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Preface

Game theory can be used to model the interaction between decision-makers in a
wide range of scenarios spanning from pure conflict to situations in which the
participants have clear common interests. This is illustrated by the variety of
chapters in this volume, many of which are based on papers presented at the
International Symposium on Dynamic Games and Applications, which took place
in Grenoble, France in July 2018. The chapters are grouped into four sections,
namely: Games of Conflict, Evolutionary Games, Economic Games and Games
Involving Common Interest.

The first section, which includes five papers, presents games that model situa-
tions in which there is a clear conflict between the interests of the participants.
These games can be interpreted, sometimes loosely and sometimes strictly, as
pursuit-evasion games. In the chapter “Quick Construction of Dangerous
Disturbances in Conflict Control Problems”, Martynov et al. consider a model of
a differential game with linear controls. One player, the controller, aims to reach a
point in the target set at the termination time, whilst the aim of the other player, the
disturber, aims to stop the controller from arriving at such a point at the appointed
time. The authors present an example illustrating how this approach can be applied
to flight simulators.

In the chapter “Isaacs’ Two-on-One Pursuit-Evasion Game”, Pachter considers
differential games in which there are two pursuers and one evader. Isaacs’ results on
such games are adapted in order to classify these games into two situations: cases
where only one pursuer is required and those where co-ordination between the two
pursuers is required. Models of this type can illustrate both conflict and cooperation.
Whilst there exists pure conflict between the pursuers and the evader, when the
pursuers can be interpreted as individual decision-makers, then they often need to
co-ordinate their actions in order to achieve a joint goal.

In the chapter “A Normal Form Game Model of Search and Pursuit”, Alpern and
Lee consider a searcher-evader game in which the evader can choose from a finite
set of hiding places. The amount of time a searcher requires to investigate a hiding
place, as well as the probability of finding the evader given that it is located there,
depends on the place. The goal of the searcher is to find the evader in a fixed
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amount of time. The authors consider both models where the probabilities of finding
the evader in a given location are known and those where these probabilities can
take one of two values and the searcher uses Bayesian inference.

In the chapter “Computation of Robust Capture Zones Using Interval-Based
Viability Techniques in Presence of State Uncertainties”, Turetsky and Le Ménec
consider a differential pursuit-evasion game, where there is one pursuer and one
evader. They derive robust capture zones, sets of locations of the pursuer relative to
the evader which guarantee that the pursuer can capture the evader within a fixed
time regardless of the strategy of the evader.

To conclude this section, in the chapter “Convergence of Numerical Method for
Time-Optimal Differential Games with Lifeline”, Munts and Kumkov consider a
similar game to the one presented in the opening chapter. However, whilst the goal
of one player is to guide the system to a state in the target set, the other player can
win not just by avoiding such a situation, but by attaining a state in the so-called
lifeline set.

The second section contains three chapters devoted to the field of evolutionary
games. In the chapter “A Partnership Formation Game with Common Preferences
and Scramble Competition”, Ramsey considers a mate choice game in which a
large set of players all search for a partner at the start of the breeding season. This
game models scramble competition, i.e. as players form pairs and thus leave the
mating pool, the distribution of the attractiveness of prospective partners changes
and it generally becomes harder to find a partner.

In the chapter “The Replicator Dynamics for Games in Metric Spaces: Finite
Approximations”, Mendoza-Palacios and Hernandez-Lerma consider the evolu-
tionary dynamics of games in which the strategy sets are metric spaces. This is
illustrated by a game in which the players choose their level of aggression from the
interval [0, 1]. They derive conditions stating when the evolution of such a system
can be approximated by a sequence of dynamical systems defined on finite spaces.

At the end of this section, in the chapter “Eco-evolutionary Spatial Dynamics of
Nonlinear Social Dilemmas”, Gokhale and Park consider the relation between
spatial dynamics and the evolution of behaviour in generalised public goods games.
In public goods games, the higher the level of cooperation between members of a
group, the greater the benefits obtained by the group as a whole. However, indi-
viduals who cooperate the least obtain the greatest payoff. As a result, such games
are clear illustrations of the role of conflict and cooperation in games (or in evo-
lutionarily terms, the role of selection at the level of individuals and selection at the
level of groups).

The third section contains three chapters presenting models that can be applied
in the field of economics. In the chapter “Heuristic Optimization for Multi-Depot
Vehicle Routing Problem in ATM Network Model”, Platonova et al. consider an
optimisation model that considers the location of branches of a bank and cash
machines in order to provide the best service to customers whilst minimise costs.
Although this model is not strictly game-theoretic, descriptions of how it can be
adapted to game-theoretic scenarios are presented.
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In the chapter “Load Balancing Congestion Games and Their Asymptotic
Behavior”, Altman et al. consider a game which has applications to communication
networks. The players are atomic, i.e. the actions of an individual can affect the
level of congestion along a given link. The authors show that in such games
multiple equilibria can exist.

To conclude this section, in the chapter “Non-deceptive Counterfeiting and
Consumer Welfare: A Differential Game Approach”, Crettez et al. present a dif-
ferential game that models the effect of the counterfeiting of goods produced by a
prestigious brand. The originality of this model lies in the fact that it considers the
welfare of consumers. This allows new insight to policy-makers on how such
situations are legislated.

The final section contains two chapters presenting models of games in which
there are common interests. Both papers consider the consumption of a commonly
held resource. In the chapter “Equilibrium Coalition Structures of Differential
Games in Partition Function Form”, Hoof presents a model of the consumption of a
non-renewable resource as a cooperative game. The extraction rates are chosen by
the players, such that the overall rate at which a resource is extracted is proportional
to the amount of the resource available (the constant of proportionality is equal to
sum of the rates chosen). By cooperating, coalitions of players maximise the dis-
counted payoff of the coalition as a whole, rather than individually maximising the
payoff of each player, given the behaviour of others.

In the final chapter, Kordonis considers a different approach to achieving
cooperation based on the concept of Kant’s Categorial Imperative. This concept
states that members of a population should use the rule that would maximise the
overall payoff to the population when this rule is adopted by the population as a
whole. The general model is illustrated by an example based on a fishing game, i.e.
a model of the consumption of a renewable resource.

The chapters were evaluated by independent reviewers. We thank the authors for
their contributions and the reviewers for their benevolent work and expert com-
ments. Overall, this volume of Advance in Dynamic Games presents the full range
between pure competition and cooperation, as well as applications of these ideas to
various scientific disciplines. We wish the reader a pleasant journey.

Wroctaw, Poland David M. Ramsey
Toulouse, France Jérome Renault



Nikolai Botkin Memorial

On September 14, 2019, Nikolai Dmitrievich Botkin, who made a great contribu-
tion to the theory of differential games and numerical methods, passed away.

Nikolai Botkin was born on March 22, 1956, and raised in the city of Sysert,
Sverdlovsk region, Russia. His father was a mathematics teacher and his mother, a
physics teacher. Nikolai was fond of natural subjects since childhood and in 1973,
he entered the Faculty of Mathematics and Mechanics of the Ural State University
in Sverdlovsk (now Yekaterinburg). During his studies, Nikolai became interested
in Bellman’s dynamic programming principle. After graduation, he was accepted
into the department of Dynamical Systems headed by A. I. Subbotin, which is part
of the Institute of Mathematics and Mechanics of the Ural Branch of the Russian
Academy of Sciences.

His works, performed in the early 80s under the guidance of V. S. Patsko, were
connected with the theory of differential games and its numerical methods that had
just begun to develop. Nikolai Botkin created the first algorithms for solving linear
differential games; he obtained a posteriori estimates of the accuracy of numerical
solutions and developed algorithms for optimal positional control in such problems.
In 1983, Nikolai Botkin defended his Ph.D. thesis on “Numerical solution of linear

ix
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differential games.” The methods developed by him were successfully applied in
1982-1992 to aviation problems of optimal control of an aircraft in the presence of
wind disturbances in frames of joint research with the Academy of Civil Aviation in
Leningrad. Based on an analysis of the asymptotic behaviour of solutions to non-
linear differential games in 1992, he proposed an algorithm for computing the
discriminating kernel of differential inclusion.

After receiving a grant from the Humboldt Foundation in 1992, Nikolai Botkin
lived and worked in Germany (1992—1993 University of Wiirzburg, 1993-1999 and
2006-2019 Technical University of Munich, 1999-2006 Research Center caesar,
Bonn). His research interests covered many areas of applied mathematics. As a
leading researcher, he participated in numerous scientific projects in the field of
elasticity theory, hydrodynamics, thermodynamics, homogenization theory,
phase-field models, optimization and optimal control of ordinary differential equa-
tions and distributed systems. Whilst working at the center of advanced European
studies and research (caesar) in close contact with physicists, biologists and engi-
neers, he was actively engaged in the creation of innovative devices and instruments
in the field of composite materials, sensors, cryopreservation of living cells and
tissues. This motivated him to develop new mathematical models, theoretical
methods and computational algorithms. Returning in 2006 to the chair of
Mathematical Modelling at the Technical University of Munich headed at that time
by K.-H. Hoffmann, and continuing to work on the cryopreservation project, and
then participating in a joint project with King Abdullah University of Science and
Technology on CO, sequestration, Nikolai resumed work on numerical methods for
solving differential games. One of his brilliant achievements at this time was the
development of a grid method (implemented in the form of an algorithm and cor-
responding programs) for solving a wide class of multidimensional nonlinear dif-
ferential games with state constraints. Using these algorithms, Nikolai Botkin, with
his students, formulated and investigated a number of aircraft control problems in the
presence of wind disturbances. He also applied methods and algorithms for solving
differential games to study biomedical problems, which is extremely unique.

N. Botkin spent considerable time reviewing articles for various mathematical
journals.

As an enthusiastic and versatile mathematician, Nikolai Botkin had a rare quality of
solving complex applied problems, starting with the development of the model, its
theoretical investigation, and ending with the development of algorithms for com-
puting solutions up to their implementation in real systems and devices. Colleagues
and students appreciated his deep knowledge, determination and perseverance. Other
students, not only from the mathematics faculty, came to him for help with completing
a diploma or other work, knowing that Nikolai could solve a variety of problems.

Nikolai was a friendly and cheerful person; he loved to joke and tell funny
stories, was a keen table tennis player, and fond of reading books on physics and
science fiction.

A sudden, premature death prevented the implementation of many of his sci-
entific ideas and plans but his scientific results remain in 243 published works, of
which about 100 are devoted to differential games.
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Quick Construction of Dangerous )
Disturbances in Conflict Control i
Problems

Kirill Martynov, Nikolai D. Botkin, Varvara L. Turova,
and Johannes Diepolder

Abstract The paper is devoted to the construction of dangerous disturbances in
linear conflict control problems. Using the technique of sequential linearization,
dangerous disturbances can also be constructed for nonlinear systems such as air-
craft dynamics equations, including filters, servomechanisms, etc. The procedure
proposed is based on a dynamic programming method and consists in the backward
integration of ordinary matrix differential equations defining centers, sizes, and orien-
tations of time-dependent parallelotopes forming a repulsive tube in the time-space
domain. A feedback disturbance strategy can keep the state vector of the conflict
control system outside the repulsive tube for all admissible inputs of the control.

The original version of this chapter was revised: This chapter has been changed to open access
under a CC BY 4.0 license. The correction to this chapter is available at https://doi.org/10.1007/
978-3-030-56534-3_14
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4 K. Martynov et al.

1 Introduction

One of the important problems in control engineering is generation of extremal
disturbances for various types of dynamical systems. This is of interest in many
application areas because such disturbances can be used to evaluate the robustness
of models and quality of controllers.

This paper concerns with generation of feedback disturbances for linear conflict
control systems where the aim of the disturbance is to deflect the state vector from a
target set at a fixed termination time for all admissible controls. It is assumed that the
target set and the constraints imposed on the control and disturbance variables are
represented by parallelotopes. Starting with the parallelotope representing the target
set and integrating backward in time a system of ordinary vector-matrix differential
equations yield parallelotopes forming a repulsive tube in the time-space domain.
It is proven that a certain feedback disturbance can keep all trajectories outside the
repulsive tube, and therefore outside the target set at the termination time.

It should be noted that the minimal repulsive tube can be computed using general
grid methods for solving differential games [3, 4, 8]. Nevertheless, such methods
require large computation resources on multiprocessor computer platforms. More
appropriate for linear conflict control problems are methods proposed in [5, 12]
where repulsive tubes are approximated by polyhedrons, which however involves
solving a lot of linear programming problems. Therefore, such methods also require
significant computer resources. In contrast, the scheme suggested in the current
paper is computationally cheap so that it can run in real time on a common computer.
Moreover, high-dimensional models can be effectively treated with this method.
Finally, disturbances for nonlinear models can be constructed by applying techniques
of sequential linearization. Thus, the approach presented in this paper is rather general
and can be used in various areas. As a demonstration of the method, generation of
dangerous disturbances for aircraft control problems is considered.

The paper is structured as follows: In Sect. 2, a formal statement of the prob-
lem and some definitions are given. Section 3 contains a detailed description of the
method for constructing repulsive feedback disturbances and provides a proof of their
correctness. In Sect. 4, some numerical aspects of the method are addressed. It is
shown that the method can be implemented in the discrete-time scheme. In Sect. 5, the
method is applied to a three-dimensional linear differential game. This simple exam-
ple allows us to visualize and clearly demonstrate in which extent the constructed
repulsive tube is minimal. Section 6 considers the problem of aircraft take-off under
windshear conditions. This example demonstrates a technique of generating dan-
gerous disturbances for nonlinear models. Section 7 describes the construction of
disturbances for a linearized aircraft closed-loop system for the lateral dynamics.
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Fig. 1 Repulsive tube V x(t)
with a sample trajectory x (¢) (to,x(to)) . — ~ — — — — — —
[ 2

2 Problem Formulation

First, introduce the following notation. For a set V C [0, 8] x R4 and ¢ € [0, 6],
the set V(¢) := {x € R? : (¢, x) € V} is called cross section of V at ¢. For a vector
x € R?, the norm ||x ||« is defined as max{|x;|,i = 1, ..., d}. Let the superscript T
denotes the transposition operation.

Consider a linear conflict control problem

i=Ax+u+v, xeRY re[0,0], x(¥) e M C R4, (1)

Here, u and v, respectively, denote the control and disturbance variables constrained
as follows: u(t) € R C R?, v(t) € @ C R?. The problem is considered on a time
interval [0, 8]. The aim of the control is to meet the target set M at the termination
time 6, whereas the aim of the disturbance is opposite. The objective of this paper is
to propose a method of constructing a feedback disturbance v (¢, x) which deflects all
trajectories from the target set at the termination time. More precisely, the problem
is formulated as follows:

Problem 1 Find atube V C [0, 8] x R¢, V(9) = M such that there exists a feed-
back disturbance v(z, x) fulfilling the following condition: If (¢y, x(ty)) ¢ int(V),
then (¢, x(¢)) ¢ int(V), t € [ty, 0], for all possible controls.

Remark 1 In what follows, V and v(¢, x) from the formulation of Problem 1 are
called repulsive tube and repulsive disturbance, respectively. It will be shown below
that the knowledge of a repulsive tube allows us to find explicitly a repulsive distur-
bance appearing in the formulation of Problem 1.

The main property of repulsive tubes is illustrated in Fig. 1.

3 Construction of Repulsive Tubes

This section describes the computation of time-dependent parallelotopes that form
a repulsive tube in [0, 9] x R? and define a repulsive feedback disturbance. This
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Fig. 2 Two-dimensional
parallelotope Vp with the
axes p!', p? and the
corresponding distance
hy, hy

approach raises from the idea by E.K.Kostousova to use parallelotopes for con-
structing feedback controls, see a detailed description in [7].
A parallelotope is defined as

Vplp, Pli={x e R x =p+ Pe, |le]e < 1}, 2)

where p € R? and P € R¥*4, d < d, are its center and shape matrix, respectively.
Note that d = d in our consideration. The columns of the matrix P are called axes
of the parallelotope Vp and denoted as p', ..., p¢ € RY. Furthermore, let i;(Vp)
be the euclidean distance between two opposite faces of Vp along the axis p',
and h,,;, Vp) = min{h; Vp) |1 <i < c?}. Figure 2 shows p’ and h; for a two-
dimensional parallelotope.

Further, it is assumed that the following problem data are represented by paral-
lelotopes:

M =Vplps, Psl, py eRY, Py e R, det Py #0,

3
R = Vp[n R]’ R e Rdxdl’ Q — VP[q, Q], Q c Rdxdz. ( )

Remark 2 The system matrix A as well as the constraints on the control and distur-
bance inputs may depend on time. Thus, in general, A = A(¢), R = Vp[r(t), R(1)],
and Q = Vplq(¢), Q(¢)]. In the following, this time-dependence is not shown explic-
itly in order to simplify the notation.

Remark 3 Parallelotope-shaped representation of the control and disturbance con-
straints is fairly generic and allows to capture different common types of constraints.
For example, consider a control u € R? subject to

—i () < u (@) < i (@)

—1(1) < us(t) < ia(2).

Such constraints can be easily represented with the parallelotope notation discussed

above by choosing:
_ 0 @ o
R=ve (o) ("0 o) |
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With the assumptions introduced in (3), the following system of ODEs defines a
repulsive tube Vp (1) = Vp[p(t), P(¢)],t € [0,0] :

dp

E=AP+V+q, p©®) =py, 4)
dP .
- =AP+Pdiagt. P)+ QW) PE©)="P;. )

B = —Abs(P~! R)e, where (Abs(P));; = |P;|, e = (1,1,...., DT e R", (6)

d
dyxd » <
r) e R, 122’2122]'”’(’)' <1 (7)
J=

In (6) and (7), the matrices diag 8 and I, respectively, represent the influence of the
control and disturbance capacities on the repulsive tube. Note that the time evolution
of the matrix I, satisfying the condition (7), should be chosen in such a way that the
repulsive tube maximally decreases backward in time. Below, this principle will be
discussed more exactly.

A repulsive feedback disturbance appearing in the statement of Problem 1 may
be defined as follows:

P(1)"" (x — p(1))
max (| (1)~ (x = p() oo, 1)
Theorem 1 Ler Egs.(4)—(5), with relations (6)—(7), be solvable on [0, 0], and

det (P(t)) #0, t €[0,0], then the tube Vp(-) and the disturbance strategy (8)
provide a solution to Problem 1.

v(t, x) =q(t) + Q@) I'(1) (®)

Proof Observe that the condition det (P (1)) # 0, 1 € [0, 6], define the vector func-
tion

E(t,x):=P(t) ' (x — p(1))

and note that the vector £(¢, x) € R? defines relative coordinates of any point x in
the parallelotope Vp(¢). It is easily seen that a point x lies outside the interior of the
parallelotope Vp (t) whenever ||£(7, X)|loo > 1.

Let x(-) be atrajectory of (1) corresponding to the disturbance (8) and starting from
a position (fo, xo) such that [|£ (79, xo)|lo > 1. Denote K (£) := cl (Rd \ Vp (t)) and

provethatx(t) € K(t), t € [ty, f]. Bearingin mind that [|£ (¢, x) | c = max |&;(z, x)|
jeld

introduce the functions

g(t,x), jeld

—&(t,x), jed+1.2d . ®)

gj(t,x)={
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Obviously, the graph K of the mapping K (-) on [#y, 0] is given as follows:

2d
K = UKJ-, where K; ={(r,x):g;(t,x) > 1, 1p <t <6, x e R'}. (10)
j=1

According to [2, Table4.1], the contingent cone to K at any point (¢, x) € K is
given by the formula

Tx(t,x)= | T %),

jeJ(,x)

where J(¢,x) ={j € 1,2d : (t,x) € K;}, and T, (¢, x) is the contingent cone to
Kj at (¢, x).

Following to [2, Chap. 4.1.1], it holds for (¢, x) € K, t € [ty, 6):

R xRY, ifr>19, gj(t,x)>1,

Rt x R, ifr=19, gj(t,x) > 1,

T, (1, x) = (1n

d 3 T ;
{reR,neR): rT(t,x)+n Vxgj(t,x) = 0}, ift > 19, gjt,x)=1,
0g; .
{teRt,p eRY): rle(t,x)+nT Vxgj(t,x) =0}, ift =19, gj(t,x) =1

According to [1, Theorem 11.1.3], the condition (1,x()) € Tx(t, x(1)),
t € [ty, 0), guarantees the inclusion x(z) € K (¢), t € [y, 0]. Let us prove the valid-
ity of that condition.

If |&(¢, x (1)) ]loo > 1, one of the first two relations of (11) holds for some index
j € J(t,x(1)), which provides the desired result due to (10).

The “boundary” case, ||£(¢, x(¢))]loo = 1, is being treated as follows: Obviously,
there exists an index jy € J (¢, x(¢)) such that the third relation of (11) holds. Assume
that jo € 1,d (the case jy € d + 1, 2d is considered analogously). The full time
derivative of the vector function E(t, x(t)) reads

de ,dP ., d
= =_p1t==p - P 'l (x—p)=
T yr (x—p)+ dt(x p)

=—P ' (AP + QI + Pdiag ) + P"'(A(x = p) + (v —q) + (u — 1))
if formulas (1), (4), (5), and the definition of £ are used. Note that every admissible

control u satisfies the relation # — r = Ra at time ¢, where « is a vector such that
lolloo < 1. Additionally, using (8) yields

& _ 5o R SN -
a = P e ey 1)) (e PE A+ PR

The equalities [|£(z, x(¢))loo = 1 and &;, (¢, x(¢)) = 1 yield the relations
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d .
% = —(Bjo&i) + (P"'Ra)j, = —Bj, — (Abs(P"'R), e), = 0, (12)
and therefore,
dé&; 0g; .
5;" = %(r, X(0)) + ()7 V. g, (1, x(1)) > 0, (13)

which implies that (1, x(#)) € Tx (¢, x(¢)) according to (10) and (11). Thus, in
all cases, (1, x(¢)) € Tx(t, x(2)), t € [to, 0), and therefore, x(¢) € K(¢), t € [, 0],
because of the continuity of x(¢) and K (). Finally, since K () N int(Vp (t)) =0,
the condition x(¢) ¢ int(Vp(t)), t € [ty, 0], holds.

Remark 4 Note that the repulsive tube Vp can degenerate so that det (P(ﬂ) =0
for some f € [0, ), and P(f) is no longer invertible. In this case, the tube Vp is con-
structed only on [7, 6], and the disturbance maybesetasv(t) =gq, t < f. Obviously,
x(f) ¢ Vp(f), and the rule (8) can be used for ¢ > 7.

As it was mentioned after formula (7), the choice of I" is crucial for obtaining
a possibly smaller repulsive tube, which allows for the application of (8) to a pos-
sibly larger set of initial conditions. The following choice is used in the numerical
simulations in Sects.5-7: The whole time interval [0, 6] is divided into subinter-
vals (7, T;+1], i =0, ..., N, with 7 = 0 and Ty = 0. The system (4)—(5) is then
integrated backward in time from 6 to 0, and a constant matrix I, satisfying (7) is
chosen for each subinterval (t;_;, 7x] to minimize the minimum distance between
the opposite faces of Vp(tx—1). Intuitively, such a choice of I" yields the strongest
contraction of the parallelotope tube along the direction of its shortest axis.

Note that the resulting I may be discontinuous at time instants t;. However, the
number of discontinuities is finite, and solutions of (4)—(5) remain continuous and
unique.

4 Numerical Implementation of Repulsive Feedback
Disturbances

The proof of appropriateness of the repulsive disturbance (8) is done in Sect. 3 under
the assumption of continuous-time scheme. In a discrete-time scheme, the feedback
repulsive disturbance (8) may not properly work because the condition (12) holds
only on the boundary of Vp. In this section, an extended discrete-time control scheme
is presented, and a bound on the time step length of this procedure is evaluated.
Assume for simplicity that the discrete-time scheme involves equidistant time
instants #; corresponding to the step length Ar. As it was declared in the introduction,
the disturbance is basically associated with wind, and the maximum expected wind
speed can hardly be exactly predicted. Therefore, the extension of disturbance bounds
along all parallelotope axes by the factor 1 4 §, where § > 0 is a small parameter, is
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not prohibited. Thus, it is now assumed that v € Vplq, (1 + §) Q], and the repulsive
disturbance v(¢, x) is computed by the formula

P (t) (x — p@))

vt ) =)+ 00 IO P T 0 & = pO) /A48, 1)

(14)

Note that the function v in (14) is Lipschitzian on each time interval [#;, t;;1) in the
following sense:

lo(r, y) —v(@, 0l = Lt =1+ llx =y, 1 €[t tiv1) 15)

if the matrix I is constant on each interval [f;,f;4). Let x(-) be a trajectory
started from a position (fy, xo) such that ||£ (7, x0)|lcc = 1 + 8 and computed in the
continuous-time scheme using the disturbance (14). The same argumentation as in
the proof of Theorem 1 implies that ||E(¢, x(¢))]lcc = 1 4+ 8, t € [tp, O].

Let xA(-) be the corresponding trajectory (the same control u(-) and the same
initial position (fy, x¢)) computed in the discrete-time scheme using the disturbance

(14). In virtue of condition (15), it is possible to prove that

lx(®) —xa(®)| < GAt, G =exp(HO), H= max A+ L,
tel0,

and therefore, [|E(¢, xA(t))]lcc = 1+ 8 — MG At, t € [ty, 6], where M is the Lips-
chitz constant of the function [|£(z, x) ||« in x. It remains to set Ar < §/(MG).

Remark 5 The theoretical bound on the step size At may be too small. However,
for simulations presented in the following sections, it is possible to maintain the
property [|E(¢, x4 (1)) |leo = 1, t € [to, 8], for much larger time steps.

Finally, note that for any given problem dimension d (i.e., the state x € R?), the
computational complexity of the proposed scheme is O(d>) per time step At as
it involves matrix equations of dimension d, which can be solved with, e.g., LU-
decomposition. Even for fairly low-dimensional problems, this dependency is far
superior to complexity of other common methods for construction of disturbances,
such as

e grid methods, e.g., [3], that scale as O (N?) per time step, where N is the grid
resolution per dimension,

e methods that represent repulsive tubes with arbitrary convex polygons, e.g., [5],
that scale as O (d!m) per time step, where m is the number of inequalities describing
the polygon.

Clearly, the difference in complexity between these methods and the presented
approach quickly grows with the increasing problem dimension. Thus, the presented
method allows us to consider problems that would not be accessible with many other
techniques.
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5 Application: Simple Example

In this section, the techniques developed in Sects. 3 and 4 are applied to compute a
repulsive disturbance in a linear three-dimensional differential game. This example is
appropriate to visualize repulsive tubes and demonstrate the proper work of repulsive
disturbances.

Consider the following differential game:

Xp=x1+x2+u;+vg,
X =x3+ v2,
X3 = X1 + Us,

M={xeR: x| < 1}.
The system is considered on the time interval [0, 1]. The control and disturbance
variables are constrained as follows:

lui] <0.5, |vi| <0.55, i=1,2.

The repulsive sets Vp[p(t;), P(t;)] are constructed on the uniform time grid {#; =
i At} with At = 1073, The same time sampling is used in the forward integration of
the system including the repulsive disturbance (14).

It follows from the general theory of differential games (see [8]) that, in particular,
for linear problems there exists a minimal repulsive set Vy C [0, 8] x R4, This set
is also the maximal solvability set and, therefore, it has the following property. If
(to, x(t0)) ¢ Vo then there exists a feedback disturbance v(z, x) that prevents any
trajectory x(-) from the penetration into V. In the opposite case, there exists a
feedback control u(¢, x) ensuring the condition (¢, x(¢)) € Vy, t € [to, 0], for all
trajectories. This alternative is sketched in Fig. 3.

For low-dimensional problems, V), can be approximated using grid methods (see,
for example, [3] and [4]). In the following simulation, such a grid scheme is used to
approximate the cross sections Vy(#;) for all time instants #; = i At. For each current
state x(#;) € Vp(#;) it is possible to compute a control u(#;, x(#;)) which pushes the
state vector into the next cross section V(¢ 1 1) so that the feedback control u(t;, x (¢;))
can approximately keep (in the discrete-time scheme) all trajectory inside V) if the

Fig. 3 Property of minimal a( t) o
repulsive tubes (to, z(to)) .-==""=====mm-moil- - e
o

(t()vaf(to)) __________ N
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Fig. 4 The sets Vp (1)
(green) and Vy(#) (red) as
well as the current state
vectors (for various initial
conditions) at ¢t = 0.0 (left)
and ¢ = 0.2 (right)

F1)
ot

initial state lies there. This control is used to implement the strategy of the first player
in the simulation.

To test the constructed repulsive disturbance, twenty-five initial conditions were
generated in the proximity of origin but outside of V»[p(0), P(0)]. Resulting tra-
jectories as well as cross sections of the repulsive tubes Vp and Vy are shown in
Figs. 4-6. The results are consistent with the theory: Vy(t;) C Vp(t;) for all #;, and
none of the trajectories penetrates into the tube Vp. Furthermore, one can see that the
parallelotope tube Vp provides a rather good upper estimate of the minimal repulsive
tube V), along the shortest axis of the parallelotope. This is in agreement with the
previously discussed choice of the matrix I” involved in the construction of Vp.

Remark 6 Note that the view direction in Figs. 4, 5, and 6 is always chosen orthog-
onal to the minimum width face of Vp(#;). Therefore, the view direction is rotating
together with the tube Vp. In this way, it is possible to visually demonstrate that all
trajectories remain outside of Vp throughout the whole simulation.
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Fig.5 The sets Vp(¢) (green) and Vy(¢) (red) as well as the current state vectors (for various initial
conditions) at # = 0.4 (left) and ¢ = 0.6 (right)
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Fig. 6 The sets Vp(¢) (green) and Vy(¢) (red) as well as the current state vectors (for various initial
conditions) at # = 0.8 (left) and # = 1.0 (right)
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6 Application: Nonlinear Model of Take-Off

In the following sections, the construction of a repulsive disturbance in a nonlinear
model of aircraft take-off is presented. The model has already been considered in
several papers devoted to aircraft control (cf. [10, 11]). In contrast to the mentioned
works, the problem of finding a dangerous wind disturbance is now considered. More
precisely, it is necessary to find a wind disturbance that maximizes the deviation
of aerodynamic velocity and kinematic path inclination angle from their reference
values.
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6.1 Model Equations

A simplified aircraft model is under consideration.

First, the motion in a vertical plane is assumed. Second, the rigid body rotations
are neglected to obtain a point-mass model. Third, the thrust force of the engine is

kept constant.
The following notation is used:
= aerodynamic velocity of the aircraft, [m/s];
y £ kinematic path inclination angle, [°];
x ¥ horizontal distance, [m];
h = altitude, [m];
aZ aerodynamic angle of attack, [°];
o ¥ thrust inclination angle, [°];
m < mass of the aircraft, [kgl;
g = gravitational constant, [m/s?];
P < thrust force, [N];
D= drag force, [N];
L = lift force, [N];
p = density of air, [kg/m?];
N wing area of the aircraft, [m?];
W, £ horizontal wind velocity at the location of the aircraft, [m/s];
Wi = vertical wind velocity at the location of the aircraft, [m/s].

The following equations describe the simplified aircraft dynamics:

mV = Pcos(a +0) — D —mg siny —mWy cosy —mW,siny,
mVy = Psin(e + o)+ L —mg cosy +mW, siny —mW, cosy,
x=Vcosy + W,
h=Vsiny + W,.

(16)
A7)
(18)
19)

The thrust, drag, and lift forces in (16), (17) are approximated by polynomials:

P=Ag+AV+ AV,

1
D= chpSV2 with Cp = By + By + B2,

1
L=—-C.pSV?withC, =

Co + Cia, o < Oy
2 C()+C10[+C2(Ol—0{**)2, O > Olyx.

Here, the angle of attack, «, is the single control input governed by the pilot.
The coefficients A;, i = 0, 1, 2, depend on the altitude and air temperature, whereas



Quick Construction of Dangerous Disturbances in Conflict Control Problems 15

B; and C;, i =0, 1,2, are influenced by the position of flaps and chassis. Finally,
m, S, p, 8§, o4, A;, B;,and C; are constant parameters corresponding to Boeing-
727 on take-off. The exact values of them can be found in [10].

The dynamics (16)—(19) is considered on the time interval [0, 8] with 6 = 145,
and appropriate initial conditions are chosen.

The target set M is defined by maximum permissible deviation of V and y from
their reference values Vj and y, at ¢t = 6. That is,

V() — Vol < AV, (20)
¥ (@) —wnl = Ay. 2y

The reference values V, and y; will be discussed below in more detail.

6.2 Relaxed Nonlinear Model

It can be observed that the right-hand sides of Egs. (16), (17) do not depend on x and 4.
Therefore, these state variables and the corresponding Egs. (18), (19) will be excluded
from the consideration, keeping in mind that x (¢) and /(¢) can be reconstructed from
V(t) and y (2).

Moreover, jumps in the wind velocity components will be smoothed using first-
order filters defined by PT1 transfer functions, which assumes the introduction of
artificial disturbances v; and v;, the inputs of these filters.

Thus, similar to [11], we arrive at the following nonlinear model:

mV = Pcos(a + o) — D —mg siny —mW,cosy —mW, siny, (22)
mVy = Psin(a 4+ o) + L —mg cosy + mW, siny —mWj, cosy, (23)
Wy = —k(W, —vp), (24)
Wy, = —k(W), — vy). (25)

Here, the coefficient k = 0.5s~! defines the smoothing rate of the wind velocity
components. The time derivatives W, and W, in (22), (23) are assumed to be replaced
by the right-hand sides of (24), (25). The constraints on the artificial disturbances,
v and vy, are chosen as follows:

[vi] < 13.7m/s, |va] <5.5m/s. (26)
Similar as in [10], the control parameter is constrained by the inequalities

0<a <16 27
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Remark 7 Note that any wind disturbance designed for the relaxed system (22)—
(25) produces, using (24) and (25), the same performance of V and y in the original
system (16)—(19). Therefore, repulsive disturbances will be designed for the relaxed
system.

6.3 Linearization of the Relaxed Model

The relaxed system (22)—(25) is linearized around the reference values (cf. [11])
V=V=841Im/s, y =y =06989, a =qy=10.367°, W, =W,, =0, W, =
Wio = 0, v; = 0, and v, = 0. Here, the values of Vj, ¥y, and «q are chosen such that
the right-hand sides of (22) and (23) are equal to zero. Note that the above reference
values define a straight ascending trajectory. Such a line would be a perfect take-off
path in the absence of wind disturbances. Denote x,.r := (Vo, v0, Wio, Wio)T and
Upef = Up.

6.4 Linear Conflict Control Problem

Having chosen the reference values, the linearization of the relaxed model yields the
following linear conflict control problem (cf. [11]):

X = AX — Xpep) + B(u — urep) + Cv, fort €[0,6], (28)
x(0) = xpe. 29)

Here, x, u, v, A, B, and C are defined as

v v v 9V av
vV By W, aw,
% dy 9y By 9y
X = . A= |9V o oW aw, |
W, 0 0 -k O
W, 0 0 —k

0 1%)

0
aw v av.
da vy vy
a7 57 0y ”
Bi=|%|, u=a, C:=| ] .= ) (30)
0 k
0
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All partial derivatives are computed at X,.f, U, and v = (0, 0)7. Note that the
state vector, control parameter, and disturbance inputs are the same as in the non-
linear relaxed model (22)—(25). Therefore, the target set M and the constraints on
the control and disturbance inputs remain the same as in the nonlinear relaxed model.

Remark 8 The system (28)—(30) can be reduced to the form (1) by setting X :=
X — Xpef, U := B(u — u,.r) and v := Cv. Obviously, the new target set M and the
constraints on the new control z and disturbance vector v are of the parallelotope
type so that the new system satisfies the requirements of Sect. 3.

6.5 Generation of Disturbances

To construct a repulsive disturbance for the relaxed nonlinear model (22)-(25), a
parallelotope tube Vp is constructed for the linearized problem (28)—(30). More
precisely, the cross sections Vp (t;) = Vp[p(t;), P(#;)] are computed for a time sam-
pling. The disturbance in the relaxed nonlinear model at each time instant ¢; is being
chosen according to (8) based on the cross section Vp (t;).

It should be noted that the condition x(0) ¢ Vp[p(0), P(0)] is required for the
application of of the feedback rule (8). To satisfy this condition, a scheme with multiple
target sets M" can be used. Here, 1 € Rt is a scaling factor applied to the original
target set M= Vplpys, Prl. Therefore,

M" =Vplpys. uPyl. (31)

Further, a set of scaling factors ;t; < u, < ... < s is chosen, and multiple target
sets M, ..., M"" are defined according to formula (31). For each M'*, s € T, M,
the corresponding parallelotope repulsive tube Vp is constructed. At the current
position (¢;, x(;)) an index s € 1, M is chosen in such a way that x(¢;) ¢ Vp" (¢;)
and x(;) € Vp's+'(t;). The repulsive disturbance is computed according to formula
(8), based on Vp' (1;) = [p(#;), P (#;)].

Remark 9 It is clear that Vp" (;) C Vp'(t;) whenever u; < ;. Therefore, for
the linearized system (28)—(30), the repulsive property guarantees that the trajectory
does not penetrate into the sets Vp™* with pu; < u, in future time steps. On the
other hand, if the control (pilot) plays nonoptimally, the disturbance can achieve that
x(t,) ¢ Vp'i(t,) with u; > p, at some ¢ > t;. In such a case, the repulsive cross
section Vp"i (¢,) should be used at 7, to increase the deviation of the trajectory from
the reference path.

The simulation results for the nonlinear relaxed model (22)—(25) with constraints
on the disturbance and control given by (26) and (27) are shown in Figs. 7, 8, 9.
Multiple target sets M", s €1,25, with s uniformly distributed in the interval
[0.04; 1], are used. The rlght—hand sides of inequalities (20) and (21) are chosen
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Fig. 7 Left: Aerodynamic velocity V of the aircraft and the reference value Vp (thin horizontal
line). Right: Kinematic path inclination angle y and the reference value yq (thin horizontal line).
The vertical lines at # = 14's show the corresponding projections of the target set
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Fig.8 Left: Horizontal wind velocity Wy along the trajectory (yielded by the disturbance command
v1). Right: Vertical wind velocity W), along the trajectory (yielded by the disturbance command v,)

as AV = 15.2m/s and Ay = 5°, respectively. The repulsive tubes are constructed
with the uniform time sampling #;,; —t; = 1073s. To play against the repulsive
disturbance, a quasi-optimal feedback control strategy u(#, x) based on parallelotope
approximations of solvability tubes (see [7]) is used. Such a strategy has already been
successfully applied to problems of aircraft control (see [9]).

Simulation results show that the repulsive disturbance provides evasion from the
target set, whereas constant disturbances whose values coincide with the vertices of
the rectangle given by (26) cannot solve this problem. Figure 10 shows the com-
parison between the repulsive disturbance and the strongest constant disturbance,
v; = —13.7m/s and v, = 5.5m/s, providing the largest deviation among all con-
stant disturbances.
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Fig. 10 Left: Aerodynamic velocity V for the repulsive (solid) and optimal constant (dashed)
disturbances. Right: Kinematic path inclination angle y for the repulsive (solid) and optimal constant
(dashed) disturbances. The vertical lines at = 14 s show the corresponding projections of the target
set. The thin horizontal lines depict the reference values Vjy and yy

7 Application: Linear Model of Aircraft Lateral Dynamics

In this section, a repulsive disturbance for a linearized aircraft closed-loop dynamics
of lateral motion (see [6]) is constructed. Such a model is derived under the assump-
tion of horizontal balanced flight, which results in decoupling the longitudinal and
lateral motions after the linearization.

7.1 Model Equations

The rigid body states for the linearized model of lateral motion are the yaw rate r,
roll rate p, side-slip angle B, and roll angle @. Furthermore, second-order transfer
functions of the form
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2
@y

)= "
96 52+ 2dwos + &}

(32)

with natural frequency wg and damping constant d are employed to model the actuator
dynamics of the primary control surfaces in the lateral plane. This results in additional
states for the aileron position &, and angular rate &,,;, as well as the rudder position
{pos and angular rate &,.;. Moreover, a wind disturbance V ¢ is introduced by
using the following first-order lag filter

Vi = 15" - (Viw.oma — Vw) (33)

with Ty = 2, which produces smooth wind profiles for the wind state Vyy . Besides this
wind disturbance, we additionally consider worst case pilot commands as disturbance
inputs, which are the side load factor command &, and the roll angle command
8. As the control structure under investigation features a proportional and integral
part for both the roll angle command and the side load force command, we also
include the corresponding states of the integral parts denoted by e and e, as states.
Summarizing, the state vector for the linear system '

X =Ax+ Cv, withx(0)=0 (34)

. . T .
comprises nine states, x = [eq>, en, s s By Py @, Eposy Evels $poss §vez] , and the distur-

. T .
bance vector includes three components, v = [(Sny, S, VW,cmd] , for the pilot and
wind disturbance commands. These components are constrained as follows:

[6,,] <0.1tad, [8g] <0.9, |Vw emal < 10m/s. (35)

7.2 Construction of the Disturbance

In (34), the first two components of the state vector x stands for the integrated errors.
Therefore, the aim of the disturbance is to maximize the functional |x{(0)| + |x,(0)|.
This objective is associated with two-dimensional parallelotope target sets

M 1= Vp [(8) , (_Ti ?)} =l +lnl<d (36)
V2 V2

defined for different positive values of the parameter c.

Note that the approach of Sect. 3 requires the full dimensionality of the target set,
i.e., it should involve all components of the state vector of system (34). In order to
remain in two dimensions, equations (34) will be transformed using the following
substitution:

y(t) = X(1,0)x(). (37)
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Here, X (z, 0) is the fundamental matrix of the homogeneous system x = Ax. More
precisely, X (¢, 0) satisfies the equations

d
EX(t, 0)=-X(t,0)A, X(0,0)=1d, (38)
with the corresponding identity matrix /d. Since the matrix A in (34) is constant,

X (¢, 0) can be computed as
X(t,0) = e, (39)

Combining (34), (37), and (38) yields the following system:
y=X(t,0)Cv, with y(0)=0. (40)

The properties of X imply that y(6) = x(0), and therefore, only the two first equa-
tions of (40) and the two-dimensional target sets M€ defined by (36) should be used.
Similar to Sect. 6.5, a repulsive disturbance will be constructed using the technique
of multiple target sets obtained by varying the parameter c in (36).

7.3 Validation Using Optimal Control Theory

It is interesting to compare the result obtained using the repulsive disturbance with
that gained from solving an appropriate optimal control problem. In this comparison,
the criterion to be maximized is the Mayer cost function Jy; = x;(6) 4 x(0) which
is evaluated at the fixed time instant & = 4s. In order to solve this optimal control
problem numerically, the following trapezoidal collocation scheme, which assumes
the uniformly spaced time grid with the discretization step length ;| — t; = At =
0.004 s, is used:

S i vi) + f(xigr, viger)
5 )

Xiy1 = X; + At - (41)

Here f(x,v) = Ax + Cv according to the notation (34), and the low indices cor-
respond to the time sampling instants, e.g., x; = x(;) and v; = v(t;). The initial
state x (7o) = O is enforced as equality constraint at the beginning of the time inter-
val and the final state is free. The parameter optimization problem resulting from
the discretization of the continuous-time optimal control problem is solved using an

interior point solver with a feasibility and optimality tolerance of 10~7. See [6] for
more details.
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Fig. 12 Left: Disturbance ¢ . Right: Disturbance Vi, cma

7.4 Simulation Results

Simulation results for the time interval [0, 8], 8 = 4 s, are shown in Figs. 11 and 12.
As discussed in Sect. 6.5, the repulsive disturbance can be compared with extreme
constant disturbances. In virtue of (35), there are eight extreme points of the dis-
turbance constraint. However, only four of them should be considered due to the
symmetry of the system equations. Figure 13 presents the comparison of the extreme
and repulsive disturbances. Note that the extreme disturbances perform well, but the
repulsive disturbance yields a better result.

Finally, the parallelotope-based repulsive disturbance is compared with that
obtained from optimal control theory (see Sect. 7.3). Theoretically, the parallelotope-
based repulsive disturbance cannot outperform the optimal one. Nevertheless, the
results produced by the both disturbances are very close to each other as it is shown
in Fig. 14. Furthermore, Figs. 14 and 15 demonstrate that the parallelotope-based
repulsive disturbance and the optimal one produce very similar input signals.
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Fig. 14 Left: The absolute values sum of the error components e¢ and en, obtained with the
repulsive disturbance (solid line) and the optimal control-based one (dashed line). Right: Disturbance
8n,» comparison of the repulsive disturbance (solid line) and the optimal control-based one (dashed
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Fig. 15 Left: Disturbance 8¢, comparison of the repulsive disturbance (solid line) and the optimal
control-based one (dashed line). The lines coincide. Right: Disturbance Vi, ¢pnq, comparison of the
repulsive disturbance (solid line) and the optimal control-based one (dashed line)
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8 Conclusion

The results of Sects. 5-7 demonstrate that the method presented can be success-
fully applied to various types of control systems. In particular, promising results are
obtained for a nonlinear model considered in Sect. 6 and a complex linear system
treated in Sect. 7. As it is shown, the parallelotope-based repulsive disturbance is
expected to provide a near-optimal result. In any case, it significantly outperforms
constant extreme disturbances.

The main advantage of the method proposed is its applicability to high-dimensional
conflict control problems. The computational efforts are relatively low so that the
method may run in real time. Therefore, advanced aircraft models comprising numer-
ous state variables, controllers, filters, etc. can be tested with this approach. One of the
main future objectives is the implementation of the method on a real flight simulator.
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Isaacs’ Two-on-One Pursuit-Evasion )
Game L

Meir Pachter

1 Introduction

In this paper, Isaacs’ “Two Cutters and a Fugitive Ship” differential game is revisited.
We consider the pursuit-evasion differential game in the Euclidean plane where
two pursuers P; and P», say cutters, chase a fugitive ship, the evader E. All move
with simple motion a la Isaacs, the speeds of the cutters each being greater than
that of the fugitive ship. Coincidence of E with either one, or both, P; and/or P,
is capture, and time of capture is the payoff of E and the cost of the P & P,
team. Interestingly, the Two Cutters and Fugitive Ship pursuit game was posed by
Hugo Steinhaus back in 1925—his original paper was reprinted in 1960 in [2].!
The solution of the differential game, sans its justification, is presented in Isaacs’
ground breaking book [1, Example 6.8.3, pp. 148-149]. In [1] the players’ optimal
strategies were derived using a geometric method. In [3] a preliminary attempt at
justifying the geometric method was undertaken. In this paper, we provide a proof of
the correctness of the geometrically derived optimal pursuit and evasion strategies

'Hugo Steinhaus, was a contemporary of Borel and Von Neumann who are credited with laying the
foundations of game theory. Borel and Von Neumann mainly considered static games, a.k.a. games in
normal form, while referring to dynamic games as games in extensive form, believing that dynamic
games can be easily transformed to static games. The requirement of time consistency/subgame
perfectness in dynamic games came to the attention of game theorists only in the seventies. From
the outset, Steinhaus was certainly attuned to thinking about dynamic games, a.k.a., differential
games.
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using Isaacs’ method for the systematic solution of differential games. The three
players’ state feedback optimal strategies are synthesized and the Value of the game
is derived. The geometric method for solving the Two Cutters and Fugitive Ship
differential game is fully justified. Some geometric features, perhaps overlooked by
Isaacs, but with a bearing on extensions, are addressed: The state space regions where
pursuit devolves into Pure Pursuit (PP) by either P; or P,, or into a pincer movement
pursuit by the P; & P, team who cooperatively chase the evader, are characterized.
Thus, a complete solution of the Game of Kind is provided. The analysis undertaken
herein provides a vehicle for discussing some salient features of general pursuit-
evasion differential games, and opens the door to employing the geometric method
to consider operationally relevant group pursuit/swarm attack tactics.

The paper is organized as follows. The geometric method employed by Isaacs to
solve the Two Cutters and Fugitive Ship differential game is expounded on in Sect.
2. In Sect. 3 a three-states reduced state space reformulation of the Two Cutters and
Fugitive Ship differential game is introduced and the geometric method is employed
to yield the players’ optimal state feedback strategies and the game’s Value function
in closed form. Furthermore, the state space regions where either one of the pursuers
captures the evader and the state space region where both pursuers cooperatively
and isochronously capture the evader are characterized, thus solving the Game of
Kind. The reduced state space formulation is required in order to apply Isaacs’
method for the systematic solution of differential games to the Two Cutters and
Fugitive Ship differential game and prove the correctness of the geometric method.
Due to symmetry, it is sufficient to present the solution of the differential game in
the positive orthant of the reduced state space. The solution process is presented in
Sect. 4: The protagonists’ strategies previously obtained using the geometric method
are recovered, thus validating the geometric method and providing the solution of
the Game of Degree. As it so often happens in differential games, the doctrinaire
employment of Isaacs’ method towards the solution of even this “simple” differential
game is not devoid of complexity. However, the intuition provided by the heuristic
geometric approach is instrumental in facilitating the solution process. The Two
Cutters and Fugitive Ship is a differential game whose Value function is C' in the
positive orthant of the reduced state space. The reduced state space of the Two
Cutters and Fugitive Ship differential game comprises the first and third quadrants
of R3. The half plane {(x, y, z) | x > 0, y = 0} is a surface of symmetry and the half
plane {(x, y, z) | x = 0, z = 0} is a surface of symmetry and also a dispersal surface,
where the Value function of the differential game is not differentiable. While dispersal
surfaces in differential games are prone to spawning singular surfaces of equivocal or
focal type, this is not the case in the Two Cutters and Fugitive Ship differential game.
The optimal flow field consists of regular trajectories only, and there are no singular
surfaces, except the above mentioned “benign” dispersal surface. Conclusions are
presented in Sect. 5, where possible extensions are also discussed. In this paper, the
solution of the Game of Kind is provided and the geometric method for obtaining
the solution of the Game of Degree and thus solving the Two Cutters and Fugitive
Ship differential game, is fully justified.
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Interestingly, it has been suggested by one of the referees that I[saacs’ Two Cutters
and Fugitive Ship differential game could also have been addressed building on the
method expounded in Ref. [4].

2 The Geometric Method

Without much loss of generality, we assume that the fast pursuers P; and P, have
equal speed, which we normalize to 1. The problem parameter is the speed of the
evader E whichis 0 < u < 1.

There are three players in the Euclidean plane so the realistic state space is obvi-
ously R®;, however, the state space could be reduced to R* by collocating the origin
of a non- rotating (X, y) Cartesian frame at E’s instantaneous position. Since the
players are holonomic, the dynamics A matrix is 0—there are no dynamics. This,
and the fact that the performance functional is the time-to-capture, yields a Hamilto-
nian s.t. the costates are all constant. This suggests that the optimal flow field might
consist of straight line trajectories. Hence geometry might come into play. Thus,
Isaacs directly used a geometric method for the solution of pursuit-evasion games
with simple motion, well aware that this might not always be possible, as he amply
demonstrated with the Obstacle Tag Chase differential game where the presence of
a state constraint brings about the violation of the requirement in dynamic games
of time consistency/subgame perfectness. To obtain, albeit without proof, the Two
Cutters and Fugitive Ship differential game’s solution, Isaacs successfully employed
the geometric concept of an Apollonius circle—see Sect.2.1 below—to delineate
the Safe Region (SR) and the Boundary of a Safe Region (BSR) for the Evader. The
Apollonius circle concept is conducive to the geometric solution of the Two Cutters
and Fugitive Ship differential game, as will be demonstrated in the sequel.

2.1 Apollonius Circle

For the sake of completeness, we provide the geometry of Apollonius circles which
will prominently feature in the geometric solution of this differential game with
two pursuers and one evader and also in extensions where multiple pursuers are
employed. An Apollonius circle is the locus of all points in the plane s.t. the ratio of
the distances to two fixed points in the plane, also referred to as foci, is constant; in
our case the ratio in question is the Pursuer/Evader speed ratio parameter u < 1 and
the foci are the instantaneous positions of E and P. The Apollonius circle is illustrated
in Fig. 1.

The three points P, E and the center O of the Apollonius circle are collinear and
E is located between P and O. Let the E-P distance be d. The radius of the Apllonius
circle is then
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Fig. 1 Apollonius circle
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and in Fig. 1 the coordinates of the center of the Apollonius circle are
2
xo = d, yo=0. @)

1 — p?

2.2 Isaacs’ Geometric Solution

We first present the solution of the Two Cutters and Fugitive Ship differential game
in the realistic plane using the geometric method. Two Apollonius circles, %7, whose
foci are at E and P and the Apollonius circle %,, whose foci are at E and P, feature in
this game. E is in the interior of both Apollonius disks but the two Apollonius circles
might or might not intersect. Concerning the calculation of the points of intersection,
if any, of the Apollonius circles 4} and 6,: Subtracting the equation of circle %) from
the equation of circle 6> yields a linear equation in two unknowns, say, X and Y. One
can thus back out Y as a function of X and insert this expression into one of the circle
equations, thus obtaining a quadratic equation in X: The calculation of the two points
of intersection of the Apollonius circles %) and %, boils down to the solution of a
quadratic equation. The Apollonius circles intersect i f f the quadratic equation has
real solutions, in other words, the discriminant of the quadratic equation is positive.
When the discriminant of the quadratic equation is negative we are automatically
notified that the Apollonius circles don’t intersect, and because E is in the interior
of both Apollonius disks, we conclude that one of the Apollonius disks is contained
in the interior of the second Apollonius disk. If p, > p;, which is the case iff E
is closer to Py than to P,—see Eq. (1)—the circle %, is discarded, and vice versa.
The geometry is illustrated in Fig. 2. When the Apollonius circles don’t intersect, the
pursuer associated with the outer Apollonius circle is irrelevant to the chase. This
is so because the configuration is s.t. should P; employs PP and E run for his life,
player P, cannot reach E before the latter is captured by P; because he is too far away
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from the P;/E engagement, or is too slow to close in and join the fight. This renders
player P, irrelevant. As far as the geometric method is concerned, the Apollonius disk
associated with player P; is then contained in the interior of the bigger Apollonius
disk associated with player P, as illustrated in Fig. 2. In this case, the pursuer P; on
which the inner Apollonius circle is based will singlehandedly capture the evader:
He will optimally employ PP while the Evader runs for his life and will be captured at
I; the game with two pursuers devolved to the simple pursuit-evasion game with one
pursuer and one evader where P, employs PP and E runs away from P,;. Similarly,
if the Apollonius disk associated with P, is contained in the interior of the bigger
Apollonius disk associated with player Pj, player P, will employ PP while E runs
for his life; P; is then redundant.

The case considered in [1] where the discriminant of the quadratic equation is
positive and the Apollonius circles intersect is illustrated in Fig. 3. Since there are two
pursuers, similar to Fig. 6.8.5 in [1], a lens-shaped BSR is formed by the intersection
of the two Apollonius circles. To calculate the aim point I which is one of the two
points where the Apollonius circles %] and %, intersect requires solving a quadratic
equation; the quadratic equation has two real solutions and among the two points
of intersection of the Apollonius circles, the aim point I is the point farthest from
E. Thus, E heads toward the most distant point I on the BSR, and so do P; and P;.
Thus, it would seem that both pursuers P; and P, will be active and cooperatively and
isochronously capture the evader at point I, as shown in Fig. 3. It is noteworthy that
during optimal play the Apollonius circles shrink but the players’ aim point I remains
fixed. Thus, in contrast to the Obstacle Tag Chase game, time consistency/subgame
perfectness is not violated. This bodes well for the correctness of the geometric
approach.

When the discriminant of the quadratic equation is zero the quadratic equation
has a repeated real root. Geometrically this means that one of the Apollonius circles
is tangent from the inside to the second Apollonius circle. The following holds.

Proposition 1 Assume the Apollonius circles €, and ¢, are tangent, that is, the
discriminant of the quadratic equation vanishes. The aim point of the three players
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Fig. 3 Solution of two s e
cutters and fugitive ship o s s
game ,,/ . ~ BSR

o .I

Fig. 4 PPby P) and P>

il
Il O (9}

i

B=(—2r0h £ B=[(p0) ]|

is then the circles’ point of tangency, say T, that is, I=T, i f the three players E, P,
and P; are collinear and E is sandwiched between P, and P,.

Thus, when the Apollonius circles %] and % are tangent and their point of tangency
Tiss.t. T =1, the points P», T, O1, E, O, and P; are collinear and both pursuers
employ PP to isochronously capture the evader. This is illustrated in Fig. 4. Note
however that when, as above, P;, P, and E are collinear and E is sandwiched
between P; and P,, but the Apollonius circles intersect, £ will break out—see
Fig. 5. If the Apollonius circles %) and %, are tangent, however E is not on the
segment P; P,, the players’ aim point I is not the circles’ point of tangency T: If
the tangent Apollonius circles are s.t. the Apollonius circle %) is contained in the
Apollonius disk formed by the Apollonius circle 6>, optimal play then consists of the
active player being P; and employing PP while E runs away from P; and player P, is
redundant; and if the Apollonius circle %5 is contained in the Apollonius disk formed
by the Apollonius circle %, optimal play then consists of the active player being P,
and employing PP while E runs away from P, and now player P; is redundant;
the circles’ point of tangency T plays no role here. This should alert us to the fact
that even though the Apollonius circles intersect at their point of tangency, that is,
C1 NG #Dand T € 6| N 6,, the players’ aim point I ¢ %] N %,. The fact that the
two Apollonius circles intersect does not automatically imply that during optimal
play both pursuers will cooperatively and isochronously capture the evader. As we
shall see, there are instances where although the Apollonius circles intersect, during
optimal play just one of the pursuers singlehandedly captures the evader.
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Fig. 5 Breakout of E
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In summary, the solution in the realistic plane of the Game of Kind is illustrated
in Fig. 6. Given the position of the pursuers, during optimal play, when the evader is
initially in the region R| to the right of the right broken line, he will be singlehandedly
captured by P; in Pure Pursuit (PP), when he is initially in the region R, to the left
of the left broken line, he will be singlehandedly captured by P, in PP, and when the
evader is initially in the shaded region R; , between the right and left broken lines
he will isochronously be captured by both pursuers P; and P,. When the evader is
initially on the right broken line he will isochronously be captured by both pursuers
P, and P,, with P; in PP and when the evader is initially on the left broken line he
will isochronously be captured by both pursuers P; and P, with P, in PP.

3 Geometric Solution in Reduced State Space

The dimension of the Two Cutters and Fugitive Ship game’s state space can be
reduced to three using a non-inertial, rotating reference frame, by pegging the x-
axis to P; and P,’s instantaneous positions. The y-axis is the orthogonal bisector of
the P, P, segment. In this rotating (x, y) reference frame the states are E’s x- and
y-coordinates (xg, yg) and the x-position xp of Pj. In this reduced state space the
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Fig. 7 Rotating reference Yy
frame 9
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y-coordinate of P; will always be 0 and the position of P, will be (—xp, 0). Due to
symmetry, without loss of generality we assume xz > 0 and yg > 0. The rotating
reference frame (X, y) is shown overlaid on the realistic plane (X, Y) in Fig. 7 where
the P;, E and P, players’ headings x, ¢ and i are also indicated. Without loss of
generality, the rotating reference frame (x, y) is initially aligned with the inertial
frame (X, Y). Using the rotating reference frame (X, y), the state space of the Two
Cutters and Fugitive Ship differential game is reduced to the first and third quadrant
of R?, that is, the set R} U R3, where

R} = {(xp, xp, y£) | xp = 0,yg > 0}, R} = {(xp,xg, yg) | xp >0, yp <0}
There are two half planes of symmetry, {(xp,xg, yg)|xp > 0,xg =0} and
{(xp,xg, ye) | xp = 0, yg = 0}, the latter also being a dispersal surface. Symmetry
allows us to confine our attention to the case where xg > 0, yg > 0, that is, the state
will evolve in the positive orthant of R3, that is, in

R} = {(xp,xg, yp) | xp > 0,xg > 0, yp > O},

where the three-state nonlinear dynamics of the Two Cutters and Fugitive Ship dif-
ferential game are

. 1
Xp = E(COSX —cosy), xp(0) = xp, (3)
1 1
Xg = LCOoS¢p — E(cosx + cos ) + Ey—E(sinX —siny), xg(0) =xg @)
xp

. . 1 . . 1xg . .
YE = pusing — E(smx +siny) — zx—E(smx —siny), yp(0) = yg,. (5)
P
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3.1 Game of Kind in Reduced State Space

The solution of the Game of Kind in the reduced state space (xp, xg, yg) using the
geometric method proceeds as follows.

We have two Apollonius circles: %] is based on the instantaneous positions of
E and Py, and %5 is based on the instantaneous positions of E and P,. In the (x,y)
frame, see Fig. 6 and Eq. (2), the center O; of the Apollonius circle %] is at

— 2 —
Xo, = 7 _MZ(XE — W°Xp), Yo, = L
Similarly, the center O, of the Apollonius circle %5 is at
— 2 —
X0, = 7 _MZ(XE +uxp), yo, = T2k

Thus, using Eq. (1), the equation of the Apollonius circle %] is

2

7
(1 —p??

[(xg —xp)? + yi]
(6)

1 2 2 1 2
[x — 5 (g —puxp)]”+(y — SYE)T =
1—pu 1—u
and the equation of the Apollonius circle 4> is

2
— oyl xp)? + i

)

[x — #(xs +1xp) + (y — : ye) =
1 — u? 1 —pu? (1

In the (x, y) reference frame the y-coordinate of the %] and %, Apollonius circles’
centers is the same and therefore the distance d between the circles’ centers is

dZXOZ—xOl =

Hence, because the radii of the Apollonius circles are s.t. p; < p2 iff xg > 0, the
Apollonius circles €| and 6, intersectiff d + p; > p;, that is,

2uxp +dy > dy

In other words, the inequality holds

2uxp > \/(xP +xp)? + y,zg - \/(XP —xp)* + y%
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which yields the algebraic condition: The Apollonius circles %] and %, intersecti f f

Wyg + (1= pH(’xp —xz) = 0. (8)

In light of this, the upper part R; of the reduced state space is partitioned as follows:
R3=R URyUR,.

During optimal play in Ry, E is captured solely by P; while P, is redundant, in R,,
E is captured solely by P, while P; is redundant, while in R; » E is isochronously
captured by P; and P,. Atthis point it appears that things stand as follows. If condition
(8) does not hold and xz > O the state is in Ry, where E is captured solo by P;. If
condition (8) does not hold and xg < O the state is in R,, where E is captured solo
by P,: From a kinematic point of view, the state is in R, if Collision Course (CC)
guidance won’t allow P; to capture E who is running away from P;, before Pj, using
Pure Pursuit (PP), captures E. Similarly, the state is in R, if CC guidance won’t allow
P, to capture E who is running away from P,, before P,, using PP, captures E. As far
as geometry is concerned, let D; denote the disk which corresponds to the Apollonius
circle %;,i = 1, 2. In view of the discussion from above, it would appear that the set
R, is characterized by D; C D,—see Fig. 2; similarly, the set R, is characterized
by D, C Dy, and if condition (8) holds—see Fig. 3 where the Apollonius circles
%) and 6, intersect—one might then be inclined to think that the state is in R 5, so
that during optimal play E is isochronously captured by P; and P,. And as far as the
characterization of the sets R; and R; is concerned, since xg > 0 implies p; < p»,
the disk D, cannot be contained in the disk Dy, so either D; C D, or the Apollonius
circles 4] and %, intersect. The geometric condition

D CDy = d+pi<p
lets us recover the algebraic condition (8):
CNCG#ED & d+p1>pp & wyp+ (1 —p?)xp —x3) >0,
as expected. The algebraic condition (8) delineates the set in R3,

1 ={(xp, xp, ye) | xp = 0,xp = 0, ?yi + (1 — 1) (u’xp — x3) < 0}
This is a cone whose xg cross sections are arcs of ellipses—see Fig. 10. When the
state is in the interior of the elliptical cone %] or in its projection onto the plane
yg =0, Dy C D, and so E is captured by P; only. Thus, one is inclined to set

R, = . Similarly, when the state is in the interior of the elliptical cone

= {(xp, xg, ye) | xp = 0, x5 <0, u2y2 + (1 — u®)(u?x2 — x2) < 0}
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or in its projection onto the plane yg = 0, D, C D; and so E is captured by P, only;
the set % is the mirror image of the cone %] about the plane xz = 0 and one is
inclined to set Ry = J#. The boundary of the elliptical cone 7] is the set of states
s.t. the Apollonius circle %] is contained in the Apollonius disk formed by the bigger
circle %, and is tangent to the Apollonius circle %>; similarly, the boundary of the
elliptical cone .%; is the set of states s.t. the Apollonius circle % is contained in the
Apollonius disk formed by the bigger circle 6 and is tangent to the Apollonius circle
6. When the state is on the boundary of the elliptical cones ] or ., the Apollonius
circles 6 and %, are tangent, say, at point 7. According to Proposition 1, the players’
aim point / is the point of tangency T of the Apollonius circles iff yg = 0 and the
tangent to the Apollonius circles at 7 = [ is the orthogonal bisector of the segment
P, P,; and from Eq. (8) we deduce xg = uxp; E is then isochronously captured by
P, and P, who employ PP—as illustrated in Fig. 4. Note that if xy = 0, condition (8)
holds, so the quarter plane {(xp, xg, yg) | xp > 0,xg =0, yg > 0} C R;2and Eis
isochronously captured by P; and P,. Obviously E is also isochronously captured
by P; and P, when xp = 0. And so far, it would appear that during “optimal” play,
when the state is outside the elliptical cones J#; and J%; where the inequality (8)
holds, that is, the state is in what appears to be R », E will be isochronously captured
by the P; &P, team. Thus, at first blush it would appear that Eq. (8) characterizes
the set R;,. However, as will become apparent in the sequel, although in the set
R, » the inequality (8) holds, it also holds in subsets of R; and R;: Eq. (8) does not
characterize the set R .

We must properly characterize the state space regions R, R, and R » in R13. The
inequality (8) does not provides the answer and it will be replaced by an alternative
condition. In this respect, consider the following. In Fig. 2 let the points E and
P, be fixed while point P; is moved in a clockwise direction, keeping the P — E
distance d; constant so that the Apollonius circles 4] and %, will eventually intersect,
whereupon the inequality (8) will hold. The radius p; of the Apollonius circle %)
is kept constant while it is approaching the Apollonius circle 4> from the inside.
The Apollonius circle 4] first meets the Apollonius circle 4, tangentially and if
the segment P; E rotates some more clockwise, the circles start intersecting. When
this initially happens, the point I in Fig. 2 is still in the interior of the disk formed
by the Apollonius circle %,. Thus, although the Apollonius circles intersect and
condition (8) holds, E nevertheless flees toward point I with P; in hot pursuit, as if
the configuration would have been as illustrated in Fig. 2 where the Apollonius circle
%) is in the interior of the Apollonius disk formed by the Apollonius circle %5; it is
only when point I on the extension of the segment E O meets the Apollonius circle
%, and then exists the disk formed by the Apollonius circle %5, that both pursuers,
Py and P, cooperatively and isochronously capture E in a pincer maneuver. Thus,
although the Apollonius circles do intersect, it nevertheless might be the case that
neither one of their two points of intersection is the players’ aim point I, and as
before, only one of the pursuers is active while the Evader runs for his life from the
active pursuer. The BSR then has the shape of a thick lens and the Evader’s and the
active pursuer’s aim point I is the point on the thick lens—shaped BSR which is
farthest away from E—it is on the circumference of the smaller Apollonius circle,




38 M. Pachter

Fig. 8 Ceritical configuration

Fig. 9 Interception point I

Py = (—xp,0)

on its diameter that runs through E, while at the same time it is in the interior of the
Apollonius disk formed by the bigger Apollonius circle. The critical configuration
where point I € %, is illustrated in Fig. 7. Since, without loss of generality, we
have assumed xg > 0 and yg > 0, our universe of discourse will be confined to the
positive orthant of R, Rfr. To obtain a correct algebraic characterization of the sets
Ry, Ry and R > which will supersede condition (8), proceed as follows.

Calculate the (x, y) coordinates of the critical point I on the circumference of the
Apollonius circle %] which is antipodal to E, as shown in Fig. 8—see also Fig. 9:

We have

Xp —Xj _pl+ﬁ1+d1 ﬂ_m-i-ﬁri-dl
Xp — XE d "oy d '

where

Hence

(xg — uxp), yr =

T 1—

YE. )
n
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By construction, I € %) and I is the critical aim point if in addition I € %;. To find
the points of intersection (x;, y;) of the circles 4] and %> boils down to the solution
of a quadratic equation:

yE + \/,uzy,zg + (1 — u®)(ux3 — —x%)
1 — p?

xp=0, yr= (10)

Combining Egs. (9) and (10) we obtain the result

XE = UXp,

and the solution of the Game of Kind is as follows.

Theorem 2 During optimal play the Evader is singlehandedly captured in PP by
P, if the state is in the set R, the set R, is the wedge formed by the quarter planes
{(xp,xg,ye) | xp =0,xg > 0,yg >0} and {(xp,xg, yg) | xg = pxp,xp = 0,
vg > 0}. The Evader is singlehandedly captured in PP by P, if the state is in the
set Ry; the set R, is the mirror image of Ry about the plane xg = 0. The Evader is
cooperatively and isochronously captured by Py and P; if the state is in the set

Rio={(xp,xg,ye) | —puxp < xg < puxp, xp >0, yg > 0}

The cones % and % and/or condition (8) have no role to play here. The Apollonius
circles %) and %, intersect if —uxp < xg < uxp.

Remark 2 Proposition 1 is a corollary of Theorem 5.

In summary, the reduced state space of the Two Cutters and Fugitive Ship differential
game is the first quadrant of R, that is, Rf ={(xp,xg, Yg) | xp =0, yg > 0}. The
state space Ri” is symmetric about the plane xg = 0; the positive orthant R}r half of
the state space where R, (and %) reside is illustrated in Fig. 9. Since point capture is
desired, the terminal set in the R, subset of the Ri state space illustrated in Fig. 10 is
the straight line {(xp, xg, Yg) | xg = xp, xp > 0, yg = 0} and the terminal set in the
R > subset of the state space is the origin. However, when the pursuers are endowed
with a circular capture set of radius [ the set R; is no longer a wedge—the surface
separating the R and R, , subsets of the state space is no longer planar. The terminal
setinthe R; subset of the state space is now half a cylinder of radius / raised above the
plane yr = O and itis centered on the straightline {(xp, xg, Yg) | xp = xg, yg = 0}.
The terminal set in the R, subset of the state space is a quarter circle in the plane
xg = 0 of radius [/, centered at the origin. The positive orthant Ri of the state space
when [ > 0 is notionally illustrated in Fig. 10 where the region .%#] in the state space
where the Cartesian ovals® intersect is also shown. The reduced state space also
comprises the third quadrant R3 of the reduced state space (xp, xg, y£) but due to

2When P is endowed with a capture circle the Apollonius circle locus is replaced with a Cartesian
oval.
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Fig. 10 The positive orthant

symmetry we confine our attention to the first ortant of the reduced state space. The
reader is referred to Ref. [5] where the Two-on-One pursuit-evasion differential game
with a non-zero capture range is analyzed.

3.2 Game of Degree in Reduced State Space

3.2.1 Gamein R; and R,

In R, the active pursuer P; employs PP while the evader runs for his life. The actions
of pursuer P, do not affect the outcome of the game and so, for exclusively illustrative
purposes, we stipulate that P, mirrors the control of P;. This ensures that the (x, y)
frame won’t rotate—it would just slide upward along the Y- axis of the realistic
plane, which then coincides with the y-axis. The optimal trajectories in R; are the
family of straight lines

)CEO — XPO

xp(t) =xp, + t
\/(-xP() - xE())2 + y%o
XE, — XP,
XE(I) = XE, + 128 - s t
\/(xpo —x5)% + i,

ye(@) = yg, — (1 — IL)\/ YE t.

(xp — XE)* + Vi,
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The state yg(¢) is monotonically decreasing and when parameterized by yg, the
optimal trajectories in R; are the family of straight lines

1 Xp, — XE,
xp = ——(—— yg + Xg, — uxp,)
1—[,(, YE,
1 Xp, — XE
Xp = (W—— y£ + Xg, — [1Xp,).
l—p VE,

In the case of point capture (/ = 0) these trajectories terminate in the plane yz = 0, on
the straightline xp = xg. The optimal flow field in R; consists of the family of straight
line trajectories from above, which terminate on the straightline {(xp, xg, yg) | xp =
xp, yeg = 0}. Similar considerations apply to R, where the active pursuer is P,. The
optimal flow field in R, is a mirror image of the optimal flow field in R;.

When x, =0, P, and P, are collocated. The half plane {(xp, xg, y£) | xp =
0,yg >0} C Ry UR,.

3.22 Gamein R,

If the stateisin Ry » = {(xp, xg, ye) | —uxp < xg < pxp,xp >0, yg > 0} Ewill
be isochronously captured by the P; & P, team. Since A P; P, 1 in Fig. 3 is isosceles,
the aim point I = (0, y) is obtained upon setting x = 0in Egs. (6) or (7), which yields
a quadratic equation in y. The discriminant of the quadratic equation is positive i f f
the Apollonius circles %) and %5 intersect, which is the case i f f condition (8) holds
and is certainly the case if —uxp < xg < puxp, whereupon

1 .
Y=gz pbet szgn(yE)\/sz% + (1 = @) (wPxp = xp)l,
where the function
1 ifx>0
sign(x) = 0 ifx=0
—lifx<0
SO
1 . 2.2 201,22 2
v = o ale +signOe vt + (- )ik —xpl D

Using the geometric method, the players’ optimal state feedback strategies in R; »
are explicitly given by
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X
siny* = —21  cosyt = —b (12)
Xp 7 Xp+ 7
X
sin x* = S/ cos x* = ———t (13)
x,z, + y% x% + )’%

Y1 —YE
, COs¢p” = —
VO —ye)?+ X VOr —ye)?+xj

and the time-to-capture/Value function is

V(xp,Xg, YE) =/ Xp + ¥}, (15)

where the function y;(xp, xg, yg) is given by Eq. (11).
When the initial state (xp,, xg,, Yg,) € Ri2 and Py, P, and E play optimally, the
closed- loop dynamics are

(14)

sin ¢* =

. (1 —pP)xp
xXp =— ,
\/<1 — 12} —x3) + (1 i2yh + 2y 12y + (1 — i) (uPxh — x3)
XP(O) =Xp
. (1 —pw)xg
_xE = — ’
\/(1 — D)} —x3) + (1 + 12yE + 2v8 2y + (1 — kD) (u2x} — x3)
xg(0) = xg,
(16)
. (- 1?)yE
YE )

/(1 — i) = xB)+ (14 udyg + 20 JudvE + (1 — pd)(e2xf —x3)
YEO) =Yg, 0=t

The solution of the system (16) of strongly nonlinear differential equations is simply

xp() = (1— D),
5

xp@) = (1= Dyxg, (17)
Iy

t
ye@) = (1 - ;)YEU, 0<t=ty,

where
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1
1—pu?

\/(1 — i)}, — ) + (+ uDyh, +2ve[u2vE, + (= u)ixh — x3,).
(18)

ty =

Inserting Egs. (17) into Egs. (12)—(14) we obtain the players’ constant headings in both the (x, y)
and (X, Y) frames

- Ve +\[12VE, + (= 2 (W2}, — x3,)
sin =
\/(1 — A (xp, —x) + A+ ud)yp, + 2yEg\/M2)’12;0 + (1 =) (Pxp, = x5,
cos 1//* — (1— I‘LZ)XP()
\/(1 — A, —xp) + A+ ud)yg, + 2yEo\/M2y,250 + (= ) (Pxp, = x5
ep— (19)
. 1 w2yE, + \/szio + (1= ) (u2xp, — xF,)
s = —
m
\/ (1= 1), = 33) + (1 + W23, + 2960123, + (1 = i) (225}, — <)
cos¢* = ! (1= iDxe,

m :
\/ (1= @23, =3 + (1 + 123, + 296012, + (1 = 12 (u2x], = xE)

The initial state (xp,, xXg,, Y£,) can momentarily be viewed as the current state and
as such, Eq. (19) are explicit state feedback “optimal” strategies, as provided by the
geometric method; the attendant Value function is given in Eq. (18).

When the geometric method is applied and P; and P, play “optimally”, from Eq.
(19) we deduce that in the (X, y) frame the headings of P; and P, are mirror images of
each other: x* = w — ¢*. Therefore, the (x, y) frame does not rotate and the players’
headings are constant also in the (inertial) (X, Y) frame of the realistic plane. Hence,
in the realistic plane, the “optimal” trajectories are straight lines. Since initially the
rotating (X, y) frame is aligned with the (X, Y) frame of the realistic plane, the y-axis
stays aligned with the Y-axis while the x-axis stays parallel to the X-axis moving
in the upward direction at a constant speed. Therefore the “optimal” trajectories
are also straight lines in the (x, y) frame. Thus, when the state feedback strategies
(19) synthesized using the geometric method are applied, the closed- loop system’s
“optimal” flow field in the R;, region of the reduced state space consists of the
family of straight line trajectories (17) which converge at the origin. Moreover, this
flow field, which was produced by the geometric method, covers the R; ; region of
the reduced state space—this, by construction.

At this juncture it is important to recognize that in truth, the herein discussed
geometric method only yielded the solution of a related open- loop max- min optimal
control [6] problem, not the solution of the differential game we are after: The
optimal control problem solved so far for initial states (xp,, Xg,, Y£,) € R12 is one
where a discriminated evader/ship is obliged to preannounce his control time history,
knowing that the pursuers/cutters will then chose a course of action s.t. his time—
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to—capture will be minimized; whereupon the evader will set his course so that the
time-to-capture is maximized; at best, a lower bound of the Value of the game has
been obtained; the optimality of the geometrically derived state feedback strategies
(19) has yet to be proved.

4 Isaacs’ Method

‘We now embark on applying Isaacs’ method for the systematic solution of differential
games to the Two Cutters and Fugitive Ship differential game. Following in Isaacs’
footsteps, we solve the Two Cutters and Fugitive Ship differential game in the three-
dimensional reduced state space R? ={(xp,xg, ye) | xp = 0, yg > 0}. In the R,
and R, regions of the reduced state space only one pursuer is active and the game is
trivial: Optimal play entails classical PP and pure evasion; the optimal flow field in
the R; and R, regions of the reduced state space is provided in Sect. 3.2.1. The more
interesting game takes place in the R , region of the reduced state space where under
optimal play both pursuers cooperatively and isochronously capture the evader. The
objective is to rigorously justify the geometric method in the R) , region of the state
space, that is, validate the tentatively optimal state feedback strategies (19) of the
pursuers and the evader and the differential game’s Value function (18) presented in
Sect.3.2.2. Due to symmetry, we confine our attention to the part of R; , which is in
the positive orthant Ri. Isaacs’ method entails Dynamic Programming. We dutifully
start from the “end”.

The Two Cutters and Fugitive Ship differential game is played in R}, the first
quadrant of the three-dimensional state space (xp, xg, yg). In a three- dimensional
state space a proper terminal manifold must be a two-dimensional manifold—one
cannot really talk about point capture. Hence, we momentarily endow the pursuers
with circular capture sets of radius / and in due course we’ll let / — 0. Thus, the
terminal manifold in the reduced R; state space is

y:{(xP’xEsyE) | (xP_xE)z—i_y]zf:lz’xP EO,XE zony ZO}

U{(xp, xg, yE) | (xp +x£)* +y2 =1%,xp > 0,xz <0, yg > 0}

The two- dimensional terminal manifold .7 is not smooth—it is not differentiable
in the quarter plane {(xp, xg, yg) | xp = 0,xg =0, yg > 0} C R; . In general, at
points where a manifold is not smooth a normal to the surface might not exist, or, a
normal to the surface is not unique. When a normal to the surface is not unique, this
implies that multiple optimal trajectories will terminate at this point and in doing
so, cover a swath of the state space. The locus where the terminal manifold is not
differentiable is in the region of interest — it is in the R; , subset of the R? state
space. In R| ,—see Fig. 10—the terminal manifold is

T ={(xp,xg, ye) | xp +yg =1*,xp > 0,xx =0, yr > 0}.
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It is a quarter circle in the plane xy = 0. Although we have eschewed point capture
and have taken the physically sound step of allowing for finite capture sets, the
terminal manifold .7 in the R, , region of the state space is of dimension one and not
of dimension two, as “required”—this being a manifestation of the fact that the two-
dimensional terminal manifold in the R; state space of the Two Cutters and Fugitive
Ship differential game is not smooth. The terminal manifold in the R, , region of
the state space is “rank deficient” and it resides on the boundary of R; ;. In the R,
region of the state space the optimal flow field is s.t. multiple optimal trajectories
will terminate at the same point on the quarter circle terminal manifold illustrated in
Fig. 10.

When solving the differential game, we are exclusively interested in the inward
pointing normals n to the terminal “surface” .7 because they set the terminal condi-
tions of the costate vector. But although the problem formulation is physically sound,
our terminal “surface” in R », .7, is “rank deficient”: It is a circular arc in the plane
xg = 0 which we now parameterize as follows.

T ={(xp,xg, yp) | xp =1lcos§, xp =0, yp =Isin§, 0 <& < %}~ (20)

Because the terminal manifold is rank deficient, the normals to the terminal “surface”
at a point of the “surface” are not unique. From Eq. (20) we extract the information
pertinent to the terminal costates in the part of R; » which is in the positive orthant
Ri of the state space where xg > 0:

cosé&
A(ty) = —a b

sin &,
where 0 < & < % and the scalars a > 0, b < 0; in the half of R; , which is not in the
positive orthant, b > 0 and in the plane xg = 0, b = 0. As far as the terminal costate
is concerned, the stipulated size / of the pursuers’ capture set plays no role here. This
is good because down the road we’ll be exclusively interested in point capture, that
is,/ — 0.

The Hamiltonian

1 1 1
H =-1+ Ekxp(cosx —cosy) + Ay [pucosg — E(COSX +cos ) + Ey—E(sinx —siny)]
x