
Chapter 16
Estimation of Aboveground Stand
Carbon using Landsat 8 OLI Satellite
Image: A Case Study from Turkey

Alkan Günlü, Sedat Keleş, İlker Ercanli, and Muammer Şenyurt

Abstract Accurate and consistent measurement of carbon stocks and flows in forest
ecosystems has recently gained global importance. This study aims to estimate the
aboveground stand carbon (AGSC) using Landsat 8 OLI satellite image in pure
Crimean pine stands and to compare the results of various modeling techniques. In
this context, a total of 108 sample plots were firstly taken in a case study forest
area. The AGSC of each sample area was calculated using a species-specific carbon
equation developed for the case study area. The band values, vegetation indices, and
texture values for each sample plot were also obtained from Landsat 8 OLI satellite
image. The relationships between the AGSC and the band values, vegetation indices,
and texture valueswere investigated bymultivariate linear regression (MLR), support
vector machine (SVM) and artificial neural networks (ANN) models. The results
demonstrated that the ANN models with Bayesian regularization are better than the
MLR and SVM models to estimate the AGSCin pure Crimean pine stands. Also,
the band values showed better predictive performance in explaining the variation in
AGSCthan vegetation indices and texture values.

Keywords Aboveground stand carbon · Landsat 8 OLI satellite image ·Multiple
linear regression · Artificial neural network · Support vector machine

16.1 Introduction

Forest ecosystems provide a lot of goods and services such as timber production,
water conservation, soil protection, oxygen production, aesthetics, and recreation.
Forest ecosystems are also an important part of the carbon pool. Changes to the size
and efficiency of this pool can act as a carbon dioxide storage or source of forest
ecosystems (Milne and Brown 1997; Karjalainen et al. 1999; Nowak and Crane
2002; Keleş and Başkent 2006). Forest trees behave like a CO2 pool by holding
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CO2 during photosynthesis and storing it in biomass. Forest ecosystems accumulate
carbonmainly in biomass and soils. These are divided into sub-components as carbon
stored in aboveground biomass (AGB), underground biomass, litter, dead cover, soil
organic and inorganic matter. These are also the basis for carbon budget calculations
(Lim et al. 1999; Ney et al. 2002; Kaipainen et al. 2004; Lal 2005). The total amount
of carbon stored in a forest ecosystem at any given time is estimated as the sum of
the carbon contents stored in live biomass, forest soil and wood products. With the
calculation of these components, carbon stocks andflows in a forest can be calculated.
On the other hand, the carbon held by the forest ecosystems from the atmosphere
is released into the atmosphere with the decomposition of wood products, litter and
organic matter in the soil. Also, some interventions such as production in forests,
degradation as a result of excessive cuts and exploitation in forests, forest fires,
insect attacks, tree species diseases, and the conversion of forests to different land
uses such as agriculture and settlements are important factors causing CO2 emission
from forest ecosystems to the atmosphere. As a result, these processes cause forest
ecosystems to be carbon sources (Karjalainen et al. 1999; Brown 2002; Keleş and
Başkent 2006).

Accurate and consistent measurement of these carbon stocks and flows in forest
ecosystems has recently gained global importance. Remote sensing techniques that
are easier, cheaper and require less labor are an important alternative way to estimate
the amount of carbon stored in forest ecosystems. In this context, different spectral
variables such as band values (Rahman et al. 2008; Kelsey and Neff 2014; Safari
et al. 2017; Li et al. 2018), vegetation indices (Myeong et al. 2006; Rahman et al.
2008; Kelsey and Neff 2014; Safari et al. 2017; Li et al. 2018) and texture values
(Kelsey and Neff 2014; Li et al. 2018) have been used to estimate forest stand
carbon using Landsat satellite data used extensively in forest resources management.
Many statistical models based on the MLR analysis for predicting the AGSC values
from the remote sensing data have been developed in forest studies. However, these
MLR models require some statistical assumptions, normally distributed residuals
and homoscedastic trends in the AGSC predictions, and when these assumptions are
violated, these AGSC predictions can be biased and erroneously obtained in forest
applications. Toovercome this problem in tree predictions,Artificial Intelligence (AI)
Techniques has been increasingly and successfully used as an alternative method in
forest literature. Numerous prediction models based on AI, especially ANN, have
been developed for modeling various individual tree and stand attributes such as tree
volume (Diamantopoulou 2005a, b; Diamantopoulou et al. 2005; Özçelik et al. 2008;
Görgens et al. 2009; Diamantopoulou and Milios 2010; Özçelik et al. 2010; Soares
et al. 2011; Miguel et al. 2016; Sanquetta et al. 2017), tree taper (Diamantopoulou
et al. 2005; Leite et al. 2011; Nunes and Görgens 2016), total tree height (Brandao
2007; Ranson et al. 2007; Diamantopoulou and Özçelik 2012; Özçelik et al. 2013;
Ercanlı et al. 2015), tree mortality (Hasenauer et al. 2001), survival model (Guan
and Gertner 1991), regeneration establishment and height growth (Hasenauer and
Kinderman 2002), bark volume (Diamantopoulou 2005a, b), leaf area index (Ercanlı
et al. 2018), diameter distributions (Ercanlı and Bolat 2017), biomass prediction
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(Özçelik et al. 2017), basal area and volume increment growth model (Ashraf et al.
2013), the stand carbon (Ercanlı et al. 2016).

Besides many ANN studies, the other AI technique such as SVM stand out as
another prominentAI technique. SVMmay attractive potential usability to predict the
stand carbon from the remote sensing data in forest inventory. The AI technique with
SVM may be mainly regarded as a nonparametric technique with kernel functions,
which have been proposed by Vladimir Vapnik and his co-workers in 1992 (Vapnik
1995). In the 1960s, the preliminary applications of SVM were introduced based on
the nonlinear generalization of theGeneralized Portrait algorithm (Vapnik andLerner
1963; Vapnik and Chervonenkis 1964). As being artificial intelligence technique,
the learning algorithm based on the SVM relies on simple ideas that originated
in statistical learning theory (Vapnik 1995), thus the SVM may be utilized for both
regression and classification tasks (Wang et al. 2005). In forest applications, SVMcan
be distinguished as a regression method, preserving completely the key structures
that characterize the training algorithm. The other attractive feature of the SVM
is the actual particular class training algorithm including kernel functions which
considered a nonparametric technique. According to the knowledge of the forest
biometric studies, no studies have been achieved to compare the SVM models and
ANN models to predict the AGSC, especially based on the remote sensing data, and
so the evaluation of the these AI techniques including SVM and ANN in predicting
AGSC have been uncertain and needs to be clarified.

In this study, it is aimed to evaluate the capability of the usability of these AI tech-
niques such as SVM and ANNmodels in predicting empirical relationships between
the AGSC and the remote sensing data as a leading and innovative application.

16.2 Materials and Methods

16.2.1 Study Area

Yenice Forest Management Unit has been selected as the case study area since there
is enough data about this forest area. It is located within the borders of Ankara
Regional Directorate of Forestry, Ilgaz Forest Management Department in the north
Turkey (Fig. 16.1). The average annual precipitation is 474 mm, and the average
annual temperature is approximately 5 °C. Main tree species in the study area are
Scotchpine (PinussylvestrisL.),Crimeanpine [PinusnigraArnold. subsp.pallasiana
(Lamb.) Holmboe], and fir (Abiesbornmülleriana Matttf.). The total forest area in
the study area is 7144 ha and approximately 1700 ha of this area are composed of
pure Crimean pine stands as the main object of the study.
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Fig. 16.1 Map of the study site and interaction area
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16.2.2 Calculation of Aboveground Stand Carbon

A total of 108 sample areas were taken in this study. The size of the sample plots
varies between 400 and 800 m2 depending on stand crown closure. In each sample
area, the diameter of all the trees with diameter 8 cm and over was measured at breast
height level. The amount of AGSC by each tree in each sample area was calculated
using the local equation for the Crimean pine forest stands developed by Sakıcı
et al. (2018). Using this Eq. 16.1, the amount of AGSC by each tree in the sample
plot was first calculated. Then, by collecting the amounts of AGSC by the trees in
the sample plot, the AGSC amount was calculated for the sample plot. Finally, the
AGSC amounts calculated for each sample area were converted to hectare using the
conversion factor to the hectare.

CAG = 0.054 · (dbh)2.362 (16.1)

whereCAG:Aboveground stand carbon (ton) and dbh is the tree diametermeasured
at breast height (cm).

16.2.3 Remote Sensing Data

A total of 108 sample areas based on site index, crown closure, and development stage
and Landsat 8 OLI satellite image dated 14 August 2014 were used as materials. Six
bands (band 2, band 3, band 4, band 5, band 6 and band 7) with a spatial resolution
of 30 m were used in this study. Landsat 8 OLI satellite image was applied to some
processing before being analyzed. These processing steps are listed below. The six
bands used in the study were combined into a single satellite image and a single
satellite image cut according to the outer boundary of the study area. Necessary
atmospheric and geometric corrections were performed on the satellite image. 108
sample points were overlaid with satellite images and band brightness values were
obtained for six bands and each sample plot. However, using the band brightness
values obtained for each sample plot, some vegetation indices values in Table 16.1 are
calculated.Also, the texture valueswere calculated for six bands and each sample plot
using eight texture features (mean, correlation, homogeneity, dissimilarity, second
moment, variance, entropy and contrast) and four different window sizes (3 × 3, 5
× 5, 7 × 7 and 9 × 9).

16.2.4 Multivariate Linear Regression

Tomodel the empirical relationships between the AGSC values and, band brightness
values, vegetation indices, and texture values obtained from Landsat 8 OLI satellite
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Table 16.1 The vegetation indices used in this study

Vegetation
indices

Description Formula References

NDVI Normalized
difference
vegetation index

(Band4-Band5)/(Band4 + Band5) Rouse et al.
(1974)

SAVI Soil adjusted
vegetation index

(Band5-Band4) * (1 + L)/(Band5 + Band4 + L) Huete
(1988)

DVI Difference
vegetation index

Band5-Band4 Clevers
(1988)

SR Simple ratio Band5/Band4 Jordan
(1969)

TVI Transformed
vegetation index

Band5-Band4/Band5 + Band4 + 0.5 Deering
et al.
(1975)

ND64 Normalized
difference

Band6-Band4/Band6 + Band4 Lu et al.
(2005)

ND65 Normalized
difference

Band6-Band5/Bnad6 + Band5 Lu et al.
(2005)

ND67 Normalized
difference

Band6-Band7/Band6 + Band7 Lu et al.
(2005)

ND42 Normalized
difference

Band4-Band2/Band4 + Band2 Lu et al.
(2005)

ND74 Normalized
difference

Band7-Band4/Band7 + Band4 Sivanpillai
et al.
(2006)

ARVI Atmospherically
resistant
vegetation index

(Band5-2 * Band4-Band2)/(Band5 + 2 *
Band4-Band2)

Kaufman
and Tanré
(1992)

L = 0.5

image, the MLR were used in this study. The Ordinary Least Squares technique was
utilized to acquire the parameters and other statistics of the MLR model. To select
predictive satellite data including the band brightness values, vegetation indices and
texture values, the stepwise variable selection regression techniquewas used to obtain
the AGSC predictions significantly (p < 0.05).

16.2.5 Artificial Neural Network Models

The ANN models based on the Feed Forward Backprop training algorithms were
used to predict the AGSC from the satellite data in this study. This training algo-
rithm has commonly been used to predict tree and forest attributes in forest liter-
ature. While estimating single tree and stand features with ANN, previous studies
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have frequently used a network training function, also called as trainlm, based on
Levenberg-Marquardt optimization. Also, the Bayesian regularization including a
network training function, called as trainbr, reduces a combination of squared errors
and weights, and then regulates the correct combination of these values to improve
predictions from the network. In this study, these network training function including
trainlm and trainbr were used and compared to determine which training function
gives the best predictive results.

In this ANN model, input variables were best predictive stand parameters, in
which these independent variables were selected by the stepwise variable selection
technique in regression analysis, and the target variablewas theAGSCvalue obtained
from the ground measurements. These ANN models include three layers such as the
input layer, hidden layer, and output layer and these activation functions linking
with these layers are another important network parameter in its structure. In our
preliminary analyses, the activation function alternative based on the log-sig function
between the input layer and hidden layer and tan-sig function between the hidden
layer and output layer gave better predictions than those by other activation functions,
thus this activation function alternative was selected to train the ANN models in this
study. Further significant restriction of the network structure is the number of neurons
in the hidden layer. Thus, some alternatives for the number of neurons that ranged
from 1 to 100; 1, 2, 3, …, 20, 30, 50, 70, 90, and 100 number of neurons were
compared to select the best predictive neuron alternative in this study. Besides these
values of parameters in ANN structure, the value of 200 for epochs, the value of 1×
10−10 for performance goal, the value of 0.0001 for the learning rate and the value
of 1 × 10−10 for minimum performance gradient gave the best predictive results to
train these ANN models in the preliminary of this study and so these parameters
were used to obtain the AGSC predictions.

A total of 200 (100 × 2 = 200 alternatives) network alternatives including 100
number neurons and 2 network training function alternatives (trainlm and trainbr)
based on the Multilayer Feed Forward Backprop training algorithms, were trained
and used to obtain the AGSC predictions. These network trainings for 200 network
alternatives forANNmodelswere carried out using newff syntax for the feed-forward
back propagation network codded in MATLAB software (MATLAB 2014).

16.2.6 Support Vector Machine Models

Another alternative artificial intelligence model is the SVM technique, which is
currently attracting attention and importance subject being an artificial intelligence
technique. This SVM technique can be used to carry out general regression to predict
forest and tree attributes and classification to obtain similar and dissimilar forest units
and fractures. The concept of SVM has been proposed by Vladimir Vapnik and his
co-workers for classification purposes, then the regression application of the SVM
hasbeen developed based on the same principle with the SVM for classification.



392 A. Günlü et al.

It trains SVM models, the significant way of adding non-linearities in SVM is
by the use of kernel functions, which this function defined by the input data into
a high-dimensional feature space to improve the predictive ability of this network.
Especially, Radial-based function (RBF) kernel can offer successful modeling results
in nonlinear data. In applications involving regression estimation, including contin-
uous number to predict, “eps-regression” type of the SVM can be trained to perform
a regression task. In this SVM models, input variables were best predictive stand
parameters as with ANN models, and target variable was the AGSC values. In this
study, the SVM model was applied based on “eps-regression” type of the SVM and
the RBF Kernel of the e1071 R package (R Development Core Team 2018).

16.2.7 Comparison Criteria

In this study, several comparison criterion values were used to compare and evaluate
the predictions of AGSC that were obtained by the MLR, ANN and SVM models.
These fitting criteria are (2) Sum of Squared Errors (SSE), (3) the root mean squared
error (RMSE), (4) % root mean squared error (RMSE%), (5) the fit index (FI), (6)
Akaike’s information criterion (AIC) and (7) Bayesian information criterion (BIC).
These criteria are calculated as follows:

SSE =
n∑

i=1

(
SCi − SC

∧

i

)2
(16.2)

RMSE =
√√√√

n∑

i=1

(
SCi − SC

∧

i

)2
/(n − k) (16.3)

RMSE% =
⎛

⎝

⎡

⎣

√√√√
n∑

i=1

(
SCi − SC

∧

i

)2
/(n − k)

⎤

⎦/SCi

⎞

⎠ · 100 (16.4)
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i

)

∑n
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(
SCi − SCi

) (16.5)

AIC = ln(RMSE)+ 2k (16.6)

BIC = ln(RMSE)+ ln(k) (16.7)

where, SCi is themeasuredAGSC value in the sample plot (observed values), SCi

is the average of observed AGSC values, SC
∧

i is the predicted AGSC value obtained
by the MLR, ANN and SVM models, k is the number of inputs or independent
variable in the prediction methods, ln is the natural logarithm with the base of the
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mathematical constant e. From these fitting criterion values, it is desired that the FI,
which is between 0 and 1, should be as close to 1 as possible. Smaller values of other
criterion values indicate that better predictive AGSC is obtained.

The flowchart of the method used in this study is given in Fig. 16.2.

16.3 Results and Discussion

The goodness-of-fit statistics of SSE, FI, RMSE, RMSE%, AIC and BIC for various
prediction techniques and Landsat 8 OLI satellite data are given in Table 16.2. Seeing
this Table 16.2, the ANN model with trainbr and # 85 neurons gave the best predic-
tive fitting results including SSE value of 34,180.132, RMSE value of 17.957, the
RMSE% value of 17.352, AIC value of 315.902, BIC value of 386.762, FI value
of 0.887 for the band brightness values. For the vegetation indices, the ANN with
trainbr and # 89 neurons resulted in the best predictive fitting statistics with SSE
value of 48,670.930, RMSE value of 21.428, the RMSE% value of 21.461, AIC
value of 334.987, BIC value of 405.847, FI value of 0.839. For the texture values, the
ANN with trainbr and # 92 neurons presented the best predictive fitting results with
SSE value of 54,862.021, RMSE value of 22.750, the RMSE% value of 21.644, AIC
value of 341.453, BIC value of 412.313, FI value of 0.819. Considering completely
these prediction techniques, the prediction model based on the ANNwith trainbr and
# 85neurons and the band brightness values showed better predictive performance in
explaining the variation in AGSC than those by various prediction techniques and,
vegetation indices and texture values.

In Table 16.3, the means of error and fitting values for SSE, FI, RMSE, RMSE%,
AIC and BIC for various prediction techniques and, band brightness, vegetation
indices and texture values were presented. From these mean values, the band bright-
ness values and a network training function with the Bayesian regularization, trainbr,
resulted in the best predictive AGSC compared the those for the vegetation indices
and texture values, and prediction techniques. These results suggested that the band
brightness values and the prediction technique based on the ANN with the Bayesian
regularization outperformed by presenting better predictive results for the SSE, FI,
RMSE, RMSE%, AIC and BIC than the vegetation indices and texture values, and
prediction techniques.

The relationships between observed (x-axis) and predicted AGSC (y-axis) by (a)
the ANN with trainbr and # 85 neurons and the band values, (b) ANN with trainlm
and # 41 neurons and the band values, (c) SVM, (d) MLR were shown in Fig. 16.3.
This graph presented the evidence of the best predictive ANN with trainbr and #
85 neurons and the band brightness values, which tend to more angle of 45 degrees
with axes than those for other prediction methods and, vegetation indices and texture
values.

Figure 16.4 presented the plot of residuals against the predicted AGSC obtained
from by (a) the ANN with trainbr and # 85 neurons and the band brightness values,
(b) ANN with trainlm and # 41 neurons and the band brightness values, (c) SVM,
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Fig. 16.2 The flowchart of the path followed in the study
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Table 16.2 The goodness-of-fit statistics of SSE, FI, RMSE, RMSE%, AIC and BIC for various
prediction techniques and satellite data

Satellite
data

Technique SSE RMSE RMSE% AIC BIC FI

Band MLR 79,203.562 27.335 26.414 361.282 432.142 0.738

ANN with
trainlm and #
41 neurons

55,333.613 22.848 22.078 341.916 412.776 0.817

ANN with
trainbr and #
85 neurons

34,180.132 17.957 17.352 315.902 386.762 0.887

SVM 75,491.309 26.687 25.787 358.690 429.550 0.751

Vegetation
indices

MLR 90,968.310 29.295 29.340 368.761 439.621 0.699

ANN with
trainlm and #
62 neurons

53,317.556 22.428 22.462 339.911 410.771 0.824

ANN with
trainbr and #
89 neurons

48,670.930 21.428 21.461 334.987 405.847 0.839

SVM 83,208.216 28.018 28.061 363.946 434.806 0.725

Texture MLR 161,319.467 39.011 39.072 399.696 470.556 0.467

ANN with
trainlm and #
86 neurons

86,497.352 28.566 27.177 366.039 436.899 0.714

ANN with
trainbr and #
92 neurons

54,862.021 22.750 21.644 341.453 412.313 0.819

SVM 114,894.416 32.923 31.322 381.370 452.230 0.620

Table 16.3 The means of error and fitting values for SSE, FI, RMSE, RMSE%, AIC and BIC for
various prediction techniques and satellite data

SSE RMSE RMSE% AIC BIC FI

Satellite data Band
values

61,052.154 23.707 22.908 344.447 415.307 0.798

Vegetation
indices

69,041.253 25.292 25.331 351.901 422.761 0.772

Textures 104,393.314 30.813 29.804 372.140 442.999 0.655

The prediction
techniques

MLR 110,497.113 31.880 31.609 376.580 447.440 0.635

ANN with
trainlm

65,049.507 24.614 23.906 349.289 420.149 0.785

ANN with
trainbr

45,904.361 20.712 20.152 330.781 401.641 0.848

SVM 91,197.980 29.209 28.390 368.002 438.862 0.699
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Fig. 16.3 The relationships between observed (x-axis) and predicted AGSC (y-axis) by a the ANN
with trainbr and # 85 neurons and the band brightness values, b ANNwith trainlm and # 41 neurons
and the band brightness values, c SVM, d MLR

(d) MLR. This best predictive ANN with trainbr and # 85 neurons and the band
brightness values resulted in significant improvement in these residuals with a lower
range compared by other alternatives. These residual results in Fig. 16.2 indicate
that predictive estimates of AGSC values have been achieved by this best predictive
ANN with trainbr and # 85 neurons and the band brightness value.

The MLR, SVM and ANN models were applied for estimating the relation-
ships between AGSC and the band brightness, vegetation indices and texture values
obtained from a Landsat 8 OLI satellite image in this study. When the literature is
analyzed, it is seen that there are many studies performed using different modeling
techniques with different data obtained from different satellite images. The results
obtained in this study were compared with other studies on this subject. Foody et al.
(2003) estimated forest biomass using vegetation indices obtained from Landsat TM
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Fig. 16.4 The plot of residuals against the predicted AGSC obtained from by a the ANN with
trainbr and # 85 neurons and the band brightness values, b ANN with trainlm and # 41 neurons and
the band brightness values, c SVM, d MLR

satellite image. They predicted the relationships between forest biomass and vege-
tation indices by using MLR and ANN models. Their results showed that predic-
tions derived from a neural network-based approach were strongly and significantly
correlated with the forest biomass estimate derived from ground measurements in
comparison to MLR model (R2 < 0.32).In a study developed by Lu et al. (2005), it
was tried to predict AGB with band, vegetation indices and texture values obtained
from Landsat TM satellite image usingMLRmodel. The results of the study showed
that band values give better results in predicting AGB in simple forest stand struc-
ture. This is in line with the findings in our results. Conversely, it was seen that the
texture characteristics gave better results in predicting AGB compared to the bands
in complicated forest stand structure. In a study conducted by Min et al. (2009)
the relationships between band and vegetation indices values obtained from Landsat
TM satellite images in three different forest types (softwood forest, hardwood forest
and mixed forest) and AGB were tried to be determined by MLR analysis. In the
results obtained, the model produced with vegetation indices was found to be more
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successful Xu et al. (2011). Used linear regression, partial least-squares regression
and ANN models to estimate AGSC based on the combined use of Landsat ETM+
data and field measurements. As in our study, their results showed that the ANN
model (R2 = 0.912) provided better results than the MLR model (R2 = 0.247) in
estimating AGSC Günlü et al. (2014). Developed MLR models to estimate the AGB
using optical band brightness values and vegetation indices derived fromLandsat TM
data in pure Crimean pine stands. Contrary to our results, their results indicated that
vegetation indices better estimation of AGB as compared to optical bands. Similar
results were obtained by Günlü et al. (2016) in the same study area, the relation-
ships between band brightness values and vegetation indices obtained from Landsat
8 OLI satellite image and the AGSC values were investigated by MLR. In the results
obtained, it has been seen that vegetation indices give better results than band bright-
ness values. The difference between this study (2016) and the present study is the
method differences used in determining the AGSC of the sample areas. While the
AGSC amounts of the sample areas were calculated using the coefficients developed
byTolunay (2014) in this study, in the current study, theAGSC amounts of the sample
areas were calculated with the carbon equations developed by Sakıcı et al. (2018).
However, in a study conducted by Turgut and Günlü (2020), different results were
obtained. In their study, the relationships between the band brightness, vegetation
indices and texture values obtained from the Landsat 8 OLI satellite image and the
AGB values calculated from ground measurements were estimated by MLR method
in pure Crimean pine stands. Contrary to our study, the model obtained with texture
values gave better results in estimating the AGB. In this study, the success of the
model obtained with texture values was higher from our study, whereas the success
level of themodel obtainedwith band andvegetation indiceswas lower than our study.
In another study conducted by Günlü and Ercanlı (2020), the relationships between
texture values obtained from Alos Palsar data and AGSC in pure beech stands were
tried to be estimated byMLR andANNmodeling techniques. As in our study, in their
study results demonstrated that the ANN was better than MLR models to estimate
AGSC values Baloloy et al. (2018). Modeled that the relationships between band and
vegetation indices values obtained from two different satellite images (Rapideyeand
Sentınel-2) andAGB were estimated by MLR and Multivariate Adaptive Regression
Spline (MARS) method. When the results obtained were examined, it was seen that
MARSmethod gave better results thanMLRmethod. However, models with vegeta-
tion indices (except for Rapideye satellite data) gave more successful results. The R2

values between vegetation indices generated from Rapideye and Sentinel-2 satellite
data and the AGBwere found the 0.82 and 0.89, respectively. However, the R2 values
between band values and AGB were found the 0.92 and 0.62, respectively. Thapa
et al. (2015) predicted the relationships between texture values obtained from Alos
Palsar image and AGSC amounts by MLR method, the R2 value was found to be
0.84. In this study, a certain amount of predictive ability in predicting AGSC can be
obtained by with artificial intelligence models. Safari et al. (2017) estimated AGSC
in coppice oak forests using Landsat 8 image and four machine learning algorithms.
Their results showed that the AGSC estimation of SVM, boosted regression trees,
random forest and multivariate adaptive regression splines algorithms (MARS) had
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R2 values of 0.64, 0.57, 0.64 and 0.58, respectively. They also found that the simple
band ratios more accurate AGSC estimates in comparison to the use of Landsat 8
OLI satellite image derived raw bands and vegetation indices. In a study conducted
by Dong et al. (2020) predicted the relationships between band, vegetation indices
and texture values obtained from World View-2 image and AGB were estimated by
using ANN and SVM methods. In the model with band values, the ANN method
(R2 = 0.238) gave better results than SVM (R2 = 0.046) method. Similarly, the
ANN (R2 = 0.248) model with the band and vegetation values together gave better
results than the SVM (R2 = 0.052) method. On the other hand, the SVM (R2 =
0.970) model with texture values better results than the ANN(R2 = 0.831) method.
In addition to these predictive findings, another important finding is that, despite the
intensive use of the trainlm training function based on Levenberg-Marquardt opti-
mization in previous studies, better predictive results are found with the network
training function based on the Bayes approach, trainbr, which may be an alternative
to this trainlm training function. The network training function based on the Bayes
approach, which can be used as an alternative to the standard training function based
on Levenberg-Marquardt optimization, provides a slower training at an acceptable
scale, but offers better predictive results than those by this standard training function.
The reason for such a result may be fact that this network training function based
on the Bayes approach can improve the ANN generalization, which the weights and
biases of the network from this network training function are assumed to be random
variables with specified distributions. Comparison of similar training functions was
made by Kamble et al. (2015) and the best predictive results were obtained with the
training function based on the Bayes approach.

16.4 Conclusion

The relationships between band brightness values, vegetation indices and texture
values obtained from Landsat 8 OLI satellite image and AGSC values obtained
by ground measurements were evaluated by using MLR, SVM and ANN (trainlm
and trainbr) methods in pure Crimean pine stands. The ANN method outperformed
than the SVM and MLC methods for AGSC prediction. Also, the best predictive
accuracy was obtained for the ANN with trainbr model used band brightness values
and followed it by ANN trainlmmethod with band brightness values. Using different
modeling techniques such as deep learning, mixed effect modeling and MARS, and
different satellite images such as passive, active and fused data (combined the active
and passive satellite data) can improve the model achievement criteria in similar and
different forest ecosystems.
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Ercanlı İ, Günlü A, Şenyurt M, Bolat F, Kahriman A (2016) Artificial neural network for predicting
stand carbon stock from remote sensing data for even-aged scots pine (pinussylvestris L.)
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Planlarına Yansıtılması: Kavramsal Çerçeve ve Bir Örnek Uygulama (1. Bölüm). Orman ve Av
Dergisi, Sayı 2, Cilt 83:36–41 (in Turkish)

Kelsey KC, Neff JC (2014) Estimates of aboveground biomass from texture analysis of Landsat
imagery. Remote Sens 6:6407–6422

Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220(1-3):242–258
Leite HG, Marques da Silva ML, Binoti DHB, Fardin L, Takizawa FH (2011) Estimation of inside-
bark diameter and heartwood diameter for Tectonagrandis Linn. Trees using artificial neural
networks. Eur J For Res 130:263–269

Li Y, Han N, Li X, Du H, Mao F, Cui L, Liu T, Xing L (2018) Spatiotemporal estimation of bamboo
forest aboveground carbon storage based onLandsat data in Zhejiang, China. Remote Sens 10:898

Lim B, Brown S, Schlamadinger B (1999) Carbon accounting for forest harvesting and wood
products: review and evaluation of different approaches. Environ Sci Policy 2:207–216

Lu D,Mausel P, Broondizio E, Moran E (2005) Relationships between forests stand parameters and
Landsat TM spectral responses in the Brazilian Amazon Basin. For Ecol Manage 198:149–167

MATLAB (2014) MATLAB and statistics toolbox release 2014b, The Math Works, Inc., Natick,
MA, USA

Miguel EP,Mota FCM,Menez IC, Téoeo SJ, NascimentoRGM,Leal F, Assis I, Pereira RS, Rezende
AV (2016) Artificial intelligence tools in predicting the volume of trees within a forest stand. Afr
J Agric Res 11:1914–1923

Milne R, Brown TA (1997) Carbon in the vegetation and soils of great Britain. J Environ Manage
49:413–433



402 A. Günlü et al.

Min L, Qu JJ, Xianjun H (2009) Estimating aboveground biomass for different forest types based
on Landsat TM measurements. In: 17th international conference on geoinformatics. Proceeding
of a meeting held on 12–14 Aug 2009, Fairfax. Virginia, pp 1–6

Myeong S, Nowak DJ, Duggin MJ (2006) A temporal analysis of urban forest carbon storage using
remote sensing. Remote Sens Environ 101:277–282

Ney RA, Schnoor JL, Mancuso MA (2002) A methodology to estimate carbon storage and flux in
forestland using existing forest and soils databases. Environ Monit Assess 78:291–307

Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ
Pollut 116:381–389

Nunes, MH, Görgens EB (2016) Artificial intelligence procedures for tree taper estimation within
a complex vegetation mosaic in Brazil. Plos One 11

Özçelik R, Diamantopoulou MJ, Wiant HR, Brooks JR (2008) Comparative study of standard
and modern methods for estimating tree bole volume of three species in Turkey. For Products J
58(6):73–81

Özçelik R, Diamantopoulou MJ, Wiant HV, Brooks JR (2010) Estimating tree bole volume using
artificial neural network models for four species in Turkey. J Environ Manage 91(3):742–753

Özçelik R, Diamantopoulou MJ, Crecente-Campo F, Eler U (2013) Estimating Crimean juniper
tree height using nonlinear regression and artificial neural network models. For Ecol Manage
306:52–60

Özçelık R, Diamantopoulou MJ, Eker M, Gürlevık N (2017) Artificial neural network models: an
alternative approach for reliable aboveground pine tree biomass prediction. For Sci 63(3):291–302

R Development Core Team (2018) R: A language and environment for statistical competta et al.
2017uting. R Foundation for Statistical Computing, Vienna, Austria

Rahman MM, Csaplovics E, Koch B (2008) Satellite estimation of forest carbon using regression
models. Int J Remote Sens 29(23):6917–6936

Ranson KJ, Kimes D, Sun G, Nelson R, Kharuk V, Montesano P (2007) Using MODIS and GLAS
data to develop timber volume estimates in central Siberia. In: IEEE International Geoscience
and Remote Sensing Symposium, Barcelona, 2007, pp 2306–2309

Rouse JW, Haas RH, Deering DW, Schell JA, Harlan JC (1974) Monitoring the vernal advancement
and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III, Final Report,
Greenbelt, MD

Safari A, Sohrabi H, Powell S, Shataee S (2017) Comparative assessment ofmulti-temporal Landsat
8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak
forests. Int J Remote Sens 38(22):6407–6432

SakiciOE, SekiM, SaglamF (2018)Above-ground biomass and carbon stock equations forCrimean
pine stands in Kastamonu region of Turkey. Fresenius Environ Bull 27(10):7079–7089

Sanquetta CR, Dolci MC, Corte APD, Sanquetta MNI, Pelissari AL (2017) Form factors
vs. regression models in volume estimation of Pinus taeda L. stem. Científica, Jaboticabal
45(2):175–181

Sivanpillai R, Smith CT, Srinivasan R, Messina MG, Benwu X (2006) Estimation of managed
loblolly pine stands age and density with Landsat ETM data. For Ecol Manage 223:247–254

Soares FAA, Flôres EL, Cabacinha CD, Carrijo GA, Veiga ACP (2011) Recursive diameter predic-
tion and volume calculation of eucalyptus trees using multilayer perceptron networks. Comput
Electron Agric 78:19–27

ThapaB,WatanabeM,MotohkaT, ShimadaM (2015) Potential of high-resolutionALOS–PALSAR
mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens Environ
160:122–133

Tolunay D (2014) Coefficients that can be used to calculate biomass and carbon amounts from
increment and growing stock in Turkey. In: Proceedings of the International Symposium for
the 50th Annıversary of the Forestry Sector Planning in Turkey, 26–28 November, pp 240–251,
Antalya, Turkey



16 Estimation of Aboveground Stand Carbon using Landsat 8 OLI … 403

Turgut R, Günlü A (2020) Estimating aboveground biomass using Landsat 8 OLI satellite image
in pure Crimean pine (Pinusnigra J.F. Arnold subsp. Pallasiana (Lamb.) Holmboe) stands: a
casefromTurkey. Geocarto J. https://doi.org/10.1080/10106049.2020.1737971

Vapnik V (1995) The nature of statistical learning theory. Springer, New York, p 334
Vapnik V, Chervonenkis A (1964) A note on one class of perceptrons. Autom Remote Control 25
Vapnik V, Lerner A (1963) Pattern recognition using generalized portrait method. Autom Remote
Control 24:774–780

Wang J, Neskovic P, Cooper LN (2005) Training data selectionforsupportvectormachines. In:
International conference on natural computation. Springer, Berlin, pp 554–564

Xu X, Du H, Zhou G, Ge H, Shi Y, Zhou Y, Fan W, Fan W (2011) Estimation of aboveground
carbon stock of Moso bamboo (Phyllostachysheterocycla var. pubescens) forest with a Landsat
Thematic Mapper image. Int J Remote Sens 32(5):1431–1448

https://doi.org/10.1080/10106049.2020.1737971

	16 Estimation of Aboveground Stand Carbon using Landsat 8 OLI Satellite Image: A Case Study from Turkey
	16.1 Introduction
	16.2 Materials and Methods
	16.2.1 Study Area
	16.2.2 Calculation of Aboveground Stand Carbon
	16.2.3 Remote Sensing Data
	16.2.4 Multivariate Linear Regression
	16.2.5 Artificial Neural Network Models
	16.2.6 Support Vector Machine Models
	16.2.7 Comparison Criteria

	16.3 Results and Discussion
	16.4 Conclusion
	References




