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Chapter 11
Pain Perception and Migraine

Martin Uglem

11.1  �Migraine Pain

Migraine is a heterogeneous disease with a spectrum of symptoms accompanying 
the headache pain. The classic migraine headache is characterized by a moderate to 
severe unilateral throbbing pain. Several other sensory symptoms add to the burden 
of the headache pain, the most common being nausea and light, sound, and smell 
hypersensitivity.

Migraineurs may experience symptoms hours to days before the headache attack, 
as well as symptoms that outlast the headache [1]. Some migraineurs can even pre-
dict migraine headaches based on preceding non-headache symptoms. Common 
prodromal symptoms are tiredness, concentration difficulties, neck stiffness, and 
increased sensory sensitivity [2, 3]. Migraineurs could report prodromal symptoms 
several days before the headache started, but analysis showed that the predictive 
value of these symptoms was rather low until the last 12–24 h before an attack [3].

Allodynia, defined as “pain due to a stimulus that does not normally provoke pain” 
[4], appears to be an important clinical correlate for altered pain processing in migraine. 
Allodynia may be assessed by questionnaire, by bedside assessment, or by more 
detailed experimental quantification as further discussed below. Simple clinical assess-
ment of allodynia may include examination with cotton swab, pinprick, and thermal 
stimuli, i.e., normally non-painful stimulations [5]. When evaluated by questionnaire, 
about 50–70% of migraineurs report allodynia during headache, and allodynia is asso-
ciated with frequency and severity of migraine [6–9]. Seo and Park [10] explored the 
clinical significance of allodynia compared with photo-, phono-, and osmophobia and 
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found that both the prevalence of chronic migraine or medication overuse headache, 
disease duration, and headache intensity were increased in migraineurs with allodynia 
compared to migraineurs without allodynia, regardless of concomitant hypersensitiv-
ity to light, sound, or smell. Accordingly, the presence of allodynia is clearly associ-
ated with quality of life and increases the burden of the disease.

A case report showed that, during a migraine attack, allodynia started on the 
same side of the head as the headache and then spread to the other side of the head 
and finally to the arm with a progressive increase in magnitude [11]. The authors 
suggested that this represented activation of peripheral nociceptive neurons, fol-
lowed by sensitization of second-order spinothalamic neurons and lastly third-order 
thalamocortical neurons [11]. In one study, at least one of heat, cold, or mechanical 
ipsilateral trigeminal allodynia was present in 79% of migraineurs 3–4 h into an 
attack [12]. Only five of those 33 subjects had ipsilateral trigeminal allodynia with-
out contralateral or non-trigeminal allodynia, and two had contralateral but no ipsi-
lateral allodynia [12], thus not providing any clear evidence of sequential activation 
of first- to second- to third-order trigeminal neurons.

Activation of nociceptive neurons innervating pial, arachnoid, and dural blood 
vessels and large cerebral arteries and sinuses, combined with a change in central 
pain modulation, is believed to give rise to the migraine headache [13]. Dysfunction 
of central nervous system structures involved in modulation of excitability and pain 
may activate and sensitize the trigeminovascular pain pathway [14–16]. However, 
the driving force behind this cycling activation is still unknown. Findings from 
functional imaging studies suggest involvement of hypothalamic, thalamic, and 
brainstem networks [17–22].

11.2  �Experimental Pain

A strictly objective measure of pain perception is not available. Neurophysiological 
tests can measure nociception, the neural process of encoding noxious stimuli [4], 
but the degree of nociceptive activity does not necessarily comply with subjective 
pain perception. To quantify pain semi-objectively, a battery of psychophysical neu-
rophysiological tests may be used, commonly defined as quantitative sensory tests 
(QST). A QST protocol is considered a useful method for psychophysical assess-
ment of sensory detection and pain perception [23]. The protocol may include 
assessment of detection thresholds, pain thresholds, suprathreshold pain, and pain 
modulation. Modalities used may be pressure (deep mechanical), tactile (superficial 
mechanical brush, pins, or filaments), vibration (not used for pain), thermal (heat 
and cold), electrical (bypassing receptors), visual (light), auditory (sound), and 
chemical (for the nasal or oral mucosa). Pain thresholds are defined by the external 
stimulus, e.g., in degrees Celsius for thermal stimuli. An important limitation to the 
QST is that the tests require cooperation from the subject to define the moment a 
stimulus is detected, perceived as painful, or to rate the degree of pain experienced 
in suprathreshold pain experiments.
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The thermal part of a QST protocol is particularly helpful in diagnosing small 
fiber neuropathy, mostly as hypoesthesia and hypoalgesia but also allodynia and 
hyperalgesia. A pain threshold below the normal range is interpreted as allodynia. 
Hyperalgesia, defined as “increased pain from a stimulus that normally provokes 
pain” [4], may be shown by increased pain intensity score to suprathreshold pain 
stimulation. Both allodynia and hyperalgesia may be due to peripheral sensitization, 
central sensitization, or both, although by separate and multiple mechanisms [24]. 
In example, failure of the central pain inhibition system to properly attenuate nox-
ious stimulation may result in hyperalgesia, while failure to inhibit crosstalk 
between sensory modalities may result in allodynia [25]. More sophisticated QST 
measures may be applied to assess endogenous pain inhibitory function and endog-
enous pain facilitatory processes [26]. Conditioned pain modulation utilizes two 
concurrent noxious stimuli at separate body parts in a “pain inhibits pain” model to 
measure central pain inhibition. Temporal summation of pain uses repetitive noci-
ceptive stimuli at a frequency of more than three per second to assess pain facilita-
tion. Decreased conditioned pain modulation and increased temporal summation of 
pain indirectly indicates central sensitization. Thus, different QST findings might 
provide insights in the underlying pathophysiology.

11.3  �Experimental Pain and Migraine

Several studies have investigated responses to experimental pain in migraine. Most 
of these studies compared responses from migraineurs in the interictal phase and 
controls, but some also compared responses between migraine phases, migraineurs 
with or without aura, or episodic and chronic migraine [27, 28].

A recent meta-analysis of QST and migraine identified 109 articles eligible for 
qualitative analyses [29]. Nahman-Averbuch et al. [29] provided a comprehensive 
overview of pressure, mechanical, heat, cold, and electrical detection and pain 
thresholds, as well as suprathreshold pain and pain modulation. The meta-analysis 
showed lower pressure and heat pain thresholds and higher suprathreshold cold 
pain ratings in migraineurs compared to controls. Another meta-analysis of pres-
sure pain thresholds over the cranio-cervical region demonstrated comparative 
results, i.e., lower pressure pain thresholds in migraineurs compared to controls 
[30]. The studies included in both meta-analyses compared mainly migraineurs in 
the interictal phase with controls. However, when studies had measurements from 
multiple migraine phases, the data were collapsed and analyzed as a merged 
migraine group compared to controls. Thus, the meta-analyses compared 
migraineurs to controls irrespective of migraine phase, although the findings 
mainly are representative for the interictal phase. In general, migraineurs seem to 
be slightly more sensitive to painful stimuli between attacks compared to controls, 
although the effects are small [27, 28]. Also, some studies have shown increased 
temporal summation [31, 32] and less efficient conditioned pain modulation [33, 
34] in migraineurs in the interictal phase compared to controls, suggesting central 
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sensitization. No experimental pain test has so far proved reliable in distinguish-
ing between persons with and without migraine. However, a multitude of factors 
may influence sensitivity in individual patients and contribute to the variation 
between studies. As discussed below, some of the variations may be explained by 
cyclical alterations related to proximity to the previous and next attack and some 
by migraine subtypes.

11.3.1  �Pain Perception by Migraine Phase

Only a few longitudinal studies have examined experimental pain sensitivity in 
the preictal phase (Table 11.1). Neither pain intensity ratings by laser stimulation 
[35] nor pain scores to painful intranasal ammonia stimulation [19] seem to be 

Table 11.1  Pain perception by migraine phase

Preictal Ictal Postictal

Studies showing hypersensitivity

Longitudinal
 � Burstein 2000 [12] 42 HPT, CPT, MPT
 � De Tommaso 2002 [41] 10 LPI
 � Sand 2008 [36] 11 HPT, CPT
 � Moulton 2011 [42] 8 HPT
 � Uglem 2017 [38] 27 (HPIa) 20 CPT, HPI
Cross-sectional
 � Vanagaite 1997 [43] 19 LPT
 � Vingen 1998 [44] 19 SPT
Studies without significant alterations

Longitudinal
 � Uglem 2017 [38] 27 HPT, CPT 20 HPT 13 HPT, CPT, HPI
 � Uglem 2017 [35] 26 LPI 19 LPI 13 LPI
Cross-sectional

 � Stankewitz 2011 [19] 10 API 13 API
 � Stankewitz 2013 [64] 10 API
 � Engstrøm 2013 [37] 9 HPT, CPT, PPT 8 HPT, CPT, PPT
Correlations between pain and time to next attack

Schwedt 2015 [39] HPT decreased toward the next attack
Uglem 2017 [38] HPI increased toward the next attack (no change in HPT or CPT)

The table shows findings by phase as compared to the interictal phase. The numbers written in 
italic type represent the number of subjects in the respective phases
API intranasal ammonia pain intensity scores, CPT cold pain thresholds, HPI heat pain intensity 
scores, HPT heat pain thresholds, LPI laser pain intensity scores, LPT light-induced pain thresh-
olds, MPT mechanical pain thresholds, PPT pressure pain thresholds, SPT sound-induced pain 
thresholds
aA paradoxical decrease in HPI was shown indicating preictal hypoalgesia
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altered in the preictal phase compared to the interictal phase. A study by Sand 
et al. [36] demonstrated decreased heat and cold pain thresholds in the preictal 
phase compared to the interictal phase. The effect was present when the preictal 
phase was defined with a 24-h limit, but not with a 72-h limit. Another study that 
analyzed heat, cold, and pressure pain thresholds with a 48-h preictal limit found 
no differences [37]. Apparently, different limits may be the source of the discrep-
ant results. However, a follow-up study with a 24-h limit did not reproduce these 
findings as heat and cold pain thresholds did not change from the interictal to the 
preictal phase [38]. One explanation might be that preictal recordings were closer 
to the attack in the study by Sand et  al. [36] than in the follow-up study [38], 
although the latter showed no association between pain thresholds and days to 
next attack. In contrast, Schwedt et al. [39] found a correlation between heat pain 
thresholds and time to next attack, as pain thresholds at both the arm and head 
decreased closer to the attack. Also, pain intensity ratings to suprathreshold heat 
stimulation have been shown to gradually increase during the interictal period 
toward the next attack [38]. Thus, studies indicate gradually increasing pain sen-
sitivity in the interictal phase toward the next attack with a more pronounced 
hyperalgesia during headache.

A study of heat pain intensity scores found an interictal correlation between pain 
scores and time to next migraine attack and a distinct increase during headache [38]. 
However, in the 24 h preceding the attack, a subtle decrease of pain scores was pres-
ent, interpreted as preictal hypoalgesia. These results suggest that significant central 
events affect processing of pain on the day before headache. Hypothalamic activa-
tion has been shown in the preictal phase [17, 18]. Depending on the receptor acti-
vated, regions in the hypothalamus may provide either pro- or antinociceptive 
effects on trigeminal nociception [40]. Thus, it is plausible that preictal hypotha-
lamic activation may cause a transient hypoalgesic effect by increased descending 
pain modulation. The antinociceptive effect seems to have an effect mainly on 
suprathreshold pain scores as pain thresholds have been shown to increase or remain 
unaltered in the preictal phase [36, 38].

Alterations of pain perception are more pronounced in the ictal phase. Studies 
have shown reduced pain thresholds to either heat, cold, mechanical, visual, and 
auditory stimulation, increased pain scores to tonic heat, and decreased pain thresh-
olds tested by laser stimulation during attack compared to between attacks 
(Table 11.1) [12, 38, 41–44]. There are some contradicting findings, but the overall 
impression is an increased pain sensitivity during headache compared to the interic-
tal phase, which corresponds well with the increase in allodynia and other sensory 
symptoms during the ictal phase.

Studies of the postictal phase have not shown any differences compared to the 
interictal phase [35, 37, 38]. When compared to the ictal phase, postictal normaliza-
tion of cold pain thresholds has been shown [38], indicating a rather fast restoration 
of pain perception back to interictal levels.
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11.3.2  �Pain Perception by Migraine Subtypes

Studies comparing experimental pain in migraineurs in the interictal phase and con-
trols have shown variable results, either hypersensitivity or no differences, but never 
hyposensitivity [27, 28]. Some subgroups may be more hypersensitive than others; 
for instance, migraineurs with non-sleep-related migraine attacks had lower thermal 
thresholds than controls [45], while less slow-wave sleep was associated with higher 
pressure pain thresholds [37].

Subjects with chronic migraine (more days with than without headache) seem to 
have more allodynia and lower pain thresholds compared to episodic migraineurs, 
indicating a relationship between altered pain perception and headache frequency 
[9, 31, 46–49]. However, other studies have neither shown any differences in 
mechanical or thermal pain thresholds between chronic and episodic migraine [50] 
nor a relationship between pressure and thermal pain thresholds and migraine fre-
quency [39, 51]. Disease severity may also be of importance, as headache history 
duration has been shown to modulate cold pain thresholds [36]. As suggested by 
Peng and May [27], the increased pain sensitivity in chronic migraine may be due 
to a higher probability of being tested close to the ictal state compared to episodic 
migraine with longer interictal periods. Other important factors that may increase 
pain perception in chronic migraine seem to be increased headache severity and 
level of drug intake [28].

A twin survey suggested that migraine with and without aura are distinct disor-
ders [52]. On the other hand, the International Classification of Headache Disorders, 
third edition, states that the same person may have both diagnoses [53]. Nevertheless, 
the few studies that have compared pain thresholds between migraineurs with and 
without aura have not shown any differences for thermal [36, 38], electrical [32], 
light [43], or sound pain thresholds [44]. Russo et al. [54] compared heat pain inten-
sity in groups divided by migraineurs without aura and without ictal allodynia, 
without aura but with ictal allodynia, with aura but without allodynia, and controls. 
The study showed no differences between the migraine subgroups or compared to 
controls and no association between pain intensity and migraine severity. Granovsky 
et al. [55] compared migraineurs with and without aura and found increased tempo-
ral summation of mechanical pain stimulation in migraineurs with aura, but no dif-
ference in heat and mechanical pain thresholds, or conditioned pain modulation. 
Perenboom et al. [56] quantified visual allodynia and demonstrated higher scores in 
migraine with aura compared to without aura and in chronic compared to episodic 
migraine. Thus, visual stimulation may be better suited to differentiate between 
migraine with and without aura compared to thermal and pressure pain, although 
Vanagaite et al. [43] did not find altered visual pain sensitivity in migraine with aura 
compared to without aura.

Studies of pain thresholds in children with migraine are scarce, but resemble 
findings shown in adults [28]. Some studies have shown differences in mechanical 
pain thresholds [57], pressure pain thresholds [58], and laser-evoked pain thresholds 
[59] compared to controls, but conflicting results exist [60, 61]. A recent study 
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demonstrated increased heat pain intensity scores in adolescents with migraine 
compared to controls, but no difference in conditioned pain modulation [62].

11.4  �Conclusion

Pain perception alternates within the migraine cycle (Fig. 11.1). Thresholds gradu-
ally decrease toward the next attack with a distinct reduction during headache. What 
happens during the hours to days before the headache starts is still poorly under-
stood. A few longitudinal studies have shown both decreased pain thresholds and 
paradoxical decreased pain intensity ratings in the preictal phase. The symptoms 
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Fig. 11.1  Threshold changes during a migraine cycle. The changes in sensory thresholds over 
time and their correlation with the clinical symptoms. The undulating threshold in healthy con-
trols reflects the high day-to-day variance as reported in the literature [63]. In this figure, only 
the phasic changes among migraineurs are depicted; however, the day-to-day variance also 
stands true to the migraineurs. (1) Definition in the International Classification of Headache 
Disorders, third edition. (2) No consensus: Certain studies showed lower threshold among 
migraineurs than healthy controls; others showed no difference. (3) Two studies showed preictal 
threshold lower than interictal threshold among migraineurs. (4) Hypothetical: No study exam-
ined the sensory threshold in the postictal period in comparison with the ictal period (From Peng 
KP, May A. Migraine understood as a sensory threshold disease. Pain. 2019;160(7):1494–501. 
doi:https://doi.org/10.1097/j.pain.0000000000001531. Reprinted with permission)
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associated with the preictal and ictal phase, in addition to recent functional imaging 
findings, may suggest thalamocortical alterations by hypothalamic modulation as a 
generator of the observed preictal hypoalgesia. Findings of cyclical alterations of 
pain perception support the theory that migraine is a cyclic disorder of the central 
nervous system related to global alterations of brain excitability and homeostasis.
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