
Annals of the

International Society of

Dynamic Games

David M. Ramsey

Jérôme Renault

Editors

Advances 
in Dynamic 
Games
Games of Conflict, Evolutionary 

Games, Economic Games, and Games 

Involving Common Interest





Annals of the International Society of Dynamic
Games

Volume 17

Series Editor

Tamer Başar, University of Illinois at Urbana-Champaign, IL, USA

Editorial Board

Pierre Bernhard, University of Nice-Sophia Antipolis, France
Maurizio Falcone, Sapienza University of Rome, Italy
Jerzy Filar, University of Queensland, Australia
Alain Haurie, ORDECSYS, Switzerland
Andrzej S. Nowak, University of Zielona Góra, Poland
Leon A. Petrosyan, St. Petersburg State University, Russia
Alain Rapaport, INRIA, France

More information about this series at http://www.springer.com/series/4919

http://www.springer.com/series/4919


David M. Ramsey • Jérôme Renault
Editors

Advances in Dynamic Games
Games of Conflict, Evolutionary Games,
Economic Games, and Games Involving
Common Interest



Editors
David M. Ramsey
Faculty of Computer Science
and Management
Wrocław University of Science
and Technology
Wrocław, Poland

Jérôme Renault
Toulouse School of Economics
University Toulouse Capitole and ANITI
Toulouse, France

ISSN 2474-0179 ISSN 2474-0187 (electronic)
Annals of the International Society of Dynamic Games
ISBN 978-3-030-56533-6 ISBN 978-3-030-56534-3 (eBook)
https://doi.org/10.1007/978-3-030-56534-3

Mathematics Subject Classification: 91A25, 91A22, 91A23, 91A24, 91A26, 91A80

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2020, corrected publication 2021
The chapter “Quick Construction of Dangerous Disturbances in Conflict Control Problems” is licensed
under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-56534-3
http://www.birkhauser-science.com


Preface

Game theory can be used to model the interaction between decision-makers in a
wide range of scenarios spanning from pure conflict to situations in which the
participants have clear common interests. This is illustrated by the variety of
chapters in this volume, many of which are based on papers presented at the
International Symposium on Dynamic Games and Applications, which took place
in Grenoble, France in July 2018. The chapters are grouped into four sections,
namely: Games of Conflict, Evolutionary Games, Economic Games and Games
Involving Common Interest.

The first section, which includes five papers, presents games that model situa-
tions in which there is a clear conflict between the interests of the participants.
These games can be interpreted, sometimes loosely and sometimes strictly, as
pursuit-evasion games. In the chapter “Quick Construction of Dangerous
Disturbances in Conflict Control Problems”, Martynov et al. consider a model of
a differential game with linear controls. One player, the controller, aims to reach a
point in the target set at the termination time, whilst the aim of the other player, the
disturber, aims to stop the controller from arriving at such a point at the appointed
time. The authors present an example illustrating how this approach can be applied
to flight simulators.

In the chapter “Isaacs’ Two-on-One Pursuit-Evasion Game”, Pachter considers
differential games in which there are two pursuers and one evader. Isaacs’ results on
such games are adapted in order to classify these games into two situations: cases
where only one pursuer is required and those where co-ordination between the two
pursuers is required. Models of this type can illustrate both conflict and cooperation.
Whilst there exists pure conflict between the pursuers and the evader, when the
pursuers can be interpreted as individual decision-makers, then they often need to
co-ordinate their actions in order to achieve a joint goal.

In the chapter “A Normal Form Game Model of Search and Pursuit”, Alpern and
Lee consider a searcher-evader game in which the evader can choose from a finite
set of hiding places. The amount of time a searcher requires to investigate a hiding
place, as well as the probability of finding the evader given that it is located there,
depends on the place. The goal of the searcher is to find the evader in a fixed
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amount of time. The authors consider both models where the probabilities of finding
the evader in a given location are known and those where these probabilities can
take one of two values and the searcher uses Bayesian inference.

In the chapter “Computation of Robust Capture Zones Using Interval-Based
Viability Techniques in Presence of State Uncertainties”, Turetsky and Le Ménec
consider a differential pursuit-evasion game, where there is one pursuer and one
evader. They derive robust capture zones, sets of locations of the pursuer relative to
the evader which guarantee that the pursuer can capture the evader within a fixed
time regardless of the strategy of the evader.

To conclude this section, in the chapter “Convergence of Numerical Method for
Time-Optimal Differential Games with Lifeline”, Munts and Kumkov consider a
similar game to the one presented in the opening chapter. However, whilst the goal
of one player is to guide the system to a state in the target set, the other player can
win not just by avoiding such a situation, but by attaining a state in the so-called
lifeline set.

The second section contains three chapters devoted to the field of evolutionary
games. In the chapter “A Partnership Formation Game with Common Preferences
and Scramble Competition”, Ramsey considers a mate choice game in which a
large set of players all search for a partner at the start of the breeding season. This
game models scramble competition, i.e. as players form pairs and thus leave the
mating pool, the distribution of the attractiveness of prospective partners changes
and it generally becomes harder to find a partner.

In the chapter “The Replicator Dynamics for Games in Metric Spaces: Finite
Approximations”, Mendoza-Palacios and Hernández-Lerma consider the evolu-
tionary dynamics of games in which the strategy sets are metric spaces. This is
illustrated by a game in which the players choose their level of aggression from the
interval ½0; 1�. They derive conditions stating when the evolution of such a system
can be approximated by a sequence of dynamical systems defined on finite spaces.

At the end of this section, in the chapter “Eco-evolutionary Spatial Dynamics of
Nonlinear Social Dilemmas”, Gokhale and Park consider the relation between
spatial dynamics and the evolution of behaviour in generalised public goods games.
In public goods games, the higher the level of cooperation between members of a
group, the greater the benefits obtained by the group as a whole. However, indi-
viduals who cooperate the least obtain the greatest payoff. As a result, such games
are clear illustrations of the role of conflict and cooperation in games (or in evo-
lutionarily terms, the role of selection at the level of individuals and selection at the
level of groups).

The third section contains three chapters presenting models that can be applied
in the field of economics. In the chapter “Heuristic Optimization for Multi-Depot
Vehicle Routing Problem in ATM Network Model”, Platonova et al. consider an
optimisation model that considers the location of branches of a bank and cash
machines in order to provide the best service to customers whilst minimise costs.
Although this model is not strictly game-theoretic, descriptions of how it can be
adapted to game-theoretic scenarios are presented.
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In the chapter “Load Balancing Congestion Games and Their Asymptotic
Behavior”, Altman et al. consider a game which has applications to communication
networks. The players are atomic, i.e. the actions of an individual can affect the
level of congestion along a given link. The authors show that in such games
multiple equilibria can exist.

To conclude this section, in the chapter “Non-deceptive Counterfeiting and
Consumer Welfare: A Differential Game Approach”, Crettez et al. present a dif-
ferential game that models the effect of the counterfeiting of goods produced by a
prestigious brand. The originality of this model lies in the fact that it considers the
welfare of consumers. This allows new insight to policy-makers on how such
situations are legislated.

The final section contains two chapters presenting models of games in which
there are common interests. Both papers consider the consumption of a commonly
held resource. In the chapter “Equilibrium Coalition Structures of Differential
Games in Partition Function Form”, Hoof presents a model of the consumption of a
non-renewable resource as a cooperative game. The extraction rates are chosen by
the players, such that the overall rate at which a resource is extracted is proportional
to the amount of the resource available (the constant of proportionality is equal to
sum of the rates chosen). By cooperating, coalitions of players maximise the dis-
counted payoff of the coalition as a whole, rather than individually maximising the
payoff of each player, given the behaviour of others.

In the final chapter, Kordonis considers a different approach to achieving
cooperation based on the concept of Kant’s Categorial Imperative. This concept
states that members of a population should use the rule that would maximise the
overall payoff to the population when this rule is adopted by the population as a
whole. The general model is illustrated by an example based on a fishing game, i.e.
a model of the consumption of a renewable resource.

The chapters were evaluated by independent reviewers. We thank the authors for
their contributions and the reviewers for their benevolent work and expert com-
ments. Overall, this volume of Advance in Dynamic Games presents the full range
between pure competition and cooperation, as well as applications of these ideas to
various scientific disciplines. We wish the reader a pleasant journey.

Wrocław, Poland David M. Ramsey
Toulouse, France Jérôme Renault
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Nikolai Botkin Memorial

On September 14, 2019, Nikolai Dmitrievich Botkin, who made a great contribu-
tion to the theory of differential games and numerical methods, passed away.

Nikolai Botkin was born on March 22, 1956, and raised in the city of Sysert,
Sverdlovsk region, Russia. His father was a mathematics teacher and his mother, a
physics teacher. Nikolai was fond of natural subjects since childhood and in 1973,
he entered the Faculty of Mathematics and Mechanics of the Ural State University
in Sverdlovsk (now Yekaterinburg). During his studies, Nikolai became interested
in Bellman’s dynamic programming principle. After graduation, he was accepted
into the department of Dynamical Systems headed by A. I. Subbotin, which is part
of the Institute of Mathematics and Mechanics of the Ural Branch of the Russian
Academy of Sciences.

His works, performed in the early 80s under the guidance of V. S. Patsko, were
connected with the theory of differential games and its numerical methods that had
just begun to develop. Nikolai Botkin created the first algorithms for solving linear
differential games; he obtained a posteriori estimates of the accuracy of numerical
solutions and developed algorithms for optimal positional control in such problems.
In 1983, Nikolai Botkin defended his Ph.D. thesis on “Numerical solution of linear
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differential games.” The methods developed by him were successfully applied in
1982–1992 to aviation problems of optimal control of an aircraft in the presence of
wind disturbances in frames of joint research with the Academy of Civil Aviation in
Leningrad. Based on an analysis of the asymptotic behaviour of solutions to non-
linear differential games in 1992, he proposed an algorithm for computing the
discriminating kernel of differential inclusion.

After receiving a grant from the Humboldt Foundation in 1992, Nikolai Botkin
lived and worked in Germany (1992–1993 University of Würzburg, 1993–1999 and
2006–2019 Technical University of Munich, 1999–2006 Research Center caesar,
Bonn). His research interests covered many areas of applied mathematics. As a
leading researcher, he participated in numerous scientific projects in the field of
elasticity theory, hydrodynamics, thermodynamics, homogenization theory,
phase-field models, optimization and optimal control of ordinary differential equa-
tions and distributed systems. Whilst working at the center of advanced European
studies and research (caesar) in close contact with physicists, biologists and engi-
neers, he was actively engaged in the creation of innovative devices and instruments
in the field of composite materials, sensors, cryopreservation of living cells and
tissues. This motivated him to develop new mathematical models, theoretical
methods and computational algorithms. Returning in 2006 to the chair of
Mathematical Modelling at the Technical University of Munich headed at that time
by K.-H. Hoffmann, and continuing to work on the cryopreservation project, and
then participating in a joint project with King Abdullah University of Science and
Technology on CO2 sequestration, Nikolai resumed work on numerical methods for
solving differential games. One of his brilliant achievements at this time was the
development of a grid method (implemented in the form of an algorithm and cor-
responding programs) for solving a wide class of multidimensional nonlinear dif-
ferential games with state constraints. Using these algorithms, Nikolai Botkin, with
his students, formulated and investigated a number of aircraft control problems in the
presence of wind disturbances. He also applied methods and algorithms for solving
differential games to study biomedical problems, which is extremely unique.

N. Botkin spent considerable time reviewing articles for various mathematical
journals.

As an enthusiastic and versatilemathematician, Nikolai Botkin had a rare quality of
solving complex applied problems, starting with the development of the model, its
theoretical investigation, and ending with the development of algorithms for com-
puting solutions up to their implementation in real systems and devices. Colleagues
and students appreciated his deep knowledge, determination and perseverance. Other
students, not only from themathematics faculty, came to him for helpwith completing
a diploma or other work, knowing that Nikolai could solve a variety of problems.

Nikolai was a friendly and cheerful person; he loved to joke and tell funny
stories, was a keen table tennis player, and fond of reading books on physics and
science fiction.

A sudden, premature death prevented the implementation of many of his sci-
entific ideas and plans but his scientific results remain in 243 published works, of
which about 100 are devoted to differential games.

x Nikolai Botkin Memorial
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Quick Construction of Dangerous
Disturbances in Conflict Control
Problems

Kirill Martynov, Nikolai D. Botkin, Varvara L. Turova,
and Johannes Diepolder

Abstract The paper is devoted to the construction of dangerous disturbances in
linear conflict control problems. Using the technique of sequential linearization,
dangerous disturbances can also be constructed for nonlinear systems such as air-
craft dynamics equations, including filters, servomechanisms, etc. The procedure
proposed is based on a dynamic programming method and consists in the backward
integration of ordinarymatrix differential equations defining centers, sizes, and orien-
tations of time-dependent parallelotopes forming a repulsive tube in the time-space
domain. A feedback disturbance strategy can keep the state vector of the conflict
control system outside the repulsive tube for all admissible inputs of the control.

The original version of this chapter was revised: This chapter has been changed to open access
under a CC BY 4.0 license. The correction to this chapter is available at https://doi.org/10.1007/
978-3-030-56534-3_14
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4 K. Martynov et al.

1 Introduction

One of the important problems in control engineering is generation of extremal
disturbances for various types of dynamical systems. This is of interest in many
application areas because such disturbances can be used to evaluate the robustness
of models and quality of controllers.

This paper concerns with generation of feedback disturbances for linear conflict
control systems where the aim of the disturbance is to deflect the state vector from a
target set at a fixed termination time for all admissible controls. It is assumed that the
target set and the constraints imposed on the control and disturbance variables are
represented by parallelotopes. Starting with the parallelotope representing the target
set and integrating backward in time a system of ordinary vector-matrix differential
equations yield parallelotopes forming a repulsive tube in the time-space domain.
It is proven that a certain feedback disturbance can keep all trajectories outside the
repulsive tube, and therefore outside the target set at the termination time.

It should be noted that the minimal repulsive tube can be computed using general
grid methods for solving differential games [3, 4, 8]. Nevertheless, such methods
require large computation resources on multiprocessor computer platforms. More
appropriate for linear conflict control problems are methods proposed in [5, 12]
where repulsive tubes are approximated by polyhedrons, which however involves
solving a lot of linear programming problems. Therefore, such methods also require
significant computer resources. In contrast, the scheme suggested in the current
paper is computationally cheap so that it can run in real time on a common computer.
Moreover, high-dimensional models can be effectively treated with this method.
Finally, disturbances for nonlinearmodels can be constructed by applying techniques
of sequential linearization. Thus, the approach presented in this paper is rather general
and can be used in various areas. As a demonstration of the method, generation of
dangerous disturbances for aircraft control problems is considered.

The paper is structured as follows: In Sect. 2, a formal statement of the prob-
lem and some definitions are given. Section 3 contains a detailed description of the
method for constructing repulsive feedback disturbances and provides a proof of their
correctness. In Sect. 4, some numerical aspects of the method are addressed. It is
shown that themethod can be implemented in the discrete-time scheme. In Sect. 5, the
method is applied to a three-dimensional linear differential game. This simple exam-
ple allows us to visualize and clearly demonstrate in which extent the constructed
repulsive tube is minimal. Section 6 considers the problem of aircraft take-off under
windshear conditions. This example demonstrates a technique of generating dan-
gerous disturbances for nonlinear models. Section 7 describes the construction of
disturbances for a linearized aircraft closed-loop system for the lateral dynamics.
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Fig. 1 Repulsive tube V
with a sample trajectory x(t)

θ0

(t0, x(t0))
x(t)

V

2 Problem Formulation

First, introduce the following notation. For a set V ⊂ [0, θ ] × R
d and t ∈ [0, θ ],

the set V(t) := {x ∈ R
d : (t, x) ∈ V} is called cross section of V at t . For a vector

x ∈ R
d , the norm ‖x‖∞ is defined as max{|xi |, i = 1, ..., d}. Let the superscript T

denotes the transposition operation.
Consider a linear conflict control problem

ẋ = A x + u + v, x ∈ R
d , t ∈ [0, θ ], x(θ) ∈ M ⊂ R

d . (1)

Here, u and v, respectively, denote the control and disturbance variables constrained
as follows: u(t) ∈ R ⊂ R

d , v(t) ∈ Q ⊂ R
d . The problem is considered on a time

interval [0, θ ]. The aim of the control is to meet the target set M at the termination
time θ , whereas the aim of the disturbance is opposite. The objective of this paper is
to propose a method of constructing a feedback disturbance v(t, x)which deflects all
trajectories from the target set at the termination time. More precisely, the problem
is formulated as follows:

Problem 1 Find a tube V ⊂ [0, θ ] × R
d , V(θ) = M such that there exists a feed-

back disturbance v(t, x) fulfilling the following condition: If (t0, x(t0)) /∈ int (V),
then (t, x(t)) /∈ int (V), t ∈ [t0, θ ], for all possible controls.
Remark 1 In what follows, V and v(t, x) from the formulation of Problem 1 are
called repulsive tube and repulsive disturbance, respectively. It will be shown below
that the knowledge of a repulsive tube allows us to find explicitly a repulsive distur-
bance appearing in the formulation of Problem 1.

The main property of repulsive tubes is illustrated in Fig. 1.

3 Construction of Repulsive Tubes

This section describes the computation of time-dependent parallelotopes that form
a repulsive tube in [0, θ ] × R

d and define a repulsive feedback disturbance. This
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Fig. 2 Two-dimensional
parallelotope VP with the
axes p1, p2 and the
corresponding distance
h1, h2 h2

h1 p2

p1

approach raises from the idea by E.K.Kostousova to use parallelotopes for con-
structing feedback controls, see a detailed description in [7].

A parallelotope is defined as

VP [p, P] := {x ∈ R
d |x = p + P ε, ‖ε‖∞ ≤ 1}, (2)

where p ∈ R
d and P ∈ R

d×d̂ , d̂ ≤ d, are its center and shape matrix, respectively.
Note that d̂ = d in our consideration. The columns of the matrix P are called axes
of the parallelotope VP and denoted as p1, ..., pd̂ ∈ R

d . Furthermore, let hi (VP)

be the euclidean distance between two opposite faces of VP along the axis pi ,
and hmin(VP) = min{hi (VP) | 1 ≤ i ≤ d̂}. Figure 2 shows pi and hi for a two-
dimensional parallelotope.

Further, it is assumed that the following problem data are represented by paral-
lelotopes:

M = VP [p f , Pf ], p f ∈ R
d , Pf ∈ R

d×d , det Pf �= 0,

R = VP [r, R], R ∈ R
d×d1 , Q = VP [q, Q], Q ∈ R

d×d2 .
(3)

Remark 2 The system matrix A as well as the constraints on the control and distur-
bance inputs may depend on time. Thus, in general, A = A(t),R = VP [r(t), R(t)],
andQ = VP [q(t), Q(t)]. In the following, this time-dependence is not shown explic-
itly in order to simplify the notation.

Remark 3 Parallelotope-shaped representation of the control and disturbance con-
straints is fairly generic and allows to capture different common types of constraints.
For example, consider a control u ∈ R

2 subject to

−û1(t) ≤ u1(t) ≤ û1(t)

−û2(t) ≤ u2(t) ≤ û2(t).

Such constraints can be easily represented with the parallelotope notation discussed
above by choosing:

R = VP

[(
0
0

)
,

(
û1(t) 0
0 û2(t)

)]
.
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With the assumptions introduced in (3), the following system of ODEs defines a
repulsive tube VP(t) = VP [p(t), P(t)], t ∈ [0, θ ] :

dp

dt
= A p + r + q, p(θ) = p f , (4)

dP

dt
= A P + P diagβ(t, P) + Q Γ (t), P(θ) = Pf , (5)

β = −Abs(P−1 R) e, where (Abs(P))i j = |Pi j |, e = (1, 1, ..., 1)T ∈ R
d1 , (6)

Γ (t) ∈ R
d2×d , max

1≤i≤d2

d∑
j=1

|Γi j (t)| ≤ 1. (7)

In (6) and (7), the matrices diagβ and Γ , respectively, represent the influence of the
control and disturbance capacities on the repulsive tube. Note that the time evolution
of the matrix Γ , satisfying the condition (7), should be chosen in such a way that the
repulsive tube maximally decreases backward in time. Below, this principle will be
discussed more exactly.

A repulsive feedback disturbance appearing in the statement of Problem 1 may
be defined as follows:

v(t, x) = q(t) + Q(t) Γ (t)
P(t)−1 (x − p(t))

max(‖P(t)−1 (x − p(t))‖∞, 1)
. (8)

Theorem 1 Let Eqs. (4)–(5), with relations (6)–(7), be solvable on [0, θ ], and
det

(
P(t)

) �= 0, t ∈ [0, θ ], then the tube VP(·) and the disturbance strategy (8)
provide a solution to Problem 1.

Proof Observe that the condition det
(
P(t)

) �= 0, t ∈ [0, θ ], define the vector func-
tion

ξ(t, x) := P(t)−1(x − p(t))

and note that the vector ξ(t, x) ∈ R
d defines relative coordinates of any point x in

the parallelotope VP(t). It is easily seen that a point x lies outside the interior of the
parallelotope VP(t) whenever ‖ξ(t, x)‖∞ ≥ 1.

Let x(·)be a trajectory of (1) corresponding to the disturbance (8) and starting from
a position (t0, x0) such that ‖ξ(t0, x0)‖∞ ≥ 1. Denote K (t) := cl

(
R

d \ VP(t)
)
and

prove that x(t) ∈ K (t), t ∈ [t0, θ ].Bearing inmind that‖ξ(t, x)‖∞ = max
j∈1,d

|ξ j (t, x)|
introduce the functions

g j (t, x) =
{

ξ j (t, x), j ∈ 1, d

−ξ j (t, x), j ∈ d + 1, 2d .
(9)
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Obviously, the graph K of the mapping K (·) on [t0, θ ] is given as follows:

K =
2d⋃
j=1

K j , where K j = {(t, x) : g j (t, x) ≥ 1, t0 ≤ t ≤ θ, x ∈ R
d}. (10)

According to [2, Table4.1], the contingent cone to K at any point (t, x) ∈ K is
given by the formula

TK (t, x) =
⋃

j∈J (t,x)

TK j (t, x),

where J (t, x) = { j ∈ 1, 2d : (t, x) ∈ K j }, and TK j (t, x) is the contingent cone to
K j at (t, x).

Following to [2, Chap. 4.1.1], it holds for (t, x) ∈ K j , t ∈ [t0, θ):

TK j (t, x) =

⎧⎪⎨
⎪⎩

R × R
d , if t > t0, g j (t, x) > 1,

R
+ × R

d , if t = t0, g j (t, x) > 1,

{(τ ∈ R, η ∈ R
d ) : τ

∂g j
∂t (t, x) + ηT ∇x g j (t, x) ≥ 0}, if t > t0, g j (t, x) = 1,

{(τ ∈ R
+, η ∈ R

d ) : τ
∂g j
∂t (t, x) + ηT ∇x g j (t, x) ≥ 0}, if t = t0, g j (t, x) = 1.

(11)

According to [1, Theorem 11.1.3], the condition (1, ẋ(t)) ∈ TK
(
t, x(t)

)
,

t ∈ [t0, θ), guarantees the inclusion x(t) ∈ K (t), t ∈ [t0, θ ]. Let us prove the valid-
ity of that condition.

If ‖ξ(t, x(t))‖∞ > 1, one of the first two relations of (11) holds for some index
j ∈ J

(
t, x(t)

)
, which provides the desired result due to (10).

The “boundary” case, ‖ξ(t, x(t))‖∞ = 1, is being treated as follows: Obviously,
there exists an index j0 ∈ J (t, x(t)) such that the third relation of (11) holds. Assume
that j0 ∈ 1, d (the case j0 ∈ d + 1, 2d is considered analogously). The full time
derivative of the vector function ξ

(
t, x(t)

)
reads

dξ

dt
= −P−1 dP

dt
P−1(x − p) + P−1 d

dt
(x − p) =

= −P−1(AP + QΓ + Pdiagβ)ξ + P−1(A (x − p) + (v − q) + (u − r))

if formulas (1), (4), (5), and the definition of ξ are used. Note that every admissible
control u satisfies the relation u − r = Rα at time t , where α is a vector such that
‖α‖∞ ≤ 1. Additionally, using (8) yields

dξ

dt
= −P−1QΓ (ξ − ξ

max(‖ξ‖∞), 1)
) − (diagβ)ξ + P−1Rα.

The equalities ‖ξ(t, x(t))‖∞ = 1 and ξ j0(t, x(t)) = 1 yield the relations
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dξ j0

dt
= −(β j0ξi0) + (P−1Rα) j0 ≥ −β j0 − (Abs(P−1R), e) j0 = 0, (12)

and therefore,

dξ j0

dt
= ∂g j0

∂t
(t, x(t)) + ẋ(t)T∇x g j0(t, x(t)) ≥ 0, (13)

which implies that (1, ẋ(t)) ∈ TK (t, x(t)) according to (10) and (11). Thus, in
all cases, (1, ẋ(t)) ∈ TK (t, x(t)), t ∈ [t0, θ), and therefore, x(t) ∈ K (t), t ∈ [t0, θ ],
because of the continuity of x(t) and K (t). Finally, since K (t) ∩ int

(VP(t)
) = ∅,

the condition x(t) /∈ int
(VP(t)

)
, t ∈ [t0, θ ], holds.

Remark 4 Note that the repulsive tube VP can degenerate so that det
(
P(t̂)

) = 0
for some t̂ ∈ [0, θ), and P(t̂) is no longer invertible. In this case, the tube VP is con-
structed only on [t̂, θ ], and the disturbance may be set as v(t) ≡ q, t ≤ t̂ . Obviously,
x(t̂) /∈ VP(t̂), and the rule (8) can be used for t > t̂ .

As it was mentioned after formula (7), the choice of Γ is crucial for obtaining
a possibly smaller repulsive tube, which allows for the application of (8) to a pos-
sibly larger set of initial conditions. The following choice is used in the numerical
simulations in Sects. 5–7: The whole time interval [0, θ ] is divided into subinter-
vals (τi , τi+1], i = 0, ..., N , with τ0 = 0 and τN = θ . The system (4)–(5) is then
integrated backward in time from θ to 0, and a constant matrix Γk satisfying (7) is
chosen for each subinterval (τk−1, τk] to minimize the minimum distance between
the opposite faces of VP(τk−1). Intuitively, such a choice of Γ yields the strongest
contraction of the parallelotope tube along the direction of its shortest axis.

Note that the resulting Γ may be discontinuous at time instants τi . However, the
number of discontinuities is finite, and solutions of (4)–(5) remain continuous and
unique.

4 Numerical Implementation of Repulsive Feedback
Disturbances

The proof of appropriateness of the repulsive disturbance (8) is done in Sect. 3 under
the assumption of continuous-time scheme. In a discrete-time scheme, the feedback
repulsive disturbance (8) may not properly work because the condition (12) holds
only on the boundary ofVP . In this section, an extended discrete-time control scheme
is presented, and a bound on the time step length of this procedure is evaluated.

Assume for simplicity that the discrete-time scheme involves equidistant time
instants ti corresponding to the step lengthΔt . As it was declared in the introduction,
the disturbance is basically associated with wind, and the maximum expected wind
speed can hardly be exactly predicted. Therefore, the extension of disturbance bounds
along all parallelotope axes by the factor 1 + δ, where δ > 0 is a small parameter, is
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not prohibited. Thus, it is now assumed that v ∈ VP [q, (1 + δ) Q], and the repulsive
disturbance v(t, x) is computed by the formula

v(t, x) = q(t) + Q(t) Γ (t)
P−1(t) (x − p(t))

max(‖P−1(t) (x − p(t))‖∞/(1 + δ), 1)
. (14)

Note that the function v in (14) is Lipschitzian on each time interval [ti , ti+1) in the
following sense:

|v(t, y) − v(ti , x)| ≤ L (|t − ti | + ‖x − y‖), t ∈ [ti , ti+1) (15)

if the matrix Γ is constant on each interval [ti , ti+1). Let x(·) be a trajectory
started from a position (t0, x0) such that ‖ξ(t0, x0)‖∞ ≥ 1 + δ and computed in the
continuous-time scheme using the disturbance (14). The same argumentation as in
the proof of Theorem 1 implies that ‖ξ(t, x(t))‖∞ ≥ 1 + δ, t ∈ [t0, θ ].

Let xΔ(·) be the corresponding trajectory (the same control u(·) and the same
initial position (t0, x0)) computed in the discrete-time scheme using the disturbance
(14). In virtue of condition (15), it is possible to prove that

‖x(t) − xΔ(t)‖ ≤ GΔt, G = exp(H θ), H = max
t∈[0,θ] ‖A(t)‖ + L ,

and therefore, ‖ξ(t, xΔ(t))‖∞ ≥ 1 + δ − MGΔt, t ∈ [t0, θ ], where M is the Lips-
chitz constant of the function ‖ξ(t, x)‖∞ in x . It remains to set Δt ≤ δ/(MG).

Remark 5 The theoretical bound on the step size Δt may be too small. However,
for simulations presented in the following sections, it is possible to maintain the
property ‖ξ(t, xΔ(t))‖∞ ≥ 1, t ∈ [t0, θ ], for much larger time steps.

Finally, note that for any given problem dimension d (i.e., the state x ∈ R
d ), the

computational complexity of the proposed scheme is O(d3) per time step Δt as
it involves matrix equations of dimension d, which can be solved with, e.g., LU-
decomposition. Even for fairly low-dimensional problems, this dependency is far
superior to complexity of other common methods for construction of disturbances,
such as

• grid methods, e.g., [3], that scale as O(Nd) per time step, where N is the grid
resolution per dimension,

• methods that represent repulsive tubes with arbitrary convex polygons, e.g., [5],
that scale asO(d!m)per time step,wherem is the number of inequalities describing
the polygon.

Clearly, the difference in complexity between these methods and the presented
approach quickly grows with the increasing problem dimension. Thus, the presented
method allows us to consider problems that would not be accessible with many other
techniques.
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5 Application: Simple Example

In this section, the techniques developed in Sects. 3 and 4 are applied to compute a
repulsive disturbance in a linear three-dimensional differential game. This example is
appropriate to visualize repulsive tubes and demonstrate the proper work of repulsive
disturbances.

Consider the following differential game:

ẋ1 = x1 + x2 + u1 + v1,

ẋ2 = x3 + v2,

ẋ3 = x1 + u2,

M = {x ∈ R
3 : ‖x‖∞ ≤ 1}.

The system is considered on the time interval [0, 1]. The control and disturbance
variables are constrained as follows:

|ui | < 0.5, |vi | < 0.55, i = 1, 2.

The repulsive sets VP [p(ti ), P(ti )] are constructed on the uniform time grid {ti =
iΔt} with Δt = 10−3. The same time sampling is used in the forward integration of
the system including the repulsive disturbance (14).

It follows from the general theory of differential games (see [8]) that, in particular,
for linear problems there exists a minimal repulsive set V0 ⊂ [0, θ ] × R

d . This set
is also the maximal solvability set and, therefore, it has the following property. If
(t0, x(t0)) /∈ V0 then there exists a feedback disturbance v(t, x) that prevents any
trajectory x(·) from the penetration into V0. In the opposite case, there exists a
feedback control u(t, x) ensuring the condition (t, x(t)) ∈ V0, t ∈ [t0, θ ], for all
trajectories. This alternative is sketched in Fig. 3.

For low-dimensional problems, V0 can be approximated using grid methods (see,
for example, [3] and [4]). In the following simulation, such a grid scheme is used to
approximate the cross sections V0(ti ) for all time instants ti = iΔt . For each current
state x(ti ) ∈ V0(ti ) it is possible to compute a control u(ti , x(ti )) which pushes the
state vector into the next cross sectionV0(ti+1) so that the feedback control u(ti , x(ti ))
can approximately keep (in the discrete-time scheme) all trajectory inside V0 if the

Fig. 3 Property of minimal
repulsive tubes

0 θ

x(t)

x(t)

(t0, x(t0))

(t0, x(t0))



12 K. Martynov et al.

Fig. 4 The sets VP (t)
(green) and V0(t) (red) as
well as the current state
vectors (for various initial
conditions) at t = 0.0 (left)
and t = 0.2 (right)

initial state lies there. This control is used to implement the strategy of the first player
in the simulation.

To test the constructed repulsive disturbance, twenty-five initial conditions were
generated in the proximity of origin but outside of VP [p(0), P(0)]. Resulting tra-
jectories as well as cross sections of the repulsive tubes VP and V0 are shown in
Figs. 4–6. The results are consistent with the theory: V0(ti ) ⊂ VP(ti ) for all ti , and
none of the trajectories penetrates into the tube VP . Furthermore, one can see that the
parallelotope tube VP provides a rather good upper estimate of the minimal repulsive
tube V0 along the shortest axis of the parallelotope. This is in agreement with the
previously discussed choice of the matrix Γ involved in the construction of VP .

Remark 6 Note that the view direction in Figs. 4, 5, and 6 is always chosen orthog-
onal to the minimum width face of VP(ti ). Therefore, the view direction is rotating
together with the tube VP . In this way, it is possible to visually demonstrate that all
trajectories remain outside of VP throughout the whole simulation.



Quick Construction of Dangerous Disturbances in Conflict Control Problems 13

Fig. 5 The sets VP (t) (green) and V0(t) (red) as well as the current state vectors (for various initial
conditions) at t = 0.4 (left) and t = 0.6 (right)

Fig. 6 The sets VP (t) (green) and V0(t) (red) as well as the current state vectors (for various initial
conditions) at t = 0.8 (left) and t = 1.0 (right)

6 Application: Nonlinear Model of Take-Off

In the following sections, the construction of a repulsive disturbance in a nonlinear
model of aircraft take-off is presented. The model has already been considered in
several papers devoted to aircraft control (cf. [10, 11]). In contrast to the mentioned
works, the problem of finding a dangerous wind disturbance is now considered.More
precisely, it is necessary to find a wind disturbance that maximizes the deviation
of aerodynamic velocity and kinematic path inclination angle from their reference
values.
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6.1 Model Equations

A simplified aircraft model is under consideration.
First, the motion in a vertical plane is assumed. Second, the rigid body rotations

are neglected to obtain a point-mass model. Third, the thrust force of the engine is
kept constant.

The following notation is used:
V

def= aerodynamic velocity of the aircraft, [m/s];
γ

def= kinematic path inclination angle, [◦];
x

def= horizontal distance, [m];
h

def= altitude, [m];
α

def= aerodynamic angle of attack, [◦];
σ

def= thrust inclination angle, [◦];
m

def= mass of the aircraft, [kg];
g

def= gravitational constant, [m/s2];
P

def= thrust force, [N];
D

def= drag force, [N];
L

def= lift force, [N];
ρ

def= density of air, [kg/m3];
S

def= wing area of the aircraft, [m2];
Wx

def= horizontal wind velocity at the location of the aircraft, [m/s];
Wh

def= vertical wind velocity at the location of the aircraft, [m/s].

The following equations describe the simplified aircraft dynamics:

mV̇ = P cos(α + σ) − D − mg sin γ − mẆx cos γ − mẆh sin γ, (16)

mV γ̇ = P sin(α + σ) + L − mg cos γ + mẆx sin γ − mẆh cos γ, (17)

ẋ = V cos γ + Wx , (18)

ḣ = V sin γ + Wh . (19)

The thrust, drag, and lift forces in (16), (17) are approximated by polynomials:

P = A0 + A1V + A2V
2,

D = 1

2
CDρSV 2 with CD = B0 + B1α + B2α

2,

L = 1

2
CLρSV

2 with CL =
{
C0 + C1α, α ≤ α∗∗
C0 + C1α + C2(α − α∗∗)2, α > α∗∗.

Here, the angle of attack, α, is the single control input governed by the pilot.
The coefficients Ai , i = 0, 1, 2, depend on the altitude and air temperature, whereas
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Bi and Ci , i = 0, 1, 2, are influenced by the position of flaps and chassis. Finally,
m, S, ρ, δ, α∗∗, Ai , Bi , and Ci are constant parameters corresponding to Boeing-
727 on take-off. The exact values of them can be found in [10].

The dynamics (16)–(19) is considered on the time interval [0, θ ] with θ = 14s,
and appropriate initial conditions are chosen.

The target setM is defined by maximum permissible deviation of V and γ from
their reference values V0 and γ0 at t = θ . That is,

|V (θ) − V0| ≤ ΔV, (20)

|γ (θ) − γ0| ≤ Δγ. (21)

The reference values V0 and γ0 will be discussed below in more detail.

6.2 Relaxed Nonlinear Model

It can be observed that the right-hand sides of Eqs. (16), (17) do not depend on x and h.
Therefore, these state variables and the correspondingEqs. (18), (19)will be excluded
from the consideration, keeping in mind that x(t) and h(t) can be reconstructed from
V (t) and γ (t).

Moreover, jumps in the wind velocity components will be smoothed using first-
order filters defined by PT1 transfer functions, which assumes the introduction of
artificial disturbances v1 and v2, the inputs of these filters.

Thus, similar to [11], we arrive at the following nonlinear model:

mV̇ = Pcos(α + σ) − D − mg sin γ − mẆx cos γ − mẆh sin γ, (22)

mV γ̇ = P sin(α + σ) + L − mg cos γ + mẆx sin γ − mẆh cos γ, (23)

Ẇx = −k(Wx − v1), (24)

Ẇh = −k(Wh − v2). (25)

Here, the coefficient k = 0.5 s−1 defines the smoothing rate of the wind velocity
components. The time derivatives Ẇx and Ẇh in (22), (23) are assumed to be replaced
by the right-hand sides of (24), (25). The constraints on the artificial disturbances,
v1 and v2, are chosen as follows:

|v1| ≤ 13.7m/s, |v2| ≤ 5.5m/s. (26)

Similar as in [10], the control parameter is constrained by the inequalities

0 ≤ α ≤ 16◦. (27)
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Remark 7 Note that any wind disturbance designed for the relaxed system (22)–
(25) produces, using (24) and (25), the same performance of V and γ in the original
system (16)–(19). Therefore, repulsive disturbances will be designed for the relaxed
system.

6.3 Linearization of the Relaxed Model

The relaxed system (22)–(25) is linearized around the reference values (cf. [11])
V = V0 = 84.1m/s, γ = γ0 = 6.989◦, α = α0 = 10.367◦, Wx = Wx0 = 0, Wh =
Wh0 = 0, v1 = 0, and v2 = 0. Here, the values of V0, γ0, and α0 are chosen such that
the right-hand sides of (22) and (23) are equal to zero. Note that the above reference
values define a straight ascending trajectory. Such a line would be a perfect take-off
path in the absence of wind disturbances. Denote xre f := (V0, γ0, Wx0, Wh0)

T and
ure f := α0.

6.4 Linear Conflict Control Problem

Having chosen the reference values, the linearization of the relaxed model yields the
following linear conflict control problem (cf. [11]):

ẋ = A(x − xre f ) + B(u − ure f ) + Cv, for t ∈ [0, θ ], (28)

x(0) = xre f . (29)

Here, x, u, v, A, B, and C are defined as

x :=

⎛
⎜⎜⎜⎜⎜⎝

V

γ

Wx

Wh

⎞
⎟⎟⎟⎟⎟⎠

, A :=

⎛
⎜⎜⎜⎜⎜⎝

∂ V̇
∂V

∂ V̇
∂γ

∂ V̇
∂Wx

∂ V̇
∂Wh

∂γ̇

∂V
∂γ̇

∂γ

∂γ̇

∂Wx

∂γ̇

∂Wh

0 0 −k 0

0 0 0 −k

⎞
⎟⎟⎟⎟⎟⎠

,

B :=

⎛
⎜⎜⎜⎜⎜⎝

∂ V̇
∂α

∂γ̇

∂α

0

0

⎞
⎟⎟⎟⎟⎟⎠

, u := α, C :=

⎛
⎜⎜⎜⎜⎜⎝

∂ V̇
∂v1

∂ V̇
∂v2

∂γ̇

∂v1

∂γ̇

∂v2

k 0

0 k

⎞
⎟⎟⎟⎟⎟⎠

, v :=
⎛
⎝v1

v2

⎞
⎠ . (30)
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All partial derivatives are computed at xre f , ure f , and v = (0, 0)T . Note that the
state vector, control parameter, and disturbance inputs are the same as in the non-
linear relaxed model (22)–(25). Therefore, the target set M and the constraints on
the control and disturbance inputs remain the same as in the nonlinear relaxedmodel.

Remark 8 The system (28)–(30) can be reduced to the form (1) by setting x :=
x − xre f , u := B(u − ure f ) and v := Cv. Obviously, the new target set M and the
constraints on the new control u and disturbance vector v are of the parallelotope
type so that the new system satisfies the requirements of Sect. 3.

6.5 Generation of Disturbances

To construct a repulsive disturbance for the relaxed nonlinear model (22)–(25), a
parallelotope tube VP is constructed for the linearized problem (28)–(30). More
precisely, the cross sections VP(ti ) = VP [p(ti ), P(ti )] are computed for a time sam-
pling. The disturbance in the relaxed nonlinear model at each time instant ti is being
chosen according to (8) based on the cross section VP(ti ).

It should be noted that the condition x(0) /∈ VP [p(0), P(0)] is required for the
application of the feedback rule (8). To satisfy this condition, a scheme with multiple
target setsMμ

can be used. Here, μ ∈ R
+ is a scaling factor applied to the original

target set M = VP [p f , Pf ]. Therefore,

Mμ = VP [p f , μ Pf ]. (31)

Further, a set of scaling factors μ1 < μ2 < ... < μM is chosen, and multiple target
setsMμ1

, ...,MμM are defined according to formula (31). For eachMμs
, s ∈ 1, M ,

the corresponding parallelotope repulsive tube VPμs is constructed. At the current
position (ti , x(ti )) an index s ∈ 1, M is chosen in such a way that x(ti ) /∈ VPμs (ti )
and x(ti ) ∈ VPμs+1(ti ). The repulsive disturbance is computed according to formula
(8), based on VPμs (ti ) = [p(ti ), Pμs (ti )] .
Remark 9 It is clear that VPμk (ti ) ⊂ VPμs (ti ) whenever μk < μs . Therefore, for
the linearized system (28)–(30), the repulsive property guarantees that the trajectory
does not penetrate into the sets VPμk with μk ≤ μs in future time steps. On the
other hand, if the control (pilot) plays nonoptimally, the disturbance can achieve that
x(tr ) /∈ VPμ j (tr ) with μ j > μs at some tr > ti . In such a case, the repulsive cross
section VPμ j (tr ) should be used at tr to increase the deviation of the trajectory from
the reference path.

The simulation results for the nonlinear relaxed model (22)–(25) with constraints
on the disturbance and control given by (26) and (27) are shown in Figs. 7, 8, 9.
Multiple target sets Mμs

, s ∈ 1, 25, with μs uniformly distributed in the interval
[0.04; 1], are used. The right-hand sides of inequalities (20) and (21) are chosen
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Fig. 7 Left: Aerodynamic velocity V of the aircraft and the reference value V0 (thin horizontal
line). Right: Kinematic path inclination angle γ and the reference value γ0 (thin horizontal line).
The vertical lines at t = 14s show the corresponding projections of the target set
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Fig. 8 Left: Horizontal wind velocityWx along the trajectory (yielded by the disturbance command
v1). Right: Vertical wind velocityWh along the trajectory (yielded by the disturbance command v2)

as ΔV = 15.2m/s and Δγ = 5◦, respectively. The repulsive tubes are constructed
with the uniform time sampling ti+1 − ti = 10−3s. To play against the repulsive
disturbance, a quasi-optimal feedback control strategy u(t, x) based on parallelotope
approximations of solvability tubes (see [7]) is used. Such a strategy has already been
successfully applied to problems of aircraft control (see [9]).

Simulation results show that the repulsive disturbance provides evasion from the
target set, whereas constant disturbances whose values coincide with the vertices of
the rectangle given by (26) cannot solve this problem. Figure 10 shows the com-
parison between the repulsive disturbance and the strongest constant disturbance,
v1 ≡ −13.7m/s and v2 ≡ 5.5m/s, providing the largest deviation among all con-
stant disturbances.
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Fig. 9 Angle of attack α

(pilot’s control)
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Fig. 10 Left: Aerodynamic velocity V for the repulsive (solid) and optimal constant (dashed)
disturbances. Right:Kinematic path inclination angleγ for the repulsive (solid) and optimal constant
(dashed) disturbances. The vertical lines at t = 14s show the corresponding projections of the target
set. The thin horizontal lines depict the reference values V0 and γ0

7 Application: Linear Model of Aircraft Lateral Dynamics

In this section, a repulsive disturbance for a linearized aircraft closed-loop dynamics
of lateral motion (see [6]) is constructed. Such a model is derived under the assump-
tion of horizontal balanced flight, which results in decoupling the longitudinal and
lateral motions after the linearization.

7.1 Model Equations

The rigid body states for the linearized model of lateral motion are the yaw rate r ,
roll rate p, side-slip angle β, and roll angle Φ. Furthermore, second-order transfer
functions of the form
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G(s) = ω2
0

s2 + 2dω0s + ω2
0

(32)

with natural frequencyω0 and damping constant d are employed tomodel the actuator
dynamics of the primary control surfaces in the lateral plane. This results in additional
states for the aileron position ξpos and angular rate ξvel , as well as the rudder position
ζpos and angular rate ζvel . Moreover, a wind disturbance VW,cmd is introduced by
using the following first-order lag filter

V̇W = τ−1
W · (VW,cmd − VW ) (33)

with τW = 2,whichproduces smoothwindprofiles for thewind stateVW . Besides this
wind disturbance,we additionally considerworst case pilot commands as disturbance
inputs, which are the side load factor command δny and the roll angle command
δΦ . As the control structure under investigation features a proportional and integral
part for both the roll angle command and the side load force command, we also
include the corresponding states of the integral parts denoted by eΦ and eny as states.
Summarizing, the state vector for the linear system

ẋ = Ax + Cv, with x(0) = 0 (34)

comprises nine states, x = [
eΦ, eny , r, β, p, Φ, ξpos, ξvel , ζpos, ζvel

]T
, and the distur-

bance vector includes three components, v = [
δny , δΦ, VW,cmd

]T
, for the pilot and

wind disturbance commands. These components are constrained as follows:

|δny | ≤ 0.1 rad, |δΦ | ≤ 0.9, |VW,cmd | ≤ 10m/s. (35)

7.2 Construction of the Disturbance

In (34), the first two components of the state vector x stands for the integrated errors.
Therefore, the aim of the disturbance is to maximize the functional |x1(θ)| + |x2(θ)|.
This objective is associated with two-dimensional parallelotope target sets

Mc := VP

[(
0
0

)
,

(
c√
2

c√
2− c√

2
c√
2

)]
= {x1, x2 : |x1| + |x2| ≤ c} (36)

defined for different positive values of the parameter c.
Note that the approach of Sect. 3 requires the full dimensionality of the target set,

i.e., it should involve all components of the state vector of system (34). In order to
remain in two dimensions, equations (34) will be transformed using the following
substitution:

y(t) = X (t, θ)x(t). (37)
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Here, X (t, θ) is the fundamental matrix of the homogeneous system ẋ = Ax . More
precisely, X (t, θ) satisfies the equations

∂

∂t
X (t, θ) = −X (t, θ)A, X (θ, θ) = I d, (38)

with the corresponding identity matrix I d. Since the matrix A in (34) is constant,
X (t, θ) can be computed as

X (t, θ) = eA(θ−t). (39)

Combining (34), (37), and (38) yields the following system:

ẏ = X (t, θ)Cv, with y(0) = 0. (40)

The properties of X imply that y(θ) = x(θ), and therefore, only the two first equa-
tions of (40) and the two-dimensional target setsMc defined by (36) should be used.
Similar to Sect. 6.5, a repulsive disturbance will be constructed using the technique
of multiple target sets obtained by varying the parameter c in (36).

7.3 Validation Using Optimal Control Theory

It is interesting to compare the result obtained using the repulsive disturbance with
that gained from solving an appropriate optimal control problem. In this comparison,
the criterion to be maximized is the Mayer cost function JM = x1(θ) + x2(θ) which
is evaluated at the fixed time instant θ = 4s. In order to solve this optimal control
problem numerically, the following trapezoidal collocation scheme, which assumes
the uniformly spaced time grid with the discretization step length ti+1 − ti = Δt =
0.004s, is used:

xi+1 = xi + Δt · f (xi , vi ) + f (xi+1, vi+1)

2
. (41)

Here f (x, v) = Ax + Cv according to the notation (34), and the low indices cor-
respond to the time sampling instants, e.g., xi = x(ti ) and vi = v(ti ). The initial
state x(t0) = 0 is enforced as equality constraint at the beginning of the time inter-
val and the final state is free. The parameter optimization problem resulting from
the discretization of the continuous-time optimal control problem is solved using an
interior point solver with a feasibility and optimality tolerance of 10−7. See [6] for
more details.
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Fig. 11 Left: The absolute values sum of the error components eΦ and eny obtained with the
repulsive disturbance. Right: Disturbance δny

0 1 2 3 4
Time, [s]

-0.5

0

0.5

δ Φ

0 1 2 3 4
Time, [s]

-10

-5

0

5

10
V

W
,c

m
d

Fig. 12 Left: Disturbance δΦ . Right: Disturbance VW,cmd

7.4 Simulation Results

Simulation results for the time interval [0, θ ], θ = 4 s, are shown in Figs. 11 and 12.
As discussed in Sect. 6.5, the repulsive disturbance can be compared with extreme
constant disturbances. In virtue of (35), there are eight extreme points of the dis-
turbance constraint. However, only four of them should be considered due to the
symmetry of the system equations. Figure 13 presents the comparison of the extreme
and repulsive disturbances. Note that the extreme disturbances perform well, but the
repulsive disturbance yields a better result.

Finally, the parallelotope-based repulsive disturbance is compared with that
obtained from optimal control theory (see Sect. 7.3). Theoretically, the parallelotope-
based repulsive disturbance cannot outperform the optimal one. Nevertheless, the
results produced by the both disturbances are very close to each other as it is shown
in Fig. 14. Furthermore, Figs. 14 and 15 demonstrate that the parallelotope-based
repulsive disturbance and the optimal one produce very similar input signals.
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Fig. 13 The absolute values sum of the error components eΦ and eny obtained with the repulsive
disturbance (solid line) and all possible constant extreme disturbances (dashed lines)
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8 Conclusion

The results of Sects. 5–7 demonstrate that the method presented can be success-
fully applied to various types of control systems. In particular, promising results are
obtained for a nonlinear model considered in Sect. 6 and a complex linear system
treated in Sect. 7. As it is shown, the parallelotope-based repulsive disturbance is
expected to provide a near-optimal result. In any case, it significantly outperforms
constant extreme disturbances.

Themain advantageof themethodproposed is its applicability to high-dimensional
conflict control problems. The computational efforts are relatively low so that the
methodmay run in real time. Therefore, advanced aircraft models comprising numer-
ous state variables, controllers, filters, etc. can be testedwith this approach.One of the
main future objectives is the implementation of the method on a real flight simulator.
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Isaacs’ Two-on-One Pursuit-Evasion
Game

Meir Pachter

1 Introduction

In this paper, Isaacs’ “TwoCutters and a Fugitive Ship” differential game is revisited.
We consider the pursuit-evasion differential game in the Euclidean plane where
two pursuers P1 and P2, say cutters, chase a fugitive ship, the evader E. All move
with simple motion à la Isaacs, the speeds of the cutters each being greater than
that of the fugitive ship. Coincidence of E with either one, or both, P1 and/or P2,
is capture, and time of capture is the payoff of E and the cost of the P1 & P2

team. Interestingly, the Two Cutters and Fugitive Ship pursuit game was posed by
Hugo Steinhaus back in 1925—his original paper was reprinted in 1960 in [2].1

The solution of the differential game, sans its justification, is presented in Isaacs’
ground breaking book [1, Example 6.8.3, pp. 148–149]. In [1] the players’ optimal
strategies were derived using a geometric method. In [3] a preliminary attempt at
justifying the geometric method was undertaken. In this paper, we provide a proof of
the correctness of the geometrically derived optimal pursuit and evasion strategies

1Hugo Steinhaus, was a contemporary of Borel and Von Neumann who are credited with laying the
foundations of game theory.Borel andVonNeumannmainly considered static games, a.k.a. games in
normal form, while referring to dynamic games as games in extensive form, believing that dynamic
games can be easily transformed to static games. The requirement of time consistency/subgame
perfectness in dynamic games came to the attention of game theorists only in the seventies. From
the outset, Steinhaus was certainly attuned to thinking about dynamic games, a.k.a., differential
games.

The views expressed in this article are those of the author and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the US Government.

M. Pachter (B)
Air Force Institute of Technology, Dayton, OH, USA
e-mail: meir.pachter@afit.edu

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
D. M. Ramsey and J. Renault (eds.), Advances in Dynamic Games,
Annals of the International Society of Dynamic Games 17,
https://doi.org/10.1007/978-3-030-56534-3_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56534-3_2&domain=pdf
mailto:meir.pachter@afit.edu
https://doi.org/10.1007/978-3-030-56534-3_2


28 M. Pachter

using Isaacs’ method for the systematic solution of differential games. The three
players’ state feedback optimal strategies are synthesized and the Value of the game
is derived. The geometric method for solving the Two Cutters and Fugitive Ship
differential game is fully justified. Some geometric features, perhaps overlooked by
Isaacs, but with a bearing on extensions, are addressed: The state space regions where
pursuit devolves into Pure Pursuit (PP) by either P1 or P2, or into a pincer movement
pursuit by the P1 & P2 team who cooperatively chase the evader, are characterized.
Thus, a complete solution of the Game of Kind is provided. The analysis undertaken
herein provides a vehicle for discussing some salient features of general pursuit-
evasion differential games, and opens the door to employing the geometric method
to consider operationally relevant group pursuit/swarm attack tactics.

The paper is organized as follows. The geometric method employed by Isaacs to
solve the Two Cutters and Fugitive Ship differential game is expounded on in Sect.
2. In Sect. 3 a three-states reduced state space reformulation of the Two Cutters and
Fugitive Ship differential game is introduced and the geometric method is employed
to yield the players’ optimal state feedback strategies and the game’s Value function
in closed form. Furthermore, the state space regions where either one of the pursuers
captures the evader and the state space region where both pursuers cooperatively
and isochronously capture the evader are characterized, thus solving the Game of
Kind. The reduced state space formulation is required in order to apply Isaacs’
method for the systematic solution of differential games to the Two Cutters and
Fugitive Ship differential game and prove the correctness of the geometric method.
Due to symmetry, it is sufficient to present the solution of the differential game in
the positive orthant of the reduced state space. The solution process is presented in
Sect. 4: The protagonists’ strategies previously obtained using the geometric method
are recovered, thus validating the geometric method and providing the solution of
the Game of Degree. As it so often happens in differential games, the doctrinaire
employment of Isaacs’ method towards the solution of even this “simple” differential
game is not devoid of complexity. However, the intuition provided by the heuristic
geometric approach is instrumental in facilitating the solution process. The Two
Cutters and Fugitive Ship is a differential game whose Value function is C1 in the
positive orthant of the reduced state space. The reduced state space of the Two
Cutters and Fugitive Ship differential game comprises the first and third quadrants
of R3. The half plane {(x, y, z) | x ≥ 0, y = 0} is a surface of symmetry and the half
plane {(x, y, z) | x ≥ 0, z = 0} is a surface of symmetry and also a dispersal surface,
where theValue function of the differential game is not differentiable.While dispersal
surfaces in differential games are prone to spawning singular surfaces of equivocal or
focal type, this is not the case in the Two Cutters and Fugitive Ship differential game.
The optimal flow field consists of regular trajectories only, and there are no singular
surfaces, except the above mentioned “benign” dispersal surface. Conclusions are
presented in Sect. 5, where possible extensions are also discussed. In this paper, the
solution of the Game of Kind is provided and the geometric method for obtaining
the solution of the Game of Degree and thus solving the Two Cutters and Fugitive
Ship differential game, is fully justified.
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Interestingly, it has been suggested by one of the referees that Isaacs’ Two Cutters
and Fugitive Ship differential game could also have been addressed building on the
method expounded in Ref. [4].

2 The Geometric Method

Without much loss of generality, we assume that the fast pursuers P1 and P2 have
equal speed, which we normalize to 1. The problem parameter is the speed of the
evader E which is 0 ≤ μ < 1.

There are three players in the Euclidean plane so the realistic state space is obvi-
ously R6;, however, the state space could be reduced to R4 by collocating the origin
of a non- rotating (x, y) Cartesian frame at E’s instantaneous position. Since the
players are holonomic, the dynamics A matrix is 0—there are no dynamics. This,
and the fact that the performance functional is the time-to-capture, yields a Hamilto-
nian s.t. the costates are all constant. This suggests that the optimal flow field might
consist of straight line trajectories. Hence geometry might come into play. Thus,
Isaacs directly used a geometric method for the solution of pursuit-evasion games
with simple motion, well aware that this might not always be possible, as he amply
demonstrated with the Obstacle Tag Chase differential game where the presence of
a state constraint brings about the violation of the requirement in dynamic games
of time consistency/subgame perfectness. To obtain, albeit without proof, the Two
Cutters and Fugitive Ship differential game’s solution, Isaacs successfully employed
the geometric concept of an Apollonius circle—see Sect. 2.1 below—to delineate
the Safe Region (SR) and the Boundary of a Safe Region (BSR) for the Evader. The
Apollonius circle concept is conducive to the geometric solution of the Two Cutters
and Fugitive Ship differential game, as will be demonstrated in the sequel.

2.1 Apollonius Circle

For the sake of completeness, we provide the geometry of Apollonius circles which
will prominently feature in the geometric solution of this differential game with
two pursuers and one evader and also in extensions where multiple pursuers are
employed. An Apollonius circle is the locus of all points in the plane s.t. the ratio of
the distances to two fixed points in the plane, also referred to as foci, is constant; in
our case the ratio in question is the Pursuer/Evader speed ratio parameter μ < 1 and
the foci are the instantaneous positions of E and P. The Apollonius circle is illustrated
in Fig. 1.

The three points P, E and the center O of the Apollonius circle are collinear and
E is located between P and O. Let the E-P distance be d. The radius of the Apllonius
circle is then
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Fig. 1 Apollonius circle

ρ = μ

1 − μ2
d (1)

and in Fig. 1 the coordinates of the center of the Apollonius circle are

xO = μ2

1 − μ2
d, yO = 0. (2)

2.2 Isaacs’ Geometric Solution

We first present the solution of the Two Cutters and Fugitive Ship differential game
in the realistic plane using the geometric method. Two Apollonius circles,C1, whose
foci are at E and P1 and theApollonius circleC2, whose foci are at E and P2, feature in
this game. E is in the interior of both Apollonius disks but the two Apollonius circles
might or might not intersect. Concerning the calculation of the points of intersection,
if any, of the Apollonius circlesC1 andC2: Subtracting the equation of circleC1 from
the equation of circleC2 yields a linear equation in two unknowns, say, X and Y . One
can thus back out Y as a function of X and insert this expression into one of the circle
equations, thus obtaining a quadratic equation in X : The calculation of the two points
of intersection of the Apollonius circles C1 and C2 boils down to the solution of a
quadratic equation. The Apollonius circles intersect i f f the quadratic equation has
real solutions, in other words, the discriminant of the quadratic equation is positive.
When the discriminant of the quadratic equation is negative we are automatically
notified that the Apollonius circles don’t intersect, and because E is in the interior
of both Apollonius disks, we conclude that one of the Apollonius disks is contained
in the interior of the second Apollonius disk. If ρ2 > ρ1, which is the case i f f E
is closer to P1 than to P2—see Eq. (1)—the circle C2 is discarded, and vice versa.
The geometry is illustrated in Fig. 2. When the Apollonius circles don’t intersect, the
pursuer associated with the outer Apollonius circle is irrelevant to the chase. This
is so because the configuration is s.t. should P1 employs PP and E run for his life,
player P2 cannot reach E before the latter is captured by P1 because he is too far away
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Fig. 2 One cutter action

from the P1/E engagement, or is too slow to close in and join the fight. This renders
player P2 irrelevant. As far as the geometricmethod is concerned, theApollonius disk
associated with player P1 is then contained in the interior of the bigger Apollonius
disk associated with player P2, as illustrated in Fig. 2. In this case, the pursuer P1 on
which the inner Apollonius circle is based will singlehandedly capture the evader:
Hewill optimally employ PPwhile the Evader runs for his life and will be captured at
I; the game with two pursuers devolved to the simple pursuit-evasion game with one
pursuer and one evader where P1 employs PP and E runs away from P1. Similarly,
if the Apollonius disk associated with P2 is contained in the interior of the bigger
Apollonius disk associated with player P1, player P2 will employ PP while E runs
for his life; P1 is then redundant.

The case considered in [1] where the discriminant of the quadratic equation is
positive and theApollonius circles intersect is illustrated in Fig. 3. Since there are two
pursuers, similar to Fig. 6.8.5 in [1], a lens-shaped BSR is formed by the intersection
of the two Apollonius circles. To calculate the aim point I which is one of the two
points where the Apollonius circles C1 and C2 intersect requires solving a quadratic
equation; the quadratic equation has two real solutions and among the two points
of intersection of the Apollonius circles, the aim point I is the point farthest from
E. Thus, E heads toward the most distant point I on the BSR, and so do P1 and P2.
Thus, it would seem that both pursuers P1 and P2 will be active and cooperatively and
isochronously capture the evader at point I, as shown in Fig. 3. It is noteworthy that
during optimal play the Apollonius circles shrink but the players’ aim point I remains
fixed. Thus, in contrast to the Obstacle Tag Chase game, time consistency/subgame
perfectness is not violated. This bodes well for the correctness of the geometric
approach.

When the discriminant of the quadratic equation is zero the quadratic equation
has a repeated real root. Geometrically this means that one of the Apollonius circles
is tangent from the inside to the second Apollonius circle. The following holds.

Proposition 1 Assume the Apollonius circles C1 and C2 are tangent, that is, the
discriminant of the quadratic equation vanishes. The aim point of the three players



32 M. Pachter

Fig. 3 Solution of two
cutters and fugitive ship
game

Fig. 4 PP by P1 and P2

is then the circles’ point of tangency, say T, that is, I=T, i f f the three players E, P1

and P2 are collinear and E is sandwiched between P1 and P2.

Thus, when the Apollonius circles C1 and C2 are tangent and their point of tangency
T is s.t. T = I, the points P2, T, O1, E, O2 and P1 are collinear and both pursuers
employ PP to isochronously capture the evader. This is illustrated in Fig. 4. Note
however that when, as above, P1, P2 and E are collinear and E is sandwiched
between P1 and P2, but the Apollonius circles intersect, E will break out—see
Fig. 5. If the Apollonius circles C1 and C2 are tangent, however E is not on the
segment P1P2, the players’ aim point I is not the circles’ point of tangency T: If
the tangent Apollonius circles are s.t. the Apollonius circle C1 is contained in the
Apollonius disk formed by the Apollonius circleC2, optimal play then consists of the
active player being P1 and employing PP while E runs away from P1 and player P2 is
redundant; and if the Apollonius circleC2 is contained in the Apollonius disk formed
by the Apollonius circle C1, optimal play then consists of the active player being P2

and employing PP while E runs away from P2, and now player P1 is redundant;
the circles’ point of tangency T plays no role here. This should alert us to the fact
that even though the Apollonius circles intersect at their point of tangency, that is,
C1 ∩ C2 �= ∅ and T ∈ C1 ∩ C2, the players’ aim point I /∈ C1 ∩ C2. The fact that the
two Apollonius circles intersect does not automatically imply that during optimal
play both pursuers will cooperatively and isochronously capture the evader. As we
shall see, there are instances where although the Apollonius circles intersect, during
optimal play just one of the pursuers singlehandedly captures the evader.
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Fig. 5 Breakout of E

Fig. 6 Solution of the game
of kind in the realistic plane

In summary, the solution in the realistic plane of the Game of Kind is illustrated
in Fig. 6. Given the position of the pursuers, during optimal play, when the evader is
initially in the region R1 to the right of the right broken line, hewill be singlehandedly
captured by P1 in Pure Pursuit (PP), when he is initially in the region R2 to the left
of the left broken line, he will be singlehandedly captured by P2 in PP, and when the
evader is initially in the shaded region R1,2 between the right and left broken lines
he will isochronously be captured by both pursuers P1 and P2. When the evader is
initially on the right broken line he will isochronously be captured by both pursuers
P1 and P2, with P1 in PP and when the evader is initially on the left broken line he
will isochronously be captured by both pursuers P1 and P2, with P2 in PP.

3 Geometric Solution in Reduced State Space

The dimension of the Two Cutters and Fugitive Ship game’s state space can be
reduced to three using a non-inertial, rotating reference frame, by pegging the x-
axis to P1 and P2’s instantaneous positions. The y-axis is the orthogonal bisector of
the P1P2 segment. In this rotating (x, y) reference frame the states are E’s x- and
y-coordinates (xE , yE ) and the x-position xP of P1. In this reduced state space the
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Fig. 7 Rotating reference
frame

y-coordinate of P1 will always be 0 and the position of P2 will be (−xP , 0). Due to
symmetry, without loss of generality we assume xE ≥ 0 and yE ≥ 0. The rotating
reference frame (x, y) is shown overlaid on the realistic plane (X, Y) in Fig. 7 where
the P1, E and P2 players’ headings χ , φ and ψ are also indicated. Without loss of
generality, the rotating reference frame (x, y) is initially aligned with the inertial
frame (X, Y ). Using the rotating reference frame (x, y), the state space of the Two
Cutters and Fugitive Ship differential game is reduced to the first and third quadrant
of R3, that is, the set R3

1 ∪ R3
3, where

R3
1 ≡ {(xP , xE , yE ) | xP ≥ 0, yE ≥ 0}, R3

3 ≡ {(xP , xE , yE ) | xP ≥ 0, yE ≤ 0}.

There are two half planes of symmetry, {(xP , xE , yE ) | xP ≥ 0, xE = 0} and
{(xP , xE , yE ) | xP ≥ 0, yE = 0}, the latter also being a dispersal surface. Symmetry
allows us to confine our attention to the case where xE ≥ 0, yE ≥ 0, that is, the state
will evolve in the positive orthant of R3, that is, in

R3
+ = {(xP , xE , yE ) | xP ≥ 0, xE ≥ 0, yE ≥ 0},

where the three-state nonlinear dynamics of the Two Cutters and Fugitive Ship dif-
ferential game are

ẋP = 1

2
(cosχ − cosψ), xP(0) = xP0 (3)

ẋE = μ cosφ − 1

2
(cosχ + cosψ) + 1

2

yE

xP
(sin χ − sinψ), xE (0) = xE0 (4)

ẏE = μ sin φ − 1

2
(sin χ + sinψ) − 1

2

xE

xP
(sin χ − sinψ), yE (0) = yE0 . (5)
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3.1 Game of Kind in Reduced State Space

The solution of the Game of Kind in the reduced state space (xP , xE , yE ) using the
geometric method proceeds as follows.

We have two Apollonius circles: C1 is based on the instantaneous positions of
E and P1, and C2 is based on the instantaneous positions of E and P2. In the (x,y)
frame, see Fig. 6 and Eq. (2), the center O1 of the Apollonius circle C1 is at

xO1 = 1

1 − μ2
(xE − μ2xP), yO1 = 1

1 − μ2
yE

Similarly, the center O2 of the Apollonius circle C2 is at

xO2 = 1

1 − μ2
(xE + μ2xP), yO2 = 1

1 − μ2
yE

Thus, using Eq. (1), the equation of the Apollonius circle C1 is

[x − 1

1 − μ2
(xE − μ2xP)]2 + (y − 1

1 − μ2
yE )2 = μ2

(1 − μ2)2
[(xE − xP)2 + y2E ]

(6)

and the equation of the Apollonius circle C2 is

[x − 1

1 − μ2
(xE + μ2xP)]2 + (y − 1

1 − μ2
yE )2 = μ2

(1 − μ2)2
[(xE + xP)2 + y2E ]

(7)

In the (x, y) reference frame the y-coordinate of the C1 and C2 Apollonius circles’
centers is the same and therefore the distance d between the circles’ centers is

d = xO2 − xO1 = 2μ2

1 − μ2
xP

Hence, because the radii of the Apollonius circles are s.t. ρ1 < ρ2 i f f xE > 0, the
Apollonius circles C1 and C2 intersect i f f d + ρ1 > ρ2, that is,

2μxP + d1 > d2

In other words, the inequality holds

2μxP >

√
(xP + xE )2 + y2E −

√
(xP − xE )2 + y2E
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which yields the algebraic condition: The Apollonius circlesC1 andC2 intersect i f f

μ2y2E + (1 − μ2)(μ2x2
P − x2

E ) ≥ 0. (8)

In light of this, the upper part R3
1 of the reduced state space is partitioned as follows:

R3
1 = R1 ∪ R2 ∪ R1,2.

During optimal play in R1, E is captured solely by P1 while P2 is redundant, in R2,
E is captured solely by P2 while P1 is redundant, while in R1,2 E is isochronously
captured by P1 and P2.At this point it appears that things stand as follows. If condition
(8) does not hold and xE > 0 the state is in R1, where E is captured solo by P1. If
condition (8) does not hold and xE < 0 the state is in R2, where E is captured solo
by P2: From a kinematic point of view, the state is in R1 if Collision Course (CC)
guidance won’t allow P2 to capture E who is running away from P1, before P1, using
Pure Pursuit (PP), captures E. Similarly, the state is in R2 if CC guidance won’t allow
P1 to capture E who is running away from P2, before P2, using PP, captures E. As far
as geometry is concerned, let Di denote the diskwhich corresponds to the Apollonius
circle Ci , i = 1, 2. In view of the discussion from above, it would appear that the set
R1 is characterized by D1 ⊂ D2—see Fig. 2; similarly, the set R2 is characterized
by D2 ⊂ D1, and if condition (8) holds—see Fig. 3 where the Apollonius circles
C1 and C2 intersect—one might then be inclined to think that the state is in R1,2, so
that during optimal play E is isochronously captured by P1 and P2. And as far as the
characterization of the sets R1 and R2 is concerned, since xE ≥ 0 implies ρ1 ≤ ρ2,
the disk D2 cannot be contained in the disk D1, so either D1 ⊂ D2 or the Apollonius
circles C1 and C2 intersect. The geometric condition

D1 ⊂ D2 ⇒ d + ρ1 < ρ2

lets us recover the algebraic condition (8):

C1 ∩ C2 �= ∅ ⇔ d + ρ1 > ρ2 ⇔ μ2y2E + (1 − μ2)(μ2x2
P − x2

E ) > 0,

as expected. The algebraic condition (8) delineates the set in R3+,

K1 = {(xP , xE , yE ) | xP ≥ 0, xE ≥ 0, μ2y2E + (1 − μ2)(μ2x2
P − x2

E ) < 0}.

This is a cone whose xE cross sections are arcs of ellipses—see Fig. 10. When the
state is in the interior of the elliptical cone K1 or in its projection onto the plane
yE = 0, D1 ⊂ D2 and so E is captured by P1 only. Thus, one is inclined to set
R1 ≡ K1. Similarly, when the state is in the interior of the elliptical cone

K2 = {(xP , xE , yE ) | xP ≥ 0, xE ≤ 0, μ2y2E + (1 − μ2)(μ2x2
P − x2

E ) < 0}
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or in its projection onto the plane yE = 0, D2 ⊂ D1 and so E is captured by P2 only;
the set K2 is the mirror image of the cone K1 about the plane xE = 0 and one is
inclined to set R2 ≡ K2. The boundary of the elliptical cone K1 is the set of states
s.t. the Apollonius circle C1 is contained in the Apollonius disk formed by the bigger
circle C2 and is tangent to the Apollonius circle C2; similarly, the boundary of the
elliptical coneK2 is the set of states s.t. the Apollonius circle C2 is contained in the
Apollonius disk formed by the bigger circleC1 and is tangent to the Apollonius circle
C1.When the state is on the boundary of the elliptical conesK1 orK2 the Apollonius
circlesC1 andC2 are tangent, say, at point T . According to Proposition 1, the players’
aim point I is the point of tangency T of the Apollonius circles i f f yE = 0 and the
tangent to the Apollonius circles at T = I is the orthogonal bisector of the segment
P1P2; and from Eq. (8) we deduce xE = μxP ; E is then isochronously captured by
P1 and P2 who employ PP—as illustrated in Fig. 4. Note that if xE = 0, condition (8)
holds, so the quarter plane {(xP , xE , yE ) | xP ≥ 0, xE = 0, yE ≥ 0} ⊂ R1,2 and E is
isochronously captured by P1 and P2. Obviously E is also isochronously captured
by P1 and P2 when xP = 0. And so far, it would appear that during “optimal” play,
when the state is outside the elliptical cones K1 and K2 where the inequality (8)
holds, that is, the state is in what appears to be R1,2, E will be isochronously captured
by the P1 &P2 team. Thus, at first blush it would appear that Eq. (8) characterizes
the set R1,2. However, as will become apparent in the sequel, although in the set
R1,2 the inequality (8) holds, it also holds in subsets of R1 and R2: Eq. (8) does not
characterize the set R1,2.

We must properly characterize the state space regions R1, R2 and R1,2 in R3
1. The

inequality (8) does not provides the answer and it will be replaced by an alternative
condition. In this respect, consider the following. In Fig. 2 let the points E and
P2 be fixed while point P1 is moved in a clockwise direction, keeping the P1 − E
distance d1 constant so that theApollonius circlesC1 andC2 will eventually intersect,
whereupon the inequality (8) will hold. The radius ρ1 of the Apollonius circle C1

is kept constant while it is approaching the Apollonius circle C2 from the inside.
The Apollonius circle C1 first meets the Apollonius circle C2 tangentially and if
the segment P1E rotates some more clockwise, the circles start intersecting. When
this initially happens, the point I in Fig. 2 is still in the interior of the disk formed
by the Apollonius circle C2. Thus, although the Apollonius circles intersect and
condition (8) holds, E nevertheless flees toward point I with P1 in hot pursuit, as if
the configuration would have been as illustrated in Fig. 2 where the Apollonius circle
C1 is in the interior of the Apollonius disk formed by the Apollonius circle C2; it is
only when point I on the extension of the segment E O1 meets the Apollonius circle
C2 and then exists the disk formed by the Apollonius circle C2, that both pursuers,
P1 and P2 cooperatively and isochronously capture E in a pincer maneuver. Thus,
although the Apollonius circles do intersect, it nevertheless might be the case that
neither one of their two points of intersection is the players’ aim point I, and as
before, only one of the pursuers is active while the Evader runs for his life from the
active pursuer. The BSR then has the shape of a thick lens and the Evader’s and the
active pursuer’s aim point I is the point on the thick lens—shaped BSR which is
farthest away from E—it is on the circumference of the smaller Apollonius circle,
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Fig. 8 Critical configuration

Fig. 9 Interception point I

on its diameter that runs through E, while at the same time it is in the interior of the
Apollonius disk formed by the bigger Apollonius circle. The critical configuration
where point I ∈ C2 is illustrated in Fig. 7. Since, without loss of generality, we
have assumed xE ≥ 0 and yE ≥ 0, our universe of discourse will be confined to the
positive orthant of R3, R3+. To obtain a correct algebraic characterization of the sets
R1, R2 and R1,2 which will supersede condition (8), proceed as follows.

Calculate the (x, y) coordinates of the critical point I on the circumference of the
Apollonius circle C1 which is antipodal to E, as shown in Fig. 8—see also Fig. 9:

We have

xP − xI

xP − xE
= ρ1 + E O1 + d1

d1
,

yI

yE
= ρ1 + E O1 + d1

d1
,

where

E O1 = μ2

1 − μ2
d1, ρ1 = μ

1 − μ2
d1.

Hence

xI = 1

1 − μ
(xE − μxP), yI = 1

1 − μ
yE . (9)
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By construction, I ∈ C1 and I is the critical aim point if in addition I ∈ C2. To find
the points of intersection (xI , yI ) of the circles C1 and C2 boils down to the solution
of a quadratic equation:

xI = 0, yI =
yE +

√
μ2y2E + (1 − μ2)(μ2x2

P − −x2
E )

1 − μ2
. (10)

Combining Eqs. (9) and (10) we obtain the result

xE = μxP ,

and the solution of the Game of Kind is as follows.

Theorem 2 During optimal play the Evader is singlehandedly captured in PP by
P1 if the state is in the set R1; the set R1 is the wedge formed by the quarter planes
{(xP , xE , yE ) | xP = 0, xE ≥ 0, yE ≥ 0} and {(xP , xE , yE ) | xE = μxP , xP ≥ 0,
yE ≥ 0}. The Evader is singlehandedly captured in PP by P2 if the state is in the
set R2; the set R2 is the mirror image of R1 about the plane xE = 0. The Evader is
cooperatively and isochronously captured by P1 and P2 if the state is in the set

R1,2 = {(xP , xE , yE ) | −μxP ≤ xE ≤ μxP , xP ≥ 0, yE ≥ 0}

The conesK1 andK2 and/or condition (8) have no role to play here. The Apollonius
circles C1 and C2 intersect if −μxP ≤ xE ≤ μxP .

Remark 2 Proposition 1 is a corollary of Theorem 5.

In summary, the reduced state space of the Two Cutters and Fugitive Ship differential
game is the first quadrant of R3, that is, R3

1 = {(xP , xE , yE ) | xP ≥ 0, yE ≥ 0}. The
state space R3

1 is symmetric about the plane xE = 0; the positive orthant R3+ half of
the state space where R1 (andK1) reside is illustrated in Fig. 9. Since point capture is
desired, the terminal set in the R1 subset of the R3+ state space illustrated in Fig. 10 is
the straight line {(xP , xE , yE ) | xE = xP , xP ≥ 0, yE = 0} and the terminal set in the
R1,2 subset of the state space is the origin. However, when the pursuers are endowed
with a circular capture set of radius l the set R1 is no longer a wedge—the surface
separating the R1 and R1,2 subsets of the state space is no longer planar. The terminal
set in the R1 subset of the state space is now half a cylinder of radius l raised above the
plane yE = 0 and it is centered on the straight line {(xP , xE , yE ) | xP = xE , yE = 0}.
The terminal set in the R1,2 subset of the state space is a quarter circle in the plane
xE = 0 of radius l, centered at the origin. The positive orthant R3+ of the state space
when l > 0 is notionally illustrated in Fig. 10 where the regionK1 in the state space
where the Cartesian ovals2 intersect is also shown. The reduced state space also
comprises the third quadrant R3

3 of the reduced state space (xP , xE , yE ) but due to

2When P is endowed with a capture circle the Apollonius circle locus is replaced with a Cartesian
oval.
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Fig. 10 The positive orthant

symmetry we confine our attention to the first ortant of the reduced state space. The
reader is referred to Ref. [5] where the Two-on-One pursuit-evasion differential game
with a non-zero capture range is analyzed.

3.2 Game of Degree in Reduced State Space

3.2.1 Game in R1 and R2

In R1 the active pursuer P1 employs PP while the evader runs for his life. The actions
of pursuer P2 do not affect the outcome of the game and so, for exclusively illustrative
purposes, we stipulate that P2 mirrors the control of P1. This ensures that the (x, y)

frame won’t rotate—it would just slide upward along the Y - axis of the realistic
plane, which then coincides with the y-axis. The optimal trajectories in R1 are the
family of straight lines

xP(t) = xP0 + xE0 − xP0√
(xP0 − xE0)

2 + y2E0

t

xE (t) = xE0 + μ
xE0 − xP0√

(xP0 − xE0)
2 + y2E0

t

yE (t) = yE0 − (1 − μ)
yE0√

(xP0 − xE0)
2 + y2E0

t.
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The state yE (t) is monotonically decreasing and when parameterized by yE , the
optimal trajectories in R1 are the family of straight lines

xP = 1

1 − μ
(

xP0 − xE0

yE0

yE + xE0 − μxP0)

xE = 1

1 − μ
(μ

xP0 − xE0

yE0

yE + xE0 − μxP0).

In the case of point capture (l = 0) these trajectories terminate in the plane yE = 0, on
the straight line xP = xE . Theoptimalflowfield in R1 consists of the family of straight
line trajectories fromabove,which terminate on the straight line {(xP , xE , yE ) | xE =
xP , yE = 0}. Similar considerations apply to R2 where the active pursuer is P2. The
optimal flow field in R2 is a mirror image of the optimal flow field in R1.

When x p = 0, P1 and P2 are collocated. The half plane {(xP , xE , yE ) | xP =
0, yE ≥ 0} ⊂ R1 ∪ R2.

3.2.2 Game in R1,2

If the state is in R1,2 = {(xP , xE , yE ) | −μxP ≤ xE ≤ μxP , xP ≥ 0, yE ≥ 0} E will
be isochronously captured by the P1 & P2 team. Since
 P1P2 I in Fig. 3 is isosceles,
the aimpoint I = (0, y) is obtained upon setting x = 0 inEqs. (6) or (7), which yields
a quadratic equation in y. The discriminant of the quadratic equation is positive i f f
the Apollonius circles C1 and C2 intersect, which is the case i f f condition (8) holds
and is certainly the case if −μxP ≤ xE ≤ μxP , whereupon

y = 1

1 − μ2
[yE + sign(yE )

√
μ2y2E + (1 − μ2)(μ2x2

P − x2
E )],

where the function

sign(x) ≡
⎧
⎨
⎩

1 i f x > 0
0 i f x = 0

−1 i f x < 0

so

yI = 1

1 − μ2
[yE + sign(yE )

√
μ2y2E + (1 − μ2)(μ2x2

P − x2
E )]. (11)

Using the geometric method, the players’ optimal state feedback strategies in R1,2

are explicitly given by
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sinψ∗ = yI√
x2

P + y2I

, cosψ∗ = xP√
x2

P + y2I

(12)

sin χ∗ = yI√
x2

P + y2I

, cosχ∗ = − xP√
x2

P + y2I

(13)

sin φ∗ = yI − yE√
(yI − yE )2 + x2

E

, cosφ∗ = − xE√
(yI − yE )2 + x2

E

(14)

and the time-to-capture/Value function is

V (xP , xE , yE ) =
√

x2
P + y2I , (15)

where the function yI (xP , xE , yE ) is given by Eq. (11).
When the initial state (xP0 , xE0 , yE0) ∈ R1,2 and P1, P2 and E play optimally, the

closed- loop dynamics are

ẋP = − (1 − μ2)xP√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

,

xP (0) = xP0

ẋE = − (1 − μ2)xE√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

,

xE (0) = xE0

(16)

ẏE = − (1 − μ2)yE√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

,

yE (0) = yE0 , 0 ≤ t.

The solution of the system (16) of strongly nonlinear differential equations is simply

xP (t) = (1 − t

t f
)xP0

xE (t) = (1 − t

t f
)xE0 (17)

yE (t) = (1 − t

t f
)yE0 , 0 ≤ t ≤ t f ,

where
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t f = 1

1 − μ2

√
(1 − μ2)(x2P0 − x2E0

) + (1 + μ2)y2E0
+ 2yE

√
μ2y2E0

+ (1 − μ2)(μ2x2P0 − x2E0
).

(18)

Inserting Eqs. (17) into Eqs. (12)–(14) we obtain the players’ constant headings in both the (x, y)

and (X, Y ) frames

sinψ∗ =
yE0 +

√
μ2y2E0

+ (1 − μ2)(μ2x2P0 − x2E0
)

√
(1 − μ2)(x2P0 − x2E0

) + (1 + μ2)y2E0
+ 2yE0

√
μ2y2E0

+ (1 − μ2)(μ2x2P0 − x2E0
)

cosψ∗ = (1 − μ2)xP0√
(1 − μ2)(x2P0 − x2E0

) + (1 + μ2)y2E0
+ 2yE0

√
μ2y2E0

+ (1 − μ2)(μ2x2P0 − x2E0
)

χ∗ = π − ψ∗ (19)

sin φ∗ = 1

μ

μ2yE0 +
√

μ2y2E0
+ (1 − μ2)(μ2x2P0 − x2E0

)
√

(1 − μ2)(x2P0 − x2E0
) + (1 + μ2)y2E0

+ 2yE0

√
μ2y2E0

+ (1 − μ2)(μ2x2P0 − x2E0
)

cosφ∗ = − 1

μ

(1 − μ2)xE0√
(1 − μ2)(x2P0 − x2E0

) + (1 + μ2)y2E0
+ 2yE0

√
μ2y2E0

+ (1 − μ2)(μ2x2P0 − x2E0
)

.

The initial state (xP0 , xE0 , yE0) can momentarily be viewed as the current state and
as such, Eq. (19) are explicit state feedback “optimal” strategies, as provided by the
geometric method; the attendant Value function is given in Eq. (18).

When the geometric method is applied and P1 and P2 play “optimally”, from Eq.
(19) we deduce that in the (x, y) frame the headings of P1 and P2 are mirror images of
each other: χ∗ = π − ψ∗. Therefore, the (x, y) frame does not rotate and the players’
headings are constant also in the (inertial) (X, Y ) frame of the realistic plane. Hence,
in the realistic plane, the “optimal” trajectories are straight lines. Since initially the
rotating (x, y) frame is aligned with the (X, Y ) frame of the realistic plane, the y-axis
stays aligned with the Y-axis while the x-axis stays parallel to the X-axis moving
in the upward direction at a constant speed. Therefore the “optimal” trajectories
are also straight lines in the (x, y) frame. Thus, when the state feedback strategies
(19) synthesized using the geometric method are applied, the closed- loop system’s
“optimal” flow field in the R1,2 region of the reduced state space consists of the
family of straight line trajectories (17) which converge at the origin. Moreover, this
flow field, which was produced by the geometric method, covers the R1,2 region of
the reduced state space—this, by construction.

At this juncture it is important to recognize that in truth, the herein discussed
geometricmethod only yielded the solution of a related open- loopmax-min optimal
control [6] problem, not the solution of the differential game we are after: The
optimal control problem solved so far for initial states (xP0 , xE0 , yE0) ∈ R1,2 is one
where a discriminated evader/ship is obliged to preannounce his control time history,
knowing that the pursuers/cutters will then chose a course of action s.t. his time—
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to—capture will be minimized; whereupon the evader will set his course so that the
time-to-capture is maximized; at best, a lower bound of the Value of the game has
been obtained; the optimality of the geometrically derived state feedback strategies
(19) has yet to be proved.

4 Isaacs’ Method

Wenowembark on applying Isaacs’method for the systematic solution of differential
games to the Two Cutters and Fugitive Ship differential game. Following in Isaacs’
footsteps, we solve the Two Cutters and Fugitive Ship differential game in the three-
dimensional reduced state space R3

1 = {(xP , xE , yE ) | xP ≥ 0, yE ≥ 0}. In the R1

and R2 regions of the reduced state space only one pursuer is active and the game is
trivial: Optimal play entails classical PP and pure evasion; the optimal flow field in
the R1 and R2 regions of the reduced state space is provided in Sect. 3.2.1. The more
interesting game takes place in the R1,2 region of the reduced state space where under
optimal play both pursuers cooperatively and isochronously capture the evader. The
objective is to rigorously justify the geometric method in the R1,2 region of the state
space, that is, validate the tentatively optimal state feedback strategies (19) of the
pursuers and the evader and the differential game’s Value function (18) presented in
Sect. 3.2.2. Due to symmetry, we confine our attention to the part of R1,2 which is in
the positive orthant R3+. Isaacs’ method entails Dynamic Programming. We dutifully
start from the “end”.

The Two Cutters and Fugitive Ship differential game is played in R3
1, the first

quadrant of the three-dimensional state space (xP , xE , yE ). In a three- dimensional
state space a proper terminal manifold must be a two-dimensional manifold—one
cannot really talk about point capture. Hence, we momentarily endow the pursuers
with circular capture sets of radius l and in due course we’ll let l → 0. Thus, the
terminal manifold in the reduced R3

1 state space is

T = {(xP , xE , yE ) | (xP − xE )2 + y2E = l2, xP ≥ 0, xE ≥ 0, yE ≥ 0}
∪{(xP , xE , yE ) | (xP + xE )2 + y2E = l2, xP ≥ 0, xE ≤ 0, yE ≥ 0}

The two- dimensional terminal manifold T is not smooth—it is not differentiable
in the quarter plane {(xP , xE , yE ) | xP ≥ 0, xE = 0, yE ≥ 0} ⊂ R1,2. In general, at
points where a manifold is not smooth a normal to the surface might not exist, or, a
normal to the surface is not unique. When a normal to the surface is not unique, this
implies that multiple optimal trajectories will terminate at this point and in doing
so, cover a swath of the state space. The locus where the terminal manifold is not
differentiable is in the region of interest — it is in the R1,2 subset of the R3

1 state
space. In R1,2—see Fig. 10—the terminal manifold is

T = {(xP , xE , yE ) | x2
P + y2E = l2, xP ≥ 0, xE = 0, yE ≥ 0}.
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It is a quarter circle in the plane xE = 0. Although we have eschewed point capture
and have taken the physically sound step of allowing for finite capture sets, the
terminal manifoldT in the R1,2 region of the state space is of dimension one and not
of dimension two, as “required”—this being a manifestation of the fact that the two-
dimensional terminal manifold in the R3

1 state space of the Two Cutters and Fugitive
Ship differential game is not smooth. The terminal manifold in the R1,2 region of
the state space is “rank deficient” and it resides on the boundary of R1,2. In the R1,2

region of the state space the optimal flow field is s.t. multiple optimal trajectories
will terminate at the same point on the quarter circle terminal manifold illustrated in
Fig. 10.

When solving the differential game, we are exclusively interested in the inward
pointing normals n to the terminal “surface” T because they set the terminal condi-
tions of the costate vector. But although the problem formulation is physically sound,
our terminal “surface” in R1,2, T , is “rank deficient”: It is a circular arc in the plane
xE = 0 which we now parameterize as follows.

T = {(xP , xE , yE ) | xP = l cos ξ, xE = 0, yE = l sin ξ, 0 ≤ ξ ≤ π

2
}. (20)

Because the terminal manifold is rank deficient, the normals to the terminal “surface”
at a point of the “surface” are not unique. From Eq. (20) we extract the information
pertinent to the terminal costates in the part of R1,2 which is in the positive orthant
R3+ of the state space where xE > 0:

λ(t f ) = −a

⎛
⎝

cos ξ

b
sin ξ,

⎞
⎠

where 0 ≤ ξ ≤ π
2 and the scalars a > 0, b < 0; in the half of R1,2 which is not in the

positive orthant, b > 0 and in the plane xE = 0, b = 0. As far as the terminal costate
is concerned, the stipulated size l of the pursuers’ capture set plays no role here. This
is good because down the road we’ll be exclusively interested in point capture, that
is, l → 0.

The Hamiltonian

H = −1 + 1

2
λxP (cosχ − cosψ) + λxE [μ cosφ − 1

2
(cosχ + cosψ) + 1

2

yE

xP
(sin χ − sinψ)]

+λyE [μ sin φ − 1

2
(sin χ + sinψ) − 1

2

xE

xP
(sin χ − sinψ)]

= −1 − 1

2
[(λyE + yEλxE − xEλyE

xP
) sinψ + (λxE + λxP ) cosψ

+(λyE − yEλxE − xEλyE

xP
) sin χ + (λxE − λxP ) cosχ] + μ(λyE sin φ + λxE cosφ). (21)

The costate vector λ is related to the partial derivatives of the Value function
V (xP , xE , yE ): λxP = −VxP , λxE = −VxE and λyE = −VyE . Maximizing the Hamil-
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tonian in χ and ψ and minimizing the Hamiltonian in φ yields the following char-
acterization of the optimal controls.

sin χ∗ =
yE λxE −xE λyE

xP
− λyE√

(λxE − λxP )2 + (λyE − yE λxE −xE λyE
xP

)2
, cosχ∗ = λxP − λxE√

(λxE − λxP )2 + (λyE − yE λxE −xE λyE
xP

)2

(22)

sinψ∗ =
xE λyE −yE λxE

xP
− λyE√

(λxE + λxP )2 + (λyE + yE λxE −xE λyE
xP

)2
, cosψ∗ = −(λxE + λxP )√

(λxE + λxP )2 + (λyE + yE λxE −xE λyE
xP

)2

(23)

sin φ∗ = − λyE√
λ2

xE
+ λ2

yE

, cosφ∗ = − λxE√
λ2

xE
+ λ2

yE

. (24)

In the part of R1,2 which is in the positive orthant R3+ where xE > 0, the attendant
costate equations are

λ̇xP = 1

2

yEλxE − xEλyE

x2
P

(sin χ∗ − sinψ∗), λxP (t f ) = −a cos ξ

λ̇xE = 1

2

λyE

xP
(sin χ∗ − sinψ∗), λxE (t f ) = −ab (25)

λ̇yE = −1

2

λxE

xP
(sin χ∗ − sinψ∗), λyE (t f ) = −a sin ξ,

where 0 ≤ ξ ≤ π
2 ; the scalars a > 0, b < 0.

Insert the controls (22)–(24) into the dynamics equations (3)–(5) and into the
costate equations (25) and obtain the Euler-Lagrange/characteristics’ equations, a
set of six nonlinear differential equations in the variables xP , xE , yE , λxP , λxE , λyE .

ẋP = 1

2
[ λxP − λxE√

(λxE − λxP )
2 + (λyE − yE λxE −xE λyE

xP
)2

+ (λxE + λxP )√
(λxE + λxP )

2 + (λyE + yE λxE −xE λyE
xP

)2
], xP(0) = xP0

ẋE = −μ
λxE√

λ2
xE

+ λ2
yE

− 1

2
[ λxP − λxE√

(λxE − λxP )
2 + (λyE − yE λxE −xE λyE

xP
)2

− (λxE + λxP )√
(λxE + λxP )

2 + (λyE + yE λxE −xE λyE
xP

)2
]
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+ 1

2

yE

xP
[

yE λxE −xE λyE
xP

− λyE√
(λxE − λxP )

2 + (λyE − yE λxE −xE λyE
xP

)2

−
xE λyE −yE λxE

xP
− λyE√

(λxE + λxP )
2 + (λyE + yE λxE −xE λyE

xP
)2

], xE (0) = xE0

ẏE = −μ
λyE√

λ2
xE

+ λ2
yE

− 1

2
[

yE λxE −xE λyE
xP

− λyE√
(λxE − λxP )

2 + (λyE − yE λxE −xE λyE
xP

)2

+
xE λyE −yE λxE

xP
− λyE√

(λxE + λxP )
2 + (λyE + yE λxE −xE λyE

xP
)2

]

− 1

2

xE

xP
[

yE λxE −xE λyE
xP

− λyE√
(λxE − λxP )

2 + (λyE − yE λxE −xE λyE
xP

)2

−
xE λyE −yE λxE

xP
− λyE√

(λxE + λxP )
2 + (λyE + yE λxE −xE λyE

xP
)2

], yE (0) = yE0

λ̇xP = 1

2

yEλxE − xEλyE

x2
P

[
yE λxE −xE λyE

xP
− λyE√

(λxE − λxP )
2 + (λyE − yE λxE −xE λyE

xP
)2

−
xE λyE −yE λxE

xP
− λyE√

(λxE + λxP )
2 + (λyE + yE λxE −xE λyE

xP
)2

], λxP (t f ) = −a cos ξ

λ̇xE = 1

2

λyE

xP
[

yE λxE −xE λyE
xP

− λyE√
(λxE − λxP )

2 + (λyE − yE λxE −xE λyE
xP

)2

−
xE λyE −yE λxE

xP
− λyE√

(λxE + λxP )
2 + (λyE + yE λxE −xE λyE

xP
)2

], λxE (t f ) = −ab
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λ̇yE = 1

2

λxE

xP
[

xE λyE −yE λxE
xP

− λyE√
(λxE + λxP )

2 + (λyE + yE λxE −xE λyE
xP

)2

−
yE λxE −xE λyE

xP
− λyE√

(λxE − λxP )
2 + (λyE − yE λxE −xE λyE

xP
)2

], λxE (t f ) = −a sin ξ

Evidently, the parameters 0 ≤ ξ ≤ π
2 , a > 0 and b will feature in the solution of the

Euler-Lagrange equations. The above equations yield a family of optimal trajecto-
ries/characteristics parameterized by the two independent parameters b and ξ , and
as such, can fill our three- dimensional state space region R1,2.

In addition, inserting Eqs. (22)–(24) into the Hamiltonian (21) yields the optimal
smooth Hamiltonian

H = −1 + 1

2
[
√

(λxE − λxP )
2 + (λyE − yEλxE − xEλyE

xP
)2

+
√

(λxE + λxP )
2 + (λyE + yEλxE − xEλyE

xP
)2 ] − μ

√
λ2

xE
+ λ2

yE
.

The Hamiltonian vanishes and evaluating the optimal Hamiltonian at t = t f allows
us to express the parameter a as a function of the parameters b and ξ :

1 = 1

2
[
√

a2(b − cos ξ)2 + (−a sin ξ − −abl sin ξ

l cos ξ
)2 +

√
a2(b + cos ξ)2 + (−a sin ξ + −abl sin ξ

l cos ξ
)2]

− μ
√

a2(b + sin ξ)2

= 1

2
a

1

cos ξ
[
√

(b − cos ξ)2 cos2 ξ + (b − cos ξ)2 sin2 ξ +
√

(b + cos ξ)2 cos2 ξ + (b + cos ξ)2 sin2 ξ ]
− μa | b + sin ξ | .

Hence

a = cos ξ
1
2 (| b − cos ξ | + | b + cos ξ |) − μ | b + sin ξ | cos ξ

. (26)

In view of the relationship (26), the Euler-Lagrange equations are ultimately param-
eterized by 0 ≤ ξ ≤ π

2 and b; the parameter a won’t feature in what follows.
Note that in the half plane of symmetry {(xP , xE , yE ) | xP ≥ 0, xE = 0}, b = 0,

so the smoothness of the Value function is retained under passage from the side of
R1,2 where xE > 0 and b < 0 to the side of R1,2 where xE < 0 and b > 0.

Isaacs’ method mandates that the Euler-Lagrange equations be integrated in ret-
rograde fashion “starting” out from the “initial” condition xP = 0, xE = 0, yE = 0,
λxP = −a cos ξ , λxE = −ab, λyE = −a sin ξ . One will obtain a family of optimal
trajectories (xP(·), xE (·), yE (·)) ∈ R1,2 ⊂ R3

1 parameterized by 0 ≤ ξ ≤ π
2 and b,

which potentially covers the state space region R1,2. At this point it would seem that
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numerical integration is required. However, with the benefit of hindsight, the solution
of the Euler-Lagrange equations is embodied in the family of “optimal” trajectories
specified by Eq. (17) which, by construction, covers the state space region R1,2: We
shall show that the trajectories (17) provided by the geometric method are in fact
the solution of the Euler-Lagrange equations. This will allow us to finally dispose of
the quotation marks when referring to the optimality of the state feedback strategies
(19) and the attendant Value function (18).

The proof proceeds as follows. We make the Ansatz that the family of trajectories
(17) which cover the state space region R1,2 and were generated by the geometric
method are the optimal trajectories, and we will show that:

∀ (xP0 , xE0 , yE0) ∈ R1,2, ∃ “initial” costates 0 ≤ ξ ≤ π
2 and b s.t. the Euler-

Lagrange equations are satisfied. Furthermore, the argument is reversible.
First, note that the following holds.

Proposition 3 If the state’s time history is given by Eq. (17), the players’ headings
are constant and moreover, the headings of the pursuers P1 and P2 satisfy

χ = π − ψ

Proof See Eq. (19).

We now turn our attention to Eqs. (3)–(5) and (22)–(25).
1. Applying Proposition 4 to the costate equations (25) yields

λ̇xP = 0, λxP (t f ) = −a cos ξ

λ̇xE = 0, λxE (t f ) = −ab

λ̇yE = 0, λyE (t f ) = −a sin ξ

wherefrom we immediately deduce that the costate vector λ is constant:

λ(t) = −a

⎛
⎝
cos ξ

b
sin ξ

⎞
⎠ , ∀ 0 ≤ t ≤ t f

According to the Ansatz, during optimal play the state’s time history is given by Eq.
(17), and consequently, the costate’s constant components are

λxP = −a cos ξ, λxE = −ab, λyE = −a sin ξ.,

We now turn to the optimal control equations. From Eq. (24) we deduce that given
the parameters b and ξ , the optimal control φ∗ of the Evader is constant and

sin φ∗ = sin ξ√
b2 + sin2 ξ

, cosφ∗ = b√
b2 + sin2 ξ

.
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And because in view of Proposition 4 the (x, y) frame is not rotating, the optimal
course of the Evader is constant, so in the realistic plane (X, Y ) the path of the
Evader is a straight line. During optimal play E holds course, which is tantamount
to E deciding on his course at the initial time t = 0. Hence, it stands to reason that
without incurring a loss in optimality, also P1 and P2 can chose their course at time
t = 0. That this is indeed so follows from the following argument.

From Eq. (23) we deduce that given the parameters b and ξ , the optimal control
ψ∗(t) of P2 is specified as follows.

sinψ∗ =
(1 − xE

xP
) sin ξ + b

yE
xP√

(b + cos ξ)2 + [(1 − xE
xP

) sin ξ + b
yE
xP

]2
, cosψ∗ = b + cos ξ√

(b + cos ξ)2 + [(1 − xE
xP

) sin ξ + b
yE
xP

]2
.

(27)

Now, since l = 0, if the family of optimal trajectories is indeed specified by Eq. (17),
the state component ratios featuring in Eq. (27) are constant:

xE (t)

xP(t)
= xE0

xP0

,
yE (t)

xP(t)
= yE0

xP0

.

In view of Eq. (27) we conclude that the optimal control ψ∗ of P2 is constant.
This, being the case, we evaluate the optimal control of P2 at time t f where
(xP , xE , yE ) |t f = (l cos ξ, 0, l sin ξ). The state component ratios at t = t f are

xE

xP
|t f = 0,

yE

xP
|t f = tan ξ, ∀ l ≥ 0 (28)

Inserting Eq. (28) into Eq. (27) we calculate

sin(ψ∗(t f )) = sin ξ, cos(ψ∗(t f )) = cos ξ,

that is,

ψ∗(t f ) = ξ.

Hence, given the parameters b and ξ , if indeed, according to the Ansatz, the family
of optimal trajectories is given by Eq. (17), the constant headings of the pursuers P1

and P2 are

χ∗ ≡ π − ξ, ψ∗ ≡ ξ.

2. Applying Proposition 4 to the dynamics Eqs. (3)–(5) yields

ẋP = − cosψ∗

ẋE = μ cosφ∗

ẏE = μ sin φ∗ − sinψ∗
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and inserting therein the parameterized by b and ξ optimal controls χ∗, ψ∗ and φ∗,
we obtain

ẋP = − cos ξ, xP(0) = xP0

ẋE = μ
b√

b2 + sin2 ξ
, xE (0) = xE0

ẏE = μ
sin ξ√

b2 + sin2 ξ
− sin ξ, yE (0) = yE0 .

Integrating the above differential equations in retrograde fashion and recalling that
the trajectories terminate at the origin, we calculate

xP0 = cos ξ · t f (29)

xE0 = −μ
b√

b2 + sin2 ξ
· t f (30)

yE0 = (1 − μ
1√

b2 + sin2 ξ
) sin ξ · t f (31)

NoteBecause yE0 ≥ 0, the parameters b and ξ we are after must satisfy b2 + sin2 ξ ≥
μ2. That this is so will become apparent in the sequel.

To complete the proof it behooves on us to show that
∀ (xP0 , xE0 , yE0) ∈ R1,2, ∃ b, 0 < ξ < π

2 and t f > 0 s.t. Eqs. (29)–(31) hold—we
must be able to solve the three Eqs. (29)–(31) in the three unknowns b, ξ and t f .

We first remove t f from further consideration and, provided b �= 0, obtain two
equations in the two unknowns b and ξ :

xP0

xE0

= −
√

b2 + sin2 ξ

μb
cos ξ (32)

yE0

xP0

= (1 − μ√
b2 + sin2 ξ

) tan ξ. (33)

We use Eq. (32) to express b as a function of ξ ,

b = − sin ξ cos ξ√
μ2(

xP0
xE0

)2 − cos2 ξ
sign(xE0).

Note: In the R1,2 region of the state space | xE0 |≤ μxP0 , so the expression under the
square root is positive. Also, in the positive orthant, where xE0 > 0,

b = − sin ξ cos ξ√
μ2(

xP0
xE0

)2 − cos2 ξ
. (34)
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We also calculate

√
b2 + sin2 ξ =

μ(
xP0
xE0

) sin ξ
√

μ2(
xP0
xE0

)2 − cos2 ξ
. (35)

We insert the expression (35) into Eq. (33) and obtain the equation in ξ

yE0

xP0

= [1 −
√

μ2(
xP0
xE0

)2 − cos2 ξ

(
xP0
xE0

) sin ξ
] tan ξ

which yields

yE0 cos ξ = xP0 sin ξ −
√

μ2x2
P0

− x2
E0
cos2 ξ . (36)

Note that in the R1,2 region of the state space the expression under the square root is
positive.

Concerning the existence of a solution of Eq. (36), considers the function

f (ξ) ≡ yE0 cos ξ − xP0 sin ξ +
√

μ2x2
P0

− x2
E0
cos2 ξ, 0 ≤ ξ ≤ π

2
.

We calculate

f (0) = yE0 +
√

μ2x2
P0

− x2
E0

> 0, f (
π

2
) = −(1 − μ)xP0 < 0.

Hence, ∃ 0 < ξ < π
2 s.t. f (ξ) = 0. Solving Eq. (36) analytically boils down to the

solution of a quadratic equation. Let

x ≡ cos2 ξ.

We obtain the quadratic equation in x

(x4
P0

+ x4
E0

+ y4E0
+ 2x2

E0
y2E0

+ 2x2
P0

y2E0
− 2x2

P0
x2

E0
)x2 − 2x2

P0
[(1 − μ2)(x2

P0
− x2

E0
)

. + (1 + μ2)y2E0
]x + (1 − μ2)2x4

P0
= 0.

The discriminant of the quadratic equation

	 = 4x4
P0

y2E0
[μ2x2

P0
− x2

E0
+ μ2(x2

E0
+ y2E0

)].

In the state space region R1,2, | xE0 |< μxP0 , and therefore the discriminant 	 > 0.
Thus, the quadratic equation has two real roots. Furthermore, consider the quadratic
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polynomial

g(x) ≡ (x4
P0

+ x4
E0

+ y4E0
+ 2x2

E0
y2E0

+ 2x2
P0

y2E0
− 2x2

P0
x2

E0
)x2

−2x2
P0

[(1 − μ2)(x2
P0

− x2
E0

) + (1 + μ2)y2E0
]x + (1 − μ2)2x4

P0
.

We calculate g(0) = (1 − μ2)2x4
P0

> 0 and g(1) = (μ2x2
P0

− x2
E0

− y2E0
)2 > 0,

wherefrom we conclude that the roots of the quadratic equation satisfy 0 < x < 1,
as required. The solution of the quadratic equation is

x = x2
P0

(1 − μ2)(x2
P0

− x2
E0

) + (1 + μ2)y2E0
+ 2yE0

√
μ2(x2

P0
+ y2E0

) − (1 − μ2)x2
E0

x4
P0

+ x4
E0

+ y4E0
+ 2x2

E0
y2E0

+ 2x2
P0

y2E0
− 2x2

P0
x2

E0

and

ξ = Arccos(
√

x).

Finally, from Eq. (34),

b = −
√√√√ (1 − x)x

μ2(
xP0
xE0

)2 − x
sign(xE ).

Next, consider the case where the parameter b = 0. The parameter b = 0 generates
the optimal flow field in the plane of symmetry, that is, the plane xE = 0. Now b = 0
and Eqs. (29) and (31) yield

xP0 = cos ξ · t f

yE0 = (sin ξ − μ) · t f .

We have two equations in the two unknowns ξ and t f .

Proposition 4 ∀ xP > 0 and xE > 0, ∃ ξ > Arcsin(μ) and t f > 0 which satisfy
the two equations from above.

Proof We first eliminate t f and calculate ξ as follows.

yE0

xP0

= sin ξ − μ

cos ξ

and we obtain the quadratic equation in cos ξ ,

(x2
P0

+ y2E0
) cos2 ξ + 2μxP0 yE0 cos ξ − (1 − μ2)x2

P0
= 0

whereupon
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sin ξ =
μ + yE0

xP0

√
1 − μ2 + (

yE0
xP0

)2

1 + (
yE0
xP0

)2
, cos ξ =

√
1 − μ2 + (

yE0
xP0

)2 − μ
yE0
xP0

1 + (
yE0
xP0

)2

and sin ξ > μ because

μ + yE0

xP0

√
1 − μ2 + (

yE0

xP0

)2 > μ + μ(
yE0

xP0

)2

because
√
1 − μ2 + (

yE0

xP0

)2 > μ
yE0

xP0

because

1 − μ2 > (μ2 − 1)(
yE0

xP0

)2

because

1 > −(
yE0

xP0

)2.

Thus, the following holds.

Theorem 5 The Two Cutters and Fugitive Ship differential game’s solution is
presented in the three-dimensional reduced state space {(xP , xE , yE ) | xP ≥ 0}
where there are two half planes of symmetry, {(xP , xE , yE ) | xP ≥ 0, yE = 0} and
{(xP , xE , yE ) | xP ≥ 0, xE = 0}. Hence, it is sufficient to confine one’s attention to
the positive orthant of the reduced state space. In the state space region R1,2 where
both Pursuers P1 and P2 actively engage the Evader and which is in the positive
orthant, the players’ optimal state feedback strategies are derived from Eqs. (19),
that is,

sinψ∗ =
yE +

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

cosψ∗ = (1 − μ2)xP√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

χ∗ = π − ψ∗

sin φ∗ = 1

μ

μ2yE +
√

μ2y2E + (1 − μ2)(μ2x2P − x2E )
√

(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )
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cosφ∗ = − 1

μ

(1 − μ2)xE√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E )

and the Value function, derived from Eq. (18), is

V (xP , xE , yE ) = 1

1 − μ2

√
(1 − μ2)(x2P − x2E ) + (1 + μ2)y2E + 2yE

√
μ2y2E + (1 − μ2)(μ2x2P − x2E ) .

The field of primary optimal trajectories covers the entire state space and the Value
function is C1, except on the half plane of symmetry {(xP , xE , yE ) | xP ≥ 0, yE = 0}
which is a dispersal surface; no additional singular surfaces are present. The field of
optimal trajectories is symmetric about the half planes {(xP , xE , yE ) | xP ≥ 0, yE =
0} and {(xP , xE , yE ) | xP ≥ 0, xE = 0} and the optimal trajectories in the half plane
{(xP , xE , yE ) | xP ≥ 0, xE = 0} stay there all along. The geometric method yields
the correct solution of the differential game.

Similar to the quadratic cost Ansatz used in the solution of the Linear-Quadratic
Differential Game, the Ansatz artifice used herein concerning the trajectories (17)
is a self fulfilling prophesy. The geometric method yields the correct solution and
one has avoided the need to numerically integrate the Euler-Lagrange system of
nonlinear differential equations arising when Isaacs’ method is dogmatically applied
to the Two Cutters and Fugitive Ship differential game.

In summary, only when we have a complete set of optimal trajectories f illing
a capture region separated from the escape region by a closed barrier, or possibly,
the region of capturability is the whole state space—this, as specified by the solution
of the Game of Kind—has a differential game been solved. There are only a few
3-D pursuit-evasion differential games solved, none in a higher dimension. Games
in 3-D with no singular surfaces, at least, for a range of parameters and still an
acceptable model of conflict situations of interest so that their relevance is preserved,
are instances where interesting pursuit-evasion differential games in 3-D have been
solved. We refer to the Two Cutters and Fugitive Ship Differential Game, the Dif-
ferential Game of Guarding a Target [7], and the Active Target Defense Differential
Game [8]. The secret sauce is provided by the following.

Theorem 6 The solution of zero-sum differential games by solving the max min
open-loop optimal control problem using the two sided Pontryagin Maximum Prin-
ciple and synthesizing the players’ state feedback optimal strategies in receding
horizon optimal control fashion is valid if and only if the application of Isaacs’
method results in primary optimal trajectories only, a.k.a., regular characteristics,
which cover the capture zone. The optimal flow field must cover the entire capture
zone which was provided by the solution of the Game of Kind, so there is no need for
singular surfaces, except a dispersal surface.

When this is the case and the players have simple motion the geometric method
applies. This is the reasonwhy in the TwoCutters and Fugitive Ship differential game
the geometric method is applicable and therefore the correctness of Isaacs’ solution
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has been proved. In this paper, we have proven that the application of Isaacs’ method
yields an optimal flow field which covers the reduced 3-D state space. Having the
geometric solution facilitated the proof.

5 Conclusion and Extensions

In this paper Isaacs’ Two Cutters and Fugitive Ship differential game has been revis-
ited. The solution of the Game of Kind is provided, that is, the state space regions
where under optimal play just one of the pursuers captures the evader, and also the
state space region where both pursuers cooperatively capture the target, have been
characterized. The solution of the Game of Degree has been obtained using Isaacs’
method. Thus, the elegant geometric solution provided by Isaacs is now fully jus-
tified. As it so often happens in differential games, the doctrinaire employment of
Isaacs’ method towards the solution of even the “simple” Two Cutters and Fugi-
tive Ship differential game was not devoid of complexity. However, the intuition
provided by the heuristic geometric approach, and also visualizing the game in the
realistic plane, are instrumental in facilitating the solution process. The Two Cutters
and Fugitive Ship is an interesting differential game where the optimal flow field
consists of regular trajectories only. The Value function is C1, except on a half plane
which is a dispersal surface, and there are no additional singular surfaces.

Concerning extensions, the cutters’ speed need not be equal, provided that it
is higher than the speed of the fugitive ship. Furthermore, it is interesting to also
consider the case where the speed of just one of the two cutters, say P1, is higher
than the speed of the fugitive ship while the speed of P2 is equal to the speed of the
fugitive ship. In this case, upon employing the now validated geometric method, the
Apollonius circle which is based on E and P2 devolves into the orthogonal bisector
of the segment E P2. It makes sense to also stipulate that the cutters P1 and P2

are endowed with circular capture sets with radii l1 > 0 and l2 > 0 respectively. In
this case, the elegant Apollonius circles will be replaced by Cartesian ovals and the
boundary separating the R1, R2, and R1,2 regions of the state space won’t be planar
and will be replaced by a more complex surface as illustrated in Fig. 11.
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Fig. 11 Positive orthant,
l > 0
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A Normal Form Game Model of Search
and Pursuit

Steve Alpern and Viciano Lee

1 Introduction

Traditionally, search games and pursuit games have been studied by different people,
using different techniques. Pursuit games are usually of perfect information and are
solved in pure strategies using techniques involving differential equations. Search
games, on the other hand, typically require mixed strategies. Both Pursuit and Search
games were initially modelled and solved by Rufus Isaacs in his book [8]. The first
attempt to combine these games was the elegant paper of Gal and Casas [6]. In
their model, a hider (a prey animal in their biological setting) begins the game by
choosing among a finite set of locations in which to hide. The searcher (a predator)
then searches (or inspects) k of these locations, where k is a parameter representing
the time or energy available to the searcher. If the hiding location is not among those
inspected, the hiderwins the game. If the searcher does inspect the location containing
the hider, then a pursuit game ensues. Each location has its own capture probability,
known to both players, which represents how difficult the pursuit game is for the
searcher. If the search-predator successfully pursues and captures the hider-prey, the
searcher is said to win the game. This is a simple but useful model that encompasses
both the search and the pursuit portions of the predator-prey interaction.

This paper has two parts. In the first part, we relax the assumption of Gal and
Casas that all locations are equally easy to search. We give each location its own
search time and we give the searcher a total search time. Thus he can inspect any set
of locations whose individual search times sum to less than or equal to the searcher’s
total search time, a measure of his resources or energy (or perhaps the length of
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daylight hours, if he is a day predator). We consider two scenarios. The first scenario
concerns n hiding locations, in which the search time at each location is inversely
proportionate with the capture probability at that location. In the second, we consider
that there are many hiding locations, but they come in only two types, identifiable to
the players. Locations within a type have the same search time and the same capture
probability. There may be any number of locations of each type.

The second part of the paper relaxes the assumption that the players know the
capture probability of every location precisely. Rather, we assume that a distribution
of capture probabilities is known. The players can learn these probabilities more
precisely by repeated play of the game. We analyse a simple model with only two
locations and two periods, where one location may be searched in each period.While
simple, this model shows how the knowledge that the capture probabilities will be
updated in the second period (lowered at a location where there was a successful
escape) affects the optimal play of the game.

2 Literature Review

An important contribution of the paper of Gal andCasas discussed in the Introduction
is the analysis involves finding a threshold of locations beyondwhich the searcher can
inspect. If this is sufficiently high, for example, if he can inspect all locations, then
the hider adopts the pure strategy of choosing the location for which the probability
of successful pursuit is the smallest. On the other hand, if k is below this threshold
(say k = 1), the hider mixes his location so that the probability of being at a location
multiplied by its capture probability (the desirability of inspecting such a location)
is constant over all locations.

The paper of Gal and Casas [6] requires that the searcher knows his resource level
(total search time) k. In a related but not identical model of Lin and Singham [10]
it is shown that sometimes the optimal searcher strategy does not depend on k. This
paper is not directly related to our findings but reader may find it useful to know the
distinction between this paper and ours.

Alpern et al. [2] extended the Gal-Casas model by allowing repeated play in the
case where the searcher chose the right location but the pursuit at this hiding location
is not successful. They found that the hider should choose his locationmore randomly
when the pursuing searcher is more persistent.

More recently, Hellerstein et al. [7] introduced an algorithm similar to that of
the fictitious play where the searcher recursively updates his optimal strategy after
knowing the response of the opponent’s. They apply this technique to games similar
to those we consider here. Their algorithm is likely to prove a powerful technique
for solving otherwise intractable search games.

More generally, search games are discussed in Alpern and Gal [1] and search and
pursuit problems related to robotics are categorized and discussed in Chung et al.
[5].
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3 Single Period Game with General Search Times

Consider a game where the searcher wishes to find the hider at one of n locations and
then attempt to pursue and capture it, within a limited amount of resources denoted
by k. Each location i has two associated parameters: a search time ti required to
search the location and a capture probability pi > 0 that if found at location i the
searcher’s pursuit will be successful. Both ti and pi are known to the searcher and
the hider.

The game G (n, t, p, k) , where t = (t1, . . . , tn) and p = (p1, . . . , pn) represent
the time and capture vectors, is played as follows. The hider picks a location i ∈
N ≡ {1, 2, ..., n} in which to hide. The searcher can then inspect search locations in
any order, as long as their total search time does not exceed k. The searcher wins
(payoff = 1) if he finds and then captures the hider; otherwise the hider wins (payoff
= 0). We can say that this game is a constant sum game where the value V = V (k)
is the probability that the predator wins with given total search time k.

A mixed strategy for the hider is a distribution vector h ∈ H, where

H =
{
h = (h1, h2, . . . , hn) : hi ≥ 0,

n∑
1

hi = 1

}
.

A pure strategy for the searcher is a set of locations A ⊂ N which can be searched
in total time k. His pure strategy set is denoted by a(k), where

a(k) = {A ⊂ N : T (A) ≡
∑
i∈A

ti ≤ k}.

The statement above simply states that a searcher can inspect any set of locations for
which the total search time does not exceed his maximum search time k. A mixed
search strategy is a probabilistic choice of these sets.

The payoff P from the perspective of the maximizing searcher is given by

P(A, i) =
{
pi if i ∈ A, and

0 if i /∈ A.

As part of the analysis of the game, we may wish to consider the best response
problem faced by a searcher who knows the distribution h of the hider. The "benefit"
of searching each location i is given by bi = hi pi , the probability that he finds
and then captures the hider (prey). Thus when h is known, the problem for the
searcher essentially is to choose the set of locations A ∈ α (k) which maximizes
b(A) = ∑

i∈A bi . This is a classic Knapsack problem from the Operations Research
literature (A seminal book of the Knapsack problem is by Kellerer et al. [9]). The
objects to be put into the knapsack are the locations i . Each has a “weight” ti and a
benefit bi . He wants to fill the knapsack with as much total benefit subject to a total
weight restriction of k.
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The knapsack approach illustrates a simple domination argument: the searcher
should never leave enough room (time) in his knapsack to put in another object.
However to better understand this observation, we show the definition of Weakly
dominant below

Definition 1 Strategy X weakly dominates strategy Y iff (i) X never provides a
lower payoff than Y against all combinations of opposing strategies and (ii) there
exists at least one combination of strategies for which the payoffs for X and Y are
equal.

Having stated this, we write this simple observation as follows.

Lemma 1 Fix k. The set A ∈ α (k) is weakly dominated by the set A′ ∈ α (k) if
A ⊂ A′ and there is a location j ∈ A′ − A.

Proof If i is in both A or i is not in A′, then P (A, i) = P
(
A′, i

)
. If i ∈ A′ − A then

P
(
A′, i

) = pi > 0 = P (A, i).

3.1 An Example

To illustrate the general game we consider an example with n = 4 locations. The
search times are given by t = (5, 3, 4, 7) and the respective capture probabilities are
given by p = (.1, .2, .15, .4). In this example it is easiest to name the locations by
their search time, so for example the capture probability at location 7 is 0.4. The
searcher has total search time given by k = 7, so he can search any single location
or the pair {3, 4}. The singleton sets {3} and {4} are both dominated by {3, 4}. We put
the associated capture time next to the name of each location. Thus the associated
reduced matrix game is simply

A\location 5 (.1) 3 (.2) 4 (.15) 7 (.4)
{5} .1 0 0 0
{7} 0 0 0 .4
{3, 4} 0 .2 .15 0

Solving the matrix game using online solver [4] shows that the prey hides in the
four locations with probabilities (12/23, 0, 8/23, 3/23) while the searcher inspects
{5} with probability 12/23, {7} with probability 3/23, and {3, 4} with probability
8/23. The value of the game, that is, the probability that the predator-searcher finds
and captures the prey-hider, is 6/115. Our approach in this paper is not to solve games
in the numerical fashion, but rather to give general solutions for certain classes of
games, as Gal and Casas did for the games with ti = 1.
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3.2 The Game with ti Constant

Choosing all the search times ti the same, say 1, we may restrict k to integers. This
is the original game introduced and solved by Gal and Casas [6]. Since the ti are
the same, we may order the locations by their capture probabilities, either increasing
or decreasing. Here we use the increasing order of the original paper. Clearly if
k = 1 the hider will make sure that all the locations are equally good for the searcher
(pihi =constant) and if k = n the hider knows he will be found so he will choose
the location with the smallest capture probability (here location 1). The nice result
says that there is a threshold value for k which divides the optimal hiding strategies
into two extreme types.

Proposition 1 (Gal and Casas [6]) Consider the game G (n, t, p, k) where ti = 1
for all i and the locations are ordered so that p1 ≤ p2 ≤ · · · ≤ pn. Define λ =∑n

i=1 1/pi . The value of this game is given by min (kλ, p1). If k < p1/λ then the
unique optimal hiding distribution is hi = λ/pi , i = 1, . . . , n. If k ≥ p1/λ then the
unique optimal hiding strategy is to hide at location 1.

3.3 The Game with ti = i, pi Decreasing, k = n Odd

We now consider games with ti = i and pi decreasing. In some sense locations with
higher indices i are better for the hider in that they take up more search time and have
a lower capture probability. Indeed if the searcher has enough resource k to search all
the locations (k = ∑n

i=1 ti = n (n + 1) /2) then of course the hider should simply
hide at location n and keep the value down to pn . Note that if k < n, the hider can
win simply by hiding at location n, which takes time tn = n to search. We give a
complete solution for the smallest nontrivial amount of resources (total search time)
of k = n. Let us first define the following two variables which will be widely used
in our main result.

S(p) = ∑2m+1
j=m+1 1/p j ; h̄ j = 1/

(
p j S (p)

)
.

Proposition 2 Consider the game G (n, t, p, k) , where ti = i, pi is decreasing in
i and k = n = 2m + 1. Then

1. An optimal strategy for the searcher is to choose the set { j, n − j}with probability
1/

(
p j S (p)

)
for j = m + 1, . . . , n.

2. An optimal strategy for the hider is to choose location j with probability h̄ j for
j ≥ m + 1 and not to choose locations j ≤ m at all.

3. The value of the game is V = 1
S(p) .
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Proof Suppose the searcher adopts the strategy suggested above. Any location i
that the hider chooses belongs to one of the sets of the form { j, n − j} for j =
m + 1, . . . , n, where the set {n, 0} denotes the set {n}. Since for j ≥ m + 1 we have
j > n − j and the pi are decreasing, the hider is better off choosing location j . In
this case he is found with probability 1/

(
p j S (p)

)
and hence he is captured with

probability at least p j
(
1/

(
p j S (p)

)) = 1/S (p).
Suppose the hider adopts the hiding distribution suggested above. Note that no

pure search strategy can inspect more than one of the locations j ≥ m + 1. Suppose
that location j is inspected, then the probability that the searcher finds and captures
the hider is given by h̄ j p j = 1/

(
p j S (p)

)
p j = 1/S (p). It follows that S (p) is the

value of the game.

It is natural to also analyse if Proposition 2 still holds true for k = n = even
number. For the simplicity of our notation and better readability of Proposition 2, we
decided to write this separate section for even number. In the case where k = n =
even, the solution is exactly the same as their odd counterpart. More specifically
k = n = 2m has the same value and optimal strategies as k = n = 2m + 1. However,
it is important to note that in the even case, both the searcher’s and hider’s optimal
strategy is unique. For instance, k = n = 4 has the same value and optimal strategies
as k = n = 5. The same can be said for 6 and 7, 8 and 9, etc.

Corollary 1 Assuming the pi are strictly decreasing in i, the hider strategy h̄ given
above is uniquely optimal, but the searcher strategy is not.

Proof Let h∗ 	= h̄ be a hiding distribution.Wemust have h∗
j + h∗

n− j > h̄ j + h̄n− j =
1/

(
p j S (p)

)
for some j ≥ m + 1; otherwise the total probability given by h∗ would

be less than 1. Against such a distribution h∗, suppose that the searcher inspects
the two locations j and n − j . Then the probability that the searcher wins is given

by p jh∗
j + pn− j h∗

n− j ≥ p j

(
h∗
j + h∗

n− j

)
because p j < pn− j . But by our previous

estimate h∗
j + h∗

n− j > 1/
(
p j S (p)

)
this means the searcher wins with probability at

least p j
(
1/

(
p j S (p)

)) = 1/S (p) and hence h∗ is not optimal.
Next, consider the searcher strategy which gives the same probability as above

for all the sets { j, n − j} for j ≥ m + 2 but gives some of the probability assigned
to {m + 1,m} to the set {m + 1,m − 1}. Let’s say the probability of {m + 1,m − 1}
is a small positive number ε. The total probability of inspecting location m + 1 (and
all larger locations) has not changed. The probability of inspecting location m has
gone down by ε. So the only way the new searcher strategy could fail to be optimal
is potentially when the hider chooses location m. In this case the probability that the
searcher wins is given by

((1/ (pm+1 S (p))) − ε) pm .
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Comparing this to the value of the game, we consider the difference

((1/ (pm+1 S (p))) − ε) pm − 1

S (p)
= pm − pm−1

pm S (p)
− εpm .

Since the first term on the right is positive because pm > pm−1, the difference will
be positive for sufficiently small positive ε.

We will now consider an example to show how the solution changes as k goes up
from the solved case of k = n. We conjecture that there exist a threshold with respect
to k in which above that threshold, the hider ’s optimal strategy is to hide at location
n. To determine that threshold we use the following idea.

Proposition 3 The game G (n, p, t, k) has value v = pn if and only if the value v′ of
the gameG (n − 1, (p1, . . . , pn−1) , (1, 2, . . . , n − 1) , k − n) (with the last location
removed and resources reduced by n) is at least pn.

Proof Suppose v = pn . Every search set with positive probability must include
location n, otherwise simply hiding there implies v < pn . So the remaining part of
every search set has k ′ = k − n. With this amount of resources, the searcher must
find the hider in the first n locations with probability at least pn, which is stated
in the Proposition. Otherwise, the searcher will either have to not search location n
certainly (which gives v < pn) or not search the remaining locations with enough
resources to ensure v ≥ pn .

3.4 An Example with k = 10, n = 5

Consider the example where p = (.5, .4, .3, .2, .1) with k = 10, n = 5. Here
pn = .1. The game with p′ = (.5, .4, .3, .2) and k ′ = k − n = 5 has value at least .1
because of the equiprobable search strategy of {1, 4} and {2, 3}. Here each location
in the new game is inspected with the same probability 1/2 and consequently the best
the hider can do is to hide in the best location 4, and then the searcher wins with
probability (1/2) (.2) = .1. It follows from Proposition 3 that the original game has
the minimum possible value of v = pn = p5 = .1.

3.5 Illustrative Examples

In this section, we will use an example to further illustrate Proposition 2 and
Corollary 1.
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First, we consider the game where k = n = 5, ti = i, and p = (.5, .4, .3, .2, .1).
The game matrix, excluding dominated search strategies, is given by

A\location 1 2 3 4 5
{5} 0 0 0 0 .1
{1, 4} .5 0 0 .2 0
{2, 3} 0 .4 .3 0 0
{1, 3} .5 0 .3 0 0
{1, 2} .5 .4 0 0 0

The unique solution for the optimal hiding distribution is (0, 0, 2/11, 3/11, 6/11)
and the value is 6/110 = 1/ (1/.3 + 1/.2 + 1/.1) 
 .055 . The optimal search strat-
egy mentioned in Proposition 2 is to play {5} , {1, 4} and {2, 3} with respective prob-
abilities 6/11, 3/11 and 2/11. Another strategy is to play {5} and {1, 4} the same but
to play {2, 3} and {1, 3} with probabilities 3/22 and 1/22. It is of interest to see how
the solution of the game changes when k increases from k = n = 5 to higher values.
We know that we need go no higher than k = 10 from Proposition 3 because in the
game on locations 1 to 4 with k ′ = 10 − 5 = 5, the searcher can inspect {4, 1} with
probability 2/3 and {3, 2} with probability 1/3 to ensure winning with probability
at least 1/10 = p5 (Table1).

So we know the solution of the game for k = 5 and k ≥ 10. The following table
gives the value of the game and the unique optimal hiding distribution for these and
intermediate values. (The optimal search strategies are varied and we don’t list them,
though they are easily calculated).

We know that the valuemust be nondecreasing in k, but we see that it is not strictly
increasing. Roughly speaking (but not precisely), the hider restricts towards fewer
and better locations as k increases, staying always at the best location 5 for k ≥ 10.
However there is the anomalous distribution for k = 9 which includes sometime
hiding at location 2.

Table 1 Optimal hiding distribution and values, k ≥ 5

k\i 1 2 3 4 5 Value

5 0 0 2/11 3/11 6/11 3/55 
 0.0545

6 0 0 2/11 3/11 6/11 3/55 
 0.0545

6 0 0 0 1/3 2/3 1/15 
 0.06 67

8 0 0 0 1/3 2/3 1/15 
 0.06 67

9 0 3/37 4/37 6/37 24/37 18/185 
 0.0943

≥ 10 0 0 0 0 1 1/10 = 0.1
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3.6 Game with Two Types of Locations

In this sectionwe analyse amore specific scenariowhere all available hiding locations
are of two types. This model might be vaguely applied to military practices. Suppose
a team of law enforcement is to capture a hiding fugitive in an apartment complex,
then all possible hiding locations can be reduced to a number of types, e.g. smaller
rooms have similar shorter search times and higher capture probability than a parking
lot. Here we solve the resulting search-pursuit game.

Suppose there are two types of locations (hiding places). Type 1 takes time t1 = 1
(this is a normalization) to search, while type 2 takes time t2 = τ to search, with τ
being an integer. Now let type 1 locations have capture probability p while type 2
locations have capture probability q. Moreover, suppose there are a locations of type
1 and b locations of type 2. The searcher has total search time k. To simplify our
results we assume that k is small enough such that a ≥ k (the searcher can restrict
all his searches to type 1) and bτ ≥ k (he can also restrict all his searches to type 2
locations).

Letm = �k/τ� be the maximum number of type 2 locations that can be searched.
The searcher’s strategies are to search j = 0, 1, . . . ,m type 2 locations (and hence
k − τ j locations of type 1). Since all locations of a given type are essentially the
same, the decision for the hider is simply the probability y to hide at a randomly
chosen location of type 1 (and hence hide at a randomly chosen location of type 2
with probability 1 − y).

Then the probability P ( j, y) that the searcher wins the game is given by

yp(
k − τ j

a
) − (1 − y)q(

j

b
)

= k

a
py +

(q
b
(1 − y) − 1

a
pyτ

)
j.

This will be independent of the searcher’s strategy j if

q

b
(1 − y) − 1

a
pyτ = 0, or

y = ȳ ≡ aq

aq + bpτ
.

For y = ȳ, the capture probability is given by

P( j, ȳ) = pqk

aq + bpτ
.

By playing y = ȳ, the hider ensures that the capture probability (payoff) does not
exceed P( j, ȳ).
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We now consider how to optimize the searcher’s strategy. Suppose the searcher
searches j locations of type 2 with probability x j , j = 0, 1, . . . ,m. If the hider is at
a type 2 location then he is captured with probability

m∑
j=0

x j
q j

b
= q

b

m∑
j=0

j x j = q

b
ĵ , where

ĵ =
m∑
j=0

j x j

is the mean number of searches at type 2 locations. Similarly, if the hider is at a type
1 location, the hider is captured with probability

m∑
j=0

x j
p(k − τ j)

a
= pk

a
− pτ

a

m∑
j=0

j x j

= pk

a
− pτ

a
ĵ .

It follows that the capture probability will be the same for hiding at either location
if we have

q

b
ĵ = pk

a
− pτ

a
ĵ , or,

ĵ = pbk

bpτ + aq
.

So for any probability distribution over the pure strategies j ∈ {0, 1, . . . ,m} with
mean ĵ , the probability of capturing a hider located either at a type 1 or a type 2
location is given by

q

b
ĵ = pk

a
− pτ

a
ĵ = pqk

aq + bpτ
.

To summarize, we have shown the following.

Proposition 4 Suppose all the hiding locations are of two types: a locations of type
1 with search time 1 and capture probability p; b locations of type 2 with search
time τ and capture probability q. Suppose a and b are large enough so the searcher
can do all his searching at a single location type, that is, k ≤ max(a, τb). Then the
unique optimal strategy for the hider is to hide in a random type 1 location with
probability ȳ = aq

aq+bpτ and in a random type 2 location with probability 1 − ȳ. Note
that this is independent of k. A strategy for the searcher which inspects j locations
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of type 2 (and thus, k − jτ for type 1) with probability x j is optimal if and only if
the mean numberĵ = ∑m

j=0 j x j , m = �k/τ� of type 2 locations inspected is given

by ĵ = pbk
bpτ+aq . If this number is an integer, then the searcher has an optimal pure

strategy. The value of the game is given by pqk
aq+bpτ .

4 Game Where Capture Probabilities Are Unknown But
Learned

In this section we determine how the players can learn the values of the capture
probabilities over time, starting with some a priori values and increasing these at
locations from which there have been successful escapes. This of course requires
that the game is repeated. Here we consider the simplest model, just two rounds. So
after a successful escape in the second round, we consider that the hider-prey has
won the game (Payoff 0). More rounds of repeated play are considered in Gal et al.
[2], but learning is not considered there.

We begin our analysis with two hiding locations, one of which may be searched
in each of the two rounds. If the hider is found at location i , he is captured with
a probability 1 − qi (escapes with complementary probability qi ). There are two
rounds. If the hider is not found (searcher looks in the wrong location) in either
round, he wins and the payoff is 0: If the hider is found and captured in either round,
the searcher wins and the payoff is 1: If the Hider is found but escapes in the first
round, the game is played one more time and both players remember which location
the hider escaped from. If the hider escapes in the second (final) round, he wins and
the payoff is 0.

The novel feature here is that the capture probabilities must be learned over time.
At each location, the capture probability is chosen by Nature before the start of the
game, independently with probability 1/2 of being h (high) and probability 1/2 of
being l (the low probability), with h > l. In the biological scenario, this may be the
general distribution of locations in a larger region in which it is easy or hard to escape
from. A more general distribution is possible within our model, but this two point
distribution is very easy to understand. If there is escape from location i in the first
round, then in the second round the probability that the capture probability at i is h
goes down (to some value less than 1/2). This is a type of Bayesian learning, which
only takes place after an escape, and only at the location of the escape.

Our model contributes to the realistic interaction between searching-predator and
hiding-prey acting in a possibly changing environment. Most often in nature, the
searcher has no or incomplete information during the search and pursuit interaction.
Particularly in Mech et al. [11], a pack of wolves has to learn over time the difficulty
of pursuing their prey in specific terrain. Moreover, hiding-prey such as elk seems to
prefer areas with lots toppled dead trees, creating an entanglement of logs difficult to
travel through.We focus here on asking questions if learning the capture probabilities
will affect the searching and hiding behaviour. More specifically, suppose an elk
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manages to escape through the deep forest, should it stay there where he believes the
capture probability is low enough, or hide at a different location?

4.1 Normal Form of the Two-Period Learning Game

We use the normal form approach, rather than a repeated game approach. A strategy
for either player says where he will search/hide in the two periods (assuming the
game goes to the second period). Due to the symmetry of the two locations, both
players cannot but choose their first period search or hide locations randomly. Thus
the players have two strategies: rs (random, same) and rd (random, different). If
there is a successful escape from that location, they can either locate in the same
location (strategy rs) or the other location (strategy rd). This gives a simple two
by two matrix game. In this subsection we calculate its normal form; in the next
subsection we present the game solution.

First we compute the payoff for the strategy pair (rs, rs): Half the time both
players (searcher and hider) go to different locations in first period, in which case the
hider wins and the payoff is 0. So we ignore this, put in a factor of (1/2), and assume
they go to the same location in the first period. There is only one location to consider,
suppose it has escape probability x . Then, as they both go back to this location in the
second period if the hider escapes in the first period, the expected payoff is given by

Px (rs, rs) = (1/2) ((1 − x)1 + x(1 − x)). (1)

Since x takes values l and h equiprobably we have

P(rs, rs) = Ph(rs, rs) + Pl(rs, rs)

2

= 2 − h2 − l2

4
. (2)

It is worth noting two special cases: If both escape probabilities are 1 (escape is
certain), then the hider always wins and the payoff is 0. If both escape probabilities
are 0 then the searcher wins if and only if they both choose the same location, which
has probability 1/2.

Next we consider the strategy pair (rd, rd). Here we can assume they both go to
location 1 in the first period (hence we add the factor of 1/2) and location 2 in the
second period. The escape probabilities at these ordered locations 1 and 2 can be any
of the following: hh, ll, hl, lh. The first two are straightforward as it is the same as
going to the same location twice (already calculated in (2)). We list the calculation
of the four ordered hiding locations below, where Px is given in (1).
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Phh(rd, rd) = Ph(rs, rs)

Pll(rd, rd) = Pl(rs, rs)

Plh(rd, rd) = (1/2)((1 − l)1 + l(1 − h))

Phl(rd, rd) = (1/2)((1 − h)1 + h(1 − l)).

Taking the average of these four values gives

P(rd, rd) = 4 − h2 − l2 − 2hl

8
= 4 − (h + l)2

8
. (3)

Now consider the strategy pair (rs, rd). If they go to different locations in the first
period, the game ends with payoff 0. So again, we put in factor of 1/2 and assume
they go to same location in first period. This means that if an escape happens in the
first period, the hider wins (payoff 0) in the second period. So the probability the
searcher wins is

P(rs, rd) = P(rd, rs) = (1/2)
(
1/2((1 − h) + (1 − l))

)
= 2 − (h + l)

4
. (4)

Thus, we have completed the necessary calculations and the game matrix for the
strategy pairs rs and rd, with searcher as the maximizer.

To solve this game, we begin with the game matrix as follows:

A = A(l, h) =
[
P (rs, rs) P (rs, rd)

P (rd, rs) P (rd, rd)

]

=
[

2−(h2+l2)
4

2−(h+l)
4

2−(h+l)
4

4−(h+l)2

8

]

Then we take out the fraction 1/8 to the left-hand side of the equation, and we
have

8A =
[−2h2 − 2l2 + 4 4 − 2h − 2l

4 − 2h − 2l 4 − (h + l)2

]

At this point we try to make the right-hand side of the equation to be a diagonal
matrix so we can easily compute it. Therefore we can write the equation as follows:

8A − (4 − 2h − 2l)

[
1 1
1 1

]
= Y =

[−2h2 + 2h − 2l2 + 2l 0
0 2h + 2l − (h + l)2

]
.
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Note that V (A) is the value of the matrix A. From the equation above, it shows
that the right-hand side of the equation is a diagonal matrix, and a simple formula
for the value of diagonal matrix games is as follows:

V

([
a 0
0 b

])
= 1/ (1/a + 1/b) .

Using the above formula, we have

V

(
8A − (4 − 2h − 2l)

[
1 1
1 1

])
= V (Y ) = 1

1
−2h2+2h−2l2+2l + 1

2h+2l−(h+l)2
.

Computing this for the value of game matrix A, we have the following equation
for V (A),

V (A) = 1

2
− 1

4
l − 1

4
h − 1

8
(

1
2h2−2h+2l2−2l − 1

2h+2l−(h+l)2

) . (5)

It is also important to note that in a diagonal game, players adopt each strategy
with a probability inversely proportional to its diagonal element. To obtain this we
first calculate the value of V (Y ) given above. Then, both the searcher and hider
should choose rs and rd with probabilities V (Y )/a and V (Y )/b, respectively.

We can now see that, as expected, a successful escape from a location makes that
location more attractive to the hider as a future hiding place. This is confirmed in the
following.

Proposition 5 In the learning game when l < h, after a successful escape both
players should go back to the same location with probability greater than 1/2.

Proof Let a and b denote, as above, the diagonal elements of Y . We have

a − b = (−2h2 + 2h − 2l2 + 2l
) − (

2h + 2l − (h + l)2
)

= − (h − l)2 < 0.

This means that b > a and V/a > V/b. Hence by observation (5) the strategy rs
should be played with a higher probability (V/a) than rd (probability V/b), in
particular with probability more than 1/2.

4.2 An Example with l = 1/3 and h = 2/3

A simple example is when the low escape probability is l = 1/3 and the high escape
probability is h = 2/3. This gives the matrix A as
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A(l, h) =
[ 13
36

1
4

1
4

3
8

]

with value V = V (1/3, 2/3) = 21/68, and where each of the player optimally plays
rs with probability 9/17 and rd with probability 8/17.

Suppose there is an escape in the first period at say location 1, then in the sec-
ond period the hider goes to location 1 with probability 9/17. Since the subjective
probability of capture at location 2, from the point of view of either player, remains
unchanged at (1/3 + 2/3) /2 = 1/2; this corresponds to a certain probability x at
location 1, that is, a matrix [

x 0
0 1/2

]

We then have that

(9/17)x = (8/17)(1/2) or,

x = 4/9.

This corresponds to the probability of escape probability l = 1/3 of q, where

q1/3 + (1 − q)2/3 = 4/9 or,

q = 2/3.

Thus, based on the escape at location 1 in the first period, the probability that the
escape probability there is 1/3 has gone up from the initial value of 1/2 to the higher
value of 2/3.

5 Summary

The breakthrough paper ofGal andCasas [6] gave us amodel inwhich both the search
and pursuit elements of predator-prey interactions could be modelled together in a
single game. In that paper the capture probabilities depended on the hiding location
but the time required to search a location was assumed to be constant. In the first
part of this paper, we drop that simplifying assumption. We first consider a particular
scenario where we order the locations such that the search times increase while the
capture probabilities decrease. We solve this game for the case of a particular total
search time of the searcher. We then consider a scenario where there are many hiding
locations but they come in only two types. Locations of each type are identical in



74 S. Alpern and V. Lee

that they have the same search times and the same capture probabilities. We solve
the resulting search-pursuit game.

In the second part of the paper we deal with the question of how the players
(searcher-predator and hider-prey) learn the capture probabilities of the different
locations over time.We adopt a simple Bayesian approach. After a successful escape
from a given location, both players update their subjective probabilities that it is a
location with low or high capture probability; the probability that it is low obviously
increases. In the game formulation, the players incorporate into their plan the knowl-
edge that if there is an escape, then that location becomes more favourable to the
hider in the next period.

The search-hide and pursuit-evasion game is quite difficult and finding a solution
for the most general case is quite challenging. Most probably, it is a good idea for
the next step to solve for a more specific question in the problem.

We consider a possible extension to Proposition 4 by analysing larger k . Consider
the example a = b = 1; t1 = 1; t2 = 3; k = 4; and say p < q (p1 < p2 as inGal and
Casas [6]). The Searcher inspects both cells (one of each type), so he certainly finds
the Hider. He captures him with probability p if the hider is at location 1, and q if at
location type 2. So the Hider should hide at location of type 2 as it has lower capture
probability. The main question will be: How big does k have to be for this to occur?
And are there only two solution types as in Gal and Casas [6]? We conjecture that,
as in Gal-Casas, there is a critical value of k = k̂ such that for k < k̂, Proposition 4
applies, and for k ≥ k̂ the Hider locates in a cell of the type with the lower capture
probability.

The game with learning model has also been analysed using dynamic form [3].
This allows more effective analysis for more than two locations and two rounds.
Moreover, we believe the next avenue of research is to consider the non-zero-sum
game. Indeed, one may argue that a game between a predator and a prey may not
necessarily be a (or in our case, constant-sum game), as the predator is hunting it’s
dinner while the prey is running for survival. This is important if challenging aspect
to deal with for future studies.
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Computation of Robust Capture Zones
Using Interval-Based Viability
Techniques in Presence of State
Uncertainties

Stéphane Le Ménec and Vladimir Turetsky

1 Introduction

The problem of intercepting a maneuverable target admits different mathematical
formulations. It can be formulated as a differential game (quantitative or qualitative)
where the interceptor and target play the role of the pursuer and evader, respectively.
The optimal pursuer strategies in these games are of a bang-bang type [11]. The other
formulation, adopted in this paper, is a robust control problem in a prescribed class
of feedback strategies, namely in the classes of linear and saturated linear strategies.

If the pursuer strategy is assigned, the first question is: does this strategy guarantee
the capture robustly against any evader’s bounded control? If a strategy has such a
property, it is called a robust capturing strategy. Note that in this definition, no
differential game formulation is assumed. The notion of a robust capturing strategy
refers to a given strategy and does not mean an optimal strategy in some differential
game. However, if it is, for example, a linear strategy, the capture can be achieved
by using an excessively large gain thus violating technical and physical control
constrains. This implies the next question: from what set of initial conditions this
strategy robustly guarantees the capture in such a way that the control constraints are
satisfied along any trajectory. Such a set is called robust capture zone of an assigned
strategy. The problem of constructing a robust capture zone has close connections
with invariant set theory [4], stable bridges construction [5, 9], viability theory [3]
and other fields of control theory and applications.
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It is crucially important to have an accurate description or a good approximation
of the robust capture zone before making a decision in favor of implementing this or
another capturing strategy. Choosing a linear (a saturated linear) strategy in practical
implementations is caused both by their simple structure and by a non-chattering
performance (see, e.g., [13, 14]). Verifying that a linear or saturated linear strategy is
robust capturing, and constructing their robust capture zones are based on the robust
controllability theory developed by [7].

We apply viability theory tools to reformulate the concept of robust capture zones
in terms of capture basin. An interval implementation of capture basin computation
is used to numerically approximate robust capture zones. For comparison purpose,
we first provide results dealing with linear kinematics that are already obtained in an
analytical manner. Then, new results are performed using the same interval analysis
based algorithms, the same kinematics, but considering noisy measurements that
analytical methods are not able to deal with.

2 Problem Statement and Preliminaries

2.1 Engagement Model

A planar engagement between two moving object—an interceptor (pursuer) and a
target (evader)—is considered. The schematic view of this engagement is shown in
Fig. 1. The X -axis of the coordinate system is aligned with the initial line of sight.
The origin is collocated with the initial pursuer position. The points (xp, yp), (xe, ye)
are the current coordinates; Vp and Ve are the velocities and ap, ae are the lateral
accelerations of the pursuer and the evader, respectively; ϕp, ϕe are the respective
angles between the velocity vectors and the reference line of sight; and y = ye − yp
is the relative separation normal to the initial line of sight.

Fig. 1 Interception
geometry
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It is assumed that the dynamics of each object is expressed by a first-order transfer
functionwith the time constants τp and τe, respectively. The velocities and the bounds
of the lateral acceleration commands of both objects are constant. Thedynamics of the
pursuer and the evader are described by nonlinear systems of differential equations:

ẋ p = Vp cosϕp, xp(t0) = 0,
ẏp = Vp sin ϕp, yp(t0) = 0,
ϕ̇p = ap/Vp, ϕp(t0) = ϕp0,

ȧp = (umax
p u p − ap)/τp, ap(t0) = 0,

(1)

ẋe = −Ve cosϕe, xe(t0) = r0,
ẏe = Ve sin ϕe, ye(t0) = 0,
ϕ̇e = ae/Ve, ϕe(t0) = ϕp0,

ȧe = (umax
e ue − ae)/τe, ae(t0) = 0,

(2)

where t0 ≥ 0 is the initial time instant, r0 is the initial distance between the missiles,
u p and ue are the normalized lateral acceleration commands of the pursuer and the
evader, respectively. Below, the strategies of the first player are chosen as functions
measurable on time and Lipschitzian on the state variable. So, the trajectory of the
system generated by some feedback strategy of the first player and some measurable
realization of the second player’s control can be considered as a solution of the
corresponding Cauchy problem obtained by substituting these control functions into
the system dynamics. The functions u p(t) and ue(t) should satisfy the constraints

|u p(t)| ≤ 1, |ue(t)| ≤ 1, (3)

amax
p and amax

e are the maximal lateral accelerations. The final time instant of the
engagement is

t f = t f (u p(·), ue(·), t0, ϕp0, ϕe0, r0) =

max{t > 0 : ṙ(t) ≤ 0}, (4)

where

r(t) =
√

(xe(t) − xp(t))2 + (ye(t) − yp(t))2, (5)

is the current distance between themissiles. The practical definition (4)means that the
engagement is considered in the time intervalwhere the distance between themissiles
decreases. Note that in this paper, we do not formulate and solve any nonlinear
pursuit-evasion differential game.
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2.2 Robust ε-Capture Zone

The objective of the pursuer is to nullify, or at least to make small, the final distance

J = J (u p(·), ue(·), t0, ϕp0, ϕe0, r0, a
max
p , amax

e ) = r(t f ). (6)

Consider the class U of feedback strategies u(t, X p, Xe), where Xi = (xi , yi ,
ϕi , ai )T , i = p, e. Note that it is not assumed that |u(t, X p, Xe)| ≤ 1 for all (t, X p,

Xe). For a given initial distance r0, for a given pursuer’s strategy u p(·) ∈ U and for
a given number ε > 0, the set Φ = Φ(u p(·)) of initial positions (t0, ϕp0, ϕe0) ∈ R3

is called the robust ε-capture zone if for all (t0, ϕp0, ϕe0) ∈ Φ,

1. the final distance (6) satisfies
J ≤ ε, (7)

2. the pursuer’s control time realization
u p(t) = u p(t, X p(t), Xe(t)) satisfies the constraint (3)

for any evader’s control ue(t) satisfying (3).
The problem of constructing the robust ε-capture zone can be formulated for two

information patterns: (i) both state vectors X p(t) and Xe(t) are known to the pursuer
(complete information), (ii) the evader’s state vector Xe(t) is estimated assuming a
bounded estimation error.

2.3 Linearized Model

Let the relative separation between the missiles be denoted by y = ye − yp. The
corresponding relative velocity is ẏ. If the aspect angles ϕp and ϕe are small during
the engagement then the system (1)–(2) can be linearized [11]:

ẋ = Ax + bu p + cue, x(0) = x0, (8)

where the state vector is x = (x1, x2, x3, x4)T = (y, ẏ, ae, ap)
T , the superscript T

denotes the transposition,

A =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp

⎤
⎥⎥⎦ , (9)

b = (0, 0, 0, amax
p /τp)

T , c = (0, 0, amax
e /τe, 0)

T , (10)

x0 = (0, x20, 0, 0)
T , x20 = Veϕe0 − Vpϕp0. (11)
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In the linearized system, the final time moment is

t f = r0/(Vp + Ve). (12)

The cost functional (6) becomes

Jx = |x1(t f )|. (13)

The robust capture zone (for ε = 0) of a feedback strategy u p(t, x) is the set

Φx = Φx (u p(·)) =
{
(t0, ϕp0, ϕe0) :

Jx = 0, |u p(t, x(t))| ≤ 1, ∀ ue(·) : |ue(t)| ≤ 1
}
. (14)

2.4 Problem Scalarization

Let introduce the function
z(t) = dT X (t f , t)x(t), (15)

where x(t) is the state vector of (8), X (t f , t) is the transition matrix of the homo-
geneous system ẋ = Ax , dT = (1, 0, 0, 0). The value of the function z(t) has the
following physical interpretation. If u ≡ 0 and v ≡ 0 on the interval [t, t f ], then the
miss distance |x1(t f )| equals |z(t)|. Therefore, this function is called the zero-effort
miss distance (ZEM). It is given explicitly by

z(t) = x1(t) + (t f − t)x2(t)+

τ 2
e ψ

(
(t f − t)/τe

)
x3(t) − τ 2

pψ
(
(t f − t)/τp

)
x4(t), (16)

where

ψ(ξ) � exp(−ξ) + ξ − 1 > 0, ξ > 0. (17)

By direct differentiation, z(t) satisfies the differential equation

ż = h p(t)u p + he(t)ue, z(0) = z0 � t f x20. (18)

where

h p(t) = −τpa
max
p ψ((t f − t)/τp), he(t) = τea

max
e ψ((t f − t)/τe). (19)

Since z(t f ) = x1(t f ), the performance index (13) can be rewritten as Jz = |z(t f )|.
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For the scalar system (18), the robust capture zone (RCS) of a feedback strategy
u(t, z) becomes

Φz = Φz(u p(·)) =
{
(t0, z0) :

Jz = 0, |u p(t, z(t))| ≤ 1, ∀ ue(·) : |ue(t)| ≤ 1
}
. (20)

2.5 Robust Capture Zone for Linear System

General theoretical results on the properties and the structure of the RCS of linear
and saturated linear strategies are outlined in Appendix. In this paper, we deal with
linear feedback strategies of the following form:

u p(t, z) = K (t)z

(t f − t)α
, (21)

where K (t) is a positive continuously differentiable function for t ∈ [0, t f ], α > 0.
Note that for the coefficient functions h p(t), he(t) given by (19), and for linear
strategies (21), the numbers Np, Cp, Ne, Ce, NK and C , defined by (53) and (57),
are

Np = Ne = 2, Cp = − 1

2τp
, Ce = 1

2τe
, NK = α + 1, C = αK (t f ). (22)

Note that the conditions (I)–(IV) and (VI) of Theorem 1 are satisfied. The condition
(V) is formulated as

(IV-α) either

α > 3, (23)

or
α = 3 and K (t f ) > 6τp. (24)

Thus, due to Theorem 1, the strategy (21) is robust capturing, if the condition (IV-α)
holds.

In what follows, we consider the class of linear robust capturing strategies

U =
{
u p(t, z) = K (t)z

(t f − t)α
:

(α > 3) ∨ (
(α = 3) &(K (t f ) > 6τpa

max
p )

) }
(25)
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where K (t) > 0 is continuously differentiable. Due to [7] (see Theorems 2–6), the
robust capture zone of u p(·) ∈ U has a form

Φz(u p(·)) = Φz(K (·), α) =
{
(t0, z0) :

t0 ∈ (tin, t f ), |z0| ≤ Z0(t0)
}
, (26)

where tin ∈ [0, t f ), Z0(t) ≥ 0 is a continuous function satisfying

Z0(t) ≤ (t f − t)α

K (t)
. (27)

This condition means that the robust capture zone is a subset of the domain where the
constraint |u(t, z(t))| ≤ 1 is satisfied. The boundary function Z0(t) and the moment
tin are obtained constructively (see for the details in Appendix section “Robust Cap-
ture Zone of Linear RCS”).

Similar results were established by [7] (see Appendix section “Robust Capture
Zone of Saturated Linear RCS”) for the class of saturated linear robust capturing
strategies

U s = {
usp = sat(u p(t, z)), u p(·) ∈ U

}
, (28)

with sat(·) function defined as follows:

sat(x) = max (min (x, 1),−1). (29)

For usp(·) ∈ U s ,

Φz(u
s
p(·)) =

{
(t0, z0) : t0 ∈ (t sin, t f ), |z0| ≤ Zs

0(t0)
}
, (30)

where the boundary function Zs
0(t) and the moment t sin ∈ [0, t f ) are obtained con-

structively (see for the details inAppendix section “Robust CaptureZone of Saturated
Linear RCS”).

Due to (15) and (18), for the strategies u p(t, x) = u p(t, dT X (t f , t)x) and
usp(t, x) = usp(t, d

T X (t f , t)x), the original robust capture zones Φx are

Φx (u p(·)) =
{
(t0, ϕp0, ϕe0) :

t0 ∈ (tin, t f ), |Veϕe0 − Vpϕe0| ≤ Z0(t0)/t f
}
, (31)

and

Φx (u
s
p(·)) =

{
(t0, ϕp0, ϕe0) :
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t0 ∈ (t sin, t f ), |Veϕe0 − Vpϕe0| ≤ Zs
0(t0)/t f

}
, (32)

respectively.

2.6 Connections Between Optimal Capture Zones and Robust
Capture Zones

Before to provide interval-based results in the case of perfect information and in the
case of noisy measurements, we summarize classical results about DGL1 kinematic
models (differential game approaches). DGL1 stands for pursuit-evasion linear dif-
ferential gamewith terminal criterion (terminal miss distance) and bounded controls.
Several versions of DGL like games considering different kinematics have been stud-
ied in an extensive manner by researchers as J. Shinar and co-authors [12]. DGL1
describes the player dynamics using first-order transfer functions (between their con-
trols and the achieved accelerations). We summarized the analytical results obtained
when applying robust control techniques as well (strategies of the pursuer restricted
to linear state feedbacks). In addition, we underline the wording we use to describe
capture zones in each case.

The theory of differential games that defines what is an equilibrium (saddle point,
Nash equilibrium in the case of the aforementioned pursuit-evasion games) aims to
compute optimal strategies for both players and as a consequence Optimal Capture
Zones (OCZ). In the case of DGL1, the optimal strategies are bang-bang controls
(according to the sign of the Zero-Effort-Miss). According to the kinematic parame-

ters (μ = amax
p

amax
E

and ε = τE
τp
), the shape of the DGL1 optimal capture zones differs: it is

“open” (case 1,μ > 1, top drawing of Fig. 4) or “closed” (case 2,μ < 1 andμε ≥ 1,
top drawing of Fig. 5). Other cases (other numerical parameter settings) may occur;
however, case 1 and 2 are the most common, i.e, the most interesting situations.

Robust controllability aims to compute Robust Capture Zones (RCZ) in the pres-
ence of uncertainties (the evader controls; bang-gang controls in the present situation)
assuming that the pursuer applies a state feedback law in place of its optimal strat-
egy. It is of first importance to compare the bang-bang capture zones that are the
maximum capture zones respect to the robust capture zones that are smaller but that
consider more realistic pursuit strategies. The feedback laws we consider for the
pursuer (as described in Sect. 2.5 for K (t) ≡ K ) are of the following type:

u p (t, z) = K z

(t f − t)α
(33)

K being a positive real number, α being a positive integer and u p (z, t) being satu-
rated: usp = sign(u p), when |u p| > 1.

Several cases may happen when applying a robust controllability approach:
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• Wemay chose K and α in a way to have u p (t, z) not reaching the controller limits
(saturations). One advantage is then that the u p (t, z) strategy is a continuous
function all along the trajectories.

• Wemay also apply larger gain values in the Pursuer’s feedback guidance law (33).
Then, the feedback guidance law has to be saturated. Two situations may occur:

– If the feedback guidance law reaches saturation all along the boundaries of the
optimal (differential game) capture zones, thenwe obtain robust (controllability)
capture zones that are similar to the ones we obtain considering the bang-bang
differential game optimal pursuit strategies (top drawings of Figs. 4 and5).

– For some K and α values, the feedback guidance law is not reaching maximum
values as the differential game strategy does at the optimal capture zone limits
and as a consequence the robust capture zone is smaller (bottom drawings of
Figs. 4 and5).

3 Interval Algorithm Approximation

3.1 Viability Kernel and Capture Basin

Viability theory [3] provides a set of concepts and techniques to study continuous
dynamical systems. According to viability wording and definitions, a dynamical
system is represented by a state variable x(t) ∈ K ⊂ X = R

n ,K compact, regulated
by one or more controls (u p(.) and ue(.) in the present situation), which evolution
is ruled by a continuous dynamic law,

ẋ(t) = f (x(t), u p(t, x(t)), ue(t, x(t))) ∈ X,

u p(.) ∈ U ,

ue(.) ∈ V .

Viability theory systematically studies the properties of viability of the evolutions in
some environment (set K corresponding to the subset of the state space X satisfying
a list of constraints, an example would be |u p(·)| ≤ 1) at any time or until a finite
prescribed time where the evolution reaches a given target (r(t f ) ≤ ε in the present
case). Final time is defined by τ = t f − t = 0 with t regular time, i.e, forward time
and τ backward time.

For that purpose it introduces, respectively, the notions of viability kernels and
capture basins. The viability kernel of the environment is the subset (possibly empty)
of the states in the environment from which starts at least one viable evolution
(remaining all the time, i.e., infinite time, in K). The capture basin of the target
viable in K is the subset of the states in K from which starts at least one viable
evolution (i.e., remaining in K) until it reaches the target in finite time (capture zones
of differential games). There exists one valid u p(t, x(t)) strategy (retro-actions) for
all admissible ue(t, x(t)) strategies that forces the system to end in the target set.
Capture basins design retro-actions (feedbacks) which allow to pilot the evolutions
so as to maintain viability until, if any, capturing a target.
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3.2 Capture Basin Enclosure

First, we start by describing viability algorithms in a generalmanner before to explain
how we use these algorithms in the specific case of the paper. Then, in following
sections, we explain how these algorithms are implemented using interval analysis.
In a nutshell, once a differential inclusion ẋ(t) ∈ F(x(t)) has been discretized in time
by xm+1 ∈ Υ (xm), and “restricted” to grids of the finite-dimensional vector space,
then the viable capture basin CaptΥ (K,C) of elements ofK fromwhich an evolution
(xm) viable in K reaches the target C in finite discrete time can be obtained by two
algorithms [10]:

1. The capture basin algorithm. It is based on the formula :

CaptΥ (K,C) =
⋃
m≥0

Cm (34)

where the increasing sequence of subsets Cm ⊂ CaptΥ (K,C) is iteratively
defined by

{
C0 = C
∀ m ≥ 1, Cm+1 := K ∩ (Cm ∪ Υ −1(Cm))

(35)

2. The viability kernel algorithm. Whenever K\C is repeller (for all x ∈ K \ C , all
evolutions x(·) leave K \ C in finite time), there is another class of general algo-
rithms allowing to compute viable capture basins (in this context, at convergence,
V iabΥ (K,C) is CaptΥ (K,C)):

ViabΥ (K,C) =
⋂
m≥0

Km (36)

where the decreasing sequence of subsets Km ⊃ ViabΥ (K,C) is iteratively
defined by:

{
K0 = K
∀ m ≥ 1, Km+1 := C ∪ (Km ∩ Υ −1(Km))

(37)

Naturally, both subsets Cm and Km are computed at each iteration on a grid of the
state space. The convergence of the Cm and Km subsets follows from convergence
theorems presented in Chap.19, p. 769, of Viability Theory. New Directions, [1] (see
for instance Theorem 19.3, p. 774).

The way we rebuild a robust capture zone is by solving several capture basin and
viability kernel problems over time interval slices. The number of capture basin and
viability kernel problems we consider is related to the Euler discrete time step we
assume (see the interval implementation described in 3.5 for complementary expla-
nations). The viability problems we solve are attainability between set C at t and set
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C at t + 1 considering a small time step,C(t) being the target set. After convergence
of the enclosure process, C(t + 1) is the target set for the next viability problem to
solve. The robust capture zone is then the collection of the capture basins we com-
pute. Convergence of the overall process (robust capture zone shape), i.e., the fact
we do not contract the time dimension (and that we mainly take care of the geometric
space only) is related to the fact we use at each time step a capture basin algorithm
(over-approximation), and a viability kernel algorithm (under-approximation). In a
roughmanner, in the applicationwe consider, wemay say the capture basin algorithm
solves the problem “reach the target set C(t) in Δt time by increasing an empty set
(at first iteration) up to C(t + 1).” The viability kernel algorithm with target set C(t)
solves the problem “stay viable,” i.e., in K during a Δt period of time by decreasing
an initial guess equal to K at first iteration up to C(t + 1). In this context (viability
kernel with target set), “stay viable” means reach the target set C(t) after a Δt time
period. Convergence of both algorithms to the capture basin (Δt robust capture zone,
Δt slice) is strongly related to the repeller assumption stated above.

3.3 Interval Arithmetics

Interval computation [8] is about guaranteed numerical methods for approximating
sets, and their application to engineering. Guaranteed means here that outer (and
inner if needed depending on the application) approximations of the sets of interest
are obtained, which can, at least in principle, be made as precise as desired. It thus
becomes possible to achieve tasks such as computing (over and under-approximating)
capture basins or capture zones of differential games.

The main tool to be used, so-called interval analysis, is based upon the very
simple idea of enclosing real numbers in intervals and real vectors in boxes, i.e, sub-
pavings. Interval computation is a special case of computation on sets. The operations
on sets fall into two categories. The first one such as union or intersection consists
of operations that have a meaning only in a set-theoretic context. The union of two
disconnected intervals can be over-approximated by an interval even if it is not an
interval in the set-theoretic sense. The second one (thanks to natural arithmetics)
consists of the extension of operations that are already defined for numbers (or
vectors): addition, multiplication, etc.

Intervals are boxes of dimension one. Inner and outer approximations of sets
are sub-pavings. Sub-pavings belong to IRn (boxes of finite dimension representing
bounded continuous values). For compactness reasons, boxes are written [x], x being
a state vector with state variables inR. In a way similar to the definition of elementary
operations as addition, multiplication, all the functions in R

n can be extended to
intervals. Composition of elementary functions allows to define inclusion functions:

[ f ] : IRn → IR
m is an inclusion function of f if

∀[x] ∈ IR
n, f ([x]) ⊂ [ f ]([x]). (38)
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Fig. 2 Inclusion function (drawing with courtesy of Prof. Luc Jaulin, UBO, Brest, France); []
denotes in an usual way intervals and inclusion functions (box over-approximations of function
images); in addition, symbol ∗ denotes the minimal inclusion function, which is considered as
optimal (reason to use the ∗ symbol).

Inclusion functions provide guaranteed over-approximations (wrapping effect) in
IR

m (see Fig. 2 for illustration purpose).
Thanks to these properties and fast interval-based algorithms (guaranteed inte-

gration of sub-pavings, contractor programming [6]) it is possible to implement the
viability kernel and capture basin algorithms in away to solve problems such as those
described in [5, 9]. Set invariance [4] has also an interval-based implementation.

3.4 Contractor Programming

Set membership techniques are tools to compute sets X ⊂ R
n , X being a general set

(not necessary a box) describedby constraints (states that are solutions of constraints).
Constraints are geometric conditions on state variables (equalities, inequalities) but
also constraints defined by Ordinary Differential Equations (ODE as those govern-
ing the player evolutions in differential games). The operator CX : IRn → IR

n is a
contractor for X ⊂ R

n if

∀[.] ∈ IR
n,

{
CX([.]) ⊂ [.] (contractance),
CX([.]) ∩ X = [.] ∩ X (completness)

(39)

After contraction by a CX operator, all solutions in box [.] that satisfy the X

constraint remain in CX([.]) (completness property). However, CX operator is not
necessarily minimal. After contraction, CX([.]) may still contain values that do not
satisfy the X constraint. Contractor programming has been used to re implement (in
a sightly different way) the viability kernel and capture basin algorithms described
in Sect. 3.2.
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3.5 Interval-Based Backward Reachable Set Computation

1. ODE constraints
Capture zones have been built in an iterative manner (iterative algorithm) follow-
ing a backward reachable set approach. A backward reachable set is the set of
states fromwhich trajectories start that reach some given target set. The backward
reachable sets we compute are on fixed limited time horizons with quantifiers (∀,
∃) on controls (differential game context). The target set we consider at time τ

to compute reachability in backward time over a time period dt is the backward
reachable set computed at time τ − dt where τ is backward time, i.e, τ = t f − t ,
dt is a (small) positive time step. A backward reachable set is represented by
an interval [z] = [zmin, zmax ]. At time τ = dt (first step of the algorithm), the
target set we consider is [z f ] = [−ε, ε] (ε-Capture Zone). A capture zone con-
sists in the sum of the so computed backward reachable sets. At each iteration
of the algorithm, each backward reachable set is over- and under-approximated
using contractor programming. The over-approximation is a viability kernel with
target and the under-approximation is a capture basin as described in Sect. 3.2.
The boxes we considered when implementing contractors are [z(τ − dt), z(τ )]
which are boxes of dimension twice with respect to the problem dimension. In the
present case, the boxes are of size 2. ODE contractors are state evolution contrac-
tors, i.e., operators that integrate ODE, i.e., that compute state trajectories. ODE
are then (time) state constraints. [z(.)] in previous equation are both intervals (of
dimension 1). We defined the two following ODE numerical constraints (and the
associated contractors):

∃u p,∀ue | [z(τ − dt)] = [Υ ]([z(τ )], [u p], [ue]) (40)

∃ue,∀u p | [z(τ − dt)] = [Υ ]([z(τ )], [u p], [ue]) (41)

with [Υ ] an inclusion function of the backward time game kinematics integrated
over a time period dt . In the present situation, we implement a simple Euler
integration scheme:

[Υ ]([z(τ − dt)], [u p], [ue]) = [z(τ )] − dt . [ż(τ, [u p], [ue])] (42)

More complex numerical schemes as Runge Kutta can be considered for ODE
integration and full implementation ofODEcontractors. Nevertheless, guaranteed
integration techniques have to be applied for computing inclusion functions [Υ ].
More sophisticated approaches as Taylor developments and Picard theorem can
be used to compute guaranteed margins [2]. Be aware that inclusion function [Υ ]
can be a quite large box due to uncertain evader’s controls, due to the dt time
period and due to margins we have to take into account for guaranteed integration.
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2. Contractor programming based viability kernel with target algorithm
We apply the contractor corresponding to Eq. (40) to box [z+(τ − dt),
[zmin, zmax ]] to compute backward reachable set over-approximations (viability
kernels). Here, [z+(τ − dt)] and [zmin, zmax ] are both one-dimensional intervals;
[z+(τ − dt)] is the target set for current computation: [z+(τ − dt)] is an over-
approximation of the reachable set computed at previous iteration, i.e, the viability
kernel computed at previous iteration; [zmin, zmax ] is the z domain. In the present
case, zmax is positive, zmin = −zmax , and zmax is large enough to have zmax outside
the capture zone. Then, we only use the contraction of box [zmin, zmax ] which is
the contractor programming based viability kernel.

3. Contractor programming based capture basin algorithm
Weapply the contractor corresponding to Eq. (41) to compute backward reachable
set under-approximations (capture basins). We first define theComp (a, b) inter-
val operator to compute the complement of [a] in [b]. For the sake of simplicity,
we omit to write brackets around the [a] and [b] intervals when written into the
Comp (.) operator. In addition, be aware that the result of operator Comp (a, b)
is a list of potentially non-connected intervals. In the present case, the backward
reachable sets being defined by an interval only (box of dimension one), the result
of Comp (.) is two boxes. The “non-capturing state contractor” (constraint (41))
is applied to the box:

[Comp (z−(τ − dt), [zmin, zmax ]), [zmin, zmax ]]. (43)

When computing the capture basin at time τ , the “contractor programming tar-
get set” we consider is the complementary set (in [zmin, zmax ]) of the under-
approximation of the backward reachable set computed at time τ − dt . The under-
approximation of the backward reachable set computed at time τ − dt which is
the capture basin at time τ − dt is denoted z−(τ − dt) in the above Eq. (43).
As previously (in the case of the viability kernel), we only use the [zmin, zmax ]
contraction which is the second component of the boxwe contract, the component
that corresponds to time τ . This interval is the complementary of the capture basin,
i.e, we perform a complementary operation respect to the [zmin, zmax ] domain.
In addition, interval refinement process has been also implemented (bisection
algorithms) to refine the backward reachable set computation precision. We iter-
ate the viability kernel and capture basin computation process that encloses the
differential game barrier until we obtain the precision required. The contrac-
tor programming based implementation of the viability kernel and capture basin
algorithms is new. This approach differs from the grid based approaches and also
differs from the interval computing based implementations that only exploit bisec-
tion techniques. These viability kernel and capture basin algorithms take benefits
from the computation performance of contractor programming.
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When computing robust capture zones (in place of optimal capture zones), we
update the constraints (Eqs. (40) and (41)) in a way to not consider anymore
quantifiers on u p.

4. Contractor programming based viability algorithms
Define :

• CΥ ([.]) a dynamic system evolution contractor,
• Υcapture the capture constraint described by Eq. (40),
• Υevade the evade constraint described by Eq. (41),
• CX([.])[i] the i component of the box contracted by operator CX([.]),
• Z(τ ) the z domain at time τ , which is constant and equal to [zmin, zmax ] in the
present situation.

Then, we may rewrite in a formal manner, the viability kernel with target algo-
rithm:

ViabΥ (K, z+(τ − dt)) = C˛capture(z
+(τ − dt), Z(τ )) [2] (44)

The same can be done for the capture basin algorithm:

CaptΥ (K, z−(τ − dt)) = ...

Comp (CΥevade(Comp (z−(τ − dt), Z(τ − dt)) ,Z(τ )) [2]), Z(τ ))
(45)

By the way, z+(τ − dt) and z−(τ − dt), as described before, are, respectively,
the over- and under-approximation of the capture basin at τ − dt . Therefore, from
the algorithmic point of view,

z+(τ − dt) ≈ ViabΥ (K, z+(τ − 2 dt)) (46)

and
z−(τ − dt) ≈ CaptΥ (K, z+(τ − 2 dt)) (47)

with the following initial conditions:

z+(τ = 0) = z−(τ = 0) = [−ε, ε] (48)

The next section shows results we obtained in the specific context of the pursuit-
evasion game described in Sect. 2.
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3.6 Numerical Results

• Objectives
The purpose of the interval-based viability analysis (remaining part of the article)
is first to compute in an easymanner robust controllability domains, but also to redo
the same computations assuming bounded errors on z(τ ) (that regular construction
techniques are not able to do).
Figure3 describes how viability kernel with target and capture basin algorithms
based on interval contractor programming are used to compute Robust Capture
Zone (RCZ). The numerical settings of Fig. 3 are data corresponding to an open
DGL1 (bang-bang) Optimal Capture Zone (OCZ), however, because the Pursuer
feedback strategy reaches the saturation limits when Time to Go is small only,
RZC is smaller and closed.

• Capture zones without noise
Figure4 showsRobust Capture Zones in the case of perfect information. Theμ and
ε numerical parameters are parameters leading to an open Optimal Capture Zone
when differential game bang-bang strategies are applied. Kinematics is DGL1
one. The robust control approach has been applied in both cases with P playing
the u p (t, z) = K (t) z

(t f −t)α feedback control law. The top figure corresponds to Pur-
suer controls saturating all along the RCZ boundaries (K (t) = k = 10, α = 1),
the RCZ is then equal to the OCZ (Differential Game approach). The bottom
figure corresponds to Pursuer controls that do not saturate anymore all along the
RCZ boundaries (k = 0.01, α = 5). Both figures are computed following a RCZ
approach even if the attainability domain on the top figure is equal to the OCZ
one.
Figure5 is still a case with perfect information; however, the numerical parameters
are DGL1 μ and ε data corresponding to the case of a close Optimal Capture

Fig. 3 Viability kernel with target and capture basin algorithms based on interval contractor pro-
gramming
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Fig. 4 RCZ in the case of
perfect information with
open OCZ parameters

Zone. The robust control approach has been applied in both cases with P playing
the u p (t, z) = K (t) z

(t f −t)α feedback control law. The top figure corresponds to Pursuer
controls saturating all along theRCZboundaries (k = 10, α = 1). TheRCZ is then
equal to the OCZ (Differential Game approach). The bottom figure corresponds
to Pursuer controls that do not saturate anymore all along the RCZ boundaries
(k = 1, α = 5).

• Capture zones with noise
Figure6 are DGL1 μ and ε parameters corresponding to the case of an open
OCZ (top figure) and to a close OCZ (bottom figure). RCZ approach has been
applied in both cases with P playing the u p (t, z) = K (t) z

(t f −t)α feedback control law.
All the drawings correspond to Pursuer controls that do not saturate all along
the RCZ boundaries. The top figure corresponds to the case of time to go errors:
t̂go = “noise_on_Tgo′′ . tgo. The bottom figure corresponds to the case of errors
on the z state vector: ẑ(tgo) = “noise_on_Z” . z(tgo). The dotted lines show the
results we obtained without considering tgo and z biases (bottom figures in Fig. 4
and Fig. 5).
The results show that over-estimation of tgo or under-estimation of z imply lower
P controls than expected respect to OCZ. Therefore, RCZ are smaller than OCZ
(in the case of non-saturated feedback guidance laws). Under-estimation of tgo or
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Fig. 5 RCZ in the case of
perfect information with
close OCZ parameters

Fig. 6 DGL1 RCZ with
noisy measurements, the top
figure is RCZ with time to go
errors. The bottom figure is
RCZ errors on the z state
vector. The dotted lines are
results without considering
tgo and z biases

over-estimation of z saturate the P controls and increase the corresponding non-
noisy RCZ. Few noise on tgo (+ 5%) may have a lot of impact on the shape of
RCZ (see Fig. 6).
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4 Conclusions

Interval viability algorithms are powerful techniques to compute capture basins of
complex dynamic systems as differential game capture zones, reachable sets, and
robust controllability domains. Algorithms to compute robust capture zones in the
case of saturated and non-saturated guidance laws have been used for scalar linear
systems. Results have been obtained in the case of noisy states as well (robust capture
domains also robust to noisy measurements). To consider a more realistic case of
refined noisy measurements that are outputs of Kalman filtering and not only rough
noise on the Zero-Effort-Miss. The interval viability approach that is not restricted to
linear systems and that can be applied to systems of larger dimensionswith nonlinear-
ities including saturations and hybrid behaviors will be applied to compute nonlinear
noisy robust capture zones. The problem of computing robust capture zones that
corresponds to non-saturated guidance laws (non-saturated feedback forms) can be
also turned into a problem of viability. The problem of finding feedback guidance
law parameters to avoid pursuer control saturations can be also tackled following the
proposed approach.

Appendix

Robust Capture Zones: Main Results

In this section, the main results of [7] are briefly outlined. Consider a scalar system

ż = h p(t)u p + he(t)ue, z(t0) = z0, t0 ≤ t ≤ t f , (49)

where the measurable controls u p(t) and ue(t) satisfy the constraints

|u p| ≤ umax
p , (50)

|ue| ≤ umax
e . (51)

The feedback strategy u p = u p(t, z), given by a function, Lipschitz w.r.t. z, is called
robust capturing strategy (RCS) if it guarantees

z(t f ) = 0, (52)

for any measurable bounded ue(t), i.e., robustly w.r.t. to ue.
In what follows, the functions h p(t) and he(t) satisfy the following assumption:

for some Np, Ne ≥ 0 there exist finite limits Cp, Ce

lim
t→t f −0

hi (t)

(t f − t)Ni
= Ci �= 0, i = p, e. (53)
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Linear Robust Capturing Strategies

Consider a linear strategy

u p(t, z) = K (t)z. (54)

Theorem 1 Let the following conditions hold.

(I) K (t) �= 0 for t ∈ [0, t f );
(II) K (t) is continuously differentiable for t ∈ [0, t f );
(III) one of two limit conditions is satisfied:

lim
t→t f −0

K (t) = ∞, (55)

or
lim

t→t f −0
K (t) = −∞; (56)

(IV) there exists NK > 1 such that

lim
t→t f −0

K̇ (t)(t f − t)NK = C �= 0; (57)

(V) either
NK > Np + 2, and CCp < 0, (58)

or
NK = Np + 2, and CCp < −(NK − 1)2; (59)

VI
Ne ≥ Np. (60)

Then the strategy (54) is robust capturing.

Robust Capture Zone of Linear RCS

General Structure

Define the function

F(t, t0) =
umax
p − umax

e |K (t)|
t∫

t0

G(t, ξ)|he(ξ)|dξ

|K (t)|G(t, t0)
, t0 ∈ [0, t f ), (61)
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where

G(t, τ ) = exp

⎛
⎝

t∫

τ

K (η)h p(η)dη

⎞
⎠ . (62)

The robust capture zone Φz(u p(·)) = Φz(K (·)) of a linear robust transferring
strategy (54) is non-empty if and only if there exists t0 ∈ [0, t f ) such that

inf
t∈[t0,t f )

F(t, t0) ≥ 0. (63)

It is a closed set in the plane (t0, z0), symmetric with respect to the axis z0 = 0. It is
represented in a form

Φz(u p(·)) = {
(t0, z0) ∈ D : t0 ∈ [tin, t f ), |z0| ≤ Z0(t0)

}
, (64)

where D = {(t, z) : t ∈ [0, t f ], z ∈ R},

Z0(t0) = inf
t∈[t0,t f )

F(t, t0), (65)

tin = min{t0 ∈ [0, t f ) : Z0(t0) ≥ 0}, (66)

Boundary

Define the function

P(t) = d

dt

(
umax
p

|K (t)|
)

− umax
p (signK (t))h p(t) − umax

e |he(t)|. (67)

It is assumed that P(t) has a finite number of zeros (maybe none) on (0, t f ). Define
also the curve

z0 = umax
p

|K (t0)| , t ∈ [0, t f ), (68)

and the limiting function
χ(t0) = lim

t→t f −0
F(t, t0). (69)

Case 1. Non-empty set of zeros of P(t) on (0, t f ).
Consider the subset

T = {t1 < t2 < ... < tp : P(t j ) = 0, P(t j − 0) < 0, P(t j + 0) > 0, j = 1, ..., p}.
(70)
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1.1. T �= ∅.
Let for each j = 1, ..., p, Z j (t0) be the solution of the boundary value problem

dZ j

dt0
= K (t0)h p(t0)Z j (t0) + umax

e |he(t0)|, Z j (t j ) = umax
p

|K (t j )| , t0 ∈ [0, t j ]. (71)

1.1.1. P(t) > 0 for t ∈ (tp, t f ).

Theorem 2 In this case, the upper boundary of Φz(K (·) is a lower envelope of
p + 1 curves: the curve (68) and the curves z0 = Z j (t0), j = 1, ..., p, where Z j (t0)
are given by (71).

1.1.2. There exists t̂ ∈ (tp, t f ) such that P(t) < 0 for t ∈ (t̂, t f ).
In this case, the limiting function (69) exists on some interval (t̃0, t f ) and satisfies

the differential equation

dχ(t0)

dt0
= K (t0)h p(t0)χ(t0) + umax

e |he(t0)|, t0 ∈ (t̃0, t f ), (72)

and
lim

t0→t f −0
χ(t0) = 0. (73)

Theorem 3 In this case, the upper boundary of Φz(K (·) is a lower envelope of
p + 2 curves: the curve (68), the curves z0 = Z j (t0), j = 1, ..., p, where Z j (t0) are
given by (71), and the limiting curve (69), t0 ∈ (t̃0, t f ).

1.2. T = ∅.
Theorem 4 In this case, the upper boundary of Φz(K (·) is a lower envelope of 2
curves: the curve (68) and the limiting curve (69) for t0 ∈ [tin, t f ).

Case 2. Empty set of zeros of P(t) on (0, t f ).
2.1. P(t) > 0 for t ∈ (0, t f ).

Theorem 5 In this case,

tin = 0, Z0(t0) = umax
p

|K (t0)| . (74)

2.2. P(t) < 0 for t ∈ (0, t f ).

Theorem 6 In this case,

tin = tχin = inf{t0 ∈ (t̃0, t f ) : χ(t0) ≥ 0}, Z0(t0) = χ(t0). (75)
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Robust Capture Zone of Saturated Linear RCS

Remark 1 Based on a linear strategy (54), construct its saturated version

usatp (t, z) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

umax
p , K (t)z > umax

p ,

K (t)z, |K (t)z| ≤ umax
p

−umax
p , K (t)z < −umax

p

(76)

If (54) is robust capturing, then (76) is also robust capturing.

Denote Φsat
z (K (·)) the robust capture zone of (76).

Robust Capture Zone Structure

Let z(t; t0, z0) denote the solution of the differential equation

ż = h p(t)usat(t, z) + umax
e |he(t)|, (77)

satisfying z(t0) = z0. The robust capture zone Φsat
z (K (·)) is closed set in the plane

(t0, z0) symmetric w.r.t. to the axis z0 = 0. It is given by

Φsat
z (K (·)) = {(t0, z0) : t0 ∈ [t sin, t f ), |z0| ≤ Zs

0(t0)}, (78)

where

t sin = min{t0 ∈ [0, t f ) : ∃z0 ≥ 0 : z(t f ; t0, z0) = 0}, (79)

Zs
0(t0) = z(t0; t sin, zs0), (80)

zs0 = max{z0 ≥ 0 : z(t f ; t sin, z0) = 0}. (81)

Boundary

Define the function

Zm(t) =
t f∫

t

(
umax
p |h p(ξ)| − umax

e |he(ξ)|) dξ. (82)

It is assumed that

Zm1 Zm(t) has no more than a finite number of roots on [0, t f ];
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Zm2 there exists δ ∈ (0, t f ) such that Zm(t) > 0 for t ∈ (t f − δ, t f ).

Define the moment

tmin = sup{t ∈ [0, t f ) : Zm(t) < 0}, (83)

and the set

Φm
z = {(t0, z0) : t0 ∈ [tmin, t f ), |z0| ≤ Zm(t0)}. (84)

Then,

Φz(K (·)) ⊆ Φsat
z (K (·)) ⊆ Φm

z . (85)

Define the function

Ps(t) = Zm(t) − umax
p

|K (t)| =
t f∫

t

P(ξ)dξ. (86)

Case 1. Ps(t) �= 0, t ∈ (0, t f ).

Theorem 7 Let tmin = 0 and Zm(0) > 0. Then

Φsat
z (K (·)) = Φm

z , (87)

if and only if
Ps(t) > 0, t ∈ [0, t f ). (88)

Theorem 8 Let the function Zm(t) have no non-zero-crossing roots. Then

Φsat
z (K (·) = Φz(K (·)), (89)

if
Ps(t) < 0, t ∈ (0, t f ). (90)

In this case,
Zs
0(t0) = Z0(t0) = χ(t0). (91)

Case 2. There exists t̃ ∈ (0, t f ) such that Ps(t̃) = 0 and Ps(t) �= 0, t ∈ (t̃, t f ) .
Case 2.1. Ps(t) > 0, t ∈ (t̃, t f ). In this case,

Zs
0(t0) =

⎧
⎨
⎩

Zm(t0), t0 ∈ (t̃, t f ),

Z̃(t0), t ∈ [t sin, t̃],
(92)
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where Z̃(t) is the solution of the differential equation

˙̃Z = h p(t)usat(t, Z̃) + umax
e |he(t)|, Z̃(t̃) = Zm(t̃) = umax

p

|K (t̃)| . (93)

If Z̃(t) > 0 for t ∈ (0, t f ), then t sin = 0, otherwise, t sin is the first zero of Z̃(t) from
the right.

Case 2.2. Ps(t) < 0, t ∈ (t̃, t f ). LetΦz(K (·)) is non-trivial, i.e., there exists tχin ∈
[0, t f ). Denote t̄ = max{t̃, tχin}. Then

Zs
0(t0) =

⎧
⎨
⎩

χ(t0), t0 ∈ (t̄, t f ),

Z̄(t0), t ∈ [t sin, t̃],
(94)

where Z̄(t) is the solution of the differential equation

˙̄Z = h p(t)usat(t, Z̄) + umax
e |he(t)|, Z̄(t̄) = χ(t̄). (95)

If Z̄(t) > 0 for t ∈ (0, t f ), then t sin = 0, otherwise, t sin is the first zero of Z̄(t) from
the right.
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Convergence of Numerical Method
for Time-Optimal Differential Games
with Lifeline

Nataly V. Munts and Sergey S. Kumkov

1 Introduction

This paper discusses time-optimal differential games with lifeline and numerical
scheme constructing the value function for such games. In games of this type, the
first player tends to lead the system to a prescribed closed target set while keeping
the trajectory inside some open set where the game takes place. The second player
hinders this, because it wins as soon as either the trajectory of the system leaves this
open set not touching the target one, or it succeeds in keeping the system infinitely
inside this open set.

Apparently, the first, who formulated a problem with lifeline, was R. Isaacs in
his book [20]. In his definitions, the lifeline is a set, after the reaching of which the
second player wins unconditionally. Significant contribution into research of games
with lifeline wasmade by L.A.Petrosyan (see e.g., [28]). However, the authors do not
know works, which would consider exhaustively games of this sort: L.A.Petrosyan
researched mostly problems with simple motion dynamics, that is, the problems
where the players’ controls are the velocities of the objects. In books [21, 22] of
N.N.Krasovskii and A.I.Subbotin, games with lifeline are analyzed as problems
with state constraints: the first player is not supposed to lead the system outside
a prescribed set. Also, problems with state constraints have been studied by many
authors (see, for example, [3, 10, 11, 19, 29]).

Problems very close to games with lifeline have been studied by French authors
P.Cardaliaguet, M.Quincampoix, P.Saint-Pierre [12–15]. For controlled systems on
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the basis of the set-valued analysis, the theory of differential inclusions, and the
theory of viability, they analyze the setswhere the controller is able to keep the system
infinitely (viability kernels). Passing to games, the authors consider a situation with
two target sets for the first and second players, respectively, to which the players
try to guide the system avoiding the target of the opposite player. Another variant
considered in these works is games with state constraints for the first player. In these
situations, the main objectives are to study victory domains of the players, that is,
the sets wherefrom the corresponding player can reach its target without hitting the
target of the opposite player (or state constraints). Also, in the terms of viability,
the upper value function of such games (the guaranteed result of the first player)
is characterized as a function, which epigraph is a viability set of the first player.
Grid-geometric algorithms are suggested for approximation of viability kernels and,
therefore, for approximation of the upper value. However, we have not found papers
of these authors where existence of the value function is proved for games of this
type and/or its coincidence with generalized solution of the corresponding boundary
value problem of a HJE is justified (although such a connection is mentioned).

The main boost that stimulated the authors to study time-optimal games with life-
line is the investigation of questions connected with numerical methods for solving
classic time-optimal games. In particular, in works [1, 2], Italian mathematicians
M.Bardi and M.Falcone together with their colleagues suggested a theoretic numer-
ical method for constructing the value function of a time-optimal game (without
lifeline) as a generalized (viscosity) solution of the corresponding boundary value
problem for HJE. The suggested procedure is of a grid type, and its proof is made
in assumption that the grid is infinite and covers the entire game space. But prac-
tical computer realization, apparently, deals with a finite grid, which covers only a
bounded part of the game space. So, the problem arises what boundary condition to
set on the outer boundary of the domain covered by the grid.M.Bardi andM.Falcone
suggest to set these conditions to plus infinity, that is, actually declaring that the sec-
ond player wins when reaching the outer boundary of this domain. Therefore, the
practical realization of the procedure solves a game with lifeline. That is why the
authors decided to fill this gap connected to the problems with lifeline in a very
general formulation.

Also, there is one more grid method for solving time-optimal problems suggested
by authors from Germany. In works by N.Botkin, K.-H.Hoffmann, V.Turova, and
their colleagues, a numerical procedure is suggested, which is based on a so-called
upwind operator involving approximations for left and right partial derivatives of
the value function in a node (see, for example, [7–9]). This algorithm is applicable to
problems with state constraints for the first player, which can be treated as problems
with lifeline.

This paper provides a numerical method for constructing the value function of a
time-optimal game with lifeline as a viscosity solution of the corresponding bound-
ary value problem for HJE. A pointwise convergence of the numerical method to the
value function is proved. The method is just the one suggested by the Italian mathe-
maticians, but its convergence should be proved anew in the framework of the new
formulation. Also, theorems on coincidence of the value functions of time-optimal
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problems with and without lifeline are proved under a very important assumption
that the value function is continuous in the domain where the game takes place. The
coincidence of the limit of discrete numerical solutions with the value function needs
such a continuity. The continuity can be derived, in particular, from the assumptions
of the local dynamic advantage of one player over another near their sets: if the
system position is close to the target set, then the first player can guide the system to
this set; vice versa, if the system is close to the lifeline, then the second player can
push it to the lifeline. These assumptions have been taken for the proof of existence
of the generalized solution justified in other papers [24–26] by the authors.

The structure of this paper is as follows. In Sect. 2, the formulation of the prob-
lem is given. Section 3 deals with the formulation of the numerical scheme and the
convergence of computations performed according to it. In Sect. 4, a proof of con-
vergence of the functions obtained as a result of the computations to the viscosity
solution of the corresponding boundary value problem for the HJE coincides with
the value function of the original game. Section 5 contains discussion on coincidence
of the value function of time-optimal differential games with and without lifeline. In
Sect. 6, one can see results of numerical computations performed by the realization
of the numerical procedure. The paper is finalized by a conclusion.

2 Problem Formulation

Let us consider a conflict controlled system

ẋ = f (x, a, b), t ≥ 0, a ∈ A, b ∈ B, (1)

where x ∈ R
n is the phase vector of the system; a and b are the controls of the first and

second players constrained by the compact sets A and B in their Euclidean spaces.
We are given a compact set T and an open set W ⊂ R

n such that T ⊂ W and the
boundary ∂W is bounded. Denote G := W \ T andF := R

n \ W (see Fig. 1). The
game takes place in the set G ; the objective of the first player is to guide the system to
the set T as soon as possible keeping the trajectory outside the setF ; the objective
of the second player is to guide the system to the setF , or if it is impossible, to keep
the trajectory inside the set G forever, or if the latter is impossible too, to postpone
reaching the set T as long as he can.

Such a game can be called a game with lifeline; the boundary ∂F of the setF is
the lifeline where the second player wins unconditionally.

We assume that the following conditions are fulfilled:

C.1 The function f : R
n × A × B → R

n is continuous in all variables andLipschitz
continuous in the variable x : for all x (1), x (2) ∈ R

n , a ∈ A, b ∈ B

∥
∥ f (x (1), a, b) − f (x (2), a, b)

∥
∥ ≤ L‖x (1) − x (2)‖; (2)
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Fig. 1 Sets T , F , and G

moreover, it satisfies Isaacs’ condition:

min
a∈A

max
b∈B

〈

p, f (x, a, b)
〉 = max

b∈B
min
a∈A

〈

p, f (x, a, b)
〉 ∀p ∈ R

n . (3)

Here and below, the symbol 〈·, ·〉 stands for the scalar product.
C.2 The boundary ∂G of the set G (that is the boundaries ∂T and ∂F ) is compact,

smooth, and has a bounded curvature.
Remark. In our previous paper [26], we do not demand the boundedness of
the curvature of G . When that paper was written, we thought that a sufficient
smoothness of the boundary provides the boundedness of its curvature. It is
necessary to prove existence of a generalized solution of the corresponding
boundary problem of a Hamilton–Jacobi equation. However, after consultations
with specialists in topology, it turned out that even infinitely smooth bounded
curve in the plane can have an unbounded curvature. So, this demand should be
formulated explicitly.

C.3 One can find a constant c > 0 and a bounded uniformly continuous function
η : clG ∩ O(∂G , c) → R

n such that the embedding O
(

x + tη(x), ct
) ⊆ G is

true for all x ∈ clG ∩ O(∂G , c) and 0 < t ≤ c. Here and below, O(y, r) is
an open ball of the radius r with the center at the point y, O(X, r) := {

x :
dist(x, X) < r

}

and O(∅, R) = ∅.
Remark. It seems to us that the latter condition C.3 follows from the previous
one C.2, but nowwe have no proof of this implication. So, we explicitly demand
existence of the function η, which is called the generalized normal.

The players’ aims of the mentioned kind can be formalized in the following way.
Let the function x(·; x0) be a trajectory of the system emanated from the initial point
x(0) = x0. We consider two instants

t∗ = t∗
(

x(·, x0)
) = min

{

t ≥ 0 : x(t; x0) ∈ T
}

,

t∗ = t∗(x(·, x0)
) = min

{

t ≥ 0 : x(t; x0) ∈ F
}

,

which are the instants when the trajectory x(·; x0) hits for the first time the setsT and
F , respectively. If the trajectory doesn’t arrive at the set T (F ), then the value t∗
(t∗) is equal to +∞.
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To say what is a system trajectory, one can use either the formalization with
nonanticipating strategies, or the positional formalization of N.N.Krasovskii and
A.I.Subbotin [21, 22]. In the latter case, the feedback strategies of the first and the
second player are functions a(·) : R

n → A and b(·) : R
n → B, respectively.

We define the result of the game on the trajectory x(·; x0) as

τ
(

x(·; x0)
) =

{

+∞, if t∗ = +∞ or t∗ < t∗,
t∗, otherwise.

(4)

In [23], the authors prove that a time-optimal problem with lifeline has the value
function T (x).

The unboundedness of the value function and cost functional can cause some
uneasiness of a numerical research of game (1), (4). For this reason, one often sub-
stitutes the unbounded cost functionalwith a boundedone bymeans of theKruzhkov’s
transform:

J
(

x(·, x0)
) =

{

1 − exp
(−τ

(

x(·; x0)
))

, if τ
(

x(·; x0)
)

< +∞,

1, otherwise.
(5)

In such a case, the value function v(x) also becomes bounded and its magnitude
belongs to the range from zero to one:

v(x) =
{

1 − exp
( − T (x))

)

, if T (x) < +∞,

1, otherwise.
(6)

3 Numerical Scheme

In general, the numerical scheme construction and justification of its convergence
are analogous to the ones in paper [2] where the numerical scheme for the classic
time-optimal problem is constructed and its convergence is proved. Herewith, the
value function is characterized as the unique generalized (viscosity) solution of the
corresponding boundary value problem for HJE.

3.1 Discrete Scheme

Let us replace the continuous dynamics with a discrete one by the time step h > 0:

xn = xn−1 + h f (xn−1, an−1, bn−1), n = 1, . . . , N , x0 is given,

where an ∈ A and bn ∈ B.
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By the discrete Dynamic Programming Principle, one can get the following char-
acterization for the value function wh(·) of the discrete time problem:

wh(x) =

⎧

⎪⎨

⎪⎩

γ max
b∈B

min
a∈A

wh
(

z(x, a, b)
) + 1 − γ, if x ∈ G ,

0, if x ∈ T ,

1, if x ∈ F .

Here, γ = e−h , z(x, a, b) = x + h f (x, a, b).
Further, let us describe the space discretization. Let us consider a gridL with the

step k, which covers the entire spaceR
n and consists of nodesqi1,...,in = (xi1 , . . . , xin ),

i1, . . . , in ∈ Z, xi j = ki j . (Generally speaking, steps along different axes can differ,
but this fact doesn’t change the main idea of the numerical scheme construction.)
Here and below, mostly, a linear indexation qν , ν ∈ Z, for the nodes of the grid L
is used. The symbol LT stands for the set of those nodes of the grid L , which
belong to the set T ; the symbolLG denotes the collection of nodes falling into the
set G ; and the symbolLF stands for the set of nodes from the setF . In theoretical
constructions, the grid is assumed infinite.

For every point x ∈ R
n , one can find a simplex S(x)with vertices

{

ql(x)
}

fromL
such that the point x belongs to the simplex S(x) and S(x) does not contain other
nodes of the grid. It is assumed that with choosing the grid L , we also choose a
separation of the game space to simplices with their vertices at nodes of the grid.
On the basis of S(x), one can obtain the barycentric (local) coordinates λl(x) of the
point x with respect to the vertices ql(x) of the simplex S(x):

x =
n+1
∑

l=1

λl(x)ql(x), λl(x) ≥ 0,
n+1
∑

l=1

λl(x) = 1.

Sometimes, the arguments of the coefficients λ and vertices q will be omitted if they
are clear from the context.

Let us substitute the function wh(·)with a new one w(·), which magnitudes w(qν)

at the nodes qν of the grid L form an infinite vector W = (

w(qν)
)

ν∈Z. The magni-
tude w(x) at some point x , which is not a node of the grid, can be reconstructed by
means of the following piecewise-linear approximation based on the local coordi-
nates of the point x :

wloc(x, W ) =
n+1
∑

l=1

λl(x) w
(

ql(x)
)

. (7)

Hereby, the characterization of the value function of a fully discrete problem is
obtained:
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w(qν) =

⎧

⎪⎨

⎪⎩

γ max
b∈B

min
a∈A

wloc
(

z(qν, a, b), W
) + 1 − γ, if qν ∈ LG ,

0, if qν ∈ LT ,

1, if qν ∈ LF .

This characterization is of a recursive kind, because the magnitude w(qν) at some
node qν depends on themagnitude of the local reconstructionwloc. Note that the latter
in its turn depends on the magnitudes of the function w(·) at nodes of the grid, which
may include the node qν . Such kind of relations obtained is typical for the dynamic
programming principle. In the following, on the basis of this formula, an iterative
numerical method for construction of the vector W and function w is proposed.
Moreover, from the definition of w(·), one can see that in a practical realization of
the numerical method, it is necessary to remember values of this function only at the
nodes from LG . If the set G is bounded, then LG contains only finite number of
nodes and can be represented in a computer.

For the chosen gridL = {qν}ν∈Z, we denote byM the set of infinite vectors with
the elements W = (

w(qν)
)

ν∈Z. We denote byM1 those vectors in the setM , which
elements w(qν) satisfy the inequality 0 ≤ w(qν) ≤ 1. For every s ∈ Z, we define an
operator Fs : M → R using a vector W = (

w(qν)
)

ν∈Z in the following way:

Fs(W ) =

⎧

⎪⎨

⎪⎩

γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b), W
) + 1 − γ, if qs ∈ LG ,

0, if qs ∈ LT ,

1, if qs ∈ LF .

Here, wloc : R
n × M → R is the local reconstruction (7) of the function w(·) cor-

responding to the vector W . The manifold of values of the operators Fs over all
indices s (that is, over all nodes qs) defines an operator F : M → M .

A partial order can be defined in the set M using the elementwise comparison:
W1 ≤ W2 ⇔ ∀ν ∈ Z w1(qν) ≤ w2(qν). Also, in M1, one can reasonably introduce
the norm ‖W‖∞ = sup

{

w(qν) : ν ∈ Z
}

.
Let us prove the following lemma on properties of the operator F analogous to

the one from paper [2, pp. 124–125, Proposition 2.1].

Lemma 1 The operator F : M → M has the following properties:

1. F(M1) ⊆ M1;
2. F is monotone with respect to the partial order in M ;
3. F is a contraction map in M1 with respect to the norm ‖ · ‖∞.

Proof Basically, the proof repeats the analogous one in [2, pp. 124–125].

1. Let W ∈ M1 and qs ∈ LG . Then

Fs(W ) = γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Wm
(

z(qs, a, b)
) + 1 − γ.
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Here, Wm(z) is the element of the vector W corresponding to the node, which is
the mth vertex of the simplex S

(

z(qs, a, b)
)

.
Since, λm

(

z(qs, a, b)
) ≥ 0,

∑
λm

(

z(qs, a, b)
) = 1, and 0 ≤ Wm ≤ 1, we have

0 ≤ Fs(W ) ≤ γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
) + 1 − γ = γ + 1 − γ = 1.

If qs /∈ LG , then Fs(W ) = 0 or Fs(W ) = 1. Hence, it appears that F : M1 →
M1.

2. Let U, V ∈ M and U ≥ V . If qs ∈ LG , then

Fs(V ) − Fs(U ) = γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Vm
(

z(qs, a, b)
)

− γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Um
(

z(qs, a, b)
)

.

Let us choose the control a(b) of the first player attaining the minimum in Fs(U )

for a fixed b. Then the minuend in the inequality increases, because a(b) not
necessarily attains the minimum in Fs(V ), while the subtrahend keeps its value.
We get

γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Vm
(

z(qs, a, b)
)

− γ max
b∈B

min
a∈A

n+1
∑

m=1

λm
(

z(qs, a, b)
)

Um
(

z(qs, a, b)
)

≤ γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Vm
(

z
(

qs, a(b), b
))

− γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Um
(

z
(

qs, a(b), b
))

.

Now, let us consider the control b of the second player attaining the maximum in
the expression for the minuend, that is,

b ∈ Argmax
b∈B

[

γ

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Vm
(

z
(

qs, a(b), b
))

]

.
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It follows that

γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Vm
(

z
(

qs, a(b), b
))

− γ max
b∈B

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))

Um
(

z
(

qs, a(b), b
))

≤ γ

n+1
∑

m=1

λm
(

z
(

qs, a(b), b
))(

Vm
(

z
(

qs, a(b), b
))

− Um
(

z
(

qs, a(b), b
))) ≤ 0.

If qs ∈ LT or qs ∈ LF , then Fs(V ) − Fs(U ) = 0. Hence, F is the monotone
operator.

3. Let U, V ∈ M1. If qs ∈ LG , then

∣
∣Fs(V ) − Fs(U )

∣
∣ ≤ γ

n+1
∑

m=1

λm
(

z
(

qs , a(b), b
))

× ∣
∣Vm

(

z
(

qs , a(b), b
)) − Um

(

z
(

qs , a(b), b
))∣

∣

≤ γ max
m

∣
∣Vm

(

z
(

qs , a(b), b
)) − Um

(

z
(

qs , a(b), b
))∣

∣

×
n+1
∑

m=1

λm
(

z
(

qs , a(b), b
)) ≤ γ‖V − U‖∞.

It holds for every s ∈ Z.
If qs ∈ LT or qs ∈ LF , then Fs(V ) − Fs(U ) = 0. So, it immediately follows
that the function F is a contraction map, since γ = e−h < 1.

As a consequence from this lemma, one can obtain that there exists a unique
fixed point W ∈ M1 of the operator F , which determines a function w(·) in R

n ,
w(x) ∈ [0, 1]. This function depends on the time h and space k discretization steps
of the original problem:

w(x) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

m
λmw(qm), if x /∈ L and x = ∑

m
λmqm,

γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ, if qs ∈ LG ,

0, if qs ∈ LT ,

1, if qs ∈ LF .

(8)
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3.2 Viscosity Solution of Boundary Problem for HJE

Let us consider the following boundary value problem for HJE:

z + H(x, Dz) = 0, x ∈ G ,

z(x) = 0 if x ∈ ∂T , (9)

z(x) = 1 if x ∈ ∂F .

Here and below, the symbol Dz denoted the gradient of the function z. The function H
is called the Hamiltonian and in the case of dynamics (1) is defined as follows:

H(x, p) = max
a∈A

min
b∈B

〈

p,− f (x, a, b)
〉 − 1, x, p ∈ R

n. (10)

Equations of this type can have no classical solution. That is why we use the notion
of the generalized viscosity solution introduced in [17] to deal with this problem.
In book [30], an alternative method of obtaining a generalized solution of HJE was
introduced. It is called the generalized minimax solution. Also in book [30], it is
proved that viscosity and minimax solutions coincide at the points of continuity.

In [24, 25], the authors prove that the value function of game (1), (5) is a vis-
cosity solution of problem (9). The proof demands smoothness of boundaries ∂T
and ∂F , the boundedness of these boundaries curvature. It was performed under
the assumption of the dynamical advantage of each player on the boundaries of the
corresponding sets:

∀x ∈ ∂T min
a∈A

max
b∈B

〈

nT (x), f (x, a, b)
〉

< 0,

∀x ∈ ∂F max
b∈B

min
a∈A

〈

nF (x), f (x, a, b)
〉

< 0.
(11)

Here, nT (x)
(

nF (x)
)

is a normal vector to the boundary ∂T (∂F ) of the setT (F )
at the point x directed outward the corresponding set or (what is the same) inward
the set G . The sense of these relations is that if the system is at the boundary of the
set T (F ), then the first (second) player can guarantee leading the trajectory of the
system inside the corresponding set despite the action of the opponent. Combination
of these assumptions results in the continuity of the value function inside the set G .
Indeed, from the results of paper [26], it follows that under these assumptions an
upper generalized solution exists, which is continuous in clG . Then, the statements
in [30, Sect. 18.6, pp. 224–225] imply that a generalized solution exists, which is
continuous in G . Moreover, since the value function coincides with the generalized
solution, it is continuous too (the coincidence is proved in [26]).

Definition 1 ([2], p. 112, Definition 1.3) For some domain Ω , an upper semicon-
tinuous function u(·) is called a viscosity subsolution of Eq. (9) in the domain Ω if
for all ϕ ∈ C1(Ω) and for any local maximum point y ∈ Ω for u − ϕ, the inequal-
ity u(x) + H

(

x, Dϕ(x)
)

� 0 holds.



Convergence of Numerical Method for Time-Optimal … 113

Definition 2 ([2], p. 112, Definition 1.3) For some domain Ω , a lower semicontin-
uous function u(·) is called a viscosity supersolution of Eq. (9) in the domain Ω if
for all ϕ ∈ C1(Ω) and for any local minimum point y ∈ Ω for u − ϕ, the inequal-
ity u(x) + H

(

x, Dϕ(x)
)

� 0 holds.

Definition 3 Let us consider two sequences of real numbers hn > 0 and kn > 0
(which are time and space discretization steps). We will refer to them as admissible
sequences if hn → 0 and kn/hn → 0 as n → ∞.

Let us consider admissible sequences of real numbers hn > 0, kn > 0, and a
sequence of the solutions wn of problem (8) corresponding to these admissible
sequences.

The proof of the facts given in the next section is based on the notion of the weak
limit in the viscosity sense introduced in [1, 6]. An upper and a lower limit of the
functional sequence wn in the viscosity sense are defined as follows:

lim sup
(y,n)→(x,∞)

wn(y) := lim
δ→0+

sup
{

wn(y) : |x − y| ≤ δ, n ≥ 1/δ
}

,

lim inf
(y,n)→(x,∞)

wn(y) := lim
δ→0+

inf
{

wn(y) : |x − y| ≤ δ, n ≥ 1/δ
}

.
(12)

Note that these limits exist if the functional sequence wn is locally uniformly
bounded [1, p. 288, Definition 1.4].

Definition 4 For some domain Ω , an upper semicontinuous function u : clΩ →
R satisfies the boundary condition u + H(x, Du) ≤ 0 at the boundary ∂Ω in the
viscosity sense if for all ϕ ∈ C1(clΩ) and a point x ∈ ∂Ω such that the function
u − ϕ has a local maximum at x , the inequality u(x) + H(x, Dϕ(x)) ≤ 0 holds.

Definition 5 For some domain Ω , a lower semicontinuous function u : clΩ →
R satisfies the boundary condition u + H(x, Du) ≥ 0 at the boundary ∂Ω in the
viscosity sense if for all ϕ ∈ C1(clΩ) and a point x ∈ ∂Ω such that the function
u − ϕ has a local minimum at x , the inequality u(x) + H(x, Dϕ(x)) ≥ 0 holds.

4 Numerical Scheme Convergence

Let us formulate and prove a lemma for a time-optimal game with lifeline analogous
to [2, p. 127, Lemma 2.2]. Some derivations in the original lemma were omitted.
For example, the proof for an upper solution was absent, proof of the inequalities
analogous to (19) and (20) from this paper was not completely performed, and some
essential remarks were missed (e.g., in the original lemma the function ϕ is defined
on the closure of the set of the game but is used in a such a way that it is defined on
the whole R

n).

Lemma 2 Let us consider admissible sequences of real numbers hn > 0 and kn > 0,
and let wn be the corresponding sequence of solutions (8). Denote
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v(x) := lim sup
(y,n)→(x,∞)

wn(y), v(x) := lim inf
(y,n)→(x,∞)

wn(y). (13)

Then the functions v and v are, respectively, a viscosity subsolution and supersolution
of the boundary value problem (9) with the boundary conditions

v ≥ 0 on ∂T , (14)

v ≤ 0 or v + H
(

x, Dv(x)
) ≤ 0 on ∂T , (15)

v ≥ 1 or v + H
(

x, Dv(x)
) ≥ 0 on ∂F , (16)

v ≤ 1 on ∂F . (17)

The second inequalities in (15) and (16) are understood in the viscosity sense.

Proof Proofs of the facts that the boundary conditions (14), (15) are fulfilled and
that v is a viscosity subsolution are similar to those from [2, pp.127–129]. The
fulfilment of the last boundary condition (17) is obvious from the construction of the
function v. Therefore, it is necessary to show only that the function v is a viscosity
supersolution and that the boundary condition (16) holds. Let us prove these facts
simultaneously (in (16), we prove the second inequality).

Choose a function ϕ ∈ C1(Rn) and a point y ∈ clG such that the function v − ϕ
attains the local strict minimum at the point y. Although, the function ϕ in the
definition of the viscosity solution is considered only at the set clG , we define it in
the whole space R

n , because we shall need it henceforth; restriction of the function
ϕ to the set clG is smooth. As far as the property of the point y doesn’t change under
adding a constant to the function ϕ, we consider that ϕ(y) = v(y). The point y can
belong to the set G or to the boundary ∂F . The case when the point y belongs to
the boundary ∂T does not require consideration, because it is taken into account in
condition (14). If y ∈ ∂F and v(y) ≥ 1, then inequality (16) holds. Thus hereafter,
we shall assume that v(y) < 1 if y ∈ ∂F and v(y) ≤ 1 if y ∈ G .

It has to be shown that v(y) + H
(

y, Dϕ(y)
) ≥ 0. Let us choose a sequence of

points xn such that

min
cl
(

G ∩B(y,1)
)(wn − ϕ) = (wn − ϕ)(xn).

The basic property of weak limits in the viscosity sense [1, 5, 18] is the existence
of a subsequence (we suppose that it is the sequence xn itself) such that xn →
y and wn(xn) → v(y) as n → ∞. It means that one can choose such a number
ε > 0 that B(y, ε) ⊂ G if y ∈ G or ϕ(y′) < 1 − ε for every y′ ∈ B(y, ε) if y ∈
∂F . It can always be achieved by means of decreasing ε, because if y ∈ ∂F , then
ϕ(y) = v(y) < 1. Moreover, one can choose such a sufficiently big number n that
the following inequalities hold

(a) xn ∈ B(y, ε/3) holds, because xn converges to the point y as n → ∞;
(b)

∣
∣hn f (xn, a, b)

∣
∣ ≤ ε/3 holds, because hn tends to 0;
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(c) kn · max
{

2 + σ,
√

d
} ≤ ε/3 holds, because the sequence kn tends to 0; here,

σ = max
{∣
∣Dϕ(z)

∣
∣ : z ∈ B(y, 1)

}

;
(d) ϕ(xn) − wn(xn) > −ε holds, because we assume that ϕ(y) = v(y); hence,

ϕ(xn) < wn(xn) (as ϕ(y′) < v(y′) and v(y′) ≤ wn(y′) for all y′ in some suf-
ficiently small neighborhood of the point y; the points xn belong to this neigh-
borhood for indices n starting from some sufficiently large index).

The following calculations are made for n fixed, so we temporarily omit the
subscript in hn , kn , wn , xn , γn = e−hn .

1. Let y ∈ G . Let us write the local coordinates of the point x via the vertices qs

of the corresponding simplex: x = ∑

s λsqs . Note that qs ∈ B(y, ε), because x ∈
B(y, ε/3) and qs ∈ B(x, ε/3) (the latter is true due to k

√
d ≤ ε/3). So, qs ∈ G ,

whence it follows that for w(qs) the following representation holds

w(qs) = γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ.

2. Let y ∈ ∂F . Then−ε < ϕ(x) − w(x) < 1 − ε − w(x) ⇒ w(x) < 1. So, if x =
∑

s λsqs , then there exists a node qs such that λs �= 0 and w(qs) < 1. Then again
for w(qs), the following representation holds

w(qs) = γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ.

Let us note that

w(qs) = γ max
b∈B

min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ

≥ γ min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ

for every b ∈ B. Moreover, for every ρ > 0, there exists a value as(ρ) (for example,
the one attaining the minimum) such that the following inequality holds

γ min
a∈A

wloc
(

z(qs, a, b),W
) + 1 − γ > γwloc

(

z
(

qs, as(ρ), b
)

,W
) + 1 − γ − ρh.

We denote by zs(ρ, b) = z
(

qs, as(ρ), b
) = qs + h f

(

qs, as(ρ), b
)

. Whence it follows
that for every ρ > 0 the relation holds

w(qs) − γwloc
(

zs(ρ, b),W
) − (1 − γ) > −ρh ∀b ∈ B. (18)

Let zs = ∑

p μpqp and b is arbitrary. Now, let us prove that

w(x) − ϕ(x) ≤ wloc
(

zs(ρ, b),W
) − ϕ

(

zs(ρ, b)
) + σk

√
d + o1, (19)



116 N. V. Munts and S. S. Kumkov

where o1 = o(
∣
∣zs(ρ, b) − qp�

∣
∣) and qp� is such a vertex of the simplex S

(

zs(ρ, b)
)

that ϕ(qp� ) is the minimum magnitude of ϕ over the vertices of this simplex. Here
and below, all o-variables are considered as n → ∞.

If zs(ρ, b) ∈ clG , then, in virtue of condition (c), we obtain zs(ρ, b) ∈ B(qs, ε/3).
Sinceqs ∈ B(x, ε/3), one has zs(ρ, b) ∈ B(x, 2ε/3) ⊂ B(x, ε). In this case, inequal-
ity (19) holds, because x is the point of a local minimum of the function w − ϕ.

Now, let zs(ρ, b) /∈ clG . Two cases are possible

1. There is a term in the representation of zs such that μp �= 0 and qp ∈ clG .
Then, similarly, we get qp ∈ B

(

zs(ρ, b), ε/3
)

, zs(ρ, b) ∈ B(qs, ε/3), and qs ∈
B(x, ε/3).Hence,qp ∈ B(x, ε). From this, it follows thatw(x)− ϕ(x)≤w(qp) −
ϕ(qp), because x is the point of a local minimum of the function w − ϕ.

2. For all p such that μp �= 0, one has that qp /∈ clG . Recall that the function ϕ
is defined on the whole space R

n and that for every y′ ∈ B(y, ε) the condition
ϕ(y′) < 1 − ε holds. Then, in virtue of condition (d), we get

w(x) − ϕ(x) < ε < 1 − ϕ(qp) = w(qp) − ϕ(qp),

because the function w(qp) = 1 at the node qp ∈ F .

Then

w(x) − ϕ(x) ≤
∑

p

μp
(

w(qp) − ϕ(qp)
) =

∑

p

μpw(qp) −
∑

p

μpϕ(qp)

≤ wloc
(

zs(ρ, b),W
) −

∑

p

μpϕ(qp� ) = wloc
(

zs(ρ, b),W
) − ϕ(qp� ),

where the index p� is as defined above.
Note that

∣
∣ϕ

(

zs(ρ, b)
) − ϕ(qp� )

∣
∣ ≤ σ

∣
∣zs(ρ, b) − qp�

∣
∣ + o(

∣
∣zs(ρ, b) − qp�

∣
∣)

< σk
√

d + o(
∣
∣zs(ρ, b) − qp�

∣
∣).

Then −ϕ(qp� ) ≤ −ϕ
(

zs(ρ, b)
) + σk

√
d + o1. Hence, we obtain inequality (19).

Now, let us show that
∣
∣w(x) − w(qs)

∣
∣ ≤ σk

√
d.

Since x , qs belong to one simplex S, then w is affine in the segment X = [x, qs].
As function (w − ϕ)

∣
∣

X attains minimum at the point x , we get

|w(x) − w(qs)|
k
√

d
≤ |w(x) − w(qs)|

|x − qs | = |DXw| = |DXϕ| � σ.

We denote by DX g a derivative of the restriction of a function g to the set X as a
derivative of a function of one variable.
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Also, let us note that

∣
∣ϕ

(

zs(ρ, b)
) − ϕ

(

x + h f (x, as(ρ), b)
)∣
∣ ≤ σ

∣
∣zs(ρ, b) − x − h f (x, as(ρ), b)

∣
∣

= σ
∣
∣qs + h f (qs, as(ρ), b) − x − h f (x, as(ρ), b)

∣
∣

≤ σ
(|qs − x | + h

∣
∣ f (qs, as(ρ), b) − f (x, as(ρ), b)

∣
∣
) ≤ σ(k

√
d + hLk).

(20)

Now, let us apply the educed inequalities to (18) for any b ∈ B:

− ρh < w(qs) − γwloc
(

zs(ρ, b),W
) − (1 − γ)

≤ w(x) − γwloc
(

zs(ρ, b),W
) − (1 − γ) + σk

√
d

= (1 − γ)w(x) + γ
(

w(x) − wloc
(

zs(ρ, b),W
)) − (1 − γ) + σk

√
d

≤ (1 − γ)w(x) + γ
(

ϕ(x) − ϕ
(

zs(ρ, b)
)) − (1 − γ) + (1 + γ)σk

√
d + γo1

≤ (1 − γ)w(x) + γ
(

ϕ(x) − ϕ
(

x + h f (x, as, b)
))

− (1 − γ) + (1 + 2γ + γhL)σk
√

d + γo1,

where L is the Lipschitz constant for the function f from condition (2).
Since ρ is arbitrary, it holds

0 ≤ 1 − γn

hn
wn(xn)

+ min
b∈B

max
a∈A

{

γn
ϕ(xn) − ϕ

(

xn + hn f
(

xn, a, b)
)

hn
− 1 − γn

hn

}

+ σ
kn

hn

√
d(1 + 2γn + γnhn L) + γo1.

Passing to the limit in n to the infinity, we obtain 0 ≤ v(y) + H
(

y, Dϕ(y)
)

. That
establishes relation (16) as far as the fact that v and v are viscosity subsolution and
supersolution of problem (9) with the boundary conditions (14)–(17) in the viscosity
sense.

Now, we can prove a theorem on the convergence of the proposed numerical
scheme analogous to [2, pp. 125–129, Theorem 2.3]. Firstly, it should be noted
that the proof of the auxiliary theorem for a time-optimal problem with lifeline
corresponding to [2, pp. 117–118, Theorem 1.10] can be conducted in an analogous
way with the set Ω substituted by the set G and is not given here.

Theorem 1 Assume that Conditions C.1, C.2, and C.3 hold. Also, suppose that
the value function v (6) of game (1), (5) is continuous on the set clG . Then the
sequence

{

wn
}

converges to the function v = v = v as n → ∞ uniformly on every
compact set K ⊂ clG .
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Note that conditions (11) are crucial for all constructions and argument carried
out by the authors, in particular, in the framework of this paper. Theorem 1 is proved
under continuity of the function v, which follows from these assumptions (as it was
said in Sect. 3.2).

Proof By Lemma 2, function v (13) is a viscosity subsolution of the boundary value
problem (9) and the function v is a viscosity supersolution by virtue of [2, pp. 115–
116, Theorem 1.6], which is common for the boundary value problems for the HJE.
Applying Theorem 1.1 from [4, pp. 23–27], we get that for function v (13), the
inequality v ≤ v holds on clG . In the same manner, it is proved that v ≤ v. So,
v ≤ v in clG . By definition of v and v (as lim inf and limsup of wn), one has v ≤ v.
From these two inequalities, we obtain v = v = v.

Let us show that the sequence
{

wn
}

converges to the function v uniformly on com-
pact sets. Suppose by contradiction that there exist ε > 0, nm → ∞, and xm ∈ K
such that xm → x and

∣
∣wnm (xm) − v(xm)

∣
∣ > ε. This implies that the sequences can

be chosen in such a way that eitherwnm (xm) > v(xm) + ε, orwnm (xm) < v(xm) − ε.
Passing to the limit over m and using the definition of v and v and the continu-
ity of v, we obtain either v(x) ≥ v(x) + ε, or v(x) ≤ v(x) − ε what contradicts to
coincidence of either v and v, or v and v.

5 Connection Between Value Functions of Problems with
and Without Lifeline

In this section, we consider the problem of coincidence of the value functions (not
processed by Kruzhkov’s transform, that is, representing the time of the optimal
motion) for the problems with and without lifeline. Let us consider a classic time-
optimal problemwith dynamics (1), the constraints A and B for the players’ controls,
and the terminal set T . The result of such a game on a trajectory x(·; x0) emanated
form the initial point x0 is determined by the payoff functional

τ̃
(

x(·; x0)
) =

{

min
{

t : x(t; x0) ∈ T
}

,

+∞, if ∀t x(t; x0) /∈ T .

Here and below, notations with a tilde stand for the classic time-optimal game (with-
out lifeline).

Let us introduce the guaranteed results of the players and the value function as it
is described in books [21, 22]. We define a functional

τ̃ε

(

x(·)) := min
{

t ∈ R
+ : x(t) ∈ Tε

}

,

where Tε is the ε-neighborhood of the terminal set T : Tε := T + B(0, ε), the
symbol 0 denotes the origin in the corresponding space. The sign + here stands for
the Minkowski sum.
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Let x̄ ∈ B(x0, ε). Denote by X(x̄,A ,Δ) the set of stepwise motions of the
first player emanated under its strategy A from the point x̄ in the discrete con-
trol scheme [21, 22] with the time step Δ. Also, denote by X(x0,A ) the set of
constructive motions emanated from the point x0 [21, 22] under the strategyA . The
guaranteed result T̃ 0

1 (x0) of the first player at the point x0 is defined as follows:

T̃ ε
1 (x0,A ) := sup

{

τ̃ε

(

x(·)) : x(·) ∈ X(x0,A )
}

,

T̃ ε
1 (x0) := inf

A ∈A
T̃ ε
1 (x0,A ), T̃ 0

1 (x0) := lim
ε↓0 T̃ ε

1 (x0).

The guaranteed result T̃ 0
2 (x0) of the second player at the point x0 is defined in a

similar way:

T̃ ε
2 (x0,B) := inf

{

τ̃ε

(

x(·)) : x(·) ∈ X(x0,B)
}

,

T̃ ε
2 (x0) := sup

B∈B
T ε
2 (x0,B), T̃ 0

2 (x0) := lim
ε↓0 T̃ ε

2 (x0),

where X(x0,B) is the set of constructive motions of the second player emanated
from the point x0 under its strategy B.

It is known that under the assumptions made above, the value function T̃ of a
classic time-optimal problem exists. So, the following equality holds [22]:

T̃ (x0) := T̃ 0
1 (x0) = T̃ 0

2 (x0).

Now, let us consider a classic time-optimal problem and a time-optimal problem
with lifeline with the same dynamics and sets A, B, and T . We choose a point x0 ∈
R

n \ T . Let the magnitude of the value function of classic time-optimal problem be
T̃ (x0) = θ.

By Condition C.1, the function f is continuous and satisfies the condition of the
sublinear growth, that is, there exists a number α > 0 such that for every x ∈ R

n ,
a ∈ A, and b ∈ B the following inequality holds

∥
∥ f (x, a, b)

∥
∥ ≤ α

(

1 + ‖x‖).

It follows from the global Lipschitz condition. Let us consider a function

M
(

x
) := max

a∈A, b∈B

∥
∥ f (x, a, b)

∥
∥,

which provides an upper estimate for the magnitude of possible velocities of the
systemat the point x . This function also is continuous and satisfies the condition of the
sublinear growthwith the same constantα; themaximum is attained, because the sets
A and B are compact. Let us choose measurable realizations a(·) and b(·) of controls
of the first and second players defined for t � 0. They generate a trajectory x(·) =
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x
(·; x0) of the system emerged from the point x0. Using the standard reasoning

involving the Grönwall’s lemma, one can obtain the following estimate: for any
trajectory x(·) emanated from a point x0 under some admissible controls a(·) and
b(·) of the players, it is true that M

(

x
(

t; x0, a(·), b(·))) ≤ α
(

1 + ‖x0‖
)

eαθ for any
t ∈ [0, θ].

Let us choose the constant M̃ such that M̃ ≥ α
(

1 + ‖x0‖
)

eαθ.
Firstly, we consider a classic time-optimal problem. Let us denote an opti-

mal strategy of the first player as A ∗. We choose a point x̄ ∈ B(x0, ε) and a
time partition Δ with the diameter less than ε. Since the strategy A ∗ is opti-
mal, for every stepwise motion x(·) ∈ X(x̄,A ∗,Δ) of the system, the inequality
τ̃
(

x(·)) ≤ θ + ε holds. Hence,
{

x(t) : t ∈ [0, θ + ε)
} ⊂ B(x0, θM̃). Passing to the

limit ε → 0, we obtain that for every constructive motion x(·) ∈ X(x0,A ∗), the
embedding

{

x(t) : t ∈ [0, θ]} ⊂ B(x0, θM̃) holds.
Now, let us consider a time-optimal game with lifeline; the guaranteed results of

the first and the second players at the point x0 are T1(x0) and T2(x0). As the game
set G , we take a set such that B(x0, θM̃) ⊂ G ∪ T = W . In the game with lifeline,
the same strategy A ∗ guarantees the same result for the first player. In other words,
under the strategyA ∗ for every stepwise motion x(·) ∈ X(x̄,A ∗,Δ), the inequality
τ
(

x(·)) ≤ θ holds. It is true, because all the trajectories are embedded into the setW ;
as a result, the second player does not get any advantage connected to the existence
of the lifeline. Hence, T1(x0) ≤ θ.

Let us conduct similar considerations from the point of view of the second player.
Let us take an optimal strategy B∗ of the second player in the classic time-optimal
problem and construct a set of stepwise motions X(x̄,B∗,Δ). For every stepwise
motion x(·) ∈ X(x̄,B∗,Δ), the inequality τ̃

(

x(·)) ≥ θ + ε holds. Hence,
{

x(t) :
t ∈ [0, θ + ε)

} ⊂ B(x0, θM̃). Passing to the limit ε → 0, we get that the set G is
such that all constructive motions x(·) from the setX(x0,B∗) are embedded intoW .
Thus, the inequality τ

(

x(·)) ≥ θ holds also in the time-optimal problemwith lifeline,
and T2(x0) ≥ θ. So, T2(x0) ≥ θ ≥ T1(x0). For the time-optimal problemwith lifeline,
the classic inequality T2(x0) ≤ θ ≤ T1(x0) also holds. Hence, T2(x0) = θ = T1(x0).

Then, we get that if we choose the set G such that B(x0, θM̃) ⊂ W , then the value
function of the classic time-optimal problem coincides with the value function of the
corresponding time-optimal problem with lifeline at the point x0.

So, we have proved the following

Theorem 2 Assume that Condition C.1 holds. Let the value function of a classic
time-optimal problem T̃ (x0) at a point x0 be equal to θ. Then there exists such
a constant M̃ ≥ α

(

1 + ‖x0‖
)

eαθ that if a closed ball B(x0, M̃θ) ⊂ W , then the
magnitude of the value function of the corresponding time-optimal problem with
lifeline T (x0) at the point x0 is also equal to θ.

Moreover, an opposite theorem also holds (since the value function of a time-
optimal problem with lifeline is always not less than the value function of the corre-
sponding classic time-optimal problem):
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Fig. 2 Illustration
to Theorem 3

Theorem 3 Assume that Condition C.1 holds. Let the function T (x0) of a time-
optimal problem with lifeline at the point x0 is equal to θ. Then there exists such
a constant M ≥ α

(

1 + ‖x0‖
)

eαθ that if a closed ball B(x0, Mθ) ⊂ W (see Fig. 2),
then the magnitude of the value function of the classic time-optimal problem T̃ (x0)
at the point x0 is equal to θ.

6 Numerical Examples

The numerical procedure described in Sects. 3 and 4 is constructive except the fact
that the set G is not restricted to be bounded. If the set G is unbounded, then the
gridLG covering it is infinite and cannot be represented in computer. However, in the
opposite case, if the set G is bounded, then the straightforward computer realization
of the proposed procedure is possible.

For the given time step h and space step k, the computer procedure starts with the
initial vector W0, which consists only of 0 and 1: if a node belongs to the set G , then
the magnitude at this node is equal to 1, and if the node belongs to the setT , then the
magnitude is equal to 0. The computer procedure iteratively recomputes magnitudes
at the nodes of the grid LG by the consequent application of the operator F to the
initial vector. The procedure stops if the desired number of iterations is achieved.

We have an own cross-platform realization of this numerical methodwritten using
the environment .NetCore 3.0 and language C# of version 6.0 or later. A single -
threaded program was written and then, by means of the capabilities of C#, it was
made multi-threaded in order to compute faster on multi-core processors.

The best probation for the program would be comparison of some results com-
puted by it with some value functions obtained theoretically. However, time-optimal
games are extremely hard to solve analytically, so, nowadays, there is no non-trivial
problems solved completely. The collection of problems that could be solved ana-
lytically includes problems with the simple motion dynamics and problems with
one-type objects, which can be reduced to control problems. Problems of these types
were used to debug the program and optimize its performance. But for other prob-
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lems, we can compare our results only with the numerical ones obtained by other
authors. Below, in several subsections, such examples are shown.

6.1 Homicidal Chauffeur Game

In the homicidal chauffeur game [20], a pursuing object, which represents a car with
a bounded turn radius, tries to catch up an evading one with dynamics of simple
motions, which is treated as a pedestrian.

The original dynamics describing separately both the car and the pedestrian are

ẋ p = w1 cosψ,

ẏp = w1 sinψ,

ψ̇ = w1

R
a,

ẋe = b1,
ẏe = b2.

Here, (x p, yp) and (xe, ye) are the geometric positions of the pursuer and the evader in
the plane; ψ is the course angle of the car’s velocity; w1 is the magnitude of the linear
velocity of the car; the value R/w1 describes the minimal turn radius of the car. The
control a ∈ [−1,+1] of the pursuer shows how sharply the car turns: the value a =
−1 corresponds to the maximally sharp right turn, the value a = +1 corresponds to
the maximally sharp left turn, and a = 0 corresponds to the instantaneous rectilinear
motion. The control (b1, b2) of the pedestrian obeys the constraint

∥
∥(b1, b2)

∥
∥ ≤ w2.

The terminal set can be chosen in different ways reflecting one or another model.
A strong disadvantage of this representation of the dynamics is that it has a quite

high dimension, namely, 5. However, it permits a reduction of the dimension of
the phase vector in the following way. Superpose the origin and the position of the
pursuer. Direct the ordinate axis along the current vector of the pursuer’s velocity.
So, the new state position (x, y) of the system is two-dimensional and its dynamics
are the following:

ẋ = −w1

R
ya + w2 sin b,

ẏ = w1

R
xa − w1 + w2 cos b.

Here, b ∈ [−π,π] is a newly introduced control of the evader.
Two following examples have been taken from work [27]. It is necessary to note

that the value function is discontinuous in these examples, so, formally the algorithm
is not meant to solve problems of this type. However, as one can see, there is good
coincidence of results obtained byus and the other authors.Of course, the coincidence
is considered in the areaswhere the lifeline does not affect the behavior of the players.

The computations have been performed on a computer with the CPU Intel i7 of
the 8th generation, which has 6 kernels with HyperThreading. The volume of RAM
is 16GB (however, it is not critical, since in the examples shown below, the program
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takes less than 1Gb for keeping the grid information). The three-dimensional graphs
of the value function have been reconstructed from the grid data by means of an
algorithm suggested by the authors. Visualization of these graphs was made by a
free system MeshLab.

6.1.1 Homicidal Chauffeur Game, Example 1

For the first example, the following parameters have been taken: w1 = 3, w2 = 1,
R = 3. The terminal set T is a circle with the center at the origin and the radius
equal to 1.0. The setW = [−20, 20] × [−10, 20]. The time step h = 0.1, the spatial
step k = 0.1. The number of iterations equals 150. The total time of computation
was about 2.5 h.

A three-dimensional view of the value function graph is given in Fig. 3. It is
restricted to a disk with the center at the point (0, 5) and the radius equal to 15. The
magenta-purple area corresponds to the terminal set and small magnitudes of the
value function, the yellow color marks places with large times to reach the terminal
set. In Fig. 4, one can see contour lines of the value function from 0 to 15 with the
step 0.2. The black thick “lines” correspond to the barriers where the value function
is discontinuous. This figure and other figures with contour lines have been prepared
by means of the system GNU Plot, whose algorithms are oriented to continuous
functions, so, near the discontinuities, the picture of contours can be inaccurately
restored.

Figure 5 again shows level sets of the value function, not by contours, but by a
color gradient filling, which corresponds to the colors in Fig. 3. The red areas stand
for the infinite magnitude of the value function, which have been cut off in Fig. 3.
These areas appear just due to presence of the lifeline: trajectories leading the system
to the terminal set from these areas leave the setW . Also, near the terminal set, one

Fig. 3 Homicidal chauffeur,
Example 1, a
three-dimensional view of
the value function graph

x

y

v(x,y)
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Fig. 4 Homicidal chauffeur,
Example 1, contour lines of
the value function

Fig. 5 Homicidal chauffeur,
Example 1, the area of the
guaranteed coincidence

can see a black spot, which marks the area where the value function of the Homicidal
chauffeur game with lifeline coincides with the classic one by Theorem 3. The area
is not too large, because the theorem considers all motions of the system including
“silly” ones, which go not to the terminal set, but to the lifeline.

6.1.2 Homicidal Chauffeur Game, Example 2

This example uses the same dynamics with the parameters w1 = 2, w2 = 0.6, R =
0.2. The terminal setT is a circle with the center at the point (0.2, 0.3) and the radius
is equal to 0.015. The set W = [−1.5, 1.5] × [−1, 1.5]. The time step h = 0.001,
the spatial step k = 0.005. The number of iterations equals 200. The total time of
computation was 7 h and 51min. A three-dimensional view of the value function
graph is given in Fig. 6. It is restricted to a disk with the center at the point (0, 0.25)
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Fig. 6 Homicidal chauffeur,
Example 2, a
three-dimensional view of
the value function graph

x

y

v(x,y)

Fig. 7 Homicidal chauffeur,
Example 2, contour lines of
the value function

and the radius equal to 1.25. The magenta-purple area corresponds to the terminal
set and small magnitudes of the value function, the yellow color marks places with
large times to reach the terminal set. In Fig. 7, one can see contour lines of the value
function from 0 to 1.25 with the step 0.015. The black thick “lines” corresponds to
the barriers where the value function is discontinuous. In Fig. 8, a black spot marks
the area where the value function of the Homicidal chauffeur game with lifeline
certainly coincides with the classic one.
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Fig. 8 Homicidal chauffeur,
Example 2, the area of the
guaranteed coincidence

6.2 Dubins’ Car

The (reduced) two-dimensional dynamics of this classic model system are the fol-
lowing:

ẋ = −ya, ẏ = xa − 1.

Here, a ∈ [−1, 1]. The time step h = 0.05, the spatial discretization step k = 0.01.
The target setT = {

(x, y) ∈ R
2 : max{|x |, |y|} ≤ 0.1

}

. The setW is a square with
the center at the origin and sides of length 6. The number of iterations is 150.Actually,
the Dubins’ car is an optimal control problem, however, we consider this problem
as a differential game with the fictitious second player, which does not affect the
dynamics and has its control constrained by a one-pointed set coinciding with the
origin. The total time of computation was 13min.

A three-dimensional view of the value function graph is given in Fig. 9. The
magenta-purple area corresponds to the terminal set and small magnitudes of the
value function, the yellow and orange colors mark places with large times to reach
the terminal set. In Fig. 10, one can see contour lines of the value function from 0
to 7 with the step 0.01. The black thick “lines” corresponds to the barriers where
the value function is discontinuous. In Fig. 11, a black spot marks the area where
the value function of Dubins’ car problem with lifeline certainly coincides with the
classic one.

Comparison of these results was made with the ones in paper [16] where an
analytical study of reachable sets for this problem is set forth. That work studies
reachable setsat instant, or in otherwords a problemwith afixed termination instant is
considered. Nevertheless, for control problems, situations at instant and upto instant
are connected very tightly (in contrast to differential games). Thus, we compare
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Fig. 9 Dubins’ car, a
three-dimensional view of
the value function graph

x

y

v(x,y)

Fig. 10 Dubins’ car, contour
lines of the value function
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Fig. 11 Dubins’ car, the
area of the guaranteed
coincidence

boundaries of the level sets of the value function for a time-optimal problem and the
front parts of the boundaries of the reachable sets at instant. The coincidence seems
to be good enough.

6.3 Material Point with Shifted Target

Dynamics of the system are the following:

ẋ = y, ẏ = a,

where a ∈ [−1, 1]. The target setT is a squarewith the center at (0, 1) and sideswith
length of 0.4. The set W is a square, the length of sides is equal to 8. The number
of iterations is 150. The time step h = 0.05, the spatial step k = 0.01. A three-
dimensional view of the value function graph is given in Fig. 12. Themagenta-purple
area corresponds to the terminal set and small magnitudes of the value function, the
yellow and orange colors mark places with large times to reach the terminal set.
In Fig. 13, one can see contour lines of the value function from 0 to 9 with the
step 0.01. The black thick “lines” corresponds to the barriers where the value function
is discontinuous. In Fig. 14, a black spot marks the area where the value function of
the material point problem with lifeline certainly coincides with the classic one.
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Fig. 12 Material point with
shifted target, a
three-dimensional view of
the value function graph

y x

v(x,y)

Fig. 13 Material point with
shifted target, contour lines
of the value function

This control problem is classic and well studied. The boundary of the value func-
tion level sets can be obtained by direct integration of trajectories of the system,
which can be easily performed due to linearity of the dynamics. There is a good
coincidence of theoretical and numerical results.
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Fig. 14 Material point with
shifted target, the area of the
guaranteed coincidence

7 Conclusion

The paper discusses proposed numerical method, which constructs the value function
of a time-optimal differential game with lifeline as a generalized (viscosity) solution
of the corresponding boundary value problem forHJE. Convergence of thismethod is
proved. Previously, authors have proved existence of the generalized solution and its
coincidence with the value function of the corresponding time-optimal problem with
lifeline under strong conditions (11) of dynamical advantage of each player on the
boundary of the corresponding set. It is known that simultaneous accomplishment of
these two inequalities results in continuity of the value function. The convergence of
the numerical method is proved under the same assumptions. Further, it is planned to
prove existence of the generalized solution and its coincidencewith the value function
under some weaker assumptions. Also, it would be useful to prove convergence of
the numerical method to the discontinuous value function of time-optimal problem
with lifeline.
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A Partnership Formation Game with
Common Preferences and Scramble
Competition

David M. Ramsey

1 Introduction

In the economics literature, such games are often termed job search games and have
developed from the classical problem of one-sided choice (see Stigler [26]). It is
assumed that a job searcher observes a sequence of offers with values from a known
distribution (employers are not choosy). The cost of observing a job offer is assumed
to be constant. Janetos [11] was the first to consider such a model in the context of
mate choice (it was assumed that only females are choosy). These ideas were later
developed by Real [23].

In many species, both sexes are choosy. Parker [16] was the first to consider a
model of two-sided mate choice. McNamara and Collins [14] presented a model
under which searchers explicitly observe a sequence of prospective partners, unlike
in Parker’s model. However, their conclusions are very similar (players are split into
a finite number of types, such that type i males only mate with type i females). These
two models assume that mate choice is based on the attractiveness of a prospective
partner, individuals prefer partners of high attractiveness and all individuals of a
given sex agree upon the attractiveness of a member of the opposite sex. Such pref-
erences are called common. When search costs are sufficiently small, individuals
form pairs with those of a similar level of attractiveness. This phenomenon is known
as associative pairing (i.e. the individuals forming pairs are similar to each other).
Such associative pairing can also result from homotypic preferences (i.e. individu-
als prefer to mate with prospective partners who are similar to them). Alpern and
Reyniers [2] consider amodel of mate choice when preferences are homotypic. Ram-
sey [22] presents a similar game to the one presented here in which preferences are
homotypic and there are two types of each sex (e.g. these types can be considered to
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be two sub-species). Real [24] looked in more detail at the associative pairing that
results from common preferences. Ramsey [20] considers a model in which mate
choice is based on both common and homotypic preferences.

If mating is non-seasonal, then the distribution of attractiveness among those in
the mating pool tends to a steady-state distribution, which depends on the strategies
used within the population (see Burdett and Coles [5], Smith [25]). However, if
mating is seasonal, this distribution changes over time, since individuals leave the
mating pool after finding a partner, but are not replaced by new searchers. Such
a phenomenon is referred to as scramble competition. Collins and McNamara [7],
as well as Ramsey [19], consider such models of one-sided choice. Dechaume-
Moncharmont et al. [9] present numerical results based on simulation for a finite-
population model of mate choice where only females are choosy, but both sexes mate
only once in a season.

Johnstone [12] gives numerical results for a model of two-sided choice with
discrete time. Searchers generally become less choosy as time passes, but searchers of
low quality may become more choosy just before the end of the season in the hope of
obtaining an attractivemate in the last period, when no searcher is choosy. Alpern and
Reyniers [3], as well as Alpern and Katrantzi [1], apply a more analytic approach to
such problems, whileMazalov and Falko [13] prove some general results. According
to these three models, time is discrete and the values of prospective partners have a
continuous distribution.

Etienne et al. [10] and Courtiol et al. [8] present models which are similar to
the one presented here. The first paper presents a model where only females are
choosy. Both sexes have a latent period after pairing, when they cannot mate. This
leads to frequency-dependent selection, since the availability of males depends on
the strategies used by females. The second paper extends this model to two-sided
choice. These models differ from the one presented here, since they assume that time
is discrete and mating is non-seasonal, i.e. given the mate choice strategies adopted
in the population, the availability of prospective partners (and hence the distribution
of the values of available partners) tends to a steady-state distribution. Priklopil [18]
present a model of seasonal mating with continuous time in which only females are
choosy. Females mate only once in a season and the value of a male comes from a
discrete distribution. The optimal strategy of a female is a threshold rule such that a
female accepts a male at time t if and only if his value is above a threshold, which
may depend on t . As the season progresses, females become less choosy.

When mate choice is mutual and seasonal, then as time passes the distribution
of the types of searchers changes and the rate at which prospective partners are
found may depend on the proportion of individuals still looking for a partner. At
one end of this spectrum, encounters with members of the other sex are not in any
way concentrated on individuals still searching for a partner. In this case, the rate of
encountering prospective partners is proportional to the fraction of individuals still
searching for a mate. This is called the mixing population model. At the other end of
this spectrum, encounters withmembers of the other sex are completely concentrated
on individuals still searching for a partner, hence the rate of encountering prospective
partners is constant. This is called the singles barmodel.McNamara et al. [15] present
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a model in which the rate at which prospective partners are found is proportional to
the square root of the fraction of individuals still searching for a partner, i.e. the degree
of concentration of search on individuals still looking for a partner is intermediate.

In themodel presented here, time is continuous andmating is seasonal. The results
extend the approach used by Ramsey [21], who derived equilibria for games in which
there are only two types of prospective partner. It was shown that multiple equilibria
are possible, even when the concept of Nash equilibrium is appropriately refined.

This article gives some general results for equilibria under the mixing population
model. A characterization of the possible equilibria is given for the case when there
are three levels of attractiveness. In addition, the possible mating patterns are fully
described. Finally, some consideration is given to solving problems where there are a
larger number of types of prospective partners. The fact that the types of searchers are
discrete may be problematic. However, due to limitations on perception, this could
be a realistic assumption.

Most models of two-sidedmate choice involve discrete time, where multiple pairs
of prospective partners meet in parallel. This is appropriate in the context of speed
dating, but may be unnatural when applied to species ‘in the wild’. Such models
indicate that individuals of low quality might become more choosy shortly before
the end of the mating season, since there is a chance of being paired with an attractive
partner (and being mutually accepted) in the final round. One interesting question is
whether this is a general phenomenon or results from the discrete dynamics.

The general model and its specific form under the assumption of a mixing pop-
ulation are described in Sect. 2. Section 3 first recalls some general results on the
form of an equilibrium from Ramsey [21] and then gives a new result for the mixing
population model. Section 4 extends the approach adopted in [21] to games of this
form where there are three levels of attractiveness and gives a characterization of the
possible forms of equilibria in such games. Section 5 presents some numerical results
for two examples which illustrate the range of equilibria possible and the existence
of multiple equilibria. A brief conclusion and directions for future research are given
in Sect. 6.

2 The Model

Consider a large population in which there are two equally frequent classes of player.
Each player aims to form a partnership with a player from the other class. For
simplicity, these classes will be referred to as males and females, although they could
also be interpreted as, e.g. employers (job positions) and job seekers. Partnership
formation is seasonal. Each player starts searching for a partner at time zero and the
amount of time available for searching is μ, where μ is finite. Partnerships are only
formed by mutual consent.

As well as being a member of a given class (i.e. male or female), each player
has a given level of attractiveness (type). All players of a given class agree about
the attractiveness of a prospective partner and each player wishes to pair with an
individual of high attractiveness, i.e. preferences are common.
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Suppose there are n types of prospective partner. Let the reward obtained by a
searcher frompairingwith an individual of type i at time t be vi e−γ t , i ∈ {1, 2, . . . , n},
where v1>v2>. . .>vn >0 and γ is the discount factor reflecting the advantage from
finding a partner quickly. If a searcher does not find a partner, then his/her payoff is
defined to be 0. Based on this, only the relative values of prospective partners are
important. Hence, without loss of generality, we assume that vn = 1. Note that it
is assumed that the value of a given type is independent of the sex of the searcher.
The proportion of players who are of type i is denoted by pi (again assumed to be
independent of sex). Such a problem will be called symmetric with respect to sex. It
should be noted that such problems can also be formulated in terms of searching for
a partner in which sex (class) is unimportant (e.g. looking for a bridge partner).

Each player searches until he/she finds amutually acceptable partner. At this time,
both of them leave themating pool. Hence, in themating pool, the ratio of the number
of males to the number of females always equals one. The proportion of individuals
still searching and the distribution of types vary over time depending on the set of
strategies used by the players (the strategy profile).

We derive equilibria at which all players of the same type use the same strategy for
accepting prospective partners, regardless of sex. Such a strategy profile, denoted by
π , is defined by a vector of n strategies. Let π =(π1, π2, . . . , πn), where πi denotes
the strategy used by a type i player. A player’s strategy can be defined by stating
the set of types of acceptable partners at time t for all t ∈[0, μ]. Let Si (t) denote the
set of types of prospective partners acceptable to a type i player at time t . We will
be particularly interested in strategies based on a continuous threshold, h(t). Under
such a rule, a searcher will accept a prospective partner if and only if the value of
the prospective partner is ≥ h(t).

Since the set of values of prospective partners is discrete, different threshold
functions can lead to identical behaviour, regardless of the realization of the search
process. Suppose an individual of type i uses a strategy based on a continuous
threshold. This strategy canbedescribedby (a) the times atwhich the set of acceptable
partners changes, t1,i , t2,i , tk,i , where 0 < t1,i < t2,i < . . . < tk,i < μ and k is the
number of switch times (for convenience define t0,i = 0 and tk+1,i = μ) and (b) the
set of types of prospective partners that are acceptable to a searcher of type i in the
time interval [t j−1,i , t j,i ), which is denoted S j

i , for j = 1, 2, . . . , k + 1. Note that
when t ∈ [t j−1,i , t j,i ), then Si (t) = S j

i . Also, S
1
i = {1, 2, . . . ,mi } is the set of types

of prospective partners that are initially acceptable to a searcher of type i . Note that
S j+1
i is obtained from S j

i either by adding themost attractive type of partner that is not
in S j

i or deleting the least attractive partner that is in S j
i , as appropriate. For example,

suppose there are three types of prospective partner and type 1 searchers only accept
partners of type 1 when t < 2, accept partners of type 1 or 2 when 2 ≤ t < 4 and for
t ≥ 4 accept any type of prospective partner. Then this strategy can be defined as

S1(t) =
⎧
⎨

⎩

{1}, t < 2
{1, 2}, 2 ≤ t < 4

{1, 2, 3}, t ≥ 4
.
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Note that the underlying threshold function, h(t), satisfies h(t) > v2 for t < 2,
h(2) = v2, v3 < h(t) ≤ v2 for 2 < t < 4, h(4) = v3 and h(t) < v3 for t > 4, i.e. this
threshold function is not uniquely defined. Strategies that are based on two different
threshold functions, but have the same description in the form outlined immediately
above, will be treated as being identical.

Denote the expected reward of a type i player still searching at time t and using
the strategy θi when the rest of the population is following the appropriate strategy
from the profile π by ri (t; θi , π). The mathematical description of such a reward
requires the derivation of the dynamics of the search process, which are considered
at the end of this section. It should be noted that the dynamics of the search process
are independent of an individual player, since we are considering a continuum of
players. Also, the notation ri (t; θi , π) is used rather than ri (t; θi , π−i ), which is used
in n-player games, since the considered individual of type i is playing against the
whole population, which includes a continuum of players of type i .

Let π∗ =(π∗
1 , π∗

2 , . . . , π∗
n ) denote a Nash equilibrium. By definition π∗ satis-

fies the following conditions for all i , 1≤ i≤n, θi and t ∈[0, μ]: ri (t; θi , π
∗)≤

ri (t;π∗
i , π∗). Hence, it does not pay any player to ever deviate from the appro-

priate strategy from an equilibrium profile when the rest of the population conform
to that equilibrium profile. Without loss of generality, previous discounts can be
ignored in the definition of these payoff functions. To simplify the notation, define
ri (t;πi , π)≡ri (t;π). This is the expected future payoff of a type i player following
the appropriate strategy from the profile π .

Non-intuitive Nash equilibria may exist, e.g. when there are two types of player,
the following strategy profile is always a Nash equilibrium: (a) players of type 1
(the most attractive) only accept prospective partners of type 2 (the least attractive)
and always accepts such partnerships, (b) players of type 2 only accept prospective
partners of type 1 (and always accepts such partnerships). However, natural selection
favours playerswho always accept themost attractive prospective partners (e.g. given
that future decisions remain the same, a type 1 female obtains a greater expected
reward from accepting a type 1 male at time t when there is a positive probability
of being accepted than by rejecting such a male). We thus adopt a refinement of
the concept of Nash equilibrium based on the optimality criterion of McNamara and
Collins [14]: each player accepts a prospective partner if and only if the value that the
player would obtain from the pairing (regardless of whether acceptance is mutual)
is at least as great as the player’s expected reward from future search (ignoring
previous discounts). Hence, players always accept a prospective partner of type 1,
as the reward that would result from such a partnership is clearly greater than any
possible reward from future search. Hence, given the strategy profile used, a type 1
player faces a one-sided search problem where members of the opposite sex are not
choosy.

If an individual’s strategy satisfies this criterion, then it is optimal given the strate-
gies used by the other players (see Chow [6]). This leads to the following result

Result 1 A strategy profilewhere each strategy used satisfies theMcNamara-Collins
optimality criterion is a Nash equilibrium. At such an equilibrium a type i individual
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accepts a prospective partner of type j if and only if ri (t;π∗)≤v j . Such strategies are
by definition threshold strategies (it will be argued later that the threshold functions
{ri (t;π∗)}ni=1 are continuous).

We now consider the dynamics of the search problem under a given strategy
profile. Assume that the players adopt strategy profile π . The distribution of the types
of players remaining in the mating pool is independent of sex. Denote by pi (t;π)

the proportion of all players who are both still searching at time t and of type i . Thus,
∀π , pi (0;π)≡ pi . The proportion of players still searching at time t is denoted
by p(t;π), i.e. p(t;π)=∑n

i=1 pi (t;π). The probability that a player is of type i
given that he/she is searching at time t is denoted by qi (t;π), i.e. qi (t;π)= pi (t;π)

p(t;π)
,

i ∈ 1, 2, . . . , n.
Players find prospective partners according to a Poisson process at a rate given

by λ, a function of the proportion of players that are still searching. It is assumed
that λ is non-decreasing in p(t;π), i.e. is non-increasing in time. From the point of
view of an individual player, the process of finding prospective partners is stochastic.
However, since we are considering a continuum of players, the equations defining
the proportions of each type of player who are still searching are deterministic.
Dechaume-Moncharmont et al. [9] simulate the evolution of strategies ofmate choice
based on a similar model where the population is finite.

Prospective partners are chosen at random from the mating pool, i.e. a prospective
partner encountered at time t is of type i with probability qi (t;π). By assumption
p(t;π)≤ λ[p(t;π)]≡λ(p)≤1 and time is scaled so that λ(1)=1. In order to sim-
plify the notation, p(t;π)will be abbreviated to p. These assumptions are reasonably
natural, as finding prospective partners generally becomes harder as the number of
searchers decreases. Ramsey [21] considered the following two extreme cases: (i)
λ(p)=1,∀p∈[0, 1], (ii) λ(p)= p,∀p∈[0, 1]. Case i) corresponds to the ‘singles
bar model’, where players concentrate search on members of the opposite sex who
have not yet found a partner. Case (ii) corresponds to a ‘mixing population’, where
players meet members of the opposite sex at a constant rate, but the individual
encountered is chosen at random from all the players of the opposite sex (i.e. such a
player is available with probability p). Hence, the expected number of members of
the opposite sex that a player meets during the search period (under the single bars
model, the expected number of prospective partners that a player meets) is equal
to μ.

Denote by Ai (t;π) the set of mutually acceptable types of prospective partners of
a type i player at time t . Note that j ∈ Ai (t;π) if and only if j ∈ Si (t) and i ∈ Sj (t).
It follows that j ∈ Ai (t;π) ⇔ i ∈ A j (t;π). The set {Ai (t;π)}ni=1 for a given t is
called the mating pattern at time t .

Define vi (t;π) to be the expected reward obtained by a type i individual following
the appropriate strategy from the profile π from pairing with a mutually acceptable
prospective partner at time t . Hence,

vi (t;π) =
∑

j∈Ai (t;π) v j p j (t;π)
∑

j∈Ai (t;π) p j (t;π)
. (1)
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Now we derive the dynamics of the game under a given strategy profile. Con-
sider a player of type i who is still searching at time t . For small δ, the probability
that such a player finds a partner in the time interval [t, t + δ] is approximately
δλ(p)

∑
j∈Ai (t;π) q j (t;π). Hence,

pi (t + δ;π) = pi (t;π)[1 − δλ(p)
∑

j∈Ai (t;π)

q j (t;π)] + O(δ2)

pi (t + δ;π) − pi (t;π)

δ
= −pi (t;π)λ(p)

∑

j∈Ai (t;π)

q j (t;π) + O(δ).

Letting δ → 0, we obtain the differential equation

dpi (t;π)

dt
= −pi (t;π)λ(p)

∑

j∈Ai (t;π)

q j (t;π). (2)

Remark 1 Suppose that there is a set of types B, and an interval of time I such
that a player of any type in B will pair with a player of any type in B, but not with
prospective partners of types not in B when t ∈ I . From Eq. (2), if i, j ∈ B, then the
ratio pi (t;π)/p j (t;π) is constant on the interval I .

Under the mixing population model, λ(p) = p. Hence, Eq. (2) leads to

dpi (t;π)

dt
= −pi (t;π)

∑

j∈Ai (t;π)

p j (t;π). (3)

Let Ti (π) be the time at which a type i player following the appropriate strategy
from the profile π finds a mutually acceptable partner and fi (t;π) denote the density
function of this randomvariable.When such a player does not find a partner,we define
Ti (π) = μ. Setting αi (t;π) to be the rate at which such individuals find acceptable
partners, it follows that αi (t;π) = λ(p)

∑
j∈Ai (t;π) q j (t;π). Hence, for 0 < t < μ,

fi (t;π) = αi (t;π) exp

[

−
∫ t

0
αi (s;π)ds

]

.

The future expected reward of such a type i searcher at time t is given by

ri (t;π) =
∫ μ

t
vi (s;π)αi (s;π) exp

[

−
∫ s

t
γ + αi (τ ;π)dτ

]

ds. (4)

Note that ri (t;π) is a continuous function of t for all i . Under the mixing population
model, using Eqs. (1) and (4), since λ(p) = p(t;π), we obtain
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Table 1 Description of the parameters and functions used in the definition of the model

Parameter Description

μ Length of mating season (time available for searching for a mate)

n Number of types of prospective partner

vi Value of a partner of type i

γ Discount rate

pi Proportion of individuals that are of type i

π = (π1, π2, . . . , πn) Strategy profile

πi Strategy used by individuals of type i

Si (t) Set of types of prospective partners that are acceptable to a
searcher of type i at time t

Ai (t) Set of types of prospective partners that are mutually acceptable to
a searcher of type i at time t

{Ai (t)}ni=1 Mating pattern at time t .

θi Strategy of an individual of type i who does not use the appropriate
strategy from π

pi (t; π) Proportion of all players who are both still searching at time t and
of type i [pi (0; π) ≡ pi ]

p(t; π) ≡ p Proportion of all players who are still searching at time t

qi (t; π) Conditional probability that an individual still searching at time t is
of type i

λ(p) ≡ λ[p(t; π)] Rate at which searchers find prospective partners

vi (t; π) Mean value of a prospective partner who is mutually acceptable to
a searcher of type i at time t

αi (t; π) Rate at which a searcher of type i finds a mutually acceptable
partner

ri (t;π)=
∫ μ

t

⎡

⎣
∑

j∈Ai (s;π)

v j p j (s;π)

⎤

⎦ exp

⎡

⎣−
∫ s

t
γ +

∑

j∈Ai (τ ;π)

p j (τ ;π)dτ

⎤

⎦ ds.

(5)

Table 1 gives a description of the parameters and functions used in the definition
of the model.

3 Some General Results

First, we recall some results from Ramsey [21]. The proofs are omitted.

Theorem 1 If each player uses a threshold strategy and i< j , then ri (t;π)≥
r j (t;π).
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Theorem 2 At an equilibrium, there exists some t0<μ, such that all players accept
any prospective partner when t≥ t0. When t≥ t0, then ri (t;π) is strictly decreasing
in t.

Theorem 3 At equilibrium, type i individuals always find prospective partners of
type i acceptable.

The following result regarding the mixing population model is new.

Theorem 4 Under the mixing population model, if an individual of type 1 finds a
prospective partner of type j acceptable at time t0, then he/she finds a prospective
partner of type j acceptable at any time t ≥ t0.

Proof A type 1 player faces a problem of one-sided choice. Let t0< t1. A type 1
searcher still searching at time t0 can ensure the same reward as a type 1 searcher
still searching at time t1 by following the following strategy: Define pi (t;π)=0 for
all i and t>μ. Ignore a prospective partner of type i found at time t0 + t with prob-
ability 1 − pi (t1+t;π)

pi (t0+t;π)
, otherwise make the same decision that an optimally behaving

individual of type 1 would make at time t1+t . Hence r1(t0;π)≥r1(t1;π) and the
theorem follows from the optimality criterion.

Other future reward functions are not necessarily non-increasing in t . Denote the
time when type 1 players start accepting prospective partners of type i at an equilib-
rium by t∗1,i . From Theorems 1 and 4, when t≥ t∗1,i , players of types {1, 2, . . . , i} face
a one-sided search problem and r j (t;π∗)=r1(t;π∗) for j ∈ {1, 2, . . . , i}. Hence,
the function ri is non-increasing on the interval (t∗1,i , μ). On the other hand, if t∗1,i >0,
then r1(t∗1,i ;π∗)=ri (t∗1,i ;π∗)=vi and ∃δ>0 such that on an interval (t∗1,i −δ, t∗1,i ) a
searcher of type i is not accepted by any prospective partner of value >vi . Thus, for
t in this interval and γ > 0, ri (t;π∗)<vi . Hence, ri (t;π∗) is increasing on some
sub-interval of (0, t∗1,i ).

It follows that if A1(t) = {1, 2, . . . , i} at an equilibrium, then A j (t) = {1, 2, . . . , i}
for j ∈ {1, 2, . . . , i}. Hence, A1(t) defines a subpopulation of searchers that a) are
mutually acceptable as partners at time t and b) do not accept any prospective partners
who are not from this subpopulation.

However, it is not always true that at a particular equilibrium the population is par-
titioned at any point in time into subpopulations where prospective partners from the
same subpopulation are mutually acceptable and prospective partners from different
subpopulations are notmutually acceptable. For example, suppose that at equilibrium
A1(t)={1, 2, . . . , i} and Ai+1(t)={i + 1, i + 2, . . . i + j}. Since type 1 individu-
als will start accepting type i + 1 individuals as partners before they start accepting
type i + j individuals, it follows that ri+1(t;π∗)>ri+ j (t;π∗). For this reason, it
is possible that type i + j individuals find type i + j + 1 individuals acceptable at
time t .

Based on these arguments, the number of possible partitions of the set {1, 2, . . . , n}
into subsets of consecutive integers gives a lower bound on the number of possible
mating patterns at time t at equilibrium. Such a partition can be defined by a binary
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string of length n−1 such that types i and i+1 belong to separate subsets if and
only if the i-th element of this binary string equals one. Hence, there are at least 2n−1

possible mating patterns, each corresponding to a different system of n differential
equations describing the current dynamics of the game. Thus, it seems clear that the
complexity of the solutions of such games is at least exponential in the number of
types of prospective partner.

4 Games with Three Types of Player

In this section, we consider the form of equilibria when there are three types of
player and give a general classification of such equilibria. First, we consider the set of
possiblemating patterns based on the results given in the previous section.When type
1 players only accept prospective partners of type 1 at time t , then type 2 searchers
may either (a) reject prospective partners of type 3 or (b) accept them. In the first case,
the mating pattern at time t is given by A1(t;π∗)={1}, A2(t;π∗)={2}, A3(t;π∗)=
{3}. In the second case, the mating pattern at time t is given by A1(t;π∗)={1},
Ai (t;π∗)={2, 3}, i ∈{2, 3}. Suppose type 1 players accept prospective partners of
types 1 and 2 at time t . FromTheorem3, Ai (t;π∗)={1, 2}, i ∈{1, 2} and A3(t;π∗)=
{3}. The only other possible mating pattern occurs when type 1 players accept any
prospective partner at time t . In this case, Ai (t;π∗)={1, 2, 3}, i ∈{1, 2, 3}. Hence,
when n = 3 the number of possible mating patterns is equal to the lower bound
described above, i.e. 22 = 4. These mating patterns will thus be indexed by the
binary strings that they correspond to, i.e.

Pattern 00: All players accept any prospective partner (random mating).
Pattern 01: Searchers of types 1 and2 aremutually acceptable and type3 searchers

only pair with prospective partners of type 3.
Pattern 10: Searchers of type 1 only pair with others of type 1 and searchers of

types 2 and 3 are mutually acceptable.
Pattern 11: Searchers only pair with prospective partners of the same type.

Let M(t;π∗) denote the mating pattern (given by the appropriate binary string)
at time t under an equilibrium profile. To derive the possible forms of equilibria, it
is necessary to consider how these mating patterns can change as time passes. From
Theorem 2, the equilibrium mating pattern switches to 00 at some time t0, where
t0 < μ, and once this pattern has switched to 00 then it cannot change. Hence, the
pattern 00 can be thought of as an absorbing state of the process of how the mating
pattern evolves over time at an equilibrium.

Suppose that M(t;π∗) = 01. From Theorem 4, type 1 searchers cannot become
more choosy. Hence, this mating pattern can only switch to the pattern 00 and from
Theorem 2 must eventually switch to this pattern.

Suppose that M(t;π∗)=10. Hence, r1(t;π∗)>v2. Eventually, type 1 searchers
start accepting prospective partners of type 2, say at time t∗1,2. However, since
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r1(t∗1,2;π∗)=r2(t∗1,2;π∗)=v2, from the continuity of the future reward functions,
type 2 individuals must stop accepting type 3 individuals at some time t s,∗2,3 , where
t s,∗2,3 < t∗1,2. Hence, the mating pattern switches to 11 at time t s,∗2,3 .

Suppose that M(t;π∗)=11. There are two possible ways in which the mating
pattern can change. Firstly, type 1 searchers can start accepting prospective partners
of type 2, at time t∗1,2. The second possibility is that type 2 searchers start accepting
prospective partners of type 3, at time t∗2,3. Note that t∗1,2 �= t∗2,3. This follows from
the facts that r2(t∗1,2;π∗)=v2 and r2(t∗2,3;π∗)=v3<v2. In the first case, the mating
pattern first switches to 01 and thenmust switch to 00 (randommating). In the second
case, the mating pattern first switches to 10.

The function r is said to ‘upcross’ the value v at time t0 when r(t0)=v and
∃δ>0 such that r(t)<v for t in the interval (t0 − δ, t0) and r(t)>v in the interval
(t0, t0 + δ). The function r is said to ‘downcross’ the value v at time t0 when r(t0)=v
and ∃δ>0 such that r(t)>v in the interval (t0 − δ, t0) and r(t)<v in the interval
(t0, t0 + δ). It follows that when r upcrosses v at time t0, then for values of t slightly
smaller than t0, r(t) < v and for values of t slightly greater than t0, r(t) > v. Similarly,
when r downcrosses v at time t0, then for values of t slightly smaller than t0, r(t) > v
and for values of t slightly greater than t0, r(t) < v. Intuitively, when r2 downcrosses
v3, then type 2 searchers should switch from rejecting prospective partners of type 3
to accepting them. Analogously, when r2 upcrosses v3, then type 2 searchers should
switch from accepting prospective partners of type 3 to rejecting them.

The following theorem, when used in conjunction with the arguments presented
above, leads to the main theorem of the paper, Theorem 6, which classifies the pos-
sible forms of equilibrium profiles in games with three types of prospective partner.

Theorem 5 At any equilibrium profile, the function r2 has at most one upcrossing
of the value v3.

Proof Suppose that the function r2 upcrosses the value v3 at times tu,1 and tu,2,
where tu,1< tu,2. From the form of an equilibrium tu,2< t∗1,2. From the continuity of
the function r2, there must be a downcrossing of the value v3 at some time td , where
td ∈(tu,1, tu,2). By definition r2(tu,1;π∗)=r2(tu,2;π∗)=r2(td;π∗)=v3. At such an
equilibrium, type 2 players reject prospective partners of type 3 when t ∈(tu,1, td)
and accept them when t ∈(td , tu,2). Conditioning on whether a type 2 player finds a
partner in the time interval (td , tu,2),

r2(td ; π∗) = v3 = v
∫ tu,2

td
[p2(t; π∗)+ p3(t; π∗)]exp

[

−
∫ t

td
γ + p2(s; π∗)+ p3(s; π∗)ds

]

dt+

+v3 exp[−γ (tu,2 − td )] p2(tu,2; π∗)

p2(td ; π∗)
, (6)

where v = v2 p2(td ;π∗)+v3 p3(td ;π∗)
p2(td ;π∗)+p3(td ;π∗) .

Assume that td−tu,1≥ tu,2−td . Suppose an individual type 2 player accepts a
prospective partner of type i , i=2, 3 at time tu,1+ t , where t ∈ I =(0, tu,2 − td) with
probability pi (td+t;π∗)

pi (tu,1+t;π∗) and for t /∈ I uses the strategy appropriate to the equilibrium
profile.When t ∈ I , such a player findsmutually acceptable partners of a given type at
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the same rate as an optimally behaving type 2 player at time td + t . Conditioning on
whether such a player finds a mutually acceptable partner in the interval (tu,1, tu,1+
tu,2−td), his/her expected future reward at time tu,1 is r2,m(tu,1;π∗), where

r2,m(tu,1;π∗) = v
∫ tu,2

td
[p2(t;π∗)+ p3(t;π∗)]exp

[

−
∫ t

td
γ + p2(s;π∗)+ p3(s;π∗)ds

]

dt+

+r2(tu,1 + tu,2 − td ;π∗) exp[−γ (tu,2 − td)] p2(tu,2;π∗)
p2(td ;π∗)

.

Note that r2(tu,1+tu,2−td;π∗)≥v3, since tu,1+tu,2−td ∈(tu,1, td ]. It follows from
Eq. (6) that r2,m(tu,1;π∗)≥v3. Note that such a player acts strictly suboptimally,
since he/she rejects prospective partners of type 2 with a positive probability. This
gives a contradiction, since by assumption r2(tu,1;π∗)=v3.

Now assume that td−tu,1< tu,2−td . Conditioning on whether an optimally behav-
ing type 2 player finds a prospective partner in the interval (td , 2td−tu,1), we obtain

r2(td ;π∗) = v
∫ 2td−tu,1

td
[p2(t;π∗)+ p3(t;π∗)]exp

[

−
∫ t

td
γ + p2(s;π∗)+ p3(s;π∗)ds

]

dt+

+r2(2td − tu,1;π∗) exp[−γ (td − tu,1)] p2(2td − tu,1;π∗)
p2(td ;π∗)

.

This equation can be written in the form r2(td;π∗) = R1P(A) + R2[1 − P(A)],
where P(A) is the probability of such a searcher (call him/her searcher i) finding a
partner in the interval (td , 2td − tu,1), R1 is the expected reward of such a searcher
in this case and R2 = r2(2td − tu,1;π∗) exp[−γ (td − tu,1)] is the expected reward of
such a searcher given that a partnership is not formed in this interval.

From the differential equations describing the game’s dynamics, p2(t;π∗)
p3(t;π∗) is either

non-increasing or increasing on the interval (tu,1, td). In the first case, the mean value
of a prospective partner is non-increasing in t . Consider a type 2 player (call him/her
searcher i i) who accepts any prospective partner on the interval (tu,1, td) [of the same
length as the interval (td , 2td − tu,1)] and thereafter acts optimally. Arguing as above,
r2(tu,1;π∗) ≥ R3P(B) + R4[1 − P(B)], where P(B) is the probability of such a
player finding a partner in the interval (tu,1, td), R3 is the expected reward of such
a player in this case and R4 = v3 exp[−γ (td − tu,1)] is the expected reward of this
player given that a partnership is not formed in this interval. Since ri (tu,1+t;π∗)>
ri (td+t;π∗), it follows that P(B)> P(A). Also, the expected value of a prospective
partner found at time tu,1+t by searcher ii is at least as great as the expected value
of a prospective partner found at time td+t by searcher i. Hence, R3≥ R1. Also,
R3≥ R4> R2 (the first inequality results from the fact that the reward is the product
of the value of the partner found and the discount, which is by definition more severe
when a partner is found later) and R4 ≤ v3. Hence,

r2(tu,1;π∗) ≥ R3P(A) + R4[1 − P(A)] > R1P(A) + R2[1 − P(A)] = r2(td;π∗).
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This contradicts the initial assumption that r2(tu,1;π∗) = r2(td;π∗) = v3.
Now suppose that p2(t;π∗)

p3(t;π∗) is increasing on the interval (tu,1, td). Consider a type
2 player who on the interval t ∈ (tu,1, td) accepts prospective partners of type 2 and
3 at time t with probability 1 and β(t), respectively, where β(t)= p2(t;π∗)p3(td ;π∗)

p3(t;π∗)p2(td ;π∗) .
Under such a strategy, the ratio between the rate of accepting prospective partners of
type 2 and the rate of accepting prospective partners of type 3 when t ∈(tu,1, td) is
p2(td ;π∗)
p3(td ;π∗) . Assume that for t≥ td , such a player (call him/her searcher iii) follows the
optimal strategy. The expected value of a prospective partner accepted by searcher
iii when t ∈(tu,1, td) is equal to the expected value of a prospective partner accepted
by an optimally behaving type 2 player in the interval (td , 2td−tu,1). Arguing as in
the case of searcher ii, we obtain r2(tu,1;π)≥ R5P(C)+R4[1−P(C)], where R5

is the expected reward of searcher iii given that he/she forms a partnership in the
interval (tu,1, td), P(C) is the probability that such a partnership is formed. Since for
t ∈(tu,1, td), p2(t;π∗)> p2(td;π∗), it follows that P(C)> P(A) and R5≥ R1. The
rest of the proof is analogous to the case of searcher ii and is hence omitted.

Theorem 6 When there are three types of prospective partner, any equilibrium
can be described by at most four switching times t∗2,3, t

s,∗
2,3 , t

∗
1,2 and t∗1,3, where

t∗2,3 ≤ t s,∗2,3 ≤ t∗1,2 ≤ t∗1,3. When t∗2,3 > 0, it denotes the time at which type 2 players
start accepting prospective partners of type 3, as long as type 1 players are not yet
accepting prospective partners of type 2. When ts,∗2,3 > 0, it denotes the time at which
type 2 players stop accepting prospective partners of type 3.When t∗1,2 > 0, it denotes
the time at which type 1 players start accepting prospective partners of type 2. When
t∗1,3 > 0, it denotes the time at which both type 1 and type 2 players start accepting
prospective partners of type 3. The possible forms of equilibria are described below:

0 switching times: Randommating. Each player accepts the first prospective part-
ner (t∗2,3 = t s,∗2,3 = t∗1,2 = t∗1,3 = 0). A necessary and sufficient
condition for such an equilibrium is r1(0;π∗) ≤ 1.

1 switching time: Initially, type 1 and 2 players pair, but type 3 searchers are
only acceptable to prospective partners of type 3. Such an
equilibrium is characterized by one positive switching time
t∗1,3, where r1(t∗1,3;π∗) = 1. The other necessary condition for
such an equilibrium is r1(0;π∗) ≤ v2.

2 switching times: Initially players only pair with those of the same type. The
equilibrium is defined by two positive switching times: t∗1,2 and
t∗1,3, where t∗1,2< t∗1,3, r1(t∗1,2;π∗)=v2 and r1(t∗1,3;π∗)=1. A
necessary condition for such an equilibrium is that r2(t;π∗)>
1 for t< t∗1,3.

3 switching times: Initially, type 2 and 3 players pair, but type 1 searchers only
pair with prospective partners of type 1. Such an equilibrium
is characterized by three positive switching times: t s,∗2,3 , t

∗
1,2 and

t∗1,3, where t s,∗2,3 < t∗1,2< t∗1,3, r2(t
s,∗
2,3;π∗)=1, r1(t∗1,2;π∗)=v2

and r1(t∗1,3;π∗)=1. The following is also a necessary con-
dition: r2(0;π∗)≤1.
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4 switching times: Initially players only pair with those of the same type. The
equilibrium is defined by four positive switching times: t∗2,3,
t s,∗2,3 , t

∗
1,2 and t∗1,3, where t∗2,3< t s,∗2,3 < t∗1,2< t∗1,3, r2(t∗2,3;π∗)=

r2(t
s,∗
2,3;π∗)=1, r1(t∗1,2;π∗)=v2 and r1(t∗1,3;π∗)=1.

These results follow from previous arguments. Note that the equilibrium strategy
of type 1 players is given by the switching times t∗1,2 and t∗1,3. The equilibrium strategy
of type 2 players is given by t∗2,3, t

s,∗
2,3 and t

∗
1,3. Type 3 players accept any prospective

partner. These equilibria are considered in more detail in the following section.

5 Examples

Ramsey [21] found that, when there are two types of player, multiple equilibria can
occur when highly attractive partners are relatively rare. Example 1 is based on a
similar set of problems. Example 2 is based on a set of problems where type 2 and
type 3 players are of similar attractiveness. This example illustrates equilibria at
which type 2 players can switch from accepting prospective partners of type 3 to
rejecting them for some period of time. In both examples, the length of the mating
season, as well as the values and initial frequencies of the various types are fixed,
but the discount rate γ is varied to illustrate the full range of possible equilibria and
the existence of multiple equilibria.

In the first example, it is assumed that μ=100, v1=36, v2=6, v3=1, p1=
0.01, p2=0.09 and p3=0.9. In the second example, it is assumed thatμ=100, v1=
6, v2=1.1, v3=1 and p1= p2= p3=1/3. Each of the five following subsections
illustrate how to derive (or estimate) an equilibrium with a given number of posi-
tive switching times. In each case, the strategy profile is assumed to be of the form
considered in that subsection.

Note that the constants of integration appropriate to the systems of differential
equations defining the dynamics of the game depend on the strategy profile used.
To keep the notation simple, these dependencies are not made explicit. The constant
ki denotes the ratio between the rates at which prospective partners of type i and
prospective partners of type 1, respectively, are found when t ≥ t1,i . The constant
k3,2 describes the ratio between the rates at which prospective partners of type 3
and prospective partners of type 2, respectively, are found when a type 2 player is
mutually acceptable to a type 3 player, but type 1 players only pair with prospective
partners of type 1. Any other constant of integration is denoted by ci and these values
are specific to the subsection, i.e. c1 in Sect. 5.3 is not equivalent to c1 in Sect. 5.4.
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5.1 Random Mating—No Switching Times

First, we consider the conditions required for random mating to be an equilibrium.
Intuitively, such an equilibrium exists only for relatively large values of γ . From Eq.
(3), the set of differential equations describing the rate at which prospective partners
are found under such an equilibrium is given by

dpi (t;π)

dt
= −pi (t;π)[p1(t;π) + p2(t;π) + p3(t;π)], i ∈ {1, 2, 3}. (7)

It follows from these equations and the boundary conditions at t=0 that p j (t;π)=
k j p1(t;π), j ∈{2, 3}, where k j = p j

p1
. Substituting these relationships into Eq. (7)

with i=1, we obtain

pi (t;π) = pi
t + 1

, i ∈ {1, 2, 3}. (8)

A necessary and sufficient condition for random mating to be a Nash equilibrium is
given by r1(0;π) ≤ v3 = 1. From Eq. (5),

r1(0;π) =
∫ 100

0

p1v1 + p2v2 + p3
t + 1

exp

[

−
∫ t

0

{

γ + 1

s + 1

}

ds

]

dt.

=
∫ 100

0

p1v1 + p2v2 + p3
(t + 1)2

exp(−γ t)dt ≤ 1.

This integral was approximated using the inbuilt integration function used in the R
package (see Piessens [17]). Solving this inequality numerically with respect to γ ,
using the method of bisection, it follows that random mating is a Nash equilibrium
for Example 1 if and only if γ ≥ γ1,1, where γ1,1 ≈ 0.4575 and is a Nash equilibrium
for Example 2 if and only if γ ≥ γ1,2, where γ1,2 ≈ 1.1905.

5.2 One Switching Time

At such an equilibrium, type 1 and type 2 players always pair with each other, but only
pair with prospective partners of type 3 when t ≥ t∗1,3. In this section, the strategy
profile π denotes any strategy profile of this form such that the switching time, t1,3,
takes a value in (0, μ). The strategy profile π∗ denotes an equilibrium strategy profile
of this form. Note that if such an equilibrium exists, then its derivation reduces to
a problem in which there are only two types of player. In this case, players of type
1 and 2 are grouped together to form a type whose initial frequency is p1 + p2 and
value p1v1+p2v2

p1+p2
. The derivation of such equilibria was considered in Ramsey [21].

The equilibrium condition in this reduced problem is r1(t∗1,3, π∗) = 1.Note, however,
that for the unreduced problem, it is necessary to check the additional equilibrium
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condition stating that initially type 1 searchers should accept type 2 searchers, i.e.
r1(0;π∗) ≤ v2.

From Eq. (3), when t < t1,3 the rates at which prospective partners are found
under such a strategy profile is given by

dpi (t;π)

dt
=−pi (t;π)[p1(t;π)+ p2(t;π)], i ∈ {1, 2}; dp3(t;π)

dt
=−[p3(t;π)]2.

(9)

Note that p2(t;π) = k2 p1(t;π), where from the boundary condition at t = 0, k2 =
p2
p1
. Solving the system of equations given by (9), it follows that

pi (t;π) = pi
(p1 + p2)t + 1

, i ∈ {1, 2}; p3(t;π) = p3
p3t + 1

. (10)

When t > t1,3, this set of differential equations is given by Eq. (7). Again p2(t;π) =
k2 p1(t;π). Also, p3(t;π) = k3 p1(t;π), where k3 is calculated from the boundary
condition at t = t1,3 using the set of equations given by (10), i.e.

k3 = p3(t1,3;π)

p1(t1,3;π)
= p3[(p1 + p2)t1,3 + 1]

p1[p3t1,3 + 1] .

Solving the system of differential equations given by (7), based on the continuity of
the functions pi , we obtain that for t > t1,3

p1(t;π)= 1

(1 + k2 + k3)t + c1
; pi (t;π)= ki

(1 + k2 + k3)t + c1
, i ∈ {2, 3},

(11)

where c1 = 1
p1

− k3t1,3. The expected value of a prospective partner when t> t1,3 is
given by

v = v1 + k2v2 + k3v3
1 + k2 + k3

= [p3t1,3 + 1][v1 p1 + v2 p2] + p3[(p1 + p2)t1,3 + 1]
[p3t1,3 + 1][p1 + p2] + p3[(p1 + p2)t1,3 + 1] .

From Eq. (5) and the equilibrium condition, t∗1,3 satisfies

1 = v
∫ 100

t∗1,3

3∑

i=1

pi (t;π∗) exp

[

−
∫ t

t∗1,3

{

γ +
3∑

i=1

pi (s;π∗)

}

ds

]

dt.

= v
∫ 100

t∗1,3

(1 + k2 + k3)[(1 + k2 + k3)t∗1,3 + c1] exp[−γ (t − t∗1,3)]
[(1 + k2 + k3)t + c1)]2 dt. (12)

This equation was solved numerically using a program written in R. The value
of r1(t1,3;π) was approximated over a dense grid of values of t1,3 (note that π is
defined by t1,3, thus as t1,3 varies, so does π ). This procedure also checked the other
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necessary condition, r1(0;π∗)≤v2. Considering the probability that a type 1 player
does not find a partner before time t∗1,3 and his/her expected reward from that time
onwards (v3=1), it follows that

r1(0;π∗) = v1 p1 + v2 p2
p1 + p2

∫ t∗1,3

0

(p1 + p2) exp(−γ t)

[(p1 + p2)t + 1]2 dt + exp(−γ t∗1,3)
(p1 + p2)t∗1,3 + 1

.

In the case of Example 1, such an equilibrium exists when γ ≥γ2,1, where
γ2,1≈0.0245 satisfies the equation r1(0;π∗)=v2. Numerical results indicate that
r1(t1,3;π) has at most a single maximum point and the maximum value of the
function is decreasing in γ . Hence, there exists an equilibrium of this form when
maxt1,3∈[0,100] r1(t1,3;π)≥1. Solving this inequality numerically with respect to γ ,
such an equilibrium exists if γ ≤γ3,1, where γ3,1≈0.4755. When γ ∈[γ2,1, γ1,1)≈
[0.0245, 0.4575), then there is exactly one solution of r1(t1,3;π)=1, i.e. there is a
unique equilibrium of this form. If γ ∈(γ1,1, γ3,1)≈(0.4575, 0.4755), there exist two
positive solutions of r1(t1,3;π)=1 and, in addition, randommating is an equilibrium
strategy profile. Hence, three equilibria exist for such discount rates. The stability
of such equilibria based on the concept of a neighbourhood invasion strategy (NIS)
(see Apaloo [4]), will be considered in Sect. 5.6. The equilibrium switching times
are illustrated in Fig. 1. The graph on the left illustratres the equilibrium switching
times when there is a unique equilibrium. The graph on the right presents the equilib-
rium switching times when multiple equilibria exist (the lower curve gives the Nash
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Fig. 1 Equilibrium switching times, t∗1,3 for Example 1, v1 = 36, v2 = 6, v3 = 1, p1 = 0.01, p2 =
0.09, p3 = 0.9, as a function of the discount rate, γ , when type 1 searchers always accept prospective
partners of type 2. Left: unique equilibrium switching time, γ ∈ [0.0245, 0.4575) Right: close up
of solutions when multiple equilibria exist, γ ∈ (0.4575, 0.4755)—see also Sect. 5.6
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equilibrium switching time which does not satisfy the stronger condition based on
the concept of an NIS).

In the case of Example 2, based on a similar approach, such an equilibrium exists
if γ ∈(γ2,2, γ1,2)≈(1.0371, 1.1905). Numerical calculations indicate that, for fixed
γ , r1(t1,3;π) is decreasing in t1,3. Hence, there is no region in which there exist
multiple equilibria, including random mating as one.

5.3 Two Switching Times

Such equilibria are described by two parameters t∗1,2 and t∗1,3. Consider a strategy
profile of this form with switching times t1,2 and t1,3. From Eq. (3), for t< t1,2 the
differential equations determining the dynamics of the game are

dpi (t;π)

dt
= −[pi (t;π)]2, i ∈ {1, 2, 3}. (13)

Solving these differential equations using the boundary conditions at t=0, we obtain

pi (t;π) = pi
pi t + 1

, i ∈ {1, 2, 3}. (14)

For t1,2 < t < t1,3, the system of differential equations determining the dynamics
of the game is given by (9). Solving this system of equations using the boundary
conditions at t = t1,2, p3(t;π) is given by Eq. (14) and

p1(t;π) = 1

(1 + k2)t + c2
, p2(t;π) = k2

(1 + k2)t + c2
,

where

k2 = p2(t1,2;π)

p1(t1,2;π)
= p2[p1t1,2 + 1]

p1[p2t1,2 + 1] ; c2 = 1

p1
− k2t1,2.

For t> t1,3, the differential equations determining the dynamics of the game are
given by (7). Solving these equations using the boundary conditions at t= t1,3, we
obtain

p1(t;π) = 1

(1 + k2 + k3)t + c1
; pi (t;π) = ki

(1 + k2 + k3)t + c1
, i ∈ {2, 3},

where

k3 = p3(t1,3;π)

p1(t1,3;π)
= p3[(1 + k2)t1,3 + c2]

p3t1,3 + 1
; c1 = c2 − k3t1,3.
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Such an equilibrium satisfies r1(t∗1,3;π∗)=1 and r1(t∗1,2;π∗)=v2. The first condition
corresponds to Eq. (12). Considering whether or not a searcher of type 1 forms a
partnership in the time interval (t∗1,2, t∗1,3) and setting v2 = v1+k2v2

1+k2
, it follows from

the second condition that

r1(t1,2; π∗) = v2

∫ t∗1,3

t∗1,2
[p1(t;π∗)+ p2(t;π∗)]exp

[

−
∫ t

t∗1,2
[γ + p1(s;π∗)+ p2(s;π∗)]ds

]

dt+

+ exp[−γ (t∗1,3 − t∗1,2)]p1(t∗1,3;π∗)

p1(t
∗
1,2; π∗)

= v2. (15)

In addition, a type 2 player should reject a prospective partner of type 3 at any time
t for t< t∗1,2, i.e. r2(t;π∗)>v3,∀t< t∗1,2. Conditioning on whether such a searcher
finds a partner before time t∗1,2, it follows from this that for any t< t∗1,2

v3 ≤ v2

∫ t∗1,2

t
p2(s;π∗) exp

[

−
∫ s

t
{γ + p2(τ ;π∗)}dτ

]

ds +

+v2 exp[−γ (t∗1,2 − t)]p2(t∗1,2;π∗)
p2(t;π∗)

. (16)

Such equilibria were estimated by solving Eqs. (12) and (15). First, t1,2 was varied
over a grid of values over the interval [0, 100) with step length 0.1 to obtain an
initial estimate of any Nash equilibria and then a fine grid search was used. For a
given value of t1,2, the resulting subgame defined for t≥ t1,2 was solved by finding
the value of t1,3 satisfying r1(t1,3;π)=1. This sub-procedure is analogous to the
procedure described in Sect. 5.2. The equilibrium condition given by Inequality (16)
was then checked by numerical calculation.

Considering Example 1, such an equilibrium exists when γ ≤γ4,1≈0.0255. This
bound was estimated by finding the value of γ for which r1(0;π∗) = v2 using
the method of bisection. Note that multiple equilibria occur when γ ∈(γ2,1, γ4,1)≈
(0.0245,0.0255). Table 2 gives numerical results for various discount rates.

Now consider Example 2. Such an equilibrium exists if the discount rate is slightly
less than γ2,2. For such discount rates, type 1 players start accepting prospective

Table 2 Switching times at equilibrium for Example 1 (v1 = 36, v2 = 6, v3 = 1, p1 = 0.01, p2 =
0.09, p3 = 0.9), when the equilibrium is given by two parameters

Discount rate, γ t∗1,2 Equilibrium 1 t∗1,3 Equilibrium 1 t∗1,2 Equilibrium 2 t∗1,3 Equilibrium 2

0 66.6642 94.4415 – –

0.01 58.1484 93.8638 – –

0.02 39.7536 92.4862 – –

0.0245 0.1530 85.4398 20.8199 90.4273

0.025 2.2276 86.2493 17.1265 89.8591
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Table 3 Switching times at equilibrium for Example 2 (v1=6, v2=1.1, v3=1, p1= p2= p3=
1/3), when the equilibrium is given by two parameters t∗1,2, t∗1,3
Discount rate
γ

t∗1,2 t∗1,3 Discount rate
γ

t∗1,2 t∗1,3

0 81.1167 82.8451 1.005 0.0964 0.3178

0.001 80.9160 82.6727 1.015 0.0661 0.3011

0.002 80.7100 82.4964 1.025 0.0362 0.2846

0.003 80.4982 82.3014 1.035 0.0066 0.2685

partners of type 2 at some positive, but relatively small, time. Hence, it pays type 2
players not to pair with type 3 players initially in the hope of pairing with a type 1
player. This is the case when r2(0;π∗)≥1. Secondly, suppose that the discount rate
is zero and that type 1 players do not initially accept prospective partners of other
types (which is expected since type 1 players are common and much more attractive
than other prospective partners). Based on Condition (16), the expected reward of
a type 2 player at equilibrium given that he/she finds a partner before time t∗1,2 is
v2 (type 2 players only pair with other individuals of type 2 and the reward is not
discounted). Given that a type 2 player is still searching at time t∗1,2, then his/her
expected reward from future search is r1(t∗1,2;π∗), which is by definition v2. Hence,
for any t< t∗1,2, the future expected reward of a type 2 player at equilibrium must
be v2. As γ increases, the minimum value of r2(t;π∗) on the interval [0, t∗1,2) will
decrease. Hence, the equilibrium will be defined by two parameters, t∗1,2 and t∗1,3, for
discount rates close to zero. This holds when mint∈[0,t∗1,2) r2(t;π∗) ≥ 1.

Numerical calculations indicate that the equilibrium is of this form when γ ∈
(γ3,2, γ2,2) ≈ (1.0050, 1.0371) and γ ≤ γ4,2 ≈ 0.0032. Table 3 gives estimates of
the equilibria for such discount rates.

5.4 Three Switching Times

Such an equilibrium is defined by three parameters: t s,∗2,3 , t
∗
1,2 and t∗1,3, where t

s,∗
2,3 <

t∗1,2 < t∗1,3. Consider a strategy profile of this form with switching times t s2,3, t1,3 and
t2,3. From Eq. (3), for t < t s2,3,

dp1(t;π)

dt
=−[p1(t;π)]2; dpi (t;π)

dt
=−pi (t;π)[p2(t;π)+ p3(t;π)], i ∈{2,3}.

(17)

Hence, on this interval p3(t;π) = k3,2 p2(t;π), where k3,2 = p3
p2
. Using the boundary

conditions at t = 0, solving this system leads to

p1(t;π) = p1
p1t + 1

; pi (t;π) = pi
(p2 + p3)t + 1

, i ∈ {2, 3}. (18)
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For t s2,3< t< t1,2, the system of differential equations describing the dynamics of
the game are given by (13). Solving this system of differential equations using the
boundary conditions at t= t s2,3, p1(t;π) is as given in (18). In addition,

p2(t;π) = 1

t + c4
; p3(t;π) = 1

t + c3
, (19)

where c4 = k3,2t s2,3 + 1
p2

; c3 = t s2,3
k3,2

+ 1
p3
.

When t1,2< t< t1,3, the differential equations determining the game’s dynamics
are given by (9). Using the boundary conditions at t = t1,2, we obtain

p1(t;π) = 1

(1 + k2)t + c2
; p2(t;π) = k2

(1 + k2)t + c2
,

where k2 = p2(t1,2;π)

p1(t1,2;π)
= p1t1,2+1

p1[t1,2+c4] and c2= 1
p1

−k2t1,2. Note that p3(t;π) is given by
the relevant equation in (19).

For t> t1,3, the differential equations determining the dynamics of the game are
given by (7). Using the boundary conditions at t= t1,3, it follows that

p1(t;π) = 1

(1 + k2 + k3)t + c1
; pi (t;π) = ki

(1 + k2 + k3)t + c1
, i ∈ {2, 3},

where k3 = p3(t1,3;π)

p1(t1,3;π)
= (1+k2)t1,3+c2

t1,3+c3
; c1 = c2 − k3t1,3. The necessary and sufficient

conditions for such an equilibrium are: 1) r1(t∗1,3;π∗)=1, 2) r1(t∗1,2;π∗)=v2, 3)
r2(t

s,∗
2,3;π∗)=1 and 4) r2(0;π∗)≤1. The first two conditions are equivalent to Eqs.

(12) and (15), respectively.
The third condition is equivalent to

r2(t
s,∗
2,3;π∗) = v2

∫ t∗1,2

t s,∗2,3

p2(t;π∗) exp

[

−
∫ t

t s,∗2,3

{γ + p2(t;π∗)}ds
]

dt +

+v2 exp[−γ (t∗1,2 − t s,∗2,3)]p2(t∗1,2;π∗)
p2(t

s,∗
2,3;π∗)

= 1. (20)

From Eq. (20), r2(t
s,∗
2,3;π∗)>v2 exp[−γ (t∗1,2 − t s,∗2,3)]>v2e−100γ . Hence, for such

an equilibrium to exist, v2e−100γ ≤1. This leads to γ ≥ ln(v2)/100. For Example 1,
this gives γ ≥ ln(6)/100≈0.0179. Also, the discount factor must be small enough
for type 1 players to initially only pair with other type 1 players. The previous section
indicated that this requires γ ≤ γ4,1 ≈ 0.0255. Hence, if such an equilibrium exists
for a game corresponding to Example 1, the discount rate must belong to a narrow
interval. In addition, the lower bound on γ derived above is not expected to be tight.
Given these facts, it is unsurprising that no such equilibrium was found for a game
corresponding to Example 1.
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Table 4 Equilibria for Example 2 (v1 = 6, v2 = 1.1, v3 = 1, p1 = p2 = p3 = 1/3),when an equi-
librium is given by three switching times t s,∗2,3 , t

∗
1,2, t

∗
1,3

Discount
rate γ

t s,∗2,3 t∗1,2 t∗1,3 Discount
rate γ

t s,∗2,3 t∗1,2 t∗1,3

0.01 69.15 79.02 81.07 0.3 7.78 8.10 9.04

0.02 71.41 76.26 78.74 0.4 5.04 5.28 5.97

0.05 58.13 60.05 64.50 0.6 2.28 2.44 2.87

0.1 29.67 30.63 33.58 0.8 0.88 1.00 1.30

0.2 13.26 13.74 15.19 1.0 0.01 0.11 0.33

In Example 2, such an equilibrium exists if γ ∈ (γ5,2, γ3,2)≈(0.0094, 1.0050),
where γ3,2 and γ5,2 are solutions of the equation r2(0, π∗)=1. Table 4 presents the
equilibrium for such values of the discount rate. A very rough estimate of the equilib-
rium is obtained by assuming that all the switching times are integers andminimizing
the Euclidean distance between the vectors [r1(t1,3;π), r1(t1,2;π), r2(t s2,3;π)] and
[1, v2, 1]. This is followed by a local search over a denser grid of parameter values.

5.5 Four Switching Times

Such an equilibrium is described by 1) t∗2,3, 2) t
s,∗
2,3 , 3) t

∗
1,2 and 4) t∗1,3, where t∗2,3<

t s,∗2,3 < t∗1,2< t∗1,3. Consider a strategy profile of the same form, where the switching
times are given by t2,3, t s2,3, t1,2 and t1,3, respectively. For t < t2,3, since players only
pair with those of the same type, the rates at which prospective partners are found
are given by the set of equations in (14).

For t> t2,3, themating patterns evolve analogously to the equilibrium described in
Sect. 5.3. Hence, on the intervals a) t2,3< t< t s2,3, b) t

s
2,3< t< t1,2 and c) t1,2< t< t1,3,

the systems of differential equations determining the dynamics of the game are
given by the set of equations in (17), (13) and (9), respectively. Solving these sets of
differential equations, we obtain

p1(t;π) =
{

p1
p1t+1 , t ≤ t1,2
1

(1+k2)t+c2
, t1,2 < t < t1,3

p2(t;π) =

⎧
⎪⎨

⎪⎩

1
(1+k3,2)t+c5

, t2,3 < t < t s2,3
1

t+c4
, t s2,3 < t < t1,2

k2
(1+k2)t+c2

, t1,2 < t < t1,3

p3(t;π) =
{

k3,2
(1+k3,2)t+c5

, t2,3 < t < t s2,3
1

t+c3
, t s2,3 < t < t1,3

,
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Table 5 Equilibria for Example 2 (v1 = 6, v2 = 1.1, v3 = 1, p1 = p2 = p3 = 1/3),when an equi-
librium is given by four switching times t∗2,3, t

s,∗
2,3 , t

∗
1,2, t

∗
1,3

Discount rate γ t∗2,3 t s,∗2,3 t∗1,2 t∗1,3
0.004 7.0 53.0 80.3 82.2

0.006 2.4 62.8 79.9 81.8

0.008 0.7 67.1 79.5 81.5

0.009 0.2 68.5 79.3 81.3

where k2 = p2(t1,2;π)

p1(t1,2;π)
, c2= 1

p1
− k2t1,2, k3,2 = p3(t2,3;π)

p2(t2,3;π)
, c5 = 1

p2
− k3,2t2,3, c4 = c5 +

k3,2t s2,3, c3 = t s2,3+c5
k3,2

.
For t > t1,3, the dynamics of the game are given by Eq. (11), where c1 = c2 −

k3t1,3.
The four equilibrium conditions are: (1) r1(t∗1,3;π∗) = 1, (2) r1(t∗1,2;π∗) = v2,

(3) r2(t
s,∗
2,3;π∗) = 1 and 4) r2(t∗2,3;π∗) = 1. The first three conditions correspond to

Eqs. (12), (15) and (20). The fourth condition corresponds to

r2(t
∗
2,3;π∗) =v2,3

∫ t s,∗2,3

t∗2,3
[p2(t;π∗)+ p3(t;π∗)]exp

[

−
∫ t

t∗2,3
[γ + p2(s;π∗)+ p3(s;π∗)]ds

]

dt+

+ exp[−γ (ts,∗2,3 − t∗2,3)]p2(ts,∗2,3; π∗)

p2(t
∗
2,3; π∗)

= 1,

where v2,3= v2+k3,2
1+k3,2

. Equilibria were estimated using a procedure analogous to the
estimation of equilibria defined by three switching times. As mentioned above, no
such equilibria exist for Example 1. Numerical results for Example 2 are presented
in Table 5.

5.6 Multiple Equilibria

Ramsey [21] found multiple Nash equilibria in games of this type when there are
only two types of prospective partner. In such games, a Nash equilibrium which does
not correspond to random mating is defined by one switching time. The conditions
required for this switching time to define a neighbourhood invader strategy, NIS, (a
stronger condition introduced by Apaloo [4]) were also considered. In terms of a
single strategy, a strategy π∗ is an NIS if and only if when the relevant population
use a strategy π sufficiently close to π∗, then selection favours individuals using π∗
rather than π .

The selection pressure on a component strategy of a strategy profile depends on
the other strategies in the profile. From another point of view, the selection pressure
on a particular switching time depends on the other switching times being used.
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For this reason, we will only look at the stability properties of switching times in
isolation from each other (a weaker condition). The equilibrium switching time t∗1,2
is only associated with the strategy of type 1 players. The switching times t∗2,3 and
t s,∗2,3 are only associated with the strategy of type 2 players. The switching time t∗1,3 is
associated with the strategy of players of both type 1 and type 2. Consider the Nash
equilibrium given by the set of switching times (t∗2,3, t

s,∗
2,3 , t

∗
1,2, t

∗
1,3). The switching

time t∗1,3 is said to be a neigbourhood invader (NI) when the following condition is
satisfied: when the other switching times are unchanged and the switching time t1,3
is sufficiently close to t∗1,3, then selection favours searchers of types 1 and 2 (those
whose strategy is at least partially defined by t1,3) who use the switching time t∗1,3
rather than t1,3. This property can be defined analogously for the remaining switching
times.

Considering Example 1, when γ ∈(γ1,1, γ3,1)≈(0.4575, 0.4755) there are two
positive solutions of the equation r1(t1,3;π)=1. Let t∗,i

1,3 denote the i-th smallest
positive solution of r1(t1,3;π)=1. Numerical calculations indicate that r1(t1,3;π)

‘upcrosses’ the value 1 at t∗,1
1,3 and ‘downcrosses’ at t∗,2

1,3 . It follows that when t1,3 is

slightly larger than t∗,1
1,3 , then selection will favour searchers of type 1 (or type 2) who

use a slightly larger switching time than t1,3 rather than a slightly smaller one. Hence,
the switching time t∗,1

1,3 is not an NI. On the other hand, when t1,3 is very similar to

t∗,2
1,3 , then selection favours individuals of type 1 and 2 who use t∗,2

1,3 as a switching

time. It follows that the switching time t∗,2
1,3 is an NI. Finally, since r1(0;π)<1 for

random mating if γ >γ1,1, when t1,3 is sufficiently close to zero, then in this case an
optimally individual of type 1 or 2 should accept any prospective partner. Hence, in
this case t1,3 = 0 is an NI.

When γ ∈(γ2,1,γ4,1)≈(0.0245,0.0255), arguing as above, when t1,2 is close to
0 and t∗1,3 is the equilibrium switching time corresponding to t∗1,2=0, then selection
favours type 1 individuals who always accept prospective partners of type 2. Hence,
t∗1,2=0 is an NI. Setting t∗1,3= t∗,1

1,3 , the function r1(t1,2;π) upcrosses the value v2 at

t∗,1
1,2 . However, when t

∗
1,3= t∗,2

1,3 the function r1(t1,2;π) downcrosses v2 at t
∗,2
1,2 . Hence,

t∗,2
1,2 is an NI switching time, but t∗,1

1,2 is not.
If all the switching times satisfy this NI property, then one could say that the

corresponding strategy is NIS. However, this is a weaker concept than presented by
Apaloo [4], as simultaneous changes of switching times are not considered.

6 Conclusion

This article has considered a partnership formation game with scramble competition
inwhich there is a continuumof players and the attractiveness of a prospective partner
takes one of n possible values. The sex ratio is equal to one and the distribution of the
values of partners is independent of sex. Some general results regarding Nash equi-
libria were given for the mixing population model, according to which it is assumed
that the rate at which prospective partners are found is proportional to the fraction
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of individuals who are still searching for a partner. A full characterization of the
possible equilibria in the case where the attractiveness of prospective partners takes
one of three possible values was presented. Such an equilibrium can be described by
a set of between zero and four switching times, where the case ‘zero switching times’
corresponds to random mating. Two examples were presented to illustrate each type
of equilibria. It was shown that multiple Nash equilibria are possible and the stability
properties of these equilibria were considered from the point of view of the concept
of neighbourhood invader strategy (see Apaloo [4]).

Except in the case of random mating, equilibria were estimated using search
procedures based on a grid over the space of switching times. When an equilibrium
is described by four switching times, the initial estimate assumes that the switching
times are integers (there are 100C4 such strategy profiles) and then uses a finer grid
for local search. The running time of a program written in R was about 20min using
a 1.4GHz Intel Core i5 processor with 4GB of memory. When attractiveness takes
a larger number of possible values, it is expected that the number of switching times
possible at equilibrium grows exponentially. To solve more complex games of this
form, other methods of solution, such as policy iteration or value iteration, should
be considered. However, such approaches make it more difficult to examine the
phenomenon of multiple equilibria.

Searchers of intermediate attractiveness do not always become less choosy as time
progresses. Equilibria exist where such searchers initially accept (or start accepting)
prospective partners of low attractiveness, but then stop accepting them if players of
high attractiveness will start accepting those of intermediate attractiveness in the near
future. For such an equilibrium to exist, the value of players of low attractiveness
should be similar to the value of prospective partners of intermediate attractiveness.
In such cases, either the period of time over which searchers of intermediate attrac-
tiveness become more choosy is very short or the discount rate is very low, which
means that the expected reward from future search of an individual of intermediate
attractiveness is always close to the value of a prospective partner of low attractive-
ness and so the selective pressure on whether to accept or reject a partner of low
attractiveness is relatively small.

One avenue for future research would be to restrict the set of strategy profiles
to those where players become less choosy over time. This would greatly simplify
the form of ‘equilibria’ and from a practical point of view might be more realistic.
Considering such a game as a stopping game, it is unclear what conditions should
be satisfied by the future reward functions. However, such an approach is definitely
appropriate in games where rewards are not discounted over time. For example,
suppose an individual of type i is not initially acceptable to a searcher of type 1.
By accepting only individuals of type i when t< t1,i and behaving in the same way
as an individual of type 1 when t≥ t1,i , where t1,i is the time at which the most
attractive searchers start to accept those of type i , it is clear from the equilibrium
conditions that such an individual has an expected reward of vi and becomes less
choosy as time progresses. Extending this argument, each searcher should become
less choosy as time progresses (individuals who are always acceptable to those of
type 1 should always behave in the same way as individuals of type 1 and hence
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become less choosy over time). Hence, such an equilibrium can be described by at
most n − 1 parameters.

The phenomenon of multiple equilibria should also be investigated. If multiple
equilibria exist, then when searchers are not choosy, it pays an individual also not
to be choosy and when searchers are relatively choosy, it pays (at least attractive
searchers) to be choosy. It is possible that a policy iteration algorithm could be
used to find ‘a least choosy equilibrium’ and a ‘most choosy equilibrium’. The first
equilibrium would be found by starting a policy iteration algorithm from a strategy
profile where each searcher accepts any prospective partner. The second equilibrium
could be found, for example, by starting a policy iteration algorithm from a strategy
profile where searchers use the equilibrium searching rules in the game where the
rates at which prospective partners of a given type are fixed. In such a game, type 1
searchers face a classical one-sided search problem for which the optimal rule can
be found by recursion. The optimal rule of each successive type of searcher given
the strategies of more attractive individuals could then be found in a similar way.
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The Replicator Dynamics for Games
in Metric Spaces: Finite Approximations

Saul Mendoza-Palacios and Onésimo Hernández-Lerma

1 Introduction

In this paper, we are interested in evolutionary games, in which the interaction of
strategies is studied as a dynamical system. We are interested in the special case in
which the strategies’ interactions follow a specific dynamical system known as the
replicator dynamics.

An evolutionary game is said to be symmetric if there are two players only and,
furthermore, they have the same strategy sets and the same payoff functions. This
type of game models interactions of the strategies of a single population. In contrast,
an asymmetric evolutionary game, also known as multipopulation games, is a game
with a finite set of players (or populations) each of which has a different set of
strategies and different payoff functions.

In ourmodel, the pure strategies set of each player (or population) is ametric space
and consequently the replicator dynamics lives in a Banach space (a space of finite
signed measures). In particular, if we have n players each of which hasmi strategies,
for i = 1, . . . , n, then the replicator dynamics is in Rm , where m = ∑n

i=1 mi .

The main goal of this paper is to establish conditions under which a finite-
dimensional dynamical system approximates the replicator dynamics for games with
strategies in metric spaces. In this manner, we can use numerical analysis techniques
for finite-dimensional differential equations to approximate a solution to the replica-
tor dynamics, which lives in an infinite-dimensional Banach space. This is important
because it will allow us to study games with pure strategies in metric spaces such
as models in oligopoly theory, international trade theory, war of attrition, and pub-
lic goods, among others. To achieve this goal, we first present a finite-dimensional

S. Mendoza-Palacios (B)
Economic Studies Center of El Colegio de México, Carretera Picacho Ajusco 20, Ampliación
Fuentes del Pedregal, 14110 Tlapan, México city, Mexico
e-mail: smendoza@colmex.mx

O. Hernández-Lerma
Mathematics Department, CINVESTAV-IPN, A. Postal 14-740, 07000 México City, Mexico
e-mail: ohernand@math.cinvestav.mx

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
D. M. Ramsey and J. Renault (eds.), Advances in Dynamic Games,
Annals of the International Society of Dynamic Games 17,
https://doi.org/10.1007/978-3-030-56534-3_7

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56534-3_7&domain=pdf
mailto:smendoza@colmex.mx
mailto:ohernand@math.cinvestav.mx
https://doi.org/10.1007/978-3-030-56534-3_7


164 S. Mendoza-Palacios and O. Hernández-Lerma

approximation technique for games in metric spaces and we give a proposal of a
finite-dimensional dynamical system to approximate evolutionary dynamics in a
Banach space, see Sect. 4. After, in Sects. 5 and 6, we establish general approxima-
tion theorems for the replicator dynamics in metric spaces and use these results for
a finite-dimensional approximation given in Sect. 4, see Notes 1 and 3.

Oechssler and Riedel [24] propose two approximation theorems for symmetric
games. The first theorem establishes the proximity in the strong topology of two paths
generated by twodynamical systems (the originalmodel and adiscrete approximation
of the model) with the same initial conditions. The second theorem establishes the
proximity in the weak topology of two paths with different initial conditions, and
these paths satisfy the same differential equation.

We propose here two approximation results with hypotheses less restrictive than
those by Oechssler and Riedel [24]. Our approximation theorems extend the results
in [24]. In our case, the approximation theorems are for symmetric and asymmetric
games. Also, we establish the proximity of two paths generated by two different
dynamical systems (the original model and a discrete approximation model) with
different initial conditions. In addition, our approximation results are studied in the
strong topology using the norm of total variation, and also in the weak topology
using the Kantorovich–Rubinstein metric. This last point is important because the
initial conditions and the paths (by consequence) of the original dynamics model and
the finite-dimensional dynamic approximation may be very far between them (both
initial conditions and paths) in terms of the strong topology, but very close between
them in terms of the weak topology.

These approximations require different hypotheses. The first approximation the-
orem, Theorem 1, requires a proximity in the strong topology of the two initial
conditions, and it only requires that the payoff functions for the original model be
bounded. The second approximation result, Theorem 2, weakens the hypothesis of
proximity of the two initial conditions (it only imposes a condition of proximity in
the weak topology), but it requires that the payoff functions for the original model
be Lipschitz continuous.

There are several publications on the replicator dynamics in games with strategies
in metric spaces. For instance, conditions for the existence of solutions, as in Bomze
[4], Oechssler and Riedel [23], Cleveland and Ackleh [7], Mendoza-Palacios and
Hernández-Lerma [21] (for asymmetric games). Similarly, conditions for dynamic
stability, as in Bomze [3], Oechssler and Riedel [23, 24], Eshel and Sansone [9], Vee-
len and Spreij [30], Cressman and Hofbauer [8], Mendoza-Palacios and Hernández-
Lerma [21, 22].

The paper is organized as follows. Section 2 presents notation and technical
requirements. Section 3 describes the replicator dynamics and its relation to evo-
lutionary games. Some important technical issues are also summarized. Section 4
introduces a finite-dimensional game to approximate evolutionary games in a Banach
space. Section 5 establishes an approximation theorem for the replicator dynamics
on measure spaces by means of dynamical systems in finite-dimensional spaces. The
distance for this first approximation is the total variation norm. Section 6 establishes
an approximation theorem using the Kantorovich–Rubinstein metric. Section 7 pro-
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poses an example to illustrate our results. We conclude in Sect. 8 with some general
comments on possible extensions. An appendix contains results of some technical
facts.

2 Technical Preliminaries

2.1 Spaces of Signed Measures

Consider a separable metric space (A, ϑ) and its Borel σ -algebra B(A). Let M(A)

be the Banach space of finite signed measures μ on B(A) endowed with the total
variation norm

‖μ‖ := sup
‖ f ‖≤1

∣
∣
∣
∣

∫

A
f (a)μ(da)

∣
∣
∣
∣ = |μ|(A). (1)

The supremum in (1) is taken over functions in the Banach spaceB(A) of real-valued
bounded measurable functions on A, endowed with the supremum norm

‖ f ‖ := sup
a∈A

| f (a)|. (2)

Consider the subset C(A) ⊂ B(A) of all real-valued continuous and bounded func-
tions on A. Consider the dual pair (C(A),M(A)) given by the bilinear form
〈·, ·〉 : C(A) × M(A) → R

〈g, μ〉 =
∫

A
g(a)μ(da). (3)

We consider the weak topology onM(A) (induced byC(A)), i.e., the topology under
which all elements of C(A) when regarded as linear functionals 〈g, ·〉 on M(A) are
continuous.

2.2 The Kantorovich–Rubinstein Metric

There are many metrics that metrize the weak topology on P(A). Here we use
the Kantorovich–Rubinstein metric. Let (A, ϑ) be a separable metric space, and
P(A) the set of probability measure on A. For any μ, ν ∈ P(A) we define the the
Kantorovich–Rubinstein metric rkr as

rkr (μ, ν) := sup
f ∈L(A)

{∫

A
f (a)μ(da) −

∫

A
f (a)ν(da) : ‖ f ‖L ≤ 1

}

, (4)
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where (L(A), ‖ · ‖L) is the space of continuous real-valued functions on A that satisfy
the Lipschitz condition

‖ f ‖L := sup
{| f (a) − f (b)|/ϑ(a, b), a, b ∈ A, a 	= b

}
< ∞. (5)

Let a0 be a fixed point in A, and

MK (A) :=
{
μ ∈ M(A) : sup

f ∈L(A)

∫

A
| f (a)|μ(da) < ∞

}
.

TheKantorovich–Rubinsteinmetric rkr can be extended as a normonMK (A) defined
as

‖μ‖kr := |μ(A)| + sup
f ∈L(A)

{∫

A
f (a)μ(da) : ‖ f ‖L ≤ 1, f (a0) = 0

}

(6)

for any μ inMK (A) (see Bogachev [2], Chap. 8).

Remark 1 Note that for any μ, ν ∈ P(A), rkr (μ, ν) = ‖μ − ν‖kr . Indeed if μ, ν ∈
P(A), then

sup
f ∈L(A)

{∫

A
f (a)μ(da) −

∫

A
f (a)ν(da) : ‖ f ‖L ≤ 1

}

= sup
f ∈L(A)

{∫

A
[ f (a) − f (a0)]μ(da) −

∫

A
[ f (a) − f (a0)]ν(da) : ‖ f ‖L ≤ 1

}

= sup
g∈L(A)

{∫

A
g(a)μ(da) −

∫

A
g(a)ν(da) : ‖g‖L ≤ 1, g(a0) = 0

}

.

2.3 Product Spaces

Consider two separable metric spaces X and Y with their Borel σ -algebrasB(X) and
B(Y ). We denote by B(X) × B(Y ) the product σ -algebra on X × Y . For μ ∈ M(X)

and ν ∈ M(Y ), we denote their product by μ × ν and it holds that

‖μ × ν‖ ≤ ‖μ‖‖ν‖. (7)

As a consequence, μ × ν is in M(X × Y ) (see by example Heidergott and Leahu
[11], Lemma 4.2.).

Now consider a finite family of metric spaces {Xi }ni=1 and their σ -algebrasB(Xi ),
as well as the Banach spaces (M(Xi ), ‖ · ‖) and (MK (Xi ), ‖ · ‖kr ). For i = 1, . . . , n,
let μi ∈ M(Xi ) and consider the elements μ = (μ1, ..., μn) in the product space
M(X1) × ... × M(Xn) with the norm
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‖μ‖∞ := max
1≤i≤n

‖μi‖ < ∞. (8)

These elements form the Banach space (M(X1) × ... × M(Xn), ‖ · ‖∞). We can
similarly define the Banach space (MK (X1) × ... × MK (Xn), ‖ · ‖kr∞), where

‖μ‖kr∞ := max
1≤i≤n

‖μi‖kr < ∞. (9)

2.4 Differentiability

Definition 1 Let A be a separablemetric space.We say that amappingμ : [0,∞) →
M(A) is strongly differentiable if there exists μ′(t) ∈ M(A) such that, for every
t > 0,

lim
ε→0

∥
∥
∥
∥
μ(t + ε) − μ(t)

ε
− μ′(t)

∥
∥
∥
∥ = 0. (10)

Note that, by (1), the left-hand side in (10) can be expressed more explicitly as

lim
ε→0

sup
‖g‖≤1

∣
∣
∣
∣
1

ε

[∫

A
g(a)μ(t + ε, da) −

∫

A
g(a)μ(t, da)

]

−
∫

A
g(a)μ′(t, da)

∣
∣
∣
∣ .

The signed measure μ′ in (10) is called the strong derivative of μ.

For weak differentiability, see Remark 3.

3 The Replicator Dynamics and Evolutionary Games

3.1 Asymmetric Evolutionary Games

Let I := {1, 2, . . . , n} be the set of different species (or players). Each individual of
the species i ∈ I can choose a single element ai in a set of characteristics (strategies
or actions) Ai , which is a separable metric space. For every i ∈ I and every vector
a := (a1, ..., an) in the Cartesian product A := A1 × ... × An , wewrite a as (ai , a−i )

where a−i := (a1, ..., ai−1, ai+1, ..., an) is in

A−i := A1 × ... × Ai−1 × Ai+1 × ... × An.
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For each i ∈ I , let B(Ai ) be the Borel σ -algebra of Ai and P(Ai ) the set of
probability measures on Ai , also known as the set of mixed strategies. A probability
measure μi ∈ P(Ai ) assigns a population distribution over the action set Ai of the
species i .

Finally, for each species i weassign a payoff function Ji : P(A1) × ... × P(An) →
R that explains the interrelation with the population of other species, and which is
defined as

Ji (μ1, ..., μn) :=
∫

A1

...

∫

An

Ui (a1, ..., an)μn(dan)...μ1(da1), (11)

where Ui : A1 × ... × An → R is a given measurable function.
For every i ∈ I and every vector μ := (μ1, ..., μn) in P(A1) × ... × P(An), we

sometimes write μ as (μi , μ−i ), where μ−i := (μ1, ..., μi−1, μi+1, ..., μn) is in
P(A1) × ... × P(Ai−1) × P(Ai+1) × ... × P(An). If δ{ai } is a probability measure
concentrated at ai ∈ Ai , the vector (δ{ai }, μ−i ) is written as (ai , μ−i ), and so

Ji (δ{ai }, μ−i ) = Ji (ai , μ−i ). (12)

In particular, (11) yields

Ji (μi , μ−i ) :=
∫

Ai

Ji (ai , μ−i )μi (dai ). (13)

In an evolutionary game, the dynamics of the strategies is determined by a system
of differential equations of the form

μ′
i (t) = Fi (μ1(t), ..., μn(t)) ∀ i ∈ I, t ≥ 0, (14)

with some initial conditionμi (0) = μi,0 for each i ∈ I . The notationμ′
i (t) represents

the strong derivative ofμi (t) in the Banach spaceM(Ai ) (see Definition 1). For each
i ∈ I , Fi (·) is a mapping

Fi : P(A1) × ... × P(An) → M(Ai ).

Let
F : P(A1) × ... × P(An) → M(A1) × ... × M(An)

be such that F(μ) := (F1(μ), ..., Fn(μ)), and consider the vector

μ′(t) := (μ′
1(t), ..., μ

′
n(t)).

Hence, the system (14) can be expressed as

μ′(t) = F(μ(t)), (15)
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and we can see that the system lives in the Cartesian product of signed measures

M(A1) × ... × M(An),

which is a Banach space with norm as in (8).
More explicitly, we may write (14) as

μ′
i (t, Ei ) = Fi (μ(t), Ei ) ∀ i ∈ I, Ei ∈ B(Ai ), t ≥ 0, (16)

where μ′
i (t, Ei ) and Fi (μ(t), Ei ) denote the signed measures μ′

i (t) and Fi (μ(t))
valued at Ei ∈ B(Ai ).

We shall be working with a special class of asymmetric evolutionary games which
can be described as

[
I,

{
P(Ai )

}

i∈I
,
{
Ji (·)

}

i∈I
,
{
μ′
i (t) = Fi (μ(t))

}

i∈I

]
, (17)

where

(i) I = {1, ..., n} is the finite set of players;
(i i) for each player i ∈ I we have a setP(Ai ) ofmixed actions and a payoff function

Ji : P(A1) × ... × P(An) → R (as in (12)); and
(i i i) the replicator function Fi (μ(t)), where

Fi (μ(t), Ei ) :=
∫

Ei

[
Ji (ai , μ−i (t)) − Ji (μi (t), μ−i (t))

]
μi (t, dai ). (18)

Conditions for the existence of solutions and dynamic stability for asymmetric
games are given, for instance, by Mendoza-Palacios and Hernández-Lerma [21],
Theorems 4.3 and 4.5.

3.2 The Symmetric Case

We can obtain from (17) a symmetric evolutionary game when I := {1, 2} and the
sets of actions and payoff functions are the same for both players, i.e., A = A1 = A2

and U (a, b) = U1(a, b) = U2(b, a), for all a, b ∈ A. As a consequence, the sets of
mixed actions and the expected payoff functions are the same for both players, that
is, P(A) = P(A1) = P(A2) and J (μ, ν) = J1(μ, ν) = J2(ν, μ) for allμ, ν ∈ P(A).
This kind of model determines the dynamic interaction of strategies of a unique
species through the replicator dynamicsμ′(t) = F(μ(t)), where F : P(A) → M(A)

is given by

F(μ(t), E) :=
∫

E

[
J (a, μ(t)) − J (μ(t), μ(t))

]
μ(t, da) ∀E ∈ B(A). (19)
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As in (17), we can describe a symmetric evolutionary game in a compact form as

[
I = {1, 2}, P(A), J (·), μ′(t) = F(μ(t))

]
. (20)

There are several papers on the replicator dynamics in symmetric games with
strategies in metric spaces. In particular, for conditions on the existence of solu-
tions, see, for instance, Bomze [4], Oechssler and Riedel [23], Cleveland and Ackleh
[7]. Similarly, conditions for dynamic stability are given by Bomze [3], Oechssler
and Riedel [23, 24], Eshel and Sansone [9], Veelen and Spreij [30], Cressman and
Hofbauer [8], Mendoza-Palacios and Hernández-Lerma [22], among others.

4 Discrete Approximations to the Replicator Dynamics

To obtain a finite-dimensional approximation of the replicator dynamics (15) (with
Fi (·) in (18)), for an asymmetric (17) (or symmetric (20)) model, we can apply the
following Theorems 1 and 2 to a discrete approximation of the payoff functions
Ui and the initial probability measures μi,0, for i in I . For some approximation
techniques for the payoff function in games, see Bishop and Cannings [1], Simon
[29].

4.1 Games with Strategies in an Real Interval

Oechssler and Riedel [24] propose a finite approximation for a symmetric game.
Following [24], consider an asymmetric game (17) where, for every i in I , Ai =
[ci,1, ci,2] (for some real numbers with ci,1 < ci,2) and Ui is a real-valued bounded
function. For every i in I , consider the partition Pki := {ξmi }2

ki −1
mi=0 over Ai , where

ξmi := [ami , ami+1), ami = ci,1 + mi [ci,2 − ci,1]
2ki

,

for mi = 0, 1, ..., 2ki − 1 and ξ2ki −1 := [a2ki −1, ci,2]. For every i in I , the discrete
approximation to Ui is given by the function

Uki (x1, ..., xi , ..., xn) := Ui (am1 , ..ami , ..., amn ),

if (x1, ..., xi , ..., xn) is in ξm1 × · · · × ξmi × · · · × ξmn .Also, for each i in I weapprox-
imate a probability measure μi ∈ P(Ai ) by a discrete probability distribution μki on
the partition set Pki . Then we can write the approximation to the payoff function (11)
as
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Jki (μk1 , ..., μkn ) :=
∑

ξm1∈Pk1

...
∑

ξmn ∈Pkn

Ui (am1 , ..., amn )μkn (ξmn ) · · · μk1(ξm1). (21)

For every i ∈ I and every vectorμk := (μk1 , ..., μkn ) inP(Pk1) × ... × P(Pkn ), we
write μk as (μki , μ−ki ), where μk−i := (μk1 , ..., μki−1 , μki+1 , ..., μkn ) is in P(Pk1) ×
... × P(Pki−1) × P(Pki+1) × ... × P(Pkn ). If δ{ξmi } is a probability measure concen-
trated at ξmi ∈ Pki , the vector (δ{ξmi }, μ−i ) is written as (ami , μ−i ), and so

Jki (δ{ξmi }, μk−i ) = Jki (ami , μk−i ). (22)

In particular, (21) yields

Jki (μki , μk−i ) :=
∑

ξmi ∈Pki

Jki (ami , μk−i )μki (ξmi ). (23)

Note that μk := (μk1 , ..., μkn ) in P(Pk1) × ... × P(Pkn ) is a vector of measures
in P(A1) × ... × P(An). Then for any i ∈ I and Ei ∈ B(Ai ) ∩ Pki , the replicator
induced by {Uki }i∈I has the form,

μ′
ki (t, Ei ) =

∑

ξmi ∈Ei∩Pki

[
Jki (amki

, μk−i (t)) − Jki (μki (t), μk−i (t))
]
μki (t, ξmi ), (24)

which is equivalent to the system of differential equations inR2k1+...+2kn of the form:

μ′
ki (t, ξmi ) =

[
Jki (ami , μk−i (t)) − Jki (μki (t), μk−i (t))

]
μki (t, ξmi ), (25)

for i = 1, 2, . . . , n andmi = 0, 1, . . . , 2ki − 1,with initial condition {μki ,0(ξmi )}2ki−1

mi=0.
Hence, using Theorem 1 or Theorem 2, we can approximate (14), (15) (with Fi (·)

as (18)) by a system of differential equations in R2k1+...+2kn of the form (25).

4.2 Games with Strategies in Compact Metric Spaces

Similarly as in Sect. 4.1, consider an asymmetric game (17) where, for every i in I ,
Ai is a compact metric space andUi is a real-valued bounded function. For every i in
I , consider the partition Pki := {Ami }2

ki −1
mi=0 over Ai . For every i in I and a fixed profile

(am1 , ..ami , ..., amn ) ∈ Am1 × · · · × Ami × · · · × Amn , the discrete approximation to
Ui is given by the function

Uki (x1, ..., xi , ..., xn) := Ui (am1 , ..ami , ..., amn ),
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if (x1, ..., xi , ..., xn) is in Am1 × · · · × Ami × · · · × Amn . If for each i in I we can
approximate any probability measure μi ∈ P(Ai ) by a discrete probability distribu-
tion μki on the partition set Pki , then we can write the approximation to the payoff
function (11) as

Jki (μk1 , ..., μkn ) :=
∑

Am1∈Pk1

...
∑

Amn ∈Pkn

Ui (am1 , ..., amn )μkn (Amn ) · · · μk1(Am1). (26)

For every i ∈ I and every vectorμk := (μk1 , ..., μkn ) inP(Pk1) × ... × P(Pkn ), we
write μk as (μki , μ−ki ), where μk−i := (μk1 , ..., μki−1 , μki+1 , ..., μkn ) is in P(Pk1) ×
... × P(Pki−1) × P(Pki+1) × ... × P(Pkn ). Note that μk := (μk1 , ..., μkn ) in P(Pk1) ×
... × P(Pkn ) is a vector of measures in P(A1) × ... × P(An). Then for any i ∈ I and
Ei ∈ B(Ai ) ∩ Pki , the replicator induced by {Uki }i∈I has the following form:

μ′
ki (t, Ei ) =

∑

Ami ∈Ei∩Pki

[
Jki (amki

, μk−i (t)) − Jki (μki (t), μk−i (t))
]
μki (t, Ami ), (27)

which is equivalent to the system of differential equations inR2k1+...+2kn of the form:

μ′
ki (t, Ami ) =

[
Jki (ami , μk−i (t)) − Jki (μki (t), μk−i (t))

]
μki (t, Ami ), (28)

for i = 1, 2, . . . , n andmi = 0, 1, . . . , 2ki − 1,with initial condition {μki ,0(Ami )}2ki−1

mi=0.
As in Sect. 4.1, using Theorem 1 or Theorem 2, we can approximate (14), (15)

(with Fi (·) as (18)) by a system of differential equations in R2k1+...+2kn .

5 An Approximation Theorem in the Strong Form

In this section, we provide an approximation theorem that gives conditions under
which we can approximate (14), (15) (with Fi (·) as in (18)) by a finite-dimensional
dynamical system of the form (25) under the total variation norm (1).

The proof of this theorem uses the following two lemmas, which are proved in
the appendix.

Lemma 1 For each i in I , let Ai be a separable metric space. If each map μi :
[0,∞) → M(Ai ) is strongly differentiable, then

d‖μ(t)‖∞
dt

≤ ‖μ′(t)‖∞.

Proof See Appendix.

Lemma 2 For each i in I , let Ai be a separable metric space and let F(·) be as in
(14), (15) (with Fi as in (18)). Suppose that for each i in I the payoff function Ui (·)
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in (18) is bounded. Then

‖F(ν) − F(μ)‖∞ ≤ Q‖ν − μ‖∞ ∀μ, ν ∈ P(A1) × ... × P(An), (29)

where Q := (2n + 1)H and H := max
i∈I ‖Ui‖.

Proof See Appendix.

Theorem 1 For each i in I , let Ai be a separable metric space and let Ui ,U ε
i :

A1 × ... × An → R be bounded functions such thatmax
i∈I ‖Ui −U ε

i ‖ < ε, where ‖ · ‖
is the sup norm in (2). Consider the replicator dynamics induced by {Ui }ni=1 and
{U ε

i }ni=1, i.e.,

μ′
i (t, Ei ) =

∫

Ei

[
Ji (ai , μ−i (t)) − Ji (μi (t), μ−i (t))

]
μi (t, dai ), (30)

ν ′
i (t, Ei ) =

∫

Ei

[
J ε
i (ai , ν−i (t)) − J ε

i (νi (t), ν−i (t))
]
νi (t, dai ), (31)

for each i ∈ I , E ∈ B(Ai ), and t ≥ 0. Ifμ(·) and ν(·) are solutions of (30) and (31),
respectively, with initial conditions μ(0) = μ0 and ν(0) = ν0, then for T < ∞

sup
t∈[0,T ]

‖μ(t) − ν(t)‖∞ < ‖μ0 − ν0‖∞eQT + 2ε

(

eQT − 1

Q

)

. (32)

where Q := (2n + 1)H and H := max
i∈I ‖Ui‖.

Proof For each i in I and t ≥ 0, let

βi (ai |μ) := Ji (ai , μ−i ) − Ji (μi , μ−i ), βε
i (ai |νi ) := J ε

i (ai , ν−i ) − J ε
i (νi , ν−i ),

and

Fi (μ, Ei ) :=
∫

Ei

βi (ai |μ)μi (dai ), F ε
i (ν, Ei ) :=

∫

Ei

βε
i (ai |ν)νi (dai ).

Since Ui is bounded, by Lemma 2 there exists Q > 0 such that

‖F(ν) − F(μ)‖∞ ≤ Q‖ν − μ‖∞ ∀μ, ν ∈ P(A1) × ... × P(An). (33)

Actually, Q := (2n + 1)H and H := max
i∈I ‖Ui‖. We also have that, for all i ∈ I and

ν ∈ P(A1) × ... × P(An),

‖Fi (ν) − F ε
i (ν)‖ ≤

∫

Ai

|βi (ai |ν) − βε
i (ai |ν)|νi (dai ) ≤ 2‖Ui −U ε

i ‖ ≤ 2ε,
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so
‖F(ν) − F ε(ν)‖∞ ≤ 2ε. (34)

By Lemma 1 and (33), (34), we have

d‖μ(t) − ν(t)‖∞
dt

≤ ‖μ′(t) − ν ′(t)‖∞

= ‖F(μ(t)) − F ε(ν(t))‖∞
≤ ‖F(μ(t)) − F(ν(t))‖∞ + ‖F(ν(t)) − F ε(ν(t))‖∞
≤ Q‖μ(t) − ν(t)‖∞ + 2ε.

Then

d‖μ(t) − ν(t)‖∞
dt

− Q‖μ(t) − ν(t)‖∞ ≤ 2ε.

Multiplying by e−Qt we get

d‖μ(t) − ν(t)‖∞e−Qt

dt
− Q‖μ(t) − ν(t)‖∞e−Qt ≤ 2εe−Qt ,

and integrating in the interval [0, t], where t ≤ T , we get

‖μ(t) − ν(t)‖∞e−Qt − ‖μ0 − ν0‖∞e−Q0 ≤ 2ε

(
1 − e−Qt

Q

)

.

Then for all t ∈ [0, T ]

‖μ(t) − ν(t)‖∞ = ‖μ0 − ν0‖∞eQt + 2ε

(
eQt − 1

Q

)

≤ ‖μ0 − ν0‖∞eQT + 2ε

(
eQT − 1

Q

)

,

which yields (32). �

Remark 2 The last argument in the proof of Theorem 1 is a particular case of
the well-known Gronwall–Bellman inequality: If f (·) is nonnegative and f ′(t) ≤
Q f (t) + c for all t ≥ 0, where Q and c are nonnegative constants, then

f (t) ≤ f (0)eQt + cQ−1(eQt − 1) for all t ≥ 0.

For the reader’s convenience, we included the proof here. �

Note 1 As in Sects. 4.1 and 4.2, consider a game with strategies in compact metric
spaces. For each player i ∈ I consider a partition Pki of Ai and suppose that the initial
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conditionμi,0 ∈ P(Ai )of (30) canbe approximated in the variation normbyadiscrete
probability distributionμki ,0 ∈ P(Pki ). Then for any i ∈ I and Ei ∈ B(Ai ) ∩ Pki , (31)
can be written as (27) (or (24)), with U ε

i as (26) (or (21)). So, in this particular case,
(30) can be approximated by a system of differential equations in R

2k1+...+2kn of the
form (28).

Note 2 For the existence of the replicator dynamic, only the boundedness of the
payoff functions is necessary (see Sect. 4 in [21]). So, the hypothesis of compactness
on the set of strategies is not necessary in Theorem 1. Hence, the hypothesis of
compactness on the set of strategies is also not necessary to approximate (30) by a
finite-dimensional dynamical system. For example, it is sufficient that there exists
a discrete probability distribution with finite values for any probability distribution
over the set of strategies. For this last case, it is enough that for each i ∈ I , let Ai be
a separable metric space, see Theorem 6.3, p. 44 in [26]. However, the compactness
on the set of strategies ensures the existence of Nash equilibrium.

Corollary 1 Let us assume the hypotheses of Theorem 1. Suppose that for each i
in I , there exists a sequence of functions {U εn

i }∞n=1 and probability measure vectors
{νn}∞n=1 such that max

i∈I ‖Ui −U εn
i ‖ → 0 and ‖μ0 − νn

0‖∞ → 0. If μ(·) and νn(·)
are solutions of (30) and (31), respectively, with initial conditions μ(0) = μ0 and
νn(0) = νn

0 , then for T < ∞,

lim
n→∞ sup

t∈[0,T ]
‖μ(t) − νn(t)‖∞ = 0.

6 An Approximation Theorem in the Weak Form

The next approximation result, Theorem 2, establishes the proximity of two paths
generated by two different dynamical systems (the original model and a discrete
approximating model) with different initial conditions, under the weak topology. To
this end we use the Kantorovich–Rubinstein norm ‖ · ‖kr on M(A), which metrizes
the weak topology.

Remark 3 Let A be a separable metric space. We say that a mapping μ : [0,∞) →
M(A) is weakly differentiable if there exists μ′(t) ∈ M(A) such that for every t > 0
and g ∈ C(A)

lim
ε→0

1

ε

[∫

A
g(a)μ(t + ε, da) −

∫

A
g(a)μ(t, da)

]

=
∫

A
g(a)μ′(t, da). (35)

If ‖ · ‖k,r is the Kantorovich–Rubinstein metric in (4), then (35) is equivalent to

lim
ε→0

∥
∥
∥
∥
μ(t + ε) − μ(t)

ε
− μ′(t)

∥
∥
∥
∥
kr

= 0. (36)
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Moreover if μ′(t) is the strong derivative of μ(t), then it is also the weak derivative
of μ(t). Conversely, if μ′(t) is the weak derivative of μ(t) and μ(t) is continuous in
t with the norm (1), then it is the strong derivative of μ(t). (See Heidergott, Hordijk,
and Leahu [11].)

Lemma 3 For each i in I , let Ai be a separable metric space. If each map μi :
[0,∞) → M(Ai ) is strongly differentiable, then

d‖μ(t)‖kr∞
dt

≤ ‖μ′(t)‖kr∞.

Proof The proof is similar to that of Lemma 1. �

Lemma 4 For each i in I , consider a bounded separable metric space (Ai , ϑi )

(with diameter Ci > 0) and the metric space (A1 × ... × An, ϑ
∗), where ϑ∗(a, b) =

max
i∈I {ϑi (ai , bi )} for any a, b in A1 × ... × An. Let F(·) be as in (14), (15) (with Fi

as in (18)). For each i in I , suppose that the payoff function Ui (·) in (11) is bounded
and satisfies that ‖Ui‖L < ∞. Then there exists Q > 0 such that

‖F(ν) − F(μ)‖kr∞ ≤ Q‖ν − μ‖kr∞ (37)

for allμ, ν ∈ P(A1) × ... × P(An) ∩ MK (A1) × ... × MK (An), where Q := [2H +
(2n − 1)CHL ], H := max

i∈I ‖Ui‖, HL := max
i∈I ‖Ui‖L , and C := max

i∈I Ci .

Proof See Appendix.

Theorem 2 For each i in I , let (Ai , ϑi ) be a bounded separable metric space (with
diameter Ci > 0), and Ui ,U ε

i : A1 × ... × An → R be two bounded functions such
thatmax

i∈I ‖Ui −U ε
i ‖ < ε.. For each i in I , suppose that ‖Ui‖L < ∞ and consider the

replicator dynamics induced by {Ui }ni=1 and {U ε
i }ni=1, as in (30) and (31). If μ(·) and

ν(·) are solutions of (30) and (31), respectively, with initial conditions μ(0) = μ0

and ν(0) = ν0, then for T < ∞

sup
t∈[0,T ]

‖μ(t) − ν(t)‖kr∞ < ‖μ0 − ν0‖kr∞eQT + 2ε

(

eQT − 1

Q

)

. (38)

where Q := [2H + (2n − 1)CHL ], H := max
i∈I ‖Ui‖, HL := max

i∈I ‖Ui‖L , and C :=
max
i∈I Ci .

Proof For each i in I and t ≥ 0, let

βi (ai |μ) := Ji (ai , μi ) − Ji (μi , μ−i ), βε
i (ai |νi ) := J ε

i (ai , ν−i ) − J ε
i (νi , ν−i ),
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and

Fi (μ, Ei ) :=
∫

Ei

βi (ai |μ)μi (dai ), F ε
i (ν, Ei ) :=

∫

Ei

βε
i (ai |ν)νi (dai ).

By Lemma 4 there exists Q > 0 such that

‖F(ν) − F(μ)‖kr∞ ≤ Q‖ν − μ‖kr∞ (39)

for all μ, ν ∈ P(A1) × ... × P(An) ∩ MK (A1) × ... × MK (An). Actually,
Q := [2H + (2n − 1)CHL ],H := max

i∈I ‖Ui‖,HL := max
i∈I ‖Ui‖L , andC := max

i∈I Ci .

We also have that, for all i , in I and

ν ∈ P(A1) × ... × P(An) ∩ MK (A1) × ... × MK (An),

‖Fi (ν) − F ε
i (ν)‖kr ≤ sup

‖ f ‖L≤1

f (a0i )=0

∫

Ai

f (ai )|βi (ai |ν) − βε
i (ai |ν)|νi (dai )

≤ 2‖Ui −U ε
i ‖ sup

‖ f ‖L≤1

f (a0i )=0

∫

Ai

f (ai )νi (dai )

≤ 2Cε.

Then1

‖F(ν) − F ε(ν)‖kr∞ ≤ 2Cε. (40)

By Lemma 3 and (39), (40) we have

d‖μ(t) − ν(t)‖kr∞
dt

≤ ‖μ′(t) − ν ′(t)‖kr∞
= ‖F(μ(t)) − F ε(ν(t))‖kr∞
≤ ‖F(μ(t)) − F(ν(t))‖kr∞ + ‖F(ν(t)) − F ε(ν(t))‖kr∞
≤ Q‖μ(t) − ν(t)‖kr∞ + 2Cε.

(See Remark 2 after Theorem 1.) The rest of the proof is similar to that done in
Theorem 1. �
Note 3 As in Sects. 4.1 and 4.2, consider a game with strategies in compact metric
spaces. For each player i ∈ I let ‖Ui‖L < ∞ and consider a partition Pki of Ai .

1Note that if f satisfies that ‖ f ‖L ≤ 1 and f (a0i ) = 0, then f (ai ) ≤ ϑi (ai , a0i ) ≤ Ci for all ai ∈ Ai .

Therefore sup
‖ f ‖L≤1

f (a0i )=0

∫

Ai

f (ai )νi (dai ) ≤ C .
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Suppose that the initial condition μi,0 ∈ P(Ai ) of (30) can be approximated in the
weak form by a discrete probability distribution μki ,0 ∈ P(Pki ), then for any i ∈ I
and Ei ∈ B(Ai ) ∩ Pki , (31) can be written as (27) (or (24)), with U ε

i as (26) (or
(21)). So, in this particular case, (30) can be approximated by a system of differential
equations in R2k1+...+2kn of the form (28).

Corollary 2 Let us assume the hypotheses of Theorem2. Suppose that for each i in I ,
there exist a sequences of functions {U εn

i }∞n=1 and of vectors of probability measures{νn}∞n=1 such that max
i∈I ‖Ui −U εn

i ‖ → 0 and ‖μ0 − νn
0‖kr∞ → 0. If μ(·) and νn(·)

are solutions of (30) and (31), respectively, with initial conditions μ(0) = μ0 and
νn(0) = νn

0 , then, for T < ∞,

lim
n→∞ sup

t∈[0,T ]
‖μ(t) − νn(t)‖kr∞ = 0.

7 Examples

7.1 A Linear-Quadratic Model: Symmetric Case

In this subsection, we consider a symmetric game in which we have two players with
the following payoff function:

U (x, y) = −ax2 − bxy + cx + dy, (41)

with a, b, c > 0 and d any real number.
Let A = [0, M], for M > 0, be the strategy set. If 2c(a − b) > 0 and 4a2 − b2 >

0, then we have an interior Nash equilibrium strategy (NES)

x∗ = 2c(a − b)

4a2 − b2
.

Let μ(t) be the solution of the symmetric replicator dynamics induced by (41).
Then if the initial condition is such that μ0(x∗) > 0, we have that μ(t) → δx∗ in
distribution (see, [21–23]).

Consider a game where a = 2, b = 1, c = 5, d = 1, M = 2. For this game, the
payoff function (41) is bounded Lipschitz and by Theorem 2 we can approximate the
replicator dynamics by a finite-dimensional dynamical system of the form (25) under
the Kantorovich–Rubinstein norm. Figure 1 shows a numerical approximation for
this game where the Nash equilibrium is x∗ = 1. For this numerical approximation,
we consider a partition with 100 elements with the same size and use the forward
Euler method for solving ordinary differential equations. We consider the uniform
distribution as initial condition. We show the distribution for the times 0, 1000, and
2000.
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Fig. 1 Linear Quadratic
Model: Symmetric Case

Note that, under the strong norm, the Nash equilibrium x∗ = 1 cannot be approx-
imated by any probability measure with continuous density function.

7.2 Graduated Risk Game

The graduated risk game is a symmetric game (proposed by Maynard Smith and
Parker [20]), where two players compete for a resource of value v > 0. Each player
selects the “level of aggression” for the game. This “level of aggression” is captured
by a probability distribution x ∈ [0, 1], where x is the probability that neither player
is injured, and 1

2 (1 − x) is the probability that player one (or player two) is injured.
If the player is injured its payoff is v − c (with c > 0), and hence the expected payoff
for the player is

U (x, y) =
{

vy + v−c
2 (1 − y) if y > x,

v−c
2 (1 − x) if y ≤ x,

(42)

where x and y are the “levels of aggression” selected by the player and her
opponent, respectively.

If v < c, this game has a Nash equilibrium strategy with the density function

dμ∗(x)
dx

= α − 1

2
x

α−3
2 , (43)

where α = c
v
(see Maynard Smith and Parker [20], and Bishop and Cannings [1]).

Let μ(t) be the solution of the symmetric replicator dynamics induced by (42).
Then, for any initial condition μ0 with support [0, 1] , we have that μ(t) → δx∗ in
distribution (see [22]).
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Fig. 2 Graduate Risk Game:
Case c = 10; v = 6 : 5

Fig. 3 Graduate Risk Game:
Case c = 10; v = 0 : 5

Consider a gamewhere c = 10, v = 6.5. For this game, the payoff function (42) is
bounded, and by Theorem 1 we can approximate the replicator dynamics by a finite-
dimensional dynamical system of the form (25) under the strong norm (1). Figure 2
shows a numerical approximation for this game. For this numerical approximation,
we consider a partition with 100 elements with the same size, and use the forward
Euler method for solving ordinary differential equations. We consider the uniform
distribution as initial condition. We show the distribution for the times 0, 500, and
1000.

In the same way, Fig. 3 shows a numerical approximation for a game where
c = 10, v = 0.5. For this numerical approximation, we consider a partition with 100
elements with the same size, and use the forward Euler method for solving ordinary
differential equations. We consider the uniform distribution as initial condition. We
show the distribution for the times 0, 500, and 1000.
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8 Comments

In this paper, we introduced a model of asymmetric evolutionary games with strate-
gies on measurable spaces. The model can be reduced, of course, to the symmetric
case. We established conditions to approximate the replicator dynamics in a measure
space by a sequence of dynamical systems on finite spaces. Finally, we presented
two examples. The first one may be applicable to oligopoly models, theory of inter-
national trade, and public good models. The second example deals with a graduated
risk game.

There are many questions, however, that remain open. For instance, the replicator
dynamics has been studied in other general spaceswithout direct applications in game
theory such as Kravvaritis et al. [15–18], and Papanicolaou and Smyrlis [25] studied
conditions for stability and examples for these general cases. These extensions may
be applicable in areas such asmigration, regional sciences, and spatial economics (see
Fujita et al. [10] Chaps. 5 and 6). An open question: can we establish conditions to
approximate the replicator dynamics for general spaces by a sequence of dynamical
systems on finite spaces?

In the theory of evolutionary games, there are several interesting dynamics,
for instance, the imitation dynamics, the monotone-selection dynamics, the best-
response dynamics, the Brown–von Neumann–Nash dynamics, and so forth (see, for
instance, Hofbauer and Sigmund [13, 14], Sandholm [28]). Some of this evolution-
ary dynamics have been extended to games with strategies in a space of probability
measures. For instance, Hofbauer et al. [12] extend the Brown–von Neumann–Nash
dynamics; Lahkar and Riedel extend the logit dynamics [19]. These publications
establish conditions for the existence of solutions and the stability of the correspond-
ing dynamical systems. Cheung proposes a general theory for pairwise comparison
dynamics [5] and for imitative dynamics [6]. Ruijgrok and Ruijgrok [27] extend
the replicator dynamics with a mutation term. An open question: can we establish
conditions to approximate other evolutionary dynamics for measurable spaces by a
sequence of dynamical systems on finite spaces?

Acknowledgment This research was partially supported by the Fondo SEP-CINVESTAV grant
FIDSC 2018/196.

Appendix: Proof of Lemmas

For the proof of Lemmas 2 and 4, it is convenient to rewrite (11) as

I(μ1,...,μn)Ui :=
∫

A1

...

∫

An

Ui (a1, ..., an)μn(dan)...μ1(da1). (44)

Hence (12) becomes
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Ji (ai , μ−i ) =
∫

A−i

Ui (ai , a−i )μ−i (da−i ) (45)

= I(μ1,...,μi−1,μi+1,...,μn)Ui (ai ).

Proof of Lemma 1

We have the following inequalities:

d‖μ(t)‖∞
dt

= d

dt
max
i∈I [‖μi (t)‖]

= lim
ε→0

1

ε

[

max
i∈I [‖μi (t + ε)‖] − max

i∈I [‖μi (t)‖]
]

≤ lim
ε→0

1

ε

[

max
i∈I [‖μi (t + ε)‖ − ‖μi (t)‖]

]

≤ lim
ε→0

1

ε

[

max
i∈I [‖μi (t + ε) − μi (t)‖]

]

= max
i∈I

[

lim
ε→0

∥
∥
∥
∥
μi (t + ε) − μi (t)

ε

∥
∥
∥
∥

]

= max
i∈I

[‖μ′
i (t)‖

]

= ‖μ′(t)‖. �

Proof of Lemma 2

For any i in I and μ, ν in P(A1) × ... × P(A1), using (44) we obtain
∣
∣
∣
∣

∫

A
Ui (a)η(da) −

∫

A
Ui (a)ν(da)

∣
∣
∣
∣

≤ |I(η1,η2,...,ηn)Ui − I(ν1,η2,...,ηn)Ui |
+ |I(ν1,η2,η3,...,ηn)Ui − I(ν1,ν2,η3,...,ηn)Ui |
+ ...

+ |I(ν1,...,νn−2,ηn−1,ηn)Ui − I(ν1,...,νn−2,νn−1,ηn)Ui |
+ |I(ν1,...,νn−1,ηn)Ui − I(ν1,...,νn−1,νn)Ui |

≤ ‖Ui‖‖η2 × .... × ηn‖‖η1 − ν1‖
+ ‖Ui‖‖ν1 × η3 × ... × ηn‖‖η2 − ν2‖
+ ...

+ ‖Ui‖‖ν1 × ... × νn−2 × ηn‖‖ηn−1 − νn−1‖
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+ ‖Ui‖‖ν1 × .... × νn−1‖‖ηn − νn‖
≤ n‖Ui‖ max

j∈I ‖η j − ν j‖. (46)

Similarly, using (45),

|Ji (ai , μ−i ) − Ji (ai , ν−i )| ≤ (n − 1)‖Ui‖‖μ − ν‖∞. (47)

Using (46) and (47), we have

‖Fi (μ) − Fi (ν)‖∞ = sup
‖ f ‖≤1

∫

Ai

f (ai )[Fi (μ) − Fi (ν)](dai )

≤ sup
‖ f ‖≤1

∫

Ai

f (ai )|Ji (ai , μ−i )|[μi − νi ](da)

+ sup
‖ f ‖≤1

∫

Ai

f (ai )|Ji (ai , μ−i ) − Ji (ai , ν−i )|νi (da)

+ sup
‖ f ‖≤1

∫

A
f (ai )|Ji (μi , μ−i )|[νi − μi ](da)

+ sup
‖ f ‖≤1

∫

A
f (ai )|Ji (νi , ν−i ) − J (μi , μ−i )|νi (da)

≤ ‖Ui‖‖μi − νi‖ + (n − 1)‖Ui‖‖μ − ν‖∞‖νi‖
+ ‖Ui‖‖μi − νi‖ + n‖Ui‖‖μ − ν‖∞‖νi‖

≤ H‖μ − ν‖∞ + (n − 1)H‖μ − ν‖∞ + H‖μ − ν‖∞ + nH‖μ − ν‖∞
= (2n + 1)H‖μ − ν‖∞,

where H := max
i∈I ‖Ui‖. �

Proof of Lemma 4

For any i and j in I and a− j in A− j let

‖Ui (·, a− j )‖L := sup
a j ,b j∈A j

|Ui (a j , a− j ) −Ui (b j , a− j )|
ϑ∗((a j , a− j ), (b j , a− j ))

≤ ‖Ui‖L , and

U j
i := Ui (a j , a− j )

‖Ui (·, a− j )‖L
.

Then for any i in I and μ, ν in P(A1) × ... × P(A1), using (44) we see that
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∣
∣
∣
∣

∫

A
Ui (a)η(da) −

∫

A
Ui (a)ν(da)

∣
∣
∣
∣

≤ ‖Ui (·, a−1)‖L |I(η1,η2,...,ηn)U
1
i − I(ν1,η2,...,ηn)U

1
i |

+ ‖Ui (·, a−2)‖L |I(ν1,η2,η3,...,ηn)U
2
i − I(ν1,ν2,η3,...,ηn)U

2
i |

+ ...

+ ‖Ui (·, a−(n−1))‖L |I(ν1,...,νn−2,ηn−1,ηn)U
n−1
i − I(ν1,...,νn−2,νn−1,ηn)U

n−1
i |

+ ‖Ui (·, a−n)‖L |I(ν1,...,νn−1,ηn)U
n
i − I(ν1,...,νn−1,νn)U

n
i |

≤ ‖Ui‖L‖η2 × .... × ηn‖‖η1 − ν1‖kr
+ ‖Ui‖L‖ν1 × η3 × ... × ηn‖‖η2 − ν2‖kr
+ ...

+ ‖Ui‖L‖ν1 × ... × νn−2 × ηn‖‖ηn−1 − νn−1‖kr
+ ‖Ui‖L‖ν1 × .... × νn−1‖‖ηn − νn‖kr

≤ n‖Ui‖L‖η j − ν j‖kr∞. (48)

Similarly, using (45),

|Ji (ai , μ−i ) − Ji (ai , ν−i )| ≤ (n − 1)‖Ui‖L‖μ − ν‖kr∞. (49)

Using (48) and (49) we have

‖Fi (μ) − Fi (ν)‖kr

= sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )[Fi (μ) − Fi (ν)](dai )

≤ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )|Ji (ai , μ−i )|[μi − νi ](da)

+ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )|Ji (ai , μ−i ) − Ji (ai , ν−i )|νi (da)

+ sup
‖ f ‖L≤1
f (a0)=0

∫

A
f (ai )|Ji (μi , μ−i )|[νi − μi ](da)

+ sup
‖ f ‖L≤1
f (a0)=0

∫

A
f (ai )|Ji (νi , ν−i ) − J (μi , μ−i )|νi (da)

≤ ‖Ui‖‖μi − νi‖kr + (n − 1)‖Ui‖L‖μ − ν‖kr∞ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )νi (dai )
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+ ‖Ui‖‖μi − νi‖kr + n‖Ui‖L‖μ − ν‖kr∞ sup
‖ f ‖L≤1
f (a0)=0

∫

Ai

f (ai )νi (dai )

≤ 2H‖μ − ν‖kr∞ + (2n − 1)HL‖μ − ν‖kr∞Ci

= [2H + (2n − 1)CHL ]‖μ − ν‖∞,

where H := max
i∈I ‖Ui‖, HL := max

i∈I ‖Ui‖L , and C := max
i∈I Ci . �
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Eco-evolutionary Spatial Dynamics
of Nonlinear Social Dilemmas

Chaitanya S. Gokhale and Hye Jin Park

1 Introduction

Themost significant impact of evolutionary game theory has been in the field of social
evolution. When an individual’s action results in a conflict between the individual
and the group benefit, a social dilemma arises. Social dilemmas can be captured by
the two-player prisoners dilemma game [6] and its multiplayer version, the public
goods game [8, 17, 24]. The domain of public goods games ranges from behavioural
economists, cognitive scientists, psychologists, to biologists given the ubiquity of
multiplayer interactions in nature. Situations impossible in two-player games can
occur in multiplayer games, which can lead to drastically different evolutionary
outcomes [7, 14, 35, 39, 44, 52].

In public goods games, while cooperation raises the group benefit, cooperators
themselves get less benefit than defectors. The group benefit typically increases
linearly with the number of cooperators in the group. However, in the context of
helping behaviour, reference [10] discusses a case where each additional cooperator
in the group provides more benefit than the previous (superadditivity of benefit).
The approach has been further generalised using a particular nonlinear function
where the additional cooperators can provide not only more (synergy) but also less
(discounting) benefit than the previous cooperator [20]. The study [5] presents an
excellent review of the use and importance of nonlinear public goods game.

The nonlinear public goods game as proposed in [20] has been extended in [13]
to include population dynamics. In ecological public goods games, the total density
of cooperators and defectors changes, effectively changing the interaction group
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size. Changes in group size have been shown to result in a stable coexistence of
cooperators and defectors [19, 30, 38]. A spatial version of ecological public goods
games, where multiple populations of cooperators and defectors are present on a
lattice and connected by diffusion, can promote cooperation [53]. The spread of
cooperation, in such a case, is possible by a variety of pattern-forming processes.

They use of spatially extended system in different forms such as grouping, explicit
space and deme structures, and other ways of limiting interactions have been studied
for long [18, 33, 40, 45, 47, 55]. In particular, in [29], the authors provide conditions
for strategy selection in nonlinear games about population structure coefficients. The
study cited above by [53] while incorporating ecological dynamics focusses solely
on linear public goods games.

Previously we have combined a linear social dilemma with density-
dependent diffusion coefficients [12, 37]. Including a dynamic diffusion coeffi-
cient comes closer to analysing real movements seen across species from bacteria to
humans [16, 23, 27, 28, 32, 34, 43]. Incorporating aspects of ecological games as in
[19], spatial dynamics per [53] and nonlinear social dilemmas from [13] we develop
our previous approach in this study to nonlinear social dilemmas.

We begin by introducing nonlinearity in the payoff function of the social dilemma,
including population dynamics. Then we include simple diffusion dynamics and
analyse the resulting spatial patterns. For the parameter set comprisingof the diffusion
coefficients and themultiplication factor,we canobserve the extinction, heterogenous
or homogenous non-extinction patterns. Under certain simplifying assumptions, we
can also characterise the stability of the fixed point and discuss the dynamics of
the Hopf-bifurcation transition and the phase boundary between heterogenous- and
homogenous-patterned phases. Overall, our results suggest that the spatial patterns
while remaining in the same regions relative to each other in the parameter space,
synergy and discounting effects shift the boundaries including the phase boundary
between extinction and surviving phases. For synergy, the extinction region shrinks
as the effective benefit increases resulting in an increased possibility of cooperator
persistence. For discounting, however, the extinction region expands. Crucially, the
change in the extinction region is not symmetric for synergy and discounting. The
above asymmetry is due to the asymmetries in the nonlinear function that we employ
for calculating the benefit. The development will help contrast the results with the
work of [53] and relates our work to realistic public goods scenarios where the
contributions often have a nonlinear impact [9].

2 Model and Results

2.1 Nonlinear Public Goods Game

Complexity of evolutionary games increases as we move from two-player games
to multiplayer games [14]. A similar trend ensues as we move from linear public
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goods games to nonlinear payoff structures [5]. One of the ways of moving from
linear to nonlinear multiplayer games is given in [20]. To introduce this method in
our notational form, we will first derive the payoffs in a linear setting.

In the classical version of the public goods game (PGG), the cooperators invest
c to the common pool while the defectors contribute nothing. The value of the pool
increases by a certain multiplication factor r, 1 < r < N , where N is the group size.
The amplified returns are equally distributed to all the N players in the game. For
such a setting, the payoffs for cooperators and defectors are given by

PD(m) = rcm

N
,

PC(m) = rcm

N
− c, (1)

where m is the number of cooperators in the group. The nonlinearity in the payoffs
can be introduced by the parameter Ω as in [20],

PD(m) = rc

N
(1 + Ω + Ω2 + . . . + Ωm−1) = rc

N

1 − Ωm

1 − Ω
,

PC(m) = PD(m) − c = rc

N
Ω(1 + Ω + . . . + Ωm−2) + rc

N
− c. (2)

If Ω > 1 every additional cooperator contributes more than the previous, thus pro-
viding a synergistic effect. IfΩ < 1 then every additional cooperator contributes less
than the previous, thus saturating the benefits and providing a discounting effect. The
linear version of the PGG can be recovered by setting Ω = 1.

As in [19] besides the evolutionary dynamics (change in the frequency of coop-
erators over time), we are also interested in the ecological dynamics (change in
the population density over time). This system analysed in [19, 21] is briefly re-
introduced in our notation for later extension. We characterise the densities of coop-
erators and defectors in the population as u and v. Thus 0 ≤ u + v ≤ 1 and the empty
space is given by w = 1 − u − v. Low population density means that it is hard to
encounter other individuals and accordingly hard to interact with them. Hence, the
group size N , the maximum group size, in this case, is not always reachable. Instead,
S individuals form an interacting group. With fixed N the interacting group size S is
bounded, S ≤ N , and the probability p(S; N ) of interacting with S − 1 individuals
is depending on the total population density u + v = 1 − w. When we consider the
focal individual, the probability p(S; N ) of interactingwith S − 1 individuals among
a maximum group of size N − 1 individuals (excluding the focal individual),

p(S; N ) =
(
N − 1

S − 1

)
(1 − w)S−1wN−S. (3)

Then, the average payoffs for defectors and cooperators, fD and fC , are given as
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fD = ∑N
S=2 p(S; N )PD(S),

fC = ∑N
S=2 p(S; N )PC (S), (4)

where PD(S) and PC(S) are the expected payoffs for defectors and cooperators at
a given S. The sum for the group sizes S starts at two as for a social dilemma there
need to be at least two interacting individuals.

To derive the expected payoffs, we first need to assess the probability of having a
certain number of cooperatorsm in a group of size S − 1 which is given by pc(m; S),

pc(m; S) =
(
S − 1

m

) (
u

1 − w

)m (
v

1 − w

)S−1−m

. (5)

Thus, the payoffs in Eq. (2) are weighted with the probability of there being m
cooperators, giving us the expected payoffs,

PD(S) =
S−1∑
m=0

pc(m; S)PD(m),

PC(S) =
S−1∑
m=0

pc(m; S)PC (m + 1). (6)

The average payoffs fD and fC are thus given by

fD = r

N

1

1−w−u(1−Ω)

[
(u(Ω − 1) + 1)N −1

Ω − 1
− u(1 − wN )

1 − w

]
,

fC = fD − 1 − (r − 1)wN−1 + r

N

(1 − u(1 − Ω))N − wN

1 − w − u(1 − Ω)
, (7)

where the investment cost has been set to c = 1 without loss of generality. Again,
the linear version of the PGG can be recovered by setting Ω = 1,

fD = ru

1 − w

[
1 − (1 − wN )

N (1 − w)

]
,

fC = fD − 1 − (r − 1)wN−1 + r

N

1 − wN

1 − w
. (8)

2.2 Spatial Nonlinear Public Goods Games

For tracing the population dynamics, we are interested in the change in the densities
of cooperators and defectors over time. Both cooperators and defectors are assumed
to have a baseline birth rate of b and death rate of d. Growth is possible only when
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there is empty space available, i.e. w > 0. We track the densities of cooperators and
defectors by an extension of the replicator dynamics [19, 22, 48],

u̇ = u[w( fC + b) − d],
v̇ = v[w( fD + b) − d]. (9)

To include spatial dynamics in the above system, we assume that a population of
cooperators and defectors resides in a given patch. Game interactions only occur
within patches, and the individuals can move adjacent patches. The patches live in a
two-dimensional space connected in the form of a regular lattice. Taking a continuum
limit, we obtain the differential equations with constant diffusion coefficients for
cooperators Dc and defectors Dd ,

u̇ = Dc∇2u + u[w( fC + b) − d],
v̇ = Dd∇2v + v[w( fD + b) − d]. (10)

At the boundaries, there is no in- and out-flux. As in classical activator-inhibitor
systems, the different ratio of the diffusion coefficients D = Dd/Dc can generate
various patterns from coexistence, extinction as well as chaos [53].

Nonlinearity in PGG is implemented by Ω �= 1. Previous work shows that the
introduction of Ω is enriching the dynamics [13, 20]. Synergy (Ω > 1) enhances
cooperation while discounting (Ω < 1) suppresses it. Accordingly, synergy and dis-
counting with a multiplication factor r can map into the linear game with the higher
or lower multiplication factor r ′, respectively: r ′ > r for synergy and r ′ < r for
discounting. We call r ′ as the effective multiplication factor. As shown in Fig. 1,
for synergy effect (Ω = 1.1), we can find a chaotic coexistence of cooperators and
defectors. The same parameter for a linear case (Ω = 1.0) resulted in total extinction
of the population [53]. In the linear case, chaotic patterns were observed for r values
larger than that of extinction patterns. Thus, our observation implies the mechanism
of how synergy works by effectively increasing r value.

The change in the resulting patterns due to synergy or discounting is not limited to
extinction or chaos but is a general feature of the nonlinearity in payoffs. To illustrate
this change, we show how a stable pattern under linear PGG (Ω = 1) can change
the shape under discounting or synergy in Fig. 2. Such changes in the final structure
happen all over the parameter space. To confirm this tendency, we examine the spatial
patterns for various parameters and find five phases, same as in the linear PGG case
[53] but now with shifted phase boundaries (see Fig. 3). The effective multiplication
factor r ′ increases with an increasingΩ , and thus the location of the Hopf bifurcation
also shifts. As a result of shifting rHopf , extinction region is reduced in the parameter
space with synergy effect. We thus focus our attention on the Hopf-bifurcation point
rHopf .
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t = 0 t = 950 t = 1900

t = 2850 t = 3800 t = 4750

Fig. 1 Pattern formation on the two-dimensional square lattice. We observe the chaotic pattern
for Ω = 1.1 (synergy effect) where extinction comes out with Ω = 1 [53]. Mint green and Fuchsia
pink colours represent the cooperator and defector densities, respectively. For a full explanation of
the colour scheme, we refer to the appendix. Black indicates no individual on the site, whereas blue
appears when the ratio of cooperators and defectors is the same. For a system of size L , initially, a
disc with radius L/10 at the centre is occupied by cooperator and defector with densities 0.1. We
use multiplication factor r = 2.2 and diffusion coefficient ratio D = 2. Throughout the paper, for
simulations, we used the system size L = 283, dt = 0.1 and dx = 1.4 with the Crank–Nicolson
algorithm

Ω=0.9 Ω=1.0 Ω=1.1

Homogeneous 
coexistence

Diffusion induced 
instability

Diffusion induced 
coexistence

D=8 r =2.44

Fig. 2 Synergy and discounting effects on pattern formation. We get the different patterns
under discounting and synergy effects distinct from the linear PGG game at a given the same
parameter set. While diffusion-induced instability is observed in the linear PGG, the discounting
effect makes diffusion-induced coexistence pattern implying that the discounting effect makes the
Hopf-bifurcation point shift to the larger value. Under the synergy effect, on the contrary, we
obtain the opposite trend observing the homogenous coexistence pattern. In the linear PGG, the
homogenous patterns are observed in higher multiplication factor r , implying the shift of rHopf to
the smaller value under the synergy effect
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Fig. 3 Spatial patterns and corresponding phase diagram for Ω = 1.1. There are five phases
(framed using different colours), extinction (black), chaos (blue), diffusion-induced coexistence
(red), diffusion-induced instability (green) and homogeneous coexistence (orange). The Hopf-
bifurcation point rHopf � 2.2208 and the boundary between diffusion-induced instability and homo-
geneous coexistence are analytically calculated, while the other boundaries are from the simulation
results. All boundaries and rHopf shift to the left, indicating that the multiplication factor r with the
synergy maps into the higher multiplication factor r ′ in the linear game

2.2.1 Hopf Bifuraction in Nonlinear PGG

We find the Hopf-bifurcation point rHopf for various Ω values using Eq. (7).
The effective multiplication factor r ′ increases as Ω increases, and thus rHopf is
monotonically decreasing with Ω as in Fig. 4a. The tangential line at Ω = 1

Fig. 4 Hopf-bifurcation points in Ω and shift of the phase boundary. a The Hopf-bifurcation
point rHopf for variousΩ (solid line with points). Synergy (Ω > 1) decreases rHopf while discount-
ing (Ω < 1) increases rHopf . By decreasing rHopf , the surviving region is extended in the parameter
space. The solid line without points is a tangential line at Ω = 1. b The phase boundaries between
diffusion-induced instability and homogeneous coexistence phases are also examined for various
Ω . Since rHopf increases with a decreasing Ω , the boundaries also move to the right
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is drawn for comparing the effects of synergy and discounting. If we focus on
the differences between the tangent and rHopf line, synergy changes rHopf more
dramatically than discounting. Synergy and discounting effects originate from
1 + (1 ± �Ω) + (1 ± �Ω)2 + · · · + (1 ± �Ω)m−1 in Eq. (2), where �Ω > 0 and
plus and minus signs for synergy and discounting, respectively. Straightforwardly,
the difference between 1 and (1 + �Ω)k is larger than that of (1 − �Ω)k for k > 2.
Hence, the nonlinear PGG itself gives different �rHopf for the same �Ω .

2.2.2 Criterion for Diffusion-Induced Instability

Since Ω changes r ′ value, the phase boundary also moves. By using the linear
stability analysis, we find phase boundaries between diffusion-induced instability
and homogeneous coexistence phases in r -D space shown in Fig. 4b. To do that,
we introduce new notations, and two reaction–diffusion equations in Eq. (10) can be
written as

∂tu = D∇2u + R(u), (11)

with density vector u = (u, v)T and matrix D =
(
Dc 0
0 Dd

)
. Elements of the vector

R(u) =
(
g(u, v)
h(u, v)

)
indicate reaction terms for each densitywhich is the second terms

in Eq. (10). Without diffusion, the differential equations have homogeneous solution
u0 = (u0, v0)T where g(u0, v0) = h(u0, v0) = 0. We assume that the solution is a
fixed point, and examine its stability under diffusion.

If we consider small perturbation ũ from the homogeneous solution, u ∼= u0 + ũ,
we get the relation,

∂t ũ = D∇2ũ + Jũ, (12)

where J = (∂R/∂u)u0 ≡
(
gu gv
hu hv

)∣∣∣∣
u0

. Subscripts of the g and hmean partial deriva-

tive of that variable, e.g. gu means ∂g/∂u. Decomposing ũ = ∑
k ake

ikr based on
propagation wave number k gives us relation ȧk = Bak where B ≡ J − k2D. There-
fore, the stability of the homogeneous solution can be examined by the matrix B.
Note that Tr(B) < 0 is guaranteed because Tr(J) < 0. Hence, if the determinant of
B is smaller than zero [det(B) < 0], it means one of the eigenvalues of the matrix B
is positive. The homogeneous solution becomes unstable and Turing patterns appear.

The condition for det(B) < 0 is given by

(
gu
Dc

+ hv
Dd

)2

>
4 det(J)
DcDd

. (13)

It can be rewritten as following form:
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Fig. 5 Schematic figure for expected shift of phase boundaries. According to the change of
rHopf , over all phase boundaries may shift together at the same direction. As we have seen in
Fig. 4b, the phase boundaries with rHopf move to the right with discounting effect and move to
the left with synergy effect, respectively. Accordingly, the surviving region in the parameter space
expands with synergy effect while it shrinks with discounting effect

Dd

Dc
>

guhv − 2gvhu + 2
√−gvhu det(J)

g2u
. (14)

With our model parameters this inequality is equivalent to

D >
v

u

1

C2
u

[
CuDv − 2CvDu

(
1 − √

CvDuE
)]∣∣∣∣

u=u∗,v=v∗
, (15)

where u∗ and v∗ are values at the fixed point. The symbols indicate

(
Cu Cv

Du Dv

)
=

(
d − w2∂u fC d − w2∂v fC
d − w2∂u fD d − w2∂v fD

)
, (16)

E = Cv∂u fD − Cu∂v fD + d∂u fC − d∂v fC ,

with ∂x y = ∂y
∂x . If the above criterion is satisfied, the stable fixed point predicted

without diffusion becomes unstable with diffusion (Fig. 5).

3 Discussion

Linear public goods game is a useful approximation of the real nonlinearities in
social dilemmas from microbes to macro-life [15, 36, 49] with applications such
as in antibiotic resistance [25] as well as cancer [1]. However, taking nonlinearities
into account might show different resulting outcomes from naive expectations [13].
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Especially, nonlinearities in interactions have a profound effect in ecology when it
comes to fecundity and avoiding predation [56, 57]. In this manuscript, we have
extended the analysis of spatial public goods games beyond the traditional linear
public goods games.

The benefits, in our case, accumulate in a nonlinear fashion in the number of
cooperators in the group. Each cooperator can provide a larger benefit than the last
one as the number of cooperators increases (resulting in a synergy), or each cooperator
provides a smaller benefit than the previous one (thus leading to discounting) [20].
Such an extension to public goods game was proposed very early on by [10]. Termed
as superadditivity in benefits, extending from this particular model framework, we
can visualise nonlinearities in costs as well, a concept not yet dealt with. Again, such
economies of scale [9] can be justified in both bacterial and human interactions as
proxies for quorum sensing (or quenching) or accruing of wealth (or austerity) [3,
4, 40].

We show that including such nonlinearities in the benefit function affects the
effective rate of return from the public goods game, irrespective of the types of
diffusion dynamics. With spatial dynamics, synergy increases the effective rate of
return on the investment and expands the region in the parameter spacewhere survival
of the population is possible. This itself may make cooperation a favourable strategy.
Besides the trivial observation that synergy helps cooperators, we show that as we
move symmetrically away from the linear case towards more synergy or discounting,
the change in the eventual dynamics is not symmetric. It would be interesting to check
if the asymmetry holds for different designs of benefit functions.

We used the particular functional form of the benefit function, including nonlin-
earities in payoffs [20]. However, there are various ways of including nonlinearities
in the benefit function [4, 7, 40]. The model considered in [40] extends the results
of [20] to games between relatives. Furthermore, [40] has described the relation-
ships between different nonlinear social dilemma models with a variety of benefit
functions. Also these nonlinear social dilemmas have been analysed in a structured
population [29, 40, 41]. However, previous studies have focused on the approach
presented in [46], which provide a criterion for strategy selection rather than explic-
itly positioning the populations on a grid and including diffusion. When studying
games in structured populations, often a network structure is considered [2, 42]. The
role of network connectivity is determined to be critical for the eventual evolutionary
outcome [41, 50, 51] and some structures can result in hindering the evolution of
cooperation as well [26]. In contrast, our approach focuses more on the ecological
framework but not in network structures. We take into account not only the changes
in frequencies of cooperators and defectors but also the population dynamics, which
is usually missed in a network approach. While both approaches make evolutionary
games ecologically explicit, the models are thoroughly different in their setup and
implementation.

The importance of including ecology in evolutionary games has been known for
long, but the complexity that it generates has prevented it from garnering widespread
attention [11]. Seasonal variations in the rate of return radically change the selection
pressures on cooperation and defection. Changes in the ecology may not feedback
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Fig. 6 The exact colour
scheme developed for
colouring the patterns. Each
patch in a pattern is coloured
using this palette by
choosing the corresponding
f and ρ values. For
brightness we used Eq. (17)
with a = 15

directly to the frequencies of cooperators and defectors but on to a variable in benefit–
cost functions. If the variable affects the frequency of cooperators and defectors (or
even the group size) in a nonlinear fashion, then the results are not trivial [13, 38].
Thus, even a simple connection between evolutionary and ecological dynamics may
already generate rich dynamics [31, 54], and the feedback between the two is often
already convoluted. Similar to [12, 37], it is possible to include feedback between the
populationdynamics anddiffusionhere, but togetherwith a nonlinear social dilemma,
we envision that the formal analysis and the computational implementation will be
a considerable challenge.
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Appendix

Colour Coding

Similar to the colour coding used in [37] we use mint green (colour code: #A7FF70)
and Fuchsia pink (colour code: #FF8AF3) colours for denoting the cooperator and
defector densities, respectively, for each type. The colour spectrum and saturation is
determined by the ratio of cooperators to defectors which results in the Maya blue
colour for equal densities of cooperators and defectors. For convenience, we use
HSB colour space which is a cylindrical coordinate system (r, θ, h) = (saturation,
hue, brightness). The radius of circle r indicates saturation or the colour whereas
θ helps us transform the RGB space to HSB. The total density of the population
ρ = u + v is represented by the brightness h of the colour. For better visualisation,
we formulate the brightness h as
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log aρ + 1

log a + 1
, (17)

where a control parameter a (> −1 and �= 0) (see Fig. 6). The complete colour
scheme so developed passes the standard tests for colour blindness.
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Applications to Economics



Heuristic Optimization for Multi-Depot
Vehicle Routing Problem in ATM
Network Model

Valeria Platonova, Elena Gubar, and Saku Kukkonen

1 Introduction

This work is inspired by a real-life optimization problem, which is generally based on
the distribution of goods, traffic planning, and management. The modern metropoli-
tan environment cannot be imagined without facilities such as ATM networks. One
of the most actual problems in the ATM network of the bank is cash flow opti-
mization and organization of uninterrupted work. The current paper considers the
problem in which a set of geographically dispersed ATMs with known requirements
must be serviced with a heterogenous fleet of money collector teams stationed in
the depots with the objective of minimizing the total distribution costs. Metropolitan
banks typically come across the problem of long distances between encashment cen-
ters, depots, and ATMs, particularly in the situations where several ATMs are to be
located in remote districts of the city. Generally speaking, client support and servic-
ing the ATM network can be costly: it takes employees time to supervise the network
and make decisions on managing the cash flow efficiently and it also involves high
operating costs (i.e., financial, transport, etc.). The servicing costs of the bank can
be reduced through the implementation of an appropriate encashment strategy and
optimizing encashment routes in ATM network. In the previous study [14], the com-
bined framework has been considered where the optimal encashment routes were
designed based on the statistical prediction of money demand in the ATM network.
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ATMs in suburbs

Depot

ATMs in 
the
city center

Fig. 1 An example of location of encashment centers and ATMs for one bank in St.Petersburg

However, the research takes into account the Capacitated Vehicle Routing Problem
(CVRP) with only one depot. The problem of remote locations inevitably leads to
the increase in servicing costs and thus requires a new approach to develop for new
depots. Figure1 illustrates an example of encashment centers and ATMs location
in St.Petersburg and the neighboring districts. The picture enables to consider the
necessity of establishing new depots and optimization of encashment routes.

The foregoing discussion stipulates the necessity of considering the complex
problem of encashment process in the bank with many banking branches and ATM
network dispersed across a large area as a composition of several modified Capaci-
tated Vehicle Routing Problems (CVRP). This model is a widely used extension of
the Vehicle Routing Problem (VRP), which have been one of the key models in the
optimization studies, since it was proposed byDantzig in [11]. Recently, the VRP has
been one of the most studied problems in the combinatorial optimization of cargo,
passenger traffic, and logistics, which can be explained by its great relevance for
real-life applications as well as its being one of the most challenging combinatorial
optimization tasks. In the classical VRP, CVRP routes are constructed starting from
one common vertex tomultiple geographically dispersed customers and service them
with the minimum total cost. Today minimization of operational costs without qual-
ity and safety lapses is considered to be one of the most important objectives. This
tendency has attracted considerable attention in the recent years, see in [10, 15, 21].
The main objective of the study is to adapt and consider the possibilities of applying
well-known transportation (logistics) models together with approved optimization
methods as a solution to the problems arising in banking sphere, particularly during
encashment process. This study can be considered, on the one hand, as a research
project that is aimed at examining the possibilities of applying various techniques to
solve problems related to complex transportation models, and, on the other hand, if
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the paper can be considered as a case study of an encashment process in one bank of
St. Petersburg, taking into account the real-life traffic conditions.

The logistics problem concerned marks out two possible approaches: the first one
is the optimization of the location of depot (encashment centers) over the feasible area
and evaluation of the ATMs availability and construction/opening a new depot, the
second, calculation of the optimal or nearly optimal routes from to existing depots.
Previous studies have presented a wide range of different optimization methods for
transportation models that lead to the necessity of selecting of relevant techniques
for the problems considered. We have opted for the Multi-Depot Location Routing
Problem (MDLRP) and Multi-Depot Vehicle Routing Problem (MDVRP). On the
one hand, these two models are widely applied nowadays, but on the other hand
they can be modified according to the real-life problem concerned. The MDVRP
presents a generalization of the vehicle routing problem, where vehicles depart from
and arrive to one ofmultiple depots. Furthermore, it is necessary tomarkwhich depot
the money collector teams visit, additionally to the definition of the vehicles routes.
The MDVRP simultaneously defines the service areas of each depot and establishes
the associated vehicle routes [28].

It is more cost efficient for a bank to have several encashment centers, which are
located in different districts of the city. Therefore, the problem of encashment of the
ATMs network can be described through a complex model which combines Multi-
Depot Location Routing Problem and Multi-Depot Vehicle Routing Problem. In the
current study, we use Cluster First-Route Second approach to find a solution to the
considered optimization tasks. Thus, in this paper we propose two-stage process to
solve theMDLRP. On the first stage, a feasible solution is obtained using the Clarke–
Wright algorithm [7]. The second stage includes defining the optimal locations of
encashment centers through the method of Super-ATMs [26] and the construction of
a heuristic solution using evolutionary computation (EC) [13].

The constructive heuristics havebeen considered as oneof themost convenient and
efficient methods to solve the VRP and its modifications. Evolutionary computation
is a stochastic approach to global optimization. Although evolutionary computation
does not guarantee finding the optimum, it can often find a good solution even to
hard problems. The problem discussed in this paper is basically a modification of
the traveling salesman problem which is suitable for evolutionary computation.

Solving the MDLRP by using the method of Super-ATMs enables clustering the
ATM network according to the distance between them and the nearest encashment
center. This process helps to reduce transportation servicing costs of ATMs in remote
districts of the city. However, the introduction of a new encashment center compli-
cates the solution as it generates new subproblems where each of them should satisfy
all constraints of the initial routing problem. The solution of the MDLRP provides a
depot location plan. As soon as a new distinct location plan is found, the set of routes
from the depots can be defined. At this stage, the MDVRP formulation can be used
for defining the optimal routes of money collector teams. The MDVRP belongs to
the class of NP-hard optimization problems, hence it is very difficult to receive the
optimal solution for a large amount of units [2, 3].
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Routing problems concern a vast range of real-life problems, which makes it a
widely discussed subject nowadays. Numerous research studies have been dedicated
to developing and improving new and existing algorithms for solving such problems
[8, 31, 34]. The key objective of improving the algorithm is to obtain better solutions,
as well as to increase the efficiency of the algorithm and avoid premature conver-
gence. For example, in [6], Carlsson considered two heuristic methods for solving
the MDVRP. The first method is based on the technique of linear programming with
global improvements. The second method is based on the asymptotic optimality. As
a solution to the problem, Nallusamy, in his turn, has proposed clustering at the first
stage [24]. This technique allows to divide the serviced territory into several areas
with a given number of vehicles, hence the original problem is also divided into sev-
eral subproblems such as the VRP, each of them has a feasible solution, which was
optimized using a genetic algorithm (GA) (one form of evolutionary computation).
The paper by Crevier [8] introduces the concept of an intermediate depot. This depot
is a station where vehicles refill their resources. The paper considers the combined
heuristic method based on tabu search algorithm and integrates programming algo-
rithms into solving subproblems. A project of networking and emerging optimization
has been dedicated to the study of the VRP [22]. The work of [30] represents a case
study of the VRP problem in a distribution company. The paper [28] concerns a two-
commodity flow formulation for the MDVRP considering a heterogeneous vehicle
fleet and maximum routing time.

In the current paper, the method of improving the encashment process in the
ATM network is proposed taking into account the real-life traffic conditions in
St.Petersburg and the neighboring districts.

In our study, we focus on the joint optimization problem, which includesMDLRP
and MDVRP models for defining the location of new depots and optimal circular
routes from the existing depots. The solution method ofMDVRP has been developed
using two different evolutionary computation approaches and is illustrated through
geo-location of ATMs network on themap of St.Petersburg and the suburbs including
the valid delivery costs.

The paper is structured as follows. Section 2 represents the formulation of the
MDLRP and its adaptation to the network of ATMs. Section 3 describes method of
solving the MDLRP. Section 4 includes the formulation of the MDVRP for ATM
network. Section 5 focuses on two specific approaches of solving the MDLRP and
the MDVRP. Section 6 provides a numerical example. Section 7 concludes the paper
and outlines the future research prospects.

2 Multi-Depot Location Routing Problem (MDLRP)

The paper considers a problem inwhich a set of geographically dispersedATMsmust
be served with a fleet of money collector teams stationed in the several encashment
centers of the bank. This problem is a modification of the original vehicle routing
problem (VRP), proposed byDantzig in 1959 [11], which has a simple interpretation:
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a set of service vehicles need to visit all customers in a geographical region with
the minimum cost. In our study, we use the extensions of this basic formulation,
where, firstly, it is necessary to define the location of depots with minimal costs.
Secondly, the ATMs which are located in different clusters are serviced by a fleet of
homogeneous vehicles with the minimal costs. To define the optimization problem
of the encashment process with minimum operational costs, the MDLRP and the
MDVRP have been integrated. According to [6, 16], vehicle capacity and traveling
costs are minimized subject to vehicle capacity constraints as well as the depot
opening-closing is defined by MDLRP.

This formulation helps to define the optimal location of the encashment centers to
cover all the city’s central districts and remote suburbs. After obtaining the optimal
location of depots, the routes for collector teams can be found using the MDVRP
[8]. In this case, received depots are fixed and used as an input data to the MDVRP.
Solutions ofMulti-Depots Vehicle Routing problem help to define feasible routes for
a set of homogeneous vehicles that make up a vehicle fleet. The routes are planned
according to theminimization of travel costs for each of the routes. Each route begins
and ends at the depot and contains a subset of stops for servicing ATMs. A solution
to this problem is feasible if the vehicle capacity on each route is not exceeded
and all stops are located within this route. The simplest formulation of the MDVRP
stipulates no lower and upper bounds for the length of each route. TheMDVRP shall
satisfy the next conditions:

• The objective is to minimize the costs of each of the routes;
• A solution to this problem is feasible if the vehicle capacity on each route is not
exceeded and all stops are located within this route;

• Each route starts and ends at the same depot;
• Each ATM is serviced once;
• A fleet of vehicles consists of homogeneous cars with the same capacity;
• Each depot should have a sufficient amount of money so that the encashment
process remains uninterrupted.

A network of ATM contains two subsets: I is a set of encashment centers (depots)
belonging to the bank and J is a set of ATMs, where i ∈ I is the variable which
defines the index of encashment centers of the bank and j ∈ J is the index of each
ATM. The money collector teams, which are located in depots, have a set of vehicles
denoted as K , where k ∈ K is a route index, Qk is the capacity of vehicle k with the
given route k. F is a variable that shows the delivery costs for each money collector
team. A subset of ATMs, in its turn, can be divided into two parts: firstly, there is a
group of ATMs, which has been already serviced and secondly, there is a group of
ATMs, that needs to be serviced. The set of unserviced ATMs will be denoted as S.

Lets denote N as the number of vehicles and L as the number of ATMs. We setM
as the number of all encashment centers (depots). Variable Z (Z ⊂ M ) corresponds
with the number of depots which already exist and operate. The introduction of a
new encashment center leads to additional costsOi, for each i,C = {cij} is a distance
matrix, the associated variable c∗ = {c∗

ij} is calculated based on the distance cij and
shows the costs for each route. As in [14], it is assumed that variable dj corresponds
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with the demand for cash cartridges for eachATM j, andVi is the amount of cartridges
which are kept in the i-th encashment center of the bank. The artificial variable yi is
binary that has been introduced to show whether an encashment center i is closed or
not;

yi =
{
1, if depot i is fictitious,
0, if depot i exists.

• xijk is a binary variable, which shows that vehicle k starts from depot i and then
moves to ATM j.

xijk =
{
1, if i immediately precedes j on route k, i ∈ I , j ∈ J , k ∈ K;
0, otherwise.

• xjik is binary variable, which shows that a vehicle k finishes in the encashment
center i:

xjik =
{
1, if j immediately precedes i on route k, i ∈ I , j ∈ J , k ∈ K;
0, otherwise.

• an artificial variable mik shows that each route k starts and finishes in the same
encashment center i.

mik : ∀i ∈ I , ∀k ∈ K, mik = xijk + xjik .

• xjlk is binary variable, which shows that vehicle k after servicing ATM j moves to
ATM l on the same route:

xjlk =
{
1, if j immediately precedes l on route k, j, l ∈ S, k ∈ K;
0, otherwise.

• zij is binary variable, which shows consolidation of ATM j and depot i:

zij =
{
1, if ATM j belongs to depot i;
0, otherwise.

Formally, a definition of a route based on the notations that were introduced before
(Fig. 2).

Definition 1 Route is a set of vertices xijk , xjlk , xjik , which show that each ATM
should be serviced only once and a team of money collectors starts and finishes in
the same encashment center of the bank [28]. Capacity of the vehicles and amount of
money in ATMs should satisfy to all restrictions for i-th department (see [8, 15, 32]).
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Fig. 2 An example of route
from a depot to ATM:
i − j1 − j2 − i

Bank i

ATM

ATM

1

2

x i j1k x j2 j1k

x i j2k

Based on these notations, the definition of the objective function and constraints
are:

min

( ∑
i∈I

∑
j∈J

∑
k∈K

cijxijk+ ∑
j,l∈J

∑
k∈K

cjlxjlk+ ∑
i∈I

∑
j∈J

∑
k∈K

cjixjik+

+F(
∑
i∈I

∑
j∈J

∑
k∈K

xijk+ ∑
j,l∈J

∑
k∈K

xjlk+ ∑
i∈I

∑
j∈J

∑
k∈K

xjik) + ∑
i∈I

Oiyi

)
;

(1)

together with constraints:

∑
k∈K

∑
i∈I

mik =
∑
i∈I

∑
k∈K

(xijk + xjik) = 2, j ∈ J ; (2)

∑
i∈I

∑
j∈J

xijk = 1, k ∈ K; (3)

∑
j∈J ,l∈S

xjlk ≤ 1, S ⊆ J , k ∈ K; (4)

∑
j∈J

dj

⎛
⎝∑

i∈I
xijk +

∑
j,l∈J

xjlk

⎞
⎠ ≤ Qk , k ∈ K; (5)

∑
i∈S

∑
j∈S

xijk ≤ |S| − 1,∀S ⊆ J, k ∈ K; (6)

∑
j,l∈J

xjlk −
∑
j,l∈J

xljk �= 0, k ∈ K; (7)

∑
j∈J

djzij ≤ Vi, i ∈ I; (8)

− zij +
∑
u∈I∪J

(xiuk + xujk) ≤ 1, i ∈ I, j ∈ J, k ∈ K; (9)
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xijk ∈ {0, 1} , i ∈ I , j ∈ J , k ∈ K
zij ∈ {0, 1} , i ∈ I , j ∈ J
yi ∈ {0, 1} , i ∈ I .

(10)

Expression (1) is the objective function which minimizes the total distance of
all given vehicles. Constraint (2) guarantees that the route starts and finishes in the
same encashment center. Constraints (3) and (4) show that to each ATM is assigned
to only one route; (5) is a capacity constraint for a given set of vehicles; (6) gives
the new sub-tour elimination constraint set; (7) represents that the route between
an ATM i and j is asymmetric; (8) is the capacity constraints for the given depots;
Constraint (9) demonstrates that each route should be served only once; Definitions
in (10) specify that each collector team can be assigned to a depot only if a route
from the depot to an ATM is available.

3 Solving Methods of the Multi-Depot Location Routing
Problem (MDLRP)

According to the previous discussions, in a large city, the optimal location of depots
decreases the servicing costs of encashment process of ATM network significantly.
At the first stage of our framework, the optimal place to establish new encashment
centers is defined or the subnetwork which is operated by the corresponding depot
should be reorganized. The aforementioned MDLRP considers several encashment
centers, where some centers already exist and some centers are virtual. The solution
of the MDLRP can be found according to the next iterative process.

1. Firstly, we form a cluster which contains an encashment center and neighbor-
ing ATMs through comparing the distance between them. As a result, several
subnetworks are received, each of them includes one depot and a set of ATMs.
For each cluster we can find optimal or heuristic optimal routes for encashment
teams. For example, clustering for two depots A and B follows the next rules:

• if D(j,A) < D(j,B), then j-th ATM belongs to depot A;
• if D(j,A) > D(j,B), then j-th ATM belongs to depot B;
• if D(j,A) = D(j,B), then j-th ATM belongs to depot A or B,

where D(j,A), D(j,B) are distances between ATM j and depot A and B, corre-
spondingly. If numbers of depots M ≥ 2, then clustering follows the same rule
[12]. Hence we divide a large problem into several simple subproblems accord-
ing to the number of depots. This procedure enables reducing the total number
of routes, which satisfy the capacity of bank’s encashment centers and mini-
mize the costs of servicing. After the clustering is completed, we focus on two
subproblems: optimization of encashment routes of depot A and B separately.
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Fig. 3 Feasible solution.
Here empty dots are depots
and black dots are ATMs

On the first stage, we use a method called Super-ATMs, which was proposed in
[26], to reduce a number of variables. The Super-ATMs algorithm contains the
following steps:

• It is supposed that there are several presumed places to open a new encashment
center. Then we find a feasible solution of the original system (1)–(10) by any
heuristic algorithm, for example, byClarke andWright [7], taking into account
all the possible locations of the encashment centers;

• exclude all encashment centers from the constructed routes;
• collect ATMs of each route into Super-ATM;
• construct new routes, using Super-ATMs and encashment centers;
• for each constructed route Super-ATM is divided into new sub-routes thus we
obtain a new solution.

We illustrate the stages of Super-ATMs algorithm in Figs. 3, 4, 5, 6 and 7.
2. On the second stage, the set feasible routes that were obtained at the stage 1

are used as an initial solution, where each ATM is serviced by a certain vehicle.
Hence, the number of such routes coincide to the number of ATMs. To construct
a feasible solution, for each of the subproblems, the Clarke–Wright method is
used.

Below the mathematical formulation of the MDLRP with the concept of Super-
ATMs is presented:

min

(∑
i∈I

Oiyi +
∑
i∈I

∑
h∈H

CihXih

)
(11)

∑
i∈I

Xih = 1, h ∈ H ; (12)

∑
h∈H

DhXih ≤ Viyi, i ∈ I; (13)
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Fig. 4 Excluding
encashment centers from
constructed routes

Fig. 5 Recombination of a
set of ATM of each route
into Super-ATMs. Stars are
Super-ATMs, empty dots are
depots

Fig. 6 Constructing of new
routes between Super-ATMs
and initial depots
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Fig. 7 Disconnection of
Super-ATMs and
constructing new sub-routes

Xih ∈ {0, 1}, i ∈ I , h ∈ H , (14)

yi ∈ {0, 1}, i ∈ I . (15)

Here variable Dh is the aggregated demand of ATMs, which corresponds to Super-
ATMs denoted as h, H is a set of Super-ATMs; the binary variable Xih represents
whether Super-ATM h is grouped with encashment center i;

Xih =
{
1, if encashment center i is grouped with Super-ATMs h, i ∈ I , h ∈ H ;
0, otherwise.

Additional encashment center is grouped with the neighboring Super-ATM
through comparing the distances between them. The distance from the encashment
center to some Super-ATMs is approximately equal to ĥ ( here ĥ is the average
sum of distances from this encashment center to each ATM which is included into
Super-ATMs). Value Oh is the additional costs generated by the distance ĥ.

In contrast to the original MDLRP in (1)–(10), in considered modification, the
number of constraints is significantly reduced since the constraints (5), (6), (7), and (9)
are not used. Whereas they do not impact on the solution of the problem, constraints
(2), (3), and (4) are replaced by (12), and (9) is replaced by (13). The replacement
guarantees that Super-ATMscanbe combinedonlywith the open encashment centers,
which have sufficient amount cash cartridges. After using the Super-ATMs method,
we received the optimal locations of encashment, thereafter the original problem is
transformed to the MDVRP.
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4 Multi-Depot Vehicle Routing Problem (MDVRP)

After obtaining the optimal location of depots, we construct the routes for money
collector teams in the second part of the initial framework. Let G = (V ,E) be an
undirected complete graph, where V is a vertex set and E is an edge set. The vertex
set V is partitioned into a subset of encashments centers I = 1, . . . ,m and a subset of
ATMs J = 1, . . . , n. EachATM j ∈ J has a nonnegative demand dj and a nonnegative
service time δj. A service time δi = 0, corresponds to each depot i ∈ I , shows that
not all depots are necessarily used in the MDVRP. A set of k identical vehicles,
each with capacity Q, is available in each depot i. Each edge (i, j) ∈ E is associated
with nonnegative traveling costs cij. The objective of the MDVRP is to define the
routes which satisfy the demand of the ATMs with the minimal servicing costs. The
MDVRP is subject to the following constraints [6, 28, 34]:

• Each route should start and finish at the same depot;
• Each ATM should be visited exactly once on one route;
• The total demand of each route should not exceed the vehicle capacity Q;
• The number of routes from each depot should not exceed the value of k.
• The total distance of each route should not exceed a given value D.

Mathematical formulation of the MDVRP follows the model from (1)–(10); how-
ever, we use a new objective function:

min

( ∑
i∈I

∑
j∈J

∑
k∈K

cijxijk+ ∑
j,l∈J

∑
k∈K

cjlxjlk+ ∑
i∈I

∑
j∈J

∑
k∈K

cjixjik+

+F(
∑
i∈I

∑
j∈J

∑
k∈K

xijk+ ∑
j,l∈J

∑
k∈K

xjlk+∑
i∈I

∑
j∈J

∑
k∈K

xjik)

)
.

(16)

5 Solution Methods for MDVRP

Evolutionary Algorithms (EAs) are population-based stochastic methods that are
inspired by Darwin’s Theory of Evolution [13]. EAs are most often applied for
optimization, since EAs have minimal demand for the problem in hand, and EAs
have shown their good performance in solving many hard problems. Different types
of EAs have been developed and Genetic Algorithms (GAs) are one of the historical
mainbranches ofEAs.GeneticAlgorithms are in all applicationdomains traditionally
use to solve different modification of VRP [4, 17]. The usage of EAs has become
increasingly popular in the last fewyears and performs good results in optimization of
VRP and its modification. In the previous studies [19, 23, 24, 32] various algorithms
were developed to find the optimal or good solutions, depending on the dimension of
the problem. Originally, GAs used binary numbers for coding variables. Later also
other values such as integers and real numbers have been used as variable values.
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In GA, a random population of individuals is first created. Then this population
undergoes changes and selection based on goodness of individuals that guides the
evolution. Two main genetic operators with a GA are crossover and mutation. In
crossover, two individuals are mixed to obtain two new individuals. In mutation, one
individual undergo a little change.

GAs as other EAs did not guarantee finding the optimal solution (that would be
quite impossible in general case), but they are often able to find good solutions.
A disadvantage of EAs is that they need lots of calculations compared to some
problem-specificmethods.On the other hand, EAs are easy to parallelize thus parallel
computation can be applied for calculations.

5.1 Genetic Algorithm 1

In the current section, the Clarke andWrightmethod is used to find a feasible solution
for the problem and then the modified GA is applied to improve the received feasible
solution. However, despite the considered case study has low problem size, we turn
to genetic algorithm to improve a feasible solution. This approach allows scaling our
method to the problems with a larger dimension. Thus, we use GA as a basic method
of solving the MDVRP for each encashment center. GA is a heuristic method, which
provides more effective solutions than some other classical optimization methods,
such as branch and bound, or the simulated annealing. The algorithm is based on
the natural selection and adaptive mechanism. In Fig. 8, we show the main steps of
computation [13].

Usually, genetic algorithm includes several required stages: representation of the
problem, definition of the initial population, selection of parent individuals for future
evaluation, applying of crossover operator, mutation procedure and finally the sur-
vival selection of the best offsprings (Figs. 9 and 10).

Definition 2 Chromosome (sometimes it is called a genome) is a set of parameters
which defines the proposed solution to the problem that the GA1 is trying to solve.
The chromosome is often represented as a simple string.

Definition 3 Gene is a part of chromosome. A gene contains a part of solution such
as each variable xijk shows if ATM j is included in a route of vehicle k or not.

Definition 4 Crossover operator is a genetic operator that combines two chromo-
somes (parents) to produce a new chromosome (children) with crossover with some
probability

In the current chapter, we use a modified single-point crossover which satisfies
following conditions [5]:

• Randomly choose two chromosomes, which describe routes starting from any
depot;
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Fig. 8 Sheme of evolutionary algorithm

Fig. 9 An example of chromosome. Route A − 1 − 2 − A represented as a chromosome, where
variables of genes are xA11 = 1; x121 = 1; x2A1 = 1

Fig. 10 An example of chromosome. Route A − 1 − A represented as a chromosome, where gene-
variables are xA11 = 1; x121 = 1

• A single-point, called a breaking point, is randomly defined in each chromosome;
• Each chromosome is divided into two parts in the breaking point and two chro-
mosomes exchange their parts before or after breaking point. Hence as a result,
we receive two new chromosomes and each depot gets two new routes;

• Calculate new value of the objective function;

Definition 5 Mutation operator helps to avoid the appearance of a uniform popula-
tion. This operator randomly changes or alters one or more gene values at randomly
selected locations in a chromosome with a mutation probability.
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We randomly choose any variable (gen) xijk of chromosome and change its value
to any other possible value, i.e., if we have 0 then it becomes 1. As an example,
we consider a chromosome which consists of six genes: 101101. Mutation of this
chromosome can be 001101 or 100101, if only one gene is changed, if two genes
are altered then 011101 or 101110.

Definition 6 Selection operator guides evolution to right direction by promoting
better solutions.

5.2 Genetic Algorithm 2

Another GA approach for the MDVRP is to consider the whole routing problem as
one big traveling salesman problem with an exception that there are multiple depots
that can serve as starting and ending points for sub-routes. Since in traveling salesman
problem a solution is the permutation of different locations, permutation of locations
indexes is a natural way of coding when GA is applied for the MDVRP. Several
different ways of performing crossover and mutation with permutation coding have
been developed especially targeted for traveling salesman problem [4, 13, 17].

6 Numerical Simulations

In this section, the results of application of clustering method and two genetic algo-
rithms GA1 and GA2 are presented, based on the ATM subnetwork of a bank from
St.Petersburg. We consider a subset of ATMs, which contains 99 ATMs, located in
the city center and the remote suburbs. Special cartographic sources such as QGIS
2.2; Topplan, [33]; Google maps; ArcGis [1], the Google Distance Matrix API are
used to illustrate the results of simulations. We form a distance matrix 109 × 109,
which includes 10 depots and 99 ATMs. All distances correspond to real-life loca-
tions in the city’s central districts and remote suburbs of St.Petersburg. The results
of computation are presented in Appendix 2. The received routes of the money col-
lector teams are depicted on the city-map, base on the coordinates for 20 ATMs and
4 depots. The matrix of distances is presented in Appendix 1. To simplify the repre-
sentation of the computation results, we additionally suppose that the bank receives
a claim for servicing of 20 ATMs. This claim includes four encashment centers with
money collector teams. The notations and addresses of depots are

• open depot: A(Vereiskaya st. 16, A), B(Bukharestskaya st. 23);
• fictitious depots: C(Oleca Dundich St. 34), D(Marata st. 65).

The list of addresses of ATMs included in the claim for servicing is presented in
Appendix 1.
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Firstly, a solution for this subnetwork of 20 × 20 ATMs is found by using the
method of Super-ATMs. At the first stage, the optimal location of encashment cen-
ters is obtained, such as servicing costs are minimized and constraints (2)–(10) are
satisfied. As in [14], we assume that every ATM contains di = 4 cash cartridges and
capacity of every vehicle is Q = 16. Distances between depots and ATMs are pre-
sented in Fig. 14. In the example,we take into account the cost of technical and human
resources separately, because its allocation can affect on the bank’s decision about
the effectiveness of the used optimization approach. To calculate the servicing costs
we assess costs per 1 km of route and one working day of collector team. Following
the statistical data we use following values: cost of gasoline is about 30 rubles/liter,
every vehicle consumes 1 l of gasoline per 10 km, hence the costs of 1km is 3 rubles.
In dynamics, fuel costs impact on the total cost of the encashment process if a number
of serviced ATMs will increase. Each money collector team includes driver, security
guard, and a cashier. Average salaries for these positions in St. Petersburg are 20
000 rubles/month, 27 000 rubles/month, and 30 000 rubles/month, respectively. We
assume that the work schedule of collection team is 2/2 (two working day/two days
of rest) then the cost of one working day is about 5500 rubles. The solution of the
framework consists of two stages:

Stages:
(1) First, we combine encashment centers and its neighboring ATMs taking into
account the distance matrix:

• depot A: 15, 19, 20.
• depot B: 3, 4, 6, 7, 9, 10, 13, 14, 18.
• depot C: 1, 2, 8, 12, 16, 17.
• depot D: 5, 11.

Following the Clarke–Write algorithm, we find a feasible solution for 4 encash-
ment centers: A − 15 − 19 − 20 − A; B − 18 − 4 − 9 − 3 − B; B − 13 − 14 − 6 −
B; B − 7 − 10 − B; C − 17 − 16 − 8 − 2 − C; C − 1 − 12 − C; D − 5 − 11 − D.

(2) On the second stage, the Super-ATMs method is applied, according to it we
exclude encashment centers from the routes and merge ATMs into seven Super-
ATMs:

• a = 15–19–20; b = 18–4–9–3; c = 13–14–6;
• d = 7–10; e = 17–16–8–2; f = 1–12; j = 5–11.

Received solution shows that depotD is connected with two ATMs, but it is closer
to depot A than ATMs 5 and 11 should be connected with the depot A. Depot B is
connected with ATMs 18, 4, 9, 3, 13, 14, 6, 7, 10. Depot C is grouped with ATMs
17, 16, 8, 2, 1, 12. Thus for the considered subset of ATMs, the opening of depots B
and C is the optimal solution.

Hence, the solution of MDLRP problem is the following: A − 15 − 19 − 20 −
A − 5 − 11 − A; B − 18 − 4 − 9 − 3 − B − 13 − 14 − 6 − B − 7 − 10 − B; C −
17 − 16 − 8 − 2 − C − 1 − 12 − C.

Further, GA1 is applied to improve the feasible solution. Then the distances from
depots to Super-ATMs are defined as the average of the sum of distances from each
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Table 1 The average distance between depot and Super-ATMs

Variable Distance Variable Distance Variable Distance Variable Distance

XAa 5.76 XAb 11.675 XAc 8.3 XAd 6.7

XBa 11.1 XBb 10.05 XBc 5.73 XBd 4.55

XCa 15.9 XCb 11.225 XCc 8.93 XCd 9.2

XDa 6.2 XDb 11.775 XDc 8.5 XDd 6.5

Table 2 The average distance between depot and Super-ATMs

Variable Distance Variable Distance Variable Distance

XAe 5.76 XAf 11.675 XAj 8.3

XBe 11.1 XBf 10.05 XBj 5.73

XCe 15.9 XCf 11.225 XCj 8.93

XDe 6.2 XDf 11.775 XDj 8.5

Table 3 The shortest distances between depots and Super-ATMs

Super-ATMs Variable Minimum distance

a XAa 5.76

b XBb 10.05

c XBc 5.75

d XBd 4.55

e XCe 9.95

f XCf 4.4

j XDj 2.75

ATM to Super-ATMs. In Tables 1, 2 variablesXAa–XDj represent the average distance
between depot and Super-ATMs, for example, XAa is the distance between depot A
and Super-ATMs a.

Thus, the number of constraints is reduced, which simplifies solving of the prob-
lem and finding the shortest distances between a depot and Super-ATMs (Table3).

GA1 gives the next solution: A − 5 − 11 − 15 − 19 − A; B − 4 − 16 − 17 −
18 − B − 10 − 20 − 13 − 6 − B, B − 14 − 3 − 9 − 8 − B; C − 12 − 1 − 2 − 8 −
16 − 17 − C, where total length is 114.7 km and costs are 17 000 rubles. Figure
11 represents the routes of money collector teams from depots A on the map of the
streets.

Applying the second GA2, we obtain a slightly different solution: B − 4 − 6 −
17 − 18 − B − 10 − 20 − 13 − 6 − B − 14 − 3 − 8 − 9 − B, C − 12 − 1 − 2 −
8 − 16 − 17 − C, D − 5 − 11 − 15 − 19 − D, where total length of encashment
routes is 113.5 km and costs are 16 800 rubles. Figures11, 12, 13, 16, 17, 18, 19 and
20 show an influence of the transportation system of St.Petersburgs on the solutions.
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Fig. 11 Routes for depot A. A − 5 − 11 − 15 − 19 − A, route length is 28.4 km

Fig. 12 Routes for depot B. B − 4 − 16 − 17 − 18 − B, B − 10 − 20 − 13 − 6 − B, B − 14 −
3 − 9 − 8 − B, route length is 67.3 km

Fig. 13 Routes for depot C. C − 12 − 1 − 2 − 8 − 16 − 17 − C, route length is 19 km



Heuristic Optimization for Multi-Depot Vehicle … 221

Figure 11 represents routes from depot A. Figures 16, 17, 18 and 19 in Appendix 4
represent the routes which are similar for the solutions of GA1 and GA2. Figure 20
shows the routes correspond to the depot D.

7 Conclusion and Discussion

The paper represents the two-stage encashment problem solution consisting of adap-
tation of Multi-Depot Location Routing Problem for defining the optimal location
of the encashment at the first stage and application of Multi-Depot Vehicle Routing
Problem for the construction of routes though ATM subnetworks at the second stage.

We consider the modified routing model which incorporates the problem of opti-
mal location of the encashment centers (depots) and the multi-depot vehicle routing
problem. This approach allows receiving a solution of routing problem with large
number of serviced ATMs by clustering them into different depots. As it was pre-
sented in the previous research studies, the scope of the problem leads to necessity
of application of different numerical methods to receive a satisfactory solution. To
solve the entire problem, we have used the Super-ATMsmethod to define the location
of encashment centers and evolutionary computation to calculate the better routes in
serviced areas of each encashment center. Here we use and compare two different
genetic algorithms to receive routes for the network of 99 ATMs and 10 depots. The
results show an insignificant difference between the results of GA1 and GA2 with a
smaller problem instance, but with the bigger instance, GA2 has given a significantly
better solution. The distance received by GA1 exceeds the distance obtained by GA2
by 18% in case of a large network of ATMs.

The recent studies [9, 25, 29] concerning the solution of this routing optimization
problem have shown that game theoretical approach is also applicable in construction
of the optimal distribution of nodes between depots as well as optimal routes between
nodes in each cluster. Hereby, the problem can be solved using two-stage method:
the game between encashment centers for designing the own subnetworks of ATMs
and the routing game inside each cluster for defining the optimal traffic flow to
encashment teams. At the first stage, we can formulate a game of grand players
(depots) pursuing their aims. The aim of a player is to enlarge his/her subnetwork by
adding new ATMs for increasing profit from ATMs. This triggers the competition
for the items from the total set of ATMs between the encashment centers. As it was
mentioned previously, in such a big city as St.Petersburg the distance between ATMs
and encashment centers is large. Consequently, the conjunction of each new ATM
increases the maintenance costs of subnetwork, since costs of service depend on the
distances between nodes in the network.

Therefore, each encashment center shall find a compromised solution between
connecting themaximumnumber of ATMs into the network and keeping theminimal
servicing costs. Furthermore, the strategy of a player (an encashment center) can be
defined as a selection of ATMs which can be connected to the network with the
minimal servicing costs. In other words, we can consider an iteration process where
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on each step player estimates the distance between the existing subnetwork and the
nearest neighbors and makes a decision on a new unit.

Minimization of the total costs for maintenance of the subnetwork leads to the
restriction of themaximumnumber of nodes in each subnetwork. Thus, we can define
the payoff of the players as the function which depends on the difference between
profit and the costs of servicing of ATMs subnetwork.

At the second stage, we can formulate a routing game between money collector
teams inside each of the designed subnetworks. In this game, the set of players
consists of money collector teams. Each team starts and finishes its route in the
corresponding depot and plans a circle route with the minimal cost. We can define a
strategy set of each player as a set of routes between their initial and final locations.

As optimality principles in the game between depots and routing games inside
subnetworkswe can use theNash orWardrop equilibriums, respectively. Equilibrium
concept provides us with the possibility of taking into account individual preferences
of the encashment centers.Moreover, the routinggamecan imply the detailed analysis
of two additional subcases: in the first case the routes are planned in accordance with
the principle of minimizing the route costs, while in the second, players take into
account the cost of all routes in the subnetwork which results in obtaining the state
of social optimum. According to this, further research studies can discuss social
and individual preferences of the grand players as well as estimation of different
strategies of the route planning of money collector teams.

Additionally, the game of competition between depots will also be discussed
from the cooperative point of view by considering the tendency of consolidation
between different branch offices of the banks. This new formulation of the problem
allows us to compare different approaches and their application to large dimensional
problem. As far as the considered complex optimization problem covers not only an
encashment process but also includes an ensemble of various logistic tasks, therefore
various techniques can be applied to solve the VRP and its different modifications
such as CVRP, MDLRP, and MDVRP [22, 28].

Another approach which can be used to solve the proposed complex optimization
problem of encashment is the dynamic programming (DP). Previous research studies
have offered the possibility of application of this approach to the VRP and the CVRP,
for example, in [18], the extension of theDP algorithmwas introduced,where authors
notice the difficulties in applying the methods to real-life problems. In [20], the
MDVRP as a deterministic dynamic programming with finite state and action space
has been considered. In the current framework, the DP algorithm can be used at
the second stage of the optimization process as a method of constructing the giant
tour inside the clusters of ATMs belonging to one depot. However, according to
[18], the DP algorithm does not run in practically acceptable computation times
for problem instances of realistic sizes. The application of the method is restricted
by the maximum number of states and the number of state expansions of a single
state. Despite this, the application of the DP algorithm to our problem provides the
results which can be the subject for further research devoted to the comparison of
the computational complexity of the methods discussed.
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Appendix 1

A list of ATMs included in the claim of servicing: Vitebskiy av., 53/4; Zvezdnaya
st., 6; Leninskiy av., 129; Novatorov blvd., 11/2; Nevskiy av, 49; Gagarina av., 27;
Kosmonavtov av., 28;Krasnoputilovskaya st., 121;Leninskiy av, 151;KoliTomchaka
st., 27; Dumskaya st., 4; Bukharestskaya st, 89; Basseynaya st., 17; Moskovskiy av.,
200;Novosmolenskaya emb., 1/3;Veteranov av., 43;Veteranov av., 89;LeniGolikova
st., 3; Izmaylovskiy av., 4; Moskovskiy av., 133 (Figs. 14, 15).

Appendix 2

In the current case study we apply both modification of genetic algorithms GA1 and
GA 2 respectively for the problem of 109 × 109, where we have 10 depots and 99
ATMs. By using GA1 we obtain

• A − 11 − 35 − 64 − A, A − 16 − 31 − 4 − A, length is 78.467 km;

Fig. 14 Matrix of distances C for 30 ATM and 4 encashment center
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Fig. 15 Matrix of distances C for 30 ATM and 4 encashment center

• B − 42 − 70 − 80 − B,B − 46 − 12 − 14 − 2 − B,B − 56 − 62 − 21 − 37 − B,
B − 60 − 18 − 36 − 71 − B, length is 86.149 km;

• C − 42 − 85 − 13 − 61 − C, C − 81 − 44 − C, length is 39.988 km;
• D − 22 − 24 − 47 − D, D − 39 − 38 − 6 − D, D − 75 − 72 − 17 − 10 − D,
D − 82 − 5 − 89 − 66 − D, length is 87.649 km;

• E − 8 − 15 − 25 − 73 − E, E − 83 − 84 − 74 − 79 − E, E − 86 − 59−87−E,
length is 65.516 km;

• F − 3 − 41 − 48 − F , F − 54 − 69 − 58 − 88 − F , length is 42.953 km;
• G − 7 − 77 − 20 − G, G − 63 − 26 − G, length is 39.801 km;
• H − 52 − 76 − 32 − 68 − H , length is 27.390 km;
• I − 27 − 57 − 55 − 65 − I , I − 49 − 40 − 19 − 9 − I , I − 51 − 23 − 45 −
34 − I , I − 78 − I , length is 112.126 km;

• J − 28 − 30 − 50 − 1 − J , J − 53 − 33 − 29 − 67 − J , length is 47.477 km.

Total distance is 627.516 km and costs are 56883 rubles.
By GA2 approach we receive the next solution:

• A − 72 − 1 − 38 − 7 − A, A − 19 − 56 − A; A − 77 − 20 − 84 − 29 − A;
• B − 59 − 10 − 40 − 4 − B
• C − 85 − 36 − 17 − 41 − C;
• G − 8 − 21 − 14 − 46 − G;
• E − 74 − 26 − 71 − 35 − E;
• D − 18 − 30 − D; D − 87 − 78 − 88 − 6 − D;
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• D − 58 − 89 − 49 − 13 − D;
• D − 44 − 76 − 5 − 50 − D, D − 23 − 63 − 82 − 73 − D;
• E − 42 − 34 − 65 − E;
• E − 9 − 53 − 61 − 54 − E; E − 64 − 69 − 37 − 51 − E,
• G − 60 − 63 − 57 − 75 − G;
• H − 43 − 45 − 67 − 33 − H ;
• H − 16 − H , H − 66 − 81 − 28 − 3 − H , H − 22 − 12 − 15 − 52 − H ;
• H − 27 − 90 − 31 − 68 − H ;
• H − 32 − 24 − H , H − 39 − 2 − 80 − 83 − H ;
• H − 48 − 25 − 47 − 11 − H .

Total distance is 452.119 km and costs are 39857 rubles.
From the computation we can see that the total distance on the routes for money

collector teams received by GA2 are shorter that total distance received by GA1 for
18%.

Appendix 3

The savings algorithm is a heuristic algorithm, and therefore it does not provide an
optimal solution to the problem with certainty. However it often gives a relatively
good solution. The basic savings concept depicts the cost savings obtained by joining
small routes into more large route. Consider the depot D and n demand points. Sup-
pose that initially the solution to the VRP consists of using n vehicles and dispatching
one vehicle to each one of the n demand points. The total tour length of this solution

is, 2
n∑

i=1
d(D, i). If now we use a single vehicle to serve two points, say i and j, on a

single trip, the total distance traveled is reduced by the amount

Sij = ci0 + c0j − cij.

Stage 1. Calculate the savings Sij = d(D, i) + d(D, j) − d(i, j) for every pair (i, j)
of demand points.

Stage 2. Rank the savings Sij and list them in descending order of magnitude.
This creates the “savings list.” Process the savings list beginning with the
topmost entry in the list (the largest Sij).

Stage 3. For the savings Sij under consideration, include link (i, j) in a route if no
route constraints will be violated through the inclusion of (i, j) in a route,
and if:
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a. Either, neither i nor j have already been assigned to a route, in which
case a new route is initiated including both i and j.

b. Or, exactly one of the two points (i or j) has already been included
in an existing route and that point is not interior to that route (a point
is interior to a route if it is not adjacent to the depot D in the order
of traversal of points), in which case the link (i, j) is added to that
same route.

c. Or, both i and j have already been included in two different existing
routes and neither point is interior to its route, in which case the two
routes are merged.

Stage 4. If the savings list Sij has not been exhausted, return to Stage 3, processing
the next entry in the list; otherwise, stop: the solution to the VRP consists
of the routes created during Stage 3. (Any points that have not been
assigned to a route during Stage 3 must each be served by a vehicle route
that begins at the depot D visits the unassigned point and returns to D.)

Appendix 4

See Figs. 16, 17, 18, 19, 20.

Fig. 16 Routes for depot B. B − 4 − 16 − 17 − 18 − B. Length of route is 31.4 km
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Fig. 17 Routes for depot B. B − 10 − 20 − 13 − 6 − B. Length of route is 16 km

Fig. 18 Routes for depot B. B − 14 − 3 − 9 − 8 − B. Length of route is 19.9 km
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Fig. 19 Routes for depot C. C − 12 − 1 − 7 − 2 − C. Length of route is 19 km

Fig. 20 Routes for depot D. D − 5 − 11 − 15 − 19 − D. Route length is 27.2 km
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Load Balancing Congestion Games
and Their Asymptotic Behavior

Eitan Altman, Corinne Touati, Nisha Mishra, and Hisao Kameda

1 Introduction

A central question in routing games has been to establish conditions for the unique-
ness of the equilibria, either in terms of the network topology or in terms of the costs.
A survey on these issues is given in [1].

The question of uniqueness of equilibria has been studied in two different frame-
works. The first, which we call F1, is the non-atomic routing introduced byWardrop
on 1952 in the context of road traffic in which each player (car) is infinitesimally
small; a single car has a negligible impact on the congestion. Each car wishes to
minimize its expected delay. Under arbitrary topology, such games are known to
have a convex potential and thus have a unique equilibrium [2]. The second frame-
work, denoted by F2, is splittable atomic games. There are finitely many players,
each controlling the route of a population of individuals. This type of games have
already been studied in the context of road traffic by Haurie and Marcotte [3] but
have become central in the telecom community tomodel routing decisions of Internet
Service Providers that can decide how to split the traffic of their subscribers among
various routes so as to minimize network congestion [4].
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In this paper, we study properties of equilibria in two other frameworks of routing
games which exhibit surprising behavior. The first, which we call F3, known as
congestion games [5], consists of atomic players with non-splittable traffic: each
player has to decide on the path to be followed by for its traffic and cannot split the
traffic among various paths. This is a non-splittable framework.We further introduce
a new semi-splittable framework, denoted by F4, in which each of several players
has an integer number of connections to route. It can choose different routes for
different connections but there is a constraint that the traffic of a connection cannot
be split. In the case where each player controls the route of a single connection and all
connections have the same size, this reduces to the congestion game of Rosenthal [5].

We consider in this paper routing games with additive costs (i.e., the cost of a path
equals to the sum of costs of the links over the path) and the cost of a link is assumed
to be convex increasing in the total flow in the link. The main goal of this paper is
to study a particular symmetric game of this type in a simple topology consisting
of three nodes and three links. We focus both on the uniqueness issue as well as on
other properties of the equilibria.

This game has already been studied within the two frameworks F1-F2 that we
mentioned above. In both frameworks it was shown [6] to have a unique equilibrium.
Our first finding is that in frameworksF3 andF4 there is amultitude of equilibria. The
price of stability is thus different from the price of anarchy and we compute both. We
show the uniqueness of the equilibrium in the limit as the number of players N grows
to infinity extending known results [3] from framework F2 to the new frameworks.
In framework F2 uniqueness is in fact achieved not only for the limiting games but
also for all N large enough. We show that this is not the case for F3-F4: for any
finite N there may be several equilibria. We show however in F3 that the whole set
of equilibria corresponding to a given N converge to the singleton corresponding to
the equilibrium in F1 as N → ∞. We finally show a surprising property of F4 that
exhibits non-symmetric equilibria in our symmetric network example while under
F1, F2, and F3 there are no asymmetric equilibria.

The structure of the paper is as follows. We first introduce the model and the
notations used in the study, we then move on to the properties of frameworks F3
(Sect. 3) and F4 (Sect. 4) and their relation to frameworks F1 and F2. We include in
the Appendix the proofs of the theorems and propositions of the paper.

2 Model and Notations

We shall use throughout the term atomic game to denote situations inwhich decisions
of a player have an impact on other players’ utility. It is non-atomicwhen players are
infinitesimally small and are viewed like a fluid of players, such that a single player
has a negligible impact on the utility of other players.

We consider a system of three nodes (A, B and C) with two incoming traffic
sources (respectively, from node A and B) and an exit node C . There are a total of N
connections originating from each one of the sources. Each connection can either be
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Fig. 1 Physical system

sent directly to node C or rerouted via the remaining node. The system is illustrated
in Fig. 1.

This model has been used to model load balancing issues in computer networks,
see [6] and references therein. Jobs arrive to two computing centers represented by
nodes A andB. A job can be processed locally at the nodewhere it arrives or it may be
forwarded to the other node incurring further communication delay. The costs of links
[AC] and [BC] represent the processing delays of jobs processed at nodes A and B,
respectively. Once processed, the jobs leave the system. A connection is a collection
of jobs with similar characteristics (e.g., belonging to the same application).

We introduce the following notations:

• A link between two nodes, say A and B, is denoted by [AB]. Our considered
system has three links [AB], [BC] and [AC].

• A route is simply referred by a sequence of nodes. Hence, the system has four
types of connections (routes): two originating from node A (route AC and ABC)
and two originating from node B (route BC and BAC).

Further, in the following, nAC , nBC , nABC , and nBAC will refer to the number of
connections routed via the different routes while n[AC], n[BC] and n[AB]will refer
to the number of connections on each subsequent link. By conservation law, we have

nAC + nABC = nBC + nBAC = N

and

⎧
⎨

⎩

n[AC] = nAC + nBAC ,

n[BC] = nABC + nBC ,

n[AB] = nBAC + nABC .

For each route r , we also define the fraction (among N ) of flow using it, i.e.,
fr = nr/N . The conservation law becomes f AC + f ABC = fBC + fBAC = 1.
Finally, the performance measure considered in this work is the cost (delay) of

connections experienced on their route. We consider a simple model in which the
cost is additive (i.e., the cost of a connection on a route is simply taken as the sum of
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delays experienced by the connection over the links that constitute this route). The
link costs are given by

⎧
⎨

⎩

C[AB] = a( fBAC + f ABC),

C[AC] = b( fBAC + f AC),

C[BC] = b( fBC + f ABC),

where a(.) and b(.) are some functions of the corresponding fractions of link flows.
The path costs are given by

CAB = C[AB], CABC = C[AB] + C[BC],
CBC = C[BC], CBAC = C[AB] + C[AC].

The cost for a user in frameworks F2-F4 is the average of path costs weighted by
the fraction that the player sends over each of the paths. For framework F3 a single
packet is sent by each player so the cost for the player is the cost for the path that it
takes.

We shall frequently assume that the costs on each link are linear with coefficient
α/N on link [AB] and coefficient β/N on link [AC] and [BC], i.e., for some positive
constants α and β we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C[AB] = α

N
( fBAC + f ABC),

C[AC] = β

N
( fBAC + f AC),

C[BC] = β

N
( fBC + f ABC).

We restrict our study to the (pure) Nash equilibria which we express in terms of
the corresponding flows marked by a star. By conservation law, the equilibria are
uniquely determined by the specification of f ∗

ABC and f ∗
BAC (or equivalently n∗

ABC
and n∗

BAC ).
The main contribution of the paper is the study of the above network within the

following two types of decision models. In the first (F3), the decision is taken at the
connection level (Sect. 3), i.e., each connection has its own decision-maker that seeks
to minimize the connection’s cost, and the connection cannot be split into different
routes. In the second (F4), (Sect. 4) each one of the two source nodes decides on the
routing of all the connections originating there. Each connection of a given source
node (either A or B) can be routed independently but a connection cannot be split
into different routes. We hence refer to F4 this semi-splittable framework. Note that
the two approaches (F3 and F4) coincide when there is only N = 1 connection at
each source, which we also detail later. We shall relate frameworks F3 and F4 to
the frameworks F1 and F2 obtained as limits as the number of connections grows to
infinity.



Load Balancing Congestion Games and Their Asymptotic Behavior 235

3 Atomic Non-splittable (F3 Framework) Case and Its
Non-atomic Limit (F1 Framework)

Weconsider here the casewhere each 2N players connection belongs to an individual
user acting selfishly.

We first show that for fixed parameters, the game may have several equilibria, all
of which are symmetric for any number of players. The number of distinct equilibria
can be made arbitrarily large by an appropriate choice of functions a and b.

We then show properties of the limiting game obtained as the number of players
increases to infinity.

3.1 Non-uniqueness of the Equilibrium

Theorem 1 Assume that a is non-negative and non-decreasing and that b is increas-
ing. Then any equilibrium is symmetric, i.e., f ∗

BAC = f ∗
ABC . Routing a fraction 2x

players (x from A and x from B) to indirect links is an equilibrium if and only if

a(2x) ≤ b(1 + 1/N ) − b(1) (1)

Proof Consider an equilibrium ( f ∗
ABC , f ∗

BAC ). We first show that the equilibrium is
symmetric. Assume on the contrary that f ∗

ABC > f ∗
BAC . Since the demands are the

same this implies that f ∗
BC > f ∗

AC and the total flow on link BC is strictly larger
than the flow on link AC . But then, any player that takes the route ABC (note that
by assumption there is at least one such player) would strictly decrease its cost if
it deviates to the direct path AC . This contradicts the assumption of equilibrium.
Hence f ∗

ABC = f ∗
BAC and f ∗

BC = f ∗
AC .

At equilibrium a player that takes the direct path cannot gain by deviating. Thus
a routing multistrategy is an equilibrium if and only if a player that takes the indirect
path cannot strictly decrease its cost by deviation. Equivalently, routing a fraction
x of players via the indirect link is an equilibrium if and only if b(1) + a(2x) ≤
b(1 + 1/N ), which implies the Theorem. �

We shall call a multipolicy that routes k connections to each of the indirect path
a “k-policy”.

Corollary 1 Assume that a(x) and b(x) are increasing in x. Then, (i) if for some k,
the k-policy is an equilibrium then for any j < k, the j-policy is also equilibrium.
(ii) If for some N, a k-policy is an equilibrium then it is also an equilibrium for
smaller values of N .

We calculate the number of equilibria for different cost functions. Let k be the
solution of Eq. (1) obtained with equality. Hence the number of equilibria is �k� + 1.

We have the following cases:
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Fig. 2 Variation of the
number of equilibria with
respect to β (for α = 1)

• When b(x) = βx and a(x) = αx , then Condition (1) reduces to

x ≤ β

2Nα
.

So the number of equilibria is � β

2α � + 1.
The plot of the number of equilibria with respect to β for α = 1 and N = 10 is
given in Fig. 2.
We have the following observations:

1. The number of equilibria does not depend on the number N of players.
2. The number of equilibria increases as the cost function β increases for constant

value of α.

• When the cost function on the direct link is linear, i.e., b(x) = βx and indirect link
is non-linear and is of the form a(x) = x� for � ≥ 0, then Condition (1) reduces
to

x ≤ 1

2

(
β

N

) 1
�

.

So the number of equilibria is

⌊
N
2

(
β

N

) 1
�

⌋

+ 1.

The plot of the number of equilibria with respect to � for β = 1 is shown in Fig. 3.
We have the following observations:

1. The number of equilibria depends on the number of players, N . It increases with
N for � > 1 and decreases in N for � < 1.

2. The number of equilibria increases in the power factor �.
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Fig. 3 Variation of the
number of equilibria with
respect to � (for β = 1)

Remark 1 Consider the special case that a = 0. The problem is the equivalent to
routing on parallel links. Now assume that b is decreasing. Then the only equilibria
are (i) send no flow through AC and (ii) send no flow through BC.

Corollary 2 Assume that the derivative a′(0) of a at zero and the derivative b′(1)
of b at 1 exist. Then for large enough N, the k-policy is an equilibrium if

2ka′(0) < b′(1)

If moreover, b is convex and a concave (not necessarily strictly), then the above holds
for every n. If the opposite inequality holds above then for all n large enough the k
policy is not an equilibrium.

Proof The first part follows from (1). The second part follows from the fact that the
slope ( f (x + y) − f (x))/y of a function increases in y if the function is convex and
decreases in y if it is concave. �

3.2 The Potential and Asymptotic Uniqueness

When the number of players N grows to infinity, the limiting game becomes a non-
atomic game with a potential [7] defined by

F∞( f ABC , fBAC ) =
∫ r1

0
a(s)ds +

∫ r2

0
b(s)ds +

∫ r3

0
b(s)ds,

where r1 = f ABC + fBAC , r2 = 1 − f ABC + fBAC and r3 = 1 + f ABC − fBAC . In
the special case of linear cost of the form a(x) = αx, b(x) = βx , the above potential
is equivalent to the following one (upto a constant)
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F∞( f ABC , fBAC) (2)

= β( f ABC − fBAC)2 + α

2
( f ABC + fBAC)2.

Hence we have the following:

Proposition 1 If a and b are strictly increasing then the non-atomic game (frame-
work F1) has a unique Nash equilibrium, which is f ∗

ABC = f ∗
BAC = 0.

Uniqueness of the equilibriumwas shown to hold in [8, 9] under different conditions.
More general topological settings are considered and more general definition of
players. Yet it is assumed there that the costs are continuously differentiable which
we do not assume here.

To show the uniqueness of the equilibrium in the limiting game, we make use
of the fact that the limiting game has a potential which is convex. Yet, not only the
limiting game has a potential, but also the original one, as we conclude from next
theorem, whose proof is a direct application of [5].

Theorem 2 For any finite number of players, the game (in framework F3) is a
potential game [10] with the potential function up to a constant:

F( f ABC , fBAC ) =
Nr1∑

i=0

a(i) +
Nr2∑

i=0

b(i) +
Nr3∑

i=0

b(i). (3)

For the case of linear costs this gives

F( f ABC , fBAC) = βN 2( f ABC − fBAC)2

+αN 2

2
( f ABC + fBAC) ( f ABC + fBAC + 1/N ) .

(4)

Note that unlike the framework F1 of non-atomic games, the fact that the game
has a potential which is convex over the action set does not imply uniqueness. The
reason for that is that in congestion games, the action space over which the potential
is minimized is not a convex set (due to the non-splittable nature) so that it may have
several local minima, each corresponding to another equilibrium, whereas a for a
convex function over the Euclidean space, there is a unique local minimum which is
also a global minimum of the function (and thus an equilibrium of the game).
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3.3 Efficiency

Proposition 1 implies that

Theorem 3 In the non-atomic setting, F1, the only Nash equilibrium is also the
social optimum (i.e., the point minimizing the sum of costs of all players) of the
system.

Proof The sum of costs of all players is

f ABCCABC + f ACCAC + fBACCBAC + fBCCBC

= ( f ABC + fBAC)a( f ABC + fBAC) + f ABCb( fBC + f ABC)

+ f ACb( f AC + fBAC) + fBACb( f AC + fBAC)

+ fBCb( f ABC + fBC).

(5)

The minimum is hence obtained for ( f ABC , fBAC ) = (0, 0). �

See [8, 9] for related results. Since the game possesses several equilibria, we
can expect the PoA (Price of Anarchy—the largest ratio between the sum of costs
at an equilibrium and the sum of costs at the social optimum) and PoS (Price of
Stability—the smallest corresponding ratio) to be different.

Let k∗ be the largest integer such that x∗ = k∗/N satisfies Eq. (1). Then the
equilibrium (x̂∗, x̂∗) with largest cost corresponds to this k.

Theorem 4 The price of stability of the game is 1 and the price of anarchy is

PoA = x∗a(2x∗)
b(1)

+ 1

with x∗ = f ∗
ABC = f ∗

BAC .

Proof According to Theorem 1wemay restrict to symmetric equilibria, i.e., n∗
ABC =

n∗
BAC , then f ∗

ABC = f ∗
BAC = x∗. So the sum of costs of all the players becomes

2x∗a(2x∗) + 2b(1).
The sum of costs at social optimum is 2b(1), i.e., at x∗ = 0.
The price of anarchy is equal to the largest ratio between the sum of costs at an

equilibrium to the sum of costs at social optimum. So PoA = 2x∗a(2x∗)+2b(1)
2b(1 . Hence

the result. �

Note: Substituting x∗ = k∗/N , the price of anarchy becomes,

PoA = k∗

Nb(1)
a

(
2k∗

N

)

+ 1.

We look into different cases of cost functions and calculate the price of anarchy
using the value of x and the theorem.

We have the following cases:
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Fig. 4 Variation of the price
of anarchy with respect to β

(for α = 1)

• When the cost function on both the direct and indirect link is linear and is of the
form b(x) = βx and a(x) = αx , then PoA ≤ β

2αN 2 + 1. The exact value of price
of anarchy can be obtained by substituting the exact value of k. So,

PoA = 2α

N 2β

⌊
β

2α

⌋2

+ 1.

The plot of the PoA with respect to varying β for a constant α = 1 is shown in
Fig. 4.
We have the following observations

1. As the number of player increases, the PoA decreases.
2. For large N , the price of anarchy may asymptotically reach 1.
3. The PoA increases as the cost function β increases.
4. If β > 2α, the PoA never becomes 1 for any value of N .

• When the cost function on the direct link is linear, i.e., b(x) = βx and the cost
of the indirect link is non-linear and is of the form a(x) = x� for l ≥ 0, then the
exact value of price of anarchy can be obtained by substituting the exact value of
k. So,

PoA = 2�

βN �+1

⌊
N

2

(
β

N

) 1
�

⌋�+1

+ 1.

The plot of the PoA with respect to varying � for a constant β = 1 is given in
Fig. 5.
We have the following observations from the graph:

1. There is no monotonicity in the graph with either respect to the number of
players or with the power factor l.

2. If β < 2�N 1−�, the PoA becomes 1.
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Fig. 5 Variation of the
number of equilibria with
respect to � (for β = 1)

3. For large �, the PoA again becomes 1.
4. For N = 1, 2, the PoA is 1 for all values of �.

We also make the following observations:
(i) In the splittable atomic games studied in [6] the PoAwas shown to be greater than
one for a sufficiently small number of players (smaller than some threshold) and was
1 for all large enough number of players (larger than the same threshold). Here for
any number of players, the PoS is 1 and the PoA is greater than 1.
(ii) The PoA decreases in N and tends to 1 as N tends to infinity, the case of splittable
games.
(iii) We have shown that the PoA is unbounded: for any real value K and any number
of players, one can choose the cost parameters a and b so that the PoA exceeds K .
This corresponds to what was observed in splittable games [8] and contrasts with the
non-atomic setting [11, 12].

4 Atomic Semi-splittable Case and Its Splittable Limit (F4
Framework)

We restrict in the rest of the paper to the linear cost. The game can be expressed
as a 2-player matrix game where each player (i.e., each source node A and B) has
N + 1 possible actions, for each of the N + 1 possible values of f ABC and fBAC ,
respectively.

The utility for player A is

UA( f ABC , fBAC) = f ACCAC + f ABCCABC

= b − b fABC + b fBAC

+(a − 2b) f ABC fBAC + (a + 2b) f 2ABC .

(6)
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Similarly, for player B:

UB( f ABC , fBAC) = fBCCBC + fBACCBAC

= b − b fBAC + b fABC
+(a − 2b) fBAC fABC + (a + 2b) f 2BAC .

(7)

Note that
∂UA

∂ f ABC
= −b + (a − 2b) fBAC + 2(a + 2b) f ABC

and
∂UB

∂ fBAC
= −b + (a − 2b) f ABC + 2(a + 2b) fBAC .

Hence
∂2UA

∂ f 2ABC
= 2(a + 2b) = ∂2UB

∂ f 2BAC

. Therefore, both uA : f ABC 
→ UA( f ABC ,

fBAC) and uB : fBAC 
→ UB( f ABC , fBAC) are (strictly) convex functions. This
means that for each action of one player, there would be a unique best response
to the second player if its action space was the interval (0, 1). Hence, for the limit
case (when N → ∞), the best response is unique. In contrast, for any finite value of
N , there are either 1 or 2 possible best responses which are the discrete optima of
functions uA : f ABC 
→ UA( f ABC , fBAC) and uB : fBAC 
→ UB( f ABC , fBAC ). We
will however show that in the finite case, there may be up to 2 × 2 = 4 Nash equi-
libria while in the limit case the equilibrium is always unique.

4.1 Efficiency

Note that the total cost of the players is

Σ( f ABC , fBAC) = UA( f ABC , fBAC ) +UB( f ABC , fBAC)

= 2b + 2(a − 2b) f ABC fBAC + (a + 2b)( f 2ABC + f 2BAC)

= 2b + a( f ABC + fBAC)2 + 2b( f ABC − fBAC)2

≥ 2b.

Further, note that Σ = 2(F∞ + b). Hence Σ is strictly convex. Also Σ(0, 0) =
2b. Therefore (0, 0) is the (unique) social optimum of the system. Yet, for sufficiently
large N (that is, as soon as we add enough flexibility in the players’ strategies), this
is not a Nash equilibrium, as stated in the following theorem:

Theorem 5 The point ( f ABC , fBAC) = (0, 0) is a Nash equilibrium if and only if
N ≤ (a/b) + 2.

Proof By symmetry and as uA : f ABC 
→ UA( f ABC , fBAC ) is convex, then (0, 0) is
a Nash equilibrium iff UA(0, 0) ≤ UA(1/N , 0) = b − b/N + (a + 2b)/N 2 which
leads to the conclusion. �
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Also, we can bound the total cost by

Σ( f ABC , fBAC ) =
= 2b + 2(a − 2b) f ABC fBAC + (a + 2b)( f 2ABC + f 2BAC)

≤ 2b + (a − 2b)( f 2ABC + f 2BAC) + (a + 2b)( f 2ABC + f 2BAC)

≤ 2b + 2a( f 2ABC + f 2BAC)

≤ 2b + 4a.

This bound is attained at Σ(1, 1) = 2b + 2(a − 2b) + 2(a + 2b) = 4a + 2b.
Yet, it is not obtained at the Nash equilibrium for sufficiently large values of N :

Theorem 6 (1, 1) is a Nash equilibrium if and only if N ≤ 2b + a

3a + b
.

Proof We have UA(1, 1) = b + 2a and

UA(1 − 1/N , 1) = 2a + b − 3a/N − b/N + 2b/N 2 + a/N 2.

Therefore UA(1 − 1/N , 1) ≥ UA(1, 1) ⇔ 2b + a ≥ (3a + b)N . The conclusion
follows by convexity. �

Therefore, for N ≥ max(
a

b
+ 2,

2b + a

3a + b
) the Nash equilibria are neither optimal

nor worse-case strategies of the game.

4.2 Case of N = 1

In case of N = 1 (one flow arrives at each source node and there are thus two
players) the two approach coincides: the atomic non-splittable case (F3) is also a
semi-splittable atomic game (F4). f ABC and fBAC take values in {{0}, {1}}. From
Eqs. 6 and 7, the matrix game can be written

(
(b, b) (2b, a + 2b)

(a + 2b, 2b) (2a + b, 2a + b)

)

(8)

and the potential of Eq. 4 becomes

(
0 a + b

a + b 3a

)

.

Then, assuming that either a or b is non-null, we get that (0, 0) is always a Nash
equilibrium and that (1, 1) is a Nash equilibrium if and only if 3a ≤ a + b, i.e.,
2a < b.

We next consider any integer N and identify another surprising feature of the
equilibrium.We show that depending on the sign ofa − 2b, non-symmetric equilibria
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arise in our symmetric game. In all frameworks other than the semi-splittable games
there are only symmetric equilibria in this game. We shall show however that in the
limit (as N grows to infinity), the limiting game has a single equilibrium.

4.3 Case a − 2b < 0

In this case, there may be multiple equilibria, as shown in the following example.

Example 1 Consider a = 1, b = 3, and N = 4, then the cost matrices are given
below, with the two Nash equilibria of the game represented in bold letters:

UA = 1

16

⎛

⎜
⎜
⎜
⎜
⎝

48 60 72 84 96
43 50 57 64 71
52 54 56 58 60
75 72 69 66 63
112 104 96 88 80

⎞

⎟
⎟
⎟
⎟
⎠

, and

UB = 1

16

⎛

⎜
⎜
⎜
⎜
⎝

48 43 52 75 112
60 50 54 72 104
72 57 56 69 96
84 64 58 66 88
96 71 60 63 80

⎞

⎟
⎟
⎟
⎟
⎠

.

Note that due to the shape ofUA andUB the costmatrices of the game are transpose
of each other. Therefore in the following, we shall only give matrix UA.

We have the following theorem:

Theorem 7 All Nash equilibria are symmetric, i.e.,

f ∗
ABC = f ∗

BAC .

The proof is given in Appendix 1.

4.4 Case a = 2b (with a > 0)

When a = 2b, we shall show that some non-symmetric equilibria exist.

Theorem 8 If a = 2b, there are exactly either 1 or 4 Nash equilibria. For any N,
let N = �N/8�.
• If Nmod8 = 4, there are 4 equilibria (n∗

ABC , n∗
BAC), which are (N , N ), (N +

1, N ), (N , N + 1) and (N + 1, N + 1).
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• Otherwise, there is a unique equilibrium, which is (N , N ) if Nmod8 < 4 or (N +
1, N + 1) if Nmod8 > 4.

Proof The Nash equilibria are the optimal points for both uA and uB . They are
therefore either interior or boundary points (i.e., either f ABC or fBAC are in 0, 1). We
detail the interior point cases in Appendix 1. The rest of the proof derives directly

from the definition of
∂UA

∂ f ABC
and

∂UB

∂ fBAC
. Indeed:

∂UA

∂ f ABC
= (a − 2b) fBAC + 2(2b + a) f ABC − b = 8b fABC − b

∂UB

∂ fBAC
= (a − 2b) f ABC + 2(a + 2b) fBAC − b = 8b fBAC − b.

Both are minimum for 1/8. Therefore, it is attained if N is a multiple of 8. Otherwise,
the best response of each player is either �N/8�/N if Nmod8 ≤ 3 or �N/8
/N
if Nmod8 ≥ 5. If Nmod8 = 4, then each player has 2 best responses which are
1

N

N − 4

8
and

1

N

N + 4

8
. Then, one can check that the boundary points follow the

law of Theorem 11 when N = �N/8� = 0. �

4.5 Case a − 2b > 0

Theorem 9 If a − 2b > 0, there are exactly either 1, 2, or 3 Nash equilibria.

Let α = a + 2b

3a + 2b
, β = 2a

3a + 2b
and γ = b

3a + 2b
.

Define further Ñ = �Nγ � and z(N ) = Nγ − Ñ . The equilibria are of the form

• Either (Ñ , Ñ ), (Ñ + 1, Ñ ), (Ñ , Ñ + 1)
if N is such that z(N ) = α (mode 3-A in Fig. 6).

• Or (Ñ + 1, Ñ + 1), (Ñ + 1, Ñ ), (Ñ , Ñ + 1) if N is such that z(N ) = β (mode
3-B).

• Or (Ñ , Ñ + 1), (Ñ + 1, Ñ )

if N is such that α < z(N ) < β (mode 2)
• Or (Ñ , Ñ )

if N is such that β < z(N ) < α + 1 (mode 1).

We illustrate the different modes in the following example.

Example 2 Suppose that a = 10 and b = 3 (we represent only the part of the matri-
ces corresponding to 1/N ≤ f ABC , fBAC ≤ 4/N ).

If N = 24, there are 3 Nash equilibria:
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Fig. 6 Different modes according to different values of N

1152 1200 1248 1296
1118 1172 1226 1280
1112 1172 1232 1292
1134 1200 1266 1332

If N = 26, there are 2 Nash equilibria:

1352 1404 1456 1508
1314 1372 1430 1488
1304 1368 1432 1496
1322 1392 1462 1532

If N = 27, there are 3 Nash equilibria:

1458 1512 1566 1620
1418 1478 1538 1598
1406 1472 1538 1604
1422 1494 1566 1638

If N = 28, there is a single Nash equilibrium:

1568 1624 1680 1736
1526 1588 1650 1712
1512 1580 1648 1716
1526 1600 1674 1748

4.6 Limit Case: Perfectly Splittable Sessions

We focus here in the limit case where N → +∞.

Theorem 10 There exists a unique Nash equilibrium and it is such that
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f ∗
BAC = f ∗

ABC = b

3a + 2b
.

Proof Note that
∂UA

∂ f ABC
(1) > 0 and

∂UB

∂ fBAC
(1) > 0. If f ABC = 0 then fBAC =

b

2a + 4b
which implies that −b + b(a − 2b)

2a + 4b
≥ 0, which further implies that −a −

6b > 0 which is impossible. Hence f ABC > 0. Similarly fBAC > 0 which concludes
the proof. �

Recall that the optimum sum (social optimum) is given by (0, 0) and that the
worse case is given by (1, 1). Hence, regardless of the values of a and b, at the limit
case, we observe that there is a unique Nash equilibrium, that is symmetric, and is
neither optimal (as opposed to F3), nor the worst case scenario. The price of anarchy
is then:

PoA = PoS = 2b + 2 f ∗2
ABCa

2b
= 1 + ab

(3a + 2b)2
.

5 Conclusions

We revisited in this paper a load balancing problem within a non-cooperative rout-
ing game framework. This model had already received much attention in the past
within some classical frameworks (the Wardrop equilibrium analysis and the atomic
splittable routing game framework).We studied this game under other frameworks—
the non-splittable atomic game (known as congestion game) as well as a the semi-
splittable framework. We have identified many surprising features of equilibria in
both frameworks. We showed that unlike the previously studied frameworks, there is
no uniqueness of equilibrium, and non-symmetric equilibria may appear (depending
on the parameters). For each of the frameworks, we identified the different equilibria
and provided some of their properties. We also provided an efficiency analysis in
terms of price of anarchy and price of stability. In the future we plan to investigate
more general cost structures and topologies.

Appendix 1

Proof of Theorem 7

Suppose that ( f ∗
ABC , f ∗

BAC ) is a Nash equilibrium with f ∗
ABC �= f ∗

BAC . Then, by
definition:

UA( f ∗
ABC , f ∗

BAC) ≤ UA( f ∗
BAC , f ∗

BAC )and
UB( f ∗

ABC , f ∗
BAC ) ≤ UB( f ∗

ABC , f ∗
ABC ),
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which gives, after some manipulations,

⎧
⎪⎪⎨

⎪⎪⎩

(a − 2b) f ∗
ABC f ∗

BAC ≤
2a f ∗2

BAC + b f ∗
ABC − b fBAC − (a + 2b) f ∗2

ABC
(a − 2b) f ∗

ABC f ∗
BAC ≤

2a f ∗2
ABC + b f ∗

BAC − b f ∗
ABC − (a + 2b) f ∗2

BAC .

Therefore 2(a − 2b) f ∗
ABC f ∗

BAC ≤ (a − 2b)( f ∗2
ABC + f ∗2

BAC) and hence 0 ≤ (a −
2b)( f ∗

ABC − f ∗
BAC)2 which is impossible.

Boundary Equilibria When a = 2b

Theorem 11 If a = 2b, there exists a single Nash equilibrium of the form (0, f ∗
BAC)

and ( f ∗
BAC , 0) with f ∗

BAC non-null. It is obtained for N = 4 and f ∗
BAC = 1/4. The

points (0, 0) are Nash equilibria if and only if N ≤ 4. Further, there are no equilib-
rium of the form ( f ABC , 1) or (1, fBAC ).

Proof Wefirst study the equilibria of the form (0, f ABC ). (0, γ ) is aNash equilibrium
iff

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

UA(0, γ ) ≤ UA

(
1

N
, γ

)

UB(0, γ ) ≤ UB

(

0, γ + 1

N

)

UB(0, γ ) ≤ UB

(

0, γ − 1

N

)
⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b ≤ 2b + a

N

b ≤ (a + 2b)(2γ + 1

N
)

b ≥ (a + 2b)(2γ − 1

N
)

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 ≤ 4

N

1 ≤ 4(2γ + 1

N
)

1 ≥ 4(2γ − 1/N )

⇔

{
N ≤ 4
N/8 − 1/2

N
≤ γ

≤ N/8 + 1/2

N
.

(9)

If N ≤ 3 then N/8 + 1/2 ≤ 7/8 < 1 which cannot be obtained by the player
otherwise than in 0. For N = 4, the second inequality becomes 0 ≤ γ ≤ 1

4 which
hence leads to the only non-null Nash equilibrium.

We next study the potential equilibria of the form ( f ABC , 1). Let (γ, 1) be a Nash
equilibrium. Then UB(γ, 1) ≤ UB(γ, 1 − 1/N ). Then

bγ + a + 2b ≤ b − b(1 − 1/N ) + bγ + (a + 2b)(1 − 1/N )2

⇒ a + 2b ≤ b/N + (a + 2b)(1 + 1/N 2 − 2/N )

⇒ 0 ≤ b + (a + 2b)(1/N − 2)
⇒ 2a + 3b ≤ (a + 2b)/N ⇒ N ≤ 1/4. �



Load Balancing Congestion Games and Their Asymptotic Behavior 249

Boundary Equilibria When a − 2b > 0

Theorem 12 (0, α) and (α, 0) are Nash equilibria iff:

b

a − 2b
− 1

N

a + 2b

a − 2b
≤ α ≤ b

2(a + 2b)
+ 1

2N
.

Further, there are no Nash equilibrium of the form (A, 1).

Proof We first focus on the Nash equilibria of the form (0, A). Since UA(., fBAC )

and UB( f ABC , .) are convex, (0, γ ) is a Nash equilibrium iff

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

UA(0, γ ) ≤ UA

(
1

N
, γ

)

UB(0, γ ) ≤ UB

(

0, γ + 1

N

)

UB(0, γ ) ≤ UB

(

0, γ − 1

N

)

⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b ≤ (a − 2b)γ + 2b + a

N

b ≤ (a + 2b)(2γ + 1

N
)

b ≥ (a + 2b)(2γ − 1
N )

⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ ≥ bN − 2b − a

N (a − 2b)

γ ≥ bN − a − 2b

2N (a + 2b)

γ ≤ bN + a + 2b

2N (a + 2b)

But
bN − 2b − a

N (a − 2b)
≥ bN − a − 2b

2N (a + 2b)
which concludes the proof. and hence

bN − a − 2b

2N (a + 2b)
≤ γ ≤ bN + a + 2b

2N (a + 2b)
.

We now study the potential equilibria of the form (A, 1). Let (A, 1) be a Nash
equilibrium. Then UB(A, 1) ≤ UB(A, 1 − 1/N ). Then

−b + (a − 2b)A + (a + 2b) ≤ −b(1 − 1/N )

+(a − 2b)A(1 − 1/N ) + (a + 2b)(1 − 1/N )2

⇒ 0 ≤ b − (a − 2b)A + (a + 2b)(−2 + 1/N )

⇒ (a − 2b)A ≤ −2a − 3b + (a + 2b)/N ⇒

⇒ 2a + 3b ≤ (a − 2b)A + 2a + 3b ≤ (a + 2b)/N

.

But 2a + 3b ≤ (a + 2b)/N ⇒ N ≤ a + 2b

2a + 3b
< 1. �
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Proof of Theorem 9

We first start by showing that there are at most 4 interior Nash equilibria and that
they are of the form: (A, A),(A + 1, A),(A, A + 1),(A + 1, A + 1).

Proof Let f ABC , fBAC be a Nash equilibrium in the interior (i.e., 0 < f ABC < 1
and 0 < fBAC < 1). Then f ABC and fBAC are the (discrete) minimizers of x 
→
UA(x, fBAC ) and x 
→ UB( f ABC , x), respectively. Further:

⎧
⎪⎨

⎪⎩

∂UA

∂ f ABC
= −b + (a − 2b) fBAC + 2(2b + a) f ABC

∂UB

∂ fBAC
= −b + (a − 2b) f ABC + 2(a + 2b) fBAC

The optimum values are therefore, respectively:

xA = b − θ fBAC

λ
and xB = b − θ f ABC

λ

with λ = 2(2b + a) and θ = a − 2b. Therefore:

{
xA − 1/(2N ) ≤ f ABC ≤ xA + 1/(2N ),

xB − 1/(2N ) ≤ fBAC ≤ xB + 1/(2N ).

Hence

b

λ
− θ

λ

(
b

λ
− θ

λ
f ABC + 1

2N

)

− 1

2N
≤ f ABC ≤ 1

2N

+b

λ
− θ

λ

(
b

λ
− θ

λ
f ABC − 1

2N

)

.

Then
b

λ + θ
− λ

2N (λ − θ)
≤ f ABC ≤ λ

2N (λ − θ)
+ b

λ + θ
.

Then
b

λ + θ
= b

2b + 3a
,

λ

2N (λ − θ)
= 4b + 2a

2N (6b + a)
and

λ

2N (λ − θ)
= 2(a + 2b)

2N (6b + a)
,

which gives

b

2b + 3a
− a + 2b

N (6b + a)
≤ f ABC ≤ 2b + a

N (6b + a)
+ b

2b + 3a
.

Similarly, we have

b

2b + 3a
− (2b + a)

N (6b + a)
≤ fBAC ≤ b

2b + 3a
+ 2b + a

N (6b + a)
.
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Note that
1

2
<

2b + a

6b + a
< 1. Therefore there are either 1 or 2 possible values, which

are identical for f ABC and fBAC . There are therefore 4 possible equilibria. �
Now, the potential equilibria are of the form (A, A), (A, A + 1), (A + 1, A), and

(A + 1, A + 1). By symmetry, note that if (A, A + 1) is a Nash equilibrium, then
(A + 1, A) also is. The following lemma reduces the number of combinations of
equilibria:

Lemma 1 If (A, A) is a Nash equilibrium then (A + 1, A + 1) is not a Nash equi-
librium.

Proof Suppose that (A, A) and (A + 1, A + 1) are two Nash equilibria. Then
UA(A, A) ≤ UA(A + 1, A) andUA(A + 1, A + 1) ≤ UA(A, A + 1), which implies

⎧
⎪⎪⎨

⎪⎪⎩

−bAN + (a − 2b)A2 + (2b + a)A2 ≤
−b(A + 1)N + (a − 2b)A(A + 1) + (2b + a)(A + 1)2

−b(A + 1)N + (a − 2b)(A + 1)2 + (2b + a)(A + 1)2 ≤
−bAN + (a − 2b)A(A + 1) + (2b + a)A2

⇒
{
bN ≤ (a − 2b)A + (2b + a)(2A + 1)
(a − 2b)(A + 1) + (2b + a)(2A + 1) ≤ bN

⇒ (a − 2b)(A + 1) ≤ bN − (2b + a)(2A + 1) ≤ (a − 2b)A

.
Hence (a − 2b)(A + 1) ≤ (a − 2b)A and therefore a − 2b ≤ 0 which is impos-

sible. �

Therefore the different possible combinations are mode 1, mode 2, mode 3-A,
and mode 3-B in Fig. 6).

We first start by the occurrence of mode 3-A:

Lemma 2 Suppose that a − 2b > 0. Suppose that (A, A) and (A + 1, A) are two
Nash equilibria. Then

A = bN − 2b − a

3a + 2b
.

Proof Suppose that (A, A) and (A + 1, A) are twoNash equilibria. Then necessarily
UA(A, A) = UA(A + 1, A). Hence

−bAN + (a − 2b)A2 + (2b + a)A2

= −b(A + 1)N + (a − 2b)A(A + 1) + (2b + a)(A + 1)2

i.e.,

bN = (a − 2b)A + (2b + a)(2A + 1) ⇒ bN − 2b − a = (3a + 2b)A
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which leads to the conclusion. �

Hence, the system is in mode 3-A iff bN − 2b − a is divisible by 3a + 2b or in
other words, if N is of the form [(3a + 2b)K + 2a]/b for some integer K .

We then move on to Mode 3-B:

Lemma 3 Suppose that a − 2b > 0. Suppose that (A + 1, A + 1) and (A + 1, A)

are two Nash equilibria. Then

A = bN − 2a

3a + 2b
.

Proof Suppose that (A + 1, A + 1) and (A, A + 1) are two Nash equilibria, then
U1(A + 1, A + 1) = U1(A, A + 1). This implies

−Nb(A + 1) + (a − 2b)(A + 1)2 + (2b + a)(A + 1)2 =
−NbA + (a − 2b)A(A + 1) + (2b + a)A2

⇒ (a − 2b)(A + 1) + (2b + a)(2A + 1) = Nb

⇒ (3a + 2b)A = Nb − 2a

which concludes the proof. �

Hence, the system is in mode 3-B iff bN − 2a is divisible by 3a + 2b or in other
words, if N is of the form [(3a + 2b)K + 2b + a]/b for some integer K .

Finally, for Mode 2:

Lemma 4 Suppose that a − 2b > 0. Suppose that (A, A + 1) and (A + 1, A) are
only two Nash equilibria. Then

(3a + 2b)A + 2b + a < bN < (3a + 2b)A + 2a.

Proof Suppose that (A, A + 1) and (A + 1, A) are two Nash equilibria, then:

UA(A, A + 1) ≤ UA(A + 1, A + 1)and
UA(A + 1, A) ≤ UA(A, A),

i.e., {
bN ≤ (3a + 2b)A + 2a
(3a + 2b)A + 2b + a ≤ bN

The conclusion comes from Lemmas 2 and 3, since neither (A, A) nor (A +
1, A + 1) are Nash equilibria. �

Finally the system is in mode 1 if it is not in any other modes. One can then check
that the boundary cases found in Theorem 12 correspond to the case where A = 0
which concludes the proof.
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Non-deceptive Counterfeiting
and Consumer Welfare: A Differential
Game Approach

Bertrand Crettez, Naila Hayek, and Georges Zaccour

1 Introduction

Grossman and Shapiro [14, 15] define counterfeiting as illegally copying genuine
goods with a brand name, whereas Cordell et al. [8] state that “Any unauthorized
manufacturing of goods whose special characteristics are protected as intellectual
property rights (trademarks, patents and copyrights) constitutes product counterfeit-
ing.”As clearly shown by the numbers to follow, the worldwide magnitude of this
illegal activity is simply astonishing. According to Levin [24], American businesses
and industries lose approximately $200 billion in revenues annually due to counter-
feits, and on a broader scale, counterfeit goods account for more than half a trillion
dollars each year.1 Research analysts estimate that the number of jobs lost world-
wide to counterfeit black markets is approximately 2.5 million with 750,000 of them
being located in the United States (Levin, ibid) and 300,000 in Europe (Eisend and

1See also A. Sowder, “The Harmful Effects of Counterfeit Goods”, Athens State University, http://
www.athens.edu/business-journal/spring-2013/asowder-couterfeit/.
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Schichert-Guler [13]). Even though they are already impressive, these figures proba-
bly do not tell the whole story. For instance, it may well be that by violating property
rights, counterfeiting discourages the owners from investing in improving the quality
of their products, which undoubtedly has a private and a social cost.2

It is natural to wonder how to efficiently combat and deter counterfeiting, and one
can distinguish between private and public efforts. Public enforcement of property
rights has often relied on the seizure of counterfeit goods, which is prescribed in the
commercial laws of many countries. For instance, more than 40 million counterfeit
products were seized at the European Union’s external border in 2012: their equiv-
alent value in genuine products is nearly e1 billion.3,4 In addition to confiscation,
authorities can find anyone producing or trading (in) fake goods.5 Designing fines
involves two decisions. The first pertains to determining of the fines’ values, and
the second relates to how the proceeds of the fines are used. As regards the first
issue, the penalty for counterfeiting is often set as a function of the price charged by
the intellectual property right (henceforth IPR) holder. To illustrate, in the U.S., the
Anti-counterfeiting Consumer Protection Act of 1996, S. 1136, provides civil fines
pegged to the value of genuine goods. The fines are often rebated to the producers
of the genuine goods. For instance, in June 2008, a French Court “ordered e-Bay
to pay $63 million in damages to units of the Paris-based luxury goods mammoth
LVMH, after agreeing that the site had facilitated the sale of counterfeit versions of
its high-end products, particularly Louis Vuitton luggage...”).6

Another important issue when it comes to deterring counterfeiting is whether
consumers of fake products should be fined as well (in addition to being exposed to
seizure). This depends onwhether consumers are victims of counterfeiting orwhether
know perfectly well that the products they are buying are imitations. One can argue
that punishing the purchase of counterfeit products would deter the illegal trade of
such goods. For example, in Italy, purchasing counterfeit products is considered a

2Staake et al. (2009) provides a comprehensive literature review and discusses the existing body of
research on the structures and mechanisms of counterfeit trade before 2010.
3See T. Bashir: http://brandandcommercial.com/articles/show/brand-building/214/counterfeiting-
the-challenge-to-brand-owners-and-manufacturers1.
4Interestingly, the law can even specify what to do with the confiscated products. In the US case,
the law gives the Customs Service four options regarding the uses of the seized goods at the border,
namely: reexportation of the goods, donation to charity, destruction, or turning them to the General
Services Administration for relabeling and sale (see Grossman and Shapiro, p. 72 [14]).
5There can be either monetary or non-monetary sanctions. There are other policies that prevent
counterfeiting. For instance, a tariff on copying devices may prevent copyright infringement when
the copying cost is relatively low and the tariff raises the effective copying cost. The Copyright
Board of Canada has the power to impose tariffs on copying devices (subject to the approval of the
Supreme Court of Canada).
6Pocketing, i.e., rebating fines to the producers of the genuine goods, affects their production
decisions. When fines imposed on counterfeiters are pegged to the price of the genuine items, a
luxury monopolist can find counterfeiting profitable (in comparison to the case where IPRs are
completely enforced) by raising its selling price (Yao [35]). This result is also obtained by Di Liddo
[12] in the case where the genuine firm can pocket fines not necessarily pegged to the price of its
product.

http://brandandcommercial.com/articles/show/brand-building/214/counterfeiting-the-challenge-to-brand-owners-and-manufacturers1
http://brandandcommercial.com/articles/show/brand-building/214/counterfeiting-the-challenge-to-brand-owners-and-manufacturers1
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crime. Buyers of counterfeit goods are given on-the-spot fines of up to 10,000 euros.
In France, the maximum fine for buying fake goods is 300,000 euros or three years
in jail.7 In other countries, like the US or the UK, authorities target those who trade
in fake goods, but refrain from criminalizing consumers who buy them. A possible
drawback of prosecuting consumers of fake products is reducing the incentive of
consumers to buy genuine products when they cannot distinguish between fake items
and the genuine product [36].

Private enforcement of property rights can essentially take two forms, namely,
policing and policies by their owners. Qian [28] notes that the luxury house LVMH
assigns approximately 60 full-time employees to anti-counterfeiting, working in col-
laboration with a wide network of outside investigators and a team of lawyers, and
that it spent more than 16 million dollars on investigations and legal fees in 2004
alone. In terms of policies, a number of anti-counterfeiting strategies have been
recommended by numerous researchers. For instance, Chaudhry and Zimmerman
[7] suggest aggressively cutting prices, providing financial incentives to distributors
so they will reject counterfeits, and educating consumers about the harmful effects
of fake goods. Shultz and Saporito [32] propose ten anti-counterfeiting strategies,
among them, advertising as a tool to differentiate real products from phony ones,
pricing to influence demand; and finally, involvement in coalitionswith organizations
that have similar intellectual property right (IPR) interests.

This paper looks at how the entry of a counterfeiter on the market affects the legal
firm’s pricing and advertising strategies and profitswhen there is no public nor private
enforcement of property rights. The rationale for focusing on price and advertising is
straightforward. First, it is probably the high margin, that is, the difference between
the price and the (comparatively very low) production cost that makes counterfeiting
financially attractive. Second, the high willingness-to-pay by consumers is driven
by the brand image or reputation, and this asset is built through advertising, and of
course, through other features such as design, quality, etc. Third, public enforcement
of property rights is often lax or imperfect and not all legal firms can afford private
enforcement policies. In such a setting, fining the consumption of fake products
would be especially relevant if counterfeiting were actually detrimental to both the
legal firm and the consumers.

To the best of our knowledge, excepting Buratto et al. [4], Crettez et al. [10],
and Biancardi et al. [3] there are no papers analyzing brand quality dynamics in the
presence of counterfeiting. To be sure, the impact of counterfeiting and piracy on
brand reputation (and quality) has already been analyzed—see, for instance, Banerjee
[2], Qian [28], Qian et al. [29], Zhang [37], and the review by Di Liddo [11]. But
in these contributions, the analysis is restricted to a two-period setup (or a static
setting). By contrast, the present paper, like Buratto et al. (ibid), Crettez et al. (ibid),
and Biancardi et al. (ibid) considers a continuous time framework, which allows us
to study how the genuine firm’s strategic decisions regarding pricing and advertising
change with the date of the counterfeiter’s arrival and the parameters describing the

7Cox and Collins [9], which focuses on music and movie piracies in Finland, derives a demand
function for pirated products that take into account the expected cost of punishment.
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dynamics of its brand reputation. Moreover, our framework allows us to study the
dynamics of brand reputation before as well as after the counterfeiter’s entry.8 We
will later highlight the differences between Buratto et al. and Crettez et al. papers
and ours. We shall answer the following research questions:

1. How does the counterfeiter’s entry affect the legal firm’s pricing and advertising
decisions?

2. Are there conditions under which the legal firm benefits from counterfeiting?
3. Does the consumer benefit from counterfeiting?

In a nutshell, our results are as follows: First, we obtain that counterfeiting influ-
ences pricing and advertising strategies before and after entry occurs. The legal firm
decreases its price and advertising investments in the counterfeiting scenarios. This
leads to a loss in a long-term brand equity, that is, counterfeiting has a long-lasting
effect on the legal firm evenwhen the counterfeiter stops. This result contradicts some
findings in the literature, according to which counterfeitingmay stimulate innovation
or the quality of the genuine good through product differentiation (e.g., Banerjee [2],
Qian [28], Qian et al. [29], Zhang et al. [37]). A common feature of these results
is that the legal firm is able to sustainably differentiate the quality of its product
from that of the counterfeiters. This, however, possibly overlooks the case where the
counterfeiters interact repeatedly with the legal firm. In such a case, it makes sense
for counterfeiters to react to the differentiation efforts of the legal firm by adapting
their own products. By construction, our analysis captures the repeated interactions
between the genuine firm and the counterfeiter and illustrates the relevance of a
differentiable game approach to counterfeiting.

Second, we show that while under no circumstances will counterfeiting be wel-
comed by a legal firm, there are indeed circumstances under which the consumer
benefits from this illegal trade (the decrease in the price of the genuine good com-
pensates for the decrease in the brand reputation of this good). This result can serve
as a rationale for not fining consumers of fake products.

The rest of the paper is organized as follows: In Sect. 2, we introduce the model
and present the two considered scenarios. In Sect 3, the optimal strategies and out-
comes are determined in the no-counterfeiting scenario, which is our benchmark. In
Sect. 4, we characterize the equilibrium strategies and payoffs in the counterfeiting
scenario; and in Sect. 5, we compare the results of the two scenarios. Section 6 briefly
concludes.

8 Our approach also differs from that of dynamic general equilibriummodels,which study innovation
in the case where intellectual property rights are poorly protected (see, e.g., Suzuki [34]). An
important difference between these models and the present paper is that we pay more attention to
the brand reputation and to the nature of the imperfect competition between the genuine firm and
the counterfeiter.
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2 Model

We consider a planning horizon [0, T ], with time t running continuously. The initial
date corresponds to the launch of a new product by an established legal manufacturer,
player l, and T to the end of the selling season. After T , the product loses its appeal
because of, e.g., a change of season for fashion apparel, or the arrival of a new version
of software. At an exogenously given intermediate date E ∈ (0, T ] a counterfeiter,
player c, enters the market and offers a fake product, which performs the same
functions as the legal product, e.g., typing a scientific paper in the case of software.
Denote by pl (t) the price of the manufacturer’s product at time t ∈ [0, T ] and by
pc (t) the price of the copied product at t ∈ [E, T ] .

Denote by R (t) the manufacturer’s brand reputation, to which we can also refer as
goodwill or brand equity. In the absence of counterfeiting, the demand for the legal
firm is given by

ql (t) = max
{
0, δ̃l

√
R (t) − β̃lpl (t)

}
, t ∈ [0, T ] ,

and in the scenario with counterfeiting the demand functions for the legal firm and
the counterfeiter are given by

ql1 (t) = max
{
0, δ̃l

√
R (t) − β̃lpl1 (t)

}
, t ∈ [0, E), (1)

ql2 (t) = max
{
0, δl

√
R (t) − βlpl2 (t) + γpc (t)

}
, t ∈ [E, T ] , (2)

qc (t) = max
{
0, δc

√
R (t) − βcpc (t) + γpl2 (t)

}
, t ∈ [E, T ] , (3)

where δ̃l, δl, δc and βj, j ∈ {l, c} are positive parameters and γ ≥ 0 with βj > γ,
that is, the direct-price effect is larger than the cross-price effect.9 The subscripts 1
and 2 are used to distinguish between the two periods, that is, before and after the
counterfeiter’s entry.

Remark 1 The fake product is non-deceptive, meaning that the buyer knows per-
fectly well that the product is not genuine. To illustrate, think of a consumer pur-
chasing an illegal copy of software on the Internet, or a tourist buying a Lancel bag
from a street seller in Paris.

We make the following comments on the above demand functions:

1. We show in Appendix 1 that these demand functions are obtained at each date by
maximizing the following consumer’s utility function:

U (ql, qc, y) = σl

√
Rql + σc

√
Rqc − κlq2

l

2
− κcq2

c

2
− ψqlqc + y,

9To study the interactions between firms in a dynamic setting it is most convenient to use linear
demand function (see, i.e., Cellini and Lambertini [6]).
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subject to the budget constraint given by

plql + pcqc + y = I ,

where: y is a composite good; I the consumer’s income; andσl,σc,ψ,κl andκc are
positive parameters. The derivation of demand functions from utility maximiza-
tion provides a micro-foundation for the specifications in (1)–(3).10 Assuming
that the set of consumers can be represented by a single consumer at each date
is probably the simplest setting that allows us to the study the welfare effects of
counterfeiting.11

2. The demands for the genuine product, with and without the presence of a fake
good, are structurally different, that is, δ̃l �= δl and β̃l �= βl , with δ̃l > δl and
β̃l < βl . Put differently, setting pc (t) = 0 in the duopoly market does not yield
the demand in the monopoly market.

3. The demand functions have the familiar affine shape,with, however, the additional
feature that the market potential is not a given constant but depends positively
on the brand reputation. The square root function is to account for marginal
decreasing returns in reputation.

4. As expected, each demand is decreasing in own price and increasing in competi-
tor’s price.

The manufacturer can increase the brand reputation by investing in advertising.
The evolution of the brand’s reputation is described by the following linear differen-
tial equation:

Ṙ (t) = ka (t) − σR (t) , R (0) = R0 > 0, (4)

where a (t) is the advertising effort of the legal producer at time t, k > 0 is an
efficiency parameter, and σ is the decay rate.12 Following a substantial literature in
both optimal control and differential games (see, e.g., the book by Jørgensen and

10 A similar approach can be founded in Lai and Chang [22].
11By contrast with the vertical product differentiation model used in several papers in the literature
(see inter alia Banerjee [1], Di Liddo [12], Zhang et al. [37]), in our approach the “representative
consumer”buys both the genuine and the fake product. It is possible, however, to give an alternative
derivation of the linear demand functions and the quadratic objective under which some consumers
do not buy any product, some consumers buy the two kinds of products and some other consumers
buy one kind of good only (see Martin [26]). A general discussion of demand functions can be
found in Huang et al. [20] (see especially Sect. 2.2). The fact that some consumers buy both genuine
goods and counterfeits, is documented, e.g., in Kapferer and Michaut [21] or Stöttinger and Penz
[33]. Thus, it seems acceptable to assume that the representative consumer buys both the genuine
good and the counterfeit.
12We do not take into account word-of-mouth communication effects (see Remark 2 below). For
instance, Givon et al. [17] studies on an innovation diffusion model where pirates play an important
role in converting potential users into users and even buyers of the software (they show that this
effect was at work in the diffusion on spreadsheets and word processors during the 1990s in the
United Kingdom). Peres et al. [27] review the literature on innovation diffusion that, in addition to
word-of-mouth communications, incorporates network externalities and social signals.
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Zaccour [23] and the survey by Huang et al. [19]), we suppose that the advertising
cost is convex increasing and given by the quadratic function

Cl (a) = ω

2
a2 (t) ,

where ω is a positive parameter. Further, we suppose that the marginal production
costs of both players are constant and we set them equal to zero. This is not a severe
assumption as adding costs will have only a quantitative impact on the results without
altering the qualitative insights.

The legal producer maximizes its stream of profit over the planning horizon. 13

Its optimization problem is defined as follows:

max
pl1(t), pl2(t), a1(t), a2(t)

�l =
[∫ E

0

(
pl1 (t)

(
δ̃l

√
R (t) − β̃lpl1 (t)

)
− ω

2
a2
1 (t)

)
dt +

∫ T

E

(
pl2 (t)

(
δl

√
R (t) − βlpl2 (t) + γpc (t)

)
− ω

2
a2
2 (t)

)
dt

]

(5)

+ S (R (T )) ,

subject to (4),

where S (R (T )) is the salvage value of the brand at T , which captures the potential
future payoffs that the manufacturer can derive from other products having the same
brand name. We suppose that the salvage value can be well approximated by a linear
function, that is, S (R (T )) = sR (T ). Clearly, this is a simplifying assumption and
there is no conceptual difficulty in adopting a non-linear salvage value. However,
retaining a non-linear function would come at the cost of complicating consider-
ably the computations, without adding any qualitative gain in terms of our research
questions.

The counterfeiter’s optimization problem is given by

max
pc(t)

�c =
∫ T

E
pc (t)

(
δc

√
R (t) − βcpc (t) + γpl2 (t)

)
dt, t ∈ [E, T ] . (6)

As the counterfeiter’s decision does not affect the dynamics, its optimization problem
is equivalent to solving the following static one:

max
pc(t)

πc = max
pc(t)

pc (t)
(
δc

√
R (t) − βcpc (t) + γpl2 (t)

)
, ∀t ∈ [E, T ] .

To address our research questions, we shall characterize and compare the solutions
in the following two scenarios:

13As the producer’s problem is defined on a short horizon, we do not include a discount factor in
the objective functional.
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No Counterfeiting. The product cannot be copied and the only demand is legal.
The manufacturer then solves the following optimal control problem:

max
pl(t), a(t)

�N
l = max

pl(t), a(t)

∫ T

0

(
pl (t)

(
δ̃l

√
R (t) − β̃lpl (t)

)
− ω

2
a2 (t)

)
dt + sR (T ) ,

(7)

Ṙ (t) = ka (t) − σR (t) , R (0) = R0,

where the superscript N refers to no counterfeiting. This is our benchmark sce-
nario, which corresponds either to a situation where the product life cycle is so
short that illegal producers do not have enough time to enter the market or to a
case where the institutions acting against counterfeiting are highly efficient.

Counterfeiting. Entry of the illegal producer occurs at time E ≤ T . The counter-
feiter and the manufacturer play a finite-horizon differential game during the time
interval [E, T ]. The manufacturer maximizes

�C
l2 =

∫ T

E

(
pl2 (t)

(
δl

√
R (t) − βlpl2 (t) + γpc (t)

)
− ω

2
a2
2 (t)

)
dt + sR (T ) ,

subject to (4) and R(E),

and the counterfeiter maximizes (6). A Nash equilibrium will be sought and the
equilibrium state and strategy will be superscripted with C (for counterfeiting). To
this Nash equilibrium we will associate a value function Wl to the manufacturer
problem over the horizon [E, T ]. Next, we solve the following maximization
problem over the horizon [0, E]:

�C
l1 =

∫ E

0

(
pl1 (t)

(
δ̃l

√
R (t) − β̃lpl1 (t)

)
− ω

2
a2
1 (t)

)
dt + Wl(E, R (E)).

By comparing the outcomes of the two scenarios, we will be able to measure
the impact of counterfeiting on the manufacturer’s profit and on the consumer. We
henceforth omit the time argument when no ambiguity may arise.

Remark 2 The closest papers to ours are Buratto et al. [4], Crettez et al. [10],
Biancardi et al. [3] and we wish to point out the following important differences
between these three contributions.With respect toBuratto et al. (ibid): (i) The demand
functions are different. In particular, in Buratto et al. [4] the demand functions are
structurally the same with and without counterfeiting. (ii) The demand functions
adopted here are micro-founded. (iii) The dynamics are different in two respects.
First, in Buratto et al., the illegal firm also advertises the product, which increases
the reputation of the legal brand. Here, the counterfeiter does not engage in such
activities, which is probably more in line with what is observed empirically. Sec-
ond, our dynamics include a decay rate to account for consumer forgetting. (iv) The
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strategies in the counterfeiting scenario are feedback, which is conceptually more
attractive than open-loop strategies. (v) And lastly, here, all results are analytical.
The main result obtained in Buratto et al. is that counterfeiting can increase the legal
firm’s profit, notably if the later can benefit from the advertising chosen by the coun-
terfeiter.We obtain a different conclusion.With respect to Crettez et al. (ibid): (i) The
demand function is slightly different. (ii) The present paper deals with counterfeiting
whereas Crettez et al. (ibid) also consider imitation more broadly conceived (e.g.,
knockoffs). (iii) Crettez et al. assume that the evolution of the incumbent’s brand rep-
utation also depends on the entrant’s sales during the duopoly period. They notably
show that the incumbent will price and advertise at a lower level before entry, inde-
pendently on whether the entrant will harm or not its brand reputation. Here, as was
mentioned above, we do not consider dilution or promotion effects. This is because
we are interested in the welfare effects of counterfeiting. For instance, it is clear that
in the presence of dilution or promotion effects, counterfeiting can be either welfare
decreasing or welfare increasing. To better understand the welfare effects of counter-
feiting, we concentrate on the case where counterfeiting has neutral effects on brand
reputation.14 With respect to Biancardi et al. (ibid): (i) The demand functions are
different (in Biancardi et al. the demand functions are not micro-funded and they are
assumed to be proportional to the brand reputation). (ii) In contrast with the present
paper, Biancardi et al. pay attention to the case where whenever the counterfeiters are
caught, they are forced to pay a fine proportional to the quantity sold which is related
to the legal firm. (iii) The authors carry out a numerical analysis of a feedback-Nash
equilibrium and show that under specific values for the parameters of the model, the
genuine producer can be better off in the presence of counterfeiting rather than in its
absence.

3 No Counterfeiting

In this section, we characterize the optimal solution in the absence of counterfeiting
and derive some properties.

Denote by Vl (t, R (t)) : [0, T ] × R+ → R+ the value function of the legal firm.15

The following proposition provides the optimal solution.

14According to Qian [28] “counterfeits have both advertising effects for a brand and substitution
effects for authentic products, additionally the effects linger for some years. The advertising effect
dominates the substitution effect for high-end authentic-product sales, and the substitution effect
the advertising effect for low-end product sales. Our model refers to the case where these two effects
are small. ”.
15 As a reminder, the value function gives the optimal payoff that can be obtained from (t, R (t)),
assuming that optimal policies are followed.
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Proposition 1 In the absence of counterfeiting, the optimal pricing and advertising
policies are given by

pN
l (t, R (t)) = pN

l (R (t)) = δ̃l

2β̃l

√
R (t), (8)

aN (t, R (t)) = aN (t) = k

4σβ̃lω
(δ̃2l + (4σβ̃l s − δ̃2l )e

σ(t−T )), (9)

and the brand’s reputation trajectory by

RN (t) = R0e−σt + k2

ω

4σβ̃l s − δ̃2l

8σ2β̃l

(
eσ(t−T ) − e−σ(T+t)

) + k2

ω

δ̃2l

4σ2β̃l

(
1 − e−σt

)
.

(10)

Proof See Appendix 2. �

The above proposition calls for the following remarks. First, it is easy to see that
the advertising level is strictly positive at each instant of time, which, along with
the assumption that R0 > 0, implies that RN (t) is strictly positive for all t ∈ [0, T ].
Consequently, the price is also strictly positive, and hence, the solution is indeed
interior. Second, from the proof in Appendix 2, we see that the optimal advertising
effort is dictated by the familiar rule of marginal cost (given by wa) equals marginal
revenue, which is measured by k ∂Vl

∂R , that is, the marginal efficiency of advertising
in raising reputation times the shadow price of the brand’s reputation, measured by
the derivative of the value function with respect to reputation. Third, the firm adopts
a pricing policy that follows reputation: the higher the reputation, the higher the
price. This is observed empirically and is due to the fact that the market potential is
increasing in the brand’s reputation. Finally, the strategies vary as follows with the
different parameter values:

δ̃l β̃l k σ ω s
pN

l + −
aN + − + − − +.

We note that the price only depends on the demand function parameters, namely, δ̃l

and β̃l , and is increasing in market size parameter δ̃l and decreasing in consumer’s
sensitivity to price β̃l . Advertising expenditures increase with δ̃l , with advertising
efficiency k, and with the marginal salvage value of reputation s, and they decrease
with advertising cost ω, with the decay rate σ and the consumer’s sensitivity to price
β̃l . These results are fairly intuitive.

Proposition 2 The optimal advertising policy is monotonically decreasing over time

if, and only if, s ≤ δ̃2l
4σβ̃l

.
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Proof It suffices to compute

ȧN (t) = keσ(t−T )

4β̃lω

(
−δ̃2l + 4σβ̃l s

)
,

to get the result. �

The intuition behind this result is as follows: if the marginal value of the brand
reputation at the end of the planning horizon is sufficiently low, then the firm should
start by advertising at a relatively high level and decrease it over time. Early invest-
ments in advertising allow the firm to benefit from a high reputation for a longer
period of time. In particular, if the salvage value is zero, then the condition in the
above proposition will always be satisfied.

The evolution of the price over time follows the evolution of reputation. Indeed,

ṗN
l (R (t)) = δ̃l Ṙ (t)

4β̃l
√

R (t)
.

It can be easily verified that

ṘN (t) ≥ 0 ⇔ s ≥ 8σ2β̃lωR0e−σt − k2δ̃2l
(
2e−σt − eσ(t−T ) − e−σ(T+t)

)

4σβ̃lk2
(
eσ(t−T ) + e−σ(T+t)

) .

The above inequality, which involves all the model’s parameters, states that, for
the reputation to be increasing over time, the marginal salvage value must be high
enough. Note that if the brand enjoys a large initial reputation value R0 or if the
advertising cost ω is high, then the condition becomes harder to satisfy. On the other
hand, the condition is easier to satisfy when the advertising efficiency k is high.

It is shown in Appendix 2 that the value function is linear and given by

Vl (t, R (t)) = z (t) R (t) + y (t) ,

where

z (t) = δ̃2l

4σβ̃l
+ 4σβ̃l s − δ̃2l

4σβ̃l
eσ(t−T ),

y (t) = k2

16σ3ωβ̃2
l

(
σ̃δ

4
l

2
(T − t) + δ̃2l (4σβ̃l s − δ̃2l )(1 − eσ(t−T )) + (4σβ̃l s − δ̃2l )2

4
(1 − e2σ(t−T ))

)
.

Proposition 3 The coefficients z (t) and y(t) are nonnegative for all t ∈ [0, T ].
Proof The coefficient z (t) is clearly strictly positive for all t ∈ [0, T ]. To show that
y (t) ≥ 0 for all t, it suffices to note that its derivative over time
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ẏ(t) = − k2

32σ2ωβ̃2
l

(
δ̃2l +

(
4σβ̃l s − δ̃2l

)
eσ(t−T )

)2

is strictly negative and that y(T ) = 0. �

The implications of the above proposition are as follows: (i) the value function is
strictly increasing in reputation; and (ii) even if the firm is new, that is, if its reputation
at initial instant of time is zero, it can still secure a nonnegative profit.

In the absence of counterfeiting, the legal firm’s payoff over the whole planning
horizon is given by

Vl (0, R0) =
(

δ̃2l

4σβ̃l
+ 4σβ̃l s − δ̃2l

4σβ̃l
e−σT

)
R0 + (11)

k2

16σ3ωβ̃2
l

(
σ̃δ

4
l

2
T + δ̃2l (4σβ̃l s − δ̃2l )(1 − e−σT ) + (4σβ̃l s − δ̃2l )2

4
(1 − e−2σT )

)
.

This value will be compared to the total profit that the legal firm obtains in the
presence of counterfeiting. Finally, the reputation of the legal firm by the terminal
planning date is

RN (T ) = R0e−σT + k2

ω

4σβ̃l s − δ̃2l

8σ2β̃l

(
1 − e−2σT )

) + k2

ω

δ̃2l

4σ2β̃l

(
1 − e−σT

)
.

4 Counterfeiting

The manufacturer’s optimization problem is in two stages: between 0 and E , it is a
dynamic optimization problem with the solution being (qualitatively) similar to the
problem without counterfeiting; between E and T , the two agents play a noncoop-
erative game and a Nash equilibrium is sought. To obtain a subgame-perfect Nash
equilibrium (SPNE) in the two-stage problem, we first solve the second stage with
RC(E) as the initial value of the brand’s reputation.

4.1 The Duopoly Equilibrium

In this second-stage game, the counterfeiter solves the following static optimization
problem:

max
pc(t)

pc (t)
(
δc

√
R (t) − βcpc (t) + γpl2 (t)

)
, ∀t ∈ [E, T ] ,
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while the legal firm solves

�C
l2 = max

pl2(t), a2(t)

∫ T

E

(
pl2 (t)

(
δl

√
R (t) − βlpl2 (t) + γpc (t)

)
− ω

2
a2
2 (t)

)
dt

+sR (T ) ,

subject to (4) and RC(E).

Denote by ϕi the strategy of player i = l, c. We assume that each player imple-
ments a feedback strategy that selects the control action according to the rule
ui(t) = ϕi(t, R(t)), where

ul(t) = (pl2 (t) , a2 (t)) ∈ R
2
+ and uc(t) = (pc (t)) ∈ R+.

This means that firm i = l, c observes the state (t, R(t)) of the system and then
chooses its action as prescribed by the decision rule ϕi.

Definition 1 A pair (ϕl,ϕc) of functions ϕi : [E, T ] × R+ −→ Rmi , i = l, c, is a
feedback-Nash equilibrium if

�C
l2(ϕl,ϕc) ≥ �C

l2(u1,ϕc), ∀ul ∈ R
2
+,

�c(ϕl,ϕc) ≥ �c(ϕl, uc), ∀uc ∈ R+.

To characterize a feedback-Nash equilibrium, denote by Wl (t, R (t)) : [E, T ] ×
R+ → R the legal firm’s value function. The following proposition gives the equi-
librium solution of the duopoly game.16

Proposition 4 Assuming that the counterfeiter enters the market at date E ≤ T , then
the feedback-Nash pricing and advertising strategies are given by

pC
l2 (t, R (t)) = pC

l2 (R (t)) = 2βcδl + δcγ

4βcβl − γ2

√
R (t), (12)

pC
c (t, R (t)) = pC

c (R (t)) = 2βlδc + δlγ

4βcβl − γ2

√
R (t), (13)

aC
2 (t, R (t)) = aC

2 (t) = k

ω

(
� + (s − �) e−σ(T−t)

)
, (14)

where

� = βl

σ

(
2βcδl + δcγ

4βcβl − γ2

)2

> 0.

16See Haurie et al. [18] for details on determining a feedback-Nash equilibrium in differential
games.
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The reputation trajectory is given by

RC
2 (t) = R (E) e−σ(t−E) + k2�

σω

(
1 − e−σ(t−E)

)
+ k2 (s − �)

2σω

(
1 − e−2σ(t−E)

)
e−σ(T−t).

(15)

Proof See Appendix 2 �

The results in the above proposition deserve the following comments. First, by the
same arguments provided after Proposition 1, it is easy to verify that the equilibrium
solution is indeed interior.

Second, the pricing policies are increasing in the legal firm’s reputation and are
invariant over time, that is, the time dependency is only through the reputation value.
Interestingly, the ratio of the two prices is constant, that is, independent of the state
R and of time. Indeed,

pC
l2 (R (t))

pC
c (R (t))

= 2βcδl + δcγ

2βlδc + δlγ
.

It is shown inAppendix 1 that the assumptionsmade on the utility function imply that
the above ratio is always larger than one, which means that the price of the genuine
product is always higher than the price of the fake one. Clearly, this is in line with
what is observed in the market.

Third, the advertising policy is again determined by equating the marginal cost
ωa to the marginal revenue given by k ∂Wl

∂R and is monotonically decreasing over time
if s ≤ �. Further, because the advertising policy is independent of R (t) and of the
counterfeiter’s entry date, it may appear at first glance that the legal firm’s advertising
policy is not affected by entry. This is clearly not the case since advertising depends
on �, which involves the counterfeiter’s parameters, i.e., βc and γ.

Finally,we show inAppendix2 that the value functionof the second-stageproblem
is linear and given by

Wl (t, R (t)) = x (t) R (t) + v (t) ,

where

x (t) = � + (s − �) e−σ(T−t), (16)

v (t) = k2

2ω

(
�2(T − t) + (s − �)2

2σ
(1 − e2σ(t−T )) + 2�(s − �)

σ
(1 − eσ(t−T ))

)
.

(17)
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4.2 The First-Stage Optimal Solution

Inserting the equilibrium strategies pC
c , pC

l and aC in the legal firm’s second-stage
profit ultimately yields a function that depends on the reputation value at counter-
feiter’s entry time E , which we denote by Wl (E, R (E)). This function is the salvage
value in the first-stage optimization problem of the legal firm, which is,

max
pl1(t), a1(t)

�C
l =

∫ E

0

(
pl1 (t)

(
δ̃l

√
R (t) − β̃lpl1 (t)

)
− ω

2
a2
1 (t)

)
dt + Wl(E, R (E))

subject to the reputation dynamics

Ṙ (t) = ka1 (t) − σR (t) , R (0) = R0.

Observe that this optimization problem is very similar to the one solved in the scenario
without counterfeiting. The main difference is the duration of the planning horizon
and of the transversality condition. Adapting the proof of Proposition 1, we get the
following optimal solution on [0, E]:
Proposition 5 The optimal pricing and advertising policies are given by

pCl1 (t, R1 (t)) = pCl1 (R1 (t)) = δ̃l

2β̃l

√
R1 (t),

aC
1 (t, R1 (t)) = aC

1 (t) = k

4σβ̃lω

(
δ̃2l

(
1 − eσ(t−E)

)
+ 4σβ̃l(� + (s − �) e−σ(T−E))eσ(t−E)

)
,

and the reputation stock by

RC
1 (t) = R0e−σt + k2

ω

4σβ̃lx(E) − δ̃2l

8σ2β̃l

(
eσ(t−E) − e−σ(E+t)

) + k2

ω

δ̃2l

4σ2β̃l

(
1 − e−σt

)
.

Proof See Appendix 2. �

The same commentsmade after Proposition 1 remain valid, qualitatively speaking,
and therefore there is no need to repeat them. Substituting for x(E) inRC

1 (t)we obtain

RC
1 (t) = R0e−σt + k2

ω

4σβ̃l
(
� + (s − �) e−σ(T−E)

) − δ̃2l

8σ2β̃l

(
eσ(t−E) − e−σ(E+t)

)
+ k2

ω

δ̃2l

4σ2β̃l

(
1 − e−σt) ,

(18)

and in particular, the following value for reputation at the counterfeiter’s entry date:

RC1 (E) = R0e−σE + k2

8σ2β̃lω

((
4σβ̃l

(
� + (s − �) e−σ(T−E)

)
− δ̃2l

) (
1 − e−2σE)

+ 2δ̃2l

(
1 − e−σE))

.

The reputation by the end of the planning horizon is
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RC
2 (T ) = RC

1 (E) e−σ(T−E) + k2�

σω

(
1 − e−σ(T−E)

) + k2 (s − �)

2σω

(
1 − e−2σ(T−E)

)
.

It is shown in Appendix 2 that the first-stage value function Zl (t, R (t)) is linear,
that is,

Zl (t, R (t)) = m (t) R (t) + n (t) ,

where the coefficients m (t) and n (t) are given by

m (t) = δ̃2l

4σβ̃l
+ 4σβ̃l x(E) − δ̃2l

4σβ̃l
eσ(t−E),

n (t) = − k2

4σω

⎛
⎝ δ̃4l

8σβ̃2
l

t + δ̃2l

(
4σβ̃l x(E) − δ̃2l

4σ2β̃2
l

e−σE
)

eσt +
(
4σβ̃l x(E) − δ̃2l

4σβ̃l
e−σE

)2

e2σt

⎞
⎠

+ k2

16σ3ωβ̃2
l

(
σδ̃4l
2

E + δ̃2l (4σβ̃l x(E) − δ̃2l ) + (4σβ̃l x(E) − δ̃2l )2

4

)
+ v (E) .

Note that the above coefficients involve x (E) and v (E), that is, the coefficients of
the second-stage value function evaluated at entry time E . As alluded to it earlier,
Wl (E, R (E)) plays the role of a salvage value in the first-stage optimization problem
of the legal firm. Substituting for x(E) and v(E), and next for m (t) and n (t) in
Zl (t, R (t)), we obtain the value function for the legal firm on [0, E], that is,

Zl (t, R (t)) = 1

4σβ̃l

(
δ̃2l + �eσ(t−E)

)
R (t) + k2δ̃4l (E − t)

32σ2ωβ̃2
l

+
k2�

(
1 − eσ(t−E)

)

64σ3ωβ̃2
l

(
4δ̃2l + �

(
1 + eσ(t−E)

))

+ k2

2ω

(
�2(T − E) + (s − �)2

2σ
(1 − e2σ(E−T )) + 2�(s − �)

σ
(1 − eσ(E−T ))

)
,

where

� = 4σβ̃l
(
� + (s − �) e−σ(T−E)

) − δ̃2l .

To obtain the total profit that the legal firm gets in the game with counterfeiting,
it suffices to evaluate the above value function at (0, R (0)), which yields

Zl (0, R (0)) = 1

4σβ̃l

(
δ̃2l + �e−σE)

)
R0 + k2 δ̃4l E

32σ2ωβ̃2l

+
k2�

(
1 − e−σE)

64σ3ωβ̃2l

(
4δ̃2l + �

(
1 + e−σE))

+ k2

2ω

(
�2(T − E) + (s − �)2

2σ
(1 − e2σ(E−T )) + 2�(s − �)

σ
(1 − eσ(E−T ))

)
. (19)
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Before comparing the results of the two scenarios, it is of particular interest to
look at is the impact of the counterfeiter’s entry date on the legal firm’s pricing and
advertising policies and on the reputation of the brand. As we shall see, this impact
hinges on the sign of the difference between the instantaneous (static) revenue of the
legal firm without counterfeiting (which we denote by rNl (t)) and its revenue with
counterfeiting (denoted rCl (t)) for any given reputation level R (t). Substituting for
pN

l (t) from (8) and for pC
l2 (t) and pC

c (t) from (12) and (13) in the relevant revenue
functions, we get

rNl (t) = pN
l (t)

(
δ̃l

√
R (t) − β̃lp

N
l (t)

)
= δ̃2l

4β̃l

R (t) ,

rCl (t) = βl (2βcδl + δcγ)2(
4βcβl − γ2

)2 R (t) .

We have the following result.

Lemma 1 For any given reputation level R (t), the revenue of the legal firm without
counterfeiting rNl (t)) is higher than its revenue with counterfeiting (denoted rCl (t)).
More formally, the following inequality holds true:

� = δ̃2l

4β̃l

− βl

(
2βcδl + δcγ

4βcβl − γ2

)2

> 0. (20)

Proof See Appendix 2. �

The proof of the above lemma relies on the general result that in imperfect compe-
tition, firms realize higher profits when they compete in quantities à la Cournot than
in prices à la Bertrand. This result also strongly depends on the micro-foundations
for the demand functions.

Noting that � can also be written as

� = 1

4β̃l

(
δ̃2l − 4σβ̃l�

)
,

the effect of the counterfeiter’s entry date on the legal firm’s pricing and advertising
policies and on the reputation of the brand is given in the following result.

Proposition 6 On [0, E], the legal firm’s advertising, pricing, and reputation are
increasing in the counterfeiter’s entry date E .
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Proof It suffices to compute the derivatives

∂aC
1 (t)

∂E = k

ω
�eσ(t−E),

∂RC
1 (t)

∂E = k2

2σω

(
eσ(t−E) − e−σ(E+t)

)
�,

∂pC
l1 (t)

∂E = δ̃l

4β̃l
√

R1 (t)

∂RC
1 (t)

∂E ,

and to use Lemma 1 to get the result. �

Intuitively, one would expect the price to be increasing in E , as the need to face
price competition is less urgent for the legal firm when the entry date is later. Fur-
ther, during the monopoly period [0, E], the legal firm is the only beneficiary from
advertising investment in reputation, and therefore, the later is the counterfeiter’s
entry date, the higher is the incentive to invest in advertising to raise the value of the
(private good) reputation.

Remark 3 During the duopoly period [E, T ], the advertising, reputation, and pricing
trajectories vary as follows in terms of entry date E :

∂aC2 (t)

∂E = 0,

∂RC2 (t)

∂E = k2

2ω
e−σ(t−E)

(
2e−σ(T−E)s + �e−2σE (

1 − 2e−σ(T+E)
)

+ δ̃2l

4σβ̃l
− �

)
> 0,

∂pCl2 (t)

∂E = 2βcδl + δcγ

4βcβl − γ2
1

2
√

R (t)

∂RC2 (t)

∂E > 0.

The reputation and the counterfeiter’s price are increasing with respect to the date
of entry E . As shown above, the later the date of entry, the higher the values of
advertising and reputation before entry. Since reputation after E depends on the level
achieved at this date, the later the date of entry, the higher the level of reputation
after entry. And since the legal firm’s price increases with its reputation, the later
the entry date, the higher is this price. Observe also that advertising does not depend
on the date of entry. This is because advertising does not depend on the legal firm’s
reputation but only on the date at which it is carried out and the final date (to put it
differently, advertising does not depend on a state variable, which would take into
account what happened at date E). Notice that this property also holds for the case
where there is no counterfeiting.

Of particular interest is the impact of the counterfeiter’s entry date on the legal
firm’s total profit.
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Proposition 7 The impact of the counterfeiter’s entry date on the legal firm’s total
profit is positive and given by

∂Zl(0, R0;E)

∂E = π1

(
RC
1 (E;E), aC1 (E;E), pCl1(E;E)

)
− π2

(
RC
2 (E;E), aC2 (E;E), pCl2(E;E)

)
> 0.

Proof See Appendix 2. �

The proposition first establishes that the impact of the counterfeiter’s entry
date on the legal firm’s total profit is equal to the difference between the instan-
taneous profit of the legal firm just before the counterfeiter’s entry, denoted by
π1

(
RC
1 (E; E), aC

1 (E; E), pC
l1(E; E)

)
, and its instantaneous profit just after the coun-

terfeiter’s entry, denoted by π2
(
RC
2 (E; E), aC

2 (E; E), pC
l2(E; E)

)
.17 Since RC

1 (E; E) =
RC
2 (E; E), and since, from Lemma 1, we know that the instantaneous profit before

entry is higher than the instantaneous profit after entry, we see that the earlier the
counterfeiter enters the market, the greater is the legal firm’s loss, which is intuitive,
as entry changes the market from a monopoly to a duopoly.

Finally, as we assumed that the entry date is exogenous, it is of interest to check
how the counterfeiter’s equilibrium payoff varies with this parameter. The total coun-
terfeiter’s payoff is given by

�E
c =

∫ T

E
pc (t)

(
δc

√
R (t) − βcpc (t) + γpl2 (t)

)
dt.

Substituting for the equilibrium values for pc (t)and pl2 (t) we get

�C
c = βc

(
2βlδc + δlγ

4βcβl − γ2

)2 ∫ T

E
R (t) dt.

Taking the derivative with respect to E , we have

∂�C
c

∂E = βc

(
2βlδc + δlγ

4βcβl − γ2

)2 ∂
(∫ T

E R (t) dt
)

∂E ,

∂
(∫ T

E R (t) dt
)

∂E = −R (E) +
∫ T

E

∂R (t)

∂E dt.

The above equality has the following interpretation: On the one hand, an increase
in E leads to the loss of the profit at date E . On the other hand, from Remark 3, the
value of the goodwill is higher at any date after E , and so is the price of the legal
firm. This directly increases the counterfeiter’s demand.

17The argument (E; E) of the reputation, advertising, and pricing variables is to specify that these
variables depend on the entry date E and that this date is also a parameter.
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Now, from Eq. (18) in the text, we have

R(E) = RC1 (E) = R0e−σE + k2

8σ2β̃lω

((
4σβ̃l

(
� + (s − �) e−σ(T−E)

)
− δ̃2l

) (
1 − e−2σE)

+ 2δ̃2l

(
1 − e−σE))

,

and from Remark 3, we know that

∂RC
2 (t)

∂E = k2

2ω
e−σ(t−E)

(
2e−σ(T−E)s + �e−2σE (

1 − 2e−σ(T+E)
) + δ̃2l

4σβ̃l

− �

)
.

Therefore,

∫ T

E

∂Rc
2

∂E dt = 1 − e−σ(T−E)

σ

k2

2ω

(
2e−σ(T−E)s + �e−2σE

(
1 − 2e−σ(T+E)

)
+ δ̃2l

4σβ̃l
− �

)
.

After some algebra we find that

∂
(∫ T

E R (t) dt
)

∂E = −R0e−σE − sk2

2ωσ
e−σ(T−E)

(
2e−σ(T−E) − e−2σE − 1

)
(21)

− k2δ̃2l

8ωσ2β̃l

(
e−2σE − 2e−σE + e−σ(T−E)

)
(22)

− �k2

ωσ
(1 − e−σ(T−E))

(
1 − e−2σE + e−3σE−σT

)
. (23)

The right-hand side of the above equation is highly non-linear in all model’s
parameters and cannot be utterly signed. However, we see that for anR0 high enough,

we have
∂
(∫ T

E R(t)dt
)

∂E < 0, that is, the counterfeiter’s equilibrium payoff is decreasing
in the entry date.

5 Comparison

In this section, we compare the strategies and outcomes in the two scenarios. Further,
we determine the cost of counterfeiting to the legal firm and to the consumer.

5.1 Profit Comparison

We shall first compare the advertising policies with and without counterfeiting.

Proposition 8 The legal firm advertises more when there is no counterfeiting. That
is, aN (t) > aC(t), for all t in [0, T ]
Proof See Appendix 2. �
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Before interpreting the above result, we shall next compare the trajectories of
reputation and the prices in the two scenarios.

Proposition 9 At each instant of time, the legal brand enjoys a higher reputation
when there is no counterfeiting, and the legal firm sells throughout the whole planning
horizon at a higher price. That is, RN (t) > RC(t), and pN

l (t) > pC
l (t) for all t in

[0, T ].
Proof See Appendix 2. �

Proposition 9 shows that the impact of entry on reputation is felt at any instant of
time throughout the planning horizon, and not only after entry actually occurs. The
fact that a counterfeiter will enter the market influences the advertising behavior of
the legal firm during the monopoly period and this results in a loss of reputation even
before entry takes place.

The interpretation of these results is as follows: Counterfeiting induces a compet-
itive pressure on the legal firm pushing it to lower its price. Further, the legal firm
invests less in advertising because the consequent reward, namely, a higher reputation
and larger market size, is not fully appropriable in the counterfeiting scenario since
the illegal firm benefits for free from the advertising investments and the brand’s
reputation. This is a typical case where the counterfeiter enjoys a positive externality
without contributing at all to the building of reputation.

The above result differs from some of the findings in the literature, according to
which counterfeiting may stimulate innovation or the quality of the genuine good
(see Zhang et al. [37]). This occurs notably when there are network externalities and
R&D competition (Banerjee [2]) or imperfect information (Qian [28], Qian et al.
[29]). A common feature of these results is that the legal firm is able to sustainably
differentiate the quality of its product from that of the counterfeiters. This, however,
probably overlooks the casewhere the counterfeiters interact repeatedlywith the legal
firm. In such a case, it makes sense for counterfeiters to react to the differentiation
efforts of the legal firm by adapting their own products. Here, we capture this reaction
by assuming that the reputation of the genuine good always positively affects the
reputation of the counterfeited product.

The following proposition shows that, for any given value of reputation R (t),
the legal firm obtains a higher total payoff in the no-counterfeiting case than in the
counterfeiting scenario.

Proposition 10 For any R (t) and all t ∈ [E, T ], we have Wl(t, R(t)) < Vl(t, R(t)).

Proof See Appendix 2. �

The two preceding propositions imply the following corollary:

Corollary 1 We have Wl(E, RC(E)) < Vl(E, RN (E)) .
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Proof From Proposition 10, we have

Wl(t, RC(t)) < Vl(t, RC(t))

and from Proposition 8, we have RN (E) > RC (E), so Wl(E, RC(E)) < Vl(E, RN

(E)). �

The impact of counterfeiting on total profit is given in the following result.

Proposition 11 The total profit of the legal firm calculated by starting at any date t in
[0, E] is higher in the absence of counterfeiting. That is, Vl(t, RN (t)) > Zl(t, RC(t)).

Proof Denote by
(
RC (s) , aC (s) , pC

l (s)
)
the equilibrium trajectory in the presenceof

the counterfeiter and by π1
(
RC (s) , aC (s) , pC

s (s)
)
the corresponding instantaneous

profit of the legal firm before the counterfeiter’s entry. The total payoff that the legal
firm realizes in the game starting at any t in [0, E] can be written as

Zl
(
t, RC(t)

) =
∫ E

t
π1

(
pC

l (s) , aC (s) , RC (t)
)

ds + Wl(E, RC(E)),

≤
∫ E

t
π1

(
pC

l (s) , aC (s) , RC (s)
)

ds + Vl(E, RC(E)),

≤ Vl(t, RN (t)).

The first inequality is due to Proposition 10, and the second inequality follows from
the optimality principle of dynamic programming. In particular, the total payoff in
the whole game is higher in the absence of counterfeiting, that is, Zl(0, R0) ≤ Vl

(0, R0). �

Independently of the fact that counterfeiting is illegal, its very presence means
competition for the legal firm, and consequently, the above result is not surprising. A
relevant question is how much counterfeiting costs the legal firm and how this loss
varies with the parameter values. The total loss is given by �� = Vl (0, R (0)) −
Zl (0, R (0)). We note that �� is increasing in R0, which means that a company
having a high initial brand equity (or reputation) suffers more from counterfeiting
than a firm with a lower value.18

The main message from the above comparisons is that counterfeiting is under no
circumstances beneficial to the legal firm. Although these results sometimes involved
complicated proofs, they are somewhat expected. If this were not the case, then
legal firms would not invest much effort in deterring counterfeiting.19 In the next
subsection, we shift the focus from the firm to the consumer.

18 This assertion can be established using Eqs. (11) and (16), and Lemma 1.
19 See El Harbi and Grolleau [16], however, for a review of some cases where counterfeiting can
be profit enhancing for the legal firm.
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5.2 Consumer Welfare Comparison

Standard consumer measures of surplus are difficult to use here since, in our setting,
there are two goods whose prices change over time. It is then better to study the
welfare effect of counterfeiting by comparing the equilibriumvalue of the consumer’s
utility function with and without counterfeiting.

First, at any t ∈ [0, E], the consumer’s optimization problem is

max
ql

U (ql, 0, y) = σl

√
Rql − κlq2

l

2
+ I − plql .

From the first-order optimality condition, we obtain ql = σl

√
R

2κl
and, for any t ∈ [0, E],

the equilibrium (indirect) utility value

U (ql, 0, y) = κl

2
(ql)

2 + I .

The above expression is the same with and without counterfeiting (only the value
of brand reputation and the quantity ql are different).Knowing that the brand’s reputa-
tion is lower under counterfeiting, we conclude unambiguously that the counterfeiter
causes a loss in welfare even during themonopoly period, that is, even before it enters
into play.

Now at any t ∈ [E, T ], the consumer’s optimization problem is

max
ql ,qc

U (ql , qc, y) =
(

σl
√

Rql + σc
√

Rqc − κlq
2
l

2
− κcq2c

2
− ψqlqc + I − plql − pcqc

)
.

Assuming an interior solution, we can show that the equilibrium value of the demand
for the legal product and the counterfeit are, respectively, given as follows:

qC
l = κc

(
2κcκlσl − ψσcκl − ψ2σl

)
(
4κcκl − ψ2

) (
κcκl − ψ2

) √
R,

qC
c = κl

(
2κcκlσc − ψσlκc − ψ2σc

)
(
4κcκl − ψ2

) (
κcκl − ψ2

) √
R.

Inserting these demands in U (ql, qc, y), it is easy to show that the equilibrium value
of the consumer (indirect) utility function can be written as U (qC

l , qC
c , yC) = χCRC,

where

χC = κ2
cX 2

1 + κ2
l X 2

2 + 2ψκcκlX1X2

2
(
4κcκl − ψ2

)2 (
κcκl − ψ2

)2 ,
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and

X1 = (
2κcκlσl − ψσcκl − ψ2σl

)
,

X2 = (
2κcκlσc − ψσlκc − ψ2σc

)
.

We first want to compare χC with χN where we recall that

χN = σ2
l

8κl
.

Assume that RC = RN = R. We know, of course, that this is false in equilibrium,
but it does not matter as we are dealing with variables that are solutions to static
optimization problems. We know that the equilibrium price of the legal good is
higher without counterfeiting than with counterfeiting. Therefore, the equilibrium
value of the consumer’s utility function with counterfeiting is no lower (and indeed
is higher) than this value when there is counterfeiting. This is because the consumer
can always buy the same quantity of the legal good that he bought when there was
no counterfeiting, at a lower price. Since his income is constant, he can also buy the
fake good, and this increases his utility. This leads to the following:

Proposition 12 We have χN < χC .

The next result gives a sufficient condition for counterfeiting to bewelfare improv-
ing for any t ∈ [E, T ], that is, χN RN (t) < χCRC(t).

Proposition 13 There exists ω, such that, for all ω, such that ω ≤ ω, counterfeiting
is welfare improving for all t in [E, T ].
Proof See Appendix 2. �

One explanation of this result is the following: When the advertising cost is high,
the legal firm invests less in this activity, which results in a lower value for the
brand’s reputation, and consequently, themarket size is smaller. This in turn increases
competition between the two firms, and prices are lower, which is good news for the
consumer. In this case, the positive effect of price competition on welfare more than
compensates for the negative effect of the decrease in the legal firm’s reputation
(since accumulating reputation is costly, even in the absence of counterfeiting, the
negative effect of counterfeiting on reputation is small).

Though counterfeiting may enhance consumer welfare on the interval [E, T ], we
have seen that counterfeiting is unambiguously welfare decreasing on the interval
[0, E]. The question of the global impact of counterfeiting onwelfare is thus pending.
The next result extends Proposition 13 to ensure that counterfeiting may improve
consumer welfare on the whole horizon.
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Proposition 14 There exists ω′, such that, for all ω, such that ω′ ≤ ω, counterfeiting
is welfare improving [0, T ] in the sense that

∫ T

0
χN RN (t)dt <

∫ E

0
χN RC(t)dt +

∫ T

E
χCRCdt.

6 Concluding Remarks

To the best of our knowledge, this is the first attempt to analyze the impact of
counterfeiting in a fully dynamic context with micro-founded demand functions.
The decision variables, that is, price and advertising, are clearly the most relevant
ones for well-known brands that eventually end up being copied by illegal producers.
In one sentence, the main takeaway of our paper is that counterfeiting is under no
circumstances beneficial to the legal producer, but it can suit consumers under some
conditions. Further, we showed that brand equity is always lower in the presence of
counterfeiting. This implies that this illegal activity has a really damaging effect on
the legal firm over the long term.

This last effect clearly supports prosecuting counterfeiters, as it is currently done
in many countries. By contrast, only a few countries like France and Italy penalize
consumers who purchase counterfeits. Our finding that counterfeiting can benefit
consumers suggests acting with caution with regard to the introduction of consumer
liability.20 That is because, it may be difficult to actually identify the goods for which
counterfeiting is detrimental to consumers from the others.

As in any modeling effort, some simplifying assumptions have been made here,
and it would clearly be advantageous to relax them in future work. First, we assumed
that the counterfeiter’s entry date is known, which in practice may be hard to predict
precisely. It would not really be conceptually difficult to keep the same framework
and consider a case where this date is random. However, one can expect this to
potentially lead to equilibria that cannot be either fully characterized analytically or
not be compared analytically.

Second, we have implicitly assumed that the legal producer cannot deter entry.
In the absence of efficient institutions to combat counterfeiting, one intuitive option
for private firms to prevent illegal producers from entering the market is to sell at a
lower price to reduce the temptation of consumers to buy the illegal product (The
assumption here is that the attractiveness of going illegal depends on the gap in
prices.). For this to work, we minimally need to assume that the illegal producer
faces a fixed cost. The relevance and the level of such cost is an empirical matter.
Indeed, the fixed cost that needs to be paid to be able to start selling an illegal version
of software is not the same as producing a fake Lancel bag.

20For a defense of consumer liability in the U.S., see, e.g., Orscheln [25] or Riso [30]. According
to Orschel [25], in 1993, Ms. Chin, a representative for District 1 of New York City, proposed to
adapt New York legislation to prosecute consumers for purchasing counterfeit goods. The proposal
appears to be laid over.
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Third, we assumed that the product is normal. An interesting question that we
did not address is what would happen if the product had a network externality value.
For instance, the value that a person derives from a video game may depend on the
number of individuals in the person’s circle who own the product. Here, the illegal
demand may have a positive effect on the brand’s reputation, that is, illegal demand
works as an additional advertising activity that feeds the brand equity. In such a case,
one expects very different results from those obtained here, and it is surely of interest
to investigate such a context.

Appendix 1

Derivation of the Demand Functions

Assume that the utility function of the representative consumer is given by the fol-
lowing quadratic function:

U (ql, qc, y) = σl

√
Rql + σc

√
Rqc − κlq2

l

2
− κcq2

c

2
− ψqlqc + y,

where y is a composite good, and σl,σc,ψ,κl and κc are positive parameters, with

σlκc − σcψ > 0, (24)

σcκl − σlψ > 0, (25)

ψ > 0. (26)

The budget constraint is given by

plql + pcqc + y = I .

Suppose now that there is no counterfeit good, i.e.,qc = 0.Then, the representative
consumer solves the following problem:

max
ql

(
σl

√
Rql − κlq2

l

2
+ I − plql

)
.

We easily find that the demand function is

ql = σl

√
R − pl

κl
. (27)
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By contrast, when there is a counterfeiter, the representative consumer solves the
following program:

max
ql ,qc

(
σl

√
Rql + σc

√
Rqc − κlq2

l

2
− κcq2

c

2
− ψqlqc + I − plql − pcqc

)
.

Assuming an interior solution, then the first-order optimality conditions are given by

σl

√
R − κlql − ψqc − pl = 0, (28)

σc

√
R − κcqc − ψql − pc = 0. (29)

Solving for ql and qc, we obtain

ql = κcσl

√
R − ψσc

√
R − κcpl + ψpc

κlκc − ψ2
, (30)

qc = κlσc

√
R − ψσl

√
R − κlpc + ψpl

κlκc − ψ2
. (31)

We see at once that the demand functions for the legal good are structurally different
in the two cases. Setting pc = 0 in (30) does not yield (27). We shall then assume
that the demand functions for the legal good and the counterfeit good are given by
the next expressions:

ql (t) =
{

δ̃l
√

R (t) − β̃lpl (t) , t ∈ [0, E),

δl
√

R (t) − βlpl (t) + γpc (t) , t ∈ [E, T ] ,

qc (t) = δc

√
R (t) − βcpc (t) + γpl (t) , t ∈ [E, T ] ,

where βj > 0 and γ ≥ 0, with βj > γ, j ∈ {l, c}, and

δ̃l = σl

κl
, δl = κcσl − ψσc

κcκl − ψ2
, δc = κlσc − ψlσl

κcκl − ψ2
,

β̃l = 1

κl
, βl = κc

κcκl − ψ2
, βc = κl

κcκl − ψ2
, γ = ψ

κcκl − ψ2
.

We notice that

δl = κcσl − ψσc

κcκl − ψ2
< δ̃l = σl

κl
,

if and only if σcκl − σlψ > 0 which holds true by assumption.
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Moreover, we have

β̃l = 1

κl
< βl = κc

κcκl − ψ2
.

To ensure that in equilibrium the price of the good produced by the legal firm is
higher than the price of the counterfeit good, that is,

pC
l (R (t))

pC
c (R (t))

= 2βcδl + δcγ

2βlδc + δlγ
> 1,

we assume that σl − σc > 0 and

(
2κlκc − ψ2

)
(σl − σc) + ψ(κcσl − κlσc) > 0.

Appendix 2

Proofs

Proof of Proposition 1

Denote by Vl (t, R (t)) : [0, T ] × R+ → R+ the value function of the legal firm. The
Hamilton-Jacobi-Bellman (HJB) equation reads as follows:

−∂Vl

∂t
(t, R (t)) = max

pl ,a

((
pl (t)

(
δ̃l

√
R (t) − β̃lpl (t)

)
− ω

2
a2 (t)

)

+∂Vl

∂R
(t, R (t)) (ka (t) − σR (t))

)
.

Assuming an interior solution, the first-order optimality conditions are

∂RHS

∂pl
= δ̃l

√
R − 2β̃lpl = 0 ⇔ pl = δ̃l

2β̃l

√
R,

∂RHS

∂a
= −ωa + k

∂Vl

∂R
= 0 ⇔ a = k

ω

∂Vl

∂R
.

Substitute in the HJB equation to get

−∂Vl

∂t
=

(
δ̃l

2β̃l

√
R (t)

(
δ̃l

√
R (t) − β̃l

δ̃l

2β̃l

√
R (t)

)
− ω

2

(
k

ω

∂Vl

∂R

)2
)

+ ∂Vl

∂R

(
k

k

ω

∂Vl

∂R
− σR (t)

)
,

which simplifies to
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− ∂Vl

∂t
= δ̃2l

4β̃l

R + k2

2ω

(
∂Vl

∂R

)2

− σR
∂Vl

∂R
. (32)

Conjecture that the value function is linear, i.e.,

Vl (t, R (t)) = z (t) R (t) + y (t) ,

Vl (T , R (T )) = sR (T ) ,

where z (t) and y (t) are the coefficient to be identified. Substituting in (32) yields

− (żR + ẏ) =
(

δ̃2l

4β̃l

− σz

)
R + k2

2ω
z2.

By identification, we have

−ż = δ̃2l

4β̃l

− σz,

−ẏ (t) = k2

2ω
(z (t))2 .

Solving the two above differential equations, we obtain

z (t) = δ̃2l

4σβ̃l

+ C1eσt, (33)

y (t) = − k2

4σω

(
δ̃4l

8σβ̃2
l

t + δ̃2l C1

σβ̃l

eσt + C2
1e2σt

)
+ C2, (34)

where C1 and C2 are integration constants.
Using the terminal condition

Vl (T , R (T )) = sR (T ) ,

we conclude that

z (T ) = s,

y (T ) = 0.

Consequently,

z (T ) = δ̃2l

4σβ̃l

+ C1eσT = s ⇔ C1 = 4σβ̃l s − δ̃2l

4σβ̃l

e−σT .
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Further, we have

y (T ) = − k2

4σω

(
δ̃4l

8σβ̃2
l

T + δ̃2l C1

σβ̃l
eσT + C2

1 e2σT

)
+ C2 = 0,

4σβ̃l s − δ̃2l

4σβ̃l
e−σT = − k2

4σω

⎛
⎜⎝ δ̃4l

8σβ̃2
l

T +
δ̃2l

4σβ̃l s−δ̃2l
4σβ̃l

e−σT

σβ̃l
eσT + (

4σβ̃l s − δ̃2l

4σβ̃l
e−σT )2e2σT

⎞
⎟⎠ + C2 = 0,

⇔ C2 = k2

4σω

⎛
⎝ δ̃4l

8σβ̃2
l

T + δ̃2l
4σβ̃l s − δ̃2l

4σ2β̃2
l

+
(
4σβ̃l s − δ̃2l

4σβ̃l

)2
⎞
⎠

= k2

16σ3ωβ̃2
l

(
σ̃δ

4
l

2
T + δ̃2l (4σβ̃l s − δ̃2l ) + (4σβ̃l s − δ̃2l )2

4

)

Substituting for C1 and C2 in (33) and (34) yields the values of z(t) and y(t)
displayed p. 265. Now,

a = k

ω

∂Vl

∂R
= k

ω
z (t) = k

4σβ̃lω
(δ̃2l + (4σβ̃l s − δ̃2l )e

σ(t−T )).

Inserting in the dynamics and solving the differential equation, we obtain the brand’s
reputation trajectory given in (10).

Substituting for z (t) and y (t) in Vl (t, R (t)) yields the following value:

Vl (t, R (t)) =
(

δ̃2l

4σβ̃l

+ 4σβ̃l s − δ̃2l

4σβ̃l

eσ(t−T )

)
R (t)

+ k2

16σ3ωβ̃2
l

(
σ̃δ

4
l

2
(T − t) + δ̃2l (4σβ̃l s − δ̃2l )(1 − eσ(t−T ))

+ (4σβ̃l s − δ̃2l )
2

4
(1 − e2σ(t−T ))

)
.

The total payoff is obtained by evaluating the above value function at (0, R (0)),
that is,

Vl (0, R (0)) = z (0) R (0) + y (0) ,

=
(

δ̃2l

4σβ̃l
+ 4σβ̃l s − δ̃2l

4σβ̃l
e−σT

)
R0

+ k2

16σ3ωβ̃2
l

(
σ̃δ

4
l

2
T + δ̃2l (4σβ̃l s − δ̃2l )(1 − e−σT ) + (4σβ̃l s − δ̃2l )2

4
(1 − e−2σT )

)
.
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Payoff starting from (E, R (E)) is given by

Vl (E, R (E)) = z (E) R (E) + y (E) .

Proof of Proposition 4

Denote by Wl (t, R (t)) : [E, T ] × R+ → R the legal firm’s value function. The HJB
equation of the legal firm is given by

−∂Wl

∂t
(t, R (t)) = max

pl ,a

((
pl (t)

(
δl

√
R (t) − βlpl (t) + γpc (t)

)
− ω

2
a2 (t)

)

+∂Wl

∂R
(t, R (t)) (ka (t) − σR (t))

)
.

The counterfeiter’s optimization problem is

max
pc(t)

πc (t) = max
pc(t)

pc (t)
(
δc

√
R (t) − βcpc (t) + γpl (t)

)
, ∀t ∈ [E, T ] .

Assuming an interior solution, the first-order equilibrium conditions are

∂RHS

∂pl
= δl

√
R − 2βlpl + γpc = 0,

∂RHS

∂a
= −ωa + k

∂Wl

∂R
= 0,

∂πc

∂pc
= δc

√
R − 2βcpc + γpl = 0 ⇔ pc = δc

√
R + γpl

2βc
,

which is equivalent to (12), (13) and

a = k

ω

∂Wl

∂R
.

Substituting in the HJB yields

− ∂Wl

∂t
= βl

(
2βcδl + δcγ

4βcβl − γ2

)2

R + ω

2

(
k

ω

∂Wl

∂R

)2

− σR
∂Wl

∂R
. (35)

Conjecture the following linear form for the value function:

Wl (t, R (t)) = x (t) R (t) + v (t) ,
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then

a = k

ω
x,

∂Wl

∂t
= ẋR + v̇.

Substituting in (35), we obtain

− (ẋR + v̇) =
(

βl

(
2βcδl + δcγ

4βcβl − γ2

)2

− σx

)
R + k2x2

2ω
.

By identification of terms in order of R, we have

−ẋ + σx = βl

(
2βcδl + δcγ

4βcβl − γ2

)2

,

v̇ = − k2

2ω
x2.

Solving the two above differential equations, we get

x (t) = � + C1eσt,

v (t) = − k2

2ω

(
�2t + C2

1

2σ
e2σt + 2�C1

σ
eσt

)
+ C2,

where C1 and C2 are integration constants and

� = βl

σ

(
2βcδl + δcγ

4βcβl − γ2

)2

.

Using the boundary condition

Wl (T , R (T )) = sR (T )

yields

C1 = (s − �) e−σT ,

C2 = k2

2ω

(
�2T + (s − �)2

2σ
+ 2�(s − �)

σ

)
,

and consequently we get the values of x(t) and v(t) given in (16) and (17). Recalling
that a = k

ω
x, we then get (14).

Substituting for a in the dynamics and solving the differential equation with R (E)

as initial condition, we get the value of the reputation after entry given in (15).
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Proof of Proposition 5

Denote by Zl (t, R (t)) : [0, T ] × R+ → R+ the value function of the legal firm. The
Hamilton-Jacobi-Bellman (HJB) equation reads as follows:

−∂Zl

∂t
(t, R (t)) = max

pl ,a

((
pl (t)

(
δ̃l

√
R (t) − β̃lpl (t)

)
− ω

2
a2 (t)

)

+∂Zl

∂R
(t, R (t)) (ka (t) − σR (t))

)
.

Assuming an interior solution, the first-order optimality conditions are

∂RHS

∂pl
= δ̃l

√
R − 2β̃lpl = 0 ⇔ pl = δ̃l

2β̃l

√
R,

∂RHS

∂a
= −ωa + k

∂Zl

∂R
= 0 ⇔ a = k

ω

∂Zl

∂R
.

Substitute in the HJB equation to get

−∂Zl

∂t
= δ̃l

2β̃l

√
R (t)

(
δ̃l

√
R (t) − β̃l

δ̃l

2β̃l

√
R (t)

)
− ω

2

(
k

ω

∂Zl

∂R

)2
+ ∂Zl

∂R

(
k

k

ω

∂Zl

∂R
− σR (t)

)
,

which simplifies to

− ∂Zl

∂t
= δ̃2l

4β̃l

R + k2

2ω

(
∂Zl

∂R

)2

− σR
∂Zl

∂R
. (36)

Conjecture that the value function is linear, i.e.,

Zl (t, R (t)) = m (t) R (t) + n (t) ,

Zl (E, R (E)) = Wl (E, R (E)) ,

where m (t) and n (t) are the coefficients to be identified. Substituting in (36) yields

− (ṁR + ṅ) =
(

δ̃2l

4β̃l

− σm

)
R + k2

2ω
m2.

By identification, we have

−ṁ = δ̃2l

4β̃l

− σm

−ṅ = k2

2ω
m2.
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Solving the two above differential equations, we obtain

m (t) = δ̃2l

4σβ̃l

+ C1eσt, (37)

n (t) = − k2

4σω

(
δ̃4l

8σβ̃2
l

t + δ̃2l C1

σβ̃l

eσt + C2
1e2σt

)
+ C2, (38)

where C1 and C2 are integration constants.
Using the terminal condition

Zl (E, R (E)) = Wl (E, R (E)) = x(E)R(E) + v(E),

we conclude that

m (E) = x(E) = � + (s − �) e−σ(T−E),

n (E) = v(E) = k2

2ω

(
�2(T − E) + (s − �)2

2σ
(1 − e2σ(E−T )) + 2�(s − �)

σ
(1 − eσ(E−T ))

)
.

Consequently,

m (E) = δ̃2l

4σβ̃l

+ C1eσE = x(E) ⇔ C1 = 4σβ̃lx(E) − δ̃2l

4σβ̃l

e−σE .

Further, we have

n (E) = − k2

4σω

(
δ̃4l

8σβ̃2
l

E + δ̃2l C1

σβ̃l

eσE + C2
1e2σE

)
+ C2 = v (E) ,

= − k2

16σ3ωβ̃2
l

(
σδ̃4l
2

E + δ̃2l (4σβ̃lx(E) − δ̃2l ) + (4σβ̃lx(E) − δ̃2l )
2

4

)
+ C2 = v (E) .

Substituting for C1 and C2 in (37) and (38) yields the values of m(t) and n(t)
displayed page 270. Now,

a = k

ω

∂Zl

∂R
= k

ω
m (t) = k

4σβ̃lω

(
δ̃2l

(
1 − eσ(t−E)

) + 4σβ̃lx(E)eσ(t−E)
)

= k

4σβ̃lω

(
δ̃2l

(
1 − eσ(t−E)

) + 4σβ̃l(� + (s − �) e−σ(T−E))eσ(t−E)
)

.

Inserting in the dynamics and solving the differential equation, we obtain the repu-
tation trajectory given in Proposition 5.
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Proof of Lemma 1

To prove the Lemma, we have to establish that the legal firm’s profit in the monopoly
case is higher than the profit under Bertrand competition. To do this, we shall rely
on the micro-foundations of the demand functions. From Appendix 1, we know that
when the consumptions of the three goods, ql , qc and y, are positive (where we recall
that y is the composite good), the next conditions hold:

σl − κlql − ψqc = pl, (39)

σc − κlqc − ψql = pc. (40)

To derive the demand functions used in the paper, we have solved the consumer’s
maximization problem for quantities ql and qc (as a function of the prices) and we
have studied the Bertrand competition case. We could also have considered Cournot
competition where the legal firm (resp. the counterfeiter) maximizes plql (resp. pcqc)
with respect to ql (resp. qc), pl and pc being given by (39)–(40).

The quantities associated to a Cournot equilibrium satisfy the next conditions:

σl − 2κlql − ψqc = 0, (41)

σc − 2κlqc − ψql = 0, (42)

and are given by

q̄l = 2κcσl − ψσc

4κcκl − ψ2
, (43)

q̄c = 2κlσc − ψσl

4κcκl − ψ2
. (44)

Using Eqs. (39), (40), (41), and (42) we notice that, in a Cournot equilibrium,

p̄l = κq̄l, (45)

p̄c = κq̄c. (46)

• Now recall that, in the monopoly case, the demand for the legal product is obtained
from the condition σl − κlql − pl = 0. In this case, the legal firm chooses its price
so as to maximize its profit plql , and we obtain that q∗

c = σl
2κl

and p∗
l = σl

2 .• Next, we shall rely on Proposition 1 of Singh and Vives [31], p. 549, which asserts
that the profit of each firm under Cournot competition is higher than the profit
obtained under Bertrand Competition (which is the case considered in the paper).

• We shall now prove that the monopoly profit is higher than the Cournot profit. To
do this, we only have to show that q∗

l > q̄l (see Eqs. (45) and (46)). But we can
check that the condition q∗

l > q̄l , that is,
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σl

2κl
>

2κcσl − ψσc

4κcκl − ψ2
(47)

is equivalent to
2κlσc > σlψ.

This last condition is always met since we have assumed that κlσc > σlψ. In the
model’s notation, the inequality in (47) corresponds to the inequality in theLemma.

Proof of Proposition 7

By the dynamic programming optimality principle, we have, along an optimal path
(here it is unique) for the legal firm, that

Zl (0, R0) =
∫ E

0
π1

(
RC(t; E), aC(t; E), pC

l (t; E)
)

dt + Wl(E, RC(E; E)).

Notice that the optimal path
(
RC(t; E), aC(t; E), pC

l (t; E)
)
a priori depends on E .

Differentiating with respect to E , we get
∂Zl(0, R0;E)

∂E =
∫ E

0

{
∂π1
∂R

∂R

∂E + ∂π1
∂a

∂a

∂E + ∂π1
∂pl

(
∂πl

∂R

∂R

∂E + ∂pl

∂E
)}

dt (48)

+ π1

(
RC(E;E), aC(E;E), pCl (E;E)

)
+ ∂Wl

∂t
(E; RC(E;E)) + ∂Wl

∂R

(
∂R

∂t
(E;E) + ∂R

∂E (E;E)

)
.

(49)

Now, by the Pontryagin maximum principle, there exists an adjoint variable λ(t; E),
such that, for all t in [0, E], the (unique) optimal path

(
RC(t; E), aC(t; E), pC

l (t; E)
)

maximizes the Hamiltonian

π1(R(t), a(t), pl(t)) + λ(t)[ka(t) − σR(t)].

Moreover the adjoint variable λ(t) also satisfies

λ̇(t; E) = −
(

∂π1

∂R
− σλ(t, E)

)
,

λ(E; E) = ∂Wl

∂R
(E; RC(E; E)).

Therefore, the next conditions must hold at each date t:

∂π1

∂a
+ λ(t; E)k = 0, (50)

∂π1

∂pl
= 0. (51)
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Following an argument in the proof of the Dynamic Envelope Theorem (Th. 9.1, pp
233) in Caputo [5], we first differentiate the following dynamics equation:

Ṙ(t, E) = ka(t; E) − σR(t; E),

with respect to E to obtain

∂Ṙ(t; E)

∂E = k
∂a(t; E)

∂E − σ
∂R(t, E)

∂E .

Let us now add the following quantity

λ(t, E)

(
k
∂a(t; E)

∂E − σ
∂R(t, E)

∂E − ∂Ṙ(t; E)

∂E
)

= 0,

to the integrand of the integral in (48). Using (51) we get

∂Zl(0, R0; E)

∂E =
∫ E

0

{
∂π1

∂R

∂R

∂E + ∂π1

∂a

∂a

∂E

+λ(t; E)

(
k
∂a(t; E)

∂E − σ
∂R(t, E)

∂E − ∂Ṙ(t; E)

∂E
)}

dt

+ π1
(
RC(E; E), aC(E; E), pC

l (E; E)
)

+ ∂Wl

∂t
(E; R(E; E)) + ∂Wl

∂R

(
∂R

∂t
(E; E) + ∂R

∂E (E; E)

)
(52)

To simplify the above expression, we integrate

∫ E

0
λ(t; E)

∂Ṙ(t; E)

∂E dt,

by parts to obtain

∫ E

0
λ(t, E)

∂Ṙ(t; E)

∂E dt = λ(E; E)
∂R

∂E (E; E) − λ(0; E)
∂R

∂E (0; E) −
∫ E

0
λ̇(t, E)

∂R(t; E)

∂E dt.

Weobserve that: ∂R
∂E (0; E) = 0. Substituting the above expression in (52) we get after

a little algebra

∂Zl(0, R0; E)

∂E =
∫ E

0

{(
∂π1
∂R

− σλ(t; E) + λ̇(t; E)

)
∂R

∂E +
(

∂π1
∂a

+ kλ(t; E)

)
∂a

∂E
}

dt

− λ(E; E)
∂R

∂E (E; E) + π1

(
RC(E; E), aC(E; E), pCl (E; E)

)

+ ∂Wl

∂t
(E; RC(E; E)) + ∂Wl

∂R

(
∂R

∂t
(E; E) + ∂R

∂E (E; E)

)
. (53)



292 B. Crettez et al.

Using the Pontryagin maximum principle (and notably the fact that λ(E; E) =
∂Wl
∂R (E; RC(E; E))) the above expression reduces to

∂Zl(0, R0; E)

∂E = π1
(
RC(E; E), aC(E; E), pCl (E; E)

) + ∂Wl

∂t
(E; RC(E; E)) + ∂Wl

∂R

∂R

∂t
(E; E).

Now, we use the Hamilton-Jacobi-Bellman equation, which holds at date E , that is,

−∂Wl(E, RC(E; E))

∂t
= π2

(
RC(E; E), aC(E; E), pCl (E; E)

) + ∂Wl(E; RC(E; E))

∂R
Ṙ(E; E).

Substituting the above equation in Eq. (53) yields

∂Zl(0, R0; E)

∂E = π1
(
RC(E; E), aC(E; E), pCl (E; E)

) − π2
(
RC(E; E), aC(E; E), pCl (E; E)

)
.

A more direct route consists in directly computing ∂Zl(0,R0;E)

∂E . Indeed, we have

∂Zl (0, R0;E)

∂E = 1

4σβ̃l

(
�′−σE − σ�e−σE )

R0 + k2 δ̃4l
32σ2ωβ̃2

l

+ k2 δ̃2l
16σ3ωβ̃2

l

(�′ (1 − e−σE ) + �σe−σE )

+ k2

64σ3ωβ̃2
l

(
2��′ (1 − e−2σE ) + �22σe−2σE )

− k2

2ω

(
� + (s − �)eσ(E−T )

)2
,

= R0

4σβ̃l
(δ̃2l − 4σβ̃l�)e−σE + k2 δ̃4l

32σ2ωβ̃2
l

+ k2 δ̃2l
16σ3ωβ̃2

l

(
σ(� + δ̃2l − 4σβ̃l�) + σ(4σβ̃l� − δ̃2l )e−σE

)
,

+ k2�

32σ3ωβ̃2
l

(
σ(� + δ̃2l − 4σβ̃l�) + σ(4σβ̃l� − δ̃2l )e−2σE

)
− k2

32σ2ωβ̃2
l

(� + δ̃2l )2,

= R0

4σβ̃l
(δ̃2l − 4σβ̃l�)e−σE + k2 δ̃2l

16σ3ωβ̃2
l

(
σ(δ̃2l − 4σβ̃l�)(1 − e−σE )

)

+ k2�

32σ3ωβ̃2
l

(
σ(δ̃2l − 4σβ̃l�)(1 − e−2σE )

)
,

= R0

4σβ̃l
(δ̃2l − 4σβ̃l�)e−σE

+ k2(σ(δ̃2l − 4σβ̃l�)

32σ3ωβ̃2
l

(4σβ̃l

(
� + (s − �) e−σ(T−E)

)
(1 − e−2σE ) + δ̃2l (1 + e−2σE − 2e−σE )) > 0.

Proof of Proposition 8

We must prove the statement for the two periods, that is, before and after entry of
the counterfeiter.

During the interval [0, E), the difference in advertising is given by

aN (t) − aC
1 (t) = k�

σω

(
eσ(t−E) − eσ(t−T )

) ≥ 0.
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During the interval [E, T ], the difference in advertising is given by

aN (t) − aC
2 (t) = k�

σω

(
1 − e−σ(T−t)

) ≥ 0.

Proof of Proposition 9

On [0, E] the difference in reputation is given by

RN (t) − RC (t) = k2

2σ2ω
�

(
e−σE − e−σT

) (
eσt − e−σt

)
,

which is clearly always positive for all t ∈ [0, E].
To check that the difference in reputation is positive on [E, T ], we consider the

following differential equations:

ṘN (t) = kaN (t) − σRN (t),

ṘC(t) = kaC(t) − σRC(t),

with RN (E) > RC (E) from the above result. Moreover

aN (t) − aC
2 (t) ≥ 0,

from the previous proposition. SetD(t) = RN (t) − RC(t) and b(t) = aN (t) − aC(t),
thus D satisfies

Ḋ(t) = kb(t) − σD(t)

D(E) > 0

and b(t) ≥ 0, so we have

D(t) = e−σ(t−E)D(E) + ke−σt
∫ t

E
b(s)eσsds.

Clearly D(t) > 0. Hence the result.
During the interval [0, E), the difference in price is given by

pN
l

(
RN (t)

) − pC
l1

(
t, RC (t)

) = δ̃l

2β̃l

(√
RN (t) −

√
RC (t)

)
.

By the above result,
√

RN (t) >
√

RC (t) and consequently, pN
l

(
RN (t)

)
> pC

l1(
t, RC (t)

)
for all t ∈ [0, E).
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During the interval [E, T ], the difference in price is given by

pN
l (R (t)) − pC

l2 (R (t)) = δ̃l

2β̃l

√
RN (t) − 2βcδl + δcγ

4βcβl − γ2

√
RC (t).

Given that
√

RN (t) >
√

RC (t) by the above result, to prove that pN
l (R (t)) >

pC
l2 (R (t)), it suffices to show that

δ̃l

2β̃l

>
2βcδl + δcγ

4βcβl − γ2
.

By Lemma 1, we have

δ̃2l

4β̃l

> βl

(
2βcδl + δcγ

4βcβl − γ2

)2

⇔ δ̃2l

4β̃2
l

>
βl

β̃l

(
2βcδl + δcγ

4βcβl − γ2

)2

.

Since β̃l < βl , the above inequality implies

δ̃2l

4β̃2
l

>

(
2βcδl + δcγ

4βcβl − γ2

)2

.

Taking the square root of both side yields

δ̃l

4β̃l

>

(
2βcδl + δcγ

4βcβl − γ2

)
,

which concludes the proof.

Proof of Proposition 10

We have

Wl(t, R(t)) = max
pl2(.),a2(.)

∫ T

t

(
pl2 (h)

(
δl

√
R (h) − βlpl2 (h) + γpc (h)

)
− ω

2
a22 (h)

)
dh + sR (T ) ,

(54)

subject to (4) and RC(t). (55)

Let pC
l2 (t, R (t)), pC

c (t, R (t)), aC
2 (t, R (t)) be the feedback-Nash equilibrium. Let also

RC(.) be the induced path of the legal firm’s reputation. We can then compute the
values of the sales given the value of RC(.). Using our notations, we get
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rCl (h) = pC
l2 (h)

(
δl

√
RC (h) − βlp

C
l2 (h) + γpC

c (h)
)

(56)

= βl (2βcδl + δcγ)2(
4βcβl − γ2

)2 RC (h) (57)

< r̂Nl (h) (58)

= pN
l (h)

(
δ̃l

√
RC (h) − β̃lp

N
l (h)

)
(59)

= δ̃2l

4β̃l

RC (h) , (60)

where r̂Nl (h) is the maximum value of the sales of the legal firm at date h along the
reputation path chosen when there is counterfeiting. The above inequality implies
that:

Wl(t, R(t)) =
∫ T

t

(
pCl2 (h)

(
δl

√
RC (h) − βlp

C
l2 (h) + γpCc (h)

)
− ω

2
(aC

2 )2 (h)
)

dh + sRC (T ) ,

(61)

<

∫ T

t

(
δ̃2l

4β̃l
RC (h) − ω

2
(aC

2 )2 (h)

)
dh + sRC (T ) (62)

But by definition of Vl(t, R(t)), we have

Vl(t, R(t)) = max
pl(.),a(.)

∫ T

t

(
pl (h)

(
δ̃l

√
R (h) − β̃lpl (h)

)
− ω

2
a2 (h)

)
dt + sR (T ) ,

(63)

= max
a(.)

∫ T

t

(
δ̃2l

4β̃l

R (h) − ω

2
a2 (h)

)
dt + sR (T ) , (64)

Therefore Wl(t, R(t)) < Vl(t, R(t)).

Proof of Proposition 13

Notice that we can write

RC(t) = R0e−σt + G(t)
ω

,

D(t) = RN (t) − RC (t) = F(t)
ω

,

where G and F do not depend on ω.
Now let z ∈ [E, T ] be the value at whichF (and thereforeD) reaches its maximum

value on [E, T ], and y ∈ [E, T ] the value at which G reaches its minimum value on
that interval. These values exist, since F and G are continuous on [E, T ].
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We have

lim
ω→+∞(RN (z) − RC (z)) = 0,

lim
ω→+∞ RC (t) ≥ lim

ω→+∞ R0e−T + G(y)

ω
≥ R0e−σT > 0.

Further, for all t ∈ [E, T ], we have

χCRC(t) − χN RN (t) = (
χC − χN )

RC(t) + χN (
RC(t) − RN (t)

)

>
(
χC − χN ) (

R0e−T + G(y)

ω

)
+ χN (

RC(z) − RN (z)
)

which implies

lim
ω→+∞(χCRC(t) − χN RN (t)) > 0.

And so the proposition follows.

Proof of Proposition 14

Following the proof of Proposition 13 the condition

∫ T

0
χN RN (t)dt <

∫ E

0
χN RC(t)dt +

∫ T

E
χCRCdt

is satisfied whenever

EχN σ2
l

8κl
max

t∈[0,E]
F(t)

ω
< (T − E)

(
χC − χN )

R−σT
0 .

This condition is indeed satisfied for ω higher than a certain threshold ω′.
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Games where Players have Common
Interests



Equilibrium Coalition Structures
of Differential Games in Partition
Function Form

Simon Hoof

1 Introduction

In numerous real-life situations, coalition formation takes place. Among others, we
can think of the following applications: climate agreements, military alliances, car-
tels, resource extraction, or research collaborations. Without an enforcement tech-
nology, however, coalitional agreements are fragile for a number of reasons. For
example, unilaterally deviating from a climate agreement might be beneficial (at
least in the short run) if one can freeride on the effort of the other countries. A new
government might want to renegotiate terms of partnership with other countries.
Cartels are usually not legally allowed and thus very fragile. Finally, a country may
consume more of a common resource than agreed upon beforehand.

Coalition formation games thus intersect cooperative and noncooperative game
theory. On the one hand the coalition members act cooperatively within the coalition,
but on the other they act noncooperatively across coalitions. Further, in games with
externalities the worth of a coalition depends not only on the actions taken by the
members within a given coalition, but also on the actions taken by all left out play-
ers as well as on the coalition structure of these players. These kind of games can
be described in partition function form which were introduced by Thrall and Lucas
in 1963 [12].1 A partition function assigns a characteristic function to all coalition
structures, viz., partitions of the set of players. For a given coalition structure, the
characteristic function assigns a worth to a coalition of players.We follow an equilib-
rium approach to construct the partition function [15]. For a given coalition structure

1See Kóczy [8] for a recent textbook treatment.
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the coalitions play a fully noncooperative game and each coalition basically acts as
a single agent. The worth of a coalition is then the equilibrium payoff.

While there exists a rich literature on endogenous coalition formation for static
games,2 it is rather unexplored in the theory of dynamic games. A shortcoming in the
literature on coalition formation in differential games is that exogenous restrictions
are imposed on the set of feasible coalition structures.3 In Petrosjan and Zaccour
[10] and Zaccour [14], for example, the authors fix a γ coalition structure such that
there exist one coalition and all left out players are singletons. A notable exception is
the recent work of Parilina and Sedakov [9], who use the same method as presented
here to construct the partition function for a difference game of cartel formation but
under open-loop strategies, while we study state-feedback strategies.

Recently, Hoof [7] introduced differential games in partition function form on
the restricted domain of linear-state games. In the present paper, we generalize the
previous one by showing how to construct a partition function for any autonomous
infinite horizon game. Since the resulting cooperative game is cohesive by construc-
tion (grand coalition is efficient), Hoof [7] studied the stability of the grand coalition
over time by means of the core. When defining the core for a partition function form
game, however, one has to impose ad hoc assumptions on the coalition structure of
the residual players. Here we fully endogenize the formation of coalitions by relying
on Bloch’s [2] coalition formation game. A coalition structure is then called stable
if it results from the equilibrium of an alternating offer bargaining game. We apply
the method to a well-studied model of dynamic cake eating [5]. After obtaining the
partition function in closed form we show how to solve for the equilibrium coalition
structure. Given that the agents are identical the equilibrium coalition structure is
equivalent to the solution of a finite dynamic programming problem in which the
number of stages equals the number of agents. Finally, we compute the equilibrium
coalition structures for up to 800′000′000 agents via MATLAB. It turns out that the
stability of the grand coalition decreases in the number of agents.

2 General Approach

2.1 Differential Games

An autonomous infinite horizon noncooperative differential game Γ (x) consists of
the following ingredients (with μ = (μi)i∈N ):

• Agents N = {1, 2, . . . , n}
• State space X ⊆ IR
• Action space Ui ⊆ IR for each i ∈ N
• Strategy space Ui = {μi : X → Ui | μi(x) Lipschitz continuous in x}

2See the Handbook article of Ray and Vohra [11].
3See the surveys of Calvo and Rubio [3] and de Zeeuw [6].
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• Payoff functional Ji(x, μ) =
∫ ∞

t
e−r(s−t)Fi(x(s), μ(x(s)))ds

• State equation ẋ(s) = f (x(s), μ(x(s)))

At every point in time t ∈ [0,∞) each agent i chooses an action ui(t) ∈ Ui accord-
ing to a feedback strategy μi : X → Ui such that ui(t) = μi(x(t)). An agent derives
instantaneouspayoffs according to a functionFi : X ×U → IR,whereU =×i∈N Ui

denotes the joint action space. The functions {Fi(x, u)}i∈N are assumed to be contin-
uously differentiable in x and u = (ui)i∈N . The objective functional Ji(x, μ) of each
agent is the discounted stream of payoffs over s ∈ [t,∞), where r > 0 denotes the
common time preference rate and μ ∈×i∈N Ui a strategy profile. Since we consider
autonomous infinite horizon games, the payoff functional does not depend on the
current time t, but only on the current state x(t) = x [4, Theorem 19.2]. The state
evolves over time according to a stationary differential equation f : X ×U → IR
with initial condition x(0) = x0 ∈ X . The evolution of the state over s ∈ [t,∞) is
then described by the following dynamic system:

⎧⎨
⎩
ẋ(s) := dx(s)

ds
= f (x(s), μ(x(s))) (s ≥ t),

x(t) = x ∈ X .
(1)

We assume that the function f (x, u) is continuously differentiable in x and u. The
assumptions on the state equation f (·, ·) and strategy spaces {Ui}i∈N imply that the
solution x(s) of the differential equation (1) exists and is unique as well as continuous
[1, Theorem 5.1]. We further assume that a profile of admissible strategies μ jointly
generates a state trajectory x(s) that stays in the state space X and that payoffs are
finite. Therefore consider the parametrized solution of (1)

y(s; t, x, μ) = x +
∫ s

t
f (x(k), μ(x(k)))dk.

Now we define a set U ⊂×i∈N Ui of jointly admissible strategies by

U =
{
μ ∈×

i∈N
Ui | ∀(t, x) ∈ [0,∞) × X : y(s; t, x, μ) ∈ X ∀s ≥ t,

∀x ∈ X : max
i∈N

{|Ji(x, μ)|} < ∞
}
.

2.2 Partition Function

A subset of agents S ⊆ N is called a coalition with S = N being the grand coalition.
Let Π denote the set of all partitions of N . A coalition structure π ∈ Π splits N into
nonempty and disjoint subsets (the coalitions) such that S ∩ C = ∅ for all different
coalitions S,C ∈ π and

⋃
S∈π S = N for all coalition structures π ∈ Π . Denote the

set of embedded coalitions by
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E =
{
(S, π) ∈ 2N × Π

∣∣∣ ∅ �= S ∈ π
}

.

A cooperative differential game in partition function form is a pair 〈N ,V 〉 with
V : X × E → IR being the partition function. The partition function V (x, S, π)

is the worth of coalition S ∈ π in state x ∈ X . In the present paper we use an
equilibrium approach to construct V (·, ·, ·). The primitive is a differential game
Γ (x) = 〈N , (Ui)i∈N , (Ji(x, ·))i∈N 〉with all agents being singletons. For a given coali-
tion structure π ∈ Π we assume that the agents i ∈ S act cooperatively within, but
noncooperatively across coalitions S ∈ π . Since a coalition acts as a single player, the
action and strategy space of coalition S becomesUS =×i∈S Ui andUS =×i∈S Ui,
respectively. The coalitional payoff JS(x, μ) is simply defined as the sum of individ-
ual payoffs

JS(x, μ) =
∑
i∈S

Ji(x, μ).

A noncooperative differential game in coalition form Γπ(x) is then described by a
triplet 〈π, (US)S∈π , (JS(x, ·))S∈π 〉 in which π is the set of players, US the strategy
space of player S ∈ π and JS(x, μ) the payoff of S ∈ π . The definition of aNash equi-
librium for a game played between coalitions is straightforward. Let μS = (μi)i∈S
denote the strategy profile of coalition S andμ−S = (μC)C∈π\{S} the strategy profiles
of all coalitions but S.

Definition 1 The n-tuple μ ∈ U is a state-feedback Nash equilibrium of the game
Γπ(x) if for all coalitions S ∈ π and states x ∈ X the following inequalities hold:

JS(x, μ) ≥ JS(x, μS , μ−S) ∀μS ∈ US .

One should note that the coalition structure π is fixed and it is thus an ordinary
Nash equilibrium and not a strong one. Since the instantaneous payoff functions
{Fi(x, u)}i∈N are assumed to be continuously differentiable in (x, u) the joint payoff
of coalition S given by

FS(x, u) =
∑
i∈S

Fi(x, u)

is also continuously differentiable in (x, u). This fact follows simply by the sum rule;
the sum of partial derivatives is equal to the partial derivative of the sum. Then we
can apply the standard theorem for the characterization of an equilibrium by means
of the solution of a system of coupled differential equation. The following theorem
is fundamental.

Theorem 1 ([13, cf. Theorem 1]) For a given partition π ∈ Π of N , the n-tuple
μ ∈ U is a Nash equilibrium of the game Γπ(x) if there exist |π | functions {vS :
X → IR}S∈π that are continuously differentiable in x and solve the following system
of coupled Hamilton-Jacobi-Bellman (HJB) equations:
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rvS(x) = max
uS∈US

{
FS(x, uS , μ−S(x)) + v′

S(x)f (x, uS , μ−S(x))
}

= FS(x, μ(x)) + v′
S(x)f (x, μ(x)).

Further, the transversality condition limt→∞ e−rtvS(x)must be satisfied for all coali-
tions S ∈ π and all feasible states x ∈ X .

For a given coalition structure π ∈ Π we can think of vS(x) = JS(x, μ) being a char-
acteristic function that assigns to each coalition a worth. And the partition function
then assigns to each partition a characteristic function.

Definition 2 Thepartition functionV : X × E → IR assigns to each coalitionS ∈ π

the noncooperative equilibrium payoff

V (x, S, π) = JS(x, μ) (S ∈ π).

2.3 Equilibrium Coalition Structure

Our stability concept rests on Bloch’s [2] sequential game of coalition formation. The
equilibrium of the game determines the coalition structure. Let p : N → N denote
a permutation of N , called the rule of order. Next we quote Bloch [2, p. 95] on the
rules of the game (my notation):

The first player according to the rule of order p starts the game by proposing the formation
of a coalition S to which she belongs. Each prospective member responds to the proposal
in the order determined by p. If one of the player rejects the proposal, she must make a
counteroffer and propose a coalition S ′ to which she belongs. If all members accept, the
coalition is formed. All members of S then withdraw from the game, and the first player in
N \ S starts making a proposal.

The coalition structure that results from the stationary equilibrium of the alternating
offer game is called an equilibrium coalition structure. If the agents are identical,
then the game exhibits two useful properties. The equilibrium coalition structure is
the same for all rules of order up to a permutation of the agent’s index i �→ p(i) [2, pp.
107 – 108]. And the stationary equilibrium of the alternating offer bargaining game
is equivalent to the equilibrium of an extensive form game of choice of coalition size
[2, Prop. 4.2].

Assumption 1 The agents are identical.

Assumption 2 The rule of order is from 1 to n.

Under Assumptions 1 and 2 we can identify equilibrium coalition structures from
the equilibrium of an extensive form game

Λ(x) = 〈N , (Σi)i∈N , (gi(x, ·))i∈N , (Hi)i∈N\{1}〉.
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Here Σi ⊂ IN = {0, 1, 2, . . .} is the action space, Σ =×i∈N Σi the joint action

space, gi : X × Σ → IR the payoff function andHi ⊂×j=i−1
j=1 Σj the set of histories.

The rules are as follows:

• Starting with player 1, each player i ∈ N chooses a number σi ∈ IN of subsequent
players to form a coalition with. As a result, a player has no choice if she was
already integrated into a coalition by a previous player.

• Each player has to choose at least 1 player if still available.
• Each player moves exactly once.
• The game is with perfect information.

Given the rules of the game we can define the action space Σi. For the first agent
we simply fixΣ1 = N . For all i ∈ {2, . . . , n} let hi = (σ1, . . . , σi−1) denote a history
up to stage i ∈ {2, . . . , n}. Define the history dependent action space for all i ∈
{2, . . . , n} by

Σi(hi) =

⎧⎪⎪⎨
⎪⎪⎩

{1, . . . , n − (i − 1)} if
i−1∑
j=1

σj < i,

{0} else.

The action profile σ ∈ Σ then induces the coalition structure π via the function
	 : Σ → Π with

π = 	(σ) =
⋃

i∈{j∈N |σj>0}
{{i, . . . , i − 1 + σi}}.

For the extensive form game we further need to define an individual payoff function
gi(x, σ ) that maps the actions into the reals. Since the underlying game that defines
the worth of a coalition is a differential game, the individual payoff also depends
on the current state x. Here we consider the payoff agent i can expect in coalition
S under partition π . Due to the symmetric setup we fix an equal sharing rule of the
coalition worth. The individual worth of i ∈ S is then given by

gi(x, σ ) = V (x, S,	(σ))

|S| .

We will define a state dependent stable coalition structure π(x) ∈ Π in terms of the
subgame perfect Nash equilibrium (SPNE) σ(x) of the game Λ(x).

Definition 3 The n-tuple σ(x) ∈ Σ is a SPNE of Λ(x) if for all agents i ∈ N , states
x ∈ X and histories (hi)ni=2 ∈×n

i=2 Hi it holds that:

gi(x, σ (x)) ≥ gi(x, σi, σ−i(x)) ∀σi ∈ Σi(hi),

where σ−i(x) = (σ j(x))j∈N\{i} are the equilibrium actions of the opponents.



Equilibrium Coalition Structures of Differential Games … 307

Lemma 1 SinceΛ(x) is a finite extensive form game with perfect information, there
always exists a SPNE for any state x ∈ X .

Definition 4 The coalition structure π(x) = 	(σ(x)) is stable at x ∈ X .

Note that, generally, the equilibrium coalition structure is state dependent. This may
lead to a time inconsistent equilibrium coalition structure in the sense that replay-
ing Λ(x0) at some time t > 0 may yield a different equilibrium coalition structure
π(x0) �= π(x) for different states x0 �= x.

Definition 5 The initial equilibrium structure π(x0) is strongly time consistent if it
does not change with respect to the game position, i.e., π(x0) = π(x) for all x ∈ X .

Next we turn to the classic cake eating application and show how to compute the
partition function aswell as the equilibriumcoalition structure for an arbitrary number
of agents n ∈ IN \ {0}.

3 Cake Eating

Consider n identical agents. The agents eat a cake over the time interval t ∈ [0,∞).
Wedenote the size of the cake at time instant s ∈ [t,∞) by x(s) ∈ X , withX = (0, x0]
being the state space and x0 > 0 the initial size of the cake. For technical reasons we
assume that the agents never eat the entire cake, and thus x(t) > 0 for all t ≥ 0. The
consumption rate of any agent i ∈ N is denoted by ui(s) ∈ Ui = IR+. The size of the
cake evolves over time according to the following dynamic system:

⎧⎨
⎩
ẋ(s) = −

∑
i∈N

ui(t) (s ≥ t),

x(t) = x ∈ X .

(2)

We assume that each agent i derives instantaneous log payoffs from consumption
Fi(ui) = ln(ui). If the agents eat the entire cake such that there exists a time instant t =
inf{t > 0 | x(t) = 0}, then there is nothing left to consume, which implies ui(t) = 0
for all t ≥ t and i ∈ N . Since Fi(0) is undefined, we make the assumption x(t) > 0
for all t ≥ 0.

Proposition 1 For π ∈ Π there exists a Nash equilibrium for the cake eating game
characterized by the following strategies μ(x) and |π | value functions {vS(x)}S∈π :

μi(x) = r

|S|x (i ∈ S)

vS(x) = |S|
r

(ln(rx) − ln(|S|) − |π |) .
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Proof Consider the maximizers of the right-hand side of the HJB equation

(
1

v′S (x)
, . . . ,

1

v′S (x)

)
= arg max

uS∈US

⎧⎨
⎩
∑
i∈S

ln(ui) − v′S (x)

⎛
⎝∑

i∈S
ui +

∑
C∈π\{S}

∑
j∈C

μj(x)

⎞
⎠
⎫⎬
⎭ .

The maximized HJB equation then reads

rvS(x) = −|S| ln (v′
S(x)

)− |S| − v′
S(x)

∑
C∈π\{S}

|C|
v′
C(x)

.

We guess the functional form of the value function vS(x) = αS ln(x) + βS , where
αS , βS ∈ IR denote some constants to be determined. The maximized HJB equation
then becomes

rS (αS ln(x) + βS) = −|S| ln
(αS

x

)
− |S| − αS

x

∑
C∈π\{S}

|C|x
αC

.

This equation needs to hold for all x ∈ X . We thus collect the terms containing x and
rewrite the equation as follows:

ln(x) (rαS − |S|)
︸ ︷︷ ︸

=0

+ rβS + |S|(ln(αS) + 1) + αS

∑
C∈π\{S}

|C|
αC︸ ︷︷ ︸

=0

= 0.

The equation is true for all x ∈ X if the constants satisfy

αS = |S|
r

and βS = −1

r

⎡
⎣|S|(ln(αS) + 1) + αS

∑
C∈π\{S}

|C|
αC

⎤
⎦ .

Substituting the coefficients (αS)S∈π yields for βS

βS = − 1

r

⎡
⎣|S|

(
ln

( |S|
r

)
+ 1

)
+ |S|

r

∑
C∈π\{S}

|C|r
|C|

⎤
⎦

= − |S|
r

(ln(|S|) − ln(r) + |π |).

Eventually, one derives the equilibrium strategies μi(x) for i ∈ S as well as value
functions vS(x) for S ∈ π
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μi(x) = 1

v′
S(x)

= 1
αS
x

= r

|S|x,

vS(x) = αS ln(x) + βS = |S|
r

(ln(rx) − ln(|S|) − |π |) = V (x, S, π).

�

Now we can also compute the state trajectory by solving (2)

⎧⎨
⎩
ẋ(s) = −

∑
S∈π

∑
i∈S

μi(x(s)) = −
∑
S∈π

∑
i∈S

r

|S|x(s) = −x(s)r|π | (s ≥ t)

x(t) = x ∈ X

for

x(s) = xe−(s−t)r|π |.

It is noteworthy that the trajectory depends only on the number of coalitions |π | ∈ N ,
but not directly on the number of agents n. That is, we could end up in the odd
situation that n → ∞ agents consume less than n = 2 agents if the grand coalition
forms |π | = 1 for the first case, but the two agents split |π | = 2 in the latter case.

Next we show how to derive the equilibrium coalition structure of the cake eating
game. For any i ∈ S the payoff is given by (with π = 	(σ))

gi(x, σ ) = V (x, S,	(σ))

|S| = 1

r
(ln(rx) − ln(|S|) − |	(σ)|) .

Now we need to distinguish two cases. If i has a turn, she determines the size of
the coalition σi = |S|. If she has no turn, her payoff depends on the size player
max{j ∈ N | σj > 0, j < i} has chosen.

gi(x, σ ) = 1

r

⎧⎪⎪⎨
⎪⎪⎩

(ln(rx) − ln(σi) − |	(σ)|) if
i−1∑
j=1

σj < i,

(
ln(rx) − ln(σmax{j∈N |σj>0, j<i}) − |	(σ)|) else.

Proposition 2 The equilibrium coalition structure is strongly time consistent.

Proof Generally, the equilibrium action is the payoff maximizer

σ i(x) ∈ arg max
σi∈Σi(hi)

gi(x, σi, σ−i(x)).

For all agents i ∈ N , however, there is no interaction between the state x and the
action σi
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∂2gi(x, σ )

∂x∂σi
= 0 ∀i ∈ N .

The equilibrium action is thus state redundant, i.e., σ = σ(x) for all x ∈ X , and so is
the equilibrium coalition structure π = 	(σ) = 	(σ(x)) = π(x) for all x ∈ X . �

We will thus drop x as an argument of σ(x) and Λ(x) and simply write σ for the
equilibrium profile of the gameΛ. Before turning to the application again, we briefly
discuss why the order of coalition choice does not change the stable coalition struc-
ture up to a permutation of the agent’s indice i. Denote by p : N → N an arbitrary
permutation of the agents and by P the set of all permutations. In the game of choice
of coalition size, the order of choice is then from p(1) to p(n). Due to symmetry, the
identity of agents within a coalition is not important for stability; only the size of a
coalition is important. If pσ denotes the equilibrium profile under the rule of order
p, then σ = pσ for all p ∈ P.

Example 1 To get an idea of the previously introduced concepts let us first consider
the three-player case with N = {1, 2, 3}. Then we need to distinguish four strategy
profiles and associated partitions

σ 1 = (3, 0, 0) �→ 	(σ 1) = {{1, 2, 3}}
σ 2 = (2, 0, 1) �→ 	(σ 2) = {{1, 2}, {3}}
σ 3 = (1, 2, 0) �→ 	(σ 3) = {{1}, {2, 3}}
σ 4 = (1, 1, 1) �→ 	(σ 4) = {{1}, {2}, {3}}.

Now we consider Bloch’s game. Beginning with agent i = 3 we solve the game
backwards and maximize payoffs. Agent 3 only has a turn if the history is h3 ∈
{(1, 1), (2, 0)} and the strategy set is a singleton Σ3(h3) = {1}, since she is last in
the row:

1 = arg max
σ3∈{1}

g3(x, h3, σ3) = arg max
σ3∈{1}

{
1

r
[ln(rx) − ln(σ3) − 3]

}
.

In this case the number of coalitions equals |	(1, 1, 1)| = 3. Agent 2 only has a turn
if the history is h2 = (1) and she has the option to become a single or to integrate
the last agent Σ2(h2) = {1, 2}. In the decision problem of agent 1 and 2 we further
need to employ an indicator function, because the number of coalitions changes with
respect to the decision of an agent. For example, σ2 = 1 yields |	(1, 1, 1)| = 3 and
σ2 = 2 yields |	(1, 2, 0)| = 2. Given agent 2 has a turn, it is optimal to integrate
the last agent.

2 = arg max
σ2∈{1,2}

g2(x, h2, σ2, 1) = arg max
σ2∈{1,2}

{
1

r

[
ln(rx) − ln(σ2) − (

2 + 1{1}(σ2)
)]}

.
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Fig. 1 Game Tree

Knowing the reaction of the followers, the first agent now chooses to become a
singleton:

1 = arg max
σ1∈{1,2,3}

g1(x, σ1, 2, 1) = arg max
σ1∈{1,2,3}

{
1

r

[
ln(rx) − ln(σ1) − (

1 + 1{1,2}(σ1)
)]}

.

The associated game tree with equilibrium path (bold red) is illustrated in Fig. 1.
The equilibrium actions are thus given by σ = (1, 2, 0), resulting in the equilibrium
structure π = {{1}, {2, 3}}. The grand coalition is not stable, because each agent has
an incentive to freeride on the remaining double coalition. The fully noncooperative
coalition structure is not stable either, because here either two or all three agents have
an incentive to form a coalition. Thenwe can readily deduce thatπ ∈ {π ∈ Π | |π | =
2} is stable, because no agent has an incentive to deviate. The single will not join
the double coalition, because her payoff decreases and the double coalition will not
split, because then three singles remain. It is noteworthy thatwe only considermyopic
deviations.Onemay argue that the double coalition inπ splits, because then the grand
coalition is beneficial for all agents afterward. We abstract from this farsighted view,
because one ends up cycling. Reconsidering the order independence, we should note
that (1, 2, 0) is the equilibrium profile for all choice orders {p(1), p(2), p(3)}.

Next we are going to characterize the equilibrium coalition structures for any
number of agents n ∈ IN \ {0}. For an arbitrary history hi ∈ Hi let ρ<i(hi) denote the
number of coalitions already formed up to agent i. Further let

I(i | σ i+1, . . . , σ n) = 1 + I(i + σi | σ i+σi+1, . . . , σ n)
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denote the number of coalitions that follow agent i after she has chosen her action σi,
conditioned on the equilibrium actions of the agents that follow her (σ i+1, . . . , σ n).
On every stage i ∈ N the total number of coalitions is then defined recursively by

|	(hi, σi, σ i+1, . . . , σ n)| = ρ<i(hi) + 1 + I(i + σi | σ i+σi+1, . . . , σ n),

and agent i ∈ N thus solves on stage i ∈ N

arg max
σi∈Σi

gi(x, hi, σi, σ i+1, . . . , σ n)

= arg max
σi∈Σi

{
1

r

[
ln(rx) − ln(σi) − ρ<i(hi) − 1 − I(i + σi | σ i+σi+1, . . . , σ n)

]}

= arg max
σi∈Σi

{− ln(σi) − I(i + σi | σ i+σi+1, . . . , σ n)
}

=σ i(σ i+1, . . . , σ n).

With the terminal condition I(n + 1) = 0, the problem of finding a stable coalition
structure reduces to solve a simple recursive program. In Algorithm 1 one finds the
pseudocode to compute the equilibrium actions σ of the game Λ for an arbitrary n.
The equilibrium coalition structure is then simply π = 	(σ).

Algorithm 1 Equilibrium profile σ of Λ

Require: n ∈ IN, I = (0, . . . , 0)(n+1)×1, σ = (0, . . . , 0)n×1, N = {1, 2, . . . , n}
for i = n to 1 do

Σi = {1, . . . , n − (i − 1)}
gi(σi) = − ln(σi) − I(i + σi)

σ i = arg max
σi∈Σi

gi(σi)

{comment: if σ i > 1, then (σ i+1, . . . , σ i+σ i−1) = (0, . . . , 0)}
q = 0;
for k = i to n do
if q = 0 then
q = σ k − 1

else
σ k = 0
q = q − 1

end if
end for
I(i) = 1 + I(i + σ i)

end for
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4 Example

Since we are not able to solve for the equilibrium coalition structure in closed form,
we solve the problemviaMATLAB.Withoutmemory constraints, one could compute
the stable coalition structure for an arbitrary n. Here we are able to compute the stable
coalition structures for up to 800′000′000 agents. Table 1 contains the translation of
the pseudocode into runnable MATLAB code. Outputs are the equilibrium actions
σ ∈ INn as well as the significantly shorter vector of positive equilibrium actions
σ>0 = (σ i : σ i > 0, i ∈ N ) ∈ INdim(σ>0).

Next we want to understand the formation of equilibrium coalition structures.
Therefore, consider first the number of agents (n’s) such that σ>0 = (n) and the
grand coalition is an equilibrium π = {N }.
Proposition 3 Define the set A as follows:

A = {1, 2, 4, 7, 13, 24, 44, 79, 146, 268, 482, 873, 1′580, 2′867, 5′191,
9′413, 17′057, 30′917, 56′029, 101′550, 184′049, 333′573, 604′568,
1′095′720, 1′985′887, 3′599′229, 6′523′256, 11′822′773, 21′427′636,
38′835′525, 70′385′646, 127′567′200, 231′203′255, 419′033′616,
759′458′042}.

For n ∈ A the grand coalition is stable, i.e., σ>0 = (n).

Proof Compute σ>0 for all n ∈ A via the program in Table 1. �

Reconsidering the state trajectory

x(t) = x0e
−rt|π |

it is striking to note that n = 3 agents faster exploit the cake than, say, n =
759′458′042, because in the first case two coalitions form while in the latter only
one.

Denote an element of A by ak with k ∈ {1, . . . , 35}. When plotting ak+1/ak for
k ∈ {1, . . . , 34} one finds that the growth rate approaches 1.812403619 (cf. Fig. 2).
Hence the series becomes very sparse and the probability that the grand coalition
forms decreases monotonously in n. Put differently, the more agents, the less likely
the grand coalition is stable.

We should further note that the elements of A form a complete sequence: i.e., any
element of A larger than 4 can be expressed as a sum of values in the sequence, using
each value at most once.
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Table 1 MATLAB computation of positive equilibrium profile σ>0

% housekeeping

clear all; clc;

% initialization

n = 800000000; % number of agents

I = zeros(n+1,1); % storage index

s = zeros(n,1); % storage final actions

N = 1:n; % set of agents

% backward induction loop

for i=fliplr(N)

S = 1:n-i+1; % action set

g = -log(S)’-I(i+S); % payoffs

[g,j] = max(g); % max payoff

s(i) = S(j); % argmax payoff

% construction of vector with equilibrium actions

q = 0;

for k=i:n

if q == 0

q = s(k) - 1;

else

s(k) = 0;

q = q - 1;

end

end

I(i) = 1 + I(i+s(i)); % recursion

end

% collection of positive equilibrium actions

s_pos = s(s>0)
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Fig. 2 Growth rate ak+1/ak

Table 2 Positive equilibrium actions σ>0 = q(n) for n ∈ {1, . . . , 50}

7 = 1 + 2 + 4

13 = 2 + 4 + 7

24 = 4 + 7 + 13

44 = 7 + 13 + 24

79 = 4 + 7 + 24 + 44

...

One may conjecture that any equilibrium coalition structure can be constructed by
elements of A. In Table 2 we list the positive equilibrium actions σ>0 = q(n) for
n ∈ {1, . . . , 50}.
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It turns out that for all n ∈ {1, . . . , 50} the positive equilibrium actions are a
recursive concatenation of elements of A. For example, consider n = 40 and let
a(n) = max{a ∈ A | a ≤ n}. Then one computes σ>0 via

σ>0 = q(40) =(q(40 − a(40)), a(40))

=(q(16), 24)

=(q(16 − a(16)), a(16), 24)

=(q(3), 13, 24)

=(q(3 − a(3)), a(3), 13, 24)

=(q(1), 2, 13, 24)

=(1, 2, 13, 24).

This observation leads us to the following conjecture.

Conjecture 1 The positive equilibrium actions σ>0 for n ∈ {1, . . . , 800′000′000}
are given by the following recursive concatenation:

σ>0 = q(n) =
{

(q(n − a(n)), a(n)) if n /∈ A,

n else.

5 Conclusion

We introduced differential games in partition function form and a notion of endoge-
nous coalition formation for symmetric differential games. The method at hand is
generally applicable for any game. In fact, identifying equilibrium coalition struc-
tures boils down to solve a finite dynamic programming problem inwhich the number
of stages equals the number of agents. If the equilibrium actions are state dependent,
then one may discretize (a subset of) the state space and thus solves the recursive
problem on a restricted domain. Then the problem of time consistency may arise in
the sense that an initially stable coalition structure becomes unstable over time. This
topic remains for further study.
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AModel for Partial Kantian Cooperation

Ioannis Kordonis

1 Introduction

It is very well known that equilibrium solutions are often inefficient (e.g., [1]). Thus,
the description of cooperative behaviors has evolved as an important topic in Game
Theory. In the context of repeated games, there is a lot of work on the imposition of
cooperative outcomes, under the name “folk theorems” (e.g., [2]). In the context of
EvolutionaryGameTheory, the evolution of cooperation is an important topic as well
(e.g., [3, 4]). Here is also empirical evidence that people indeed behave cooperatively,
for example,when they exploit a shared resource ([5]).Other examples includepeople
who buy low-emission cars (e.g., electric or hybrid), even if this may not make much
sense from a narrow economic perspective, or contribute anonymously to charity.
In many game situations, however, there is a great multitude of different possible
cooperative outcomes that can be supported by models of fully rational players or
evolutionary models. Thus, an important question is “which one of those solutions
could describe or predict the actual outcomes?”.

This work studies the behavior of the players in game situations, in the case where
their behavior is affected by ethical considerations. Particularly, we assume that they
are partially followingKant’s “categorical imperative” ([6]). Themost common form
of the categorical imperative, stated first in the bookGroundwork of the Metaphysics
of Morals in 1785, reads as follows:

Act only according to that maxim whereby you can, at the same time, will that it should
become a universal law.

Similar ideas have appeared much earlier (for example, the golden rules of various
religious texts and traditions), but Kant formulates this principle in a strict, almost
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mathematical way. Still, there can be various interpretations of the categorical imper-
ative, leading eventually to different possible models. Let us describe some of the
issues that may arise when interpreting the categorical imperative. First, the players
may have different action sets, their actionsmay have a different impact on the others,
or they may have different preferences. Hence, a “maxim” seems most appropriate
to be interpreted as a strategy of a player (i.e., a mapping from a state, preference, or
type to the action set) and not an action. Second, when a certain player optimizes for
the strategy, which she assumes that the others would also follow, it is not reasonable
to assume that all the other players having different states or preferences would coop-
erate to optimize the particular player’s cost.1To overcome this difficulty, we use the
notion of the veil of ignorance. This notion was introduced by Rawls ([7]) to describe
a hypothetical situation where a person decides about the rules of a society. However,
during this decision, she doesn’t know her position in this society, her abilities, or
even her tastes. Harsanyi used a very similar idea in an earlier text, under the name
equi-partition ([8])). Another issue is that the use of a veil of ignorance requires inter-
personal comparisons of utility. However, the need for interpersonal comparisons of
utility does not create a problem in a descriptive model since players do not need to
agree on the scaling of the utilities of the other persons. What is important is how
each player perceives the utilities of the others. Finally, the players know that it is
not true that all the others will follow their strategy. Hence, it is interesting to study
how the players would behave if each one of them assumes that some of the others
would follow her strategy.

1.1 Contribution

The primary contribution of this work is the definition of a notion of a partially
Kantian cooperative outcome (the r -Kant-Nash equilibrium) and the study of its
existence and uniqueness properties. An important building block is to assign to
each player an imagined (virtual) group of players. The player assumes that within
her virtual group, all the players use the same strategy aiming to optimize an overall
goal of the group. Equivalently, the player decides her strategy before knowing her
place in the virtual group. The virtual group of a player belongs exclusively to her
imagination (perception or understanding of social identity). Thus, the players do not
need to agree on the construction of their virtual groups. The aim of the virtual group
reflects the idea of the veil of ignorance. Thus, the strategy of the group minimizes

1Let us quote a part of a story inwhichWoodyAllenmakes fun of several philosophers. This passage
illustrates some issues arising when interpreting the categorical imperative. “No less misguided was
Kant, who proposed that we order lunch in such a manner that if everybody ordered the same thing
the world would function in a moral way. The problem Kant didn’t foresee is that if everyone orders
the same dish there will be squabbling in the kitchen over who gets the last branzino. “Order like
you are ordering for every human being on earth,” Kant advises, but what if the man next to you
doesn’t eat guacamole? In the end, of course, there are no moral foods-unless we count soft-boiled
eggs.” From Woody Allen “THUS ATE ZARATHUSTRA” New Yorker JULY 3, 2006.
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a (risk-sensitive) cost of a random member of the group. This formulation includes
the case of minimizing the average cost (or equivalently the total cost), inspired by
[8], and the minimization of the maximum cost, inspired by [7].

We use a model with a continuum of players. The reason for this choice is that
we would like to describe abstract anonymous groups of players. Each player has
an individual type and a social preference type. The individual type describes her
position, i.e., how her actions affect others and also her preferences. The social
preference type characterizes the way the player constructs her imagined group. A
set of strategies is an r -Kant-Nash equilibrium if the action of each player coincides
with the one she would choose by solving the problem of her virtual group. We then
study the existence, uniqueness, and computation of r -Kant-Nash equilibrium in the
case where there is a finite possible number of types. Then, we give a characterization
of the r -Kant-Nash equilibrium in the case of infinite, one-dimensional, number of
types. We use several examples, including a fishing game, a vaccination game, an
opinion game, and an electric vehicle charging game to illustrate the use of r -Kant-
Nash equilibrium and its properties compared to other notions.

1.2 Related Notions

This work is very much inspired by the work of Roemer. A very much related
notion is Kantian equilibrium, introduced in [9, 10]. A set of strategies constitutes a
multiplicativeKantian equilibrium if no player has amotivation tomultiply her action
by any positive constant ρ assuming that the rest of the players would also multiply
their actions by the same constantρ, aswell. Similarly, he defines the additiveKantian
equilibrium. It turns out that under weak conditions, the Kantian equilibria belong
to the Pareto frontier and under some additional conditions it coincides with the
most efficient point. However, often Pareto frontier contains fundamentally unjust
solutions. It is probably not reasonable to expect that a player who is very much
disadvantaged by a solution in the Pareto frontier to be willing to cooperate with
the others, while she has the opportunity to improve her position by changing her
action unilaterally. Ghosh and Long [11] and Long [12] extended [9] in two distinct
directions. First, they consider dynamic games and second study games with mixed
Kantian and Nash players and introduce the notions of (inclusive and exclusive)
Kant-Nash equilibria. Furthermore, Long in [13] introduced the notion of virtual co-
movers equilibrium. In this model, each player considers a virtual co-movers group
and assumes that if she changes her strategy, then all the members of the virtual
co-movers group would change their strategy accordingly. The basic difference of
the current work with the ones mentioned above is the way the categorical imperative
is interpreted. Particularly, these works assume that the players “universalize” the
changes in their actions, while in this work, we assume that they “universalize” their
strategy.
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Another related line of research is the theory of Belief DistortedNash Equilibrium
[14, 15], due to Wiszniewska-Matyszkiel. These works describe the possibility of
cooperative outcomes in games, based on somemisconceptions of the players, which
however lead to overall outcomes which are consistent with their observations.

2 The r-Kant-Nash Equilibrium

2.1 The Model

In this section, we describe a game theoretic model with a continuum of players (e.g.,
[16]) and then introduce the notion of r -Kant-Nash equilibrium. We assume that all
the sets and functions thereafter are measurable.

We consider a set of players I = [0, 1] distributed uniformly (according to the
Lebesgue measure λ). Let (I,B, λ) be the corresponding probability space, where B
is the Borel σ -algebra. Each player i ∈ I has an individual type xi describing both
the preferences of i and the effects of her actions on the costs of the others. Denote
by X the set of possible individual types and define the function x : I → X with
x(i) = xi . Assume also that each player i ∈ I has a social preference type θi and
denote byΘ the set of possible social preference types. Social preference types relate
to the notion of virtual groups which will be explained in detail later on. Similar to
x there is a function θ : I → Θ with θ(i) = θi .

Each player i ∈ I chooses an action ui from an action set U . We focus on sym-
metric action profiles, i.e., profiles where ui depends only on xi and θi . Particularly,
for the function u : I → U , with u(i) = ui , there is a function γ̄ : X × Θ → U such
that u(i) = γ̄ (x(i), θ(i)), for all i ∈ I .

The cost function of each player is given by

Ji = J (ui , ū, xi ), (1)

where ū is statistic of the players’ actions given by

ū =
∫
I
g(u(i), x(i))λ(di), (2)

for a function g : U × X → R
m .

Let us then describe the idea of a virtual (imagined) group:

(i) Each player i ∈ I assumes that she is associated with a virtual group of players.
This group reflects the social considerations of player i . The virtual group of
player i is described by a sub-probability measure ri (·) on (I,B), i.e., a finite
measure with ri (I ) ≤ 1. For every A ∈ B, the sub-probability measure should
satisfy ri (A) ≤ λ(A). If ri (I ) �= 0, let us denote by r̄i (·) the probability measure
ri (·)/ri (I ). If ri (I ) = 0 then the virtual group of this player constitutes only of
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herself. We assume that type of the virtual group of player i depends only on xi
and θi . That is, if for i ′ ∈ I , we have xi = xi ′ and θi = θi ′ imply ri (·) = ri ′(·).

(ii) Player i ∈ I assumes that all the members j ∈ I of her virtual group are bound
to use the same strategy ũi ( j). We again assume symmetry, i.e., there is a
function γ : X × θ × X → U with ũi ( j) = γ (x( j), xi , θi ). We use also the
notation ũi ( j) = γxi ,θi (x( j)).

(iii) The aim of the virtual group is to minimize a risk-sensitive aggregate cost of its
members. We denote by βθi ∈ (−∞,∞) the risk factor of the virtual group. If
βθi = 0 the group is risk neutral, when βθi > 0 is risk averse, and for βθi < 0
risk loving. For a risk neutral virtual group (βθi = 0), if ri (I ) > 0, define the
cost of the virtual group of player i as

J̃i (γ, γ̄ ) = E
[
J (γxi ,θi (x( j)), ūi , x( j))wxi ,θi (x( j))

]
, (3)

where j is a player selected randomly according to r̄i (·) and the factorwxi ,θi (·) is
a weighting function indicating the relative importance of the several positions
in the group. The value of ū corresponds to the g-mean value of the actions
of all the players assuming that the members of the group are using ũi ( j) =
γxi ,θi (x( j)) and the strategy of the players not belonging to the group is given
by u( j) = γ̄ (x( j), θ( j)). Thus

ū = Txi ,θi (γ, γ̄ ) =
∫
I
g(γ̄ (x( j), θ( j)), x( j))(λ − r̄i )(d j) +

∫
I
g(γxi ,θi ( j), x( j))ri (d j).

(4)

For θi �= 0 define

J̃i (γ, γ̄ ) = 1

βθi

ln E
{
exp[βθi J (γxi ,θi (x( j)), ūi , x( j))wxi ,θi (x( j))]

}
. (5)

If ri (I ) = 0, then the cost of the virtual group of player i coincides with the
actual cost given by (1). A justification for this choice is given in Appendix.

(iv) For the case where X and Θ are finite we extend the definition of the virtual
group’s cost for the case βi = ∞. The cost is given by

J̃i (γ, γ̄ ) = max
x ′∈Xi

{
J (γxi ,θi (x

′), ūi , x ′)wxi ,θi (x
′)]} , (6)

where Xi = {x ′ ∈ X : ri ({ j ∈ I : x( j) = x ′}) > 0}.
Remark 1 (i) The virtual groups defined have many similarities with the virtual

co-movers model of [11, 13]. Specifically in the virtual co-movers model each
player assumes that if she changes her strategy, a subset of the others would
also change theirs accordingly.

(ii) The definition of the members of the virtual group of each player offers a
lot of flexibility. The two extreme cases are the case where r = 0 and the
group of each player consists only of herself and the case where ri (·) = λ(·).
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In the intermediate cases, the quantity ri (·) may relate to some perceived social
identity, such as race, class, age, religion, gender, ethnicity, ideology, nationality,
sexual orientation, culture, or language.2

(iii) The virtual groups, the way they are defined, are purely imaginary. Thus, the
fact that a player i assumes that another player j is included in her virtual group
does not necessarily imply that the virtual group of player j includes i .

(iv) The expectation in models (3) and (5) corresponds to the random position of
the player in the virtual group. In other words, behind the veil of ignorance,
the player does not know at which place of the (imagined) society she is going
to end up. Probably, as Rawls suggested, she might be risk averse against this
uncertainty.

Based on the idea of a virtual group, we introduce the notion of the r -Kant-Nash
equilibrium.

Definition 1 A set of strategies u : I → U in the form u(i) = γ̄ (x(i), θ(i)) is an
r -Kant-Nash equilibrium, if for all possible combinations (xi , θi ) there is a solution
ũi : I → U with ũi ( j) = γxi ,θi (x( j)) to the optimization problem:

minimize
γxi ,θi

J̃i (γ, γ̄ ), (7)

which satisfies γ (xi , xi , θi ) = γ̄ (xi , θi ).

Remark 2 (i) The r -Kant-Nash equilibrium is a situationwhere each player imple-
ments in the actual game an action that would be optimal for her virtual group,
assuming that all the members of the group implemented their optimal actions.

(ii) The weighting factor wxi ,θi may have two discrete roles. At first, Player i may
believe that in her virtual group, some subgroup of players should be favored
over the others. A second, and probably more important, role is to resolve the
so-called interpersonal comparison of utility problem, i.e., the fact that the
players may not agree on how to scale the utility functions of other players.

2.2 Special Cases and Relation to Other Concepts

The notion of r -Kant-Nash equilibrium has several interesting special cases.

(i) The Nash equilibrium. Assuming that r ≡ 0 and βθ = 0 each player uses her
best response to the actions of the other players. Hence, for these values the
r -Kant-Nash equilibrium coincides with the Nash equilibrium of the game with
a continuum of players (e.g., [17]).

2From the identity politics article of Wikipedia.
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(ii) The (Bentham-) Harsanyi solution. Assume that βθ = 0 and ri (·) = λ(·).
Then, each player is risk neutral and optimizes for the mean cost (or equiv-
alently the sum of the costs) of all the players. This solution coincides with the
solution proposed in [8].

(iii) The Rawls solution. Assume that βθ = ∞ and ri (·) = λ(·) and that X and Θ

are finite. In this case, all the players minimize the cost function of the worst-
off participant, i.e., they use the minimax rule. This solution coincides with the
Rawls difference solution [7].

(iv) Efficient cooperation within coalitions. Consider the coalitions C1, . . . ,CN ⊂
I and assume that C j , j = 1, . . . , N is a partition of I . Further, assume that
the virtual groups are the same with the coalitions. That is, for i ∈ C j it holds
ri (A) = λ(A ∩ C j )/λ(C j ). Finally, assume that for 1 ∈ C j it holds θi = j and
that within each coalition the players weight the others in the same way, i.e.,
wθi ,xi (x

′) = gθi (x
′). Then, within each coalition the players jointly optimize for

a weighted sum of their costs, and thus within each coalition there is an efficient
cooperation.

(v) The relation with the altruistic (other regarding) behavior is illustrated in the
following example.

Example 1 (The Fishing Game)We first compute the equilibrium to the game with
altruistic players. It is convenient to consider a gamewith a large number N of players
and then take the continuum limit. Let us note that the r -Kant-Nash equilibrium will
be computed directly for the game with a continuum of players. The cost function
of each one of the players is

Ji = u2i −
⎛
⎝1 − 1

N − 1

∑
j �=i

u j

⎞
⎠ ui ,

where the first term corresponds to the effort of the fisher i and the second on the
revenues.

The altruistic (other regarding) cost for player i is

J̄i = (1 − α/2)Ji + (α/2)
∑
j �=i

J j = (1 − α/2)(u2i − ui ) + 1

N − 1
ui
∑
j �=i

u j + f (u−i ),

with α ∈ [0, 1].
The Nash equilibrium of the altruistic game is given by

ui = 2 − α

6 − 2α
.

Let us then consider the corresponding game with a continuum of players and
compute the partial Kantian strategy. The cost is given by

Ji = u2 − (1 − ū)u,
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Fig. 1 Comparison of the actions and the costs of the players when they use a partially Kantian
versus an Altruistic criterion

where bar u = ∫
I u(i)λ(di). Assume that Θ = {θ} and X = {x} are singletons. Fur-

ther, assume that each player considers as her virtual group a fraction α of the other
players. Then, the r -Kant-Nash equilibrium in the form u = γ is characterized by

∂

∂γ
J (u, ū) = ∂

∂u
J (u, ū) + ∂

∂ ū
J (u, ū)

∂ ū

∂γ
= 0,

Hence,
2u − 1 + ū + αu = 0.

Due to symmetry:

u = 1

3 + α
.

Figure 1 compares the actions and the costs of the players in the cases of an altruistic
versus a partially Kantian behavior. It turns out that, in this example, the Kantian
cooperation is more effective than the altruism. �

3 Finite Number of Individual and Social Types

In this section, we assume that the action set U is a subset of the m−dimensional
Euclidean space and that there is a finite set of possible individual-social-type
pairs (x1, θ1), . . . , (xN , θN ). The distribution of players is described by a vector
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p = [p1 . . . pN ]. For the case of a finite number of types, we derive sufficient
conditions for the existence of an r -Kant-Nash equilibrium and characterize it in
terms of a variational inequality. To do so, let us first introduce some notation.
Denote by N ′ the number of different values of xk’s and by x̄1, . . . , x̄N ′ their val-
ues. Denote also by σ the function such that σ(k) = k ′ if xk = x̄k ′ . Consider the
virtual group of a player, having type k, and assume that this group has strategy γ .
Denote by ũk = [uk1, . . . , ukN ] the (imagined) action vector for the members of the
group, where ukk ′ = γ (xk ′ , xk, θk). The form of the strategy implies that ukk ′ = ukk ′′

if xk ′ = xk ′′ . Thus, the vector ũk may be viewed as a member of the setUN ′
. We will

use also the notation rkk ′ = ri ({ j ∈ I : x( j) = xk ′ , θ( j) = θk ′ }) for an i ∈ I which
x(i) = xk and θ(i) = θk . Assume that all the player types have βθi < ∞.

A vector of actions u� = [u�
1, . . . , u

�
N ] is an r -Kant-Nash equilibrium if there

exists a matrix u = [ukk ′ ] such that, for every k, it holds u�
k = ukk and the strategy

ũk = [uk1 . . . ukN ] is optimal for the virtual group of a player with type k, under
the constraint ukk ′ = ukk ′′ if σ(k ′) = σ(k ′′). The cost of a virtual group with action
vector ũk , assuming that the others are playing u�, is given by

J̃k(ũk, u
�) =

{
1

βθi
ln
∑N

k ′=1 rkk ′ exp[βθi wk(k ′) J̄k,k ′(ũk, u�)], i f β �= 0,∞∑N
k ′=1 rkk ′wk(k ′) J̄k,k ′(ũk, u�), if β = 0

(8)

where J̄k,k ′(ũk, u�) is the cost that a player who belongs to the virtual group and has
type k ′ would have if the players of the group were using ũk and the rest u�. Thus,
J̄k,k ′(ũk, u�) is given by

J̄k,k ′(ũk, u
�) = J

(
ũkk ′,

N∑
k ′′=1

[g(u�
k ′′, xk ′′)(pk ′′ − rkk ′′) + g(ũkk ′′, xk ′′)rkk ′′ ], xk ′

)
. (9)

The following proposition adapts some standard results for the existence of aNash
equilibrium (e.g., [18]) to the case of r -kant-Nash equilibrium. Before stating the
proposition let us recall the notions of quasi-convexity and pseudo-convexity [19].
A function f (u) defined on a convex set U is quasi-convex if for any real number
f̄ the set {u ∈ U : f (u) ≤ f̄ } is convex. The function f is pseudo-convex if it is
differentiable and for any pair of points u1, u2 ∈ U such that∇ f (u1)T (u2 − u1) ≥ 0
it holds f (u2) ≥ f (u1).

Proposition 1 Assume that U ⊂ R
m is compact and convex, that J̃k given by (8) is

continuous, and that J̃k(·, u�) is quasi-convex for every fixed u� and every k. Then,
there exists an r-Kant-Nash equilibrium.

Proof Consider the set Ū = UN×N ′
. For each type k = 1, . . . , N , consider the

correspondence Tk : Ū ⇒ UN ′
defined as follows. For a given a u ∈ Ū , define

u� = [u1σ(1) . . . uNσ(N )] ∈ UN . Then define:
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Tk(u) = πUN ′

[
argmin
ũk∈Z

J̃k(ũk, u
�)

]
,

where πUN ′ denotes the projection to UN ′
and Z = {ũ ∈ UN : ũk ′ =

ũk ′′ whenever xk ′ = xk ′′ }. Maximum theorem [20] implies that Tk is compact-
valued upper semi-continuous. Quasi-convexity implies that Tk is convex valued.
Thus, the correspondence T : Ū ⇒ Ū with T : u 
→ T1(u) × · · · × TN (u) satis-
fies the conditions of Kakutani fixed point theorem. Therefore, there exists an
r -Kant-Nash equilibrium. �

A very simple sufficient condition for the existence of a Kant-Nash equilibrium is
given in the following corollary.

Corollary 1 Assume that U ⊂ R
m is compact and convex, and J (·, ·, x) is convex

for every fixed x, the function g is linear in u and βθk ≥ 0, for all k. Then there exists
an r-Kant-Nash equilibrium.

Proof The function J̄k,k ′(·, u�) defined in (9) is convex with respect to ũk . Indeed, in
the right-hand side of (9), thefirst twoarguments of J , particularly,

∑N
k ′′=1[g(u�

k ′′, xk ′′)

(pk ′′ − rkk ′′) + g(ukk ′′, xk ′′)rkk ′′ ] and ũkk ′ are affine functions of ũk . Thus, convexity
of J implies that Ju�k ′ is convex. Now, the fact that exp(·) is increasing and convex
implies that the function,

N∑
k ′=1

rkk ′ exp[βθi Ju�,k ′(ũk))],

is convex in ũk as well. Now, βθk ≥ 0 and the fact that the function ln(·) is increasing
imply that the quasi-convexity assumption of Proposition 1 is satisfied and the proof
of the corollary is complete. �

If the quasi-convexity assumption is strengthened to a pseudo-convexity, then the
r -Kant-Nash equilibrium can be characterized by a variational inequality.

Proposition 2 Assume that U ⊂ R
m is convex, that J̃k given by (8) is continuous,

and that J̃k(·, u�) is pseudo-convex and for every fixed u� and every k. Consider also
the vector function F : UN 2+N → R

m(N 2+N ) given by

F(ũ, u�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇T
ũ1
J̃1(ũ1, u�)

...

∇T
ũN

J̃1(ũN , u�)

u�
1 − ũ11

...

u�
N − ũN N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Then:
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(i) There is an r-Kant-Nash equilibrium if and only if there is a solution (ũ, u�) ∈
UN 2+N to the variational inequality:

FT (ũ, u�)

[
ũ′ − ũ,

(u�)′ − u�

]
≥ 0, for all ũ′ ∈ UN 2

, (u�)′ ∈ UN . (11)

(ii) Assume that F is strictly monotone, i.e.,

(F(ũ′, (u�)′) − F(ũ, u�))T
[

ũ′ − ũ,

(u�)′ − u�

]
> 0, (12)

for every pair (ũ, u�) �= (ũ′, (u�)′). Then, there is at most one r-Kant-Nash equi-
librium.

Proof (i) Consider a pair (ũ, u�) satisfying (11). Choosing ũ′ = ũ and (u�
2)

′ =
u�
2, . . . , (u

�
N )′ = u�

N we conclude that u�
1 = ũ11. Similarly, u�

k = ũkk , for all k. Choos-
ing ũ′

i = ũi , for k = 1, . . . , k − 1, k + 1, . . . , N we conclude that ũk is optimal in
(8). Thus, (ũ, u�) corresponds to an r -Kant-Nash equilibrium. The proof of the con-
verse is similar.
(ii) It is a direct consequence of part (i) and Theorem 2.3.3 of [21]. �

Remark 3 For βθi �= 0, Proposition 2 holds true if instead of J̃k we use

N∑
k ′=1

rkk ′ exp[βθi wk(k
′) J̄k,k ′(ũk, u

�)].

4 Examples of r-Kant-Nash Equilibrium

In this section, we investigate some properties of the r -Kant-Nash equilibrium using
some examples, namely, a vaccination game, static and dynamic fishing games,
an opinion game, and an electric vehicle charging game. We also compare it with
Roemer’s Kantian equilibrium. In all cases, we use examples with at most two types
of players in order to make the visualization of the results easier.

4.1 A Vaccination Game

We describe a simplified model for the spread of a disease, where all members of a
society may choose to vaccinate or not. The model is a slight modification of the one
presented in [22]. The spread of the disease depends on the percentage of people ū
having a vaccination. The cost for each player i is given by
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Ji = ui + (1 − Aui ) f (ū)xi , (13)

where ui = 1 if player i is vaccinated and 0 otherwise, (1 − Aui ) f (ū) stands for the
probability that player i is infected, 0 < A < 1 is a positive constant representing
the effectiveness of the vaccination, f (ū) is a strictly decreasing function, and xi
corresponds to the expected dis-utility player i experiences if she gets sick. A fraction
B of the population consists of vulnerable persons (e.g., older people) and a fraction
1 − B of non-vulnerable.3 The constant xi takes accordingly two values, i.e., Cv

and Cn with Cv > Cn . The first term in (13) stands for the cost of vaccination (e.g.,
time, money, pain, potential side effects, etc.) and the second term to the expected
cost from the disease. Finally, we allow for mixed strategies and thus ui ∈ [0, 1]
and thus the value of ū is given by Buv + (1 − B)un , where uv is the probability of
vaccination for vulnerable and un for the non-vulnerable persons.

Let us first compute the Nash equilibrium of the game. It is not difficult to see
that the Nash equilibrium is

(uv, un) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0) if ACv f (0) ≤ 1
(B−1 f −1((ACv)−1), 0 if ACv f (B) ≤ 1 < ACv f (0)
(1, 0), if ACn f (B) ≤ 1 < ACv f (B)

(1, (1 − B)−1( f −1((ACn)−1) − B), if ACn f (B) ≤ 1 < ACn f (1)
(1, 1), if ACn f (1) ≥ 1

(14)
In what follows, we assume that the parameters are such that all the vulnerable

agents are vaccinated, i.e., it holds ACv f (B) > 1.
Assume that the parameters are given by A = 0.8, B = 0.3, Cv = 500, Cn = 15

and the function f (z) is given by 0.2z2 − 0.4z + 0.21. The virtual group of each
player consists of a fraction α of the other players4 and the risk sensitivity β is 0 for
all the players. TheNash equilibrium, the r -Kant-Nash equilibrium, and theRoemer’s
multiplicative Kantian equilibrium are illustrated in Fig. 2. The computation of the
equilibria is not difficult, since we need only to solve optimization or fixed point
problems in dimension 1.

Observe that already from α = 0.2 the r-Kant-Nash equilibrium belongs to the
Pareto frontier. It seems that this result is not general but has to do with the spe-
cific structure of the game, i.e., the vaccination is a positive externality, but creates
strategic substitutes. Furthermore, vulnerable people play always uv = 1, and thus
their behavior does not depend on α. As α approaches 1, the r-Kant-Nash equilib-
rium approaches the point with the minimum total cost. Let us further note that in
order to compute Roemer’s multiplicative Kantian equilibrium, we have to extend
the feasible region on ui ∈ [0,∞) and write the cost of player i as

3In this section, we do not refer to the interval I , since it seems more convenient to refer to
percentages of players. To connect with previous sections, let us note that in the unit interval, the
set of vulnerable players is [0, B) ⊂ I and the set of the non-vulnerable is [B, 1].
4With the notation of Sect. 2, ri (A) = αλ(A).
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Fig. 2 The expected costs for vulnerable and non-vulnerable players for the several solution con-
cepts

Ji = ui + (1 − Aui ) f (ū)xi + 1ui≤1,

where 1ui≤1 = 0 if ui ≤ 1 and +∞ otherwise.

4.2 A Static Fishing Game with Two Types of Players

In this section, we study a fishing game where there are two kinds of players and
compare the several solution concepts with respect to efficiency and fairness.

The cost for a player i is

Ji = xiu
2
i − (1 − ū)ui . (15)

The possible values for xi are 1 and 2. Let us denote by u1 and u2 the corresponding
actions and assume that 50% of the fishers have xi = 1 and 50% have xi = 2.

Assume that the virtual group of each player consists of a fraction α of the others.
We then investigate the properties of the r -Kant-Nash equilibrium for various values
of the risk factor β. The r -Kant-Nash equilibrium is characterized by

(u1, u2) ∈ arg min
u′
1,u

′
2

{
exp

[
β

(
(u′

1)
2 −

(
1 − α

u′
1 + u′

2

2
+ (1 − α)

u1 + u2
2

)
u′
1

)]
+

+ exp

[
β

(
2(u′

2)
2 −

(
1 − α

u′
1 + u′

2

2
+ (1 − α)

u1 + u2
2

)
u′
2

)]}
.

If u1, u2 ∈ (0, 1) the last equation implies
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Fig. 3 The costs for the fishers of both types, for the several solution concepts

eV1(u1,u2) ((5 + α)u1 + u2 − 2) + αeV2(u1,u2)u2 = 0,

αeV1(u1,u2)u1 + αeV2(u1,u2)(u1 + (9 + α)u2 − 2) = 0, (16)

where V1(u1, u2) = β(u21 − (1 − (u1 + u2)/2)u1) and V2(u1, u2) = β(2u22 − (1 −
(u1 + u2)/2)u2). The system (16) is solved numerically to obtain r -Kant-Nash equi-
librium.

Figure 3 illustrates the Nash equilibrium, the Roemer’s multiplicative Kantian
equilibrium, and the r -Kant-Nash equilibria for various values of α and β. The r -
Kant-Nash equilibrium for α = 1, β = 0 and the Roemer’s multiplicative Kantian
equilibrium, as expected, coincide with the most efficient point, i.e., the point where
the total cost is minimized. However, this point does not distribute the outcome
evenly. For β > 0 we observe that the r -Kant-Nash equilibria produce fairer results
as α approaches 1.

4.3 A Dynamic Resource Game

This example studies a dynamic model for exploiting a shared resource, where the
players live only for a single time step. A similar model was analyzed in Sect. 3.10
of [10] (dynamic fishing game). We compare the r -Kant-Nash equilibria for the case
where the virtual group of each player consists of players participating in the game
simultaneously with her and the case where virtual groups contain players acting on
various time steps. For simplicity, we do not analyze the full dynamic game, but only
its steady state.

Let us denote by y total stock of the resource. Assume that the dynamics is given
by

yk+1 = 3yk(1 − yk) − ykūk, (17)
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where ūk is the mean effort of the players at time step k. For a fixed ūk = ū, the
stationary value of yk is

y = 2 − ū

3
. (18)

We assume further that all the players participate in the game for a single time
step. The cost for a player i who participates in the game at time step k is given by

Ji = (ui )2 − ρūk yk − (1 − ρ)ui yk, (19)

where ρ ∈ (0, 1). The cost (19) can be interpreted as follows. Player i produces a
quantity ui x , she holds a portion (1 − ρ) of it, and the rest is redistributed equally
among the players.

The Nash equilibrium is given by

u = (1 − ρ)yk
2

.

The steady-state effort under the Nash equilibrium (using (18)) is

u = 2(1 − ρ)

7 − ρ
.

We then study r -Kant-Nash equilibrium under two different assumptions.
Case 1: The virtual group of a player participating at time step k is a fraction α

of the other players who participate in the game at the same time step. Under this
assumption, the players of the virtual group do not affect yk . Then, the r -Kant-Nash
equilibrium is characterized by

u ∈ argmin
u′ {(u′)2 − ρ(αu′ + (1 − α)u)yk − (1 − ρ)u′yk},

which implies

u = 1 − ρ + ρα

2
yk .

The steady-state effort, (using (18)) is

u = 2(1 + ρα − ρ)

7 + ρα − ρ
.

Case 2: The virtual group of each player i consists of a fraction α of all the other
players, including players existing before or after player i . Then, the r -Kant-Nash
equilibrium is characterized by

u ∈ argmin
u′ {(u′)2 − ρ(αu′ + (1 − α)u)ȳ(u, u′) − (1 − ρ)u′ ȳ(u, u′)},
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Fig. 4 The costs and the actions for various values of α and ρ = 0.1, ρ = 0.5. Local KN describes
the actions and costs computed in Case 1 above and Global KN represents Case 2

where

ȳ(u, u′) = 2 − αu′ − (1 − α)u

3
.

The last equation implies

u = 2(1 − ρ + ρα)

7 + α + ρα − ρ
.

Figure 4 shows the Nash equilibrium, the r -Kant-Nash solutions for cases 1 and
2.

Remark 4 An increase in Player i’s effort increases her production, a part of which
is redistributed, but such an increase leaves next generations of players with fewer
resources. Therefore, if players identify themselves only with other players playing
at the same time (Case 1), it is always more cooperative to increase their actions
compared to the Nash equilibrium. On the other hand, a smaller action favors future
generations of players. Thus, for low values of the redistribution coefficient ρ, under
“global” cooperation (Case 2), the actions are reduced compared to the Nash equi-
librium.

An interesting feature is that for ρ = 0.1, under “local” cooperation the overall
cost in steady state is worse-off compared to the Nash equilibrium.
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4.4 An Opinion Game

This example considers an opinion game where each player wants to express an
opinion which is close to the expressed opinions of the others, but also close to her
intrinsic opinion. The model used is a special case of [23]. The interesting feature of
this example is to illustrate that local cooperation could be harmful.

The cost for a player i is given by

Ji = (ui − xi )
2 + (ui − ū)2. (20)

For simplicity, we assume that there are only two types of players: 50% of the
players have intrinsic opinion xi = 0 and 50% intrinsic opinion xi = 1. Under these
assumptions ū = (u0 + u1)/2, where u0 and u1 are the actions of players of type
xi = 0 and xi = 1, respectively.

It is not difficult to see that the Nash equilibrium is

(u0, u1) =
(
1

4
,
3

4

)
. (21)

We then consider two scenarios of partial Kantian cooperation:
Case 1: In this case, the virtual group of each player consists only of players of the
same type. Particularly, players i with type xi = 0 have virtual groups consisting of
a fraction α0 of the players j with x j = 0. Similarly, players i with type xi = 1 have
virtual groups consisting of a fraction α1 of the players j with x j = 0.

The r -Kant-Nash equilibrium satisfies

u0 ∈ argmin
u′
0

{
(u′

0)
2 + (

u′
0 − 0.5(α0u

′
0 + (1 − α0)u0) − 0.5u1

)2}

u1 ∈ argmin
u′
1

{
(u′

1 − 1)2 + (
u′
1 − 0.5u0 − 0.5(α1u

′
1 + (1 − α1)u1)

)2}

which is equivalent to the system:

(6 − α0)u0 − (2 − α0)u1 = 0,

−(2 − α1)u0 + (6 − α1)u1 = 4.

Case 2: Each player has a virtual group of players consisting of a fraction α of all
the other players. That is, a player i with type xi = 0 has a virtual group consisting
of players j of both categories x j = 0 and x j = 1. A pair (u0, u1) constitutes an
r -Kant-Nash equilibrium if it solves the problem:
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Fig. 5 The costs for both types of players for the Nash, Pareto, and the r-Kant-Nash solutions

minimize
u′
0,u

′
1

{
(u′

0)
2 + (

u′
0 − 0.5(αu′

0 + (1 − α)u0) − (1 − 0.5)(αu′
1 + (1 − α)u1)

)2 +

+(u′
1 − 1)2 + (

u′
1 − 0.5(αu′

0 + (1 − α)u0) − 0.5(αu′
1 + (1 − α)u1)

)2}
.

Longbut straightforward computations show that theNash equilibrium (21) solves
the minimization problem and thus it is the r -Kant-Nash equilibrium.

Figure 5 illustrates the costs for the two types of players for the several solution
concepts.

Remark 5 Observe that in this example, the Nash equilibrium is on the Pareto
frontier and coincides with the r -Kant-Nash equilibrium of Case 2. Furthermore, it
minimizes the total cost. On the other hand, if a type, say x = 1 has local cooperation
(Case 1), this leads to improved results for that group, but worse results for the other
group (the group x = 0). This behavior corresponds, in the opinion game setting, to
the case where a group of players takes a more radical opinion to affect the overall
result.When both groups cooperate only locally, the situation is worse for both. Thus,
the situation in Fig. 5 is very much like Prisoner’s dilemma.

4.5 A Fishing Game with Overlapping Virtual Groups

In the previous examples, the virtual groups of players are either identical or disjoint.
This fact facilitated the analysis. In this example, we study the fishing game of Sect.
4.2, assuming that the virtual groups of the players of different types are different but
overlapping. Particularly, the virtual group of a player with type x = 1 consists of a
fraction r11 of players with type x = 1 and r12 of players with type x = 2. Similarly,
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Fig. 6 The costs for both types of players for the Nash, Pareto, and the r-Kant-Nash solutions for
the case of overlapping virtual groups. All the lines represent a combination of r11, . . . , r22 where
three of them are fixed and the other moves between 0 and 0.5

the virtual group of a player with type x = 1 consists of a fraction r21 of players with
type x = 1 and r22 of players with type x = 2.

Let us focus on internal r -Kant-Nash equilibria, i.e., all the actions belong to the
interior of the interval [0, 1]. Then, a pair (u1, u2) is an r -Kant-Nash equilibrium
(see (11)) if there exist ũ1 and ũ2 such that

(u1, ũ2) ∈ arg min
u′
1,u

′
2

{
r11

[
(u′

1)
2 − (

1 − r11u
′
1 − r12u

′
2 − r ′

11u1 − r ′
12u2

)
u′
1

]
+

+ r12
[
2(u′

2)
2 − (

1 − r11u
′
1 − r12u

′
2 − r ′

11u1 − r ′
12u2

)
u′
2

]}
,

(ũ1, u2) ∈ arg min
u′
1,u

′
2

{
r21

[
(u′

1)
2 − (

1 − r21u
′
1 − r22u

′
2 − r ′

21u1 − r ′
22u2

)
u′
1

]
+

+ r22
[
2(u′

2)
2 − (

1 − r21u
′
1 − r22u

′
2 − r ′

21u1 − r ′
22u2

)
u′
2

]}
,

where r ′
11 = (0.5 − r11), r ′

12 = (0.5 − r12), r ′
21 = (0.5 − r21), r ′

22 = (0.5 − r22). The
last equation is equivalent to the system:

(2.5 + r11)u1 + 0ũ1 + r ′
12u2 + 2r12ũ2 = 1

(0.5 + r11)u1 + 0ũ2 + r ′
12u2 + (4 + 2r12)ũ2 = 1

r ′
21u1 + (2 + 2r21)ũ1 + (0.5 + r22)u2 + 0ũ1 = 1

r ′
21u1 + 2r21ũ1 + (4.5 + r22)u2 + 0ũ2 = 1.

The r -Kant-Nash equilibria for several combinations of r11, . . . , r22 are shown in
Fig. 6.
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Remark 6 Observe that we need to solve a system of four equations to find the r -
Kant-Nash equilibrium. That is because each virtual group contains players of both
categories. Since the virtual groups are different, the values computed for players
having types different, compared to the player who constructs the virtual group, are
never applied. For example, in a virtual group of a player of type 1, there are players
of type 2. Thus, the values of ũ2, computed in the virtual group of players of type 1,
are not necessarily equal to the actual value of u2.

4.6 Electric Vehicle Charging with Uniform Pricing

This example studies a simplified model of the interaction of the Electric Vehicle
(EVs) owners, inspired by [24]. There is a fleet of EVs which should charge within
the next N hours. Each vehicle is going to absorb a total amount of energy denoted
by E . The cost of energy production depends on total consumption. Let us denote
by pk(ūk) the price per unit of energy when the mean charging rate for the vehicles
is ūk . The price pk depends on the time of the day k because the demand of the other
(non-EV) users and renewable energy production are not constant during the day.
For simplicity, assume that the prices are written as

pk(z) = ckz + dk .

We further assume that the EV owners pay at a uniform price, which depends on the
total cost of energy production.

The cost for an EV owner is

Ji = (Enon-EV
1 + ū1)p1(ū1) + · · · + (Enon-EV

N + ūN )pN (ūN )

E tot
E +

N∑
k=1

R(uik)
2,

(22)
where E tot is the total energy consumption and Enon-EV

k the total energy consumption
for excluding EV charging at time step k. The first term of (22) corresponds to the
money EV owner pays to the electricity company and the second term to the losses
during the charging (battery degradation cost can be incorporated in this term). The
feasible set U is given by

U =
{

(u1, . . . , uN ) ∈ R
N : uk ≥ 0,

N∑
k=1

uk = E

}
.

The Nash equilibrium of the game is to use a constant charging rate:

uik = E/N ,

to minimize the cost of the losses.
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Fig. 7 The total cost of a player for charging her vehicle, for various values of α

Consider the case where the virtual group of each player is a fraction α of the
other players. Then, (11) simplifies to

[
(u′

1 − u1) . . . (u′
N − uN )

]
⎡
⎢⎣

C1(α)u1 + D1(α)
...

CN (α)uN + DN (α)

⎤
⎥⎦ ≥ 0, for all u′ ∈ U,

where Ck(α) = 2ck Eα/E tot + 2R and Dk(α) = E(Enon-EV
k ck + dk)α/E tot. This

problem is equivalent to the following minimization problem:

minimize
(u1,...,un)∈U

N∑
k=1

Ck(α)u2k/2 + Dk(α)uk .

Example 2 Assume that N = 12, E = 10, R = 0.02, ck = 1 for all k, dk = 1 +
Enon-EV
k and the vector of consumption excluding the EV charging is Enon-EV =

[7 5 2 1 0.5 0.5 1.2 2 3 4 5 5]T .

The cost of a player under the r -Kant-Nash equilibrium for various values of α is
shown in Fig. 7. It is interesting that already from α = 0.1 the players obtain more
than 96% of the full cooperation benefit.

Figures 8 and 9 show the charging actions and the production cost. At the Nash
equilibrium, we have uniform charging. However, as α increases, charging moves
to time instants where the production cost is lower. At the same time at those time
instants the production cost increases whereas for the other time instants it decreases.

Remark 7 In the example, due to the low value of R, there is an almost flat region
of production cost (from k = 3 to k = 9) for α = 1. This situation is very similar
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Fig. 8 The charging action uk for the different times of the day and for various values of α

Fig. 9 The energy production cost for the different times of the day and for various values of α.
The purple dashed line corresponds to the production cost if there was no EV charging

with the “valley-filling” behavior described in [24]. The difference is that in [24] the
electricity company charges the EV owners at a non-constant price, while in Example
2 the price is fixed within the day.

Remark 8 For this example, it seems that it is not possible to define Roemer’s
multiplicative or additive Kantian equilibrium, because anymultiplicative or additive
deviation of a feasible point is infeasible.
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5 Infinite Number of Types

5.1 Reformulation as Optimal Control Problems

In this section, we characterize r -Kant-Nash equilibria under the assumption that
Θ is a singleton, β = 0, and that all the measures are absolutely continuous with
respect to the Lebesgue measure. Assuming that the players that do not belong to i’s
virtual group follow a strategy u j = γ̄ (x j ), the optimization problem (3) is written
as

minim.
γ

{∫ 1

0
J

(
γ (x ′), ū−xi +

∫ 1

0
g(γ (z), z)ri (z)dz, x

′
)

w(xi , x
′)ri (x ′)dx ′

}
,

(23)
where

ū−xi =
∫ 1

0
g(γ̄ (z), z)(1 − ri (z))dz, (24)

and (with a slight abuse of notation) ri denotes the density of the measure ri (·).
The optimization problem (23), assuming ū−xi as given, can be reformulated as an

optimal control problem using the state x ′ as a virtual time. To do so, we consider a
couple auxiliary state variablesχ xi

1 andχ
xi
2 , and then apply thePontryagin’sminimum

principle.

Proposition 3 The optimization problem (23) is equivalent to the optimal control
problem:

minimize
uxi (t)

∫ 1

0
Lxi (uxi , ū−xi + χ

xi
2 , t)dt

subject to χ̇
xi
1 = g(uxi , t)r(t, xi ), χ1(0) = 0

χ̇
xi
2 = 0, χ

xi
2 (0) : free

χ
xi
1 (1) = χ

xi
2 (1),

(25)

where
Lxi (u, v, t) = J (u, v, t) w(xi , t)r(t, xi ).

Proof Observe that:

∫ 1

0
g(uxi , t)r(t, xi )dt = χ

xi
1 (1) = χ

xi
2 (1) = χ

xi
2 (t).

Thus, the problems are equivalent. �
We then derive necessary conditions using Pontryagin’s minimum principle (the

appropriate form of minimum principle can be found in Chap.15 of [25]). It turns out
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that the problem has a special structure and the optimal control law is characterized
by a pair of algebraic equations instead of a two-point boundary value problem. The
Hamiltonian is given by

Hxi = Lxi (uxi , ū−xi + χ
xi
2 , t) + pxi1 g(u

xi , t)r(t, xi ).

The costate equations are given by

ṗxi1 = 0, ṗxi2 = −∂Lxi

∂v
(uxi , ū−xi + χ

xi
2 , t),

(where v is the second argument of Lxi ) and the boundary conditions by

pxi2 (0) = 0, pxi1 (1) + pxi2 (1) = 0.

Let us assume that there is a unique minimizer uxi = l(t, χ2, p1, ū−xi , xi ) of Hxi

with respect to uxi . In order to characterize the optimal controller it remains to
determine the constants pxi1 and χ

xi
2 . A pair of algebraic equations will be derived.

Combining ṗxi1 = 0, pxi2 (0) = 0 and pxi1 (1) = −pxi2 (1), we get

pxi1 = −pxi2 (1) =
∫ 1

0

∂Lxi (l(t, χ xi
2 , pxi1 , ū−xi , xi ), χ

xi
2 + ū−xi , t)

∂v
dt. (26)

The right-hand side of (26) is a known function of χ
xi
2 , pxi1 , and ū−xi .

The second algebraic equation is obtained combining χ̇
xi
2 = 0, χ

xi
1 (0) = 0, and

χ
xi
1 (1) = χ

xi
2 (1):

χ
xi
2 =

∫ 1

0
g(l(t, χ xi

2 , pxi1 , ū−xi , t, xi ))r(t, xi )dt, (27)

where the right-hand side of (27) is again a known function of χ
xi
2 , pxi1 , and ū−xi .

Both (26) and (27) are algebraic and not integral equations, due to the fact that all
the functions of time are known and we have only unknown constants. ��
Proposition 4 Assume that γ̄ (x) is an r-Kant-Nash equilibrium. Further, assume
that there is a unique minimizer l of H xi for any xi ∈ X. Then, there exist functions
χ ·
2 : X → R, p·

1 : X → R and ū−· : X → R satisfying (26), (27), and

ū−xi =
∫ 1

0
g((l(t, χ t

2, p
t
1, ū

−t , xi ), t)(p(t) − r(t, xi ))dt, (28)

such that γ̄ (xi ) = l(xi , χ2, p1, ū−xi , xi ) for any xi ∈ X.

Proof The proof follows immediately from the analysis above. �
Thus, an r -Kant-Nash equilibrium is characterized by a couple of algebraic equa-

tions and an integral equation.
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5.2 Equilibrium in a Quadratic Game

Let us consider again the fishing game example assuming players with different
efficiencies (for example, a fisher is more experienced than another or has better
equipment). We assume that Θ is a singleton, X = [0, 1], and the players have a
uniform distribution. The cost function for each player is given by

Ji = u2i − (1 − ū)ξ(xi )ui , (29)

where ui is the effort of player i , the total effort ū is given by

ū =
∫ 1

0
u(x)ξ(x)dx, (30)

and ξ(x) > 0 represents the efficiency of a player with state x .
We shall compute the r -Kant-Nash equilibriumassuming that r(x ′, x) = 0 implies

w(x ′, x) = 0, i.e., that if a player with state x considers another player with state x ′
to belong to his virtual group, she does not assign her a zero weight.

Recall that Proposition 3 reduces the optimization problem of each virtual group
to an optimal control problem. In this example, the optimal control problems are
LQ and thus the minimum principle necessary conditions are also sufficient. The
Hamiltonian is given by

Hxi = [
u2 − (1 − ū−xi − χ

xi
2 )ξ(t)u

]
w(t, xi )r(t, xi ) + pxi1 ξ(t)r(t, xi )u.

Thus, the optimal control u is given by

u = l(t, χ xi
2 , pxi1 , u−xi ) = 1

2
(1 − ū−xi − χ

xi
2 − pxi1 /w(t, xi ))ξ(t).

Equation (27) is written as

χ
xi
2 = 1

2

∫ 1

0
(1 − ū−xi − χ

xi
2 − pxi1 /w(t, xi ))ξ

2(t)r(t, xi )dt,

or equivalently:

χ
xi
2 = (1 − ū−xi )Cxi

1 − p1C
xi
2

2 + Cxi
1

, (31)

where

Cxi
1 =

∫ 1

0
ξ 2(t)r(t, xi )dt and Cxi

2 =
∫ 1

0
ξ 2(t)r(t, xi )/w(t, xi )dt.

Equation (26) is written as
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pxi1 = 1

2

∫ 1

0
((1 − ū−xi − χ

xi
2 )w(t, xi ) − p1)ξ

2(t)r(t, xi )dt.

Equivalently:
2pxi1 = (1 − ū−xi )Cxi

3 − χ
xi
2 Cxi

3 − pxi1 C
xi
1 , (32)

where

Cxi
3 =

∫ 1

0
ξ 2(t)r(t, xi )w(t, xi )dt.

Solving (31), (32) for χ
xi
2 , pxi1 , we obtain

χ
xi
2 = (Cxi

1 )2 + 2Cxi
1 − Cxi

2 C
xi
3

(Cxi
1 )2 + 2Cxi

1 − Cxi
2 C

xi
3 + 4

(1 − ū−xi ),

pxi1 = 2Cxi
3

(Cxi
1 )2 + 2Cxi

1 − Cxi
2 C

xi
3 + 4

(1 − ū−xi ).

In what follows, in order to simplify the computations we assume thatw(x, x ′) =
1. Under this assumption, it holds Cxi

1 = Cxi
2 = Cxi

3 = C(xi ) and

χ
xi
2 = pxi1 = C(xi )

2C(xi ) + 2
(1 − ū−xi ).

Furthermore,

uxi (t) = 1

2
(1 − ū−xi )

ξ(t)

C(xi ) + 1
.

Equation (28) becomes

ū−xi =
∫ 1

0

1

2
(1 − ū−t )

ξ 2(t)

C(t) + 1
(1 − r(t, xi ))dt, (33)

which is a linear Fredholm integral equation of second kind.

Example 3 In this example, we assume that r(x, x ′) = α (a uniform (sub)-
distribution). Equation (33) implies that ū−xi is independent of xi . Thus, denoting
by ū− this constant, we obtain

ū− = (1 − ū−)
1 − α

2

∫ 1

0

ξ 2(t)

C(t) + 1
dt.

Thus,
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Fig. 10 The actions of the several players for different values of α, as a function of their state

Fig. 11 The cost for the several players for different values of α, as a function of their state

uxi (xi ) = 1

2 + (1 − α)
∫ 1
0

ξ 2(t)
C(t)+1dt

ξ(xi )

C(xi ) + 1
.

Hence, the actions of the players scale down uniformly as α increases. �

Example 4 In this example, we assume that

r(x, x ′) =
{

α if |x − x ′| ≤ 0.3 and x ≤ 0.9

0 otherwise

The solution of the integral equation (33) can be approximated using a linear system
with a high order. The actions of the players as well as the cost for the participants
of the game are illustrated in Figs. 10, 11. �
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6 Conclusion and Future Directions

This work studies (partially) cooperative outcomes in games with a continuum of
players, assuming that the participants followKant’s categorical imperative partially.
We introduced the notion of r -Kant-Nash equilibrium and compared it with other
notions from the literature. It turns out that, Nash equilibrium, (Bentham-) Harsanyi,
andRawls difference solutions are special cases of r -Kant-Nash equilibrium. Further-
more, we compared r -Kant-Nash equilibrium with Roemer’s Kantian equilibrium
using several examples. For the case where there is a finite number of possible player
types, we provided sufficient conditions for the existence and the uniqueness of the
r -Kant-Nash equilibrium. Necessary conditions, based on a reduction to a set of opti-
mal control problems, can be derived for cases of games where the possible states
admit an one-dimensional representation. Some examples of r -Kant-Nash equilib-
rium in quadratic games with a finite number of types were analyzed. It turns out that
r -Kant-Nash equilibria may provide reasonable solutions in terms of performance
or fairness. On the other hand, local cooperation could be harmful.

A possible extension of this work is to study games with a finite number of
players. In this case, wemay assume that the virtual group of each player is stochastic
and that each player determines her action before she learns the realization of her
virtual group. Another direction for future research is to extend the current model
to dynamic games. A special case involving symmetric players was presented in
[26]. An interesting question for the case of a dynamic game with a finite number
of players would be whether or not the virtual group of a player should be constant
during the game.

7 Appendix

The following lemma shows that if we consider a “small” virtual group (the value of
ri (I ) is small), then the policy where each player ignores the group and simply best
responses is approximately optimal for the group.

Lemma 1 Assume that U is a compact subset of the Euclidean space, and the
functions J and g are continuous functions on the arguments ui and ū. Fix a reference
strategy u0 : I → U with u0(i) = γ̄ 0(x(i), θ(i)) and assume that βθi = 0. If all the
players implement this strategy, denote by ū0 the mean action computed using (2).
We then construct the best response, i.e., another strategy ũ : I → U with

ũBR( j) = γ BR( j) ∈ argmin
u j

J (u j , ū
0, x j ). (34)
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Then if ri (I ) < δ then ũBR is ε-optimal, i.e., for any ε > 0 there is a δ > 0 such that
if ri (I ) < δ then

J̃i (γ
BR, γ̄ ) ≤ J̃i (γ

�, γ̄ ) + ε,

where γ � is the policy minimizing J̃i (γ, γ̄ ) with respect to γ .

Proof Since,U is compact, and the functions involved are continuous for any ε there
is a δ > 0 such that ri (I ) < δ1 implies

E
[
J (γ �

xi ,θi (x( j)), ū
0, x( j))wxi ,θi (x( j))

] ≤ J̃i (γ
�, γ̄ ) + ε.

On the other hand, since wxi ,θi (x( j)) > 0, we have

J̃i (γ
BR, γ̄ ) = E

[
J (γ BR( j), ū0, x( j))wxi ,θi (x( j))

]
≤ E

[
J (γ �

xi ,θi (x( j)), ū
0, x( j))wxi ,θi (x( j))

]
,

where the inequality holds true due to (34).
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