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1 Introduction

In this paper, we are interested in evolutionary games, in which the interaction of
strategies is studied as a dynamical system. We are interested in the special case in
which the strategies’ interactions follow a specific dynamical system known as the
replicator dynamics.

An evolutionary game is said to be symmetric if there are two players only and,
furthermore, they have the same strategy sets and the same payoff functions. This
type of game models interactions of the strategies of a single population. In contrast,
an asymmetric evolutionary game, also known as multipopulation games, is a game
with a finite set of players (or populations) each of which has a different set of
strategies and different payoff functions.

In ourmodel, the pure strategies set of each player (or population) is ametric space
and consequently the replicator dynamics lives in a Banach space (a space of finite
signed measures). In particular, if we have n players each of which hasmi strategies,
for i = 1, . . . , n, then the replicator dynamics is in Rm , where m = ∑n

i=1 mi .

The main goal of this paper is to establish conditions under which a finite-
dimensional dynamical system approximates the replicator dynamics for games with
strategies in metric spaces. In this manner, we can use numerical analysis techniques
for finite-dimensional differential equations to approximate a solution to the replica-
tor dynamics, which lives in an infinite-dimensional Banach space. This is important
because it will allow us to study games with pure strategies in metric spaces such
as models in oligopoly theory, international trade theory, war of attrition, and pub-
lic goods, among others. To achieve this goal, we first present a finite-dimensional
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approximation technique for games in metric spaces and we give a proposal of a
finite-dimensional dynamical system to approximate evolutionary dynamics in a
Banach space, see Sect. 4. After, in Sects. 5 and 6, we establish general approxima-
tion theorems for the replicator dynamics in metric spaces and use these results for
a finite-dimensional approximation given in Sect. 4, see Notes 1 and 3.

Oechssler and Riedel [24] propose two approximation theorems for symmetric
games. The first theorem establishes the proximity in the strong topology of two paths
generated by twodynamical systems (the originalmodel and adiscrete approximation
of the model) with the same initial conditions. The second theorem establishes the
proximity in the weak topology of two paths with different initial conditions, and
these paths satisfy the same differential equation.

We propose here two approximation results with hypotheses less restrictive than
those by Oechssler and Riedel [24]. Our approximation theorems extend the results
in [24]. In our case, the approximation theorems are for symmetric and asymmetric
games. Also, we establish the proximity of two paths generated by two different
dynamical systems (the original model and a discrete approximation model) with
different initial conditions. In addition, our approximation results are studied in the
strong topology using the norm of total variation, and also in the weak topology
using the Kantorovich–Rubinstein metric. This last point is important because the
initial conditions and the paths (by consequence) of the original dynamics model and
the finite-dimensional dynamic approximation may be very far between them (both
initial conditions and paths) in terms of the strong topology, but very close between
them in terms of the weak topology.

These approximations require different hypotheses. The first approximation the-
orem, Theorem 1, requires a proximity in the strong topology of the two initial
conditions, and it only requires that the payoff functions for the original model be
bounded. The second approximation result, Theorem 2, weakens the hypothesis of
proximity of the two initial conditions (it only imposes a condition of proximity in
the weak topology), but it requires that the payoff functions for the original model
be Lipschitz continuous.

There are several publications on the replicator dynamics in games with strategies
in metric spaces. For instance, conditions for the existence of solutions, as in Bomze
[4], Oechssler and Riedel [23], Cleveland and Ackleh [7], Mendoza-Palacios and
Hernández-Lerma [21] (for asymmetric games). Similarly, conditions for dynamic
stability, as in Bomze [3], Oechssler and Riedel [23, 24], Eshel and Sansone [9], Vee-
len and Spreij [30], Cressman and Hofbauer [8], Mendoza-Palacios and Hernández-
Lerma [21, 22].

The paper is organized as follows. Section 2 presents notation and technical
requirements. Section 3 describes the replicator dynamics and its relation to evo-
lutionary games. Some important technical issues are also summarized. Section 4
introduces a finite-dimensional game to approximate evolutionary games in a Banach
space. Section 5 establishes an approximation theorem for the replicator dynamics
on measure spaces by means of dynamical systems in finite-dimensional spaces. The
distance for this first approximation is the total variation norm. Section 6 establishes
an approximation theorem using the Kantorovich–Rubinstein metric. Section 7 pro-
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poses an example to illustrate our results. We conclude in Sect. 8 with some general
comments on possible extensions. An appendix contains results of some technical
facts.

2 Technical Preliminaries

2.1 Spaces of Signed Measures

Consider a separable metric space (A, ϑ) and its Borel σ -algebra B(A). Let M(A)

be the Banach space of finite signed measures μ on B(A) endowed with the total
variation norm

‖μ‖ := sup
‖ f ‖≤1

∣
∣
∣
∣

∫

A
f (a)μ(da)

∣
∣
∣
∣ = |μ|(A). (1)

The supremum in (1) is taken over functions in the Banach spaceB(A) of real-valued
bounded measurable functions on A, endowed with the supremum norm

‖ f ‖ := sup
a∈A

| f (a)|. (2)

Consider the subset C(A) ⊂ B(A) of all real-valued continuous and bounded func-
tions on A. Consider the dual pair (C(A),M(A)) given by the bilinear form
〈·, ·〉 : C(A) × M(A) → R

〈g, μ〉 =
∫

A
g(a)μ(da). (3)

We consider the weak topology onM(A) (induced byC(A)), i.e., the topology under
which all elements of C(A) when regarded as linear functionals 〈g, ·〉 on M(A) are
continuous.

2.2 The Kantorovich–Rubinstein Metric

There are many metrics that metrize the weak topology on P(A). Here we use
the Kantorovich–Rubinstein metric. Let (A, ϑ) be a separable metric space, and
P(A) the set of probability measure on A. For any μ, ν ∈ P(A) we define the the
Kantorovich–Rubinstein metric rkr as

rkr (μ, ν) := sup
f ∈L(A)

{∫

A
f (a)μ(da) −

∫

A
f (a)ν(da) : ‖ f ‖L ≤ 1

}

, (4)
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where (L(A), ‖ · ‖L) is the space of continuous real-valued functions on A that satisfy
the Lipschitz condition

‖ f ‖L := sup
{| f (a) − f (b)|/ϑ(a, b), a, b ∈ A, a 	= b

}
< ∞. (5)

Let a0 be a fixed point in A, and

MK (A) :=
{
μ ∈ M(A) : sup

f ∈L(A)

∫

A
| f (a)|μ(da) < ∞

}
.

TheKantorovich–Rubinsteinmetric rkr can be extended as a normonMK (A) defined
as

‖μ‖kr := |μ(A)| + sup
f ∈L(A)

{∫

A
f (a)μ(da) : ‖ f ‖L ≤ 1, f (a0) = 0

}

(6)

for any μ inMK (A) (see Bogachev [2], Chap. 8).

Remark 1 Note that for any μ, ν ∈ P(A), rkr (μ, ν) = ‖μ − ν‖kr . Indeed if μ, ν ∈
P(A), then

sup
f ∈L(A)

{∫

A
f (a)μ(da) −

∫

A
f (a)ν(da) : ‖ f ‖L ≤ 1

}

= sup
f ∈L(A)

{∫

A
[ f (a) − f (a0)]μ(da) −

∫

A
[ f (a) − f (a0)]ν(da) : ‖ f ‖L ≤ 1

}

= sup
g∈L(A)

{∫

A
g(a)μ(da) −

∫

A
g(a)ν(da) : ‖g‖L ≤ 1, g(a0) = 0

}

.

2.3 Product Spaces

Consider two separable metric spaces X and Y with their Borel σ -algebrasB(X) and
B(Y ). We denote by B(X) × B(Y ) the product σ -algebra on X × Y . For μ ∈ M(X)

and ν ∈ M(Y ), we denote their product by μ × ν and it holds that

‖μ × ν‖ ≤ ‖μ‖‖ν‖. (7)

As a consequence, μ × ν is in M(X × Y ) (see by example Heidergott and Leahu
[11], Lemma 4.2.).

Now consider a finite family of metric spaces {Xi }ni=1 and their σ -algebrasB(Xi ),
as well as the Banach spaces (M(Xi ), ‖ · ‖) and (MK (Xi ), ‖ · ‖kr ). For i = 1, . . . , n,
let μi ∈ M(Xi ) and consider the elements μ = (μ1, ..., μn) in the product space
M(X1) × ... × M(Xn) with the norm
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‖μ‖∞ := max
1≤i≤n

‖μi‖ < ∞. (8)

These elements form the Banach space (M(X1) × ... × M(Xn), ‖ · ‖∞). We can
similarly define the Banach space (MK (X1) × ... × MK (Xn), ‖ · ‖kr∞), where

‖μ‖kr∞ := max
1≤i≤n

‖μi‖kr < ∞. (9)

2.4 Differentiability

Definition 1 Let A be a separablemetric space.We say that amappingμ : [0,∞) →
M(A) is strongly differentiable if there exists μ′(t) ∈ M(A) such that, for every
t > 0,

lim
ε→0

∥
∥
∥
∥
μ(t + ε) − μ(t)

ε
− μ′(t)

∥
∥
∥
∥ = 0. (10)

Note that, by (1), the left-hand side in (10) can be expressed more explicitly as

lim
ε→0

sup
‖g‖≤1

∣
∣
∣
∣
1

ε

[∫

A
g(a)μ(t + ε, da) −

∫

A
g(a)μ(t, da)

]

−
∫

A
g(a)μ′(t, da)

∣
∣
∣
∣ .

The signed measure μ′ in (10) is called the strong derivative of μ.

For weak differentiability, see Remark 3.

3 The Replicator Dynamics and Evolutionary Games

3.1 Asymmetric Evolutionary Games

Let I := {1, 2, . . . , n} be the set of different species (or players). Each individual of
the species i ∈ I can choose a single element ai in a set of characteristics (strategies
or actions) Ai , which is a separable metric space. For every i ∈ I and every vector
a := (a1, ..., an) in the Cartesian product A := A1 × ... × An , wewrite a as (ai , a−i )

where a−i := (a1, ..., ai−1, ai+1, ..., an) is in

A−i := A1 × ... × Ai−1 × Ai+1 × ... × An.
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For each i ∈ I , let B(Ai ) be the Borel σ -algebra of Ai and P(Ai ) the set of
probability measures on Ai , also known as the set of mixed strategies. A probability
measure μi ∈ P(Ai ) assigns a population distribution over the action set Ai of the
species i .

Finally, for each species i weassign a payoff function Ji : P(A1) × ... × P(An) →
R that explains the interrelation with the population of other species, and which is
defined as

Ji (μ1, ..., μn) :=
∫

A1

...

∫

An

Ui (a1, ..., an)μn(dan)...μ1(da1), (11)

where Ui : A1 × ... × An → R is a given measurable function.
For every i ∈ I and every vector μ := (μ1, ..., μn) in P(A1) × ... × P(An), we

sometimes write μ as (μi , μ−i ), where μ−i := (μ1, ..., μi−1, μi+1, ..., μn) is in
P(A1) × ... × P(Ai−1) × P(Ai+1) × ... × P(An). If δ{ai } is a probability measure
concentrated at ai ∈ Ai , the vector (δ{ai }, μ−i ) is written as (ai , μ−i ), and so

Ji (δ{ai }, μ−i ) = Ji (ai , μ−i ). (12)

In particular, (11) yields

Ji (μi , μ−i ) :=
∫

Ai

Ji (ai , μ−i )μi (dai ). (13)

In an evolutionary game, the dynamics of the strategies is determined by a system
of differential equations of the form

μ′
i (t) = Fi (μ1(t), ..., μn(t)) ∀ i ∈ I, t ≥ 0, (14)

with some initial conditionμi (0) = μi,0 for each i ∈ I . The notationμ′
i (t) represents

the strong derivative ofμi (t) in the Banach spaceM(Ai ) (see Definition 1). For each
i ∈ I , Fi (·) is a mapping

Fi : P(A1) × ... × P(An) → M(Ai ).

Let
F : P(A1) × ... × P(An) → M(A1) × ... × M(An)

be such that F(μ) := (F1(μ), ..., Fn(μ)), and consider the vector

μ′(t) := (μ′
1(t), ..., μ

′
n(t)).

Hence, the system (14) can be expressed as

μ′(t) = F(μ(t)), (15)
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and we can see that the system lives in the Cartesian product of signed measures

M(A1) × ... × M(An),

which is a Banach space with norm as in (8).
More explicitly, we may write (14) as

μ′
i (t, Ei ) = Fi (μ(t), Ei ) ∀ i ∈ I, Ei ∈ B(Ai ), t ≥ 0, (16)

where μ′
i (t, Ei ) and Fi (μ(t), Ei ) denote the signed measures μ′

i (t) and Fi (μ(t))
valued at Ei ∈ B(Ai ).

We shall be working with a special class of asymmetric evolutionary games which
can be described as

[
I,

{
P(Ai )

}

i∈I
,
{
Ji (·)

}

i∈I
,
{
μ′
i (t) = Fi (μ(t))

}

i∈I

]
, (17)

where

(i) I = {1, ..., n} is the finite set of players;
(i i) for each player i ∈ I we have a setP(Ai ) ofmixed actions and a payoff function

Ji : P(A1) × ... × P(An) → R (as in (12)); and
(i i i) the replicator function Fi (μ(t)), where

Fi (μ(t), Ei ) :=
∫

Ei

[
Ji (ai , μ−i (t)) − Ji (μi (t), μ−i (t))

]
μi (t, dai ). (18)

Conditions for the existence of solutions and dynamic stability for asymmetric
games are given, for instance, by Mendoza-Palacios and Hernández-Lerma [21],
Theorems 4.3 and 4.5.

3.2 The Symmetric Case

We can obtain from (17) a symmetric evolutionary game when I := {1, 2} and the
sets of actions and payoff functions are the same for both players, i.e., A = A1 = A2

and U (a, b) = U1(a, b) = U2(b, a), for all a, b ∈ A. As a consequence, the sets of
mixed actions and the expected payoff functions are the same for both players, that
is, P(A) = P(A1) = P(A2) and J (μ, ν) = J1(μ, ν) = J2(ν, μ) for allμ, ν ∈ P(A).
This kind of model determines the dynamic interaction of strategies of a unique
species through the replicator dynamicsμ′(t) = F(μ(t)), where F : P(A) → M(A)

is given by

F(μ(t), E) :=
∫

E

[
J (a, μ(t)) − J (μ(t), μ(t))

]
μ(t, da) ∀E ∈ B(A). (19)
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As in (17), we can describe a symmetric evolutionary game in a compact form as

[
I = {1, 2}, P(A), J (·), μ′(t) = F(μ(t))

]
. (20)

There are several papers on the replicator dynamics in symmetric games with
strategies in metric spaces. In particular, for conditions on the existence of solu-
tions, see, for instance, Bomze [4], Oechssler and Riedel [23], Cleveland and Ackleh
[7]. Similarly, conditions for dynamic stability are given by Bomze [3], Oechssler
and Riedel [23, 24], Eshel and Sansone [9], Veelen and Spreij [30], Cressman and
Hofbauer [8], Mendoza-Palacios and Hernández-Lerma [22], among others.

4 Discrete Approximations to the Replicator Dynamics

To obtain a finite-dimensional approximation of the replicator dynamics (15) (with
Fi (·) in (18)), for an asymmetric (17) (or symmetric (20)) model, we can apply the
following Theorems 1 and 2 to a discrete approximation of the payoff functions
Ui and the initial probability measures μi,0, for i in I . For some approximation
techniques for the payoff function in games, see Bishop and Cannings [1], Simon
[29].

4.1 Games with Strategies in an Real Interval

Oechssler and Riedel [24] propose a finite approximation for a symmetric game.
Following [24], consider an asymmetric game (17) where, for every i in I , Ai =
[ci,1, ci,2] (for some real numbers with ci,1 < ci,2) and Ui is a real-valued bounded
function. For every i in I , consider the partition Pki := {ξmi }2

ki −1
mi=0 over Ai , where

ξmi := [ami , ami+1), ami = ci,1 + mi [ci,2 − ci,1]
2ki

,

for mi = 0, 1, ..., 2ki − 1 and ξ2ki −1 := [a2ki −1, ci,2]. For every i in I , the discrete
approximation to Ui is given by the function

Uki (x1, ..., xi , ..., xn) := Ui (am1 , ..ami , ..., amn ),

if (x1, ..., xi , ..., xn) is in ξm1 × · · · × ξmi × · · · × ξmn .Also, for each i in I weapprox-
imate a probability measure μi ∈ P(Ai ) by a discrete probability distribution μki on
the partition set Pki . Then we can write the approximation to the payoff function (11)
as
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Jki (μk1 , ..., μkn ) :=
∑

ξm1∈Pk1

...
∑

ξmn ∈Pkn

Ui (am1 , ..., amn )μkn (ξmn ) · · · μk1(ξm1). (21)

For every i ∈ I and every vectorμk := (μk1 , ..., μkn ) inP(Pk1) × ... × P(Pkn ), we
write μk as (μki , μ−ki ), where μk−i := (μk1 , ..., μki−1 , μki+1 , ..., μkn ) is in P(Pk1) ×
... × P(Pki−1) × P(Pki+1) × ... × P(Pkn ). If δ{ξmi } is a probability measure concen-
trated at ξmi ∈ Pki , the vector (δ{ξmi }, μ−i ) is written as (ami , μ−i ), and so

Jki (δ{ξmi }, μk−i ) = Jki (ami , μk−i ). (22)

In particular, (21) yields

Jki (μki , μk−i ) :=
∑

ξmi ∈Pki

Jki (ami , μk−i )μki (ξmi ). (23)

Note that μk := (μk1 , ..., μkn ) in P(Pk1) × ... × P(Pkn ) is a vector of measures
in P(A1) × ... × P(An). Then for any i ∈ I and Ei ∈ B(Ai ) ∩ Pki , the replicator
induced by {Uki }i∈I has the form,

μ′
ki (t, Ei ) =

∑

ξmi ∈Ei∩Pki

[
Jki (amki

, μk−i (t)) − Jki (μki (t), μk−i (t))
]
μki (t, ξmi ), (24)

which is equivalent to the system of differential equations inR2k1+...+2kn of the form:

μ′
ki (t, ξmi ) =

[
Jki (ami , μk−i (t)) − Jki (μki (t), μk−i (t))

]
μki (t, ξmi ), (25)

for i = 1, 2, . . . , n andmi = 0, 1, . . . , 2ki − 1,with initial condition {μki ,0(ξmi )}2ki−1

mi=0.
Hence, using Theorem 1 or Theorem 2, we can approximate (14), (15) (with Fi (·)

as (18)) by a system of differential equations in R2k1+...+2kn of the form (25).

4.2 Games with Strategies in Compact Metric Spaces

Similarly as in Sect. 4.1, consider an asymmetric game (17) where, for every i in I ,
Ai is a compact metric space andUi is a real-valued bounded function. For every i in
I , consider the partition Pki := {Ami }2

ki −1
mi=0 over Ai . For every i in I and a fixed profile

(am1 , ..ami , ..., amn ) ∈ Am1 × · · · × Ami × · · · × Amn , the discrete approximation to
Ui is given by the function

Uki (x1, ..., xi , ..., xn) := Ui (am1 , ..ami , ..., amn ),
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if (x1, ..., xi , ..., xn) is in Am1 × · · · × Ami × · · · × Amn . If for each i in I we can
approximate any probability measure μi ∈ P(Ai ) by a discrete probability distribu-
tion μki on the partition set Pki , then we can write the approximation to the payoff
function (11) as

Jki (μk1 , ..., μkn ) :=
∑

Am1∈Pk1

...
∑

Amn ∈Pkn

Ui (am1 , ..., amn )μkn (Amn ) · · · μk1(Am1). (26)

For every i ∈ I and every vectorμk := (μk1 , ..., μkn ) inP(Pk1) × ... × P(Pkn ), we
write μk as (μki , μ−ki ), where μk−i := (μk1 , ..., μki−1 , μki+1 , ..., μkn ) is in P(Pk1) ×
... × P(Pki−1) × P(Pki+1) × ... × P(Pkn ). Note that μk := (μk1 , ..., μkn ) in P(Pk1) ×
... × P(Pkn ) is a vector of measures in P(A1) × ... × P(An). Then for any i ∈ I and
Ei ∈ B(Ai ) ∩ Pki , the replicator induced by {Uki }i∈I has the following form:

μ′
ki (t, Ei ) =

∑

Ami ∈Ei∩Pki

[
Jki (amki

, μk−i (t)) − Jki (μki (t), μk−i (t))
]
μki (t, Ami ), (27)

which is equivalent to the system of differential equations inR2k1+...+2kn of the form:

μ′
ki (t, Ami ) =

[
Jki (ami , μk−i (t)) − Jki (μki (t), μk−i (t))

]
μki (t, Ami ), (28)

for i = 1, 2, . . . , n andmi = 0, 1, . . . , 2ki − 1,with initial condition {μki ,0(Ami )}2ki−1

mi=0.
As in Sect. 4.1, using Theorem 1 or Theorem 2, we can approximate (14), (15)

(with Fi (·) as (18)) by a system of differential equations in R2k1+...+2kn .

5 An Approximation Theorem in the Strong Form

In this section, we provide an approximation theorem that gives conditions under
which we can approximate (14), (15) (with Fi (·) as in (18)) by a finite-dimensional
dynamical system of the form (25) under the total variation norm (1).

The proof of this theorem uses the following two lemmas, which are proved in
the appendix.

Lemma 1 For each i in I , let Ai be a separable metric space. If each map μi :
[0,∞) → M(Ai ) is strongly differentiable, then

d‖μ(t)‖∞
dt

≤ ‖μ′(t)‖∞.

Proof See Appendix.

Lemma 2 For each i in I , let Ai be a separable metric space and let F(·) be as in
(14), (15) (with Fi as in (18)). Suppose that for each i in I the payoff function Ui (·)
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in (18) is bounded. Then

‖F(ν) − F(μ)‖∞ ≤ Q‖ν − μ‖∞ ∀μ, ν ∈ P(A1) × ... × P(An), (29)

where Q := (2n + 1)H and H := max
i∈I ‖Ui‖.

Proof See Appendix.

Theorem 1 For each i in I , let Ai be a separable metric space and let Ui ,U ε
i :

A1 × ... × An → R be bounded functions such thatmax
i∈I ‖Ui −U ε

i ‖ < ε, where ‖ · ‖
is the sup norm in (2). Consider the replicator dynamics induced by {Ui }ni=1 and
{U ε

i }ni=1, i.e.,

μ′
i (t, Ei ) =

∫

Ei

[
Ji (ai , μ−i (t)) − Ji (μi (t), μ−i (t))

]
μi (t, dai ), (30)

ν ′
i (t, Ei ) =

∫

Ei

[
J ε
i (ai , ν−i (t)) − J ε

i (νi (t), ν−i (t))
]
νi (t, dai ), (31)

for each i ∈ I , E ∈ B(Ai ), and t ≥ 0. Ifμ(·) and ν(·) are solutions of (30) and (31),
respectively, with initial conditions μ(0) = μ0 and ν(0) = ν0, then for T < ∞

sup
t∈[0,T ]

‖μ(t) − ν(t)‖∞ < ‖μ0 − ν0‖∞eQT + 2ε

(

eQT − 1

Q

)

. (32)

where Q := (2n + 1)H and H := max
i∈I ‖Ui‖.

Proof For each i in I and t ≥ 0, let

βi (ai |μ) := Ji (ai , μ−i ) − Ji (μi , μ−i ), βε
i (ai |νi ) := J ε

i (ai , ν−i ) − J ε
i (νi , ν−i ),

and

Fi (μ, Ei ) :=
∫

Ei

βi (ai |μ)μi (dai ), F ε
i (ν, Ei ) :=

∫

Ei

βε
i (ai |ν)νi (dai ).

Since Ui is bounded, by Lemma 2 there exists Q > 0 such that

‖F(ν) − F(μ)‖∞ ≤ Q‖ν − μ‖∞ ∀μ, ν ∈ P(A1) × ... × P(An). (33)

Actually, Q := (2n + 1)H and H := max
i∈I ‖Ui‖. We also have that, for all i ∈ I and

ν ∈ P(A1) × ... × P(An),

‖Fi (ν) − F ε
i (ν)‖ ≤

∫

Ai

|βi (ai |ν) − βε
i (ai |ν)|νi (dai ) ≤ 2‖Ui −U ε

i ‖ ≤ 2ε,



174 S. Mendoza-Palacios and O. Hernández-Lerma

so
‖F(ν) − F ε(ν)‖∞ ≤ 2ε. (34)

By Lemma 1 and (33), (34), we have

d‖μ(t) − ν(t)‖∞
dt

≤ ‖μ′(t) − ν ′(t)‖∞

= ‖F(μ(t)) − F ε(ν(t))‖∞
≤ ‖F(μ(t)) − F(ν(t))‖∞ + ‖F(ν(t)) − F ε(ν(t))‖∞
≤ Q‖μ(t) − ν(t)‖∞ + 2ε.

Then

d‖μ(t) − ν(t)‖∞
dt

− Q‖μ(t) − ν(t)‖∞ ≤ 2ε.

Multiplying by e−Qt we get

d‖μ(t) − ν(t)‖∞e−Qt

dt
− Q‖μ(t) − ν(t)‖∞e−Qt ≤ 2εe−Qt ,

and integrating in the interval [0, t], where t ≤ T , we get

‖μ(t) − ν(t)‖∞e−Qt − ‖μ0 − ν0‖∞e−Q0 ≤ 2ε

(
1 − e−Qt

Q

)

.

Then for all t ∈ [0, T ]

‖μ(t) − ν(t)‖∞ = ‖μ0 − ν0‖∞eQt + 2ε

(
eQt − 1

Q

)

≤ ‖μ0 − ν0‖∞eQT + 2ε

(
eQT − 1

Q

)

,

which yields (32). �

Remark 2 The last argument in the proof of Theorem 1 is a particular case of
the well-known Gronwall–Bellman inequality: If f (·) is nonnegative and f ′(t) ≤
Q f (t) + c for all t ≥ 0, where Q and c are nonnegative constants, then

f (t) ≤ f (0)eQt + cQ−1(eQt − 1) for all t ≥ 0.

For the reader’s convenience, we included the proof here. �

Note 1 As in Sects. 4.1 and 4.2, consider a game with strategies in compact metric
spaces. For each player i ∈ I consider a partition Pki of Ai and suppose that the initial
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conditionμi,0 ∈ P(Ai )of (30) canbe approximated in the variation normbyadiscrete
probability distributionμki ,0 ∈ P(Pki ). Then for any i ∈ I and Ei ∈ B(Ai ) ∩ Pki , (31)
can be written as (27) (or (24)), with U ε

i as (26) (or (21)). So, in this particular case,
(30) can be approximated by a system of differential equations in R

2k1+...+2kn of the
form (28).

Note 2 For the existence of the replicator dynamic, only the boundedness of the
payoff functions is necessary (see Sect. 4 in [21]). So, the hypothesis of compactness
on the set of strategies is not necessary in Theorem 1. Hence, the hypothesis of
compactness on the set of strategies is also not necessary to approximate (30) by a
finite-dimensional dynamical system. For example, it is sufficient that there exists
a discrete probability distribution with finite values for any probability distribution
over the set of strategies. For this last case, it is enough that for each i ∈ I , let Ai be
a separable metric space, see Theorem 6.3, p. 44 in [26]. However, the compactness
on the set of strategies ensures the existence of Nash equilibrium.

Corollary 1 Let us assume the hypotheses of Theorem 1. Suppose that for each i
in I , there exists a sequence of functions {U εn

i }∞n=1 and probability measure vectors
{νn}∞n=1 such that max

i∈I ‖Ui −U εn
i ‖ → 0 and ‖μ0 − νn

0‖∞ → 0. If μ(·) and νn(·)
are solutions of (30) and (31), respectively, with initial conditions μ(0) = μ0 and
νn(0) = νn

0 , then for T < ∞,

lim
n→∞ sup

t∈[0,T ]
‖μ(t) − νn(t)‖∞ = 0.

6 An Approximation Theorem in the Weak Form

The next approximation result, Theorem 2, establishes the proximity of two paths
generated by two different dynamical systems (the original model and a discrete
approximating model) with different initial conditions, under the weak topology. To
this end we use the Kantorovich–Rubinstein norm ‖ · ‖kr on M(A), which metrizes
the weak topology.

Remark 3 Let A be a separable metric space. We say that a mapping μ : [0,∞) →
M(A) is weakly differentiable if there exists μ′(t) ∈ M(A) such that for every t > 0
and g ∈ C(A)

lim
ε→0

1

ε

[∫

A
g(a)μ(t + ε, da) −

∫

A
g(a)μ(t, da)

]

=
∫

A
g(a)μ′(t, da). (35)

If ‖ · ‖k,r is the Kantorovich–Rubinstein metric in (4), then (35) is equivalent to

lim
ε→0

∥
∥
∥
∥
μ(t + ε) − μ(t)

ε
− μ′(t)

∥
∥
∥
∥
kr

= 0. (36)
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Moreover if μ′(t) is the strong derivative of μ(t), then it is also the weak derivative
of μ(t). Conversely, if μ′(t) is the weak derivative of μ(t) and μ(t) is continuous in
t with the norm (1), then it is the strong derivative of μ(t). (See Heidergott, Hordijk,
and Leahu [11].)

Lemma 3 For each i in I , let Ai be a separable metric space. If each map μi :
[0,∞) → M(Ai ) is strongly differentiable, then

d‖μ(t)‖kr∞
dt

≤ ‖μ′(t)‖kr∞.

Proof The proof is similar to that of Lemma 1. �

Lemma 4 For each i in I , consider a bounded separable metric space (Ai , ϑi )

(with diameter Ci > 0) and the metric space (A1 × ... × An, ϑ
∗), where ϑ∗(a, b) =

max
i∈I {ϑi (ai , bi )} for any a, b in A1 × ... × An. Let F(·) be as in (14), (15) (with Fi

as in (18)). For each i in I , suppose that the payoff function Ui (·) in (11) is bounded
and satisfies that ‖Ui‖L < ∞. Then there exists Q > 0 such that

‖F(ν) − F(μ)‖kr∞ ≤ Q‖ν − μ‖kr∞ (37)

for allμ, ν ∈ P(A1) × ... × P(An) ∩ MK (A1) × ... × MK (An), where Q := [2H +
(2n − 1)CHL ], H := max

i∈I ‖Ui‖, HL := max
i∈I ‖Ui‖L , and C := max

i∈I Ci .

Proof See Appendix.

Theorem 2 For each i in I , let (Ai , ϑi ) be a bounded separable metric space (with
diameter Ci > 0), and Ui ,U ε

i : A1 × ... × An → R be two bounded functions such
thatmax

i∈I ‖Ui −U ε
i ‖ < ε.. For each i in I , suppose that ‖Ui‖L < ∞ and consider the

replicator dynamics induced by {Ui }ni=1 and {U ε
i }ni=1, as in (30) and (31). If μ(·) and

ν(·) are solutions of (30) and (31), respectively, with initial conditions μ(0) = μ0

and ν(0) = ν0, then for T < ∞

sup
t∈[0,T ]

‖μ(t) − ν(t)‖kr∞ < ‖μ0 − ν0‖kr∞eQT + 2ε

(

eQT − 1

Q

)

. (38)

where Q := [2H + (2n − 1)CHL ], H := max
i∈I ‖Ui‖, HL := max

i∈I ‖Ui‖L , and C :=
max
i∈I Ci .

Proof For each i in I and t ≥ 0, let

βi (ai |μ) := Ji (ai , μi ) − Ji (μi , μ−i ), βε
i (ai |νi ) := J ε

i (ai , ν−i ) − J ε
i (νi , ν−i ),
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and

Fi (μ, Ei ) :=
∫

Ei

βi (ai |μ)μi (dai ), F ε
i (ν, Ei ) :=

∫

Ei

βε
i (ai |ν)νi (dai ).

By Lemma 4 there exists Q > 0 such that

‖F(ν) − F(μ)‖kr∞ ≤ Q‖ν − μ‖kr∞ (39)

for all μ, ν ∈ P(A1) × ... × P(An) ∩ MK (A1) × ... × MK (An). Actually,
Q := [2H + (2n − 1)CHL ],H := max

i∈I ‖Ui‖,HL := max
i∈I ‖Ui‖L , andC := max

i∈I Ci .

We also have that, for all i , in I and

ν ∈ P(A1) × ... × P(An) ∩ MK (A1) × ... × MK (An),

‖Fi (ν) − F ε
i (ν)‖kr ≤ sup

‖ f ‖L≤1

f (a0i )=0

∫

Ai

f (ai )|βi (ai |ν) − βε
i (ai |ν)|νi (dai )

≤ 2‖Ui −U ε
i ‖ sup

‖ f ‖L≤1

f (a0i )=0

∫

Ai

f (ai )νi (dai )

≤ 2Cε.

Then1

‖F(ν) − F ε(ν)‖kr∞ ≤ 2Cε. (40)

By Lemma 3 and (39), (40) we have

d‖μ(t) − ν(t)‖kr∞
dt

≤ ‖μ′(t) − ν ′(t)‖kr∞
= ‖F(μ(t)) − F ε(ν(t))‖kr∞
≤ ‖F(μ(t)) − F(ν(t))‖kr∞ + ‖F(ν(t)) − F ε(ν(t))‖kr∞
≤ Q‖μ(t) − ν(t)‖kr∞ + 2Cε.

(See Remark 2 after Theorem 1.) The rest of the proof is similar to that done in
Theorem 1. �
Note 3 As in Sects. 4.1 and 4.2, consider a game with strategies in compact metric
spaces. For each player i ∈ I let ‖Ui‖L < ∞ and consider a partition Pki of Ai .

1Note that if f satisfies that ‖ f ‖L ≤ 1 and f (a0i ) = 0, then f (ai ) ≤ ϑi (ai , a0i ) ≤ Ci for all ai ∈ Ai .

Therefore sup
‖ f ‖L≤1

f (a0i )=0

∫

Ai

f (ai )νi (dai ) ≤ C .
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Suppose that the initial condition μi,0 ∈ P(Ai ) of (30) can be approximated in the
weak form by a discrete probability distribution μki ,0 ∈ P(Pki ), then for any i ∈ I
and Ei ∈ B(Ai ) ∩ Pki , (31) can be written as (27) (or (24)), with U ε

i as (26) (or
(21)). So, in this particular case, (30) can be approximated by a system of differential
equations in R2k1+...+2kn of the form (28).

Corollary 2 Let us assume the hypotheses of Theorem2. Suppose that for each i in I ,
there exist a sequences of functions {U εn

i }∞n=1 and of vectors of probability measures{νn}∞n=1 such that max
i∈I ‖Ui −U εn

i ‖ → 0 and ‖μ0 − νn
0‖kr∞ → 0. If μ(·) and νn(·)

are solutions of (30) and (31), respectively, with initial conditions μ(0) = μ0 and
νn(0) = νn

0 , then, for T < ∞,

lim
n→∞ sup

t∈[0,T ]
‖μ(t) − νn(t)‖kr∞ = 0.

7 Examples

7.1 A Linear-Quadratic Model: Symmetric Case

In this subsection, we consider a symmetric game in which we have two players with
the following payoff function:

U (x, y) = −ax2 − bxy + cx + dy, (41)

with a, b, c > 0 and d any real number.
Let A = [0, M], for M > 0, be the strategy set. If 2c(a − b) > 0 and 4a2 − b2 >

0, then we have an interior Nash equilibrium strategy (NES)

x∗ = 2c(a − b)

4a2 − b2
.

Let μ(t) be the solution of the symmetric replicator dynamics induced by (41).
Then if the initial condition is such that μ0(x∗) > 0, we have that μ(t) → δx∗ in
distribution (see, [21–23]).

Consider a game where a = 2, b = 1, c = 5, d = 1, M = 2. For this game, the
payoff function (41) is bounded Lipschitz and by Theorem 2 we can approximate the
replicator dynamics by a finite-dimensional dynamical system of the form (25) under
the Kantorovich–Rubinstein norm. Figure 1 shows a numerical approximation for
this game where the Nash equilibrium is x∗ = 1. For this numerical approximation,
we consider a partition with 100 elements with the same size and use the forward
Euler method for solving ordinary differential equations. We consider the uniform
distribution as initial condition. We show the distribution for the times 0, 1000, and
2000.
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Fig. 1 Linear Quadratic
Model: Symmetric Case

Note that, under the strong norm, the Nash equilibrium x∗ = 1 cannot be approx-
imated by any probability measure with continuous density function.

7.2 Graduated Risk Game

The graduated risk game is a symmetric game (proposed by Maynard Smith and
Parker [20]), where two players compete for a resource of value v > 0. Each player
selects the “level of aggression” for the game. This “level of aggression” is captured
by a probability distribution x ∈ [0, 1], where x is the probability that neither player
is injured, and 1

2 (1 − x) is the probability that player one (or player two) is injured.
If the player is injured its payoff is v − c (with c > 0), and hence the expected payoff
for the player is

U (x, y) =
{

vy + v−c
2 (1 − y) if y > x,

v−c
2 (1 − x) if y ≤ x,

(42)

where x and y are the “levels of aggression” selected by the player and her
opponent, respectively.

If v < c, this game has a Nash equilibrium strategy with the density function

dμ∗(x)
dx

= α − 1

2
x

α−3
2 , (43)

where α = c
v
(see Maynard Smith and Parker [20], and Bishop and Cannings [1]).

Let μ(t) be the solution of the symmetric replicator dynamics induced by (42).
Then, for any initial condition μ0 with support [0, 1] , we have that μ(t) → δx∗ in
distribution (see [22]).
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Fig. 2 Graduate Risk Game:
Case c = 10; v = 6 : 5

Fig. 3 Graduate Risk Game:
Case c = 10; v = 0 : 5

Consider a gamewhere c = 10, v = 6.5. For this game, the payoff function (42) is
bounded, and by Theorem 1 we can approximate the replicator dynamics by a finite-
dimensional dynamical system of the form (25) under the strong norm (1). Figure 2
shows a numerical approximation for this game. For this numerical approximation,
we consider a partition with 100 elements with the same size, and use the forward
Euler method for solving ordinary differential equations. We consider the uniform
distribution as initial condition. We show the distribution for the times 0, 500, and
1000.

In the same way, Fig. 3 shows a numerical approximation for a game where
c = 10, v = 0.5. For this numerical approximation, we consider a partition with 100
elements with the same size, and use the forward Euler method for solving ordinary
differential equations. We consider the uniform distribution as initial condition. We
show the distribution for the times 0, 500, and 1000.
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8 Comments

In this paper, we introduced a model of asymmetric evolutionary games with strate-
gies on measurable spaces. The model can be reduced, of course, to the symmetric
case. We established conditions to approximate the replicator dynamics in a measure
space by a sequence of dynamical systems on finite spaces. Finally, we presented
two examples. The first one may be applicable to oligopoly models, theory of inter-
national trade, and public good models. The second example deals with a graduated
risk game.

There are many questions, however, that remain open. For instance, the replicator
dynamics has been studied in other general spaceswithout direct applications in game
theory such as Kravvaritis et al. [15–18], and Papanicolaou and Smyrlis [25] studied
conditions for stability and examples for these general cases. These extensions may
be applicable in areas such asmigration, regional sciences, and spatial economics (see
Fujita et al. [10] Chaps. 5 and 6). An open question: can we establish conditions to
approximate the replicator dynamics for general spaces by a sequence of dynamical
systems on finite spaces?

In the theory of evolutionary games, there are several interesting dynamics,
for instance, the imitation dynamics, the monotone-selection dynamics, the best-
response dynamics, the Brown–von Neumann–Nash dynamics, and so forth (see, for
instance, Hofbauer and Sigmund [13, 14], Sandholm [28]). Some of this evolution-
ary dynamics have been extended to games with strategies in a space of probability
measures. For instance, Hofbauer et al. [12] extend the Brown–von Neumann–Nash
dynamics; Lahkar and Riedel extend the logit dynamics [19]. These publications
establish conditions for the existence of solutions and the stability of the correspond-
ing dynamical systems. Cheung proposes a general theory for pairwise comparison
dynamics [5] and for imitative dynamics [6]. Ruijgrok and Ruijgrok [27] extend
the replicator dynamics with a mutation term. An open question: can we establish
conditions to approximate other evolutionary dynamics for measurable spaces by a
sequence of dynamical systems on finite spaces?

Acknowledgment This research was partially supported by the Fondo SEP-CINVESTAV grant
FIDSC 2018/196.

Appendix: Proof of Lemmas

For the proof of Lemmas 2 and 4, it is convenient to rewrite (11) as

I(μ1,...,μn)Ui :=
∫

A1

...

∫

An

Ui (a1, ..., an)μn(dan)...μ1(da1). (44)

Hence (12) becomes
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Ji (ai , μ−i ) =
∫

A−i

Ui (ai , a−i )μ−i (da−i ) (45)

= I(μ1,...,μi−1,μi+1,...,μn)Ui (ai ).

Proof of Lemma 1

We have the following inequalities:

d‖μ(t)‖∞
dt

= d

dt
max
i∈I [‖μi (t)‖]

= lim
ε→0

1

ε

[

max
i∈I [‖μi (t + ε)‖] − max

i∈I [‖μi (t)‖]
]

≤ lim
ε→0

1

ε

[

max
i∈I [‖μi (t + ε)‖ − ‖μi (t)‖]

]

≤ lim
ε→0

1

ε

[

max
i∈I [‖μi (t + ε) − μi (t)‖]

]

= max
i∈I

[

lim
ε→0

∥
∥
∥
∥
μi (t + ε) − μi (t)

ε

∥
∥
∥
∥

]

= max
i∈I

[‖μ′
i (t)‖

]

= ‖μ′(t)‖. �

Proof of Lemma 2

For any i in I and μ, ν in P(A1) × ... × P(A1), using (44) we obtain
∣
∣
∣
∣

∫

A
Ui (a)η(da) −

∫

A
Ui (a)ν(da)

∣
∣
∣
∣

≤ |I(η1,η2,...,ηn)Ui − I(ν1,η2,...,ηn)Ui |
+ |I(ν1,η2,η3,...,ηn)Ui − I(ν1,ν2,η3,...,ηn)Ui |
+ ...

+ |I(ν1,...,νn−2,ηn−1,ηn)Ui − I(ν1,...,νn−2,νn−1,ηn)Ui |
+ |I(ν1,...,νn−1,ηn)Ui − I(ν1,...,νn−1,νn)Ui |

≤ ‖Ui‖‖η2 × .... × ηn‖‖η1 − ν1‖
+ ‖Ui‖‖ν1 × η3 × ... × ηn‖‖η2 − ν2‖
+ ...

+ ‖Ui‖‖ν1 × ... × νn−2 × ηn‖‖ηn−1 − νn−1‖
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+ ‖Ui‖‖ν1 × .... × νn−1‖‖ηn − νn‖
≤ n‖Ui‖ max

j∈I ‖η j − ν j‖. (46)

Similarly, using (45),

|Ji (ai , μ−i ) − Ji (ai , ν−i )| ≤ (n − 1)‖Ui‖‖μ − ν‖∞. (47)

Using (46) and (47), we have

‖Fi (μ) − Fi (ν)‖∞ = sup
‖ f ‖≤1

∫

Ai

f (ai )[Fi (μ) − Fi (ν)](dai )

≤ sup
‖ f ‖≤1

∫

Ai

f (ai )|Ji (ai , μ−i )|[μi − νi ](da)

+ sup
‖ f ‖≤1

∫

Ai

f (ai )|Ji (ai , μ−i ) − Ji (ai , ν−i )|νi (da)

+ sup
‖ f ‖≤1

∫

A
f (ai )|Ji (μi , μ−i )|[νi − μi ](da)

+ sup
‖ f ‖≤1

∫

A
f (ai )|Ji (νi , ν−i ) − J (μi , μ−i )|νi (da)

≤ ‖Ui‖‖μi − νi‖ + (n − 1)‖Ui‖‖μ − ν‖∞‖νi‖
+ ‖Ui‖‖μi − νi‖ + n‖Ui‖‖μ − ν‖∞‖νi‖

≤ H‖μ − ν‖∞ + (n − 1)H‖μ − ν‖∞ + H‖μ − ν‖∞ + nH‖μ − ν‖∞
= (2n + 1)H‖μ − ν‖∞,

where H := max
i∈I ‖Ui‖. �

Proof of Lemma 4

For any i and j in I and a− j in A− j let

‖Ui (·, a− j )‖L := sup
a j ,b j∈A j

|Ui (a j , a− j ) −Ui (b j , a− j )|
ϑ∗((a j , a− j ), (b j , a− j ))

≤ ‖Ui‖L , and

U j
i := Ui (a j , a− j )

‖Ui (·, a− j )‖L
.

Then for any i in I and μ, ν in P(A1) × ... × P(A1), using (44) we see that
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∣
∣
∣
∣

∫

A
Ui (a)η(da) −

∫

A
Ui (a)ν(da)

∣
∣
∣
∣

≤ ‖Ui (·, a−1)‖L |I(η1,η2,...,ηn)U
1
i − I(ν1,η2,...,ηn)U

1
i |

+ ‖Ui (·, a−2)‖L |I(ν1,η2,η3,...,ηn)U
2
i − I(ν1,ν2,η3,...,ηn)U

2
i |

+ ...

+ ‖Ui (·, a−(n−1))‖L |I(ν1,...,νn−2,ηn−1,ηn)U
n−1
i − I(ν1,...,νn−2,νn−1,ηn)U

n−1
i |

+ ‖Ui (·, a−n)‖L |I(ν1,...,νn−1,ηn)U
n
i − I(ν1,...,νn−1,νn)U

n
i |

≤ ‖Ui‖L‖η2 × .... × ηn‖‖η1 − ν1‖kr
+ ‖Ui‖L‖ν1 × η3 × ... × ηn‖‖η2 − ν2‖kr
+ ...

+ ‖Ui‖L‖ν1 × ... × νn−2 × ηn‖‖ηn−1 − νn−1‖kr
+ ‖Ui‖L‖ν1 × .... × νn−1‖‖ηn − νn‖kr

≤ n‖Ui‖L‖η j − ν j‖kr∞. (48)

Similarly, using (45),

|Ji (ai , μ−i ) − Ji (ai , ν−i )| ≤ (n − 1)‖Ui‖L‖μ − ν‖kr∞. (49)

Using (48) and (49) we have

‖Fi (μ) − Fi (ν)‖kr

= sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )[Fi (μ) − Fi (ν)](dai )

≤ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )|Ji (ai , μ−i )|[μi − νi ](da)

+ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )|Ji (ai , μ−i ) − Ji (ai , ν−i )|νi (da)

+ sup
‖ f ‖L≤1
f (a0)=0

∫

A
f (ai )|Ji (μi , μ−i )|[νi − μi ](da)

+ sup
‖ f ‖L≤1
f (a0)=0

∫

A
f (ai )|Ji (νi , ν−i ) − J (μi , μ−i )|νi (da)

≤ ‖Ui‖‖μi − νi‖kr + (n − 1)‖Ui‖L‖μ − ν‖kr∞ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )νi (dai )
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+ ‖Ui‖‖μi − νi‖kr + n‖Ui‖L‖μ − ν‖kr∞ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )νi (dai )

≤ 2H‖μ − ν‖kr∞ + (2n − 1)HL‖μ − ν‖kr∞Ci

= [2H + (2n − 1)CHL ]‖μ − ν‖∞,

where H := max
i∈I ‖Ui‖, HL := max

i∈I ‖Ui‖L , and C := max
i∈I Ci . �
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