
Chapter 10
Forest Health Monitoring using
Hyperspectral Remote Sensing
Techniques

Narayan Kayet

Abstract Hyperspectral Remote sensing is a handy tool for forest health moni-
toring. This study focuses on forest health monitoring using hyperspectral satellite
data and validates it with tree spectral data. In the study area, increasing mining and
anthropogenic activities within and near forest lands have caused threats to forest
health.All these necessitate assessing the forest health in the areas surroundingmines.
We have used two methods for the forest health assessment: one is VIs (vegetation
indices) based model, and another is tree spectral analysis. The supervised classi-
fication (SAM) method was used for forest health classification based on spectral
data. The results showed that a healthy forest portion was located in the hilly side of
the study area while an unhealthy segment was situated alongside the mines. Hype-
rion data-based VIs model shows better accuracy than spectral based other methods.
Also, it was found that the hyperspectral data based forest health classification gave
a higher accuracy than multispectral data. Finally, forest health results were justified
by ground tree spectral data. This work provides an effective guideline for forest
planning and management.

Keywords Forest health · Hyperspectral data · Vegetation indices · GIS · Mining
area

10.1 Introduction

Hyperspectral remote sensing is a very useful tool for forest health monitoring.
Hyperspectral data are spectrally overdetermined, which means that they provide
spectral information to identify and distinguish spectrally unique materials. Also
this data has the potential for more accurate information extraction than possible
from multispectral data (Apostolescu et al. 2016; Navinkumar and Parmar 2016).
The hyperspectral sensor provides hundreds of narrow spectral bands of the Earth’s
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surface features. NASA EO-1 satellite, equipped with the Hyperion spectrometer,
which has a sampling distance of 10 nm within the 7.7 km swath path, provides 242
spectral bands within the range of 400–2500 nm wavelengths of the EM spectrum
(Hyperion user guide). This sensor easily detects forest biochemical and biophys-
ical properties (Asner et al. 2015; Thenkabail et al. 2001; Chambers et al. 2007).
Hyperspectral data can detect pest and blight conditions in a forest as well as be
used for assessing areas for timber harvesting. Narrow-banded hyperspectral data
has been used for forest health mapping (Tuominen et al. 2009; Kayet et al. 2019a,
b), to depict the overall healthy and unhealthy portions of a forest. Recent devel-
opments in hyperspectral data acquisition from satellite-borne spectrometers have
opened new areas of research that could bring revolutionary changes in the current
approaches to forest management (Franklin 2001). Some researchers have worked
on vegetation stress from the derivative chlorophyll index and leaf area index (Broge
and Leblanc 2001; Brantley et al. 2011; Darvishzadeh et al. 2011). They have used
the airborne hyperspectral image for this analysis. Detection of vegetation stress by
hyperspectral remote sensing technique is based on the assumption that vegetation
stress factors interfere with photosynthesis or the physical structure of the vegetation
and affect the absorption of light energy and thus alter the reflectance spectrum of the
vegetation (Zarco-Tejada et al. 2009; Jacquemoud et al. 2009; Bellvert et al. 2014).
Airborne hyperspectral data is used for the estimate and distribution of different
species in the forest areas. Hyperspectral data has used to develop the Photochem-
ical Reflectance Index (PRI) for distinguishing the species-wise variations of leaves
(Cho et al. 2008; Mashimbye et al. 2012; Darvishzadeh et al. 2008). The hyperspec-
tral narrow banded data-based NDVI (normalized difference vegetation index) and
LAI (leaf area index) has been used for plant health detection by Zarco-Tejada et al.
(2005). They had used red, red edge, and NIR bands for this analysis. The Interna-
tional Institute for Geo-Information Science and EarthObservation (ITC) has studied
vegetation health and tree species classification using hyperspectral data. They have
used full pixel classification methods for vegetation health and tree species based on
ground tree spectral data (Vauhkonen et al. 2011; Dalponte et al. 2014). The deci-
sion tree classifier tool of ENVI will be used to classify the pixels of a Hyperion
image for necessary information acquisition for forest management purposes (vege-
tation indices tutorial ENVI). Ma et al. (2017) used airborne Hyperspectral data to
develop photochemical reflectance index (PRI) for distinguishing the species wise
variations of leafs. A number of researchers have assessed the vegetation stress from
derivative chlorophyll index and leaf area index estimation, using compact airborne
spectrographic image (Wu et al. 2010; Zarco-Tejada et al. 2002; Lee et al. 2004). The
detection of vegetation stress by hyperspectral remote sensing techniques is based
on the assumption that vegetation stress factors interfere with photosynthesis or the
physical structure of the vegetation and affect the absorption of light energy and thus
alter the reflectance spectrum of vegetation (Zarco-Tejada et al. 2009; Calderon et al.
2013; Li and Guo 2016).
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The study area is located in the in an region that has many mines. Mining fields
are under high-stress conditions showing signs of dry and dying plant species. In the
study area, increasing mining and anthropogenic activities within and near forests
pose threats to forest health. All these necessitate monitoring of the forest health in
surrounding mining areas.

10.2 Materials and Methods

10.2.1 Study Area

The present study has been done in the Saranda Forest and its surrounding areas,
which are located in the West Singhbhum district of the Indian state of Jharkhand
(Fig. 10.1). It is famous for having Asia’s largest Sal forests and is an important
elephant habitat. Over the last few decades, in this region, many iron ore mining
towns have emerged, e.g. Gua, Chiria, Megataburu and Kiriburu. The Saranda forest
of Jharkhand is endowed with some rich iron ore deposits. The location of the
forest is within latitude 22° 3′ 7.98′′–22°14′ 0.67′′ N and longitude 85° 21′ 31.52′′–
85° 25′ 53.18′′ E with elevation of 850 m above the mean sea level (MSL). Saranda
forest is fed by two major rivers, Karo and Koina. The catchment of these rivers
comprises of a drainage system with stream order of up to six (Kayet et al. 2016).

Fig. 10.1 Location map of the study area
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Fig. 10.2 Trees spectral data collected from field

10.2.2 Data Source

Hyperspectral data (Hyperion) were downloaded from the USGS website and used
for forest health monitoring. Healthy and unhealthy tree spectra data were collected
by a field spectroradiometer instrument. Also, healthy and unhealthy forest locations
(latitude and longitude) were recorded by GPS. Photographs are taken for validation
purposes during the field survey (Fig. 10.2).

10.2.3 Data Pre-processing

Bad bands removal: The delivered USGSHyperion product level LIR has 242 bands,
of which 44 were not calibrated. The main reason for not calibrating the entire
band was the decreased sensitivity of the detectors within the non-calibrated spectral
regions. Out of the total collected 242 Hyperion bands, 44 (Table 10.1) bands do not
work (Han et al. 2002).

De-stripping: Hyperion L1R data shows a severe striping effect by imprecise
co-calibration of individual detectors on the focal plane array. The first 12 visible
near-infrared bands andmany short waves infrared bands are affected by striping and
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Table: 10.1 List of unused bands of the hyperion sensor

Bands Description

1–7 Not illuminated

58–78 Overlap region

120–132 Water vapour absorption Band

165–182 Water vapour absorption band

185–187 Identified by hyperion bad band list

221–224 Water vapour absorption Band

225–242 Not illuminated

bad columns. An uncorrected striping effect will lead to a faulty interpretation of the
results. The vertical stripes error valueswere replaced by the averageDNvalues of the
adjacent columns. Hyperspectral data are affected by different noise sources which
can be grouped into two main classes: random noise and fixed pattern noise. The
photon and thermal noise are random noise; striping noise is a fixed pattern noise and
created from push-broom sensors. Hyperspectral images are affected by those noises.
Geometric correction: Geometric distortion often has to be removed from remotely
sensed data. There are two main approaches to remove the geometric errors. One is
the systematic approach and the other is the non-systematic approach. Some of these
errors can be corrected by using the ephemeris of the platform and previously known
internal sensor distortion characteristics. Other errors can be rectified by matching
image coordinates of physical features recorded by the image to the geographic
coordinates of the same feature collected from amap or by using aGlobal Positioning
System (GPS).

Radiometric correction: Cross-track illumination- ENVI cross-track illumination
tool was used to remove variation of illumination of the image. Cross-track illu-
mination errors may be due to vegetating effects, instrument effects or scanning or
other non-uniform illumination effects. The EFFORT algorithm calculates the mean
values of an extended track polynomial function, and fit mean values remove this
error. We have used this algorithm to remove the variation of illumination of the
image.

Atmospheric correction (FLAASH): Atmospheric correction reduces the effects
of the atmospheric components (water vapor, dust, gasses) on the electromagnetic
radiation reflected or emitted from the surface. We have used the FLAASH model
(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) in ENVI soft-
ware for atmospheric correction and convert to surface reflectance. This model was
developed by Spectral Sciences, Inc., under the sponsorship of the US Air force
Research Lab. The calibration model based on the theory of atmospheric radia-
tion is according to the physical process of radiation transfer, building by radiation
transfer equation, using a theoretical formula (Cooley et al., 2002) to proceed with
atmospheric correction (Eq 1).
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FLAASH starts from a standard equation for spectral radiance at a sensor pixel, L;
that applies to the solar wavelength range and flat, Lambert a material or their equiv-
alents. FLAASH atmospheric correction removes this absorption feature. FLAASH
MODTRAN has outperformed other radiative transfer codes especially in the water
region 940 and 1130 nm and CO2 at 2055 nm (Pathak et al. 2016).

10.2.4 Methodology

10.2.4.1 Vegetation Indices (Vis)-Based Forest Health Mapping

The forest health analysis tool will generate a spatial map that shows the overall
health and vigor of a forested area (Tuominen et al. 2008). It is good at detecting pest
and blight conditions in a forest. The forest health tool uses the following vegetation
index categories (ENVI Forest heath tutorial):

1. Narrow band Greenness, to show the distribution of green.
2. Leaf pigments, to show the concentration of arytenoids and anthocyanin pigments

for stress levels.
3. Canopy water content, to show the concentration of water.
4. Light use efficiency, to show forest growth rate.

Greenness indices: Greenness vegetation indices generally measure the vigor and
green vegetation (Kumar et al. 2015). They measures the various aspects such as
chlorophyll concentration, canopy area, and canopy structure. Greenness vegeta-
tion indices are based on measuring the reflectance peak in the NIR region. Red
wavelengths where the chlorophyll absorption is strongest are used as a reference
(Lloret et al. 2004). Leaf pigments indices: Leaf pigment vegetation indices measure
the amount of stress-related pigment in the vegetation (Jenkins et al. 2007). In
stressed vegetation, there is a higher concentration of carotenoids and anthocyanins.
Carotenoids are the leafs pigment that prevents vegetation light conditions. Antho-
cyanin pigment contents are high in new leaves (Gamon et al. 1999). Canopy water
content indices:Water content vegetation indices are designed to estimate the canopy
water content (Colombo et al. 2008). However, water content is an important vege-
tation property that controls vegetation growth and also correlates with vegetation
health (Adam et al. 2010). The use of water content vegetation indices needs high
spectral resolution data.
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Table 10.2 Narrow banded VIs for forest health mapping

Narrow
banded
Indices

Indices Algorithms References

Greenness (i) Modified
red edge
normalized
difference
vegetation
index

(ii) Vogelmann
red edge index

mNDVI705 =
(750nm 705nm)/(750nm + 705nm (2 ∗ 445nm))

V RE I1 = 740nm/
720nm

Datt (1999),
Zarco-Tejada
et al. (2013)

Light use
efficiency

Structure
insensitive
pigment index

SIPI = (800nm−445nm)/(800nm−680nm) Penuelas
et al. (1994)

Leaf
pigments

(i) Carotenoid
reflectance
index

(ii)
Anthocyanin
reflectance
index

ARI1 = 1
550nm − 1

700nm

CRI2 = (1/510nm)(1/550nm)

Gitelson
et al. (2002)

Canopy
water
content

Normalized
difference
infrared index

NDI I = 819nm − 1649nm/819nm − 1649nm Hardisky
et al. (1983)

Light Use Efficiency indices: Light use efficiency vegetation indices provide the
efficiency with which vegetation can use incident light for photosynthesis (Wilson
et al. 1981). It is correlated with carbon uptake efficiency and growth rate. However,
by the use of light use efficiency vegetation indices measure the growth rate and
production of vegetation. We have used six narrow banded Vis for forest health
mapping (Table 10.2).

10.2.4.2 Spectral Analysis Based Forest Health Mapping

The following procedures of Hyperspectral analysis were employed, including the
Minimum Noise Fraction (MNF) transformation for reducing the spectral data, the
Pixel Purity Index (PPI) for identifying those extreme or spectrally pure pixels,
and the n-dimensional visualizer for determining the endmember directly from the
image. Spectral Angle Mapper (SAM) was applied to estimate the abundances of
each endmember to produce the final map.

Minimum Noise Fraction (MNF): MNF can reduce the inherent dimensionality
of the dataset and reduce noise from the dataset. MNF also reduces the computa-
tional requirement for subsequent processing. The first step in MNF transforms the
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data in which the noise has a unit variance and there is also no band to band inter-
relationship (Denghui and Le 2011). Secondly, the MNF can compute/process the
principal component analysis for noise-whitened data (Gamon et al. 2004). MNF
inversion produces much smaller spectral angles than those derived in transformed
space (Peddle et al. 2008). The first ten inverse MNF bands contain 95% of the total
information.

Pixel purity index (PPI): Image transformation techniques typically use statistical
analysis and reduce the dimensionality of the data. One such transformation is done
through the principal component analysis or principal component transformation
(Chang and Plaza 2006). The pixel purity index (PPI) is a means of finding the
most spectrally pure, or extreme, pixels in multispectral and hyperspectral images
(Chaudhry et al. 2006). The most spectrally pure pixels typically correspond to
mixing endmembers (Plaza et al. 2006).

N-dimensional (N-D) Visualizer: N-D is applied after correcting the image. The
distribution of bands in N space can be used for the estimation of some spectral
endmembers and their pure spectral signature (Kruse et al. 1999). TheN-dimensional
visualization is applied after gathering the data throughMNF or PPI algorithms. The
pre-clustering result attempts to find in the corner pixel of N-dimensional using a
spectral scatter algorithm.

Since the purest pixel is found in the neighbourhood of the data cloud (Wang et al.
2015). The n-dimensional visualizer allows for the interactive rotation of data in n-D
space, selection of groups into different classes (Boardman et al. 1995).

Spectral classification techniques: Classification and feature extraction methods
have been commonly used for many years for the mapping of forest health and
vegetative cover from hyperspectral datasets. However, conventional classification
algorithms cannot be applied to hyperspectral data due to the high dimensionality of
the data. Spectral AngleMapper (SAM)mapping techniques were used in the present
study to map of forest health in the study area. Spectral Angle Mapper (SAM) is an
algorithm, which is widely used for hyperspectral image correction (Petropoulos
et al. 2013). It is a supervised image correction process. A pixel with a minimum
spectral angle comparison with reference spectra is assigned to the pixel vector. This
algorithm determines the spectral similarity between two spectra by calculating the
angle between the spectra and treating them as vectors in space with dimensionality
equal to the number of bands (Girouard et al. 2004).

10.2.4.3 Accuracy Assessment

Accuracy assessment is an important work in the classification validation system.
Remote sensing technology is a great source of thematic map presentation although
accuracy assessment assists how far the classification represents the realworld.Accu-
racy assessment can produce user accuracy, producer accuracy, total accuracy, and
also kappa coefficient value.

The producer accuracy of the classified pixels compared to the ground truth. The
overall research methodology is shown in Fig. 10.3.
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Fig. 10.3 Overall methodology for forest health monitoring

Table 10.3 Minimum,maximum,mean, and standard deviation values of before and after FLAASH
correction

FLAASH correction Min Max Mean Stdev

Before correction −77 3383 84,444.44 66,423.37

After correction 0 70.89 11.63 10.21

10.3 Results and Discussion

10.3.1 Result of FLAASH Atmospheric Correction

FLAASH is an effective atmospheric correction processwhere all bands are corrected
to follow their proper geometric and radiometric characteristics. FLAASH can also
remove the de-striping of the image, path radiation of the image, and various system-
atic and non-systemic effects. Pre and post FLAASH correction statistics value are
shown in Table 10.3. Spectral variability of after FLAASH correction is shown in
Fig. 10.4.

10.3.2 Vegetation Indices (Vis) Based Forest Health Mapping

Vegetation Indices (VIs)were calculated for 60 test sample pixels.Mean and standard
deviation values for both healthy and unhealthy classes are shown in Table 10.4.
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Fig. 10.4 Image spectra after atmospheric correction

Table 10.4 Mean, standard deviation and separability values for each index test

Vegetation indices Healthy Unhealthy Separability

Mean Std. Mean Std. S

MNDVI705 0.66 0.03 0.17 0.08 4.21

VREI1 1.44 1.13 0.06 0.05 2.60

CRI1 33.22 7.92 17.17 2.24 1.57

ARI1 9.65 4.78 7.71 2.29 0.27

NDII −0.49 0.07 −1.23 0.27 2.11

SIPI 1.09 0.02 0.51 0.33 1.60

Generally, the separability values obtained for greenness and vegetation indices
were relatively high. The highest separability values were obtained for the modified
red edge normalized difference vegetation (MNDVI705) index due to good chloro-
phyll content. The MNDVI705 correlates well with good chlorophyll content, so its
good performance could be expected as the result of forest health (Kayet et al. 2019a,
b). ENVI software provides nine forest health classes (Fig. 10.5).
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Fig. 10.5 Forest health map (Class 9 very healthy and class 1 unhealthy)

The classifications are relative to the particular input scene only and cannot be
generalized to other areas or other scenes. The healthy and unhealthy value range is
0.5–0.8 and 0.1–0.3 (Kayet et al. 2019a, b). The classification map rates the scene
from one, representing the least healthy forest (weakest) to the healthiest forest
(strongest) which help to assess relative forest health conditions within the scene
(ENVI forest health tool tutorial).
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Fig. 10.6 Hyperion reflectance spectra of forest health classes (1–9)

Forest health classification was done by the use of three narrow-band vegetation
indices which are MNDVI705 (Greenness or chlorophyll vegetation Index), CRI_1
(Leaf pigment Vegetation Index), and SIPI (Light efficiency vegetation Index). The
MNDVI705 index works well with the lower chlorophyll content, so it is accepted
for appreciable forest health result (Kumar et al. 2015). Test of forest health result
for leaf pigments VIs is relatively lower than any other vegetation indices. In leaf
pigment VIs, the value of ARI1 is high than other VIs (Serrano et al., 2002). For light
use efficiency, Vis value is relatively higher than that of leaf pigment VIs (Jenkins
et al. 2007). NDNI is a useful index where there exhibits a high variability in canopy
or leaf pigment structure (Rodriguez et al. 2007). The test result for canopy water
content index was low because of vegetation canopy structure (Sims et al. 2002).
The Hyperion spectral signature of each forest health class is shown in Fig. 10.6.

10.3.3 Spectral Analysis Based Forest Health Mapping

Forest health is mainly dependent on various physiological parameters such as
climate, temperature, geology, soil, slope, aspect, hill shade direction, and much
more. The study area is mainly covered by three types of forest health (healthy,
moderated healthy, and unhealthy). The healthy and unhealthy value range is 0.5–
0.8 and 0.1–0.3 (Kayet et al. 2019a, b). The spectral signature of the forest health
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Fig. 10.7 Field collected healthy and unhealthy trees spectra

classes were collected from the image and these matche the spectral signature from
field collected tree spectral library (Fig. 10.7) and field sample data in ENVI software.

Forest health mapping is done by the SAM classification technique. Classification
of forest health into three classes (healthy, moderated healthy, and unhealthy) is
shown in Fig. 10.8.

Healthy forest (0.5–0.8) cover comprises 49.87% of the study area, 14.15% area is
covered by moderate healthy forest (0.3–0.5), and unhealthy forest (0.1–0.3) covers
38.03% area (Kayet et al. 2019a, b). Healthy forests are present mostly in the north
and the north-east part of the study area andunhealthy is situated inmines surrounding
area. George et al. (2014) shown the better forest classification throughHyperspectral
remote sensing and compared the classification results obtained from Hyperion and
Landsat TM sensors for the study of Western Himalaya and obtained collective
accuracies of 81.52% and 69.62% respectively. Thenkabail et al. (2004) compared
the classification results of different sensors viz., Hyperion, IKONOS,ALI, and ETM
+ sensors for the study of African rainforests and obtained collective accuracies of
93.2%, 87.46%, 81.53%, and 76.9% respectively.
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Fig. 10.8 Forest heath mapping by hyperion data

10.3.4 Accuracy Assessment

Classification accuracy was done by spectral angle mapper (SAM) classification
technique in ENVI software. SAMwas implemented to the collection of the spectral
signature of healthy, moderated healthy and unhealthy forests. Forest health classi-
fication is accuracy by the USGS spectral library and sample field points. Thus, the
overall accuracy of 76.53% and 0.71 kappa coefficient were determined (Table 10.5).
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Table 10.5 Accuracy assessment results of SAM based on hyperion data

SVM based on hyperion Healthy Moderated healthy Unhealthy Total UA

Healthy 11 0 1 11 81.52

Moderated healthy 0 13 0 13 74.54

Unhealthy 2 0 10 12 70.66

Total 13 13 11 36

PA 91.83 85.53 80.11

Overall accuracy: 76.53%, kappa statistics: 0.71

10.3.5 Forest Health Validation

The healthy, moderately healthy, and unhealthy components constituting the forest of
the study areawere evaluated, both at ground level and pixel- level, having the highest
reflectance data from the NIR wavebands region. The correlation determination (R2)
and RMS error values were evaluated from ground level and pixel-level spectral data
(Fig. 10.9). A correlation (R2 = 0.84) was observed between the ground level and

Fig. 10.9 Correlation betweenfield reflected spectra and pixel reflected spectra of healthy,moderate
healthy and unhealthy forest class
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pixel-level for class healthy, and an RMS error of 3.98 was found. A correlation (R2

= 0.86) was observed between the ground level and pixel-level for class moderately
healthy, and an RMS error of 2.06 was found. And a correlation (R2 = 0.87) was
observed between the ground level and pixel-level for class unhealthy, and an RMS
error of 1.25 was found.

10.4 Conclusion

The article has summarized forest health monitoring soundingmines areas. This case
study demonstrated by hyperspectral data. Hyperspectral data has more capability
than multispectral data. In this study, a good correlation was shown between forest
health and distance from mines. It means that as the mining area increases forest as
well as environment will also get affected. This methodology would be capable of
monitoring various categories of forest region routinely irrespective of the different
climate condition, forest structure, and soil condition. Hyperspectral remote sensing-
based forest healthmonitoring is today’s need so that the forest department, local self-
government, and mining companies must adopt an adequate policy for reclamation
and restoration of the forest ecosystem affected by mining activities.
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