
Chapter 2
Estimation of Net Primary Productivity:
An Introduction to Different Approaches

Pramit Kumar Deb Burman

Abstract The net primary productivity (NPP) is defined as the net carbon gain by
plants in natural and agricultural ecosystems, which is computed by subtracting the
autotrophic respiration from the gross photosynthetic carbon uptake by the ecosys-
tems. It acts as the indicators of carbon sequestration, ecosystem health, and agri-
cultural yield which are important in the context of climate change, its impact
and mitigation, and food security. The NPP can be estimated in multiple ways
including the direct and indirect measurements and modelling. The various direct
NPP measurements are ground-based in situ observations of ecosystem-atmosphere
carbon flux such as the micrometeorological flux-gradient method, eddy covari-
ance, flux chamber measurements etc. The indirect measurements of NPP include
the satellite-derived NPP estimates which are computed from the directly measured
spectral reflectances, using different biophysical relations such as the light use effi-
ciency model etc. However the accuracy of these products varies geospatially and
largely depends on the retrieval of input parameters and representativeness of under-
lying model parameterization. There are two major modelling approaches to esti-
mate the NPP namely bottom-up and top-down estimates. The bottom-up models
compute the NPP from the directly recorded variables such as temperature, precipi-
tation, radiation, wind, atmospheric CO2 concentration etc. using the biome-specific
functional relations due to which these are also known as the process-based models.
The top-down or inverse models use the matrix inversion method to predict the
sources and sinks of CO2 emission in a region from the directly measured concen-
trations by the surface stations and/or satellites and thus the NPP of that region.
The NPP estimates from measurements and models are used to calculate the carbon
budgets at different scales from ecosystem-level to global scale. However significant
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uncertainties exist in such estimates due to insufficient surface measurements, under-
representation of several regions and ecosystems, imperfect boundary conditions and
parameterizations in models. While the direct measurements provide more accurate
estimates of NPP, these require to be carried over for long duration using multiple
different instruments which are prone to errors and data-loss whereas the models can
provide large-scale estimates of NPP but need to be validated against realistic in situ
measurements across an wide array of ecosystems. The aforementioned aspects of
NPP estimation are discussed in detail in the present chapter.

Keywords Carbon cycle · Terrestrial ecosystems · Gross primary productivity ·
Net ecosystem productivity · Eddy covariance · Ecosystem models · Inverse
models · Vegetation indices

2.1 Introduction

Since the industrial revolution the atmospheric CO2 concentration (ca in ppm) has
risen from ~280 to 416 ppm (till the time of writing this book chapter) in an
unprecedented rate (https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html). Due to
the increased energy demand the carbon stored in fossil fuel deposits has been burnt
and released into the atmosphere. Tomeet the food andfibre demands of an increasing
population the rapid agricultural expansion has taken place at the cost of natural
ecosystems such as forests. The increased amount of atmospheric greenhouse gases
of which CO2 is a major component, is changing the Earth’s radiation feedback
resulting in global warming and paving the way for climate change (IPCC 2013).

Such climate change is predicted to have adverse effects on the Earth such as
abrupt changes in atmospheric and oceanic circulation patterns, polar ice cap melt,
sea-level rise, shifting treeline, increased frequency and intensity of extreme events
etc. In order to devise the climate change mitigation strategies the sources and sinks
of atmospheric CO2 need to be identified and their strengths and patterns need to be
characterised. The terrestrial ecosystemsplay a regulatory role in theEarth’s radiation
budget due to their roles in determining the surface albedo and photosynthetic carbon
uptake (Betts 2000). According to the global carbon budget 2019 (Friedlingstein et al.
2019) the terrestrial ecosystems were the largest sink of atmospheric CO2 in the
latest decade during 2009–2018 with a sink-strength of 3.2 ± 0.6 GtC y−1. Several
land-based mitigation strategies are designed based on these ecosystems such as
afforestation and reforestation, biochar, bioenergy with carbon capture and storage
etc. (Minx et al. 2018). Moreover proper quantification of the carbon cycles of these
ecosystems is important to estimate the intended nationally determined contribution
(INDC) of the nations in compliance with the Paris climate accord.

The changes in ca, trends of air temperature and precipitation due to climate
change will modify the capacity and pattern of the photosynthetic carbon uptake by
terrestrial ecosystems (IPCC 2019). The response of the ecosystems to such changes
remains uncertain which is required for the climate change impact assessment. For

https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html
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this purpose the long-term observations of terrestrial carbon cycle are required. It is
predicted that in changed environmental conditions the indigenous plant species are
at high risk to be replaced by the more sturdy invasive species, thus resulting in the
extinction of species and loss of biodiversity (Bongaarts 2019). The accelerated ca
is also predicted to cause forest dieback in several regions (Cox et al. 2004).

In this contest, the present chapter is aimed at the estimation of net primary produc-
tivity (NPP), a component of the carbon cycle and its significance. The different
observation and modelling techniques to achieve this are discussed in the subsequent
sections. In compliance with the theme of this book, the contents of this chapter are
restricted to the forest ecosystems. It is to be noted that NPP estimation of aquatic
ecosystems such as marine phytoplankton is a different topic and not discussed
here. Also the agricultural ecosystems are not included as those are not considered
as natural ecosystems. Considering the wide span of the subject matter and a vast
amount of literature existing on the different aspects of the same, I have not tried to
make this chapter as a comprehensive review article but as an indicative document on
the progress done in this field and its present status. The future directions from here
are also discussed briefly towards the end. This topic being an interdisciplinary one,
care has been taken in the formulation of the chapter to make it apprehensible to the
potential readers who belong to different academic and professional backgrounds.

2.2 Data and Modelling

2.2.1 The Carbon Cycle Components

The flux of any variable is defined as the amount of that variable exchanged across
a unit surface per unit time. In this regard the vertical CO2 flux (Fc) between
the ecosystem and atmosphere is the measure of carbon exchanged between the
ecosystem and atmosphere, also known as the net ecosystem exchange (NEE). It
is a resultant of the photosynthetic uptake and respirative loss of carbon which are
defined as the gross primary productivity (GPP) and total ecosystem respiration
(TER) respectively. The TER is comprised of respired carbon fluxes by the autotrophs
and heterotrophs which are defined as autotrophic respiration (RA) and heterotrophic
respiration (RH ) respectively. As per the meteorological convention the negative and
positive values of NEE stand for the carbon gain and loss by the canopy, which
is opposite to the convention followed in ecology. The net ecosystem productivity
(NEP) is defined as the negative ofNEE. According to these definitions (Chapin et al.
2006),

GPP = N PP + RA (2.1)

N PP = NEE + RH (2.2)
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and,

T ER = RA + RH (2.3)

All the variables used this book chapter are described in Table 2.1.

2.2.2 In Situ Measurements

The NEE can be directly estimated from the observations in contrast with GPP and
TER. Hence the GPP and TER are estimated from the NEE measurements using a
set of ecophysiological relations among the ecosystem and environmental variables.
Following are the different methodologies for measuring NEE.

2.2.2.1 Eddy Covariance Measurements

The eddy covariance (EC) method is probably the most accurate technique for esti-
mating the biosphere–atmosphere scalar and energy fluxes using the direct measure-
ments of wind parameters and scalars. It has been widely used across the globe for
continuous monitoring of long-term CO2 exchange by the ecosystems in different
geographical location, altitudes and terrains (Baldocchi 2003; Deb Burman et al.
2020a, b). Several continental, regional and national networks exist comprising the
dense arrays of such towers (Baldocchi et al. 2001; Beringer et al. 2016; Deb Burman
et al. 2017; Deb Burman et al. 2018; Rebmann et al. 2018). A comprehensive global
map of such active and past EC flux towers can be found in Burba (2019).

Any variable in the atmosphere is exchanged and mixed among the layers by the
random turbulent windmotions, also known as the eddies. In ECmethod these eddies
of different temporal scales are sampled by the fast (5, 10 or 20 Hz) measurements
of wind velocity components and gas concentrations. Finally the contributions of all
such eddies are summed up to compute the net fluxes using the Reynolds averaging
technique (Reynolds 1895; Deb Burman et al. 2018). The ecosystem-atmosphere
CO2 flux (Fc in μmol m−2 s−1) is computed from the vertical component of wind
velocity (w in m s−1) and atmospheric CO2 molar concentration (c in μmol m−3)
which can be expressed as follows,

Fc = w′c′ (2.4)

and

X ′ = X − X (2.5)
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Table 2.1 Variables used in the present study, listed alphabetically

Symbol Definition Unit Reference

An Net CO2 uptake by leaves μmol m−2 s−1 Collatz et al. (1991)

APAR Absorbed
Photosynthetically Active
Radiation

W m−2 Running et al. (1999)

αnir Surface reflectance in the
near-infrared range of
electromagnetic spectrum

– Carlson and Ripley (1997)

αvis Surface reflectance in the
visible range of
electromagnetic spectrum

– Carlson and Ripley (1997)

b Regression parameter m s−1 Collatz, et al. (1991)

B Bowen ratio – Stull (1988)

β Proportionality constant – Businger and Oncley (1990)

c Atmospheric CO2 molar
concentration

μmol m−3 –

c(z) c measured at height z μmol m−3 –

ca Atmospheric CO2
concentration

ppm –

cs CO2 concentration at leaf
surface

ppm Collatz et al. (1991)

cu Updraft CO2 molar
concentration

μmol m−3 Businger and Oncley (1990)

cd Downdraft CO2 molar
concentration

μmol m−3 Businger and Oncley (1990)

EVI Enhanced vegetation index – Jiang et al. (2008)

ε Actual light use efficiency gC MJ−1 Monteith (1972)

εF ε analogous factor for SIF Guanter et al. (2014)

εmax Theoretically maximum
light use efficiency

gC MJ−1 Monteith (1972)

f Ratio of εmax and ε – Monteith (1972)

fAPAR Fraction of Absorbed
Photosynthetically Active
Radiation

– Running et al. (1999)

Fc Vertical CO2 flux μmol m−2 s−1 Aubinet et al. (2012)

Fq Vertical water vapour flux mmol m−2 s−1 Stull (1988)

Fs Storage flux of CO2 μmol m−2 s−1 Aubinet et al. (2012)

GPP Gross Primary Productivity gC m−2 y−1 Chapin et al. (2006)

h Measurement height m Chapin et al. (2006)

hs Relative humidity at leaf
surface

– Collatz et al. (1991)

(continued)
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Table 2.1 (continued)

Symbol Definition Unit Reference

H Sensible heat flux W m−2 Stull (1988)

Kc Eddy diffusivity factor for
CO2

m2 s−1 Lee (2018)

Kq Eddy diffusivity factor for
water vapour

m2 s−1 Lee (2018)

LAI Leaf Area Index – Watson (1947)

LE Latent heat flux W m−2 Stull (1988)

λ Measurement wavelength nm –

m Regression parameter – Collatz et al. (1991)

NDVI Normalized Difference
Vegetation Index

– Carlson and Ripley (1997)

NEE Net Ecosystem Exchange μmol m−2 s−1 Chapin et al. (2006)

NEP Net Ecosystem Productivity gC m−2 y−1 Chapin et al. (2006)

NPP Net Primary Productivity gC m−2 y−1 Chapin et al. (2006)

PAR Photosynthetically Active
Radiation

W m−2 Alados et al. (1996)

q Atmospheric water vapour
molar concentration

mmol m−3 –

RA Autotrophic Respiration μmol m−2 s−1 Chapin et al. (2006)

RH Heterotrophic Respiration μmol m−2 s−1 Chapin et al. (2006)

ra,c Aerodynamic resistance to
CO2 transfer

m−1 s Lee (2018)

rb Leaf boundary layer
resistance

m−1 s Lee (2018)

rc Canopy resistance m−1 s Lee (2018)

rs Stomatal resistance m−1 s Lee (2018)

SAVI Soil-Adjusted Vegetation
Index

– Huete (1988)

SIF Solar-Induced
Fluorescence

W m−2 sr−1 μm−1 Meroni et al. (2009)

σw Standard deviation of the
vertical component of wind
velocity

m s−1 –

TER Total Ecosystem
Respiration

gC m−2 y−1 Reichstein (2005)

u* Friction velocity m s−1 Foken (2008)

VI Vegetation Index – Huete et al. (2002)

VPD Vapour Pressure Deficit hPa –

w Vertical component of wind
velocity

m s−1 –

(continued)
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Table 2.1 (continued)

Symbol Definition Unit Reference

LSWI Land-Surface Water Index – Fensholt and Sandholt (2003)

where X ′ stands for the instantaneous fluctuations in the measured values of variable
X from its mean over the averaging period (X ). The overbar denotes the temporal
averaging which is usually done every 30 or 60 min.

A typical ECmeasurement setup for CO2 includes sonic anemometer and infrared
gas analyser for wind velocity and CO2 concentration measurements respectively,
which are usually placed at a single height above the ecosystem canopy or at several
recommended heights within the canopy (Deb Burman et al. 2019). These measure-
ment heights determine the footprint or representativeness of the EC measurement
(Kormann and Meixner 2001; Kljun et al. 2015). In addition the EC tower is instru-
mented at various levels and depths with a set of associated meteorological, radia-
tion and soil sensors (Aubinet et al. 2012). The fast measurements by EC sensors
are prone to various errors such as the random spikes, faulty measurement values
due to inaccurate sensor geometry, density fluctuation of the ambient air due to the
presence of moisture, obstruction of the wind by the sensors etc. The raw EC data
is rigorously filtered for removing such errors following a set of recommended pre-
processing techniques such as despiking (Vickers and Mahrt 1997; Mauder et al.
2013), detrending, coordinate rotations (Kaimal and Finnigan 1994), angle of attack
correction (Kaimal andFinnigan 1994),Webb-Pearman-Leuning correction (Mauder
et al. 2013), low (Moncrieff et al. 1997) and high-pass noise filtering (Moncrieff et al.
2004), time-lag between velocity and concentration measurements (Burba 2013) etc.
Such a flux tower is shown in Fig. 2.1 which is installed at the Pichavaram mangrove
ecosystem as part of the MetFlux India network in Tamil Nadu, India (Deb Burman
et al., 2017; Gnanamoorthy et al. 2019; Chakraborty et al. 2020; Gnanamoorthy et al.
2020).

While implementing these corrections the resulting half-hourly NEE values are
flagged according to a 10-point scale from 0 to 9 with increasing order suggesting
reduced confidence (Foken et al. 2004). Such classification takes into account the
atmospheric conditions including non-stationary and non-integral turbulences. The
choice of best quality data depends on the requirement. Usually for developing the
functional relationships between carbon flux and environment, the data values not
exceeding flag 2 are used while in some cases such strict quality-control results in
60–65% of data loss, mostly during nighttime rendering the remaining data heavily
biased towards daytime. In such cases theflags are gradually relaxed formore uniform
representation of day and nighttime values in the final data record. The friction
velocity (u*) is a measure of the atmospheric turbulence (Foken 2008). At very low
values of turbulence the fundamental principles of EC measurement are violated.
To avoid this condition u*-filtering is done in which the NEE values corresponding
to u* below a certain threshold are rejected. This u*-threshold determination is
crucial for the accurate estimation ofNEE and several recipes exists to determine this
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Fig. 2.1 A surface flux tower instrumented at multiple levels with eddy covariance and other
associated measurement sensors at the Pichavarammangroves, Tamil Nadu, India; this tower is part
of the MetFlux India network
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(Gu et al. 2005; Barr et al. 2013); Wutzler et al. 2018) . Apart from these a certain
amount of CO2 is trapped in the canopy that does not mix with the atmosphere by
turbulent mixing. This is termed as the storage flux (Baldocchi 2003). The storage
flux between ground and measurement height h (Fs) is computed from the measured
CO2 concentration (c) time series at height h as follows,

Fs =
h∫

0

∂c

∂t
dz (2.6)

Finally the NEE is computed as (Fc + Fs). All of these measures are documented
in several books such as Burba and Anderson (2007) and Aubinet et al. (2012). The
various quality-control measures result gaps in the data. Gaps also occur due to the
instrument malfunctioning at several times. However to account for the NEP of any
ecosystem, continuous measurement record is required which is achieved by filling
the gaps in data. Several recipes of gap-filling exist in literature e.g. mean diurnal
variation (MDV), marginal distribution sampling (MDS), look-up table (LUT) etc.
(Moffat et al. 2007;Reichstein 2005). Selection of any particular recipe for gap-filling
depends on various factors such as the extent and severity of data loss, environmental
conditions, local climatology, availability of supporting measurements etc. These
recipes have evolved over years owing to active research by several groups and are
documented elsewhere (Falge et al. 2001).

Although the EC measurement offers an unprecedented advantage of real time
monitoring of NEP of any ecosystem it has its own limitations (Massman and Lee
2002). Advective fluxes remain difficult to be separated from the vertical exchange
(Paw et al. 2000; Etzold et al. 2010). The fluxes measured over mountainous, undu-
lated terrains are laced with lots of measurement uncertainty (Geissbühler and Sieg-
wolf 2000). During low-turbulence conditions, mostly in the nocturnal periods fluxes
are severely undermined (Aubinet et al. 2010). The EC method is still under active
research and evolving fast. A large number of scientific publications and references
exist on this technique, its development and adaptations not all of which are possible
to be included in the limited span of the present chapter. Interested readers however
are suggested to read several such articles appearing in the meteorology, forestry and
agricultural journals.

2.2.2.2 Gradient Flux Measurements

In the absence of direct EC measurements Fc can be estimated from the spatial
gradient of mean CO2 molar concentration (c in μmol m−3) assuming a diffu-
sive model. In this model c is assumed to vary slowly and the Reynolds averaged
covariance Fc is parameterized as the function of vertical gradient of c as follows,

Fc = −Kc
∂c

∂z
(2.7)
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where, Kc is defined as the eddy diffusivity factor for carbon dioxide. It has the unit
of m2 s−1. Due to the turbulent diffusion CO2 is transported from high concentration
zone to low concentration zone. Hence the negative sign is introduced in Eq. (2.7) to
maintain conformity with the flux convention described earlier. In a simplistic setup
with two-level measurements Eq. (2.7) can be reformulated as,

Fc = −Kc
c(2) − c(1)

z(2) − z(1)
(2.8)

where, c(1) and c(2) stand for themean CO2 concentrations at lower (z(1)) and upper
(z(2)) measurement heights respectively (Lee 2018).

Although convenient in the absence of fast measurements, the gradient flux
measurement technique is heavily criticised for several reasons. In the gradient flux
formulation the spatial heterogeneity ofCO2 source strength at the horizontal surfaces
of concentration measurement is not considered. Moreover the vertical variation in
CO2 source strength is overlooked (Dyer 1974). This problem is partially circum-
vented by introducing more concentration measurements in the intermediate levels
and fitting a vertical profile to the measured values for computing the gradient.Kchas
a strong functional dependency on atmospheric stability for which a set of empiri-
cally determined stability correction factors are introduced for better estimation of
Fc (Dyer and Hicks 1970; Businger et al. 1971). In practical applications the gradient
flux method is mostly used in conjunction with the primary EC measurement with
iterative determination of Kcfrom the latter set of measurements.

2.2.2.3 Resistance Methods

Assuming a constant flux layer, where Fc does not vary with height, Eq. (2.7) can
be reformulated as,

c = −Fc

h∫

0

1

Kc
dz (2.9)

or,

Fc = −c
1

ra,c
(2.10)

where,
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ra,c =
h∫

0

1

Kc
dz (2.11)

is defined as the aerodynamic resistance to CO2 transfer, in analogy to the electrical
resistance as defined in the Ohm’s law (Lee 2018). The ra,c increases with increasing
stability and depth of the diffusion layer. Increased turbulence in the atmosphere
decreases ra,c.

In addition to aerodynamic resistance, the plant-atmosphere photosynthetic CO2

exchange pathway involves leaf boundary layer and stomatal resistances, connected
in series as theCO2 molecules transport through these sequentially. The layer of atmo-
sphere in close vicinity of the leaves is usually thin but unperturbed. The exchange
of CO2 through this layer only takes place through molecular diffusion which gives
rise to the leaf boundary layer resistance (rb).

The stomatal resistance (rs in s m−1) is defined as the resistance faced by CO2

molecules while escaping to the atmosphere from the stomatal cavity. The plant-
atmosphere CO2 and water vapour exchanges by photosynthesis and transpiration
respectively, are coupled by the stomatal opening and closure mechanism (Farquhar
and Sharkey 1982). There are twomajor schemes to parameterize rs. According to the
Jarvis-Stewart formulation (Jarvis 1976; Stewart 1988), rs is empirically determined
from radiation, leaf temperature, vapour pressure deficit (VPD) and soil moisture
content.

In another approach, introduced by Ball et al. (1987) and Collatz et al. (1991)
rs is expressed as a function of net CO2 uptake (An) and relative humidity and CO2

concentration at the leaf surface (hs and cs, respectively) as follows,

rs = 1

m An ·hs
cs + b

(2.12)

where, m and b are the linear regression parameters derived experimentally. These
models have been widely used by several researchers and adopted according to
different climate types (Leuning 1990; Tuzet et al. 2003; Whitley et al. 2008; Ye and
Yu 2008). The inverse of any resistance parameter is defined as the corresponding
conductance. In simplified bigleaf models where the entire ecosystem is considered
to behave like a single leaf (Monteith et al. 1965), the canopy resistance (rc) is used
to compute the ecosystem-atmosphere fluxes. However, the interpretation of rc is
not trivial. In a simplistic formulation where all the leaves in the canopy can be
considered as individual resistors with stomatal resistance rs connected in parallel,
rccan be expressed as rc/n where n is the number of leaves in the canopy.
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2.2.2.4 Modified Bowen Ratio Method

The Bowen ratio (B) is defined as the ratio of sensible (H in W m−2) and latent
(LE in W m−2) heat fluxes. It has been widely used to estimate LE from the energy
flux measurements in the absence of water vapour measurement assuming a perfect
closure of the surface energy budget known as the Bowen ratio method (Stull 1988).
This technique is modified to estimate Fc from the vertical flux of water vapour (Fq

in mmol m−2 s−1) in the absence of fast measurement of c from the two level slow
measurements of q and c as follows,

Fc = c(2) − c(1)

q(2) − q(1)
· Fq (2.13)

where, c(1) and q(1) are the values of c and atmospheric water vapour molar concen-
tration (q in mmol m−3) at lower measurement height (z1) and c(2) and q(2) are
the values of c and q at upper measurement height (z2). This technique assumes the
eddy diffusivities of CO2 and water vapour transport (i.e. Kc and Kq, respectively)
are equal to each other and is known as the modified Bowen ratio method (Meyers
et al. 1996).

2.2.2.5 Associated Micro-meteorological Methods

There have been several micrometeorological methods proposed to measure Fc in
the absence of fast EC measurements, using the available slow gas concentration
measurements as described below.

Disjunct Eddy Covariance

The disjunct eddy covariance (DEA) is a modification of EC method first proposed
byRinne et al. (2001) formeasuring the fluxes of volatile organic compounds (VOC).
In this method the turbulence is assumed to be fully developed and hence the time
series of w and gas concentration are sampled at a much coarser temporal scale than
EC method. This method has been used by few researchers to estimate Fc as well
with good confidence (Hörtnagl et al. 2010; Baghi et al. 2012).

Eddy Accumulation

The eddy accumulation (EA) method is a modified version of the EC method where
air samples are stored in two separate containers based on updraft and downdraft
(Hicks and McMillen 1984). The collection time is proportional to the strength of
updraft or downdraft i.e. the magnitude of w. After the data is collected for 30 or



2 Estimation of Net Primary Productivity: An Introduction... 45

60 min the average CO2 concentration in both the collection volumes is measured
and subtracted from each other for computing Fc (the detailed mathematical formu-
lation is similar to the EC method). Instead of sampling all the eddies separately
as done in the EC method (within the practically limiting smallest and largest time
scales, as decided by the sampling frequency and averaging time), in EA method
all the eddies are augmented according to upward or downward motions and the
mean concentration for both of these segments are computed. This method was first
proposed by Desjardins (1972).

Relaxed Eddy Accumulation

The relaxed eddy accumulation (REA) is a modification of the EA technique where
the air volumes are sampled separately at constant flow rate for updrafts and down-
drafts, with the separate measurements of CO2 concentrations for both the volumes.
Finally the difference between updraft and downdraft averages of CO2 molar concen-
trations (cu and cd respectively) is multiplied by the standard deviation of vertical
velocity (σw) during the entire duration of updraft or downdraft event and an empir-
ically determined dimensionless factor of proportionality (β) to compute Fc as
follows,

Fc = β · σw · (cu − cd) (2.14)

This method had been first proposed by Businger and Oncley (1990) who also
proposed the value of β to be 0.6. However the choice of β is a major source of
uncertainty of this method which was later shown to vary within 0.40–0.63 under
different experimental conditions by several researchers (Baker et al. 1992; Milne
et al. 1999). Additionally the accurate segregation of air samples in updraft and
downdraft periods and precise measurement of cu and cd are essential which are
difficult to be achieved in field conditions (Pattey et al. 1993). The REA has been
mostly used in the measurements of trace gas, aerosol, VOCs and isotopic fluxes
(Guenther et al. 1996; Valentini et al. 1997; Myles et al. 2007) for which fast concen-
tration measurements are not available, as required by the EC technique. However,
several inter comparison studies have shown the REA to perform well in estimating
Fc under strict measurement control as compared to EC method in agricultural and
forest ecosystems (Pattey et al. 1993; Gaman et al. 2004). There have been several
modifications of REA since its inception such as the hyperbolic relaxed eddy accu-
mulation (HREA) by Bowling et al. (1999) etc. which I am not going to discuss in
detail in the limited span of the present chapter. The interested readers are suggested
to read the relevant literature for the detailed information on these techniques.



46 P. K. Deb Burman

Chamber-Based Measurements

In the chamber-based methods enclosure chambers are used to isolate a part of the
atmosphere within which the CO2 concentration is allowed to change only by the
respiration or photosynthesis by the plant, part of plant or soil enclosed by these
chambers. The Fc is computed from the change in c over the sampling time interval.
The walls of the chambers are impermeable and do not allow the CO2 inside to
interact with the ambient atmosphere through diffusion. In static chamber methods
the ambient air flow is restricted (Wang et al. 2010) whereas in dynamic chamber
methods the ambient air is allowed to flow through the chamber at a constant base
flow rate (Ohkubo et al. 2007). Several different geometries of the chambers exist
(Kutsch et al. 2010).

The operation of flux chambers can bemanual or automatic. These are portable and
have less stringent requirements than the EC technique. However they significantly
alter the microclimate within the chamber volume e.g. the opaque chambers increase
the probability of dark respiration, static chambers hinder the turbulent mixing etc.
Despite the ease of installation of the flux chambers, these methods have small
footprint, are not suitable for long term canopy-scale CO2 flux measurements in tall
forest ecosystems and mostly used for grasslands with small canopy height or leaf,
bole and soil respiration components (Law et al. 1999).

Once NEE is estimated by the above-mentioned methods, it is partitioned into
GPP and TER using respiration (Reichstein 2005), light-use efficiency (Lasslop
et al. 2010), isotopic fractionation (Bowling et al. 2001) or statistical correlation
based methods (Skaggs et al. 2018).

2.2.3 Satellite Measurements

In situ measurements by far provide the most realistic estimates of the carbon cycle
of terrestrial ecosystems. However, these have limited footprints. A dense network of
ground-based towers instrumented with multiple sensors is required to be deployed
for estimating the NPP of any region, as outlined in the previous section. Also the
measurements need to be continued seamlessly at least for several years before a
reasonable estimation can be achieved with the seasonal, intra-seasonal and inter-
annual variabilities (Baldocchi 2001). Establishing such networks are challenging in
remote and inaccessible locations.Moreover the ground-basedmeasurement systems
are marred by severe data loss due to power shortage, adverse weather conditions etc.
Maintaining such systems required long-term dedicated effort, human involvement
and have high establishment and operating costs. The data collection, processing and
interpretation can be tedious for difficult terrains such as mountainous regions, dense
rainforests etc. In view of these NPP can be remotely monitored using satellite and
other remote sensing techniques as described below.
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2.2.3.1 Vegetation Indices

Vegetation indices (VIs) are spectral transformations of the reflectances recorded by
satellite sensors inmultiple bandsof the electromagnetic spectrum(Huete et al. 2002).
These are dimensionless and used for monitoring the vegetation health and photo-
synthetic activities at different spatio-temporal scales. Different VIs are formulated
such as the normalized difference vegetation index (NDVI), leaf area index (LAI),
enhanced vegetation index (EVI), land-surface water index (LSWI), soil-adjusted
vegetation index (SAVI) etc. which are used in combination with the meteorological
measurements as input to the bottom-up models for predicting the NPP (Liu et al.
1997) orGPP (DebBurman et al. 2017). The LAI is defined as the total one-sided leaf
surface area relative to per unit ground area (Watson 1947) which can be estimated
from the ground-based or satellite measurements (Bréda 2003; Deng et al. 2006). It
is closely connected with NDVI which is estimated from the surface reflectances as
defined below,

NDV I = αnir − αvis

αnir + αvis
(2.15)

where, αnir and αvis are the averaged surface reflectances in the visible and near
infrared regions of the electromagnetic radiation spectrum, respectively (Carlson
and Ripley 1997). The EVI is an adaptation of NDVI corrected for the atmospheric
and canopy background noiseswhich ismore sensitive towards dense canopies (Jiang
et al. 2008). On a similar note, the LSWI is a modification of NDVI that takes care
of the effect of vegetation leaf structure, moisture contents in leaf and soil on the
spectral reflectances (Fensholt and Sandholt 2003; Xiao et al. 2004). The SAVI is
a modification of NDVI adjusted for the soil brightness effect as defined by Huete
(1988).

Different adaptations of this methodology exists in literature where the VI had
either been estimated from the satellites such as LANDSAT (Ganguly et al. 2012),
Moderate Resolution Imaging Spectroradiometer (MODIS) (Demarty et al. 2007),
Advanced Very High Resolution Radiometer (AVHRR) (Buermann et al. 2001) etc.
or the ground-based measurements (Deb Burman et al. 2017) and the meteorolog-
ical variables are either taken from the surface measurements (Bao et al. 2016; Deb
Burman et al. 2017), remote sensing observations (Sims et al. 2008), model predic-
tions (Yan et al. 2016) or a suitable assimilation of these (Demarty et al. 2007).
The functioning of bottom-up models is described in Sect. 2.2.4.1 of this chapter.
The development of VIs from reflectances measured by the satellites is challenging
due to multiple constraints, such as atmospheric scattering, vegetation structure, leaf
inclination, albedo etc. (Knyazikhin et al. 1998) and hence remains to be an active
area of research.
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2.2.3.2 Light Use Efficiency Approach

According to Monteith (1972, 1977) the photosynthetic yield of any ecosystem is
directly proportional to the amount of solar radiation absorbed by the canopy in
absence of any water or nutrient stress in soil. The plants absorb solar radiation in
the photosynthetically active radiation (PAR) or visible range of the electromagnetic
spectrum (wavelength varying within 400–700 nm) (Alados et al. 1996). The amount
of PAR absorbed by the plants is known as the absorbed photosynthetically active
radiation (APAR) which is related to PAR as follows,

APAR = f AP AR ∗ PAR (2.16)

where, fAPAR is known as the fraction of photosynthetically active radiation. This
is the basis of light use efficiency (LUE) approach to estimateNPP of any ecosystem
formulated as,

N PP = f AP AR ∗ PAR ∗ ε (2.17)

where, ε is the effective LUE of the ecosystem in the measured environmental
condition that varies widely across the ecosystems depending on their geographical
location, species type, canopy structure, presence of enzymes, evaporative demand,
temperature stress, availabilities of moisture and nutrients etc. It is expressed as a
downscaled fraction of the theoretical maximum LUE, εmax as,

ε = εmax ∗ f (2.18)

where the factor f accounts for the deviation of ε from εmax owing to the non-optimal
environmental conditions (Monteith 1972). Initially εmax was largely thought be
constant at 0.405 gCMJ−1 (Potter et al. 1993), which was later found to vary between
a wider range (Ahl et al. 2004; Yu et al. 2009). Multiple models use this methodology
to predict NPP such as the Carnegie-Ames-Stanford Approach (CASA) (Potter et al.
1993), Vegetation Photosynthesis Model (VPM) (Xiao et al. 2004), Physiological
Principles for Predicting Growth (3-PG) (Coops et al. 2005) etc.

2.2.3.3 Derived Biophysical Products

Using the LUE approach a daily NPP product MOD17 is developed from the
Moderate Resolution Imaging Spectroradiometer (MODIS) observations. It was
shown by several researchers that compared to NPP, GPP has a better correlation
withAPAR (RaymondHunt 1994; Prince andGoward 1995).Hencewhile developing
the MOD17 product, the GPP and respiration components (including growth respi-
ration GR and maintenance respirationMR) are calculated separately and subtracted
to produce NPP (Running et al. 1999). The GPP is calculated daily directly from
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the fAPAR measured by MODIS and PAR from an assimilated data product whereas
the GR and MR are calculated from the carbon allometric equations of plants and
LAI estimates by MODIS namely MOD15 (Myneni et al. 1999). The biome-specific
plant-physiological parameters governing the carbon allometric equations are derived
from a bottom-up model Biome-BGC (Running and Hunt 1993). The functioning
of such models is discussed in 2.2.4.1 of the present chapter. The MOD17 product
is validated across several in situ measurements such as FLUXNET (Running et al.
1999; Zhao et al. 2005; Turner et al. 2006).

2.2.3.4 Solar Induced Fluorescence

The Solar-Induced Fluorescence (SIF) stands for the part of energy released from
the chlorophyll-a (expressed in the unit of W m−2 sr−1 μm−1) after absorbing the
PAR, in the light pathway of photosynthesis, apart from the electron transport and
thermal energy dissipation. It has a typical wavelength range of 650–800 nm, which
is larger than the absorbed radiation. The strongest peak in SIF spectrum occurs
at around740 nm, in the far-red or near-IR regime with the second strongest peak
appearing at around 685 nm, in the red zone (Meroni et al. 2009; Mohammed et al.
2019). This can be attributed to the fact that in optimum condition PSI photosystem
emits preferably in near-IR whereas the PSII photosystem emits in both red and
near-IR (Govindje 1995).

Globally, theSIF is seen to have linear dependencieswithGPP estimates from top-
down and bottom-up approaches (Zhang et al. 2014; Cui et al. 2017). In a simplistic
model (Guanter et al. 2014) the SIF observed from space can be related to GPP in
the following way, similar to the LUE formulation described in (2.17) as,

GPP = SI F(λ) ∗ ε

εF
(2.19)

where, SIF(λ) corresponds to the SIF measurement at wavelength λ (usually taken
as either of 685 or 740 nm) and εF is an efficiency factor for SIF, analogous to ε. In
present times, a plethora of SIF estimates are available from different satellite-based
sensors e.g. ENVironmental SATellite (ENVISAT) (Guanter et al. 2007), Greenhouse
gasesObserving SATellite (GOSAT) (Guanter et al. 2012), Global OzoneMonitoring
Experiment-2 (GOME-2) (Joiner et al. 2013), SCanning Imaging Absorption Spec-
troMeter for Atmospheric CHartographY (SCIAMACHY) (Wolanin et al. 2015),
Orbiting Carbon Observatory-2 (OCO-2) (Sun et al. 2017), TROPOspheric Moni-
toring Instrument (TROPOMI) (Köhler et al. 2018) etc. and have been used exten-
sively in GPP estimation (Wagle et al. 2016; He et al. 2020). Different algorithms
have been designed based the wavelength, atmospheric condition and canopy type.
It is worthwhile to note that in a recent work Patel et al. (2018) found out the expo-
nential relationship between croplandNPP, estimated from ground-based harvesting
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estimates and 740 nm SIF, measured by GOME-2 over the Indo-Gangetic Plain in
India which can be further exploited forNPP estimation and harvest yield prediction.

2.2.3.5 Other Remote Sensing Measures

In conjunction with the ground-based and satellite measurements, aircrafts (Cihlar
et al. 1992; Desjardins et al. 1992; Macpherson et al. 1992; Chou et al. 2002) and
unmanned aerial vehicles (Pirk et al. 2017) have been used for CO2 flux measure-
ments. The instrumentation of such campaigns include vertical concentration profile,
EC (Oechel et al. 1998), VI and SIF (Zarco-Tejada et al. 2013) measurements. The
SIF measurements have also been deployed on the ground (Grossmann et al. 2018).
Theworkingprinciple of thesemeasurements remain the sameas discussed earlier but
additional quality control measures are implemented to account for the complexities
arising in such measurements.

2.2.4 Modelling

The observations provide real time diagnostic information about the NPP. However
for prediction of the ecosystem health and carbon sequestration in response to the
changes in climate and environmental conditions prognostic information is required,
which can be achieved by the models (Prentice et al. 2001; Levy et al. 2004). The
models are a set of mathematical equations, algebraic, differential, integral or a
combination of these to describe the coupled meteorological and ecophysiological
processes. These equations are built upon the theories as well as the phenomenolog-
ical relations derived from the observations (Bonan et al. 2011) and can be solved
analytically or numerically. These models are tested by comparing the predicted
variables against their direct observations for a certain measurement interval. This
process is known as the calibration. Further a calibrated model is run again for a
different time interval and the simulated output is checked against the measurement,
thus validating the model (Enting and Pearman 1986; Friend et al. 2007). In a sense
the models act as a bridge between the observations and predictions. There are two
major modelling approaches as described below.

2.2.4.1 Bottom-Up Approach

As the name suggests, in bottom-up approach the leaf or canopy scale measurements
are upscaled to local, national, regional or global scales using the biogeophysical and
biogeochemical processes. Hence these models are also known as the process-based
models (Ito and Oikawa 2002). The vegetation growth and decay in process-based
models depend on climate forcing and environmental conditions which are improve-
ment over the traditional land-surface models where the vegetation is prescribed
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with no dynamical change (Foley et al. 1996; Clark et al. 2011; Lawrence et al.
2011). Due to this property the process-based models can be used for ecosystem
growth prediction under changed climate such as crop production in a water-stressed
condition (Gervois et al. 2004). Hence the process-based models are known as the
dynamic global vegetation models, abbreviated as DGVM (Sitch et al. 2003; Pren-
tice and Cowling 2013). These models can be simulated at a point or grid scale as
a standalone model or a constituent module of a couple climate, general circulation
or Earth system model (Zeng et al. 2002; Bonan and Levis 2006; Kato et al., 2009).
Either of surface measurements, satellite products, reanalysis datasets or a suitable
combination of these are used as input variables to the process-based models. The
input data can be provided at multi-temporal time scales e.g. half-hourly, hourly,
daily etc. (Williams et al. 1996; Deb Burman et al. 2017).

The process-based models have different components i.e. soil, ecosystem, atmo-
sphere, hydrology etc. linked to each other by different complex feedback mech-
anisms which can be broadly classified into two categories namely, biogeochem-
istry and biogeophysics (El-Masri et al. 2013). Input variables of these models vary
among different formulations.However,most of thesemodels requiremeteorological
parameters such as the shortwave and longwave radiations, air temperature, pressure,
humidity, wind speed, precipitation, ca etc. as input. In addition, VIs such as LAI are
required by several models.

The photosynthesis in the models is parameterized according to the pathways
i.e. C3 (Farquhar et al. 1980; Collatz et al. 1991), C4 (Collatz et al. 1992), CAM
(Cortázar andNobel 1990;Kluge andTing 2012) etc.where the carbon assimilation is
governedby the availability ofPAR (Sellers et al. 1992),RuBisCOactivity (Bernacchi
et al. 2001), phosphophenolpyruvate (PEP)-carboxylase enzyme functionality (Vidal
and Chollet 1997), electron transport capacity, leaf nitrogen content (Kattge et al.
2009) etc. In addition the air temperature, moisture demand and soil moisture also
affect the carbon uptake by stomatal opening and closure resulting from heat and
water stresses. The amount of PAR absorbed by the plants depends on leaf structure,
orientation and area, incident PAR and albedo (Knyazikhin et al. 1998; Dai et al.
2004; Fensholt et al. 2004). The incident PAR can be directly measured or computed
from the incoming solar radiation (Deb Burman et al. 2020a, b) whereas the leaf area
is computed from LAI. As the carbon and water cycles are interlinked with nutrient
cycles e.g. nitrogen, phosphorus etc. such models also need information regarding
soil bulk density, organic matter content, texture and nutrient profiles for spin-up
(Thornton and Rosenbloom 2005; Oleson et al. 2013).

A part of the total photosynthetic carbon uptake or gross primary productivity
(GPP) is lost to the atmosphere by respiration. Different respiration components
include growth and maintenance respirations of leaves, stems and roots (Barman
et al. 2014a, b) which are computed from the direct temperature dependence of
respiration (Ryan 1991) or a temperature dependent activation factor (Arora andBoer
2005). This approach is slightly different from the observational approach where the
autotrophic and heterotrophic respirations are clubbed together as total ecosystem
respiration (TER) and computed from the nighttime temperature dependence of Fc
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by statistical regression (Lloyd and Taylor 1994). Finally the GPP is computed as
the sum of TER and Fc.

Next, the fixed carbon is allocated among different pools i.e. root, leaf, stem,
bole, litter etc. using the experimentally determined parameter values e.g. leaf area
per unit carbon, leaf nitrogen content etc. (Sitch et al. 2003). A schematic of such a
process-based model showing different compartments of carbon allocation and their
interrelation is shown in Fig. 2.2, reprinted with permission from El-Masri et al.
(2013). The plants are not modelled individually in the process-based models, as that
would require much detailed parameterization and more computational resources,
rather the plants are broadly categorized into several plat functional types (PFTs).
Such clubbing of plants is implemented based on their photosynthesis pathway,
geographical and climatological distributions such as tropical broadleaf deciduous,
boreal coniferous evergreen, shrub, tundra, pasture, grassland etc. (Poulter et al.

Fig. 2.2 A schematic diagram of the different carbon pools and processes in a process-based
ecosystem model Integrated Science Assessment Model (ISAM) (reprinted from El-Masri et al.
(2013) with permission)
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2011). It is worthwhile to note here that several ecosystems remain poorly or under-
represented in suchmodels due to the lack of understanding of their ecophysiological
processes owing to a lack of adequate experimental evidences or complexity in
modelling those such as mangrove, rice paddy etc. (Langerwisch et al. 2018; Kumar
and Scheiter 2019). For regional or global scale applications the vegetation map is
prescribed to the bottom-up models as land cover and use map (Ramankutty and
Foley 1999; Klein Goldewijk et al. 2011). The representativeness and accuracy of
these maps remain a crucial control of uncertainty of the NPP estimation by these
models (Arora and Boer 2010).

2.2.4.2 Top-Down Approach

The alternate approach to model the Earth-atmosphere trace gas fluxes is the top-
down approach. As evident in its name, in this method the atmospheric trace gases
concentrations are observed at multiple spatial and temporal scales and the sources
and sinks responsible for these distributions are computed by a backward modelling
approach (Gurney et al. 2004; Rayner et al. 2005). This methodology is also known
as the inverse modelling which is opposite in approach to the bottom-up modelling
where a forward scheme is implemented. The variables (ψ) and observations (χ )
matrices are connected by the following relation,

G · ψ = χ (2.20)

where G is the coefficient matrix. The basic problem in inverse modelling lies in
finding the inverse of G which is mostly calculated by Bayesian inversion (Heimann
and Kaminski 1999). The observed spatio-temporal distribution of trace gases are
apportioned into potential sources and sinks using atmospheric transport models
(Kaminski et al. 1999) which can be solved in Lagrangian (Pisso et al. 2019),
Eularian (Pillai et al. 2012) or hybrid schemes (Siqueira et al. 2000). The terrestrial
sources and sinks of atmospheric CO2 include the natural and agricultural ecosys-
tems which are our elements of interest in the present chapter. A good knowledge
of the biospheric-atmospheric CO2 exchange, its seasonal variation and controlling
parameters is required for the proper evaluation of NEP using inverse methods. The
limited scope of the present chapter will not allow me to go into the mathematical
and technical details of these techniques but the interested readers are suggested to
consult the available vast scientific literature for more insight (Bousquet et al. 1999;
Gurney et al. 2002; Peylin et al. 2013).

This apparently simple problem is not very straightforward in reality as I discuss
next. A plethora of different sets of available data are used in inverse modelling.
These include surface observations (Pickett-Heaps et al. 2011), aircraft measure-
ments (Pisso et al. 2019), ship measurements (Bousquet et al. 1999), satellite prod-
ucts (Houweling et al. 2003, 2015) etc. The measurements of atmospheric traces
gases concentrations and fluxes are not spread uniformly across the globe. While
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some regions are well-mapped with dense observation networks with measurements
carried at high temporal resolution (Bousquet et al. 1999) such as north America,
some regions do not have adequate observation stations or high frequency measure-
ments (Heimann and Kaminski 1999) such as India (Nalini et al. 2019). Aircraft
measurements are costly and still limited in number like the ship observations (Patra
et al. 2011). The satellite observations are often contaminated with scattering at
different levels, boundary-layer dynamics and presence of clouds which are more
prominent over the tropical regions (Rayner et al. 2002; Pandey et al. 2016). Together
these result in the data gaps in χ.

In such cases the inverse problem becomes ill-posed with the number of observa-
tions being less than the number of control variables and an unique solution to the
inverse problem ceases to exist (Heimann and Kaminski 1999). Moreover the errors
in χ result in inaccurate estimation of the inverse ofG. In case of Bayesian inversion
the directly measured surface fluxes (Chevallier et al. 2006) or bottom-up model
outputs (Dargaville et al. 2002; Patra et al. 2011) are provided to constrain the prob-
lems as a priori information of source and sink strengths. Subsequently the source
and sink strength are predicted from the inverse models. These a posteriori estimates
are subsequently compared with the a priori information. To reduce the uncertainty
in this process a cost function is defined between the observed and simulated concen-
trations and a priori and a posteriori flux estimates (Kadygrov et al. 2009) which is
subsequently minimized by several optimization methods used in data assimilation
such as Kalman filter, 4D-var etc. (Liu et al. 2016). Apart from these the errors in
transport model formulation propagate in the source and sink patterns by the inverse
models (Bousquet et al. 1996; Schuh et al. 2019). The success of inverse modelling
of any trace gas requires a proper understanding of the trace gas species chemistry.
It has been mostly successful for long-lived trace gases such as CO2, CH4 etc. which
take part in the long-range transport. Often to reduce the computational cost the
Earth surface is divided into several regions (typically less than 100) and the average
flux for each of these zones are modelled by the inverse models. A schematic of
different regions used in the TRANSCOM inversion is shown in Fig. 2.3 (reprinted
with permission fromHouweling et al. (2015)). However such averaging reduces the
spatial heterogeneity and increases the probability ofmisrepresentation of any region.
For example it has been argued (Valsala et al. 2013) that the terrestrial biospheric
CO2 fluxes in the Carbon Tracker dataset (Peters et al. 2007) is misrepresented over
the Indian subcontinent as no CO2 measurement from this region had been used as
a priori flux in the Carbon Tracker dataset due to which the flux over this region
is highly biased by the emissions from neighbouring regions such as China, Korea,
Kazakhstan, Indonesia etc. which belong to the same averaged spatial domains as
India namely Eurasian Temperate and Asia Tropical.
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Fig. 2.3 A schematic showing the different land (and ocean) zones used in the TRANSCOM
inversion (reprinted with permission from Houweling et al. (2015))

2.3 Discussion and Conclusions

Several studies have reported the different components of carbon cycle includingNPP
at global, regional and ecosystem levels using different techniques discussed above
or a combination of these (Beer et al. 2010; Jung et al. 2011; Barman et al. 2014b;
Tramontana et al. 2016). According to the multi-model study by Cramer et al. (1999)
the global NPP ranges within 44.4–66.3 Gt C y−1. This is shown in Fig. 2.4 which is

Fig. 2.4 A global map of the average annual NPP (gC m−2 y−1) estimated by an ensemble of
models (reprinted with permission from Cramer et al. (1999)).
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reprinted from Cramer et al. (1999) with permission. Based on the MODIS measure-
ments the average global NPP is 56 Gt C y−1(Zhang et al. 2009). According to the
combined bottom-up and top-down CO2 data assimilation approach by Rayner et al.
(2005) the global NPP is approximately 40.5 Gt C y−1. Such studies are important
to know about the sources and sinks of atmospheric CO2 and their annual patterns.
These are required not only to assess their roles in global climate change but also
to predict the effect of future climate change on these ecosystems e.g. increased air
temperature, increased ca etc. However, due to the sparsity of measurements such
estimates have often been riddledwith lots of uncertainties both at global and regional
levels (Graven et al. 2013; Patra et al. 2013; Cervarich et al. 2016). Moreover, still
significant differences exist among observed, bottom-up and top-down modelled
estimates of ecosystem carbon uptake (Bastos et al. 2020). In order to devise the
climate change mitigation strategies the relations among plant carbon uptake and
environmental variables need to be accurately known and represented in the assess-
ment models. The terrestrial carbon cycle components predicted by the different
models taking part in coupled modelintercomparison project (CMIP) (Meehl et al.
2000) differ significantly from each other due to the apparent inconsistency in the
underlying land carbon cycle formulations (Anav et al. 2013; Friedlingstein et al.
2014). Such uncertainties can be reduced by improved parameterizations which can
derived from the long-term measurements in the diverse ecosystem types using an
optimally designed denser network of surface measurements.
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