness x of the test object, and the energy dependent linear
absorption coefficient μ associated with the material, as illustrated in Fig. 1.6.

In a photographic image, the surface of the object is registered. On the contrary,
in an X-ray image, the inside of the object is captured. In order to illustrate the
formation, we simulate the X-ray image of the object of Fig. 1.1 in several posi-
tions (in this example we use the approach outlined in Chap. 8). In this case, we
have a homogenous test object with a spherical cavity inside. The result is shown
in Fig. 1.14. In this example, we can observe, on the one hand, the absorption phe-
nomenon. The thicker the object the more attenuated the X-rays. In our visualiza-
tion, bright gray values are used for high output energy (low attenuation), and dark
gray values for low-output energy (high attenuation). On the other hand, we can see
the phenomenon of the summation of shadows, i.e., the output intensity of an image
point corresponds to the summation of all the attenuations the X-ray encountered.

It is worth noting that if X-ray radiation passes through n different materials, with
absorption coefficients μi and thickness xi , for i = 1, . . . n, the transmitted intensity
ϕ can be expressed as

ϕ = ϕ0 exp

(
−

n∑
i=1

μi xi

)
. (1.4)

This explains the image generation of regions that are present within the test object,
as shown in Figs. 1.6 and 1.14, where a gas bubble is clearly detectable. The con-
trast in the X-ray image between a flaw and a defect-free area of the object test is

2As explained in Sect. 1.3, X-rays can be absorbed or scattered by the test object. In this book
we present only the first interaction because scattering is not commonly used for X-ray testing
applications covered in this book. For an interesting application based on the X-ray scattering
effect, the reader is referred to [108].
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Fig. 1.14 Simulation of an X-ray image of object of Fig. 1.1 from four different points of view.
Each arrow represents the orientation of the X-ray projection where the beginning corresponds to
the X-ray source

Fig. 1.15 Image formation process: a X-ray image of a wheel with two defects, b 3D plot of the
gray values of the image

distinctive. In such X-ray images, we can see that the defects, like voids, cracks, or
bubbles, show up as bright features. The reason is that the absorption in these areas
is shorter. Hence, according to the principle of differential absorption, the detec-
tion of flaws can be achieved automatically using image processing techniques that
are able to identify unexpected regions in a digital X-ray image. A real example is
shown in Fig. 1.15 which clearly depicts two defects.

Another example is illustrated in Fig. 1.16a, where a backpack containing knives
and a handgun is shown. However, X-ray images sometimes contain overlapped
objects, making it extremely difficult to distinguish them properly, as shown in
Fig. 1.16b where a handgun (superimposed onto a laptop) is almost impossible to
detect.
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ba

Fig. 1.16 X-ray images of a backpack. (Left) It is easy to recognize a handgun (and two knives).
(Right) It is extremely difficult to detect the handgun (see red rectangle)

1.5.2 Image Acquisition

In X-ray examination, X-ray radiation is passed through the material under test,
and a detector senses the radiation intensity attenuated by the material(s) of the test
object. The spacial distribution of the attenuation coefficients of the elements of the
object test define the X-ray information that is acquired by the sensor.

The X-ray image is usually captured with a CCD-camera (see Sect. 1.4.4) or a
flat panel (see Sect. 1.4.5). The digitalized image is stored in a matrix. An example
of a digitized X-ray image is illustrated in Fig. 1.17. The size of the image matrix
corresponds to the resolution of the image. In this example the size is 286 × 384
picture elements, or pixels. Each pixel has a gray value associated. This value is
between 0 and 255 for a scale of 28 = 256 gray levels. Here, ‘0’ means 100% black
and a value of ‘255’ corresponds to 100%white, as illustrated in Fig. 1.18. Typically,
the digitized X-ray image is stored in a 2Dmatrix, e.g.,X, and its pixels are arranged
in a grid manner. Thus, element x(i, j) denotes the gray value of the i th row of the
j th column, pixel (i, j), as shown in the matrix of Fig. 1.17.

Fig. 1.17 Digital X-ray image
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Fig. 1.18 256 gray level scale

The eye is only capable of resolving around 40 gray levels [20], however for
computer vision applications, gray level resolution must be a minimum of 256 lev-
els. In some applications, 216 = 65, 536 gray levels are used [50], which allows one
to evaluate both very dark and very bright regions in the same image.

1.5.3 X-ray Image Visualization

In many X-ray testing applications, it is necessary to display X-ray images. For
example, when we present a result based on an X-ray image, or when a human
evaluation of an X-ray image is required (e.g., baggage screening). In those cases, it
is useful to have a suitable visualization of X-ray images.

A simple way to visualize an X-ray image is using a grayscale as shown in
Fig. 1.17 that uses the grayscale of Fig. 1.18. Conventionally, X-ray images have
been ‘black and white’ because of the gray nature of the radiographies and fluores-
cent screens. Usually, a common human eye can distinguish less than 50 gray values
[20], however, a trained human eye is able to recognize up to 100 gray values[76].

Nowadays, it is possible to assign colors to grayscale images. With today’s com-
puting technology, especially with the ongoing advancements in displays, there is no
reason to think that X-ray images must be visualized in grayscale only. In the sev-
enteenth century, Newton said indeed rays, properly expressed, are not colored [3].
He was referring to light rays. Now, one can say that X-rays, properly expressed, are
not gray... because they are not visible! We can just find a suitable way to visualize
them. Thus, we can use the power of human vision that can distinguish thousands
of colors [76].

In order to improve the visualization of an X-ray image, pseudocoloring can
be used. In pseudocoloring, a gray value is converted into a color value. That
is, we need a map function that relates the gray value x with a color value
(R(x),G(x), B(x)) for red, green, and blue respectively if we use a RGB-based
color map [35]. Some examples of the color maps are illustrated in Fig. 1.19 in
which the transformations (R(x),G(x), B(x)) are shown for ‘jet’, ‘hsv’, ‘parula’,
‘hot’, ‘rainbow’, and ‘sinmap’ [35, 65, 76]. An example of a pseudocolored X-ray
image is illustrated in Fig. 1.20.

The mentioned transformations correspond to linear mappings that can be loaded
from a lookup table. In addition, there are some interesting algebraic or trigonomet-
ric transformations that can be used in pseudocoloring [1]. One of them is the ‘sin
transformation’ generally defined as
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Fig. 1.19 Color maps used in pseudocoloring

R(x) = | aR + kR sin(cos(ωRx) + θR) |
G(x) = | aG + kG sin(cos(ωGx) + θG) |
B(x) = | aB + kB sin(cos(ωBx) + θB) |,

(1.5)

where ωC , θC , kC , and aC are frequency, phase, amplitude, and off-set for channel
C = R,G, B. This color map is implemented in function sincolormap of pyxvis
Library.3 An example of a pseudocolored X-ray image is illustrated in Fig. 1.20 for
‘rainbow’ and ‘sinmap’.

Python Example 1.1: In Fig. 1.20, we have an X-ray image of a pen case.
In this example we show different visualizations of a small region of this image,
namely the pencil sharpener. The example shows the classical grayscale representa-
tion, pseudocolors and a 3D representation:

Listing 1.1 : X-ray image representation.

from pyxvis.io import gdxraydb
from pyxvis.io.visualization import show_xray_image, show_color_array,

show_image_as_surface, dynamic_colormap

image_set = gdxraydb.Baggages()

# Input image

3pyxvis Library is an open source Python library that is used in all examples of this book (see
Sect. 1.7.1).
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Fig. 1.20 Different visualizations of an X-ray image. [→ Example 1.1 ]

img = image_set.load_image(2, 4)

# Crop a region of interes within the image
roi = img[250:399, 340:529]

# Display the input image using customized color map
show_xray_image(img, color_map=’gray’)

# # Display the roi using various color maps
show_color_array(roi)
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# Display the selected region into a 3D projection
show_image_as_surface(roi)

The output of this code is in Fig. 1.20. We can see the use of a color map for
pseudocolor representations. A very interesting visualization is the 3D represen-
tation, where the z-axis corresponds to the gray value, in which the screw of
the sharpener is clearly distinguishable. The output of this example is obtained
using show_xray_image and show_color_array of pyxvis Library. The reader can
experiment a different visualization using command dynamic_colormap of pyxvis
Library, where a video of an X-ray image is presented. In this video, each frame is
displayed using a different colormap that slightly varies from frame to frame.4 �

1.5.4 Dual-Energy

In X-ray testing, dual-energy has been used successfully to provide information
about the materials of the objects under test. Interesting applications can be found
in baggage inspection and cargo inspection in the detection of organic or in-organic
material [4, 7, 22, 52].

Coefficient μ in (1.2) can be modeled as μ/ρ = α(Z , E), where ρ is the density
of the material, and α(Z , E) is the mass attenuation coefficient that depends on
the atomic number of the material Z , and the energy E of the X-ray photons. The
absorption coefficient varies with energy (or wavelength) according to [23]:

μ

ρ
= α(Z , E) = kλ3Z3, (1.6)

where k is a constant. Values for α(Z , E) are already measured and available in
several tables (see [47]). In order to identify the material composition—typically
for explosives or drug detection—the atomic number Z cannot be estimated using
only one image, as a thin material with a high atomic number can have the same
absorption as a thick material with a low atomic number [108]. For this purpose, a
dual-energy system is used [86], where the object is irradiated with a High-energy
level E1 and a low-level energy E2. In the first case, the absorbed energy depends
mainly on the density of the material. In the second case, however, the absorbed
energy depends primarily on the effective atomic number and the thickness of the
material [97]. For two energies i = 1, 2, we obtain from (1.2) and (1.6):

ϕi/ϕ0 = exp(−α(Z , Ei )ρz), (1.7)

Using dual-energy, it is possible to calculate the ratio:

4An example of a video generated with dynamic color is shown on https://youtu.be/Vsxff5CuTO0.

https://youtu.be/Vsxff5CuTO0
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Fig. 1.21 Generation of a pseudocolor image using dual-energy. In this example the colors corre-

spond to different materials. [→ Example 1.2 ]

R = ln(ϕ2/ϕ0)

ln(ϕ1/ϕ0)
= α(Z , E2)

α(Z , E1)
, (1.8)

where the term −ρz is canceled out, Z can be directly found using the known mea-
surements α(Z , E) [43]. From both images, a new image is generated using a fusion
model, usually a lookup-table that produces pseudocolor information [8, 31], as
shown in Fig. 1.21.

Python Example 1.2: In Fig. 1.21 we have two X-ray images acquired from
the same object at the same position but with different energies: the first one was
taken at 5mA and 70 kV and the second one at 5mA and 100 kV. For an image
generation of dual-energy, we can use the following Python code:

Listing 1.2 : Dual-energy.

from pyxvis.io import gdxraydb
from pyxvis.io.visualization import show_xray_image, show_color_array
from pyxvis.processing.images import dual_energy

import matplotlib.pylab as plt

# Select an images set and load images
image_set = gdxraydb.Baggages()
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# Input images
img1 = image_set.load_image(60, 1)
img2 = image_set.load_image(60, 2)

# Display the input image using customized color map
show_xray_image([img1, img2], color_map=’gray’)

# Load LUT
lut = image_set.load_data(60, data_type=’DualEnergyLUT’)

# Compute dual energy image
energy_image = dual_energy(img1, img2, lut)

# Show results
plt.imshow(energy_image, cmap=’viridis’)
plt.axis(’off’)
plt.show()

The output of this code is in Fig. 1.21. We can see the use of a color map for pseu-
docolor representations. The output image is a grayscale image, however, the each
gray value is displayed according to a 256 colors palette as shown in right bar. In
this example we use dual_energy of pyxvis Library. �

Some simple methods that deal with color X-ray images, based on dual-energy,
have been developed to recognize objects in baggage inspection, see, for example,
[22].

1.6 Computer Vision

Computer Vision is the science and technology of giving computers the ability to
‘see’ and ‘understand’ images taken by one or more cameras. The goal of computer
vision is to study and develop algorithms for interpreting the visual world captured
in images or videos. Typical topics of computer vision are detection and recogni-
tion, automated visual inspection, image stitching, image processing and analysis
(enhancement, filtering, morphological operations, edge detection, and segmenta-
tion), video processing (optical flow and tracking), recognition of patterns, feature
extraction and selection, local descriptors and classification algorithms, and finally,
geometric vision topics such as projective geometry, camera geometric model, cam-
era calibration, stereovision, and 3D reconstruction [11, 13, 27, 29, 30, 35, 36, 39,
51, 102].

In order to give an introduction to the topics of computer vision that have been
used in X-ray testing and will be covered in this book, we follow Fig. 1.22 which
illustrates an extended version of our simple model presented in Fig. 1.1.

In this general schema, X-ray images of a test object can be generated at different
positions and different energy levels. Depending on the application, each block of
this diagram can be (or not be) used. For example, there are applications such as
weld inspection that uses a segmentation of a single mono-energetic X-ray image
(black square), sometimes with pattern recognition approaches (red squares); appli-
cations like casting inspection that uses mono energetic multiple views where the
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Fig. 1.22 General schema for X-ray testing using computer vision (see text)

decision is taken analyzing individual views (green squares) or corresponding mul-
tiple views (blue squares); applications including baggage screening that use dual-
energy of single views (magenta squares) and multiple views (yellow squares); and
finally, applications for cargo inspections that employ active vision where a next—
best view is set according to the information of a single view (cyan squares). In each
case, the blocks without the corresponding color square are not used.

1.6.1 Geometric Model

The X-ray image of a test object corresponds to a projection in perspective, where a
3D point of the test object is viewed as a pixel in the digital X-ray image, as illus-
trated in Fig. 1.22. A geometric model that describes this projection can be highly
useful for 3D reconstruction and for data association between different views of the
same object. Thus, 3D features or multiple view 2D features can be used to improve
the diagnosis performed by using a single view.

As we will learn in Chap. 3, for the geometric model, four coordinate systems
are used (see Fig. 1.22):
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• OCS (X,Y, Z): Object Coordinate System, where a 3D point is defined using
coordinates attached to the test object.

• WCS (X̄ , Ȳ , Z̄): World Coordinate System, where the origin corresponds to the
optical center (X-ray source) and the Z̄ -axis is perpendicular to the projection
plane of the detector.

• PCS (x, y): Projection Coordinate System, where the 3D point is projected into
the projection plane Z̄ = f , and the origin is the intersection of this plane with
Z̄ -axis.

• ICS (u, v): Image Coordinate System, where a projected point is viewed in the
image. In this case, (x, y)—axes are set to be parallel to (u, v)—axes.

The geometric model OCS → ICS, i.e., transformation P : (X,Y, Z) → (u, v),
can be expressed in homogeneous coordinates as [67]:

λ

⎡
⎣u
v
1

⎤
⎦ = P

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ , (1.9)

where λ is a scale factor and P is a 3 × 4 matrix modeled as three transformations:
(i) OCS → WCS, i.e., transformation T1 : (X,Y, Z) → (X̄ , Ȳ , Z̄), using a 3D rota-
tion matrix R, and 3D translation vector t;
(ii) WCS → (PCS), i.e., transformation T2 : (X̄ , Ȳ , Z̄) → (x, y), using a perspec-
tive projection matrix that depends on focal distance f ; and
(iii) PCS → ICS, i.e., transformation T3 : (x, y) → (u, v), using scales factor αx

and αy , and 2D translation vector (u0, v0).
The three transformations OCS → WCS → PCS → ICS are expressed as

P =
⎡
⎣αx 0 u0

0 αx v0
0 0 1

⎤
⎦

︸ ︷︷ ︸
T3

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
T2

[
R t
0T 1

]
︸ ︷︷ ︸

T1

. (1.10)

The parameters included in matrix P can be estimated using a calibration approach
[39].

In order to obtain multiple views of the object, n different projections of the test
object can be achieved by rotating and translating it (for this task a manipulator can
be used). For the p-th projection, for p = 1 . . . n, the geometric model Pp used in
(1.9) is computed from (1.10) including 3D rotation matrixRp and 3D translation tp.
Matrices Pp can be estimated using a calibration object projected in the n different
positions [67] or using a bundle adjustment algorithm where the geometric model is
obtained from the n X-ray images of the test object [69].
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1.6.2 Single View Analysis

A computer vision system for single view analysis, as shown in Fig. 1.22, consists
typically of the following steps: an X-ray image of the test object is taken and stored
on a computer. The digital image is improved in order to enhance the details. The X-
ray image of the parts of interest is found and isolated from the background of the
scene. Significant features of the segmented parts are extracted. Selected features
are classified or analyzed in order to determine if the test object deviates from a
given set of specifications. Using a supervised pattern recognition methodology, the
selection of the features and the training of the classifier are performed using repre-
sentative images that are to be labeled by experts [27]. In this book, we will cover
several techniques of image processing (Chap. 4), image representation (Chap. 5),
and classification (Chap. 6) that have been in X-ray testing.

For the segmentation task, two general approaches can be used: a traditional
image segmentation or a sliding–window approach. In the first case, image process-
ing algorithms are used (e.g., histograms, edge detection, morphological operations,
filtering, etc. [35]). Nevertheless, inherent limitations of traditional segmentation
algorithms for complex tasks and increasing computational power have fostered
the emergence of an alternative approach based on the so-called sliding–window
paradigm. Sliding-window approaches have established themselves as state of the
art in computer vision problems where a visually complex object must be separated
from the background (see, for example, successful applications in face detection
[105] and human detection [24]). In the sliding-window approach, a detection win-
dow is moved over an input image in both horizontal and vertical directions, and
for each localization of the detection window, a classifier decides to which class
the corresponding portion of the image belongs according to its features. Here, a
set of candidate image areas are selected and all of them are fed to the subsequent
parts of the image analysis algorithm. This resembles a brute force approach where
the algorithm explores a large set of possible segmentations, and at the end the most
suitable is selected by the classification steps. An example for weld inspection using
sliding-windows can be found in Chap. 9.

1.6.3 Multiple View Analysis

It is well known that A picture is worth a thousand words, however, this is not
always true if we have an intricate image as illustrated in Fig. 1.16b. In certain X-
ray applications, e.g., baggage inspection, there are usually intricate X-ray images
due to overlapping parts inside the test object, where each pixel corresponds to the
attenuation of multiple parts, as expressed in (1.4).

In some cases, active vision can be used in order to adequate the viewpoint of the
test object to obtain more suitable X-ray images to analyze. Therefore, an algorithm
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is designed for guiding the manipulator of the X-ray imaging system to poses where
the detection performance should be higher [89] (see Fig. 1.22).

In other cases, multiple view analysis can be a powerful option for examining
complex objects where uncertainty can lead to misinterpretation. Multiple view
analysis offers advantages not only in 3D interpretation. Two or more images of
the same object taken from different points of view can be used to confirm and
improve the diagnosis undertaken by analyzing only one image. In the computer
vision community, there are many important contributions in multiple view analysis
(e.g., object class detection [100], motion segmentation [112], Simultaneous Local-
ization And Mapping (SLAM) [53], 3D reconstruction [2], people tracking [28],
breast cancer detection [103] and quality control [19]). In these fields, the use of
multiple view information yields a significant improvement in performance.

Multiple view analysis in X-ray testing can be used to achieve two main goals: (i)
analysis of 2D corresponding features across the multiple views, and (ii) analysis of
3D features obtained from a 3D reconstruction approach. In both cases, the attempt
is made to gain relevant information about the test object. For instance, in order
to validate a single view detection—filtering out false alarms—2D corresponding
features can be analyzed [71]. On the other hand, if the geometric dimension of a
inner part must be measured a 3D reconstruction needs to be performed [77].

As illustrated in Fig. 1.22, the input of the multiple view analysis is the associ-
ated data, i.e., corresponding points (or patches) across the multiple views. To this
end, associated 2D cues are found using geometric constraints (e.g., epipolar geom-
etry and multifocal tensors [39, 68]), and local scale-invariant descriptors across
multiple views (e.g., like SIFT [63]).

Finally, 2D or 3D features of the associated data can be extracted and selected,
and a classifier can be trained using the same pattern recognition methodology
explained in Sect. 1.6.2.

Depending on the application, the output could be a measurement (e.g., the vol-
ume of the inspected inner part is 3.4 cm3), a class (e.g., the test object is defective)
or an interpretation (e.g., the baggage should be inspected by a human operator
given that uncertainty is high).

1.6.4 Deep Learning

Originally, deep learning is inspired by ideas from neuroscience [40]. In recent
years, deep learning has been successfully used in computer vision (see, for exam-
ples, in image and video recognition in [10, 59, 95]), and it has been established
as the state of the art in many areas. The key idea of deep learning is to replace
handcrafted features with features that are learned efficiently using a hierarchi-
cal feature extraction approach. There are several deep architectures such as deep
neural networks, convolutional neural networks, energy-based models, Boltzmann
machines, deep belief networks, and among others [10]. Convolutional Neural Net-
works (CNN), which were inspired by a biological model [60], is a very powerful
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method for image recognition [55]. In this book, we dedicate Chap. 7 to deep learn-
ing approaches that can be used in X-ray testing, namely convolutional neural net-
works, pre-trained models, transfer learning, generative adversarial networks, and
detection methods.

1.6.5 Computed Tomography

Another method used in X-ray testing is Computed Tomography (CT) [18, 34],
which produces a cross section of the object under test. The test object (or the X-ray
source) can be rotated in order to obtain projections at different angles θ . As shown
in Fig. 1.23, for each angle θ a new X-ray intensity profile I (r, θ) is obtained, where
r is the distance to the origin of the object. According to the absorption’s law (1.2)
and a parallel-beam geometry, we obtain

I (r, θ) = I0 exp

(
−

∫
l
μ(x, y)ds

)
(1.11)

in which (r, s) is a new coordinate system obtained by rotating (x, y) through θ

with x = r cos θ − s sin θ and y = r sin θ + s cos θ . Straight line l is the line of the
X-ray beam from the X-ray source to the detector. Thus, the attenuation distribution
μ(x, y) can be computed from all profiles I (r, θ).

In computed tomography, in general, a new function Pθ (r) = − ln(I (r, θ)/I0) is
used to calculate the object’s cross-sectional plane from the measured projections
[18]. The reconstruction of the object function μ(x, y) from it’s projections presents
a typical inverse problem [17]. A great number of algorithms are available, which
can be classified into three groups:

1. Back-projection [57, 78]: This is the most basic method because it simply
‘smears’ each projection along the path of the X-rays. It allows for a crude recon-
struction of the test object.

2. Projection-Slice theorem [20]: As illustrated in Fig. 1.23b, this theorem states
that a one-dimensional Fourier transformation of a projection Pθ (r) at the angle
θ is equal to the two-dimensional Fourier transformation of the object function
along a straight line through the origin in Fourier coordinates at the angle θ

[15, 84]. A projection Pθ (r) is obtained through parallel-beam geometry, e.g.,
by shifting the radiation emitter-detector arrangement radially after each mea-
surement.5 In practice, however, these ideal conditions cannot be realized. Only
a limited number of projection measurements are available for reconstruction,

5Many reconstruction approaches assume parallel-beam geometry, whereas CT scanners usually
employ fan-beam geometries. There are dedicated fan-beam algorithms (see, for example, [45]),
however, there are methods that resample the fan-beam data in order to obtain an equivalent
parallel-beam data (see, for example, [45, 79, 107]). Thus, traditional reconstruction approaches
can be used.
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Fig. 1.23 Computed Tomography (CT) [72]: a Result of a CT reconstruction. b Projection slice
theorem

and these are generated from a limited number of line integrals. As such, a two-
dimensional function cannot be uniquely defined.

3. Filtered back-projection: In order to avoid the aforementioned problems, this
method uses filters with low-pass characteristics. This has a negative impact,
especially on high spatial resolution reconstructions, since great discontinuities
in the measured values result from the object edges in the projections (highly
absorptive material next to hollow spaces in the design). This leads to large arte-
facts, which can make image analysis impossible.

The aforementioned reconstruction problems have been addressed as an ill-posed
problem [37]. There are diverse approaches for regularization and optimization
algorithms that ensure their convergence. Some consider different a-priori infor-
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mation using probabilistic models [14] and geometric models. For example, some
models have established a region of interest [61, 111] considering limited angles
[32, 85, 98] or sparse representations [12, 32, 98], restricting the scope to a binary
construction [5, 87], reconstructing faults in homogeneous material [5], or preserv-
ing borders [104, 109], to name just a few. The work of Retraint et al. [87] merits
special interest because the authors conducted a binary reconstruction of the 3D
image from just three X-ray projections (not necessarily orthogonal) using an Ising
model [33].

Computed tomography provides cross-sectional images of the target object so
that each object is clearly separated from any others, however, CT imaging requires a
considerable number of projections to reconstruct an accurate cross-sectional image,
which is time consuming.

1.7 Code and Data

The book provides supporting material at an associated website,6 including a
database of X-ray images and a Python Library, called pyxvis Library, for use with
the book’s many examples.

1.7.1 Pyxvis Library

In this book, we use many commands of pyxvis Library, i.e., an open source Python7

library that we developed for X-ray testing with computer vision.8 pyxvis Library
contains more than 150 functions for image processing, projective geometry, multi-
ple view analysis, feature extraction, feature transformation, feature analysis, feature
selection, classification, convolutional neural networks, pre-trained models, transfer
learning, generative adversarial networks, performance evaluation, and simulation
(see Fig. 1.24).

Python Example 1.3: Each function of pyxvis Library has a ‘help’ with one
or more examples. For example, this is the help for command dual_energy:

Listing 1.3 : Help of command dual_energy of pyxvis Library.

from pyxvis.io import gdxraydb
from pyxvis.processing.images import dual_energy

# Retrieve the function documentation
help(dual_energy)

6See https://domingomery.ing.puc.cl/material/.
7There are many textbooks that can be used to learn Python, see, for example, [66, 81, 94].
8pyxvis Library is available on https://github.com/computervision-xray-testing/pyxvis, with all
experiments implemented in Google Colab.

https://domingomery.ing.puc.cl/material/
https://github.com/computervision-xray-testing/pyxvis
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Fig. 1.24 pyxvis Library: developed Python library for this book

The output of Example 1.3 is the following:

Help on function dual_energy in module images:

dual_energy(img_1, img_2, lut)
Allows for dual-energy image computation.

Args:
img_1 (numpy array): first image
img_2 (numpy array): second image
lut (numpy array): the lookup table use during computation

Raises:
TypeError: invalid input type for images

Returns:
_dual_energy (numpy array): the dual-energy image.|

The reader can check the correct use of dual_energy in Example 1.2.
A quick reference for pyxvis Library and all of the examples of this book can be

found in our repository (see footnote 8).
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1.7.2 GDXray+ Database

We developed an X-ray database that contains more than 23,100 X-ray images.9 The
database is described in detail in Chap. 2 and Appendix A. The database includes
five groups of X-ray images: castings, welds, baggage, natural objects, and settings.
Each group has several series, and each series several X-ray images.

Most of the series are annotated or labeled. In those cases, the coordinates of the
bounding boxes of the objects of interest or the labels of the images are available in
standard text files. The size of GDXray+ is 4.5 GB.

1.8 General Methodology for X-ray Testing

In computer vision for X-ray testing, we identify three main areas:

• 1. X-ray energies: there is enough research evidence to show that multi-energy
X-ray testing must be used when material characterization is required (e.g., to
detect organic products). In other cases, such as inspection of castings, mono-
energetic X-ray imaging is enough.

• 2. X-ray multi-views: the performance of the examination of a complex object
can be better when analyzing multi-views (because a single view could present an
unrecognizable pose). In othercases, such as inspection of welds, a single view is
enough.

• 3. X-ray computer vision: there is a plethora of computer vision algorithms
that can address many recognition/detection/inspection problems. There are cases
(e.g., size of a fruit) in which a simple algorithm is enough, whereas in other
applications (e.g., baggage inspection), more complex algorithms are required.

This taxonomy is called ‘3X-Strategy’, as illustrated in Fig. 1.25. Each solution cor-
responds to a point in the 3X-space, which is defined as a combination of X-ray
energies (X1), X-ray multi-views (X2) and X-ray computer vision algorithms (X3).

In X-ray testing, three main factors can have an impact on the solution:

1. The type of X-ray image, which depends on the X-ray energies used in the image
acquisition process.

2. The point of view, that means the occlusion, which depends on whether or not
other objects are superimposed over the target object, and the pose, which is
related to the rotation of the object.

3. The image complexity, which depends on the number of objects present and how
they are placed in the bag.

These factors have been addressed using a 3X-strategy: it is clear that certain
objects of interest require more than one X-ray energy, more than one view, and

9
GDXray+ is available on https://domingomery.ing.puc.cl/material/gdxray/.

https://domingomery.ing.puc.cl/material/gdxray/
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Fig. 1.25 3X-strategy: In 3X-space, a baggage inspection solution is defined as a combination of
X-ray energies (X1), X-ray multi-views (X2) and X-ray computer vision algorithms (X3)

more than a simple algorithm. Thus, for X-ray testing there is a general methodology
that can be understood as an ad-hoc combination of X1 for energies, X2 for views
andX3 for algorithms that can be used. Table 1.2 provides possible 3X-combinations
for certain applications. For example in baggage inspection, if we want to identify
a flammable liquid in an uncluttered bag (i.e., low-image complexity) we need at
least dual-energy, possibly only one view, and a simple computer vision algorithm.
However, if we want to detect a handgun in a cluttered bag (i.e., high image com-
plexity), we need several views, possibly a computed tomography, and a complex
computer vision algorithm. If we want to detect a metallic handgun, dual-energy will
be required. A 3X-strategy is to be designed for each kind of object to be detected.
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Table 1.2 Information on possible combination of energies, views and algorithms for categories
of objects

Application area Object X
∗
1 X

∗
2 X

∗
3

Energies Views Algorithms

1 2 3 1 2 3 1 2 3

Baggage
inspection

Aerosols � � � � �� � ��

Alcohol � � � � �� � ��

Ammunition � � � � �� � ��

Flammable
liquids

� � � � �� � ��

Fruits and
vegetables

� � � � � � � ��

Guns � �� � � � � � �

Milk and honey � � � � �� � ��

Pepper spray � � � � �� � � �

Seeds and grains � � � � � � � ��

Sharp objects � �� � � � � � �

Stun guns � �� � � � � � �

Toxic substances � �� � �� � � �

Woods and barks � � � � � � � ��

Quality control Automotive parts � � � � � � � � �

Welds � � � � � � � � �

Food � � � � � � � � �

Electronic
circuits

� � � � � � � � �

Cargo inspection People � � � � �� � ��

Explosives � � � � �� � ��

Fruits and
vegetables

� � � � �� � ��

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used , � used, � probably used

1.9 Summary

In this book, we present a general overview of computer vision approaches that have
been used in X-ray testing. In this chapter, we gave an introduction to our book by
covering relevant issues of X-ray testing.

X-ray testing has been developed for the inspection of materials or objects, where
the aim is to analyze—nondestructively—those inner parts that are undetectable to
the naked eye. Thus, X-ray testing is used to determine if a test object deviates from
a given set of specifications.
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Typical applications are

• Inspection of automotive parts,
• Quality control of welds,
• Baggage screening,
• Analysis of food products,
• Inspection of cargo,
• Quality control of electronic circuits.

In order to achieve efficient and effective X-ray testing, automated and semi-
automated systems based on computer vision algorithms are being developed to
execute this task.

We gave an introduction to some physic and geometric principles related to com-
puter vision. Following this, an overview of single and multiple view analysis, deep
learning, and computed tomography was presented. Finally, we introduce a general
methodology for computer vision for X-ray testing.
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