
Domingo Mery
Christian Pieringer

Computer Vision
for X-Ray Testing
Imaging, Systems, Image Databases,
and Algorithms

Second Edition

Computer Vision for X-Ray Testing

Domingo Mery • Christian Pieringer

Computer Vision for X-Ray
Testing
Imaging, Systems, Image Databases,
and Algorithms

Second Edition

123

Domingo Mery
Department of Computer Science
Pontifical Catholic University of Chile
Macul, Santiago, Chile

Christian Pieringer
Independent Research Scientist and
Consultant—Artificial Intelligence
Santiago, Chile

ISBN 978-3-030-56768-2 ISBN 978-3-030-56769-9 (eBook)
https://doi.org/10.1007/978-3-030-56769-9

1st edition: © Springer International Publishing Switzerland 2015
2nd edition: © Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-56769-9

To Ximena, Anais and Valeria,
who show me everyday
the X-rays of love

—Domingo

To María Isabel, Dante, and Laura,
thank you for accompanying me
through the adventures of this travel
called life

—Christian

Foreword to the Second Edition

For the second edition of this book, we had once again thought of asking Reinhard
to write the foreword. We have no doubt that he would have agreed to do so with
great pleasure and enthusiasm. However, he left us and said goodbye to this world
in April. For this reason, in honor of him, we have preferred to leave this foreword
blank, as a sign of how much we miss him.

Santiago, Chile The Authors
June 2020

vii

Foreword to the First Edition

The wavelengths of X-rays are far shorter than those of visible light and even
shorter than those of ultraviolet light. Wilhelm Conrad Röntgen (1845–1923) was
awarded the first Nobel prize in Physics in 1901 for his contributions to the
detection of electromagnetic radiation, and to the generation of X-rays, which are a
form of electromagnetic radiation. Radiographs are produced by having X-rays,
emitted from a source, geometrically assumed to be a point in three-dimensional
(3D) space, recorded on a screen. This screen might have a slightly curved surface,
but we can also see it (via defined mapping) as an image plane.

X-ray technology provides a way to visualize the inside of visually opaque
objects. Pixel intensities in recorded radiographs correspond basically to the density
of matter, integrated along rays; those readers who are interested in a more accurate
description may wish to look up the interaction of X-rays with matter by way of
photo-absorption, Compton scattering, or Rayleigh scattering by reading the first
chapter in this book.

X-ray technology aims at minimizing scattering, by having nearly perfect rays
pass through the studied object. Thus, we have a very particular imaging modality:
objects of study need to fit into a bounded space, defined as being between source
and image plane, and pixel intensities have a meaning which differs from our
commonly recorded digital images when using optical cameras.

When modeling an X-ray imaging system we can apply much of the projective
geometry, mathematics in homogeneous spaces, or analogous parameter notations:
we just need to be aware that we are looking ‘backwards’, from the image plane to
the source (known as projection center), and no longer from the image plane into
the potentially infinite space in front of an optical camera. Thus, it appears that the
problem of understanding 3D objects is greatly simplified by simply studying a
bounded space: using a finite number of source-plus-screen devices for recording
this bounded space; applying photogrammetric methods for understanding
multi-view recordings, and applying the proper interpretation (e.g., basically den-
sity) to the corresponding pixel values. Thus, this very much follows a common
scenario of a computer vision, while also including image preprocessing and

ix

segmentation, object detection, and classification. The book addresses all of these
subjects in the particular context of X-ray testing based on computer vision.

The briefly sketched similarities between common (i.e., optical-camera-based)
computer vision and X-ray testing techniques might be a good motif to generate
curiosity among people working in computer vision, in order to understand how
their knowledge can contribute to, or benefit from, various methods of X-ray
testing.

The book illustrates X-ray testing for an interesting range of applications. It also
introduces a publically available software system and an extensive X-ray database.
The book will undoubtedly contribute to the popularity of X-ray testing among
those in the computer vision and image analysis community and may also serve as a
textbook or as support material for undertaking related research.

Auckland
April 2015

Reinhard Klette

x Foreword to the First Edition

Preface to the Second Edition

The second edition of this book began to be written in the middle of 2019. On
Wednesday afternoons we met in a Café on Zanelli Street in Providencia, near our
homes. In the company of a good cappuccino and an avocado toast, we could
review our progress and discuss what was best for our book. In the year 2020,
during the COVID-19 times, our city went into lockdown for several weeks, and we
had to move our meetings to video conferences... but with a good coffee that never
left us. We were fully aware that computer vision had progressed a lot in the last
few years, and therefore we wanted to be able to capture the most important
advances in the book, without neglecting the classic bases. We enjoyed writing this
book very much, and we hope that this will be reflected in the text, in the figures, in
the images, and also in the codes written in Python in a friendly way. The first
edition of the book [11] has been the only book that combines computer vision and
X-ray testing. Today, a computer vision book that does not include deep learning
cannot be conceived. We believe that this update is a must. In addition, the ten-
dency today is to code computer vision algorithms in Python, for this reason this
change is very relevant in the second edition of the book.

Scope

X-ray imaging has been developed not only for its use in medical imaging for human
beings, but also for materials or objects, where the aim is to analyze—
non-destructively—those inner parts that are undetectable to the naked eye. Thus,
X-ray testing is used to determine if a test object deviates from a given set of
specifications. Typical applications are analysis of food products, screening of
baggage, inspection of automotive parts, and quality control of welds. In order to
achieve efficient and effective X-ray testing, automated and semi-automated systems
are being developed to execute this task. In this book, we present a general overview
of computer vision methodologies that have been used in X-ray testing. In addition,

xi

some techniques that have been applied in certain relevant applications are pre-
sented: there are also some areas—like casting inspection—where automated sys-
tems are very effective, and other application areas—such as baggage screening—
where human inspection is still used. There are certain application areas—like welds
and cargo inspections—where the process is semi-automatic, and there is some
research in areas—including food analysis—where processes are beginning to be
characterized by the use of X-ray imaging. In this book, Python codes for image
analysis and computer vision algorithms are presented with real X-ray images that
are available in a public database created for testing and evaluation.

Organization

The book is organized as follows:
Chapter 1 (X-ray Testing): This chapter provides an introduction to the book. It

illustrates principles about the physics of X-rays and describes X-ray testing and
imaging systems, while also summarizing the most important issues on computer
vision for X-ray testing.

Chapter 2 (Images for X-ray Testing): This chapter presents a description of the
GDXray+ database, the dataset of more than 23,100 X-ray images used in this book
to illustrate and test several computer vision methods. The database includes five
groups of X-ray images: castings, welds, baggage, natural objects, and settings.

Chapter 3 (Geometry in X-ray Testing): This chapter presents a mathematical
background of the monocular and multiple view geometry that is normally used in
X-ray computer vision systems.

Chapter 4 (X-Ray Image Processing): This chapter covers the main techniques of
image processing used in X-ray testing, such as image processing, image filtering,
edge detection, image segmentation, and image restoration.

Chapter 5 (X-ray Image Representation): This chapter covers several topics that
are used to represent an X-ray image (or a specific region of an X-ray image). This
representation means that new features are extracted from the original image; this
can provide us with more data than the raw information expressed as a matrix of
gray values.

Chapter 6 (Classification in X-Ray Testing): This chapter covers known clas-
sifiers with several examples that can be easily modified in order to test different
classification strategies. Additionally, the chapter covers how to estimate the
accuracy of a classifier using hold-out, cross-validation, and leave-one-out
approaches.

Chapter 7 (Deep Learning in X-ray Testing): This chapter covers deep learning
strategies (convolutional neural networks, pre-trained models, transfer learning,
generative adversarial networks, and detection methods) that can be used in X-ray
testing. As in previous chapter, this chapter presents simple examples that can be
easily modified to train and test different deep learning architectures.

xii Preface to the Second Edition

Chapter 8 (Simulation in X-ray Testing): This chapter reviews some basic
concepts of the simulation of X-ray images and presents simple geometric and
imaging models that can be used in the simulation.

Chapter 9 (Applications in X-ray Testing): This section describes relevant
applications for X-ray testing such as the inspection of castings and welds, baggage
screening, quality control of natural products, and inspection of cargos and elec-
tronic circuits.

Who Is This Book for

This book covers an introduction to computer vision algorithms that can be used in
X-ray testing problems such as defect detection, baggage screening, 3D recognition,
quality control of food products, and inspection of cargos and electronic circuits,
among others. This work may not be ideal for students of computer science or
electrical engineering that want to obtain a deeper knowledge of computer vision
(for which purpose there are many wonderful textbooks on image processing,
pattern recognition, and computer vision1). Rather, it is a good starting point for
undergraduate or graduate students who wish to learn basic computer vision and its
application in problems of industrial radiology.2 Thus, the aim of this book is to
cover complex topics on computer vision in an easy and accessible way. For
instance, we present complex topics (such as support vector machines, SIFT
descriptors, and convolutional neural networks) in such a straightforward way that
any student who does not have much knowledge of these fields, can still understand
how they work without having to analyze complicated equations.

Hands on!

In this book there is a Python Library called pyxvis Library,3 with around 150
functions for computer vision in X-ray testing. Each function has a ‘help’ with an
example in order to show its use in X-ray testing. Additionally, the book gives
several Python examples that can be followed by the reader. These examples use
pyxvis Library. Moreover, there are more than 23,100 X-ray images on the
GDXray+ database4 that can be used to test different algorithms and codes. The
available examples, Python Library and X-ray images can help people to learn more

1See for example [1, 2, 4–10, 14].
2Obviously, the algorithms outlined in this book can be used in similar applications such as glass
inspection [3] or quality control of food products using optical images [12]—to name but a few.
3Available on-line on https://github.com/computervision-xray-testing/pyxvis, with all examples
implemented in Google Colab.
4Available on-line on https://domingomery.ing.puc.cl/material/gdxray/.

Preface to the Second Edition xiii

https://github.com/computervision-xray-testing/pyxvis
https://domingomery.ing.puc.cl/material/gdxray/

about computer vision for X-ray testing. The reader can modify the codes and can
create his/her own codes in order to develop new functions for X-ray testing. The
reader does not need any advance knowledge of Python to read and understand this
document, however, he/she must have familiarity with basic linear algebra,
geometry, and general knowledge of programming. If the reader does not (want to)
use Python, he/she can also understand the examples from a traditional perspective
by way of analyzing the input and the output given in each example. For more
online resources, such as papers, figures, and slides, the reader can visit the web-
page of the present book at the following address: https://domingomery.ing.puc.cl/
material/.

Santiago, Chile Domingo Mery
Christian Pieringer2019–2020

References

1. Bhuyan, M.K.: Computer Vision and Image Processing: Fundamentals and Applications.
CRC Press (2019)

2. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
3. Carrasco, M., Pizarro, L., Mery, D.: Visual inspection of glass bottlenecks by multiple-view

analysis. Int. J. Comput. Integr. Manuf. 23(10), 925–941 (2010)
4. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2 edn. John Wiley & Sons, Inc., New

York (2001)
5. Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images: The Laws

That Govern the Formation of Multiple Images of a Scene and Some of Their Applications.
The MIT Press, Cambridge MA, London (2001)

6. Forsyth, D.A., Ponce, J.: A modern approach. Computer Vision: A Modern Approach (2003)
7. Gonzalez, R., Woods, R.: Digital Image Processing, third edn. Pearson, Prentice Hall (2008)
8. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, Second edn.

Cambridge University Press (2003)
10. Klette, R.: Concise Computer Vision: An Introduction into Theory and Algorithms. Springer

Science & Business Media (2014)
11. Mery, D.: Computer vision for X-Ray testing. Switzerland: Springer International Publishing

10, 978–3 (2015)
12. Mery, D., Pedreschi, F., Soto, A.: Automated design of a computer vision system for visual

food quality evaluation. Food Bioprocess Technol. 6(8), 2093–2108 (2013)
13. Pichara, K., Pieringer, C.: Advanced Computer Programming in Python. CreateSpace

Independent Publishing Platform (2017)
14. Szeliski, R.: Computer vision: Algorithms and applications. Springer-Verlag New York Inc

(2011)

xiv Preface to the Second Edition

https://domingomery.ing.puc.cl/material/
https://domingomery.ing.puc.cl/material/

Preface to the First Edition

This book has been written in many spatiotemporal coordinates. For instance, some
equations and figures were performed during my Ph.D. at the Technical University
of Berlin (1996–2000). During that period, but in Hamburg, I took several X-ray
images—that have been used in this book—in YXLON X-ray International Labs.
After completing my Ph.D., and during my work in Santiago, Chile as associate
researcher at the University of Santiago of Chile (2001–2003) and faculty member at
the Catholic University of Chile (2004–to date), I have written more than 40 journal
papers on computer vision applied to X-ray testing. During this time, I have
developed a Matlab Toolbox that has been used in my research projects and in my
classes teaching image processing, pattern recognition, and computer vision for
graduate and undergraduate students. Over the last few years, my graduate students
have taken thousands of X-ray images in our X-ray Testing Lab at the Catholic
University of Chile. Moreover, in my sabbatical year at the University of Notre
Dame (2014–2015), I had the time and space to teach the computer vision course for
students of computer sciences, electrical engineering and physics, and I have been
able to bring together all those related papers, diagrams, and codes in this book.

The present work has been written not only in three different countries
(Germany, Chile, and the United States) over the last 15 years, but also in many
different small places that provided me with the time and peace to write a para-
graph, a caption of a figure, a code, or whatever I could. For example, I remember a
Café in Michigan City where I spent various hours last winter writing this book
with a delicious cappuccino beside me; or my study room in Fisher Apartments on
Notre Dame Campus, looking out the window at a squirrel holding a nut; or on a
narrow tray table while taking an Inter-Regio train between Berlin and Hamburg,
which was where I drew a diagram using a pen and probably a napkin; and of
course, my delightful office at the Catholic University of Chile with its breathtaking
view of the Andes Mountains.

This book has been put together on the basis of four main pillars that have been
constructed over the last 15 years: the first pillar is the set of journal and conference
papers that I have published. The second corresponds to the material used in my
classes and the feedback received from students when I have been teaching image

xv

processing, pattern recognition, and computer vision. The third pillar is the Matlab
Toolbox that I was able to develop during this time, and which has been tested in
several experiments, classes and research projects, among others. The fourth pillar
is the thousands of X-ray images that my research group has been taking in recent
years at our Lab, and the X-ray images of die castings that I took in Hamburg. Over
all this time, I have realized that this amount of work can all be brought together in
a book that collects the most important contributions in computer vision used in
X-ray testing.

Notre Dame and Santiago de Chile
2015

Domingo Mery

xvi Preface to the First Edition

Acknowledgements

This book could not have been written without the steady support and under-
standing of my wife Ximena and my daughters Anais and Valeria. Consequently,
this book is dedicated to my nuclear family. Special thanks to my sister and my
mother, who left this world recently, and my father and brother for the confidence
and support.

Deep thanks also go to Reinhard Klette (University of Auckland), wherever he
is, who carefully read the first edition and gave me relevant and detailed sugges-
tions as to improve the book. Finally, I would like to offer my gratitude to all my
students, colleagues and co-authors that helped me in numerous discussions and
suggestions, particularly the following: Analí Alfaro, Marco Arias, Carlos Arteta,
Gonzalo Acuña, José Miguel Aguilera, Miguel Angel Berti, Sandipan Banerjee,
Kevin Bowyer, Miguel Carrasco, Max Chacón, Aldo Cipriano, Patricio Cordero,
Esteban Cortázar, Pedro Cortés, Adam Czajka, Dieter Filbert, Patrick Flynn,
Rodrigo González, Sergio Hernández, Thomas Jaegger, Denis Hahn, Daniel
Heihnsohn, Ana Hincapié, Aggelos Katsaggelos Valerie Kaftandjian, James
Kapaldo, Germán Larraín, Tomás Larraín, Gabriel Leiva, Pei Li, Hans Lobel, Iván
Lillo, Juan Carlos de la Llera, Daniel Maturana, Carlos Mena, Cristobal Moenne,
Sebastián Montabone, Germán Mondragón, Diego Patiño, Mar Pérez-Sanagustin,
Karim Pichara, Franco Pedreschi, Christian Pieringer, Luis Pizarro, Loreto Prieto,
Vladimir Riffo, Daniel Saavedra, José Saavedra, Doris Sáez, Walter Sheirer, Alvaro
Soto, Eric Svec, Romeu da Silva, Gabriel Tejeda, René Vidal, Esteban Villalobos,
Yuning Zhao, Uwe Zscherpel, and Irene Zuccar.

—Domingo

xvii

To my wife, María Isabel, my daughter Laura and my son Dante, for under-
standing and support during the time dedicated to coding, studying, and listen to all
my ideas and dreams. Thanks to my mother and my brothers, for their support and
love. To my father, in his loving memory, who taught me always to keep the faith.

A sincere thanks to Domingo Mery for his wise guidance and my Ph.D. thesis
and path as a researcher. And especially for inviting and trusting me to contribute to
this book. To Karim Pichara, for his support and advice during my postdoctoral
fellow, and to encourage me to take some challenges at the early stage of my
academic and professional career.

Finally, I would like to express my gratitude to all my colleagues, co-authors,
professors, teaching assistants, and students who, in one way or another, have
helped to improve my work and skills through discussions and suggestions, but
especially the following: Billy Peralta, Vladimir Riffo, Elwin van ’t Wout, Carlos
Sing-Long, Miguel Carrasco, and Márcio Catelan.

—Christian

This work was supported by the School of Engineering of the Catholic University of
Chile, and Fondecyt Grants No. 1130934, 1161314, and 1191131 from CONICYT,
Chile.

xviii Acknowledgements

Contents

1 X-ray Testing . 1
1.1 Introduction . 2
1.2 History . 3
1.3 Physics of the X-rays . 6

1.3.1 Formation of X-rays . 6
1.3.2 Scattering and Absorption of X-rays 8

1.4 X-ray Testing System . 11
1.4.1 X-ray Source . 12
1.4.2 Manipulator . 13
1.4.3 Image Intensifier . 14
1.4.4 CCD-Camera . 15
1.4.5 Flat Panel . 16
1.4.6 Computer . 16

1.5 X-ray Imaging . 17
1.5.1 X-ray Image Formation . 17
1.5.2 Image Acquisition . 19
1.5.3 X-ray Image Visualization . 20
1.5.4 Dual-Energy . 23

1.6 Computer Vision . 25
1.6.1 Geometric Model . 26
1.6.2 Single View Analysis . 28
1.6.3 Multiple View Analysis . 28
1.6.4 Deep Learning . 29
1.6.5 Computed Tomography . 30

1.7 Code and Data . 32
1.7.1 Pyxvis Library . 32
1.7.2 GDXray+ Database . 34

xix

1.8 General Methodology for X-ray Testing . 34
1.9 Summary . 36
References . 37

2 Images for X-ray Testing . 43
2.1 Introduction . 44
2.2 Structure of the Database . 44
2.3 Castings . 46
2.4 Welds . 49
2.5 Baggage . 50
2.6 Natural Objects . 54
2.7 Settings . 56
2.8 Python Commands . 58
2.9 Summary . 60
References . 61

3 Geometry in X-ray Testing . 65
3.1 Introduction . 66
3.2 Geometric Transformations . 66

3.2.1 Homogeneous Coordinates . 66
3.2.2 2D ! 2D Transformation . 68
3.2.3 3D ! 3D Transformation . 71
3.2.4 3D ! 2D Transformation . 73

3.3 Geometric Model of an X-ray Computer Vision System 75
3.3.1 A General Model . 76
3.3.2 Geometric Models of the Computer Vision System 79
3.3.3 Explicit Geometric Model Using an Image

Intensifier . 85
3.3.4 Multiple View Model . 89

3.4 Calibration . 92
3.4.1 Calibration Using Python . 95
3.4.2 Experiments of Calibration . 97

3.5 Geometric Correspondence in Multiple Views 102
3.5.1 Correspondence Between Two Views 103
3.5.2 Correspondence Between Three Views 114
3.5.3 Correspondence Between Four Views or More 117

3.6 Three-Dimensional Reconstruction . 118
3.6.1 Linear 3D Reconstruction from Two Views 119
3.6.2 3D Reconstruction from Two or More Views 120

3.7 Summary . 122
References . 122

4 X-Ray Image Processing . 125
4.1 Introduction . 126
4.2 Image Preprocessing . 127

xx Contents

4.2.1 Noise Removal . 127
4.2.2 Contrast Enhancement . 129
4.2.3 Shading Correction . 132

4.3 Image Filtering . 135
4.3.1 Linear Filtering . 136
4.3.2 Non-linear Filtering . 137

4.4 Edge Detection . 140
4.4.1 Gradient Estimation . 141
4.4.2 Laplacian-of-Gaussian (LoG) . 144
4.4.3 Canny Edge Detector . 147

4.5 Segmentation . 148
4.5.1 Thresholding . 149
4.5.2 Region Growing . 154
4.5.3 Maximally Stable Extremal Regions (MSER) 159

4.6 Image Restoration . 161
4.7 Summary . 166
References . 167

5 X-ray Image Representation . 169
5.1 Introduction . 170
5.2 Geometric Features . 171

5.2.1 Basic Geometric Features . 171
5.2.2 Elliptical Features . 175
5.2.3 Fourier Descriptors . 177
5.2.4 Invariant Moments . 178

5.3 Intensity Features . 181
5.3.1 Basic Intensity Features . 181
5.3.2 Contrast . 183
5.3.3 Crossing Line Profiles . 186
5.3.4 Intensity Moments . 191
5.3.5 Statistical Textures . 191
5.3.6 Gabor . 193
5.3.7 Filter Banks . 195

5.4 Descriptors . 195
5.4.1 Local Binary Patterns . 196
5.4.2 Binarized Statistical Image Features (BSIF) 198
5.4.3 Histogram of Oriented Gradients 199
5.4.4 Scale-Invariant Feature Transform (SIFT) 200

5.5 Sparse Representations . 203
5.5.1 Traditional Dictionaries . 204
5.5.2 Sparse Dictionaries . 205
5.5.3 Dictionary Learning . 206

5.6 Feature Selection . 207

Contents xxi

5.6.1 Basics . 207
5.6.2 Exhaustive Search . 214
5.6.3 Branch and Bound . 214
5.6.4 Sequential Forward Selection . 214
5.6.5 Sequential Backward Selection . 217
5.6.6 Ranking by Class Separability Criteria 217
5.6.7 Forward Orthogonal Search . 218
5.6.8 Least Square Estimation . 218
5.6.9 Combination with Principal Components 219
5.6.10 Feature Selection Based in Mutual Information 219

5.7 A Final Example . 219
5.8 Summary . 222
References . 223

6 Classification in X-Ray Testing . 227
6.1 Introduction . 228
6.2 Classifiers . 229

6.2.1 Minimal Distance . 230
6.2.2 Mahalanobis Distance . 231
6.2.3 Bayes . 232
6.2.4 Linear Discriminant Analysis . 236
6.2.5 Quadratic Discriminant Analysis 237
6.2.6 K-Nearest Neighbors . 239
6.2.7 Neural Networks . 241
6.2.8 Support Vector Machines . 243
6.2.9 Classification Using Sparse Representations 249

6.3 Performance Evaluation . 252
6.3.1 Hold-Out . 253
6.3.2 Cross-Validation . 255
6.3.3 Leave-One-Out . 258
6.3.4 Confusion Matrix . 259
6.3.5 ROC and Precision-Recall Curves 262

6.4 Classifier Selection . 266
6.5 Summary . 271
References . 272

7 Deep Learning in X-ray Testing . 275
7.1 Introduction . 276
7.2 Neural Networks . 277

7.2.1 Basics of Neural Networks . 278
7.2.2 Training of Neural Networks . 282
7.2.3 Examples of Neural Networks . 285

7.3 Convolutional Neural Network (CNN) . 288

xxii Contents

7.3.1 Basics of CNN . 288
7.3.2 Learning in CNN . 295
7.3.3 Testing in CNN . 297
7.3.4 Example of CNN . 298

7.4 Pre-trained Models . 301
7.4.1 Basics of Pre-trained Models . 301
7.4.2 Example of Pre-trained Models . 304

7.5 Transfer Learning . 310
7.5.1 Basics of Transfer Learning . 311
7.5.2 Training in Transfer Learning . 312
7.5.3 Example of Transfer Learning . 312

7.6 Generative Adversarial Networks (GANs) 314
7.6.1 Basics of GAN . 315
7.6.2 Training of GAN . 317
7.6.3 Implementation of GAN . 318
7.6.4 Example of GAN . 319

7.7 Detection Methods . 320
7.7.1 Basics of Object Detection . 320
7.7.2 Region Based Methods . 323
7.7.3 YOLO . 326
7.7.4 SSD . 329
7.7.5 RetinaNet . 330
7.7.6 Examples of Object Detection . 332

7.8 Summary . 333
References . 333

8 Simulation in X-ray Testing . 337
8.1 Introduction . 338
8.2 Modeling . 339

8.2.1 Geometric Model . 339
8.2.2 X-ray Imaging . 341

8.3 Basic General Simulation . 343
8.4 Flaw Simulation . 348

8.4.1 Mask Superimposition . 349
8.4.2 CAD Models for Object and Defect 351
8.4.3 CAD Models for Defects Only . 351

8.5 Superimposition Using Multiplication of Images 361
8.6 Simulation of X-ray Images Using GAN 368
8.7 Simulation with aRTist . 369
8.8 Summary . 369
References . 371

Contents xxiii

9 Applications in X-ray Testing . 375
9.1 Introduction . 376
9.2 Castings . 376

9.2.1 State of the Art . 376
9.2.2 An Application . 377
9.2.3 An Example . 393

9.3 Welds . 394
9.3.1 State of the Art . 395
9.3.2 An Application . 395
9.3.3 An Example . 400

9.4 Baggage . 403
9.4.1 State of the Art . 403
9.4.2 An Application . 404
9.4.3 An Example Using Multiple Views 412
9.4.4 Example Using Deep Learning . 416

9.5 Natural Products . 416
9.5.1 State of the Art . 416
9.5.2 An Application . 418
9.5.3 An Example . 424

9.6 Further Applications . 424
9.6.1 Cargo Inspection . 424
9.6.2 Electronic Circuits . 424

9.7 Summary . 426
References . 427

Appendix A: GDXray+ Database. 437

Index . 449

xxiv Contents

About the Authors

Domingo Mery was born in Santiago de Chile in 1965. He is Full Professor in the
Department of Computer Science at UC. He received the Diploma (M.Sc.) degree in
Electrical Engineering from the Technical University of Karlsruhe, Germany,
in 1992, and the Ph.D. degree with distinction at the Technical University of Berlin, in
2000. He was a Research Scientist at the Institute for Measurement and Automation
Technology at the Technical University of Berlin with the collaboration of YXLON
X-Ray International. He was a recipient of a Scholarship from the Konrad-
Adenauer-Foundation, and from a Scholarship from the GermanAcademic Exchange
Service (DAAD) for his Ph.D. work. He was Associate Research in 2001 at the
Department of Computer Engineering at the University of Santiago, Chile. Now, he is
a Full Professor at the Department of Computer Science at the Pontificia Universidad
Católica de Chile (UC), Chile. He was Chair of the Computer Science Department in
2005–2009. Hewas anAssociate Visiting Professor at the Computer Vision Research
Lab of the University of Notre Dame in 2014–2015. He was Director of Research and
Innovation of the School of Engineering at the UC in 2015–2018. He serves as
Associate Editor of the IEEETransactions on Information, Forensics and Security, the
IEEE Transactions on Transactions on Biometrics, Behavior, and Identity Science,
and the International Journal of FuzzyLogic and Intelligent Systems. In addition, he is
the Editor of I3 Journal for Research, Interdiscipline, and Innovation at the School of
Engineering (UC). His research interests include image processing for fault detection
in aluminum castings, X-ray imaging, real-time programming, and computer vision.
He is author ofmore than 80 journal publications andmore than 90 conference papers.
He served as the Local Co-chair of ICCV2015 (Santiago de Chile). He was program
general chair of the PSIVT2007, program chair PSIVT2009, and General Co-chair of
PSIVT2011 (Pacific-Rim Symposium on Image and Video Technology), and 2007
Iberoamerican Congress on Pattern Recognition.

xxv

5Insight is the Journal of the British Institute of Non-destructive Testing.
6IAPR: International Association of Pattern Recognition.

Awards in Non-destructive Testing:

• Ron Halmshaw Award for publishing the best paper during 2017 on industrial
radiography in Insight.51

• IAPR62 Best Paper Presentation at Pacific-Rim Symposium on Image and Video
Technology (PSIVT2015), Auckland, New Zealand.

• John Grimwade Medal for publishing the best paper during 2013 in Insight.
• Ron Halmshaw Award for publishing the best paper during 2012 on industrial

radiography in Insight.
• Ron Halmshaw Award for publishing the best paper during 2005 on industrial

radiography in Insight.
• Best Paper Award. Panamerican Conference on Non-destructive Testing

(PANNDT 2003).

Christian Pieringer was born in Valparaiso, Chile, in 1978. He received his
Bachelor Science (B.Sc.) degree in Electronic Engineering from Pontificia
Universidad Catolica de Valparaiso, Chile, in 2003; a Master in Engineering from
Pontificia Universidad Catolica de Chile in 2010; and a Ph.D. in Computer Science
by Pontificia Universidad Catolica de Chile. He received a Ph.D. grant from the
National Commission of Technological and Scientific Research of the Chilean
Government (CONICYT), and a postdoctoral fellowship from the PUC-Harvard
seed funds program to develop interdisciplinary research on Machine Learning
applied to Astronomy. He was a Project Engineer at the Institute of Mathematical
and Computational Engineering (IMCE) leading data-driven solution used to
industry level. He was a research professor at Universidad Tecnologica de Chile
(INACAP) and lecturer in professional Diploma Certificates on Business
Intelligence and Big Data for IoT in Pontificia Universidad Catolica de Chile. At
present, he is the Chief Technological Officer (CTO) at Suncast, developing
Artificial Intelligence based solutions for the optimization of the operation and
maintenance in renewables energies. He is co-author of the textbook Advanced
Computer Programming in Python [13].

Awards in Non-destructive Testing:

• Ron Halmshaw Award for publishing the best paper during 2017 on industrial
radiography in Insight.

xxvi About the Authors

Chapter 1
X-ray Testing

Abstract X-ray testing has been developed for the inspection of materials or
objects, where the aim is to analyze—nondestructively—those inner parts that are
undetectable to the naked eye. Thus, X-ray testing is used to determine if a test
object deviates from a given set of specifications. Typical applications are the
inspection of automotive parts, quality control of welds, baggage screening, anal-
ysis of food products, inspection of cargos, and quality control of electronic cir-
cuits. In order to achieve efficient and effective X-ray testing, automated and semi-
automated systems based on computer vision algorithms are being developed to
execute this task. In this book, we present a general overview of computer vision
approaches that have been used in X-ray testing in the last decades. In this chapter,
we offer an introduction to our book by covering relevant issues of X-ray testing.

Cover image: X-ray images of woods (series N0010 colored with ‘hot’ colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_1

2 1 X-ray Testing

1.1 Introduction

Since Röntgen discovered in 1895 [90] that X-rays can be used to identify inner
structures, X-rays have been developed not only for their use in medical imaging
for human beings, but also in non-destructive testing (NDT) for materials or objects,
where the aim is to analyze (non-destructively) the inner parts that are undetectable
to the naked eye [44]. NDT with X-rays, known as X-ray testing, is used in many
applications such as the inspection of automotive parts, quality control of welds,
baggage screening, analysis of food products, inspection of cargos, and quality con-
trol of electronic circuits among others. X-ray testing usually involves measurement
of specific part features such as integrity or geometric dimensions in order to detect,
recognize, or evaluate wanted (or unwanted) inner parts. Thus, X-ray testing is a
form of NDT defined as a task that uses X-ray imaging to determine if a test object
deviates from a given set of specifications, without changing or altering that object
in any way.

The most widely used X-ray imaging systems employed in X-ray testing are
Digital Radiography (DR) and Computed Tomography (CT) imaging.1 On the one
hand, DR emphasizes high throughput. It uses electronic sensors (instead of tradi-
tional radiographic film) to obtain a digital X-ray projection of the target object,
consequently it is simple and quick. A flat amorphous silicon detector can be used
as an image sensor in X-ray testing systems. In such detectors, and using a semi-
conductor, energy from the X-ray is converted directly into an electrical signal that
can be digitalized into an X-ray digital image [91]. On the other hand, CT imaging
provides a cross-sectional image of the target object so that each object is clearly
separated from any others, however, CT imaging requires a considerable number of
projections to reconstruct an accurate cross-sectional image, which is time consum-
ing.

In order to achieve efficient and effective X-ray testing, automated and semi-
automated systems are being developed to execute this task that can be difficult
(e.g., recognition of very small defects), tedious (e.g., inspection of thousand of sim-
ilar items) and sometimes dangerous (e.g., explosive detection in baggage screen-
ing). Compared to manual X-ray testing, automated systems offer the advantages of
objectivity and reproducibility for every test. Fundamental disadvantages are, how-
ever, the complexity of their configuration, the inflexibility to any change in the
evaluation process, and sometimes the inability to analyze intricate images, which
is something that people can generally do well. Research and development is, how-
ever, ongoing into automated adaptive processes to accommodate modifications.

X-ray testing is one of the more accepted ways for examining an object without
destroying it. The purpose of this non-destructive method is to detect or recognize
certain parts of interest that are located inside a test object and are thus not detectable
to the naked eye. A typical example is the inspection of castings [70, 73]. The

1Computed tomography is beyond the scope of this book due to space considerations, however,
some simple examples and basic concepts are covered (see Sect. 1.6.5). For NDT applications
using CT, the reader is referred to [18, 34].

1.1 Introduction 3

Fig. 1.1 Simple model of an X-ray computer vision system. In this example, a computer vision
algorithm is used to detect a defect inside the test object automatically

material defects occurring in the casting process such as cavity, gas, inclusion, and
sponge must be detected to satisfy the security requirements; consequently, it is
necessary to check 100% of the parts.

The principle aspects of an X-ray testing system is illustrated in Fig. 1.1. Typi-
cally, it comprises the following steps:

• The test object is located in the desired position.
• The X-ray source generates X-rays which pass through the test object.
• The X-rays are detected and converted (e.g., by a flat panel or by an image inten-
sifier and CCD-camera) in order to obtain a digital X-ray image.

• Computer vision algorithms are used to evaluate the X-ray image.

In last decades, flat detectors made of amorphous silicon have been widely used as
image sensors in some industrial inspection systems [38, 83]. In these detectors, the
energy from the X-ray is converted directly into an electrical signal by a semicon-
ductor (without an image intensifier). However, using flat detectors is not always
feasible because of their high cost compared to image intensifiers.

The properties of the X-rays that are used in X-ray testing are summarized in the
following:

• X-rays can penetrate light blocking materials (e.g., metal) depending on a mate-
rial’s thickness;

• X-rays can be detected by photographic materials or electronic sensors;
• X-rays can spread a straight line; and
• X-rays can use many substances to stimulate fluorescence (fluoroscopy).

1.2 History

The discovery of X-rays by Röntgen in November 1895 [90] defines the beginning
of the X-ray testing of metallic parts. A couple of days after the discovery of the ‘X’
radiation, he made radiographs of balance-weights in a closed box and a chamber of
a shotgun (see Fig. 1.2). Röntgen observed that using X-rays, one can look not only
into the inside of a human body, but also into metallic articles, if the strength and

4 1 X-ray Testing

Fig. 1.2 X-ray image of balance-weights in a closed box and a shotgun taken by Wilhelm Conrad
Röntgen in the summer of 1896. Courtesy of the Deutsches Röntgen-Museum in Würzburg

intensity of the X-rays are strong enough [62]. The potential use in the detection
of hidden defects within armor-plates and machine parts was already envisioned at
Yale University in 1896 [88].

The industrial use of X-rays began in Germany only two decades after their dis-
covery. X-ray testing took place at that time with the help of radiographic films
[92]. Radioscopy with fluorescent screens was developed only toward the end of
the 1930s and at the beginning of the 1940s. In the following years, closed cabinets
were already being used for X-ray testing of aluminum castings in the automobile
industry [82].

In 1948 the image intensifier was developed, which converts X-rays into a visi-
ble light [106]. Image intensifier technology was originally developed as a low-light
enhancer for military night-vision devices [41]. The introduction of the image inten-
sifier led to considerable progress in the inspection technique, since otherwise the
examiner would have to regard the X-ray image on a fluorescent screen. The bright-
ness of the image was so small that the eyes needed a long time to adapt to the dark.
Into the image amplifier an examiner could always look in the radiograph directly
with the help of special optics. Image intensifiers, television equipment, and elec-
trically controlled manipulators were developed further in the 1960s as radioscopic
systems, which were widely used for casting and welding inspection in the 70s [88].

X-ray testing systems for baggage inspection were already developed in the 70s
[25, 80] and the 80s [26, 58]. The object under test was scanned using fluoroscopy
and the images were inspected on a a fluorescent screen.

1.2 History 5

Computer Tomography (CT) was developed in 1972 [16, 106]. With 2D-CT
cross-sectional pictures of the object computed from its projections. These slices,
which represent a reconstruction of the local distribution of the absorption coeffi-
cients of the object, are processed in order to find objects of interest in the test object.
However, one disadvantage of the procedure is the high time requirement: for the
reconstruction of meaningful slice images, both a minimum gate time per object
position is necessary for a sufficient signal/noise ratio along with a minimum num-
ber of projections. For this reason, the use of computer tomography is so far limited
in X-ray testing to the material development and research range, as well as to the
examination of particularly important and expensive parts [49]. Later 3D-CT was
developed, with which the whole object is reconstructed as voxels. State-of-the-art
industrial computer tomography used this kind of CT [34, 110].

Approaches to the automatic image evaluation as well as image restoration were
already used in the 80s with the help of the image processing techniques and CCD-
cameras [82]. The first fully automatic X-ray testing systems were installed in the
industry at the beginning of the 90s. One example can be found in the quality con-
trol of aluminum wheels performed by Alumetall Co. in Nuremberg, in which an
automatic casting part recognition is also integrated using bar codes for the adjust-
ment of the image analysis algorithms for different types of wheel [88]. At the
end of the 90s, flat panel detectors from amorphous silicon were industrially used
in some test systems [9, 50]. With these detectors the X-rays are converted by a
semiconductor directly into electrical signals (without image intensifier). However,
the X-ray testing with flat detectors was not always profitable due to their high costs
(in the comparison to the image intensifier).

Before 9/11, X-ray testing of luggage mainly focused on capturing the images
of their content: the reader can find in [74] an interesting analysis done in 1989
of several aircraft attacks in the world, and the existing technologies to detect the
terrorists’ threats based on Thermal-Neutron Activation (TNA), Fast-Neutron Acti-
vation (FNA), and dual-energy X-rays (used in medicine since early 70). In the 90s,
Explosive Detection Systems (EDS) were developed based on X-ray imaging [75],
and computed tomography through elastic scatter X-ray (comparing the structure
of irradiated [99] advanced image analysis) to improve the detection performance.
Nevertheless, the 9/11 attacks increased the security policies at airports, which also
produced the interest of the scientific community for researching topics related to
security using advanced computational techniques using pseudocoloring of X-ray
images, for example, [96]. It has not been easy for X-ray baggage inspection to
deal with low-density, often organic, materials (very important in baggage and food
inspection). This is because typical X-ray inspection systems use conventional pho-
ton integration detectors that are unable to record the incoming X-ray energy. How-
ever, state-of-the-art multicolor detector technology could assist to overcome this
problem. Thanks to recent advances in the development of photon counting detec-
tors, multicolour X-ray imaging has become possible. Today, novel X-ray detectors
have been developed. For example, detectors based on new semiconductors like
CdTe or CZT [48, 101] that can count photons at high rates by discriminating dif-
ferent energy channels, in which image noise can be decreased, contrast can be

6 1 X-ray Testing

enhanced and specific materials can be imaged; or wafer-scale CMOS flat panels
with a pixel size of 100 µm × 100 µm in an array of 1220 × 12000 pixels [21].

In the last few decades, fully automatic and semi-automatic test systems have
been used in many applications as we will cover in Chap. 9.

1.3 Physics of the X-rays

In general, X-rays are from same physical nature as visible light, radiowaves,
microwaves, ultraviolet, or infrared. They are all electromagnetic waves, which
spread at the speed of light, although with different wavelengths (see Table 1.1)

In the following, the formation of X-rays and their interaction with matter are
explained. These principles of physics can be found in many textbooks (see, for
example, [6, 64]).

1.3.1 Formation of X-rays

The formation of X-rays is performed in an X-ray tube in five steps as shown in
Fig. 1.3:

1. A high DC voltage U is applied between cathode and anode.
2. The cathode is strongly heated by the voltage Uh , so that the kinetic energy of

the heat is transferred to the mobile electrons in the cathode. The electrons are
thus in a position to withdraw from the cathode.

3. The electrons emitted by the hot cathode are accelerated by high voltage U .
4. These high-energy electrons, which are called cathode rays, are incident on the

anode.

Table 1.1 Electromagnetic spectrum [56]

Electromagnetic- Radio- Micro- Infra- Visible Ultra- X-rays Gamma-

waves −→ waves waves red light violet rays

Wavelength in (m) 1 ∼ 10−3 ∼ 7, 7 ·
10−7 ∼

3, 9 ·
10−7 ∼

10−8 ∼ 10−12 ∼ 10−14 ∼

104 1 10−3 7, 7 ·
10−7

3, 9 ·
10−7

10−8 10−12

Frequency in (Hz) 3 · 108 ∼ 3 ·
1011 ∼

3, 9 ·
1014 ∼

7, 7 ·
1014 ∼

3 ·
1016 ∼

3 ·
1020 ∼

3 ·
1022 ∼

3 · 104 3 · 108 3 · 1011 3, 9 ·
1014

7, 7 ·
1014

3 · 1016 3 · 1020

Energy in (eV) 1, 2 ·
10−6 ∼

1, 2 ·
10−3 ∼

1, 6 ∼ 3, 2 ∼ 1, 2 ·
102 ∼

1, 2 ·
106 ∼

1, 2 ·
108 ∼

1, 2 ·
10−10

1, 2 ·
10−6

1, 2 ·
10−3

1, 6 3, 2 1, 2 · 102 1, 2 · 106

1.3 Physics of the X-rays 7

Fig. 1.3 Basic diagram of an X-ray tube

5. X-rays are produced when electrons of sufficiently high-energy incident on the
anode are suddenly decelerated.

There is a distinction between discrete and continuous X-rays (commonly
known as Bremsstrahlung).

Discrete X-rays
These result in transitions of electrons in the inner shells of an atom (see Fig. 1.4a).
This happens when a highly accelerated electron e− 1© knocks an electron e−

1 from
the atomic shell. Since both electrons leave the atom 2©, a hole is formed (where
e−
1 was) that is immediately filled by an outer electron (e.g., e−

2) 3©. In an atom,
the electrons may be shown only on certain bands with a precisely specified energy
level. The deeper the band is in the atom, the greater is the energy of that electron.
When jumping from the electron to a lower band (in our example e−

2) the energy
difference between the two energy levels is emitted as electromagnetic radiation.
Energy transitions in the region of the inner electron shells which have high binding
energies lead to the emission of X-rays 4©. Therefore, the spectrum of this radiation
consists of lines at specific wavelengths or energies that are exclusively dependent
on the nature of the atom (see Fig. 1.4c). These are called characteristic X-ray lines.

Continuous X-rays (Bremsstrahlung)
In addition to the discrete X-rays, there is a continuos radiation called Brems-
strahlung. This occurs when a highly accelerated electron approaches the domain of
attraction of the atomic nucleus of the anode and are deflected due to the Coulomb
force (Fig. 1.4b). There is no collision between nucleus and electron. Since the elec-
tron interacts with the Coulomb force, the direction and velocity of the electron are
changed. In this deceleration, the electron loses some or all of the kinetic energy
that is emitted in the form of X-rays to the outside. The closer the electron is to the
nucleus, the greater is the deceleration and thus the energy of the Bremsstrahlung.

8 1 X-ray Testing

Fig. 1.4 X-ray formation and spectrum

As electrons can come close to the nucleus at any distance, this electromagnetic
radiation has a continuous spectrum with an upper cut-off frequency Emax (see
Fig. 1.4c). The maximum energy is obtained when an electron is completely deceler-
ated, i.e., when the kinetic energy of the electron (Ekin = e ·U) is converted entirely
into photon energy (Ephoto = h · ν), where e is the electric charge,U the anode volt-
age, h Planck’s constant, and ν the frequency of the electromagnetic wave. The
smallest possible X-ray wavelength becomes of Ekin = Ephoto(= Emax) and c = λν

with:

λmin = h · c
Emax

= h · c
e ·U (1.1)

where c is the speed of light in vacuum. Changes to the heating of the cathode Ih
(see Fig. 1.3) result in a proportional change of the energy flux density. An increase
in the high-voltageU leads to the displacement of the maximum energy flux density
to a higher energy.

1.3.2 Scattering and Absorption of X-rays

One aspect particularly important for X-ray testing is the attenuation of the inten-
sity of X-rays when passing through matter. The attenuation is a function of X-ray
energy and the material structure of the irradiated material (considerably in terms
of density and thickness). The attenuation occurs by two processes: scattering and
absorption. The scattering via classical scattering (Rayleigh scattering and Compton
effect); and absorption through the photoelectric effect, pair production, and partly
by the Compton effect. In the following, these are explained as interactions of X-
rays with atoms.

1.3 Physics of the X-rays 9

Fig. 1.5 Interaction of X-rays with matter

Rayleigh Scattering
In this process, there is a scattering of X-rays from their original path, in which the
radiation loses no energy. The lower the energy of the radiation, the more they are
deflected from the original path of the rays.

Photo Effect
The photoelectric effect that occurs is likely to happen when the radiation energy
just exceeds the binding energy of the electron. In the photoelectric effect, the energy
of the incident photon is completely transferred to an electron, and mainly on one
of the inner electron shells. The electron takes over the energy that the quantum
of radiation it emits as kinetic energy and leaves the atomic union (Fig. 1.5a). This
effect increases proportionally to E−3Z5, where E is the energy of the radiation
and Z is the atomic number. The photoelectric effect plays a role in the small and
medium energies of X-rays.

Compton Effect
In case the radiation energy is very much larger than the binding energy of the
atomic electron, the X-ray radiation strikes out the electron from the atom. A portion
of the energy of the X-ray radiation is transferred to the electron and converted
into kinetic energy. The radiation is scattered and loses energy (see Fig. 1.5b). This
results in a scattering due to the change of direction of the photons at the same
time and absorption due to the energy loss. This effect is proportional to the atomic
number of the atom Z and inversely proportional to the energy of the radiation to
E .

Pair Production
In case the radiation energy is greater than 1.022 MeV and passes it straight into
the proximity of the nucleus, the radiation can be turned into matter, producing an
electron e− and e+ positron (see Fig. 1.5c), whose masses are me− = me+ = 511
keV/c2. The pair production is more frequent, the greater the quantum energy and
the higher the atomic number of the irradiated material. In cases, where X-rays
come from X-ray tubes there is no pair production, as the energy is always in the
keV range.

10 1 X-ray Testing

a

b

Fig. 1.6 X-ray image formation according to absorption law: a X-ray image of a homogenous
object, and b X-ray image of an object with two different materials

Absorption and scattering can be described mathematically by the X-ray absorp-
tion law, which characterizes the intensity distribution of X-rays through matter:

ϕ(x) = ϕ0e
−μx (1.2)

with ϕ0 incident energy flux density, μ absorption coefficient, x thickness of the
irradiated matter and ϕ energy flux density after passage through matter with the
thickness of x (see Fig. 1.6a). The absorption coefficient μ depends on the incident
photon energy and the density and atomic number of the irradiated material. It is
composed of the coefficients of the classical dispersion σR , the photoelectric effect
τ , the Compton effect σC , and the pair production χ :

μ = σR + τ + σC + χ (1.3)

Because of the continuous distribution of the energy of the Bremsstrahlung (see
Fig. 1.4c) X-rays contain photons of different energies. In practice, therefore, the
course of the absorption curve can only be determined empirically. In the case of
aluminum, the course of the absorption coefficient in Fig. 1.7.

1.4 X-ray Testing System 11

Fig. 1.7 Absorption coefficient for aluminum [56]

Fig. 1.8 X-ray testing systems. There are two kinds of image acquisition system: based on
image intensifiers (top) and based on flat panels (bottom). In this example, an aluminum wheel
is inspected using a manipulator

1.4 X-ray Testing System

The essential components of an automatic X-ray testing system (see Fig. 1.8), such
as X-ray source, manipulator, image intensifier, and CCD-camera, are explained
below.

12 1 X-ray Testing

1.4.1 X-ray Source

There are six requirements for an X-ray source [42]:

1. Adjustable quantum energy.
2. Possible large adjustable dose rate.
3. Intensity of the radiation as uniform as possible in the field of the object to be

irradiated.
4. Smallest possible intensity of radiation outside the area to be irradiated.
5. Acceptable price.
6. Long life with constancy of features.

In this section, we describe the essential components of an X-ray source that
fulfill the conditions mentioned. An explanation of the formation of X-rays can be
found in Sect. 1.3.1.

Hot Cathode
The cathode is made of a filament from which the electrons emerge through the
thermoelectric effect in the vacuum of the X-ray tube. Usually, tungsten (W), also
known as wolfram, is used because of its high melting point (about 33800C). An
influence of the dose rate (independent of the quantum energy of the X-rays) is
achieved by controlling the electron emission over the heating current (Figs. 1.3 and
1.9). The quantum energy is adjusted by the high voltage between electrodes. Using
an aperture that surrounds the filament, a thin, sharply defined electron beam is
generated.

Anode
At the anode surface, the kinetic energy of the cathode beam is converted 99%
into heat and only 1% into the desired X-rays. To reduce the geometric blur of the
imaging process a small focal spot is required. In the focal spot of an X-ray tube,
however, so much heat is created that the anode material may melt if the heat is not
dissipated quickly and effectively. In order to increase the performance of an X-ray
source and at the same time to reduce the focal spot, the anodes are constructed as
follows:

Anode Material
The surface layer should be made of materials with a high melting point, high atomic
number, and high thermal conductivity. The element tungsten (W) best meets the
three criteria. In order to reduce the roughening during the operation, as well as to
avoid cracking, it is alloyed with rhenium (Re).

Line Focus
To reduce the optical focus, the electron beam strikes the anode surface in the focal
spot inclined by about α = 70 ∼ 200 from the vertical axis.

Rotating Anode
By rotating the anode the applied heat can be distributed over an entire ring with-
out changing the size of the optical spot (see Fig. 1.9). The distribution of the high
thermal load is better the larger the diameter of the ring and the higher the rotation
speed.

1.4 X-ray Testing System 13

Fig. 1.9 Basic structure of an anode

Envelope
Given that between the electrodes the voltage is high voltage, anode, and cathode
must be electrically isolated from each other. In addition, the tube envelope forms
the vacuum vessel and the mechanical attachment of the tube components. Up until
now, glass has been used for this purpose. However, in recent years envelopes made
of metal and ceramics have been used.

1.4.2 Manipulator

A manipulator is a device that can be handled with the test objects in the desired
manner without the operator using his/her hands to touch [93]. In an X-ray computer
vision system, the task of the manipulator is the handling of the test objects as
illustrated in Fig. 1.10. Due to the possibilities of movement, degrees of freedom
of the manipulator, the test object can be brought into the desired position. For a
manual inspection, the axes of a manipulator are moved by means of one or more
joysticks. When an automatic inspection of this task is undertaken, it is handled by
a Programmable Logic Controller (PLC) or an industrial computer.

A manipulator consists of sliding elements and rotary elements with which a
translation or rotation of the object test can be performed. Previously, the manip-
ulator moved the test object through the X-ray beam [54]. This solution resulted
in a complicated mechanical construction with a high mechanical load, wear, and
increased maintenance. Today it is possible to move the X-ray tube and the detec-
tor that is rigidly connected to it by a C-arm manipulator. These manipulators are
much easier to control and are faster and cheaper [9, 50]. An example of such a
manipulator is described in Sect. 3.3.4 (see Fig. 3.14).

14 1 X-ray Testing

Fig. 1.10 X-ray system with a manipulator ABB-Picker: the manipulator can rotate and translate
the test object to generate projections from different points of view

1.4.3 Image Intensifier

The X-ray image intensifier has two functions: (i) possible lossless conversion of
X-ray projection information into a visible image and (ii) its brightness gain [41]. On
the basis of the structure of an X-ray image intensifier shown in Fig. 1.11, the oper-
ation is explained. The X-ray radiation enters through an input screen into a vacuum
tube. As the radiolucent input screen has to withstand the atmospheric pressure, it
should not be too thin. Here metals are used with low atomic numbers that are trans-

Fig. 1.11 Schematic illustration of the operation of an image intensifier

1.4 X-ray Testing System 15

parent to X-rays, in which the absorption and scattering are relatively small. There-
after, the radiation incident on the X-ray fluoroscopy screen, in which the conversion
of X-radiation into visible light takes place. The X-rays are absorbed and about 2000
photons per X-ray quantum are triggered. The light strikes the photocathode and sets
photoelectrons. These electrons are accelerated by approximately 25 kV, which are
represented with reduced electron optics on an output phosphor screen. The output
image of the image intensifier is then captured by a CCD-camera.

The disadvantage of the image intensifier is the geometric distortion due to the
curvature of the input screen; details for this can be found in Sect. 3.3.2.

1.4.4 CCD-Camera

CCD-cameras use solid-state imaging sensors based on Charge-coupled device
(CCD) arrays. In these imaging sensors, the active detector surface is divided into
individual pixels in the CCD-sensor, while incident light is converted and trans-
ported into an electrical charge. The principle of the charge transport is based on the
charge transfer that takes place in the shift registers (Fig. 1.12).

The CCD-cameras are characterized by very good image geometry, high light-
sensitivity and several megapixels for conventional cameras. In modern days, there
are High Definition Television (HDTV) cameras up to 2,200,000 pixels. Further-
more, a CCD-camera can achieve a resolution of 46 megapixels and the exposure
time can be in a range between seconds and 1/8,000 s.

Due to the low sensitivity of the CCD-image sensor for direct X-ray radiation,
the radiation must be converted into visible light. In an X-ray testing system with
CCD-camera, this conversion happens in the image intensifier (see Sect. 1.4.3).

Fig. 1.12 Operation of a CCD-Array

16 1 X-ray Testing

Fig. 1.13 Flatpanel: a Basic structure [46] und b Example: Canon, model CXDI-50G (resolution:
2208 × 2688 pixels and 4,096 grayscale image). In this example, the X-ray emitter tube is Poskom,
model PXM-20BT

1.4.5 Flat Panel

A second possible image acquisition system is the flat panel detector based on amor-
phous silicon (a-Si), in which the X-ray, without going through an image intensifier
with CCD-camera, is converted from a semiconductor directly into electrical signals
(see Fig. 1.13). In this technology, a thin view of a-Si is deposited on a glass plate
as a support. As in a CCD-chip, a pixel array with switching elements is generated
in the silicon layer so that the charge which is stored in the individual pixels can be
read out serially and electronically [16].

The advantages of this detector are larger image receiving surface, no geometric
distortion, a high gray level resolution (12 ∼ 16 Bit/Pixel), that is very light and
small. Due to the high gray level resolution and greater imaging surface less test
positions are required for the inspection. The low weight allows for easier and faster
mechanics [9, 50]. An flat detector is shown in Fig. 1.13.

1.4.6 Computer

In the context of X-ray testing, a computer system is typically used for the following
tasks:

1. To control the image acquisition system.
2. To store acquired X-ray images.
3. To run computer vision algorithms that evaluate X-ray images.
4. To compute statistical analysis.

1.4 X-ray Testing System 17

5. To display results.
6. To control the X-ray source.
7. To control the manipulator.

1.5 X-ray Imaging

In this section we present image formation, acquisition, and visualization.

1.5.1 X-ray Image Formation

In X-ray testing, X-ray radiation is passed through the test object, and a detec-
tor captures an X-ray image corresponding to the radiation intensity attenuated
by the object.2 According to the principle of photoelectric absorption (1.2): ϕ =
ϕ0 exp(−μx), where the transmitted intensity ϕ depends on the incident radiation
intensity ϕ0, the thickness x of the test object, and the energy dependent linear
absorption coefficient μ associated with the material, as illustrated in Fig. 1.6.

In a photographic image, the surface of the object is registered. On the contrary,
in an X-ray image, the inside of the object is captured. In order to illustrate the
formation, we simulate the X-ray image of the object of Fig. 1.1 in several posi-
tions (in this example we use the approach outlined in Chap. 8). In this case, we
have a homogenous test object with a spherical cavity inside. The result is shown
in Fig. 1.14. In this example, we can observe, on the one hand, the absorption phe-
nomenon. The thicker the object the more attenuated the X-rays. In our visualiza-
tion, bright gray values are used for high output energy (low attenuation), and dark
gray values for low-output energy (high attenuation). On the other hand, we can see
the phenomenon of the summation of shadows, i.e., the output intensity of an image
point corresponds to the summation of all the attenuations the X-ray encountered.

It is worth noting that if X-ray radiation passes through n different materials, with
absorption coefficients μi and thickness xi , for i = 1, . . . n, the transmitted intensity
ϕ can be expressed as

ϕ = ϕ0 exp

(
−

n∑
i=1

μi xi

)
. (1.4)

This explains the image generation of regions that are present within the test object,
as shown in Figs. 1.6 and 1.14, where a gas bubble is clearly detectable. The con-
trast in the X-ray image between a flaw and a defect-free area of the object test is

2As explained in Sect. 1.3, X-rays can be absorbed or scattered by the test object. In this book
we present only the first interaction because scattering is not commonly used for X-ray testing
applications covered in this book. For an interesting application based on the X-ray scattering
effect, the reader is referred to [108].

18 1 X-ray Testing

Fig. 1.14 Simulation of an X-ray image of object of Fig. 1.1 from four different points of view.
Each arrow represents the orientation of the X-ray projection where the beginning corresponds to
the X-ray source

Fig. 1.15 Image formation process: a X-ray image of a wheel with two defects, b 3D plot of the
gray values of the image

distinctive. In such X-ray images, we can see that the defects, like voids, cracks, or
bubbles, show up as bright features. The reason is that the absorption in these areas
is shorter. Hence, according to the principle of differential absorption, the detec-
tion of flaws can be achieved automatically using image processing techniques that
are able to identify unexpected regions in a digital X-ray image. A real example is
shown in Fig. 1.15 which clearly depicts two defects.

Another example is illustrated in Fig. 1.16a, where a backpack containing knives
and a handgun is shown. However, X-ray images sometimes contain overlapped
objects, making it extremely difficult to distinguish them properly, as shown in
Fig. 1.16b where a handgun (superimposed onto a laptop) is almost impossible to
detect.

1.5 X-ray Imaging 19

ba

Fig. 1.16 X-ray images of a backpack. (Left) It is easy to recognize a handgun (and two knives).
(Right) It is extremely difficult to detect the handgun (see red rectangle)

1.5.2 Image Acquisition

In X-ray examination, X-ray radiation is passed through the material under test,
and a detector senses the radiation intensity attenuated by the material(s) of the test
object. The spacial distribution of the attenuation coefficients of the elements of the
object test define the X-ray information that is acquired by the sensor.

The X-ray image is usually captured with a CCD-camera (see Sect. 1.4.4) or a
flat panel (see Sect. 1.4.5). The digitalized image is stored in a matrix. An example
of a digitized X-ray image is illustrated in Fig. 1.17. The size of the image matrix
corresponds to the resolution of the image. In this example the size is 286 × 384
picture elements, or pixels. Each pixel has a gray value associated. This value is
between 0 and 255 for a scale of 28 = 256 gray levels. Here, ‘0’ means 100% black
and a value of ‘255’ corresponds to 100%white, as illustrated in Fig. 1.18. Typically,
the digitized X-ray image is stored in a 2Dmatrix, e.g.,X, and its pixels are arranged
in a grid manner. Thus, element x(i, j) denotes the gray value of the i th row of the
j th column, pixel (i, j), as shown in the matrix of Fig. 1.17.

Fig. 1.17 Digital X-ray image

20 1 X-ray Testing

Fig. 1.18 256 gray level scale

The eye is only capable of resolving around 40 gray levels [20], however for
computer vision applications, gray level resolution must be a minimum of 256 lev-
els. In some applications, 216 = 65, 536 gray levels are used [50], which allows one
to evaluate both very dark and very bright regions in the same image.

1.5.3 X-ray Image Visualization

In many X-ray testing applications, it is necessary to display X-ray images. For
example, when we present a result based on an X-ray image, or when a human
evaluation of an X-ray image is required (e.g., baggage screening). In those cases, it
is useful to have a suitable visualization of X-ray images.

A simple way to visualize an X-ray image is using a grayscale as shown in
Fig. 1.17 that uses the grayscale of Fig. 1.18. Conventionally, X-ray images have
been ‘black and white’ because of the gray nature of the radiographies and fluores-
cent screens. Usually, a common human eye can distinguish less than 50 gray values
[20], however, a trained human eye is able to recognize up to 100 gray values[76].

Nowadays, it is possible to assign colors to grayscale images. With today’s com-
puting technology, especially with the ongoing advancements in displays, there is no
reason to think that X-ray images must be visualized in grayscale only. In the sev-
enteenth century, Newton said indeed rays, properly expressed, are not colored [3].
He was referring to light rays. Now, one can say that X-rays, properly expressed, are
not gray... because they are not visible! We can just find a suitable way to visualize
them. Thus, we can use the power of human vision that can distinguish thousands
of colors [76].

In order to improve the visualization of an X-ray image, pseudocoloring can
be used. In pseudocoloring, a gray value is converted into a color value. That
is, we need a map function that relates the gray value x with a color value
(R(x),G(x), B(x)) for red, green, and blue respectively if we use a RGB-based
color map [35]. Some examples of the color maps are illustrated in Fig. 1.19 in
which the transformations (R(x),G(x), B(x)) are shown for ‘jet’, ‘hsv’, ‘parula’,
‘hot’, ‘rainbow’, and ‘sinmap’ [35, 65, 76]. An example of a pseudocolored X-ray
image is illustrated in Fig. 1.20.

The mentioned transformations correspond to linear mappings that can be loaded
from a lookup table. In addition, there are some interesting algebraic or trigonomet-
ric transformations that can be used in pseudocoloring [1]. One of them is the ‘sin
transformation’ generally defined as

1.5 X-ray Imaging 21

Fig. 1.19 Color maps used in pseudocoloring

R(x) = | aR + kR sin(cos(ωRx) + θR) |
G(x) = | aG + kG sin(cos(ωGx) + θG) |
B(x) = | aB + kB sin(cos(ωBx) + θB) |,

(1.5)

where ωC , θC , kC , and aC are frequency, phase, amplitude, and off-set for channel
C = R,G, B. This color map is implemented in function sincolormap of pyxvis
Library.3 An example of a pseudocolored X-ray image is illustrated in Fig. 1.20 for
‘rainbow’ and ‘sinmap’.

Python Example 1.1: In Fig. 1.20, we have an X-ray image of a pen case.
In this example we show different visualizations of a small region of this image,
namely the pencil sharpener. The example shows the classical grayscale representa-
tion, pseudocolors and a 3D representation:

Listing 1.1 : X-ray image representation.

from pyxvis.io import gdxraydb
from pyxvis.io.visualization import show_xray_image, show_color_array,

show_image_as_surface, dynamic_colormap

image_set = gdxraydb.Baggages()

Input image

3pyxvis Library is an open source Python library that is used in all examples of this book (see
Sect. 1.7.1).

22 1 X-ray Testing

Fig. 1.20 Different visualizations of an X-ray image. [→ Example 1.1]

img = image_set.load_image(2, 4)

Crop a region of interes within the image
roi = img[250:399, 340:529]

Display the input image using customized color map
show_xray_image(img, color_map=’gray’)

Display the roi using various color maps
show_color_array(roi)

1.5 X-ray Imaging 23

Display the selected region into a 3D projection
show_image_as_surface(roi)

The output of this code is in Fig. 1.20. We can see the use of a color map for
pseudocolor representations. A very interesting visualization is the 3D represen-
tation, where the z-axis corresponds to the gray value, in which the screw of
the sharpener is clearly distinguishable. The output of this example is obtained
using show_xray_image and show_color_array of pyxvis Library. The reader can
experiment a different visualization using command dynamic_colormap of pyxvis
Library, where a video of an X-ray image is presented. In this video, each frame is
displayed using a different colormap that slightly varies from frame to frame.4 �

1.5.4 Dual-Energy

In X-ray testing, dual-energy has been used successfully to provide information
about the materials of the objects under test. Interesting applications can be found
in baggage inspection and cargo inspection in the detection of organic or in-organic
material [4, 7, 22, 52].

Coefficient μ in (1.2) can be modeled as μ/ρ = α(Z , E), where ρ is the density
of the material, and α(Z , E) is the mass attenuation coefficient that depends on
the atomic number of the material Z , and the energy E of the X-ray photons. The
absorption coefficient varies with energy (or wavelength) according to [23]:

μ

ρ
= α(Z , E) = kλ3Z3, (1.6)

where k is a constant. Values for α(Z , E) are already measured and available in
several tables (see [47]). In order to identify the material composition—typically
for explosives or drug detection—the atomic number Z cannot be estimated using
only one image, as a thin material with a high atomic number can have the same
absorption as a thick material with a low atomic number [108]. For this purpose, a
dual-energy system is used [86], where the object is irradiated with a High-energy
level E1 and a low-level energy E2. In the first case, the absorbed energy depends
mainly on the density of the material. In the second case, however, the absorbed
energy depends primarily on the effective atomic number and the thickness of the
material [97]. For two energies i = 1, 2, we obtain from (1.2) and (1.6):

ϕi/ϕ0 = exp(−α(Z , Ei)ρz), (1.7)

Using dual-energy, it is possible to calculate the ratio:

4An example of a video generated with dynamic color is shown on https://youtu.be/Vsxff5CuTO0.

https://youtu.be/Vsxff5CuTO0

24 1 X-ray Testing

Fig. 1.21 Generation of a pseudocolor image using dual-energy. In this example the colors corre-

spond to different materials. [→ Example 1.2]

R = ln(ϕ2/ϕ0)

ln(ϕ1/ϕ0)
= α(Z , E2)

α(Z , E1)
, (1.8)

where the term −ρz is canceled out, Z can be directly found using the known mea-
surements α(Z , E) [43]. From both images, a new image is generated using a fusion
model, usually a lookup-table that produces pseudocolor information [8, 31], as
shown in Fig. 1.21.

Python Example 1.2: In Fig. 1.21 we have two X-ray images acquired from
the same object at the same position but with different energies: the first one was
taken at 5mA and 70 kV and the second one at 5mA and 100 kV. For an image
generation of dual-energy, we can use the following Python code:

Listing 1.2 : Dual-energy.

from pyxvis.io import gdxraydb
from pyxvis.io.visualization import show_xray_image, show_color_array
from pyxvis.processing.images import dual_energy

import matplotlib.pylab as plt

Select an images set and load images
image_set = gdxraydb.Baggages()

1.5 X-ray Imaging 25

Input images
img1 = image_set.load_image(60, 1)
img2 = image_set.load_image(60, 2)

Display the input image using customized color map
show_xray_image([img1, img2], color_map=’gray’)

Load LUT
lut = image_set.load_data(60, data_type=’DualEnergyLUT’)

Compute dual energy image
energy_image = dual_energy(img1, img2, lut)

Show results
plt.imshow(energy_image, cmap=’viridis’)
plt.axis(’off’)
plt.show()

The output of this code is in Fig. 1.21. We can see the use of a color map for pseu-
docolor representations. The output image is a grayscale image, however, the each
gray value is displayed according to a 256 colors palette as shown in right bar. In
this example we use dual_energy of pyxvis Library. �

Some simple methods that deal with color X-ray images, based on dual-energy,
have been developed to recognize objects in baggage inspection, see, for example,
[22].

1.6 Computer Vision

Computer Vision is the science and technology of giving computers the ability to
‘see’ and ‘understand’ images taken by one or more cameras. The goal of computer
vision is to study and develop algorithms for interpreting the visual world captured
in images or videos. Typical topics of computer vision are detection and recogni-
tion, automated visual inspection, image stitching, image processing and analysis
(enhancement, filtering, morphological operations, edge detection, and segmenta-
tion), video processing (optical flow and tracking), recognition of patterns, feature
extraction and selection, local descriptors and classification algorithms, and finally,
geometric vision topics such as projective geometry, camera geometric model, cam-
era calibration, stereovision, and 3D reconstruction [11, 13, 27, 29, 30, 35, 36, 39,
51, 102].

In order to give an introduction to the topics of computer vision that have been
used in X-ray testing and will be covered in this book, we follow Fig. 1.22 which
illustrates an extended version of our simple model presented in Fig. 1.1.

In this general schema, X-ray images of a test object can be generated at different
positions and different energy levels. Depending on the application, each block of
this diagram can be (or not be) used. For example, there are applications such as
weld inspection that uses a segmentation of a single mono-energetic X-ray image
(black square), sometimes with pattern recognition approaches (red squares); appli-
cations like casting inspection that uses mono energetic multiple views where the

26 1 X-ray Testing

Fig. 1.22 General schema for X-ray testing using computer vision (see text)

decision is taken analyzing individual views (green squares) or corresponding mul-
tiple views (blue squares); applications including baggage screening that use dual-
energy of single views (magenta squares) and multiple views (yellow squares); and
finally, applications for cargo inspections that employ active vision where a next—
best view is set according to the information of a single view (cyan squares). In each
case, the blocks without the corresponding color square are not used.

1.6.1 Geometric Model

The X-ray image of a test object corresponds to a projection in perspective, where a
3D point of the test object is viewed as a pixel in the digital X-ray image, as illus-
trated in Fig. 1.22. A geometric model that describes this projection can be highly
useful for 3D reconstruction and for data association between different views of the
same object. Thus, 3D features or multiple view 2D features can be used to improve
the diagnosis performed by using a single view.

As we will learn in Chap. 3, for the geometric model, four coordinate systems
are used (see Fig. 1.22):

1.6 Computer Vision 27

• OCS (X,Y, Z): Object Coordinate System, where a 3D point is defined using
coordinates attached to the test object.

• WCS (X̄ , Ȳ , Z̄): World Coordinate System, where the origin corresponds to the
optical center (X-ray source) and the Z̄ -axis is perpendicular to the projection
plane of the detector.

• PCS (x, y): Projection Coordinate System, where the 3D point is projected into
the projection plane Z̄ = f , and the origin is the intersection of this plane with
Z̄ -axis.

• ICS (u, v): Image Coordinate System, where a projected point is viewed in the
image. In this case, (x, y)—axes are set to be parallel to (u, v)—axes.

The geometric model OCS → ICS, i.e., transformation P : (X,Y, Z) → (u, v),
can be expressed in homogeneous coordinates as [67]:

λ

⎡
⎣u
v
1

⎤
⎦ = P

⎡
⎢⎢⎣
X
Y
Z
1

⎤
⎥⎥⎦ , (1.9)

where λ is a scale factor and P is a 3 × 4 matrix modeled as three transformations:
(i) OCS → WCS, i.e., transformation T1 : (X,Y, Z) → (X̄ , Ȳ , Z̄), using a 3D rota-
tion matrix R, and 3D translation vector t;
(ii) WCS → (PCS), i.e., transformation T2 : (X̄ , Ȳ , Z̄) → (x, y), using a perspec-
tive projection matrix that depends on focal distance f ; and
(iii) PCS → ICS, i.e., transformation T3 : (x, y) → (u, v), using scales factor αx

and αy , and 2D translation vector (u0, v0).
The three transformations OCS → WCS → PCS → ICS are expressed as

P =
⎡
⎣αx 0 u0

0 αx v0
0 0 1

⎤
⎦

︸ ︷︷ ︸
T3

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
T2

[
R t
0T 1

]
︸ ︷︷ ︸

T1

. (1.10)

The parameters included in matrix P can be estimated using a calibration approach
[39].

In order to obtain multiple views of the object, n different projections of the test
object can be achieved by rotating and translating it (for this task a manipulator can
be used). For the p-th projection, for p = 1 . . . n, the geometric model Pp used in
(1.9) is computed from (1.10) including 3D rotation matrixRp and 3D translation tp.
Matrices Pp can be estimated using a calibration object projected in the n different
positions [67] or using a bundle adjustment algorithm where the geometric model is
obtained from the n X-ray images of the test object [69].

28 1 X-ray Testing

1.6.2 Single View Analysis

A computer vision system for single view analysis, as shown in Fig. 1.22, consists
typically of the following steps: an X-ray image of the test object is taken and stored
on a computer. The digital image is improved in order to enhance the details. The X-
ray image of the parts of interest is found and isolated from the background of the
scene. Significant features of the segmented parts are extracted. Selected features
are classified or analyzed in order to determine if the test object deviates from a
given set of specifications. Using a supervised pattern recognition methodology, the
selection of the features and the training of the classifier are performed using repre-
sentative images that are to be labeled by experts [27]. In this book, we will cover
several techniques of image processing (Chap. 4), image representation (Chap. 5),
and classification (Chap. 6) that have been in X-ray testing.

For the segmentation task, two general approaches can be used: a traditional
image segmentation or a sliding–window approach. In the first case, image process-
ing algorithms are used (e.g., histograms, edge detection, morphological operations,
filtering, etc. [35]). Nevertheless, inherent limitations of traditional segmentation
algorithms for complex tasks and increasing computational power have fostered
the emergence of an alternative approach based on the so-called sliding–window
paradigm. Sliding-window approaches have established themselves as state of the
art in computer vision problems where a visually complex object must be separated
from the background (see, for example, successful applications in face detection
[105] and human detection [24]). In the sliding-window approach, a detection win-
dow is moved over an input image in both horizontal and vertical directions, and
for each localization of the detection window, a classifier decides to which class
the corresponding portion of the image belongs according to its features. Here, a
set of candidate image areas are selected and all of them are fed to the subsequent
parts of the image analysis algorithm. This resembles a brute force approach where
the algorithm explores a large set of possible segmentations, and at the end the most
suitable is selected by the classification steps. An example for weld inspection using
sliding-windows can be found in Chap. 9.

1.6.3 Multiple View Analysis

It is well known that A picture is worth a thousand words, however, this is not
always true if we have an intricate image as illustrated in Fig. 1.16b. In certain X-
ray applications, e.g., baggage inspection, there are usually intricate X-ray images
due to overlapping parts inside the test object, where each pixel corresponds to the
attenuation of multiple parts, as expressed in (1.4).

In some cases, active vision can be used in order to adequate the viewpoint of the
test object to obtain more suitable X-ray images to analyze. Therefore, an algorithm

1.6 Computer Vision 29

is designed for guiding the manipulator of the X-ray imaging system to poses where
the detection performance should be higher [89] (see Fig. 1.22).

In other cases, multiple view analysis can be a powerful option for examining
complex objects where uncertainty can lead to misinterpretation. Multiple view
analysis offers advantages not only in 3D interpretation. Two or more images of
the same object taken from different points of view can be used to confirm and
improve the diagnosis undertaken by analyzing only one image. In the computer
vision community, there are many important contributions in multiple view analysis
(e.g., object class detection [100], motion segmentation [112], Simultaneous Local-
ization And Mapping (SLAM) [53], 3D reconstruction [2], people tracking [28],
breast cancer detection [103] and quality control [19]). In these fields, the use of
multiple view information yields a significant improvement in performance.

Multiple view analysis in X-ray testing can be used to achieve two main goals: (i)
analysis of 2D corresponding features across the multiple views, and (ii) analysis of
3D features obtained from a 3D reconstruction approach. In both cases, the attempt
is made to gain relevant information about the test object. For instance, in order
to validate a single view detection—filtering out false alarms—2D corresponding
features can be analyzed [71]. On the other hand, if the geometric dimension of a
inner part must be measured a 3D reconstruction needs to be performed [77].

As illustrated in Fig. 1.22, the input of the multiple view analysis is the associ-
ated data, i.e., corresponding points (or patches) across the multiple views. To this
end, associated 2D cues are found using geometric constraints (e.g., epipolar geom-
etry and multifocal tensors [39, 68]), and local scale-invariant descriptors across
multiple views (e.g., like SIFT [63]).

Finally, 2D or 3D features of the associated data can be extracted and selected,
and a classifier can be trained using the same pattern recognition methodology
explained in Sect. 1.6.2.

Depending on the application, the output could be a measurement (e.g., the vol-
ume of the inspected inner part is 3.4 cm3), a class (e.g., the test object is defective)
or an interpretation (e.g., the baggage should be inspected by a human operator
given that uncertainty is high).

1.6.4 Deep Learning

Originally, deep learning is inspired by ideas from neuroscience [40]. In recent
years, deep learning has been successfully used in computer vision (see, for exam-
ples, in image and video recognition in [10, 59, 95]), and it has been established
as the state of the art in many areas. The key idea of deep learning is to replace
handcrafted features with features that are learned efficiently using a hierarchi-
cal feature extraction approach. There are several deep architectures such as deep
neural networks, convolutional neural networks, energy-based models, Boltzmann
machines, deep belief networks, and among others [10]. Convolutional Neural Net-
works (CNN), which were inspired by a biological model [60], is a very powerful

30 1 X-ray Testing

method for image recognition [55]. In this book, we dedicate Chap. 7 to deep learn-
ing approaches that can be used in X-ray testing, namely convolutional neural net-
works, pre-trained models, transfer learning, generative adversarial networks, and
detection methods.

1.6.5 Computed Tomography

Another method used in X-ray testing is Computed Tomography (CT) [18, 34],
which produces a cross section of the object under test. The test object (or the X-ray
source) can be rotated in order to obtain projections at different angles θ . As shown
in Fig. 1.23, for each angle θ a new X-ray intensity profile I (r, θ) is obtained, where
r is the distance to the origin of the object. According to the absorption’s law (1.2)
and a parallel-beam geometry, we obtain

I (r, θ) = I0 exp

(
−

∫
l
μ(x, y)ds

)
(1.11)

in which (r, s) is a new coordinate system obtained by rotating (x, y) through θ

with x = r cos θ − s sin θ and y = r sin θ + s cos θ . Straight line l is the line of the
X-ray beam from the X-ray source to the detector. Thus, the attenuation distribution
μ(x, y) can be computed from all profiles I (r, θ).

In computed tomography, in general, a new function Pθ (r) = − ln(I (r, θ)/I0) is
used to calculate the object’s cross-sectional plane from the measured projections
[18]. The reconstruction of the object function μ(x, y) from it’s projections presents
a typical inverse problem [17]. A great number of algorithms are available, which
can be classified into three groups:

1. Back-projection [57, 78]: This is the most basic method because it simply
‘smears’ each projection along the path of the X-rays. It allows for a crude recon-
struction of the test object.

2. Projection-Slice theorem [20]: As illustrated in Fig. 1.23b, this theorem states
that a one-dimensional Fourier transformation of a projection Pθ (r) at the angle
θ is equal to the two-dimensional Fourier transformation of the object function
along a straight line through the origin in Fourier coordinates at the angle θ

[15, 84]. A projection Pθ (r) is obtained through parallel-beam geometry, e.g.,
by shifting the radiation emitter-detector arrangement radially after each mea-
surement.5 In practice, however, these ideal conditions cannot be realized. Only
a limited number of projection measurements are available for reconstruction,

5Many reconstruction approaches assume parallel-beam geometry, whereas CT scanners usually
employ fan-beam geometries. There are dedicated fan-beam algorithms (see, for example, [45]),
however, there are methods that resample the fan-beam data in order to obtain an equivalent
parallel-beam data (see, for example, [45, 79, 107]). Thus, traditional reconstruction approaches
can be used.

1.6 Computer Vision 31

Fig. 1.23 Computed Tomography (CT) [72]: a Result of a CT reconstruction. b Projection slice
theorem

and these are generated from a limited number of line integrals. As such, a two-
dimensional function cannot be uniquely defined.

3. Filtered back-projection: In order to avoid the aforementioned problems, this
method uses filters with low-pass characteristics. This has a negative impact,
especially on high spatial resolution reconstructions, since great discontinuities
in the measured values result from the object edges in the projections (highly
absorptive material next to hollow spaces in the design). This leads to large arte-
facts, which can make image analysis impossible.

The aforementioned reconstruction problems have been addressed as an ill-posed
problem [37]. There are diverse approaches for regularization and optimization
algorithms that ensure their convergence. Some consider different a-priori infor-

32 1 X-ray Testing

mation using probabilistic models [14] and geometric models. For example, some
models have established a region of interest [61, 111] considering limited angles
[32, 85, 98] or sparse representations [12, 32, 98], restricting the scope to a binary
construction [5, 87], reconstructing faults in homogeneous material [5], or preserv-
ing borders [104, 109], to name just a few. The work of Retraint et al. [87] merits
special interest because the authors conducted a binary reconstruction of the 3D
image from just three X-ray projections (not necessarily orthogonal) using an Ising
model [33].

Computed tomography provides cross-sectional images of the target object so
that each object is clearly separated from any others, however, CT imaging requires a
considerable number of projections to reconstruct an accurate cross-sectional image,
which is time consuming.

1.7 Code and Data

The book provides supporting material at an associated website,6 including a
database of X-ray images and a Python Library, called pyxvis Library, for use with
the book’s many examples.

1.7.1 Pyxvis Library

In this book, we use many commands of pyxvis Library, i.e., an open source Python7

library that we developed for X-ray testing with computer vision.8 pyxvis Library
contains more than 150 functions for image processing, projective geometry, multi-
ple view analysis, feature extraction, feature transformation, feature analysis, feature
selection, classification, convolutional neural networks, pre-trained models, transfer
learning, generative adversarial networks, performance evaluation, and simulation
(see Fig. 1.24).

Python Example 1.3: Each function of pyxvis Library has a ‘help’ with one
or more examples. For example, this is the help for command dual_energy:

Listing 1.3 : Help of command dual_energy of pyxvis Library.

from pyxvis.io import gdxraydb
from pyxvis.processing.images import dual_energy

Retrieve the function documentation
help(dual_energy)

6See https://domingomery.ing.puc.cl/material/.
7There are many textbooks that can be used to learn Python, see, for example, [66, 81, 94].
8pyxvis Library is available on https://github.com/computervision-xray-testing/pyxvis, with all
experiments implemented in Google Colab.

https://domingomery.ing.puc.cl/material/
https://github.com/computervision-xray-testing/pyxvis

1.7 Code and Data 33

Fig. 1.24 pyxvis Library: developed Python library for this book

The output of Example 1.3 is the following:

Help on function dual_energy in module images:

dual_energy(img_1, img_2, lut)
Allows for dual-energy image computation.

Args:
img_1 (numpy array): first image
img_2 (numpy array): second image
lut (numpy array): the lookup table use during computation

Raises:
TypeError: invalid input type for images

Returns:
_dual_energy (numpy array): the dual-energy image.|

The reader can check the correct use of dual_energy in Example 1.2.
A quick reference for pyxvis Library and all of the examples of this book can be

found in our repository (see footnote 8).

34 1 X-ray Testing

1.7.2 GDXray+ Database

We developed an X-ray database that contains more than 23,100 X-ray images.9 The
database is described in detail in Chap. 2 and Appendix A. The database includes
five groups of X-ray images: castings, welds, baggage, natural objects, and settings.
Each group has several series, and each series several X-ray images.

Most of the series are annotated or labeled. In those cases, the coordinates of the
bounding boxes of the objects of interest or the labels of the images are available in
standard text files. The size of GDXray+ is 4.5 GB.

1.8 General Methodology for X-ray Testing

In computer vision for X-ray testing, we identify three main areas:

• 1. X-ray energies: there is enough research evidence to show that multi-energy
X-ray testing must be used when material characterization is required (e.g., to
detect organic products). In other cases, such as inspection of castings, mono-
energetic X-ray imaging is enough.

• 2. X-ray multi-views: the performance of the examination of a complex object
can be better when analyzing multi-views (because a single view could present an
unrecognizable pose). In othercases, such as inspection of welds, a single view is
enough.

• 3. X-ray computer vision: there is a plethora of computer vision algorithms
that can address many recognition/detection/inspection problems. There are cases
(e.g., size of a fruit) in which a simple algorithm is enough, whereas in other
applications (e.g., baggage inspection), more complex algorithms are required.

This taxonomy is called ‘3X-Strategy’, as illustrated in Fig. 1.25. Each solution cor-
responds to a point in the 3X-space, which is defined as a combination of X-ray
energies (X1), X-ray multi-views (X2) and X-ray computer vision algorithms (X3).

In X-ray testing, three main factors can have an impact on the solution:

1. The type of X-ray image, which depends on the X-ray energies used in the image
acquisition process.

2. The point of view, that means the occlusion, which depends on whether or not
other objects are superimposed over the target object, and the pose, which is
related to the rotation of the object.

3. The image complexity, which depends on the number of objects present and how
they are placed in the bag.

These factors have been addressed using a 3X-strategy: it is clear that certain
objects of interest require more than one X-ray energy, more than one view, and

9
GDXray+ is available on https://domingomery.ing.puc.cl/material/gdxray/.

https://domingomery.ing.puc.cl/material/gdxray/

1.8 General Methodology for X-ray Testing 35

Fig. 1.25 3X-strategy: In 3X-space, a baggage inspection solution is defined as a combination of
X-ray energies (X1), X-ray multi-views (X2) and X-ray computer vision algorithms (X3)

more than a simple algorithm. Thus, for X-ray testing there is a general methodology
that can be understood as an ad-hoc combination of X1 for energies, X2 for views
andX3 for algorithms that can be used. Table 1.2 provides possible 3X-combinations
for certain applications. For example in baggage inspection, if we want to identify
a flammable liquid in an uncluttered bag (i.e., low-image complexity) we need at
least dual-energy, possibly only one view, and a simple computer vision algorithm.
However, if we want to detect a handgun in a cluttered bag (i.e., high image com-
plexity), we need several views, possibly a computed tomography, and a complex
computer vision algorithm. If we want to detect a metallic handgun, dual-energy will
be required. A 3X-strategy is to be designed for each kind of object to be detected.

36 1 X-ray Testing

Table 1.2 Information on possible combination of energies, views and algorithms for categories
of objects

Application area Object X
∗
1 X

∗
2 X

∗
3

Energies Views Algorithms

1 2 3 1 2 3 1 2 3

Baggage
inspection

Aerosols � � � � �� � ��

Alcohol � � � � �� � ��

Ammunition � � � � �� � ��

Flammable
liquids

� � � � �� � ��

Fruits and
vegetables

� � � � � � � ��

Guns � �� � � � � � �

Milk and honey � � � � �� � ��

Pepper spray � � � � �� � � �

Seeds and grains � � � � � � � ��

Sharp objects � �� � � � � � �

Stun guns � �� � � � � � �

Toxic substances � �� � �� � � �

Woods and barks � � � � � � � ��

Quality control Automotive parts � � � � � � � � �

Welds � � � � � � � � �

Food � � � � � � � � �

Electronic
circuits

� � � � � � � � �

Cargo inspection People � � � � �� � ��

Explosives � � � � �� � ��

Fruits and
vegetables

� � � � �� � ��

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used , � used, � probably used

1.9 Summary

In this book, we present a general overview of computer vision approaches that have
been used in X-ray testing. In this chapter, we gave an introduction to our book by
covering relevant issues of X-ray testing.

X-ray testing has been developed for the inspection of materials or objects, where
the aim is to analyze—nondestructively—those inner parts that are undetectable to
the naked eye. Thus, X-ray testing is used to determine if a test object deviates from
a given set of specifications.

1.9 Summary 37

Typical applications are

• Inspection of automotive parts,
• Quality control of welds,
• Baggage screening,
• Analysis of food products,
• Inspection of cargo,
• Quality control of electronic circuits.

In order to achieve efficient and effective X-ray testing, automated and semi-
automated systems based on computer vision algorithms are being developed to
execute this task.

We gave an introduction to some physic and geometric principles related to com-
puter vision. Following this, an overview of single and multiple view analysis, deep
learning, and computed tomography was presented. Finally, we introduce a general
methodology for computer vision for X-ray testing.

References

1. Abidi, B.R., Zheng, Y., Gribok, A.V., Abidi, M.A.: Improving weapon detection in single
energy X-ray images through pseudocoloring. IEEE Trans. Syst., Man, Cybern., Part C:
Appl. Rev. 36(6), 784–796 (2006)

2. Agarwal, S., Snavely, N., Simon, I., Seitz, S., Szeliski, R.: Building Rome in a day. In: IEEE
12th International Conference on Computer Vision (ICCV2009), pp. 72–79 (2009)

3. Agoston, G.A.: The concept of color. Color Theory and Its Application in Art and Design,
pp. 5–10. Springer, Berlin (1987)

4. Akcay, S., Breckon, T.: Towards automatic threat detection: a survey of advances of deep
learning within X-ray security imaging (2020). arXiv:2001.01293

5. Allain, M., Idier, J.: Efficient binary reconstruction for non destructive evaluation using gam-
magraphy. Inverse Prob. 4(23), 1371–1393 (2007)

6. Als-Neielsen, J., McMorrow, D.: Elements of Modern X-Ray Physics, 2nd edn. Willey,
Hoboken (2011)

7. Baştan, M., Byeon, W., Breuel, T.M.: Object recognition in multi-view dual x-ray images.
In: British Machine Vision Conference BMVC (2013)

8. Baştan, M., Yousefi, M.R., Breuel, T.M.: Visual words on baggage X-ray images. Computer
Analysis of Images and Patterns, pp. 360–368. Springer, Berlin (2011)

9. Bavendiek, K., Krause, A., Beyer, A.: Durchsatzerhöhung in der industriellen Röntgenprü-
fung – Eine Kombination aus innovativem Prüfablauf und optimierter Bildauswertung. In:
DGZfP Jahrestagung, vol. Berichtsband 63.1, pp. 301–306. Deutsche Gesellschaft für Zer-
störungsfreie Prüfung e.V., Bamberg (1998)

10. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspec-
tives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

11. Bhuyan, M.K.: Computer Vision and Image Processing: Fundamentals and Applications.
CRC Press, Boca Raton (2019)

12. Bian, J., Siewerdsen, J., Han, X., Sidky, E., Prince, J., C., P., Pan, X.: Evaluation of sparse-
view reconstruction from flat-panel-detector cone-beam CT. Phys. Med. Biol. 55(22), 6575–
6599 (2010)

13. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

http://arxiv.org/abs/2001.01293

38 1 X-ray Testing

14. Bouman, C., Sauer, K.: A unified approach to statistical tomography using coordinate descent
optimization. IEEE Trans. Image Process., 480–492 (1996)

15. Bracewell, R.N.: Strip integration in radio astronomy. Aust. J. Phys. 9(2), 198–217 (1956)
16. Bunke, J.: Computertomographie. In: Ewen, K. (ed.) Moderne Bildgebung: Physik,

Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskontrolle, pp.
153–170. Georg Thieme Verlag, Stuttgart, New York (1998)

17. Buzug, T.: Computed Tomography. Springer, Berlin (2008)
18. Carmignato, S., Dewulf, W., Leach, R.: Industrial X-Ray Computed Tomography. Springer,

Berlin (2018)
19. Carrasco, M., Pizarro, L., Mery, D.: Visual inspection of glass bottlenecks by multiple-view

analysis. Int. J. Comput. Integr. Manuf. 23(10), 925–941 (2010)
20. Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)
21. Cha, B.K., Jeon, S., Seo, C.W.: X-ray performance of a wafer-scale cmos flat panel imager

for applications in medical imaging and nondestructive testing. Nucl. Instrum.Methods Phys.
Res., Sect. A 831, 404–409 (2016)

22. Chouai, M., Merah, M., Sancho-GÓmez, J.L., Mimi, M.: A machine learning color-based
segmentation for object detection within dual X-ray baggage images. In: Proceedings of
the 3rd International Conference on Networking, Information Systems & Security, pp. 1–11
(2020)

23. Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction. Pearson, London (2001)
24. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference

on Computer Vision and Pattern Recognition (CVPR2005), vol. 1, pp. 886–893 (2005)
25. Dennhoven, M., Kunze, C., Kuehn, R.: Baggage inspection device (1977). US Patent

4,047,035
26. Donges, G., Dietrich, R.: Baggage inspection system (1988). US Patent 4,759,047
27. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)
28. Eshel, R., Moses, Y.: Tracking in a dense crowd using multiple cameras. Int. J. Comput.

Vision 88, 129–43 (2010)
29. Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images: The Laws

that Govern the Formation of Multiple Images of a Scene and Some of their Applications.
The MIT Press, Cambridge (2001)

30. Forsyth, D.A., Ponce, J.: A modern approach. A Modern Approach, Computer Vision (2003)
31. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view X-Ray images. Pattern

Recognit., 144–154 (2012)
32. Frikel, J.: Sparse regularization in limited angle tomography. Appl. Comput. Harmon. Anal.

1(34), 117–141 (2013)
33. Gallavotti, G.: Statistical mechanics. Texts and Monographs in Physics. Springer, Berlin

(1999)
34. Goebbels, J.: Computed tomography. Handbook of Technical Diagnostics, pp. 249–258.

Springer, Berlin (2013)
35. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)
36. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
37. Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale

University Press, New Haven (1923)
38. Hanke, R., Fuchs, T., Uhlmann, N.: X-ray based methods for non-destructive testing and

material characterization. Nucl. Instrum. Methods Phys. Res., Sect. A 591(1), 14–18 (2008)
39. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cam-

bridge University Press, Cambridge (2003)
40. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial

intelligence. Neuron 95(2), 245–258 (2017)
41. Heinzerling, J.: Bildverstärker-Fernseh-Kette. In: Ewen, K. (ed.) Moderne Bildgebung:

Physik, Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskon-
trolle, pp. 115–126. Georg Thieme Verlag, Stuttgart, New York (1998)

References 39

42. Heinzerling, J.: Röntgenstrahler. In: Ewen, K. (ed.) Moderne Bildgebung: Physik,
Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskontrolle, pp.
77–85. Georg Thieme Verlag, Stuttgart, New York (1998)

43. Heitz, G., Chechik, G.: Object separation in X-ray image sets. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR-2010), pp. 2093–2100 (2010)

44. Hellier, C.: Handbook of Nondestructive Evaluation, 2nd edn. McGraw Hill, New York
(2013)

45. Herman, G., Lung, H.: Reconstruction from divergent beams: a comparison of algorithms
with and without rebinning. Comput. Biol. Med. 10(2), 131–139 (1980)

46. Horbaschek, H.: Technologie und Einsatz von Festkörperdetektoren in der Röntgentechnik
(1998). Vortrag der Firma Siemens Pforchheim in der 9. Sitzung des Unterausschusses Bild-
verarbeitung in der Durchstrhlungprüfung (UA BDS) der Deutschen Gesellschaft für Zer-
störungsfreie Prüfung e.V. (DGZfP), Ahrensburg

47. Hubbell, J., Seltzer, S.: Tables of X-Ray mass attenuation coefficients and mass energy-
absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional
substances of dosimetric interest (1996). http://www.nist.gov/pml/data/xraycoef/index.cfm

48. Iniewski, K.: CZT sensors for computed tomography: from crystal growth to image quality.
J. Instrum. 11(12), C12,034 (2016)

49. Jaeger, T.: Optimierungsansätze zur Lösung des limited data problem in der Computertomo-
graphie. Verlag Dr. Köster, Berlin (1997)

50. Jaeger, T., Heike, U., Bavendiek, K.: Experiences with an amorphous silicon array detector in
an ADR application. In: International Computerized Tomography for Industrial Applications
and Image Processing in Radiology, DGZfP Proceedings BB 67-CD, pp. 111–114. Berlin
(1999)

51. Klette, R.: Concise computer vision: an introduction into theory and algorithms. Springer
Science & Business Media (2014)

52. Kolkoori, S., Wrobel, N., Deresch, A., Redmer, B., Ewert, U.: Dual high-energy X-ray digital
radiography for material discrimination in cargo containers. In: 11th European Conference
on Non-Destructive Testing (ECNDT 2014), 6–10 Oct 2014, Prague, Czech Republic (2014)

53. Konolige, K., Agrawal, M.: FrameSLAM: from bundle adjustment to realtime visual map-
ping. IEEE Trans. Rob. 24(5), 1066–1077 (2008)

54. Kosanetzky, J.M., Krüger, R.: Philips MU231: Räderprüfanlage. Technischer Bericht, Philips
Industrial X-ray GmbH, Hamburg (1997)

55. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. NIPS, pp. 1106–1114 (2012)

56. Kuchling, H.: Taschenbuch der Physik, 12th edn. Harri Deutsch, Thun-Frankfurt, Main
(1989)

57. Kuhl, D., Edwards, R.: Image separation radioisotope scanning. Radiology 80(4), 653–662
(1963)

58. Kunze, C., Dennhoven, M.: Inspection system for baggage (1980). US Patent 4,216,499
59. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
60. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recognition.

In: Proceedings of the Third International Conference on Research in Air Transportation
(1998)

61. Lehr, C., Liedtke, C.: 3D reconstruction of volume defects from few X-ray. Computer anal-
ysis of images and patterns, pp. 257–284. Springer, Berlin (1999)

62. Lossau, N.: Röntgen: Eine Entdeckung verändert unser Leben, 1 edn. Köln, vgs (1995)
63. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision

60(2), 91–110 (2004)
64. Martz, H.E., Logan, C.M., Schneberk, D.J., Shull, P.J.: X-Ray Imaging: Fundamentals,

Industrial Techniques and Applications. CRC Press, Boca Raton (2016)
65. MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The Math-

Works Inc. (2014)

http://www.nist.gov/pml/data/xraycoef/index.cfm

40 1 X-ray Testing

66. Matthes, E.: Python crash course: a hands-on, project-based introduction to programming.
No Starch Press (2015)

67. Mery, D.: Explicit geometric model of a radioscopic imaging system. NDT & E Int. 36(8),
587–599 (2003)

68. Mery, D.: Exploiting multiple view geometry in X-ray testing: part I, theory. Mater. Eval.
61(11), 1226–1233 (2003)

69. Mery, D.: Automated detection in complex objects using a tracking algorithm in multiple X-
ray views. In: Proceedings of the 8th IEEE Workshop on Object Tracking and Classification
Beyond the Visible Spectrum (OTCBVS 2011), in Conjunction with CVPR 2011, Colorado
Springs, pp. 41–48 (2011)

70. Mery, D.: Aluminum casting inspection using deep learning: a method based on convolu-
tional neural networks. J. Nondestr. Eval. 39(1), 12 (2020)

71. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking
of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6),
890–901 (2002)

72. Mery, D., Filbert, D., Jaeger, T.: Image processing for fault detection in aluminum castings.
In: MacKenzie, D., Totten, G. (eds.) Analytical Characterization of Aluminum and Its Alloys.
Marcel Dekker, New York (2003)

73. Mery, D., Jaeger, T., Filbert, D.: A review of methods for automated recognition of casting
defects. Insight 44(7), 428–436 (2002)

74. Murphy, E.: A rising war on terrorists. IEEE Spectr. 26(11), 33–36 (1989)
75. Murray, N., Riordan, K.: Evaluation of automatic explosive detection systems. In: 29th

Annual 1995 International Carnahan Conference on Security Technology, 1995. Proceed-
ings. Institute of Electrical and Electronics Engineers, pp. 175 –179 (1995). https://doi.org/
10.1109/CCST.1995.524908

76. Neri, E., Caramella, D., Bartolozzi, C.: Image processing in radiology. In: Baert, A.L,
Knauth, M., Sartor, K (eds.) Medical Radiology. Diagnostic Imaging. Springer, Berlin (2008)

77. Noble, A., Gupta, R., Mundy, J., Schmitz, A., Hartley, R.: High precision X-ray stereo for
automated 3D CAD-based inspection. IEEE Trans. Robot. Autom. 14(2), 292–302 (1998)

78. Oldendorf, W.: Isolated flying spot detection of radiodensity discontinuities-displaying the
internal structural pattern of a complex object. IRE Trans. Biomed. Electron. 8(1), 68–72
(1961)

79. Peters, T., Lewitt, R.: Computed tomography with fan beam geometry. J. Comput. Assist.
Tomogr. 1(4), 429–436 (1977)

80. Peugeot, R.S.: X-ray baggage inspection system (1975). US Patent 3,919,467
81. Pichara, K., Pieringer, C.: Advanced Computer Programming in Python. CreateSpace Inde-

pendent Publishing Platform (2017)
82. Purschke, M.: Radioskopie – Die Prüftechnik der Zukunft? In: DGZfP Jahrestagung, vol.

Berichtsband 68.1, pp. 77–84. Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., Celle
(1999)

83. Purschke, M.: IQI-sensitivity and applications of flat panel detectors and X-ray image inten-
sifiers - a comparison. Insight 44(10), 628–630 (2002)

84. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integrale längs gewisser Man-
nigfaltigkeiten. Ber. Sächs. Akad. Wiss. Math. Phys. Kl. 69, 262–277 (1917)

85. Rantala, M., Vanska, S., Jarvenpaa, S., Kalke, M., Lassas, M., Moberg, J., Siltanen, S.:
Wavelet-based reconstruction for limited-angle. IEEE Trans. Med. Imaging 25(2), 210–217
(2006)

86. Rebuffel, V., Dinten, J.M.: Dual-energy X-ray imaging: benefits and limits. Insight-Non-
Destr. Test. Cond. Monit. 49(10), 589–594 (2007)

87. Retraint, F., Peyrin, F., Dinten, J.: Three-dimensional regularized binary image reconstruction
from three two-dimensional projections using a randomized ICM algorithm. Int. J. Imaging
Syst. Technol. 9, 135–146 (1998)

88. Richter, H.U.: Chronik der Zerstörungsfreien Materialprüfung, 1st edn. DGZfP, Verlag für
Schweißen und verwendete Verfahren, DVS-Verlag GmbH, Berlin, Deutsche Gesellschaft
für Zerstörungsfreie Prüfung (1999)

https://doi.org/10.1109/CCST.1995.524908
https://doi.org/10.1109/CCST.1995.524908

References 41

89. Riffo, V., Mery, D.: Active X-ray testing of complex objects. Insight 54(1), 28–35 (2012)
90. Röntgen, W.: Eine neue Art von Strahlen: I Mitteilung. In: Sitzungsbericht der Würzburger

Physikal.-Medicin. Gesellschaft. Verlag und Druck der Stahel’schen K. Hof- und
Universitäts- Buch- und Kunsthandlung, Würzburg (1895)

91. Rowlands, J.: The physics of computed radiography. Phys. Med. Biol. 47(23), R123 (2002)
92. Schaefer, M.: 100 Jahre Röntgenprüftechnik - Prüfsysteme früher und heute. In: DGZfP

Jahrestagung, pp. 13–26. Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V., Aachen
(1995)

93. Schwieger, R.: Stillegung, sicherer Einschluß und Abbau kerntechnischer Anlagen. Institut
für Werkstoffkunde, Universität Hannover, Technischer Bericht (1999)

94. Shaw, Z.A.: Learn Python 3 the Hard Way: A Very Simple Introduction to the Terrifyingly
Beautiful World of Computers and Code. Addison-Wesley Professional (2017)

95. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition (2014). ArXiv:abs/1409.1556

96. Singh, M., Singh, S.: Optimizing image enhancement for screening luggage at airports. In:
Proceedings of the 2005 IEEE International Conference on Computational Intelligence for
Homeland Security and Personal Safety, 2005. CIHSPS 2005, pp. 131–136 (2005). https://
doi.org/10.1109/CIHSPS.2005.1500627

97. Singh, S., Singh, M.: Explosives detection systems (eds) for aviation security. Signal Process.
83(1), 31–55 (2003)

98. Soussen, C., Idier, J.: Reconstruction of three-dimensional localized objects from limited
angle X-ray projections: an approach based on sparsity and multigrid image representation.
J. Electron. Imaging 17(3) (2008)

99. Strecker, H.: Automatic detection of explosives in airline baggage using elastic X-ray scatter.
Medicamundi 42, 30–33 (1998)

100. Su, H., Sun, M., Fei-Fei, L., Savarese, S.: Learning a dense multi-view representation for
detection, viewpoint classification and synthesis of object categories. In: International Con-
ference on Computer Vision (ICCV2009) (2009)

101. Szeles, C., Soldner, S.A., Vydrin, S., Graves, J., Bale, D.S.: Cdznte semiconductor detectors
for spectroscopic X-ray imaging. IEEE Trans. Nucl. Sci. 55(1), 572–582 (2008)

102. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, New York Inc (2011)
103. Teubl, J., Bischof, H.: Comparison of Multiple View Strategies to Reduce False Positives in

Breast Imaging. Digital Mammography, pp. 537–544 (2010)
104. Tian, Z., Jia, X., Yuan, K., Pan, T., Jiang, S.: Low-dose CT reconstruction via edge-preserving

total variation regularization. Phys. Med. Biol. 56(18), 5949–5967 (2011)
105. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vision 57(2), 137–154

(2004)
106. Völkel: Grundlagen für den Prüfer mit Röntgen- und Gammastrahlung (Durchstrahlungsprü-

fung). Amt für Standarisierung, Meßwesen und Warenprüfung, Fachgebiet Zerstörungsfreie
Werkstoffprüfung (1989)

107. Wang, L.: Cross-section reconstruction with a fan-beam scanning geometry. IEEE Trans.
Comput. 100(3), 264–268 (1977)

108. Wells, K., Bradley, D.: A review of X-ray explosives detection techniques for checked bag-
gage. Applied Radiation and Isotopes (2012)

109. Yu, D., Fessler, J.: Edge-preserving tomographic reconstruction with nonlocal regularization.
IEEE Trans. Med. Imaging 2(21), 159–173 (2002)

110. Zabler, S., Maisl, M., Hornberger, P., Hiller, J., Fella, C., Hanke, R.: X-ray imaging and com-
puted tomography for engineering applications. tm-Technisches Messen 1(ahead-of-print)
(2020)

111. Zhou, Y., Thibault, J., Bouman, C., Sauer, K., Hsieh, J.: Fast Model-Based X-ray CT Recon-
struction Using Spatially Nonhomogeneous ICD Optimization. IEEE Trans. Image Process.
20(1), 161–175 (2011)

112. Zografos, V., Nordberg, K., Ellis, L.: Sparse motion segmentation using multiple six-point
consistencies. In: Proceedings of the Asian Conference on Computer Vision (ACCV2010)
(2010)

http://arxiv.org/abs/abs/1409.1556
https://doi.org/10.1109/CIHSPS.2005.1500627
https://doi.org/10.1109/CIHSPS.2005.1500627

Chapter 2
Images for X-ray Testing

Abstract In this chapter, we present the dataset that is used in this book to illus-
trate and test several methods. The database consists of 23,189 X-ray images. The
images are organized in a public database called GDXray+ that can be used free
of charge, but for research and educational purposes only. The database includes
five groups of X-ray images: castings, welds, baggage, natural objects, and settings.
Each group has several series, and each series several X-ray images. Most of the
series are annotated or labeled. In such cases, the coordinates of the bounding boxes
of the objects of interest or the labels of the images are available in standard text
files. The size of GDXray+ is 4.5GB and it can be downloaded from our website.

Cover image: X-ray image of cherries in an egg crate (X-ray image N0006_0027 colored with
‘jet’ colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_2

44 2 Images for X-ray Testing

2.1 Introduction

Public databases of X-ray images can be found for medical imaging,1 however, to the
best knowledge of the author, up until now there have not been any public databases
of digital X-ray images for X-ray testing for general purposes.2

As a service to the X-ray testing community, we collectedmore than 23,100 X-ray
images for the development, testing, and evaluation of image analysis and computer
vision algorithms. The images are organized in a public database calledGDXray+.3

In order to illustrate our database, a random selection of 120 X-ray images is shown
in Fig. 2.1. The database includes five groups of X-ray images: castings, welds,
baggage, natural objects, and settings. Each group has several series, and each series
several X-ray images. Most of the series are annotated or labeled. In those cases,
the coordinates of the bounding boxes of the objects of interest or the labels of the
images are available. In Table2.1, we can see some statistics. The size of GDXray+
is 4.54GB, and it can be downloaded from our website (see Fig. 2.2).

In this chapter, we will view the structure of GDXray+ database, a description
for each group (with some series examples), some examples of applications that
have been published using images of GDXray+ and some examples in Python that
can be used to manipulate the database. More details about GDXray+ are given in
AppendixA

2.2 Structure of the Database

GDXray+ is available in a public repository. The repository contains 5 group folders
one for each group:Castings,Welds,Baggage,Nature, andSettings. For
each group, we define an initial:C,W,B,N, andS, respectively. As shown in Table2.1,
each group has several series. Each series is stored in an individual sub-folder of the
corresponding group folder. The sub-folder name is Xssss, where X is the initial of
the group andssss is the number of the series. For example, the third series of group

1See, for example, a good collection in http://www.via.cornell.edu/databases/.
2There are some galleries of X-ray images available on thewebwith a few samples, see, for instance,
http://www.vidisco.com/ndt_solutions/ndt_info_center/ndt_x_ray_gallery with approximately 50
X-ray images; and a very large dataset (more than 1 million images) for baggage inspection with
no annotations [36].
3Available on https://domingomery.ing.puc.cl/material/gdxray/. Originally the name wasGDXray
[33]. The name comes from ‘The Grima X-ray database’ (Grima was the name of our Machine
Intelligence Group at the Department of Computer Science of the Pontificia Universidad Católica
de Chile). Now, we release an extended version of the dataset that we call GDXray+. The X-ray
images included inGDXray+ can be used free of charge, but for research and educational purposes
only. Redistribution and commercial use is prohibited. Any researcher reporting results which use
this database should acknowledge the GDXray+ database by citing this chapter.

http://www.via.cornell.edu/databases/
http://www.vidisco.com/ndt_solutions/ndt_info_center/ndt_x_ray_gallery
https://domingomery.ing.puc.cl/material/gdxray/

2.2 Structure of the Database 45

Fig. 2.1 Random X-ray images of GDXray+ database

Castings is stored in sub-folder C0003 of folder Castings. The X-ray images of a
series are stored in file Xssss_nnnn.png. Again Xssss is the name of the series.
The number nnnn corresponds to the number of the X-ray image of this series. For

46 2 Images for X-ray Testing

Table 2.1 Statistics of GDXray+ database

Groups Series Images Size (MB)

Castings 85 3768 664.8

Welds 4 98 209.5

Baggages 86 10863 3403.4

Nature 13 8290 191.9

Settings 8 170 73.1

Total 196 23189 4542.6

Fig. 2.2 Screenshot of GDXray+ website. The figure shows X-ray image of a backpack using
pseudo coloring (‘hot’ colormap): B0083_0031.png

example, the fifth X-ray image of series C0003 is C0003_0005.png and is stored
in folder Castings/C0003. The whole structure is summarized in Table2.2. All
X-ray images ofGDXray+ are stored in ‘png’ (Portable Network Graphics)4 format.

2.3 Castings

The group Castings contains 3,768 X-ray images arranged in 68 series. The X-ray
images were taken mainly from automotive parts (aluminum wheels and knuckles).
Some examples are illustrated in Figs. 2.3, 2.4 and 2.5. The details of each series are

4See http://www.libpng.org/pub/png/.

http://www.libpng.org/pub/png/

2.3 Castings 47

Table 2.2 Structure of GDXray+

Database Groups Series X-ray images

GDXray → Castings → C0001 → C0001_0001.png . . . C0001_0072.png

:

C0085 → C0085_0001.png . . . C0085_0686.png

Welds → W0001 → W0001_0001.png . . . W0001_0010.png

:

W0004 → W0004_0001.png . . . W0004_0010.png

Baggage → B0001 → B0001_0001.png . . . B0001_0014.png

:

B0086 → B0086_0001.png . . . B0086_1000.png

Nature → N0001 → N0001_0001.png . . . N0001_0013.png

:

N0013 → N0013_0001.png . . . N0013_0006.png

Settings → S0001 → S0001_0001.png . . . S0001_0018.png

:

S0008 → S0008_0001.png . . . S0008_0018.png

Fig. 2.3 Some X-ray images of an aluminum wheel (group Castings series C0001)

Fig. 2.4 Some X-ray images of a knuckle (group Castings series C0059)

given in TableA.2. Experiments on these data can be found in several publications
as shown in Table2.3. It is interesting to highlight that series C0001 (see Fig. 2.3)
contains not only a sequence of 72 X-ray images taken from an aluminum wheel by
rotating its central axis in 50, but also annotations of bounding boxes of the ground
truth of 226 small defects and the calibration matrix of each image that relates the
3D coordinates of the aluminum wheel with 2D coordinates of the X-ray image.

48 2 Images for X-ray Testing

Table 2.3 Applications of series Castings

Series Application References

C0001 Detection of defects in multiple views [3, 16, 22, 26, 39, 40]

Estimation of epipolar geometry with distortion [24]

Calibration of X-ray imaging system with image
intensifiers

[26]

Simulation of casting defects [26]

Detection defects using deep learning (CNN) and
classic features

[5, 6, 19, 20, 35]

C0002 Experiments on detection of defects in single
views

[7, 14, 23, 41]

C0008 Simulation of casting defects [11]

C0010 Detection defects using deep learning (CNN) and
classic features

[19, 20, 35]

C0015 Detection defects using deep learning (CNN) and
classic features

[5, 6, 19, 20, 35]

C0017 Simulation of casting defects [13, 28]

C0021 Detection defects using deep learning (CNN) and
classic features

[19, 20, 35]

C0031 Detection defects using deep learning (CNN) and
classic features

[5, 6, 19, 20, 35]

C0032 Experiments on detection of defects in multiple
views

[16]

C0034 Detection defects using deep learning (CNN) and
classic features

[5, 6, 19, 20, 35]

C0037 Simulation of casting defects [13, 28]

C0054 Detection of casting on moving castings [27]

C0055 Image restoration in blurred X-ray images [25]

C0061 Detection defects using deep learning (CNN) and
classic features

[19, 20, 35]

Fig. 2.5 Some annotated images showing bounding boxes of casting defects

2.4 Welds 49

Fig. 2.6 Some X-ray images of group Welds series W0003. This series corresponds to the BAM
database

Table 2.4 Applications of series Welds

Series Application References

W0001 Detection of defects in welds using classic methods [2, 8, 17, 21, 49]

Simulation of welding defects [12, 17, 28]

Detection of defects in welds using deep learning [9, 10, 47, 48]

W0002 Evaluation of performance of detection algorithm [2]

W0003 Detection of defects in welds using classic methods [38, 46, 49]

Detection of defects in welds using deep learning [9, 10, 48]

2.4 Welds

The group Welds contains 98 images arranged in 4 series. The X-ray images were
taken by the Federal Institute for Materials Research and Testing, Berlin (BAM).5

Some examples are illustrated in Fig. 2.6. The details of each series are given in
TableA.4. Experiments on these data can be found in several publications as shown
in Table2.4. It is interesting to highlight that series W0001 and W0002 (see Fig. 2.7)
contains not only 10 X-ray images selected from the whole BAM database (series
W0003), but also annotations of bounding boxes and the binary images of the ground
truth of 641 defects.

5TheX-ray images of seriesW0001 andW0003 are included inGDXray, thanks to the collaboration
of the Institute for Materials Research and Testing (BAM), Berlin http://dir.bam.de/dir.html.

http://dir.bam.de/dir.html

50 2 Images for X-ray Testing

Fig. 2.7 Some images of group Welds series W0001 (X-ray images) and W0002 (ground truth)

2.5 Baggage

The group Baggage contains 10,863 X-ray images arranged in 86 series. The X-
ray images were taken from different containers such as backpacks, pen cases, and
wallets, etc. Some examples are illustrated in Figs. 2.8, 2.9, 2.10, 2.11, and 2.12. The
details of each series are given in TableA.23. Experiments on these data can be found
in several publications as shown in Table2.5. It is interesting to highlight that series
B0046, B0047, and B0048 (see, for example, Fig. 2.8) contains 600 X-ray images
that can be used for automated detection of handguns, shuriken, and razor blades
(bounding boxes for these objects of interest are available as well). In this case, the
training can be performed using series B0049, B0050, and B0051 that includes
X-ray images of individual handguns, shuriken, and razor blades, respectively, taken
from different points of view as shown in Fig. 2.9.

2.5 Baggage 51

Fig. 2.8 Some X-ray images of a bag containing handguns, shuriken, and razor blades (group
Baggage series B0048)

Fig. 2.9 Some X-ray images of handguns (series B0049), shuriken (series B0050), and razor
baldes (series B0051) of group Baggage

52 2 Images for X-ray Testing

Table 2.5 Applications of series Baggage

Series Application References

B0005 Experiments on detection of pins in multiple views [16, 44]

Detection of razor blades using active vision [44]

B0007 Training of a classifier of razor blades [44]

B0009-43 Experiments on detection of handguns [4, 32]

B0045 Experiments on detection of objects in multiple views [18, 34]

Active vision [44]

B0046-51 Simulation of threat objects [29]

Detection of threat objects using sparse representations [29]

Detection of threat objects using 3D reconstruction [43]

Detection of threat objects using active vision [42]

Detection of threat objects using deep learning [1]

B0049-51 Detection of threat objects [35, 45]

B0055 Experiments on detection of objects in sequences of four
views

[18]

B0056 Experiments on detection of objects in sequences of six views [18]

B0057 Experiments on detection of objects in sequences of eight
views

[18]

B0058 Training of a classifier for clips, springs, and razor blades [18, 34]

B0061-73 Detection of razor blades using active vision [44]

B0078-82 Detection of threat objects [35, 45]

B0083 Detection of threat objects [45]

Fig. 2.10 Aknifewas rotated in 10 and by each position, anX-ray imagewas captured. In this figure,
X-ray images at 00, 100, 200, . . . 3500 are illustrated (see series B00008 of group Baggage)

2.5 Baggage 53

Fig. 2.11 Backpacks with no threat objects. They can be used to superimpose the isolated threat

objects of Fig. 2.9 (see series B00083 of group Baggage). [→ Example 2.1]

Fig. 2.12 X-ray images of a pen case from 90 different points of view. They are obtained by rotating
α and β as shown in the left model (see series B00045 of group Baggage)

54 2 Images for X-ray Testing

2.6 Natural Objects

The group Nature contains 8,290 X-ray images arranged in 13 series. The X-ray
images were taken from different natural objects such as salmon filets, fruit, and
wood pieces. Some examples are illustrated in Figs. 2.13, 2.14, and 2.15. The details
of each series are given in TableA.1. Experiments on these data can be found in
several publications as shown in Table2.6. It is interesting to highlight that series
N0012 and N0013 (see Fig. 2.16) contains not only 6 X-ray images of salmon filets,
but also annotations of bounding boxes and the binary images of the ground truth of
73 fish bones. For training proposes, there are more than 7,500 labeled small crops
(10 × 10 pixels), of regions of X-ray of salmon filets with and without fish bones in
series N0003.

Fig. 2.13 Some X-ray images of salmon filets (group Nature series N0011)

2.6 Natural Objects 55

Fig. 2.14 Some X-ray images of cherries (group Nature series N0006)

Fig. 2.15 Some X-ray images of wood (group Nature series N0010)

56 2 Images for X-ray Testing

Table 2.6 Applications of series Nature

Series Application References

N0003 Automated design of a visual food quality system [31]

N0003 Automated fish bone detection [30]

N0008 Quality control of kiwis [37]

N0011 Automated fish bone detection [30]

Fig. 2.16 Some images of group Nature series S0012 (X-ray images of salmon filets) and
S0013 (ground truth for fish bones)

2.7 Settings

The group Settings contains 170X-ray images arranged in 8 series. TheX-ray images
were taken from different calibration objects such checkerboards and 3D objects with
regular patterns. Some examples are illustrated in Figs. 2.17 and 2.18. The details of
each series are given in TableA.5. Experiments on these data can be found in several
publications as shown in Table2.7. It is interesting to highlight that series S0008
(see Fig. 2.17) contains not only 18 X-ray images of a copper checkerboard, but
also the calibration matrix of each view. In addition, series S0007 can be used for
modeling the distortion of an image intensifier. The coordinates of each hole of the
calibration pattern in each view are available, and the coordinates of the 3D model
are given as well.

2.7 Settings 57

Fig. 2.17 Some X-ray images of a copper checkerboard used by calibration (group Settings
series S0008)

Fig. 2.18 Some X-ray images of circular pattern in different points of view used by calibration
(group Settings series S0007)

Table 2.7 Applications of series Settings

Series Application References

S0001 Calibration of a multiple view
X-ray imaging system for
active vision

[44]

S0002 Distortion model of an image
intensifier

[24, 26]

S0007 Explicit geometric model of a
radioscopic imaging system

[15]

58 2 Images for X-ray Testing

2.8 Python Commands

In order to manipulate GDXray+ database easily, some helpful Python functions
were developed in pyxvis Library. In this section, we present a summary of them with
some examples.

Python Example 2.1: In this example, we show how simple it is to display the
X-ray images of a series of GDXray+.:

Listing 2.1 : Display of X-ray images of GDXray+.

from pyxvis . io import gdxraydb
from pyxvis . io . visualization import show_series

gdxraydb. xgdx_stats ()

image_set = gdxraydb.Baggages()

image_set . describe ()

print (image_set . get_dir(60))

try :
series_dir = image_set . get_dir(83)

except ValueError as err :
print (err)

show_series(image_set , 8, range(1 , 352, 10) , n=18, scale=0.2)

The output of this code is illustrated in Fig. 2.11. ��
Some pyxvis Library functions that can be used to manipulate GDXray+ are the

following:

• gdx_browse of gui: This GUI function6 is used to browse GDXray+ database. An
example is illustrated in Fig. 2.19. An additional example using pseudo coloring is
shown in Fig. 2.20;, the user can select one of 10 different colormaps. This function
can be used to display the bounding boxes of anX-ray image. For example, inX-ray
image N0012_0004.png the bounding boxes of the ground truth are displayed
in Fig. 2.19. Each bounding box is stored as a row in file ground_truth.txt of
folder N0012 ofGDXray+. The format of this file is as follows: one bounding box
per row; the first number of the row is the number of the image of the series, and
the next four values are the coordinates x1, x2, y1, y2 of a bounding box. Thus,
the rectangle of a bounding box is defined by its opposite vertices: (x1, y1) and
(x2, y2).

• show_series of gdxraydb: This function is used to display several images of a series
in only one figure (see example in Fig. 2.10 or Example 2.1).

• get_dir of gdxraydb: This function is used to ascertain the path of a series of
GDXray+.

6GUI: Graphic User Interface.

2.8 Python Commands 59

Fig. 2.19 Example of command gdx_browse that can be used to browseGDXray+. The user can
click buttons [Previous] and [Next] to display the next groups, series or images. In addition,
the ground truth option can be used to display manual annotations when they are available. In this
example, the fish bones of a salmon filet are highlighted. For colored images, see Fig. 2.20

Fig. 2.20 Example of command gdx_browse using pseudo coloring of a wood X-ray image. For
another example in grayscale, see Fig. 2.19

• gdx_statsofgdxraydb: This function is used to compute some statistics ofGDXray+.
The output is Table2.1.

• load_image of gdxraydb: This function is used to load an image of GDXray+. For
example, N0012_0004.png can be stored in matrix img using the following
commands:

from pyxvis.io import gdxraydb
image_set = gdxraydb.Nature()
img = image_set.load_image(12, 4)

• load_data of gdxraydb: This function is used to load a file into a workspace. For
instance, the ground truth data of series N0012 can be stored in matrix gt using
the following commands:

60 2 Images for X-ray Testing

Fig. 2.21 Annotation: there are some tools that can be used to manually annotate the ground truth
of a series. In this example, the user is annotating the razor blades of series B0065

from pyxvis.io import gdxraydb
image_set = gdxraydb.Nature()
gt = load_set.load_image(12, ’ground_truth.txt’)

For annotation, there are some open- source tools that can be used to manually
annotate bounding boxes of a series of GDXray+. An example isn Fig. 2.21.7

2.9 Summary

In this chapter, we presented the details of a new public dataset called GDXray+.
It consists of more than 21,100 X-ray images. The database includes five groups of
X-ray images: castings, welds, baggage, natural objects, and settings. Each group
has several series and X-ray images with many labels and annotations that can be
used for training and testing purposes in computer vision algorithms. To the best
knowledge of the author, up until now, there have not been any public databases of
digital X-ray images for general purposes in X-ray testing.

In this chapter, we explained the structure of the GDXray+ database, we gave a
description for each group (with some series examples), we presented some exam-
ples of applications that have been published using images of GDXray+, and some
examples in Python with pyxvis Library, that can be used to manipulate the database.

7See, for example, LabelMe http://labelme.csail.mit.edu/Release3.0/ developed by the Computer
Science and Artificial Intelligence Laboratory at MIT.

http://labelme.csail.mit.edu/Release3.0/

2.9 Summary 61

We believe that GDXray+ represents a relevant contribution to the X-ray testing
community.On the one hand, students, researchers, and engineers can use theseX-ray
images to develop, test, and evaluate image analysis and computer vision algorithms
without purchasing expensive X-ray equipment. On the other hand, these images can
be used as a benchmark in order to test and compare the performance of different
approaches on the same data. Moreover, the database can be used in the training
programs of human inspectors.

References

1. Aydin, I., Karakose, M., Erhan, A.: A new approach for baggage inspection by using deep
convolutional neural networks. In: 2018 International Conference on Artificial Intelligence
and Data Processing (IDAP), pp. 1–6. IEEE (2018)

2. Carrasco,M.,Mery, D.: Segmentation of welding defects using a robust algorithm.Mater. Eval.
62(11), 1142–1147 (2004)

3. Carrasco, M., Mery, D.: Automatic multiple view inspection using geometrical tracking and
feature analysis in aluminum wheels. Mach. Vis. Appl. 22(1), 157–170 (2011)

4. Damashek, A., Doherty, J.: Detecting guns using parametric edge matching. Technical Report
Project for Computer Vision Course: CS231A, Stanford University (2015)

5. Ferguson, M., Ak, R., Lee, Y.T.T., Law, K.H.: Automatic localization of casting defects with
convolutional neural networks. In: 2017 IEEE International Conference onBigData (BigData),
pp. 1726–1735. IEEE (2017)

6. Ferguson, M.K., Ronay, A., Lee, Y.T.T., Law, K.H.: Detection and segmentation of manufac-
turing defects with convolutional neural networks and transfer learning. Smart Sustain. Manuf.
Syst. 2 (2018)

7. Ghoreyshi, A., Vidal, R., Mery, D.: Segmentation of circular casting defects using a robust
algorithm. Insight-Non-Destr. Testing Cond. Monit. 47(10), 615–617 (2005)

8. Hernández, S., Sáez, D., Mery, D., da Silva, R., Sequeira, M.: Automated defect detection in
aluminium castings and welds using neuro-fuzzy classifiers. In: Proceedings of the 16th World
Conference on Non-Destructive Testing (WCNDT–2004). Montreal (2004)

9. Hou, W., Wei, Y., Guo, J., Jin, Y., et al.: Automatic detection of welding defects using deep
neural network. In: Journal of Physics: Conference Series, vol. 933, p. 012006. IOP Publishing
(2018)

10. Hou, W., Wei, Y., Jin, Y., Zhu, C.: Deep features based on a dcnn model for classifying
imbalanced weld flaw types. Measurement 131, 482–489 (2019)

11. Huang, Q., Wu, Y., Baruch, J., Jiang, P., Peng, Y.: A template model for defect simulation for
evaluating nondestructive testing in X-radiography. IEEE Trans. Syst. Man Cybern. Part A:
Syst. Hum. 39(2), 466–475 (2009)

12. Liu, L., Cao, D., Wu, Y., Wei, T.: Defective samples simulation through adversarial training
for automatic surface inspection. Neurocomputing 360, 230–245 (2019)

13. Mery, D.: A new algorithm for flaw simulation in castings by superimposing projections of 3D
models onto X-ray images. In: Proceedings of the XXI International Conference of the Chilean
Computer Science Society (SCCC-2001), pp. 193–202. IEEE Computer Society Press, Punta
Arenas (2001)

14. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In:
Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003), Lecture Notes
in Computer Science, vol. 2749, pp. 725–732 (2003)

15. Mery, D.: Explicit geometric model of a radioscopic imaging system. NDT & E Intern. 36(8),
587–599 (2003)

62 2 Images for X-ray Testing

16. Mery, D.: Automated detection in complex objects using a tracking algorithm in multiple X-
ray views. In: Proceedings of the 8th IEEE Workshop on Object Tracking and Classification
Beyond the Visible Spectrum (OTCBVS 2011), in Conjunction with CVPR 2011, Colorado
Springs, pp. 41–48 (2011)

17. Mery, D.: Automated detection of welding defects without segmentation. Mater. Eval. 69(6),
657–663 (2011)

18. Mery, D.: Inspection of complex objects using multiple-X-ray views. IEEE/ASME Trans.
Mechatron. 20(1), 338–347 (2015)

19. Mery, D.: Aluminum casting inspection using deep learning: A method based on convolutional
neural networks. J. Nondestr. Eval. 39(1), 12 (2020)

20. Mery, D., Arteta, C.: Automatic defect recognition in X-ray testing using computer vision. In:
2017 IEEEWinter Conference on Applications of Computer Vision (WACV), pp. 1026–1035.
IEEE (2017)

21. Mery, D., Berti, M.A.: Automatic detection of welding defects using texture features. Insight-
Non-Destr. Testing Cond. Monit. 45(10), 676–681 (2003)

22. Mery, D., Carrasco, M.: Automated multiple view inspection based on uncalibrated image
sequences. Lecture Notes in Computer Science, vol. 3540, pp. 1238–1247 (2005)

23. Mery, D., Chacón, M., Munoz, L., González, L.: Automated inspection of aluminium castings
using fusion strategies. Mater. Eval. (2005). In Press

24. Mery, D., Filbert, D.: The epipolar geometry in the radioscopy: Theory and application. at -
Automatisierungstechnik 48(12), 588–596 (2000). (in German)

25. Mery, D., Filbert, D.: A fast non-iterative algorithm for the removal of blur caused by uni-
form linear motion in X-ray images. In: Proceedings of the 15th World Conference on Non-
Destructive Testing (WCNDT–2000). Rome (2000)

26. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901
(2002)

27. Mery, D., Filbert, D.: Automated inspection of moving aluminium castings. In: 8th European
Conference on Non-Destructive Testing (ECNDT 2002). Barcelona (2002)

28. Mery, D., Hahn, D., Hitschfeld, N.: Simulation of defects in aluminum castings using cad
models of flaws and real X-ray images. Insight 47(10), 618–624 (2005)

29. Mery, D., Katsaggelos, A.K.: A logarithmic X-ray imaging model for baggage inspection:
simulation and object detection. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 57–65 (2017)

30. Mery, D., Lillo, I., Riffo, V., Soto, A., Cipriano, A., Aguilera, J.: Automated fish bone detection
using X-ray testing. J. Food Eng. 2011(105), 485–492 (2011)

31. Mery, D., Pedreschi, F., Soto, A.: Automated design of a computer vision system for visual
food quality evaluation. Food Bioprocess Technol. 6(8), 2093–2108 (2013)

32. Mery, D., Riffo, V., Mondragon, G., Zuccar, I.: Detection of regular objects in baggages using
multiple X-ray views. Insight 55(1), 16–21 (2013)

33. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco, M.:
GDXray: The database of X-ray images for nondestructive testing. J. Nondestr. Eval. 34(4),
1–12 (2015)

34. Mery, D., Riffo, V., Zuccar, I., Pieringer, C.: Automated X-ray object recognition using an
efficient search algorithm in multiple views. In: Proceedings of the 9th IEEE CVPR workshop
on Perception Beyond the Visible Spectrum, Portland (2013)

35. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision
techniques for X-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybern.: Syst.
47(4), 682–692 (2016)

36. Miao, C., Xie, L.,Wan, F., Su, C., Liu, H., Jiao, J., Ye, Q.: Sixray: A large-scale security inspec-
tion X-ray benchmark for prohibited item discovery in overlapping images. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119–2128 (2019)

37. Mondragón, G., Leiva, G., Aguilera, J., Mery, D.: Automated detection of softening and hard
columella in kiwifruits during postharvest using X-ray testing. In: Proceedings of International
Congress on Engineering and Food (2011)

References 63

38. Perner, P., Zscherpel, U., Jacobsen, C.: A comparison between neural networks and decision
trees based on data from industrial radiographic testing. Pattern Recognit. Lett. 22(1), 47–54
(2001)

39. Pieringer, C., Mery, D.: Flaw detection in aluminium die castings using simultaneous combi-
nation of multiple views. Insight 52(10), 548–552 (2010)

40. Pizarro, L., Mery, D., Delpiano, R., Carrasco, M.: Robust automated multiple view inspection.
Pattern Anal. Appl. 11(1), 21–32 (2008)

41. Ramírez, F., Allende, H.: Detection of flaws in aluminium castings: a comparative study
between generative and discriminant approaches. Insight-Non-Destr. Testing Cond. Monit.
55(7), 366–371 (2013)

42. Riffo, V., Flores, S., Mery, D.: Threat objects detection in X-ray images using an active vision
approach. J. Nondestr. Eval. 36(3), 44 (2017)

43. Riffo, V., Godoy, I., Mery, D.: Handgun detection in single-spectrum multiple X-ray views
based on 3d object recognition. J. Nondestruct. Eval. 38(3), 66 (2019)

44. Riffo, V., Mery, D.: Active X-ray testing of complex objects. Insight 54(1), 28–35 (2012)
45. Saavedra, D., Banerjee, S., Mery, D.: Detection of threat objects in baggage inspection with

X-ray images using deep learning. Neural Comput. Appl. pp. 1–17. Springer (2020)
46. da Silva, R.R., Siqueira, M.H., de Souza, M.P.V., Rebello, J.M., Calôba, L.P.: Estimated accu-

racy of classification of defects detected in welded joints by radiographic tests. NDT & E
Intern. 38(5), 335–343 (2005)

47. Sizyakin,R.,Voronin,V.,Gapon,N., Zelensky,A., Pižurica,A.:Automatic detection ofwelding
defects using the convolutional neural network. In: Automated Visual Inspection and Machine
Vision III, vol. 11061, p. 110610E. International Society for Optics and Photonics (2019)

48. Wang, Y., Shi, F., Tong, X.: A welding defect identification approach in X-ray images based on
deep convolutional neural networks. In: International Conference on Intelligent Computing,
pp. 53–64. Springer (2019)

49. Yahaghi, E., Movafeghi, A., Mirzapour, M., Rokrok, B.: Defect detections in industrial radio-
graphy images by a multi-scale lmmse estimation scheme. Radiat. Phys. Chem. 168, 108560
(2020)

Chapter 3
Geometry in X-ray Testing

Abstract Geometry is of basic importance for understanding in X-ray testing. In
this chapter we present a mathematical background of the monocular and multi-
ple view geometry which is normally used in X-ray computer vision systems. The
chapter describes an explicit model which relates the 3D coordinates of an object
to the 2D coordinates of the digital X-ray image pixel, the calibration problem, the
geometric and algebraic constraints between two, three, and more X-ray images
taken at different projections of the object, and the problem of 3D reconstruction
from n views.

Cover image: Average of X-ray images of a wheel in motion (series C0008 colored with ‘parula’
colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_3

66 3 Geometry in X-ray Testing

3.1 Introduction

In certain nondestructive testing and evaluation applications, it is necessary to deal
with some geometric problems. For example, the geometric distortion of an image
amplifier must be reduced; 3D information of the object under test must be inferred;
or multiple view X-ray images of the same object from different points of view must
be analyzed. Multiple view information is required for example, for inspecting the
internal and external geometry of an object under test; for locating its features using
stereoscopic techniques and for finding regions of interest—such as defects—using
correspondences of multiple views.

In this chapter we present a background of geometry which is normally used in
X-ray computer vision systems. We start by presenting in Sect. 3.2 projective trans-
formations that are very common in X-ray imaging. In Sect. 3.3, a model which
relates the 3D coordinates of an object to the 2D coordinates of the digital X-
ray image pixel. In Sect. 3.4, different approaches that can be used to estimate
the parameters of the geometric model are outlined. In Sect. 3.5, we establish the
geometric and algebraic constraints between two, three, and more X-ray images
obtained as different projections of the object. The problem of the 3D reconstruc-
tion is explained in Sect. 3.6.

3.2 Geometric Transformations

Before we begin a detailed description of the geometric model of our X-ray com-
puter vision system, it is worthwhile to outline certain geometric transformations
that are used by the model.

3.2.1 Homogeneous Coordinates

We are familiar with Cartesian coordinates in 2D (x, y) and in 3D (X, Y, Z). As
we will see in this section, in an X-ray computer vision system the geometric trans-
formations between different coordinate systems can be handled in an easy way if
homogeneous coordinates are used [2]. In this approach, the commonly used Carte-
sian coordinates are called non-homogenous coordinates.

In general, a point a ∈ R
N given in non-homogeneous coordinates can be

expressed as a point b ∈ R
N+1 in homogeneous coordinates as follows:

(a1, a2, . . . , aN) → (b1, b2, . . . , bN , bN+1) (3.1)

where ai = bi/bN+1 for i = 1, . . . N .

3.2 Geometric Transformations 67

Table 3.1 Transformation non-homogeneous ↔ homogeneous coordinates

Non-homogeneous coordinates ↔ Homogeneous coordinates

2D:

(x, y) → λ(x, y, 1)

(x = b1/b3, y = b2/b3) ← (b1, b2, b3)

3D:

(X, Y, Z)

→ λ(X, Y, Z , 1)

(X = b1/b4, Y = b2/b4, Z =
b3/b4)

← (b1, b2, b3, b4)

Using (3.1), a 2D point (x, y) is expressed as a homogeneous vector with three
elements (b1, b2, b3), where x = b1/b3 and y = b2/b3. Thus, we can convert a non-
homogeneous point (x, y) into a homogeneous point as (x, y, 1), or as λ(x, y, 1)
where λ is a scalar λ �= 0. It is worth noting that the homogeneous coordinates
(4, 8, 2) and (6, 12, 3) represent the same 2D non-homogeneous point because they
can be expressed as 2 · (2, 4, 1) and 3 · (2, 4, 1) respectively. That means, x = 2 and
y = 4 in non-homogeneous coordinates.

Similar examples could be given for a 3D point (X, Y, Z). The transforma-
tions between homogeneous and non-homogeneous coordinates are summarized in
Table 3.1 for 2D and 3D.

In this book we use the notation of Faugeras [2], where we differentiate between
the projective geometric objects themselves and their representations, e.g., a point in
the 2D space will be denoted by m whereas its vector in homogeneous coordinates
will be denoted by m.

We can use homogeneous coordinates to represent points and lines as well. For
instance, a point m and a line � in 2D space can be represented asm = [x y 1]T and
� = [a b 1]T respectively. Thus, if m lies on � then m · � = mT� = 0. It is worth
noting that λm for λ �= 0 represents the same 2D point and k� for k �= 0 represents
the same line, and they fulfillmT� = 0.

Two 2D points m1 and m2 that lie on line � fulfill mT
1 � = 0 and mT

2 � = 0, where
m1 and m2 are homogeneous representations of points m1 and m2 respectively (see
Fig. 3.1). Using cross-product, we find a new vector w = m1 × m2 with following
properties: (i) w is a 3D vector, (ii) m1 ⊥ w, (iii) m2 ⊥ w. According to properties
(ii) and (iii), mT

1w = 0 and mT
2w = 0, interestingly that means that w = �. Thus,

given m1 and m2 the homogeneous representation of the line that contains both
points can be easily calculated by:

� = m1 × m2. (3.2)

The reader can demonstrate that given �1 and �2 (the homogeneous representations
of two lines in 2D space), the homogenous representation of the intersection of both

68 3 Geometry in X-ray Testing

Fig. 3.1 Two points on a line in 2D space

lines can be computed by
m = �1 × �2. (3.3)

3.2.2 2D → 2D Transformation

Sometimes, a 2D point that is given in a coordinate system (x ′, y′), must be
expressed in another coordinate system (x, y) as illustrated in Fig. 3.2. In this exam-
ple, there is a rotation θ and a translation (tx , ty). It is the same 2D point m, how-
ever, it is defined in two different coordinate systems. It is easy to demonstrate that
the transformation between both coordinate systems is given in non-homogeneous
coordinates by

Fig. 3.2 Euclidean transformation: (Left) 2D [→ Example 3.1], (Right) 3D [→ Example 3.2

]

3.2 Geometric Transformations 69

[
x
y

]
=

[+ cos(θ) − sin(θ)

+ sin(θ) + cos(θ)

]
︸ ︷︷ ︸

R

[
x ′
y′

]
+

[
tx

ty

]
︸ ︷︷ ︸

t

= R
[

x ′
y′

]
+ t. (3.4)

Matrix R is known as the rotation matrix in 2D. It is an orthonormal matrix, i.e.,
RTR = I2×2, where I2×2 is the 2-by-2 identity matrix. The same transformation
(3.4) can be expressed in homogenous coordinates as

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣+ cos(θ) − sin(θ) tx

+ sin(θ) + cos(θ) ty

0 0 1

⎤
⎦

⎡
⎣ x ′

y′
1

⎤
⎦ (3.5)

or using a matrix notation as
m = Hm′, (3.6)

where m = [x y 1]T,m′ = [x ′ y′ 1]T, and H is a 3 × 3 matrix defined as

H =
[
R t
0 1

]
, (3.7)

where 0 = [0 0].
Equation (3.6) defines the transformation m′ → m. The inverse transformation

m → m′ can be established by computing the inverse of matrixH, i.e.,m′ = H−1m.
Since R is orthonormal, R−1 = RT. Thus, the inverse of H is

H−1 =
[
RT −RTt
0 1

]
. (3.8)

Python Example 3.1: In Fig. 3.2, tx = 4.1 cm, ty = 3.2 cm and θ = 35◦. The
coordinates of m are given as x = 4.9 cm and y = 5.5 cm. If we want to find the
coordinates of this point in (x ′, y′) coordinate system, we can use the following
Python code, where m and m ′ in homogeneous coordinates are defined in Python
variables m and mp respectively:

Listing 3.1 : Euclidean transformation 2D → 2D.

import numpy as np

from pyxvis.geometry.projective import rotation_matrix_2d

th = 35.0 / 180.0 * np.pi #Rotation in radians
t = np.array([4.1, 3.2]).reshape(2, −1) # Translation tx,ty in cm

The same can also be done using newaxis
t = np.array([4.1, 3.2])
t = t[:, np.newaxis]

R = rotation_matrix_2d(th) # Generate the rotation matrix R

70 3 Geometry in X-ray Testing

Euclidean transformation matrix H
H = np.hstack([R, t])
H = np.vstack([H, np.array([0, 0, 1])])

x = 4.9 # x coordinate
y = 5.5 # y coordinate

A 2D point in homogeneous coordinates
m = np.array([x, y, 1])
m = m[:, np.newaxis]

mp = np.dot(np.linalg.inv(H), m) # Transformation m to mp
mp = mp / mp[−1] # Homogeneous coordinates requires to be normalized by the matrix

element (3,3)

xp = mp.item(0) # x’ coordinate
yp = mp.item(1) # y’ coordinate

print(’xp = {:1.4f} cm −− yp = {:1.4f} cm’.format(xp, yp))

The output of this code is

xp = 1.9745 cm – yp = 1.4252 cm.
In this code we use function rotation_matrix_2d of pyxvis Library. This function com-
putes matrix R as defined in (3.4). It is worth noting that the division by the third
element of m ′ (element mp[-1]) in this case is not necessary because it is 1, since
the last row of H is [0 0 1]. �

This projective transformation is known as Euclidean or isometric transforma-
tion because the Euclidean distance between two points in both coordinate sys-
tems, (x, y) and (x ′, y′), is invariant. That means, the distance d ′ between two
points in the first coordinate systems m′

i = [x ′
i y′

i 1]T, for i = 1, 2, is equal to the
distance d between the two transformed points in the second coordinate systems
mi = [xi yi 1]T using (3.6): mi = Hmi . The distances are the same (d ′ = d), and
they can be calculated by

d =
√

(x1 − x2)2 + (y1 − y2)2 and d ′ =
√

(x ′
1 − x ′

2)
2 + (y′

1 − y′
2)

2. (3.9)

Other projective transformations are

• Similarity transformation, in which matrix R is replaced by sR in (3.7). Factor s
is a scalar that is used to change the scale of the original coordinate system. Thus,
using (3.9) if the distance between two points in (x ′, y′) coordinate system is d ′,
in the transformed coordinate system (x, y) the distance between the transformed
points will be d = sd ′. In this transformation, matrix sR is no longer orthonormal
but still orthogonal: [sR]T[sR] = s2I2×2.

• Affine transformation, in which matrix R is replaced by any rank 2 matrix A in
(3.7). In affine transformation, parallel lines in (x ′, y′) coordinate system remain
parallel in the transformed coordinate system (x, y).

• General transformation, in which matrix H in (3.7) is a general non-singular
matrix. In general transformation, a straight line in (x ′, y′) coordinate system
remain a straight line in the transformed coordinate system (x, y). This trans-
formation is known as homography [13].

3.2 Geometric Transformations 71

3.2.3 3D → 3D Transformation

A 3D point M can be defined as (X, Y, Z) and (X ′, Y ′, Z ′) in two different coordi-
nate systems as shown in Fig. 3.2, where the axes are translates and rotated. Using
homogeneous coordinates (similar to 2D → 2D transformation), a 3D Euclidean
transformation can be expressed by

M = HM′ (3.10)

where M = [X Y Z 1]T,M′ = [X ′ Y ′ Z ′ 1]T, and H is a 4 × 4 matrix defined as

H =
[
R t
0 1

]
, (3.11)

where 0 = [0 0 0]. Again we differentiate between M andM. The first notation is a
3D point in space, where the second notation is its homogenous representation in a
specific coordinate system. Note that M and M′ represent the same 3D point M but
in different coordinate systems.

The transformation is considered as rigid displacement of the coordinate system
(X ′, Y ′, Z ′) represented by a 3 × 1 translation vector t = [tX tY tZ]T and a 3 × 3
rotation matrix R. Matrix R considers three rotations as shown in Fig. 3.3. Each
rotation can be modeled using a rotation matrix of two coordinates as shown in
Table 3.2. Thus, matrix R can be modeled as a rotation about axis Z , then a rotation
in Y axis and finally a rotation in X axis:

R(ωX , ωY , ωZ) = RX (ωX)RY (ωY)RZ (ωZ) =
⎡
⎣ R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎦ , (3.12)

where the elements Ri j can be expressed as a function of cosine and sine of the
Euler angles ωX , ωY , and ωZ that describe the rotation of the X , Y , and Z axes
respectively [26]:

Fig. 3.3 Rotation of axes Z , Y , and X

72 3 Geometry in X-ray Testing

Table 3.2 Rotation matrices of axes Z , Y , and X

Rotation Rotation matrix

Axis Z RZ =
⎡
⎢⎣
cos(ωZ) − sin(ωZ) 0

sin(ωZ) cos(ωZ) 0

0 0 1

⎤
⎥⎦

Axis Y RY =
⎡
⎢⎣

cos(ωY) 0 sin(ωY)

0 1 0

− sin(ωY) 0 cos(ωY)

⎤
⎥⎦

Axis X RX =

⎡
⎢⎢⎢⎣
1 0 0

0 cos(ωX) − sin(ωX)

0 sin(ωX) cos(ωX)

.

⎤
⎥⎥⎥⎦

R11 = cos(ωY) cos(ωZ)

R12 = − cos(ωY) sin(ωZ)

R13 = sin(ωY)

R21 = sin(ωX) sin(ωY) cos(ωZ) + cos(ωX) sin(ωZ)

R22 = − sin(ωX) sin(ωY) sin(ωZ) + cos(ωX) cos(ωZ)

R23 = − sin(ωX) cos(ωY)

R31 = − cos(ωX) sin(ωY) cos(ωZ) + sin(ωX) sin(ωZ)

R32 = cos(ωX) sin(ωY) sin(ωZ) + sin(ωX) cos(ωZ)

R33 = cos(ωX) cos(ωY)

. (3.13)

Python Example 3.2: In Fig. 3.2, tX = 1mm, tY = 3mm, tZ = 2mm, ωX =
35◦, ωY = 0◦, and ωZ = 0◦. The coordinates of the blue point are given as X ′ =
0mm, Y ′ = 1mm and Z ′ = 1mm. If we want to find the coordinates of this point
in (X, Y, Z) coordinate system, we can use the following Python code:

Listing 3.2 : Euclidean transformation 3D → 3D.

import numpy as np

from pyxvis.geometry.projective import rotation_matrix_3d

w = (35.0 / 180.0) * np.pi #Rotation in radians

Translation tx,ty in cm
t = np.array([1.0, 3.0, 2.0])
t = t[:, np.newaxis]

R = rotation_matrix_3d(w, 0, 0) # Generate the rotation matrix R

Euclidean transformation matrix H = [R t; 0 0 1]
H = np.hstack([R, t])
H = np.vstack([H, np.array([0, 0, 0, 1])])

Xp = 0 # x coordinate
Yp = 1 # y coordinate

3.2 Geometric Transformations 73

Zp = 1

Mp = np.array([Xp, Yp, Zp, 1]) # A 2D point in homogeneous coordinates
Mp = Mp[:, np.newaxis]

M = np.dot(H, Mp) # Transformation m to mp

M = M / M[−1] # Normalize by matrix element (1, 4) into homogeneous coordinates

X = M.item(0) # X coordinate
Y = M.item(1) # Y coordinate
Z = M.item(2) # Z coordinate

print(’X = {:1.4f} mm −− Y = {:1.4f} mm −− Z = {:1.4f} mm’.format(X, Y, Z))

.

The output of this code is
X = 1.0000 mm – Y = 3.2456 mm – Z = 3.3927 mm.

In this code we use function rotation_matrix_3d of pyxvis Library. This function com-
putes matrix R as defined in (3.13).

It is worth noting that the division by the fourth element of M (element M[-1])
in this case is not necessary because it is 1, since the last row of H is [0 0 0 1].

3.2.4 3D → 2D Transformation

In an X-ray computer vision system, a 3D point is projected using a perspective
transformation as illustrated in Fig. 3.4. Besides applying different physical princi-

Fig. 3.4 Perspective transformation in an X-ray computer vision system. [→ Example 3.3]

74 3 Geometry in X-ray Testing

ples and technologies, it is common in X-ray testing to use terminology as intro-
duced for optical imaging, such as optical axis, focal length, and so forth. In this
model, a 3D point M is defined in (X, Y, Z) coordinate system, which is pro-
jected into projection plane Z = f (called the retinal plane Π), where f is the focal
length. All X-rays come from optical center C defined in (X = 0, Y = 0, Z = 0).
We define t as the straight line on which C and M lie (see Fig. 3.4). This line will be
denoted as 〈C, M〉. Thus, the projection point m defined in (x, y) coordinate system
is given by the intersection of t with the projection plane Π . This operation is called
central projection [13]. The origin o of (x, y) coordinate system is pierced by the
optical axis (Z -axis). After intercept theorem, it should be clear that

Z

f
= Y

y
= X

x
, (3.14)

that can be expressed as {
Z x = f X

Z y = f Y
(3.15)

or using a matrix notation:

Z

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ . (3.16)

Matrix P is a 3 × 4 matrix known as the perspective projection matrix. Thus, the
projected point given in homogeneous coordinates m = [x y 1]T is proportional to
PM, whereM is the 3D point given in homogeneous coordinatesM = [X Y Z 1]T.
Usually, (3.16) is written in the following form:

λm = PM, (3.17)

where λ is a scale factor with λ �= 0.

Python Example 3.3: In Fig. 3.4, f = 100 cm, X = 20 cm, Y = 30 cm and
Z = 50 cm. If we want to find the coordinates of projected point in (x, y) coordinate
system, we can use the following Python code:

Listing 3.3 : Euclidean transformation 3D → 2D.

import numpy as np

from pyxvis.geometry.projective import get_matrix_p

f = 100 # Focal distance in cm
X = 20 # X coordiante in cm
Y = 30 # Y coordinate in cm

3.2 Geometric Transformations 75

Z = 50 # Z coordinate in cm

M = np.array([X, Y, Z, 1]) # A 3D point in homogeneous coordinates
M = M[:, np.newaxis]

P = get_matrix_p(f) # Create the projection matrix P

m = np.dot(P, M) # Transformation M to m
m = m / m[−1] # Homogeneous coordinates requires to be normalized by the matrix element

(3, 1)

x = m.item(0) # x coordinate
y = m.item(1) # y coordinate

print(’x = {:1.1f} cm −− y = {:1.1f} cm’.format(x, y))

The output of this code is
x = 40.0 cm – y = 60.0 cm

In this code we use function get_matrix_p of pyxvis Library. This function computes
matrix P as defined in (3.16). �

As we can see, if non-homogeneous coordinates are used, the perspective pro-
jection will be non-linear (see (3.14)), however, it is linear in homogeneous coordi-
nates (see (3.17)). In addition, all explained transformations are linear in homoge-
neous coordinates. This is the reason why we use homogeneous coordinates in X-ray
computer vision systems. Thus, we can handle all projective transformation easily.
For instance, if M is given in another coordinate system (X ′, Y ′, Z ′) (M = HM′ as
shown in (3.11)), it is very simple to replace this transformation in (3.17) yielding
λm = PHM′. The reader can note that the same is valid for point m that can be
given in another coordinate system.

3.3 Geometric Model of an X-ray Computer Vision System

The geometric model of the X-ray computer vision system establishes the relation-
ship between 3D coordinates of the object under test and their corresponding 2D
digital X-ray image coordinates. The model is required by both reconstructing 3D
information from image coordinates and reprojecting 2D image coordinates from
3D information. As explained in Sect. 1.4, the principal aspects of an X-ray com-
puter vision system are shown in Fig. 1.8, where an X-ray image of a casting is
taken. Typically, it comprises the following five steps: (i) a manipulator for han-
dling the test piece, (ii) an X-ray source, which irradiates the test piece with a con-
ical beam to generate an X-ray image of the test piece, (iii) an image intensifier
which transforms the invisible X-ray image into a visible one, (iv) a CCD-camera
which records the visible X-ray image, and (v) a computer to process the digital
image of the X-ray image and then classify the test piece by accepting or reject-
ing it. Steps (iii) and (iv) can be replaced by a flat panel. Flat amorphous silicon
detectors can be used as image sensors in some industrial inspection systems. In
such detectors, using a semi-conductor, energy from the X-ray is converted directly
into an electrical signal (without image intensifier). Nevertheless, NDT using flat

76 3 Geometry in X-ray Testing

Fig. 3.5 Geometric and electromagnetic distortion obtained in an X-ray image of a regular object
using an image intensifier

detectors is less feasible due to their higher cost in comparison to image intensifiers.
In this section, we will present a geometric model for computer vision systems for
both flat detectors and image intensifiers. Image intensifiers suffer from two signifi-
cant distortions: geometric and electromagnetic field distortions (see an example in
Fig. 3.5). On the other hand, computer vision systems based on flat detectors do not
suffer from these distortions, and they can be easily modeled with a simple pinhole
camera model [2].

In this section, we will give a geometric viewpoint about how an X-ray computer
vision system can be explicitly modeled. When using explicit models, the physical
parameters of the computer vision system, like image center, focal length, etc., are
considered independently [27]. The model presented in this section maps the 3D
object into a digital X-ray image using two transformations as shown in Fig. 1.8:
(i) linear central projection in the X-ray projection; (ii) digital image formation, i.e.,
perspective transformation in the image intensifier and 2D projective transformation
in the CCD-camera, or a single 2D projective transformation when using a flat panel.
When modeling the image intensifier a high accuracy explicit model is presented,
which takes into account the non-linear distortion caused by the curved input screen
of the image intensifier (see Fig. 1.8), and the non-linear projection in the image
intensifier caused by electromagnetic fields.

3.3.1 A General Model

In this section we present a general model which relates the 3D coordinates of the
test object to the 2D coordinates of the digitalized X-ray image pixel. The model
consists of two parts as shown in Fig. 1.8: X-ray projection and digital image for-
mation. The coordinate systems used in our approach are illustrated in Fig. 3.6.

First we will describe how a 3D point M is projected onto a projection plane Π ,
called the retinal plane of the X-ray projection, in which the X-ray image is formed
through central projection. In case of image intensifiers, the retinal plane is fictitious
and is located tangentially to the input screen of the image intensifier, as shown in
Fig. 3.7. The optical center C of the central projection corresponds to the X-ray

3.3 Geometric Model of an X-ray Computer Vision System 77

Fig. 3.6 Diagram of the coordinate systems (see Fig. 1.8)

Fig. 3.7 X-ray projection using an image intensifier (see S surface) or a flat panel (see Π plane)

source, modeled as a point.1 The optical center is located at a distance f , the focal
length of the retinal plane. The central projection of M onto projection plane Π is
the point m. It is defined as the intersection of the line that contains the points C and
M with the retinal plane Π . The optical axis is defined as the line going through the
optical center C and perpendicular to the retinal plane Π .

We define a 3D world coordinate system (WCS) in the optical center C of the
central projection. The coordinates of this coordinate system are X̄ , Ȳ , and Z̄ , where

1Although industrial X-ray generators use standard tubes with larger focal size that blur the X-
ray images slightly, the assumption that the X-ray source can be modeled as a point is valid for
geometrical measurements. This is because the position of a point in the X-ray image can still be
estimated as the center of the blurred point [28].

78 3 Geometry in X-ray Testing

the Z̄ -axis coincides with the optical axis, as represented in Fig. 3.7. In WCS, the
retinal plane Π is defined by Z̄ = f . The coordinates of the 3D point M are denoted
by (X̄ , Ȳ , Z̄) in this coordinate system.

Now, we define a 3D object coordinate system (OCS) that is attached to the
object to be projected. The coordinates of the 3D point M are denoted by (X, Y, Z)

in OCS. The center of the object is assumed to be at the origin O of this coordinate
system, as shown in Fig. 3.7. The OCS is then considered as a rigid displacement
of the WCS represented by a translation 3-component vector t = [tX tY tZ]T and a
3 × 3 rotation matrix R as explained in Sect. 3.2.3. Vector t represents the origin of
OCS given in coordinates of WCS, and matrix R depends on the Euler angles ωX ,
ωY and ωZ as explained in (3.13).

The perspective projection of M onto the projection plane is the 2D point m that
is represented as (x̄, ȳ) in a new 2D coordinate system called the X-ray projection
coordinate system (PCS). The x̄, ȳ-axes are parallel to the X̄ , Ȳ -axes respectively.
Applying intercept theorem, the coordinates of m in this 2D system are x̄ = f X̄/Z̄
and ȳ = f Ȳ/Z̄ . Using homogenous coordinates as in Sects. 3.2.3 and 3.2.4 we
obtain

λ

⎡
⎣ x̄

ȳ
1

⎤
⎦ =

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

[
R t
0 1

]
︸ ︷︷ ︸

H

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (3.18)

where 0 = [0 0 0], and λ is a scale factor λ �= 0. Equation (3.18) can be rewritten in
matrix form as

λm = AM, (3.19)

where A = PH, and the 3-component vector m and the 4-component vector M
are homogeneous representations of (x̄, ȳ) and (X, Y, Z) respectively (e.g., , m =
[x̄ ȳ 1]T andM = [X Y Z 1]T). Equation (3.19) is a linear equation that maps object
coordinates to projection plane coordinates. This equation depends on seven param-
eters:

θext = [f ωX ωY ωZ tX tY tZ]T. (3.20)

They are called the extrinsic parameters of the X-ray computer vision system. Thus,
A := A(θext).

Finally , we introduce the 2D image coordinate system (ICS) to represent the
pixel coordinates (u, v) of the digital image. The point (u, v) in ICS can be calcu-
lated from the point (x̄, ȳ) in PCS using a function γ :

w = γ (m, θint), (3.21)

where the 3-component vectors w andm are homogeneous representations of (u, v)

and (x̄, ȳ) respectively, and θint is a vector with the parameters of the transformation
called the intrinsic parameters. Several linear and non-linear models of γ , that were

3.3 Geometric Model of an X-ray Computer Vision System 79

developed for X-ray computer vision systems and CCD-cameras, will be discussed
in Sect. 3.3.2. On the one hand, the geometric model of image formation using a
flat panel is linear and can be modeled using a 2D → 2D geometric transformation
as explained in Sect. 3.2.2. On the other hand, image intensifiers must be modeled
using non-linear transformations due to geometric and electromagnetic distortions.

To summarize, using (3.19) for the perspective projection and (3.21) for the
digital image formation, an object point M , whose homogeneous coordinates are
M = [X Y Z 1]T (in OCS), can be mapped into a 2D point of the digital X-ray
image as w, the homogeneous coordinates of which are w = [u v 1]T (in ICS) using
the following expression:

w = γ (A(θext)M, θint) := F(θ,M), (3.22)

where θT = [θext ; θint] is the vector of parameters involved in the projection model.
As we will explain in Sect. 3.4, in a process termed calibration, we estimate

the parameters θ of the model based on n points whose object coordinates Mi =
[Xi Yi Zi 1]T are known and whose image coordinates w̃i = [ũi ṽi 1]T are measured,
for i = 1, . . . , n. Using (3.22) we obtain the reprojected points wi = [ui vi 1]T, i.e.,
the inferred projections in the digital image computed from the calibration points
Mi and the parameter vector θ . The parameter vector is then estimated by minimiz-
ing the distance between measured points (w̃i) and inferred points (wi = F(θ,Mi)).
Thus, the calibration is performed by minimizing the objective function μ(θ)

defined as the mean-square discrepancy between these points:

μ(θ) = 1

n

n∑
i=1

‖ w̃i − wi ‖→ min. (3.23)

The calibration problem is a non-linear optimization problem. Generally, the mini-
mization of μ(θ) has no closed-form solution. For this reason, the objective function
must be iteratively minimized starting with an initial guess θ0 that can be obtained
from nominal values or preliminary reference measurements.

3.3.2 Geometric Models of the Computer Vision System

In this section, we present seven existing models that can be used to calibrate an
X-ray computer vision system. Five models were conceived to calibrate cameras
with and without distortion. The others were developed to calibrate computer vision
systems with image intensifiers. In all these models, the perspective projectionOCS
→ PCS is done using (3.19). For this reason, in this section only the transformation
PCS → ICS will be described. We use the definition given in (3.21), where a point
m = [x̄ ȳ 1]T in PCS is transformed by a function γ into a point w = [u v 1]T in

80 3 Geometry in X-ray Testing

ICS. Recall that the parameters of γ are the intrinsic parameters of the computer
vision system.

Camera Models
Faugeras and Toscani present in [5] a linear model without considering distortion:

⎡
⎣ u

v

1

⎤
⎦ =

⎡
⎣ ku s u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ x̄

ȳ
1

⎤
⎦ . (3.24)

The five (intrinsic) parameters of the model consider scale factors (ku , kv) in each
ordinate, a skew factor (s) that models non-orthogonal u, v-axes, and a translation
of the origin (u0, v0) that represents the projection of (x̄, ȳ) = (0, 0) in ICS. This
model can be used to model an X-ray computer vision system with a flat panel. In
this linear model, the focal length is normalized to f = 1. A linear approach based
on a least squares technique is proposed in [5] to estimate the intrinsic and extrin-
sic parameters in a closed-form. However, Faugeras in [2] proposes minimizing the
distances between the observations and the model in ICS using the objective func-
tion μ of (3.23). Faugeras reported that this non-linear method clearly appears to
be more robust than the linear method of Faugeras and Toscani when the measured
data is perturbed by noise.

In order to model the distortion, a positional error (δu, δv) can be introduced:

⎡
⎣ u

v

1

⎤
⎦

︸ ︷︷ ︸
w

=
⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ x̄

ȳ
1

⎤
⎦

︸ ︷︷ ︸
w′

+
⎡
⎣ δu(x̄, ȳ)

δv(x̄, ȳ)

0

⎤
⎦ . (3.25)

In this model, the ideal non-observable position w′ is displaced to the real position
w as illustrated in Fig. 3.8. The amount of the displacements, δu and δv , usually
depends on the point position (x̄, ȳ). Several models for the positional error were
reported in the literature to calibrate a camera [14, 25, 26, 28]. In these models, the
skew s is zero, because in modern digital cameras the u, v-axes can be considered
as orthogonal.

The distortion is decomposed into two components: radial and tangential distor-
tions as shown in Fig. 3.8.

Radial and tangential distortion depend on r and φ respectively, where (r, φ) are
the polar coordinates of the ideal position (x̄, ȳ) represented in PCS. Tsai in [26]
uses a simple radial distortion model with only one additional parameter, because
his experience with cameras shows that only radial distortion, which is principally
caused by flawed radial curvature of the lens elements, needs to be considered.

Weng et al. propose in [28] an implicit model that includes radial, decentering
and prism distortion. Decentering distortion arises when the optical centers of the
lens elements are not exactly collinear, whereas the prism distortion occurs from

3.3 Geometric Model of an X-ray Computer Vision System 81

Fig. 3.8 Radial and tangential distortions [28]

imperfection in lens design, manufacturing, and camera assembly. The last two dis-
tortions, modeled with five parameters, have both radial and tangential components.

Heikkilä introduces in [14] an implicit model for radial and decentering distortion
that takes into account an inverse distortion model to express the distorted image
coordinates in terms of their undistorted coordinates. The number of parameters of
this model is four.

Swaminathan and Nayar present in [25] a model for wide-angle lenses and poly-
cameras. The model considers a shift of the optical center, radial distortion, and
decentering distortion. A shift of the optical center means a shift of the image detec-
tor in the image plane. The suggested total distortion includes four parameters.

Image Intensifier Models
Two models were reported in the literature to calibrate an X-ray computer vision
system composed by image intensifier and CCD-camera. The first model was pro-
posed independently by Jaeger in [17] and Brack et al. in [1]. They propose an
implicit model between PCS and ICS. The transfer function γ (3.21) is a third
degree polynomial with twenty intrinsic parameters (ai , bi , i = 0, . . . 9) given by:

[
u
v

]
=

[
a0 a1 . . . a9

b0 a2 . . . b9

] [
1 x̄ ȳ x̄ ȳ x̄2 ȳ2 ȳ x̄2 x̄ ȳ2 x̄3 ȳ3

]T
. (3.26)

This cubic function can model not only the distortion caused by the (curved) input
screen, but also the distortion introduced by electromagnetic fields present around
the image intensifier. An example of this model is shown in Example 3.4.

The second model was developed by Mery and Filbert in [22, 23], in which a
hyperbolic surface is used to model the input screen of the image intensifier [6] that
is defined by

Z̄ = S(X̄ , Ȳ) = f
√
1 + (X̄/a)2 + (Ȳ/b)2 (3.27)

82 3 Geometry in X-ray Testing

with f (the focal length of the X-ray projection) being the real half axis of the
hyperboloid; and a and b the imaginary half axes. The projection of point M onto
the input screen of the image intensifier is denoted by p. It is calculated as the
intersection of the line that contains points C , M , and m with the 3D surface S
(see Fig. 3.7). Its coordinates are given by: x ′ = x̄/k(x̄, ȳ) and y′ = ȳ/k(x̄, ȳ), with
k(x̄, ȳ) = √

1 − (x̄/a)2 − (ȳ/b)2. The point p is imaged at the CCD-camera as w,
whose coordinates can be estimated approximately using an affine transformation
[2]:

⎡
⎣ u

v

1

⎤
⎦ =

⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣+ cos(α) + sin(α) 0

− sin(α) + cos(α) 0
0 0 1

⎤
⎦

⎡
⎣ x̄/k(x̄, ȳ)

ȳ/k(x̄, ȳ)

1

⎤
⎦ , (3.28)

where α represents rotation between x̄, ȳ-and u, v-axes. This model has only three
additional parameters a, b, and α.

Python Example 3.4: In Fig. 3.5, the holes of the calibration plate are uni-
formly distributed in a grid. The horizontal and vertical distance between two con-
secutive holes is 1 cm. The parameters of the cubic model (3.26) can be obtained
using a regression approach2 as illustrated in the following Python code:

Listing 3.4 : Cubic model of an image intensifier

import numpy as np
import numpy.matlib

import matplotlib.pylab as plt
from pyxvis.io import gdxraydb

image_set = gdxraydb.Settings()

img = image_set.load_image(2, 1) # Input image
data = image_set.load_data(2, ’points’) # Load data for the this image set

Calibration coordinates in the image domain
um = data[’ii’].flatten() # This can also be done as um = data[’ii’][::]
vm = data[’jj’].flatten()

Coordinates of holes in cm.
xb = np.tile(np.r_[−6.5:7.5], [11, 1]).flatten()
xb = xb[:, np.newaxis]

yb = np.r_[−5.0:6.0]
yb = yb[:, np.newaxis]
yb = np.tile(yb, [1, 14]).flatten()
yb = yb[:, np.newaxis]

n = xb.shape[0]

Build the design matrix
XX = np.hstack(

[np.ones((n, 1)), xb, yb, xb * yb, xb**2, yb**2, yb * (xb**2), xb * (yb**2), xb**3,
yb**3]

2For details of numpy function np.linalg.lstsq see https://numpy.org/doc/stable/reference/
generated/numpy.linalg.lstsq.html.

https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html

3.3 Geometric Model of an X-ray Computer Vision System 83

)

a = np.linalg.lstsq(XX, um, rcond=None)[0] # rcond=None silence warning for future
deprecation

b = np.linalg.lstsq(XX, vm, rcond=None)[0] # We refer the reader to the Numpy
documentation.

Also, you can compute Least squere regression as follow:
#a = np.dot(np.dot(np.linalg.inv(np.dot(XX.T, XX)), XX.T), um)

us = np.dot(a, XX.T)
vs = np.dot(b, XX.T)

d = np.array([um−us, vm−vs])
err = np.mean(np.sqrt(np.sum(d ** 2, axis=0)))

Display the input image and points
fig, ax = plt.subplots(1, 1, figsize=(18, 14))
ax.imshow(img, cmap=’gray’)
ax.scatter(vm, um, facecolor=’none’, edgecolor=’g’, s=120, label=’Detected points’)
ax.scatter(vs.flatten(), us.flatten(), facecolor=’r’, marker=’+’, s=100, label=’

Reprojected points’)

Plot vertical and horizontal lines
lines = np.vstack([us, vs]) # Stack reprojected points
for i in range(11):

ax.plot(lines[1, (14 * i):(14 * (i + 1))], lines[0, (14 * i):(14 * (i + 1))], ’r:’)
Reprojected points

Reshape and stack reprojected point
lines = np.vstack([us.reshape(−1, 14).T.flatten(), vs.reshape(−1, 14).T.flatten()])
for i in range(14):

ax.plot(lines[1, (11 * i):(11 * (i + 1))], lines[0, (11 * i):(11 * (i + 1))], ’r:’)
Reprojected points

ax.axis(’off’)
ax.set_title(’Cubic model reprojection error: {:0.4f} pixels’.format(err))
plt.legend(loc=1)
plt.show()

The output of this code is shown in Fig. 3.9. The detected (or measured) points
correspond to the centers of mass of the holes. They were found using an image
processing algorithm. Their coordinates are stored in variable data. The mean error
between measured and modeled points is 0.7699 pixels. �

Python Example 3.5: In Fig. 3.10 we show how a 3D point M is projected
onto 5 different X-ray images of an aluminum wheel that has been rotated. The
coordinates of M given in the object coordinate system are the same for each pro-
jection. In this example we model the image intensifier using the hyperbolic model
explained in this section:

Listing 3.5 : Transformation 3D → 2D using hyperbolic model

import numpy as np
import numpy.matlib

import matplotlib.pylab as plt
from pyxvis.io import gdxraydb
from pyxvis.geometry.projective import rotation_matrix_3d
from pyxvis.geometry.projective import hyperproj

84 3 Geometry in X-ray Testing

Fig. 3.9 Cubic model of the X-ray projection of regular grid (see Fig. 3.5). [→ Example 3.4]

image_set = gdxraydb.Castings() # Load the image set

Load data for the the image set
hyp_model = image_set.load_data(1, ’HyperbolicModel.txt’)
man_pos = image_set.load_data(1, ’ManipulatorPosition.txt’)

M = np.array([55, 55, −40, 1])
M = M[:, np.newaxis]

Display the input image and points
fig, ax = plt.subplots(1, 5, figsize=(18, 14))

for i, p in enumerate(range(38, 47, 2)):

t = np.hstack([man_pos[p, j] for j in range(3)])
Rp = rotation_matrix_3d(man_pos[p, 3], man_pos[p, 4], man_pos[p, 5])
Hp = np.vstack([np.hstack([Rp, t[:, np.newaxis]]), np.array([0, 0, 0, 1])])

w = hyperproj(M, hyp_model, Hp)

img = image_set.load_image(1, p)

ax[i].imshow(img, cmap=’gray’)
ax[i].scatter(w[1], w[0], facecolor=’r’, edgecolor=’r’, s=50)
ax[i].axis(’off’)
ax[i].set_title(’Image {0}’.format(p))

plt.show()

3.3 Geometric Model of an X-ray Computer Vision System 85

Fig. 3.10 Projection of a 3D point onto 5 different X-ray images of the same object in 5 different

positions. [→ Example 3.5]

The output of this code is Fig. 3.10. In this code we use function hyperproj of pyxvis
Library. This function computes the transformation 3D → 2D defined in (3.28). �

3.3.3 Explicit Geometric Model Using an Image Intensifier

In this section, we present an explicit model [21] based on the hyperbolic model
of Mery and Filbert [22, 23] to perform the transformation PCS → ICS that takes
place in the image intensifier and CCD-camera. The original hyperbolic model, pre-
sented in the previous section, does not take into account the non-linear projection
between input screen and output screen of the image intensifier, because it is consid-
ered as an affine transformation. Additionally, there is no decentering point, since
in this model the optical axis of the X-ray projection coincides with the optical axis
of the image intensifier. Furthermore, the skew factor of the CCD-camera is not
included. Finally, the distortion that arises when electromagnetic fields are present
around the image intensifier is not considered. In this section, we propose a com-
plete model that incorporates the mentioned distortion effects.

Image Intensifier
The image intensifier converts the X-ray image into a bright visual image (see
Sect. 1.4.3), that can be captured by a CCD-camera [9]. Due to the curvature of
the input screen of the image intensifier, the X-ray image received at the output
screen is deformed, especially at the corners of the image. An additional distortion
can be caused by electromagnetic fields that perform a non-linear projection. An
example of these distortion effects is shown in Fig. 3.5, where an X-ray image of a
plate containing holes that have been placed in a regular grid manner is illustrated.

First, we will consider a model without electromagnetic field distortion. The
geometry of the model used to compute the distortion perspective projection is
shown in Fig. 3.11. It consists of a (curved) input screen S and an output screen
Φ, on which the image is projected. The output screen Φ coincides with the retinal
plane of this projection.3 We have shown in Sect. 3.3.1, how the 3D object point M
is projected onto plane Π as point m. Thus, the perspective X-ray projection OCS

3The reader should note that at this moment there are two retinal planes: Π for the central projec-
tion and Φ for the image intensifier.

86 3 Geometry in X-ray Testing

Fig. 3.11 Geometric model of the image intensifier (axes parallel to Ȳ are not shown)

→ PCS is given by (3.19). In this section we will calculate, how point m is pro-
jected onto input screen S as point p and then onto the retinal plane Φ as point r .

The X-ray image present on the input screen is projected onto the output screen
through an optical center of the image intensifier. We may assume without loss of
generality that the optical axis of the image intensifier (z-axis) is parallel to the
optical axis of the X-ray projection (Z̄ -axis), because, in a central X-ray projection,
there is always a ray that is parallel to the optical axis of the image intensifier.
However, the displacement of these axes must be determined. For this reason, we
modify the hyperbolic surface of (3.27) by introducing a shift of the center of the
hyperboloid as shown in Fig. 3.11. Therefore, the hyperbolic surface S is defined in
WCS by

Z̄ = S(X̄ , Ȳ) = f

√
1 + (X̄ − x̄0)2

a2
+ (Ȳ − ȳ0)2

b2
(3.29)

with f being the real half axis of the hyperboloid; a and b the imaginary half axes;
and (x̄0, ȳ0) the coordinates of the center of the hyperboloid. The focal length of the
X-ray projection (f), defined in Sect. 3.3.1, is the minimal value that takes the sur-
face S. This occurs in (x̄0, ȳ0), that is represented as q in Fig. 3.11. The displacement
between Z̄ - and z-axis is given by (x̄0, ȳ0).

The projection of point M onto the input screen of the image intensifier is cal-
culated as the intersection of the line that contains points C , M and m with the 3D
surface S. This intersection is denoted by p in Fig. 3.11, whose coordinates inWCS
are given by (x̄ ′, ȳ′, z̄′):

x̄ ′ = z̄′ x̄/ f, ȳ′ = z̄′ ȳ/ f and z̄′ = −B + √
B2 − 4AC

2A
(3.30)

with

A = 1
f 2

(
1 − x̄2

a2 − ȳ2

b2

)
, B = 2

f

(
x̄ x̄0
a2 + ȳ ȳ0

b2

)
, C = −

(
1 + x̄2

0
a2 + ȳ20

b2

)
.

3.3 Geometric Model of an X-ray Computer Vision System 87

The coordinates of point p depend on the coordinates (x̄, ȳ) of point m in PCS.
Using homogeneous coordinates, p can be expressed as follows:

p = g(m), (3.31)

where p = [x̄ ′ ȳ′ z̄′ 1]T, m is a homogeneous representation of (x̄, ȳ), and g is the
non-linear function defined from (3.30).

As illustrated in Fig. 3.11, point p is projected through the optical center of the
image intensifier onto the output screenΦ as point r . The projected point r has coor-
dinates (x, y) in a new 2D coordinate system, called the output screen coordinate
system (SCS). This coordinate system is centered in e, and its x, y-axes are parallel
to the x̄, ȳ-axes of PCS. We can conclude from consideration of similar triangles
that

λ

⎡
⎣ x

y
1

⎤
⎦ =

⎡
⎣ d 0 0 −dx̄0
0 d 0 −d ȳ0
0 0 1 −(f + c)

⎤
⎦

⎡
⎢⎢⎣

x̄ ′
ȳ′
z̄′
1

⎤
⎥⎥⎦ , (3.32)

where λ is a scale factor, and c and d are the distances of the input and output
screen to the optical center of the image intensifier (see Fig. 3.11). This equation
can be expressed in matrix form as

λr = Dp, (3.33)

where the 3-component vector r is a homogeneous representation of (x, y), andD is
the 3 × 4 projective matrix of the image intensifier expressed in (3.32). From (3.31)
and (3.33) we obtain the non-linear equation, which depends on six parameters: a,
b, c, d, x̄0 and ȳ0, that maps a projected point on the retinal plane Π of the X-ray
projection onto a point on the retinal plane Φ of the image intensifier:

λr = Dg(m). (3.34)

To model the effect of the electromagnetic distortion we propose an empirical
model, in which a point r on plane Φ will be transformed into a new point r ′. We
observed that the projection of a regular grid seems to have an additional harmonic
signal (see Fig. 3.5). For this reason, we can empirically model this distortion with
sinusoidal functions.

The electromagnetic distortion is modeled in two steps. The first step introduces
a distortion in the x-direction and the second one in the y-direction. Thus, x is firstly
transformed into x ′ from (x, y) and secondly, y is transformed into y′ from (x ′, y)

as follows:
x ′ = x + A1 sin(B1y + C1)

y′ = y + A2 sin(B2x ′ + C2),
(3.35)

88 3 Geometry in X-ray Testing

Fig. 3.12 Imaging process in the CCD-camera

where Ai , Bi and Ci , i = 1, 2, are the parameters of the electromagnetic distortion
model. Formally, r ′ can be expressed using homogeneous coordinates as follows:

r′ = f(r) = [x ′ y′ 1]T, (3.36)

where f is the non-linear function defined from (3.35).
Other sinusoidal functions can be used to model the distortion introduced by

electromagnetic fields. The reason why we use a two-step based model is because
Eq. (3.35) can be back-projected in a closed-form as shown previously.

CCD-Camera
The 2D image coordinate system (ICS) is used to represent the pixel coordinates of
the X-ray image captured by the CCD-camera. The point r (or r ′ if we consider the
electromagnetic field distortion) at the output screen of the image intensifier (see
Fig. 3.11) is projected onto the retinal plane Γ of the CCD-array4 as point w as
shown in Fig. 3.12.

The camera could be modeled as a general pinhole camera [2], in which a pro-
jective mapping from a 3D point of the space to a 2D projective space takes place.
However, in our model the 3D points to be mapped belong to a plane, namely the
retinal plane Φ. For this reason, in this work we use a homography, i.e., a 2D →
2D general projective transformation as explained in Sect. 3.2.2, which relates the
coordinates of retinal plane Φ to retinal plane Γ of the camera. This transformation
is defined by

λw = Hr, (3.37)

4The reader should note that Γ , the retinal plane of the CCD-camera, is the third retinal plane of
our model (see footnote 3).

3.3 Geometric Model of an X-ray Computer Vision System 89

where the 3-component vectors r and w are homogeneous representations of (x, y)

and (u, v) (coordinates of r in SCS and w in ICS) respectively. Matrix H is a
homogeneous 3 × 3 matrix that causes a general perspective transformation where
rotation, translation, scaling, skew and perspective distortion are considered. Matrix
H has nine elements where only their ratio is significant, so the transformation is
defined by only eight parameters, e.g., , h11, h12, . . . , h32. Parameter h33 can be
defined as h33 = 1, or H can be constrained by ‖ H ‖= 1 [13].

Summary
In this section we described a model which relates the transformation 3D → 2D,
from a 3D point M of the test object to a 2D point w of the digitalized X-
ray image pixel using homogeneous coordinates. Therefore, the transformation is
expressed by M → w, where M = [X Y Z 1]T and w = [u v 1]T. There are two
possibilities for performing the transformation, namely without and with consider-
ing the electromagnetic distortion. In the first case, the transformation is given by
M → m → r → w using Eqs. (3.19), (3.34) and (3.37) respectively:

λw = HDg(PM). (3.38)

This model has seven extrinsic parameters (defined in (3.20)) and fourteen intrinsic
parameters: a, b, c, d, x̄0, ȳ0, h11, h12, . . . , h31 and h32.

In the second case, where the electromagnetic distortion is modeled, the trans-
formation is expressed byM → m → r → r′ → w using Eqs. (3.19), (3.34), (3.36)
and (3.37) respectively:

λw = HDf(g(PM)). (3.39)

In comparison with the first case model, the consideration of the electromagnetic
distortion requires six more intrinsic parameters: Ai , Bi and Ci , for i = 1, 2.

3.3.4 Multiple View Model

In many applications, a single view of a test object is not enough because there are
for example occluded parts or intricate projections that cannot be observed with a
single view. For this reason the test object must be analyzed from n points of views
(with n ≥ 2). In this section, we present a geometric model that can be used when
dealing with multiple views, i.e., a geometric model that relates the transformation
of a 3D point of the test object into the 2D coordinates of each X-ray projection. For
multiple view analysis, i.e., 3D reconstruction or analysis of a part from different
points of view, it is required that the n geometric models must share the same 3D
object coordinate system (OCS). That means the 3D coordinates (X, Y, Z) of each
projection, for p = 1 . . . n, are the same, and we are interested to find the location of
the projection of this unique 3D point in each 2D view. Using (3.22) for each view

90 3 Geometry in X-ray Testing

Fig. 3.13 Multiple views of an object acquired using a manipulator that rotates the object around
its vertical axis (series S0007 of GDXray+)

we obtain ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w1 = F(M, θ1)

w2 = F(M, θ2)
...

wn = F(M, θn)

, (3.40)

where M = [X Y Z 1]T are the homogenous coordinates of the 3D points in
OCS, θp are the parameters of the geometric model for pth projection, and wp =
[u p vp 1]T are the homogenous coordinates in pixels in pth X-ray image.

Two views can be simultaneously achieved using two different X-ray detectors.
There are some X-ray computer vision systems with three or four detectors as well
(see, for example, [7]). In medicine, for instance, it is a common practice to take
two X-ray images simultaneously (from two different points of views) of certain
organs that change their shape and size because they are in motion (e.g., , X-ray
stereo angiography [8]). In this case, we have independent geometric models (one
for each view) that can be obtained using the theory outlined in the previous section.
That means, in (3.40), the parameters of the models are independent from each other.
Usually in X-ray testing, however, there is a manipulator that is able to locate the test
object in different positions, and different views are obtained in different times using
a single detector. Given that we are capturing X-ray images of a rigid test object it is
not necessary to acquire the images simultaneously (see Fig. 3.13). In this case, the
parameters of the models are not independent from each other because they share
the same intrinsic parameters as there is only one X-ray detector. For example, if
a manipulator rotates the test object as shown in Fig. 3.6, and for each position a
new X-ray image is acquired, it is clear therefore that the transformation fromOCS
to word coordinate system (WCS) is different for each projection, however, the
projection from WCS into image coordinate system (ICS) is exactly the same.

In an X-ray computer vision system with a manipulator and a flat panel (that can
be modeled by a simple model with no distortion), the following equation can be
used for pth view (wp = F(M, θp)) according to (3.18) and (3.24):

3.3 Geometric Model of an X-ray Computer Vision System 91

Fig. 3.14 X-ray computer vision system with a manipulator with several degrees of freedom

λp

⎡
⎣ u p

vp

1

⎤
⎦ =

⎡
⎣ ku s u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦ [

Rp tp

0 1

]
︸ ︷︷ ︸

Hp

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (3.41)

where 4 × 4 matrix Hp, that includes rotation matrix Rp and translation vector tp,
define the Euclidean transformation of pth position fromOCS toWCS. In this sim-
ple model, the vector parameter θp for pth projection includes intrinsic parameters
(ku, kv, s, u0, v0) and extrinsic parameters focal length f for the central projection,
(ωX p, ωY p, ωZ p) for the pth rotation and (tX p, tY p, tZ p) for the pth translation. It
is clear, that the intrinsic parameters are the same for each projection whereas the
extrinsic parameters are different. In many cases, however, the test object is rotated
around one axis only, that means that (tX p, tY p, tZ p) is constant and only one ω

angle changes for each position. This is the case of example of Fig. 3.13 where
ωX p = ωX , ωY p = ωY and ωZ p = ωZ + p50, where the rotation around the vertical
axis between two consecutive frames is 50.

The transformation defined by Hp (OCS → WCS) can be modeled using a
manipulator coordinate system (MCS): OCS → MCS → WCS. Thus, for pth
view the transformationOCS → MCS is constant (with some constant rotation and
translation), whereasMCS → WCS has a different rotation and translation for each
position.

92 3 Geometry in X-ray Testing

Fig. 3.15 Coordinate systems used in the geometric model of Fig. 3.14

This methodology can be extended to more complex manipulators with several
degrees of freedom. For example in Fig. 3.14 such a manipulator system is pre-
sented. This system can be used in the inspection of aluminum castings. The object
can be rotated around its vertical axis using rotation R. In addition, it can be trans-
lated in X and Z direction using the manipulator table. Moreover, the whole com-
puter vision system can be translated in Y and rotated using rotation T. In order
to model the transformation OCS → WCS of this manipulator system, we can
include additional coordinate systems as illustrated in Fig. 3.15: OCS → MCS →
SCS → WCS. Thus, there are three 3D Euclidean transformations. Each one is
modeled using a 4 × 4 transformation matrix that includes a 3 × 3 rotation matrix
and a 3 × 1 translation vector as explained in Sect. 3.2.3. That means, the whole
transformation OCS → WCS is a 4 × 4 matrix computed as the multiplication of
these three matrices. This matrix corresponds to Hp in (3.41). The reader can find
more details of this model in [20].

3.4 Calibration

The calibration of an X-ray computer vision system—in the context of 3D machine
vision—is the process of estimating the parameters of the model, which is used to
determine the projection of the 3D object under test into its 2D digital X-ray image
(Fig. 3.16). This relationship 3D → 2D can be modeled with the transfer function
F : R3 → R

2 expressed in (3.22).

3.4 Calibration 93

Fig. 3.16 Calibration object: a photography; b CAD-model; and c X-ray image of the calibration
object and measured calibration points

There are several techniques developed to calibrate a computer vision system.
They can be roughly classified into two categories: photogrammetric calibration and
self-calibration [29]. The first one is a 3D reference object-based calibration, where
the calibration is performed by observing a calibration object whose geometry in
3D space is known with high accuracy [2]. The second technique uses the identi-
fication of matching points in several views of a scene taken by the same camera.
Self-calibration does not use a calibration object with known 3D geometry because
it aims to identify the intrinsic parameters of the computer vision system and to
reconstruct 3D structure up to a scale similarity [18]. Due to the high precision fea-
ture measurement of 3D geometry required in the NDT applications, it would be
necessary to do a true reconstruction of the 3D space without a scale factor. For this
reason, usually the calibration technique in X-ray testing belongs to the photogram-
metric category.5

In calibration, we estimate the parameters of the model based on n points of a cal-
ibration object whose object coordinatesMi = [Xi Yi Zi 1]T are known and whose
image coordinates w̃i = [ũi ṽi 1]T are measured, for i = 1, . . . , n. In Fig. 3.16 an
example of a calibration object is illustrated.

Using the geometric model explained in Sect. 3.3 (see (3.22)) we obtain the
reprojected points wi = [ui vi 1]T, i.e., the inferred projections in the digital image
computed from the calibration points Mi and the parameter vector θ :

wi = γ (AMi) := F(θ,Mi) for i = 1 . . . n, (3.42)

5Nevertheless, in Sect. 9.4.3 the reader can find an interesting X-ray testing application where the
3D model is estimated using a self-calibration method based on bundle adjustment.

94 3 Geometry in X-ray Testing

Fig. 3.17 Calibration process

where θT = [θext ; θint] is the vector of parameters involved in the projection model
including both extrinsic and intrinsic parameters. The parameter vector is then esti-
mated by minimizing the distance between measured points w̃i (see Fig. 3.16c) and
inferred points wi = F(θ,Mi) (see Fig. 3.16b). Thus, the calibration is performed
by minimizing the objective function μ(θ) defined as the mean-square discrepancy
between these points:

μ(θ) = 1

n

n∑
i=1

‖ w̃i − F(θ,Mi) ‖→ min. (3.43)

The whole calibration process is summarized in Fig. 3.17. The calibration prob-
lem is a non-linear optimization problem. Generally, the minimization of μ(θ) has
no closed-form solution. For this reason, the objective function must be iteratively
minimized starting with an initial guess θ0 that can be obtained from nominal val-
ues or preliminary reference measurements. In this section, we present two differ-
ent methodologies that can be used to calibrate an X-ray computer vision system.
The first one was proposed originally in [29] and it is implemented in OpenCV for
Python.6 This technique is very effective and it can be used in the calibration of
computer vision with flat panels or with image intensifiers with low distortion. The
second technique was proposed in [21] and can be used in computer vision systems
with image intensifiers with high distortion.

6See https://opencv.org.

https://opencv.org

3.4 Calibration 95

3.4.1 Calibration Using Python

OpenCV Library can be used to easily calibrate an X-ray computer vision system.
In our experiments, we use calibrateCamera based on Tsai’s calibration method
[26]. It requires a checkerboard as calibration object, and at least two X-ray images
taken by the computer vision system to be calibrated. For best results, however, it
is recommended to acquire between 10 and 20 images. An example of 18 X-ray
images of a calibration pattern is shown in Fig. 2.17.

Python Example 3.6: For the calibration of an X-ray computer vision system
the X-ray images of 2.17 and the following Python code can be used. In this example
a 3D Gaussian bell is superimposed onto an X-ray image in order to show how
we can use the obtained geometric model to reproject 3D points onto the original
image.

Listing 3.6 : Calibration of an X-ray computer vision system.

import cv2 as cv
import numpy as np

from pyxvis.io import gdxraydb
from pyxvis.io.visualization import project_edges_on_chessboard, gaussian_superimposition

image_set = gdxraydb.Settings()

Termination criteria
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)

nx = 10 # number of inside corners per row
ny = 10 # number of inside corners per column

Prepare object points, like (0,0,0), (1,0,0), (2,0,0),(6,5,0)
objp = np.zeros((nx*ny, 3), np.float32)
objp[:, :2] = np.mgrid[0:nx, 0:ny].T.reshape(−1,2)
objp = 250 * objp

Arrays to store object points and image points from all the images.
obj_points = [] # 3d point in real world space
img_points = [] # 2d points in image plane.

img_boards = []

for i in range(1, 19):

print(’Find chessboard corners in image {}: ’.format(i), end=’’)

img = image_set.load_image(8, i)
img_h = img.copy()

Keep a copy of the image but using three color channels. Just for visualization.
img = cv.cvtColor(img, cv.COLOR_GRAY2BGR)

ret, corners = cv.findChessboardCorners(img_h, (nx, ny), flags=cv.
CALIB_CB_ADAPTIVE_THRESH)

print(’{}’.format(ret))

if ret:
obj_points.append(objp)

96 3 Geometry in X-ray Testing

corners = cv.cornerSubPix(img_h, corners, (11, 11), (−1, −1), criteria)
img = cv.drawChessboardCorners(img, (nx, ny), corners, ret)
img_points.append(corners)
img_boards.append({’img’: img, ’idx’: i})

Calibrate the camera
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(obj_points, img_points, img_h.shape

[::−1], None, None)

Show parameters
print(’ret: ’, ret)
print(’Mtx: ’, mtx)
print(’Dist: ’, dist)
print(’Rvecs: ’, rvecs)
print(’Tvecs: ’, tvecs)

i = 6
img = image_set.load_image(8, i)

Projection matrix of image i. Remember that for this example
indexation of rotation and translation matrices starts at 0.
R, _ = cv.Rodrigues(rvecs[i−1]) # Rotation matrix 3x3
t = tvecs[i − 1] # Translation vector 3x1

H = np.hstack([R, t])
H = np.vstack([H, np.array([0, 0, 0, 1])])

Projection matrix
P = np.hstack([mtx, np.zeros((3, 1))])
P = np.dot(P, H)

project_edges_on_chessboard(img, P, square_size=250)

gaussian_superimposition(img, P, square_size=250, n_points=30)

The output of this code is shown in Fig. 3.18. The reader that is interested in the
computer graphics details of the superimposition can study the program developed
in pyxvis Library under the name gaussian_superimposition. �

Fig. 3.18 Details of image 6: (left) measured and reprojected points, (right) simulation of a 3D

Gaussian bell superimposed onto the checkerboard. [→ Example 3.6]

3.4 Calibration 97

Table 3.3 Characterization of the implemented models for calibration

Model Name Reference Intrinsic
parameters

Back-
projection

Calibration Distortion Model

1. Faugeras Linear [2] 5 Direct Iterative None Explicit

2. Tsai Radial [26] 5 Indirect Iterative Radial Implicit

3. Weng et
al.

Rad-Tan-1 [28] 9 Indirect Iterative Radial,
tangential

Implicit

4. Heilikkä Rad-Tan-2 [14] 8 Direct Iterative Radial,
tangential

Implicit

5. Swami-
nathan &
Nayar

Rad-Tan-3 [25] 8 Indirect Iterative Radial,
tangential

Implicit

6. Jaeger /
Brack et al.

Cubic [17]
[1]

20 Indirect Iterative Cubic Implicit

7. Mery &
Filbert

Hyp-Simple [22, 23] 7 Direct Iterative Hyperbolic
simple

Explicit

8. Mery
(without
EFD)

Hyp-Full [21] 14 Direct Iterative Hyperbolic Explicit

9. Mery 2
(with EFD)

Hyp-EFD [21] 20 Direct Iterative Hyperbolic,
sinusoidal

Explicit

EFD electromagnetic field distortion, Hyp Hyperbolic, Rad Radial, Tan Tangential

3.4.2 Experiments of Calibration

In this section, we present the experiments which we did in order to evaluate the
performance of the different models used to calibrate X-ray computer vision sys-
tems. The tested models and their principal features are summarized in Table 3.3.
They are the seven models outlined in Sect. 3.3.2 and the two proposed models of
Sect. 3.3.3 (without and with considering electromagnetic distortion). In the presen-
tation of the results, each model will be identified by the name given in the second
column of Table 3.3.

As we explained in the introduction of Sect. 3.4, the calibration process estimates
the parameters of a model based on points whose object coordinates are known, and
whose image coordinates are measured. The calibration object used in our experi-
ments is shown in Fig. 3.16a. It is an aluminum object with an external diameter of
70mm. A CAD-model was developed by measurement of the calibration object (see
Fig. 3.16b). It has seventy small holes (φ = 3 − 5mm) distributed on four rings and
the center. As we can see in Fig. 3.16, the centers of gravity of the holes are arranged
in three heights.

The search for the calibration points within the X-ray image is carried out
with a simple procedure that detects regions with high contrast and defined size
for the area. The centers of gravity of the detected regions, computed with sub-
pixel accuracy, are defined to be the calibration points. Only complete enclosed
regions will be segmented. Figure 3.16c shows an example of the search for the
calibration points within an X-ray image. The reader can use series S0007 of

98 3 Geometry in X-ray Testing

GDXray+ with detected points stored in file ground_truth.txt and 3D points
in file points_object_3D.txt. The correspondence between the 3D object points
and their images was established manually. The image intensifier used in the experi-
ments was the XRS 2327 with a 22 cm input screen. The size of the images was 576
× 768 pixels.

In our experiments, the calibration object was placed in different positions using
a manipulator. The positions of the calibration object were achieved by rotating
one of the axes of the manipulator. Some of the images obtained are illustrated in
Fig. 3.19. In order to incorporate the pth position of the manipulator (for each X-ray
image) into the geometric model, we modify Eq. (3.18) by

λ

⎡
⎣ x̄

ȳ
1

⎤
⎦ =

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

[
R̄p t̄p

0T 1

]
︸ ︷︷ ︸

H̄p

[
R t
0T 1

]
︸ ︷︷ ︸

H

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ . (3.44)

In this equation, we have two 4 × 4 matrices (H and H̄p) that define respectively
two 3D Euclidean transformations: (i) between object and manipulator coordinate
systems, and (ii) between manipulator and world coordinate systems. The trans-
lation vectors (t and t̄p) and the rotation matrices (R and R̄p) are related to the
corresponding translation and rotation of the mentioned transformations. Since the
calibration object is fixed to manipulator, matrix H is constant for each position:
t = [tX tY tZ]T and a matrix R is calculated from the Euler angles ωX , ωY and ωZ

(see (3.12)). However, matrix H̄p depends on the position of the manipulator with
respect to the world coordinate system. Matrix H̄p is defined by a translation vector
t̄p = [t̄X t̄Y t̄Z]Tp and a rotation matrix R̄p computed from the Euler angles ω̄X , ω̄Y

and ω̄Z . In our experiments, t̄X , t̄Y , t̄Z , ω̄X and ω̄Y were constant. Nevertheless, ω̄Z

was incremented by the manipulator in constant steps. Thus, the rotation of this axis
can be linearly modeled by ω̄Z (p) = ω̄Z0 + pΔω̄Z , where p denotes the number of
the position. This new model introduces seven additional extrinsic parameters (t̄X ,
t̄Y , t̄Z , ω̄X , ω̄Y , ω̄Z0 and Δω̄Z) that must be estimated in the calibration process as
well.

The calibration is performed by minimizing the mean reprojection error (μ) com-
puted as the average of the distance between measured points (w̃i p) and inferred
points (wi p)—in the image coordinate system (ICS)—obtained from the pth pro-
jection of the i th object point Mi according to the model of the computer vision
system. As we can see, the calibration problem is a non-linear optimization prob-
lem, where the minimization of the objective function has no closed-form solution.
For this reason, the objective function must be iteratively minimized starting with
an initial estimated value for the parameters involved in the model. In our experi-
ments, the estimation is achieved using the well-known algorithm for minimization

7Image intensifier developed by YXLON International Inc.

3.4 Calibration 99

Fig. 3.19 Calibration results using the proposed method Hyp-EFD

100 3 Geometry in X-ray Testing

Table 3.4 Error of the models in control (C) and test (T) points

Model ↓ 2D reprojection (pixels) 3D reconstruction (mm)

μ σ μ σ

C T C T C T C T

1.
Linear

2.52 2.45 1.57 1.53 0.47 0.41 0.229 0.157

2.
Radial

1.70 1.64 0.96 0.83 0.18 0.17 0.087 0.075

3. Rad-
Tan-1

1.40 1.39 0.85 0.76 0.15 0.15 0.076 0.071

4. Rad-
Tan-2

1.62 1.66 0.87 0.87 0.25 0.21 0.123 0.092

5. Rad-
Tan-3

1.64 1.62 0.92 0.81 0.20 0.18 0.102 0.079

6. Cubic 1.16 1.16 0.67 0.59 0.15 0.14 0.079 0.063

7. Hyp-
Simple

1.36 1.40 0.77 0.73 0.18 0.17 0.090 0.074

8.
Hyp-Full

1.25 1.29 0.72 0.69 0.17 0.16 0.096 0.072

9. Hyp-
EFD

1.18 1.17 0.71 0.64 0.16 0.14 0.084 0.069

problems: the BFGS Quasi-Newton method,8 which is implemented by MathWorks
Inc. in the optimization toolbox of MATLAB [19].

We subdivided the calibration points into two groups: the points measured
from seven images (p = 1, 3, 5, . . . 13) were used as control points to calibrate
the computer vision system, whereas the points extracted from seven other images
(p = 2, 4, 6, . . . 14) were used as test points in order to evaluate the accuracy of
calibration.

An example of the calibration using our proposed model, called Hyp-EFD, is
illustrated in Fig. 3.19. We can see that the modeled projection of a CAD-model of
the calibration object coincides with the X-ray image very well. Although points of
the top right and the bottom left images of Fig. 3.19 could not be used as control
(or test) points because they are very intricate, the inferred projection of the CAD-
model in these positions seems to be fine.

In order to assess the performance of each model, we carried out two exper-
iments: 2D reprojection and 3D reconstruction. The results are summarized in
Table 3.4. The first experiment estimates the parameters of each model by mini-
mizing the average error of the reprojection error—in ICS given in pixels—of the
control points. The accuracy is assessed with the reprojection error in the test points.

8This is a gradient method that uses the Broyden–Fletcher–Goldfarb–Shanno formula for updating
the approximation of the Hessian matrix iteratively, which reduces the computational cost of the
minimization.

3.4 Calibration 101

Once the calibration is completed, the second experiment is performed using the
parameters estimated in the first. The 3D reconstruction of the measured points was
performed using a least square technique [2]. As a performance measurement of
the second experiment, the Euclidean distance between measured and reconstructed
points inOCSwas calculated in millimeters. The meanμ and the standard deviation
σ of the computed distances errors in control and test points were tabulated for each
experiment. For emphasis, we remind the reader that the calibration is performed by
minimizing the average of the reprojection error of the control points (first column
in Table 3.4), i.e., the control points in the experiments of 3D reconstruction were
not used to calibrate, but also as test points too.

As the results obtained on control and test points are very similar, our analysis
will consider test point measurements only. The two values x/y given below cor-
respond to the mean error values obtained by computing the 2D reprojection and
3D reconstruction given in pixels and millimeters respectively. We observed that
the best results were obtained by Cubic and Hyp-EFD models in both experiments.
In these cases the mean errors were in the order of 1.16∼1.17/0.14, i.e., 1.16∼1.17
pixels for the 2D reprojection, and 0.14mm for the 3D reconstruction. Although
the Cubic model obtains a fractionally better accuracy than model Hyp-EFD (see
standard deviations), we must take into account that Cubic model uses an implicit
model with 20 parameters for the projection, and 20 other parameters for the back-
projection. On the other hand, model Hyp-EFD uses the same 20 parameters for
both projection and back-projection.

In our experiments, the X-ray computer vision system could not be adequately
modeled without consideration of the lens distortion or with only radial and tan-
gential distortion. The models that were originally developed for cameras (Lin-
ear, Radial, Rad-Tan-1, Rad-Tan-2 and Rad-Tan-3, where the mean errors were
2.45/0.41, 1.64/0.17, 1.39/0.15, 1.66/0.21 and 1.62/0.18 respectively), did not work
appropriately for our X-ray computer vision system. In many cases, the maximum
reprojection error was greater than 4 pixels. The reason for this is that the distortion
introduced by the image intensifiers is different from the distortion introduced by a
camera lens and the camera models do not consider the electromagnetic distortion
in the image intensifier.

On the other hand, hyperbolic models are used by Hyp-Simple, Hyp-Full and
Hyp-EFD. The results obtained with model Hyp-Simple are comparable with the
best results obtained from camera models (Rad-Tan-1), where the mean errors were
1.40/0.17 and 1.39/0.15 respectively. In relation to modelHyp-Simple, modelHyp-
Full introduces a decentering point and a non-linear transformation in the image
intensifier. This additional complexity in the model has a significant decrease in the
reprojection error (1.40/0.17 vs. 1.29/0.16). In addition, another important reduc-
tion of both errors is achieved by considering the electromagnetic field distortion in
model Hyp-EFD (1.29/0.16 vs. 1.17/0.14).

We conclude that the proposed explicit model considers the physical parameters
of the computer vision system, like image center, focal length, etc., independently.
The model is able to map the 3D coordinates of a test object to the 2D coordi-
nates of the corresponding pixel on the digital X-ray image. The model consists

102 3 Geometry in X-ray Testing

of three parts: X-ray projection, image intensifier, and CCD-camera. The distortion
introduced by the image intensifier was modeled using a hyperbolic surface for the
input screen and sinusoidal functions for electromagnetic fields. Using our explicit
model, the back-projection function—required for 3D reconstruction—can be cal-
culated directly using a closed-form solution.

The suggested model was experimentally compared with seven other models,
which are normally used to calibrate a computer vision system with and without
lens distortion. Fourteen X-ray images were taken of a calibration object in differ-
ent positions. Seven of them were used to calibrate the computer vision system and
the other seven were employed to test the accuracy of calibration. The results show
that the consideration of only radial and tangential distortions is not good enough if
we are working with image intensifiers. In this case, other models must be used for
high accuracy requirements. For this reason, Cubic or Hyp-EFDmodels are recom-
mended. Their mean errors are very similar as shown in Table 3.4. However, for the
back-projection, it is convenient to use the proposed model Hyp-EFD because the
same parameters are used for both the projection and the back-projection model.

3.5 Geometric Correspondence in Multiple Views

As explained in Sect. 3.3.4, in certain X-ray testing applications it is necessary to
analyze multiple views of a test object. In general, in this kind of computer vision
applications only the images (2D projections) are available and no 3D information
of the test object is known.

In multiple view analysis, it is very important to find corresponding points
because they can be used for 3D reconstruction, or for analysis of the test object
from different points of views. Corresponding points are those 2D points (in differ-
ent views) that are projections of the same 3D point (see Fig. 3.20). An example of
two views is shown in Fig. 3.22, in which we can see two perspective projections of
a 3D point M . This stereo rig consists of projection p and projection q. It is built
using two monocular perspective projection models (Fig. 3.4). In this example, m p

and mq are corresponding points because they are projections of the same 3D point
M .

In this section, we consider geometric and algebraic constraints to solve the
correspondence problem between X-ray images obtained as different projections
of the test object. We will consider the correspondence in two (Sect. 3.5.1), three
(Sect. 3.5.2), and more views (Sect. 3.5.3). In order to model the perspective projec-
tion in each view, we will use linear model (3.19) with no distortion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λpmp = PpM
λqmq = PqM
λrmr = PrM

...

(3.45)

3.5 Geometric Correspondence in Multiple Views 103

Fig. 3.20 Corresponding points in two different views

for different views p, q, r . . . In general, we assume that there are n views, and
indices p, q, r · · · ∈ {1 . . . n}. It is worth noting that the coordinates of M are given
in the same 3D coordinate system for each projection. That means,M = [X Y Z 1]T
in each equation of (3.45).

The correspondence problem with non-linear projection models will be consid-
ered for two views only. The reader, however, will be able to establish correspon-
dences with non-linear models in more views using the methodology of two views.

3.5.1 Correspondence Between Two Views

Now, the correspondence between two points m p and mq (in the X-ray projection
coordinate system) is considered. The first point is obtained by projecting the object
point M at position p, and the second one at position q:

{
λpmp = PpM
λqmq = PqM

(3.46)

for M = [X Y Z 1]T given in the same 3D coordinate system for each equation.
The correspondence problem in two views p and q can be stated as follows: given
mp, Pp, and Pq , is it possible to find mq? Note that in this problem M is unknown.
Moreover, if we know mp and Pp, it is impossible to find an exact location for
M . In this section, we will explain a geometric and algebraic approach that can be
used to solve the correspondence problem. In addition, the section gives practical
considerations and the use of non-linear projection models.

Epipolar Geometry
We do not know where M is exactly, however, it is known that M lies on the line
〈C p, m p〉 as illustrated in Fig. 3.21. Since mq is the projection of M onto view q, we

104 3 Geometry in X-ray Testing

Fig. 3.21 Projection in two
views

can affirm that mq lies on line � defined as the projection of 〈C p, m p〉 onto view q.
Line � is known as the epipolar line of m p in view q.

Thus, to solve the correspondence problem in two views we use epipolar geom-
etry [2, 13, 22]. The epipolar constraint is well known in stereo vision: for each
projection point m p at the position p, its corresponding projection point mq at the
position q lies on the epipolar line � of m p, as shown in Fig. 3.22, where C p and Cq

are the centers of projections p and q respectively. In this representation, a rotation
and translation relative to the object coordinate system is assumed. The epipolar line
� can be defined as the projection of line 〈C p, m p〉 by the center of projection Cq

onto projection plane q.
Epipolar line can be calculated in three simple steps (see Fig. 3.22):

(1) From m p and Pp, we find two 3D points Mp1 and Mp2 that lies on 〈C p, m p〉.

Obviously, one point that lies on 〈C p, m p〉 is C p, i.e., Mp1 = C p. Since the
location of C p is unknown, we can find it by considering the following reason-
ing [13]: it is not possible to project C p onto view p because C p is the optical
center of this projection. For this reason, if we use the first equation of (3.46)
to project Cp (the homogeneous representation of C p) we will obtain PpCp.
Since this projected point is not defined it can be shown that its homogeneous
representation is [0 0 0]T. It is not possible to estimate the non-homogeneous
representation of this point because there is a division by zero. For this reason,
PpCp = [0 0 0]T. Thus, Cp can be easily calculated as the null space of Pp: For
A = Pp and Cp = [CX CY CZ 1]T, ACp = 0 can be reformulated as

⎡
⎣ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦

︸ ︷︷ ︸
A1

⎡
⎣ CX

CY

CZ

⎤
⎦ = −

⎡
⎣ a14

a24

a34

⎤
⎦

︸ ︷︷ ︸
a4

. (3.47)

Then the coordinates of C p in 3D coordinate system are [CX CY CZ]T =
−A−1

1 a4.

3.5 Geometric Correspondence in Multiple Views 105

Fig. 3.22 Estimation of
epipolar line � in three steps

106 3 Geometry in X-ray Testing

The second point should be m p, however, we do not know the coordinates of
m p in 3D coordinate space, we only knowmp = [x p yp 1]T, where (x p, yp) are
coordinates of m p in 2D coordinates system of view p. Nevertheless, it can be
shown [13], that a point that lies on 〈C p, m p〉 isM+ calculated as

M+ = P+
p mp, (3.48)

where P+
p is

P+
p = PT

p[PpPT
p]−1. (3.49)

The 4 × 3 matrix P+
p is known as the pseudoinverse of Pp because PpP+

p =
I3×3. The reader can demonstrate that the projection of M+ onto view p is mp

by substituting (3.48) in the first equation of (3.46).

Thus, the two 3D points that lies on 〈C p, m p〉 areMp1 = Cp (defined in (3.47))
and Mp2 = M+ (defined in (3.48)).

(2) From Mp1 and Mp2, we find the projection of them onto view q using Pq . These
2D points will be denoted as mq1 and mq2 respectively.

Both 3D points are projected onto view q using the second equation of (3.46):

{
λq1mq1 = PqMp1 = PqCp

λq2mq2 = PqMp2 = PqP+
p mp

. (3.50)

(3) From mq1 and mq2 we find line � which contain them.

Since the epipolar line contains mq1 and mq2, line � can be computed in homo-
geneous coordinates using (3.2):

� = mq1 × mq2. (3.51)

The first point mq1, i.e., the projection of C p onto plane q, as defined in the first
equation of (3.50), is the well known epipole.9 The epipolar line is defined as the
line that contains the epipole mq1 and the point mq2. We observe that the epipole
belongs to any epipolar line obtained from any arbitrary point m p. In other words,
all epipolar lines share a common point: the epipole. Moreover, the epipole does not
depend on m p or mq . It depends only on the two views geometry.

The projective representation of the epipolar line is obtained by taking the cross-
product of these two points, i.e., � = mq1 × mq2. Line � can be written using
[mq1]×, the anti-symmetric matrix ofmq1, where � = [mq1]×mq2. Matrix [mq1]× is
defined as the 3 × 3 matrix such that [mq1]×s = mq1 × s for all vectors s, i.e.,

9The word epipole comes from the Greek ὲπι (epi): over and π óλoς (polos): attractor.

3.5 Geometric Correspondence in Multiple Views 107

[mq1]× =
⎡
⎣ 0 +mq1(3) −mq1(2)

−mq1(3) 0 +mq1(1)
+mq1(2) −mq1(1) 0,

⎤
⎦ .

where mq1 = [mq1(1) mq1(2) mq1(3)]T. Thus, using the anti-symmetric matrix,
from (3.51) and (3.50), line � can be computed by

� = Fpqmp, (3.52)

where Fpq is the fundamental matrix known from multiple view computer vision
[3, 13] given by

Fpq = [PqCp]×PqP+
p mp. (3.53)

Since the point mq belongs to the epipolar line �, it follows that

mT
q � = mT

qFpqmp = 0. (3.54)

Equation (3.54) is known as the epipolar constraint: If m p and mq are corresponding
points, then mq must lie on the epipolar line � of m p, i.e., mT

qFpqmp must be zero.

Python Example 3.7: This example shows epipolar lines in two views (p and
q). We assume that the projection matrices Pp and Pq are known from a calibration
process. The code computes the fundamental matrix. We select manually eight m p

points in view p. The code plots the epipolar lines of these points in view q.

Listing 3.7 : Epipolar lines for two views.

import numpy as np
import matplotlib.pylab as plt

from pyxvis.geometry.epipolar import estimate_fundamental_matrix
from pyxvis.geometry.epipolar import plot_epipolar_line
from pyxvis.io import gdxraydb

image_set = gdxraydb.Baggages()

data = image_set.load_data(44, ’Pmatrices’) # Load projection matrices

p, q = (1, 82) # indices p and q

Ip = image_set.load_image(44, p)
Iq = image_set.load_image(44, q)

Pp = data[’P’][:, :, p] # Projection matrix of view p
Pq = data[’P’][:, :, q] # Projection matrix of view q

F = estimate_fundamental_matrix(Pp, Pq, method=’pseudo’)

colors = ’bgrcmykw’ # Colors for each point−line pair

fig1, ax1 = plt.subplots(1, 1)
fig1.suptitle(’Figure p’)
ax1.imshow(Ip, cmap=’gray’)
ax1.axis(’off’)

108 3 Geometry in X-ray Testing

fig2, ax2 = plt.subplots(1, 1, subplot_kw=dict(xlim=(0, Ip.shape[1]), ylim=(Iq.shape[0],
1)))

fig2.suptitle(’Figure q’)
ax2.imshow(Iq, cmap=’gray’)
ax2.axis(’off’)
fig2.show()

for i in range(8):
plt.figure(fig1.number) # Focus on fig1 and get the mouse locations
m = np.hstack([np.array(plt.ginput(1)), np.ones((1, 1))]).T # Click
ax1.plot(m[0, 0], m[1, 0], f’{colors[i]}*’) # Plot lines and plot on figures
fig1.canvas.draw()
ax2 = plot_epipolar_line(F, m, line_color=colors[i], ax=ax2)
fig2.canvas.draw()

plt.show()

The output of this code is shown in Fig. 3.23. The code uses two functions of pyxvis
Library: the first one is estimate_fundamental_matrix to compute the fundamental
matrix and the second one is plot_epipolar_line to plot the epipolar lines onto view q.
The example uses images p = 1 and q = 82 of series B0044 of GDXray+. In this
set of images there are 178 different views (taken by rotating the test object around
a quasi vertical axis in 20 between consecutive views). The reader that is interested
in other views can change the code in order to define other values for p and q. �

Bifocal Tensors
Another way to estimate the epipolar constraint is using bifocal tensors [11, 15], as
explained next. This can be considered as an algebraic approach. From (3.46) the
two projections can be expressed by

{
λpmp = PpM := AM
λqmq = PqM := BM

. (3.55)

These two equations can also be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 x p 0
a2 yp 0
a3 1 0
b1 0 xq

b2 0 yq

b3 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎣ M

−λp

−λq

⎤
⎦

︸ ︷︷ ︸
v

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.56)

where ai and bi denote the i th row of matrices A and B respectively. If m p and mq

are corresponding points, then the 3D point M exists. It follows that there must be
a nontrivial solution for v in (3.56), i.e., the determinant of the 6 × 6 matrix G must
be zero. Expanding the determinant of G we obtain

3.5 Geometric Correspondence in Multiple Views 109

Fig. 3.23 Example of epipolar geometry: (Top) view p with eight points. (Bottom) view q with
corresponding epipolar lines. It is clear that the corresponding points in view q lie on the corre-
sponding epipolar lines. The intersection of the epipole lines defines the epipole. [→ Example 3.7

]

|G| = x pxq

∣∣∣∣∣∣∣∣

a2
a3
b2
b3

∣∣∣∣∣∣∣∣
− ypxq

∣∣∣∣∣∣∣∣

a1
a3
b2
b3

∣∣∣∣∣∣∣∣
+ xq

∣∣∣∣∣∣∣∣

a1
a2
b2
b3

∣∣∣∣∣∣∣∣
+

110 3 Geometry in X-ray Testing

−x p yq

∣∣∣∣∣∣∣∣

a2
a3
b1
b3

∣∣∣∣∣∣∣∣
+ yp yq

∣∣∣∣∣∣∣∣

a1
a3
b1
b3

∣∣∣∣∣∣∣∣
− yq

∣∣∣∣∣∣∣∣

a1
a2
b1
b3

∣∣∣∣∣∣∣∣
+ x p

∣∣∣∣∣∣∣∣

a2
a3
b1
b2

∣∣∣∣∣∣∣∣
− yp

∣∣∣∣∣∣∣∣

a1
a3
b1
b2

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣

a1
a2
b1
b2

∣∣∣∣∣∣∣∣
= 0

that can be expressed by

|G| = [xq yq 1]
⎡
⎣ F11 F12 F13

F21 F22 F23

F31 F32 F33

⎤
⎦

︸ ︷︷ ︸
Fpq

⎡
⎣ x p

yp

1

⎤
⎦ = mT

qFpqmp = 0, (3.57)

where Fpq corresponds to the mentioned fundamental matrix of Eq. (3.53) for A =
Pp and B = Pq . In this algebraic formulation, the elements of Fpq are called bifocal
tensors [13]. They can be computed as

Fi j = (−1)i+ j

∣∣∣∣∼ a j

∼ bi

∣∣∣∣ for i, j = 1, 2, 3, (3.58)

where ∼a j and ∼bi mean respectively matrix A without the j th row and matrix B
without the i th row.

Usually, we can express matrix A in a canonical form:

A =
⎡
⎣ 1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ = [I | 0]. (3.59)

The canonical form can be achieved using a general projective transformation of
the object coordinate system:M′ = HM, whereM′ is the transformation ofM, and
H is a 4 × 4 non-singular matrix obtained by adding one extra row to Pp [10]. Thus,
Eq. (3.55) can be expressed as

{
λpmp = [I | 0]M′ = AM′
λqmq = BM′ (3.60)

with

M′ = HM
A = PpH−1

B = PqH−1
.

For the canonical form A = [I | 0], the bifocal tensors may be expressed by

Fi j = bi⊕1, j bi⊕2,4 − bi⊕2, j bi⊕1,4, (3.61)

3.5 Geometric Correspondence in Multiple Views 111

where

i ⊕ k =
{

i + k if i + k ≤ 3
i + k − 3 otherwise

.

Practical Considerations
In practice, the projection points m p and mq can be corresponding points, if the
perpendicular Euclidean distance from the epipolar line � of the point m p to the
point mq is smaller than a small number ε [12]:

d2 = |mT
qFpqmp|√
�21 + �22

< ε, (3.62)

where � = Fpqmp = [�1 �2 �3]T.
An additional criterion to establish the correspondence between two views is

that the 3D point reconstructed from the projection points m p and mq must belong
to the space occupied by the test object [23]. From m p and mq the corresponding
3D point M̂ can be estimated using 3D reconstruction techniques (see Sect. 3.6). It
is necessary to examine if M̂ resides in the volume of the test object, the dimensions
of which are usually known a priori (e.g., , a wheel is assumed to be a cylinder).
This criterion implies that the epipolar is delimited as illustrated in Fig. 3.24. It is
possible to use a CAD-model of the test object to evaluate this criterion in a more
precise way.

Non-linear Projections
An example of corresponding points using a non-linear model that considers geo-
metric distortions is illustrated in Fig. 3.25. The idea is simple. The projection model
has a linear part (that corresponds to the perspective projection) a non-linear part
(that corresponds to the image intensifier) as illustrated in Fig. 3.6 as PCS and ICS.
The epipolar geometry explained in the previous section is defined for the linear part
only (for PCS and not for ICS). That means, the epipolar lines are straight lines in
PCS, however, they are curves in ICS. In order to use the theory of the epipolar
geometry we need the inverse transformation from both coordinate systems: ICS
→ PCS. Thus a point in ICS defined as w is transformed into a point in PCS
as m by m = f−1(w), where w = f(m) is the direct transformation: PCS → ICS
in homogeneous coordinates. Using the inverse transformation of this non-linear
model, we can use the epipolar constraint (3.54). Thus the epipolar curves are given
by

[f−1(wq)]TFpq [f−1(wp)] = 0. (3.63)

In the example of Fig. 3.25, the epipolar lines were computed using a hyperbolic
model (see Sect. 3.3.3). Other non-linear model can be used as well.

112 3 Geometry in X-ray Testing

Fig. 3.24 Epipolar geometry in two views using 3D information of the test object

Fig. 3.25 Epipolar lines using a hyperbolic model [22]

It is clear that if the transformation between PCS → ICS is linear (for example
using a flat panel), we have w = Hm. That means, we can substitutem = H−1w in
(3.57):

wT
q [H−TFpqH−1]︸ ︷︷ ︸

F′
pq

wp = 0, (3.64)

where F′
pq is the fundamental matrix given in ICS.

Nevertheless, using a general non-linear model, as explained in Sect. 3.3.3, a
point w, whose coordinates in ICS are (u, v), can be back-projected into a point
m, whose coordinates in PCS are (x̄, ȳ). The back-projection is carried out in two
steps: transformation ICS → SCS and transformation SCS → PCS.

3.5 Geometric Correspondence in Multiple Views 113

Transformation ICS → SCS: Without considering the electromagnetic distortion,
the transformation ICS → SCS can be directly obtained from (3.37):

λr = H−1w. (3.65)

However, if the electromagnetic distortion is considered, the inverse function of
(3.36) r = f−1(r′) must be obtained from (3.35):

y = y′ − A2 sin(B2x ′ + C2)

x = x ′ − A1 sin(B1y + C1)
. (3.66)

Therefore, it yields
r = f−1(H−1w). (3.67)

Transformation SCS → PCS: The second transformation is non-linear because
it takes into account the geometric distortion of the image intensifier. Given the
coordinates (x, y) of point r in SCS, a point p on the surface S (see Fig. 3.11) that
is the back-projection of r can be computed by finding the coordinates (x̄ ′, ȳ′, z̄′)
that satisfy Eqs. (3.32) and (3.29) simultaneously. The solution is

x̄ ′ = x̄0 − x
d (f + c − z̄′)

ȳ′ = ȳ0 − y
d (f + c − z̄′)

z̄′ = −B ′+√
B ′2−4A′C ′
2A′

, (3.68)

where

A′ = g
f 2 − 1, B ′ = 2(f + c), C ′ = −g − (f + c)2, g = d2

x2

a2
+ y2

b2
,

or using matrix notation:
p = h(r), (3.69)

where p = [x̄ ′ ȳ′ z̄′ 1]T, r is a homogeneous representation of (x, y), and h is the
non-linear function defined from (3.68).

Now, the coordinates of the back-projected point m on the projection plane can
be calculated from (3.68) and the first two equations of (3.30):

x̄ = f x̄ ′/z̄′ and ȳ = f ȳ′/z̄′. (3.70)

Equations (3.65), (3.69) and (3.70) can be joined in:

λm = Eh(H−1w), (3.71)

114 3 Geometry in X-ray Testing

where E is the 3 × 4 perspective projection matrix expressed in (3.18). However, if
the electromagnetic distortion is taken into account, the homogeneous representa-
tion of m is from (3.67):

λm = Eh(f−1(H−1w)). (3.72)

3.5.2 Correspondence Between Three Views

In three views, we have the projection points m p, mq , and mr at pth, qth, and
r th positions respectively. The correspondence in three views can be established by
calculating the epipolar lines of m p and mq in third view as shown in Fig. 3.26. If the
intersection coincides with mr , then the three points are corresponding. However,
the intersection of epipolar lines in trifocal geometry is not well-defined when the
epipolar lines are equal. This situation occurs in two cases: (i) when the 3D point M
that has generated the points m p, mq , and mr , lie in the plane defined by the three
optical centers, and (ii) when the three optical centers are aligned [4].

In order to avoid these singularities, the relationships in three views are generally
described using trifocal tensors [13]. Analogous to the two views case explained in
Sect. 3.5.1, the three projection equations are

⎧⎨
⎩

λpmp = PpM := AM
λqmq = PqM := BM
λrmr = PrM := CM

. (3.73)

They can be written according to (3.56) by

Fig. 3.26 Epipolar geometry in three views

3.5 Geometric Correspondence in Multiple Views 115

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 x p 0 0
a2 yp 0 0
a3 1 0 0
b1 0 xq 0
b2 0 yq 0
b3 0 1 0
c1 0 0 xr

c2 0 0 yr

c3 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
G

⎡
⎢⎢⎣

M
−λp

−λq

−λr

⎤
⎥⎥⎦

︸ ︷︷ ︸
v

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.74)

where ai , bi and ci denotes the i th row of matrix A, B and C respectively. If m p, mq

and mr are corresponding points, then there must be a nontrivial solution for v. It
follows that the rank of the 9 × 7 matrixGmust be at most 6. In other words, all 7 ×
7 submatrices have vanishing determinants. The minors of G can be written using
Laplace expansions as sums of products of determinants of four rows taken from
the first four columns of G and products of image coordinates [16]. By expanding
the determinants, we can find four linearly independent relationships:

⎧⎪⎪⎨
⎪⎪⎩

D1 = (xrT13 − xr xqT33 + xqT31 − T11)mp = 0
D2 = (yrT13 − yr xqT33 + xqT32 − T12)mp = 0
D3 = (xrT23 − xr yqT33 + yqT31 − T21)mp = 0
D4 = (yrT23 − yr yqT33 + yqT32 − T22)mp = 0

, (3.75)

where

T jk = [T jk
1 T jk

2 T jk
3],

and

T jk
i = (−1)i+1

∣∣∣∣∣∣
∼ ai

b j

ck

∣∣∣∣∣∣ = for i, j, k = 1, 2, 3, (3.76)

where ∼ai means the matrix A without row i . The elements T jk
i are called the

trifocal tensors for the images p, q and r [10, 11]. For the canonical form A =
[I | 0], the trifocal tensors may be easily obtained by

T jk
i = b ji ck4 − b j4cki for i, j, k = 1, 2, 3. (3.77)

The equations denoted by (3.75) above are known as the trilinearities [24]. They
establish a linear relationship between the coordinates of points m p, mq y mr to find
the correspondence. If the three points satisfy the four trilinearities, then they are
corresponding points. Equation (3.76) implies that the trifocal tensors do not depend
on the points of the images, rather they are computed from the three projection
matrices.

116 3 Geometry in X-ray Testing

The reprojection of mr , i.e., the coordinates x̂r and ŷr obtained from the points
m p and mq , may be simply estimated from the trilinearities (3.75):

λm̂r = (T1 − xqT3)mp = (T2 − yqT3)mp, (3.78)

where λ is a scale factor, m̂r = [x̂r ŷr 1]T, and T j is a 3 × 3 matrix with the (k, i)-
element equal to T jk

i .
In practice, given two corresponding points mp and mq , the third one mr can

be considered as the corresponding point in third view, if the Euclidean distance
between mr and its reprojection m̂r is smaller than a small number ε:

d3 = ‖m̂r − mr‖ < ε. (3.79)

Trifocal geometry is performed for the corresponding points in the X-ray projec-
tion coordinate system. In case that the X-ray computer vision system is modeled
using a non-linear geometric model due to an image intensifier, as explained in
Sect. 3.5.1, a point wp, that is found in the pth image, is first transformed into the
coordinates m p of the X-ray projection coordinate system.

Python Example 3.8: This example shows how to estimate the coordinates of
a corresponding point in view r if we know the trifocal tensors and corresponding
points m p and mq in views p and q respectively. Epipolar lines in two views (p and
q). This code computes the trifocal tensors from the projection matrices Pp, Pq and
Pr . The reprojection is computed using (3.78).

Listing 3.8 : Reprojection of third point using trifocal tensors.

import matplotlib.pylab as plt
import numpy as np

from pyxvis.geometry.epipolar import estimate_trifocal_tensor
from pyxvis.geometry.epipolar import reproject_trifocal
from pyxvis.io import gdxraydb

image_set = gdxraydb.Baggages()
data = image_set.load_data(44, ’Pmatrices’) # Load projection matrices

p, q, r = (1, 90, 170) # Indices for p, q, and r

Load projection matrices for views p, q, r
Pp = data[’P’][:, :, p]
Pq = data[’P’][:, :, q]
Pr = data[’P’][:, :, r]

Ip = image_set.load_image(44, p)
Iq = image_set.load_image(44, q)
Ir = image_set.load_image(44, r)

T = estimate_trifocal_tensor(Pp, Pq, Pr)

Plot lines and plot on figures
print(’Click a point in Figure 1 ...’)
fig1, ax1 = plt.subplots(1, 1, subplot_kw=dict(title=’Figure p’))
ax1.imshow(Ip, cmap=’gray’)

3.5 Geometric Correspondence in Multiple Views 117

ax1.axis(’off’)
mp = np.hstack([np.array(plt.ginput(1)), np.ones((1, 1))]).T # Click
ax1.plot(mp[0], mp[1], ’r*’)
fig1.canvas.draw()

print(’Click a point in Figure 2 ...’)
fig2, ax2 = plt.subplots(1, 1, subplot_kw=dict(title=’Figure q’))
ax2.imshow(Iq, cmap=’gray’)
ax2.axis(’off’)
mq = np.hstack([np.array(plt.ginput(1)), np.ones((1, 1))]).T # Click
ax2.plot(mq[0], mq[1], ’r*’)
fig2.canvas.draw()

mr = reproject_trifocal(mp, mq, T) # reprojection of mr from mp, mq and T

fig3, ax3 = plt.subplots(1, 1, subplot_kw=dict(title=’Figure r’))
ax3.imshow(Ir, cmap=’gray’)
ax3.axis(’off’)
ax3.plot(mr[0, 0], mr[1, 0], ’r*’)
fig3.canvas.draw()

plt.show()

The output of this code is shown in Fig. 3.27. The code uses two functions of pyxvis
Library: estimate_trifocal_tensor to compute the trifocal tensors and reproject_trifocal
to compute the reprojection of mr . The example uses images p = 1, q = 90, and
r = 170 of series B0044 of GDXray+. In this set of images there are 178 different
views (taken by rotating the test object around a quasi vertical axis in 20 between
consecutive views). The reader that is interested in other views can change the code
in order to define other values for p, q, and r . �

3.5.3 Correspondence Between Four Views or More

In the four views case we have the projection points m p, mq , mr , and ms at pth, qth,
r th, and sth positions respectively. Similar to the previous sections we can write the
four projection equations as a linear equation Gv = 0. Once more, the existence of
a nontrivial solution for v yields in this case to the condition that all 8 × 8 minors
of G must be zero. Thus, we obtain the well known 81 quadrifocal tensors and the
corresponding 16 quadrilinearities [11, 16].

In practice, the quadrilinearities are not used because they are redundant. Cor-
responding constraints in four views are obtained from the trilinearities. Thus, the
points m p, mq , mr , and ms are corresponding if m p, mq , and mr are corresponding,
and mq , mr , and ms are corresponding as well [20].

For more than four views, a similar approach can be used.

118 3 Geometry in X-ray Testing

Fig. 3.27 Example of
trifocal geometry: views p,
q, and r with corresponding
points. In this example the
corresponding points in view
p and q are known.
Corresponding point mr is
estimated from m p , mq and
the trifocal tensors T of these
views. [→ Example 3.8]

3.6 Three-Dimensional Reconstruction

In X-ray testing, three-dimensional reconstruction is usually related to computed
tomography (CT). However, in Computer Vision the attempt is made to estimate
only the location (and not the X-ray absorption coefficient) of 3D points in space. In
this sense, the reconstruction is based on photogrammetric rather than tomographic
methods.

3.6 Three-Dimensional Reconstruction 119

The 3D reconstruction problem can be stated as follows. Given n corresponding
points mp for p = 1 . . . n with n ≥ 2, and the projection matrices of each view Pp,
find the ‘best’ 3D point M which projected by Pp gives approximately mp. If we
have the projection equation λpmp = PpM, we can solve the following system of
equation forM: ⎧⎪⎨

⎪⎩
λ1m1 = P1M

...

λnmn = PnM

. (3.80)

In this section, two approaches that perform the 3D reconstruction, in sense of
locating in 3D space, will be described. The 3D reconstruction will be undertaken
from corresponding points in the X-ray projection coordinate system. As explained
in Sect. 3.5.1, a point wp, that is found in the pth image, is first transformed into the
coordinates m p of the X-ray projection coordinate system.

3.6.1 Linear 3D Reconstruction from Two Views

Now, we estimate now the 3D point M from two corresponding points m p and mq

using the linear approach introduced by Hartley [10]. Without loss of generality, the
method employs the canonical form (see Eq. (3.60)) for the first projection:

λpmp = [I | 0]M′.

Thus, the transformed 3D point can be expressed by

M′ = λp[mT
p 1/λp]T. (3.81)

The second projection of this point yields

λqmq = BM′ = Bλp[mT
p 1/λp]T, (3.82)

that is an equation system with three linear equations in the unknowns λp and λq . If
m p and mq are corresponding points one may consider only two of these three equa-
tions. Taking for example the first two equations one may compute λp. Substituting
the value of λp into (3.81) and after some simplifications we obtain

M = H−1M′ = αH−1

[
(yqb14 − xqb24)mp

(xqb2 − yqb1)mp

]
, (3.83)

where α is a scale factor.

120 3 Geometry in X-ray Testing

3.6.2 3D Reconstruction from Two or More Views

We assume that we have n ≥ 2 projections at n different positions. In these projec-
tions we have found the corresponding points m p, p = 1, . . . , n, with coordinates
(x p, yp). To reconstruct the corresponding 3D point M that has produced these pro-
jection points, we use a least squares technique [2].

Each projection yields the equation λpmp = PpM as shown in (3.80), with three
linear equations in the unknowns (X, Y, Z) and λp:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1x1
λ1y1
λ1

:
λn xn

λn yn

λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s111 s112 s113 s114
s121 s122 s123 s124
s131 s132 s133 s134: : : :
sn
11 sn

12 sn
13 sn

14
sn
21 sn

22 sn
23 sn

24
sn
31 sn

32 sn
33 sn

34

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (3.84)

where s p
i j denotes the (i, j)-element of Pp. With λp = s p

31X + s p
32Y + s p

33Z + s p
34

and after some slight rearranging we obtain

⎡
⎢⎢⎢⎢⎣

s131x1 − s111 s132x1 − s112 s133x1 − s113
s131y1 − s121 s132y1 − s122 s133y1 − s123: : :
sn
31xn − sn

11 sn
32xn − sn

12 sn
33xn − sn

13
sn
31yn − sn

21 sn
32yn − sn

22 sn
33yn − sn

23

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Q

⎡
⎣ X

Y
Z

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

s114 − s134x1
s124 − s134y1

:
sn
14 − sn

34xn

sn
24 − sn

34yn

⎤
⎥⎥⎥⎥⎦ .

︸ ︷︷ ︸
r

(3.85)

If rank(Q) = 3, the least squares solution for M̂ = [X̂ Ŷ Ẑ]T is then given by

M̂ = [QTQ]−1QTr. (3.86)

Python Example 3.9: In this example we estimate the length of an object in
millimeters. There are three views p, q and r . Two points of the object are given by
the user in each view (by mouse clicking). The code estimates the two 3D points
and compute the 3D distance between them. Since the calibration of this X-ray
computer vision system was implemented using a calibration object with dimen-
sions measured in millimeters, it is clear that that the 3D reconstructed points are
given in millimeters as well.

Listing 3.9 : 3D Reconstruction.

import numpy as np
import matplotlib.pylab as plt

3.6 Three-Dimensional Reconstruction 121

from pyxvis.geometry.epipolar import recon_3dn
from pyxvis.io import gdxraydb

image_set = gdxraydb.Baggages()
data = image_set.load_data(44, ’Pmatrices’) # Load projection matrices

p, q, r = (1, 40, 90) # indices for p, q and r

Load projection matrices for views p, q, r
P1 = data[’P’][:, :, p] # Reprojection matrix of view p
P2 = data[’P’][:, :, q] # Reprojection matrix of view q
P3 = data[’P’][:, :, r] # Reprojection matrix of view r
P = np.vstack([P1, P2, P3]) # Join all projection matrices

Ip = image_set.load_image(44, p)
Iq = image_set.load_image(44, q)
Ir = image_set.load_image(44, r)

Plot lines and plot on figures
fig1, ax1 = plt.subplots(1, 1, subplot_kw=dict(title=’Figure p’))
ax1.imshow(Ip, cmap=’gray’)
ax1.axis(’off’)
print(’Click first and second points in Figure 1 ...’)
mp = np.hstack([np.array(plt.ginput(2)), np.ones((2, 1))]).T # Click
ax1.plot(mp[0, :], mp[1, :], ’ro’)
ax1.plot(mp[0, :], mp[1, :], ’g’, linewidth=1.0)
fig1.canvas.draw()

fig2, ax2 = plt.subplots(1, 1, subplot_kw=dict(title=’Figure q’))
ax2.imshow(Iq, cmap=’gray’)
ax2.axis(’off’)
print(’Click first and second points in Figure 2 ...’)
mq = np.hstack([np.array(plt.ginput(2)), np.ones((2, 1))]).T # Click
ax2.plot(mq[0, :], mq[1, :], ’ro’)
ax2.plot(mq[0, :], mq[1, :], ’g’, linewidth=1.0)
fig2.canvas.draw()

fig3, ax3 = plt.subplots(1, 1, subplot_kw=dict(title=’Figure r’))
ax3.imshow(Ir, cmap=’gray’)
ax3.axis(’off’),
print(’Click first and second points in Figure 3 ...’)
mr = np.hstack([np.array(plt.ginput(2)), np.ones((2, 1))]).T # Click
ax3.plot(mr[0, :], mr[1, :], ’ro’)
ax3.plot(mr[0, :], mr[1, :], ’g’, linewidth=1.0)
fig3.canvas.draw()

3D reprojection
mm_1 = np.vstack([mp[:, 0], mq[:, 0], mr[:, 0]]).T # First 2D point in each view
mm_2 = np.vstack([mp[:, 1], mq[:, 1], mr[:, 1]]).T # Second 2D point in each view
M1, d1, err1 = recon_3dn(mm_1, P) # 3D reconstruction of first point
M2, d2, err2 = recon_3dn(mm_2, P) # 3D reconstruction of second point

Md = M1.ravel()[:−1] − M2.ravel()[:−1] # 3D vector from 1stt to 2nd point
dist = np.linalg.norm(Md) # length of 3D vector in mm

print(f’Object size: {dist:0.3} mm’)

plt.show()

The output of this code is shown in Fig. 3.28. The code uses the function of pyxvis
Library: reco_3dn to compute the 3D reconstruction using (3.86). The estimated
length in this example was dist = 46.2881mm. The reader that is interested in 3D
reconstruction using (3.83) for two views can use command reco_3d2 from pyxvis
Library. �

122 3 Geometry in X-ray Testing

Fig. 3.28 Example of 3D reconstruction using three views. There are two corresponding points
in each view (in this example the coordinates of the top and the bottom of the key were manually
given). Two 3D points were reconstructed using (3.86) and the distance between these two 3D
points was computed. In this example, the estimation of the length of the key was 46.29mm. [→
Example 3.9]

3.7 Summary

In this chapter we presented several methods that can be used when dealing with
geometric problems in X-ray testing. We gave a theoretical background of geometry
using homogenous coordinates. Thus, the projective transformations can be easily
established. Linear and non-linear models for X-ray computer vision systems were
outlined, in order to relate the 3D coordinates of an object to the 2D coordinates
of the digital X-ray image pixel. In addition, calibration approaches that can be
used to estimate the parameters of these models were studied. Finally, multiple view
geometry was outlined. We presented geometric and algebraic constraints between
two, three, and more X-ray images obtained as different projections of the object,
and we explained the problem of the 3D reconstruction.

References

1. Brack, C., Götte, H., Gossé, F., Moctezuma, J., Roth, M., Schweikard, A.: Towards accurate
X-ray-camera calibration in computer-assisted robotic surgery. In: Proceedings of the Interna-
tional Symposium on Computer Assisted Radiology (CAR), pp. 721–728. Paris (1996)

2. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press,
Cambridge (1993)

3. Faugeras, O., Luong, Q.T., Papadopoulo, T.: The Geometry of Multiple Images: The Laws
that Govern the Formation of Multiple Images of a Scene and Some of Their Applications.
The MIT Press, Cambridge (2001)

4. Faugeras, O., Papadopulo, T.: A nonlinear method for estimating the projective geometry of 3
views. In: 6th International Conference on Computer Vision (ICCV-98), pp. 477–484. Bom-
bay, India (1998)

5. Faugeras, O., Toscani, G.: The calibration problem for stereo. In: Proceedings IEEE Computer
Vision and Pattern Recognition, pp. 15–20 (1986)

References 123

6. Felix, R., Ramm, B.: Das Röntgenbild, 3rd edn. Georg Thieme Verlag, Stuttgart, New York
(1988)

7. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view X-Ray images. Pattern
Recogn. 144–154 (2012)

8. Grignon, B., Mainard, L., Delion, M., Hodez, C., Oldrini, G.: Recent advances in medical
imaging: anatomical and clinical applications. Surgical Radiolog. Anatomy 34(8), 675–686
(2012)

9. Halmshaw, R.: Non-Destructive-Testing, 2nd edn. Edward Arnold, London (1991)
10. Hartley, R.: A linear method for reconstruction from lines and points. In: 5th International

Conference on Computer Vision (ICCV-95), pp. 882–887. Cambridge, MA (1995)
11. Hartley, R.: Multilinear relationships between coordinates of corresponding image points and

lines. In: Proceedings of the International Workshop on Computer Vision and Applied Geom-
etry. International Sophus Lie Center, Nordfjordeid, Norway (1995)

12. Hartley, R.: Lines and points in three views and the trifocal tensor. Int. J. Comput. Vis. 22(2),
125–150 (1997)

13. Hartley, R.I., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge
University Press, Cambridge (2003)

14. Heikkilä, J.: Geometric camera calibration using circular control points. IEEE Trans. Patt.
Anal. Mach. Intell 22(10), 1066–1077 (2000)

15. Heyden, A.: A common framework for multiple view tensors. In: 5th European Conference
on Computer Vision (ECCV-98), pp. 3–19 (1998)

16. Heyden, A.: Multiple view geometry using multifocal tensors. In: DSAGM. Köpenhamn
(1999)

17. Jaeger, T.: Methods for rectification of geometric distortion in radioscopic images. Master the-
ses, Institute for Measurement and Automation, Faculty of Electrical Engineering, Technical
University of Berlin (1990). (in German)

18. Luong, Q.T., Faugeras, O.: Self calibration of a moving camera from point correspondences
and fundamental matrices. Int. J. Comput. Vis. 22(3), 261–289 (1997)

19. MathWorks: Optimization Toolbox for Use with MATLAB: User’s Guide. The MathWorks
Inc. (2014)

20. Mery, D.: Automated Flaw Detection in Castings from Digital Radioscopic Image Sequences.
Verlag Dr. Köster, Berlin (2001). (Ph.D. Thesis in German)

21. Mery, D.: Explicit geometric model of a radioscopic imaging system. NDT & E Int. 36(8),
587–599 (2003)

22. Mery, D., Filbert, D.: The epipolar geometry in the radioscopy: theory and application. at -
Automatisierungstechnik 48(12), 588–596 (2000). (in German)

23. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901
(2002)

24. Shashua, A., Werman, M.: Trilinearity of three perspective views and its associated tensor. In:
5th International Conference on Computer Vision (ICCV-95). Boston (1995)

25. Swaminathan, R., Nayar, S.: Nonmetric calibration of wide-angle lenses and polycameras.
IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1172–1178 (2000)

26. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision
metrology using off-the-shelf TV cameras and lenses. IEEE Trans. Robot. Autom. RA-3(4),
323–344 (1987)

27. Wei, G.Q., Ma, S.: Implicit and explicit camera calibration: theory and experiments. IEEE
Trans. Pattern Anal. Mach. Intell. 16(5), 469–480 (1994)

28. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distorsion models and accuracy
evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 4(10), 965–980 (1992)

29. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.
Intell. 22(11), 1330–1334 (2000)

Chapter 4
X-Ray Image Processing

Abstract In this chapter, we cover the main techniques of image processing used in
X-ray testing. They are (i) image processing to enhance details, (ii) image filtering
to remove noise or detect high-frequency details, (iii) edge detection to identify the
boundaries of the objects, (iv) image segmentation to isolate the regions of inter-
est, and (v) to remove the blurriness of the X-ray image. The chapter provides an
overview and presents several methodologies with examples using real and simu-
lated X-ray images.

Gradient of an X-ray image of a wheel (from X-ray image C0001_0001 colored with ‘jet’
colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_4

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_4

126 4 X-Ray Image Processing

Fig. 4.1 Image processing: input is digital image X, output is digital image Y

4.1 Introduction

Image processing manipulates a digital image in order to obtain a new digital image,
i.e., in this process the input is an image and the output is another image. A typi-
cal example is segmentation as shown in Fig. 4.1, where the input is a grayscale
image that contains a clip and the output is a binary image where the pixels that
belong to the clip are detected. In our book, we distinguish image processing from
image analysis, in which the output is rather an interpretation, a recognition or a
measurement of the input image. We will perform image analysis further on, when
we learn pattern recognition techniques such as feature extraction (see Sect. 5) and
classification (see Sect. 6).

In this chapter, we cover the following image processing techniques that are used
in X-ray testing.

• Image preprocessing: The quality of the X-ray image is improved in order to
enhance its details.

• Image Filtering: Mainly used to remove noise and detect high-frequency details
of the X-ray image.

• Edge detection: The details of the images can be highlighted by detecting the
boundaries of the objects of the X-ray image.

• Image segmentation: Regions of interest of the X-ray image are identified and
isolated from their surroundings.

• Image restoration: This involves recovering details in blurred images.

In this chapter, we provide an overview of these five techniques. Methodologies
and principles will also be outlined, and some application examples followed by
limitations to the applicability of the used methodologies will be presented.

4.1 Introduction 127

In image processing methodology, we have a continuous image f defined in a
coordinate system (x, y). Image f is digitalized. The obtained image is a digital
image which is stored in matrix X of size M × N pixels. The gray value of pixel
(i, j) of image X is X (i, j). Image X is processed digitally. The output image of
this process is image Y, usually a matrix of the same size of X. In this example,
the output is a binary image, that means Y (i, j) is ‘1’ (white) and ‘0’ black. Image
Y corresponds to the segmentation of a clip (that is the object of interest in this
example).

4.2 Image Preprocessing

The X-ray image taken must be preprocessed to improve the quality of the image
before it is analyzed. In this section, we will discuss preprocessing techniques that
can remove noise, enhance contrast, correct the shading effect, and restore blur
deformation in X-ray images.

4.2.1 Noise Removal

Noise in an X-ray image can prove a significant source of image degradation and
must be taken into account during image processing and analysis. In an X-ray imag-
ing system, photon noise occurs given the quantum nature of X-rays. If we have a
system that receives μ photons per pixel in a time �T on average, the number of
photons striking any particular pixel in any time �T will be random. At low levels,
however, the noise follows a Poisson law, characterized by the probability:

p(x |μ) = e−μ

μx x ! (4.1)

to obtain a value x of photons given its average μ photons in a time �T . The stan-
dard deviation of this distribution is equal to the square root of the mean.1 This
means that the photon noise amplitude is signal-dependent.

Integration (or averaging) is used to remove X-ray image noise. This technique
requires n stationary X-ray images. It computes the filtered image as follows:

Y (i, j) = 1

n

n∑

k=1

Xk(i, j), (4.2)

1At high levels, the Poisson distribution approaches the Gaussian with a standard deviation equal
to the square root of the mean: σ = √

μ.

128 4 X-Ray Image Processing

Fig. 4.2 Noise removal after an averaging of n frames. The noise is reduced by factor
√

n

where Xk(i, j) is pixel (i, j) of k-th stationary image and Y (i, j) is the correspond-
ing pixel of the filtered image.

In this technique, the X-ray image noise is modeled using two components: the
stationary component (that is constant throughout the n images) and the noise com-
ponent (that varies from one image to the next). If the noise component has zero
mean, by averaging the n images the stationary component is unchanged, while
the noise pattern decreases by increasing n. Integrating n stationary X-ray images
improves the signal-to-noise ratio by a factor of

√
n [1, 3].

The effect of image integration is illustrated in Fig. 4.2 that uses n stationary
images of an aluminum casting and shows the improvement in the quality of the X-
ray image. The larger the number of stationary images n, the better the improvement.
Normally, between 10 and 16 stationary images are taken (10 ≤ n ≤ 16).

Python Example 4.1: In this example, we have 20 noisy X-ray images
obtained from a very thin wood piece. The following Python code uses averaging to
effectively remove X-ray image noise (4.2):

Listing 4.1 : Noise removal by averaging.

import numpy as np
import matplotlib.pylab as plt

from pyxvis.io import gdxraydb

image_set = gdxraydb.Nature()
s = np.double(image_set.load_image(4, 1))

n = 20
for i in range(2, n+1): # For loops in Python runs until n−1

xk = np.double(image_set.load_image(4, i))

4.2 Image Preprocessing 129

s += xk

y = s / n

fig1, ax = plt.subplots(1, 2, figsize=(16, 8))
ax[0].imshow(s, cmap=’gray’), ax[0].axis(’off’)
ax[1].imshow(y, cmap=’gray’), ax[1].axis(’off’)
plt.show()

The output of this code is shown in Fig. 4.3. The reduction of noise is not perfect but
very satisfactory. The reader can test this approach on series C0034 and C0041 of
GDXray+, in which 37 noisy X-ray images of an aluminum wheel with no motion
are taken. �

4.2.2 Contrast Enhancement

The gray values in some X-ray images lie in a relatively narrow range of the
grayscale. In this case, enhancing the contrast will amplify the differences in the
gray values of the image.

We compute the gray value histogram to investigate how an X-ray image uses the
grayscale. The function summarizes the gray value information of an X-ray image.
The histogram is a function h(x) that denotes the number of pixels in the X-ray
image that have a gray value equal to x . Figure 4.4 shows how each histogram
represents the distribution of gray values in the X-ray images.

A transformation can be applied to modify the distribution of gray value in an
X-ray image. Simple contrast enhancement can be achieved if we use a linear trans-
formation which sets the minimal and maximal gray values of the X-ray image to
the minimal and maximal gray value of the grayscale respectively. Thus, the his-
togram is expanded to occupy the full range of the grayscale. Mathematically, for a
scale between 0 and 255, this transformation is expressed as follows:

Y (i, j) = 255 · X (i, j) − xmin

xmax − xmin
, (4.3)

where xmin and xmax denote the minimal and maximal gray value of the input X-ray
image. The output image is stored in matrix Y. This simple function is implemented
in command linimg from pyxvis Library. Figure 4.4b shows the result of the trans-
formation applied to the X-ray image in Fig. 4.4a. We observe in the histogram of
the enhanced X-ray image, how the gray values expand from ‘0’ to ‘255’. The map-
ping is linear and means that a gray value equal to 1

2 (xmax − xmin) will be mapped
to 255/2. This linear transformation is illustrated in Fig. 4.5a, where the abscissa is
the input gray value and the ordinate is the output gray value.

In a similar fashion, gray input image values can be mapped using a non-linear
transformation y = f (x), as illustrated in Fig. 4.5b and c, the results of which are
shown in Fig. 4.4c and d respectively. Here, x and y are the gray values of the input
and output images respectively. The non-linear transformation is usually performed

130 4 X-Ray Image Processing

Fig. 4.3 Noise removal of an X-ray image of a wood piece after an averaging of 20 frames. (Top)
one of the 20 images. (Middle) filtered image. (Bottom) row 100 of each image. [→ Example

4.1]

4.2 Image Preprocessing 131

Fig. 4.4 Contrast enhancement: a original image, b linear transformation (γ = 1), c non-linear
transformation (γ = 2), d non-linear transformation (γ = 1/2), e gray values uniformly distributed

Fig. 4.5 Plots showing different transformations of the gray values: a linear transformation (γ =
1), b non-linear transformation with γ > 1, c non-linear transformation with γ < 1

with a γ correction [9]. In these examples, if γ > 1 the mapping is weighted toward
darker output values, and if γ < 1 the mapping is weighted toward brighter output
values. Gamma transformation can be expressed as follows:

Y (i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for X (i, j) < xmin

255 ·
[

X (i, j)−xmin

xmax−xmin

]γ

for xmin ≤ X (i, j) ≤ xmax

255 for X (i, j) > xmax

.

(4.4)

Finally, we present a contrast enhancement equalizing the histogram. Here, we
can alter the gray value distribution in order to obtain a desired histogram. A typical
equalization corresponds to the uniform histogram as shown in Fig. 4.4d. We see
that the number of pixels in the X-ray image for each gray value is constant.

132 4 X-Ray Image Processing

Fig. 4.6 Contrast enhancement by uniforming a histogram of the selected area. [→ Example

4.2]

Phython Example 4.2: In this example, we have an X-ray image of a bag-
gage with very dark zones. The user defines a zone to be enhanced by clicking two
opposite corners of a rectangle. The code forces the histogram of this zone to be
uniform:

Listing 4.2 : Contrast enhancement of a selected area.

import numpy as np
import matplotlib.pylab as plt

from pyxvis.io import gdxraydb
from pyxvis.processing.images import hist_forceuni

image_set = gdxraydb.Baggages()
img = np.double(image_set.load_image(44, 130))

x_box = img[750:2000, 1250:2000]
x_box = hist_forceuni(x_box)
img2 = img.copy()
img2[750:2000, 1250:2000] = x_box

fig1, ax = plt.subplots(1, 2, figsize=(16, 8))
ax[0].imshow(img, cmap=’gray’), ax[0].axis(’off’)
ax[1].imshow(img2, cmap=’gray’), ax[1].axis(’off’)
plt.show()

The output of this code is shown in Fig. 4.6. For the equalization, the code uses
function hist_forceuni from pyxvis Library. �

4.2.3 Shading Correction

A decrease in the angular intensity in the projection of the X-rays causes low spatial
frequency variations in X-ray images [1, 7]. An example is illustrated in Fig. 4.7a,

4.2 Image Preprocessing 133

Fig. 4.7 Shading correction: a original image, b image after shading correction. The correspond-
ing gray values profiles of row number 130 are shown above the images

which shows an X-ray image of an aluminum plate with holes in it. Since the plate
is of a constant thickness, we would expect to see a constant gray value for the
aluminum part and another constant gray value for the holes. In fact, the X-ray
image is darker at the corners. This deficiency can be overcome by using a linear
shading correction.

In this technique, we take two images as shown in Fig. 4.8. The first one, r1,
of a thin plate, and the second one, r2, of a thick plate. We define i1 and i2 as the
ideal gray values for the first and second images respectively. From r1, r2, i1, and
i2, offset and gain, correction matrices a and b are calculated assuming a linear
transformation between the original X-ray image x and corrected X-ray image y:

Y (i, j) = a(i, j) · X (i, j) + b(i, j), (4.5)

where the offset and gain matrices are computed as follows:

a(i, j) = i2 − i1
r2(i, j) − r1(i, j)

b(i, j) = i1 − r1(i, j) · a(i, j). (4.6)

An example of this technique is illustrated in Fig. 4.7b. In this case, we obtain
only two gray values (with noise) one for the aluminum part and another for the
holes of the plate.

Python Example 4.3: In this example, we simulate images X (a plate with a
square cavity). In addition, we simulate X-ray images r1 (a thin plate) and r2 (a thick

134 4 X-Ray Image Processing

Fig. 4.8 Shading correction: a X-ray image for a thin plate, b X-ray image for a thick plate. Ideal
X-ray images have a constant gray value

plate) as illustrated in Fig. 4.8. The following Python code shows how the shading
effect of X can be corrected:

Listing 4.3 : Shading correction.

import numpy as np
import matplotlib.pylab as plt

from pyxvis.processing.images import shading, fspecial

mat_r1 = fspecial(’gaussian’, 256, 80)
mat_r1 = mat_r1 / np.max(mat_r1.flatten()) * 0.8

mat_r2 = fspecial(’gaussian’, 256, 60)
mat_r2 = mat_r2 / np.max(mat_r2.flatten()) * 0.4

i1 = 0.8
i2 = 0.4

mat_x = fspecial(’gaussian’, 256, 70)
mat_x = mat_x / np.max(mat_x.flatten()) * 0.7
mat_x[30:80, 30:80] = mat_x[30:80, 30:80] * 1.5

mat_y = shading(mat_x, mat_r1, mat_r2, i1, i2)

fig, ax = plt.subplots(1, 2, figsize=(10, 10))
ax[0].imshow(mat_x, cmap=’gray’)
ax[0].axis(’off’);
ax[1].imshow(mat_y, cmap=’gray’)
ax[1].axis(’off’);

plt.show()

4.2 Image Preprocessing 135

The output of this code is shown in Fig. 4.9. The correction is evident: the appear-
ance of the background is homogenous, whereas the square is more distinguishable.
In this code, we use function shading of pyxvis Library. This function computes
shading correction as defined in (4.5). �

4.3 Image Filtering

2D image filtering is performed in digital image processing using a small neighbor-
hood of a pixel X (i, j) in an input image to produce a new gray value Y (i, j) in the
output image, as shown in Fig. 4.10. A filter mask defines the input pixels to be pro-
cessed by an operator f . The resulting value is the output pixel. The output for the
entire image is obtained by shifting the mask over the input image. Mathematically,
the image filtering is expressed as follows:

Y (i, j) = f [X (i − p, j − p), . . . , X (i, j), . . . , X (i + p, j + p)︸ ︷︷ ︸
input pixels

], (4.7)

for i = p + 1 . . . M − p and j = p + 1 . . . N − p, where M and N are the number
of rows and columns of the input and output images. The size of the filter mask
is, in this case, (2p + 1) × (2p + 1). The operator f can be linear or non-linear.
In this section, the most important linear and non-linear filters for X-ray testing are
outlined.

Fig. 4.9 Simulation of shading correction: (Left) X-ray image for a plate with a square cavity (X),
(Right) corrected image (Y). [→ Example 4.3]

136 4 X-Ray Image Processing

Fig. 4.10 Image filtering

4.3.1 Linear Filtering

The operator f is linear, if the resulting value Y (i, j) is calculated as a linear com-
bination of the input pixels:

Y (i, j) =
p∑

m=−p

p∑

n=−p

h(m, n) · X (i − m, j − n), (4.8)

where h is called the convolution mask. The elements of h weight the input pixels.
The convolution of an image X with a mask h can be written as follows:

Y = X ∗ h. (4.9)

Averaging is a simple example of linear filtering. For a 3 × 3 neighborhood, the
convolution mask is

h = 1

9

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦

Gaussian mask can be used as well

h(m, n) = 1

2πσ 2
· e− m2+n2

2σ2 (4.10)

4.3 Image Filtering 137

scale factor 1/(2πσ 2) ensures
∑

m,n h(m, n) = 1 over all elements of h. Average
and Gaussian filtering are implemented respectively as functions im_average and
im_gaussian in pyxvis Library.

A common application of filtering in X-ray testing is defect detection, e.g., in
castings and welds. Filtering out defects detected in an X-ray image will provide
a reference defect-free image. The defects are detected by finding deviations in the
original image from the reference image. The problem is how one can generate a
defect-free image from the original X-ray image. Assuming that the defects will be
smaller than the regular structure of the test piece, one can use a low-pass filter that
does not consider the high-frequency components of the image. However, if a linear
filter is used for this task, the edges of the regular structure of the specimen are
not necessarily preserved and many false alarms are raised at the edges of regular
structures. Consequently, a non-linear filter is used.

4.3.2 Non-linear Filtering

In order to avoid the mentioned problems of linear filters, non-linear filters are used.
Defect discrimination can be performed with a median filter. The median filter is a
ranking operator (and thus non-linear), where the output value is the middle value
of the input values ordered in a rising sequence [5]. For an even number of input
numbers, the median value is the arithmetic mean of the two middle values.

The application of a median filter is useful for generating the reference image
because it smoothes noise yet preserves sharp edges, whereas other linear low-pass
filters blur such edges (see a comparison with linear filters in Fig. 4.11). Hence, it
follows that small defects can be suppressed, while the regular structures are pre-
served. Figure 4.12 shows this phenomenon for a 1D example. The input signal x is
filtered using a median filter with nine input elements, and the resulting signal is y.
We can see that structures of length n greater than four cannot be eliminated. The
third column shows the detection x − y. Large structures of n ≥ 5 are not detected
as presented in the last two cases.

If the background captured by the median filter is constant, foreground structures
could be suppressed if the number of values belonging to the structure is less than
one half of the input value to the filter. This characteristic is utilized to suppress the
defect structures and to preserve the design features of the test piece in the image.

An example for the application of a median filter on 2D signals (images) is shown
in Fig. 4.13 and includes different structures and mask sizes compared to the effects
of two linear low-pass filters. One can appreciate that only the median filter manages
to suppress the relatively small structures completely, whereas the large patterns
retain their gray values and sharp edges.

The goal of the background image function, therefore, is to create a defect-free
image from the test image. A real example is shown in Fig. 4.14. In this example,
from an original X-ray image X, we generate a filtered image Y and a difference
image |X − Y|. By setting a threshold, we obtain a binary image whose pixels are

138 4 X-Ray Image Processing

Fig. 4.11 Example of filtering of a an X-ray image of 600 × 700 pixels using b arithmetic, c
Gaussian and d median filters with a mask of 19 × 19 pixels. The filtered images where obtained
using commands im_average, im_gaussian, and im_median of pyxvis Library

Fig. 4.12 Median filter application on a 1D signal x . The filtered signal is y (the size of the median
mask is 9). Structures of length n less than 9/2 are eliminated in y. This filter can be used to detect
small structures (n ≤ 4)

Fig. 4.13 Median filter application on an n × n structure using an m × m quadratic mask com-
pared to average and Gauss low-pass filter application

4.3 Image Filtering 139

Fig. 4.14 Defect detection using median filtering: a original X-ray image of an aluminum wheel
with small defects, b filtered X-ray image, c difference image, d binary image using a threshold, e
elimination of small regions, f detection superimposed onto original image. [→ Example 4.4]

‘1’ (or white), where the gray values in the difference image are greater than the
selected threshold. Finally, we eliminate very small regions. The remaining pixels
correspond to the detected flaws.

Python Example 4.4: In this example, we detect small defects of an alu-
minum wheel. First, a reference defect-free image is estimated from the original
image itself using median filtering. Second, the difference between original and ref-
erence images is computed. Finally, defects are detected when the difference in gray
values is high enough and the size of the detected region is large enough:

Listing 4.4 : Defect detection using median filtering

import numpy as np
import matplotlib.pylab as plt

from skimage.morphology import remove_small_objects, binary_dilation
from skimage.segmentation import clear_border

from pyxvis.io import gdxraydb
from pyxvis.io.visualization import binview
from pyxvis.processing.images import im_gaussian, im_median

image_set = gdxraydb.Castings()

X = image_set.load_image(21, 29) # Original image
X = im_gaussian(X, k=5) # Low pass filtering

fig1, ax1 = plt.subplots(1, 1, figsize=(6, 6))
ax1.set_title(’Original Image with defects’)
ax1.imshow(X, cmap=’gray’)
ax1.axis(’off’)
plt.show()

140 4 X-Ray Image Processing

Y0 = im_median(X, k=23)
fig2, ax2 = plt.subplots(1, 1, figsize=(6, 6))
ax2.set_title(’Median filter’)
ax2.imshow(Y0, cmap=’gray’)
ax2.axis(’off’)
plt.show()

Y1 = np.abs(np.double(X) − np.double(Y0))
fig3, ax3 = plt.subplots(1, 1, figsize=(6, 6))
ax3.set_title(’Difference Image’)
ax3.imshow(np.log10(Y1 + 1), cmap=’gray’)
ax3.axis(’off’)
plt.show()

Y2 = Y1 > 18
fig4, ax4 = plt.subplots(1, 1, figsize=(6, 6))
ax4.set_title(’Binary’)
ax4.imshow(Y2, cmap=’gray’)
ax4.axis(’off’)
plt.show()

Y3 = remove_small_objects(Y2, 20)
fig5, ax5 = plt.subplots(1, 1, figsize=(6, 6))
ax5.set_title(’Binary’)
ax5.imshow(Y3, cmap=’gray’)
ax5.axis(’off’)
plt.show()

Y = clear_border(binary_dilation(Y3, np.ones((3, 3))))
fig6, ax6 = plt.subplots(1, 1, figsize=(6, 6))
ax6.set_title(’Small region are eliminated’)
ax6.imshow(Y, cmap=’gray’)
ax6.axis(’off’)
plt.show()

blend_mask = binview(X, Y, ’y’, 1)
fig6, ax6 = plt.subplots(1, 1, figsize=(6, 6))
ax6.set_title(’Small region are eliminated’)
ax6.imshow(blend_mask, cmap=’gray’)
ax6.axis(’off’)
plt.show()

The output of this code—step by step—is shown in the last row of Fig. 4.14. �

4.4 Edge Detection

In this section, we will study how the edges of an X-ray image can be detected.
The edges correspond to pixels of the image in which the gray value changes sig-
nificantly over a short distance [3]. Since edges are discontinuities in the intensity
of the X-ray image, they are normally estimated by maximizing the gradient of the
image. Edge detection image corresponds to a binary image (of the same size of the
X-ray image), where a pixel is ‘1’ if it belongs to an edge; otherwise, it is ‘0’, as
shown in Fig. 4.15. Before we begin a more detailed description of edge detection,
it is worthwhile to highlight some aspects of its relevance in the analysis of X-ray
images.

The edges of an X-ray image should show the boundary of objects, e.g., bound-
aries of defects in control quality of aluminum castings, boundaries of the weld

4.4 Edge Detection 141

Fig. 4.15 Edge detection of an X-ray image of a pen case. The edges correspond the boundaries

of the objects that are inside the pen case. [→ Example 4.11]

in welding inspection and boundaries of objects in baggage screening (Fig. 4.15).
Thus, the input X-ray image is transformed into a binary image which shows struc-
tural properties of the X-ray image. The key idea is to detect objects of interest,
such as defects in case of quality control or threatening objects in case of baggage
screening, based on the information provided by edge detection.

In this section, we will review some basic edge detection techniques that have
been used in X-ray testing: gradient estimation (Sect. 4.4.1), LoG, Laplacian-of-
Gaussian (Sect. 4.4.2), and Canny (Sect. 4.4.3). Segmentation techniques based on
edge detection will be outlined in Sect. 4.5.

4.4.1 Gradient Estimation

The gradient for a 1D function f (x) is defined by

f ′(x) = ∂ f

∂x
= lim

�x→0

f (x + �x) − f (x)

�x
(4.11)

and for a 2D function f (x, y) is defined by a vector of two elements, one in x
direction, and the another one in y direction:

∇ f (x, y) =
[
∂ f

∂x
,
∂ f

∂y

]
. (4.12)

In digital images, after digitalization of f (x, y), however, corresponding �x or
�y values cannot be less than one pixel. A simple way to compute the gradient of
image X in i and j direction can be respectively:

Gi (i, j) = X (i + 1, j) − X (i, j) and G j (i, j) = X (i, j + 1) − X (i, j). (4.13)

Thus, the magnitude of the gradient can be computed as follows:

G(i, j) =
√

(Gi (i, j))2 + (G j (i, j))2 (4.14)

142 4 X-Ray Image Processing

and the direction of the gradient as follows:

A(i, j) = arctan
G j (i, j)

Gi (i, j)
. (4.15)

In this formulation, gradient images Gi and G j can be easily calculated by convo-
lution (4.9). Thus,

Gi = X ∗ hT and G j = X ∗ h, (4.16)

where h is the mask used to compute the gradient in horizontal direction. For
instance, if we compute the gradient using the simple way (4.13), we can use
h = [−1 + 1] in (4.16). Nevertheless, for noisy images, larger masks are suggested
for (4.16). Sobel and Prewitt masks are commonly used in image processing [5].
They are defined as follows:

h Sobel =
⎡

⎣
−1 0 +1
−2 0 +2
−1 0 +1

⎤

⎦ and h Prewitt =
⎡

⎣
−1 0 +1
−1 0 +1
−1 0 +1

⎤

⎦ . (4.17)

For severe noise, it is recommended to use Gaussian filtering before applying
gradient operators. Since Gaussian and gradient operations are linear, the Gaussian
gradient operator can be defined by taking the derivative of the Gaussian (4.10):

h Gauss(m, n) = m · e− m2+n2

2σ2 . (4.18)

It should be noted that edges are detected when the magnitude of the gradient is
maximal. That means the location of edge pixels will not be modified if a mask h is
replaced by λh with λ 	= 0. Moreover, the direction of the gradient does not become
modified either. For this reason, the elements of h are usually shown in its simplest
way.

An example of the estimation of gradient using the explained masks is illustrated
in Fig. 4.16. After the gradient image is calculated, the edges are detected by thresh-
olding. Thus, if the magnitude of the gradient is greater than a certain threshold, then
the pixel of the output image is set as an edge pixel. The output for the mentioned
example is illustrated in Fig. 4.17. We can see how the boundaries are detected,
especially for those objects that are very dark in comparison with their background.

Python Example 4.5: In this example, we show the edge detection of an
X-ray image of a pen case using the gradient operators according to the method
explained in this Sect. 4.5.1:

4.4 Edge Detection 143

Fig. 4.16 Gradient of an X-ray of a pen case using different masks (Sobel, Prewitt, and Gaussian).

See edge detection in Fig. 4.17 [→ Example 4.5]

Fig. 4.17 Edge detection by thresholding a Gaussian gradient image of Fig. 4.16. The edges are
detected for gradients greater than 3. In this representation, a logarithmical scale for the gray values

was used. [→ Example 4.5]

144 4 X-Ray Image Processing

Listing 4.5 : Gradient with different masks

import numpy as np
import matplotlib.pylab as plt
import cv2 as cv

from pyxvis.io import gdxraydb
from pyxvis.processing.images import fspecial, linimg, im_grad
from pyxvis.io.visualization import show_image_as_surface

image_set = gdxraydb.Baggages()
img = image_set.load_image(2, 1)
img = cv.resize(img, None, fx=0.25, fy=0.25, interpolation=cv.INTER_AREA)

hs = fspecial(’sobel’) # Sobel kernel
hp = fspecial(’prewitt’) # Prewitt kernel

hg = fspecial(’gaussian’, 9, 1.0)
hg = cv.filter2D(hg, cv.CV_64F, np.array([−1, 1]))

gs, __ = im_grad(img, hs)
gp, __ = im_grad(img, hp)
gg, __ = im_grad(img, hg)

gradients = np.hstack([linimg(gs), linimg(gp), linimg(gg)]) # Stack the results as a
same image.

plt.figure(figsize=(12, 6))
plt.imshow(gradients, cmap=’gray’)
plt.show()

img_y = np.log(gg + 1)

show_image_as_surface(img_y[−5:5:−1, −5:5:−1], elev=80, azim=−185, fsize=(10, 10),
colorbar=True)

fig, ax = plt.subplots(1, 1, figsize=(10, 10))
ax.imshow(img_y > 3, cmap=’gray’)
ax.axis(’off’)
plt.show()

The output of this code is shown in Figs. 4.16 and 4.17. The code uses command
im_grad of pyxvis Library. �

4.4.2 Laplacian-of-Gaussian (LoG)

In the previous section, we learned that the edges of a function can be located by
detecting local maxima of the magnitudes of gradients. We know that the location
of the maximal values of the gradient coincides with zero-crossing of the second
derivative. In order to eliminate noisy zero-crossings, which do not correspond to
high gradient values, this method uses a Gaussian low-pass filter (see Fig. 4.18).
The method, known as Laplacian-of-Gaussian (LoG), is based on a kernel and a
zero-crossing algorithm [4]. LoG-kernel involves a Gaussian low-pass filter (4.10),
which is suitable for the pre-smoothing of the noisy X-ray images. LoG-kernel is
defined as the Laplacian of a 2D-Gaussian function:

4.4 Edge Detection 145

Fig. 4.18 Example of edge detection in 1D using LoG: The profile of the red line in an X-ray
image is shown as f (x). This function is filtered by a Gaussian low-pass filter obtaining g(x). The
gradient of g(x), represented as g′(x) shows the location of the maximal value (see dashed orange
lines), that corresponds to the zero-crossing of the second derivative of g(x). The edges ‘1’ and ‘2’
are then detected

Fig. 4.19 LoG mask: (Left) representation of (4.19), (Right) profile for n = 0

hLoG(m, n) = 1

2πσ 4
·
(
2 − m2 + n2

σ 2

)
· e− m2+n2

2σ2 . (4.19)

LoG-kernel is shown in Fig. 4.19. The parameter σ defines the width of the Gaus-
sian function and, thus, the amount of smoothing and the edges detected (see Fig.
4.20). Using (4.8), we can calculate an image Y in which the edges of the original
image are located by their zero-crossing. After zero-crossing, the detected edges Z

146 4 X-Ray Image Processing

Fig. 4.20 Example of LoG edge detection of a slider (see bottom left of X-ray image of the pen
case Fig. 4.18). Several values for σ and θ are presented. The smoothness of the edges is controlled

by increasing σ . The reduction of noisy edges is controlled by increasing θ . [→ Example 4.6]

correspond to the maximal (or minimal) values of the gradient image. In order to
eliminate weak edges, a threshold θ is typically used. Thus, all edge pixels in Z that
are not strong enough are ignored. The higher the threshold, the less edges will be
detected. On the other hand, if θ = 0, i.e., all zero-crossings are included, the edge
image has closed and connected contours. As we will see in Sect. 4.5.2, this property
is required when segmenting a region of the image.

Python Example 4.6: In this example, we show the edge detection of the
object of a pen case (see Fig. 4.20) according to LoG algorithm explained in this
Sect. 4.4.2:

Listing 4.6 : Edge detection using LoG

import numpy as np
import matplotlib.pylab as plt
import cv2 as cv

from pyxvis.io import gdxraydb
from pyxvis.processing.images import Edge

image_set = gdxraydb.Baggages()

img = image_set.load_image(2, 1)
img = cv.resize(img, None, fx=0.5, fy=0.5, interpolation=cv.INTER_AREA)
img = img[595:715, 0:120]

plt.figure(figsize=(12, 6))

4.4 Edge Detection 147

plt.imshow(img, cmap=’gray’)
plt.axis(’off’)
plt.show()

threshold = np.array([1e−8, 1e−6, 1e−5, 1e−3, 1e−2]) # Different threshold values
sigma = np.array([0.5, 1.0, 2.0, 3.0, 4.0, 6.0, 8.0]) # Different sigma values

rows = np.array([])
for t in threshold:

cols = np.array([])
for s in sigma:

detector = Edge(’log’, t, s)
detector.fit(img)
cols = np.hstack([cols, detector.edges]) if cols.size else detector.edges

rows = np.vstack([rows, cols]) if rows.size else cols

fig, ax = plt.subplots(1, 1, figsize=(12, 8))
ax.imshow(rows, cmap=’gray’);

Figure configuration
from matplotlib.ticker import FixedLocator, FixedFormatter
ax.set_title(’Sigma’, y=1.05)
ax.set_ylabel(’Threshold’)
ax.tick_params(bottom=False, top=True, left=False, right=True)
ax.tick_params(labelbottom=False, labeltop=True, labelleft=True, labelright=False)
x_formatter = FixedFormatter(sigma)
y_formatter = FixedFormatter(threshold)
x_locator = FixedLocator(60 + 120 * np.arange(sigma.shape[0]))
y_locator = FixedLocator(60 + 120 * np.arange(threshold.shape[0]))
ax.xaxis.set_major_formatter(x_formatter)
ax.yaxis.set_major_formatter(y_formatter)
ax.xaxis.set_major_locator(x_locator)
ax.yaxis.set_major_locator(y_locator)
plt.show()

The output of this code—step by step—in Fig. 4.20. The code uses command Edge
of pyxvis Library. �

4.4.3 Canny Edge Detector

Canny proposes a 2D linear mask for edge detection based on an optimization
approach [2], in which the following criteria are met:

• Good detection: The detection should respond to an edge (and not to noise).
• Good localization: The detected edge should be near the true edge.
• Single response: It should be one detected edge per true edge.

The optimal mask is similar to a derivative of a Gaussian. Thus, the idea is to
use this mask to find the local maxima of the gradient of the image. The practi-
cal implementation uses adaptive thresholding of the gradient (to detect strong and
weak edges) with hysteresis (weak edges are detected only if they are connected to
strong edges).

In Example 4.6, the code line detector = Edge(’log’,t,s) can be changed
by E = Edge(’canny’,t,s) to elucidate similarities and differences between
both edge detectors.

148 4 X-Ray Image Processing

4.5 Segmentation

Image segmentation is defined as the process of subdividing an image into disjointed
regions [3]. A region is defined as a set of connected pixels that correspond to a
certain object of interest. Obviously, these regions of interest depend on the appli-
cation. For instance, in the inspection of aluminum castings with X-ray images, the
idea of segmentation is to find regions with defects. Here, the object of interest is
the defects. An example is shown in Fig. 4.21, where the segmentation is the small
spots that indicate defective areas.

Another example of segmentation in X-ray testing is weld inspection as illus-
trated in Fig. 4.22, where a weld seam with two regions is clearly distinguishable:
the weld (foreground) and the base metal (background). In this example, the (first)
object of interest is the weld because it is the region where defects can be present.
The reader can clearly identify the defects in the weld (see small dark regions in the
middle of the X-ray image). In this example, the defects, that have to be detected
in a second segmentation stage, are our second object of interest. In this case, the
background is the weld, and the foreground is the defects.

Segmentation is one of the most difficult processes in image processing. Clearly,
there are some simple applications in which certain segmentation techniques are
very effective (e.g., separation between weld and metal base as shown in Fig. 4.22),
however, in many other applications segmentation is far from being solved as the
appearance of the object of interest can become very intricate. This is the case of

Fig. 4.21 Example of segmentation: detection of defects in an aluminum wheel (see details in Fig.

4.14). [→ Example 4.4]

Fig. 4.22 Segmentation of a weld. (Top) original X-ray image. (Bottom) segmentation. The first
step in weld inspection is the segmentation of the weld, i.e., the region where the defects can be
present (see segmentation in Fig. 4.27). The second step is the detection of defects. [→ Example

4.8]

4.5 Segmentation 149

Fig. 4.23 Problems when detecting a gun. Detection can be a very complex task due to a occlu-
sion, b self-occlusion, c noise, d wrong acquisition

baggage screening, where the segmentation of objects of interest inside a piece of
luggage can be extremely difficult due to problems of (self-)occlusion, noise, and
acquisition (see Fig. 4.23).

In image processing for X-ray testing, segmentation is used to detect (potential)
regions that can be the objects of interest that we are looking for. As mentioned
in previous examples, segmentation divides the X-ray image into two areas: fore-
ground and background. Foreground means the pixels of the object(s) of interest.
Background means the remaining pixels of the image. Usually, a binary image is
the output of the segmentation process as we can see in Figs. 4.21 and 4.22, where
a pixel equals to ‘1’ (white) is foreground, whereas ‘0’ (black) means background.
We use the term ‘potential’ throughout to make it clear that a segmented region is
not necessarily the final detected region. In many applications, the segmentation is
just the first step of the whole detection process. In such cases, an additional step
that analyzes the segmented region is required. This additional step can include
multiple view analysis or a pattern recognition technique (see Fig. 1.22). The later
extracts and classifies features of the segmented region in order to verify whether it
corresponds to the object that we are detecting or it is a false detection.

Thus, segmentation basically acts as a focus of attention mechanism that filters
the information that is fed to the following steps, as such a failure in the segmenta-
tion is catastrophic for the final performance. In this section, we will review some
basic segmentation techniques that have been used in X-ray testing: thresholding
(Sect. 4.5.1), region growing (Sect. 4.5.2), and maximally stable extremal regions
(Sect. 4.5.3). Please note that more complex techniques based on computer vision
algorithms will be addressed in the next sections.

4.5.1 Thresholding

In some X-ray images, we can observe that the background is significantly darker
than the foreground. This is the case of an X-ray image of an apple placed on a
uniform background as illustrated in Fig. 4.24. It is clear that the object of inter-
est can be segmented using a very simple approach based on thresholding. In this
section, we will explain a methodology based on two steps: (i) estimate of a global

150 4 X-Ray Image Processing

Fig. 4.24 X-ray image of an apple and its histogram

threshold using a statistical approach and (ii) a morphological operation in order to
fill the possible holes presented in the segmented binary image. This method was
originally presented for color food images [14], however, it can be easily adapted
for X-ray images.

The X-ray image to be segmented is stored in matrix I. In order to enhance the
contrast of the image, a linear transformation can be performed (see Sect. 4.2.2).
Additionally, a linear or non-linear filter can be used for noise removal (see Sect. 4.3).
Here, after image enhancement and filtering, we obtain a new image J, where
Jmax = 1 and Jmax = 0. Image J has a bimodal histogram as shown in Fig. 4.24,
where the left distribution corresponds to the background and the right to the food
image. In this image, the first separation between foreground and background can
be performed estimating a global threshold t . Thus, we define a binary image

K (i, j) =
{
1 if J (i, j) > t
0 else

(4.20)

where ‘1’ means foreground and ‘0’ background, that define two classes of pixels
in the image. Figure 4.25 illustrates different outputs depending on t . The problem
is to determine the ‘best’ threshold t that separates the two modes of the histogram
from each other. A good separation of the classes is obtained by ensuring (i) a small
variation of the gray values in each class, and (ii) a large variation of the gray values
in the image [6]. The first criterion is obtained by minimizing a weighted sum of the
within-class variances (called intraclass variance σ 2

W (t)):

σ 2
W (t) = pb(t)σ

2
b (t) + p f (t)σ

2
f (t), (4.21)

where the indices ‘b’ and ‘ f ’ denote respectively background and foreground
classes, and p and σ 2 are respectively the probability and the variance for the indi-
cated class. These values can be computed from the histogram.

4.5 Segmentation 151

Fig. 4.25 Segmentation using threshold t = 0.1, 0.2, . . . 1.0

The second criterion is obtained by maximizing the between-class variance
(called interclass variance σ 2

B(t)):

σ 2
B(t) = pb(μb(t) − μ)2 + p f (μ f (t) − μ)2, (4.22)

where μb, μ f , and μ indicate the mean value of the background, foreground, and
the whole image respectively.

The best threshold t can be estimated by a sequential search through all pos-
sible values of t that minimizes σ 2

W (t) (or maximizes σ 2
B(t)). Both criteria, how-

ever, lead to the same result because the sum σ 2
W + σ 2

B is a constant and corre-
sponds to the variance of the whole image [6]. Skimage Library computes the global
image threshold by minimizing the intraclass variance σ 2

W (t). The threshold can be
obtained with the function threshold_otsu. In our example, the obtained thresh-
old is t = 0.4824, that is approximately 0.5 (see Fig. 4.25).

We can observe in Fig. 4.25 that the segmentation suffers from inaccuracy
because there are many dark (bright) regions belonging to the foreground (back-
ground) that are below (above) the chosen threshold and therefore misclassified.
For this reason, additional morphological processing must be obtained.

The morphological operation is performed in three steps as shown in Fig. 4.26:
(i) remove small objects, (ii) close the binary image, and (iii) fill the holes.

Fig. 4.26 Additional morphological operations. From left to right: K: binary image after thresh-
olding,A: after removal of small objects,C: after closing process,R: after filling holes, and bound-
ary superimposed onto the original image. [→ Example 4.7]

152 4 X-Ray Image Processing

In the first step, we remove from binary image K obtained from (4.20) all con-
nected regions that have fewer than n pixels (see image A in Fig. 4.26).This oper-
ation is necessary to eliminate those isolated pixels of the background that have a
gray value greater than the selected threshold. Empirically, we set n = N M/100,
where N × M is the number of pixels of the image.

The second step closes the image, i.e., the image is dilated and then eroded. The
dilation is the process that incorporates into the foreground the background pixels
that touch it. On the other hand, erosion is the process that eliminates all the bound-
ary pixels of the foreground. The closing process (dilation followed by erosion)
fills small holes and thins holes in the foreground, connecting nearby regions, and
smoothing the boundaries of the foreground without changing the area significantly
[3] (see image C in Fig. 4.26). This operation is very useful in objects that have
spots in the boundary.

Finally, the last operation fills the holes in the closed image (see image R in Fig.
4.26). We use this operation to incorporate into the foreground all pixels ‘0’ that are
inside of the region. The whole algorithm is implemented in command seg_bimodal
of pyxvis Library. In the implementation, as suggested in [14], an offset p that mod-
ifies the threshold is used because there are dark zones in the boundary that are not
well included in the original segmented region.

Python Example 4.7: In this example, we show the segmentation of an
X-ray image of an apple (see Fig. 4.24) according to the method explained in this
Sect. 4.5.1:

Listing 4.7 : Apple segmentation using global thresholding

import matplotlib.pylab as plt

from pyxvis.io import gdxraydb
from pyxvis.processing.segmentation import seg_bimodal
from pyxvis.io.visualization import binview

image_set = gdxraydb.Nature()
img = image_set.load_image(5, 9)

mask, contours = seg_bimodal(img)
seg = binview(img, mask, ’g’)

fig, ax = plt.subplots(1, 2, figsize=(12, 6))
ax[0].imshow(img, cmap=’gray’)
for n, contour in enumerate(contours):

ax[0].plot(contour[:, 1], contour[:, 0], color=’r’, linewidth=3)
ax[0].axis(’off’)
ax[1].imshow(seg)
ax[1].axis(’off’)
plt.show()

The output of this code—step by step—in Fig. 4.26. The code uses command
seg_bimodal of pyxvis Library. �

4.5 Segmentation 153

The above-mentioned methodology, based on a global threshold, does not seg-
ment appropriately when there is a large variation in the background or foreground
intensity. For this reason, in certain cases, it is recommended to use an adaptive
threshold. The idea is to divide the input image into partitions with some overlap-
ping. Each partition is handled as a new image that is segmented by thresholding
(using a global but an ad hoc threshold for each partition). The output image is a
fusion of all segmented partitions, e.g., using logical OR operator. The next example
shows an implementation that was used to segment the weld of Fig. 4.22. Since the
weld area is horizontal, the proposed method uses vertical partitions that include
background and foreground areas. The segmentation of each partition is performed
by the same method used for the segmentation of the apple.

Python Example 4.8: This example shows the segmentation of a weld of
Fig. 4.22 using adaptive thresholding. The approach is simple; the input image is
divided into four partitions with an overlapping of 50%. Each partition is segmented
using command seg_bimodal of pyxvis Library. The obtained binary images of the
segmentation are superimposed using logical OR operator:

Listing 4.8 : Weld segmentation using adaptive thresholding

import numpy as np
import matplotlib.pylab as plt

from skimage.measure import find_contours

from pyxvis.io import gdxraydb
from pyxvis.processing.segmentation import seg_bimodal
from pyxvis.io.visualization import binview

image_set = gdxraydb.Welds()
img = image_set.load_image(1, 1)

mask = np.zeros(img.shape, np.uint8) # Create a uint8 mask image
max_width = img.shape[1]

d1 = int(np.round(max_width/4))
d2 = int(np.round(d1 * 1.5))

i1 = 0

while i1 < max_width:
i2 = min(i1 + d2, max_width) # second column of partition
img_i = img[:, i1:i2] # partition i
bw_i, _ = seg_bimodal(img_i) # segmentation of partition i
roi = mask[:, i1:i2]
overlap = np.bitwise_or(roi, bw_i) # addition into whole segmentation
mask[:, i1:i2] = overlap
i1 = i1 + d1 # update of first column

seg = binview(img, mask, ’g’, g=5)

contours = find_contours(np.float32(mask), 0.5)

fig, ax = plt.subplots(2, 1, figsize=(14, 5))
ax[0].imshow(img, cmap=’gray’);
for n, contour in enumerate(contours):

ax[0].plot(contour[:, 1], contour[:, 0], color=’r’, linewidth=3)

154 4 X-Ray Image Processing

ax[0].axis(’off’)
ax[1].imshow(seg)
ax[1].axis(’off’)
fig.tight_layout()
plt.show()

The output of this code—step by step—is shown in the last row of Fig. 4.27. �

4.5.2 Region Growing

In region growing, we segment a region using an iterative approach. We start by
choosing a seed pixel, as shown in Fig. 4.28. At this moment, our region is initial-
ized and its size is one pixel only. We extract some feature of the region, e.g., the
gray value. We extract the same feature of each neighboring pixel. In our example,
there are four neighbors (up, down, right, and left), as we can see in third image of
Fig. 4.28. We increase our region by adding similar neighboring pixels, i.e., those
neighboring pixels that have a similar feature to the region. The whole process is
continued, each added pixel is a new seed for the next iteration until no more neigh-
boring pixels can be added.

In Fig. 4.28, we have a binary edge image. The feature that we use to establish the
similarity is the value of the pixel. In our example, there are only two pixel values:
‘0’ for the edge pixels, and ‘1’ for the remaining pixels. That means that the value of
the pixel of the seed is ‘1’ and in each iteration, we can add only those neighboring
pixels the value of which are ‘1’. As we can see, the red region grows up from 1

Fig. 4.27 Weld segmentation of Fig. 4.22 using adaptive thresholding of four partitions. The last
image shows the segmentation after fusion the four individual segmentations using logical OR
operator.) [→ Example 4.8]

4.5 Segmentation 155

Fig. 4.28 Region growing: we start with a seed pixel that grows in each iteration in four directions
until a boundary is found. The directions in this example are four: up, down, right, and left

Fig. 4.29 Region growing in an X-ray image using a seed pixel in the object of interest. The region

is well segmented as we can see in the binary image and in boundaries. [→ Example 4.9]

pixel to 5, 12, 16, 22, and finally, 24 pixels. The output is the red region of the last
step.

Region growing can be used directly in X-ray images as illustrated in Fig. 4.29.
We start with a seed pixel, and neighboring pixels are added if they are similar
enough.

Python Example 4.9: In this example, we show the performance of region
growing in the segmentation of an object in an X-ray image of a pen case (see
Fig. 4.29). The seed is chosen at pixel (190,403). The seed grows by adding neigh-
boring pixels with similar gray values. We use command region_growing of pyxvis
Library. In this implementation, the similarity between region and neighboring pix-
els is established if |R̄ − rn| ≤ θ , where R̄ is the average of the gray values of the
region, rn is the gray value of the neighboring pixel, and θ is a threshold. In this
example, θ = 20:

Listing 4.9 : Region Growing

import matplotlib.pylab as plt
import cv2 as cv

from pyxvis.io import gdxraydb
from pyxvis.processing.segmentation import region_growing
from pyxvis.io.visualization import binview

156 4 X-Ray Image Processing

image_set = gdxraydb.Baggages()

img = image_set.load_image(3, 4)
img = cv.resize(img, None, fx=0.35, fy=0.35, interpolation=cv.INTER_AREA)

th = 40 # threshold
si, sj = (403, 190) # Seed

mask = region_growing(img, (si, sj), tolerance=th)

seg = binview(img, mask, ’g’)

fig, ax = plt.subplots(1, 3, figsize=(14, 8))
ax[0].imshow(img, cmap=’gray’)
ax[0].plot(sj, si, ’r+’)
ax[0].axis(’off’)
ax[1].imshow(mask, cmap=’gray’)
ax[1].axis(’off’)
ax[2].imshow(seg)
ax[2].axis(’off’)
plt.tight_layout()
plt.show()

The output of this code is shown in Fig. 4.29. �
Region growing can be used in X-ray testing in defect detection (see, for exam-

ple, interesting approaches in aluminum castings [10] and welds [11]). The method
is illustrated in Fig. 4.30. The method uses an edge detection algorithm to obtain an
edge image with closed and connected contours around the real defects. Thus, we
use region growing to isolate each region enclosed by edges. The idea is to extract
features from this isolated region (e.g., area, average of gray value, contrast, etc.)
that can be used in a classification strategy. In our example, a region is segmented
using a very simple classifier (the features of a segmented region must be in cer-
tain ranges, e.g., Amin ≤ Area ≤ Amax). Obviously, more sophisticated features and
classifiers can be used to improve the segmentation performance in more complex
scenarios as we will see in the following chapters.

Python Example 4.10: In this example, we show how to segment defects in
aluminum castings using binary images of potential defects and some simple fea-
tures that can be extracted from each potential region. In this example, we segment
all those regions the area of which is between 200 and 2000 pixels, the average of
the gray value is less than 150, and the contrast is greater than 1.1:

Listing 4.10 : Detection of defects in castings

import numpy as np
import matplotlib.pylab as plt

from skimage.segmentation import find_boundaries

from pyxvis.io import gdxraydb
from pyxvis.processing.segmentation import seg_log_feature
from pyxvis.io.visualization import binview

image_set = gdxraydb.Castings()
X = image_set.load_image(31, 19)

4.5 Segmentation 157

Fig. 4.30 Segmentation of defects in aluminum castings using region growing, edge detection, and

some features. The size of the image in this example is 286 × 286 pixels [→ Example 4.10]

X = X[0:572:2, 0:572:2] # Donwsampling the image

fig1, ax1 = plt.subplots(1, 1, figsize=(8, 8))
ax1.imshow(X, cmap=’gray’)
ax1.set_title(’Input image’)
ax1.axis(’off’)
plt.show()

R = X < 240

fig2, ax2 = plt.subplots(1, 1, figsize=(8,8))
ax2.imshow(R, cmap=’gray’)
ax2.set_title(’Segmented object’)
ax2.axis(’off’)
plt.show()

options = {
’area’: (30, 1500), # Area range (area_min, area_max)
’gray’: (0, 150), # Gray value range (gray_min, gray_max)
’contrast’: (1.08, 1.8), # Contras range (cont_min, cont_max)
’sigma’: 2.5

}

Y, m = seg_log_feature(X, R, **options)

print(f’Found {m} regions.’)

fig3, ax3 = plt.subplots(1, 1, figsize=(8, 8))
ax3.imshow(binview(X, find_boundaries(Y)), cmap=’gray’)
ax3.set_title(’Segmented regions’)
ax3.axis(’off’)
plt.show()

.

The output of this code is shown—step by step—in Fig. 4.30. We use command
seg_log_feature of pyxvis Library. �

This method is very effective for regions of interest that have gray values signif-
icantly different from the background (the reader, for instance, can try to segment

158 4 X-Ray Image Processing

Fig. 4.31 X-ray image of an aluminum casting with a small defect at an edge (see defect pointed
by green arrow). (First row) original image. (Second row) LoG. (Third row) LoG and high gradient
pixels. (First column) image representation. (Second column) 3D representation of red square.
(Third column) zoom of blue square. In this representation, the edge pixels are represented as red
points superimposed onto the 3D surface. The output of this method is a binary image in which the
real defects are closed by edges

the objects of the pen case of Fig. 4.29 using command seg_log_feature of pyxvis
Library).

Nevertheless, the method may fail if the boundaries do not close a region of inter-
est. This is the case in some defects of aluminum castings that are at an edge of a
regular structure as illustrated in Fig. 4.31.2 In this problem, we can see that the
edges of LoG algorithm (and other edge detection algorithms like Sobel or Canny
as well) cannot correctly find the defect’s edge. Contrarily, it finds the regular struc-
ture’s edge. To overcome this problem, we have to complete the remaining edges of
these defects. A simple approach was suggested in [13] by thickening of the edges
of the regular structure after LoG-edge detection: (i) The gradient of the original
image is calculated. The gradient image is computed by taking the square root of
the sum of the squares of the gradient in horizontal and in vertical directions. These
are calculated by the convolution of the radioscopic image with the first derivative
(in the corresponding direction) of the Gaussian low-pass filter used in the LoG fil-

2A video of this small defect can be watched at http://youtu.be/e3wDJhq2Tqg.

http://youtu.be/e3wDJhq2Tqg

4.5 Segmentation 159

ter. (ii) High gradient pixels are detected by thresholding. (iii) The resulting image
is added to the LoG-edge detection image. Afterwards, each closed region is seg-
mented as a potential flaw. As can be observed the effectiveness of this method in
Fig. 4.31, the defect on an edge of a regular structure could be satisfactorily closed.
Thus, the method of Fig. 4.30 can be used.

4.5.3 Maximally Stable Extremal Regions (MSER)

In order to understand the MSER approach [8], the reader can imagine a simple
video as follows. The video will have 256 frames. Frame t is defined as the binary
image I < t , where I is the input image we want to segment. If the binary image
is black for ‘0’ and white for ‘1’, at the beginning our video will be very dark and
at the end very bright. In the middle, we will have some regions depending on the
threshold.3 Thus, each region has an area A(t), that depends on t . If the gray value
of the region is very different from its background, the area of this region will be
stable for some thresholds t, t + 1 . . . t + p, i.e., A(t) ≈ A(t + 1) · · · ≈ A(t + p).
The key idea of MSER is to segment those regions which fulfill:

�A

�t
< θ, (4.23)

where θ is a threshold. That means those regions whose sizes remain approximately
stable by varying the segmentation threshold t are to be detected.

Python Example 4.11: In this example, we show the segmentation of
an X-ray image of a pen case (see Fig. 4.15) according to MSER approach (see
Sect. 4.5.3):

Listing 4.11 : Pencase segmentation using MSER algorithm

import numpy as np
import matplotlib.pylab as plt
import cv2 as cv

from skimage.segmentation import find_boundaries
from skimage.morphology import binary_dilation

from pyxvis.io import gdxraydb
from pyxvis.processing.segmentation import seg_mser
from pyxvis.io.visualization import plot_bboxes

image_set = gdxraydb.Baggages()
img = image_set.load_image(2, 1)

fig1, ax1 = plt.subplots(1, 1, figsize=(10, 10))
ax1.imshow(img, cmap=’gray’)
ax1.set_title(’Input image’)

3The video can be found in http://youtu.be/tWdJ-NFE6vY.

http://youtu.be/tWdJ-NFE6vY

160 4 X-Ray Image Processing

ax1.axis(’off’)
plt.show()

mser_options = {
’area’: (60, 40000), # Area of the ellipse (Max, Min)
’min_div’: 0.9, # Minimal diversity
’max_var’: 0.2, # Maximal variation
’delta’: 3, # Delta

}

J, L, bboxes = seg_mser(img, **mser_options)

E = binary_dilation(find_boundaries(J, connectivity=1, mode=’inner’), np.ones((3, 3)))

fig2, ax2 = plt.subplots(1, 1, figsize=(10, 10))
ax2.imshow(E, cmap=’gray’)
ax2.set_title(’Edges’)
ax2.axis(’off’)
plt.show()

fig3, ax3 = plt.subplots(1, 1, figsize=(10, 10))
ax3.imshow(L, cmap=’gray’)
ax3.set_title(’Segmentation’)
ax3.axis(’off’)
plt.show()

fig4, ax4 = plt.subplots(1, 1, figsize=(10, 10))
ax4.imshow(img, cmap=’gray’)
ax4 = plot_bboxes(bboxes, ax=ax4)
ax4.set_title(’Bounding Boxes’)
ax4.axis(’off’)
plt.show()

The output of this code—step by step—in Figs. 4.15 and 4.32. The code uses com-
mand seg_mser of pyxvis Library. This function uses OpenCV implementation of
MSER. �

Fig. 4.32 Segmentation of objects in a pencase using MSER [→ Example 4.11]

4.6 Image Restoration 161

4.6 Image Restoration

Image restoration involves recovering detail in severely blurred images. This pro-
cess is more efficient when the causes of the imperfections are known a priori [5].
This knowledge may exist as an analytical model, or as a priori information in con-
junction with knowledge (or assumptions) of the physical system that provided the
imaging process in the first place. The purpose of restoration then is to estimate the
best source image, given the blurred example and some a priori knowledge.

In this section, we concentrate on the particular case of blur caused by uniform
linear motion, which may be introduced by relative motion between detector and
object. Early work on restoring an image degraded by blurring calculated the deblur-
ring function as an inverse filtering. The inverse filtering evaluation of the blurring
function h (or point spread function PSF) in the frequency domain tends to be very
sensitive to noise [5]. The cause of this sensitivity is the lowpass nature of the PSF:
its frequency response H(ω) contains very small values, and small noise in the fre-
quency regions where 1/H(ω) is very large, maybe greatly emphasized. Sondhi
[5] proposed a non-iterative algorithm to find a solution to the uniform-blurring
case, but the computational load is extremely high in small motions. Another two
non-iterative approaches are presented in [9]. In the first one, the matrix left divi-
sion calculates the restored signal as a signal that has the fewest possible nonzero
components. This solution differs strongly from the original signal because the orig-
inal signal must not have necessarily many zero components. The second one, the
Moore–Penrose pseudo-inverse of a matrix, finds a restored signal whose norm is
smaller than any other solution. This solution is very good, but the estimation is
based on Singular Value Decomposition (SVD), whose computation load is very
high. In this section, we address the above problems and reduce the computational
times significantly using a new technique that minimizes the norm between blurred
and original.

A blurred X-ray image g(x, y) that has been degraded by a motion in the vertical
direction x and the horizontal direction y can be modeled by

g(x, y) = 1

T

∫ T

0
f (x − xt (t), y − yt (t))dt, (4.24)

where f , T , xt (t) and yt (t) represent respectively the deterministic original X-ray
image, the duration of the exposure and the time-varying component of motion in
the x and y directions. In this case, the total exposure is obtained by integrating the
instantaneous exposure over the time interval during which the shutter is open. By
rotation of the camera or by using a transformation that rotates the blurred image,
a new system of coordinates is chosen in which xt (t) is zero. Considering that the
original image f (x, y) undergoes uniform linear motion in the horizontal direction
y only, at a rate given by yt (t) = ct/T , let us write (4.24), with u = y − ct/T , as
follows:

162 4 X-Ray Image Processing

Fig. 4.33 Blurring process: (Left) original row f . (Right) Blurred row

g(y) = 1

T

∫ T

0
f (y − ct/T)dt = 1

c

∫ y

y−c
f (u)dt, (4.25)

or as a digital that has been discretized in spatial coordinates by taking N samples
�y = Y/N units apart:

gk = 1

n

n−1∑

i=0

fk+i , (4.26)

where

gk = g
(

y0 + (k − 1)
c

n

)
, fk = f

(
y0 + (k − 1)

c

n
− c

)
, (4.27)

with n = c/�y. Figure 4.33 shows a row f = [f1 ... fM]T of an original image
and its corresponding row g = [g1 ... gN]T of the blurred image for n = 3 pixels.
Equation (4.26) describes an underdetermined system of N simultaneous equations
(one for each element of vector g) and M = N + n − 1 unknowns (one for each
element of vector f) with M > N . This process is carried out for each row of the
image. The degradation of f can be modeled using a convolution of f with h, where h
is the PSF, a n-element vector defined as the impulse response of this linear system
[5]. Thus, element gi of vector g is calculated as a weighted sum of n elements
of f , i.e., gi = h1 fi + h2 fi+1 + ... + hn fi+n−1, for i = 1, ..., N . Using a circulant
matrix, the convolution can be written as Hf = g:

g = f ∗ h =

⎡

⎢⎢⎣

h1 ... hn 0 0 0 0
0 h1 ... hn 0 0 0

: :
0 0 ... 0 h1 ... hn

⎤

⎥⎥⎦

⎡

⎢⎢⎣

f1
f2
:

fM

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

g1
g2
:

gN

⎤

⎥⎥⎦ (4.28)

4.6 Image Restoration 163

Fig. 4.34 Degradation of an X-ray image of 2208 × 2688 pixels: Original image and degraded
images with n = 32, 256, and 512 pixels

Fig. 4.35 Spectrum of a blurred image which was degraded by uniform linear motion with n = 32
pixels. (Left) 2D-Fourier Transformation of the original image of Fig. 4.34. Right Mean of the
rows of the Fourier transformation. The size of the degraded image is 2208 × 2657 pixels. It can
be demonstrated that b is approximately 2657/n

An example of a degradation process is shown in Fig. 4.34. In this example, we can
see how the objects cannot be recognized when the degradation is severe.

If the PSF is not exactly known, but if we know that it corresponds to a uni-
form linear motion, the parameter n can be estimated from the spectrum of the
blurred image. An example is shown in Fig. 4.35. The 2D-Fourier Transformation
of a blurred test is represented in Fig. 4.35a, in this case, a horizontal degradation
took place with n = 32. The mean of its rows is illustrated in Fig. 4.35b. We can
observe that the period of this function is inversely proportional to the length of the
blurring process in pixels.

The problem of restoring an X-ray that has been blurred by uniform linear motion
consists of solving the underdetermined system (4.28). The objective is to estimate
an original row per row (f), given each row of a blurred (g) and a priori knowledge
of the degradation phenomenon (H). Since there is an infinite number of exact solu-
tions for f in the sense that Hf − g = 0, an additional criterion that finds a sharp
restored is required.

We observed that most solutions for f strongly oscillate. Figure 4.36 shows an
example in which four different solutions for f are estimated, all solutions satisfy
Eq. (4.28): Hf = g. Although these solutions are mathematically right, they do not
correspond to the original signal. By the assumption that the components of the
higher frequencies of f are not so significant in the wanted solution, these oscil-

164 4 X-Ray Image Processing

Fig. 4.36 Restoration of row f : a original row, b degraded row with n = 2, c, d, e and f four
possible solution that satisfy Hf̂= g

lations can be reduced by minimization of the distance between fk and gk , i.e., we
take a vector as a sharp solution ofHf = g, so that this presents the smallest distance
between original signal and blurred signal: we seek then to minimize the objective
function

J (f, g) =
N∑

k=1

(fk − gk)
2 → min . (4.29)

The application of criteria of the minimization of the norm between input and
output (MINIO) does not mean that f is equal to g because this solution does not
satisfy the system of equations (4.28) and the size of f and g are different. The solu-
tion also is defined as the vector in the solution space of the underdetermined system
Hf = g whose first N components has the minimum distance to the measured data,
i.e., where the first N elements are of f . We can express vector f̂ = Pf , with f a
N × M matrix which projects the vector f on the support of g:

P =

⎡

⎢⎢⎣

1 0 ... 0 0 ... 0
0 1 ... 0 0 ... 0

: : 0
0 0 ... 1 0 ... 0

⎤

⎥⎥⎦ . (4.30)

The original optimization problem is now:

f̂ = argmin
f

‖ Pf − g ‖2 (4.31)

4.6 Image Restoration 165

subject to the constraint ‖ Pf − g ‖2= 0. Applying the technique of Lagrange mul-
tipliers this problem can be alternatively formulated as an optimization problem
without constraints:

V (f) = λ ‖ Hf − g ‖2 + ‖ Pf − g ‖2→ min, (4.32)

if λ is large enough (e.g., λ = 106). The solution of this problem can be easily
obtained by computing the partial derivative of criterion V with respect to the
unknown f :

∂

∂f
V (f) = 2λHT(Hf − g) + 2PT(Pf − g) = 0, (4.33)

then is
f̂ = [

λHTH + PTP
]−1

[λH + P]T g. (4.34)

This solution for the example of Fig. 4.36b is almost identical to the original
sharp input signal of Fig. 4.36a. Figure 4.37 shows three different restoration exam-
ples.

Python Example 4.12: In this example, we simulate an X-ray image that
has been degraded by a horizontal motion. The image is restored using MINIO
algorithm (4.34):

Listing 4.12 : X-ray image restoration.

import numpy as np
import matplotlib.pylab as plt
import cv2 as cv

from pyxvis.io import gdxraydb
from pyxvis.processing.images import res_minio

image_set = gdxraydb.Baggages()
img = image_set.load_image(46, 90)

n = 128
h = np.ones((1, n)) / n

img_g = cv.filter2D(img.astype(’double’), cv.CV_64F, h)
fs = res_minio(img_g, h, method=’minio’)

fig, ax = plt.subplots(1, 3, figsize=(16, 8))
ax[0].imshow(img, cmap=’gray’)
ax[0].set_title(’Original image’)
ax[0].axis(’off’)
ax[1].imshow(img_g, cmap=’gray’)
ax[1].set_title(’Degraded image’)
ax[1].axis(’off’)
ax[2].imshow(fs, cmap=’gray’)
ax[2].set_title(’Restored image’)
ax[2].axis(’off’)
plt.show()

The output of this code is shown in the last row of Fig. 4.37. Details of the baggage
are not discernible in the degraded image but are recovered in the restored image.

166 4 X-Ray Image Processing

Fig. 4.37 Restoration in simulated degraded X-ray images. Each column shows the original, the
degraded with n pixels, and the restored images. The size of the images are respectively 574 × 768,

with n = 30; 574 × 768, with n = 40; and 2208 × 2688, with n = 128. [→ Example 4.12]

In this code, we use function res_minio of pyxvis Library. This function computes
MINIO restoration algorithm as defined in (4.34). �

The restoration quality is equally as good as the classical methods (see for exam-
ple [5]), while the computation load is decreased considerably (see comparisons in
[12]).

4.7 Summary

In this chapter, we covered the main techniques of image processing used in X-ray
testing.

They are:

• Image preprocessing: Noise removal, contrast enhancement, and shading correc-
tion.

• Image Filtering: linear and non-linear filtering.
• Edge detection: Gradient estimation, Laplacian-of-Gaussian, and Canny.

4.7 Summary 167

• Image segmentation: Thresholding, region growing, and maximally stable
extremal regions.

• Image restoration: Minimization of the norm between input and output.

The chapter provided a good overview, presenting several methodologies with
examples using real and simulated X-ray images.

References

1. Boerner, H., Strecker, H.: Automated X-ray inspection of aluminum casting. IEEE Trans.
Pattern Anal. Mach. Intell. 10(1), 79–91 (1988)

2. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-8(6), 679–698 (1986)

3. Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)
4. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press,

Cambridge (1993)
5. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)
6. Haralick, R., Shapiro, L.: Computer and Robot Vision. Addison-Wesley Publishing Co., New

York (1992)
7. Heinrich, W.: Automated inspection of castings using X-ray testing. Ph.D. thesis, Institute

for Measurement and Automation, Faculty of Electrical Engineering, Technical University of
Berlin (1988). (in German)

8. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo frommaximally stable
extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

9. MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The Math-
Works Inc. (2014)

10. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In:
Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003). Lecture Notes
in Computer Science, vol. 2749, pp. 725–732 (2003)

11. Mery, D., Berti, M.A.: Automatic detection of welding defects using texture features. Insight-
Non-Destruct. Testing Condit. Monitor. 45(10), 676–681 (2003)

12. Mery, D., Filbert, D.: A fast non-iterative algorithm for the removal of blur caused by uni-
form linear motion in X-ray images. In: Proceedings of the 15th World Conference on Non-
Destructive Testing (WCNDT–2000). Rome (2000)

13. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901
(2002)

14. Mery, D., Pedreschi, F.: Segmentation of colour food images using a robust algorithm. J. Food
Eng. 66(3), 353–360 (2004)

Chapter 5
X-ray Image Representation

Abstract In this chapter, we cover several topics that are used to represent an X-ray
image (or a specific region of an X-ray image). This representation means that new
features are extracted from the original image that can give us more information than
the raw information expressed as a matrix of gray values. This kind of information
is extracted as features or descriptors, i.e., a set of values, that can be used in pattern
recognition problems such as object recognition, defect detection, etc. The chapter
explains geometric and intensity features, and local descriptors and sparse represen-
tations that are very common in computer vision applications. It is worthwhile to
mention, that the features mentioned in this chapter are called handcrafted features,
in contrast to the learned features that are explained in Chap. 7 using deep learning
techniques. Finally, the chapter addresses some feature selection techniques that can
be used to chose which features are relevant in terms of extraction.

Cover image: Welding defects (from X-ray image W0001_0001, well known as BAM5, colored
with ‘sinmap’ colormap).
© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_5

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_5

170 5 X-ray Image Representation

5.1 Introduction

As we learned in the previous chapter, in image processing for X-ray testing, seg-
mentation is used to detect (potential) regions that can be the objects of interest that
we are looking for (see Sect. 4.5). As segmented potential regions frequently set
off false detections, an analysis of the segmented regions can significantly improve
the effectiveness of detection. Measuring certain characteristics of the segmented
regions (feature extraction) can help us to distinguish the false detection, although
some of the features extracted are either irrelevant or are not correlated. Therefore,
a feature selection must be performed. Depending on the values returned for the
selected features, we can try to classify each segmented potential region in one of
the following two classes: background or object of interest.

In this chapter, we will explain several features that are normally used in image
analysis and computer vision for X-ray testing. In our description, features will be
divided into two groups: geometric and intensity features. Furthermore, we will
cover some local descriptors and sparse representations that can be used in many
X-ray testing applications. In this chapter, we shall concentrate on the extraction
and selection of features, whereas in the following chapter, we will discuss the clas-
sification problem itself.

We will use Fig. 5.1 as our example in the description of features. In our exam-
ple, we use an X-ray image of a circular defect. The segmentation is a binary image
that gives information about the pixels that belongs to our object of interest (the
defect). Geometric features are extracted from this binary image. Moreover, inten-
sity features are extracted from the intensity image considering the pixels of the
segmentation. Some intensity features consider only the gray values inside the seg-
mented region, other ones take into account both gray values inside and outside the
region (e.g., contrast).

Fig. 5.1 Example of a region: a X-ray image, b segmented region (gray pixels), c 3D representa-
tion of the gray values

5.2 Geometric Features 171

5.2 Geometric Features

These provide information on the location, size, and shape of the segmented region.
Location and size features, such as center of mass, perimeter, Height, and width,
are given in pixels. Shape features are usually coefficients without units. It is worth
mentioning that we distinguish three different zones in the segmented image (see
Fig. 5.1b), the segmented region (gray zone �), the boundary (white edge pixels �),
and the background (black zone).

5.2.1 Basic Geometric Features

In this section, we will summarize basic geometric features that can be easily
extracted.

Height and Width
The eight and width of a region can be defined as:

h = imax − imin + 1 and w = jmax − jmin + 1, (5.1)

where imax and imin is the maximal and minimal value that takes coordinate i in
the region respectively. The same is valid for jmax and jmin in j-direction. In our
example of Fig. 5.1, h = w = 7 pixels.

Area and Perimeter
We define the area A of a region as the number of pixels that belong to the region.
On the other hand, the perimeter L is the number of pixels that belong to the bound-
ary. In the region of Fig. 5.1, the area and the perimeter are A = 45 and L = 24
pixels respectively. More accurate measurements for area and perimeter can also
be estimated [6]: for instance, the boundary of the region can be fitted to a curve
with known area and length (in our example the boundary can be fitted to a circle
with radius r = 4 pixels, so A = πr2 = 50.26 pixels and L = 2πr = 25.13 pix-
els), however, the computational time of such approaches can be extremely long if
there are thousands of regions to be measured. Moreover, the shape of the region
can be much more complex than a simple circle as shown in Fig. 4.30. We should
remember, therefore, that the goal of feature extraction is not the accurate measure-
ment, rather it is simply the extraction of features that can be used in a classification
approach to separate our classes (objects of interest from background). Thus, it is
not relevant that the measurement of the area of the region is just 45 pixels and not
50.26 pixels.

Center of Mass
This provides information about the location of the region. It is computed as the
average of coordinate i and coordinate j in pixels that belong to region �:

172 5 X-ray Image Representation

ī = 1

A

∑

i∈�
i j̄ = 1

A

∑

j∈�
j, (5.2)

where A is the area of the region, i.e., the number of pixels of the region.

Roundness
Shape features are usually attributed coefficients without units. An example is
roundness that is defined as

R = 4 · A · π

L2
(5.3)

The roundness R is a value between 1 and 0. R = 1 means a circle, and R = 0
corresponds to a region without an area. In our example, R = 4 · 45 · π/242 = 0.98.

Other Basic Features
There are some useful features that can be extracted employing pybalu Library and
pyxvis Library:

• Danielson factor: A shape factor based on the distance transform of region � [8].
• Euler Number: The number of objects in the region � minus the number of holes
in those objects [38].

• Equivalent Diameter: The diameter of a circle with the same area as the region �
[38].

• Major Axis Length and Minor Axis Length: The length (in pixels) of the major
and minor axes of the ellipse that has the same normalized second central
moments as region � [38].

• Orientation: The angle (in degrees ranging from -90 to 90 degrees) between the x-
axis and the major axis of the ellipse that has the same second moments as region
� [38].

• Solidity: The proportion of the pixels in the convex hull that are also in region �
[38].

• Extent: The ratio of pixels in region � to pixels in the total bounding box [38].
• Eccentricity: The eccentricity of the ellipse that has the same second moments as
region � [38].

• Convex Area: area of the convex hull the region � [38].
• Filled Area: area of the filled region � [38].

All basic geometric features explained in this section can be extracted by function
extract_features of pyxvis Library with parameters ’basicgeo’ and bw=R, where R
is the binary image from which the features are extracted. An example is shown in
Table 5.1, where the basic 15 geometric features (divided by 1000) are presented
for ten regions of Fig. 5.2: f1: Center of mass in i direction. f2: Center of mass
in j direction. f3: Height. f4: Width. f5: Area. f6: Perimeter. f7: Roundness. f8:
Danielsson factor. f9: Euler Number. f10: Equivalent Diameter. f11: Major Axis
Length. f12: Minor Axis Length. f13: Orientation. f14: Solidity. f15: Extent. f16:
Eccentricity. f17: Convex Area. f18: Filled Area.

5.2 Geometric Features 173

Ta
bl
e
5.
1

B
as
ic
ge
om

et
ri
c
fe
at
ur
es

of
te
n
ap
pl
es

(s
ee

Fi
g.
5.
2)

[→
E
xa
m
pl
e
5.
1

]

1
2

3
4

5
6

7
8

9
10

f 1
0.
23
71

0.
30
11

0.
32
83

0.
32
30

0.
46
53

0.
47
21

0.
46
04

0.
49
36

0.
54
59

0.
63
25

f 2
1.
43
39

0.
46
66

0.
29
72

1.
26
02

0.
47
29

1.
45
71

1.
61
17

0.
32
25

1.
31
24

0.
42
38

f 3
0.
14
80

0.
16
70

0.
16
90

0.
14
80

0.
15
10

0.
15
80

0.
13
80

0.
14
90

0.
14
30

0.
17
40

f 4
0.
15
00

0.
16
40

0.
15
80

0.
13
70

0.
12
60

0.
15
30

0.
15
30

0.
15
20

0.
14
70

0.
17
10

f 5
15
.9
18
0

19
.3
98
0

19
.1
13
0

14
.3
24
0

15
.0
45
0

18
.2
38
0

16
.9
43
0

16
.2
32
0

15
.4
25
0

20
.4
78
0

f 6
0.
46
42

0.
52
78

0.
51
02

0.
49
75

0.
47
00

0.
49
98

0.
48
13

0.
48
88

0.
46
25

0.
65
52

f 7
0.
00
09

0.
00
09

0.
00
09

0.
00
07

0.
00
09

0.
00
09

0.
00
09

0.
00
09

0.
00
09

0.
00
06

f 8
0.
00
19

0.
00
19

0.
00
19

0.
00
22

0.
00
17

0.
00
18

0.
00
16

0.
00
19

0.
00
18

0.
00
24

f 9
0.
00
10

−0
.0
01
0

0.
00
10

0.
00
20

−0
.0
01
0

0.
00
10

0.
00
10

0.
00
10

0.
00
10

−0
.0
05
0

f 1
0

0.
14
24

0.
15
72

0.
15
60

0.
13
50

0.
13
84

0.
15
24

0.
14
69

0.
14
38

0.
14
01

0.
16
15

f 1
1

0.
15
16

0.
16
61

0.
16
57

0.
15
69

0.
15
36

0.
16
08

0.
15
59

0.
15
26

0.
14
96

0.
17
91

f 1
2

0.
13
53

0.
15
12

0.
14
90

0.
11
91

0.
12
57

0.
14
58

0.
14
00

0.
13
93

0.
13
27

0.
14
94

f 1
3

0.
05
14

0.
03
30

−0
.0
73
5

0.
06
21

0.
08
33

−0
.0
69
8

0.
00
95

−0
.0
53
6

0.
04
56

0.
04
07

f 1
4

0.
00
10

0.
00
10

0.
00
10

0.
00
09

0.
00
10

0.
00
10

0.
00
10

0.
00
10

0.
00
10

0.
00
10

f 1
5

0.
00
07

0.
00
07

0.
00
07

0.
00
07

0.
00
08

0.
00
08

0.
00
08

0.
00
07

0.
00
07

0.
00
07

f 1
6

0.
00
05

0.
00
04

0.
00
04

0.
00
07

0.
00
06

0.
00
04

0.
00
04

0.
00
04

0.
00
05

0.
00
06

f 1
7

16
.3
18
0

20
.0
00
0

19
.7
45
0

15
.1
82
0

15
.5
00
5

18
.7
30
0

17
.4
14
0

17
.0
75
0

15
.8
88
5

21
.5
08
5

f 1
8

15
.9
18
0

19
.4
00
0

19
.1
13
0

14
.3
24
0

15
.0
47
0

18
.2
38
0

16
.9
43
0

16
.2
33
0

15
.4
25
0

20
.5
36
0

174 5 X-ray Image Representation

Fig. 5.2 X-ray image of ten apples. [→ Example 5.1]

Python Example 5.1: In this example, we show how to extract the basic geo-
metric features of ten apples as segmented in Fig. 5.2. The segmentation in this
example is performed by thresholding the X-ray image and by selecting those seg-
mented objects that present an appropriate size (area).

Listing 5.1 : Basic geometric features

import numpy as np
import matplotlib.pyplot as plt
from skimage.measure import label
from pyxvis.features.extraction import extract_features

Input Image
fig = plt.figure()
ax = fig.add_subplot(111)
img = plt.imread(’../images/N0001_0004b.png’)
implot = plt.imshow(img,cmap=’gray’)

Segmentation
R = img>0.27 # thresholding of light objects
L = label(R) # labeling of objects
n = np.max(L) # number of detected objects
T = np.zeros((n,18)) # features of each object will stored in a row

Analysis of each segmented object
t = 0 # count of recognized fruits
for i in range(n):

R = (L == i)*1 # binary image of object i
f = extract_features(’basicgeo’,bw=R) # feature extraction for object i
area = f[4]
recognition of fruits according to the size
if area>14000 and area<21000:

T[t,:] = f # storing the features of the fruit t
t = t+1
labeling each recognized fruit in the plot
ax.text(f[1]−20, f[0]+10, str(t), fontsize=12,color=’Red’)

Display and save results

5.2 Geometric Features 175

plt.show()
F = T[0:t,:]
print(’Basic Geo−Features:’)
print(F)
np.save(’GeoFeatures.npy’,F) # save features

The output of this code is shown in Fig. 5.2 and Table 5.1. The reader can observe
the use of function extract_features to extract the basic geometric features. �

5.2.2 Elliptical Features

Elliptical features can be used to extract information about location, size, and shape
of a region. They are extracted from a fitted ellipse to the boundary of the region
[14]. From this ellipse, we can extract the center, the length of the axes, the orienta-
tion, and the eccentricity.

The pixels of the boundary are defined as (xi , yi) for i = 1 . . . L . It is well known
that an ellipse is defined as

ax2 + bxy + cy2 + dx + ey + f = 0, (5.4)

that can be written as aTx = 0, where a = [a b c d e f]T is a vector that includes
the parameters of the ellipse and x = [x2 xy y2 x y 1]T is a vector that includes the
coordinates of a point (x, y) that lies on the ellipse.

If our region is elliptical, then for each point (xi , yi), we have aTxi = 0 with
xi = [x2

i xi yi y2i xi yi 1]T. Nevertheless, in practice, the regions are not perfectly
elliptical, not only because real regions have different shapes but also there is a
discretization error when forming a digital image. For this reason, we look for a
vector a so that aTxi → min for every point i = 1 . . . L . That is, we can formulate
the estimation of the parameters of the ellipse as an optimization problem as follows:

‖ Xa ‖→ min, (5.5)

where X is matrix with L rows whose i th row is xTi . Usually, a solution can be found
by minimizing (5.5) subject to ‖ a ‖= 1. In this case, a is the last column of matrix
V, where X = USVT is the singular value decomposition (SVD) of X [21].

The elliptical features can be extracted by writing (5.4) as follows:

(
x − x0

ae

)2

+
(

y − y0
be

)2

= 1, (5.6)

where

ae = 1√
s ap

, be = 1√
s bp

(5.7)

176 5 X-ray Image Representation

with

s = 1

v − f
v = tTTt

T =
[

a b/2
b/2 c

]
t =

[
x0
y0

]
= 1

2
T−1

[
d
e

]

ap = a cos2(α) + b cos(α) sin(α) + c sin2(α)

bp = a sin2(α) − b cos(α) sin(α) + c cos2(α)

and

α = 1

2
arctan

(
b

a − c

)
. (5.8)

The axes of the ellipse are defined by ae and be, the center of the ellipse is located
on (x0, y0) and the orientation is α. Thus, the eccentricity is defined by

ex = min(ae, be)

max(ae, be)
. (5.9)

For circular shapes, the eccentricity as the roundness (5.3), takes values between 0
and 1, where 1 means a perfect circle.

Python Example 5.2: In this example, we show how to extract elliptical fea-
tures of a shape. We test this approach on an X-ray of a cherry with an elliptical
shape as shown in Fig. 5.3.

Listing 5.2 : Elliptical boundary of a fruit

import matplotlib.pyplot as plt

from pyxvis.processing.segmentation import seg_bimodal
from pyxvis.features.extraction import extract_features
from pyxvis.io.plots import plot_ellipses_image

img = plt.imread(’../images/N0006_0003b.png’) # input image with a fruit
R,_, = seg_bimodal(img) # segmentation
fxell = extract_features(’ellipse’,bw=R) # extraction of elliptical features
print(’Elliptical Features:’) # show results
print(fxell) # print elliptical features
plot_ellipses_image(img,fxell) # draw ellipse onto image

The output of this code is shown in Fig. 5.3. The elliptical features are extracted by
function extract_features of pyxvis Library with parameters ’ellipse’ and bw=R,
where R is the binary image from which the features are extracted. Additionally,

5.2 Geometric Features 177

Fig. 5.3 Elliptical features of a cherry. In this example, the extracted features are the coordinates
of the center of the ellipse (i0 = 149.12, j0 = 139.87), the estimated length of each axis are 92.73
and 74.50 pixels, the orientation (with respect to vertical axis in a counterclockwise direction) is

−43.740, the eccentricity is 0.8033, and the area is 21704 pixels. [→ Example 5.2]

the ellipse can be superimposed onto the original X-ray image using function
plot_ellipses_image of pyxvis Library to see the estimated ellipse. �

5.2.3 Fourier Descriptors

Shape information—invariant to scale, orientation and position—can be measured
using Fourier descriptors [5, 52, 65]. The coordinates of the pixels of the boundary
are arranged as a complex number ik + j · jk , with j = √−1 and k = 0, ..., L − 1,
where L is the perimeter of the region, and pixel k and k + 1 are connected. The
complex boundary function can be considered as a periodical signal of period L .
The discrete Fourier transformation [4] gives a characterization of the shape of the
region. The Fourier coefficients are defined by

Fn =
L−1∑

k=0

(ik + j · jk)e
− j 2πkn

L forn = 0, ..., L − 1. (5.10)

The Fourier descriptors correspond to the coefficients Fn for n > 0. The Fourier
coefficient F0 is not used because it gives information about the location of the
region. The magnitude and phase of Fourier descriptors give information about ori-
entation and symmetry of the region. In general, only the magnitude |Fn| is used.
Fourier descriptors are invariant under rotation. The Fourier descriptors of our exam-
ple in Fig. 5.1a are illustrated in Fig. 5.4. The first pixel of the periodic function is
(i0, j0) = (6, 10) . In case the region is a perfect circle, |Fn| = 0 for 1 < n < L
because (ik, jk) represent a perfect sinusoid. In our example, the region is not a

178 5 X-ray Image Representation

Fig. 5.4 Coordinates of the boundary of region of Fig. 5.1 and the Fourier descriptors

perfect circle, however, as we can see the Fourier descriptors are very small for
2 < n < L .

Fourier descriptors can be extracted using function extract_features of pyxvis
Library with parameters ’fourier’ and bw=R, where R is the binary image from
which the features are extracted.

5.2.4 Invariant Moments

The statistical moments are defined by

mrs =
∑

i, j∈�
ir j s for r, s ∈ N, (5.11)

where � is the set of pixels that belong to the region (see gray pixels in Fig. 5.1b).
In this example, pixel (i = 4, j = 6) ∈ �. The parameter r + s corresponds to the
order of the moment. The reader can demonstrate that the zeroth moments m00 is
equal to the area A of the region. Moreover, the center of mass of the region is easily
defined by

ī = m10

m00
j̄ = m01

m00
. (5.12)

The reader can compare this definition with (5.2). The coordinates of the center of
mass can be computed using function extract_features of pyxvis Library with param-
eters ’centroid’ and bw=R, where R is the binary image from which the centroid
is computed.

The center of mass and statistical moments of higher order, however, are not
invariant to the location of the region. This can be useful for detecting objects that
must be in certain locations. Nevertheless, when objects of interest may be every-
where in the image we must use features that are invariant to the position. Using the
center of mass, the central moments are defined. They are invariant to the position:

5.2 Geometric Features 179

μrs =
∑

i, j∈�
(i − ī)r (j − j̄)s for r, s ∈ N. (5.13)

Other known moments that can be used are the well-known Hu-moments [22,
57]. These were developed using the central moments as follows:

φ1 = η20 + η02
φ2 = (η20 − η02)

2 + 4η2
11

φ3 = (η30 − 3η12)2 + (3η21 − η03)
2

φ4 = (η30 + η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + ηs12)[(η30 + η12)
2 − 3(η21 + η03)

2]+
(3η21 − η03)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]+
4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]−
(η30 − 3η12)(η21 + η03)[3(η30 + η12)

2 − (η21 + η03)
2]

(5.14)

with

ηrs = μrs

μt
00

t = r + s

2
+ 1.

Hu-moments are invariant to translation, rotation, and scale. That means that regions
that have the same shape, but have a different size, location, and orientation, will
have similar Hu-moments.

In addition, there are similar invariant features, called Gupta moments, that are
derived from the pixels of the boundary (instead of the region) [19]. They are invari-
ant to translation, rotation, and scale.

Sometimes, it is necessary to have features that are invariant to affine transforma-
tion as well (see Sect. 3.2.2). For this reason Flusser moments, i.e., features invariant
to translation, rotation, scale, and affine transformations were derived from second-
and third-order central moments [15, 56]:

I1 = (μ20μ02 − μ2
11)/μ

4
00

I2 = (μ2
30μ

2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12 + 4μ3

21μ03 − 3μ2
21μ

2
12)/μ

10
00

I3 = (μ20(μ21μ03 − μ2
12) − μ11(μ30μ03 − μ21μ12) + μ02(μ30μ12 − μ2

21))/μ
7
00

I4 = (μ3
20μ

2
03 − 6μ2

20μ11μ12μ03 − 6μ2
20μ02μ21μ03 + 9μ2

20μ02μ
2
12+12μ20μ

2
11μ21μ03 + 6μ20μ11μ02μ30μ03 − 18μ20μ11μ02μ21μ12

−8μ3
11μ30μ03 − 6μ20μ

2
02μ30μ12 + 9μ20μ

2
02μ21

+12μ2
11μ02μ30μ12 − 6μ11μ

2
02μ30μ21 + μ3

02μ
2
30)/μ

11
00.

(5.15)

Python Example 5.3: In this example, we show how to measure invariant
moments that can be used as a shape feature of objects of interest. We tested this
approach on an X-ray containing ten apples. We superimpose onto this image four

180 5 X-ray Image Representation

Fig. 5.5 First Hu-moment (φ1) of apples and rectangles. Since φ1 for apples is approximately 163
and for these rectangles is 279, it is evident that this feature can be used to discriminate them from

each other. [→ Example 5.3]

rectangles the size of which is a × b pixels (where b = 3a). The rectangles are
located in horizontal and vertical directions as shown in Fig. 5.5. Thus, we can sim-
ulate an input X-ray image containing apples and rectangles. The idea is to separate
them. We see that the first Hu-moment can be used to effectively discriminate apples
from rectangles.

Listing 5.3 : Detection using invariant moments

import matplotlib.pyplot as plt
import numpy as np
from skimage.measure import label
from pyxvis.features.extraction import extract_features

fig = plt.figure()
ax = fig.add_subplot(111)
img = plt.imread(’../images/N0001_0004b.png’)
img[100:399,750:849] = 0.5
img[500:699,850:916] = 0.75
img[20:119,100:399] = 0.6
img[90:156,1000:1199] = 0.75
implot = plt.imshow(img,cmap=’gray’)
R = img>0.27 # segmentation
L = label(R) # labeling
n = np.max(L) # number of segmented objects
t = 0
T = np.zeros((n,7))
for i in range(n):

R = (L == i)*1 # binary image of object i
fx = [’basicgeo’,’hugeo’]
f = extract_features(fx,bw=R) # feature extraction
area = f[4]
recognition of fruits according to the size
if area>10000 and area<31000:

h = f[18:] # hu moments
T[t,:] = h
t = t+1

5.2 Geometric Features 181

x = round(1000*h[0]) # first hu moment
ax.text(f[1]−20, f[0]+10, str(int(x)), fontsize=12,color=’Red’)

plt.show()
F = T[0:t,:]
print(’Hu Features:’)
print(F)
np.save(’HuFeatures.npy’,F) # save features

The output of this code is shown in Fig. 5.5. In this example, the features (basic
geometric features for centroid and area, and Hu-moments) are computed by func-
tion extract_features of pyxvis Library with parameters [’basicgeo’,’hugeo’]
and bw=R, where R is the binary image from which the features are extracted. The
output of this function is a vector f computed by concatenation of two vectors,
one for the basic geometric features (of 18 elements) and one for the Hu-moments
(of 7 elements). Thus, the first Hu-moment is stored in f[18]. The reader can test
Flusser and Gupta moments using functions parameters ’flusser’ and ’gupta’
respectively in function extract_features. �

5.3 Intensity Features

These provide information about the intensity of a region. For gray value images,
e.g.., X-ray images, there is only one intensity channel. The following features are
computed using the gray values in the image, where x(i, j) denotes the gray value
of pixel (i, j).

5.3.1 Basic Intensity Features

In this section, we summarize basic intensity features that can be easily extracted.

Mean gray value
The mean gray value of the region is computed as

G = 1

A

∑

i, j∈�
x(i, j), (5.16)

where � is the set of pixels of the region and A the area. A 3D representation of the
gray values of the region and its neighborhood of our example is shown in Fig. 5.1.
In this example, G = 121.90 (G = 0 means 100% black and G = 255 corresponds
to 100% white).

Mean Gradient in the Boundary
This feature gives information about the change of the gray values in the boundary
of the region. It is computed as

182 5 X-ray Image Representation

C = 1

L

∑

i, j∈�

x ′(i, j), (5.17)

where x ′(i, j) means the gradient of the gray value function in pixel (i, j) (see
Sect. 4.4.1) and � the set of pixels that belong to the boundary of the region. The
number of pixels of this set corresponds to L , the perimeter of the region. Using a
Gaussian gradient operator in our example in Fig. 5.1, we obtain C = 35.47.

Mean Second Derivative
This feature is computed as

D = 1

A

∑

i, j∈�
x ′′(i, j), (5.18)

where x ′′(i, j) denotes the second derivate of the gray value function in pixel (i, j).
The Laplacian-of-Gauss (LoG) operator can be used to calculate the second derivate
of the image. If D > 0, we have a region that is darker than its neighborhood as
shown in Fig. 4.18.

Other Basic Features
A simple texture feature is the local variance [24]. This is given by:

σ 2
g = 1

4hb + 2h + 2b

2h+1∑

i=1

2b+1∑

j=1

, (g(i, j) − ḡ)2 (5.19)

where ḡ denotes the mean gray value in the zone.
Other basic intensity features such as kurtosis and skewness can be computed

as (5.19). All intensity geometric features explained in this section can be extracted
by command basic_int_features of pybalu library. An example is shown in
Table 5.2, where the basic six intensity features are presented for ten regions of Fig.
5.2: f1: Intensity mean. f2: Intensity standard deviation. f3: Intensity kurtosis. f4:
Intensity skewness. f5: Mean Laplacian. f6: Mean boundary gradient.

Table 5.2 Basic intensity features of apples of Fig. 5.2 [→ Example 5.4]

1 2 3 4 5 6 7 8 9 10

f1 0.5974 0.6213 0.6600 0.5416 0.6064 0.5999 0.6294 0.5704 0.5892 0.5321

f2 0.1482 0.1651 0.1744 0.1283 0.1671 0.1492 0.1563 0.1426 0.1474 0.1175

f3 2.1264 2.0493 2.2211 2.1782 1.8771 2.0972 2.2371 1.9955 2.0586 2.4228

f4 −0.5083 −0.3613 −0.4826 −0.4042 −0.3009 −0.4695 −0.5713 −0.3677 −0.4328 −0.3964

f5 −0.0011 −0.0013 −0.0012 −0.0013 −0.0012 −0.0011 −0.0013 −0.0011 −0.0013 −0.0012

f6 0.0360 0.0365 0.0397 0.0313 0.0345 0.0356 0.0438 0.0329 0.0355 0.0307

5.3 Intensity Features 183

Python Example 5.4: In this example, we show how to extract basic intensity
features of ten apples as segmented in Fig. 5.2.

Listing 5.4 : Basic intensity features

import numpy as np
import matplotlib.pyplot as plt
from skimage.measure import label
from pyxvis.features.extraction import extract_features

fig = plt.figure()
ax = fig.add_subplot(111)
img = plt.imread(’../images/N0001_0004b.png’)
implot = plt.imshow(img,cmap=’gray’)
R = img>0.27 # segmentation
L = label(R) # labeling
n = np.max(L) # number of segmented regions
t = 0
T = np.zeros((n,6))
for i in range(n):

R = (L == i)*1 # binary image of object i
f = extract_features(’basicgeo’,bw=R)
area = f[4]
recognition of fruits according to the size
if area>14000 and area<21000:

extract int features only in the segmented region
h = extract_features(’basicint’,img=img,bw=R)
T[t,:] = h
t = t+1
ax.text(f[1]−20, f[0]+10, str(t), fontsize=12,color=’Red’)

plt.show()
F = T[0:t,:]
print(’Basic Int−Features:’)
print(F)
np.save(’IntFeatures.npy’,F) # save features

The output of this code is shown in Fig. 5.2 and Table 5.2. The basic geometric
features are extracted by function extract_features of pyxvis Library with parameters
’basicint’, img=img, and bw=R, where img is the original X-ray image and R is
the binary image that indicates the pixels where the intensity features are extracted.

�

5.3.2 Contrast

The contrast gives a measure of the difference in the gray value between region and
its neighborhood. The smaller the gray value difference, the smaller the contrast.
In this work, region and neighborhood define a zone. The zone is considered as a
window of the image:

g(i, j) = x(i + ir , j + jr) (5.20)

for i = 1, ..., 2h + 1 and j = 1, ..., 2w + 1, where h and w are the height and width
as expressed in (5.1). The offsets ir and jr are defined as ir = ī − h − 1 y jr =

184 5 X-ray Image Representation

j̄ − b − 1, where (ī, j̄) denotes the center of mass of the region as computed in
(5.12).

Contrast is a very important feature in fault detection, as the differences in the
gray values are good for distinguishing a region from its neighborhood. The smaller
the gray value difference, the smaller the contrast. In order to visualize the contrast,
we can use a 3D representation with three coordinates (x, y, z), where (x, y) are
used to represent the location of a pixel (i, j), and z is used for the representation of
the gray value. An example is illustrated in Fig. 5.1c that shows the 3D representa-
tion of Fig. 5.1a. The reader can observe in this example a high-contrast region.

There are many definitions of contrast. A common definition of contrast is given
using texture features (as explained in Sect. 5.3.5). Other simple definitions of con-
trast are given in [26, 56]:

K1 = G − Ge

Ge
, K2 = G − Ge

G + Ge
y K3 = ln(G/Ge), (5.21)

where G an Ge denote the mean gray value in the region and in the neighborhood
respectively.

Two further definitions of contrast are given in [41] where new contrast features
are suggested. According to Fig. 5.6, these new features can be calculated in four
steps: (i) we take a profile in i direction and in j direction centered in the mass
center of the region (see P1 and P2 respectively); (ii) we calculate the ramps R1 and
R2 that are estimated as a first-order function that contains the first and last points
of P1 and P2; (iii) new profiles without background are computed as Q1 = P1 − R1

and Q2 = P2 − R2 (they are stored together as Q = [Q1 Q2]); (iv) the new contrast
features are given by

Kσ = σQ and K = ln(Qmax − Qmin). (5.22)

Another definition of contrast can be found in [28], where the contrast is given by
the mean of absolute differences between pixel values and mean of adjacent (e.g.,
eight adjacent pixels):

Fig. 5.6 Computation of Q for contrast features for region of Fig. 5.1: a Profile in i direction,
b profile in j direction, c fusion of profiles: Q = [Q1 Q2]

5.3 Intensity Features 185

Fig. 5.7 Detection of small defects in apples using area contrast features: input image, edge detec-

tion, labeled regions, and detection. [→ Example 5.5]

Kc = 1

AT

∑

(i, j)∈T
|g(i, j) − μA(i, j), |. (5.23)

where AT is the area of the region and its neighborhood and μA(i, j) is the mean
value of pixels locations adjacent of pixel (i, j).

Python Example 5.5: In this example, we show how to detect small defects
in an X-ray image of a casting (see Fig. 5.7) using area and contrast features. We
follow the general block diagram of Fig. 4.30. Here, area and contrast features are
extracted for each region as defined by enclosed edges. The detection is performed
if the size of the region is between some thresholds and the contrast is high enough.

Listing 5.5 : Defects detections using area and contrast features

import numpy as np
import matplotlib.pyplot as plt
from pyxvis.processing.images import gradlog
from skimage.measure import label
from pyxvis.features.extraction import extract_features

img = plt.imread(’../images/small_wheel.png’) # input image with a defect
(N,M) = img.shape
e = gradlog(img,1.25,4/250)
L = label(~e) # labeling of objects
n = np.max(L) # number of detected objects

K1 = np.zeros((N,M), dtype=bool)
K2 = np.zeros((N,M), dtype=bool)
Analysis of each segmented object
for i in range(n):

R = (L == i) # binary image of object i
f = extract_features(’basicgeo’,bw=R*1) # feature extraction for object i
area = f[4]
recognition of potential defects according to the size
if area>20 and area<40:

K1 = np.bitwise_or(K1,R)
i0 = int(round(f[0]))
j0 = int(round(f[1]))
h = int(round(f[2]/2))
w = int(round(f[3]/2))
i1 = max(i0−h,0)
j1 = max(j0−w,0)

186 5 X-ray Image Representation

i2 = min(i0+h,N−1)
j2 = min(j0+w,M−1)
I = img[i1:i2,j1:j2]
bw = R[i1:i2,j1:j2]
x = extract_features(’contrast’,img=I,bw=bw)
if x[3]>1.5:

print(’contrast features:’)
print(x)
print(’area = ’+str(area)+’ pixels’)
K2 = np.bitwise_or(K2,R)

fig, ax = plt.subplots(1, 4, figsize=(16, 8))
ax[0].imshow(img, cmap=’gray’)
ax[0].set_title(’Original image’)
ax[0].axis(’off’)
ax[1].imshow(e, cmap=’gray’)
ax[1].set_title(’Edges’)
ax[1].axis(’off’)
ax[2].imshow(K1, cmap=’gray’)
ax[2].set_title(’Potential defects’)
ax[2].axis(’off’)
ax[3].imshow(K2, cmap=’gray’)
ax[3].set_title(’Detected defects’)
ax[3].axis(’off’)
plt.show()

The output of this code is shown in Fig. 5.7. In this example, the contrast features
are extracted using function extract_features of pyxvis Librarywith parameters img=I
and bw=bw, i.e., for the grayscale image Iwith a potential defect located at the pixels
equals to ‘1’ of binary image bw. In this example, we use feature Kσ from (5.22)
that is stored in variable x[3]. �

5.3.3 Crossing Line Profiles

An approach based on crossing line profiles (CLP) was originally developed to
detect aluminum casting defects [39], however, it can be used to detect spots in
general, or regions that have some gray value difference with their neighborhood.
As the contrast between a defect and a defect-free neighborhoods is distinctive, the
detection is usually performed by thresholding this feature (as we already learned in
Sect. 5.3.2). Nevertheless, this measurement suffers from accuracy error when the
neighborhood is not homogeneous, for example, when a defect is at an edge of a
regular structure of the test object (see Fig. 4.31). For this reason, many approaches
use a priori information about the location of regular structures of the test piece.
CLP is able to detect those defects without a priori knowledge using crossing line
profiles, i.e., the gray level profiles along straight lines crossing each segmented
potential region in the middle. The profile that contains the most similar gray levels
in the extremes is selected. Hence, the homogeneity of the neighborhood is ensured.
Features from the selected profile are extracted.

In this approach, we follow a simple automated segmentation approach based on
Fig. 4.30 and Fig. 4.31. The steps of detection based on CLP are shown in Fig. 5.8.
First, a LoG kernel and a zero-crossing algorithm are used to detect the edges of the

5.3 Intensity Features 187

Fig. 5.8 Detection of flaws: a radioscopic image with a small flaw at an edge of a regular structure,
b Laplacian-filtered image with σ = 1.25 pixels (kernel size = 11 × 11), c zero crossing image,
d gradient image, e edge detection after adding high gradient pixels, and f detected flaw using

feature F1 extracted from a crossing line profile. [→ Example,5.6]

X-ray images. The LoG-operator involves a Gaussian low-pass filter which is a good
choice for the pre-smoothing of our noisy images that are obtained without frame
averaging. The resulting binary edge image should produce at real defects closed
and connected contours which demarcate regions. However, a region of interest may
not be perfectly enclosed if it is located at an edge of a regular structure as shown
in Fig. 5.8c. In order to complete the remaining edges of these defects, a thickening
of the edges of the regular structure is performed as follows: (a) the gradient of the
original image is calculated (see Fig. 5.8d); (b) by thresholding the gradient image
at a high gray level a new binary image is obtained; and (c) the resulting image is
added to the zero-crossing image (see Fig. 5.8e). Afterwards, each closed region is
segmented as a potential flaw. For details, see a description of the method in [40].

This is a very simple detector of potential regions with a large number of false
detections flagged erroneously. However, the advantages are as follows: (i) it is a
single detector (it is the same detector for each image), (ii) it is able to identify
potential defects independent of the placement and the structure of the specimen,
i.e., without a priori information of the design structure of the test piece, and (iii)
the detection rate of real flaws is very high (approximately 90%). In order to reduce
the number of the false positives, the segmented regions must be measured and
classified.

188 5 X-ray Image Representation

A segmented potential region is defined as a region enclosed by edges of the
binary image obtained in the edge detection (see connected black pixels in Fig.
5.8e). For each segmented region, a window g is defined from the X-ray image x as:
g(i, j) = x(i + ir , j + jr) for i = 1 . . . 2h + 1, and j = 1 . . . 2w + 1, where h and
w are the height and width of the region as defined in (5.1). The offsets ir and jr are
defined as ir = ī − h − 1 and jr = j̄ − w − 1, where (ī, j̄) denotes the coordinates
of the center of mass of the region (5.12), rounded to the nearest integers. Hence, g
is a window of size (2h + 1) × (2w + 1), in which the middle pixel corresponds to
the center of mass of the segmented potential flaw, i.e., g(h + 1, w + 1) = x(ī, j̄).

Now, we define the crossing line profile Pθ as the gray-level function along a
straight line of window g through the middle pixel (h + 1, w + 1) forming an angle
θ with i-axis. In Sect. 5.3.2, P0 and Pπ/2 were analyzed together in order to obtain
two features, K and Kσ , that give a measurement of the difference between maxi-
mum and minimum, and the standard deviation of both crossing line profiles. How-
ever, the analysis does not take into account that the profiles could include a non-
homogeneous area. For example, if a non-defect region is segmented at an edge of
a regular structure, it could be that P0 (or Pπ/2) includes a significant gray-level
change of the regular structure. In this case, the variation of the profile will be large
and therefore the region will be erroneously classified as defect.

In order to avoid this problem, we suggest an individual analysis of eight cross-
ing line profiles Pθ , at θ = kπ/8, for k = 0, ..., 7, as illustrated in Fig. 5.9. In this
analysis, the crossing line profile that contains the most similar gray levels in the
extremes is selected. Hence, the attempt is made to ensure the homogeneity of the
neighborhood filtering out those profiles that present a high gray-level change in
the edge of the regular structure. In the example of Fig. 5.9, the selected profile is
obtained for k = 5, where the gray values of the extremes are both approximately
equal to 150. We can observe that the selected crossing line is approximately per-
pendicular to the direction of the gradient of the X-ray image without defect. This
coincides with one of the criteria used by approaches with a priori knowledge: the
selected pixels of the defect-free area are located perpendicular to the direction of
the gradient of the piece’s contour [42].

Before the features are extracted, a pre-processing of the selected crossing line
profile is performed as follows: (1) The selected profile is resized to size n = 32
using the nearest neighbor interpolation. The resized profile will be denoted by P .
(2) In order to obtain a defect profile without the background of the regular structure,
P is linearly transformed by Qi = m Pi + b, for i = 1, ..., n, where m and b are so
chosen that Q1 = Qn = 0.

Finally, the proposed features are extracted from the normalized profile Q. They
are defined as follows:

Q̄ = mean(Q)

σQ = std(Q)

	Q = max(Q) − min(Q)

Fi = ∑n−1
k=0 Qk+1e− j 2πki

n fori = 1, ..., 4.

(5.24)

5.3 Intensity Features 189

Fig. 5.9 Crossing line profiles for the window shown in Fig. 5.8a. [→ Example 5.6]

That is Q̄: mean of Q; σQ : standard deviation of Q; 	Q : difference between max-
imum and minimum of Q; and Fi : magnitude of the i th harmonic of the discrete
Fourier transform of Q for i = 1, ..4.

Python Example 5.6: In this example, we show how to detect a very small
casting defect that is located at the edge of a regular structure as illustrated in Fig.
5.8 using area and CLP features. We follow the general block diagram of Fig. 4.30.
That is area and contrast features are extracted for each region defined by enclosed
edges. The detection is performed in two steps: (i) we detect potential defects, i.e.,
regions that are enclosed by edges that have a size between some thresholds, and
(ii) we select from the potential defects those regions that have a CLP feature high
enough. CLP feature is extracted from a window of the image that contains the
potential defect in the middle.

Listing 5.6 : Defects detections using area and CLP features

import numpy as np
import matplotlib.pyplot as plt

from pyxvis.processing.images import gradlog
from pyxvis.features.extraction import extract_features

190 5 X-ray Image Representation

from skimage.measure import label

img = plt.imread(’../images/small_wheel.png’) # input image with a defect
(N,M) = img.shape
e = gradlog(img,1.25,4/250)
L = label(~e) # labeling of objects
n = np.max(L) # number of detected objects

K1 = np.zeros((N,M), dtype=bool)
K2 = np.zeros((N,M), dtype=bool)

Analysis of each segmented object
for i in range(n):

R = L == i # binary image of object i
f = extract_features(’basicgeo’, bw=R*1) # feature extraction for object i
area = f[4]

recognition of potential defects according to the size
if area > 10 and area < 40:

K1 = np.bitwise_or(K1,R)
i0 = int(round(f[0]))
j0 = int(round(f[1]))
h = int(round(f[2]/2))
w = int(round(f[3]/2))
i1 = max(i0−h,0)
j1 = max(j0−w,0)
i2 = min(i0+h,N−1)
j2 = min(j0+w,M−1)
I = img[i1:i2,j1:j2]
x = extract_features(’clp’, img=I)
if x[5]>0.4:

K2 = np.bitwise_or(K2,R)

fig, ax = plt.subplots(1, 4, figsize=(16, 8))
ax[0].imshow(img, cmap=’gray’)
ax[0].set_title(’Original image’)
ax[0].axis(’off’)
ax[1].imshow(e, cmap=’gray’)
ax[1].set_title(’Edges’)
ax[1].axis(’off’)
ax[2].imshow(K1, cmap=’gray’)
ax[2].set_title(’Potential defects’)
ax[2].axis(’off’)
ax[3].imshow(K2, cmap=’gray’)
ax[3].set_title(’Detected defects’)
ax[3].axis(’off’)
plt.show()

The output of this code is shown in Figs. 5.8 and 5.9. In this example, the edges
are detected using command gradlog of pyxvis Library, that computes the logical OR
of edge detection using LoG and edge detection by thresholding the gradient. The
contrast features are extracted using command extract_features of pyxvis Library with
parameters ’clp’, img=I, where I is an image that contains the potential defects in
the middle. In this example, we use features F1 from (5.24). �

CLP features were tested on detecting casting defects. In this experiment, 50 X-
ray images of aluminum wheels were analyzed. In the segmentation, approximately
23,000 potential flaws were obtained, in which there were 60 real defects. Some of
these were existing blow holes. The other defects were produced by drilling small
holes in positions of the casting which were known to be difficult to detect. In the

5.3 Intensity Features 191

Fig. 5.10 Class distribution
of CLP feature F1 in
detection of casting defects

performance analysis, the best result was achieved by our feature F1 (5.24). The
class distribution between class ‘defect’ and ‘non-defect’ (or regular structure) is
illustrated in Fig. 5.10. The reader can observe the effectiveness of the separation
clearly. For more details, see [39].

5.3.4 Intensity Moments

In intensity moments, we use statistical moments (5.11) including gray value infor-
mation [56]:

m ′
rs =

∑

i, j∈�
ir j s x(i, j) for r, s ∈ N. (5.25)

The summation is computed over the pixels (i, j) of the region � only. Thus, it is
possible to compute Hu, Flusser, and Gupta moments, as explained in Sect. 5.2.4
using the gray value information of the region. Hu-moments with intensity informa-
tion can be computed by function extract_features of pyxvis Library with parameters
’huint’, img=img, and bw=R, where img is an X-ray image and R is the binary
image that indicates the pixels where the intensity moments are extracted.

5.3.5 Statistical Textures

These features provide information about the distribution of the gray values in the
image. In this work, however, we restrict the computation of the texture features for
a zone only defined as region and neighborhood (see Eq. 5.20).

Statistical texture features can be computed using the co-occurrence matrix Pkl

[20]. The element Pkl(i, j) of this matrix for a zone is the number of times, divided

192 5 X-ray Image Representation

by NT , that gray levels i and j occur in two pixels separated by that distance and
direction given by the vector (k, l), where NT is the number of pixels pairs contribut-
ing to build matrix Pkl . In order to decrease the size Nx × Nx of the co-occurrence
matrix, the grayscale is often reduced to 8 gray levels. From the co-occurrence
matrix, several texture features can be computed. Haralick in [20] proposes (here
p(i, j) := Pkl(i, j)):

Angular second moment: f1 = ∑Nx
i=1

∑Nx
j=1[p(i, j)]2

Contrast: f2 = ∑Nx −1
n=0 n2

∑Nx
i=1

∑Nx
j=1 p(i, j)for |i − j | = n

Correlation: f3 = 1
σx σy

∑Nx
i=1

∑Nx
j=1

[
i j · p(i, j) − μx μy

]2

Sum of squares: f4 = ∑Nx
i=1

∑Nx
j=1(i − j)2 p(i, j)

Inverse difference moment: f5 = ∑Nx
i=1

∑Nx
j=1

p(i, j)
1+(i− j)2

Sum average: f6 = ∑2Nx
i=2 i · px+y(i)

Sum variance: f7 = ∑2Nx
i=2 (i − f8) · px+y(i)

Sum entropy: f8 = −∑2Nx
i=2 px+y(i) · log(px+y(i))

Entropy: f9 = −∑Nx
i=1

∑Nx
j=1 p(i, j) log(p(i, j))

Difference variance: f10 = var(px+y)

Difference entropy: f11 = −∑Nx −1
i=0 px−y(i) · log(px−y(i))

Information measures of correlation 1: f12 = f9−H XY1
max (H X,HY)

Information measures of correlation 2: f13 = √
1 − exp (−2(H XY2 − H XY))

Maximal correlation coefficient: f14 = √
λ2

(5.26)

whereμx ,μy , σx , and σy are the means and standard deviations of px and py respec-
tively with

px = ∑Nx
j=1 p(i, j)

py = ∑Nx
i=1 p(i, j)

px+y(k) = ∑Nx
i=1

∑Nx
j=1i+ j=k p(i, j) for k = 2, 3, ...2Nx

px−y(k) = ∑Nx
i=1

∑Nx
j=1|i− j |=k p(i, j) for k = 0, 1, ...Nx − 1

,

and
H X = −∑Nx

i=1 px (i) log (px (i))
HY = −∑Nx

j=1 py(j) log (py(j))

H XY1 = −∑Nx
i=1

∑Nx
j=1 p(i, j) log (px (i)py(j))

H XY2 = −∑Nx
i=1

∑Nx
j=1 px (i)py(j) log (px (i)py(j))

.

.

In f14, λ2 is the second largest eigenvalue of Q defined by

5.3 Intensity Features 193

Q(i, j) = ∑Nx
k=1

p(i,k)p(j,k)

px (i)py(k)

.

The texture features are extracted for four directions (0◦–180◦, 45◦–225◦, 90◦–
270◦, and 135◦–315◦) in different distances d = max(k, l). That is, for a given dis-
tance d, we have four possible co-occurrence matrices: P0d , Pdd , Pd0, andP−dd . For
example, for d = 1, we have (k, l) = (0,1); (1,1); (1,0); and (−1,1). After Haralick,
14 texture features using each co-occurrence matrix are computed (5.26), and the
mean and range for each feature are calculated, i.e., we obtain 14 × 2 = 28 texture
features for each distance d. The features will be denoted as f̄i for the mean and f 	

i
for the range, for i = 1 . . . 14.

The statistical textures based on Haralick can be computed by function
extract_features of pyxvis Library with parameters ’haralick-d’ and img=img,
where img is the input X-ray image and d is the distance d defined above. In pyxvis
Library, Haralick features are averaged for all four directions (0, d), (d, d), (d, 0),
and (−d, d), so we obtain a sort of rotation invariant feature.

5.3.6 Gabor

The Gabor functions are Gaussian shaped band-pass filters, with dyadic treatment
of the radial spatial frequency range and multiple orientations, which represent an
appropriate choice for tasks requiring simultaneous measurement in both space and
frequency domains. The Gabor functions are a complete (but a nonorthogonal) basis
set given by

f (x, y) = 1

2πσxσy
exp

(
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

)
,

)
(5.27)

where σx and σy denote the Gaussian envelope along the x and y-axes, and u0

defines the radial frequency of the Gabor function. Examples of Gabor functions are
illustrated in Fig. 5.11. In this case, a class of self-similar functions are generated
by rotation and dilation of f (x, y).

Each Gabor filter has a real and an imaginary component that are stored in M ×
M masks, called Rpq and Ipq respectively, where p = 1 . . . S, denotes the scale, and
q = 1 . . . L , denotes the orientation (for details see [30]). Usually, S = 8 scales, and
L = 8 orientations as shown in Fig. 5.11, with M = 27.

The Gabor filters are applied to each segmented window W, that contains the
segmented region and its surrounding (see Fig. 5.1). The filtered windows Gpq are
computed using the 2D convolution (4.9) of the windowW of the X-ray image with
the Gabor masks as follows:

Gpq = [
(W ∗ Rpq)

2 + (W ∗ Ipq)
2
]1/2

. (5.28)

194 5 X-ray Image Representation

Fig. 5.11 Example of Gabor
functions in spatial domain:
(Top) imaginary components
of self-similar filter bank by
using p = 1 . . . 8 scales and
q = 1 . . . 8 orientations,
(Bottom) 3D representations
of two Gabor functions of (a)

The Gabor features, denoted by gpq , are defined as the average output of Gpq , i.e.,
it yields S × L Gabor features for each segmented window:

gpq = 1

nwnw

nw∑

i=1

mw∑

j=1

G pq(i, j), (5.29)

where the size of the filtered windows Gpq is nw × mw.
Three additional Gabor features can be extracted: (i) maximum of all Gabor

features: gmax = max(g), (ii) minimu of all Gabor features: gmin = min(g), and
(iii) range of all Gabor features: g	 = gmax − gmin. These features are very useful
because they are rotation invariant.

The Gabor features can be computed by function extract_features of pyxvis
Library with parameters ’gabor’ and img=img, where img is the input X-ray
image. Additionaly, we can compute rotation invariant Gabor features by averag-

5.3 Intensity Features 195

ing all Gabor features of the same scale, this is obtained by parameter ’gabor-ri’.
An example of the use of these features is given in Example 5.9.

5.3.7 Filter Banks

Filter banks can be used to extract texture information [53]. They are used in image
transformations like Discrete Fourier Transform (DFT) (magnitude and phase), Dis-
crete Cosine Transform (DCT) [16], and wavelets as Gabor features based on 2D
Gabor functions (see Sect. 5.3.6).

For an image X of N × N pixels, the DFT in 2D is defined as follows:

F(m, n) =
M∑

i=1

N∑

k=1

X (i, k)e
−2π j

(
(m−1)(i−1)

N + (n−1)(k−1)
N

)

, (5.30)

where j = √−1. F(m, n) is a complex number. That means magnitude and phase
can be used as features. Fourier features can be computed by function extract_features
of pyxvis Library with parameters ’fourier’.

DCT in 2D is defined as

D(m, n) = αmαn

N∑

i=1

N∑

k=1

X (i, k) cos

(
π(2i − 1)(m − 1)

2 N

)
cos

(
π(2k − 1)(n − 1)

2 N

)
, (5.31)

where α1 = 1/
√

N and αm = √
2/N , for m = 2 . . . N . DCT features are real num-

bers instead of complex number such as Fourier features. DCT features can be com-
puted by function extract_features of pyxvis Library with parameters ’dct’.

It is worth mentioning that these features are not rotation invariant, however, we
can extract rotation-invariant features if we use maximum, minimum, and a range
of them as we did for the Gabor features in Sect. 5.3.6. An example of the use of
these features is given in Example 5.9.

5.4 Descriptors

Descriptors have been very relevant on computer vision applications [43]. This is
because they are able to provide highly distinctive features, and can be used in
applications such as multiple view analysis, in object recognition, texture recog-
nition, and others. In this section, we provide some descriptors that are very useful
in X-ray testing.

196 5 X-ray Image Representation

Fig. 5.12 LBP coding: a central pixel q the gray value of which is 6 has eight neighbors with gray
values p0 = 4, p1 = 6, p2 = 9, p3 = 4, p4 = 2, p5 = 6, p6 = 9, and p7 = 9. A new mask with
8 bits is built, where ti = 1 if pi ≥ q, otherwise ti = 0. The LBP code is computed as

∑
i ti2i , in

this example the code is 230

5.4.1 Local Binary Patterns

LBP, Local Binary Patterns was proposed as a texture feature [46]. The idea is
to extract texture information from occurrence histogram of local binary patterns
computed from the relationship between each pixel intensity value with its eight
neighbors. The LBP features are the frequencies of each one of the histogram bins.
LBP is computed in three steps: (i) coding, (ii) mapping, and (iii) histogram.

Coding
Each pixel (i, j) of the input image has a set of neighbors. Typically, the set of eight
neighbors defined by the 8-connected pixels is used. However, more neighbors for
different distances can be defined as well. For eight connected pixels, the locations
are (i − 1, j − 1); (i − 1, j); (i − 1, j + 1); (i, j + 1); (i + 1, j + 1); (i + 1, j +
1); (i + 1, j), and (i + 1, j − 1) respectively as shown in Fig. 5.12. The central
pixel has a gray value q, and the neighbors have gray values pi , for i = 0 . . . 7. The
code is computed by

y =
7∑

i=0

ti2
i , (5.32)

where ti = 1 if pi ≥ q, otherwise ti = 0. That means, a pixel q with its neighbors
can be coded as a number y ∈ {0 . . . 255}. The code can be represented as a string
of bits as shown in Fig. 5.12.

Mapping
We can observe that the code generated by the previous step can be categorized
according to the number of changes (from ‘1’ to ‘0’, or from ‘0’ to ‘1’) in a cycle.
For instance, in the example of Fig. 5.12, where the code is 01100111, we define a
cycle with eight transitions as follows: 0 → 1 → 1 → 0 → 0 → 1 → 1 → 1 →
0 (the last bit is the repetition of the first one because it is a cycle). The number of
changes is U = 4. Thus, we can have codes with U = 0, 2, 4, 6, and 8 as illustrated
in Fig. 5.13. After the authors, there are uniform and non-uniform patterns. The first
ones (U = 0 and 2) correspond to textures with a low number of changes, the last
ones (U > 2) can be interpreted as noise because there are many changes in the gray

5.4 Descriptors 197

Fig. 5.13 LBP mapping for eight neighbors. Each small circle represents a bit ti of the code, green
means ‘1’, white means ‘0’. U is the number of changes from ‘1’ to ‘0’, or from ‘0’ to ‘1’ in one
cycle. For a small number of changes, i.e., U = 0 and 2, the codes represent uniform patterns, for
U > 2 the patterns are non-uniform

values. There are 58 uniform patterns and 198 non-uniform patterns. Each uniform
code is mapped as a number from 0 to 57 as illustrated in Fig. 5.13, whereas all
non-uniform codes are mapped as number 58. This descriptor is known as LBP-u2.
LBP-u2 mapping corresponds to a mapping that varies with the orientation of the
image, i.e., it is not rotation-invariant. In order to build a rotation-invariant LBP
descriptor, all patterns that have the same structure but with different rotations are
mapped as a unique number. For instance, all patterns of the second row of Fig.
5.13 are mapped with the same number. The same is valid for the third row. In this
mapping, we have 36 different numbers. This descriptor is known as LBP-ri.

Histogram
The process of coding and mapping is performed at each pixel of the input image.
Thus, each pixel is converted into a number from 0 to M − 1, with a mapping of M
numbers. Afterwards, a histogram of M bins of this image is computed. The LBP
descriptor of the image is this histogram.

LBP is very robust in terms of grayscale and rotation variations [46]. An exam-
ple is shown in Fig. 5.14. Other LBP features like semantic LBP (sLBP) [44] can
be used in order to bring together similar bins. LBP is implemented in function
extract_features of pyxvis Library with parameters ’lbp’ (for uniform LBP features)

198 5 X-ray Image Representation

Fig. 5.14 Comparison of six textures using LBP-ri descriptor. It is clear that descriptors of the
same texture are very similar, and descriptors from different textures are very different. A mea-
surement of the Euclidean distance between all six descriptors is shown in the right color matrix

or parameter ’lbp-ri’ (for rotation invariant LBP features). An example of the use
of these features is given in Example 5.9.

The reader can find a descriptor with similar properties in [47], where LPQ (from
local phase quantization) is proposed.

5.4.2 Binarized Statistical Image Features (BSIF)

BSIF, binarized statistical image features, was proposed as a texture descriptor [27].
As LBP and LPQ, it computes a binary code for each pixel of the input image. Thus,
a histogram that encodes texture information is built by counting the frequency of
each code.

In BSIF, the input image is filtered using a set of linear filters. The linear fil-
ters are learned from a training set of natural image patches ensuring statistical
independence of the filter responses. BSIF computes the bits of the binary code by
thresholding the response of the linear filters.

Therefore, instead of manually predefined sets of filters (like LBP or LPQ), BSIF
uses filters based on statistics of natural images. After the authors, this improves its
modeling capacity and the accuracy in texture recognition.1 The reader can use this
function to obtain similar results to those obtained by LBP in Fig. 5.14.

1BSIF has been originally implemented in Matlab [27]. A Python implementation of BSIF is given
at https://github.com/CVRL/OpenSourceIrisPAD that was used for iris recognition [11].

https://github.com/CVRL/OpenSourceIrisPAD

5.4 Descriptors 199

Fig. 5.15 Computation of HOG descriptors of an X-ray image of a fruit. The descriptors give
information about shape and appearance

5.4.3 Histogram of Oriented Gradients

HOG, histogram of oriented gradients, was originally proposed as a descriptor that
is able to detect pedestrians [7], however, the powerful of this descriptor can be
used in many computer vision problems that require local object appearance and
shape information. The key idea of HOG is to compute the distribution of intensity
gradients in uniformly spaced cells arranged in a grid manner. A cell is typically
defined as a squared region of the image.

In HOG, the gradient of the input image in both directions Gi and G j is com-
puted (see Sect. 4.4.1). Thus, for each pixel, we have the magnitude G(i, j) and the
angle A(i, j) using (4.14) and (4.15) respectively.2 In order to compute the cell his-
togram, we define n bins, where bin k corresponds to the orientation between θk and
θk+1, with θk+1 = θk + 	θ , for k = 1 . . . n. For example, for n = 9 bins, we could
define 	θ = 3600/9 = 400 and θ1 = −	θ/2 = −200, so the first bin will be for
orientations from −200 to +200, the second from +200 to +600, and so on. There-
fore, a pixel (i, j) of the cell whose orientation is θk < A(i, j) ≤ θk+1, registers a
weighted vote in bin k based on its gradient value G(i, j). This operation is repeated
for every pixel of the cell (see Fig. 5.15).

In order to improve the performance of HOG descriptor and make it robust
against changes in illumination and contrast, the authors used a dense grid of cells
and an overlapping local contrast normalization [7]. That means normalized cells
are grouped together into connected blocks. Then, the descriptor is a concatenation
of the normalized cell histograms of all blocks. HOG is implemented in function
extract_features of pyxvis Library with parameter ’hog’. An example of the use of
these features is given in Example 5.9.

2Sometimes the magnitude of the angle is used.

200 5 X-ray Image Representation

5.4.4 Scale-Invariant Feature Transform (SIFT)

The Scale-invariant feature transform, SIFT, was proposed in [32] to detect and
describe keypoints. A keypoint is a distinguishable point in an image, i.e., it rep-
resents a salient image region that can be recognized by changing its viewpoint,
orientation, scale, etc. In SIFT methodology, each keypoint is described using a
128-element vector called SIFT-descriptor. SIFT-descriptor is

• Scale invariant
• Rotation invariant
• Illumination invariant
• Viewpoint invariant

SIFT-descriptor can be used as a ‘signature’ and it is highly distinctive, i.e., SIFT-
descriptors of corresponding points (in different images) are very similar, and SIFT-
descriptors of different points are very different. SIFT has two main stages: (i) key-
point detection and (i) keypoint description. In the following, these stages are pre-
sented in further details.

Keypoint Detection
Keypoints are then taken as maxima/minima of the Difference of Gaussians (DoG)
that occur at multiple scales. Keypoints can be detected in four steps (see Fig. 5.16):

Fig. 5.16 Detection of a keypoint in a synthetic image. The image is convolved with several DoG
masks. The maximal response defines the location (x, y) of the keypoint. The used mask for the
convolution defines the scale σ

5.4 Descriptors 201

1. We define two Gaussian masks: G(x, y, σ) and G(x, y, kσ) from (4.10) at scales
σ and kσ .

2. The input image I (x, y) is convolved with both Gaussian filters obtaining L(x, y, σ)

and L(x, y, kσ) respectively.
3. The Difference of Gaussians (DoG) is computed as:

D(x, y, σ) = L(x, y, σ) − L(x, y, kσ). (5.33)

4. Keypoints are found as maxima of |D(x, y, σ)| that can occur at different values
of σ . We compare each pixel in the DoG images to its 26 neighbors (8 at the
same scale and 9 from the next scale and 9 from the previous scales). If the pixel
value is the maximum or minimum among all compared pixels, it is selected as a
candidate keypoint.

Keypoint Description
For each keypoint, we need a description. A keypoint is defined by its location (x, y)

and its scale σ . The descriptor is computed in seven steps (see Fig. 5.17):

1. We define a window of size 1.5σ centered in (x, y).
2. The window is rotated -θ , where θ is the orientation of the gradient in (x, y).
3. The rotated window is divided into 4 × 4 = 16 regular cells distributed in a grid

manner.
4. For each cell, the histogram of gradients is computed using 8 bins.
5. All 16 histograms with 8 bins are concatenated, i.e., we obtain a descriptor of 16

× 8 = 128 elements.
6. Finally, the descriptor is normalized to unit length.

We can observe that SIFT descriptor is invariant to scale because the size of the
window in step 1 depends on scale factor σ . SIFT descriptor is invariant to rotation
because the window is rotated according to the orientation of the gradient (see step
2). Thus, if an image is resized and rotated, it will have the same window after these
two steps. The SIFT descriptor is invariant to illumination because the descriptor
is normalized to unit length. SIFT has been proven to be robust against perspective
distortions and viewpoint changes when the rotation of the 3D object is less than 30
degrees rotation. An example of this can be found in Fig. 5.18.

Python Example 5.7: In this example, we find matching points in two views.
SIFT keypoints are estimated in each view, and those with the most similar descrip-
tors are matched.

Listing 5.7 : Matching points using SIFT

import numpy as np
import matplotlib.pylab as plt

from pyxvis.io import gdxraydb
from pyxvis.features.descriptors import compute_descriptors, match_descriptors
from pyxvis.io.visualization import plot_matches

202 5 X-ray Image Representation

Fig. 5.17 Keypoint description (see explanation of six steps in text). This example corresponds to
one of keypoints Fig. 5.18 (see object at bottom-left side of the X-ray image)

image_set = gdxraydb.Baggages()
I1 = image_set.load_image(2, 1) # Image 1
I2 = image_set.load_image(2, 2) # Image 2

fig1, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 7))
ax1.imshow(I1, cmap=’gray’)
ax1.axis(’off’)
ax2.imshow(I2, cmap=’gray’)
ax2.axis(’off’)
fig1.tight_layout()
plt.show()

kp1, desc1 = compute_descriptors(I1, ’sift’) # SIFT descriptor for image 1
kp2, desc2 = compute_descriptors(I2, ’sift’) # SIFT descriptor for image 2

matches = match_descriptors(desc1, desc2, matcher=’flann’, max_ratio=0.7) # Matching
points using KDTREE

Display results of matched points
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
plot_matches(ax, I1, I2, kp1, kp2, matches, keypoints_color=’lawngreen’)
ax.axis(’off’)
plt.show()

The output of this code is shown in Fig. 5.18. In this example, the SIFT descrip-
tors are detected using class compute_descriptors of pyxvis Library with parameter
’sift’. The implementation is based on OpenCV.

5.4 Descriptors 203

Fig. 5.18 Matching points of two different views of the same object. The object was rotated 10◦
around its horizontal axis from first to second image. The SIFT approach is able to find key points
(green small circles) and their matchings (lines between keypoints of different images). [→ Exam-

ple 5.7]

The reader can find descriptors with similar properties in SURF: Speeded Up
Robust Feature [2], BRIEF: Binary robust independent elementary features [3],
BRISK: Binary Robust Invariant Scalable Keypoints [31] among others.

5.5 Sparse Representations

In recent years, sparse representation has been widely used in signal processing
[55], neuroscience [50], statistics [9], sensors [63], and computer vision [61, 64].
In many computer vision applications, under assumption that natural images can
be represented using sparse decomposition [49] state-of-the-art results have been
significantly improved. In these applications, the performance can be improved by
learning non-parametric dictionaries for the sparse representation (instead of using

204 5 X-ray Image Representation

fixed dictionaries).3 In signal processing, it is very convenient to estimate a new
representation of a signal in order to analyze it efficiently. The idea is that this rep-
resentation captures a useful characterization of the signal for analytical tasks, e.g.,
feature extraction for pattern recognition, frequency spectrum for denoising, etc. An
appropriate representation, due to its simplicity, is obtained by a linear transform.
Thus, a signal x ∈ R

n can be expressed as a linear combination of a set of elemen-
tary signals D = [d1 d2 . . . dK] ∈ R

n×K as follows:

x = Dz, (5.34)

where the vector z ∈ R
K corresponds to the representation coefficients of signal x.

In this representation, matrix D and its columns dk are commonly known as dictio-
nary and atoms respectively.

5.5.1 Traditional Dictionaries

When every signal can be uniquely represented by a linear combination, the dic-
tionary D corresponds to a basis. This is the case of DFT, for example, where the
basis functions are sine and cosine waves with unity amplitude. In this case, the
element j of atom dk is defined as d jk = exp(2π i jk/n) with K = n and i = √−1
[16]. It is well known that for some applications, e.g., signal filtering, instead of
processing the signal x, it can be more convenient to process the signal in frequency
domain z because it can be used to separate low and high frequencies effectively.
Nevertheless, the Fourier basis is very inefficient when representing, for example, a
discontinuity, because its representation coefficients are over all frequencies and the
analysis becomes difficult or even impossible. Other predefined bases, i.e., where
the atoms are fixed, are DCT and wavelets (e.g., Gabor) among others [16]. In many
applications, since these dictionaries are fixed, they cannot represent more complex
and high-dimensional signals satisfactorily [54].

In order to avoid the mentioned problem with fixed dictionaries, another way
to represent a signal is using a learned dictionary, i.e., a dictionary that is esti-
mated from representative signal examples. This is the case of Principal Component
Analysis (PCA), or Karhunen–Loève Transform (KLT) [25], where the dictionary
D is computed using the first K eigenvectors of the eigenvalue decomposition of
the covariance matrix �, which is usually estimated from a set of zero-means sig-
nal examples X = {xi }N

i=1. The basis here represents K orthogonal functions (with
K ≤ n) that transforms X into a set of linearly uncorrelated signals Z = {zi }N

i=1
called the K principal components. This relationship is expressed as X = DZ. In
this case, KLT represents a signal more efficiently than DFT because the dictionary
is not fixed and it is learned from signal examples [54].

3A good library for sparse representation in computer vision is SPAMS (SPArse Modelling Soft-
ware) [34], see Matlab, Python and R implementations on http://spams-devel.gforge.inria.fr.

http://spams-devel.gforge.inria.fr

5.5 Sparse Representations 205

The mentioned dictionaries are orthogonal, i.e., each atom di is orthogonal to
atom d j in R

n space ∀i = j . Therefore, a signal x is represented as a sum of
orthogonal vectors zidi . In addition, most of these dictionaries are orthonormal,
with ||di || = 1 and DTD = I, where I is the identity matrix. Hence, it is very simple
to calculate Z = DTX.

5.5.2 Sparse Dictionaries

Due to their mathematical simplicity, the orthogonal dictionaries dominated this
kind of analysis for years. Nevertheless, there is no reason to accept as true that
the number of atoms, required to characterize a set of signals, must be smaller than
the dimension of the signal. Moreover, why should the atoms of the dictionary be
orthogonal? The limited effectiveness of these dictionaries led to the development of
newer dictionaries that can represent a wider range of signal phenomena, namely the
overcomplete ones that have more atoms than the dimension of the signal (K > n)
with no necessarily orthogonal atoms [58]. A seminal work in learning overcom-
plete dictionaries for image representation was presented by Olshausen and Field
[48, 49]. They estimated—from small image patches of natural images—a sparse
representation which was extremely similar to the mammalian simple-cell receptive
fields (at that time, this phenomenon could only be described using Gabor filters).
The key idea for representing natural signals is that although the number of possible
atoms in the overcomplete dictionary is huge, the number of those atoms required to
represent a signal is much smaller, i.e., the signals are sparse in the set of all possible
atoms [58].

Sparse coding models a signal as a linear combination (5.34), or approximate,
x ≈ Dz, using a sparse linear combination of atoms from a learned dictionary, i.e.,
only a few atoms from D are allowed to be used in the linear combination (most
coefficients of z are zero) and the atoms are not fixed (the dictionary is adapted to
fit a given set of signal examples). In this case, the basis is not orthogonal.

Thus, from a representative set of signals X = {xi }N
i=1, the idea is i) to learn a

dictionary D = {dk}K
k=1 and ii) to estimate the corresponding sparse representations

Z = {zi }N
i=1 of the original signals X.

In K -means algorithm—a very well-known algorithm used in clustering—the
sparsity is extreme because for the representation of x only one atom ofD is allowed,
and the corresponding coefficient of z is 1. In this case, the dictionary and coeffi-
cients are estimated by:

D∗,Z∗ = argmin
D,Z

||X − DZ||2F subject to ∀i, zi = ek for somek, (5.35)

where ek is a vector from the trivial basis, with all zero entries except a one in kth
position. In this equation, the Frobenius norm is used defined as ||A||2F = ∑

i j a2
i j .

In clustering problems, the atom dk is the centroid of samples xi that fulfill zi = ek .

206 5 X-ray Image Representation

Thus, a signal x belongs to cluster k if it is closer to centroid k than any other
centroids (in this case, its representation is z = ek and the corresponding atom is
dk).

Sparsisty in general, can be expressed as follows:

D∗,Z∗ = argmin
D,Z

||X − DZ||2F subject to ||xi ||0 ≤ T, (5.36)

where ||xi ||0 is the �0 norm, counting the nonzero entries of xi . The goal is to express
a new signal x as a linear combination of a small number of signals take from the
dictionary. This optimization problem can be expressed as follows:

z∗ = argmin
z

(||x − D∗z||22 + λ||z||1) (5.37)

It can be demonstrated that the solution of the �0 minimization problem (5.36) is
equivalent to the solution of the �1 minimization problem [10]:

argmin
D,Z

||X − DZ||2F subject to ||zi ||1 ≤ T (5.38)

Thus, on the one hand, the dictionary learning problem is as follows: given a set
of training signals X = {xi }N

i=1, find the dictionary D (and a set of representation
coefficients Z = {zi }N

i=1) that represents at best each signal using the sparsity con-
straint (5.38), where no more than T atoms are allowed in each decomposition zi .
On the other hand, the sparse coding problem can be stated as follows: given a signal
x and a learned dictionary D, find z, the representation of signal x, as follows::

argmin
z

||z||0 subject to ||x − Dz||2 < ε, (5.39)

where ε is the error tolerance.

5.5.3 Dictionary Learning

There are three categories of algorithms used to learn dictionaries [58]: (i) proba-
bilistic methods, (ii) methods based on clustering, and (iii) methods with a particular
construction. Probabilistic methods are based on a maximum likelihood approach,
i.e., given the generative model (5.34), the objective is to maximize the likelihood
that the representative samples have efficient, sparse representations in a redundant
dictionary given by D [17, 29, 49, 62]. In clustering-based methods, the represen-
tative samples are grouped into patterns such that their distance to a given atom is
minimal. Afterwards, the atoms are updated such that the overall distance in the
group of patterns is minimal. This schema follows a K -means algorithm. In order to

5.5 Sparse Representations 207

generalize the K -means algorithm, the ‘K-SVD’ algorithm was developed [1]. The
method has two steps: a) it uses orthogonal matching pursuit (OMP) algorithm for
the sparse approximation,4 b) the columns of the dictionary are sequentially updated
using SVD decomposition to minimize the approximation error. It is reported that
dictionaries learned with K-SVD show excellent performance in image denoising
[13, 35] among other applications. Finally, dictionaries with specific structures use
(instead of general forms of atoms) a set of parametric functions that can describe
the atoms shortly, i.e., the generating functions and the parameters build the dictio-
nary functions. Thus, the problem is reduced to learning the parameters for one or
more generating functions (see for example, [18, 33]). In Sect. 6.2.9, we will see
how to use sparse representations for a classification task.

5.6 Feature Selection

Which features are relevant? or which features should be extracted? Such questions
arise because there is a huge number of features that can be extracted and unfor-
tunately, we don’t know which or which of them are really necessary. First, we
should not forget the reason why we extract features... so at least we could answer
the question: why are they really necessary? As we explained in the introduction of
this chapter (see Sect. 5.1), our task is to recognize or detect our objects of inter-
est, and we need to differentiate them from the background. For example, in X-
ray images of aluminum castings, we can have several potential defects that were
detected using some segmentation approaches (see Sect. 4.5). As the segmentation
is far from perfect, the potential defects consist of not only ‘defects’, but ‘regular
structures’ as well. Our object of interest in this example is the defects, whereas
the background corresponds to the regular structure of the aluminum casting. From
the X-ray images, we can extract features that describe the potential defects (e.g.,
area, width, height, location, contrast, statistical textures, etc.). In order to recog-
nize the defects, we have to analyze the extracted features of the available potential
defects and select those features that are able to properly separate the defects from
the regular structures. In this example, we could expect a good separability of both
classes by selecting the contrast (see Sect. 5.3.2) because it gives a measure of the
difference in the gray value between the segmented region and its neighborhood.

5.6.1 Basics

In general, if we have two classes (ω1 for ‘object of interest’ and ω0 for ‘back-
ground’) and we want to analyze the performance of extracted feature x , e.g., con-
trast, we can investigate the frequency distribution for each class as illustrated in his-

4OMP is a greedy algorithm that iteratively selects locally optimal basis vectors [59].

208 5 X-ray Image Representation

Fig. 5.19 A good class distribution for feature x and two classes ω0 and ω1

Fig. 5.20 Class distribution for three different features. It is clear that the best separability is
achieved by the last features

tograms of Fig. 5.19. In this case, for frequency distribution of class ωk , we only take
into account the samples that belong to the kth class. In this supervised approach,
the label di of i th sample must be available, for i = 1 . . . N for N samples. That
means, someone, for example, an expert, must annotate the label of each sample of
the dataset. Thus, if the i th sample belongs to class ωk , then di = k. For N samples,
we will have a vector d with N elements.

The available data should be representative enough, that means on the one hand
that Nk , the number of samples of class ωk , must be large enough, and on the other
hand, for each class, the samples of the dataset must include the full range of vari-
ations that exist in the class itself. In our example, if x is the contrast of poten-
tial defects, we compute the frequency distribution of class ω1 and the frequency
distribution of class ω0 by considering only the samples of ‘defects’ and ‘regular
structures’ respectively. In addition, we can estimate the probability density func-
tions from each frequency distribution known as p(x |ωk), i.e., the probability of x
given class ωk . As we can see in Fig. 5.19, feature x is able to properly separate
both classes because it takes low values for class ω0 and high values for class ω1,
however, there is some degree of overlapping.

In feature selection, we have to decide just which features (extracted from our
potential objects of interest) are relevant to the classification. By analyzing each
extracted feature, three general scenarios are possible (see Fig. 5.20): a bad, a good,
and a very good separability. In the first scenario, the confusion between both classes

5.6 Feature Selection 209

Fig. 5.21 Class distribution for three different pairs of features (x1, x2). As in Fig. 5.20, it is clear
that the best separability is achieved by the last feature. The figure shows two types of visualization
of the feature space of two features: a 3D representation and a top view using a colormap. A third
type of visualization for this data is available in Fig. 5.23

is so high that it is impossible to separate the classes satisfactorily, i.e., a classifier
cannot distinguish either of the classes. In the second scenario, a good separation
is possible with some overlapping of the classes, i.e., a classifier will not recognize
both classes perfectly, however, in many cases, this scenario can be acceptable. In
the third scenario, the separability is very good, and a classifier could identify both
classes in approximately 100% of the cases. If all extracted features are in the first
scenario, there is no classifier that can separate both classes, i.e., new features are
required. On the other hand, if we have a feature of the third scenario, the recognition
can be easily performed by thresholding. In this case, no sophisticated classifiers are
required. Unfortunately, the third scenario seldom occurs and we have to deal with
some degree of overlapping.

In order to overcome the overlapping problem, more than one feature can be
selected, however, the same three scenarios are also possible (see Fig. 5.21 for two
features).

In this section, we will review some known techniques that can be used in feature
selection. The reasons why feature selection is necessary are as follows:

210 5 X-ray Image Representation

1. It is possible that some extracted features are not discriminative enough, i.e., there
is no information in these features for separating the classes. An example of this
case is illustrated in the first scenario in Fig. 5.20. This may occur for example
when we consider the mean gray value (5.16) of potential defects when detecting
defects in welds. The (absolute) gray value of some defects can be very similar to
the gray value of some regions of the background. In this example, we need rather
a relative gray value such as a contrast (5.21).

2. Some extracted features with good separability could be redundant, i.e., they are
somehow correlated. An example of this case is shown in the third scenario of
Fig. 5.21 because x1 are highly correlated with x2. In this example, the separability
by using (x1, x2) is very similar to the separability by using x1 only. This may
occur for example when we use two contrasts (5.21) to discriminate defects from
background, maybe one contrast is enough and the second one does not increase
the separability at all because it is redundant.

3. In order to simplify the testing stage, it is much better to extract a low number
of features. In the training stage, we are allowed to investigate a huge number
of features (in order to select some of them), however, in the testing stage, it is
recommended to use a reduced subset of these. Thus, the computational time of
the testing stage will be significantly reduced.

4. In order to avoid the curse of the dimensionality, it is highly recommended to
train a classifier with a low number of features. When we increase the number of
selected features, the volume of our feature space increases exponentially. Thus, in
order to be statistical significant, we need to collect exponentially larger amounts
of samples. This is not possible with a limited number of samples, for this rea-
son, the performance of the classifier tends to become reduced as the number of
features increases [23].

5. Last but not least, in order to avoid false correlations some features should not
have been extracted at all and must be filtered out in this step... just in case
they were extracted. This is a very common mistake and it must be avoided
before a classifier is trained. An example maybe by trying to recognize a threat
object (e.g., a knife) in baggage screening using features that are not rota-
tion invariant. Imagine that we extract all elliptical features (see Sect. 5.2.2)
of potential knives. The orientation α of the fitted ellipse is extracted as well
(5.8). It is possible, that in our training dataset the orientation of the poten-
tial knives is always very vertical, as in the series https://www.dropbox.com/sh/
pmgoyrstox6x6jk/AAAiQ0QgmkVPXr0sLqEsTdyRa?dl=0B0008 of GDXray+
(see Fig. 2.10). That means, the extracted feature α could have a distribution like
a scenario two or three of Fig. 5.20. The separability of this feature could lead
to misinterpretation because we could think that we found an extraordinary good
feature that can separate knives from background, however, we are saying that a
knife must be always vertical if we want to recognize it! It is clear that the orienta-
tion should not have been extracted in order to avoid a false correlation. Another
typical mistake occurs when considering the location (5.2) as feature in defect
recognition. In our training data, it is possible that all defects are located in one
part of the image, however, in real life, they can be everywhere. Obviously, there

https://www.dropbox.com/sh/pmgoyrstox6x6jk/AAAiQ0QgmkVPXr0sLqEsTdyRa?dl=0
https://www.dropbox.com/sh/pmgoyrstox6x6jk/AAAiQ0QgmkVPXr0sLqEsTdyRa?dl=0

5.6 Feature Selection 211

Fig. 5.22 In order to avoid false correlations, we can follow these steps when extracting features.
In these cases, extracted features must be manually eliminated

Fig. 5.23 In this visualization each, sample is represented as a point in the feature space of two
dimensions (x1, x2). The figure shows the visualization for the three examples of Fig. 5.21

is no algorithm that detects this error. When we design an automated system, we
have to be very careful in order to select manually those features that could lead
to false correlations. A guide to avoid this problem is suggested in Fig. 5.22.

Formally, the extracted features of a sample can be represented as a row vector
x of m elements, where m is the number of extracted features. Thus, a sample can
be viewed as a point x = [x1 . . . xm] in the feature space of m dimensions (see Fig.
5.19 for one dimension and Fig. 5.23 for two dimensions). The feature vector of
all samples can be stored in matrix X of size N × m, where N is the number of
samples, i.e., N = ∑

k Nk , and Nk is the number of samples of class ωk . The j th
column of X, called x j , consists of the values that take feature xi in all samples. In
addition, element xi j means the feature x j of i th sample. The features are usually
normalized as

x̃i j = xi j − μ j

σ j
(5.40)

212 5 X-ray Image Representation

Fig. 5.24 Feature selection: there are m extracted features, from them p are selected. As we can
see in the labels, the first samples belong to one class and the last one to another

for i = 1, ..., N and j = 1, ..., m, where μ j and σ j are the mean and standard devi-
ation respectively of the x j . The normalized features have zero mean and a standard
deviation equal to one.5

A very good practice is to eliminate (i) those features that are very constant, i.e.,
σ j < θ1, where θ1 is some threshold, e.g., 10−8, and (ii) those features that are very
correlated, i.e., if two of any extracted features (xi and x j) are highly correlated
(if |cov(xi , x j)|/(σiσ j) > θ2) one of them is eliminated. We can set θ2 to 0.99, for
example. The feature ‘cleaning’ is implemented in function clean of pybalu library.

The key idea of the feature selection is to select a subset of p features (p ≤ m)

that leads to the smallest classification error. The selected p features are arranged
in a new row vector of p elements z = [z1 . . . z p]. The selected feature vector of
all samples can be stored in matrix Z of size N × p. This process is illustrated in
Fig. 5.24 for m = 10 and p = 3. The p selected features are columns s1, s2 . . . sp of
X, that means column j of Z is equal to column s j of X, z j = xs j , for j = 1 . . . p.

For a given set of selected features s = (s1, s2 . . . sp), we need some measure-
ment of separability that can be used to assess the performance of the selection,
i.e., for our three scenarios (see Figs. 5.20 and 5.21), this measurement should be
low, high and very high respectively. We define the separability J as a function of Z

5In pybalu library, (5.40) is implemented in normalize of pybalu library.

5.6 Feature Selection 213

(selected features) and d (labels of the samples). Since Z corresponds to the selected
columns of X that are defined by s, we can write the separability as J (X, s,d).

The problem of feature selection can be stated as follows, given the extracted
features for N samples (X) and the labels of each sample (d), find a set of features
(indexed by s = (s1, s2 . . . sp)) that maximizes the separability (J (X, s,d)). This
is an optimization problem

ŝ = argmax
s⊆Q

J (X, s,d), s.t.|s| = p, (5.41)

where Q = (1, 2, . . . m) is the set of all possible indices that can take s.
There are many approaches that can be used to measure the separability. A very

common one is based on Fisher criterion that ensures: (i) a small intraclass variation
and (ii) a large interclass variation in the space of the selected features.

For the first condition, the interclass covariance (known also as between-class
covariance matrix) is used:

Cb =
∑

k

pk(z̄k − z̄)(z̄k − z̄)T, (5.42)

where pk denotes the a priori probability of the kth class,Nzk andNz are the mean
value of the kth class and the mean value of the selected features.

For the second condition, the intraclass covariance (known also as within-class
covariance matrix) is used:

Cw =
K∑

k=1

pkCk, (5.43)

where the covariance matrix of the kth class is given by:

Ck = 1

Nk − 1

Nk∑

j=1

(zk j − z̄k)(zk j − z̄k)
T, (5.44)

with zk j the j th selected feature vector of the kth class, Nk is the number of samples
in the kth class. Selection performance can be evaluated using the spur criterion for
the selected features z:

J = spur
(
C−1

w Cb
)
. (5.45)

where ‘spur’ means the sum of the diagonal. The larger the objective function J , the
higher the selection performance. For the examples of Fig. 5.23, this function takes
the values 0.1, 2.1, and 27.8 respectively. The objective function defined in (5.45)
can be used directly in (5.41).

Another approach that can be used to measure the separability is to compute the
accuracy of a classifier with the selected features. In this approach, we divide Z into
two subsets of samples: training and testing datasets. A classifier is designed using

214 5 X-ray Image Representation

the training set, and afterwards is tested using the testing set. The separability J is
defined as the accuracy evaluated on the testing set, i.e., the ratio of samples that
were correctly classified to the total number of samples.6

The features can be selected using several state-of-art algorithms reported in the
literature. In the following, some selection algorithms are presented.

5.6.2 Exhaustive Search

The selection of the features is performed by evaluating (5.41) for all possible com-
bination of p features of X. The combination that achieves the highest value for J
is selected. This approach ensures that global maximum of J is attained, however,
it requires n = m!/(p!(m − p)!) evaluations of J . The number n can be prohibited
for large m and p values. For instance, if we have m = 100 extracted features and
we want to select p = 10 features, then 1.73 × 1013 evaluations of J are required
using exhaustive search. This function is implemented in command exsearch of
pybalu library.

5.6.3 Branch and Bound

In branch and bound, the global maximum of J is ensured also [45]. Given that J is a
monotonically increasing function, i.e., J (z1) < J (z1, z2) < . . . J (z1, ...zp), we can
considerably reduce the number of evaluations of J . In branch and bound technique,
we use a tree representation, where the root corresponds to the set of all features, and
a node of the tree corresponds to a combination of features. The children’s nodes
are subsets of their parents. Nodes in the kth level represent combinations of m − k
features. We start by evaluating J at the main node (k = 0) with all features. This
will be our bound, the current maximum. The key idea of the algorithm is to evaluate
those children nodes that have a separability J higher than the bound. If that is the
case, then we update the bound. Consequently, nodes whose separability J is lower
than the bound will not be evaluated.

5.6.4 Sequential Forward Selection

This method selects the best single feature and then adds one feature at a time that,
in combination with the selected features, maximizes the separability. The itera-
tion is stopped once the selected subset reaches p features. This method requires
n = pm − p(p − 1)/2 evaluations. For instance, if we have m = 100 extracted fea-

6Classifiers and accuracy estimation are covered in Chap. 6.

5.6 Feature Selection 215

tures and we want to select p = 10 features, then 955 evaluations of J are required
using SFS, this is a very low number in comparison with the number of evalua-
tions required for exhaustive search. This method is implemented in command sfs
of pybalu library, command SequentialFeatureSelector and mlxtend Library
and fsel of pyxvis Library.

Python Example 5.8: The basic syntax of how to use feature selection algo-
rithms in pyxvis Libraryis given in this code. An example that uses these commands
is shown in Example 5.9.

Listing 5.8 : Basic syntax of feature selection with pyxvis Library.

[INPUT] X : matrix of training features, one sample per row
d : vector of training labels
Xt : matrix of testing features, one sample per row
dt : vector of testing labels
s : string with the name of the model
p : number of features to be selected
[OUTPUT] q : indices of selected features (columns)
X : new matrix of training features
Xt : new matrix of testing features

from pyxvis.features.selection import fse_model, fsel
from pyxvis.io.data import load_features
from sklearn.neighbors import KNeighborsClassifier as KNN
from pyxvis.io.plots import print_confusion

Definition of input variables
(X,d,Xt,dt) = load_features(’../data/F40/F40’)
s = ’lda’
p = 5

Feature selection
(name,params) = fse_model(s)
q = fsel([name,params],X,d,p,cv = 5, show = 1)
print(str(len(q)) +’ from ’ + str(X.shape[1]) +’ features selected.’)

New training and testing data
X = X[:,q]
Xt = Xt[:,q]

Classification and Evaluation
clf = KNN(n_neighbors=5)
clf.fit(X, d)
ds = clf.predict(Xt)
print_confusion(dt,ds)

The use of fsel is the following:

1. We load in name,params the name and the parameters of the objective function
for the separability using function fse_model with the string s.7

2. We use function fselwith the name and parameters of themodel [name,params];
the original features stored in matrix X and the labels stored in vector d (in this
case, the size of matrix X is N × m, and the size of vector d is N × 1 as illustrated
in Fig. 5.24); and the number of features to be selected p. In addition, we can use

7The available names of models are ’LR’ (logistic regression), ’Ridge’ (Ridge function), ’LDA’
(linear discriminant analysis), ’QDA’ (quadratic discriminant analysis), ’SVM-LIN’ (SVM classi-
fier with linear kernel), ’SVM-RBF’ (SVM classifier with RBF kernel).

216 5 X-ray Image Representation

a number of folds for the measurement of the objective function using cross-
validation,8 e.g., cv=5, and we can indicate if the curve of the performance is
plotted with show=1, as illustrated in Fig. 5.24b.

3. The indices of the selected features (numbers of the columns of matrix X are
stored in vector q of p × 1 elements. We use it to build a new matrix of the
samples with the selected columns using X[:,q]. �

Python Example 5.9: In this example, we extract intensity features of small
cropped X-ray images (100 × 100 pixels) of salmon filets. The cropped images are
in series https://www.dropbox.com/sh/d95h06ykl0w7xa5/AAAtq1ZtSWKEFqfhbq
y2Cgbwa?dl=0N0002 of GDXray+. There are 100 cropped images with fishbones
and 100 with no fishbones.9 The idea is to select those features that can be rele-
vant for the separation between both classes ‘fishbones’ and ‘background’ (labels 1
and 0 respectively). Using the selected features, we could detect small regions with
fishbones in an X-ray image of a salmon filet. In this series, the labels (0 or 1) of
the cropped images are available for this supervision task. We initially extract sev-
eral intensity features (more than 80) and their corresponding labels using function
extract_features_labels of pyxvis Library. Additionally, high correlated or constant
features are eliminated as well using clean function of pybalu Library. Both func-
tions clean and normalize of pybalu are merged together into function clean_norm
of pyxvis Library (the indices of the selected ‘cleaned’ and the parameters a,b for
linear scaling of the features can be used in function clean_norm_transform for the
testing features). We select 15 features using SFS, we compute the 6 principal com-
ponents of them using PCA, and finally 3 from them using exhaustive search. The
computational time of the feature selection step is short because we are dealing with
a small number of features and samples.

Listing 5.9 : Feature selection with SFS.

import numpy as np
from pybalu.feature_selection import exsearch
from pybalu.feature_transformation import pca
from pybalu.feature_analysis import jfisher
from pyxvis.features.extraction import extract_features_labels
from pyxvis.features.selection import fsel, fse_model, clean_norm, clean_norm_transform
from pyxvis.io.plots import plot_features3, print_confusion
from sklearn.neighbors import KNeighborsClassifier as KNN

Training−Data
path = ’../images/fishbones/’
fx = [’basicint’,’gabor−ri’,’lbp−ri’,’haralick−2’,’fourier’,’dct’,’hog’]
X,d = extract_features_labels(fx,path+’train’,’jpg’)
X,sclean,a,b = clean_norm(X)
(name,params) = fse_model(’QDA’)

8Cross-validation is explained in Sect. 6.3.2.
9In this example, we used an augmented version of this subset that is available in the folder
images/fishbones. The original subset has 80 samples per class for training and 20 samples
per class per testing. In the training stage of our example, the 80 samples per class are augmented
to 320 per class by rotating them in 00, 900, 1800, and 2700. The testing samples of our examples
correspond to the 20 samples per class of the original dataset (with no augmentation).

https://www.dropbox.com/sh/d95h06ykl0w7xa5/AAAtq1ZtSWKEFqfhbqy2Cgbwa?dl=0
https://www.dropbox.com/sh/d95h06ykl0w7xa5/AAAtq1ZtSWKEFqfhbqy2Cgbwa?dl=0

5.6 Feature Selection 217

ssfs = fsel([name,params],X,d,15,cv = 5, show = 1)
X = X[:,ssfs]
Ypca,_,A,Mx,_ = pca(X, n_components=6)
X = np.concatenate((X,Ypca),axis=1)
sf = exsearch(X, d, n_features=3 ,method="fisher",show=True)
X = X[:,sf]
print(’Jfisher = ’ + str(jfisher(X,d)))
plot_features3(X,d,’Fishbones’)

Testing−Data
Xt,dt = extract_features_labels(fx,path+’test’,’jpg’)
Xt = clean_norm_transform(Xt,sclean,a,b)
Xt = Xt[:,ssfs]
Ytpca = np.matmul(Xt − Mx, A)
Xt = np.concatenate((Xt,Ytpca),axis=1)
Xt = Xt[:,sf]

Classification and Evaluation
clf = KNN(n_neighbors=5)
clf.fit(X, d)
ds = clf.predict(Xt)
print_confusion(dt,ds)

The output of this code is shown in Fig. 5.25. In this example, the features were
extracted using commands extract_features_labels, and the features were selected
using fsel of pyxvis Library. This function requires a function that gives a score of
the separability. In our case, we use function QDA of sklearn library. The use of fsel
is explained in details in Listing 5.8.

In this example, we use from pybalu library following functions: pca for com-
puting of PCA, exsearch for exhaustive search, AND jfisher for computing the
Fisher objective function. �

5.6.5 Sequential Backward Selection

This method selects all features and then eliminates one feature at a time that max-
imizes the separability. The iteration is stopped once the selected subset reaches p
features. This method requires n = (m − p + 1)m − (m − p)(m − p + 1)/2 eval-
uations. For instance, if we have m = 100 extracted features and we want to select
p = 10 features, then 5005 evaluations of J are required using SBS.

5.6.6 Ranking by Class Separability Criteria

Features are ranked using an independent evaluation criterion to assess the signif-
icance of every feature for separating two labeled groups. The absolute value two-
sample t-Student test with pooled variance estimate is used as an evaluation crite-
rion [37].

218 5 X-ray Image Representation

Fig. 5.25 Feature selection using SFS and exhaustive search: a Some cropped X-ray images of
both classes ‘background’ and ‘fishbones’. In this example, there are m = 88 extracted features,
i.e., the extracted features are stored in matrix X. b Sequential forward selection. There are 15
selected features and the performance in the classification for each step. c Using PCA and exhaus-
tive search, we select three features that are represented in the 3D feature space using command
plot_features3 of pyxvis Library. We can see that the separability is ‘good’ and correspond to our

second scenario. [→ Example 5.9] A classification example using a similar strategy on this
dataset can be found in Example 6.13

5.6.7 Forward Orthogonal Search

In FOS, features are selected one at a time, by estimating the capability of each
specified candidate feature subset to represent the overall features in the measure-
ment feature space using a squared correlation function to measure the dependency
between features [60].

5.6.8 Least Square Estimation

In LSE, features are selected one at a time, evaluating the capacity of the select
feature subsets to reproduce sample projections on principal axis usingPCA [36].

5.6 Feature Selection 219

Fig. 5.26 Separability of three different feature selection methods for fishbone detection (see
Example 5.9 for details). Each visualization is a 3D plot of the distribution of the two classes,
the axes and the grid are not represented for the sake of simplicity. a The best three features after
SFS. b The three principal components, obtained by PCA, of the 20 features selected by SFS. c
The three best features, computed by an exhaustive search, of the concatenation of the 20 features
selected by SFS and the 6 principal components of them. This plot is the same as Fig. 5.25c with
the best separability J after Fisher criterion (5.45)

5.6.9 Combination with Principal Components

The first p principal components of the large set of featuresX (or a pre-selected sub-
set of features using one of the mentioned approaches) are appended as new columns
(features) of X. Thus, we have a new set of features Xnew = [X pca(X, p)]. After-
wards, a feature selection algorithm (like SFS or exhaustive search) is computed
on Xnew. As result, the selected features can be some original features and some
principal components [12]. An example is shown in Fig. 5.26. In this example, this
method achieved the best separability with only three features, however, it is worth
mentioning that using this method the computational time is increased significantly
in the testing stage. The reason is not because that we have to compute the PCA
transformation, but because we have to extract all features required by PCA.

5.6.10 Feature Selection Based in Mutual Information

In mRMR, the features are selected based on two criteria: minimal redundancy in
order to remove redundant variables; and maximal relevance in order to select the
relevant features that are able to separate the classes [51].

5.7 A Final Example

In this example, we show how to extract and select features for a three-class prob-
lem. We want to separate handguns, shuriken, and razor blades (see some samples

220 5 X-ray Image Representation

Fig. 5.27 Some objects used in example of Sect. 5.7: a handgun, a shuriken, and
a razor blade, from GDXray+ series https://www.dropbox.com/sh/4patsy7zf7bnwhf/
AADtQ5bmbC3Il0hjI9-jN9Zra?dl=0B0049, https://www.dropbox.com/sh/hcjoso1t1urku4y/
AAD31u3LbIRSQC4jonqAqasJa?dl=0B0050, and https://www.dropbox.com/sh/
hffzvlzxcmhucab/AACsckxAV0QXb9xmaW5ENm_4a?dl=0B0051 respectively

in Fig. 5.27). We extract geometric features that are invariant to rotation, translation,
and scale. The separation is easy because the shapes are very different. Probably,
this particular example does not have any application in real life, but it shows how
we can use pyxvis Library easily to extract and select features for a classification
task.

The features can be extracted using a simple Python code (as shown in Example
5.10). With these commands, it is really simple to design a program that is able to
extract and select many features. The general strategy follows the schema presented
in Fig. 5.28.

Python Example 5.10: This example shows a simple code that is used to extract
and select features geometric features. The task is to separate handguns, shuriken,
and razor blades (Fig. 5.27) according to their shapes. For this end, we use isolated
threat objects that are segmented using seg_bimodal segmentation approach of pyxvis
Library (see Sect. 4.5.1). The reader can easily adapt this code to similar recognition
problems. In this example, 20 features are selected (we use PCA of three principal
components for visualization purposes only).

Listing 5.10 : Feature selection with SBS.

import numpy as np
import matplotlib.pyplot as plt
from skimage.measure import label
from pyxvis.features.extraction import extract_features

Input Image
fig = plt.figure()
ax = fig.add_subplot(111)
img = plt.imread(’../images/N0001_0004b.png’)
implot = plt.imshow(img,cmap=’gray’)

Segmentation
R = img>0.27 # thresholding of light objects

https://www.dropbox.com/sh/4patsy7zf7bnwhf/AADtQ5bmbC3Il0hjI9-jN9Zra?dl=0
https://www.dropbox.com/sh/4patsy7zf7bnwhf/AADtQ5bmbC3Il0hjI9-jN9Zra?dl=0
https://www.dropbox.com/sh/hcjoso1t1urku4y/AAD31u3LbIRSQC4jonqAqasJa?dl=0
https://www.dropbox.com/sh/hcjoso1t1urku4y/AAD31u3LbIRSQC4jonqAqasJa?dl=0
https://www.dropbox.com/sh/hffzvlzxcmhucab/AACsckxAV0QXb9xmaW5ENm_4a?dl=0
https://www.dropbox.com/sh/hffzvlzxcmhucab/AACsckxAV0QXb9xmaW5ENm_4a?dl=0

5.7 A Final Example 221

Fig. 5.28 Supervised pattern recognition schema. In the training stage, features are extracted and
selected. In addition, a classifier is designed (see Chap. 6). In the testing stage, selected features
are extracted and the test samples are classified

222 5 X-ray Image Representation

L = label(R) # labeling of objects
n = np.max(L) # number of detected objects
T = np.zeros((n,18)) # features of each object will stored in a row

Analysis of each segmented object
t = 0 # count of recognized fruits
for i in range(n):

R = (L == i)*1 # binary image of object i
f = extract_features(’basicgeo’,bw=R) # feature extraction for object i
area = f[4]
recognition of fruits according to the size
if area>14000 and area<21000:

T[t,:] = f # storing the features of the fruit t
t = t+1
labeling each recognized fruit in the plot
ax.text(f[1]−20, f[0]+10, str(t), fontsize=12,color=’Red’)

Display and save results
plt.show()
F = T[0:t,:]
print(’Basic Geo−Features:’)
print(F)
np.save(’GeoFeatures.npy’,F) # save features

The output of this code is shown in Fig. 5.29. In this example, we use several pow-
erful functions of pyxvis Library:

• extract_features_labels: Feature extraction and their corresponding labels from a
set of images. The list of the features to be extracted are defined in variable fx.

• clean_norm: For cleaning and normalizing the features of the training set.
• clean_norm_transform: For cleaning and normalizing features of the testing set.
• fse_model: For definition of objective function of the separability.
• fse_sbs: For sequential backward selection of features.
• print_confusion: To display the confusion matrix.

From Fig. 5.29 it is very simple to design a classification strategy (e.g., using KNN).
�

5.8 Summary

In this Chapter, we covered several topics that are used to represent an X-ray image
(or a specific region of an X-ray image). This representation means that new features
are extracted from the original image and that they can give us more information
than the raw information expressed as a matrix of gray values.

In the first part of this chapter, we learned about geometric and intensity fea-
tures. We reviewed basic geometric features (such as area and perimeter among
others), elliptical features, Fourier descriptors, and invariant moments. Further, we
addressed basic intensity features, several definitions of contrast, crossing line pro-
files (CLP), intensity moments, statistical textures, Gabor, and filter banks (such as
Fourier and DCT).

In the second part of this chapter, we gave an overview of certain descriptors that
are widely used in computer vision and can be a powerful tool in X-ray testing. We

5.8 Summary 223

Fig. 5.29 Separation of three classes: (0) Handguns, (1) Shuriken, (2) Razor blades. The perfor-
mance of the separation (accuracy) in this example is 97.0% using a simple KNN classifier. [→
Example 5.10]

covered local binary patterns (LBP), binarized statistical image features (BSIF), his-
togram of oriented gradients (HOG), and scale-invariant feature transform (SIFT).

In the third part of this chapter, we studied sparse representations. They have
been widely used in computer vision. In X-ray testing, they can be used in problems
of object recognition as we will see in the next chapter.

In the fourth part of this chapter, we presented different feature selection tech-
niques that can be used to chose which features are relevant for a classification prob-
lem. Some of the techniques are sequential feature selection, branch and bound, and
feature selection based on mutual information.

Finally, we gave a simple code as an example that can be used to extract and
select features for a classification problem.

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dic-
tionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

2. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: 9th European
Conference on Computer Vision (ECCV2006). Graz Austria (2006)

3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary
features. In: Computer Vision–ECCV 2010, pp. 778–792. Springer (2010)

4. Castleman, K.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1996)

224 5 X-ray Image Representation

5. Chellappa, R., Bagdazian, R.: Fourier coding of image boundaries. IEEE Trans. Pattern Anal.
Mach. Intell. PAMI-6(1), 102–105 (1984)

6. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves.
IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)

7. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. Conf. Comput.
Vis. Pattern Recognit. (CVPR2005) 1, 886–893 (2005)

8. Danielsson, P.E.: A new shape factor. Comput. Graph. Image Process. 7, 292–299 (1978)
9. Donoho, D., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries

via �1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)
10. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal �1-

norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)
11. Doyle, J.S., Bowyer, K.W.: Robust detection of textured contact lenses in iris recognition using

bsif. IEEE Access 3, 1672–1683 (2015)
12. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)
13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned

dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)
14. Fitzgibbon, A., Pilu, M., Fisher, R.: Direct least square fitting ellipses. IEEE Trans. Pattern

Anal. Mach. Intel. 21(5), 476–480 (1999)
15. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Pattern Recognit. 26(1),

167–174 (1993)
16. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)
17. Gorodnitsky, I., Rao, B.: Sparse signal reconstruction from limited data using focuss: a re-

weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)
18. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inf. Theory

49(12), 3320–3325 (2003)
19. Gupta, L., Srinath, M.D.: Contour sequence moments for the classification of closed planar

shapes. Pattern Recognit. 20(3), 267–272 (1987)
20. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE

Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)
21. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cam-

bridge University Press, Cambridge (2003)
22. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Info. Theory IT(8),

179–187 (1962)
23. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory

14(1), 55–63 (1968)
24. Jähne, B.: Digitale Bildverarbeitung, 2nd edn. Springer, Berlin (1995)
25. Joliffe, I.: Principal Component Analysis. Springer, New York (1986)
26. Kamm, K.F.: Grundlagen der Röntgenabbildung. In: Ewen, K. (ed.) Moderne Bildgebung:

Physik, Gerätetechnik, Bildbearbeitung und -kommunikation, Strahlenschutz, Qualitätskon-
trolle, pp. 45–62. Georg Thieme Verlag, Stuttgart, New York (1998)

27. Kannala, J., Rahtu, E.: BSIF: Binarized statistical image features. In: 2012 21st International
Conference on Pattern Recognition (ICPR), pp. 1363–1366. IEEE (2012)

28. Klette, R.: Concise Computer Vision: An Introduction into Theory and Algorithms. Springer
Science & Business Media (2014)

29. Kreutz-Delgado, K., Murray, J., Rao, B., Engan, K., Lee, T., Sejnowski, T.: Dictionary learning
algorithms for sparse representation. Neural Comput. 15(2), 349–396 (2003)

30. Kumar, A., Pang, G.: Defect detection in textured materials using gabor filters. IEEE Trans.
Ind. Appl. 38(2), 425–440 (2002)

31. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints.
In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE
(2011)

32. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004)

References 225

33. Mailhé, B., Lesage, S., Gribonval, R., Bimbot, F., Vandergheynst, P., et al.: Shift-invariant dic-
tionary learning for sparse representations: extending k-svd. Proc. Eur. Signal Process. Conf.
4 (2008)

34. Mairal, J., Bach, F., Ponce, J.: Sparse modeling for image and vision processing. Found.
Trends® Comput. Graph. Vis. 8(2-3), 85–283 (2014)

35. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans.
Image Process. 17(1), 53–69 (2008)

36. Mao, K.: Identifying critical variables of principal components for unsupervised feature selec-
tion. IEEE Trans. Syst. Man Cybern. Part B: Cybern.35(2), 339–344 (2005)

37. MathWorks: Matlab Toolbox of Bioinformatics: User’s Guide. Mathworks Inc. (2007)
38. MathWorks: Image Processing Toolbox for Use with MATLAB: User’s Guide. The Math-

Works Inc. (2014)
39. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings.

Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003), Lecture Notes
in Computer Science vol. 2749, pp. 725–732 (2003)

40. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901
(2002)

41. Mery, D., Filbert, D.: Classification of potential defects in automated inspection of aluminium
castings using statistical pattern recognition. In: 8th European Conference on Non-Destructive
Testing (ECNDT 2002), pp. 1–10. Barcelona (2002)

42. Mery, D., Filbert, D., Jaeger, T.: Image processing for fault detection in aluminum castings.
In: MacKenzie, D., Totten, G. (eds.) Analytical Characterization of Aluminum and Its Alloys.
Marcel Dekker, New York (2003)

43. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans.
Pattern Anal. Mach. Intel. 27(10), 1615–1630 (2005)

44. Mu, Y., Yan, S., Liu, Y., Huang, T., Zhou, B.: Discriminative local binary patterns for human
detection in personal album. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2008), pp. 1–8 (2008)

45. Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection.
IEEE Trans. Comput. C-26(9), 917–922 (1977)

46. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant tex-
ture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intel. 24(7),
971–987 (2002)

47. Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization.
In: Image and signal processing, pp. 236–243. Springer (2008)

48. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature 381(6583), 607–609 (1996)

49. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: a strategy employed
by v1? Vis. Res. 37(23), 3311–3325 (1997)

50. Olshausen, B., Field, D.: Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14(4), 481–
487 (2004)

51. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intel.
27(8), 1226–1238 (2005)

52. Persoon, E., Fu, K.: Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man
Cybern. SMC-7(3), 170–179 (1977)

53. Randen, T., Husoy, J.: Filtering for texture classification: a comparative study. IEEE Trans.
Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

54. Rubinstein, R., Bruckstein, A., Elad, M.: Dictionaries for sparse representation modeling.
Proc. IEEE 98(6), 1045–1057 (2010)

55. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for
sparse signal approximation. IEEE Trans.Signal Process. 58(3), 1553–1564 (2010)

226 5 X-ray Image Representation

56. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 2nd edn.
PWS Publishing, Pacific Grove (1998)

57. Teh, C., Chin, R.: On digital approximation of moment invariants. Comput. Vis. Graph. Image
Process. 33(3), 318–326 (1986)

58. Tosic, I., Frossard, P.: Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)
59. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. The-

ory 50(10), 2231–2242 (2004)
60. Wei, H.L., Billings, S.: Feature subset selection and ranking for data dimensionality reduction.

IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 162–166 (2007)
61. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: Sparse representation for com-

puter vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)
62. Yaghoobi, M., Blumensath, T., Davies, M.: Dictionary learning for sparse approximations with

the majorization method. IEEE Trans. Signal Process. 57(6), 2178–2191 (2009)
63. Yang, A., Gastpar, M., Bajcsy, R., Sastry, S.: Distributed sensor perception via sparse repre-

sentation. Proc. IEEE 98(6), 1077–1088 (2010)
64. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding

for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition,
2009. CVPR 2009, pp. 1794–1801 (2009)

65. Zahn, C., Roskies, R.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C-
21(3), 269–281 (1971)

Chapter 6
Classification in X-Ray Testing

Abstract In this chapter, we will cover known classifiers that can be used in
X-ray testing. Several examples will be presented using Python. The reader can
easily modify the proposed implementations in order to test different classification
strategies. We will then present how to estimate the accuracy of a classifier using
hold-out, cross-validation and leave-one-out. Finally, we will present an example
that involves all steps of a pattern recognition problem, i.e., feature extraction, fea-
ture selection, classifier’s design, and evaluation. We will thus propose a general
framework to design a computer vision system in order to select—automatically—
from a large set of features and a bank of classifiers, those features and classifiers
that can achieve the highest performance.

Ideal detection of a handgun superimposed onto a laptop (X-ray image B0019_0001 colored
with ‘sinmap’).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_6

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_6

228 6 Classification in X-Ray Testing

6.1 Introduction

Considerable research efforts in computer vision applied to industrial applications
have been developed in recent decades. Many of them have been concentrated on
using or developing tailored methods based on visual features that are able to solve a
specific task. Nevertheless, today’s computer capabilities are giving us new ways to
solve complex computer vision problems. In particular, a new paradigm on machine
learning techniques has emerged posing the task of recognizing visual patterns as a
search problem based on training data and a hypothesis space composed of visual
features and suitable classifiers. Furthermore, now we are able to extract, process,
and test in the same time more image features and classifiers than before. In our
book, we propose a general framework that designs a computer vision system auto-
matically, i.e., it finds—without human interaction—the features and the classifiers
for a given application avoiding the classical trial and error framework commonly
used by human designers. The key idea of the proposed framework is to design a
computer vision system as shown in Fig. 6.1 in order to select—automatically—
from a large set of features and a bank of classifiers, those features and classifiers
that achieve the highest performance.

Whereas Chap. 5 covered feature extraction and selection, the focus of this
chapter will be the classification. Once the proper features are selected, a classi-

Fig. 6.1 Supervised pattern recognition schema. In the training stage, features are extracted and
selected (see Chap. 5 and details in Fig. 5.28). In addition, a classifier is designed. In the testing
stage, selected features are extracted and the test image is classified

6.1 Introduction 229

fier can be designed. Typically, the classifier assigns a feature vector x with n fea-
tures (x1 . . . xn) to one class. In case of defects detection, for example, there are two
classes: flaws or no-flaws. In case of baggage screening, there can be more classes:
knives, handguns, razor blades, etc. In pattern recognition, classification can be per-
formed using the concept of similarity: patterns that are similar are assigned to the
same class [12]. Although this approach is very simple, a good metric defining the
similarity must be established. Using representative samples, we can make a super-
vised classification finding a discriminant function h(x) that provides us information
on how similar a feature vector x is to a class representation.

In this chapter, we will cover many known classifiers (such as linear discrim-
inant analysis, Bayes, support vector machines, neural networks among others).
Several examples will be presented using Python. The reader can easily modify
the proposed implementations in order to test different classification strategies.
Afterwards, we present how to estimate the accuracy of a classifier using hold-out,
cross-validation, and leave-one-out. The well-known confusion matrix and receiver-
operation-characteristic curve will be outlined as well. We will explain by detailing
the advantages and disadvantages of each one. Finally, we will present an exam-
ple that involves all steps of a pattern recognition problem, i.e., feature extraction,
feature selection, classifier’s design, and evaluation.

6.2 Classifiers

In this section, the most relevant classifiers are explained with several examples.
Before we start with the explanation of the classifiers, let us review the syntax of
some basic functions of pyxvis Library. The implementation of this functions is
based on sklearn library.

Python Example 6.1 The basic syntax of how to use classification algorithms
in pyxvis Library is given in this code. Examples that use these commands are shown
in this section (e.g., see Example 6.2).

Listing 6.1 : Basic syntax of classification with pyxvis Library.

[INPUT] X : training features (matrix of N x p elements)
d : vector of training labels (vector of N elements)
Xt : testing features (matrix of Nt x p elements)
dt : vector of training labels (vector of Nt elements)
s : string with the name of the model
[OUTPUT] ds : classification (vector of Nt elements)
clf: trained classifier

from pyxvis.io.data import load_features
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier
from pyxvis.io.plots import print_confusion

Definition of input variables
(X,d,Xt,dt) = load_features(’../data/G3/G3’)

230 6 Classification in X-Ray Testing

s = ’knn5’

Training and Testing
(name,params) = clf_model(s) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
ds = test_classifier(clf,Xt) # clasification on testing

Evaluation of performance
print_confusion(dt,ds)

The training and testing stages of a classification process is given in following
four steps (see Fig. 6.18):

1. We load in name,params the name and the parameters of the classifier using
function clf_model with the string s 1

2. We define a classifier using function define_classifier with the name and parame-
ters of the model [name,params]. The defined classifier is stored in clf.

3. Classifierclfistrainedusingtrainingdata(X,d)withfunctiontrain_classifier.
The defined classifier is stored in clf.

4. Trainedclassifierclfistestedontestingdata(Xt)usingfunctiontest_classifier.
Theclassification, i.e., labelsof the testingsamples, are stored invectords.Toeval-
uate the effectiveness of the classifier, we can count the number of coincidences
between dt (real labels of testing data) and ds (classification using trained classi-
fier).2 �

6.2.1 Minimal Distance

The simplest classifier is probably based on the concept of ‘minimal distance’. In
this classifier, each class is represented by its center of mass that can be viewed as a
template [10]. Thus, a mean value x̄k of each class is calculated on the training data:

x̄k = 1

Nk

Nk∑

i=1

x jk, (6.1)

where x jk is the j th sample of class ωk of the training data, and Nk is the number
of samples of the kth class. A test sample x is assigned to class ωk if the Euclidean
distance ‖ x − x̄k ‖ is minimal. Formerly,

hdmin(x) = argmin
k

{‖ x − x̄k ‖} . (6.2)

1The available names of models are: ‘LR’ (logistic regression), ‘dmin’ (Minimal Distance),
‘LDA’ (linear discriminant analysis), ‘QDA’ (quadratic discriminant analysis), ‘KNN’ (nearest
neighbors), ‘RF’ (random forest), ‘NN’ (neural network), ‘AdaBoost’ (AdaBoost), ‘SVM-LIN’
(SVM classifier with linear kernel), ‘SVM-RBF’ (SVM classifier with RBF kernel).
2Usually, for this end we can use the accuracy metric explained in Sect. 6.3.

6.2 Classifiers 231

A useful formulation is defining the distance function ddmin(x, k) =‖ x − x̄k ‖. Thus,
we can write (6.2) as

hdmin(x) = argmin
k

{ddmin(x, k)} . (6.3)

This formulation based on minimal distances will be used in the following sections.
In pyxvis Library, this classifier is implemented using function clf_modelwith param-

eter ‘dmin’. Python Example 6.2 In this example, we show how to train and
test a classifier based on Euclidean minimal distance. We use data that was simu-
lated using a mixture of Gaussian distributions. The data consists of 800 samples for
training and 400 samples for testing purposes. Each sample has two features x1 and
x2 and it belongs to class ω1 or ω0. Figure 6.2 shows the feature spaces for training
and testing.

Listing 6.2 : Classification using Euclidean minimal distance

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
cl_name = ’dmin’ # generic name of the classifier
(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # show performance and feature space

The output of this code is shown in Fig. 6.5. In this case, the accuracy, defined
as the ratio of samples correctly classified, is 85.50% in the testing dataset. The
low performance of this classifier is because the decision line is a straight line.
The reader can imagine that the decision line can be computed in three steps: (i)
Compute the centers of mass of each class distribution in the training set as x̄1 and
x̄0 according to (6.1). (ii) Compute �C the straight line that contains both centers
of mass. (iii) Compute the decision line � as the line that is perpendicular to �C

and equidistant to x̄1 and x̄0. The decision line is shown in Fig. 6.5. Obviously, the
straight line is not able to separate these curved distributions.

The syntax of the use of the classification functions in pyxvis Libraryis explained
in Listing 6.1. �

6.2.2 Mahalanobis Distance

TheMahalanobis classifier employs the same concept as minimal distance (see Sect.
6.2.1), however, it uses a distance metric based on the ‘Mahalanobis distance’, in
which, by means of the covariance matrix, the features to be evaluated are weighted
according to their variances. A test sample x is assigned to class ωk if the Maha-
lanobis distance of x to class ωk , denoted as dmaha(x, k), is minimal. TheMahalanobis

232 6 Classification in X-Ray Testing

Fig. 6.2 Simulated data that is used in Sect. 6.2. [→ Example 6.2]

distance is defined as

dmaha(x, k) = (x − x̄k)
TC−1

k , (x − x̄k), (6.4)

where Ck is the covariance matrix of the kth class. It can be estimated as

Ck = 1

Nk − 1

Nk∑

j=1

(xk j − x̄k)(xk j − x̄k)
T, (6.5)

where x jk is the j th sample of class ωk of the training data, and Nk is the number of
samples of the kth class. Some examples are illustrated in Fig. 6.3. Formerly,

hmaha(x) = argmin
k

{dmaha(x, k)} , (6.6)

where distance dmaha is defined in (6.4). In pyxvis Library, this classifier is imple-
mented using function clf_model with parameter ‘maha’. An example of this classi-
fier is presented in Example 6.4.

6.2.3 Bayes

In Bayes classifier the idea is to assign the test sample x to the most probable class.
For this purpose, we use the conditional probability p(ωk |x), that gives the probabil-
ity of class ωk occurs given sample x. Thus, if p(ωk |x) is maximal the x is assigned
to class ωk :

hBayes(x) = argmax
k

{p(ωk |x)} . (6.7)

6.2 Classifiers 233

Fig. 6.3 Examples of three different Gaussian distributions p(x|ωk) in 2D. The black point repre-
sents the mean μk and the 2 × 2 matrices the covariances �k

Using Bayes theorem we can write the conditional probability as

p(ωk |x) = p(ωk)
p(x|ωk)

p(x)
, (6.8)

where p(ωk |x) is known as ‘posterior’, p(ωk) as ‘prior’, p(x|ωk) as ‘likelihood’ and
p(x) as ‘evidence’. Since p(x) is the same by evaluating p(ωk |x) for all k we can
re-write (6.7) as follows:

hBayes(x) = argmax
k

{p(x|ωk)p(ωk)} . (6.9)

In order to evaluate (6.9) properly, we need good estimations for p(x|ωk) and p(ωk).
There are several known approaches to estimate these, some of which will be cov-
ered in the following sections under the assumption of Gaussian distributions of the
classes (see Sects. 6.2.4 and 6.2.5).

In Naïve Bayes approach, each feature xi is assumed to make an independent and
equal contribution to our output. Obviously, this assumption is not correct in real
world, however, in many practical cases it works well enough. Using this assump-
tion, Eq. (6.8) can be formulated as

p(ωk |x) = p(ωk)
p(x1|ωk)p(x2|ωk) · · · p(xn|ωk)

p(x1)p(x2) · · · p(xn)
, (6.10)

and the classification rule for this case is

hNaïve-Bayes(x) = argmax
k

{
p(ωk)

n∏

i=1

p(xi |ωk)

}
. (6.11)

The prior p(ωk) can be estimated by the number of available samples in the train-
ing dataset of each class. Thus, p(ωk) = Nk/N , where Nk is the number of samples
that belong to class ωk and N = ∑

k Nk the total number of samples. Neverthe-
less, in many cases of X-ray testing the available samples are not balanced, e.g., in
defect detection problems there are a reduced number of flaws in comparison with

234 6 Classification in X-Ray Testing

Fig. 6.4 Estimation of p(x|ωk) using Kernel Density Estimation (KDE) for distributions of the

training set of Fig. 6.2. [→ Example 6.3]

the large number of non-flaws [7]. If we use the estimation p(ωk) = Nk/N then the
most important class to be detected will have a very low prior, and it will be very
difficult to detect. In such cases, the prior must be considerably increased in order
to be the more probable.

In order to estimate p(x|ωk), we can use an approach based on Kernel Density
Estimation (KDE) [22]:

p̂(x|ωk) = αk

Nk∑

j=1

K

(
x − x jk

�

)
, (6.12)

where K is a kernel function such as a Gaussian, that has a mean zero and variance
of one, � is the bandwidth, and αk is a normalization factor equal to 1/(Nk�).
Since K (x/�) integrates to�, with this normalization factor we ensure that p̂(x|ωk)

integrates to one. Example of KDE can be found in Fig. 5.21 that were estimated
using the training data of Fig. 5.23. In pyxvis Library, this classifier is implemented
using function clf_model with parameter ‘bayes-kde’ (for KDE implementation)
or ‘bayes-naive’ (for a naive estimation of the probability density function,
where each variable is considered to be statistically independent) (Fig. 6.4).

Python Example 6.3 In this example, we show how to train and test a Bayes
classifier using Kernel Density Estimation and Naive Bayes Estimation. We use the
same simulated data addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.3 : Classification using Bayes

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’bayes−naive’,’bayes−kde’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training

6.2 Classifiers 235

Fig. 6.5 Classification using Bayes and dmin. [→ Example 6.3]

d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is shown in Fig. 6.5. In this case, the accuracy, defined as
the ratio of samples correctly classified, is 93.00% and 90.75% for Naive–Bayes
and KDE-Bayes respectively. The reader can compare this result with the accuracy
obtained by classifier of Example 6.2. �

236 6 Classification in X-Ray Testing

6.2.4 Linear Discriminant Analysis

For Gaussian distributions with x ∈ R
n :

p(x|ωk) = 1

(2π)n/2|�k |1/2 exp
{
−1

2
(x − μk)

T�−1
k (x − μk)

}
, (6.13)

where a good estimation for center of mass μk and covariance �k of class ωk can
be taken from (6.1) and (6.5) respectively. Since the logarithm is a monotonically
increasing function argmaxk {p} = argmaxk {log(p)}. Thus, (6.9) can be written as

h(x) = argmax
k

{log {p(x|ωk)p(ωk)}} . (6.14)

Using some manipulation,

log {p(x|ωk)p(ωk)} = log {p(x|ωk)} + log {p(ωk)} (6.15)

= −1

2
(x − μk)

T�−1
k (x − μk)

︸ ︷︷ ︸
1

−1

2
log(|�k |)

︸ ︷︷ ︸
2

−n

2
log(2π)

︸ ︷︷ ︸
3

+ log(p(ωk))︸ ︷︷ ︸
4

. (6.16)

It is clear, that we do not need to evaluate 3 because this term is constant and the
location of the maximum does not change.

In Linear Discriminant Analysis (LDA) [11], we assume �k = � (constant) for
all k, i.e., term 2 in (6.16) is constant as well, and it is not necessary to be evalu-
ated. Consequently,

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)

T�−1(x − μk) + log(p(ωk))
︸ ︷︷ ︸

−dLDA(x,k)

+C, (6.17)

where constant C corresponds to terms 2 + 3 . Covariance matrix � can be com-
puted from training data. A good estimation is the average of the individual covari-
ance matrices � = 1

K

∑
k Ck . Formerly, the LDA classifier is defined as follows:

hLDA(x) = argmin
k

{dLDA(x, k)} , (6.18)

where dLDA(x, k) is defined in (6.17). In pyxvis Library, the LDA classifier is imple-
mented using function clf_modelwith parameter ‘LDA’. An example of this classifier
is presented in Example 6.4.

6.2 Classifiers 237

A variant of Mahalanobis classifier is obtained by assuming that not only �k is
constant, but also p(ωk) is constant.3 Thus, �k = � and p(ωk) = pc for all k. That
means that in (6.16) terms 4 is constant as well:

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)

T�−1(x − μk)
︸ ︷︷ ︸

−dmaha(x,k)

+C, (6.19)

where constant C corresponds to terms 2 + 3 + 4 . The classification is per-
formed by (6.6) where dmaha(x, k) is defined in (6.19). The reader can observe that if
we assume that � = I we obtain the Minimal Distance classifier (6.3).

6.2.5 Quadratic Discriminant Analysis

In Quadratic Discriminant Analysis (QDA) [11], we assume that �k and p(ωk) are
not constant for all k, i.e., in (6.16) only term 3 is constant:

log {p(x|ωk)p(ωk)} = −1

2
(x − μk)T�−1(x − μk) − 1

2
log(|�k |) + log(p(ωk))

︸ ︷︷ ︸
−dQDA(x,k)

+C,

(6.20)
where constant C corresponds to terms 3 . Formerly,

hQDA(x) = argmin
k

{dQDA(x, k)} , (6.21)

where dQDA(x, k) is defined in (6.20). In pyxvis Library, QDA classifier is imple-
mented using function clf_model with parameter ‘QDA’.

Python Example 6.4 In this example, we show how to train and test three
different classifiers: Mahalanobis (see Sect. 6.2.2), LDA (see Sect. 6.2.4) and QDA
(see Sect. 6.2.5). We use the same simulated data addressed in Example 6.2 and
illustrated in Fig. 6.2.

Listing 6.4 : Classification using Mahalanobis, LDA and QDA

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’lda’,’qda’,’maha−0’,’maha’]

3In pyxvis Library, this classifier is implemented using function clf_model with parameter
‘maha-0’.

238 6 Classification in X-Ray Testing

Fig. 6.6 Classification using LDA, QDA and Mahalanobis. [→ Example 6.4]

for cl_name in ss_cl:
(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

6.2 Classifiers 239

The output of this code is shown in Fig. 6.6. In these cases on the testing data,
we obtain 85.25%, 84.25%, 86.75%, and 89.00% for LDA, QDA, Mahalanobis and
Mahalanobis-0 respectively. It is clear that Mahalanobis and QDA achieve a bet-
ter performance than LDA and Mahalanobis-0 because they can model the curved
distributions. �

6.2.6 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric approach, in which the K most
similar training samples to a given test feature vector x are determined [11]. The
assigned class is the most frequent class from those K samples [8]. In other words,
we find—in the training set—the K nearest neighbors of x and we evaluate the
majority vote of their classes:

hknn(x) = mode(y(x1), . . . y(xK)), (6.22)

where {xi }K
i=1 are the K nearest neighbors of x, and y(xi) the labeled class of (xi).

KNN can be implemented (avoiding the exhaustive search of all samples of the
training set) by a search using a k−d tree structure [2] to search the nearest neigh-
bors. In pyxvis Library, KNN classifier is implemented with function clf_model with
parameter ‘knn K ’ where K is the number of neighbors to consider.

Python Example 6.5 In this example, we show how to train and test a
Bayes classifier using Kernel Density Estimation. We use the same simulated data
addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.5 : Classification using KNN

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’knn1’,’knn3’,’knn7’,’knn15’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is Fig. 6.7 for different number of neighbors. In this case,
we obtain 90.75%, 93.50%, 94.25%, and 93.75% for 1, 3, 7, and 15 neighbors
respectively. It is clear that KNN classifier can properly model any distribution.
The hyper-parameter K , i.e., the number of neighbors is to be estimated for the best
performance on the testing dataset. �

240 6 Classification in X-Ray Testing

Fig. 6.7 Classification using KNN. [→ Example 6.5]

6.2 Classifiers 241

Fig. 6.8 Simple neural network with 3 inputs x = (x1, x2, x3), one output ŷ and two hidden layers
(one with 6 nodes and the another with 2). In this example, the input can be classified as class ω1
if ŷ > 0.5, and otherwise as class ω0

6.2.7 Neural Networks

Artificial neuronal networks are mathematical tools derived from what is known
about the mechanisms and physical structure of biological learning, based on the
function of a neuron. They are parallel structures for the distributed processing of
information [3]. A neural networks consists of artificial neurons connected in a net-
work that is able to classify a test feature vector x evaluating a linear weighted sum
of non-linear functions as illustrated in Fig. 6.8. The weights, the functions, and the
connections are estimated in a training phase by minimizing the classification error
[3, 4]. In this section, we only mention that neural networks have been established
as one of the best classification approaches in pattern recognition. The basic struc-
ture of the neural networks and the learning strategies developed for training neural
networks are the basis of deep learning models. Nowadays, it is well known that
deep learning has been successfully used in image and video recognition. For these
reasons, we decided to dedicate in this book an entire chapter to deep learning (see
Chap. 7), and in Sect. 7.2 of this chapter, we address the theory of neural networks
and give some examples.

Python Example 6.6 In this example, we show how to train and test a Neu-
ral Network. We use the same simulated data addressed in Example 6.2 and illus-
trated in Fig. 6.2. In pyxvis Library, neural networks are implemented with function
clf_model with parameter ‘nn (n1, · · · , n p) ’ where ni is the number of nodes of
hidden layer for an architecture of p hidden layers.

242 6 Classification in X-Ray Testing

Fig. 6.9 Classification using Neural Networks (NN). [→ Example 6.6]

Listing 6.6 : Classification using NN

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
ss_cl = [’nn(10,)’,’nn(12,6)’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is Fig. 6.9 for different configurations of hidden layers:
nn(10,) means one hidden layer with 10 nodes, whereas nn(12,6) means two
hidden layers with 12 and 6 nodes respectively.4 In this case, we obtain 94.50% and
93.25% respectively. The reader can compare this result with the accuracy obtained
by classifier of Examples 6.2, 6.3, 6.4, and 6.5. It is clear that classifiers based on
neural networks can properly model the curved distributions. �

4For the configuration of Fig. 6.8 is nn(6,2).

6.2 Classifiers 243

Fig. 6.10 Key idea of support vector machine: a Given a two-class problem, find a decision line
�. b There are many possible decision lines that can separate both classes. c In SVM, we search
decision line �SVM so that the margin b is maximized. The support vectors are defined as those
samples that belong to the margin lines

6.2.8 Support Vector Machines

The original Support Vector Machines (SVM) find a decision line that separate two
classes (ω1 and ω0) as illustrate in Fig. 6.10a. In this example, we can see that there
are many possible decision lines like �1, �2, and �3 among others (see Fig. 6.10b). A
relevant question arises: which decision line � can separate both classes at ‘best’? In
SVM strategy, we define the ‘margins’ b1 and b0 as the minimal distance from the
decision line to a sample of class ω1 and ω0 respectively. After SVM criterion, the
‘best’ separation line �SVM is one that (i) it is in the middle, i.e., b1 = b0 = b, and (ii)
its margin is maximal, i.e., b = bmax. Thus, decision line �SVM is equidistant to the
margin lines and the margin is maximal.

In R
2 we have a decision line, however, in general, in R

n , we have a hyperplane
that is defined as

�SVM : g(x) = aTx + a0 = 0, (6.23)

where x = [x1 . . . xn]T is our feature vector and a = [a1 . . . an]T and a0 are the linear
parameters to be estimated. The solution for

{
a j

}n

i=0 can be found following an
optimization approach [21]. In the solution,

{
a j

}n

i=0 depends only on the support
vectors, i.e., the samples of both classes that belong to the margin lines as shown in
Fig. 6.10c. The solution of this optimization problem consists of parameter values
λi corresponding to i th support vector:

a =
m∑

i=1

λi zixi , (6.24)

for m support vectors, where zi = ±1 if xi belongs to ω1 and ω0 respectively. In
addition, a0 can be calculated from any support vector as a0 = zi − aTxi [11]. In
SVM, the classification of a test sample x can be formulated as follows:

244 6 Classification in X-Ray Testing

Fig. 6.11 Key idea of support vector machine with overlapping: a Given a two-class problem with
overlapping, find a decision line �SVM. bBy choosing a decision line �SVM there will be misclassified
samples. c The misclassified samples are the support vectors. Each of them has an error ei defined
as the perpendicular distance to the decision line �SVM. In SVM, we search decision line �SVM so
that the total error

∑
ei is minimized

hSVM(x) =
{
1 if aTx + a0 > 0
0 otherwise

. (6.25)

In practice, however, there is some overlapping between the classes as shown in
Fig. 6.11a. If we have a decision line that separates the feature space, we will have
misclassified samples. In SVM strategy, we consider only the misclassified samples
as illustrated in Fig. 6.11b. They will be the support vectors. The i th support vector
has a distance ei to the decision line that corresponds to an error (see Fig. 6.11c).
After SVM criterion, the ‘best’ decision line �SVM is one that minimizes the total
error e = ∑

i ei . Again, the solution for {ai }n
i=0 depends only on the support vectors,

and they can be estimated using an optimization approach [21]. The classification is
performed according to (6.25).

The previous approach estimates a straight line decision boundary in feature
space. In many cases, however, it is convenient to find a curve that separates the
classes as illustrated in Fig. 6.12a. In order to use SVM linear classification, the fea-
ture space can be transformed into a new enlarged feature space (Fig. 6.12b) where
the classification boundary can be linear. Thus, as shown in Fig. 6.12c, a simple
linear classification (6.25) can be designed in the transformed feature space in order
to separate both classes [21].

The original feature space is transformed using a function f (x). Thus, according
to (6.23) and (6.24) we obtain:

g(f (x)) = aT f (x) + a0

= ∑
i λi zi 〈 f (xi), f (x)〉 + a0,

(6.26)

6.2 Classifiers 245

Fig. 6.12 Non-linear decision line. a Feature space with two classes that can be separated using a
curve. b The feature space can be described in a new coordinate system. c Transformed coordinate
system in which a linear decision line can be used

Fig. 6.13 The kernel trick: the original 2D space is transformed into a 3D space where the sepa-
ration of the classes is linear (this case can be found in Example 6.7 using dataset ‘P2’)

where 〈 f (xi), f (x)〉 is the inner product [f (xi)]T f (x). In (6.26), we can observe
that for the classification, only the kernel function 〈 f (xi), f (x)〉 = K (xi , x) that
computes inner products in the transformed space is required. Consequently, using
(6.26) we can write (6.25) in general as

hSVM(x) =
{
1 if

∑
i λi zi K (xi , x) + a0 > 0

0 otherwise
. (6.27)

Table 6.1 shows typical kernel functions that are used by SVM classifiers. They
should be a symmetric positive (semi-) definite function [11]. In pyxvis Library,
SVM classifier is implemented with function clf_model with parameter ‘svm-lin’,
‘svm-pol’, ‘svm-rbf’, ‘svm-sig’ for the four kernels of Table 6.1.

Python Example 6.7 In this example, we show how to train and test SVM
classifiers. We use the same simulated data addressed in Example 6.2 and illustrated
in Fig. 6.2.

246 6 Classification in X-Ray Testing

Table 6.1 Kernel functions used by SVM

Name K (xi , x)

Linear 〈xi , x〉
qth degree polynomial (1 + 〈xi , x〉)q

Radial basis (RBF) exp(−γ ||xi − x||2)
Sigmoid tanh(α1〈xi , x〉 + α2)

Listing 6.7 : Classification using SVM

from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data
(X,d,Xt,dt) = loadFeatures(’../data/P2/P2’) # data for the donut example
ss_cl = [’svm−lin’,’svm−rbf(0.1,0.05)’,’svm−rbf(0.03,1)’,’svm−pol(0.1,0.5,2)’]
for cl_name in ss_cl:

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,cl_name) # display results and decision lines

The output of this code is Fig. 6.13 (for the donut example) and Fig. 6.14 (for the
general example). In this case, we obtain 86.75%, 91.50%, 93.50%, and 91.25%
for SVM-LIN, SVM-RBF (gamma=0.1, C=0.05), SVM-RBF (gamma=0.03, C=1),
and SVM-POL (gamma=0.1, C=0.5, degree=2).5 The reader can compare this
result with the accuracy obtained by classifier of Examples 6.2, 6.3, 6.4, 6.5, and
6.6. It is clear that (no-linear) SVM classifiers can properly model the curved
distributions. �

Python Example 6.8 In this example, we show how easy is to compare
many classifiers in pyxvis Library. The idea of this example is to train and test a list
of 30 classifiers given in variable ss_cl. We use now a dataset of 3 classes and 2
features as illustrated in Fig. 6.15.

Listing 6.8 : Classification using many classifiers

import numpy as np
from sklearn.metrics import accuracy_score
from pyxvis.io.data import load_features
from pyxvis.io.plots import show_clf_results
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier

5In sklearn library, ‘gamma’ defines the influence of the single training examples, ‘C’ is like a regu-
larization parameter in the optimization, and ‘degree’ is the the degree of the polynomial for SVM-
POL. See https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html for further
details.

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html

6.2 Classifiers 247

Fig. 6.14 Classification using SVM. [→ Example 6.7]

248 6 Classification in X-Ray Testing

List of classifiers
ss_cl = [’dmin’,’lda’,’qda’,’maha’,’knn3’,’knn5’,’knn7’,’knn11’,’knn15’,

’bayes−naive’,’bayes−kde’,’adaboost’,’lr’,’rf’,’tree’,
’svm−lin’,’svm−rbf(0.1,1)’,’svm−rbf(0.1,0.5)’,’svm−rbf(0.5,1)’,
’svm−pol(0.05,0.1,2)’,’svm−pol(0.05,0.5,2)’,’svm−pol(0.05,0.5,3)’,
’svm−sig(0.1,1)’,’svm−sig(0.1,0.5)’,’svm−sig(0.5,1)’,
’nn(10,)’,’nn(20,)’,’nn(12,6)’,’nn(20,10,4)’]

(X,d,Xt,dt) = load_features(’../data/G3/G3’) # load training and testing data

n = len(ss_cl)
acc_train = np.zeros((n,))
acc_test = np.zeros((n,))
for k in range(n):

(name,params) = clf_model(ss_cl[k]) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
acc_train[k] = accuracy_score(d,d0) # accuracy in training
acc_test[k] = accuracy_score(dt,ds) # accuracy in testing
print(f’{k:3d}’+’) ’+f’{ss_cl[k]:20s}’+ ’: ’ +

f’Acc−Train = {acc_train[k]:.4f}’+ ’ ’ + f’Acc−Test = {acc_test[k]:.4f}’)
ks = np.argmax(acc_test)
print(’−−−’)
print(’Best Classifier:’)
print(f’{ks:3d}’+’) ’+f’{ss_cl[ks]:20s}’+ ’: ’ +

f’Acc−Train = {acc_train[ks]:.4f}’+ ’ ’ + f’Acc−Test = {acc_test[ks]:.4f}’)
print(’−−−’)
(name,params) = clf_model(ss_cl[ks]) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
d0 = test_classifier(clf,X) # clasification of training
ds = test_classifier(clf,Xt) # clasification of testing
show_clf_results(clf,X,d,Xt,dt,d0,ds,ss_cl[ks]) # display results and decision lines

The output of this code is the evaluation of the accuracy on training and testing
subsets of the 30 classifiers as follows:

0) dmin : Acc-Train = 0.8717 Acc-Test = 0.8833
1) lda : Acc-Train = 0.8758 Acc-Test = 0.8883
2) qda : Acc-Train = 0.8808 Acc-Test = 0.8700
3) maha : Acc-Train = 0.9075 Acc-Test = 0.9050
4) knn3 : Acc-Train = 0.9467 Acc-Test = 0.9383
5) knn5 : Acc-Train = 0.9425 Acc-Test = 0.9417
6) knn7 : Acc-Train = 0.9483 Acc-Test = 0.9433
7) knn11 : Acc-Train = 0.9442 Acc-Test = 0.9383
8) knn15 : Acc-Train = 0.9400 Acc-Test = 0.9383
9) bayes-naive : Acc-Train = 0.9250 Acc-Test = 0.9367

10) bayes-kde : Acc-Train = 0.9083 Acc-Test = 0.9133
11) adaboost : Acc-Train = 0.7750 Acc-Test = 0.7867
12) lr : Acc-Train = 0.8558 Acc-Test = 0.8667
13) rf : Acc-Train = 0.9975 Acc-Test = 0.9317
14) tree : Acc-Train = 0.9175 Acc-Test = 0.9083
15) svm-lin : Acc-Train = 0.8842 Acc-Test = 0.8933
16) svm-rbf(0.1,1) : Acc-Train = 0.9342 Acc-Test = 0.9400
17) svm-rbf(0.1,0.5) : Acc-Train = 0.9358 Acc-Test = 0.9383
18) svm-rbf(0.5,1) : Acc-Train = 0.9367 Acc-Test = 0.9450

6.2 Classifiers 249

Fig. 6.15 Best classification by evaluating many classifiers 6.8. [→ Example 6.8]

19) svm-pol(0.05,0.1,2) : Acc-Train = 0.8700 Acc-Test = 0.8600
20) svm-pol(0.05,0.5,2) : Acc-Train = 0.8933 Acc-Test = 0.9033
21) svm-pol(0.05,0.5,3) : Acc-Train = 0.8908 Acc-Test = 0.8917
22) svm-sig(0.1,1) : Acc-Train = 0.2567 Acc-Test = 0.2617
23) svm-sig(0.1,0.5) : Acc-Train = 0.2692 Acc-Test = 0.2700
24) svm-sig(0.5,1) : Acc-Train = 0.0058 Acc-Test = 0.0083
25) nn(10,) : Acc-Train = 0.9358 Acc-Test = 0.9333
26) nn(20,) : Acc-Train = 0.9342 Acc-Test = 0.9383
27) nn(12,6) : Acc-Train = 0.9375 Acc-Test = 0.9367
28) nn(20,10,4) : Acc-Train = 0.9367 Acc-Test = 0.9417

Best Classifier:
18) svm-rbf(0.5,1) : Acc-Train = 0.9367 Acc-Test = 0.9450

In addition, Fig. 6.15 shows the classifier that achieves the best accuracy on testing
subset. In this case, the best classifier is #19 – ‘svm-rbf(0.5,1)’with an accuracy
of 94.50%. �

6.2.9 Classification Using Sparse Representations

In this kind of classifier, the strategy is to use sparse representations of the original
data to perform the classification. Thus, the features are first transformed into a
sparse representation (see Sect. 5.5) and afterwards, the sparse representation is used
by the classifier.

According to Eq. (5.38) it is possible to learn the dictionary D and estimate the
most important constitutive components Z = {zi }N

i=1 of the representative signals
X = {xi }N

i=1. In a supervised problem—with labeled data (xi , di), where di is the
class of sample xi—, naturally the classification problem can be stated as follows
[1]: given training data (xi , di), design a classifier h—with parameters θ—which

250 6 Classification in X-Ray Testing

maps the transformed samples zi to its classification label di , thus, h(zi , θ) should be
di . In order to classify a new sample data x, it is transformed into z using dictionary
D and then it is classified as d = h(z, θ). Nevertheless, since Z is estimated to rep-
resent the original data efficiently, there is no reason to accept as true that this new
representation can ensure an optimal separation of the classes. Another classifica-
tion strategy uses one dictionary Dk per class [15], that is learned using the set Xk ,6

that contains only the samples of class ωk of the training data: Xk = {xi |di = k}.
With this strategy, using (5.39) a test sample x is codified by z = zk with dictio-
nary D = Dk for all classes k = 1 . . . K , and a reconstruction error is computed as
ek = ||x − Dkzk ||. Finally, sample x is assigned to the class with the smallest recon-
struction error:

hSPAr(x) = argmin
k

||x − Dkzk ||. (6.28)

This test strategy, however, does not scale well for a large number of classes.
For these reasons, new strategies have been developed in order to learn at the same
time reconstructive and discriminative dictionaries (for robustness to noise and for
efficient classification respectively) [24]. This can be achieved by adding a new
discrimination term in the objective function that includes the representation that is
also the most different from the one of signals in other data classes:

argmin
D,Z,θ

[||X − DZ||22 + γ J (D,Z,d, θ)] subject to ||z||0 ≤ T . (6.29)

The discrimination term J (D,Z, c, θ) depends on the dictionary, the coefficient vec-
tors, the labels of the samples d, and the parameters θ of the model used for classifi-
cation. Parameter γ weights the trade-off between approximation and classification
performance. This strategy with a common dictionary has the advantage of sharing
some atoms of the dictionary when representing samples of different classes. Equa-
tion (6.29) can be solved efficiently by fixed-point continuation methods when the
classifier is based on logistic regression methods [16].

Another approach that can be used to classify samples in X-ray testing is based
on sparse representations of random patches. This approach, called Adaptive Sparse
Representation of Random Patches (ASR+), has been successfully used in other
recognition problems [17, 18]. The method consists of two stages (see Fig. 6.16): In
the training stage, random patches are extracted from representative images of each
class (e.g., in baggage screening we can have handguns, razor blades, etc.) in order
to construct representative dictionaries. A stop list is used to remove very common
words from the dictionaries [23]. In the testing stage, random test patches of the
query image are extracted, and for each non-stopped test patch a dictionary is built
concatenating the ‘best’ representative dictionary of each class. Using this adapted
dictionary, each non-stopped test patch is classified following the Sparse Repre-

6There are some approaches that define the dictionary as the original samples (see Sparse Repre-
sentation Classification (SRC) [26]), where Dk = Xk .

6.2 Classifiers 251

Fig. 6.16 Overview of the proposed method. The figure illustrates the recognition of three dif-
ferent objects. The shown classes are three: clips, razor blades, and springs. There are two stages:
Learning and Testing. The stop list is used to filter out patches that are not discriminating for these
classes. The stopped patches are not considered in the dictionaries of each class and in the testing
stage

Fig. 6.17 Images used in our experiments. The five classes are: handguns, shuriken, razor blades,
clips, and background

sentation Classification (SRC) methodology [26] by minimizing the reconstruction
error. Finally, the query image is classified by patch voting. Thus, this approach is
able to learn a model for each recognition task dealing with a larger degree of vari-
ability in contrast, pose, expression, occlusion, object size, and distance from the
X-ray detector.

This method was tested in the recognition of five classes in baggage screening:
handguns, shuriken, razor blades, clips, and background (see some samples in Fig.
6.17). In our experiments, there are 100 images per class. All images were resized to

252 6 Classification in X-Ray Testing

128 × 128 pixels. The evaluation is performed using leave-one-out (see Sect. 6.3.3).
The obtained accuracy was η = 97.17%.

6.3 Performance Evaluation

In this section, we will see how to evaluate the performance of a classifier and how to
build the datasets ‘training data’ and ‘testing data’. In general, there is a set D that
contains all available data, that is the features of representative samples and their
corresponding labels. Sometimes, from set D a subset X ⊂ D is chosen, however, in
most casesX = D. We call subsetX the ‘used data’ because it is used to evaluate the
performance of a classifier as illustrated in Fig. 6.18. Set X consists of (i) a matrix
X of size N × p, for N samples and p features; and (ii) a vector d of N elements
with the labels (one label per sample).

In order to estimate the accuracy of a classifier, we can follow this general strat-
egy:

1. From X, select training data (Xtrain,dtrain) and testing data (Xtest,dtest):

(Xtrain,dtrain,Xtest,dtest) = DataSelection(X) (6.30)

Typically, a given percentage S of X is used for training and the rest (100-S)
for testing. That means, we have Ntrain = N × S/100 samples for training and
Ntest = N − Ntrain for training. There are many ways to perform the data selec-
tion:

• Random (yes/no): we can choose randomly Ntrain of X or, for example, the
first Ntrain samples of X.

Fig. 6.18 Estimation of the accuracy of a classifier. Figures 6.19, 6.20, and 6.21 show different
strategies

6.3 Performance Evaluation 253

• Stratified (yes/no): in stratified case, we select the same S percentage of each
class (so the relative number of samples for each class is the same in orig-
inal dataset and selected dataset), whereas in unstratified cases we select S
percentage of X (so the relative number of samples for each class is not nec-
essarily the same in original dataset and selected dataset).

• Replacement (with/without): Data selection without replacement means that
once a sample has been selected, it may not be selected again. In data selec-
tion with replacement a sample of X is allowed to be replicated. It must be
ensured that samples in the training data are not in the testing data and vicev-
ersa.

2. Using training data (Xtrain,dtrain) train a classifier:

θ = ClassifierTrain(Xtrain,dtrain), (6.31)

where θ is a vector that contains all parameters of the classifier that was trained.
For instance, in a simple classifier like Euclidean minimal distance (see Sect.
6.2.1) we store in θ only the centers of mass of each class in the training set.

3. Using the features of the testing data Xtest, the classifier and its parameters θ ,
we predict the labels of each testing sample and store them in vector ds of Ntest
elements:

ds = Classify(Xtest, θ). (6.32)

It is worth mentioning that in this step it is not allowed to use the labels of the
testing data dtest.

4. Now, we can compute the accuracy of the testing data defined as

ηi = # test samples correctly predicted

Ntest
. (6.33)

5. In (6.33), we use index i because the procedure from steps 1 to 4 can be repeated
n times, for i = 1 . . . n. Thus, we can compute the final estimation of the accu-
racy as

η = 1

n

n∑

i=1

ηi . (6.34)

In the following section, we will explain typical strategies used in the literature.

6.3.1 Hold-Out

In hold-out, we take a percentage S ofX for training and the rest for testing as shown
in 6.19. In our general methodology, this strategy corresponds to n = 1 in (6.34).
This is the simplest way how to evaluate the accuracy. It is recommended just in case

254 6 Classification in X-Ray Testing

Fig. 6.19 Estimation of the accuracy of a classifier using hold-out. The figure follows the color
representation of Fig. 6.18 for training and testing data

the computational time is so enormous that the cost of training a classifier several
times is prohibitive. Hold-out can be a good starting point to test if the features and
classifier that we are designing are suitable for the recognition task. Nevertheless,
the standard deviation of the accuracy estimation can be very high as we will see in
next example. An example that evaluates 30 classifiers using hold-out methodology
has already been shown in Example 6.8. Additionally, in this section we show a very
simple example that evaluates only one classifier.

Python Example 6.9 In this example, we show how to evaluate a classifier
using hold-out strategy. We use the same simulated data addressed in Example 6.2
and illustrated in Fig. 6.2.

Listing 6.9 : Hold-out

from pyxvis.learning.classifiers import clf_model
from pyxvis.learning.evaluation import hold_out
from pyxvis.io.data import load_features
from pyxvis.io.plots import show_confusion_matrix
from sklearn.model_selection import train_test_split

load available dataset
(X0,d0) = load_features(’../data/F2/F2’,full=1)

definition of training and testing data
X,Xt,d,dt = train_test_split(X0,d0,test_size=0.2, stratify=d0)

definition of the classifier
cl_name = ’svm−rbf(0.1,1)’ # generic name of the classifier
(name,params) = clf_model(cl_name) # function name and parameters

Hold−out (train on (X,d), test on (Xt), compare with dt)
ds,acc,_ = hold_out([name,params],X,d,Xt,dt) # hold out
print(cl_name+ ’: ’ + f’Accuracy = {acc:.4f}’)
display confusion matrix
show_confusion_matrix(dt,ds,’Testing subset’)

The output of this code is the value of the estimated accuracy. This number should
be around 93%. This method is implemented in function hold_out in pyxvis Library.
If we repeat this experiment 1000 times, the mean of the accuracy is 0.9287, the
standard deviation is 0.0152, the maximal value is 0.9708 and the minimal value is
0.8792, i.e., the estimation is not very accurate because there is a variation of 9.2%
between maximal and minimal value! �

6.3 Performance Evaluation 255

Fig. 6.20 Estimation of the accuracy of a classifier using cross-validation with v folds. The figure
follows the color representation of Fig. 6.18 for training and testing data

6.3.2 Cross-Validation

Cross-validation is widely used in machine learning problems [13]. In cross-valida-
tion, the data is divided into v folds. A portion s = (v − 1)/v of the whole data is
used to train and the rest (1/v) for test. This experiment is repeated v times rotating
train and test data to evaluate the stability of the classifier as shown in Fig. 6.20.
Then, when training is performed, the samples that were initially removed can be
used to test the performance of the classifier on these test data. Thus, one can eval-
uate the generalization capabilities of the classifier by testing how well the method
will classify samples that have not already been examined. The estimated perfor-
mance, η, is calculated as the mean of the v percentages of the true classifications
are tabulated in each case, i.e., n = v (6.34). In our experiments, we use v = 10
folds.7 Confidence intervals, where the classification performance η expects to fall,
are obtained from the test sets. These are determined by the cross-validation tech-
nique, according to a t—Student test [20]. Thus, the performance and also the con-
fidence can be assessed.

Python Example 6.10 In this example, we show how to evaluate 30 clas-
sifiers using cross-validation strategy with 10 folds. We use the same simulated

7The number of folds v can be another number, for instance 5-fold or 20-fold cross-validation
estimate offers very similar performances. In our experiments, we use 10-fold cross-validation
because it has become the standard method in practical terms [25].

256 6 Classification in X-Ray Testing

data addressed in Example 6.8 with three classes and two features as illustrated in
Fig. 6.15.

Listing 6.10 : Cross-validation with many classifiers

import numpy as np
from pyxvis.learning.classifiers import clf_model
from pyxvis.learning.evaluation import cross_validation
from pyxvis.io.data import load_features

List of classifiers
ss_cl = [’dmin’,’lda’,’qda’,’maha’,’knn3’,’knn5’,’knn7’,’knn11’,’knn15’,

’bayes−naive’,’bayes−kde’,’adaboost’,’lr’,’rf’,’tree’,
’svm−lin’,’svm−rbf(0.1,1)’,’svm−rbf(0.1,0.5)’,’svm−rbf(0.5,1)’,
’svm−pol(0.05,0.1,2)’,’svm−pol(0.05,0.5,2)’,’svm−pol(0.05,0.5,3)’,
’svm−sig(0.1,1)’,’svm−sig(0.1,0.5)’,’svm−sig(0.5,1)’,
’nn(10,)’,’nn(20,)’,’nn(12,6)’,’nn(20,10,4)’]

(X,d) = load_features(’../data/G3/G3’,full=1) # load training and testing data

n = len(ss_cl)
folds = 10
acc = np.zeros((n,))
for k in range(n):

(name,params) = clf_model(ss_cl[k]) # function name and parameters
acc[k] = cross_validation([name,params],X,d,folds=folds)
print(f’{k:3d}’+’) ’+f’{ss_cl[k]:20s}’+ ’: ’ + f’CV−Accuracy = {acc[k]:.4f}’)

ks = np.argmax(acc)
print(’−−−’)
print(’Best Classifier:’)
print(f’{ks:3d}’+’) ’+f’{ss_cl[ks]:20s}’+ ’: ’ + f’CV−Accuracy = {acc[ks]:.4f}’)
print(’−−−’)

The output of this code is the estimated accuracy of each classifier. They are pre-
sented as follows:

0) dmin : CV-Accuracy = 0.8800
1) lda : CV-Accuracy = 0.8828
2) qda : CV-Accuracy = 0.8811
3) maha : CV-Accuracy = 0.9067
4) knn3 : CV-Accuracy = 0.9250
5) knn5 : CV-Accuracy = 0.9278
6) knn7 : CV-Accuracy = 0.9356
7) knn11 : CV-Accuracy = 0.9344
8) knn15 : CV-Accuracy = 0.9378
9) bayes-naive : CV-Accuracy = 0.9228

10) bayes-kde : CV-Accuracy = 0.9161
11) adaboost : CV-Accuracy = 0.7961
12) lr : CV-Accuracy = 0.8628
13) rf : CV-Accuracy = 0.9328
14) tree : CV-Accuracy = 0.9056
15) svm-lin : CV-Accuracy = 0.8833
16) svm-rbf(0.1,1) : CV-Accuracy = 0.9339
17) svm-rbf(0.1,0.5) : CV-Accuracy = 0.9344
18) svm-rbf(0.5,1) : CV-Accuracy = 0.9367
19) svm-pol(0.05,0.1,2) : CV-Accuracy = 0.8739
20) svm-pol(0.05,0.5,2) : CV-Accuracy = 0.9033

6.3 Performance Evaluation 257

Fig. 6.21 Estimation of the accuracy of a classifier using leave-one-out. The figure follows the
color representation of Fig. 6.18 for training and testing data

21) svm-pol(0.05,0.5,3) : CV-Accuracy = 0.9017
22) svm-sig(0.1,1) : CV-Accuracy = 0.2583
23) svm-sig(0.1,0.5) : CV-Accuracy = 0.2661
24) svm-sig(0.5,1) : CV-Accuracy = 0.0089
25) nn(10,) : CV-Accuracy = 0.9333
26) nn(20,) : CV-Accuracy = 0.9350
27) nn(12,6) : CV-Accuracy = 0.9367
28) nn(20,10,4) : CV-Accuracy = 0.9372

Best Classifier:

8) knn15 : CV-Accuracy = 0.9378

The best result has been achieved by classifier KNN with 15 neighbors. The
reader can compare these results with the accuracies presented in Example 6.8.
This method is implemented in function cross_validation in pyxvis Library. In order
to compare Hold-Out with Cross-Validation variations we can repeat the cross-
validation 1000 times for classifier KNN with 15 neighbors. The results are: mean
of the accuracy is 93.80%, the standard deviation is 1.65%, the maximal value is
94.28%, and the minimal value is 93.11%, i.e., the estimation is more accurate
because there is a variation of 1.2% between maximal and minimal. In hold-out
the variation for a similar classifier was 9.2%. �

258 6 Classification in X-Ray Testing

6.3.3 Leave-One-Out

In leave-one-out strategy, we perform the cross-validation technique with N folds
(the number of samples of X). That means, we leave one sample out for testing and
we train with the rest (N − 1 samples). The operation is repeated for each sample
as illustrated in 6.21. The estimated accuracy is the average over the N estimations.

This method is implemented in function leave_one_out in pyxvis Library. In
order to illustrate the estimation accuracy using leave-one-out, we can change—in
Example 6.10—the line dedicated to cross-validation by the following line:

acc[k] = leave_one_out([name,params],X,d)

The results are given as follows:

--
0) dmin : LOO-Accuracy = 0.8800
1) lda : LOO-Accuracy = 0.8828
2) qda : LOO-Accuracy = 0.8811
3) maha : LOO-Accuracy = 0.9067
4) knn3 : LOO-Accuracy = 0.9272
5) knn5 : LOO-Accuracy = 0.9300
6) knn7 : LOO-Accuracy = 0.9367
7) knn11 : LOO-Accuracy = 0.9372
8) knn15 : LOO-Accuracy = 0.9383
9) bayes-naive : LOO-Accuracy = 0.9233

10) bayes-kde : LOO-Accuracy = 0.9133
11) adaboost : LOO-Accuracy = 0.8572
12) lr : LOO-Accuracy = 0.8661
13) rf : LOO-Accuracy = 0.9294
14) tree : LOO-Accuracy = 0.9094
15) svm-lin : LOO-Accuracy = 0.8844
16) svm-rbf(0.1,1) : LOO-Accuracy = 0.9350
17) svm-rbf(0.1,0.5) : LOO-Accuracy = 0.9356
18) svm-rbf(0.5,1) : LOO-Accuracy = 0.9378
19) svm-pol(0.05,0.1,2) : LOO-Accuracy = 0.8778
20) svm-pol(0.05,0.5,2) : LOO-Accuracy = 0.9061
21) svm-pol(0.05,0.5,3) : LOO-Accuracy = 0.9033
22) svm-sig(0.1,1) : LOO-Accuracy = 0.2589
23) svm-sig(0.1,0.5) : LOO-Accuracy = 0.2656
24) svm-sig(0.5,1) : LOO-Accuracy = 0.0067
25) nn(10,) : LOO-Accuracy = 0.9333
26) nn(20,) : LOO-Accuracy = 0.9350
27) nn(12,6) : LOO-Accuracy = 0.9356
28) nn(20,10,4) : LOO-Accuracy = 0.9400

--
Best Classifier:
28) nn(20,10,4) : LOO-Accuracy = 0.9400

--

In this example, the best accuracy was achieved by classifier ‘nn(20,10,4)’ with
an accuracy of 94.00%. The reader can compare these results with the accuracies
presented in Examples 6.8 and 6.10. It is not necessary to repeat it, because Leave-
one-out always obtains the same result. That means, there is no variation of the

6.3 Performance Evaluation 259

computed performance, however, leave-one-out is very time-consuming because the
number of trainings and testings is very large.

6.3.4 Confusion Matrix

The confusion matrix, T, is a K × K matrix, where K is the number of classes
of our data. The element T (i, j) of the confusion matrix is defined as the number
of samples that belong to class ωi and were classified as ω j . A perfect classifica-
tion means that T (i, i) is Ni and T (i, j) = 0 for i 	= j , where Ni is the number of
samples of class ωi .

Python Example 6.11 In this example, we show how to compute the con-
fusion matrix for two classifiers DMIN and SVM-RBF. We use the same simulated
data addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.11 : Confusion matrix

from pyxvis.learning.classifiers import clf_model,define_classifier
from pyxvis.learning.classifiers import train_classifier,test_classifier
from pyxvis.io.plots import show_confusion_matrix
from pyxvis.io.data import load_features

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load training and testing data

Classifier definition
ss_cl = [’dmin’,’svm−rbf(0.1,1)’]
n = len(ss_cl)
for k in range(n):

(name,params) = clf_model(ss_cl[k]) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
ds = test_classifier(clf,Xt) # clasification of testing
show_confusion_matrix(dt,ds,ss_cl[k]) # display confusion matrix

The output of this code is two confusion matrices that are illustrated in Fig. 6.22.
This method is implemented in function plot_confussion_matrix in pyxvis Library that
calls function confusion_matrix of sklearn library. �

Typically, in X-ray testing, there are two classes: ω1 known as the target or object
of interest, and ω0 known as the no-target or background. In this two-class recog-
nition problem (known as ‘detection’), we are interested in detecting the target cor-
rectly. It is very helpful to build a 2 × 2 confusion matrix as shown in Table 6.2. We
distinguish

• True Positive (T P): number of targets correctly classified.
• True Negative (T N): number of non-targets correctly classified.
• False Positive (F P): number of non-targets classified as targets. The false posi-
tives are known as ‘false alarms’ and ‘Type I error’.

• False Positive (F N): number of targets classified as no-targets. The false nega-
tives are known as ‘Type II error’.

260 6 Classification in X-Ray Testing

Fig. 6.22 Visualization of confusion matrix of LDA and SVM-RBF. [→ Example 6.11]

Table 6.2 Confusion matrix for two classes

predicted → ω1 ω0

actual ↓
ω1 T P F N

ω0 F P T N

Fig. 6.23 Detection of a target: the ground truth (ideal detection given by an expert) is called in
this figure as ‘target’ (the positive instances). The achieved detection is not a perfect match. For
this reason, there are false positives and false negatives

6.3 Performance Evaluation 261

From these statistics, we can obtain following definitions (see Fig. 6.23):
Positive instances:

P = T P + F N (6.35)

Negative instances:
N = T N + F P (6.36)

Detections:
D = T P + F P (6.37)

True positive rate, known as Sensitivity or Recall:

T P R = Sn = Re = T P

P
= T P

T P + F N
(6.38)

Precision or Positive Predictive Value:

Pr = T P

D
= T P

T P + F P
(6.39)

True negative rate, known as Specificity:

T N R = Sp = T N

N
= T N

T N + F P
(6.40)

False positive rate, known as 1-Specificity:

F P R = 1 − Sp = F P

N
= F P

T N + F P
(6.41)

False negative rate, known as Miss Rate:

F N R = M R = F N

P
= F N

T P + F N
(6.42)

Accuracy:

ACC = T P + T N

P + N
(6.43)

F1-score:

F1 = 2
Pr · Re

Pr + Re
(6.44)

262 6 Classification in X-Ray Testing

Fig. 6.24 Performance curves for a detection problem (see Fig. 6.23). Left) ROC curve. Right)
Precision/Recall curve

Ideally, a perfect detection means all existing targets are correctly detected with-
out any false alarms, i.e., T P = P and F P = 0. It is equivalent to: (i) T P R = 1
and F P R = 0, or (ii) Pr = 1 and Re = 1, or (ii) F N = F P = 0.

6.3.5 ROC and Precision-Recall Curves

It is clear, that the performance of a detector depends on some parameters, e.g., the
value of a threshold θ when segmenting a defect in an X-ray image (see Fig. 6.23).
An example to see this phenomenon is shown in Fig. 6.24: increasing the sensitivity
of the method the target will be 100% detected, however, the false positives will be
increased as well. Typically, there is a trade-off between increasing the true posi-
tives and decreasing the false positives, because by increasing the first, the second
increases as well. In a detector, i.e., a binary classification task, we can analyze the
performance of the detector by variating its parameter θ .

As a measure of the performance of a detector, two curves can be plotted:
ROC curve: We can analyze the values T P R and F P R as defined in (6.38) and
(6.41) respectively (see Fig. 6.24). In this case, we obtain T P R(θ) and F P R(θ)

because the values of these variables depend on parameter θ .
The receiver operation characteristic (ROC) curve is a plot of T P R(θ) versus

F P R(θ). Thus, we choose different values {θi }n
i=1 and for each value θi we plot the

corresponding point (xi , yi), where xi = F P R(θi) and yi = T P R(θi). An example
is illustrated in Fig. 6.25. A measure of performance of the detector is the area under
the curve (AUC) [6].

6.3 Performance Evaluation 263

Fig. 6.25 ROC curves (right) for different class distributions (left). The area under the curve
(AUC) gives a good measure of the performance of the detection. The obtained points (xi , yi)

are used to fit the ROC curve to y = (1 − aγ xb
)/(1 − aγ). In each ROC curve, the ‘best operation

point’ is shown as spscolorred *. This point is defined as the closest point to ideal operation point
(0,1)

Precision/Recall curve: We can analyze the values Pr and Re as defined in (6.41)
and (6.38) respectively (see Fig. 6.24). In this case, we obtain Pr(θ) and Re(θ)

because the values of these variables depend on parameter θ . As in ROC curve,
we choose different values {θi }n

i=1 and for each value θi we plot the corresponding
point (xi , yi), where xi = Re(θi) and yi = Pr(θi). A measure of performance of
the detector is the area under the curve, called average precision (PA) [5].

264 6 Classification in X-Ray Testing

Fig. 6.26 Intersection over Union (IoU). For a perfect detection the normalized area A equals 1

It is worthwhile to mention that the precision and recall values do not depend on
the true negatives, like the false positive rate in ROC curve. This is a great advan-
tage when the negative class can be immensely large, e.g., in defect detection, the
number of positive instances is limited (there are usually few cases available), and
the number of negative instances can be very large. In those cases, F P R will be
extremely low, and erroneously we could think that the number of false positives is
very low. This is a typical mistake when using ROC curves. In this kind of computer
vision problem, typically the precision/recall curve is used.

In object detection, for example, [14], it is very important how to give a measure
of the performance of a detector. For this end, there is a set of images with objects
to detect, and for each one a bounding box that encloses it has been annotated by a
group of human operators. For simplicity, the annotation consists of drawing rect-
angles (instead of marking every single pixel of the objects). A very established
metric in the computer vision community is the ‘intersection over union’ (IoU) and
the PASCAL criterion [9]. For this metric, we need to define two bounding boxes
according to Fig. 6.26: GT, the bounding box of the ground truth, i.e., a rectan-
gle that encloses the target region (P), and DT, the bounding box of the detection,
i.e., a rectangle that encloses the detection (D). The PASCAL criterion considers a
detected object if the normalized area of overlap ‘A’ between the detected bounding
box DT and the ground truth bounding box GT exceeds 0.5, where A is defined as
follows:

A = area(GT ∩ DT)

area(GT ∪ DT)
, (6.45)

withGT ∩ DT the intersection of the detected and ground truth bounding boxes and
GT ∪ DT their union. An example in the detection of defects in aluminum castings
is illustrated in Fig. 6.27.

6.3 Performance Evaluation 265

Fig. 6.27 Detection on a single image. A detection is considered as true positive is the normalized
area of overlap (6.45) is greater than 50%. In this example, the true positives are shown in green,
the false positives in red, and the ground truth in yellow

With PASCAL criterion, the statistics of true positives and negatives, and false
positives and negatives are measured, and the precision/recall values are computed
in different scenarios. The mean average precision (mPA) is typically used to com-
pare the performance of different object detection algorithms (see details in [14]).

Python Example 6.12 In this example, we show how to compute the ROC
curves and Precision/Recall curves for three classifiers based on neural networks
in the classification of a two-class problem with two features. We use the same
simulated data addressed in Example 6.2 and illustrated in Fig. 6.2.

Listing 6.12 : ROC and Precision/Recall curves

from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.metrics import precision_recall_curve, average_precision_score
from pyxvis.learning.classifiers import clf_model,define_classifier,train_classifier
from pyxvis.io.plots import plot_features, plot_ROC, plot_precision_recall
from pyxvis.io.data import load_features

(X,d,Xt,dt) = load_features(’../data/F2/F2’) # load train/test data
plot_features(X,d,’F2 dataset’) # plot of feature space

ss_cl = [’nn(3,)’,’nn(4,)’,’nn(8,)’] # classifiers to evaluate

266 6 Classification in X-Ray Testing

Fig. 6.28 ROC curve and Precision/Recall curve for different neural networks using data distribu-

tion of Fig. 6.2. [→ Example 6.12]

curve = 1 # 0 = ROC curve,
1 = precision/recall curve

for k in range(len(ss_cl)):
cl_name = ss_cl[k]
(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
p = clf.predict_proba(Xt)[:,1] # classification probabilities
if curve == 0: # ROC curve

auc = roc_auc_score(dt, p) # area under curve
fpr,tpr,_ = roc_curve(dt, p) # false and true positive rates
plot_ROC(fpr,tpr,cl_name,auc,[k,n]) # ROC curve

else: # precision/recall curve
ap = average_precision_score(dt, p) # area under curve
pr,re,_ = precision_recall_curve(dt, p) # precision and recall values
plot_precision_recall(pr,re,cl_name,ap,[k,n]) # precision/recall curve

The output of this code are the curves of Fig. 6.28. Variable curve must be set to
0 or 1 for ROC curve or Precision/Recall curve respectively. This method is imple-
mented with functions roc_auc_score, roc_curve, precision_recall_curve,
and average_precision_score of sklearn library and functions plot_ROC and
plot_precision_recall of pyxvis Library. �

6.4 Classifier Selection

In order to select the best classifier, we explain in this section a methodology using
two examples. Our examples are implemented using powerful functions of pyxvis
Library. With these functions, easily, we can (i) extract features, (ii) select features
and (iii) select a classifier. Thus, the user can: choose the feature groups that will
be extracted, choose the feature selection algorithms to be used, the maximal num-
ber of features to be selected, and choose the classifiers that will be evaluated and
the number of folds of the cross-validation technique. Using these simple functions,

6.4 Classifier Selection 267

it is possible to design the computer vision system automatically according to the
general computer vision framework explained in these three chapters (image pro-
cessing, image representation and classification, and summarized in Fig. 5.28).

Using this methodology, with a representative set of X-ray images and their
labels, we can know which features and which classifier can be used to obtain the
best performance. The idea is to find a classification strategy (feature extraction,
features selection, and classification as shown in Fig. 6.1) that maximizes the accu-
racy in this dataset. The proposed methodology (based on [19]) evaluates a set of
combinations of features (selected by may feature selection algorithms) and trains
and tests a set of classifiers to find best strategy, i.e., the highest accuracy.

In order to show this methodology, we show two examples, Example 6.13 for
the detection of fishbones (that uses intensity features), and Example 6.14 for the

Algorithm 1 Feature and Classifier Selection

Input: (X,d):Training subset; (Xt ,dt): Testing subset
Input: p = [p1 · · · pn]: number of features to be selected
Input: f = [f1 · · · fm]: feature selectors algorithms
Input: h = [h1 · · · hq]: classification algorithms
1: η̂ = 0//Initialization of the highest accuracy in training subset
2: η̂t = 0//Initialization of the highest accuracy in testing subset
3: for i = 1 to n do
4: for j = 1 to m do
5: s = FeatureSelection(f j , pi ,X, d) //Selection of pi features of X using f j

6: X′ = X[:, s] //Training subset using selected features
7: X′

t = Xt [:, s] //Testing subset using selected features
8: for k = 1 to q do
9: η = CrossValidation(hk,X′,d) //Accuracy of classifier hk on data X′
10: ηt = HoldOut(hk,X′,d,X′

t ,dt) //Accuracy of classifier hk on data X′
t

11: if η > η̂ then
12: η̂ = η //Highest performance in training
13: if ηt > η̂t then
14: η̂t = ηt //Highest performance in testing
15: ŝ = s //Indices of the best selected features
16: p̂ = pi //Number of selected features
17: ĵ = j //Index of the best feature selector
18: k̂ = k //Index of the best feature classifier
19: end if
20: end if
21: end for
22: end for
23: end for
Output: η̂, η̂t , ŝ, p̂, ĵ, k̂

268 6 Classification in X-Ray Testing

classification of three threat objects (that uses geometric features extracted after a
segmentation of the threat objects).

In order to find the best classification strategy, we use an exhaustive search
(Algorithm 1) as follows: we define q classifiers, n feature selection algorithms,
and m different numbers of selected features. That means, we valuate the perfor-
mance of the q classifiers on the m × n subsets of selected features. For instance,
we could have: q = 3 classifiers (LDA, KNN with 3 neighbors, and SVM with
RBF), m = 2 feature selection algorithms (SFS with Fisher criterion and SFS with
QDA criterion) with 5, 10, 15, and 20 selected features (n = 4). The accuracy is
measured on the training dataset using cross-validation, and on the testing dataset
using hold-out. According to Algorithm 1, the highest achieved accuracy on training
datase (searching in all q × m × n) is computed as η̂. In case a maximal value for
η̂, the accuracy on testing dataset is evaluated as η̂t . This algorithm is implemented
in function best_features_classifier of pyxvis Library.

Python Example 6.13 In this example, we can see the whole process of
Algorithm 1: (i) feature extraction, (ii) feature selection, and (ii) classifier selection.
pyxvis Library provides a suite of helpful commands that can be used in this pro-
cess. The idea is to design a classifier that can be used to detect fish bones in X-ray
images of salmon filets (see details of the dataset in Example 5.9). In this code, we
show how to automatically design a computer vision system for this application. For
this example, (i) we extract basic intensity, Gabor, LBP, Haralick with distance of
2 pixels, Fourier and HOG features; (ii) we evaluate four different feature selection
algorithms based on Fisher, QDA, SVM-LIN and SVM-RBF with 3, 5, 10, 12, and
15 features to be selected; and (iii) we train and test 8 different classifiers: Maha-
lanobis, Bayes-KDE, SVM-LIN, SVM-RBF, QDA, LDA, KNN-3, KNN-7, and a
Neural Network.

Listing 6.13 : Feature extraction, feature selection and classification selection - 1

import numpy as np
from pyxvis.io.data import load_features,save_features
from pyxvis.learning.evaluation import best_features_classifier
from pyxvis.features.selection import clean_norm,clean_norm_transform
from pyxvis.features.extraction import extract_features_labels

dataname = ’fbdata’ # prefix of npy files of training and testing data
fxnew = 1 # the features are (0) loaded or (1) extracted and saved
if fxnew:

features to extract
fx = [’basicint’,’gabor−ri’,’lbp−ri’,’haralick−2’,’fourier’,’hog’]
feature extraction in training images
path = ’../images/fishbones/’
X,d = extract_features_labels(fx,path+’train’,’jpg’)
feature extraction in testing images
Xt,dt = extract_features_labels(fx,path+’test’,’jpg’)
backup of extracted features
save_features(X,d,Xt,dt,dataname)

else:
X,d,Xt,dt = load_features(dataname)

X,sclean,a,b = clean_norm(X)
Xt = clean_norm_transform(Xt,sclean,a,b)

6.4 Classifier Selection 269

Fig. 6.29 Examples of Algorithm 1 for feature and classification selection. [→ Example 6.13

] [→ Example 6.14]

Classifiers to evaluate
ss_cl = [’maha’,’bayes−kde’,’svm−lin’,’svm−rbf’,’qda’,’lda’,’knn3’,’knn7’,’nn’]
Number of features to select
ff = [3,5,10,12,15]
Feature selectors to evaluate
ss_fs = [’fisher’,’qda’,’svm−lin’,’svm−rbf’]

clbest,ssbest = best_features_classifier(ss_fs,ff,ss_cl,X,d,Xt,dt,
’Accuracy in Fishbones’)

print(’ Selected Features: ’+str((np.sort(sclean[ssbest]))))

The result of this algorithm is illustrated in Fig. 6.29-Top. We can see that the
best performance was achieved by classifier SVM-RBF using 10 features that were
selected using SFS algorithm with Fisher criterion. The accuracy on testing dataset
is in this case 97.50%. The indices of the selected features are shown in following
output:

270 6 Classification in X-Ray Testing

--
Best iteration: 7 (maximum of testing accuracy)

Feature Selector: fisher with 10 features
: (Fisher,)

Classifier: svm-rbf
: (SVC, kernel = "rbf", gamma=0.1,C=1) CrossVal with 5 folds

Training-Acc: 0.9734
Testing-Acc: 0.9750

Selected Features: [3 20 21 39 51 57 63 65 69 71]
--

�

Python Example 6.14 In this example, we can see the whole process of
Algorithm 1 using geometric features: (i) feature extraction, (ii) feature selection,
and (ii) classifier selection using pyxvis Library. The idea is to design a classifier that
can be used to recognize threat objects in X-ray images (see details of the dataset
in Example 5.10). In this code, we show how to automatically design a computer
vision system for this application. For this example, (i) we extract basic geomet-
ric features, Hu, Flusser and Gupta moments, and Fourier descriptors (the features
extracted from the segmented image, for this end we use function seg_bimodal of
pyxvis Library as explained in Sect. 4.5.1); (ii) we evaluate four different feature
selection algorithms based on Fisher, QDA, SVM-LIN, and SVM-RBF with 2, 3, 5,
10, 15, and 20 features to be selected; and (iii) we train and test 8 different classifiers:
Mahalanobis, Bayes-KDE, SVM-LIN, SVM-RBF, QDA, LDA, KNN-3, KNN-7,
and a Neural Network.

Listing 6.14 : Feature extraction, feature selection and classification selection - 2

import numpy as np
from pyxvis.io.data import load_features,save_features
from pyxvis.learning.evaluation import best_features_classifier
from pyxvis.features.selection import clean_norm,clean_norm_transform
from pyxvis.features.extraction import extract_features_labels

dataname = ’thdata’ # prefix of npy files of training and testing data
fxnew = 1 # the features are (0) loaded or (1) extracted and saved
if fxnew:

features to extract
fx = [’flusser’,’hugeo’,’basicgeo’,’fourierdes’,’gupta’]
feature extraction in training images
path = ’../images/threatobjects/’
X,d = extract_features_labels(fx,path+’train’,’jpg’,segmentation = ’bimodal’)
feature extraction in testing images
Xt,dt = extract_features_labels(fx,path+’test’,’jpg’,segmentation = ’bimodal’)
backup of extracted features
save_features(X,d,Xt,dt,dataname)

else:
X,d,Xt,dt = load_features(dataname)

Nx = X.shape[1]
X,sclean,a,b = clean_norm(X)
Xt = clean_norm_transform(Xt,sclean,a,b)
Classifiers to evaluate
ss_cl = [’maha’,’bayes−kde’,’svm−lin’,’svm−rbf’,’qda’,’lda’,’knn3’,’knn7’,’nn’]
Number of features to select

6.4 Classifier Selection 271

ff = [2,3,5,10,15,20]
Feature selectors to evaluate
ss_fs = [’fisher’,’qda’,’svm−lin’,’svm−rbf’]

clbest,ssbest = best_features_classifier(ss_fs,ff,ss_cl,X,d,Xt,dt,
’Accuracy in Threat Objects’)

print(’ Extracted Features: ’+str(Nx))
print(’ Cleaned Features: ’+str(len(sclean)))
print(’ Selected Features: ’+str(len(ssbest))+ ’ > ’+str((np.sort(sclean[ssbest]))))

The result of this algorithm is illustrated in Fig. 6.29-Bottom. We can see that the
best performance was achieved by classifier KNN-3 using 5 features selected using
QDA criterion. The accuracy on testing dataset is in this case 97.67%. The indices
of the selected features are shown in following output:

--
Best iteration: 7 (maximum of testing accuracy)

Feature Selector: qda with 5 features
: (QuadraticDiscriminantAnalysis,)

Classifier: knn3
: (KNeighborsClassifier, n_neighbors=3) CrossVal with 5 folds

Training-Acc: 0.9909
Testing-Acc: 0.9767

Extracted Features: 48
Cleaned Features: 44

Selected Features: 5 > \cite{
--

�

6.5 Summary

In this chapter, we covered the following classifiers:

• Minimal distance (using Euclidean and Mahalanobis distance)
• Bayes
• Linear and quadratic discriminant analysis
• K-nearest neighbors
• Neural networks
• Support vector machines
• Classifiers using sparse representations

In addition, several simple examples were presented using simulated data and
real data. The reader can easily modify the proposed implementations in order to
test different classification strategies or real data.

Afterwards, we presented how to estimate the accuracy of a classifier using
hold-out, cross-validation, and leave-one-out. We covered the well-known confu-
sion matrix and receiver-operation-characteristic curve will be outlined as well.

Finally, we presented an example that involves all steps of a pattern recognition
problem, i.e., feature extraction, feature selection, classifier’s design, and evaluation.

272 6 Classification in X-Ray Testing

All steps can be designed automatically using a simple code program of a couple of
lines.

References

1. Bar, L., Sapiro, G.: Hierarchical dictionary learning for invariant classification. In: 2010 IEEE
International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 3578–
3581 (2010)

2. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975)

3. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (2005)
4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
5. Boyd, K., Eng, K.H., Page, C.D.: Area under the precision-recall curve: point estimates and

confidence intervals. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 451–466. Springer, Berlin (2013)

6. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning
algorithms. Patt. Recogn. 30(7), 1145–1159 (1997)

7. Carvajal, K., Chacón, M., Mery, D., Acuna, G.: Neural network method for failure detection
with skewed class distribution. Insight 46(7), 399–402 (2004)

8. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)
9. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual

object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)
10. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Inc.,

San Diego (1990)
11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edn. Springer, Berlin (2009)
12. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Patt. Anal.

Mach. Intell. 22(1), 4–37 (2000)
13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selec-

tion. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Cite-
seer (1995)

14. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.:
Microsoft COCO: common objects in context. In: European Conference on Computer Vision,
pp. 740–755. Springer, Berlin (2014)

15. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries
for local image analysis. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2008)

16. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. Tech.
Rep. 6652, INRIA (2008)

17. Mery, D., Bowyer, K.: Face recognition via adaptive sparse representations of random patches.
In: IEEE Workshop on Information Forensics and Security (WIFS 2014) (2014)

18. Mery, D., Bowyer, K.: Recognition of facial attributes using adaptive sparse representations
of random patches. In: 1st International Workshop on SoftBiometrics, in Conjunction with
European Conference on Computer Vision (ECCV 2014) (2014)

19. Mery, D., Pedreschi, F., Soto, A.: Automated design of a computer vision system for visual
food quality evaluation. Food Bioprocess Technol. 6(8), 2093–2108 (2013)

20. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
21. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University

Press, Cambridge (2004)
22. Silverman, B.W.: Density Estimation for Statistics and Data Analysis, vol. 26. CRC Press,

Boca Raton (2003)

References 273

23. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos.
In: International Conference on Computer Vision (ICCV 2003), pp. 1470–1477 (2003)

24. Tosic, I., Frossard, P.: Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)
25. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd

edn. Morgan Kaufmann, Burlington (2005)
26. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse

representation. IEEE Trans. Patt. Anal. Mach. Intell. 31(2), 210–227 (2009)

Chapter 7
Deep Learning in X-ray Testing

Abstract Deep learning has been inspired by ideas from neuroscience. The key
idea of deep learning is to replace handcrafted features (explained in details in
Chap. 5) with features that are learned efficiently using a hierarchical feature extrac-
tion approach. Usually, the learned features are so discriminative that no sophisti-
cated classifiers are required. In last years, deep learning has been successfully used
in image and video recognition, and it has been established as the state of the art
in many areas such as computer vision, machine translation, and natural language
processing. In comparison with other computer vision applications, we have seen
that the introduction of techniques based on deep learning in computer vision for
X-ray testing has been rather slow. However, there are many methods based on deep
learning that have been designed and tested in some X-ray testing applications. In
this chapter, we review many relevant concepts of deep learning that can be used
in computer vision for X-ray testing. We covered the theory and practice of deep
learning techniques in real X-ray testing problems. The chapter explained neural
networks, Convolutional Neural Network (CNN) that can be used in classification
problems, pre-trained models, transfer learning that are used in sophisticated mod-
els, Generative Adversarial Networks (GANs) to generate synthetic images, and
modern detection methods that are used to classify and localize objects in an image.
In addition, for every method, we give not only the basic concepts but also practical
details in real X-ray testing examples that have been implemented in Python.

Cover image: Synthetic X-ray mages generated by a GAN model that has been trained using X-ray
images of backpacks with no threat objects (from series B0082 colored with ‘jet’ colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_7

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_7

276 7 Deep Learning in X-ray Testing

7.1 Introduction

Originally, deep learning is inspired by ideas from neuroscience [19]. In last years,
deep learning has been successfully used in image and video recognition (see, for
example, [3, 31, 58]), and it has been established as the state of the art in many areas
such as computer vision, machine translation, and natural language processing [57].

The key idea of deep learning is to replace handcrafted features (explained in
details in Chap. 5) with features that are learned efficiently using a hierarchical fea-
ture extraction approach. Usually, the learned features are so discriminative that no
sophisticated classifiers are required. In recent years, we have witnessed tremendous
improvements in many fields of computer vision by using complex deep neural net-
work architectures trained with thousands or millions of images (e.g., face recog-
nition [10], object recognition and detection [35, 71], diagnosis of prostate can-
cer [44], classification of skin cancer [14], among others). Methods based on deep
learning have become fundamental in these fields, however, an enormous number
of images used for training purposes are required in order to achieve satisfactory
results.

In comparison with other computer vision applications, we have seen that the
introduction of techniques based on deep learning in computer vision for X-ray
testing has been rather slow. In our opinion, this is due to three reasons. The first
has to do with the availability of public databases that can be used for these pur-

7.1 Introduction 277

poses. While in some areas of computer vision (e.g., face recognition), there are
hundreds of databases since the 1990s, in X-ray testing, there is only one public
database for X-ray testing for general purposes [40] created in the last 5 years with
around 20.000 X-ray images, and another one for baggage inspection [42] created
recently with around 1 million X-ray images. The rest of the datasets used in the
experiments reported by the industry and academia are private. In many cases, the
entities (industry, government, or academia) that fund research in X-ray testing do
not allow databases to be made public. Sometimes this happens in baggage inspec-
tion research (for security reasons) or in other industrial applications (to prevent
competitors from having access to data that could improve their processes). The
second reason is related to the number of experts working in this field. While in
other areas of computer vision almost anyone can be an expert (such as in object
recognition), in nondestructive testing the relative number of people working on
these subjects is rather low and usually, their work is expensive. In this kind of com-
puter applications, experts are necessary to label the data (make annotations, define
bounding boxes, etc.). It is very simple to find people that detect bicycles in pho-
tographs, however, it is not so easy to find human operators that can distinguish the
anomalies in a welding process by observing an X-ray image. Finally, the last rea-
son is that, in other applications of computer vision, color photos can be acquired
with inexpensive equipment (often a cell phone), whereas in X-ray testing, we need
expensive equipment.

In this chapter, we review many relevant concepts of deep learning that can be
used in computer vision for X-ray testing. This chapter should be considered as an
introduction to the subject rather than an in-depth treatise.1 We will cover many
relevant topics, so the reader will be able to understand and apply these techniques
in real X-ray testing problems. The chapter begins with the basics, i.e., neural net-
works (see Sect. 7.2). Afterwards, we will review the Convolutional Neural Network
(CNN) (see Sect. 7.3) that can be used in a classification problem. CNNs can be
trained from scratch or using pre-trained models (see Sect. 7.4) or transfer learning
(see Sect. 7.5). In addition, we cover the Generative Adversarial Networks (GANs)
(see Sect. 7.6) that have been proposed to generate synthetic images. Finally, we give
an overview of more complex architectures that can be used as detection methods
(see Sect. 7.7), i.e., when we want to classify and localize an object in an image. For
every section, we will cover the basic concepts, give practical details (e.g., training
and testing) and show some examples in X-ray testing using Python.

7.2 Neural Networks

Artificial neuronal networks are mathematical tools derived from what is known
about the mechanisms and physical structure of biological learning, based on the
function of a neuron. They are parallel structures for the distributed processing of
information [4]. A neural network consists of artificial neurons connected in a net-

1Recommendation for further reading: [1, 18, 31].

278 7 Deep Learning in X-ray Testing

Fig. 7.1 Simple neural network with three inputs x = (x1, x2, x3), one output ŷ, and two hidden
layers (one with 8 nodes and the another with 4). In this example, the input can be classified as
class ω1 if ŷ > 0.5, and otherwise as class ω0

work that is able to classify a test feature vector x evaluating a linear weighted sum
of non-linear functions as illustrated in Fig. 7.1. The weights, the functions, and
the connections are estimated in a training phase by minimizing the classification
error [4, 5]. Neural networks have been established as one of the best classification
approaches in pattern recognition. The basic structure of the neural networks and
the learning strategies developed for training neural networks are the basis of deep
learning models.

7.2.1 Basics of Neural Networks

The basic processing unit is the neuron, made up of multiple inputs and only one
output as shown in Fig. 7.2. This output is determined by an activation function
that operates on input values, and a transfer function that operates on the activation
value. In other words, if we consider the input vector x = [x1 . . . xn]T, the weight
vector w = [w1 . . . wn]T, the activation value z, and the output value of the neuron
a, the values of z and a can be described by a linear projection and an a non-linear
function:

z = wTx + b a = σ(z), (7.1)

7.2 Neural Networks 279

Fig. 7.2 Single neuron with three inputs (x1, x2, x3), three weights, one weight for each input,
(w1, w2, w3), one bias value (b), and one output a

Fig. 7.3 Two typical sigmoids as activation functions

where b is the bias value and σ(z) is the so-called transfer function or activation
function and is generally a sigmoid such as (see Fig. 7.3)

σ(z) = 1

1 + e−z
or σ(z) = tanh(z) + 1

2
. (7.2)

A very simple structure, called logistic regression, is defined for two classes and
no hidden layer, i.e., the output of the model is y = a. Thus, class ω1 is determined
when y > 0.5, and ω0 otherwise. This is a linear approach because the separation
of both classes corresponds to a hyperplane (or a straight line for a feature space of
two dimensions).

280 7 Deep Learning in X-ray Testing

Fig. 7.4 Multi-Layer
Perceptron (MLP) with one
input layer with two inputs,
two hidden layers (Layer 1
and Layer 2) with 6 and 12
nodes respectively and one
output layer with four
outputs. [→ Example 7.1

] [→ Example 7.2]

The structure of a neuronal network can have one or more neurons and depending
on the type of problem and the training, these networks receive different names.
They have the capacity to associate and classify patterns, compress data, perform
process control, and approximate non-linear functions [43].

The most often used type of neural network in classification is the Multi-Layer
Perceptron (MLP) which consists of sequential layers of neurons. The structure of
an MLP is shown in Fig. 7.4 where each neuron has Eq. (7.1) associated to it. It
consists of a input layer, hidden layers, and an output layer (in Fig. 7.4, there are two
hidden layers, a1 and a2). In a classification problem based on neural networks, the
input x corresponds to the feature vector, and the output ŷ that is the classification of
x. Output ŷ is defined as a vector of K elements for a classification into K classes.
The value ŷi can be understood as the probability that sample x is classifies a class
ωi . Formerly,

hnn(x) = argmax
i

{
ŷ1, . . . , ŷK

}
. (7.3)

Usually, an index k = 0, . . . , m is used to denote a layer, where k = 0 is the
input layer and k = m is the output layer (in Fig. 7.4, m = 3). In addition, index
i = 1, . . . , nk is used to denote the node i of layer k. In Fig. 7.4, the two hidden
layers have n1 = 6 and n2 = 12 nodes respectively. We define the output of layer k
as vector ak , and it is a vector with nk elements. In this definition, a0 corresponds to
x, i.e., the input vector of the neural network with n0 elements (in Fig. 7.4, n0 = 2
for two inputs). Similarly, am corresponds to ŷ, i.e., the output vector of the neural
network (in Fig. 7.4, nm = 4 for four outputs). Thus, in general, layer k is defined
by

7.2 Neural Networks 281

ak =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ak(1)

ak(2)

:

ak(nk)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (7.4)

where the input and output layers are respectively:

x = a0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x1

x2

:

xn0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

a0(1)

a0(2)

:

a0(n0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(7.5)

ŷ = am =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ŷ1

ŷ2

:

ŷnk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

am(1)

am(2)

:

am(nm)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (7.6)

With these definitions, it is simple to write the equation of each node according to
(7.1) for k = 1, . . . , m:

zk = Wkak−1 + bk , ak = σ(zk). (7.7)

In this equation, zk, ak , and bk are nk-element vectors, ak−1 is a nk−1-element vec-
tor, and Wk is a matrix of nk × nk−1 elements, where wk(i, j) is the weight of the
connection between node i of layer k and node j of layer k − 1.

For our example of Fig. 7.4 with m = 3, output y can easily computed using
following steps: ⎡

⎣
z1 = W1a0 + b1 , a1 = σ(z1)
z2 = W2a1 + b2 , a2 = σ(z2)
z3 = W3a2 + b3 , a3 = σ(z3).

⎤

⎦ (7.8)

with a0 = x and a3 = ŷ.
This procedure is called forward-propagation, and it is used to compute output ŷ

from input x and parameters Θ , where the parameters are defined as Θ = {θ k}m
k=1

withe θ k = (Wk ,bk), i.e., the parameters of each layer. The reader can observe that

282 7 Deep Learning in X-ray Testing

the computation of ŷ is very fast, because in these equations, there are only multi-
plications and additions of vectors and matrices.

7.2.2 Training of Neural Networks

In order to train a neural network, parameters Θ are to be estimated. For this end,
we have a training dataset of N samples {xi }N

i=1 and its corresponding ideal classi-
fication {yi }N

i=1. We distinguish between the ground truth yi (ideal classification for
sample xi) and the output of the neural network ŷi (real classification of xi). The
idea of the training is to find parameters Θ so that the difference between yi and
ŷi is minimal for i = 1, . . . , N . In neural networks, a loss function, floss(yi , ŷi) is
used too compute the difference between ideal (yi) and real (ŷi), so the training pro-
cess can be stated as an optimization problem in which an objective function is to
be minimized:

J (Θ) = 1

N

N∑

i=1

floss(ŷi , yi) → min . (7.9)

Intuitively, the loss function (7.9) can be based on the norm:

floss(ŷi , yi) = 1

2
||ŷi − yi ||2, (7.10)

however, more sophisticated loss functions, like cross-entropy that minimizes the
distance between both probability distributions are typically used [1, 4]:

floss(ŷi , yi) = −yi log(ŷi) − (1 − yi) log(1 − ŷi) (7.11)

for a two-class problem.2 In order to find the parameters, i.e., to minimize objec-
tive function J , a method based on gradient descent can be used. We choose start
parameters with random values (Wk ,bk) for each layer, and they will be updated
iteratively by small increments using the opposite direction of the gradient of the
objective function J . The iterative method is summarized as follows:

1. Parameters θ k = (Wk ,bk), for k = 1, . . . , m, are initialized with random values.

Wk := random matrix(nk × nk−1) , bk := random vector(nk × 1). (7.12)

2. Layer outputs are computed for each training sample i using (7.7):

zk,i = Wkak−1,i + bk , ak,i = σ(zk,i). (7.13)

2For a multi-class problem, we sum the loss for each class.

7.2 Neural Networks 283

3. Derivatives of the parameters are computed:

ΔWk = ∂ J

∂Wk
, Δbk = ∂ J

∂bk
. (7.14)

4. Parameters are updated using a learning rate α:

Wk := Wk − αΔWk , bk := bk − αΔbk . (7.15)

5. The procedure is repeated from step 2 until convergence. For example, when

J (W1, . . . ,Wm,b1, . . . ,bm) < ε. (7.16)

We observe that step 2 corresponds to the forward-propagation of the neural net-
work, that means we have an input xi = a0,i , and we evaluate forwards (from left
to right) the layers of the network until we have the output ŷi = am,i , and the out-
put ak depends on input ak−1 and parameters Wk and bk . On the other hand, step
3 computes the increments ΔWk and Δbk that are required in step 4 to update
the parameters. Step 3 is performed using a backward-propagation approach, that
means, we compute the derivatives at the output and we propagate them backwards
(from right to left) through the layers using the chain rule for derivatives. The idea
is that in the backward-propagation, we will have in each layer the increments ΔWk

and Δbk that depends on ∂ J/ak and parametersWk and bk as illustrated in Fig. 7.5.
Formerly,

Fig. 7.5 Backward-propagation strategy

284 7 Deep Learning in X-ray Testing

ΔWk = ∂ J

∂Wk
= ∂ J

∂ak

∂ak

∂zk︸ ︷︷ ︸
γk

∂zk

∂Wk︸ ︷︷ ︸
ak−1

= γk ak−1 (7.17)

Δbk = ∂ J

∂bk
= ∂ J

∂ak

∂ak

∂zk︸ ︷︷ ︸
γk

∂zk

∂bk︸︷︷︸
1

= γk (7.18)

The last derivatives (∂zk/∂Wk and ∂zk/∂bk) are computed from (7.7), and the term
γk can be written as:

γk = ∂ J

∂ak︸︷︷︸
input

∂ak

∂zk︸︷︷︸
σ ′

k

= ∂ J

∂ak
ak(1 − ak), (7.19)

where the last term is the derivative of the activation function a = σ(z) = 1/(1 +
e−z) and σ ′(z) = a(1 − a). In this approach, the derivative ∂ J/∂am , that is the input
of the most right node of the backward-propagation schema, is computed directly
from (7.9) and (7.10) with ŷ = am :

∂ J

∂am
= ∂

∂am

{
1

N

N∑

i=1

1

2
||ŷi − yi ||2

}

= 1

N

N∑

i=1

(am,i − yi). (7.20)

Thus, the last four equations can be used to estimate the increments ΔWk and
Δbk of step 3 and the updates of the parameters Wk and bk in step 4, for k =
m, m − 1, . . . , 1.

We observe in the backward-propagation approach (Fig. 7.5), that the next layer,
at the left, i.e., layer (k − 1), needs ∂ J/ak−1, that can be expressed as follows:

∂ J

∂ak−1
= ∂ J

∂ak

∂ak

∂zk︸ ︷︷ ︸
γk

∂zk

∂ak−1︸ ︷︷ ︸
Wk

= γk Wk . (7.21)

Typically, the iteration is stopped when the increments are small enough, that
means that no significant update takes place.

Backpropagation is the learning algorithm normally used to train this type of
network. Its goal is to minimize the error function constructed from the difference
between the desired (y) and modeled (ŷ) output. In this section, we explained a
simple backpropagation approach in four steps, where the increments Wk and bk

can be computed in an easy way.

7.2 Neural Networks 285

7.2.3 Examples of Neural Networks

In this section, we give two examples:

1. The first one can be used to understand the basic operation and training of a
neural network. The idea of this example is to design a neural network from
scratch. Here, the reader can find all the details of the implementation of forward-
and backward-propagation of a network with no sophisticated neural network
library, only linear algebra is required (in our implementation for this end, we
use the well-known numpy library3 [47]). [→ Example 7.1]

2. The second example is to show, how we can design a neural network using a
well-known library dedicated to machine learning, called ‘sklearn’.4 The idea of
this example is to give details of the practice in typical applications that can be
implemented with a neural network. [→ Example 7.2]

Python Example 7.1: In this example, we present a classification problem using
simulated with using Gaussian distributions: four classes (ω1, . . . , ω4) for two fea-
tures (x1, x2) (see Fig. 7.6). For this classification problem, we design a neural net-
work with two hidden layers as shown in our example of Fig. 7.4. That means, the
input layer has two entries, the hidden layers has 6 and 12 nodes respectively and the
output layer as four elements (ŷ1, . . . , ŷ4). This example is provided for those read-
ers that want to learn how a neural network is designed from scratch showing the
general five steps explained in Eqs. (7.12)–(7.16): (1) random initialization of the
parameters, (2) forward-propagation, (3) backward-propagation, (4) update of the
parameters, and (5) repeat from step 2 until convergence. The details of all training
steps can be found in classifiers.py of pyxvis Library, where the implementa-
tion is performed using only ‘numpy’ library. In this example, we used 80% of the
available data for training and 20% for validation purposes.

Listing 7.1 : Neural network from scratch.

import numpy as np
from pyxvis.learning.classifiers import nn_definition
from pyxvis.learning.classifiers import nn_forward_propagation, nn_backward_propagation
from pyxvis.learning.classifiers import nn_parameters_update, nn_loss_function
from pyxvis.io.plots import plot_features_y,show_confusion_matrix, plot_loss
from pyxvis.io.data import load_features

Load training and testing data
(Xtrain,Ytrain,Xtest,Ytest) = load_features(’../data/G4/G4’,categorical=1)
plot_features_y(Xtrain,Ytrain,’Training Subset’)

Definitions
N = Xtrain.shape[1] # training samples
n_0 = Xtrain.shape[0] # number of inputs (X)
n_m = Ytrain.shape[0] # number of outputs (Y)
tmax = 1000 # max number of iterations
alpha = 10 # learning rate
loss_eps = 0.01 # stop if loss<loss_eps

3See https://numpy.org.
4See https://scikit-learn.org [48].

https://numpy.org
https://scikit-learn.org

286 7 Deep Learning in X-ray Testing

nh = [6,12] # nodes of hidden layers
n = [n_0]+nh+[n_m] # nodes of each layer
m = len(n)−1
ltrain = np.zeros([tmax,1]) # training loss

Training
t = −1
train = 1
W,b = nn_definition(n,N) # (step 1)
while train:

t = t+1
a = nn_forward_propagation(Xtrain,W,b) # (step 2)
dW,db = nn_backward_propagation(Ytrain,a,W,b) # (step 3)
W,b = nn_parameters_update(W,b,dW,db,alpha) # (step 4)
ltrain[t] = nn_loss_function(a,Ytrain) # (step 5)
train = ltrain[t]>=loss_eps and t<tmax−1

Loss function on training and validation subsets
plot_loss(ltrain)

Evaluation on training and testing subsets
a = nn_forward_propagation(Xtrain,W,b) # output layer is a[m]
show_confusion_matrix(a[m],Ytrain,’Training’,categorical=1)
a = nn_forward_propagation(Xtest,W,b) # output layer is a[m]
show_confusion_matrix(a[m],Ytest,’Testing’,categorical=1)

Fig. 7.6 Feature space, loss function, and confusion matrices on training and testing subsets of a

four-class problem using a neural network. [→ Example 7.1]

7.2 Neural Networks 287

The output of this code is in Fig. 7.6. We can see how the loss function is minimized
and how are the samples of each classified (see confusion matrix). In this example,
the accuracy in the testing dataset was 92.25%. It is difficult to obtain better results
due to the overlapping of the classes. The reader can evaluate the performance of a
new network with only one layer with 12 nodes (the line for nh definition should be
nh = [12]). �

The initially developed backward-propagation algorithm used the steepest
descent first-order method as the learning rule. Nonetheless, other more powerful
optimization approaches are in common use today. The reader is referred to [1] for
more training approaches based on gradient descent strategies, like second-order
methods, and stochastic methods like Adam [28], etc.

Python Example 7.2: This example is very similar to the previous one [→
Example 7.1] with two hidden layers as shown in Fig. 7.4. However, the imple-
mentation is given using sklearn library. The reader can study the syntax of Python
class MLPClasifier for MLP neural networks. The training stage is performed
by function fit and the prediction that evaluates the trained network on input
data is performed by function predic. The optimization approach is performed
by a solver that is in charge of estimate the parameters of the objective function.
Similar to previous example, we use two hidden layers (with 6 and 12 nodes)
respectively. In MLPClasifier, there are three possible solvers: (1) ’lbfgs’ for
quasi-Newton methods, (2) ’sgd’ for stochastic gradient descent methods, and (3)
’adam’ stochastic gradient descent method based on Adam approach [28].

Listing 7.2 : Neural network using sklearn library.

from sklearn.neural_network import MLPClassifier
from pyxvis.io.plots import plot_features2,show_confusion_matrix, plot_loss
from pyxvis.io.data import load_features

Load training and testing data
(Xtrain,Ytrain,Xtest,Ytest) = load_features(’../data/G4/G4’)
plot_features2(Xtrain,Ytrain,’Training+Testing Subsets’)

Definitions
alpha = 1e−5 # learning rate
nh = (6,12) # nodes of hidden layers
tmax = 2000 # max number of iterations
solver = ’adam’ # optimization approach (’lbfgs’,’sgd’, ’adam’)

Training
net = MLPClassifier(solver=solver, alpha=alpha,hidden_layer_sizes=nh,

random_state=1,max_iter=tmax)
print(Xtrain.shape)
print(Ytrain.shape)
net.fit(Xtrain, Ytrain)

Evaluation
Ym = net.predict(Xtrain)
show_confusion_matrix(Ym,Ytrain,’Training’)

Ys = net.predict(Xtest)
show_confusion_matrix(Ys,Ytest,’Testing’)

288 7 Deep Learning in X-ray Testing

The output of this code is the accuracy and confusion matrix evaluated on training
and testing data. The results of the confusion matrices are very similar to the results
given in the last example (see Fig. 7.6). The reader can evaluate the performance of
a new network with only one layer with 12 nodes (the line for nh definition should
be nh = (12,)). �

Some examples of neural networks in pyxvis Library are given in previous chapter
(see Examples 6.6, 6.12, 6.13, and 6.14). In Example 6.6, the reader can append
’lr’ to list ss_cl to evaluate the performance of a logistic regression in the classi-
fication of a two-class problem.

7.3 Convolutional Neural Network (CNN)

There are several deep architectures such as deep neural networks, convolutional
neural networks, energy-based models, Boltzmann machines, deep belief networks,
among others [3]. CNN (CNN), which were inspired by a biological model [30], is
a very powerful method for image recognition [29].

In previous chapters, we studied how an X-ray image X can be classified: in the
control quality of salmons, a region of an X-ray image has a fishbone or not, in
baggage inspection, a region of interest shows a knife, a razor blade, a shuriken,
and so on. The idea is to extract features of X and to classify them according to a
classification strategy (see Fig. 7.7). In a problem of K classes, the output can be
a value y ∈ {1 . . . K } that gives the number of the class, or sometimes the output
can be a K -element vector y, where element yk gives the probability that the image
belongs to class k. If we use a classical neural network to solve the whole problem
(representation and classification), the number of parameters to be learned could
be so high, that the training process turns completely impractical (see Fig. 7.8). For
this reason, CNNs have been developed, in which a strategy of concatenated layers
is used (see Fig. 7.9). Using CNN, the number of parameters decreases considerably,
the model is trained faster and the classification is more effective.

In this section, we review the basic concepts of CNN, and how a model is trained
and tested. Finally, we give an example that can be used in the automated detection
of casting defects (Fig. 7.10).

7.3.1 Basics of CNN

An X-ray testing method based on CNNs can be used to recognize an object of
interest in an X-ray image. For example, we can have a region of interest X of an
X-ray image of a casting to determine if this region has a defect or not. In this case,
the CNN replaces feature extraction and classification with a single neural network.

7.3 Convolutional Neural Network (CNN) 289

Fig. 7.7 An image X classified as vector y after a pattern recognition approach where features are
extracted and classified using a classification strategy

Fig. 7.8 Using a classical neural network approach (as shown in Fig. 7.4), every pixel of an image
X can be connected to a node of a neural network of some hidden layers, however, the numbers of
parameters of this architecture can be prohibited (in the first layer it could be N 4 connections for a
N × N -pixel input image) and a layer with N × N nodes

Fig. 7.9 Image classification using a convolutional neural network (CNN): concatenation of layers

290 7 Deep Learning in X-ray Testing

Fig. 7.10 Example of defects (lefts) and no-defects (right). It is clear that there are some patterns
that can be easily detected (see, for example, defects that are bright bubbles with dark background
and no-defects that are regular structures with edges), however, the recognition of both classes can
be very difficult for low-contrast defects because they are very similar to homogenous no-defects

Thus, the CNN maps an input image X onto an output vector y of K elements, for
K classes:

y = FL(X,w). (7.22)

Typically, element yk gives the probability that image X belongs to class k. In our
example, K = 2 (for two classes: defects and no-defects), and image X will be clas-
sified as defect if y1 > y2. FunctionFL can be viewed as feed-forward network with
L linear and non-linear layers fl , for l = 1 . . . L . The functions contain parameters

w = (w1, . . . ,wL) (7.23)

that can be discriminatively learned from training data: a set of input images Xi and
their corresponding labels zi , for i = 1, . . . , n, so that

∑

i

floss(FL(Xi ,w), zi)/n → min . (7.24)

Ideally, for an input of training data (Xi) the output of the network (yi = FL(Xi ,w))
should be the the corresponding label (zi). Thus, floss is defined as loss function that
gives a measurement of the error of the classification. This optimization problem can
be solved using the backward-propagation approach [1, 18].

A method based on CNN can be understood as a set of L layers. Layer l (for
l = 1 . . . L), is a function fl (with parameters wl) that processes an input image
Xl−1 in order to obtain an output image Xl (see Fig. 7.11):

Xl = fl(Xl−1,wl), (7.25)

7.3 Convolutional Neural Network (CNN) 291

Fig. 7.11 Structure of layer l of a CNN according to (7.25): input image Xl−1 is transformed into
output image Xl using function fl with parameters wl

where X0 = X is the input image of the whole CNN that we want to recognize. In
our case, X0 is a grayscale X-ray image,5 for this reason, the number of channels is
one, c0 = 1.

In our example, the input image corresponds to a cropped image of (e.g., 32 × 32
pixels as illustrated in Fig. 7.10 for two classes). In this CNN, the output of a layer is
the input of the next layer. Thus, the output of each layer of the CNN can be defined
as follows:

Xl = Fl(X,w) = fl(fl−1(. . . f1(X,w1), . . . ,wl−1),wl)), (7.26)

that is a concatenation of l functions f1 . . . fl . Without loss of generality, we will
assume that the images are square, where the height and the width are nl pixels.
The images have one or more channels, i.e., image Xl is a 3D data structure with
nl × nl × cl pixels, where cl is the number of channels. Channel k of Xl is a matrix
of nl × nl elements, and it is denoted as Xk,l , for k = 1 . . . cl . The key idea of the
CNN is that the output of the last layers correspond to high-level representations of
the input image X. These representations can be used in a classification process to
recognize automatically the class of X.

There are several types of layers that are normally used in CNN. Typically, the
used layers are: convolution layer, pooling layer, rectified linear unit, and fully con-
nected layer. They will be explained in further details.
• Convolution Layer [conv]: This layer corresponds to a linear convolution of
input image Xl−1 with a bank filter Fl and a bias bl . The filter bank Fl consists of a
set of ml 3D filters Fk,l of pl × pl × ql elements and a bias bk,l for k = 1 . . . ml . The
parameters wl of this layer are the elements of Fl and bl . Therefore, the number of
parameters of each filter is pl × pl × ql + 1, that means that the filter bank of layer
l has ml(p2

l ql + 1) parameters. These parameters are to be estimated in a learning
process (as shown in Sect. 7.3.2). It is worth noting that the number of channels of
the filter bank is the number of channels of the input image (ql = cl−1), and the

5For an X-ray image with pseudocolors, the number of channels of the input image can be three,
c0 = 3.

292 7 Deep Learning in X-ray Testing

Fig. 7.12 Linear convolution: channel k of the output image Xl is computed as the convolution of
the input image Xl−1 with a filter Fk,l adding a bias bk,l . In this example, cl−1 = 2 and pl = 3

number of channels of the output image is the number of filters of the filter bank
(cl = ml). Thus, the output for filter k is channel k of image Xl :

Xk,l = Xl−1 ∗ Fk,l + bk,l for k = 1 . . . ml, (7.27)

where ‘∗’ denotes the convolution operator. In other words, pixel (i, j) of channel k
of the output image Xl is

Xk,l(i, j) = bk,l +
pl∑

u=1

pl∑

v=1

ql∑

w=1

Xw,l−1(i + u, j + v)Fk,l(u, v, w) (7.28)

That means, that the size of the output image Xl will be a 3D matrix of nl × nl × cl ,
with nl = nl−1 − pl + 1. The filtering process (for one channel of the output image)
is illustrated in Fig. 7.12.
• Pooling Layer [pool]: This process is independently performed for each channel
of input image Xl−1. Therefore, the number of channels of input and output images
are the same (cl = cl−1). In this case, the size of the image is reduced by representing
a region of a channel with a scalar value. The output for each channel is defined as

Xk,l(i, j) = fpool{Xk,l−1(u, v) : (u, v) ∈ Ω(i, j)}. (7.29)

Typically, the set of pixels Ω(i, j) is a sub-window of Xk,l−1 of size pl × pl pixels
which first pixel corresponds to the pixel (i, j) as illustrated in Fig. 7.13. The fpool
function can be the maximum, the mean, the �2 norm, etc. In our approach, we use
the maximum operator, known as max-pooling’, with no overlap, that means, each

7.3 Convolutional Neural Network (CNN) 293

Fig. 7.13 Pooling. In this example, the dimension nl−1 × nl−1 of channel k of input image Xl−1
is 12 × 12, and the dimension n × n of the neighborhood Ω is 3 × 3. Hence, the size of channel k
of the output image Xl is 4 × 4, i.e., nl = 4. Function fpool could be in this example the maximum

channel is down-sampled non-linearly. Therefore, the use of this layer can efficiently
reduce the computational time for upper layers.
• Rectified Linear Unit [relu]: Similar to pooling layer, this process is indepen-
dently performed for each channel of input image Xl−1 (cl = cl−1). In this case, the
information of Xl−1 is rectified by setting to zero all negative values. The key idea
of a ReLU layer is to produce more discriminative representations avoiding negative
scores [45]. Thus,

Xk,l(i, j) = max{0, Xk,l−1(i, j)}. (7.30)

The ReLU process is illustrated in Fig. 7.14 for channel k.
• Fully Connected Layer [fc]: This layer corresponds to a classic layer in a neu-
ronal network (multi-layer perceptron), in which each output of previous layer is
connected to new layer as explained in Sect. 7.2 and shown in Fig. 7.4: that means,
each input node of a fully connected layer is the weighted sum of all outputs of
previous layer plus a bias, and the output is this result after an activation function
(see Fig. 7.15). The output is considered as a vector of nl elements. Thus, if input
layer has nl−1 × nl−1 × cl−1, then there are nl × n2

l−1 × cl−1 weights and nl bias
parameters that must be learned.

294 7 Deep Learning in X-ray Testing

Fig. 7.14 Rectified linear unit. In this example, channel k of input image Xl is rectified. Channel
k of the output image Xl+1 has the same dimension: 6 × 6

Fig. 7.15 Fully connected layer: all outputs of previous layer are connected one to one to the
next layer. In this example, the input (green) and output (red) layers have 5 × 5 × 2 and 4 pixels
respectively that means, there are 5 × 5 × 2 × 4 = 200 connections (see gray lines)

In [39], a CNN model called Xnet is proposed to detect defects in aluminum
castings (in Sect. 7.3.4, a similar example is given in Python).6 The whole CNN
is shown in Fig. 7.16. It includes a dropout block (dropout) that randomly turns
off connections of the neural network during training. It has been shown that this
technique reduces significantly the overfitting [59]. Typically, in a CNNmodel, layer
L − 1 corresponds to a vector s with K elements, [s1 . . . sK]:

6Another use of CNN in defects detection in castings can be found in [62].

7.3 Convolutional Neural Network (CNN) 295

Fig. 7.16 XNet: CNN architecture proposed for automated detection of defects in castings [39]

s = XL−1 (7.31)

In the detection of defects, K = 2 because there are only two classes: defects and
no-defects. In this approach, the output layer (layer L) is a ‘softmax’ block that
is used to convert the scores of s into probabilities. Thus, XL = y = [y1 . . . yK]T,
where

yk = fsoftmax(sk) = esk

∑K
j=1 esi

for k = 1 . . . K . (7.32)

Using (7.26), it is clear that

y = FL(X,w) and s = FL−1(X,w). (7.33)

Table 7.1 summarizes Xnet [39], where the input image X0 = X is an image of
32 × 32 × 1 pixels. The CNN consists of ten layers with five linear convolutional
layers (C1, . . . , C5), two pooling layers with maximum operator (P1, P2), one ReLU
layer (R1), one dropout layer (D1), and one softmax layer (S1). As we can see in
Table 7.1, our CNN has 5.7 × 105 parameters that must be estimated in a learning
stage.

7.3.2 Learning in CNN

As we mentioned in previous section, CNN maps an input image X on an output
vector y = FL(X,w), where function FL can be viewed as a sequence of linear

296 7 Deep Learning in X-ray Testing

Table 7.1 Convolutional neural network Xnet [39]

Layer Function fl Output Xl

l Name Type ml(pl × pl × ql) Parameters nl × nl × cl

0 Input – – – 32 × 32 × 1

1 C1 conv 64(7 × 7 × 1) 3.200 26 × 26 × 64

2 P1 pool-max 2 × 2 0 13 × 13 × 64

3 C2 conv 128(5 × 5 × 64) 204.928 9 × 9 × 128

4 P2 pool-max 2 × 2 0 4 × 4 × 128

5 C3 conv 256(3 × 3 × 128) 295.168 2 × 2 × 256

6 R1 relu – 0 2 × 2 × 256

7 D1 dropout – 0 2 × 2 × 256

8 C4 conv 64(2 × 2 × 256) 65.600 1 × 1 × 64

9 C5 conv 2(1 × 1 × 64) 130 1 × 2 × 1

10 S1 softmax – 0 1 × 2 × 1

Total 569.026

and non-linear functions f1, . . . , fL , that depend on parameters w = (w1, . . . ,wL)

as defined in (7.26) and (7.33).
Learning consists of estimating parameters w from ‘learning data’. The output of

this process is the set of parameters w. On the other hand, testing is used to evaluate
the performance of the trained model on ‘testing data’, i.e., the learned model (with
fixed parameters w) is used to classify new data. The output of this process is the
classification of each testing sample. For this end, a set of annotated X-ray images is
available. Thus, for each image,X, vector z—the ground truth of the classification—
is given by an expert. Similar to vector y, the output of the CNN, vector z has K
elements. The value zk is ‘1’ if image X belongs to class k, otherwise zk is ‘0’.

In order to reduce the computation time of learning process, typically, a hold-
out protocol is used. The standard hold-out evaluation protocol is based on disjoint
learning and testing data, i.e., images that are present in the learning set are not
allowed to be in the testing set. We denote the X-ray images and their labels (X, z)
as

• Learning: {X(i)
learn, z

(i)
learn}nlearn

i=1 , with nlearn learning samples.
• Testing: {X(i)

test, z
(i)
test}ntest

i=1 , with ntest testing samples.

The learning set is subdivided into two disjoint subsets: training set (X(i)
train, z

(i)
train),

for i = 1, . . . , ntrain, and validation set (X
(i)
val, z

(i)
val), for i = 1, . . . , nval, with nlearn =

ntrain + nval. Typically, 75–80% of the learning data for training and 25–20% for
validation.

7.3 Convolutional Neural Network (CNN) 297

The training data is used to estimate the parameters w of our model as follows.
The output of the CNN is y(i)

train = FL(X(i)
train,w). It is clear, that ideally y(i)

train should
be z(i)

train. Thus, parameters w can be estimated by minimizing the objective function:

etrain = 1

ntrain

ntrain∑

i=1

floss(y
(i)
train, z

(i)
train), (7.34)

where floss is a loss function. This optimization problem can be iteratively solved
using the backward-propagation approach [1, 18] as explained for a classic neural
network in Sect. 7.2: We start with initial random values w(0) for the first iteration,
and the parameters in epoch j are estimated according to the parameters in previous
epoch j − 1 and an incremental update:

w(j) = w(j−1) + Δw(j). (7.35)

For each epoch of the training process, a new version of the parameters w(j) is
estimated. For validation purposes, the subset (X(i)

val, z
(i)
val) for i = 1, . . . , nval is used.

The error

eval = 1

nval

nval∑

i=1

floss(y
(i)
val, z

(i)
val), (7.36)

is computed, with y(i)
val = FL(X(i)

val,w), where FL is evaluated using w = w(j). At
the beginning of the training, both errors etrain and eval usually decrease. Neverthe-
less, when the learning process starts overfitting, the error eval starts to increase.
This epoch will be denoted by j∗. Thus, the training process is stopped when eval is
minimum, and our parameter vector will be w = w(j∗).

7.3.3 Testing in CNN

After learning stage, we can test the CNN using the testing dataset: (X(i)
test, z

(i)
test)

for i = 1, . . . , ntest. The images of this dataset were not used in the learning stage.
There are several approaches that can be used to classify X(i)

test. Obviously, one of
them is to use the representation of the last layer:

class(X(i)
test) = argmax

k

{
y(i)
test(k)

}
(7.37)

where y(i)
test(k) is the kth element of y(i)

test = FL(X(i)
test,w).

In addition, the high-level representations that are present in layers l < L can be
used in a classification approach as well. For this purpose, a descriptor d can be

298 7 Deep Learning in X-ray Testing

defined as a vector of n2
l cl × 1 elements that contains all elements of Xl by stacking

its columns:
d = s(Xl ,w) = s(Fl(X,w)), (7.38)

where s(·) is the stack function. Descriptor d can be used to train another kind
of classifier (a KNN, for example). In [39], the best results were obtained using
d = s(X7), i.e., l = L − 3.

A classifier h can be designed using the descriptors and the labels of the learning
set. Thus, the classifier can be learned using (d(i)

learn, z
(i)
learn), where d

(i)
learn = s(X(i)

learn)

for i = 1 . . . nlearn according to (7.38). After training, h(d(i)
learn) should ideally be

z(i)
learn.

7.3.4 Example of CNN

Python Example 7.3: In this example, we test a very simple CNN architecture
for the detection of casting defects. The dataset used in this example, called C1, is
a subset of the dataset used in [39].7 It contains the easiest patches of the original
dataset, i.e., those patches that are easy to classify. In this example, there are 8200
patches of 32 × 32 pixels, 80% for testing and 20% for testing (both subsets with
50% defects and 50% no-defects). The idea of this example is to train an easy dataset
with a simple CNN architecture. Thus, the reader in less than 2 min (with around 20–
30 epochs) can have a trained model with excellent performance. After this training,
it is possible to train more complex architectures with more challenging datasets.
In this example, we define the CNN architecture using CNN of pyxvis Library. In
this definition, there are n typical 2D convolutional blocks of layers with Keras8

functions Conv2Dwith a ReLU activation, BatchNormalization, MaxPooling2D,
and Dropout with a rate of 25%. The 2D convolution of block i , for i = 1, . . . , n,
is with di kernels of pi × pi pixels. In our example, we define the three blocks using
variables p = [7, 5, 3] and d = [4, 12, 8]. After the n blocks of convolutional layers,
we add m fully connected layers, each layer has f j elements. In our case, m = 1 and
f = [12]. If we want to have two fully connected layers, one with 12 elements and
another with 4, we define f = [12, 4]. Finally, CNN of pyxvis Library includes a fully
connected layer of the number of classes to be recognized (in our case is 2), and a
‘softmax’ block. In Fig. 7.17, we can see the architecture.

7The original dataset has 47.520 patches, and it can be downloaded from https://domingomery.ing.
puc.cl/material/.
8Keras is a library built on top of TensorFlow. It consists of a set of API functions written in Python
for building deep learning models. See https://keras.io.

https://domingomery.ing.puc.cl/material/
https://domingomery.ing.puc.cl/material/
https://keras.io

7.3 Convolutional Neural Network (CNN) 299

Fig. 7.17 CNN architecture, learning curves, and confusion matrix. In this example, all defects

and no-defects from testing subset are correctly classified. [→ Example 7.3]

Listing 7.3 : Convolutional Neural Network.

from pyxvis.learning.cnn import CNN

execution type
type_exec = 0 # training & testing

patches’ file for training and testing
patches_file = ’../data/C1/C1’

architecture
p = [7,5,3] # Conv2D mask size
d = [4,12,8] # Conv2D channels
f = [12] # fully connected

training and testing
CNN(patches_file,type_exec,p,d,f)

The first output of this code is the definition of the architecture (that corresponds to
the diagram of Fig. 7.17):

Layer (type) Output Shape Param #

===

conv2d_1 (Conv2D) (None, 4, 32, 32) 200

batch_normalization_1 (Batch (None, 4, 32, 32) 128

300 7 Deep Learning in X-ray Testing

max_pooling2d_1 (MaxPooling2 (None, 4, 16, 16) 0

dropout_1 (Dropout) (None, 4, 16, 16) 0

conv2d_2 (Conv2D) (None, 12, 16, 16) 1212

batch_normalization_2 (Batch (None, 12, 16, 16) 64

max_pooling2d_2 (MaxPooling2 (None, 12, 8, 8) 0

dropout_2 (Dropout) (None, 12, 8, 8) 0

conv2d_3 (Conv2D) (None, 8, 8, 8) 872

batch_normalization_3 (Batch (None, 8, 8, 8) 32

max_pooling2d_3 (MaxPooling2 (None, 8, 4, 4) 0

dropout_3 (Dropout) (None, 8, 4, 4) 0

flatten_1 (Flatten) (None, 128) 0

dense_1 (Dense) (None, 12) 1536

batch_normalization_4 (Batch (None, 12) 48

activation_1 (Activation) (None, 12) 0

dropout_4 (Dropout) (None, 12) 0

dense_2 (Dense) (None, 2) 26

activation_2 (Activation) (None, 2) 0

===

Total params: 4,118.0

Trainable params: 3,982.0

Non-trainable params: 136.0

The architecture of our model has almost 4000 trainable parameters. The learning
curves and the confusion matrix are shown in Fig. 7.17. We can see that in this very
simple example, the accuracy is 100% (a perfect detection). The reader that wants
to try a more difficult example can download the dataset of [39] (see footnote 7)

7.3 Convolutional Neural Network (CNN) 301

and implement a network similar to Xnet (see Table 7.1). In the original code of
Example 7.3, the lines of the new code should be:

execution type

type_exec = 0 # training & testing

patches’ file for training and testing

patches_file = ’wacv_castings.mat’

architecture

p = [7,5,3] # Conv2D mask size

d = [64,128,256] # Conv2D channels

f = [64,32] # fully connected

training and testing

CNN(patches_file,type_exec,p,d,f)

For this dataset, the model is trained after 1 h (and 30 epochs)> The achieved accu-
racy is 87.78% very similar to the reported accuracy in [39]. �

7.4 Pre-trained Models

Pre-trained models are deep learning models that have been already trained on large
datasets of one domain and can be used as-is on other domains with no additional
training. In this section, we explain how to use pre-trained models in X-ray testing.

7.4.1 Basics of Pre-trained Models

In X-ray testing, it is possible to use sophisticated models that have been already
trained on other domains (e.g., recognition of common objects in color images).
The idea is to use part of the trained model on new domains, such as X-ray images.
One of the most popular datasets of color images of common objects is ImageNet
[55]. ImageNet consists of an annotated collection of color images of very common
objects (like cars, bicycles, trucks, cat, dogs, etc.). ImageNet has 1000 classes of
objects with approx. 1000 images per class for training purposes. The dataset has
been widely used in competitions of object recognition algorithms. The trained mod-
els are typically available as open-source models. The architecture of these models
has many layers, and the last one corresponds to a structure of 1000 elements that are
used to distinguish the 1000 classes. In the testing stage, if an input image contains

302 7 Deep Learning in X-ray Testing

Fig. 7.18 Classification strategy using a pre-trained model

a dog, the output, i.e., a vector with 1000 element, should have the element corre-
sponding to the class ‘dog’ the maximal value as illustrated in Fig. 7.18-Top. This
pre-trained model can be used not only to recognize images that content objects that
belong to these 1000 classes but also to recognize other objects. The key idea of this
approach is as follows: The last layer of the pre-trained models is not used because
it has been trained to recognize objects that do not belong to the new domain. The
last layer is replaced by a new fully connected layer or a simple classifier, such as
KNN or a SVM, that is designed to classify the classes of the new domain.

The strategy behind this idea is that the pre-trained model should extract in the
first layers relevant visual information of the input image and could give us a good
representation of the images of the new domain.

To illustrate this idea, we present now a well-known approach that shows what
happens inside the layers of a CNN [13, 67]. This approach can visualize how the
images are represented in the network and give insight into the layers. It consists of
the estimation of a synthetic input image that maximizes the activation of a certain
element (pixel) of a layer.

Thus, we can visualize what kind of images activates each element of our net-
work. The estimation is an optimization problem, that starts with a random input
image, and after some iterations, the solution converges using a gradient descent
algorithm.9 In this process, the weights of the CNN are fixed, i.e., we do not train
the CNN, we only find an input image that maximizes a certain pixel of a layer of
the CNN. To illustrate this visualization, we use a pre-trained CNN called VGG16
[58]. The architecture of VGG16 is the following:

9An implementation of this idea can be found in https://keras.io/examples/
conv_filter_visualization/. The Figs. 7.19 and 7.23 were done using this implementation.

https://keras.io/examples/conv_filter_visualization/
https://keras.io/examples/conv_filter_visualization/

7.4 Pre-trained Models 303

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, None, None, 3) 0

block1_conv1* (Conv2D) (None, None, None, 64) 1792

block1_conv2 (Conv2D) (None, None, None, 64) 36928

block1_pool (MaxPooling2D) (None, None, None, 64) 0

block2_conv1 (Conv2D) (None, None, None, 128) 73856

block2_conv2 (Conv2D) (None, None, None, 128) 147584

block2_pool (MaxPooling2D) (None, None, None, 128) 0

block3_conv1* (Conv2D) (None, None, None, 256) 295168

block3_conv2 (Conv2D) (None, None, None, 256) 590080

block3_conv3 (Conv2D) (None, None, None, 256) 590080

block3_pool (MaxPooling2D) (None, None, None, 256) 0

block4_conv1* (Conv2D) (None, None, None, 512) 1180160

block4_conv2 (Conv2D) (None, None, None, 512) 2359808

block4_conv3 (Conv2D) (None, None, None, 512) 2359808

block4_pool (MaxPooling2D) (None, None, None, 512) 0

block5_conv1 (Conv2D) (None, None, None, 512) 2359808

block5_conv2* (Conv2D) (None, None, None, 512) 2359808

block5_conv3 (Conv2D) (None, None, None, 512) 2359808

block5_pool (MaxPooling2D) (None, None, None, 512) 0

===

304 7 Deep Learning in X-ray Testing

Table 7.2 Images of GDXray+ used in our experiments

Set Gun Shuriken Blade Others

Training Series B0049 B0050 B0051 B0078

Images 1–200 1–100 1–100 1–500

Validation Series B0079 B0080 B0081 B0082

Images 1–50 1–50 1–50 1–200

Testing Series B0079 B0080 B0081 B0082

Images 51–150 51–150 51–150 201–600

VGG16 was developed in the year 2014 and it is one of the most powerful CNN
architecture for vision problems.10 It consists of five blocks with conv and pool-
max layers (the last fully connected layers are not given in the previous description).
In Fig. 7.19, we show some images that activate certain elements of the layers that
have a ‘*’ in this description, i.e., block1_conv1, block3_conv1, block4_conv1,
and block5_conv2. In this case, VGG16 was trained for ImageNet [55]. We can
observe in this figure, the complexity of the generated patterns: the more complex
is the image, the deeper is the layer. Moreover, for the last layers, we can recognize
some patterns like birds and feathers!

The idea of using pre-trained models is simple and powerful as we will show in
our examples. Simple because the weights of the pre-trained models are available
in public repositories or deep learning libraries (like Keras (see footnote 8)) and
powerful because good results can be achieved with no implementation difficulty.

7.4.2 Example of Pre-trained Models

In this section, we show how to use pre-trained models in the recognition of threat
objects (in baggage inspection). In our experiments, there are three objects: hand-
guns, shuriken (ninja stars), and razor blades. Each category of objects defines a
class (Gun, Shuriken, and Blade). Furthermore, there is a fourth class called Other
for other objects and background. All X-ray images used in our experiments belong
to the GDXray+. As shown in Table 7.2, there are three different sets of images:
training, testing, and validation sets. For training, X-ray images of GDXray+ series
B0049, B0050, B0051, and B0078 must be used for classes Gun, Shuriken, Blade,
and Others respectively. For validation, in case that a method has some parameters to
be tuned, it is allowed to use the first 50 images of GDXray+ series B0079, B0080,
and B0081 for Gun, Shuriken, and Blade respectively and the first 200 images of
folder B0082 for Others. For testing, the last 100 images ofGDXray+ series B0079,
B0080 and B0081 for Gun, Shuriken, and Blade respectively and the last 400 images
of folder B0082 for Others have to be used.

10See an application in the automated weld defect recognition based on VGG16 in [34].

7.4 Pre-trained Models 305

Fig. 7.19 Generated input images that maximizes the activation of 16 elements (pixels) of some
layers in VGG16. A zoom of image with a blue square is presented in Fig. 7.19

306 7 Deep Learning in X-ray Testing

Fig. 7.20 Some training X-ray images used in our experiments. Each row represents a labeled
class (handguns, shuriken, razor blades, and others respectively)

The GDXray+ dataset is especially challenging due to the high intra-class vari-
ability between training and testing images of positive classes (see some examples
for guns, shuriken, and razor blades in Figs. 7.20 and 7.21 for training and testing
respectively). Indeed, training images of positive classes contain just the object with
a clean background. In contrast, testing images corresponding to these classes show
a noisy background that may allow any discriminative model to classify them as the
class Others.

In our example, we follow the experimental protocols defined in [41] for two
recognition tasks:

• Four-class Classification: In the first task, we have to design a classifier that is
able to recognize the four mentioned classes: (1) Gun, (2) Shuriken, (3) Blade,
and (4) Others. We define K = 4 as the number of classes. The classifier has to
be trained using the trained data. The parameters of the classifier (if any) can
be tuned using the validation only. The performance of the method is reported
using the testing data as follows: The elements of the m × m confusion matrix
are defined as C(i, j) for i = 1 . . . K and j = 1 . . . K , where C(i, j) means the
number of images of class i (in the testing data) classified as class j . The accuracy
of each class is defined as

ηi = C(i, i)
∑4

j=1 C(i, j)
. (7.39)

The total accuracy is the average:

7.4 Pre-trained Models 307

Fig. 7.21 Some testing X-ray images used in our experiments. Each row represents a labeled class
(handguns, shuriken, razor blades, and others respectively)

η = 1

4

4∑

i=1

ηi . (7.40)

• Detection of three threat objects: In the second task, we have to design three dif-
ferent detectors (binary classifiers) : (1) one for Gun, (2) one for Shuriken, and (3)
one for Blade. For each detector, there is a target (e.g., Shuriken for second detec-
tor). Each detector can be understood as a two-class problem: one class (called
the positive class) is the target, and the another class (called the negative class)
is the rest. Similar to previous problem, training data must be used to train the
detectors, validation data can be used to tune the detectors’ parameters (if any),
and testing data have to be used to measure the final performance of the detectors.
For the second detector (i.e., Shuriken), for example, in our database according to
Table 7.2, there are 100 images for the positive class and 200 + 100 + 500 = 800
images for the negative class that can be used for training purposes. In this exam-
ple, the validation can be performed using 50 images for the positive class and
50 + 50 + 200 = 300 images for the negative class. Finally, for the testing of
the second detector, there 100 images for the positive class and 100 + 100 + 400
for the negative class. The performance must be given in terms of precision–
recall (Pr, Re) considering all images of the testing set. The variables preci-
sion and recall are defined in Eqs. (6.41) and (6.38) respectively. Ideally, a per-
fect detection means all existing targets are correctly detected without any false
alarms, i.e., Pr = 1 and Re = 1. The values (Pr, Re) that maximizes the score
Q = √

Pr × Re are reported. As average performance, we define

308 7 Deep Learning in X-ray Testing

Table 7.3 Precision and recall for each detector using pre-trained models [→ Example 7.4]

Method∗ Classifier Features Gun Shuriken Blade Q All

Pr Re Pr Re Pr Re ηQ η

AlexNet2 [29] svm-rbf 4096 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DenseNet1212 [24] svm-rbf 1024 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GoogleNet2 [60] svm-lin 1024 1.00 1.00 1.00 1.00 0.86 1.00 0.98 0.99

InceptionV30 [61] svm-rbf 2048 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MobileNet2 [23] svm-rbf 1280 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RCNN_ILSVRC2
13 [16] knn1 4096 1.00 1.00 1.00 1.00 0.62 0.70 0.89 0.95

ResNet502 [20] svm-rbf 2048 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ShuffleNet2 [69] svm-rbf 544 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SqueezeNet2 [25] svm-rbf 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VGG161 [58] svm-rbf 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VGG191 [58] knn1 1000 0.97 1.00 0.99 1.00 0.93 1.00 0.98 1.00

Xception0 [8] knn1 2048 0.71 0.50 0.89 0.85 0.57 0.40 0.65 0.80

ZfNet5122 [67] nn 1024 1.00 1.00 1.00 1.00 0.91 1.00 0.98 1.00

AISM [41, 54]∗∗ – – 0.97 0.97 0.95 0.96 0.99 0.99 0.94 0.96

(*)Output layer 0: Keras, layer before softmax, 1: ONNX, layer after softmax, 2:
ONNX, layer before softmax
(**)Best non-deep-learning method

ηQ = 1

3

3∑

i=1

Qi , (7.41)

where i = 1 . . . 3 means the classes Gun, Shuriken and Blade respectively.

Python Example 7.4: In this example, we follow the experimental protocol
defined above according to Table 7.2 in two recognition tasks: four-class clas-
sification and detection three threat objects. For these tasks, we evaluate pre-
trained model MobilNet [23] using five different classifiers (knn1, knn3, svm-lin,
svm-rbf, and nn). The idea is to use the pre-trained model to extract features of
each image, and classify the images according to the extracted features as illus-
trated in Fig. 7.18. The features are extracted by function extract_prt_features11 of
pyxvis Library. Other pre-trained models (such as AlexNet [29], GoogleNet [60],
VGG16 and VGG19 [58] among others) are implemented in pyxvis Library as well.
In the following code, the reader can see how easy is to define the training, valida-
tion, and testing datasets (see Table 7.2) using init_data and append_data of pyxvis
Library. In this implementation, the validation set is used to evaluate the perfor-
mance of each classifier (defined as the average of η in (7.40) and ηQ in (7.41)).
Thus, the classifier that achieves the best performance on validation subset is used
to report the performance on testing dataset.

11This function is used to extract the features of all images that are in a folder. For a single image,
function extract_prt_features_img of pyxvis Library can be used.

7.4 Pre-trained Models 309

Listing 7.4 : Pre-trained models.

import numpy as np
from sklearn.metrics import accuracy_score
from pyxvis.learning.pretrained import prt_model, extract_prt_features
from pyxvis.io.gdxraydb import DatasetBase
from pyxvis.learning.classifiers import clf_model, define_classifier
from pyxvis.learning.classifiers import train_classifier, test_classifier
from pyxvis.learning.evaluation import precision_recall
from pyxvis.io.data import init_data, append_data
from pyxvis.io.plots import print_confusion

gdxray = DatasetBase()
path = gdxray.dataset_path + ’/Baggages/’
model_id = 6 # 0 ResNet50, 1 VGG16, 2 VGG19, ... 6 MobileNet, ... 13 RCNN_ILSVRC13
output_layer = 2 # 0 Keras−Last, 1 ONNX−Last, 2 ONNX−Previous

Classifiers to evaluate
ss_cl = [’knn1’,’knn3’,’svm−lin’,’svm−rbf’,’nn’]
(model,size,model_name) = prt_model(model_id,output_layer)
X49 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0049/’)
X50 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0050/’)
X51 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0051/’)
X78 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0078/’)
X79 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0079/’)
X80 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0080/’)
X81 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0081/’)
X82 = extract_prt_features(model_id,output_layer,model,size,model_name,path+’B0082/’)

best_performance = 0 # initial value
for i in range(len(ss_cl)):

cl_name = ss_cl[i]
print(’\nEvaluation of ’+cl_name+’ using ’+model_name+’...’)
(Q_v,Q_t) = (0,0) # initial score Q values for validation and testing
for j in range(4):

if j==0:
(c0,c1,c2,c3) = (1,0,0,0)
st = ’Gun’

elif j==1:
(c0,c1,c2,c3) = (0,1,0,0)
st = ’Shuriken’

elif j==2:
(c0,c1,c2,c3) = (0,0,1,0)
st = ’Blade’

elif j==3:
(c0,c1,c2,c3) = (0,1,2,3)
st = ’All’

print(’building dataset for ’+st+’ using ’ + model_name +’ ...’)
Training data
(X,d) = init_data(X49[0:200],c0) # Gun
(X,d) = append_data(X,d,X50[0:100,:],c1) # Shuriken
(X,d) = append_data(X,d,X51[0:100,:],c2) # Blade
(X,d) = append_data(X,d,X78[0:500,:],c3) # Other
Validation data
(Xv,dv) = init_data(X79[0:50,:],c0) # Gun
(Xv,dv) = append_data(X,d,X80[0:50,:],c1) # Shuriken
(Xv,dv) = append_data(X,d,X81[0:50,:],c2) # Blade
(Xv,dv) = append_data(X,d,X82[0:200,:],c3) # Other
Testing data
(Xt,dt) = init_data(X79[50:150],c0) # Gun
(Xt,dt) = append_data(X,d,X80[50:150,:],c1) # Shuriken
(Xt,dt) = append_data(X,d,X81[50:150,:],c2) # Blade
(Xt,dt) = append_data(X,d,X82[200:600,:],c3) # Other

print(’training ’+cl_name+’ for ’+st+’ using ’ + model_name +’ ...’)

310 7 Deep Learning in X-ray Testing

(name,params) = clf_model(cl_name) # function name and parameters
clf = define_classifier([name,params]) # classifier definition
clf = train_classifier(clf,X,d) # classifier training
ds_v = test_classifier(clf,Xv) # clasification of validation
ds_t = test_classifier(clf,Xt) # clasification of testing
print(’Results − ’ + st + ’ (’+cl_name+’) for the detectors:’)
if j<3: # detection of three treat objects

performance on validation subset
(pr_v,re_v) = precision_recall(dv,ds_v)
Q_v = Q_v + np.sqrt(pr_v*re_v)
print(f’Pr_val = {pr_v:.4f}’)
print(f’Re_val = {re_v:.4f}’)
performance on testing subset
(pr_t,re_t) = precision_recall(dt,ds_t)
Q_t = Q_t + np.sqrt(pr_t*re_t)
print(f’Pr_test = {pr_t:.4f}’)
print(f’Re_test = {re_t:.4f}’)

else:
summary of three detections
Q_v = Q_v/3 # score Q on validation
print(f’Q_val = {Q_v:.4f} of all detectors’)
Q_t = Q_t/3 # score Q on testing
print(f’Q_test = {Q_v:.4f} of all detectors’)
four−class classification
print(’Results − ’ + st + ’ (’+cl_name+’) for the 4−class classifier:’)
acc_v = accuracy_score(dt,ds_t)
print(f’Acc_val = {acc_v:.4f}’)
acc_t = accuracy_score(dv,ds_v)
print(f’Acc_test = {acc_t:.4f}’)
print(f’Acc_t = {acc_t:.4f}’)
print_confusion(dt,ds_t)

performance = (acc_v+Q_v)/2
if performance>best_performance:

print(f’performance = {performance:.4f} *** new max ***’)
best_performance = performance
best_Q = Q_t
best_acc = acc_t
best_clf = cl_name

print(’Best result: classifier = ’+best_clf)
print(f’ Q_test = {best_Q:.4f}’)
print(f’ acc_test = {best_acc:.4f}’)

The output of this pre-trained model and other ones implemented in pyxvis Library
is shown in Table 7.3. We can see that many of the pre-trained models achieve a
perfect performance of 100%. This result is very relevant because the implementa-
tion of this solution can be performed in a couple of hours (the pre-trained models
are already trained, we only need to extract the features and train a classifier like
SVM). It is worthwhile to mention that the best non-deep learning method based on
handcrafted features (see AISM [54] in Table 7.3), developed after several months
of work for this task, achieves 4–6% less of performance. �

7.5 Transfer Learning

The use of transfer learning in X-ray testing is similar to the use of pre-trained
models (explained in Sect. 7.4). Here, however, the pre-trained model is re-trained
in a smart way using a low number of X-ray images [66].

7.5 Transfer Learning 311

Fig. 7.22 Classification strategy using a transfer learning (see explanation in Sect. 7.5.2)

7.5.1 Basics of Transfer Learning

The idea is to use, in X-ray images, models that have been trained on other domains
(e.g., ImageNet [55]). The main difference with pre-trained models (see Sect. 7.4)
is that we can re-train the models using a fine-tuning approach. In fine-tuning, we
re-train a model for the new domain using as initial weights the pre-trained weights
of the model (instead of random initial values). Thus, we can take advantage of the
pre-trained weights that have been obtained after a sophisticated training process
with millions of images. In fine-tuning, the initial (pre-trained) weights are updated
using a training approach with images of the new domain (X-ray images). A good
example is given in [2], where transfer learning has been used in baggage inspection
by fine-tuning AlexNet and GoogleNet.

Usually, sophisticated deep learning models can be trained successfully thanks
to the great power of today’s computers and also because there are a huge number
of annotated images available. However, sometimes it is very difficult to have both
of them. For example, in X-ray testing, it is very common to have datasets with
hundreds or thousands (and not millions) of X-ray images. In addition, there are
many students or universities that do not have access to such a powerful computer.
For these reasons, transfer learning is a very attractive alternative: we can re-train a
sophisticated model using a low number of X-ray images on a regular computer.

312 7 Deep Learning in X-ray Testing

7.5.2 Training in Transfer Learning

In order to train a deep learning model using a transfer learning strategy, we can
use the approach illustrated in Fig. 7.22. Before starting to re-train the model it is
necessary to clone the first layers of the pre-trained model (as we do in the pre-
trained model strategy outlined in Sect. 7.4). Following Fig. 7.22, we add new layers
(typically fully connected layers) to the cloned model (see layers 1©). Now, we
divided the cloned model into two parts: the not frozen layers (see layers 2©) and the
frozen layers (see layers 3©). Usually, in the training stage, we can use the following
three steps:

1. Layers 1© are trained and the rest of the weights (layers 2© and 3©) are not
changed during training, i.e., their weights are the original pre-trained weights
(they remain constant during training).

2. Layers 1© + 2© are fine-tuned (using weights of first step as initial weight values)
and the rest of the weights (layers 3©) are not changed during training.

3. (Optional Step) Layers 1© + 2© + 3© are fine-tuned (using weights of second
step as initial weight values). This step can be performed in case we have enough
images to train the whole model.

Using the same approach addressed in Sect. 7.4.1 to visualize the activation of the
elements of the CNN layers, in Fig. 7.23, we show the synthetic input image gener-
ated for a specific element of one of the last layers for the original VGG16 model
(trained for ImageNet) and for the fine-tuned model (trained with threat objects).
The reader can observe that the patterns are very similar, however, the second one
seems to be adapted to the new domain.

7.5.3 Example of Transfer Learning

Python Example 7.5: In this example, we follow the strategy outlined in
Fig. 7.22 for transfer learning in a problem of recognition of threat objects. For this
end, we use a set of images of threat objects that has four classes (Guns, Shuriken,
Blades, and Others) divided into training (with 600 images per class) and testing
subsets (with 100, 100, 100, and 400 images for each corresponding class). In our
example, we use MobileNet [23] as base model (that has 87 layers) and four extra
layers: the first one is GlobalAveragePooling2D (that joins the base model with
the extra fully connected layers), two fully connected layers defined by variable
fc_layers with 32 and 16 nodes each, and a final fully connected layer with soft-
max as output with 4 nodes (because, in this example, there are four classes). Thus,
the new model has totally 91 layers. In this example, we have 1© the new layers,
2© the not frozen layers, and 3© the frozen layers. The training strategy follows the
method mentioned above in three steps: in 1©, we train 4 layers, in 1© + 2©, we train
9 layers, and in 1© + 2© + 3©, we train 91 layers. The number of epochs in each step

7.5 Transfer Learning 313

Fig. 7.23 Generated synthetic input images for VGG16 that maximize the activation of layer
block5_conv2 filter ‘0’: (left) using base model VGG16 trained with ImageNet, (right) using
VGG16 fine-tuned with threat objects, the shapes of the shuriken are remarkable. Left image is
illustrated in Fig. 7.19 in a blue square

is defined by variable nb_epochs, in our case is [40,40,40]. We could decide that
the last step is not necessary by defining nb_epochs =[40,40,0].

Listing 7.5 : Transfer learning.

from pyxvis.learning.transfer import generate_training_set, tfl_train
from pyxvis.learning.transfer import tfl_model, tfl_define_model, tfl_testing_accuracy
from pyxvis.io.plots import plot_confusion

Definitions
path_dataset = ’../images/objects’
nb_classes = 4 # number of classes of the recognition problem
batch_size = 10 # batch size in training
nb_epochs = [40,40,40] # epochs for Training−1, Training−2, Training−3

1st value: epochs for new layers only,
2nd value: epochs for new and top layers of base model,
3rd value: epochs for all layers
(eg [50,0,0], [40,50,0], etc.)

train_steps = 10
val_steps = 5
fc_layers = [32, 16] # fully connected layers after froozen layers
img_size = [224,224] # size of the used images
val_split = 0.2 # portion of training set dedicated to validation,

0 means path_dataset/val is used for validation
opti_method = 1 # optimzer > 1: Adam, 3: SGD
base_model = 1 # 1: MobileNet, 2: InceptionV3, 3: VGG16, 4: VGG19,

5: ResNet50, 6: Xception, 7: MobileNetV2,
8: DenseNet121, 9: NASNetMobile, 10: NASNetLarge

nb_layers = −5 # layers 0... nb_layers−1 will be frozen, negative
number means the number of top layers to be unfrozen

augmentation = 0.05 # 0 : no data augmentation, otherwise it is range for
augmentation (see details in generate_training_set)

Base model (last layer is not included removed)

314 7 Deep Learning in X-ray Testing

Fig. 7.24 Confusion matrix and accuracy on testing subset using transfer learning: after training-
1 (layers 1©), the accuracy is 80.43%, training-2 (layers 1© + 2©), the accuracy is 91.71%, and
training-3 (layers 1© + 2© + 3©), the accuracy is 95.71% according to diagram of Fig. 7.22. [→
Example 7.5]

bmodel = tfl_model(base_model)

New model with dense fully connected layers
model = tfl_define_model(bmodel,fc_layers,nb_classes)

Training and validation sets
(train_set,
val_set) = generate_training_set(val_split, augmentation, batch_size,

path_dataset, img_size)

Training: Transfer learning
(model,
confusion_mtx,
acc) = tfl_train(bmodel,model,opti_method, nb_layers,

train_set,train_steps,val_set,val_steps,nb_epochs,
path_dataset,nb_classes,img_size)

Accuracy in testing set using best trained model
plot_confusion(confusion_mtx,acc,’Top Model: Testing in Threat Objects’,0,nb_classes)

The output of this code is in Fig. 7.24 in which we show the confusion matrices and
accuracy on testing dataset after each training step. We observe how the accuracy is
incremented after each step. �

7.6 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) have been used successfully in the last
years to generate realistic synthetic data [7, 9, 27]. In X-ray testing, we use GAN
to simulate X-ray images, for example, as data augmentation in training data to
increase the number of samples of some underrepresented class, or as new data in a
training course for human inspectors. Some applications of simulated X-ray images
using GAN can be found in [38] for the simulation of casting defects12 and in [56,
65, 70, 72] for the simulation of threat objects. The simulated X-ray images using
GAN are very realistic as we can see in Figs. 7.25 and 7.26 for defects and shuriken
respectively.

12GAN solutions have been used in other kinds of defects, see for example, [46].

7.6 Generative Adversarial Networks (GANs) 315

Fig. 7.25 Simulated defects in aluminium castings using GAN. [→ Example 7.6]

7.6.1 Basics of GAN

The key idea of GAN is simple as we can see in Fig. 7.27: it consists of a generator
and a discriminator working together. The generator will be used to produce a syn-
thetic X-ray image from a noise source, whereas the discriminator will be in charge
to determine if an input image is real or fake. Thus, the discriminator should differ-
entiate the real (training) images from the synthetic ones generated by the generator.

Both generator and discriminator are trained following a zero-sum game schema
[17]. In the zero-sum game schema, the generator and the adversary (discriminator)
compete against other. For this end, we define a noise source as an image Z of p × p
pixels. The generator (G) is a neural network function based on auto-encoders [1]
that takes noise image Z and transforms it into a fake image XF of n × n pixels:

XF = G (Z). (7.42)

On the other hand, the discriminator (D) is a function based on a neural network that
takes an input imageX of n × n pixels and gives as output a value y that corresponds
to the probability that X is a real image; 1 means that X is real, 0 is fake:

y = D(X). (7.43)

316 7 Deep Learning in X-ray Testing

Fig. 7.26 Simulated shuriken using DCGAN from 0 to 15000 iterations. [→ Example 7.6]

7.6 Generative Adversarial Networks (GANs) 317

Fig. 7.27 Diagram of a GAN model. The generator produces a fake image from a noise source,
whereas the discriminator distinguishes real from fake images. In the training stage, the error is
used to increase the performance of both generator and discriminator (see dashed lines). Once the
model is learned, the generator alone can be used to generate realistic synthetic images

7.6.2 Training of GAN

In training stage, two sets are available: (i) a set of m real images, XR(1) . . .XR(m),
and (ii) a set of m noisy images Z(1) . . .Z(m), from them a set of m fake images
are computed XF(1) . . .XF(m) using (7.42). Thus, the discriminator is learned by
maximizing:

JD =
m∑

i=1

log [D(XR(i)] +
m∑

i=1

log [1 − D(XF(i)] → max (7.44)

The first sum is maximal when the real images are classified as ‘real’, whereas the
second sum is maximal when the synthetic images are classified as ‘fake’. Thus, the
idea of (7.44) is to classify as 1 the real images and as 0 the synthetic ones.

The aim of the generator is to model the distribution of the training dataset.
Since the goal of the generator is to generate fake images that fool the discriminator,
the generator will do a good job if the generated fake images are classified by the
discriminator as ‘real’. Thus, the generator is trained by minimizing the following
objective function:

JG =
m∑

i=1

log [1 − D(XF(i)] → min . (7.45)

In this case, the sum is minimal when the synthetic images are classified as ‘real’.
That means that the generated fake images will be so realistic that the discriminator
will classify them as ‘real’. In the training stage, objective functions JD and JG are
playing a min-max game, the reader can see that the second sum of (7.44) is equal

318 7 Deep Learning in X-ray Testing

to the sum of (7.45), however, in the first case, we are trying to maximize it (the
discriminator should recognize that the synthetic images are fake), whereas in the
second one, the aim is to minimize it (the generator wants to fool the discriminator).

7.6.3 Implementation of GAN

GAN models can be easily implemented using Deep Convolutional Generative
Adversarial Networks (DCGAN) [49], where both generator and discriminator are
sequential models [49]. In DCGAN, the architectures of discriminator D and gen-
erator G are CNNs as illustrated in Figs. 7.9 and 7.28 respectively. In each step of
the generator, the Z is upsampled and convoluted. The upsampling process can be
achieved using the 2D Transposed Convolution [68]:
• 2D Transposed Convolution [trans_conv]: This layer corresponds to a convo-
lution that increases the dimension of the input image as illustrated in Fig. 7.29. In
general, for an input imageX of n × n pixels and a convolutional kernelK of m × m
pixels, the output Y = X K is defined as follows:

Y(i1 : i2, j1 : j2) = Y(i1 : i2, j1 : j2) + X (i, j)K, (7.46)

where

Fig. 7.28 Architecture of a generator based on deep convolutional neural networks in a GAN
model. Input Z is a small noise image, and output XF is a (larger) synthetic image

7.6 Generative Adversarial Networks (GANs) 319

Fig. 7.29 Example of 2D transposed convolution: (Top) with stride r = 1, (Bottom) with stride
r = 2

i1 = (i − 1)r + 1
i2 = (i − 1)r + m
j1 = (j − 1)r + 1
j2 = (j − 1)r + m

(7.47)

for i = 1 . . . n and j = 1 . . . n. The stride, i.e., the number of pixels that the kernel
moves to right and down in each step, is given by variable r . As shown in Fig. 7.29,
by setting r to m (the size of the kernel), and defining all elements ofK as 1, we can
repeat the rows and columns of X by size m × m.

7.6.4 Example of GAN

Python Example 7.6: In this example, we simulate X-ray images of shuriken
using class DCGAN13 of pyxvis Library. As training data, we use a dataset of 10.640
real images of shuriken of 32 × 32 pixels (stored in file shuriken_32x32.npy).
The real images were extracted from GDXray+ and augmented using rotation and
reflection.

13Based on the implementation of https://github.com/eriklindernoren/Keras-GAN/blob/master/
dcgan/dcgan.py.

https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py
https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py

320 7 Deep Learning in X-ray Testing

Listing 7.6 : Generative Adversarial Network.

from pyxvis.learning.gan import DCGAN

gan_proc = 0 # 0 training , # 1 testing

Training
if gan_proc == 1: # Training

path_file = ’../data/shuriken_32x32.npy’ # file of real patches
epochs = 15000 # number of epochs
interval = 250 # saving intervals
dcgan = DCGAN(path_file)
dcgan.train(epochs=epochs, batch_size=32, save_interval=interval)

else: # Testing (one generation of simulated images)
size = 32 # size of the image, eg. 32 for 32x32 pixels
trained model h5 file
gan_weights_file = ’../output/GAN/models/gan_model_015000.h5’
N = 200 # number of synthetic images to be generated
dcgan = DCGAN(size)
dcgan.load_gan_model(gan_weights_file)
dcgan.save_gan_examples()
dcgan.save_synthetic_images(’output’,N)

The output of this code is in Fig. 7.26. We can see that the similarity of the syn-
thetic generated X-ray images with trained GAN model is very high after 5000
iterations. In the generation, only the generator is used (and not the discrimina-
tor). If we want to generate N new images with the trained generator, in our code,
variable gan_proc must be set to 1 and variable N must be set to the number N
(e.g., N = 200). Figure 7.25 shows a GAN simulation of casting defects with this
code, in which the dataset casting_defects_28x28.npy14 was use. �

7.7 Detection Methods

In this section, we address relevant methods of object detection that have been pub-
lished in the last years. The idea of the detection methods is to locate and recognize
object instances in real images.

7.7.1 Basics of Object Detection

In computer vision, we distinguish between image classification and image detec-
tion as shown in Fig. 7.30. In X-ray testing, both concepts can be explained as fol-
lows:

• Image classification: The purpose of image classification in X-ray testing is to
assign an X-ray image to one class. For example, in image classification, an X-ray

14The file can be downloaded from https://domingomery.ing.puc.cl/material/.

https://domingomery.ing.puc.cl/material/

7.7 Detection Methods 321

image can be classified as a ‘handgun’, that means, in the X-ray image the classi-
fier has found a handgun (here, the classes could be ‘handgun’, ‘knife’, and other
threat objects), or, in another example, a small sub-image of an X-ray image of an
aluminum castings is classified as ‘defect’ (here, the classes could be ‘defect’ and
‘no-defect’). Image classification is typically used when there is only one object
per image to be recognized. An example is illustrated in Fig. 7.30a. The location
of the recognized object is not given in image classification, it is well assumed
that the object is in the center of the image, but obviously, this is not always true.
In image classification using deep learning, as explained in Sect. 7.3, the input
image is fed into a CNN that gives a feature vector (of dimension 4096, for exam-
ple). The vector is the input of a classifier, e.g., a fully connected layer, with K
outputs, where K is the number of classes to be recognized. Thus, the input is an
image and the output is a category label. In case that both classification and local-
ization of the object in the input image are required, there are some approaches
with one fully connected layer for the classification and another fully connected
layer for the localization that gives the coordinates and the dimensions of a rect-
angle that contains the recognized object [26], where the second fully connected
layer is treated as a regression problem, where the output is continuous values
instead of a class.

• Image Detection: On the other hand, in image detection, more than one object
can be recognized in an X-ray image and the location of each recognized object
is given by a bounding box, i.e., a rectangle that encloses the detected object
defined by the coordinates of the center of the rectangle (x, y) and its dimen-

Fig. 7.30 Image detection and image classification

322 7 Deep Learning in X-ray Testing

Fig. 7.31 Object detection using CNN and sliding-windows: The original X-ray image ‘A’ with
three defects (see red rectangles) is processed by f1 using a sliding-window approach. For each
position of the detection windows (orange square), a patch is extracted and classified as ‘defect’ or
‘no-defect’ by a trained CNN. The dots of image ‘B’ show in red and green the center of the patches
that were classified as ‘defect’ and ‘no-defect’ respectively. Using image processing approaches the
dots of image ‘B’ are processed by f2 to detect the ‘defect’ regions. In this example, all defects
were correctly detected with no false alarm

sions, width and height, (w, h), where all four variables are given in pixels (see
for example, the red rectangle of the shuriken in Fig. 7.30b, where the center is
in (x = 748, y = 405) and the dimensions are w = 323 and h = 505 pixels). In
example of Fig. 7.30b, image detection is able to recognize a set of objects (see
table and red bounding boxes). Typically, a probability of detection is computed
for each recognized object (that can be understood as a new column in the table),
so that the final output corresponds to those objects that have a probability greater
than a threshold.

A simple strategy based on sliding-window methodology has been proposed
some years ago for image detection based on image classification. An example
is illustrated in Fig. 7.31 for defect detection in aluminum castings [38]. In this
approach, a detection window (see the orange square in Fig. 7.31-A) is sledded over
an input image in both horizontal and vertical directions, and for each localization of
the detection window, a classifier decides to which class belongs the corresponding
portion of the image according to its representation. Here, the classifier is a CNN,
as explained in Sect. 7.3.4, that is used to identify one of two classes: ‘defects’ or
‘no-defects’. For this end, a huge number of patches of each class is used to train the
CNN model. The patches have the same size of the detection window, and they can
contain a defect (for the ‘defect’ class) or not (for the ‘no-defect’ class) as shown
in Fig. 7.10. Finally, the locations of the X-ray image that have been detected as
‘defects’ (see green dots in Fig. 7.31-B) are analyzed using image processing. Thus,
we can determine which regions of the image are defects or not (see detected regions
in Fig. 7.31-C).

It is worthwhile to mention, that this approach requires the classification of a
huge number of patches. In addition, if the size of the objects to be detected varies,
the sliding-windows approach must be performed for different patch-sizes. In this
case, the computational time could be prohibited. For these reasons, new approaches
that overcome this problem have been developed in the last years. In this section,
we will cover them. They can be subdivided into two groups [26]:

7.7 Detection Methods 323

Fig. 7.32 R-CNN strategy

(i) Detection in two stages: In the first step of these approaches, called region
proposal, a method is used to determine regions of the input image in which
an object can be present. In sliding-windows, for example (explained above),
this step corresponds to an exhaustive search, however, there are other methods,
e.g., R-CNN [16] that propose some regions instead of analyzing all possible
patches of the input image. In the second step of these approaches, called final
classification, a CNN is used to classify the regions that have been proposed
by the first step. In Sect. 7.7.2 of this chapter, we address these region-based
methods like R-CNN [16], Fast R-CNN [15], and Faster R-CNN [53] that uses
this two-stage strategy.

(ii) Detection in one stage: In these approaches, there is a single CNN that is
trained to both location and classification, i.e., prediction of bounding boxes and
estimation of the class probabilities of the detected bounding boxes. This group
of approaches corresponds to the state of the art in detection methods because
they are very effective and very fast. They are the best-performing and most
representative deep learning-based object detection models, as stated in [71]. In
this chapter, we address most representative methods, namely, YOLO [52] in
Sect. 7.7.3 (versions YOLOv2 [50], YOLOv3 [51] and YOLOv4 [6]), SSD [37]
in Sect. 7.7.4 and RetinaNet [32] in Sect. 7.7.5. We give a brief description of
these detection models and their principal differences.

7.7.2 Region Based Methods

In this section, we address those methods from the first group that perform object
detection in two stages. These methods are region-based methods because the first
step is the region proposal, and the second is the final classification. To this group
belong R-CNN [16], Fast R-CNN [15] and Faster R-CNN [53]. We include in this
section an additional method called Mask R-CNN [22] that is an instance segmen-
tation approach. They will be described in further details.
• R-CNN: In R-CNN (Regions with CNN features), there is a step that proposes
potential regions and another step that classify them into the classes to be recog-
nized [16], as shown in Fig. 7.32. By selecting regions in the first step, we avoid to

324 7 Deep Learning in X-ray Testing

classify of a huge number of patches as mentioned in Sect. 7.7.1 for sliding-windows
approach.

The first step of R-CNN, called Selective Search, is based on a method proposed
in [63] that generates candidates of bounding boxes for use in object recognition,
i.e., they are regions that have high probability of being an object. They are called
regions of interest or RoIs. The method uses complementary image regions that
consider many image conditions. Selective search is based on image processing
and it consists of three stages: (i) Capture all scales: Many potential regions are
generated in all possible scales. (ii) Diversification: a diverse set of strategies is used
to merge similar regions together. (iii) Fast to compute: Final regions are proposed
in a hierarchical order. In the proposed approach [16], 2000 RoIs are selected, many
of them are noisy, but the recall is high, that means that most of the true objects
are selected. One of the problems of this method is that the selective search is not
learned, it is fixed, and it could be useful to learn which regions are relevant for a
given application. In addition, the approach can be very slow because each of the
2000 RoIs must be analyzed independently. In order to speed up this step, sharing
computing with Spatial Pyramid Pooling networks (SPP) can be used as proposed
in [21]. In the second step of R-CNN, a trained CNN model based on AlexNet [29]
is used to extract from each RoI a feature vector of 4096 elements as explained in
Sect. 7.4. All RoIs are warped to 227 × 227 pixels because the CNN requires a fixed
square size for the input images. The 4096-element feature vector extracted of a RoI
is used by a SVM classifier that is trained to determine the class of the region. In
addition, CNN predicts a correction of the bounding boxes because originally they
are not correctly located by the selective search approach. Thus, SVM classifier
is in charge of class determination, whereas the location is given by the corrected
location of the original RoI that has been detected by the SVM.

R-CNN is much faster than a sliding-window approach, however, to analyze 2000
RoIs is still very computationally expensive and cannot be implemented in real time.
It has been reported that for the testing stage, it requires around 50 s per image [16].

• Fast R-CNN: In order to avoid the mentioned problems, the same author proposed
a faster approach called Fast R-CNN [15], as shown in Fig. 7.33. In this approach,
two improvements are presented: (i) The selective selection of RoIs is performed by
using a CNN that gives a feature map of the same size of the input image. The RoIs
are partitions of this feature map that are warped into fixed-length vectors using a
‘RoI pooling layer’, i.e., a max-pooling layer with a pool size that does not depend
on the input size. (ii) Instead of a SVM that classifies the extracted feature vector
for every single RoI, fully connected layers are used for each RoI to determine
both the category and the location of the object. Thus, the objects in the image are
detected by using two sibling output layers, one for establishing the category of the
detected bounding box, and another to correct the location of the bounding box. In
comparison with R-CNN, the computational time of Fast R-CNN is significantly
decreased (to 2.3 s per image) mainly because the CNN is executed just once for
the input image and not for every RoI. Moreover, the accuracy of the detection is
increased and the training time is around ten times faster.

7.7 Detection Methods 325

Fig. 7.33 Fast R-CNN strategy

Fig. 7.34 Faster R-CNN and mask R-CNN strategies

• Faster R-CNN: The main drawback of Fast R-CNN is the computational time of
the first step dedicated to region proposal, it is around 85% of the total detection
time. In order to speed up the first step, Faster R-CNN (see Fig. 7.34) was proposed
in [53]. Faster R-CNN includes an attention mechanism called Region Proposal
Network (RPN), that is used to predict the RoIs from CNN features. That means the
input image is fed into a CNN to obtain a feature map that is fed into the RPN that
is trained to infer regions proposal. RPN outputs are two for each RoI: (i) a proba-
bility that the proposal is an object (it is a score that is used to determine whether
the detection is an object or not) and (ii) a preliminary bounding box. Afterwards,
a RoI pooling layer makes the final classification of the object in one of the cate-
gories and gives a correction of the preliminary bounding box. In Faster R-CNN,
the detection time is decreased to 0.2 s per image. An example of Faster R-CNN in
defect detection in aluminum casting can be found in [11, 12] very good results.

326 7 Deep Learning in X-ray Testing

• Mask R-CNN: Another approach that is related to R-CNN is the well-known
Mask R-CNN [22]. Mask R-CNN is a method that belongs to the category of
‘Instance Segmentation’. Whereas in object detection the goal is to detect bounding
boxes, in instance segmentation, the goal is to perform a segmentation of an object
at a pixel level. That means, the output is not a bounding box, it is the boundaries
of the detected object. Mask R-CNN is a combination of R-CNN and Fully Con-
volutional Network (FCN). It consists of a faster attention mechanism (like Faster
R-CNN) to generate RoIs with a FCN that runs on each of the RoIs. The FCN has
convolutional layers that are used to predict the mask on the RoI, i.e., a binary image
of the same size of the RoI where a pixel equals 1 (or 0) means that the pixel of the
RoI belongs (or does not belong) to the detected object. An example is illustrated in
Fig. 7.34.

7.7.3 YOLO

In region-based approaches, as explained in Sect. 7.7.2, object detection is per-
formed in two stages: region proposal and final classification. That means the clas-
sification is not performed by looking at the complete image but at selected regions
of the image. In order to overcome this disadvantage, a new method called YOLO,
You-Only-Look-Once was proposed [52]. YOLO is a single (and powerful) convo-
lutional neural network that looks the image once, i.e., the input image is fed into a
single CNN which output is the simultaneous prediction of both the bounding boxes
(localization) and the category probabilities (classification) of the detected objects.
It is very fast because the input image is processed in a single pass by the CNN.

The key idea of YOLO is very simple: The input image is divided into a grid
of S × S cells, and for each cell, YOLO can detect B objects. For each detected
bounding box, YOLO computes:

• (x, y, w, h): variables that define the detected bounding box, i.e., location (x, y)

and dimension (width, height),
• p: confidence score that gives the probability that the bounding box encloses an
object (Pr(Object)), and

• pi : for i = 1 . . . K : probability distribution over all K possible classes, i.e., pi is
a conditional class probability (Pr(Classi |Object)).

That means, for each bounding box, YOLO provides an array of R = 4 + 1 + K
elements: (x, y, w, h, p, p1, p2, . . . , pK), as illustrated in Fig. 7.35. In testing stage,
an object of class i is detected if Pr(Object) × Pr(Classi |Object) is greater than a
threshold.

Since in a grid cell, B bounding boxes can be detected, for each cell, an array of
Q = B × R elements is computed.

The simplicity of YOLO (see Fig. 7.35) is due to (i) the architecture has only
standard convolution layers with 3 × 3 kernes and max-pooling layers with 2 × 2
kernels, and (ii) the output of the CNN is a tensor of S × S × Q, that means, for

7.7 Detection Methods 327

Fig. 7.35 YOLO strategy

each grid cell we have 5 + K elements per bounding box that give us information
about the localization of the bounding box and the category probability.

In the last years, many versions of YOLO have been developed. In this section,
we address the most relevant of them: YOLOv2 [50], YOLOv3 [51], and YOLOv4
[6].
• YOLOv2: The improvements proposed in YOLOv2 [50] focus on expanding the
subdivision of the image, and the use of anchor boxes of different dimensions in
each subdivision of the image (as proposed in the Faster R-CNN [53] model). These
anchor boxes are pre-configured using the ‘k-means’ algorithm with Euclidean dis-
tance in the training set. Then, for each cell of the feature map extracted using the
DarkNet-19 model, its anchor boxes are created with predictions for the objects
inside [50].

Python Example 7.7: In this example, we show how to use YOLOv2 in the
detection of threat objects. For this task, we use the implementation of [56] (see
footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.7 : Threat object detection in baggage inspection using YOLOv2.

Pre−trained model
python3 predict_yolo2.py −c config_full_yolo2_infer.json −i input_path/folder −o save/

folder/detection

Training
python3 train_yolo2.py −c config_full_yolo2.json

328 7 Deep Learning in X-ray Testing

Testing
python3 predict_yolo2.py −c config_full_yolo2.json −i input_path/folder −o save/folder/

detection

Evaluation
python3 evaluate_yolo2.py −c config_full_yolo2.json

The output of this code is in Figs. 7.36 and 7.37. �
• YOLOv3: In comparison with previous versions, YOLOv3 [51] includes two
main updates: (i) the use of different scales (three scales) using a pyramidal archi-
tecture that aims to solve the problem of detection of small objects, and (ii) the
use of a new feature extractor architecture called DarkNet-53 that improves upon
DarkNet-19.

Python Example 7.8: In this example, we show how to use YOLOv3 in the
detection of threat objects. For this task we use the implementation of [56] (see
footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.8 : Threat object detection in baggage inspection using YOLOv3.

Pre−trained model
python3 predict_yolo3.py −c config_full_yolo3_infer.json −i input_path/folder −o save/

folder/detection

Training
python3 train_yolo3.py −c config_full_yolo3.json

Testing
python3 predict_yolo3.py −c config_full_yolo3.json −i input_path/folder −o save/folder/

detection

Evaluation
python3 evaluate_yolo3.py −c config_full_yolo3.json

The output of this code is in Figs. 7.36 and 7.37. �
• YOLOv4: YOLOv4 has recently proposed in [6]. In this version, the feature
map is extracted using a new architecture called Cross Stage Partial Network [64]
that decreases the computation by reducing redundant gradient information. In
YOLOv4, this network is called CSPDarknet-53. An additional increment of the
performance is obtained by using Spatial Pyramid Pooling networks (SPP) [21] for
sharing computing for pyramid features and a Path Aggregation Network (PAN)
[36] for parameter aggregation from different levels of the CSPDarknet-53. Finally,
the final prediction is performed as in YOLOv3 [51]. With these improvements, in
comparison to YOLOv3, the accuracy is increased by 10% and the computation
time is reduced by 11%.15

15In the last week (June 2020), YOLOv5 was released. See https://github.com/ultralytics/yolov5.

https://github.com/ultralytics/yolov5

7.7 Detection Methods 329

7.7.4 SSD

Another architecture contemporary to Faster R-CNN [53] and YOLO [52] is the
SSD (Single-Shot Multi-Box Detector) [37]. Using direct image transformations,
like YOLO, it predicts the location of the desired objects. The major difference is
the use of map features in different depths, in order to obtain the analysis at different
scales of the image. SSD combines the use of anchor boxes, like Faster R-CNN [53]
and YOLOv2 [50], to predict the desired frames and uses a loss function for multi-
tasking, as in the aforementioned detectors.

Python Example 7.9: In this example, we show how to use SSD7 in the detec-
tion of threat objects. For this task, we use the implementation of [56] (see footnote
17). In this implementation, there are four options: (i) object detection using a model
that has been already trained for this task, (ii) training a new model using a set of
training images, (iii) testing the model trained in the previous step, and (iv) evalua-
tion of a model on a set of images:

Listing 7.9 : Threat object detection in baggage inspection using SSD7.

Pre−trained model
python3 predict_ssd.py −c config_7_infer.json −i input_path/folder −o save/folder/

detection

Training
python3 train_ssd.py −c config_7.json

Testing
python3 predict_ssd.py −c config_7.json −i input_path/folder −o save/folder/detection

Evaluation
python3 evaluate_ssd.py −c config_7_infer.json

The output of this code is in Figs. 7.36 and 7.37. �

Python Example 7.10: In this example, we show how to use SSD300 in the
detection of threat objects. For this task we use the implementation of [56] (see
footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.10 : Threat object detection in baggage inspection using SSD300.

Pre−trained model
python3 predict_ssd.py −c config_300_infer.json −i input_path/folder −o save/folder/

detection

Training
python3 train_ssd.py −c config_300.json

Testing
python3 predict_ssd.py −c config_300.json −i input_path/folder −o save/folder/detection

330 7 Deep Learning in X-ray Testing

Evaluation
python3 evaluate_ssd.py −c config_300_infer.json

The output of this code is in Figs. 7.36 and 7.37. �

7.7.5 RetinaNet

Together with YOLOv3 [51] and YOLOv4 [6], the RetinaNet architecture [32] is
one of the most recent object detection models and combines the pyramidal fea-
ture extraction structure [33] with a residual architecture (ResNet) [20] that has
obtained promising results in image classification. The pyramidal approach consists
of decreasing the size of the image several times and making predictions for each of
those sizes. Another novelty of this architecture is the shift from the typical cross-
entropy to a ‘focal loss’-based objective that reduces the penalty for well classified
classes while punishing misclassifications more aggressively for the rest.16

Python Example 7.11: In this example, we show how to use RetinaNet in
the detection of threat objects. For this task, we use the implementation of [56]
(see footnote 17). In this implementation, there are four options: (i) object detection
using a model that has been already trained for this task, (ii) training a new model
using a set of training images, (iii) testing the model trained in the previous step,
and (iv) evaluation of a model on a set of images:

Listing 7.11 : Threat object detection in baggage inspection using RetinaNet.

Pre−trained model
python3 predict_retinanet.py −c config_resnet50_infer.json −i input_path/folder −o save/

folder/detection

Training
python3 train_retinanet.py −c config_resnet50.json

Testing
python3 predict_retinanet.py −c config_resnet50.json −i input_path/folder −o save/folder/

detection

Evaluation
python3 evaluate_retinanet.py −c config_resnet50.json

The output of this code is in Figs. 7.36 and 7.37. �

16An implementation of RetinaNet for casting defect detection in GDXray+, can be found on
https://github.com/aurotripathy/GDXray-retinanet by Auro Tripathy.

https://github.com/aurotripathy/GDXray-retinanet

7.7 Detection Methods 331

Fig. 7.36 Object detection on GDXray+ image B0046_0151

332 7 Deep Learning in X-ray Testing

Fig. 7.37 Object detection on GDXray+ image B0046_0184

7.7.6 Examples of Object Detection

In this section, we show detection of threat objects in GDXray+ using the imple-
mentation of [56].17 This implementation contains the following four detectors for
use in the detection of threat objects in baggage inspection:

17See https://github.com/dlsaavedra/Detector_GDXray. In addition, all examples are implemented
in Google Colab on https://github.com/computervision-xray-testing/pyxvis.

https://github.com/dlsaavedra/Detector_GDXray
https://github.com/computervision-xray-testing/pyxvis

7.8 Summary 333

• Yolov2 (see Sect. 7.7.3 and Example 7.7)
• Yolov3 (see Sect. 7.7.3 and Example 7.8)
• SSD7 (see Sect. 7.7.4 and Example 7.9)
• SSD300 (see Sect. 7.7.4 and Example 7.10)
• RetinaNet (see Sect. 7.7.5 and Example 7.11)

In order to compare the implemented methods, in Figs. 7.36 and 7.37 we can
observe the performance of each method visually. The reader is referred to [56] for
more details of the training and the evaluation protocol.

7.8 Summary

In this chapter, we review many relevant concepts of deep learning that can be used
in computer vision for X-ray testing. We covered the theory and practice of deep
learning techniques in real X-ray testing problems. The chapter explained

• Neural Networks,
• Convolutional Neural Network (CNN) that can be used in classification problems,
• Pre-trained Models,
• Transfer Learning that is used in sophisticated models,
• Generative Adversarial Networks (GANs) to generate synthetic images, and
• modern detection methods that are used to classify and localize objects in an
image.

In addition, for every method, we gave not only basic concepts but also practical
details in real X-ray testing examples implemented in Python.

References

1. Aggarwal, C.C.: Neural Networks and Deep Learning. Springer International Publishing,
Cham (2018)

2. Akçay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using con-
volutional neural networks for object classification within X-ray baggage security imagery.
In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1057–1061. IEEE
(2016)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (2005)
5. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
6. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object

detection (2020)
7. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural

image synthesis. In: The International Conference on Learning Representations (ICLR 2019),
pp. 1–35 (2019)

334 7 Deep Learning in X-ray Testing

8. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

9. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Gener-
ative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

10. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face
recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4690–4699 (2019)

11. Du, W., Shen, H., Fu, J., Zhang, G., He, Q.: Approaches for improvement of the X-ray image
defect detection of automobile casting aluminum parts based on deep learning. NDT & E Int.
107, 102,144 (2019)

12. Du, W., Shen, H., Fu, J., Zhang, G., Shi, X., He, Q.: Automated detection of defects with low
semantic information in X-ray images based on deep learning. J. Intell. Manuf. 1–16 (2020)

13. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep
network. Technical report, Univeriste de Montreal (2009)

14. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.:
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542(7639), 115–118 (2017)

15. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1440–1448 (2015)

16. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587 (2014)

17. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems, pp. 2672–2680 (2014)

18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
19. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial

intelligence. Neuron 95(2), 245–258 (2017)
20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR

(2015). arXiv:1512.03385
21. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks

for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE

International Conference on Computer Vision, pp. 2961–2969 (2017)
23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,

Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications
(2017). arXiv:1704.04861

24. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR
(2016). arXiv:1608.06993

25. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1mb model size. CoRR (2016).
arXiv:1602.07360

26. Jiang, X., Hou, Y., Zhang, D., Feng, X.: Deep learning in face recognition across variations
in pose and illumination. Deep Learning in Object Detection and Recognition, pp. 59–90.
Springer, Berlin (2019)

27. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 4401–4410 (2019)

28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980
29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional

neural networks. In: NIPS, pp. 1106–1114 (2012)
30. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recogni-

tion. In: Proceedings of the Third International Conference on Research in Air Transportation
(1998)

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1412.6980

References 335

31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
32. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection.

CoRR (2017). arXiv:1708.02002
33. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid net-

works for object detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2117–2125 (2017)

34. Liu, B., Zhang, X., Gao, Z., Chen, L.: Weld defect images classification with VGG16-based
neural network. In: International Forum on Digital TV and Wireless Multimedia Communica-
tions, pp. 215–223. Springer (2017)

35. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning
for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

36. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
8759–8768 (2018)

37. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD: single
shot multibox detector. CoRR (2015). arXiv:1512.02325

38. Mery, D.: Aluminum casting inspection using deep learning: a method based on convolutional
neural networks. J. Nondestruct. Eval. 39(1), 12 (2020)

39. Mery, D., Arteta, C.: Automatic defect recognition in X-ray testing using computer vision. In:
2017 IEEEWinter Conference on Applications of Computer Vision (WACV), pp. 1026–1035.
IEEE (2017)

40. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco,
M.: GDXray: the database of X-ray images for nondestructive testing. J. Nondestruct. Eval.
34(4), 1–12 (2015)

41. Mery, D., Svec, E., Arias, M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision
techniques for X-ray testing in baggage inspection. IEEE Trans. Syst. Man Cybern.: Syst.
47(4), 682–692 (2016)

42. Miao, C., Xie, L., Wan, F., Su, C., Liu, H., Jiao, J., Ye, Q.: SIXray: a large-scale security
inspection X-ray benchmark for prohibited item discovery in overlapping images. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119–
2128 (2019)

43. Mitchell, T.: Machine Learning. McGraw-Hill, Boston (1997)
44. Nagpal, K., Foote, D., Liu, Y., Chen, P.H.C., Wulczyn, E., Tan, F., Olson, N., Smith, J.L.,

Mohtashamian, A., Wren, J.H., et al.: Development and validation of a deep learning algorithm
for improving Gleason scoring of prostate cancer. NPJ Digit. Med. 2(1), 1–10 (2019)

45. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814
(2010)

46. Niu, S., Li, B., Wang, X., Lin, H.: Defect image sample generation with GAN for improving
defect recognition. IEEE Trans. Autom. Sci. Eng. (2020)

47. Oliphant, T.E.: A Guide to NumPy, vol. 1. Trelgol Publishing, New York (2006)
48. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

49. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolu-
tional generative adversarial networks. CoRR (2015). arXiv:1511.06434

50. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. CoRR (2016). arXiv:1612.08242
51. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR (2018).

arXiv:1804.02767
52. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time

object detection. CoRR (2015). arXiv:1506.02640
53. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with

region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99
(2015)

http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.02640

336 7 Deep Learning in X-ray Testing

54. Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model.
IEEE Trans. Syst. Man Cybern.: Syst. 46(4), 472–482 (2016)

55. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-
0816-y

56. Saavedra, D., Banerjee, S., Mery, D.: Detection of threat objects in baggage inspection with
X-ray images using deep learning. Neural Comput. Appl. pp. 1–17. Springer (2020)

57. Shrestha, A., Mahmood, A.: Review of deep learning algorithms and architectures. IEEE
Access 7, 53040–53065 (2019)

58. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. CoRR (2014). arXiv:1409.1556

59. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple
way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

60. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: CVPR 2015 (2015)

61. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architec-
ture for computer vision. CoRR (2015). arXiv:1512.00567

62. Tang, Z., Tian, E., Wang, Y., Wang, L., Yang, T.: Non-destructive defect detection in castings
by using spatial attention bilinear convolutional neural network. IEEE Trans. Ind. Inform. 1–1
(2020)

63. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object
recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

64. Wang, C.Y., Liao, H.Y.M., Yeh, I.H., Wu, Y.H., Chen, P.Y., Hsieh, J.W.: CSPNet: A new
backbone that can enhance learning capability of CNN (2019). arXiv:1911.11929

65. Yang, J., Zhao, Z., Zhang, H., Shi, Y.: Data augmentation for X-ray prohibited item images
using generative adversarial networks. IEEE Access 7, 28894–28902 (2019)

66. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural
networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

67. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision, pp. 818–833. Springer (2014)

68. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into deep learning. Unpublished draft.
Retrieved 3, 319 (2019)

69. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural
network for mobile devices. CoRR (2017). arXiv:1707.01083

70. Zhao, Z., Zhang, H., Yang, J.: A GAN-based image generation method for X-ray security pro-
hibited items. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV),
pp. 420–430. Springer (2018)

71. Zhao, Z., Zheng, P., Xu, S., Wu, X.: Object detection with deep learning: a review. IEEE Trans.
Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019). https://doi.org/10.1109/TNNLS.2018.
2876865

72. Zhu, Y., Zhang, Y., Zhang, H., Yang, J., Zhao, Z.: Data augmentation of X-ray images in
baggage inspection based on generative adversarial networks. IEEE Access 8, 86536–86544
(2020)

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1911.11929
http://arxiv.org/abs/1707.01083
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/TNNLS.2018.2876865

Chapter 8
Simulation in X-ray Testing

Abstract In order to evaluate the performance of computer vision techniques, com-
puter simulation can be a useful tool. In this chapter, we review some basic concepts
of the simulation of X-ray images, and present simple geometric and imaging mod-
els that can be used in the simulation. We explain the basic simulation principles
and we address some techniques of simulated defects (that can be used to assess the
performance of a computer vision method for automated defect recognition) and
simulation of threat objects (that can be used to assess the performance of computer
vision methods, to enhance the training dataset, or to improve a training program
for human inspectors). Afterwards, the chapter gives an overview of the use of Gen-
erative Adversarial Networks (GANs) in the simulation of realistic X-ray images.
Finally, we present ‘aRTist’, a simulation software that can be used to generate very
realistic X-ray images. The chapter also has some Python examples that the reader
can run and follow easily.

Cover image: X-ray image of a wood located in 1, 4, 6, 36, 72 and 180 positions (image
N0010_0051 colored with ‘hot’ colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_8

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_8

338 8 Simulation in X-ray Testing

8.1 Introduction

In order to evaluate the performance of computer vision techniques, e.g., an auto-
mated defect recognition system, computer simulation can be a useful tool [8, 13].

The simulated X-ray images, however, should be as similar as possible to real X-
ray images. For this purpose, the simulation should model the physics of the X-ray
formation (generation, interaction, and detection) and handle complex 3D objects
efficiently [29]. State of the art of computer modeling of X-ray testing methods is
able to simulate different X-ray spectrum and X-ray source size, varied photon–
matter interactions, and several X-ray detector responses. Special attention has been
given to general purpose Monte Carlo methods that are able to calculate higher
order scattering events [24, 27, 32]. A computer simulator for X-ray testing should
include the following modules [28]:

• Source model: generates the spectra of X-ray tubes and isotopic sources.
• Ray-tracing engine: determines ray paths in complex geometries of test objects.
• Material database: contains cross-sectional data.
• Straight line attenuation model: determines the contribution of direct radiation, a
scatter model, and a post-processor, combining both contributions.

• Detector model: converts radiation to an optical density and a digital X-ray image.

8.1 Introduction 339

In this chapter, we review some basic concepts of simulation of X-ray images
that can be used to understand other complex and more realistic approaches such as
[24, 27]. In Sect. 8.2, we give the simple (geometric and imaging) models that can
be used in the simulation. In Sect. 8.3, we explain the basic simulation principles
providing some Python examples that the reader can run and follow. In Sect. 8.4,
we address some techniques of simulated defects. In Sect. 8.5, we show a simula-
tion method that can be used to generate realistic X-ray images with several threat
objects. The simulated X-ray images can be used to assess the performance of a
computer vision method for automated defect recognition. Examples of simulated
defects in castings and welds are also given. In Sect. 8.6, we show how GAN mod-
els (as explained in Sect. 7.6, can be used to generate some synthetic X-ray images.
Finally, in Sect. 8.7, we show a simulation software that can generate very realistic
X-ray images by modeling the whole process using CAD models.

8.2 Modeling

In this section, we will explain the geometric model and the imaging model that we
will use in the simulation.

8.2.1 Geometric Model

The model is based on a theoretical approach of Chap. 3 and follows the diagram of
Fig. 8.1. The reader will be referred to the corresponding Sects. 3.2.4 and 3.3 to see
the details.

As explained in Fig. 3.6, a 3D point M can be represented in world coordinate
system (X̄ , Ȳ , Z̄) as M̄ = [X̄ Ȳ Z̄ 1]T or in object coordinate system (X, Y, Z) as
M = [X Y Z 1]T in homogenous coordinates. There is an Euclidean 3D → 3D
transformation defined by (3.10)

M̄ = HM, (8.1)

where H is a 4 × 4 matrix that includes the rotation R and translation t between
both coordinate systems (3.11):

H =
[
R t
0 1

]
. (8.2)

Point M is projected into projection planeΠ as point m using a perspective transfor-
mation. Applying intercept theorem (3.14), the coordinates of m in this 2D system
are (x̄, ȳ), with

x̄ = f X̄/Z̄ and ȳ = f Ȳ/Z̄ . (8.3)

340 8 Simulation in X-ray Testing

Fig. 8.1 Simplified geometric model taken from Fig. 3.6

This equation can be rewritten as (3.17): λm = PM, where λ is a scale factor λ �= 0.
Again m is given in homogeneous coordinates m̄ = [x̄ ȳ 1]T. Perspective matrix P
depends on the focal length f . Thus, a point M given in (X, Y, Z) is projected as
point m in (x̄, ȳ) as in (3.18):

λ

⎡
⎣ x̄

ȳ
1

⎤
⎦

︸ ︷︷ ︸
m̄

=
⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

︸ ︷︷ ︸
P

[
R t
0 1

]
︸ ︷︷ ︸

H

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

, (8.4)

where 0 = [0 0 0]. In image coordinate system (u, v), point m is viewed as point
w that can be represented in homogenous coordinates as w = [u v 1]T. The trans-
formation m̄ → w is defined by function f , and the back transformation w → m̄ by
function g. In linear case, where no distortion takes place, transformation f can be
defined by (3.24)

f :
⎡
⎣ u

v
1

⎤
⎦

︸ ︷︷ ︸
w

=
⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

︸ ︷︷ ︸
K

⎡
⎣ x̄

ȳ
1

⎤
⎦

︸ ︷︷ ︸
m̄

, (8.5)

where scale factors (ku , kv) and a translation of the origin (u0, v0) are considered. In
this model, we assume the skew factor s can be neglected. In this simplified linear
model,

w = f(m̄) = Km̄ and m̄ = g(w) = K−1w. (8.6)

8.2 Modeling 341

If the transformation m̄ → w is non-linear, a non-linear model for f and for g must
be used (see examples in Sects. 3.3.2 and 3.3.3). In this section, we will assume a
linear model only. Thus, a pointM in object coordinate system is viewed as point w
in image coordinate system as

λ

⎡
⎣ u

v
1

⎤
⎦ =

⎡
⎣ ku 0 u0

0 kv v0
0 0 1

⎤
⎦

⎡
⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

[
R t
0 1

] ⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (8.7)

or using matrix notation:
λw = KPHM. (8.8)

If we have a pixel w in image coordinate system given by w = [u v 1]T, and we
want to estimate the X-ray beam 〈C, m〉 that defines w, we have to find the coordi-
nates m̄ = [x̄ ȳ 1]T in projection coordinate systems using back transformation g,
i.e., m̄ = g(w) = K−1w in linear case. Thus, the X-ray beam is defined by points
(X̄ , Ȳ , Z̄) that fulfill:

X̄ = x̄ Z̄/ f and Ȳ = ȳ Z̄/ f. (8.9)

Equations (8.7) and (8.9) will be used by the simulation in the following sections.

8.2.2 X-ray Imaging

As we have already learned in Sect. 1.5, the intensity of X-ray penetrating radiation
is modified by its passage through material and by discontinuities in the material.
An example of this phenomenon is illustrated in Figs. 1.6 and 1.14.

Two properties of the X-rays are used to model the X-ray imaging process: (i)
X-rays are differentially absorbed and (ii) X-rays travel in straight lines. The absorp-
tion can be macroscopically modeled using the exponential attenuation law for X-
rays (1.2):

ϕ = ϕ0e−μx , (8.10)

where ϕ0 is the incident intensity of radiation, ϕ the transmitted intensity, x thick-
ness of the specimen, and μ is a constant known as the linear absorption coefficient
of the material under test with dimension cm−1. Coefficient μ depends on the mate-
rial and the X-ray energy. As an example, Fig. 1.6 illustrates the linear absorption
coefficient for aluminum plotted against X-ray energy. Typically, X-ray testing of
aluminum castings uses energy values between 50 keV and 150 keV [11]. Coeffi-
cient μ can be modeled as a fourth degree polynom [17]:

342 8 Simulation in X-ray Testing

μ ≈
4∑

i=0

θi Ei for 50 keV ≤ E ≤ 150 keV (8.11)

with

θ = (6.00,−0.210,−0.00304,−1.97 × 10−5, 4.72 × 10−8).

A flaw such as a cavity can be simulated as a material with no absorption. In
Fig. 1.6 this simulation is shown schematically. An X-ray beam penetrates an object
which has a cavity with thickness d. In this case, from (8.10) the transmitted radia-
tion ϕ is given by

ϕ = ϕ0e−μ(x−d), (8.12)

where we assume that the absorption coefficient of the cavity is zero. If the flaw is
an incrusted material, its absorption coefficient μd must be considered.

In the example of Fig. 8.2, we have three materials with different linear absorp-
tion coefficients μ1, μ2, and μ3. The thickness in direction of the X-ray beam is x1,
x2, and x3 for each material. It is worth noting that the thickness depends on the
projection beam 〈C, m〉, i.e., for different locations of m, different thicknesses will
be obtained. A simplified model can be used for different thicknesses and materials
(1.4):

Fig. 8.2 Example of an X-ray beam that passes through three materials. The total path length
through material i in direction of the beam is xi , and the linear absorption coefficient of each
material is μi for i = 1, 2, 3

8.2 Modeling 343

ϕ = ϕ0 exp

(
−

∑
i

μi xi

)
. (8.13)

Nevertheless, it is worth mentioning that μ and ϕ0 depends on the energy E . In
addition, if we want to compute the gray value of a pixel (u, v) of a simulated X-ray
image, as a pixel is rather a square than a point, we must take into account the solid
angle that corresponds to the pixel observed from the source point.

ϕ(R) = ϕ0(E)ΔΩ exp

(
−

∑
i

μi (E)xi

)
, (8.14)

where ϕ0(E) is the incident radiation intensity of energy E , ΔΩ is the solid angle
that corresponds to region R of the image (e.g., pixel (u, v)) observed from the
source point, μi (E) designates the attenuation coefficient associated with the mate-
rial i at energy E , and xi the total path length through material i . The X-ray source
can be modeled as a raster of point sources, rays from every source point are traced
to all pixels of the simulated image. The final simulated image will be an addition
of each single simulation, one for each energy and each source point [8].

Finally, a linear transformation from incident energy to gray value is considered:

I = Aϕ + B, (8.15)

where A and B are the linear parameters of I .

8.3 Basic General Simulation

In this section, we will see a basic approach to simulate an X-ray image of a 3D
object based on voxels, i.e., the volume of the object is discretized in very small
volume elements. In case, the volume is defined as a polygon mesh, the mesh can be
voxelized [4].

A simple way to simulate an X-ray image of a 3D object is by modeling the
object as a set of voxels as illustrated in Fig. 8.3. Thus, each voxel has a 3D location
(X, Y, Z) and can have a linear absorption coefficient V = μ. The value ‘0’ for a
voxel means that the voxel does not belong to the object (see cyan voxels in Fig. 8.3).
In case the whole object is of the same material, e.g., an aluminum wheel, the value
of a voxel can be a binary value: ‘0’ for a voxel that does not belong to the object
and ‘1’ otherwise (see red voxels in Fig. 8.3).

In this approach, we assume that there are P voxels that belong to the object. The
kth voxel, for k = 1 . . . P , is defined by its linear absorption coefficient Vk = μk >

0 and its location in object coordinate system as Mk = [Xk Yk Zk 1]T in homoge-
neous coordinates. Using (8.8), we can obtain wk = [uk vk 1]T, the coordinates in
image coordinate systems of each projected voxel

344 8 Simulation in X-ray Testing

Fig. 8.3 Object modeling using voxels. In these examples (a sphere and two cylinders) there are
153 voxels. The radius of each object is 5. The red voxels belong to the object

λkwk = KPHMk . (8.16)

A great advantage of using homogeneous coordinates is that the projection of
all points Mk can be done with only one multiplication: W = KPHM, where
M is a 4 × P matrix M = [M1 M2 · · ·MP] and W is a 3 × P matrix W =
[λ1w1 λ2w2 · · · λPwP].

According to (8.13), an X-ray beam passes through different materials with dif-
ferent levels of thickness. In our model, each voxel can be considered as an element
with a linear absorption coefficient μi and a thickness xi (in direction of the X-ray
beam). It is simple to accumulate in a region R of the image the contribution of
all voxels that are in the corresponding X-ray beam as illustrated in Fig. 8.4. In this
example, we show the voxels that belong to a spherical object in red, and those vox-
els that contribute to region R in blue. For region R of the image we can compute
q(R) = ∑

i μi xi . Finally, the gray value of this region is modeled using q(R) and
Eqs. (8.13) and (8.15) as

I (R) = Aϕ0e−q(R) + B. (8.17)

There are two different ways to obtain the simulated X-ray image I:

• From pixels to voxels: In order to simulate I of N × M pixels, we can estimate
the intensity of each pixel (u, v), for u = 1 . . . N and v = 1 . . . M as follows:

1. Each pixel (u, v) defines a point (x̄, ȳ) in the projection coordinate system as
explained in Sect. 8.2.1.

2. Point (x̄, ȳ) defines a specific X-ray beam according to (8.9). If there is an
intersection of the X-ray beam with the 3D object, follow the next steps.

3. The beam passes through n voxels of the object, that means there are corre-
sponding linear absorption coefficients of each voxel (μi) and thickness (xi)
for i = 1 . . . n. The absorption linear coefficient μi can be obtained from the
corresponding voxel value. The thickness xi can be estimated as the line seg-

8.3 Basic General Simulation 345

Fig. 8.4 The contribution of all voxels aligned to the X-ray beam in a region R can be modeled as
q(R) = ∑

i μi xi . The example shows the voxels of a sphere that are in the X-ray beam

ment length of the intersection of the corresponding X-ray beam that passes
through the voxel with the cube defined by the voxel.

4. The contribution q(u, v) = ∑
i μi xi is computed.

5. Using (8.17) the gray value for each pixel can be estimated. In this approach,
the region R corresponds to the area defined by pixel (u, v).

• From voxels to pixels: In order to simulate image I, we first define an image
Q as a matrix with the same size of I, i.e., N × M pixels. All pixels of Q are
initialized to zero. Afterwards, we can deal with the projection of each voxel k,
for k = 1 . . . P as follows:

1. The kth voxel located at Mk is projected using (8.16), and coordinates (uk, vk)

in the image coordinate system are obtained.
2. The contribution of kth voxel to our image is qk = μk xk . The absorption linear

coefficient μk can be obtained from the voxel value Vk . The thickness xk can
be estimated as the line segment length of the intersection of the corresponding
X-ray beam that passes through the center of the voxel with the cube defined
by the voxel.

3. The value qk is added in those pixels (u, v) of image Q that are neighbors to
(uk, vk).

346 8 Simulation in X-ray Testing

Finally, using (8.17) the gray value for each pixel can be estimated. In this
approach, the region R corresponds to the area defined by pixel (u, v).

In order to show a simple simulation of an X-ray image of a 3D object, we give
some details of the second approach in the following example.

Python Example 8.1: In this example, we simulate the X-ray image of a homo-
geneous material using voxels. The implementation corresponds to the method
‘from voxels to pixels’ outlined in this section. The binary 3D matrix V, stored in
voxels_model400.npy, contains 400 × 400 × 400 voxels. Here, a voxel equals 1
(or 0) means that the voxel belongs (or does not belong) to the 3D object.

Listing 8.1 : Simulation of an X-ray image of 3D object

import numpy as np
import matplotlib.pylab as plt
from pyxvis.simulation.xsim import voxels_simulation
from pyxvis.geometry.projective import rotation_matrix_3d
from pyxvis.processing.images import linimg

Binary 3D matrix containing the voxels of a 3D object
V = np.load(’../data/voxels_model400.npy’)

Transformation (x,y)−>(u,v)
(u_0,v_0,a_x,a_y) = (235,305,1.1,1.1)
K = np.array([[a_x, 0, u_0], [0, a_y, v_0], [0,0,1]])

Transformation (Xb,Yb,Zb)−>(u,v)
f = 1500 # focal length
P = np.array([[f, 0, 0, 0], [0, f, 0, 0], [0,0,1,0]])

Transformation (X,Y,Z)−>(Xb,Yb,Zb)
R = rotation_matrix_3d(0.5,0.1,0.6)
t = np.array([−120, −120, 1000])
H = np.vstack([np.hstack([R, t[:, np.newaxis]]), np.array([0, 0, 0, 1])])

Transformation (X,Y,Z) −> (u,v)
Pt = np.matmul(K,np.matmul(P,H))

Simulation of projection (Q) and X−ray image (X)
Q = voxels_simulation(400,400,V,7,Pt)
X = linimg(np.exp(−0.0001*Q))

Output
fig1, ax = plt.subplots(1, 1, figsize=(16, 8))
ax.imshow(X, cmap=’gray’), ax.axis(’off’)
plt.show()

The output of this code is illustrated in Fig. 8.5, where eight different positions are
shown. The eight positions were obtained varying the rotation angles of matrix R.
In this example, the X-ray image was simulated using command voxel_simulation
of pyxvis Library. In this implementation we assume that the thickness of a voxel
(xk) is always 1. This is not true, however, for homogenous material, when μk is
constant, xk = 1 is a good estimation of the average value. The weighted distribution
explained in step 3 is implemented as shown in Fig. 8.6. Also the reader can simulate

8.3 Basic General Simulation 347

Fig. 8.5 Simulation of a wheel in eight different positions. [→ Example 8.1]

Fig. 8.6 Since pixel (uk , vk) does not exist, it is impossible to add the contribution μk xk to this
pixel. For this reason, the contribution is distributed in its four neighbor pixels according to their
opposite areas A, B, C, D (note that A + B + C + D = 1). In our simplified model, xk = 1 and
μk is constant, that means that the contribution of each voxel is constant. [→ Example 8.1]

an X-ray image using a file in the STL format (a standard for a polygon mesh)1 and
converting it into voxels.2 �

1http://en.wikipedia.org/wiki/STL_(file_format).
2See, for example, https://github.com/cpederkoff/stl-to-voxel.

http://en.wikipedia.org/wiki/STL_(file_format)
https://github.com/cpederkoff/stl-to-voxel

348 8 Simulation in X-ray Testing

8.4 Flaw Simulation

Generally, the automatic defect recognition consists of a binary classification, where
a decision is performed about whether or not an initially identified hypothetical
defect in an image is in fact a defect. Unfortunately, in real automatic flaw detection
problems there are a reduced number of flaws in comparison with the large num-
ber of non-flaws. This skewed class distribution seriously limits the application of
classification techniques [6]. Usually, the performance of an inspection method can
be assessed on a few images, and an evaluation of a broader and more representa-
tive database is necessary. A good way of assessing the performance of a method
for inspecting castings is to examine simulated data. This evaluation allows one the
possibility of tuning the parameters of the inspection method and of testing how
well the method works in critical cases.

Among the NDT community there are two groups of methods to obtain this sim-
ulated data: invasive and non-invasive methods. Table 8.1 summarizes their most
important properties.

Invasive Methods
In the invasive methods, discontinuities are produced in the test object artificially.
There are two published invasive methods: (i) drilling holes on the object surface
[20] (see Fig. 8.7), and (ii) designing a test piece with small spherical cavities [1]
(see Fig. 8.8). Usually, the first technique drills small holes (e.g., ∅ = 1.0 ∼ 4.0mm)
in positions of the casting which are known to be difficult to detect. In the second
technique, a sphere is produced, for example, by gluing together two aluminum
pieces containing half-spherical concavities. The principal advantage of these meth-
ods is that the discontinuity image is real. However, the disadvantages are: (i) it is
impossible to introduce concavities in the middle of the object without destroying
it, and (ii) concavities like cracks are practically impossible to reproduce.

Table 8.1 Methods for simulation of defects

8.4 Flaw Simulation 349

Fig. 8.7 Two defects generated using drilling holes

Fig. 8.8 Two generated defects using spherical cavities [1]

Non-invasive Methods
In the non-invasive methods, X-ray images are generated or modified without alter-
ing the test object. There are three widespread approaches that produce this simu-
lated data [16]: (i) mask superimposition, (ii) CAD models for casting and flaw and
(iii) CAD models for flaws only. In this section, they will be described in further
detail.

8.4.1 Mask Superimposition

The first technique attempts to simulate flaws by superimposing masks with differ-
ent gray values onto real X-ray images [9, 11, 12]. This approach is quite simple,
as it neither requires a complex 3D model of the object under test nor of the flaw. It
also provides a real X-ray image with real disturbances, albeit with simulated flaws.

In this technique, the original gray value Io of a pixel (u, v) of an X-ray image is
altered by

In(u, v) = Io(u, v) (1 + M(u − u0, v − v0)) (8.18)

with In(u, v) the new gray value and M the mask that is centered on pixel (u0, v0),
where M(i, j) is defined in the interval − n

2 ≤ i ≤ n
2 and −m

2 ≤ j ≤ m
2 . Three typi-

cal masks are shown in Fig. 8.9.

350 8 Simulation in X-ray Testing

Fig. 8.9 Flaw simulation using Gaussian mask, square, and circle. As we can see, the Gaussian

mask achieves the best simulation. [→ Example 8.2]

Python Example 8.2: In this example, we simulate three different flaws in an
aluminum casting using Gaussian, square, and circle masks.

Listing 8.2 : Simulation of a defects using superimposed masks

import numpy as np
import matplotlib.pylab as plt
from pyxvis.simulation.xsim import mask_simulation
from pyxvis.processing.helpers.kfunctions import gaussian_kernel
from pyxvis.io import gdxraydb

image_set = gdxraydb.Castings()
I = np.double(image_set.load_image(21,25)) # wheel image

p1 = [150,580] # Location of 1st defect
p2 = [200,565] # Location of 2nd defect
p3 = [250,550] # Location of 3rd defect

h1 = gaussian_kernel(35,4) # Gaussian Mask
h1 = h1/np.max(h1)*0.9
J = mask_simulation(I,h1,p1[0],p1[1]) # Simulation
h2 = np.ones((17,17))*0.4 # Square Mask
J = mask_simulation(J,h2,p2[0],p2[1]) # Simulation
h3 = np.zeros(h1.shape) # Circle mask
h3[h1>0.25] = 0.4
J = mask_simulation(J,h3,p3[0],p3[1]) # Simulation

8.4 Flaw Simulation 351

Output
fig1, ax = plt.subplots(1, 2, figsize=(16, 8))
ax[0].imshow(I, cmap=’gray’), ax[0].axis(’off’)
ax[1].imshow(J, cmap=’gray’), ax[1].axis(’off’)
ax[1].text(p1[1]+20,p1[0]+5, ’Gaussian’, fontsize=8,color=’white’)
ax[1].text(p2[1]+20,p2[0]+5, ’Square’, fontsize=8,color=’white’)
ax[1].text(p3[1]+20,p3[0]+5, ’Circle’, fontsize=8,color=’white’)
ax[1].text(250,210, ’(Real)’, fontsize=10,color=’white’)
ax[1].text(565,92, ’(Simulated)’, fontsize=10,color=’white’)
plt.show()

The output of this code is illustrated in Fig. 8.9, where three different defects
are shown in. In this example, the X-ray image was simulated using command
mask_simulation of pyxvis Library. �

8.4.2 CAD Models for Object and Defect

The second approach simulates the entire X-ray imaging process [10, 30]. In this
approach, characteristics of the X-ray source, the geometry, and material properties
of objects and their defects, as well as the imaging process itself are modeled and
simulated independently. Complex objects and defect shapes can be simulated using
CAD models. In Sect. 8.7, a simulation software (aRTist) that can generate these
simulated images is presented.

The principle of the simulation is shown in Fig. 8.10. The X-ray may intersect
different parts of the object. The intersection points between the modeled object
with the corresponding X-ray beam that is projected into pixel (u, v) are calculated
for each pixel (u, v) of the simulated image as explained in Sect. 8.3.

Some complex 3D flaw shapes are reported in [30]. The defect model is coupled
with a CAD interface yielding 3D triangulated objects. Other kinds of flaws like
cracks can also be obtained using this simulation technique.

Although this approach offers excellent flexibility for setting the objects and
flaws to be tested, it has three disadvantages for the evaluation of the inspection
methods’ performance: (i) the X-ray image of the object under test is simulated (it
would be better if we could count on real images with simulated flaws); (ii) the sim-
ulation approach is only available when using a sophisticated computer package;
(iii) the computing time is expensive.

8.4.3 CAD Models for Defects Only

This approach simulates only the flaws and not the whole X-ray image of the
object under test [17]. This method can be viewed as an improvement of the first-
mentioned technique (Sect. 8.4.1) and the 3D modeling for the flaws of the second
one (Sect. 8.4.2). In this approach, a 3D modeled flaw is projected and superim-

352 8 Simulation in X-ray Testing

Fig. 8.10 X-ray image simulation using CAD models

posed onto real X-ray images of a homogeneous object according to the exponential
attenuation law for X-rays (8.10).

As explained in Sect. 8.2.2, the gray value I of a digital X-ray image can be
expressed as a linear function of the transmitted radiation ϕ:

I (x) = Aϕ(x) + B, (8.19)

where
ϕ(x) = ϕ0e−μx , (8.20)

and A and B are the linear parameters of I , and x the thickness of the object under
test.

Now, we investigate what happens if the penetrated object has a cavity, the thick-
ness of which is d as shown in Fig. 1.14 and its absorption coefficient μ′ ≈ 0. In this
case, from (8.20) the transmitted radiation is given by

ϕ(x − d) = ϕ0e−μ(x−d) = ϕ(x)eμd . (8.21)

The gray value registered is calculated then from (8.21) and (8.19) as

I (x − d) = Aϕ(x)eμd + B. (8.22)

Substituting the value of Aϕ(x) from (8.19) we see that (8.22) may be written as

I (x − d) = I (x)eμd + B(1 − eμd). (8.23)

8.4 Flaw Simulation 353

Parameter B can be estimated as follows: The maximal gray value (Imax) in an
X-ray image is obtained when the thickness is zero. Additionally, the minimal gray
value (Imin) is obtained when the thickness is xmax . Substituting these values in
(8.19), it yields {

Imax = Aϕ0 + B
Imin = Aϕ0e−μxmax + B

. (8.24)

From these equations, one may compute the value for B

B = Imax − ΔI/(1 − e−μxmax) , (8.25)

where ΔI = Imax − Imin . Usually, Imax and Imin are 255 and 0 respectively. For
these values, B can be written as

B = 255/(1 − eμxmax) . (8.26)

This means that the gray value of the image of the cavity is

I (x − d) = I (x)eμd + 255
1 − eμd

1 − eμxmax
. (8.27)

Using Eq. (8.27), we can alter the original gray value of the X-ray image I (x) to
simulate a new image of a flaw I (x − d). A 3D flaw can be modeled, projected, and
superimposed onto a real radioscopic image. The new gray value of a pixel, where
the 3D-flaw is projected, depends only on four parameters: (a) Original gray value
I (x); (b) the linear absorption coefficient of the examined material μ; (c) the length
of the intersection of the 3D-flaw with the modeled X-ray beam d, that is projected
into the pixel; and (d) the maximal thickness observable in the radioscopic image
xmax .

Now, we will explain in further details how a 3D defect, namely, an ellipsoid, is
projected onto an X-ray image [17]. Using this tool a simulation of an ellipsoidal
flaw of any size and orientation can be made anywhere in the casting. This model
can be used for flaws like blowholes and other round defects. Four examples are
shown in Fig. 8.11. The simulated flaws appear to be real due to the irregularity of
the gray values.

This technique presents two advantages: simulation is better than with the first
technique; and with respect to the second, this technique is faster given the reduced
computational complexity. However, the model used in this method has four simpli-
fications that were not presumed in the second simulation technique: (i) the X-ray
source is assumed as a source point; (ii) there is no consideration of noise in the
model; (iii) there is no consideration of the solid angle ΔΩ of the X-ray beam that
is projected onto a pixel; and (iv) the spectrum of the radiation source is monochro-
matic.

In our approach we follow the geometric model illustrated in Fig. 8.12. This
model is very similar to the geometric model we learned in Sect. 8.2.1, however,

354 8 Simulation in X-ray Testing

Fig. 8.11 Simulated ellipsoidal flaws using CAD models of a defect only. See details in Table 8.2.
3D profile of a yellow square is shown in Fig. 8.14

it includes a new coordinate system (X ′, Y ′, Z ′) attached to the center of the ellip-
soid that is modeled as

X ′2

a2
+ Y ′2

b2
+ Z ′2

c2
= 1, (8.28)

where a, b, and c are the half-axes of the ellipsoid as shown in Fig. 8.12. The location
of the ellipsoid relative to the object coordinate system is defined by a 3 × 3 rotation
matrix Re and a 3 × 1 translation vector te. They can be arranged in a 4 × 4 matrix
He as in Eq. (8.2). Using (8.1), the coordinates in the ellipsoid coordinate system
(X ′, Y ′, Z ′) can be expressed in the world coordinate system (X̄ , Ȳ , Z̄) by

M̄ = HHeM′ (8.29)

with M′ = [X ′ Y ′ Z ′ 1]T and M̄ = [X̄ Ȳ Z̄ 1]T . Now, we can write the ellipsoid in
world coordinate system from (8.28) and (8.29) as

(s11 X̄ + s12Ȳ + s13 Z̄ + s14)2/a2 +
(s21 X̄ + s22Ȳ + s23 Z̄ + s24)2/b2 +
(s31 X̄ + s32Ȳ + s33 Z̄ + s34)2/c2 = 1

, (8.30)

8.4 Flaw Simulation 355

Fig. 8.12 Ellipsoid used by modeling a 3D flaw in coordinate system (X ′, Y ′, Z ′). The two inter-
sections of an X-ray beam with the surface of the ellipsoid define distance d

where si j are the elements of the 4 × 4 matrix S = [HHe]−1.
Suppose we have a pixel (u, v) of the X-ray image and we want to know if the X-

ray beam, which produces a gray value in this pixel, intersects the modeled ellipsoid.
Using g, the inverse function of f (see (8.6)), we can calculate the corresponding
coordinates of (u, v) in the projection coordinate systems (x̄, ȳ):

m̄ = g(u) (8.31)

with u = [u v 1]T and m̄ = [x̄ ȳ 1]T . Remember that for a linear perspective pro-
jection with no distortion, m̄ = K−1w, with K defined in (8.5). The X-ray beam in
the world coordinate system is defined from (8.3) by

{
X̄ = x Z̄/ f
Ȳ = y Z̄/ f

. (8.32)

The intersection of the X-ray beam with the ellipsoid is shown in Fig. 8.12. A inter-
section point must satisfy (8.30) and (8.32) simultaneously. Substituting X̄ and Ȳ
from (8.32) in (8.30) and after some slight rearranging we obtain

AZ̄2 + B Z̄ + C = 0 (8.33)

with

A = r21
a2

+ r22
b2

+ r23
c2

,

356 8 Simulation in X-ray Testing

B = 2
(r1s14

a2
+ r2s24

b2
+ r3s34

c2

)
,

C = h2
14

a2
+ h2

24

b2
+ h2

34

c2
− 1 and

ri = si1
x

f
+ si2

y

f
+ si3 for i = 1, 2, 3.

If B2 − 4AC > 0 we obtain two intersection points of the X-ray beam with the
ellipsoid given by

X̄1,2 = Z̄1,2

f
x

Ȳ1,2 = Z̄1,2

f
y

Z̄1,2 = −B ± √
B2 − 4AC

2A

The length of the X-ray beam that penetrates into the ellipsoid can be calculated as

d =
√

(X̄1 − X̄2)2 + (Ȳ1 − Ȳ2)2 + (Z̄1 − Z̄2)2, (8.34)

that can be written as

d =
√

B2 − 4AC

A

√
x2

f 2
+ y2

f 2
+ 1. (8.35)

The algorithm to simulate a flaw can be resumed as follows:

1. Calibration: Estimate the parameters of the mapping function 3D → 2D (focal
length f , matrix H, and function f).

2. Setting of X-ray imaging parameters: Define μ and xmax according to the energy
used by the X-ray source.

3. Definition of the 3D flaw: Define the size of the flaw (parameters a, b, and c) and
the location of the flaw in the object (matrix He).

4. Location of the superimposed area: Find the pixels (u, v) where the modeled 3D
flaw is projected.3

5. Computation of intersection length d: For each determined pixel (u, v) find
the length of the intersection between the X-ray beam and ellipsoid given by
Eq. (8.35).

3These pixels are defined where B2 − 4AC > 0 in Eq. (8.33).

8.4 Flaw Simulation 357

6. Change of the gray value: For each determined pixel (u, v) change the original
gray value using (8.27).

Python Example 8.3: In this example, we simulate a defect as an ellipsoid using
the method outlined in this section.

Listing 8.3 : Simulation of a defect in an aluminum casting

import numpy as np
import matplotlib.pylab as plt
from pyxvis.simulation.xsim import ellipsoid_simulation
from pyxvis.io import gdxraydb
from pyxvis.geometry.projective import rotation_matrix_3d

image_set = gdxraydb.Castings()
I = np.double(image_set.load_image(21,27)) # wheel image

Transformation (X,Y,Z)−>(Xb,Yb,Zb)
R1 = rotation_matrix_3d(0,0,0)
t1 = np.array([−36, 40, 1000])
S = np.vstack([np.hstack([R1, t1[:, np.newaxis]]), np.array([0, 0, 0, 1])])

Transformation (Xp,Yp,Zp)−>(X,Y,Z)
R2 = rotation_matrix_3d(0,0,np.pi/3)
t2 = np.array([0,0,0])
Se = np.vstack([np.hstack([R2, t2[:, np.newaxis]]), np.array([0, 0, 0, 1])])

Transformation (Xp,Yp,Zp)−>(Xb,Yb,Zb)
SSe = np.matmul(S,Se)

Transformation (x,y)−>(u,v)
K = np.array([[1.1, 0, 235], [0, 1.1, 305], [0,0,1]])

Dimensions of the ellipsoid
abc = (5,4,3)

Simulation
J = ellipsoid_simulation(I,K,SSe,1500,abc,0.1,400)

Output
fig1, ax = plt.subplots(1, 2, figsize=(16, 8))
ax[0].imshow(I, cmap=’gray’), ax[0].axis(’off’)
ax[1].imshow(J, cmap=’gray’), ax[1].axis(’off’)
ax[1].text(328,225, ’(Real)’, fontsize=10,color=’white’)
ax[1].text(315,150, ’(Simulated)’, fontsize=10,color=’white’)
plt.show()

The output of this code is shown in Fig. 8.13. In this example, the simulated defects
seems to be real. The defect was simulated using command ellipsoid_simulation of
pyxvis Library. �

In the following, the results of the simulation of flaws in cast aluminum wheels
using our approach are presented. The dimensions of the wheels used in our experi-
ments were approximately 48 cm in diameter and 20 cm in height. The focal length
(distance between X-ray source and entrance screen of the image intensifier) was
90 cm. The projection model of the X-ray imaging system was calibrated using a
hyperbolic model [15, 19].

In Fig. 8.11, experimental results on four X-ray images are shown. The values
used to simulate the flaws in each image are summarized in Table 8.2. We can com-

358 8 Simulation in X-ray Testing

Table 8.2 Values used in the simulations of Fig. 8.11

Image
No.

E
(keV)

μ

(1/cm)
xmax
(cm)

a
(mm)

b
(mm)

c
(mm)

1 54 0.8426 4.0 8 2 4

2 58 0.7569 3.8 4 2 1.5

3 50 0.9500 4.5 4 2 1.7

4 57 0.7765 3.85 6 3 2.5

pare real and simulated flaws. It was shown that the simulation results are almost
identical to real flaws. In Fig. 8.14 a 3D plot of the gray values in the vicinity of the
flaws shown in last X-ray image of Fig. 8.11 is illustrated. Due to the irregularity of
the gray values of the simulated flaw, it seems to be real.

In defect detection, it is very common that the class of defects is underrepresented
with a low number of samples. For this reason, it is very convenient to increase the
number of samples by adding some simulated defects. This data augmentation strat-
egy was used in [18], where ellipsoidal defects from different sizes and orientations
were superimpose onto real X-ray images in many locations (some examples are

Fig. 8.13 Comparison of real defects with a simulated one (see red square) using proposed

method. [→ Example 8.3]

8.4 Flaw Simulation 359

Fig. 8.14 3D plot of the gray values in the vicinity of flaws of the last X-ray image of Fig. 8.11

Fig. 8.15 Flaw simulation process using complex CAD models of the 3D defect

shown in Fig. 8.18. In this case, a CNN model, called Xnet-II, with 30 layers and
more than 1.350.000 parameters was trained using a dataset with around 640.000
patches containing 50% of ellipsoidal defects and 50% of real background captured
from different casting types.

Other complex defect shapes can be simulated using CADmodels [21]. This gen-
eral approach follows the block diagram of Fig. 8.15, where a 3D defect needs to be
modeled as a manifold 3D mesh as illustrated in Fig. 8.16. Crack simulation can be

360 8 Simulation in X-ray Testing

Fig. 8.16 Manifold surfaces from the 3D modeling software: a crack, b zoom of a, c ellipsoid,
and d amorphous surface

Fig. 8.17 Simulated and real cracks

8.4 Flaw Simulation 361

Fig. 8.18 Simulated defects using ellipsoidal model (see red arrows)

obtained by superimposing a depth map computed from a single manifold (see, for
example, Fig. 8.16a). However, a real crack corresponds to a more complex 3D rep-
resentation. For this reason, we simulated another crack by superimposing several
single cracks onto a real X-ray image. An example of this simulation is illustrated
in Fig. 8.17. Due to the irregularity of the gray values of the simulated flaw, it can
be seen that both real and simulated flaws show similar patterns (Fig. 8.18).

8.5 Superimposition Using Multiplication of Images

In this section, we explain a method that can be used to simulate new X-ray images
for baggage inspection [22], where simulated images can be used in training pro-

362 8 Simulation in X-ray Testing

Fig. 8.19 Setup of an X-ray
imaging system, the X-ray
source irradiates the object
(a bag containing a handgun)
and produces an X-ray image

grams for human inspectors, or can be used to enhance datasets for computer vision
algorithms. The key idea of this approach is to build new X-ray images by superim-
posing X-ray images of objects of interest onto X-ray images of clutter. In our exper-
iments, we simulate new X-ray images of handguns, shuriken, and razor blades, in
which it is impossible to distinguish simulated and real X-ray images.

As explained in Sect. 8.2.2, X-ray imaging can be modeled by

ϕ(d) = ϕ0e−μd (8.36)

withμ absorption coefficient, d thickness of the irradiated matter, ϕ0 incident energy
flux density, and ϕ energy flux density after passage through matter with the thick-
ness of d. As we can see in Fig. 8.2, for n materials

ϕ = ϕ0 exp

(
−

n∑
i=1

μi di

)
. (8.37)

Finally, the grayvalue of a pixel can be linearly modeled as

I = Aϕ + B. (8.38)

where A and B are constant parameters of the model.
Following the models (8.37) for the energy flux density and (8.38) for the digital

image, it is possible to model the X-ray image of the foreground (I f), e.g., a hand-
gun, and the background (Ib), e.g., a cluttered bag, as illustrated in Figs. 8.19 and
8.20. Thus,

I f = Aϕ f + B Ib = Aϕb + B, (8.39)

where

8.5 Superimposition Using Multiplication of Images 363

Fig. 8.20 Superimposition of an X-ray image of a handgun onto an X-ray image of a cluttered
bag: a I f : Foreground (threat object). b Ib: Background (cluttered bag). c It : Total (bag with threat
object)

ϕ f = ϕ0e−μ f d f ϕb = ϕ0e−μbdb (8.40)

in this case μ f and μb are the absorption coefficients of the foreground and back-
ground respectively. It is worth mentioning, that μbdb represents

∑
j μ j d j consid-

ering all cluttered objects j that lie on the X-ray beam shown in Fig. 8.2. The total
X-ray image, called It , can be modeled as

ϕt = ϕ0e−μ f d f e−μbdb , (8.41)

It = Aϕt + B = Ce−μ f d f e−μbdb + B, (8.42)

where C = Aϕ0. It is clear, that (8.42) can be used to simulate new X-ray images
from I f and Ib: replacing (8.40) in (8.39), we obtain

e−μ f d f = I f − B

C
e−μbdb = Ib − B

C
. (8.43)

From (8.43) and (8.42), it yields

It − B

C
= I f − B

C
· Ib − B

C
. (8.44)

We can normalize the X-ray images by subtracting B and dividing by C , e.g.,
, Jt = (It − B)/C . Thus, using the normalized images for total, foreground and
background images, we obtain

Jt = J f · Jb. (8.45)

Easily, we can compute the total image by

It = C · J f · Jb + B. (8.46)

364 8 Simulation in X-ray Testing

Fig. 8.21 Simulation of a handgun superimposed onto an X-ray image of a bag. The original X-
ray image (Ib) has only one shuriken, whereas the simulated X-ray image (It) has an additional
handgun in different poses (see the handgun in the middle of the image)

Indeed, image It in Fig. 8.20c was simulated from I f and Ib in Fig. 8.20a, b respec-
tively using (8.46). The simple simulation approach is summarized in Algorithm 2.
It is worth mentioning that parameters, B and C can be easily estimated using a
calibration approach of Sect. 8.4.3 as follows: the maximal grayvalue I0 in an X-
ray image is obtained when there is no irradiated object, i.e., it can be modeled
as an object with no thickness (d0 = 0). Additionally, the minimal grayvalue I1
is obtained when the irradiated object is so thick that the X-rays are completely
absorbed, i.e., it can be modeled as an object with known μ of thickness d1. Substi-
tuting these values in (8.38) with C = Aϕ0, it yields

{
I0 = Aϕ0e−μd0 + B = Ce−μd0 + B = C + B
I1 = Aϕ0e−μd1 + B = Ce−μd1 + B

. (8.47)

From these equations, one may compute the value for B and C as

B = k(−I0e−μd1 + I1)
C = k(I0 − I1)

, (8.48)

where k = 1/(1 − e−μx1).

8.5 Superimposition Using Multiplication of Images 365

Algorithm 2 Superimposition of X-ray images

Input: Foreground X-ray image I f

Input: Background X-ray image Ib

Input: Parameters B and C
1: J f = (I f − B)/C
2: Jb = (Ib − B)/C

Output: It = C · J f · Jb + B

Fig. 8.22 Simulation of a shuriken superimposed onto an X-ray image of a bag. The original X-
ray image (Ib) has only one shuriken, whereas the simulated X-ray image (It) has an additional
shuriken in different poses (see the shuriken partial occluded by the gun)

Simulated images can be used in training programs for human inspectors, or can
be used to enhance datasets for computer vision algorithms. The idea is simple, we
have to acquire X-ray images of objects that are completely isolated and then we
can superimposed them onto X-ray images of cluttered bags. In order to acquire
isolated X-ray images, the threat object can be located inside a sphere of expanded
polystyrene (EPS) due to its low X-ray absorption coefficient as suggested in [25].
In GDXray+ we have those kinds of images, where a threat object is irradiated
from different points of views. Thus, the threat object can be superimposed in many
different poses.

In order to illustrate the similarity between original and simulated X-ray images,
we show experiments where the original X-ray image has only one threat object

366 8 Simulation in X-ray Testing

and the simulated image has the original threat object and the superimposed threat
object, so in the same image we can compare both of them. We tested with the fol-
lowing threat objects: handguns, razor blades, and shuriken (ninja stars) in nine dif-
ferent poses. The results are given in Figs. 8.21 and 8.22 respectively. In our results,
the reader can see both threat objects—simulated and original—and can conclude
that both objects are so similar that it is impossible to say which one is simulated
and which one is the original.

Fig. 8.23 Simulation of
three threat objects onto an
X-ray image of a backpack.
The original X-ray image
(Top) has only one handgun,
whereas the simulated X-ray
image (Bottom) contains the
original handgun and the
three superimposed three
objects. The location of the
bounding boxes can be
easily defined because they
correspond to the location
where the foreground objects
have been superimposed. [→
Example 8.4]

8.5 Superimposition Using Multiplication of Images 367

Python Example 8.4: In this example, we superimpose a gun, a shuriken, and a
razor blade onto an X-ray image of a backpack using Algorithm 2.

Listing 8.4 : Superimposition of X-ray images

import numpy as np
import matplotlib.pylab as plt
from pyxvis.simulation.xsim import superimpose_xray_images, draw_bounding_box

import gdxraydb

image_set = gdxraydb.Baggages()
Ib = np.double(image_set.load_image(46, 2)) # background image

If1 = np.double(image_set.load_image(49, 2)) # foreground: Gun
p1 = [700,700]
It = superimpose_xray_images(Ib, If1, p1[0], p1[1])

If2 = np.double(image_set.load_image(50, 4)) # foreground: Shuriken
p2 = [1200,100]
It = superimpose_xray_images(It, If2,p2[0], p2[1])

If3 = np.double(image_set.load_image(51, 2)) # foreground: Razor Blade
p3 = [1300,1100]
It = superimpose_xray_images(It, If3,p3[0],p3[1])

It = draw_bounding_box(It,p1[0],p1[1],If1.shape[0],If1.shape[1],’Gun’)
It = draw_bounding_box(It,p2[0],p2[1],If2.shape[0],If2.shape[1],’Shuriken’)
It = draw_bounding_box(It,p3[0],p3[1],If3.shape[0],If3.shape[1],’Blade’)

fig1, ax = plt.subplots(1, 2, figsize=(16, 8))
ax[0].imshow(Ib, cmap=’gray’), ax[0].axis(’off’)
ax[1].imshow(It, cmap=’gray’), ax[1].axis(’off’)
ax[1].text(p1[1]+20,p1[0]+50, ’(simulated)’, fontsize=8,color=’white’)
ax[1].text(p2[1]+20,p2[0]+50, ’(simulated)’, fontsize=8,color=’black’)
ax[1].text(p3[1]+20,p3[0]+50, ’(simulated)’, fontsize=8,color=’black’)
ax[1].text(1000,1800, ’(real)’, fontsize=12,color=’white’)
plt.show()

The output of this code is shown in Fig. 8.23. The reader can observe the use of
function superimpose_xray_images to superimpose a foreground image (e.g., If1)
onto the background image Ib. �

Simulated images can be used in training programs for human inspectors, or
can be used to enhance datasets for computer vision algorithms. As we can see
in Fig. 8.23, the location of the bounding boxes can be easily and precisely defined
because we know exactly where the foreground object has been located. This means,
that the definition of the ground truth (of the superimposed objects) in the enhanced
dataset is straightforward. This simulation model was used in [26] as data augmen-
tation strategy to enhance the training dataset, where GDXray+ series B0083—X-
ray images of backpacks with no threat objects—was used as background images,
and series B0049-51—X-ray images of threat objects—was used as foreground
images.4

4See details of implementation in https://github.com/dlsaavedra/Detector_GDXray, and some
examples in Sect. 7.7.6.

https://github.com/dlsaavedra/Detector_GDXray

368 8 Simulation in X-ray Testing

Fig. 8.24 Simulation of razor blades and background using GAN6. [→ Example 7.6]

8.6 Simulation of X-ray Images Using GAN

Generative Adversarial Networks (GANs) have been used successfully in the last
years to generate realistic synthetic data [5, 7, 14]. In X-ray testing, we use GAN
to simulate X-ray images, for example, as data augmentation in training data to
increase the number of samples of some underrepresented class, or as new data in a
training course for human inspectors. Some applications of simulated X-ray images
using GAN can be found in [18] for the simulation of casting defects5 and in [26,
31, 33, 34] for the simulation of threat objects. The simulated X-ray images using
GAN are very realistic as we can see in Figs. 7.25 and 7.26 for defects and shuriken
respectively. The reader is referred to Sect. 7.6 that gives further details of GAN
in X-ray testing, where the theory is explained and some examples in Python are
shown. Using Python code of Example 7.6, we generate two extra simulations that
are shown in Fig. 8.24.6

5GAN solutions have been used in other kinds of defects, see, for example, [23].
6For the simulation of razor blades and background, we used training datasets blade_64× 64.npy
and back_64× 64.npy respectively that can be download from https://domingomery.ing.puc.cl/

material/. [→ Example 7.6].

https://domingomery.ing.puc.cl/material/
https://domingomery.ing.puc.cl/material/

8.7 Simulation with aRTist 369

8.7 Simulation with aRTist

The analytical Radiographic Testing inspection simulation tool (aRTist) is a simula-
tion software that has been developed by BAM7 for quantitative description of X-ray
testing. It can model the radiation source, attenuation of radiation, X-ray films, and
digital detectors using an interactive virtual scene with CAD interface [2, 3].

In aRTist, the simulation model consists of four components:

• Radiation source: It is modeled as an X-ray beam and its energy spectrum (that
depends on the interaction X-ray—penetrated material). The focal spot is defined
as a raster of point sources.

• Interaction of radiation with material: It is modeled considering the photoelec-
tric effect, coherent and incoherent scattering, and pair production (for photon
energies larger than 1MeV), electron binding effects, and X-ray fluorescence.
Additionally, it calculates X-ray spectra based on the interaction cross sections
for Bremsstrahlung generation.

• Detection of radiation: The simulation of the X-ray image is performed by tracing
beams from source points to detector pixels. Different types of X-ray films and X-
ray detectors are also modeled Transmission functions like the characteristic film
curves for different types of film classes are used to describe the properties of dif-
ferent detectors. Blurriness can be simulated by Gaussian kernels. The simulation
of noise can be added to generate more realistic X-ray images.

• Geometry of the object under test: The geometry is provided in STL format in
footnote 1 that is used to model boundary representations of volumes of homo-
geneous materials. In aRTist, facetted (triangulated) boundaries are used. Curves
are approximated to many planes.

Some examples are illustrated in Figs. 8.25 and 8.26. The simulations are very
realistic and can be easily used in many purposes of X-ray testing, e.g., evaluation of
X-ray systems, testing of computer vision algorithms, training of human operators,
etc.

8.8 Summary

To evaluate the performance of computer vision techniques, it is convenient to exam-
ine simulated data. This offers the possibility of tuning the parameters of the com-
puter vision algorithm and to testing how it works in critical cases.

A simulation tool should model the physics of the X-ray formation (generation,
interaction, and detection) and handle complex 3D objects efficiently. State of the art
of computer modeling of X-ray testing methods are able to simulate different X-ray

7BAM, Bundesanstalt für Materialprüfung, is a senior scientific and technical federal institute with
responsibility to the Federal Ministry for Economic Affairs and Energy of Germany (see https://
www.bam.de). For aRTist see http://artist.bam.de.

https://www.bam.de
https://www.bam.de
http://artist.bam.de

370 8 Simulation in X-ray Testing

Fig. 8.25 Simulation of an X-ray image of a casting using aRTist: virtual model and simulated
X-ray image. Courtesy of Carsten Bellon of BAM, Germany

Fig. 8.26 Simulation of an X-ray image of a weld using aRTist: virtual model and simulated X-ray
image. Courtesy of Carsten Bellon of BAM, Germany

8.8 Summary 371

spectrum and X-ray source size, varied photon–matter interactions, and several X-
ray detector responses. Thus, a computer simulator for X-ray testing should include
the following modules: X-ray source model, ray-tracing engine, material database,
straight line attenuation model and detector model.

In this chapter, we reviewed some basic concepts of simulation of X-ray images.
We gave simple geometric and imaging models that can be used in the simula-
tion. We explained the basic simulation principles and we addressed some tech-
niques to simulate defects (that can be used to assess the performance of a computer
vision method for automated defect recognition). Afterwards, the chapter gives an
overview of the use of Generative Adversarial Networks (GANs) in the simulation
of realistic X-ray images. Finally, we present ‘aRTist’, a simulation software that
can be used to generate very realistic X-ray images. The chapter has some Python
examples that the reader can run and follow. Examples of simulated defects in cast-
ings and welds, and simulated threat objects are also given.

References

1. Bavendiek, K.: Prüfkörper für die automatischen überprüfung der Bildqualität und der Mes-
sung der Erkennungssicherheit bei ADR Systemen. In: German Conference on Nondestructive
Testing. Berlin (2001). (in German)

2. Bellon, C., Deresch, A., Jaenisch, G.R.: Radiography simulation with artist-combining analyt-
ical and monte carlo methods. In: Proceedings of International Symposium on Digital Indus-
trial Radiology and Computed Tomography (DIR2015), Ghent, Belgium (2015)

3. Bellon, C., Jaenisch, G.R.: Artist–analytical RT inspection simulation tool. In: International
Symposium on Digital industrial Radiology and Computed Tomography (DIR2007), June 25–
27, 2007, Lyon, France, pp. 25–27 (2007)

4. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. CRC Press,
Boca Raton (2010)

5. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image
synthesis. In: The International Conference on Learning Representations (ICLR 2019), pp.
1–35 (2019)

6. Carvajal, K., Chacón, M., Mery, D., Acuna, G.: Neural network method for failure detection
with skewed class distribution. Insight 46(7), 399–402 (2004)

7. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Gener-
ative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

8. Duvauchelle, P., Freud, N., Kaftandjian, V., Babot, D.: A computer code to simulate X-ray
imaging techniques. Nucl. Instrum. Methods Phys. Res. B 2000(170), 245–258 (2000)

9. Filbert, D., Klatte, R., Heinrich, W., Purschke, M.: Computer aided inspection of castings. In:
IEEE-IAS Annual Meeting, Atlanta, USA, pp. 1087–1095 (1987)

10. Freud, N., Duvauchelle, P., Babot, D.: Simulation of X-ray NDT imaging techniques. In: Pro-
ceedings of the 15th World Conference on Non-Destructive Testing (WCNDT–2000), Rome
(2000)

11. Hecker, H.: A new method to process X-ray images in the automated inspection of castings.
Ph.D. thesis, Institute for Measurement and Automation, Faculty of Electrical Engineering,
Technical University of Berlin (1995). (in German)

12. Heinrich, W.: Automated inspection of castings using X-ray testing. Ph.D. thesis, Institute
for Measurement and Automation, Faculty of Electrical Engineering, Technical University of
Berlin (1988). (in German)

372 8 Simulation in X-ray Testing

13. Huang, Q., Wu, Y., Baruch, J., Jiang, P., Peng, Y.: A template model for defect simulation for
evaluating nondestructive testing in X-radiography. IEEE Trans. Syst. Man Cybern. Part A:
Syst. Hum. 39(2), 466–475 (2009)

14. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 4401–4410 (2019)

15. Mery, D.: Automated Flaw Detection in Castings from Digital Radioscopic Image Sequences.
Verlag Dr. Köster, Berlin (2001). (Ph.D. Thesis in German)

16. Mery, D.: Flaw simulation in castings inspection by radioscopy. Insight 43(10), 664–668
(2001)

17. Mery, D.: A new algorithm for flaw simulation in castings by superimposing projections of 3D
models onto X-ray images. In: Proceedings of the XXI International Conference of the Chilean
Computer Science Society (SCCC-2001), pp. 193–202. IEEE Computer Society Press, Punta
Arenas (2001)

18. Mery, D.: Aluminum casting inspection using deep learning: a method based on convolutional
neural networks. J. Nondestruct. Eval. 39(1), 12 (2020)

19. Mery, D., Filbert, D.: The epipolar geometry in the radioscopy: theory and application. at -
Automatisierungstechnik 48(12), 588–596 (2000). (in German)

20. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901
(2002)

21. Mery, D., Hahn, D., Hitschfeld, N.: Simulation of defects in aluminum castings using cad
models of flaws and real X-ray images. Insight 47(10), 618–624 (2005)

22. Mery, D., Katsaggelos, A.K.: A logarithmic X-ray imaging model for baggage inspection:
simulation and object detection. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 57–65 (2017)

23. Niu, S., Li, B., Wang, X., Lin, H.: Defect image sample generation with GAN for improving
defect recognition. IEEE Trans. Autom. Sci. Eng. (2020)

24. Rebuffel, V., Tabary, J., Tartare, M., Brambilla, A., Verger, L.: SINDBAD: a simulation soft-
ware tool for multi-energy X-ray imaging. In: Proceedings of 11th European Conference on
Non Destructive Testing, Prague (2014)

25. Riffo, V., Mery, D.: Automated detection of threat objects using adapted implicit shape model.
IEEE Trans. Syst. Man Cybern.: Syst. 46(4), 472–482 (2016)

26. Saavedra, D., Banerjee, S., Mery, D.: Detection of threat objects in baggage inspection with
X-ray images using deep learning. Neural Comput. Appl. pp. 1–17. Springer (2020)

27. Salvat, F., Fernández-Varea, J.M., Sempau Roma, J.: Penelope-2008: A code system for monte
carlo simulation of electron and photon transport. In: Workshop Proceedings, Barcelona, 30
June–3 July 2, 2008. OECD (2009)

28. Schumm, A., Duvauchelle, P., Kaftandjian, V., Jaenisch, R., Bellon, C., Tabary, J., Mathy, F.,
Legoupil, S.: Modelling of radiographic inspections. In: Nondestructive Testing of Materials
and Structures, pp. 697–702. Springer (2013)

29. Tabary, J., Hugonnard, P., Mathy, F.: SINDBAD: a realistic multi-purpose and scalable X-ray
simulation tool for NDT applications. In: International Symposium on DIR and CT, Lyon, vol.
1, pp. 1–10 (2007)

30. Tillack, G.R., Nockemann, C., Bellon, C.: X-ray modelling for industrial applications. NDT
& E Int. 33(1), 481–488 (2000)

31. Yang, J., Zhao, Z., Zhang, H., Shi, Y.: Data augmentation for X-ray prohibited item images
using generative adversarial networks. IEEE Access 7, 28894–28902 (2019)

32. Yao, M., Duvauchelle, P., Kaftandjian, V., Peterzol-Parmentier, A., Schumm, A.: X-ray imag-
ing plate performance investigation based on a Monte Carlo simulation tool. Spectrochim.
Acta Part B: At. Spectrosc. 103, 84–91 (2015)

33. Zhao, Z., Zhang, H., Yang, J.: A gan-based image generation method for X-ray security pro-
hibited items. In: Chinese Conference on Pattern Recognition and Computer Vision (PRCV),
pp. 420–430. Springer (2018)

References 373

34. Zhu, Y., Zhang, Y., Zhang, H., Yang, J., Zhao, Z.: Data augmentation of X-ray images in
baggage inspection based on generative adversarial networks. IEEE Access 8, 86536–86544
(2020)

Chapter 9
Applications in X-ray Testing

Abstract In this chapter, relevant applications on X-ray testing are described. We
cover X-ray testing in (i) castings, (ii) welds, (iii) baggage, (iv) natural products, and
(v) others (like cargos and electronic circuits). For each application, the state of the
art is presented. Approaches in each application are summarized showing how they
use computer vision techniques. A detailed approach is shown in each application
and some examples using Python are given in order to illustrate the performance of
the methods.

Cover Image: 3D representation of the X-ray image of a wheel (X-ray image C0023_0001 colored
with ‘sinmap’ colormap).

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9_9

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56769-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-56769-9_9

376 9 Applications in X-ray Testing

9.1 Introduction

In this chapter, we review some relevant applications in X-ray testing such as (i)
castings, (ii) welds, (iii) baggage, (iv) natural products, and (v) others (like cargos and
electronic circuits). For the first four application applications, in which the authors
have been undertaking research over the last decades, we will present a description,
the state of the art, a detailed approach and an example in Python. For the last
application, different techniques are mentioned.

9.2 Castings

Light-alloy castings produced for the automotive industry, such as wheel rims, steer-
ing knuckles, and steering gear boxes are considered important components for over-
all roadworthiness. Non-homogeneous regions can be formed within the work piece
in the production process. These are manifested, for example, by bubble-shaped
voids, fractures, inclusions, or slag formation. To ensure the safety of construction, it
is necessary to check every part thoroughly usingX-ray testing. In casting inspection,
automated X-ray systems have not only raised quality, through repeated objective
inspections and improved processes, but have also increased productivity and con-
sistency by reducing labor costs. Some examples are illustrated in Fig. 9.1.

9.2.1 State of the Art

Different methods for the automated detection of casting discontinuities using com-
puter vision have been described in the literature over more than thirty years [22,
42]. In the past, the published approaches to detecting were divided into three groups
[100]:

Fig. 9.1 Real defects in X-ray images of wheels

9.2 Castings 377

• Reference methods: In reference methods, it is necessary to take still images at
selected programmed inspection positions. A test image is then compared with the
reference image. If a significant difference is identified, the test piece is classified
as defective.

• Methods without apriori knowledge of the structure: These approaches using
pattern recognition, expert systems, artificial neural networks, general filters or
multiple-views analyzes to make them independent of the position and structure
of the test piece.

• Computed tomography: These approaches use computed tomography to make a
reconstruction of the cast piece and thereby detect discontinuities.

Nowadays, computed tomography and multiple views for the inspection of cast-
ings are rarely used. It is clear that the methods that achieve the best performance
are based on deep learning using single views. Deep learning has been successfully
used in image and video recognition (see, for example, [20, 77, 155]), and it has
been established as the state of the art in many areas of computer vision. The key
idea of deep learning, as we show in Chap.7, is to replace handcrafted features with
features that are learned efficiently using a hierarchical feature extraction approach.

Selected approaches are summarized in Table 9.1. In this table, we follow the 3X-
strategy outlined in Sect. 1.8, in which we distinguish (i) the X-ray energy used to
generate the X-ray images (monochromatic, dual-, or multi-energy), (ii) the number
of views used by the algorithms (single-view, multi-views, or computed tomogra-
phy) and complexity of the algorithms (simple, medium, and complex—here, deep
learning methods–). In this area, the automated systems are very effective, because
the inspection task is fast and obtains a high performance.

9.2.2 An Application

In this section, we present a method for the automated detection of flaws based on
tracking principle in an X-ray image sequence, i.e., first, it identifies potential defects
in each image of the sequence, and second, it matches and tracks these from image
to image. The key idea is to consider as false alarms those potential defects which
cannot be tracked in the sequence [107]. The method for automated flaw detection
presented here has basically two steps (see Fig. 9.2): identification and tracking of
potential flaws. These will be described in this section.

Identification of Potential Flaws
A digital X-ray image sequence of the object test is acquired (see, for example, series
C0001 of GDXray+). In order to ensure the tracking of flaws in the X-ray images,
similar projections of the specimen must be achieved along the sequence. For this
reason, the sequence consists of X-ray images taken by the rotation of the casting
at small intervals (e.g., 50). Since many images are captured, the time of the data
acquisition is reduced by taking the images without frame averaging. The position of

378 9 Applications in X-ray Testing

Table 9.1 State of art in inspection of castings

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Bandara et al. 2020 [13] � � � � � � � � �

Carrasco and Mery 2011 [24] � � � � � � � � �

Cogranne and Retraint 2014 [27] � � � � � � � � �

Du et al. 2019 [34] � � � � � � � � �

Ferguson et al. 2017 [40] � � � � � � � � �

Ferguson et al. 2017 [41] � � � � � � � � �

Jin et al. 2020 [66] � � � � � � � � �

Kamalakannan and
Rajamanickam

2017 [68] � � � � � � � � �

Li et al. 2006 [81] � � � � � � � � �

Li et al. 2015 [80] � � � � � � � � �

Li et al. 2019 [79] � � � � � � � � �

Lin et al. 2018 [86] � � � � � � � � �

Mery and Filbert 2002 [107] � � � � � � � � �

Mery et al. 2013 [114] � � � � � � � � �

Mery 2015 [103] � � � � � � � � �

Mery and Arteta 2017 [105] � � � � � � � � �

Mery 2020 [104] � � � � � � � � �

Pieringer and Mery 2010 [136] � � � � � � � � �

Pizarro et al. 2008 [137] � � � � � � � � �

Ramirez and Allende 2013 [138] � � � � � � � � �

Ren et al. 2019 [139] � � � � � � � � �

Tang et al. 2019 [163] � � � � � � � � �

Tang et al. 2009 [162] � � � � � � � � �

Yahaghi et al. 2020 [179] � � � � � � � � �

Yong et al. 2016 [182] � � � � � � � � �

Zhao et al. 2014 [189] � � � � � � � � �

Zhao et al. 2015 [190] � � � � � � � � �

Zhang et al. 2018 [187] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

9.2 Castings 379

Fig. 9.2 Automated flaw detection in aluminum castings based on the tracking of potential defects
in anX-ray image sequence: PF=potential flaws,RS=potential flaws classified as regular structures,
F = detected flaws [107]

Fig. 9.3 X-ray image C0001_0030 of an aluminum wheel (see zoom in Fig. 9.4)

the casting, provided on-line by the manipulator is registered at each X-ray image to
calculate the perspective projectionmatrixP p (for details see Sect. 3.3.4 andExample
3.5). An X-ray image sequence is shown in Fig. 9.5.

The detection of potential flaws identifies regions in X-ray images that may cor-
respond to real defects. This process takes place in each X-ray image of the sequence
without considering information about the correspondence between them. Two gen-
eral characteristics of the defects are used for identification purposes: (i) a flaw can
be considered as a connected subset of the image, and (ii) the gray level difference
between a flaw and its neighborhood is significant. However, as the signal-to-noise
ratio in our X-ray images is low, the flaws signal is slightly greater than the back-
ground noise, as illustrated in Fig. 9.4. In our experiments, the mean gray level of
the flaw signal (without background) was between 2.4 and 28.8 gray values with a

380 9 Applications in X-ray Testing

Fig. 9.4 Zoom of Fig. 9.3 and gray level profile along three rows crossing defects

Fig. 9.5 X-ray image sequence with three flaws (image 5 is shown in Fig. 9.4)

standard deviation of 6.1. Analyzing a homogeneous background in different areas
of interest of normal parts, we found that the noise signal was within±13 gray values
with a standard deviation of 2.5. For this reason, the identification of real defects with
poor contrast can also involve the detection of false alarms.

According to the mentioned characteristics of the real flaws, our method of iden-
tification has the following two steps (see Fig. 9.6):

9.2 Castings 381

Fig. 9.6 Identification of potential flaws: a X-ray image with a small flaw at an edge of a regular
structure, b Laplacian-filtered image with σ = 1.25 pixels (kernel size = 11 × 11), c zero-crossing
image, d gradient image, e edge detection after adding high gradient pixels, and f potential flaws

Edge Detection: A Laplacian-of-Gaussian (LoG) kernel and a zero-crossing algo-
rithm [37] are used to detect the edges of the X-ray images. The LoG-operator
involves a Gaussian low-pass filter which is a good choice for the pre-smoothing
of our noisy images. The resulting binary edge image should produce at real flaws
closed and connected contours which demarcate regions. However, a flaw may not
be perfectly enclosed if it is located at an edge of a regular structure as shown in Fig.
9.6c. In order to complete the remaining edges of these flaws, a thickening of the
edges of the regular structure is performed as follows: (a) the gradient image1 of the
original image is computed (see Fig. 9.6d); (b) by thresholding the gradient image
at a high gray level a new binary image is obtained; and (c) the resulting image is
added to the zero-crossing image (see Fig. 9.6e).

Segmentation and Classification of Potential Flaws: Afterwards, each closed region
is segmented and classified as a potential flaw if (a) itsmean gray level is 2.5%greater
than the mean gray level of its surroundings (to ensure the detection of the flaws with
a poor contrast); and (b) its area is greater than 15 pixels (very small flaws are
permitted). A statistical study of the classification of potential flaws using more than
70 features can be found in [108].

1The gradient image is computed by taking the square root of the sum of the squares of the gradient
in a horizontal and vertical direction. These are calculated by the convolution of the X-ray image
with the first derivative (in the corresponding direction) of the Gaussian low-pass filter used in the
LoG-filter.

382 9 Applications in X-ray Testing

Fig. 9.7 Identification of potential flaws (the arrows indicate real flaws)

This is a very simple detector of potential flaws (see implementation in Example
5.6). However, the advantages are as follows: (a) it is a single detector (it is the same
detector for each image), and (b) it is able to identify potential defects independent
of the placement and the structure of the specimen.

Using this method, some real defects cannot be identified in all X-ray images in
which they appear if the contrast is very poor or the flaw is not enclosed by edges.
For example, in Fig. 9.7 one can observe that the biggest real flaw was identified
in images 1, 2, 3, 4, and 6, but not in image 5 where only two of the three real
flaws were identified (compare with Fig. 9.4). Additionally, if a flaw is overlapped
by edges of the structure of the casting, not all edges of the flaw can be detected. In
this case, the flaw will not be enclosed and therefore not be segmented. Furthermore,
a small flaw that moves in front (or behind) a thick cross section of the casting, in
which the X-rays are highly absorbed, may cause an occlusion. In our experiments,
this detector identified the real flaws in four or more (not necessarily consecutive)
images of the sequence.

Multiple-View Detection
In the previous step, n1 potential regions were segmented and described in the entire
image sequence I. Each segmented region is labeled with a unique number r ∈ T1 =
{1, ..., n1}. In view i , there are mi segmented regions that are arranged in a subset
ti = {ri,1, ri,2, ..., ri,mi }, i.e., T1 = t1 ∪ t2 ∪ ...tm .

The matching and tracking algorithms combine all regions to generate consistent
tracks of the object’s parts of interest across the image sequence. The algorithm has
the following steps:

Matching in Two Views: All regions in view i that have corresponding regions in
the next p views are searched, i.e., regions r1 ∈ ti that have corresponding regions
r2 ∈ t j for i = 1, ..., m − 1 and j = i + 1, ...,min(i + p, m). In our experiments,
we use p = 3 to reduce the computational cost. The matched regions (r1, r2) are
those that meet similarity and location constraints. The similarity constraint means
that corresponding descriptors yr1 and yr2 must be similar enough such that

9.2 Castings 383

||yr1 − yr2 || < ε1. (9.1)

The location constraint means that the corresponding locations of the regions must
meet the epipolar constraint. In this case, the Sampson distance between xr1 and xr2
is used, i.e., the first-order geometric error of the epipolar constraint must be small
enough such that:

|xTr2Fi jxr1 |
⎛
⎝ 1√

a2
1 + a2

2

+ 1√
b2
1 + b2

2

⎞
⎠ < ε2, (9.2)

withFi jxr1 = [a1 a2 a3]T andFT
i jxr2 = [b1 b2 b3]T. In this case,Fi j is the fundamental

matrix between views i and j calculated from projection matrices Pi and P j [56]
(see Sect. 3.5.1). In addition, the location constraint used is as follows:

||xr1 − xr2 || < ρ(j − i), (9.3)

because the translation of corresponding points in these sequences is smaller than ρ

pixels in consecutive frames.
If we have 3D information about the space where our test object should be, it is

worth to evaluating whether the 3D point reconstructed from the centers of mass of
the regions must belong to the space occupied by the casting. From ma

p and mb
q the

corresponding 3D point M̂ is estimated using the linear approach of Hartley in [56].
For two views this approach is faster than the least squares technique. It is necessary
to examine if M̂ resides in the volume of the casting, the dimensions of which are
usually known a priori (e.g., a wheel is assumed to be a cylinder)2.

Finally, a newmatrixT2 sized n2 × 2 is obtained with all matched duplets (r1, r2),
one per row. If a region is found to have no matches, it is eliminated. Multiple match-
ing, i.e., a region that is matched with more than one region, is allowed. Using this
method, problems like non-segmented regions or occluded regions in the sequence
can be solved by tracking if a region is not segmented in consecutive views.

Matching in 3 Views: Based on the matched regions stored in matrixT2, we look for
triplets (r1, r2, r3), with r1 ∈ ti , r2 ∈ t j , r3 ∈ tk for views i , j , and k. We know that a
rowa inmatrixT2 has amatchedduplet [T2(a, 1) T2(a, 2)] = [r1 r2].We then look for
rows b inT2 in which the first element is equal to r2, i.e., [T2(b, 1) T2(b, 2)] = [r2 r3].
Thus, amatched triplet (r1, r2, r3) is found if the regions r1, r2, and r3 meet the trifocal
constrain:

||x̂r3 − xr3 || < ε3, (9.4)

2It is possible to use a CAD model of the casting to evaluate this criterion more precisely. Using
this model we could discriminate a small hole of the regular structure that is identified as a potential
flaw. Additionally, the CAD model can be used to inspect the casting geometry, as shown in [129].

384 9 Applications in X-ray Testing

Fig. 9.8 Matching of potential flaws in two views

This means that xr3 must be similar enough to the re-projected point x̂r3 computed
from the points in views i and j (xr1 and xr2), and the trifocal tensors T jk

i of views
i, j, k calculated from projection matrices Pi , P j , and Pk [56] (see (3.76)). A new
matrix T3 sized n3 × 3 is built with all matched triplets (r1, r2, r3), one per row.
Regions in which the three views do not match are eliminated.

The results of our example are shown in Fig. 9.8.

Matching in More Views: For v = 4, ..., q ≤ m views, we can build the matrix
recursively Tv, sized nv × v, with all possible v-tuplets (r1, r2, ..., rv) that fulfill
[Tv−1(a, 1) ... Tv−1(a, v − 1)] = [r1 r2 ... rv−1] and [Tv−1(b, 1) ... Tv−1(b, v − 1)] =
[r2 ... rl−1 rv], for j, k = 1, ..., nv−1. No more geometric constraints are required
because it is redundant. The final result is stored in matrix Tq . For example, for
q = 4 we store in matrix T4 the matched quadruplets (r1, r2, r3, r4) with r1 ∈ ti ,
r2 ∈ t j , r3 ∈ tk , r4 ∈ tl for views i , j , k and l.

Figure 9.10 shows the tracked regions of our example that fulfill this criterion.
Only two false trajectories are observed (see arrows).

As our detector cannot guarantee the identification of all real flaws in more than
four views, a tracking in five views could lead to the elimination of those real flaws
that were identified in only four views. However, if a potential flaw is identified in
more than four views, more than one quadruplet can be detected. For this reason,
these corresponding quadruplets are joined in a trajectory that contains more than
four potential flaws (see trajectory with arrows in Fig. 9.10).

The matching condition for building matrix Ti , i = 3, ..., q, is efficiently eval-
uated (avoiding an exhaustive search) by using a k-d tree structure [21] to search

9.2 Castings 385

Fig. 9.9 Tracking example with m = 6 views. In each view there are 2, 4, 2, 2, 3, and 3 segmented
regions, i.e., there are n1 = 16 regions in total. For each region we seek corresponding regions in
the next p = 3 views (see matching arrows inT1: region 1 with regions (3, 4, 5, 6) in view 2, regions
(7, 8) in view 3, and (9, 10) in view 4). We observe that after tracking in 2, 3, and 4 views there are
only two tracks in T6 that could be tracked in 5 and 4 views respectively. The regions that were not
segmented can be recovered by reprojection (see gray circles in views 2, 4, and 6). Finally, each set
of tracked regions are analyzed in order to take the final decision

386 9 Applications in X-ray Testing

Fig. 9.10 Tracking in more views (the arrows indicate false detections)

the nearest neighbors for zero Euclidean distance between the first and last i − 2
columns in Ti−1.

Merging Tracks: Matrix Tq defines tracks of regions in q views. It can be observed
that some of these tracks correspond to the same region. For this reason, it is possible
to merge tracks that have q − 1 common elements. In addition, if a new track has
more than one region per view, we can select the region that shows the minimal
reprojection error after computing the corresponding 3D location. In this case, a
3D reconstruction of X̂ is estimated from tracked points [56]. Finally, matrix Tm is
obtained with all merged tracks in the m views. See an example of the whole tracking
algorithm in Fig. 9.9.

Analysis: The 3D reconstructed point X̂ from each set of tracked points ofTm can be
reprojected in views where the segmentation may have failed to obtain the complete
track in all views. The reprojected points of X̂ should correspond to the centroids of
the non-segmented regions. It is then possible to calculate the size of the projected
region as an average of the sizes of the identified regions in the track. In each view,
a small window centered in the computed centroids is defined. These corresponding
small windows, referred to as tracked part, will be denoted asW = {W1, ...,Wm}. In
each view a small window is defined with the estimated size in the computed centers
of gravities (see Fig. 9.11). Afterwards, the corresponding windows are averaged.
Thus, the attempt is made to increase the signal-to-noise ratio by the factor

√
n,

where n is the number of averaged windows. As flaws must appear as contrasted
zones relating to their environment, we can verify if the contrast of each averaged
window is greater than 2.5%. With this verification it is possible to eliminate all
remaining false detections. Figure 9.11 shows the detection in our sequence using

9.2 Castings 387

Fig. 9.11 Reconstruction and verification: the false detections (indicated by the arrows) are elim-
inated after the verification in all images of the sequence

this method. Our objective is then achieved: the real defects were separated from the
false ones.

Experimental Results
In this section, results of automatic inspection of cast aluminum wheels using the
outlined approach are presented. These results have been achieved recently on syn-
thetic flaws and real data. The parameters of our method have been manually tuned,
giving σ = 1.25 pixels (for LoG-operator), ε2 = 0.75 mm, εs = 0.7, and ε3 = 0.9
mm. These parameters were not changed during these experiments. A wheel was
considered to be a cylinder with the following dimensions: 470 mm diameter and
200mmheight. The focal length (distance between X-ray source and entrance screen
of the image intensifier) was 884 mm. The bottom of a wheel was 510 mm from the
X-ray source. Thus, a pattern of 1 mm in the middle of the wheel is projected in
the X-ray projection coordinate system as a pattern of 1.73 mm, and in the image
coordinate system as a pattern of 2.96 pixels. The sequences of X-ray images were
taken by rotation of the casting at 50.

The detection performance will be evaluated by computing the number of True
Positives (TP) and False Positives (FP). They are respectively defined as the number
offlaws that are correctly classified and thenumber ofmisclassified regular structures.
The TP and FPwill be normalized by the number of existing flaws (E) and the number
of identified potential flaws (I). Thus, we define the following percentages: TPP =
TP / E ×100 and FPP = FP / I ×100. Ideally, TPP = 100% and FPP = 0%.

388 9 Applications in X-ray Testing

Fig. 9.12 Detection on synthetic flaws: a X-ray image and evaluated area, b flaw sizes, and c TPP
and FPP

Synthetic Flaws: To evaluate the performance of our method in critical cases, real
data in which synthetic flaws have been added were examined (see Sect. 8.4.3). A
simple 3D modeled flaw (a spherical bubble) was projected and superimposed on
real X-ray images of an aluminum wheel according to the law of X-ray absorption
[98]. In our experiment, a flaw is simulated in 10 X-ray images of a real casting, in an
area that included an edge of the structure (see Fig. 9.12a). In this area the synthetic
flaw was located in 24 different positions in a regular grid manner. At each position
TPP and FPP were tabulated. This test was repeated for different sizes of the flaws
(∅ = 1.5 ∼ 7.5 mm) which are illustrated in Fig. 9.12b. The results are shown in
Fig. 9.12c. It was observed that the FPP was always zero. The TPP was 100% for
∅ ≥ 2.5 mm, and greater than 95% for ∅ ≥ 2.1 mm. However, the identification of
the flaw may fail (and therefore also its detection) if it is very small and is located at
the edge of the structure of the casting. In this case one may choose a smaller value of
the parameter σ in the LoG operator of the edge detection, which will unfortunately
increment the FPP. Other non-critical experiments, where the area of the simulation
does not include an edge of the structure, have led to perfect results (TPP = 100%,
FPP = 0%) for ∅ ≥ 1.5 mm (≥ 4.4 pixels). Usually, the minimum detectable defect
size according to inspection specifications is in the order of ∅ = 2 mm. In X-ray

9.2 Castings 389

Table 9.2 Detection of flaws on real data

X-ray Flaws in
the

Flaws in
the

Identification Detection

Seq. Images Sequence Images
(E)

TP FP Total (I) TP FP

1 10 2 12 12 249 261 2 0

2 9 1 9 8 238 246 1 0

3 9 3 23 19 253 272 3 0

4 8 1 8 4 413 417 1 0

5 6 1 6 6 554 560 1 0

6 8 1 8 8 196 204 1 0

7 6 3 18 14 445 459 3 0

8 6 0 0 0 178 178 0 0

9 9 0 0 0 256 256 0 0

10 8 0 0 0 150 150 0 0

11 8 0 0 0 345 345 0 0

12 6 0 0 0 355 355 0 0

13 6 0 0 0 365 365 0 0

14 9 0 0 0 313 313 0 0

Total 108 12 84 71 4310 4381 12 0

Percentage 85% 98% 100% 0%

testing, smaller flaws can be detected by decreasing the distance of the object test to
the X-ray source.

Real Data: FourteenX-ray image sequences of aluminumwheels with twelve known
flaws were inspected. Three of these defects were existing blow holes (with ∅ =
2.0 ∼ 7.5 mm). They were initially detected by a visual (human) inspection. The
remaining nine flaws were produced by drilling small holes (∅ = 2.0 ∼ 4.0 mm) in
positions of the casting which were known to be difficult to detect. Casting flaws are
present only in the first seven sequences. The results are summarized in Table 9.2,
Figs. 9.13, and 9.14. In the identification of potential flaws, it was observed that the
FPP was 98% (4310/4381). Nevertheless, the TPP in this experiment was good, and
it was possible to identify 85% (71/84) of all projected flaws in the sequences (13 of
the existing 84 flaws were not identified because the contrast was poor or they were
located at edges of regular structures). It was observed that in the next steps, the FPP
was reduced to nil. The detection of the real flaws was successful in all cases. The
first six images of sequence 3 and its results were already illustrated in Figs. 9.5, 9.7,
9.8, 9.9, 9.10 and 9.11. The results on the other sequences with flaws are shown in
Fig. 9.13.

Comparison with Other Methods: In this section, we present a comparison of our
proposed algorithmwith othermethods that can be used to detect defects in aluminum

390 9 Applications in X-ray Testing

Fig. 9.13 Detected flaws in sequences 1, 2, 4, 5, 6, and 7 (sequence 3 is shown in Fig. 9.11)

Fig. 9.14 False positive percentage on real data in the fourteen real sequences (the number of
identified potential flaws corresponds to 100%). The mean of each step is given over the fourteen
curves

castings. In this comparison, we evaluate the same real fourteen sequences used in
the previous section. The results are summarized in Table 9.3.

Firstly, we compared the first step of ourmethod (identification of potential flaws).
The objective of this step is the use of a single filter, instead of a set of filters adapted
to the regular structure of the specimen. We evaluated the well-known Canny filter
(see, for example, [37]). As this filter detects sparse edge pixels that not necessarily
produce at real flaws closed and connected contours, the TPP of this detector was
unacceptable, only 4% of the real flaws were identified (‘Canny I’ in Table 9.3). In

9.2 Castings 391

Table 9.3 Comparison with other methods

Identification Detection

Method TPP FPP TPP FPP

Canny I 4% 97% 0% –

Canny II 40% 99% 17% 40%

Median I 55% 85% 33% 36%

Median II 88% 98% 92% 45%

Tracking in 3 85% 98% 100% 25%

Tracking in 5 85% 98% 83% 0%

PXV-5000 – – 100% 0%

Proposed 85% 98% 100% 0%

order to increase the number of closed regions a dilation of the edges using a 3 × 3
mask was performed. Although the TPP is improved to 40% (‘Canny II’ in Table
9.3), many flaws were not detected in any of the images of the sequence. For this
reason, only 17% of the real flaws were detected after the tracking and verification.

Another detection of potential flaws can be performed using a region-based seg-
mentation. Median filtering is normally used to generate an error-free image, since
defect structures are essentially eliminated, while design features of the test piece
are normally preserved [109]. Once the error-free reference image is computed, an
error difference image between original and error-free images is calculated. Casting
defects are then identified when a sufficiently large gray level in the error difference
image occurs. The best results were obtained using a median filter with a 11 × 11
mask. We evaluated two thresholds: θ = 6 and θ = 2—by 256 gray levels—(see
‘Median I’ and ‘Median II’ in Table 9.3). In the first case the TPP was only 55%.
By decreasing the threshold value we increased the TPP to 88%, that is slightly
better than our detector (85%). However, systematic false alarms were detected at
the corners of the regular structures. Since these false alarms satisfy the multifocal
conditions, they can be tracked in the sequence. For this reason, this detector can
only be used if the median filter is adapted to the regular structures of the specimen
using a priori information. Normally, a set of median filters is used for each X-ray
image [42, 58, 59].

In order to evaluate the second step of our method (tracking of potential flaws),
we tested the method by tracking the potential flaws in 3 and in 5 views, instead
of 4 views (see ‘Tracking in 3’, ‘Tracking in 5’, and ‘Proposed’ in Table 9.3). By
considering only three views we obtained so many false alarms that the verification
step detected 4 false alarms (25%). In the other case, by tracking the potential flaws
in five views, real flaws that were segmented in only four views of the sequences
were not tracked. For this reason, only 83% of the real flaws were detected.

Finally, we inspected the test castings using a classic image processingmethod. In
our experiments, we used the industrial software PXV-5000 [110]. The results were
excellent: 100% of the real flaws were detected without false alarms. As a result of

392 9 Applications in X-ray Testing

its peak detection performance, the classic image processing methods have become
themost widely established in industrial applications. However, thesemethods suffer
from the complicated configuration of the filtering, which is tailored to the test piece.
In our experiments, the configuration process has taken two weeks. Nevertheless, as
our method requires only a few number of parameters, the configuration could be
carried out in hours.

Conclusions
A new method for automated flaw detection in aluminum castings using multiple-
view geometry has been developed. Our method is very efficient because it is based
on a two-step analysis: identification and tracking. The idea was to try to imitate
the way a human inspector inspects X-ray images: first relevant details (potential
defects) are detected, followed by tracking them in the X-ray image sequence. In this
way, the false detections can be eliminated without discriminating the real flaws.

The great advantage of our first step is the use of a single filter to identify potential
defects, which is independent of the structure of the specimen. Nevertheless, its
disadvantages are as follows: (a) the false positive percentage is enormous; (b) the
true positive percentage could be poor if the flaws to be detected are very small
and located at the edge of a structure; and (c) the identification of regions is time-
consuming. Contrarily, the second step is highly efficient in both discrimination of
false detections and tracking of real defects, and is not time-consuming, due to the
use of the multiple-view tensors.

To inspect a whole wheel our method requires approximately 100 views of 256
× 256 pixels, that can be processed in one minute. The required computing time is
acceptable for practical applications because a typical inspection process takes about
one minute, independently of whether it is performed manually or automatically.

We have shown that these preliminary results are promising. However, given
that the performance of the method has been verified on only a few X-ray image
sequences, an evaluation on a broader data base is necessary.

It is possible to combine our second step with existing defect detection technolo-
gies, which use a priori information of the regular structures of the casting to detect
flaws in single images (see, for example [110]). This method could also be used in
the automated flaw detection of other objects. In the adaptation of our method, one
must determine the number of views in which a flaw must be tracked. If the false
positive percentage by identifying potential flaws is low (or high), one may track a
flaw in fewer (or more) views of the sequence. However, one must guarantee that the
real flaws will be identified as potential flaws in these views.

9.2 Castings 393

9.2.3 An Example

In this section, an implementation that can be used for defect detection of castings
in single views is presented. It consists of features that are extracted from positive
class (the defects) and negative class (the background).

An example of using detection in multiple views can be found in Sect. 9.4.3.

Python Example 9.1: In this example, we show how to implement a classifier
that is able to defect casting defects in single X-ray images. For this end we use
series C0002 that contains small images with and without defects. In addition, for
this series we have the ground truth for all defects. The strategy of this example is
the strategy that we proposed in Algorithm 1, that means we extract many features
the proposed algorithm searches the combination of features and a classifier that
maximizes the accuracy.

Listing 9.1 : Defect detection in castings

import numpy as np
import numpy as np
from pyxvis . io . data import load_features , save_features
from pyxvis . learning . evaluation import best_features_classifier
from pyxvis . features . selection import clean_norm,clean_norm_transform
from pyxvis . features . extraction import extract_features_labels

dataname = ’c32’ # prefix of npy fi les of training and testing data
fxnew = 1 # the features are (0) loaded or (1) extracted and saved
if fxnew:

features to extract
fx = [’basicint ’ , ’gabor−r i ’ , ’lbp−r i ’ , ’haralick−2’ , ’ fourier ’ , ’hog’ , ’clp ’]
feature extraction in training images
path = ’ . . / images/ castings / ’
X,d = extract_features_labels (fx , path+’ train ’ , ’jpg ’)
feature extraction in testing images
Xt, dt = extract_features_labels (fx , path+’ test ’ , ’jpg ’)
backup of extracted features
save_features (X,d,Xt, dt ,dataname)

else :
X,d,Xt, dt = load_features (dataname)

X, sclean ,a ,b = clean_norm(X)
Xt = clean_norm_transform(Xt, sclean ,a ,b)
Classifiers to evaluate
ss_cl = [’maha’ , ’bayes−kde’ , ’svm−l in ’ , ’svm−rbf ’ , ’qda’ , ’lda ’ , ’knn3’ , ’knn7’ , ’nn’]
Number of features to select
ff = [3,5,10,12,15]
Feature selectors to evaluate
ss_fs = [’ fisher ’ , ’qda’ , ’svm−l in ’ , ’svm−rbf ’]

clbest , ssbest = best_features_classifier (ss_fs , ff , ss_cl ,X,d,Xt, dt ,
’Accuracy in Castings ’)

print (’ Selected Features : ’+str ((np. sort (sclean[ssbest]))))

394 9 Applications in X-ray Testing

Fig. 9.15 Accuracy on training and testing dataset for castings defect detection. In this example

we use the strategy proposed in Algorithm 1. [→ Example 9.1]

The output of this code is the estimated accuracy:

--
Best iteration: 8 (maximum of testing accuracy)

Feature Selector: fisher with 10 features
: (Fisher,)

Classifier: knn3
: (KNeighborsClassifier, n_neighbors=3) CrossVal with 5 folds

Training-Acc: 0.9676
Testing-Acc: 0.9609

Selected Features: [1 2 3 16 20 24 25 26 38 72]
--

The accuracy of the selected classifier (knn with 3 neighbors) is 96.76% with 10
features (Fig. 9.15). In this code we used best_features_classifier of pyxvis Library.
The reader can use additional series of GDXray+, that contain annotated defects in
aluminum wheels. �

9.3 Welds

In welding process, a mandatory inspection using X-ray testing is required in order to
detect defects like porosity, inclusion, lack of fusion, lack of penetration, and cracks.
Industrial X-ray images of welds is widely used for detecting those defects in the
petroleum, chemical, nuclear, naval, aeronautics and civil construction industries,
among others. An example is illustrated in Fig. 9.20.

9.3 Welds 395

9.3.1 State of the Art

Over the last 35 years, substantial research has been performed on automated detec-
tion and classification of welding defects in continuous welds using X-ray imaging
[152, 153]. Typically, the approaches follow a classical computer vision schema:
(i) image acquisition—an X-ray digital imFage is taken and stored in the computer,
(ii) pre-processing—the digital image is improved in order to enhance the details,
(iii) segmentation—potential welding defects are found and isolated, (iv) feature
extraction/selection—significant features of the potential welding defects and their
surroundings are quantified, and (v) classification—the extracted features are inter-
preted automatically using a priori knowledge of the welding defects in order to
separate potential defects into detected welding defects or false alarms. In the last
fewyears, somemethods based on deep learning have been developedwith promising
results. Selected approaches are summarized in Table 9.4. In this table, we follow the
3X-strategy outlined in Sect. 1.8, in which we distinguish (i) the X-ray energy used to
generate the X-ray images (monochromatic, dual-, or multi-energy), (ii) the number
of views used by the algorithms (single-view,multi-views, or computed tomography)
and complexity of the algorithms (simple, medium, and complex—here, deep learn-
ing methods–). As we can see there is much research on weld inspection. Achieved
performance of the developed algorithms is still not high enough, thus it is not suitable
for fully automated inspection.

9.3.2 An Application

In computer vision, many object detection and classification problems have been
solved without classic segmentation using sliding-windows. Sliding-window
approaches have established themselves as state of the art in computer vision prob-
lems where an object must be separated from the background (see, for example,
successful applications in face detection [171] and human detection [30]). In sliding-
window methodology, a detection window (see black square in Fig. 9.16) is sledded
over an input image in both horizontal and vertical directions, and for each localiza-
tion of the detection window a classifier decides to which class the corresponding
portion of the image belongs to according to its features. In this section, an approach
to detect defects based on sliding-windows in welds is presented [102].

Overview
Wedeveloped anX-ray computer vision approach to detectwelding defects using this
methodology yielding promising results.Wewill differentiate between the ‘detection
of defects’ and the ‘classification of defects’ [82]. In the detection problem, the
classes that exist are only two: ‘defects’ and ‘no-defects’, whereas the recognition of
the type of the defects (e.g., porosity, slag, crack, lack of penetration, etc.) is known
as classification of flaw types. This section describes our approach on detection only

396 9 Applications in X-ray Testing

Table 9.4 State of art in inspection of welds

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Ajmi et al. 2018 [4] � � � � � � � � �

Anand et al. 2009 [11] � � � � � � � � �

Baniukiewicz 2014 [14] � � � � � � � � �

Gao and Yu 2014 [47] � � � � � � � � �

Hassan et al. 2012 [57] � � � � � � � � �

Hou et al. 2018 [61] � � � � � � � � �

Hou et al. 2019 [62] � � � � � � � � �

Kaftandjian et al. 2003 [67] � � � � � � � � �

Kumar et al. 2014 [74] � � � � � � � � �

Kumar et al. 2014 [75] � � � � � � � � �

Liao 2008 [83] � � � � � � � � �

Liao 2009 [84] � � � � � � � � �

Lindgren 2014 [87] � � � � � � � � �

Liu et al. 2017 [88] � � � � � � � � �

Mery and Berti 2003 [106] � � � � � � � � �

Mery 2011 [102] � � � � � � � � �

Mu et al. 2011 [120] � � � � � � � � �

Muniategui et al. 2019 [121] � � � � � � � � �

Muravyov and
Pogadaeva

2020 [122] � � � � � � � � �

Pan et al. 2020 [135] � � � � � � � � �

Shao et al. 2014 [149] � � � � � � � � �

Shi et al. 2007 [150] � � � � � � � � �

da Silva et al. 2009 [154] � � � � � � � � �

Suyama et al. 2019 [161] � � � � � � � � �

Tong et al. 2012 [164] � � � � � � � � �

Vilar et al. 2009 [170] � � � � � � � � �

Wang et al. 2008 [174] � � � � � � � � �

Wang et al. 2019 [173] � � � � � � � � �

Yiron et al. 2015 [181] � � � � � � � � �

Zapata et al. 2008 [185] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

9.3 Welds 397

Fig. 9.16 Sliding window approach: A detection window (see black square) is sledded over the X-
ray image starting at place ‘a’ and ending at ‘c’. For each position, e.g., at ‘b’, features are extracted
only from the sub-image defined by the square, and a classifier determines the class of this portion
of the image

Fig. 9.17 Feature extraction: from each detection window several features are extracted (see black
path). Additionally, the same features are extracted from a saliency map of the sub-window (see
gray path)

and the corresponding validation experiments. The classification of defects can be
developed by the reader using a similar methodology.

The key idea of this example is to use a computer vision methodology, as shown
in Figs. 9.16 and 9.17, to automatically detect welding defects. In the following,
feature extraction, feature selection, classification, and validation will be explained
in further detail.

Feature Extraction, Selection, and Classification
Features provide information about the intensity of a sub-image. In our approach, p
features per intensity channel were extracted. The used intensity channels in ourwork
are only two: the grayscale X-ray image (I) and a saliency map (J) computed from I,
i.e., , p × 2 features for two intensity channels. In order to reduce the computational
time, we restricted the feature extraction for these only two channels, however, other
channels, like Harris transform [55] or other saliency maps, can be used.

The saliencymap J is obtained using a center-surround saliencymechanism based
on a biologically inspired attention system [118]3. In order to achieve faster process-
ing, this theory proposes that the human visual system uses only a portion of the
image, called focus of attention, to deal with complex scenes. In our approach, we

3The saliency function is implemented in saliency of pyxvis Library.

398 9 Applications in X-ray Testing

Fig. 9.18 X-ray images used in our experiments (series W0001 of GDXray+)

use the off-center saliency map that measures the different dark areas surrounded by
a bright background, as shown in Fig. 9.17.

In a training phase, using a priori knowledge of the welding defects, the detec-
tion windows are manually labeled as one of two classes: ‘defects’ and ‘no-defect’.
The first class corresponds to those regions where the potential welding defects are
indeed welding defects. Alternatively, the second class corresponds to false alarms.
For this end, we use series W0001 and W0002 of GDXray+. In the first series,
we have the X-ray images, whereas in the second one we have the corresponding
binary images representing the ground truth. Thus, the ideal segmentation of image
W0001_00i.png is binary image W0002_00i.png, for i = 01 . . . 10.. Inten-
sity features of each channel are extracted for both classes. Features extracted from
each area of an X-ray image region are divided into four groups: basic intensity fea-
tures (see Sect. 5.3.1), statistical features (see Sect. 5.3.5), Fourier and DCT features
(see Sect. 5.3.7), Gabor features (see Sect. 5.3.6), and Local Binary Patterns (see
Sect. 5.4.1). Afterwards, the extracted features are selected using feature selection
approaches (see Sect. 5.6, and several classifiers (see Sect. 6.2) were evaluated using
cross-validation (see Sect. 6.3.2). indexGabor features

Experiments
We experimented with 10 representative X-ray images (see Fig. 9.18). The average
size of the imagewas1.35mega-pixels. For eachX-ray image, 250detectionwindows
with detects and 250 without defects were selected, yielding 2 × 250 × 10 = 5000
detection windows. Each detection window was labeled with ‘1’ for class defects
and ‘0’ for no-defects. The size of the detection windows were 24 × 24 pixels. For
each detection window 586 features were extracted. This means that 586 features
were extracted from 5000 samples (2500 with defects and 2500 without defects) .

After the feature extraction, 75% of the samples from each class were randomly
chosen to perform the feature selection. The best performance was achieved using

9.3 Welds 399

Fig. 9.19 Classification performance using the first p features

Sequential Forward Selection. The best 14 features are shown in Fig. 9.19 in ascend-
ing order.

The performance of the classification using the SVM classifier and the first p
selected features was validated using an average of ten cross-validation with 10
folds. The results are shown in Fig 9.19. We observe that by using 14 features, the
performance was almost 94% with a 95% confidence interval between 93.0 and
94.5%.

In order to test thismethodology onX-ray images, the techniquewas implemented
using a slidingwindow sized 24× 24 pixels that was shifted by 4 pixels. Thus, in each
position a sub-window of 24× 24 pixels was defined and the corresponding features
were extracted. The sub-window was marked if the trained classifier detected it as a
discontinuity. Using a size of 24 × 24 pixel and a shift of 4 pixels, an image pixel
could be marked from 0 to 36 times. Finally, if a pixel of the image was marked more
than 24 times, then the pixel was considered as a discontinuity. The aforementioned
parameters were set using an exhaustive search. The described steps are shown in
Fig. 9.20 for one X-ray image. The results on other X-ray images are shown in Fig.
9.21. From these, one can see the effectiveness of the proposed technique.

Conclusions
In this section, we presented a new approach to detecting weld defects without
segmentation based on sliding-windows and novel features. The promising results
outlined in our work show that we achieved a very high classification rate in the
detection of welding defects using a large number of features combinedwith efficient
feature selection and classification algorithms. The key idea of the proposed method
was to select, from a large universe of features, namely 572 features, only those
features that were relevant for the separation of the two classes.We tested ourmethod

400 9 Applications in X-ray Testing

Fig. 9.20 Weld inspection using a sliding-window: aX-ray image,b detectedwindows, c activation
map, d detection [102]

on 10 representative X-ray images yielding a performance of 94% in accuracy using
only 14 features and support vector machines. It is important to note that local
binary pattern features extracted from the saliency map play an important role in the
performance of the classifier. The method was implemented and tested on real X-ray
images showing high effectiveness.

9.3.3 An Example

In this section, we present a Python code that can be used to detect defects in welds
according to sliding-windows approach explained above.

Python Example 9.2: In this example, we show how to implement—for a simple
perspective—the strategy explained in the previous section using CNN. We will use
one part of image W0001_0001.png as training, and another part as testing. Using
a sliding windows strategy, we will extract patches of 32× 32 pixels on the right side
of the image for training and on the left side for testing. These patches are stored in
file welds32x32.mat. In this example, there are around 10,000 patches for training
and other 10,000 for testing. The reader canmodify this dataset includingmoreX-ray
images of GDXray+ in order to achieve better results. The reader will note that this
example has pedagogical purposes only. In order to develop a real application, more
training images must be taken into account.

Listing 9.2 : Detection of weld defects using CNN

from pyxvis . learning .cnn import CNN

execution type
type_exec = 0 # training & testing

pacthes ’ f i le for training and testing
patches_file = ’ . . / data /weld32x32.mat’

9.3 Welds 401

Fig. 9.21 Detection of defects on X-ray images

architechture
p = [9 ,7 ,5 ,3] # Conv2D mask size
d = [32,64,128,256] # Conv2D channels
f = [64,32] # fully connected

training and testing
CNN(patches_file , type_exec ,p,d, f)

The output of this code is shown in Fig. 9.22.We can see the final detection on testing
image. In this example, we use CNN of pyxvis Libraryto train the convolutional neural
network as explained in Sect. 7.3. The patches are extracted only in the region of

402 9 Applications in X-ray Testing

Fig. 9.22 Detection of defects on X-ray images using sliding windows. a Testing image. bGround
truth (binary image). c Ground truth (sliding windows patches of targe class). d Activation map of
the detection. e Detection (after thresholding) and testing image f Boundary of the detection and

binary ground truth. [→ Example 9.2]

Fig. 9.23 Detection of a handgun based on the trigger identification in multiple views [112]

interest defined by the segmentation of the weld using seg_bimodal of pyxvis Library.
The reader can observe the effectiveness of this strategy. However, it is clear that
better results can be achieved by considering more features, classifiers, and training
images. �

9.4 Baggage 403

9.4 Baggage

Since the September 11 attacks, automated (or semi-automated) 3D recognition using
X-ray images have become a very important element in baggage screening. The
inspection process, however, is complex, basically because threatening items are
very difficult to detect when placed in close-packed bags, superimposed by other
objects, and/or rotated showing an unrecognizable view [186]. In baggage screening,
where human security plays an important role and inspection complexity is very high,
human inspectors are still used. Nevertheless, during peak hours in airports, human
screeners have only a few seconds to decidewhether a bag contains or not a prohibited
item, and detection performance is only about 80–90% [117].

9.4.1 State of the Art

Before 9/11, the X-ray analysis of luggage mainly focused on capturing the images
of their content: the reader can find in [123] an interesting analysis carried out in
1989 of several aircraft attacks around the world, and the existing technologies to
detect terrorist threats based on Thermal-Neutron Activation (TNA), Fast-Neutron
Activation (FNA), and dual-energy X-rays (used in medicine since the early 70s). In
the 90s, Explosive Detection Systems (EDS) were developed based on X-ray imag-
ing [124], and computed tomography through elastic scatter X-ray (comparing the
structure of irradiated material, against stored reference spectra for explosives and
drugs) [160]. All these works were concentrated on image acquisition and simple
image processing; however, they lacked advanced image analysis to improve detec-
tion performance. Nevertheless, the 9/11 attacks increased the security measures
taken at airports, which in turn stimulated the interest of the scientific community in
the research of areas related to security using advanced computational techniques.
Over the last decade, the main contributions were: analysis of human inspection
[172], pseudocoloring of X-ray images [1, 25], enhancement and segmentation of
X-ray images [156], and detection of threatening items in X-ray images, based on
texture features (detecting a 9mm Colt Beretta automatic (machine) pistol) [131],
neural networks and fuzzy rules (yielding about 80% of performance) [89], and SVM
classifier (detecting guns in real time) [126].

In baggage screening, the use of multiple-view information yields a significant
improvement in performance as certain items are difficult to recognize using only one
viewpoint. As reported in a study that measures the human performance in baggage
screening [17], (human) multiple-view X-ray inspection leads to a higher detection
performance of prohibited items under difficult conditions, however, there are no sig-
nificant differences between the detection performance (single versus multiple view)
for difficult-easy multiple-view conditions, i.e., two difficult or two easy views are
redundant. We observed that for intricate conditions, multiple-view X-ray inspection
is required.

404 9 Applications in X-ray Testing

Recently, some algorithms based on multiple X-ray views were reported in the
literature. For example: synthesis of new X-ray images obtained from Kinetic Depth
Effect X-ray (KDEX) images based on SIFT features in order to increase detection
performance [2]; an approach for object detection in multi-view dual-energy X-ray
with promising preliminary results [45]; X-ray active vision that is able to adequate
the viewpoint of the target object in order to obtain better X-ray images to analyze
[142]; and tracking across multiple X-ray views in order to verify the diagnoses
performed using a single view [101, 103, 112, 114].

Finally, methods based on deep learning have been proposed in the last years and
they have established themselves as state of the art in baggage inspection. In single
views, we can mention [115] using mono-energy and [7–9, 12, 116] using dual-
energy. In addition, there are some contributions based on GAN’s (see Sect. 7.6) to
generate synthetic X-ray images that can be used as data augmentation in the training
stage [5, 146, 180]. A review of deep learning method in baggage inspection can be
found in [6].

An example is illustrated in Fig. 9.23. A survey on explosives detection can be
found in [157, 176]. Selected approaches are summarized in Table 9.5. In baggage
screening, where human security plays an important role and inspection complexity
is very high, human inspectors are still used. For intricate conditions, multiple-view
X-ray inspection using dual-energy is required.

9.4.2 An Application

In this section, we present the use of an automated method based on multiple X- ray
views to recognize certain regular objects with highly defined shapes and sizes. The
method consists of two steps: ‘monocular analysis’, to obtain possible detections in
each view of a sequence, and ‘multiple-view analysis’, to recognize the objects of
interest usingmatchings in all views. The search formatching candidates is efficiently
performed using a lookup table that is computed off-line. In order to illustrate the
effectiveness of the proposed method, experimental results on recognizing regular
objects (clips, springs, and razor blades) in pen cases are shown. In this section, we
explain in further detail the proposed method. The strategy consists of two main
stages: off-line and on-line.

Off-Line Stage
The first stage, performed off-line, consists of two main steps: (i) learning a model
that is used for the recognition and (ii) estimation of amultiple-view geometricmodel
that is used for data association.

Learning: In this step, we learn a classifier h to recognize parts of the objects that we
are attempting to detect. It is assumed that there are C + 1 classes (labeled as ‘0’ for
non-object class, and ‘1’, ‘2’, . . . ‘C’ for C different objects). Images are taken of
representative objects of each class fromdifferent points of view. In order tomodel the

9.4 Baggage 405

Table 9.5 State of art in baggage inspection

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Abusaeeda et al. 2011 [2] � � � � � � � � �

Akcay and Breckon 2017 [7] � � � � � � � � �

Akcay et al. 2016 [8] � � � � � � � � �

Akcay et al. 2018 [9] � � � � � � � � �

Akcay et al. 2018 [5] � � � � � � � � �

Aydin et al. 2018 [12] � � � � � � � � �

Baştan 2015 [15] � � � � � � � � �

Baştan et al. 2011 [16] � � � � � � � � �

Chen et al. 2005 [26] � � � � � � � � �

Ding et al. 2006 [31] � � � � � � � � �

Franzel et al. 2012 [45] � � � � � � � � �

Flitton et al. 2013 [43] � � � � � � � � �

Flitton et al. 2015 [44] � � � � � � � � �

Heitz and Chechik 2010 [60] � � � � � � � � �

Liu et al. 2018 [90] � � � � � � � � �

Lu and Conners 2006 [92] � � � � � � � � �

Mansoor and Rajashankari 2012 [94] � � � � � � � � �

Mery 2015 [103] � � � � � � � � �

Mery et al. 2013 [114] � � � � � � � � �

Mery et al. 2016 [115] � � � � � � � � �

Miao et al. 2019 [116] � � � � � � � � �

Mouton and Breckon 2015 [119] � � � � � � � � �

Nercessian et al. 2008 [127] � � � � � � � � �

Riffo and Mery 2016 [143] � � � � � � � � �

Riffo and Mery 2012 [142] � � � � � � � � �

Riffo et al. 2019 [141] � � � � � � � � �

Riffo et al. 2017 [140] � � � � � � � � �

Saavedra et al. 2020 [145] � � � � � � � � �

Sangwan and Jain 2019 [146] � � � � � � � � �

Sigman and Jain 2020 [151] � � � � � � � � �

Schmidt et al. 2012 [147] � � � � � � � � �

Steitz et al. 2018 [159] � � � � � � � � �

Turcsany et al. 2013 [165] � � � � � � � � �

Uroukov and Speller 2015 [167] � � � � � � � � �

Yuanxi and Liu 2019 [183] � � � � � � � � �

Xu et al. 2018 [178] � � � � � � � � �

Zhang and Zhue 2015 [188] � � � � � � � � �

Zou et al. 2018 [194] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

406 9 Applications in X-ray Testing

details of the objects from different poses, several keypoints per image are detected,
and for each keypoint a descriptord is extracted using, for example, LBP, SIFT,HOG,
and SURF, among others (see Sect. 5.4). In this supervised approach, each descriptor
d ismanually labeled according to its corresponding class c ∈ {0, 1, . . . C}. Given the
training data (dt , ct), for t = 1, . . . , N , where N is the total number of descriptors
extracted in all training images, a classifier h is designed which maps dt to their
classification label ct , thus, h(dt) should be ct . This classifier will be used in the
on-line stage by monocular and multiple-view analysis.

Geometry: Our strategy deals with multiple monocular detections in multiple views.
In this problem of data association, the aim is to find the correct correspondence
among different views. For this reason, we use multiple-view geometric constraints
to reduce the number of matching candidates between monocular detections. For
an image sequence with n views I1 . . . In , the fundamental matrices {Fi j } between
consecutive frames Ii and I j=i+1 are computed for i = 1, . . . n − 1. In our approach,
the fundamental matrix Fi j is calculated from projection matrices Pi and P j that can
be estimated using calibration (see Sect. 3.4) or bundle adjustment algorithms (see
Sect. 9.4.3).

The geometric constraints are expressed in homogeneous coordinates. Therefore,
given a pointmi = [xi yi 1]T in image Ii , a corresponding pointm j = [x j y j 1]T in
image I j must fulfill: (i) epipolar constraint (see Sect. 3.5.1): m j must lie near the
epipolar line � = Fi jmi , and (ii) location constraint: for small variations of the point
of views between Ii and I j ,m j must lie near mi . Thus, a candidate m j must fulfill:

|mT
j Fi jmi |√
�21+�22

< e and ||mi − m j || < r. (9.5)

In order to accelerate the search of candidates, we propose the use of a lookup table
as follows: Points in images Ii and I j are arranged in a grid format with rows and
columns. For each grid point (x, y) of image Ii , we look for the grid points of image
I j that fulfill (9.5), as illustrated in Fig. 9.24. Therefore, the possible corresponding
points of (x, y) will be the set Sxy = {(x p, yp)}q

p=1, where x p = X (x, y, p), yp =
Y (x, y, p) and q = Q(x, y) are stored (off-line) in a lookup table. In the on-line
stage, given a point mi (in image Ii), the matching candidates in image I j are those
that lie near to Sxy , where (x, y) is the nearest grid point to mi . This search can be
efficiently implemented using k-d tree structures [21].

In a controlled and calibrated environment, we can assume that the fundamental
matrices are stable and we do not need to estimate them in each new image sequence,
i.e., the lookup tables are constant. Additionally, when the relativemotion of the point
of view between consecutive frames is the same, the computed fundamental matrices
are constant, i.e., Fi j = F, and we need to store only one lookup table.

On-Line Stage
The on-line stage is performed in order to recognize the objects of interest in a
test image sequence of n images {Ii }, for i = 1, . . . n. The images are acquired by

9.4 Baggage 407

Fig. 9.24 Given the grid point illustrated as the red point at (x, y), in image Ii , the set of possible
corresponding points in image I j can be those grid points (yellow points) represented by the inter-
section of the epipolar region (blue rectangle) and neighborhood around (x, y) (orange circle with
radius r centered at red point). The use of grid points allows us to use a lookup table in order to
search the matching candidates in I j efficiently

Fig. 9.25 Monocular analysis for each image of the sequence, i.e., for i = 1, . . . n. In this example,
the class of interest is ‘razor blade’

rotation of the object being tested at β degrees (in our experiments we used n = 4,
and β = 100). This stage consisted of two main steps: monocular and multiple-view
analysis that will be described in further detail as follows.

Monocular Analysis: This step is performed in each image Ii of the test image
sequence, as illustrated inFig. 9.25 in a real case. Thewhole object contained in image
Ii is segmented from the background using threshold and morphological operations.
SIFT–keypoints (or other descriptors)— are only extracted in the segmented portion.
The descriptor d of each keypoint is classified using classifier h(d) trained in the
off-line stage, and explained above. All keypoints classified as class c, where c is
the class of interest, with c ∈ {1 . . . C} are selected. As we can see in Fig. 9.25 for
the classification of ‘razor blade’, there are many keypoints misclassified. For this

408 9 Applications in X-ray Testing

Fig. 9.26 Multiple-view analysis. An explanation of last step (final analysis) is illustrated in Fig.
9.27

reason, neighbor keypoints are clustered in the 2D space using Mean Shift algorithm
[28]. Only those clusters that have a large enough number of keypoints are selected.
They will be called detected monocular keypoints.

Multiple-View Analysis: Multiple view analysis performs the recognition of objects
of interest in three steps (see Fig. 9.26): (i) data association, (ii) 3D analysis, and
(iii) final analysis. The input is the detected monocular keypoints obtained by the
mentioned monocular analysis explained above. The output is c′, the assigned class
for each detected object.
• Data Association: In this step, we find matchings for all detected monocular key-
points in all consecutive images Ii and I j=i+1, for i = 1, . . . n − 1, as follows:

+ For each detected monocular keypoint in image Ii (located at position (xi , yi)

with descriptor di), we seek in a dense grid of points, the nearest point (x, y)

(see red point in Fig. 9.24-left) using a k-d tree structure.
+ We determine Sxy , the set of matching candidates in image I j=i+1 arranged in a

grid manner by reading the lookup table explained above (see yellow points in
Fig. 9.24-right).

+ We look for the detected monocular keypoints in image I j that are located in
the neighborhood of Sxy , again using a k-d tree structure. They will be called
neighbor keypoints.When no neighbor keypoint is found, nomatch is established
for (xi , yi).

+ From neighbor keypoints, we select that one (located at position (x j , y j) with
descriptor d j) with minimum distance ||di − d j ||. In order to ensure the simi-
larity between matching points, the distance should be less than a threshold ε. If
this constraint is not satisfied, again no match is established for (xi , yi).

• 3D analysis: From each pair of matched keypoints (xi , yi) in image Ii and (x j , y j)

in image I j=i+1 established in the previous step, a 3D point is reconstructed using
the projection matrices Pi and P j of our geometric model (see Sect. 3.6). Similar to

9.4 Baggage 409

Fig. 9.27 Final analysis: using the geometric model, the reconstructed 3D points in each cluster
are reprojected in each view (blue points). The keypoints that are near to the reprojected points are
identified (red points). The descriptors of these keypoints (orange histograms) are classified using
trained classifier h. The class c′ of this cluster is determined by majority vote. In this example of
n = 4 views, only the green cluster is represented

the monocular detection approach, neighbor 3D points are clustered in the 3D space
using Mean Shift algorithm [28], and only those clusters that have a large enough
number of 3D points are selected.
• Final analysis: For each selected 3D cluster, all 3D reconstructed points belonging
to the cluster are re-projected onto all images of the sequence using the projection
matrices of geometric model (see Fig. 9.27). The extracted descriptors of the key-
points locatednear these re-projected points are classified individually using classifier
h. The cluster will be classified as class c′ if there is a large number of keypoints
individually classified as c′, and this number represents a majority in the cluster.

This majority vote strategy can overcome the problem of false monocular detec-
tions when the classification of the minority fails. A cluster can be misclassified if
the part that we are trying to recognize is occluded by a part of another class. In
this case, there will be keypoints in the cluster assigned to both classes; however, we
expect that the majority of keypoints will be assigned to the true class if there are a
small number of keypoints misclassified.

410 9 Applications in X-ray Testing

Fig. 9.28 Recognition of a razor blade using our approach. a original sequence,
b keypoints, c classified keypoints, d detected monocular keypoints, e matched keypoints, f repro-
jected 3D points (blue) and neighbor keypoins (red), g final detection

Experiments and Results
In our experiments, the taskwas to recognize three different classes of objects that are
present in a pencil case (see, for example, a sequence in Fig. 9.28a). These classes
are: ‘clips’, ‘springs’, and ‘razor blades’. We followed the recognition approach
explained above.

In the off-line stage we used a structure from a motion algorithm in order to
estimate the projectionmatrices of each view4.Additionally, in the learning phase,we
used only 16 training images of each class.Due to the small intra-class variation of our
classes, this number of training images was deemed sufficient. The training objects
were posed at different angles. SIFT descriptors were extracted as explained in [91],
and a k-Nearest Neighbor (KNN) classifier with k = 3 neighbors was ascertained

4We use in our experiments a fast implementation of multiple-view geometry algorithms from Balu
Toolbox [97].

9.4 Baggage 411

Fig. 9.29 Recognition using our approach in cases with some degree of overlap: a one spring, b
two springs, c one clip, d one clip. Each figure shows a part of one image of the whole sequence

using the SIFTdescriptors of the four classes5. Other descriptors (like LBP andHOG)
and other classifiers (like SVM or KNN with other values of k) were also tested,
although the best performance was achieved with the aforementioned configuration.

In order to illustrate step by step the on-line stage, the recognition of a razor blade
is illustrated in Fig. 9.28a–d for monocular analysis and in Fig. 9.28e–g for multiple-
view analysis6. It is worth mentioning that in monocular detection there are false
alarms, however, they can be filtered out after multiple-view analysis. The reason
is because false alarms cannot be tracked in the sequence or because the tracked
points, when validating the corresponding points in other views of the sequence, do
not belong to the class of interest. Other results with some degree of overlap, where
the task was the recognition of springs and clips, are illustrated in Fig 9.29.

Testing experiments were carried out by recognizing the three mentioned classes
(‘clips’, ‘springs’, and ‘razor blades’) in 45 different sequences of 4 views (15
sequences for each class)7. The size of an individual image was 1430 ×900 pix-
els. In these experiments there were 30 clips, 75 springs and 15 razor blades to be
recognized. A summary of the results using the proposed algorithm is presented in
Table 9.6, in which the performance in the recognition of each class is presented
in two different parts of our algorithm: after monocular analysis (Mono) and after
multiple-view analysis (Multi). These parts are illustrated in Fig. 9.28d and 9.28g
respectively for a razor blade. In this table, Ground Truth (GT) is the number of
existing objects to be recognized. The number of detected objects by our algorithm
is D = TP + FP, including False Positives (FP) and true positives (TP). Ideally, FP
= 0 and TP = GT. In our experiments, precision (PR), computed as PR=TP/D, is
71.4% and 95.7% in each part; and recall (RE), computed as RE=TP/GT, is 90.8%
and 92.5% in each step. If we compare single versus multiple view detection, both
precision and recall are incremented. Precision, however, is drastically incremented
because our approach achieves good discrimination from false alarms.

The amount of time required in our experiments was about 15 minutes for the off-
line stage and about 16s for testing each sequence on a iMac OS X 10.7.3, processor
3.06 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3 memory. The code of the
program—implemented in Matlab—is available on our website.

5We used in our experiments fast implementations of SIFT and KNN (based on k-d tree) from
VLFeat Toolbox [169].
6We used in our experiments a fast implementation of Mean Shift from PMT Toolbox [32].
7The images tested in our experiments come from public GDXray database [113].

412 9 Applications in X-ray Testing

Table 9.6 Recognition performance

Mono Multi

Class TP FP GT TP FP GT

Clip 114 127 120 26 2 30

Spring 263 30 300 71 3 75

Blade 59 18 60 14 0 15

Total 436 175 480 111 5 120

Precision 71.4% 95.7%

Recall 90.8% 92.5%

Conclusions
In this section, we presented a newmethod that can be used to recognize certain parts
of interest in complex objects using multiple X-ray views. The proposed method fil-
ters out false positives resulting frommonocular detection performed on single views
by matching information across multiple views. This step is performed efficiently
using a lookup table that is computed off-line. In order to illustrate the effectiveness
of the proposed method, experimental results on recognizing regular objects—clips,
springs, and razor blades—in pen cases are shown achieving around 93% accuracy
in the recognition of 120 objects. We believe that it would be possible to design an
automated aid in a target detection task using the proposed algorithm. In our future
work, the approach will be tested in more complex scenarios recognizing objects
with a larger intra-class variation.

9.4.3 An Example Using Multiple Views

In this example, we show how to detect objects in a non-calibrated image sequence
as illustrated in Fig. 9.31. The approach has two parts: structure estimation and
parts detection8. The approach follows the same strategy of method explained in
Sect. 9.2.2. The results are shown in Fig. 9.32.

Structure Estimation
In case the X-ray imaging system is not calibrated, a geometric model must be
estimated. The estimation of the geometric model is based on well-known structure-
from-motion (SfM) methodologies. For the sake of completeness, a brief description
of this model is presented here. In our work, SfM is estimated from a sequence of m
images taken from a rigid object at different viewpoints. The original image sequence
is stored in m images J1, ..., Jm .

8See implementation in Matlab at https://github.com/domingomery/Xvis - function Xtrgui.

https://github.com/domingomery/Xvis

9.4 Baggage 413

Fig. 9.30 Detection of objects in a pencil case using the proposed method: a Unsorted sequence
with six X-ray images. The images are sorted according to their similarity (see arrows). b Sorted
sequence, keypoints (points) and structure from motion (lines across the sequence). c Detection in
the sequence and tracked regions. d Detection of parts of interest in the last image in the sequence
(three of them are used in this example to illustrate the next sub-figures). e Tracked example regions
in each view of the sequence (1: pencil sharpener, 2: clip, and 3: zipper slider body and pull-tab)

Keypoints: For each image, SIFTkeypoints are extracted because they are very robust
against scale, rotation, viewpoint, noise, and illumination changes [91]. Thus, not
only a set of 2D image positions x, but also descriptors y, are obtained. Although this
method is based on SIFT descriptors, there is no limitation to use other descriptors,
e.g., SURF [18].

Image Sorting: If the images are not sorted, a visual vocabulary tree is constructed for
fast image indexing. Thus, a new image sequence I1, ..., Im is established from J1, ...,
Jm bymaximizing the total similarity defined as

∑
sim(Ii , Ii+1), for i = 1, ..., m − 1,

where the similarity function ‘sim’ is computed from a normalized scalar product
obtained from the visual words of the images [158]. See an example in Fig. 9.30a
and 9.30b.

Matching Points: For two consecutive images, Ii and Ii+1, SIFT keypoints are
matched using the algorithm suggested by Lowe [91] that rejects too ambiguous
matches. Afterwards, the Fundamental Matrix between views i and i + 1, Fi,i+1, is
estimated using RANSAC [56] to remove outliers. If keypoint k of Ii is matched
with keypoint k ′ of Ii+1, the match will be represented as xi,k → xi+1,k ′ .

Structure Tracks: We look for all possible structure tracks—with one keypoint in
each image of sequence—that belong to a family of the following matches:

x1,k1 → x2,k2 → x3,k3 → ... → xm,km .

There are many matches that are eliminated using this approach, however, having
a large number of keypoints there are enough tracks to perform the bundle adjustment.
We define n as the number of tracks.

414 9 Applications in X-ray Testing

Fig. 9.31 Block diagram of the proposed approach

Bundle Adjustment: The determined tracks define n image point correspondences
over m views. They are arranged as xi, j for i = 1, ..., m and j = 1, ...n. Bundle
adjustment estimates 3D points X̂ j and camera matrices Pi so that

∑ ||xi, j − x̂i, j ||
is minimized, where x̂i, j is the projection of X̂ j by Pi . If n ≥ 4, we can use the
factorization algorithm [56] to perform an affine reconstruction because for our
purposes the affine ambiguity of 3D space is irrelevant9. This method gives a fast
and closed-form solution using SVD decomposition. A RANSAC approach is used
to remove outliers.

Multiple-View Tensors: Bundle adjustment provides amethod for computing bifocal
and trifocal tensors from projection matrices Pi [56], that will be used in the next
section.

Parts Detection
In this section, we give details of the algorithm that detects the object parts of interest.
The algorithmconsists of four steps: segmentation, description, tracking, and analysis
as shown in Fig. 9.31.

9In this problem, the projective factorization can be used as well [56], however, our simplifying
assumption is that only small depth variations occur and an affine model may be used.

9.4 Baggage 415

Fig. 9.32 Detection of objects in a pen case using graphic user interface Xtrgui [103]. In this
example, we can see the zipper slider body and pull-tab in six different views

Segmentation: Potential regions of interest are segmented in each image Ii of the
sequence. It is an ad-hoc procedure that depends on the application. For instance, one
can be interested in detecting razor blades or pins in a bag, or flaws in a material, etc.
This step ensures the detection of the object parts of interest allowing false detections.
The discrimination between these two classes takes place by tracking them across
multiple views (see steps 2c and 2d). In our experiments we tested three segmentation
approaches.
• Spots detector: The X-ray image is filtered using a 2Dmedian filter. The difference
between original and filtered images is thresholded obtaining a binary image. A
potential region r is segmented if size, shape, and contrast criteria are fulfilled. This
approach was used to detect small parts (like pen tips or pins in a pencil case).
• Crossing line profile (CLP): Laplacian of Gaussian edges are computed from the
X-ray image. The closed and connected contours of the edge image define region
candidates. Gray level profiles along straight lines crossing each region candidate
in the middle are extracted. A potential region r is segmented if the profile that
contains the most similar gray levels in the extremes fulfills contrast criteria [99].

416 9 Applications in X-ray Testing

This approach was used to detect discontinuities in a homogeneous material, e.g.,
flaws in automotive parts.
• SIFT matching: SIFT descriptors are extracted from the X-ray image. They are
compared with SIFT descriptors extracted from the image of a reference object of
interest. A potential region r is segmented if the descriptors fulfill similarity criteria
[49, 91]. This approach was used to detect razor blades in a bag.

Other general segmentation approaches can be used aswell. For example,methods
based on saliency maps [118], Haar basis features [171], histogram of oriented gra-
dients [30], corner detectors [55], SURF descriptors [18], Maximally Stable regions
[95], Local Binary Patterns [133], etc.

Description: Each segmentedpotential region r is characterizedusing aSIFTdescrip-
tor. The scale of the extracted descriptor, i.e., the width in pixels of the spatial his-
togram of 4 × 4 bins is set to

√
Ar , where Ar is the corresponding area of the region

r .

Tracking and Analysis: The tracking and analysis algorithms were covered in detail
in Sect. 9.2.2. Results are shown in Fig. 9.30.

9.4.4 Example Using Deep Learning

In Sect. 7.7.6, we illustrated already many examples in baggage inspection using
deep learning methods for object detection. The reader is referred to those examples
and Sect. 7.7 to see the detection methods that are proposed for baggage inspection.
Here, we include additional results in Fig. 9.33 to illustrate an example using deep
learning.

9.5 Natural Products

In order to ensure food safety inspection, several applications have been developed
by the natural products industry. The difficulties inherent in the detection of defects
and contaminants in food products have limited the use of X-ray into the packaged
foods sector. However, the need for NDT hasmotivated a considerable research effort
in this field spanning many decades [54].

9.5.1 State of the Art

The most important advances are: detection of foreign objects in packaged foods
[76]; detection of fish bones in fishes [111]; identification of insect infestation in

9.5 Natural Products 417

Fig. 9.33 Object detection on GDXray+ image B0046_0016 using detection methods RetinaNet,
YOLOv2, YOLOv3, SSD7, and SSD300 explained in Sect. 7.7

citrus [65]; detection of codling moth larvae in apples [54]; fruit quality inspection
like split-pits, water content distribution and internal structure [132]; and detection of
larval stages of the granary weevil in wheat kernels [53]. In these applications, only
single-view analysis is required. An example is illustrated in Fig. 9.34. The reader is
referred to following survey papers for further analysis of the state of the art in the
field: detection of contaminants [54], quality inspection of agricultural product using
compute tomography [35], and inspection using X-ray fluorescence [39]. In Table

418 9 Applications in X-ray Testing

Fig. 9.34 Detection of fish bones using sliding-windows [111]

9.7, some applications are summarized. We observe that deep learning methods in
this field are rarely used. This trend is sure to change in the next few years.

9.5.2 An Application

In countries where fish is often consumed, fish bones are some of the most frequently
ingested foreign bodies encountered in foods. In the production of fish fillets, fish
bone detection is performed by human inspection using their sense of touch and
vision which can lead to misclassification. Effective detection of fish bones in the
quality control process would help avoid this problem. For this reason, an X-ray
machine vision approach to automatically detect fish bones in fish fillets was devel-
oped. This section describes our approach to detect fish bones automatically and the
corresponding experiments with salmon and trout fillets based on [111].

Pre-Processing and Segmentation
The fish bones are only present in certain space frequencies of the spectrum: they
are not too thin (minimal 0.5mm) nor too thick (maximal 2mm). The segmentation
of potential fish bones is based on a band-pass filter to enhance the fish bones with
respect to their surroundings as shown in Fig. 9.35. The proposed approach to detect
potential fish bones has four steps:

Enhancement: The original X-ray image X (Fig. 9.35b) is enhanced linearly by
modifying the original histogram in order to increase contrast [50]: The enhanced
image Y is

Y = aX + b (9.6)

Band-Pass Filtering: The enhanced image Y is filtered using a radial symmetric
17×17 pixels mask H (Fig. 9.35a). Mask H was estimated from 20 X-ray images

9.5 Natural Products 419

Table 9.7 State of art on natural products

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Bej et al. 2015 [19] � � � � � � � � �

van Deal et al. 2016 [29] � � � � � � � � �

van Deal et al. 2019 [168] � � � � � � � � �

Douarre et al. 2016 [33] � � � � � � � � �

Guelpa et al. 2015 [52] � � � � � � � � �

Haff and Slaughter 2004 [53] � � � � � � � � �

Jiang et al. 2008 [65] � � � � � � � � �

Karunakaran et al. 2004 [69] � � � � � � � � �

Kelkar et al. 2015 [70] � � � � � � � � �

Kotwaliwale et al. 2014 [73] � � � � � � � � �

Kwon et al. 2008 [76] � � � � � � � � �

Mathanker et al. 2011 [96] � � � � � � � � �

Mery et al. 2011 [111] � � � � � � � � �

Neethirajan et al. 2014 [125] � � � � � � � � �

Nielsen et al. 2014 [128] � � � � � � � � �

Nugraha et al. 2019 [130] � � � � � � � � �

Ogawa et al. 2003 [132] � � � � � � � � �

Orina et al. 2018 [134] � � � � � � � � �

Schoeman et al. 2016 [148] � � � � � � � � �

van Deal et al. 2019 [168] � � � � � � � � �

Zhong et al. 2019 [191] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

by minimizing the error rate as mention in [23] and applied to fish bones (all fish
bones should be found and there should be no false alarms). The filtered image Z
(Fig. 9.35c) is then the convolution of Y with mask H:

Z = Y ∗ H (9.7)

Thresholding: Those pixels inZ that have gray values greater than a certain threshold
θ are marked in a binary image B. The threshold is defined to ensure that all fish
bones are detected, i.e., false alarms are allowed in this step. The pixels of B are
defined as

Bi j =
{
1 if Zi j > θ

0 else
(9.8)

420 9 Applications in X-ray Testing

Fig. 9.35 Segmentation of potential fish bones: a Convolution maskH in space domain, b original
X-ray imageX of a salmon fillet, c filtered imageZ,d potential fish bones imageP after thresholding
and removing objects deemed too small

Removal of Small Objects: All connected pixels inB containing fewer than A pixels
are removed as shown in Fig. 9.35d. This image, called P, defines the potential fish
bones.

Feature Extraction, Selection, And Classification
The segmented potential fish bones—contained in image P—are divided into small
10×10 pixels windows called detection windows. In a training phase, using a priori
knowledge of the fish bones, the detection windows are manually labeled as one
of two classes: bones and no-bones. The first class corresponds to those regions
where the potential fish bones are indeed fish bones. Alternatively, the second class
corresponds to false alarms. Intensity features of the enhanced X-ray image Y are
extracted for both classes.We use enhanced imageY, instead of pre-processed image
X, because after our experiments the detection performance was higher. Features
extracted from each area of an X-ray image region are divided into four groups
as shown in Sect. 9.3.2. In these experiments, 279 features are extracted from each
detection window. Afterwards, the features are selected in order to decide on the
relevant features for the two defined classes. In addition, a classifier is designed. The
best results, after evaluation a 10-fold cross-validation was achieved by Sequential
Forward Selection (as feature selection technique) and Support Vector Machine with
RBF kernel (as classifier).

Experimental Results
First, the proposed method was tested with 20 representative salmon fillets obtained
at a local fish market. The average size of these fillets was 15×10 cm2. According
to pre-processing and segmentation techniques explained above, several regions of
interest were obtained where fish bones could be located. The area occupied by these
regions of interest corresponds to approx. 12% of the salmon fillets as shown in Fig.
9.35. More results are presented in Fig. 9.36.

From the mentioned regions of interest 7697, detection windows of 10×10 pixels
were obtained (available in series N0003 of GDXray+). Each window was labeled
with ‘1’ for class bones and ‘0’ for no-bones (see file labels.txt in directory of
N0003). From each window, 279 features were extracted. After the feature extrac-

9.5 Natural Products 421

Fig. 9.36 Results obtained in four X-ray images. The columns correspond to enhanced images,
classified fish bones and post processed fish bones. The first row corresponds to the example shown
in Fig. 9.35

422 9 Applications in X-ray Testing

Fig. 9.37 Results obtained on 3878 samples using cross-validation with five folds. See results in
Table 9.8

Table 9.8 Performance in the detection of fishbones

Fishbone Sensibility (%) 1-Specificity (%) Size

Large (red) 100 0 >0.64 mm × 12 mm

Medium (blue) 100 3 Between

Small (green) 93 6 <0.48 mm × 8.5 mm

tion, 75%of the samples fromeach classwere randomly chosen to perform the feature
selection. The best performance was achieved using Sequential Forward Selection.
24 features were selected. The features gave information about the spatial distribu-
tion of pixels, i.e., how coarse or fine the texture is. The selected features correspond
mainly to statistical features (12) and filter banks (7), however, it is worth nothing
that the two most discriminative features are LBP features (in this case LBP 48 and
LBP 11). On the other hand, from the standard features there is only one feature
(standard deviation of the intensity).

In order to investigate the sensibility (Sn) and 1-specificity (1 − Sp) of the fish
bones depending on their largeness, three size groups were constructed: large for fish
bones larger than 12mm, small for fish bones smaller than 8.5mm, andmedium for fish
bones betweenboth sizes. In this experiment, 3878fishbonesweremanually selected.
The performance was calculated using a cross-validation with 5 folds. The results
are summarized in Fig. 9.37 and Table 9.8. All medium and large fish bones were
detected (with 1 − Sp = 0% and 3% respectively), whereas 93% of small fish bones
were correctly detected with 1 − Sp = 6%. This means that cross-validation yielded
a detection performance of 100%, 98.5%, and 93.5% (computed using (Sn + Sp)/2)
for large, medium, and small fish bones respectively.

Finally, in order to validate the proposed methodology, the last experiment was
carried out using representative fish bones and representative trout fillets provided
by a Chilean salmon industry. The size of the fish bones were between 14 and 47 mm

9.5 Natural Products 423

Fig. 9.38 Results obtained on a trout fillet using a fish bone strip with 33 fish bones: a strip, b strip
over the fillet, c X-ray image, d segmentation, e classification, f post-processing. All fish bones
were detected (Sn = 1), in this example there was no false alarm (1 − Sp = 0)

(larger than the small-size and mid-size groups considered above). The fish bones
were arranged in strips that were superimposed onto trout fillets. Thus, the number
of fish bones to be detected was a priori known. According to the absorption law,
an X-ray image of a fillet with a fish bone inside, and an X-ray image with a fish
bone laid on the fillet top are almost identical. Similar methodologies are used in
industrial X-ray inspection of materials in order to simulate discontinuities [98]. The
only difference could be that the position of a real fish bone (inside of a fillet) achieves
a more realistic location related to the fish tissues, however, after our experience, the
obtained images were found to be very similar. Fig. 9.38 shows the detection of one
fish bone strip on a trout fillet. Using the same classifier trained in the last experiment,
i.e., no new training was necessary, the proposed method was able to detect all fish
bones with a 1% false positive rate. In this case, 15 X-ray images were tested, with
459 bones and 10413 no–bones.

Conclusion
The need formore information on the quality control of several fish types bymeans of
quantitativemethods can be satisfied usingX-ray testing, a non-destructive technique
that can be used to objectively measure intensity and geometric patterns in non-
uniform surfaces. In addition the method can also determine other physical features
such as image texture, morphological elements, and defects in order to automatically
determine the quality of a fish fillet. The promising results outlined in this work show
that a very high classification rate was achieved in the quality control of salmon and
trout when using a large number of features combined with efficient feature selection

424 9 Applications in X-ray Testing

and classification. The key idea of the proposed method was to select, from a large
universe of features, only those features that were relevant for the separation of
the classes. Cross-validation yielded a detection performance of 100%, 98.5%, and
93.5% for large, medium, and small fish bones respectively. The proposed method
was validated on trout with representative fish bones provided by a Chilean salmon
industry yielding a performance of 99%. Although the method was validated with
salmon and trout fillets only, we believe that the proposed approach opens new
possibilities not only in the field of automated visual inspection of salmons and
trout, but also in other similar fish.

9.5.3 An Example

In order to illustrate the methodology explained in the previous section, the reader
can see Example 6.13, where the whole process is presented. In this example, 200
small X-ray images (100 × 100 pixels) of salmon filets, 100 with fish bones and 100
without fish bones are used. The images are available in series N0002 ofGDXray+.

9.6 Further Applications

There are many applications in which X-rays can be used as a NDT and E method.
In this section, we mention only cargos and electronic circuits.

9.6.1 Cargo Inspection

With the ongoing development of international trade, cargo inspection becomesmore
and more important. X-ray testing has been used for the evaluation of the contents
of cargo, trucks, containers, and passenger vehicles to detect the possible presence
of many types of contraband. See an example in Fig. 9.39. Some approaches are
presented in Table 9.9. There still is not much research on cargo inspection, and the
complexity of this inspection task is very high. Nowadays, there are some approaches
that use dual-energy, computed tomography, and deep learning. For this reason,X-ray
systems are still only semi-automatic, and they require human supervision.

9.6.2 Electronic Circuits

In this industrial application of X-rays, the idea is to inspect circuit boards or inte-
grated circuits in order to detect flaws in manufacturing, e.g., broken traces, missing

9.6 Further Applications 425

Fig. 9.39 X-ray image of a cargo. Collected by U.S. Customs and Border Protection a bureau of
the United States Department of Homeland Security, via Wikimedia Commons

Table 9.9 State of art on cargo inspection

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views

1 2 3
X

∗
3 algorithms

1 2 3

Duan 2008 [36] � � � � � � � � �

Frosio 2011 [46] � � � � � � � � �

Kolkoori 2014 [71] � � � � � � � � �

Kolokytha et al. 2018 [72] � � � � � � � � �

Jaccard et al. 2016 [63] � � � � � � � � �

Jaccard et al. 2017 [64] � � � � � � � � �

Lee et al. 2018 [78] � � � � � � � � �

Rogers et al. 2017 [144] � � � � � � � � �

Zhu 2008 [193] � � � � � � � � �

Zhu 2010 [192] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used , � used

Fig. 9.40 X-ray image of a printed circuit board. By SecretDisc (Own work) via Wikimedia
Commons

components, cracks, dilapidations, etc. An example is shown in Fig. 9.40. Some
approaches are presented in Table 9.10. In this area, automated systems are very
effective, and the inspection task is very fast and obtains a high performance.

http://upload.wikimedia.org/wikipedia/commons/d/d7/VACIS_Gamma-ray_Image_with_stowaways.GIF
http://upload.wikimedia.org/wikipedia/commons/0/0a/X-Ray_Circuit_Board_Zoom.jpg

426 9 Applications in X-ray Testing

Table 9.10 State of art on electronic circuit boards

Authors Year Ref X
∗
1 energies

1 2 3
X

∗
2 views 1 2 3 X

∗
3 algorithms

1 2 3

Adato et al. 2016 [3] � � � � � � � � �

Alam et al. 2017 [10] � � � � � � � � �

Ghosh et al. 2018 [48] � � � � � � � � �

Goto et al. 2019 [51] � � � � � � � � �

Favata and
Shahbazmo-
hamadi

2018 [38] � � � � � � � � �

Lin et al. 2017 [85] � � � � � � � � �

Mahmood et
al.

2015 [93] � � � � � � � � �

Uehara et al. 2013 [166] � � � � � � � � �

Wang et al. 2014 [175] � � � � � � � � �

Wu et al. 2014 [177] � � � � � � � � �

Zakaria et al. 2020 [184] � � � � � � � � �

∗1 Mono Mono Simple

2 Dual Multi Medium

3 Multi CT Complex

� not used, � used

9.7 Summary

In this chapter, relevant applications on X-ray testing were described. We covered
X-ray testing in:

• Castings:Toensure the safety of the constructionof automativeparts, it is necessary
to check every part thoroughly using X-ray testing. We presented the state of
the art, a defect detection approach based on a tracking principle, and a Python
implementation of a classifier that is able to defect casting defects in single X-ray
images.

• Welds: In welding processes, a mandatory inspection using X-ray testing is
required in order to detect defects like porosity, inclusion, lack of fusion, lack
of penetration, and cracks. We presented the state of the art, a defect detection
approach based on sliding windows, and a Python implementation of a classifier
that is able to detect defects using sliding windows methodology in single X-ray
images.

• Baggage: In baggage screening, every piece of luggage must be inspected using
X-ray testing in order to detect dangerous objects. We presented the state of the
art, a recognition approach based on multiple-view analysis, and a Matlab imple-
mentation of tracking principle that is able to detect objects in the sequence X-ray
images of a pen case.

9.7 Summary 427

• Natural products:We presented some applications of X-ray testing in natural prod-
ucts, such as inspection of fruit, identification of infections, and detection of fish
bones. We reviewed the state of the art, a fish bones detection approach based on
sliding windows, and a Python implementation of a classifier that is able to detect
fish bones in cropped images with and without fish bones.

• Others: There are several industrial applications that use X-ray testing. We men-
tioned only cargos and electronic circuits giving some references of the state of
art.

References

1. Abidi, B.R., Zheng, Y., Gribok, A.V., Abidi, M.A.: Improving weapon detection in single
energy X-ray images through pseudocoloring. IEEE Trans. Syst., Man, Cybern., Part C: Appl.
Rev. 36(6), 784–796 (2006)

2. Abusaeeda, O., Evans, J., Downes, D., Chan, J.: View synthesis of KDEX imagery for 3D
security X-ray imaging. In: Proceedings of the 4th International Conference on Imaging for
Crime Detection and Prevention (ICDP-2011) (2011)

3. Adato, R., Uyar, A., Zangeneh, M., Zhou, B., Joshi, A., Goldberg, B., Unlu, M.S.: Rapid
mapping of digital integrated circuit logic gates via multi-spectral backside imaging. arXiv
preprint arXiv:1605.09306 (2016)

4. Ajmi, C., El Ferchichi, S., Laabidi, K.: New procedure for weld defect detection based-gabor
filter. In: 2018 International Conference on Advanced Systems and Electric Technologies
(IC_ASET), pp. 11–16. IEEE (2018)

5. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: Semi-supervised anomaly
detection via adversarial training. arXiv preprint arXiv:1805.06725 (2018)

6. Akcay, S., Breckon, T.: Towards automatic threat detection: a survey of advances of deep
learning within X-ray security imaging. arXiv preprint arXiv:2001.01293 (2020)

7. Akcay, S., Breckon, T.P.: An evaluation of region based object detection strategies within X-
ray baggage security imagery. In: 2017 IEEE International Conference on Image Processing
(ICIP), pp. 1337–1341. IEEE (2017)

8. Akçay, S., Kundegorski, M.E., Devereux, M., Breckon, T.P.: Transfer learning using con-
volutional neural networks for object classification within X-ray baggage security imagery.
In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1057–1061. IEEE
(2016)

9. Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional
neural network architectures for object classification and detection within X-ray baggage
security imagery. IEEE Trans. Inf. Forens. Secur. 13(9), 2203–2215 (2018)

10. Alam,M., Shen, H., Asadizanjani, N., Tehranipoor,M., Forte, D.: Impact of x-ray tomography
on the reliability of integrated circuits. IEEE Trans. Device Mater. Reliability 17(1), 59–68
(2017)

11. Anand, R., Kumar, P., et al.: Flaw detection in radiographic weldment images using morpho-
logical watershed segmentation technique. NDT & E Int. 42(1), 2–8 (2009)

12. Aydin, I., Karakose, M., Erhan, A.: A new approach for baggage inspection by using deep
convolutional neural networks. In: 2018 International Conference on Artificial Intelligence
and Data Processing (IDAP), pp. 1–6. IEEE (2018)

13. Bandara, A., Kan, K., Morii, H., Koike, A., Aoki, T.: X-ray computed tomography to inves-
tigate industrial cast al-alloys. Product. Eng. 14(2), 147–156 (2020)

14. Baniukiewicz, P.: Automated defect recognition and identification in digital radiography. J.
Nondestruct. Eval. 33(3), 327–334 (2014)

http://arxiv.org/abs/1605.09306
http://arxiv.org/abs/1805.06725
http://arxiv.org/abs/2001.01293

428 9 Applications in X-ray Testing

15. Baştan,M.:Multi-view object detection in dual-energy X-ray images.Mach. Vis. Appl. 26(7–
8), 1045–1060 (2015)

16. Baştan,M.,Yousefi,M.R., Breuel, T.M.:Visualwords on baggageX-ray images. In:Computer
Analysis of Images and Patterns, pp. 360–368. Springer, Berlin (2011)

17. von Bastian, C., Schwaninger, A., Michel, S.: Do Multi-view X-ray Systems Improve X-ray
Image Interpretation in Airport Security Screening?, vol. 52. GRIN Verlag (2010)

18. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: 9th European
Conference on Computer Vision (ECCV2006). Graz Austria (2006)

19. Bej, G., Akuli, A., Pal, A., Dey, T., Chaudhuri, A., Alam, S., Khandai, R., Bhattacharyya, N.:
X-ray imaging and general regression neural network (GRNN) for estimation of silk content
in cocoons. In: Proceedings of the 2nd International Conference on Perception and Machine
Intelligence, pp. 71–76. ACM (2015)

20. Bengio,Y., Courville,A.,Vincent, P.: Representation learning:A review and newperspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

21. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975)

22. Boerner, H., Strecker, H.: Automated X-ray inspection of aluminum casting. IEEE Trans.
Pattern Anal. Mach. Intell. 10(1), 79–91 (1988)

23. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-8(6), 679–698 (1986)

24. Carrasco, M., Mery, D.: Automatic multiple view inspection using geometrical tracking and
feature analysis in aluminum wheels. Mach. Vis. Appl. 22(1), 157–170 (2011)

25. Chan, J., Evans, P., Wang, X.: Enhanced color coding scheme for kinetic depth effect X-ray
(KDEX) imaging. In: 2010 IEEE International Carnahan Conference on Security Technology
(ICCST), pp. 155 –160 (2010)

26. Chen, Z., Zheng, Y., Abidi, B.R., Page, D.L., Abidi, M.A.: A combinational approach to the
fusion, denoising and enhancement of dual-energy X-ray luggage images. In: Workshop of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2005) (2005)

27. Cogranne, R., Retraint, F.: Statistical detection of defects in radiographic images using an
adaptive parametric model. Signal Process. 96, 173–189 (2014)

28. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE
Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

29. vanDael,M., Lebotsa, S., Herremans, E., Verboven, P., Sijbers, J., Opara, U., Cronje, P., Nico-
laï, B.: A segmentation and classification algorithm for online detection of internal disorders
in citrus using X-ray radiographs. Postharvest Biol. Technol. 112, 205–214 (2016)

30. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference
on Computer Vision and Pattern Recognition (CVPR2005), vol. 1, pp. 886–893 (2005)

31. Ding, J., Li, Y., Xu, X., Wang, L.: X-ray image segmentation by attribute relational graph
matching. In: 8th IEEE International Conference on Signal Processing, vol. 2 (2006)

32. Dollár, P.: Piotr’s Image and Video Matlab Toolbox (PMT). http://vision.ucsd.edu/~pdollar/
toolbox/doc/index.html

33. Douarre, C., Schielein, R., Frindel, C., Gerth, S., Rousseau, D.: Deep learning based root-soil
segmentation from X-ray tomography images. bioRxiv p. 071662 (2016)

34. Du, W., Shen, H., Fu, J., Zhang, G., He, Q.: Approaches for improvement of the X-ray image
defect detection of automobile casting aluminum parts based on deep learning. NDT & E Int.
107, 102,144 (2019)

35. Du, Z.,Hu,Y., Buttar,N.A.,Mahmood,A.:X-ray computed tomography for quality inspection
of agricultural products: a review. Food Sci. Nutr. 7(10), 3146 (2019)

36. Duan, X., Cheng, J., Zhang, L., Xing, Y., Chen, Z., Zhao, Z.: X-ray cargo container inspection
system with few-view projection imaging. Nuclear Instrum. Methods Phys. Res. A 598, 439–
444 (2009)

37. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. TheMIT Press,
Cambridge (1993)

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

References 429

38. Favata, J., Shahbazmohamadi, S.: Realistic non-destructive testing of integrated circuit bond
wiring using 3-d x-ray tomography, reverse engineering, and finite element analysis. Micro-
electron. Reliability 83, 91–100 (2018)

39. Feng, X., Zhang, H., Yu, P.: X-ray fluorescence application in food, feed, and agricultural
science: a critical review. Critic. Rev. Food Sci. Nutrit. 1–11 (2020)

40. Ferguson, M., Ak, R., Lee, Y.T.T., Law, K.H.: Automatic localization of casting defects with
convolutional neural networks. In: 2017 IEEE International Conference on Big Data (Big
Data), pp. 1726–1735. IEEE (2017)

41. Ferguson, M.K., Ronay, A., Lee, Y.T.T., Law, K.H.: Detection and segmentation of man-
ufacturing defects with convolutional neural networks and transfer learning. Smart Sustain
Manufact. Syst. 2 (2018)

42. Filbert, D., Klatte, R., Heinrich, W., Purschke, M.: Computer aided inspection of castings. In:
IEEE-IAS Annual Meeting, pp. 1087–1095. Atlanta, USA (1987)

43. Flitton, G., Breckon, T.P., Megherbi, N.: A comparison of 3d interest point descriptors with
application to airport baggage object detection in complex ct imagery. Pattern Recognit. 46(9),
2420–2436 (2013)

44. Flitton, G., Mouton, A., Breckon, T.P.: Object classification in 3d baggage security computed
tomography imagery using visual codebooks. Pattern Recognit. 48(8), 2489–2499 (2015)

45. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view X-Ray images. Pattern
Recognit. 144–154 (2012)

46. Frosio, I., Borghese, N., Lissandrello, F., Venturino, G., Rotondo, G.: Optimized acquisition
geometry for X-ray inspection. In: 2011 IEEE Instrumentation andMeasurement Technology
Conference (I2MTC), pp. 1–6 (2011)

47. Gao, W., Hu, Y.H.: Real-time X-ray radiography for defect detection in submerged arc weld-
ing and segmentation using sparse signal representation. Insight-Non-Destruct. Test. Condit.
Monitor. 56(6), 299–307 (2014)

48. Ghosh, P., Forte, D., Woodard, D.L., Chakraborty, R.S.: Automated detection of pin defects
on counterfeit microelectronics. In: ISTFA 2018: Proceedings from the 44th International
Symposium for Testing and Failure Analysis, p. 57. ASM International (2018)

49. Gobi, A.F.: Towards generalized benthic species recognition and quantification using com-
puter vision. In: 4th Pacific-Rim Symposium on Image and Video Technology (PSIVT2010),
Singapore, Nov. 14–17, 2010, pp. 94–100 (2010)

50. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, Pearson (2008)
51. Goto, K., Kato, K., Nakatsuka, S., Saito, T., Aizawa, H.: Anomaly detection of solder joint on

print circuit board by using adversarial autoencoder. In: Fourteenth International Conference
on Quality Control by Artificial Vision, vol. 11172, p. 111720T. International Society for
Optics and Photonics (2019)

52. Guelpa, A., du Plessis, A., Kidd, M., Manley, M.: Non-destructive estimation of maize (zea
mays l.) kernel hardness by means of an X-ray micro-computed tomography (μct) density
calibration. Food Bioprocess Technol. 8(7), 1419–1429 (2015)

53. Haff, R., Slaughter, D.: Real-time X-ray inspection of wheat for infestation by the granary
weevil, sitophilus granarius (l.). Trans. Am. Soc. Agricul. Eng. 47, 531–537 (2004)

54. Haff, R., Toyofuku, N.: X-ray detection of defects and contaminants in the food industry.
Sens. Instrum. Food Quality Safety 2(4), 262–273 (2008). https://doi.org/10.1007/s11694-
008-9059-8

55. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th
Alvey Vision Conferences, pp. 147–152 (1988)

56. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cam-
bridge University Press, Cambridge (2003)

57. Hassan, J., Awan, A.M., Jalil, A.: Welding defect detection and classification using geometric
features. In: 2012 10th International Conference on Frontiers of Information Technology, pp.
139–144. IEEE (2012)

58. Hecker, H.: Ein neues Verfahren zur robusten Röntgenbildauswertung in der automatischen
Gußteilprüfung. Ph.D. thesis, vom Fachbereich Elektrotechnik, Technische Universität Berlin
(1995)

https://doi.org/10.1007/s11694-008-9059-8
https://doi.org/10.1007/s11694-008-9059-8

430 9 Applications in X-ray Testing

59. Heinrich, W.: Automated inspection of castings using X-ray testing. Ph.D. thesis, Institute
for Measurement and Automation, Faculty of Electrical Engineering, Technical University of
Berlin (1988). (in German)

60. Heitz, G., Chechik, G.: Object separation in X-ray image sets. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR-2010), pp. 2093–2100 (2010)

61. Hou, W., Wei, Y., Guo, J., Jin, Y., et al.: Automatic detection of welding defects using deep
neural network. In: Journal of Physics: Conference Series, vol. 933, p. 012006. IOPPublishing
(2018)

62. Hou, W., Wei, Y., Jin, Y., Zhu, C.: Deep features based on a dcnn model for classifying
imbalanced weld flaw types. Measurement 131, 482–489 (2019)

63. Jaccard, N., Rogers, T.W., Morton, E.J., Griffin, L.D.: Tackling the X-ray cargo inspection
challenge using machine learning. In: Anomaly Detection and Imaging with X-Rays (ADIX),
vol. 9847, p. 98470N. International Society for Optics and Photonics (2016)

64. Jaccard, N., Rogers, T.W., Morton, E.J., Griffin, L.D.: Detection of concealed cars in complex
cargo X-ray imagery using deep learning. J. X-ray Sci. Technol. 25(3), 323–339 (2017)

65. Jiang, J., Chang, H., Wu, K., Ouyang, C., Yang, M., Yang, E., Chen, T., Lin, T.: An adaptive
image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput.
Electron. Agricul. 60, 190–200 (2008)

66. Jin, C., Kong, X., Chang, J., Cheng, H., Liu, X.: Internal crack detection of castings: a study
based on relief algorithm and adaboost-svm. Int. J. Adv. Manufact. Technol. 1–10 (2020)

67. Kaftandjian, V., Dupuis, O., Babot, D., Zhu, Y.M.: Uncertainty modelling using dempster-
shafer theory for improving detection of weld defects. Pattern Recognit. Lett. 24(1), 547–564
(2003)

68. Kamalakannan, A., Rajamanickam, G.: Spatial smoothing based segmentation method for
internal defect detection in X-ray images of casting components. In: 2017 Trends in Industrial
Measurement and Automation (TIMA), pp. 1–6. IEEE (2017)

69. Karunakaran, C., Jayas, D., White, N.: Identification of wheat kernels damaged by the red
flour beetle using X-ray images. Biosyst. Eng. 87(3), 267–274 (2004)

70. Kelkar, S., Boushey, C.J., Okos, M.: A method to determine the density of foods using X-ray
imaging. J. Food Eng. (2015)

71. Kolkoori, S., Wrobel, N., Deresch, A., Redmer, B., Ewert, U.: Dual high-energy X-ray digital
radiography for material discrimination in cargo containers. In: 11th European Conference
on Non-Destructive Testing (ECNDT 2014), October 6–10, 2014. Prague, Czech Republic
(2014)

72. Kolokytha, S., Flisch, A., Lüthi, T., Plamondon, M., Visser, W., Schwaninger, A., Hardmeier,
D., Costin, M., Vienne, C., Sukowski, F.: Creating a reference database of cargo inspection
X-ray images using high energy radiographs of cargo mock-ups. Multimedia Tools Appl.
77(8), 9379–9391 (2018)

73. Kotwaliwale, N., Singh, K., Kalne, A., Jha, S.N., Seth, N., Kar, A.: X-ray imagingmethods for
internal quality evaluation of agricultural produce. J. food Sci. Technol. 51(1), 1–15 (2014)

74. Kumar, J., Anand, R., Srivastava, S.: Flaws classification using ann for radiographic weld
images. In: 2014 International Conference on Signal Processing and Integrated Networks
(SPIN), pp. 145–150 (2014)

75. Kumar, J., Anand, R., Srivastava, S.: Multi - class welding flaws classification using texture
feature for radiographic images. In: 2014 International Conference on Advances in Electrical
Engineering (ICAEE), pp. 1–4 (2014)

76. Kwon, J., Lee, J., Kim, W.: Real-time detection of foreign objects using X-ray imaging for
dry food manufacturing line. In: Proceedings of IEEE International Symposium on Consumer
Electronics (ISCE 2008), pp. 1–4 (2008)

77. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
78. Lee, D., Lee, J., Min, J., Lee, B., Lee, B., Oh, K., Kim, J., Cho, S.: Efficient material decom-

position method for dual-energy X-ray cargo inspection system. Nuclear Instrum. Methods
Phys. Res. Sect. A: Accelerat., Spectrom., Detect. Assoc. Equip. 884, 105–112 (2018)

References 431

79. Li, J., Oberdorfer, B., Schumacher, P.:Determining casting defects in thixomoldingmg casting
part by computed tomography. In: Shape Casting, pp. 99–103. Springer, Berlin (2019)

80. Li, W., Li, K., Huang, Y., Deng, X.: A new trend peak algorithm with X-ray image for wheel
hubs detection and recognition. In: Computational Intelligence and Intelligent Systems, pp.
23–31. Springer, Berlin (2015)

81. Li, X., Tso, S.K., Guan, X.P., Huang, Q.: Improving automatic detection of defects in castings
by applying wavelet technique. IEEE Trans. Indust. Electron. 53(6), 1927–1934 (2006)

82. Liao, T.: Classification of welding flaw types with fuzzy expert systems. Fuzzy Sets Syst.
108, 145–158 (2003)

83. Liao, T.: Classification of weld flaws with imbalanced class data. Expert Systems with Appli-
cations 35(3), 1041–1052 (2008)

84. Liao, T.W.: Improving the accuracy of computer-aided radiographicweld inspection by feature
selection. NDT&E Int. 42, 229–239 (2009)

85. Lin, C.S., Chan, B.E., Huang, Y.C., Chen, H.T., Lin, Y.C.: X-ray imaging inspection sys-
tem for blind holes in the intermediate layer of printed circuit boards with neural network
identification. J. Test. Eval. 45(3), 1005–1015 (2017)

86. Lin, J., Yao, Y., Ma, L., Wang, Y.: Detection of a casting defect tracked by deep convolution
neural network. Int. J. Adv. Manufact. Technol. 97(1–4), 573–581 (2018)

87. Lindgren, E.: Detection, 3-D positioning, and sizing of small pore defects using digital radio-
graphy and tracking. EURASIP J. Adv. Signal Process. 2014(1), 1–17 (2014)

88. Liu, B., Zhang, X., Gao, Z., Chen, L.: Weld defect images classification with vgg16-based
neural network. In: International Forum on Digital TV and Wireless Multimedia Communi-
cations, pp. 215–223. Springer (2017)

89. Liu,D.,Wang, Z.:Aunited classification systemofX-ray image based on fuzzy rule and neural
networks. In: 3rd InternationalConference on Intelligent SystemandKnowledgeEngineering,
2008. ISKE 2008, vol. 1, pp. 717 –722 (2008)

90. Liu, J., Leng, X., Liu, Y.: Deep convolutional neural network based object detector for x-
ray baggage security imagery. In: 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 1757–1761. IEEE (2019)

91. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004)

92. Lu, Q., Conners, R.: Using image processing methods to improve the explosive detection
accuracy. IEEE Trans. Appl. Rev., Part C: Syst., Man, Cybern. 36(6), 750–760 (2006)

93. Mahmood, K., Carmona, P.L., Shahbazmohamadi, S., Pla, F., Javidi, B.: Real-time automated
counterfeit integrated circuit detection using x-ray microscopy. Appl. Opt. 54(13), D25–D32
(2015)

94. Mansoor, M., Rajashankari, R.: Detection of concealed weapons in X-ray images using fuzzy
K-NN. Int. J. Comput. Sci., Eng. Inf. Technol. 2(2) (2012)

95. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally
stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

96. Mathanker, S., Weckler, P., Bowser, T., Wang, N., Maness, N.: Adaboost classifiers for pecan
defect classification. Comput. Electron. Agricul. 77(1), 60–68 (2011)

97. Mery, D.: BALU: A toolbox Matlab for computer vision, pattern recognition and image
processing. http://dmery.ing.puc.cl/index.php/balu

98. Mery, D.: Flaw simulation in castings inspection by radioscopy. Insight 43(10), 664–668
(2001)

99. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings.
In: Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003). Lecture
Notes in Computer Science, vol. 2749, pp. 725–732 (2003)

100. Mery, D.: Automated radioscopic testing of aluminum die castings. Mater. Eval. 64(2), 135–
143 (2006)

101. Mery, D.: Automated detection in complex objects using a tracking algorithm in multiple X-
ray views. In: Proceedings of the 8th IEEE Workshop on Object Tracking and Classification
Beyond the Visible Spectrum (OTCBVS 2011), in Conjunction with CVPR 2011, Colorado
Springs, pp. 41–48 (2011)

http://dmery.ing.puc.cl/index.php/balu

432 9 Applications in X-ray Testing

102. Mery, D.: Automated detection of welding defects without segmentation. Mater. Eval. 69(6),
657–663 (2011)

103. Mery, D.: Inspection of complex objects using multiple-X-ray views. IEEE/ASME Trans.
Mechatron. 20(1), 338–347 (2015)

104. Mery, D.: Aluminum casting inspection using deep learning: a method based on convolutional
neural networks. J. Nondestruct. Eval. 39(1), 12 (2020)

105. Mery, D., Arteta, C.: Automatic defect recognition in X-ray testing using computer vision. In:
2017 IEEEWinter Conference onApplications of Computer Vision (WACV), pp. 1026–1035.
IEEE (2017)

106. Mery, D., Berti, M.A.: Automatic detection of welding defects using texture features. Insight-
Non-Destruct. Test. Condit. Monitor. 45(10), 676–681 (2003)

107. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of
potential defects in a radioscopic image sequence. IEEETrans. Robot. Autom. 18(6), 890–901
(2002)

108. Mery, D., Filbert, D.: Classification of potential defects in automated inspection of aluminium
castings using statistical pattern recognition. In: 8th EuropeanConference onNon-Destructive
Testing (ECNDT 2002), pp. 1–10. Barcelona (2002)

109. Mery, D., Filbert, D., Jaeger, T.: Image processing for fault detection in aluminum castings.
In: MacKenzie, D., Totten, G. (eds.) Anal. Charact. Alumin. Alloys. Marcel Dekker, New
York (2003)

110. Mery, D., Filbert, D., Parspour, N.: Improvement in automated aluminum casting inspection
by finding correspondence of potential flaws in multiple radioscopic images. In: Proceedings
of the 15th World Conference on Non-Destructive Testing (WCNDT–2000). Rome (2000)

111. Mery,D., Lillo, I., Riffo,V., Soto,A., Cipriano,A., Aguilera, J.: Automated fish bone detection
using X-ray testing. J. Food Eng. 2011(105), 485–492 (2011)

112. Mery, D., Riffo, V., Mondragon, G., Zuccar, I.: Detection of regular objects in baggages using
multiple X-ray views. Insight 55(1), 16–21 (2013)

113. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco,
M.: GDXray: the database of X-ray images for nondestructive testing. J. Nondestruct. Eval.
34(4), 1–12 (2015)

114. Mery, D., Riffo, V., Zuccar, I., Pieringer, C.: Automated X-ray object recognition using an
efficient search algorithm inmultiple views. In: Proceedings of the 9th IEEECVPRWorkshop
on Perception Beyond the Visible Spectrum, Portland (2013)

115. Mery, D., Svec, E., Arias,M., Riffo, V., Saavedra, J.M., Banerjee, S.: Modern computer vision
techniques for X-ray testing in baggage inspection. IEEE Trans. Syst., Man, Cybern.: Syst.
47(4), 682–692 (2016)

116. Miao, C., Xie, L.,Wan, F., Su, C., Liu, H., Jiao, J., Ye, Q.: Sixray: a large-scale security inspec-
tion X-ray benchmark for prohibited item discovery in overlapping images. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119–2128 (2019)

117. Michel, S.,Koller, S., deRuiter, J.,Moerland,R.,Hogervorst,M., Schwaninger,A.: Computer-
based training increases efficiency in X-Ray image interpretation by aviation security screen-
ers. In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology,
pp. 201–206 (2007)

118. Montabone, S., Soto, A.: Human detection using a mobile platform and novel features derived
from a visual saliency mechanism. Image Vis. Comput. 28(3), 391–402 (2010)

119. Mouton, A., Breckon, T.P.: Materials-based 3d segmentation of unknown objects from dual-
energy computed tomography imagery in baggage security screening. PatternRecognit. 48(6),
1961–1978 (2015)

120. Mu, W., Gao, J., Jiang, H., Wang, Z., Chen, F., Dang, C.: Automatic classification approach
to weld defects based on pca and svm. Insight-Non-Destruct. Test. Condit. Monitor. 55(10),
535–539 (2013)

121. Muniategui, A., del Barrio, J.A., Vinuesa, X.A., Masenlle, M., de la Yedra, A.G., Moreno, R.:
One dimensional fourier transform on deep learning for industrial welding quality control. In:
International Work-Conference on Artificial Neural Networks, pp. 174–185. Springer (2019)

References 433

122. Muravyov, S., Pogadaeva, E.Y.: Computer-aided recognition of defects inwelded joints during
visual inspections based on geometric attributes. Russian J. Nondestruct. Test. 56, 259–267
(2020)

123. Murphy, E.: A rising war on terrorists. Spectrum, IEEE 26(11), 33–36 (1989)
124. Murray,N., Riordan,K.: Evaluation of automatic explosive detection systems. In: 29thAnnual

1995 International CarnahanConference onSecurity Technology, 1995. Proceedings. Institute
of Electrical and Electronics Engineers, pp. 175 –179 (1995). https://doi.org/10.1109/CCST.
1995.524908

125. Neethirajan, S., Karunakaran, C., Symons, S., Jayas, D.: Classification of vitreousness in
durum wheat using soft X-rays and transmitted light images. Comput. Electron. Agricul.
53(1), 71–78 (2006)

126. Nercessian, S., Panetta, K., Agaian, S.: Automatic detection of potential threat objects in X-
ray luggage scan images. In: 2008 IEEE Conference on Technologies for Homeland Security,
pp. 504 –509 (2008). 10.1109/THS.2008.4534504

127. Nercessian, S., Panetta, K., Agaian, S.: Automatic detection of potential threat objects in X-
ray luggage scan images. In: 2008 IEEE Conference on Technologies for Homeland Security,
pp. 504–509 (2008)

128. Nielsen, M.S., Christensen, L.B., Feidenhans, R.: Frozen and defrosted fruit revealed with
X-ray dark-field radiography. Food Control 39, 222–226 (2014)

129. Noble, A., Gupta, R., Mundy, J., Schmitz, A., Hartley, R.: High precision X-ray stereo for
automated 3D CAD-based inspection. IEEE Trans. Robot. Autom. 14(2), 292–302 (1998)

130. Nugraha, B., Verboven, P., Janssen, S., Wang, Z., Nicolaï, B.M.: Non-destructive porosity
mapping of fruit and vegetables using X-ray ct. Postharvest Biol. Technol. 150, 80–88 (2019)

131. Oertel, C., Bock, P.: Identification of objects-of-interest inX-Ray images. In: Applied Imagery
and Pattern Recognition Workshop, 2006. AIPR 2006. 35th IEEE, p. 17 (2006)

132. Ogawa, Y., Kondo, N., Shibusawa, S.: Inside quality evaluation of fruit by X-ray image. In:
2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003.
AIM 2003. Proceedings. vol. 2, pp. 1360–1365 (2003)

133. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7),
971–987 (2002)

134. Orina, I., Manley,M., Kucheryavskiy, S.,Williams, P.J.: Application of image texture analysis
for evaluation of X-ray images of fungal-infected maize kernels. Food Anal. Methods 11(10),
2799–2815 (2018)

135. Pan, H., Pang, Z., Wang, Y., Wang, Y., Chen, L.: A new image recognition and classification
method combining transfer learning algorithm andmobilenetmodel forwelding defects. IEEE
Access (2020)

136. Pieringer, C., Mery, D.: Flaw detection in aluminium die castings using simultaneous combi-
nation of multiple views. Insight 52(10), 548–552 (2010)

137. Pizarro, L.,Mery, D., Delpiano, R., Carrasco,M.: Robust automatedmultiple view inspection.
Pattern Anal. Appl. 11(1), 21–32 (2008)

138. Ramírez, F., Allende, H.: Detection of flaws in aluminium castings: a comparative study
between generative and discriminant approaches. Insight-Non-Destruct. Test. Condit. Moni-
tor. 55(7), 366–371 (2013)

139. Ren, J., Ren, R., Green, M., Huang, X.: Defect detection from X-ray images using a three-
stage deep learning algorithm. In: 2019 IEEECanadianConferenceofElectrical andComputer
Engineering (CCECE), pp. 1–4. IEEE (2019)

140. Riffo, V., Flores, S., Mery, D.: Threat objects detection in X-ray images using an active vision
approach. J. Nondestruct. Eval. 36(3), 44 (2017)

141. Riffo, V., Godoy, I., Mery, D.: Handgun detection in single-spectrum multiple X-ray views
based on 3d object recognition. J. Nondestruct. Eval. 38(3), 66 (2019)

142. Riffo, V., Mery, D.: Active X-ray testing of complex objects. Insight 54(1), 28–35 (2012)
143. Riffo, V.,Mery, D.: Automated detection of threat objects using adapted implicit shapemodel.

IEEE Trans. Syst., Man, Cybern.: Syst. 46(4), 472–482 (2016)

https://doi.org/10.1109/CCST.1995.524908
https://doi.org/10.1109/CCST.1995.524908

434 9 Applications in X-ray Testing

144. Rogers, T.W., Jaccard, N., Griffin, L.D.: A deep learning framework for the automated inspec-
tion of complex dual-energy X-ray cargo imagery. In: Anomaly Detection and Imaging with
X-Rays (ADIX) II, vol. 10187, p. 101870L. International Society for Optics and Photonics
(2017)

145. Saavedra, D., Banerjee, S., Mery, D.: Detection of threat objects in baggage inspection with
X-ray images using deep learning. Neural Comput. Appl. pp. 1–17. Springer (2020)

146. Sangwan, D., Jain, D.K.: An evaluation of deep learning based object detection strategies for
threat object detection in baggage security imagery. Pattern Recognit. Lett. (2019)

147. Schmidt-Hackenberg, L., Yousefi, M.R., Breuel, T.M.: Visual cortex inspired features for
object detection in X-ray images. In: 2012 21st International Conference on Pattern Recog-
nition (ICPR), pp. 2573–2576. IEEE (2012)

148. Schoeman, L., Williams, P., du Plessis, A., Manley, M.: X-ray micro-computed tomography
(μct) for non-destructive characterisation of food microstructure. Trends Food Sci. Technol.
47, 10–24 (2016)

149. Shao, J., Du, D., Chang, B., Shi, H.: Automatic weld defect detection based on potential defect
tracking in real-time radiographic image sequence. NDT & E Int. 46, 14–21 (2012)

150. Shi, D.H., Gang, T., Yang, S.Y., Yuan, Y.: Research on segmentation and distribution features
of small defects in precision weldments with complex structure. NDT & E Int. 40, 397–404
(2007)

151. Sigman, J.B., Spell, G.P., Liang, K.J., Carin, L.: Background adaptive faster R-CNN for semi-
supervised convolutional object detection of threats in X-ray images. In: Anomaly Detection
and Imaging with X-Rays (ADIX) V, vol. 11404, p. 1140404. International Society for Optics
and Photonics (2020)

152. da Silva, R., Mery, D.: State-of-the-art of weld seam inspection using X-ray testing: Part I -
image processing. Mater. Eval. 65(6), 643–647 (2007)

153. da Silva, R., Mery, D.: State-of-the-art of weld seam inspection using X-ray testing: Part II -
pattern recognition. Mater. Eval. 65(9), 833–838 (2007)

154. da Silva, R.R., Calôba, L.P., Siqueira,M.H., Rebello, J.M.: Pattern recognition of weld defects
detected by radiographic test. Ndt & E Int. 37(6), 461–470 (2004)

155. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. CoRR arXiv:abs/1409.1556 (2014)

156. Singh, M., Singh, S.: Optimizing image enhancement for screening luggage at airports. In:
Proceedings of the 2005 IEEE International Conference on Computational Intelligence for
Homeland Security and Personal Safety, 2005. CIHSPS 2005, pp. 131 –136 (2005). https://
doi.org/10.1109/CIHSPS.2005.1500627

157. Singh, S., Singh, M.: Explosives detection systems (eds) for aviation security. Signal Process.
83(1), 31–55 (2003)

158. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans.
Pattern Anal. Mach. Intell. 31(4), 591–605 (2009)

159. Steitz, J.M.O., Saeedan, F., Roth, S.: Multi-view X-ray R-CNN. arXiv preprint
arXiv:1810.02344 (2018)

160. Strecker, H.: Automatic detection of explosives in airline baggage using elastic X-ray scatter.
Medicamundi 42, 30–33 (1998)

161. Suyama, F.M., Delgado, M.R., da Silva, R.D., Centeno, T.M.: Deep neural networks based
approach for welded joint detection of oil pipelines in radiographic images with double wall
double image exposure. NDT & E Int. 105, 46–55 (2019)

162. Tang, Y., Zhang, X., Li, X., Guan, X.: Application of a new image segmentation method to
detection of defects in castings. Int. J. Adv. Manufact. Technol. 43(5–6), 431–439 (2009)

163. Tang, Z., Tian, E., Wang, Y., Wang, L., Yang, T.: Non-destructive defect detection in castings
by using spatial attention bilinear convolutional neural network. IEEE Trans. Indust. Inf. 1
(2020)

164. Tong, T., Cai, Y., Sun, D.: Defects detection of weld image based on mathematical mor-
phology and thresholding segmentation. In: 2012 8th International Conference on Wireless
Communications, Networking and Mobile Computing, pp. 1–4. IEEE (2012)

http://arxiv.org/abs/abs/1409.1556
https://doi.org/10.1109/CIHSPS.2005.1500627
https://doi.org/10.1109/CIHSPS.2005.1500627
http://arxiv.org/abs/1810.02344

References 435

165. Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-
ray baggage security screening using primed visualwords. In: IEEE International Conference
on Industrial Technology (ICIT), pp. 1140–1145 (2013)

166. Uehara, M., Yashiro, W., Momose, A.: Effectiveness of X-ray grating interferometry for non-
destructive inspection of packaged devices. J. Appl. Phys. 114(13), 134,901 (2013)

167. Uroukov, I., Speller, R.: A preliminary approach to intelligent X-ray imaging for baggage
inspection at airports. Signal Process. Res. 4, 1–11 (2015)

168. Van Dael, M., Verboven, P., Zanella, A., Sijbers, J., Nicolai, B.: Combination of shape and
X-ray inspection for apple internal quality control: in silico analysis of themethodology based
on X-ray computed tomography. Postharvest Biol. Technol. 148, 218–227 (2019)

169. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algo-
rithms. In: Proceedings of the International Conference onMultimedia, pp. 1469–1472. ACM
(2010)

170. Vilar, R., Zapata, J., Ruiz, R.: An automatic system of classification of weld defects in radio-
graphic images. NDT & E Int. (2009)

171. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154
(2004)

172. Wales, A., Halbherr, T., Schwaninger, A.: Using speed measures to predict performance in
X-ray luggage screening tasks. In: 43rd Annual 2009 International Carnahan Conference on
Security Technology, 2009, pp. 212–215 (2009)

173. Wang, Y., Shi, F., Tong, X.: Awelding defect identification approach inX-ray images based on
deep convolutional neural networks. In: International Conference on Intelligent Computing,
pp. 53–64. Springer (2019)

174. Wang,Y., Sun,Y., Lv, P.,Wang,H.:Detection of lineweld defects based onmultiple thresholds
and support vector machine. NDT & E Int. 41(7), 517–524 (2008)

175. Wang, Y., Wang, M., Zhang, Z.: Microfocus X-ray printed circuit board inspection system.
Optik-Int. J. Light and Electron Opt. 125(17), 4929–4931 (2014)

176. Wells,K.,Bradley,D.:A reviewofX-ray explosives detection techniques for checkedbaggage.
Appl. Radiat. Isotopes (2012)

177. Wu, J.h., Yan, X.y., Wang, G.: High-resolution pcb board defect detection system based on
non-destructive detection. Instrum. Tech. Sens. 6, 028 (2013)

178. Xu, C., Han, N., Li, H.: A dangerous goods detection approach based on yolov3. In: Proceed-
ings of the 2018 2Nd International Conference on Computer Science and Artificial Intelli-
gence, CSAI ’18, pp. 600–603. ACM, New York (2018). https://doi.org/10.1145/3297156.
3297199. http://doi.acm.org/10.1145/3297156.3297199

179. Yahaghi, E., Mirzapour, M., Movafeghi, A.: Enhancing flaw detection in aluminum castings
by two different mixed noise removal methods. Phys. Script. 95(7), 075,302 (2020)

180. Yang, J., Zhao, Z., Zhang, H., Shi, Y.: Data augmentation for X-ray prohibited item images
using generative adversarial networks. IEEE Access 7, 28894–28902 (2019)

181. Yirong, Z., Dong, D., Baohua, C., Linhong, J., Jiluan, P.: Automatic weld defect detection
method based on kalman filtering for real-time radiographic inspection of spiral pipe. NDT
& E Int. (2015)

182. Yongwei, Y., Liuqing, D., Cuilan, Z., Jianheng, Z.: Automatic localization method of small
casting defect based on deep learning feature. Chinese J. Sci. Instrum. 2016(6), 21 (2016)

183. Yuanxi, W., Liu, X.: Dangerous goods detection based on transfer learning in X-ray images.
Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04360-0

184. Zakaria, S., Amir, A., Yaakob, N., Nazemi, S.: Automated detection of printed circuit boards
(pcb) defects by using machine learning in electronic manufacturing: Current approaches.
MS&E 767(1), 012,064 (2020)

185. Zapata, J., Vilar, R., Ruiz, R.: Automatic inspection system of welding radiographic images
based on ann under a regularisation process. J. Nondestruct. Eval. 31(1), 34–45 (2012)

186. Zentai, G.: X-ray imaging for homeland security. In: IEEE InternationalWorkshop on Imaging
Systems and Techniques (IST 2008) pp. 1–6 (2008)

https://doi.org/10.1145/3297156.3297199
https://doi.org/10.1145/3297156.3297199
http://doi.acm.org/10.1145/3297156.3297199
https://doi.org/10.1007/s00521-019-04360-0

436 9 Applications in X-ray Testing

187. Zhang, J., Guo, Z., Jiao, T., Wang, M.: Defect detection of aluminum alloy wheels in radio-
graphy images using adaptive threshold and morphological reconstruction. Appl. Sci. 8(12),
2365 (2018)

188. Zhang, N., Zhu, J.: A study of X-ray machine image local semantic features extraction model
based on bag-of-words for airport security. Int. J. Smart Sens. Intell. Syst. 1, 45–64 (2015)

189. Zhao, X., He, Z., Zhang, S.: Defect detection of castings in radiography images using a robust
statistical feature. JOSA A 31(1), 196–205 (2014)

190. Zhao,X.,He, Z., Zhang, S., Liang,D.:A sparse-representation-based robust inspection system
for hidden defects classification in casting components. Neurocomputing 153, 1–10 (2015)

191. Zhong, J., Zhang, F., Lu, Z., Liu, Y., Wang, X.: High-speed display-delayed planar X-ray
inspection system for the fast detection of small fishbones. J. FoodProcess Eng. 42(3), e13,010
(2019)

192. Zhu, Z., Hu, Y.C., Zhao, L.: Gamma/X-ray linear pushbroom stereo for 3D cargo inspection.
Mach. Vis. Appl. 21(4), 413–425 (2010)

193. Zhu, Z., Zhao, L., Lei, J.: 3D measurements in cargo inspection with a gamma-ray linear
pushbroom stereo system. In: Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR-05) (2005)

194. Zou,L.,Yusuke,T.,Hitoshi, I.:Dangerous objects detectionofX-ray images using convolution
neural network. In: International Conference on Security with Intelligent Computing and Big-
Data Services, pp. 714–728. Springer (2018)

Appendix A
GDXray+ Database

In this Appendix we show the details of each series of GDXray+. The database
consists of 23,189X-ray images. The images are organized in a public database called
GDXray+ that can be used free of charge,1 for research and educational purposes
only. The database includes five groups of X-ray images: castings, welds, baggages,
natural objects, and settings. Each group has several series, and each series several
X-ray images. The most of the series are annotated or labeled. In those cases, the
coordinates of the bounding boxes of the objects of interest or the labels of the
images are available in standard text files. The size ofGDXray+ is 4.5 GB and it can
be downloaded from our website.

The details of each series are summarized in following tables: TableA.1 for natural
objects, Table A.2 for castings, Table A.3 for baggages, Table A.4 for welds, and
Table A.5 for setting X-ray images. See more about GDXray+ in Chap.2.

1Available on https://domingomery.ing.puc.cl/material/.

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9

437

https://domingomery.ing.puc.cl/material/
https://doi.org/10.1007/978-3-030-56769-9

438 Appendix A: GDXray+ Database

Table A.1 Description of group ‘Nature’ of GDXray+

Series Images kpixels Description Additional

N0001 13 5935.1 Apples

N0002 200 10.0 Cropped images of 100 ×
100 pixels for fish bone
detection

Labels

N0003 7,697 0.1 Cropped images of 10 × 10
pixels for fish bone
detection

Labels

N0004 20 143.3 Static noisy images of a
wood piece

N0005 9 4076.7 Apples Annotations
for apples

N0006 27 5935.1 Cherries Annotations
for cherries

N0007 8 5935.1 Cherries Annotations
for cherries

N0008 3 5935.1 Kiwis Annotations
for cherries

N0009 39 585.0 Wood pieces

N0010 99 83.6 Wood pieces

N0011 163 5935.1 Salmon filets

N0012 6 5935.1 Selected 6 images of
N0011

Annotation for
fish bones. See
N0013

N0013 6 5935.1 Binary ideal segmentation
of N0012

Original
images in
N0012

Appendix A: GDXray+ Database 439

Table A.2 Description of group ‘Castings’ of GDXray+

Series Images kpixels Description Additional

C0001 72 439.3 Wheel: Rotation each 5 degrees Annotations
for defects,
calibration

C0002 90 44.5 Crops of C0001 with and without
defects

Annotations
for defects

C0003 37 439.3 Wheel with slow rotation

C0004 37 439.3 Wheel with medium rotation. No
defects

C0005 37 439.3 Wheel with fast rotation. No
defects

C0006 37 439.3 Wheel with medium rotation. No
defects

C0007 37 439.3 Wheel with medium rotation

C0008 37 439.3 Wheel with medium rotation.
Large defect

Annotations
for defects

C0009 37 439.3 Wheel with medium rotation

C0010 37 439.3 Wheel with medium rotation.
Large defect

Annotations
for defects

C0011 37 439.3 Wheel with medium rotation

C0012 37 439.3 Wheel with medium rotation. No
defect

C0013 37 439.3 Wheel with medium rotation. No
defect

C0014 37 439.3 Wheel with medium rotation.
Defect at axis

C0015 37 439.3 Wheel with medium rotation.
Defect at axis

Annotations
for defects

C0016 37 439.3 Wheel with medium rotation.
Defect at edge

C0017 37 439.3 Wheel with medium rotation.
Defect at edge

C0018 37 439.3 Wheel with no defect

C0019 37 439.3 Wheel with hidden defect Annotations
for defects

C0020 37 439.3 Wheel with possible defect at
lateral side

C0021 37 439.3 Wheel with many small drilled
defects

Annotations
for defects

C0022 37 439.3 Wheel with letters at lateral side

C0023 37 439.3 Wheel with no defect

C0024 37 439.3 Wheel with defects at the lateral
side

Annotations
for defects

(continued)

440 Appendix A: GDXray+ Database

Table A.2 (continued)

Series Images kpixels Description Additional

C0025 37 439.3 Wheel with defects like a regular
structure

C0026 37 439.3 Wheel with large hidden defects Annotations
for defects

C0027 37 439.3 Wheel with no defect

C0028 37 439.3 Wheel with no defect

C0029 37 439.3 Wheel with no defect (lateral side) Annotations
for regular
structure

C0030 37 439.3 Wheel with defect in its axis Annotations
for defects

C0031 37 439.3 Wheel with several defects Annotations
for defects

C0032 37 439.3 Wheel with several defects Annotations
for defects

C0033 37 439.3 Wheel with several defects Annotations
for defects

C0034 37 439.3 Wheel with defects. No motion Annotations
for defects

C0035 37 439.3 Wheel with large defect Annotations
for defects

C0036 37 439.3 Wheel with letters at lateral side Annotations
for letters

C0037 37 439.3 Wheel with large defect on an edge Annotations
for defects

C0038 37 439.3 Wheel with hidden defect Annotations
for defects

C0039 37 439.3 Wheel with hidden defect Annotations
for defects

C0040 37 439.3 Wheel with hidden defect Annotations
for defects

C0041 37 439.3 Wheel with defects. No motion Annotations
for defects

C0042 37 439.3 Wheel with several defects in
motion

Annotations
for defects

C0043 37 439.3 Wheel with large defect at axis Annotations
for defects

C0044 66 65.5 Wheel with small drilled defects

C0045 66 65.5 Wheel with small drilled defects Annotations
for defects

C0046 65 65.5 Wheel with small drilled defects

C0047 72 65.5 Wheel with small drilled defects Annotations
for defects

C0048 71 65.5 Wheel with small drilled defects

(continued)

Appendix A: GDXray+ Database 441

Table A.2 (continued)

Series Images kpixels Description Additional

C0049 63 65.5 Wheel with small drilled defects

C0050 54 65.5 Wheel with small drilled defects

C0051 77 65.5 Wheel with small drilled defects Annotations
for defects

C0052 17 440.8 Knuckle with small defects in
motion

C0053 31 440.8 Knuckle with small defects in
motion

C0054 31 440.8 Knuckle with low contrast defects
in motion

Annotations
for defects

C0055 28 440.8 Sink strainer Annotations
for holes

C0056 10 440.8 Sink strainer high speed

C0057 31 440.8 Knuckle with low contrast defects
in motion

Annotations
for defects

C0058 56 440.8 Knuckle with small defects in
motion

C0059 43 440.8 Knuckle with small defects in
motion

C0060 14 440.8 Knuckle with small defects in
motion

Annotations
for defects

C0061 31 440.8 Knuckle with small defects in
motion

C0062 10 440.8 Knuckle with small defects in
motion

Annotations
for defects

C0063 11 440.8 Knuckle with small defects in
motion

C0064 56 440.8 Knuckle with small defects in
motion

C0065 10 440.8 Knuckle with small defects in
motion

Annotations
for defects

C0066 52 440.8 Knuckle with small defects in
motion

C0067 83 440.8 Knuckle with small defects in
motion

(continued)

442 Appendix A: GDXray+ Database

Table A.2 (continued)

Series Images kpixels Description Additional

C0068 72 439.3 Copy of series C0001 with
different sizes

C0069 2 1000.0 Unlabeled casting object

C0070 10 1000.0 Unlabeled casting object

C0071 2 1000.0 Unlabeled casting object

C0072 15 1000.0 Unlabeled casting object

C0073 12 1000.0 Unlabeled casting object

C0074 5 1000.0 Unlabeled casting object

C0075 14 1000.0 Unlabeled casting object

C0076 20 1000.0 Unlabeled casting object

C0077 5 1000.0 Unlabeled casting object

C0078 7 1000.0 Unlabeled casting object

C0079 10 1000.0 Unlabeled casting object

C0080 32 1048.6 Unlabeled casting object

C0081 5 1000.0 Unlabeled casting object

C0082 12 1000.0 Unlabeled casting object

C0083 20 1000.0 Unlabeled casting object

Appendix A: GDXray+ Database 443

Table A.3 Description of group ‘Baggages’ of GDXray+
Series Images kpixels Description Additional

B0001 14 5935.1 Pen case with several objects Annotations
for razor
blades

B0002 9 1287.0 Pen case with several objects Annotations
for razor
blades

B0003 10 1287.0 Pen case with several objects Annotations
for clips

B0004 9 722.5 Pen case with occluded razor blade Annotations
for razor
blades

B0005 10 722.5 Pen case with several objects Annotations
for pins

B0006 10 722.5 Pen case with occluded razor blade Annotations
for razor
blades

B0007 20 129.6 Razor blade for training purposes

B0008 361 745.8 Rotation of a knife in 10

B0009 4 276.6 Backpack with handgun Annotations
for handguns

B0010 11 276.6 Backpack with handgun Annotations
for handguns

B0011 10 276.6 Backpack with handgun Annotations
for handguns

B0012 4 276.6 Backpack with handgun Annotations
for handguns

B0013 10 276.6 Backpack with handgun and knife Annotations
for knives

B0014 5 276.6 Backpack with handgun and camera Annotations
for handguns

B0015 5 276.6 Backpack with handgun Annotations
for handguns

B0016 4 276.6 Backpack with self-occluded handgun Annotations
for handguns

B0017 5 276.6 Backpack with occluded handgun Annotations
for handguns

B0018 4 276.6 Backpack with handgun and laptop Annotations
for handguns

B0019 6 276.6 Backpack with handgun and laptop Annotations
for handguns

B0020 4 276.6 Backpack with handgun Annotations
for handguns

B0021 4 276.6 Backpack with handgun Annotations
for handguns

B0022 6 276.6 Backpack with handgun Annotations
for handguns

B0023 6 276.6 Backpack with handgun Annotations
for handguns

B0024 5 276.6 Backpack with handgun Annotations
for handguns

(continued)

444 Appendix A: GDXray+ Database

Table A.3 (continued)
Series Images kpixels Description Additional

B0025 4 276.6 Backpack with handgun Annotations
for handguns

B0026 5 276.6 Backpack with handgun Annotations
for handguns

B0027 5 276.6 Backpack with handgun Annotations
for handguns

B0028 5 276.6 Backpack with handgun and laptop Annotations
for handguns

B0029 7 276.6 Backpack with handgun and laptop Annotations
for handguns

B0030 7 276.6 Backpack with handgun Annotations
for handguns

B0031 4 276.6 Backpack with handgun and laptop Annotations
for handguns

B0032 4 276.6 Backpack with handgun Annotations
for handguns

B0033 5 276.6 Backpack with occluded handgun Annotations
for handguns

B0034 6 276.6 Backpack with handgun and laptop Annotations
for handguns

B0035 4 276.6 Backpack with handgun and laptop Annotations
for handguns

B0036 11 276.6 Backpack with self-occluded handgun Annotations
for handguns

B0037 11 276.6 Backpack with handgun Annotations
for handguns

B0038 11 276.6 Backpack with handgun Annotations
for handguns

B0039 9 276.6 Backpack with handgun Annotations
for handguns

B0040 12 276.6 Backpack with handgun Annotations
for handguns

B0041 10 276.6 Backpack with handgun Annotations
for handguns

B0042 19 276.6 Backpack with handgun and knives Annotations
for handguns

B0043 9 276.6 Backpack with handgun and camera Annotations
for handguns

B0044 178 5935.1 Backpack with handgun Calibration
parameters

B0045 90 1287.0 Pen case in 90 positions Annotations
for razor
blades

B0046 200 5844.0 Backpack with handgun Annotations
for handguns

B0047 200 5896.9 Backpack with shuriken Annotations
for shuriken

(continued)

Appendix A: GDXray+ Database 445

Table A.3 (continued)
Series Images kpixels Description Additional

B0048 200 5412.0 Backpack with razor blade Annotations
for razor blade

B0049 200 759.5 Handguns for training purposes

B0050 100 741.3 Shuriken for training purposes

B0051 100 165.6 Razor blades for training purposes

B0052 144 741.3 Shuriken with 8 points for training
purposes

B0053 144 741.3 Shuriken with 7 points for training
purposes

B0054 144 741.3 Shuriken with 6 points for training
purposes

B0055 800 16.9 200 4-image sequences of single objects Labels

B0056 1200 18.1 200 6-image sequences of single objects Labels

B0057 1600 18.0 200 8-image sequences of single objects Labels

B0058 64 196.6 Crops of clips, springs, razor blades and
others

Labels. See
B0059

B0059 64 196.6 Binary ideal segmentation of images of
B0058

Labels.
Original
images in
B0058

B0060 2 5935.1 Images for dual-energy experiments Annotations
for shuriken

B0061 21 3656.8 Razor blade in a can

B0062 22 3656.8 Razor blade in a wallet

B0063 19 3656.8 Razor blade in a CD case Annotations
for razor
blades

B0064 19 3656.8 Razor blade in a pen case

B0065 21 3656.8 Razor blade in a pen case Annotations
for razor
blades

B0066 22 3656.8 Razor blade in a pen case

B0067 17 2856.1 Razor blade in a wallet Annotations
for razor
blades

B0068 20 2856.1 Razor blade in a large wallet

B0069 25 2856.1 Razor blade in a pen case

B0070 21 2856.1 Razor blade in a pen case Annotations
for razor
blades

B0071 22 2856.1 Razor blade in a pen case

(continued)

446 Appendix A: GDXray+ Database

Table A.3 (continued)
Series Images kpixels Description Additional

B0072 22 2856.1 Razor blade in a small pen case

B0073 20 2856.1 Razor blade in a can Annotations
for razor
blades

B0074 37 2856.1 Rotation of a door key in 100

B0075 576 5935.1 Knife in 576 positions

B0076 576 1581.8 Knife in 576 positions

B0077 576 1582.6 Knife in 576 positions

B0078 500 443.9 Non-baggage X-ray images

B0079 150 1205.6 Cropped handguns

B0080 150 778.2 Cropped shuriken

B0081 150 144.7 Cropped razor blades

B0082 600 133.4 Cropped non-threat objects

B0083 48 5935.1 Backpacks with no threat objects
(original name: BX-100)

B0084 67 59351. Dual-energy X-ray images with fruits
and knifes

B0085 48 5935.1 Backpacks with no threat objects
(original name: BX-55)

B0086 1000 4.1 GAN generated patches (64 × 64
pixels) of background

Table A.4 Description of group ‘Welds’ of GDXray+

Series Images kpixels Description Additional

W0001 10 3323.8 Selection of 10
images of W0003

Annotations for
defects. See
W0002

W0002 10 3323.8 Binary ideal
segmentation of
images of W0001

W0003 68 6693.8 Radiographs from
a round robin test
performed by
BAM

Excel file with
real-values

W0004 68 3323.8 Same images of
W0002 but with 0
and 255 values

Appendix A: GDXray+ Database 447

Table A.5 Description of group ‘Settings’ of GDXray+

Series Images kpixels Description Additional

S0001 18 5935.1 Checkerboard
captured by flat
panel

Calibration
parameters

S0002 1 427.9 Regular grid
captured by
image intensifier

Coordinates of
calibration points

S0003 36 440.8 Circular pattern
in different
positions

Manipulator
coordinates, 3D
coordinates

S0004 23 440.8 Circular pattern
in different
positions

Manipulator
coordinates, 3D
coordinates

S0005 27 440.8 Circular pattern
in different
positions

Manipulator
coordinates, 3D
coordinates

S0006 17 440.8 Circular pattern
in different
positions

Manipulator
coordinates, 3D
coordinates

S0007 29 440.8 Circular pattern
in different
positions

Coordinates of
calibration points
(2D & 3D)

S0008 18 5935.1 Checkerboard of
series S0001
with corners

Calibration
parameters

Index

A
Absorption, 8, 23
Accuracy, 214, 231, 252, 261, 307
Activation function, 279
Active-vision, 29
Adam method, 287
Adaptive sparse representation, 251
Adaptive thresholding, 153
AISM, 308
AlexNet, 308, 311, 324
Annotations, 44, 47, 49, 54, 58, 60, 277
Anode, 7, 12
Area, 171, 178
Area under ROC curve. see AUC
aRTist, 351, 369
Atomic number, 23
Atoms of a dictionary, 204
AUC, 262
Automated system, 2
Automative parts, 47
Automobile industry, 4
Average filtering, 136
Average precision, 263
Axis length, 172, 175

B
Backpacks, 50
Backward-propagation, 283, 284, 290, 297
Baggage, 4, 44, 46, 50, 131, 141, 149, 166,

304, 403
Band-pass filtering, 419
Basic geometric features, 171
Basic intensity features, 181
Basic simulation, 343
Bayes classifier, 232
Between-class covariance matrix, 213

Bifocal tensors, 108
Binarized statistical image features. see

BSIF
Binary classification task, 262
Binary image, 142, 149
Biology, 278
Boltzmann machines, 288
Bounding box, 326
Branch and bound, 214
BSIF, 198
Bundle adjustment, 93, 406, 414

C
CAD, 89, 93, 97, 100, 111, 351, 358, 369,

383
Calibration, 79, 92, 97, 98, 357, 406
Calibration images, 44, 46, 56
Calibration object, 93, 97, 100, 133
Camera model, 80
Cancer, 276
Canny edge detector, 147, 389
Canonical form, 110, 115, 119
Cartesian coordinates, 66
Casting defects, 291, 299
Castings, 44, 46, 47, 128, 137, 141, 148, 156,

157, 186, 187, 191, 207, 357, 376
Cathode, 7, 12
CCD-camera, 3, 5, 15, 75, 76, 79, 81, 82, 85,

88, 102
Center of mass, 171, 175, 178
Central projection, 77
Cherries, 44, 54
Circulant matrix, 162
Class frequency distribution, 208
Classification, 170, 228, 382
Classification strategy, 267

© Springer Nature Switzerland AG 2021
D. Mery and C. Pieringer, Computer Vision for X-Ray Testing,
https://doi.org/10.1007/978-3-030-56769-9

449

https://doi.org/10.1007/978-3-030-56769-9

450 Index

Classifiers, 229
Classifier selection, 266, 267
Clips, 252, 410
CLP, 186, 416
Color maps, 20, 58
Compton effect, 9
Computed tomography, 2, 5, 32, 118
Computer, 16, 76
Computer graphics, 96, 343
Computer vision, 25
Computer vision system, 75, 79, 90, 92, 100,

116
Conditional probability, 232
Confidence interval, 255
Confusion matrix, 259
Conrad Röntgen. see Roentgen
Contrast, 6, 18, 127, 156, 157, 183, 186
Contrast enhancement, 129
Convex area, 172
Convolution, 136, 162, 193
Convolutional neural networks, 288
Convolution layer, 292, 293
Co-occurrence matrix, 191
Coordinate systems, 26, 76

image, 78, 80, 81, 88, 90, 111
manipulator, 91
object, 78, 80, 86, 90, 91, 110
output screen, 87, 112
projection, 78
world, 77, 86, 90, 91
X-ray projection, 78, 80, 81, 86, 87, 111

Correspondence problem, 102
Corresponding points, 29, 102, 111, 115
Covariance matrix, 204, 213, 232
Crack simulation, 359
Cross-entropy, 282, 330
Crossing line profile. see CLP
Cross product, 67
cross-validation, 217, 255, 268, 399, 420
CT. see computed tomography
Curse of the dimensionality, 210

D
Danielson factor, 172
Data association, 29, 408
Data augmentation, 359, 367
Datasets, 44
DCT, 195, 204, 398
Deep belief networks, 288
Deep learning, 29, 276, 377, 395, 404, 416,

418, 424
Deep neural networks, 288

Defect-free image, 137
DenseNet, 308
Descriptors, 195
Detection in one stage, 323
Detection in two stages, 323
Detection of defects, 397
Detection of radiation, 369
Detector, 262
DFT, 195, 204, 398
Dictionary, 204
Dictionary learning, 206
Difference of Gaussians. see DoG
Digital radiography, 2
Discrete Cosine Transform. see DCT
Discrete Fourier Transform. see DFT
Discriminator, 315
3D measurement, 120
DoG, 200
3D recognition, 403
3D reconstruction, 101, 111, 118, 383, 386,

409
3D representation, 23, 171
Dropout, 294
Dual-energy, 23, 404

E
Eccentricity, 172, 175
Edge detection, 126, 140, 156, 159, 186, 381
Electromagnetic distortion, 76, 79, 81, 85,

87, 89, 94, 97, 101, 102, 113
Electromagnetic spectrum, 6
Elliptical features, 175
Energy, 23
Energy based models, 288
Epipolar constraint, 107, 383, 406
Epipolar geometry, 29, 103
Epipolar line, 104, 114
Epipole, 106
Equivalent diameter, 172
Euclidean distance classifier, 230
Euclidean transformation. see geometric

transformations
Euler angles, 71, 78, 98
Euler number, 172
Exhaustive search, 214
Experimental protocol, 296, 304, 314
Explosive detection systems, 6
Extent, 172
Extrinsic parameters, 78, 80, 89, 91

F
Face recognition, 276

Index 451

Fake image, 317
False correlation, 211
False detection, 149
False negative, 260
False negative rate, 261
False positive, 260
False positive rate, 261
Faster R-CNN, 323
Fast R-CNN, 323
Feature cleaning, 212
Feature extraction, 170
Feature normalization, 211
Feature representation, 211
Feature selection, 170, 207
Feature space, 211
Filled area, 172
Filter banks, 195
Filter mask, 135
Fine-tuning, 311
Fish bones, 44, 54
Fisher criterion, 213
Flat panel, 3, 5, 16, 75, 76, 80, 90
Flaw simulation, 348
Fluoroscopy, 3, 4
Flusser moments, 179
Focal length, 74, 77, 86, 91, 387
Focal loss, 330
Food inspection, 6
Forward orthogonal search, 218
Forward-propagation, 282
Fourier descriptors, 177
Fourier transform, 163, 177
Frozen layers, 312
F1-score, 262
Fully connected layer, 293, 314
Fundamental matrix, 107, 110, 383, 406

G
Gabor transform, 193, 204, 205
Gamma-correction, 131
Gamma-rays, 6
GAN, 314
Gaussian distribution, 231, 233, 236
Gaussian filtering, 136, 142, 144, 147, 201
GDXray, 34, 43–47, 58–61, 90, 98, 108, 117,

129, 210, 216, 220, 304, 306, 319,
330–332, 365, 367, 377, 394, 398,
400, 417, 420, 424, 437–439, 443,
446, 447

Generative adversarial network. see GAN
Generator, 315
Geometric distortion, 76, 79–81, 85, 89, 94,

97, 101, 102, 111, 113

Geometric features, 171
Geometric model, 26, 75, 76, 339
Geometric transformations, 66

2D → 2D, 68
3D → 3D, 71
affine transformation (2D), 70, 179
Euclidean transformation (2D), 69
general transformation (2D), 70
homography, 70, 88
perspective, 73, 75, 91
perspective projection matrix, 74
rotation (2D), 68, 82
rotation (3D), 71, 91, 92, 98
rotation matrix (2D), 69
rotation matrix (3D), 71, 78
similarity transformation (2D), 70
transformation 3D → 2D, 73
translation (2D), 68, 80, 82, 86, 91
translation (3D), 71, 78, 91, 92, 98

Geometry of four views, 117
Geometry of three views, 114
Geometry of two views. see bifocal geome-

try
geometry of n views, 117
Global threshold, 150
GoogleNet, 308, 311
Gradient descent, 282, 287
Gradient estimation, 141
Gradient image, 141, 181, 381
Graphic user interface, 58, 60, 268
Grayscale, 16, 20, 23, 25, 126, 129
Gray value, 17–20, 127, 129, 131, 133, 135,

137, 143, 150, 152, 154, 159
Ground truth, 47, 49, 54, 58, 98
Gupta moments, 179

H
Handcrafted features, 276
Handguns, 50, 219, 222, 252
Haralick features. see statistical textures
Harrys transform, 397
Height, 171
Hidden layer, 280
Histogram, 129, 131, 132, 150, 197
Histogram of oriented gradients. see HOG
HOG, 199, 406, 416
Hold-out, 253
Homogeneous coordinates, 66
Homography. see geometric transformations
Human operators, 277, 369
Hu-moments, 179
Hyperbolic model, 81, 85, 111, 357

452 Index

I
Identification of potential defects, 377
Illumination invariant, 201
Image acquisition, 19
Image analysis, 126
Image averaging, 127
Image classification, 320
Image degradation, 162
Image filtering, 126, 135, 142, 150, 161
Image indexing, 413
Image integration, 127
Image intensifier, 3–5, 14, 75–77, 79–81, 83,

85, 88, 94, 98, 101, 102, 111, 116
ImageNet, 302, 311
Image preprocessing, 126, 127
Image processing, 126
Image restoration, 161
Imaging model, 339
Inception, 308
Industrial inspection system, 3
Infrared, 6
Intensity features, 181
Intensity kurtosis, 182
Intensity mean, 182
Intensity moments, 191
Intensity skewness, 182
Intensity standard deviation, 182
Intercept theorem, 74
Interclass variance, 151
Interclass variation, 213
Intersection over union. see IoU
Intraclass variance, 151
Intraclass variation, 213
Intrinsic parameters, 79–81, 89, 91
Invariant features, 179
Invariant moments, 178
Inverse filtering, 161
IoU, 264

K
Keras library, 299
Kernel density estimation, 234
Kernel function, 245
Keypoint, 200, 201
Kiwis, 54
K-means, 205, 207
K-nearest neighbors. see KNN
Knives, 50
KNN, 239, 298, 302, 308, 411
Knuckles, 47
K-SVD, 207
Kurtosis, 182

L
Labeling, 277
Lagrange multipliers, 165
Laplacian-of-Gaussian. see LoG
Layers, 280, 290
LBP, 196, 406, 422
LDA, 217, 236
Learned features, 276
Least square estimation, 218
Leave-one-out, 258
linear discriminant analysis. see LDA
Linear filtering, 136
Line representation, 67
Local binary patterns. see LBP
Location, 171, 175
LoG, 145, 182, 186, 187, 381
Logistic regression, 217, 279, 288
Loss function, 282, 290, 297
Low-pass filtering, 137, 138, 144, 145, 159,

381

M
Mahalanobis distance classifier, 231
Manifold surface, 358
Manipulator, 13, 75, 76, 90, 92
Manual inspection, 2
Mask superimposition, 349
Mass attenuation coefficient, 23
Matching in n views, 384
Matching in two views, 382
Material density, 23
MATLAB

Balu Toolbox, 411
Optimization Toolbox, 100
PMT Toolbox, 411
VLFeat Toolbox, 411

mean average precision (mPA), 265
Mean boundary gradient, 182
Mean gradient, 181
Mean gray value, 181
Mean Laplacian, 182
Mean second derivative, 182
Median filtering, 137, 138, 148, 389
Medical imaging, 44
Medicine, 2, 44, 90, 276
Microwaves, 6
Minimization, 282
MINIO, 164
Min-max game, 318
Miss rate, 261
Mlxtend library, 215
MobileNet, 308, 314
Morphological closing, 152

Index 453

Morphological dilation, 152
Morphological erosion, 152
Morphological operations, 150
MRMR, 219
MSER, 159
multicolor detectors, 6
multifocal tensors, 29
Multi-Layer-Perceptron (MLP), 280
Multiple view analysis, 28, 102
Multiple view geometry, 89, 102
Multiple-view analysis, 382, 404, 408

N
Naive Bayes, 234
Natural objects, 44, 46, 54
Natural products, 416
NDT. see non-destructive testing
Neural networks, 241, 277, 308
Neuron, 279
Neuroscience, 276
Noise removal, 127
Nondestructive testing, 2
Non-homogeneous coordinates, 66
Non-linear distortion, 76
Non-linear filtering, 137
Null space, 104
Numpy library, 285

O
Object detection, 276, 320, 322
Object of interest, 148, 149, 170, 207
Object recognition, 276
OMP, 207
OpenCV library, 94, 160, 202
Optical center, 74, 77
Optimization problem, 317
Orientation, 172, 175
Orthogonal matching pursuit. see OMP

P
Parameters, 282
Parameters estimation, 296
PASCAL criterion, 264
Pattern recognition, 228
PCA, 204, 219
Perceptron, 280
Performance evaluation, 252
Perimeter, 171
Perspective. see geometric transformations
Perspective projection matrix. see geometric

transformations

Photo effect, 9
Photogrammetric calibration, 93
Photon noise, 127
PNG format, 46
Point representation, 66
Point spread function, 161
Poison distribution, 127
Polygon mesh, 343
Positive predictive value, 261
Potential region, 149, 170, 187, 207
Precision, 261, 307
Precision-recall curve, 262
Preface, xv
Pre-trained layers, 304
Pre-trained models, 301, 310
Prewitt filtering, 142
Principal component analysis. see PCA
Probability density function, 208, 234
Projection plane, 74
Pseudo color, 20, 58
Pseudo-inverse, 161
Pseudoinverse, 106
PSF. see point spread function
Public databases, 44
Pybalu library, 172, 175, 178, 182, 212, 214–

217
Pyxvis functions

append_data, 308
best_features_classifier, 268, 394
clean_norm, 216, 222
clean_norm_transform, 216, 222
clf_model, 230–232, 234, 236, 237, 239,
241, 245

CNN, 298, 401
compute_descriptors, 202
cross_validation, 257
DCGAN, 319
define_classifier, 230
dual_energy, 25, 32, 33
dynamic_colormap, 23
Edge, 147
ellipsoid_simulation, 357
estimate_fundamental_matrix, 108
estimate_trifocal_tensor, 117
extract_features, 172, 175, 176, 178, 181,
183, 186, 190, 191, 193–195, 197, 199

extract_features_labels, 216, 217, 222
extract_prt_features, 308
extract_prt_features_img, 308
fse_model, 215, 222
fsel, 215, 217
fse_sbs, 222
gdx_browse, 58, 59

454 Index

gdxraydb, 58, 59
gdx_stats, 59
get_dir, 58
get_matrix_p, 75
gradlog, 190
gui, 58
hist_forceuni, 132
hold_out, 254
hyperproj, 85
im_average, 137, 138
im_gaussian, 137, 138
im_grad, 144
im_median, 138
init_data, 308
leave_one_out, 258
linimg, 129
load_data, 59
load_image, 59
mask_simulation, 351
plot_confussion_matrix, 259
plot_ellipses_image, 177
plot_epipolar_line, 108
plot_features3, 218
plot_precision_recall, 266
plot_ROC, 266
print_confusion, 222
reco_3d2, 121
reco_3dn, 121
region_growing, 155
reproject_trifocal, 117
res_minio, 166
rotation_matrix_2d, 70
rotation_matrix_3d, 73
saliency, 397
seg_bimodal, 152, 153, 220, 270, 402
seg_log_feature, 157, 158
seg_mser, 160
shading, 135
show_color_array, 23
show_series, 58
show_xray_image, 23
sincolormap, 21
superimpose_xray_images, 367
voxel_simulation, 346

Pyxvis library, xiii, 32

Q
QDA, 217, 237
Quadratic discriminant analysis. see QDA
Quadrifocal tensors, 117
Quadrilinearities, 117

R
Radial distortion, 80
Radiographic film, 4, 369
Radiowaves, 6
Ranking by class separability criteria, 217
RANSAC, 413
Rayleigh scattering, 9
Razor blades, 50, 219, 222, 252, 410
R-CNN, 308, 323
Real image, 317
Recall, 261, 307
Recognition of defects, 397
Recognition of threat objects, 304
Region based methods, 323
Region growing, 154
Region of interest (RoI), 187, 324
ReLU layer, 293
Reprojection, 75, 79, 94, 98, 101, 116, 117
ResNet, 308, 330
Retinal plane, 74, 77
RetinaNet, 330
RGB color space, 20
Ridge function, 217
ROC curve, 262
Roentgen, 2, 4
Rotation invariant, 178, 179, 201
Rotation matrix. see geometric transforma-

tions
Roundness, 172

S
Saliency map, 397, 416
Salmon filets, 44, 54
SBS, 217
Scale factor, 80
Scale invariant, 179, 201
Scale-invariant feature transform. see SIFT
Second-order methods, 287
Segmentation, 28, 126, 127, 141, 148, 170,

186, 268, 382, 415
Selective search, 324
Self-calibration, 93
Self-occlusion, 149
Semi-automated system, 2
Sensitivity, 261
Separability, 210, 213
Sequential backward selection. see SBS
Sequential forward selection. see SFS
Setting images, 44, 46, 56
SFS, 214, 399
Shading correction, 132
Shape, 171, 175, 177

Index 455

ShuffleNet, 308
Shuriken, 50, 219, 222, 252
SIFT, 29, 200, 404, 406, 408, 411, 413, 416
Sigmoid, 279
Signal-to-noise ratio, 128, 380, 387
Simulated defects, 314, 320
Simulated ellipsoidal flaw, 353
Simulated shuriken, 314, 320
Simulated spherical flaw, 389
Simulation 337
Simulation software, 369
Single view analysis, 28
Singular-value-decomposition. see SVD
Sin transformation, 20
Size, 171, 175
Skew factor, 80, 85
Skewness, 182
Skimage library, 151
Sklearn library, 229, 285
Sliding-windows, 28, 322, 395
Sobel filtering, 142
Softmax, 295
Solidity, 172
SPAMS library, 204
Sparse coding, 205
Sparse dictionary, 205
Sparse representation, 203
Sparse representation classification, 251
Sparsity, 206
Spatial Pyramid Pooling (SPP), 324
Specificity, 261
Speeded up robust feature. see SURF
Spots detector, 415
Springs, 410
SqueezeNet, 308
SSD, 329
Statistical moments, 178, 191
Statistical texture, 191, 398
STL format, 347, 369
Stochastic methods, 287
Stop list, 251
Structure from motion, 412
Supervised learning, 208, 228
Support vector machines. see SVM
SURF, 203, 406, 413, 416
SVD, 161, 175, 207
SVM, 217, 243, 302, 308, 324, 399, 420
Synthetic image, 317

T
Tangential distortion, 80
Testing, 231, 297

Testing dataset, 214, 252
Testing subset, 296, 310
Texture feature, 182
Thresholding, 142, 146, 149, 187, 419
Tracking principle, 377
Traditional dictionary, 204
Training, 231, 295, 317
Training dataset, 214, 252
Training from scratch, 285
Training subset, 296, 310
Transfer learning, 310
Translation invariant, 179
Transposed convolution, 318
Trifocal geometry, 114
Trifocal tensors, 114, 115, 384
Trilinearities, 115
True negative, 260
True negative rate, 261
True positive, 260
True positive rate, 261
t-Student test, 255

U
Ultraviolet, 6

V
Validation subset, 296, 310
VGG16, 302, 308
VGG19, 308
Visible light, 6
visualization of CNN, 302, 304, 312
Visual vocabulary, 413
Voxel, 343

W
Wavelets, 195, 204
Weights, 279
Welds, 44, 46, 49, 137, 141, 148, 149, 153,

154, 210, 359, 394
Wheels, 47
Width, 171
Within-class covariance matrix, 213
Woods, 44, 54

X
Xception, 308
X-ray computer vision system, 76, 369
X-ray datasets, 44, 277
X-ray images, 44
X-ray image sequence, 379

456 Index

X-ray testing, 2, 277
X-rays, 6

Bremsstrahlung, 7, 369
continuous, 7
detectors, 6
discrete, 7
electron binding, 369
fluorescence, 369
formation, 6
fully automatic system, 5
image formation, 17
image visualization, 20
imaging, 17, 341
pair production, 9, 369
photons, 23
physics, 6
scattering, 8, 369

source, 3, 12, 75–77
spectrum, 7, 369
testing system, 11, 75

3X-strategy, 34

Y
YOLO, 326
YOLOv2, 327
YOLOv3, 328
YOLOv4, 328
YOLOv5, 328

Z
Zero-crossing, 187, 381
ZfNet, 308

	Foreword to the Second Edition
	Foreword to the First Edition
	Preface to the Second Edition
	Preface to the First Edition
	Acknowledgements
	Contents
	About the Authors
	1 X-ray Testing
	1.1 Introduction
	1.2 History
	1.3 Physics of the X-rays
	1.3.1 Formation of X-rays
	1.3.2 Scattering and Absorption of X-rays

	1.4 X-ray Testing System
	1.4.1 X-ray Source
	1.4.2 Manipulator
	1.4.3 Image Intensifier
	1.4.4 CCD-Camera
	1.4.5 Flat Panel
	1.4.6 Computer

	1.5 X-ray Imaging
	1.5.1 X-ray Image Formation
	1.5.2 Image Acquisition
	1.5.3 X-ray Image Visualization
	1.5.4 Dual-Energy

	1.6 Computer Vision
	1.6.1 Geometric Model
	1.6.2 Single View Analysis
	1.6.3 Multiple View Analysis
	1.6.4 Deep Learning
	1.6.5 Computed Tomography

	1.7 Code and Data
	1.7.1 Pyxvis Library
	1.7.2 mathbbGDXray+ Database

	1.8 General Methodology for X-ray Testing
	1.9 Summary
	References

	2 Images for X-ray Testing
	2.1 Introduction
	2.2 Structure of the Database
	2.3 Castings
	2.4 Welds
	2.5 Baggage
	2.6 Natural Objects
	2.7 Settings
	2.8 Python Commands
	2.9 Summary
	References

	3 Geometry in X-ray Testing
	3.1 Introduction
	3.2 Geometric Transformations
	3.2.1 Homogeneous Coordinates
	3.2.2 2D rightarrow 2D Transformation
	3.2.3 3D rightarrow 3D Transformation
	3.2.4 3D rightarrow 2D Transformation

	3.3 Geometric Model of an X-ray Computer Vision System
	3.3.1 A General Model
	3.3.2 Geometric Models of the Computer Vision System
	3.3.3 Explicit Geometric Model Using an Image Intensifier
	3.3.4 Multiple View Model

	3.4 Calibration
	3.4.1 Calibration Using Python
	3.4.2 Experiments of Calibration

	3.5 Geometric Correspondence in Multiple Views
	3.5.1 Correspondence Between Two Views
	3.5.2 Correspondence Between Three Views
	3.5.3 Correspondence Between Four Views or More

	3.6 Three-Dimensional Reconstruction
	3.6.1 Linear 3D Reconstruction from Two Views
	3.6.2 3D Reconstruction from Two or More Views

	3.7 Summary
	References

	4 X-Ray Image Processing
	4.1 Introduction
	4.2 Image Preprocessing
	4.2.1 Noise Removal
	4.2.2 Contrast Enhancement
	4.2.3 Shading Correction

	4.3 Image Filtering
	4.3.1 Linear Filtering
	4.3.2 Non-linear Filtering

	4.4 Edge Detection
	4.4.1 Gradient Estimation
	4.4.2 Laplacian-of-Gaussian (LoG)
	4.4.3 Canny Edge Detector

	4.5 Segmentation
	4.5.1 Thresholding
	4.5.2 Region Growing
	4.5.3 Maximally Stable Extremal Regions (MSER)

	4.6 Image Restoration
	4.7 Summary
	References

	5 X-ray Image Representation
	5.1 Introduction
	5.2 Geometric Features
	5.2.1 Basic Geometric Features
	5.2.2 Elliptical Features
	5.2.3 Fourier Descriptors
	5.2.4 Invariant Moments

	5.3 Intensity Features
	5.3.1 Basic Intensity Features
	5.3.2 Contrast
	5.3.3 Crossing Line Profiles
	5.3.4 Intensity Moments
	5.3.5 Statistical Textures
	5.3.6 Gabor
	5.3.7 Filter Banks

	5.4 Descriptors
	5.4.1 Local Binary Patterns
	5.4.2 Binarized Statistical Image Features (BSIF)
	5.4.3 Histogram of Oriented Gradients
	5.4.4 Scale-Invariant Feature Transform (SIFT)

	5.5 Sparse Representations
	5.5.1 Traditional Dictionaries
	5.5.2 Sparse Dictionaries
	5.5.3 Dictionary Learning

	5.6 Feature Selection
	5.6.1 Basics
	5.6.2 Exhaustive Search
	5.6.3 Branch and Bound
	5.6.4 Sequential Forward Selection
	5.6.5 Sequential Backward Selection
	5.6.6 Ranking by Class Separability Criteria
	5.6.7 Forward Orthogonal Search
	5.6.8 Least Square Estimation
	5.6.9 Combination with Principal Components
	5.6.10 Feature Selection Based in Mutual Information

	5.7 A Final Example
	5.8 Summary
	References

	6 Classification in X-Ray Testing
	6.1 Introduction
	6.2 Classifiers
	6.2.1 Minimal Distance
	6.2.2 Mahalanobis Distance
	6.2.3 Bayes
	6.2.4 Linear Discriminant Analysis
	6.2.5 Quadratic Discriminant Analysis
	6.2.6 K-Nearest Neighbors
	6.2.7 Neural Networks
	6.2.8 Support Vector Machines
	6.2.9 Classification Using Sparse Representations

	6.3 Performance Evaluation
	6.3.1 Hold-Out
	6.3.2 Cross-Validation
	6.3.3 Leave-One-Out
	6.3.4 Confusion Matrix
	6.3.5 ROC and Precision-Recall Curves

	6.4 Classifier Selection
	6.5 Summary
	References

	7 Deep Learning in X-ray Testing
	7.1 Introduction
	7.2 Neural Networks
	7.2.1 Basics of Neural Networks
	7.2.2 Training of Neural Networks
	7.2.3 Examples of Neural Networks

	7.3 Convolutional Neural Network (CNN)
	7.3.1 Basics of CNN
	7.3.2 Learning in CNN
	7.3.3 Testing in CNN
	7.3.4 Example of CNN

	7.4 Pre-trained Models
	7.4.1 Basics of Pre-trained Models
	7.4.2 Example of Pre-trained Models

	7.5 Transfer Learning
	7.5.1 Basics of Transfer Learning
	7.5.2 Training in Transfer Learning
	7.5.3 Example of Transfer Learning

	7.6 Generative Adversarial Networks (GANs)
	7.6.1 Basics of GAN
	7.6.2 Training of GAN
	7.6.3 Implementation of GAN
	7.6.4 Example of GAN

	7.7 Detection Methods
	7.7.1 Basics of Object Detection
	7.7.2 Region Based Methods
	7.7.3 YOLO
	7.7.4 SSD
	7.7.5 RetinaNet
	7.7.6 Examples of Object Detection

	7.8 Summary
	References

	8 Simulation in X-ray Testing
	8.1 Introduction
	8.2 Modeling
	8.2.1 Geometric Model
	8.2.2 X-ray Imaging

	8.3 Basic General Simulation
	8.4 Flaw Simulation
	8.4.1 Mask Superimposition
	8.4.2 CAD Models for Object and Defect
	8.4.3 CAD Models for Defects Only

	8.5 Superimposition Using Multiplication of Images
	8.6 Simulation of X-ray Images Using GAN
	8.7 Simulation with aRTist
	8.8 Summary
	References

	9 Applications in X-ray Testing
	9.1 Introduction
	9.2 Castings
	9.2.1 State of the Art
	9.2.2 An Application
	9.2.3 An Example

	9.3 Welds
	9.3.1 State of the Art
	9.3.2 An Application
	9.3.3 An Example

	9.4 Baggage
	9.4.1 State of the Art
	9.4.2 An Application
	9.4.3 An Example Using Multiple Views
	9.4.4 Example Using Deep Learning

	9.5 Natural Products
	9.5.1 State of the Art
	9.5.2 An Application
	9.5.3 An Example

	9.6 Further Applications
	9.6.1 Cargo Inspection
	9.6.2 Electronic Circuits

	9.7 Summary
	References

	Appendix A mathbbGDXray+ Database
	Index

