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Chapter 3
Evoked Potentials
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BAEP	 Brainstem auditory evoked potentials
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ICHD	 International classification of headache disorders
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MEP	 Motor evoked potential (MEP)
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rTMS	 Repetitive transcranial magnetic stimulation
SS	 Steady-state
SSEPs	 Somatosensory evoked potentials
sTMS	 Single-pulse transcranial magnetic stimulation
TMS	 Transcranial magnetic stimulation
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VEP	 Visual evoked potential
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3.1  �Introduction

Headache is a widespread symptom that frequently leads patients to consult a neu-
rologist. Most recurrent headaches will occur in the context of a primary headache 
disorder, which can be classified based on the criteria of the new ICHD 3 classifica-
tion (2018). Few chronic headaches are directly related to an identifiable underlying 
organic condition (secondary headaches). Even if the diagnosis of a primary head-
ache is predominantly a matter of clinically based reasoning, the quest for a specific 
biomarker of various primary headaches (predominantly migraine) has been among 
the biggest challenges of the last 50 years.

Numerous paraclinical tests have been developed over the past decades and used 
to gather a better insight into primary migraines’ pathophysiology, but their useful-
ness and place in clinical practice are sometimes ill defined. Functional neuroimag-
ing techniques, such as positron emission tomography and functional magnetic 
resonance imaging, offer a high spatial resolution, while electrophysiological tech-
niques have an excellent temporal resolution and probably a better accessibility in 
daily neurological practice. Laboratory testing provided promising results but is 
usually restricted to tertiary headache centres.

Electrophysiology is particularly suitable to study the nervous system in human 
beings. It is noninvasive, riskless and relatively easy to perform. Briefly, the differ-
ent components of the nervous system generate an electrical signal that reflects the 
summation of several action potentials and can be recorded using surface scalp 
electrodes. Transient evoked potentials are electrical potentials elicited in the ner-
vous system after repeated stimulations (visual, auditory, somatosensory, etc.). 
Transcranial magnetic stimulation (TMS) allows evaluating temporal changes in 
cortical excitability.

Here, we will review the relevant data of electrophysiology using non-cognitive 
and non-painful evoked potentials performed in migraine and their interest for the 
phenotyping and diagnosis of long-lasting headache disorders.

3.2  �Visual Evoked Potentials

Migraine is associated with prominent visual symptoms; it thus seemed logical to 
initially study the visual modality of evoked potentials. The latter is still the most 
studied evoked modality.

For more than six decades, the recording of visual evoked potentials (VEPs) has 
been used in neurophthalmological diagnostics as a complement to ophthalmologi-
cal and neurological semiotics.

The recording of VEPs is a method that has the great advantage of exploring, in 
a noninvasive way, the functioning of the visual system. The VEP, in fact, represents 
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the summation of electrical potentials recorded over the scalp, which mirrors the 
neurophysiological counterpart of the activity of the visual pathway up to Brodmann 
area 17.

Different types of visual stimulation paradigms have been used to study migraine 
pathophysiology.

The bioelectric activity of the innermost retinal layers (cells and ganglion fibres), 
explored through pattern electroretinogram recording, showed no abnormalities in 
migraine with and without aura [1, 2].

By using a repetition of the visual stimulus above 4 Hz, it is possible to obtain a 
stationary neurophysiological response over time, so-called steady-state (SS) 
response, that can be analysed using a Fourier transform, that is without the interven-
tion of the examiner. A higher amplitude of the fundamental harmonic from SS stim-
ulation is commonly found in episodic migraine with or without aura [3–7]. This 
abnormality returns to the normal range after a prophylactic treatment with femox-
etine or propranolol [8]. In a multichannel study the connectivity between the SS-VEP 
response recorded from the cuneus and that recorded from the temporal poles and the 
anterior cingulate cortex increased with increased headache-free days elapsed since 
the last migraine attack [9]. Some researchers found that relative reduction in SS-VEP 
response with increasing contrast—an indirect measure of contrast gain—is more 
common in migraineurs, consistent with increase in feedback excitation driving 
increased inhibition and leading to increased perceptual surround suppression [10].

Studies that analysed the amplitude of flash or pattern evoked potentials were 
inconclusive as they found either an increase [11–21], a decrease [17, 22, 23], or a 
response similar to that in healthy subjects [11, 24–31]. However, since the gross 
portion of the neural activity is lost after the standard process of averaging an 
amount of traces, Lisicki et al. investigated VEPs using single-trial analysis, detect-
ing greater VEP amplitudes in episodic migraine-without-aura patients than in 
healthy volunteers. Moreover, they observed that higher single-trial VEP ampli-
tudes in migraine involve higher grey matter volume and peculiar pattern of func-
tional connectivity in brain areas devoted to visual processing [32].

Another common finding in migraine is an increased asymmetry between the 
electrophysiological responses of the two hemispheres [1, 23, 33–39].

In recent years, most of the scientific literature on neurophysiology of migraine 
has focused on the study of habituation mechanisms. Habituation is a behavioural 
response decrement that results from repeated stimulations and does not involve 
sensory adaptation or fatigue, that is, a decrease in peripheral receptor activity. It is 
considered as a fundamental adaptive behaviour of the nervous system that allows 
selection of salient information among all ambient stimuli and is involved in learn-
ing and memory. In fact, by acquiring a high number of trials and averaging them 
off-line into successive blocks, it is possible to study the course of the amplitude of 
the potential over time. In healthy subjects, the amplitude of evoked potentials shows 
a reducing response during stimulus repetition, that is habituates normally [40].
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The majority of studies performed interictally in groups of episodic patients have 
shown a lack of reducing response, that is a habituation deficit, between the first and 
the following blocks of pattern-reversal VEPs [13, 26, 28, 41–61] (Fig. 3.1).

Habituation deficit was also found for visual evoked magnetoencephalographic 
(MEG) responses [62–65] and motion-onset VEPs evoked by the abrupt onset of 
visual motion, which are generated in extrastriate areas [53].

The habituation deficit of the visual system seems to have a genetic basis as it is 
also present in the unaffected relatives of migraine patients, defined at-risk [44, 66]. 
In addition, this abnormal processing of visual information changes in relation to 
where you are during the migraine cycle, being maximum as the distance from the 
last attack increases [20, 58] and minimum, normalizing, during an attack [49, 58, 
62] and after pharmacological [45, 50] and non-pharmacological [42, 43, 51, 52, 67, 
68] treatment. It might depend on sunlight irradiance [47] and the patient’s self-
perceived stress [46]. Sunlight and genetics, among others, could perhaps account 
for some discrepancies between VEP studies, since not all of them retrieved a habit-
uation deficit in the interictal phase [31, 41]. An anomalous thalamic control of the 
flow of information reaching the cortex [54], which in turn causes an altered degree 
of lateral inhibition of the visual cortex [58], studied by means of a windmill/dart-
board pattern, seems to be at the basis of this functional anomaly. The mechanisms 
of cortical inhibition have also proved to be altered when the VEP technique of 
double visual stimulation was used in both migraine without [69] and with aura 
[70]. It is possible to intervene on the habituation curve in general and on its deficit 
in migraine during the interictal phase through various experimental methods, such 
as tonic pain [71], 3 min of forced hyperventilation [55], or 2 h of light deprivation 
[57]. The huge number of factors influencing the phenomenon of habituation may 
explain why some studies did not confirm this abnormal processing of visual infor-
mation between migraine attacks [19, 31, 72–78]. We do not know whether these 
contradictory results are due to the enormous number of factors that can influence 
the final response after repeated visual stimulation or due to the lack of a diagnosis 
and blind analysis of the recordings, as others think [75]. Anyhow, lack of VEP 

Fig. 3.1  Demonstrative recordings of pattern-reversal visual evoked potentials (VEPs) in a healthy 
volunteer (HV), a migraine–without-aura patient between attacks (MO) and a chronic migraine 
patient (CM). VEPs are six consecutive blocks of 100 averaged responses during uninterrupted 
stimulation. Compared to the healthy subject, the MO patient is characterized by a tendency to be 
lower N1-P1 amplitude of the first block of averaged responses and lack of habituation over suc-
cessive blocks of responses, while the CM patient is characterized by an higher amplitude of the 
first block of averaged responses and normal habituation over successive blocks of responses
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amplitude habituation was detected even in patients affected by the recently 
described neurological condition called ‘visual snow’ syndrome [79–81], which 
may share pathophysiological mechanisms with migraine [82].

3.3  �Somatosensory Evoked Potentials (SSEPs)

The recording of SSEPs is an objective and quantifiable measurement of the func-
tioning of the lemniscal somatosensory system. The amplitude and latency of stan-
dard grand-averaged cortical median nerve SSEP response were normal in episodic 
migraine between attacks in most of the studies [59, 83–90], although increases in 
amplitude were reported in the only study that used magnetoencephalography [91]. 
The amplitude of the N20 SSEP component was delayed and reduced during a sen-
sory aura in one patient, and both anomalies progressively returned within the range 
of normality during the subsequent headache phase [92].

As for the VEP amplitude, a lack of habituation to repetitive peripheral electrical 
stimulation has been observed to the SSEP amplitude (Fig. 3.2). This altered pro-
cessing of sensory information was observed during the pain-free phase [59, 86, 
93–97], normalizing immediately after a forced increase in cortical excitability [94, 
97] and after a dietary ketogenic regimen [42], but not after anodal transcranial 
direct current stimulation of the temporal pole [43]. An abnormal thalamic control, 
through thalamic radiation, of the degree of cortical activation could explain the 
habituation deficit [94, 95]. Nonetheless, the magnitude habituation deficit is sig-
nificantly correlated to the clinical evolution of migraine, since spontaneous wors-
ening of the disease is associated with further reduced habituation, whereas 
spontaneous improvement is linked with enhanced habituation [96].

In partial agreement with the VEP results, during a migraine episode, initial 
response increased has been observed to the SSEP amplitude, while delayed 

Fig. 3.2  Demonstrative recordings of median nerve somatosensory evoked potentials (SSEPs) in 
a healthy volunteer (HV), a migraine-without-aura patient between attacks (MO) and a chronic 
migraine patient (CM). SSEPs are three consecutive blocks of 100 averaged responses during 
uninterrupted stimulation. Compared to the healthy subject, the migraineur is characterized by a 
lower N20-P25 amplitude of the first block of averaged responses and lack of habituation over 
successive blocks of responses, while the CM patient is characterized by an higher amplitude of 
the first block of averaged responses and normal habituation over successive blocks of responses
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responses showed normal habituation [93, 95]. This response pattern has been inter-
preted as a possible neurophysiological expression of a transient central sensitiza-
tion process during an attack. As with VEPs, a reduced degree of lateral inhibition 
within the somatosensory cortex could help explain this habituation deficit, closely 
related to the degree of thalamocortical activation. In pain-free patients, the percent-
age of lateral inhibition correlated negatively with the days elapsed since the last 
migraine attack, the average duration of the attacks and the severity of the headache, 
measured on a VAS scale [98]. It is of interest that in migraine, a reduced inhibition 
of SSEP amplitude during both a sensory gating [99] or recovery cycle paradigm 
[88] after paired electrical stimuli was observed, which may be yet other findings in 
favour of a less-efficient subcortical inhibition of sensory cortices [100]. In fact, in 
adult migraineurs, shortened recovery cycle correlated with reduced thalamocorti-
cal activation as well as with clinical worsening [101]. Migraine prevention with 
topiramate normalized the abnormal recovery cycle [102].

Again, as with VEPs, a significant asymmetry between the two hemispheres was 
noted even when recording the N30 SSEP amplitudes [85]. In an old study compar-
ing patients with mixed headache (migraine and tension-type headache) and pain-
free controls, parietal cortical potential was found to increase in amplitude and more 
rapidly as the stimulus intensity increased, independent from having or not having 
headache during the testing session [103].

3.4  �Auditory Evoked Potentials

After an acoustic stimulus, up to 30 waves can be recorded at cortical level: from the 
far-field ones generated at cochlear and acoustic nerve levels to those generated in 
the auditory cortex and associative acoustic centres. These responses are generally 
categorized into early, middle and late potentials. In most studies researchers were 
not able to find interictal abnormalities in the baseline parameters of early short-
latency brainstem auditory evoked potentials (BAEP) [31, 33, 104–107], with the 
exception of a prolonged peak latency of wave V during [107] and between [108] 
attacks.

Some authors found significant I–III [109], III–V [25, 109], or I–V [25, 108, 
109] BAEPs interpeak latency differences when comparing patients with controls 
and, in some case, even comparing patients recorded between attacks with those 
during attacks [107, 109]. In another study, all BAEP latencies increased and the V/I 
peak amplitude ratio decreased during the attacks [110].

Also with this neurophysiological method an interhemispheric asymmetry of the 
responses, specifically that of the interpeak latency I–V, has been detected [104, 
106]. BAEP abnormalities did not change after flunarizine [104].

Deficient habituation mechanism of waves IV–V dispersion was found in 
migraine interictally in response to 40 dB clicks (but not to 55 and 70 dB clicks) in 
a blinded study, in which a direct relationship between BAEP amplitudes and blood 
5-HT levels was also reported in controls but not in migraineurs [111].
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Two studies [112, 113] but one [31] found stronger stimulus intensity depen-
dence of late, long-latency, auditory evoked cortical potentials (IDAP) between 
attacks in migraineurs compared with healthy controls. Coherently with other neu-
rophysiological data, IDAP normalizes during an attack [49]. Lack of habituation 
has also been reported for cortical auditory evoked responses for 70 dB [112], but 
not in another one [31]. An inverse correlation between amplitude habituation and 
IDAP has been reported [113] (Fig.  3.3). In a recent study, researchers assessed 
auditory middle-latency evoked potentials in a group of patients with vestibular 
migraine. They described a lack of habituation of Na-Pa amplitude to repetitive 
stimulation when compared with patients affected by Meniere’s disease and healthy 
subjects [114].

In an auditory P50 event-related potential paradigm, auditory sensory gating was 
markedly decreased in migraine patients compared with controls [115, 116], prob-
ably in a way that is related to reduced short-term habituation.

3.5  �Single-Pulse Transcranial Magnetic Stimulation (sTMS)

Noninvasive magnetic stimulation of the brain is a well-established neurophysio-
logical method to assess the excitability of the underlying cortical area. After the 
introduction of TMS in 1985 [117], several authors have used sTMS in migraine 
studies.

In migraine, both decreased [118, 119] and increased [120] phosphene threshold 
(PT) were reported when sTMS was applied over the visual cortex. Several studies 
also found no differences compared to controls [77, 121]. A systematic review of 
the studies using sTMS to assess visual phosphenes provided evidence for higher 

Fig. 3.3  Demonstrative recordings of intensity-dependent auditory evoked potentials (IDAP) in a 
healthy volunteer (HV) and a migraine-without-aura patient between attacks (MO). IDAPs are 
three consecutive blocks of 50 averaged responses during uninterrupted stimulation (80  dB). 
Compared to the healthy subject, the migraineur is characterized by lack of N1-P2 amplitude 
habituation over successive blocks of responses
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phosphene prevalence and lower threshold in migraine with aura patients compared 
with controls, but not in migraine-without-aura patients. They concluded that these 
results should be interpreted with caution [122]. In migraine, PT did not correlate 
with VEP amplitude and habituation [60] or with average pain intensity, disability 
assessment scales, gender, age, migraine subtype, migraine duration and use of hor-
mone contraceptives [123]. Unfortunately, the assessment of PT has a clear short-
coming as it relies only on the subjective patient’s experience (describing positive 
visual phenomena or not). This concern is not retrieved in motor cortex TMS, where 
the threshold is assessed through an objective and recordable measure, the ampli-
tude of motor evoked potential (MEP) recorded from a peripheral muscle. Like PTs, 
thresholds for MEPs were found to variate widely, being normal [51, 118, 124–
127], increased [128–130], or reduced [131–133] in migraineurs. MEP thresholds 
were significantly increased in migraine after light deprivation, an experimental 
way to modulate subcortical and cortical activities, whereas they remained stable in 
controls [134]. However, some authors showed that these inconsistent findings 
resulted from variation in the cortical excitability related to the time interval between 
the ictal and interictal states of migraine [135].

Using paired-pulse TMS, intracortical facilitation was found in one study [136], 
but not in another [130]. The cortical silent period was normal [118, 136] or reduced 
[137, 138] in migraine patients between attacks. In migraine with aura patients, the 
conditioning of the cerebellum with TMS showed a significant deficit of cerebellar 
inhibition on the motor cortex compared with controls [139].

3.6  �Evoked Potentials in Chronic Migraine (CM)

The mechanisms by which an episodic form of migraine becomes chronic are still 
unknown. Neurophysiology has also tried to help solve this issue.

One of the mechanisms supposed to be the basis of this process is central sensi-
tization. According to its definition, that is increased responsiveness not only to 
noxious but also to innocuous peripheral stimuli, neurophysiological signs of sensi-
tization have been reported recording SSEPs. Amplitudes of the parietal compo-
nents were larger in patients experiencing CM or medication overuse headache 
(MOH) than in episodic migraine patients between attacks [93, 95, 140].

By the investigation of simultaneous SSEP habituation and thalamocortical loop 
activation in CM, researchers have observed a neurophysiological pattern similar to 
that of ictal episodic migraine. In fact, both episodic and chronic patients were char-
acterized by higher initial amplitudes, reflecting cortical sensitization, and by 
response habituation over sequential block averages, resulting in a ‘transient’ corti-
cal sensitization. In MOH, the initially higher SSEP amplitudes lacked habituation 
in subsequent block averages, that is further increase, resulting in a ‘persistent’ 
cortical sensitization [93]. Lack of SSEP amplitude habituation in MOH patients 
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differed according to the overused drug, because amplitudes were smaller in triptan 
overusers than in patients overusing non-steroidal anti-inflammatory drugs 
(NSAIDs) or combined medications [93]. Interestingly, patients experiencing cuta-
neous allodynia exhibited greater SSEP amplitudes compared to those without allo-
dynia, confirming this abnormal cortical response in the neurophysiological 
counterpart of central sensitization [59]. Moreover, the neurophysiological abnor-
malities of MOH are proportional to the duration of the chronic phase [93, 140]. 
These abnormalities in cortical responses to somatosensory stimulation appear to be 
strongly influenced by genetic factors [141]. That angiotensin-converting enzyme 
(ACE) polymorphism could affect neural plasticity was assessed by SSEP recording 
and the clinical features of MOH patients. The D/D ACE homozygote carriers 
exhibited the highest grand-averaged SSEP amplitudes (i.e. reflecting sensitization) 
and the most severe deficits in habituation, although other MOH patients overall did 
not habituate either. This abnormal neurophysiological pattern gradually disap-
peared in the D/I and I/I carriers, in whom the cortical response habituated nor-
mally [141].

In a recent study, we found that, contrary to the episodic migraine, the level of 
somatosensory cortex lateral inhibition is normal in CM patients without a previous 
history of medication overuse. Moreover, in contrast with the idea that deficient 
cortical inhibitory mechanism plays a pivotal role in the basic mechanisms of cen-
tral sensitization in CM, we did not find a clear correlation between the degree of 
lateral inhibition and of sensitization [140]. Nonetheless, less-efficient subcortical 
inhibition of sensory cortices cannot be excluded, since in an MEG study of somato-
sensory gating, reduced parietal responses to paired-pulse stimuli were more pro-
nounced in CM than in episodic migraineurs and healthy controls [99].

Compared with episodic migraine patients recorded interictally, CM patients 
showed greater initial mean block amplitude in recordings of magnetic VEPs [63]. 
Moreover, consistently with the above-mentioned SSEP studies [93, 95], VEP 
amplitudes habituate normally during stimulus repetition in CM [63, 142] and may 
change with the transition from CM to episodic migraine after topiramate treatment, 
switching from normal to deficient habituation [65].

A group of CM patients, most of them with MOH, had a steeper IDAP than 
healthy controls, which significantly flattened after greater occipital nerve block 
significantly reduced monthly days with headache [142].

By further exploring inhibitory circuits, Currà et al. [138] measured the transcra-
nial magnetic stimulation (TMS)–induced cortical silent period (CSP) in a group of 
MOH patients. Despite the overall similarity in SP duration between MOH patients 
and healthy controls, subgroup analysis revealed that CSP duration was signifi-
cantly shorter in triptan overusers than in the NSAID or triptan-plus-NSAID over-
user groups. In MOH patients overall, CSP duration correlated positively with 
monthly tablet intake. However, this positive correlation was restricted to NSAID 
and triptan-plus-NSAID MOH subgroups; triptan overusers exhibited a negative 
correlation [138].
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3.7  �Conclusions

Studies of evoked potentials in migraine show that the migraine brain processes 
sensory information differently from the brain of healthy subjects. In fact, the most 
frequently detected peculiarity during the migraine pain-free phase is an excessive 
cortical responsiveness to any type of sensory stimulation (except olfactory stimula-
tion). This over-responsiveness manifests either as an increased amplitude of the 
grand-average potential or as a deficit of habituation during a series of stereotyped 
stimulation. Besides this habituation deficit, migraineurs exhibit an increased inten-
sity dependence of auditory evoked potentials, which was found to be correlated to 
the lack of habituation and perhaps to be its consequence. Habituation is a phenom-
enon intrinsically linked to learning and memory. Precisely as a function of the lat-
ter phenomenon, the brain can undergo a series of plastic modifications, which have 
been shown to be altered in migraine, when studied, for example, with repetitive 
TMS [143].

The cortical hyper-responsiveness is not constant in migraine patients and may 
not be reproducible. The reasons for these between-studies discrepancies are multi-
faceted, and they reflect the complex pathophysiology of the disease:

–– First, it was shown that the degree of habituation depended on technical param-
eters, for example the temporal or spatial frequencies of a visual pattern, or the 
blinding of the researchers performing the analysis, even if a recent publication 
actually found no difference between blinded and non-blinded habituation 
assessments of a same population [144]. Nonetheless, previous studies con-
ducted in the same laboratory have shown that whether blinding the analysis [20, 
53, 144] or attempting to blind the diagnosis [31, 75], the result remains 
unchanged.

–– Second, habituation is a dynamic parameter that provides interesting data about 
the current (‘cross-sectional’) CNS information processing. Sequential record-
ings have demonstrated that the cortical dysfunction level varied with the 
migraine cycle, being prominent with the increasing distance from the last attack 
and absent during an attack. In CM, the neurophysiological pattern is quite simi-
lar to that derived from recordings from patients with episodic migraines derived 
during an attack [95, 98] and was previously defined as a condition of ‘never-
ending migraine attack’ [145].

–– Third, genetics appears to be a determinant factor of the interictal dysfunction 
leading to deficient habituation in migraine. Hence, habituation deficit could thus 
be an endophenotypic marker of a genetic predisposition to migraine, even if 
these conclusions cannot be applied to individuals.

–– Fourth, the habituation can be modulated by external interventions, especially 
drugs known to alleviate migraine attacks, as well as non-pharmacological inter-
vening procedures.

Therefore, the sole habituation deficit cannot be considered as a formal diagnos-
tic criterion of migraine, but could help in the case of atypical presentations. 
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However, a multicentre study performed in 624 patients recently demonstrated that 
combining the recordings of visual (habituation) and auditory (intensity depen-
dence) evoked potentials could characterize interictal episodic migraineurs with 
83.4% sensitivity, 66.7% specificity and 81.1% accuracy [146].

Only now are we beginning to see the possibility that these functional abnormali-
ties are extrinsic in morphofunctional abnormalities of the brain [147]. Further stud-
ies are needed to better understand the clinical correlates of this altered information 
processing in the migraine brain, also with the ultimate aim of intervening in a more 
targeted way both pharmacologically and non-pharmacologically.
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