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Chapter 12
Electrolyzed Water as a Potential Agent 
for Controlling Postharvest Decay of Fruits 
and Vegetables

Antonio Ippolito, Annamaria Mincuzzi, Antony Surano, Khamis Youssef, 
and Simona Marianna Sanzani

Abstract Disinfection after harvest is an essential step to maintain commodities 
and facilities free of fungal and bacterial postharvest pathogens, responsible of stor-
age decay and economic losses. Electrolyzed water (EW) has gained considerable 
interest over the last decades as a novel broad-spectrum sanitizer. EW is sustainable 
and cost effective since it can be produced on-site utilizing tap water and different 
inexpensive salts and is healthy for both the environment and human beings. Its 
effectiveness in controlling fungi, yeasts, and bacteria within a wide range of pH is 
due to multiple mode of actions. Furthermore, its strong oxidizing potential is capa-
ble to reduce the amount of pesticide residues on fruit and vegetable surfaces and to 
avoid pathogen resistance. Properties of EW are related to salts employed for pro-
duction, being those with low chlorine content preferable. Lastly, EW has no nega-
tive effect on the organoleptic properties and features of treated commodities. The 
present chapter highlights recent developments in EW generation, factors affecting 
its effectiveness for controlling postharvest decay of fruits and vegetables, mecha-
nism of action on microbes and hosts, and advantages and disadvantages on its use.
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 Introduction

Postharvest decay of fruits and vegetables is often a direct result of poor handling 
practices in the packinghouse environment. The wash water used in dump tanks for 
processing is among the various sources of pathogen contamination; thus, its proper 
sanitation is extremely important for delivering healthy products to the consumer 
and minimizing postharvest losses. Indeed, sanitation after harvest can reduce spoil-
age by 50% or more (Sargent et al. 2000). The most popular disinfecting agent is 
chlorine (hypochlorite) applied as spray or dip, but several alternative sanitizers of 
minor use during washing or storage of fresh produce are available, such as chlorine 
dioxide, ozone, ethanol, hydrogen peroxide, organic acids, and electrolyzed water 
(EW). This latter has gained importance in the food industry, representing a relevant 
technical advancement (Buck et al. 2002; Hricova et al. 2008; Feliziani et al. 2016; 
Rahman et al. 2016). It was firstly developed in Russia for water decontamination 
and regeneration (Kunina 1967), then it gained great interest for sterilization of 
utensils, meats, cutting boards, and, more recently, in livestock management and for 
the sanitation of the washing waters of fresh and minimally processed fruit and 
vegetables (Lee et al. 2004; Guentzel et al. 2010; Fallanaj et al. 2013; Gómez-López 
et al. 2013). This chapter will address EW generation, factors affecting its effective-
ness, mechanism of action on microbes and hosts, and advantage and disadvantage 
on its use.

 Generation of EW

In chemistry, the electrolysis is the process by which electrical energy is transformed 
into chemical energy, where an electric current passes through an electrolyte with 
subsequent migration of positive and negatively charged ions towards the negative 
and positive electrodes, respectively. EW is typically produced by electrolysis of 
dilute solutions of sodium chloride (NaCl) in an electrolysis cell with or without a 
diaphragm, which separates the anode (+) and cathode (−). Salts such as potassium 
chloride (KCl), magnesium chloride (MgCl2), sodium sulfite (Na2SO3), sodium 
hydrogen carbonate (NaHCO3) and many others (Table 12.1) can also be used (Buck 
et al. 2002; Fallanaj et al. 2013; Feliziani et al. 2016; Youssef and Hussien 2020). 
However, since a certain amount of chloride is contained in tap water, it would be 
possible to reactivate its free chlorine by electrolysis, although obtained amount is 
usually too low to be effective against pathogenic microorganisms (Nakajima et al. 
2004). Recently a PE-1 water ionizer machine (Shenzhen, Guangdong, China) that 
use only naturally present salts in tap water allowed to obtain good results by select-
ing different levels of electrolyzing potentials (Hussien et al. 2017).

In an electrolysis cell divided by a membrane, two types of EW are produced: the 
acidic electrolyzed water (AEW) and the basic electrolyzed water (BEW), as dis-
played in Fig. 12.1. During electrolysis, the dissociated Cl− together with OH− move 

A. Ippolito et al.



183

to the anode donating electrons to generate oxygen (O2), chlorine gas (Cl2), hypo-
chlorite ions (ClO−), and hydrochloric acid (HCl), whereas positively charged ions, 
such as H+ and Na+, move to the cathode to accept electrons to generate hydrogen 
gas (H2) and sodium hydroxide (NaOH) (Siddiqui 2018). When the electrolysis cell 
is separated by a septum, species produced on the anode stream result in an acidic 
solution of pH 2–3, an oxidation-reduction potential (ORP) higher than 1100 mV, 
and an active chlorine content (ACC) of 10–90 ppm. Species produced on the cath-
ode stream result in a basic solution of pH  10–13 and an ORP of −800 to 
−900 mV. When the electrolysis cell is not separated by a septum, neutral electro-
lyzed water (NEW), with a ORP of 750–900 mV and pH of about 7 is produced, 
because hydroxide ions (OH−) formed at the anode neutralizes the protons (H+) 
produced at the cathode (Deza et al. 2007). Compared to other types of EW, NEW 
has a longer shelf-life under certain circumstances (Rahman et al. 2010a, b).

Indeed, EW is usually prepared on site just before use, but Len et  al. (2002) 
demonstrated that AEW stored in a closed and dark environment remains stable. In 
particular, AEW rapidly decreased ORP releasing Cl2 through the evolution of chlo-
rine gas, thus rapidly reducing the biocidal effectiveness of the solutions. Len et al. 
(2002) observed a 100% loss of active chlorine and a 10% loss of ORP within a 

Table 12.1 Salts utilized as electrolytes to produce EW

Salts
Chemical 
formula References

Ammonium 
molybdate

(NH4)2MoO4 Hussien et al. (2018)

Copper sulfate CuSO4 Fallanaj et al. (2013)
EDTA-Ca C10H12CaN2Na2O8 Hussien et al. (2018)
EDTA-Fe C10H12FeN2O8

Magnesium chloride MgCl2 Buck et al. (2002)
Monopotassium 
phosphate

KH2PO4 Hussien et al. (2018)

Potassium 
bicarbonate

KHCO3

Potassium carbonate K2CO3 Hussien et al. (2018) and Youssef and Hussien (2020)
Potassium chloride KCl Buck et al. (2002)
Potassium phosphate 
dibasic

K2HPO4 Fallanaj et al. (2013) and Hussien et al. (2018)

Potassium sorbate C6H7KO2 Fallanaj et al. (2013), Hussien et al. (2018) and 
Youssef and Hussien (2020)

Sodium bicarbonate NaHCO3 Fallanaj et al. (2013) and Hussien et al. (2018)
Sodium carbonate Na2CO3

Sodium chloride NaCl Park et al. (2001), Buck et al. (2002), Al-Haq et al. 
(2005), Hussien et al. (2018) and Youssef and 
Hussien (2020)

Sodium metabisulfite Na2S2O5 Hussien et al. (2018) and Youssef and Hussien (2020)
Sodium silicate (Na2O)x·(SiO2) Hussien et al. (2018)
Sodium sulfite Na2SO3 Fallanaj et al. (2013)
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4-day period for AEW stored in an open dark container at 25 °C. In contrast, loss of 
chlorine oxidants and ORP of NEW was substantially lower, with only 5% decrease 
of active chlorine and no significant loss of ORP after 4 days in a closed dark con-
tainer at 25 °C (Guentzel et al. 2010). Another way to preserve the effectiveness of 
EW is to convert it into ice cubes for later use (Koseki et al. 2002). Finally, slightly 
acidic electrolyzed water (SAEW) with a pH of 5.0–6.5 (Fig. 12.2) and an ORP of 
800–900 mV is produced by electrolysis of diluted solution of HCl alone or in com-
bination with NaCl in an EW generation equipment using an electrolysis chamber 
without the membrane (Forghani et al. 2015). SAEW usually has high ACC (up to 
200 ppm) and for this reason can be used in a diluted form; its main free chlorine is 
HOCl (Fig.  12.3). The bactericidal activity of hypochlorous acid was 80 times 
greater than that of hypochlorite ion (ClO−) for inactivating Escherichia coli at the 
same chlorine concentration and treatment time (Anonymous 1997). Therefore, 
SAEW may improve the bactericidal activity through maximizing the use of hypo-
chlorous acid, thus reducing corrosion of surfaces and minimizing human health 
and safety issues side effects from off-gassing of Cl2 (Guentzel et al. 2008).

EW is generally considered safer and less expensive than most traditional 
preservation methods. Various machines are manufactured around the world. The 

Fig. 12.1 Schematic representation of AEW and BEW generation using NaCl solution. (Hricova 
et al. 2008)
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most common equipment used in published reports are ROX-20TA-U and ROX-10 
WBE (Hoshizaki Electric Inc., Toyoake, Aichi, Japan), Remotex (Remote Co., 
Toshima-ku, Tokyo), model IKS 1005 (Mitsubishi Electric Engineering Co., Japan) 
(Al-Haq and Gómez-López 2012), and HRW-1500 (HuoRen-Jing-Chuang Medical 

Fig. 12.2 Schematic representation of SAEW generation using diluted solution of HCl. (From 
Xuan and Ling 2019)

Fig. 12.3 Chlorine profile 
change with pH. The 
activities of Cl2, HOCl, and 
OCl− produced during the 
electrolysis process are pH 
dependent, being Cl2 
present at low pH, HOCl 
active at pH around 
4.0–5.0, and OCl− effective 
at high pH. (From Al-Haq 
et al. 2005)
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Equipment Co., Ltd., Beijing) (Chen et  al. 2020). In Europe the most common 
equipment in published reports producing NEW are manufactured by Adamant 
Technology (SA, Switzerland) (López-Gálvez et  al. 2012; Fallanaj et  al. 2013, 
2016, 2015), Denora Next (Milan, Italy), Best Life (China), ATS unique technologies 
BV (The Netherlands), ATS (Holambra, SP, Brasil) and more recently by Aqanat 
Limited (Coxwold, York, UK).

 Factors Influencing the Effectiveness of EW

The electrode materials play an important role in the production of oxidant species 
in relation to the current, temperature, salt, and type of electrolysis (Martínez-Huitle 
and Brillas 2008). Traditionally, platinum is used as the anode in the EW generator. 
A descending order of electrode materials in terms of efficiency in producing active 
free chlorine was proposed by Rahman et al. (2016): Ti/IrO2 > Ti/RuO2 > Ti/Pt–
IrO2 > BDD (Boron-Doped Diamond) > Pt.

The influence of water hardness on the basic properties of EW has been reported 
by a few researchers (Pangloli and Hung 2013; Forghani et al. 2015). The authors 
reported that water hardness from 0 to 50 mg/L CaCO3 increases the ACC and ORP 
levels of EW, while decreasing the pH; however, water hardness higher than 50 mg/L 
was observed to inhibit the inactivation of E. coli O157:H7 by EW. The mechanisms 
of how water hardness changes the bactericidal efficacy of EW still remains unclear 
and requires more investigations. Moreover, Forghani et al. (2015) highlighted that 
pre-heating water before EW generation allowed to increase the ACC and the bio-
cide activity.

In a fresh produce processing plant, sanitizers generally are used in the presence 
of organic matter, such as produce debris, soils, and microorganisms present on fruit 
and vegetable surfaces, all of which reduce sanitizer efficacy. Oomori et al. (2000) 
reported that organic matter, including amino acids and proteins, potentially react 
with ACC and change it into the combined form. For instance, Li et  al. (1996) 
observed that the reduction rate of Bacillus subtilis var. niger by EW exposure for 
20  min decreased from 100 to 19.5% after adding 10% bovine serum albumin 
(BSA) to AEW. Indeed, organic matters might wrap target microorganisms and pro-
tect the outer structures of microbial cells from the attack of EW (Park et al. 2009; 
Virto et al. 2005).

In addition, the bactericidal effect of EW is thought to be better on smooth 
surfaces than on rough ones (Koseki et al. 2004; Park et al. 2009). For instance, Park 
et al. (2009) observed that the reduction of E. coli O157:H7, Salmonella typhimurium, 
and Listeria monocytogenes on the surface of a tomato by AEW exposure was 
higher than that on the surface of green onions. The authors explained that the 
smoother surface of tomatoes accelerated the activity of chlorine species in EW to 
better contact with microorganisms.

A. Ippolito et al.
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 Effect on Plant Pathogens

The modes of action of electrochemical treatment of water are still not completely 
understood. Evidences suggest that a direct oxidation at the anode surface and indi-
rect oxidation in the bulk solution by oxidants produced from the substances present 
in the water are responsible for the inactivation of microorganisms (Anglada et al. 
2009). In Aspergillus flavus morphological changes occurred both in the conidia 
and mycelia, such as cell wall shrinkage, partial cracking, chipping, and holes 
(Fig. 12.4, Xiong et al. 2014). Chlorine compounds, pH, ORP, and their combina-
tion are considered the main factors involved in the antimicrobial activity (Al-Haq 
et al. 2005) and these are reported as the mode of action of many gaseous and aque-
ous oxidizing agents (Finnegan et al. 2010). However, since EW is active in a wide 
range of ORP and pH values and in some cases free chlorine is not generated, it is 
conceivable that its activity is related but not limited to these three factors. EW 
seems to induce higher sensitivity to active chlorine by sensitizing the outer mem-
brane to the entry of HOCl (Park et al. 2004a). HOCl is considered the most active 
of the chlorine compounds (Mahmoud 2007) produced during electrolysis, pene-
trating cell membranes and producing hydroxyl radicals, which exert the antimicro-
bial activity through the oxidation of key metabolic compounds (Albrich et al. 1986; 
Barrette et al. 1989; Hurst et al. 1991; Hricova et al. 2008). HOCl can change bacte-
rial respiration destroying the electron transport chains and affecting adenine nucle-
otide pool (Albrich et al. 1981). Chlorine is considered responsible of: (a) disruption 
of protein synthesis; (b) oxidative decarboxylation of amino acids to nitrites and 
aldehydes; (c) reactions with nucleic acids, purines, and pyrimidines; (d) unbal-
anced metabolism after the destruction of key enzymes; (e) induction of DNA 
lesions with the accompanying loss of DNA-transforming ability; (f) inhibition of 
oxygen uptake and oxidative phosphorylation, coupled with leakage of some mac-
romolecules; (g) formation of toxic N-chlorine derivatives of cytosine; and (h) cre-
ation of chromosomal aberrations (Feliziani et al. 2016).

ORP is also involved in the mode of action of EW but its effect on the deactivation 
of microbes is controversial (McPherson 1993; Venkitanarayanan et al. 1999; Kim 
et  al. 2000, 2001; Al-Haq et  al. 2002; Liao et  al. 2007). Aerobic bacteria grow 
mostly at ORP range + 200 to +800 mV, while anaerobic bacteria grow well at −700 
to +200 mV (Jay 1996). The high ORP in the EW could cause the modification of 
metabolic fluxes and ATP production (Fig. 12.5), probably due to the change in the 
electron flow in cells (Huang et al. 2008).

Some authors suggested that the bacterial inactivation is primarily related to 
ORP and not to residual chlorine (Kim et al. 2000; Al-Haq et al. 2005). The high 
ORP of the solution affected fungi disrupting the outer membrane and facilitating 
the transfer of HOCl across the cell membrane, interfering on respiratory pathways 
(Liao et  al. 2007). For example, it could cause damage to E. coli O157:H7, and 
attacked inner and outer membranes, causing necrosis of cells (Liao et al. 2007), 
with damage verified by microscopy (Feliciano et al. 2012). In case of NEW, pro-
duced by using diamond electrode and NaHCO3 as electrolyte, the activity of free 
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Fig. 12.4 Scanning electron photomicrographs of Aspergillus flavus conidia and mycelia. (a), 
normal mycelium; (b), mycelia treated with AEW; (c), mycelium treated with NEW; (d), normal 
conidia; (e), conidia treated with AEW; (f), conidia treated with NEW. Arrows show morphologi-
cal changes in the conidia and mycelia, including cell wall shrinkage, partial cracking, chipping, 
and holes. Scale bars = (a and c), 30 μm; (b), 50 μm; (d–f), 5 μm. (From Xiong et al. 2014)
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chlorine was negligible and the pH little above the neutral value (Fallanaj et  al. 
2013); as reported also by Jeong et al. (2009), Fallanaj et al. (2013, 2016) ascribed 
the observed inactivation of Penicillium spp. population to electrochemical produc-
tion of non-chlorine-based oxidants, such as hydrogen peroxide (H2O2), 

Fig. 12.5 Effect of electrolyzed water (ew), sodium bicarbonate (NaHCO3) and electrolyzed 
NaHCO3 (eNaHCO3) on mitochondrial membrane potential of Penicillium digitatum spores rep-
resented as red/green florescence ratio (a), and on ATP content (b). For each treatment representa-
tive images of stained spores under fluorescence microscopy are showed (c). Water was used as a 
control. (From Fallanaj et al. 2016)
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peroxymonocarbonate (HCO4
−), and reactive oxygen species (ROS). In addition, 

the thin film-coated diamond electrode is known to produce by itself active oxygen 
species in a higher amount as compared to other anodes and, in presence of carbon-
ate/bicarbonate-containing solutions, it can produce peroxycarbonate and deriva-
tives, acting as strong disinfectants (Furuta et  al. 2004). In addition, a paper by 
Fallanaj et  al. (2016) demonstrated that electrolyzed NaHCO3 solution, when 
applied in wounds nearby the ones inoculated with the pathogen, was able to control 
P. digitatum infections in citrus fruit and a significant up-regulation of defense- 
related genes coding the enzymes chitinase, peroxidase, and phenylalanine 
ammonia- lyase was observed in treated tissues. Differences in mycelia micromor-
phology of Penicillium species treated with various EW and untreated were dis-
played in Fig. 12.6 and Fig. 12.7 employing scanned electron microscopy (Youssef 
and Hussien 2020). Based on above results on the mode of action of EW, its antimi-
crobial effect derives from the combined action of pH, ORP, free chlorine, and other 
still unknown active substances (Huang et al. 2008); in addition, the induction of 
tissue resistance should be considered as another important aspect of the multiple 
mechanism of action of this technology (Fallanaj et al. 2016).

The pH also has its role in limiting the microbial growth; therefore, scientists 
also include it as one of the factors. Each microorganism has its own optimal growth 
range of pH; a low pH tends to destroy cell wall compounds (e.g. polysaccharides) 
and increase the permeability, resulting in the death of cell (McPherson 1993). 
Nevertheless, a low pH might not be sufficient to kill microbes, especially spores. 
Li et al. (1996) reported that the reduction level of B. subtilis var. niger can reach 
100% after a 10-min AEW treatment, whereas it was only 1.06% for an HCl solu-
tion with the same pH. Therefore, most likely, the differences in effectiveness at 
different pHs is due to the high or low abundance of HOCl. In particular, at high 

Fig. 12.6 Scanning electron microscope images of Penicillium digitatum-mycelium with free and 
linearly shaped hyphae (controls a and e). P. digitatum-mycelium in the presence of BEW gener-
ated by sodium metabisulphite (b), potassium sorbate (c) or potassium carbonate (d). P. digitatum- 
mycelium in the presence of AEW generated by sodium metabisulphite (f), potassium sorbate (g) 
or potassium carbonate (h). (From Youssef and Hussien 2020)
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pHs, the concentration of HOCl decreased, reflecting its dissociation to H+ and 
OCl− (Johnson and Melbourne 1996; White 1998).

Based on above literature there is no a consensus about EW mode of action 
against microorganisms (Table 12.2), but a lot of theories exist. Likely, multiple 
mechanisms are responsible of EW biocidal activity and this is theoretically con-
firmed by the absence of pathogen resistance.

 Effect on Microbial Toxins

A study conducted by Audenaert et al. (2012) demonstrated that EW has potential 
to control Fusarium spp. in wheat grains during transport and storage although sub- 
lethal concentrations can result in increased deoxynivalenol (DON) biosynthesis. 
According to Zhang et al. (2012), soaking contaminated peanuts in an EW solution, 
the content of aflatoxin B1 (AFB1) decreased of about 85%. Moreover, they reported 
better results with AEW, suggesting a stronger decontamination effect of HClO than 
ClO−. On the same line, Suzuki et al. (2002) reported a strong reduction of the muta-
genesis effect of AFB1 against Salmonella typhimurium TA-98 and TA-100 strains 
after the exposure of the toxin to the AEW.

 Effect on Plants

Considering a holistic approach to the crop protection, it should be taken into 
account the effect of EW not only against the pathogens, but also on the crop. It has 
been demonstrated that SAEW inhibited the growth of broccoli sprouts, but 
increased sulforaphane content (Li et al. 2018). Another study conducted on Chinese 

Fig. 12.7 Scanning electron microscope images of Penicillium italicum-mycelium with free and 
linearly shaped hyphae (controls a and e). P. italicum-mycelium in the presence of BEW generated 
by sodium metabisulphite (b), potassium sorbate (c) or potassium carbonate (d). P. italicum- 
mycelium in the presence of AEW generated by sodium metabisulphite (f), potassium sorbate (g) 
or potassium carbonate (h). (From Youssef and Hussien 2020)
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Table 12.2 Studies conducted on the effect of EW water on various microorganisms

Microbial species References

Acidovorax avenae 
subsp. citrulli

Buck et al. (2002)

Alternaria sp.
Alternaria panax

Aspergillus flavus Buck et al. (2002) and Xiong et al. (2014)
Aspergillus spp. Suzuki et al. (2002)
Botryosphaeria 
berengeriana

Al-Haq et al. (2002)

Botrytis allii Buck et al. (2002)
Botrytis cinerea Buck et al. (2002), Guentzel et al. (2010), Guentzel et al. (2011) and 

Youssef et al. (2018)
Cladosporium sp. Buck et al. (2002)
Colletotrichum sp.
Colletotrichum 
fructicola

Hirayama et al. (2016)

Curvularia lunata Buck et al. (2002)
Didymella bryonaie

Epicoccum nigrum

Erwinia chrysanthemi

Fusarium sp.
Fusarium moniliforme

Helminthosporium sp.
Monilinia fructicola Al-Haq et al. (2001), Buck et al. (2002) and Guentzel et al. (2010)
Pantoea ananatis Buck et al. (2002)
Penicillium digitatum Whangchai et al. (2010) and Fallanaj et al. (2013, 2016)
Penicillium expansum Okull and Laborde (2004)
Penicillium italicum Whangchai et al. (2010) and Fallanaj et al. (2013, 2016)
Penicillium ulaiense Hussien et al. (2018)
Pestalotia sp. Buck et al. (2002)
Phomopsis longicolla

Pseudomonas syringae 
pv. syringae

Pseudomonas syringae 
pv. glycinea

Pseudomonas spp. Fallanaj et al. (2015)
Pseudomonas 
fluorescens

Pinto et al. (2015)

Pseudomonas marginalis

Pseudomonas syringae

Rhodosporidium 
toruloides

Buck et al. (2002)

Sphaerotheca fuliginea Fujiwara et al. (2009)

(continued)
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cabbage highlighted that foliar application of EW solution could enhance the pho-
tosynthetic rate, leaf number, and yield; instead, root applications could increase the 
content of vitamin C (Hou et al. 2011). The application of EW on harvested sugar-
cane during summer months showed relatively less decline in Commercial Cane 
Sugar (CCS), sucrose, and purity of juice compared to untreated and water-treated 
control (Solomon and Singh 2009).

The effect of EW water on respiration rate is variable; it can increase, decrease, 
or remain unchanged. After AEW treatment, it has been reported that the respiration 
rate increased in lettuce and cabbage (Koseki and Itoh 2002). In contrast, an EW 
treatment on leek, white cabbage, and mizuna baby leaf, reduced the respiration rate 
significantly (Vandekinderen et al. 2009a, b). Finally, a NEW treatment on grated 
carrots and iceberg lettuce did not influence the respiration rate (Vandekinderen 
et al. 2008; Vandekinderen et al. 2009c). Moreover, depending on the fruits or veg-
etables and especially for “minimally processed” produce, the treatment with EW 
could have some effects on the nutritional and phytochemical composition, due to 
the oxidation nature of the EW and/or by leaching of substances from vegetable tis-
sue due to water-vegetable surface contact (Al-Haq and Gómez-López 2012). Other 
researchers showed that changes in respiration rate during cold storage of cabbages 
and broccoli could be avoided by EW (Gómez-López et  al. 2007; Navarro-Rico 
et al. 2014).

 Electrolyzed Water and Quality of Produce

It is well known that fruit and vegetable quality is becoming more relevant than 
market price to most of the consumers. Unfortunately, most of research accounts 
have tested the effect of treatment on pathogens, while any possible negative 

Table 12.2 (continued)

Microbial species References

Stagonospora nodorum Buck et al. (2002)
Thielaviopsis basicola

Tilletia indica Bonde et al. (1999)
Trichoderma spirale Buck et al. (2002)
Total bacteria Ding et al. (2015)
Psychrophilic bacteria Gómez-López et al. (2013)
Total aerobic bacteria Koide et al. (2009), Rahman et al. (2010a, b), Hao et al. (2011a, b, 

2015a, b), Zhang et al. (2016a, b), Li et al. (2017) and Tango et al. 
(2017)

Various fungi and 
bacteria

Koseki et al. (2004)

Yeasts and molds Koide et al. (2009), Rahman et al. (2010a, b), Hao et al. (2011a, b, 
2015a, b), Navarro-Rico et al. (2014), Ding et al. (2015), Zhang et al. 
(2016a, b) and Li et al. (2017)
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consequence on fruit quality is not often acknowledged. Few studies were per-
formed to investigate the effect of EW on produce quality. Youssef and Hussien 
(2020) summarized that neither BEW nor AEW have any harmful effect in terms of 
citrus quality including weight loss, total soluble solids, citric acid, ascorbic acid, 
pH and color index. Some scientists found no statistical difference in color index of 
lettuce, broccoli, strawberry, and date palm before and after EW treatment (Park 
et al. 2001; Hung et al. 2010a, b; Jemni et al. 2014). Also, EW application proved to 
have no harmful effect on iceberg lettuce and white cabbage quality with regard to 
vitamin C loss (Vandekinderen et al. 2009a, b). In addition, the use of EW had no 
obvious effect on both titratable acidity and pH in the case of date fruit and straw-
berry (Hung et al. 2010a, b; Bessi et al. 2014).

 Effect on Removing Pesticide Residues

To ensure a sustainable production of fruits, vegetables, and grains, the farmers use 
a variety of pesticides to protect the crops from insects, mites, fungi, bacteria, 
weeds, etc. However, when humans and animals consume foods with pesticide resi-
dues, they can cause cumulative poisoning effects. Several physical, chemical, and 
biological methods including adsorption, oxidation, catalytic degradation, mem-
brane filtration, and biological treatment have been developed in order to remove/
inactivate pesticide residues. The use of EW as potential tool to remove pesticide 
residues, has been evaluated during the last years (Hao et  al. 2011b; Sung et  al. 
2011, 2012; Wuyun 2011; Hao and Li 2006; Luo et al. 2014; Liu et al. 2015; Hu 
et al. 2016; Han et al. 2017; Qi et al. 2018), as shown in Table 12.3.

They showed that a higher ACC and a longer treatment time leaded to greater 
reductions of pesticide residues. Moreover, the effectiveness was dependent on the 
chemical proprieties of the pesticides. For example, organophosphorus pesticides 
(e.g. dimethoate, chlorpyrifos, etc.), containing P=S double bonds and P–S or P–O 
single bonds, are easily attacked by chlorin (Deborde and von Gunten 2008) and 
hence can be degraded by the available chlorine in EW (Qi et al. 2018). In addition, 
a nucleophilic reaction has been reported to occur under acidic or alkaline condi-
tions with the break of the double bond because of AEW low pH and high ORP 
value, whereas BEW with its high pH has proved to have a good emulsifying prop-
erty (Wang and Han 2019). In summary, the EW has an obvious effect on the 
removal of pesticide residues on food without a significant decrease in quality 
(Wang and Han 2019).
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 Advantages of EW

The on-site production of the EW, whatever the use, represents a great advantage 
because there are no chemicals to purchase or store, except for an inexpensive salt 
(NaCl or others), eliminating the need for purchasing, transporting, storing, prepar-
ing and using traditional chemicals. EW has minimal impact on the environment 
(Koseki et al. 2002); particularly, NEW and BEW are safe for the environment and 
the operators since little chlorine is released to the air. If non-chlorine salts (e.g. 
NaHCO3) are used as electrolytes, health concerns with regard to chlorine in the air 

Table 12.3 Studies conducted on the effect of EW water in removing pesticide residues 
from produce

Pesticides Samples Percentage reductiona (%) References

Chlorpyrifos Chinese cabbage 50–70 Sung et al. (2012)
Prothiofos Chinese cabbage 50–75
Deltamethrin Chinese cabbage 40–80
Chlorpyrifos yuja 70 Sung et al. (2011)
Prothiofos yuja 70
Spirodiclofen yuja 72
Deltamethrin yuja 82
Benomyl yuja 97
Thiophanate-methyl yuja 98
Acequinocyl yuja 82
Isoprocarb Cowpea 17–85 Han et al. (2017)
Chlorpyrifos Cowpea 10–60
Bifenthrin Cowpea 9–48
Beta-cypermethrin Cowpea 6–56
Difenoconazole Cowpea 9–68
Azoxystrobin Cowpea 8–75 Han et al. (2017)
Dimethoate Apple 35–81 Wuyun (2011)
Chlorpyrifos Apple 27–72
Parathion Apple 31–77
Dimethoate Rape >60 to >70
Dimethoate Tomato and beans >50
Chlorpyrifos Rape >50
Chlorpyrifos Tomato and beans >50
Parathion Rape and tomato >60
Parathion Beans >50
Acephate Rape 82 to >90 Hao and Li (2006)
Lambda-cyhalothrin Apple 40–90 Liu et al. (2015)
Dimethoate Leek 40–79 Hu et al. (2016)
Chlorpyrifos Leek 40–73
Phoxim Cabbage 92 Luo et al. (2014)

aPercentage reduction range depend on pH, ACC, ORP, and treatment time
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and in water are avoided and, consequently, the formation of chlorinated organic 
compounds including chloramines (NH2Cl), dichloramines (NHCl2), and trichloro-
methanes (HCCl3). These are respiratory irritants suspected to be carcinogenic 
(Roberts and Reymond 1994; Fallanaj et  al. 2013; Citizens Concerned About 
Chloramine 2019. EW reverts to normal water after use, and its effectiveness has 
been verified within a large pH range (Park et al. 2004b). Since EW has multiple 
mechanisms of action, it is quite unlikely that resistance in target microorganisms 
will develop (Al-Haq et al. 2005).

After the initial cost of the apparatus for electrolysis, operational expenses 
become minimal (Bonde et al. 1999) and the capital cost of the on-site apparatus can 
often be recovered in less than a few years.

Indeed, in USA the unit cost per kilogram of electronically generated chlorine is 
significantly cheaper than liquefied chlorine gas, sodium hypochlorite solution, dry 
calcium hypochlorite, and cyanurate-based (TCIA) tablets (Grech and Rijkenberg 
1992). The raw materials, water and sodium chloride, are found virtually every-
where (Venczel et al. 1997). Its use reduces the hazards associated with handling, 
transportation, and storage of concentrated chlorine solution (Nakagawara et  al. 
1998). The biocidal capacity of EW as compared to traditional chemical solutions 
permits the use of low dose rates, reducing the risk for environmental impact and the 
solutions should be less corrosive than alternate products. Lastly, the use of EW on 
various food commodities did not negatively affect the organoleptic properties, 
color, scent, flavor, or texture (Al-Haq et  al. 2005; Hricova et  al. 2008; Huang 
et al. 2008).

 Disadvantages of EW

Strongly acidic EW and free chlorine content may be corrosive to some metals and 
may induce synthetic resin degradation (Tanaka et al. 1999), and hazardous chlori-
nated by-products can be produced. Its effectiveness may be hindered by the pres-
ence of organic substances (Oomori et al. 2000); its antimicrobial potential could be 
loosed quickly, once the apparatus is switched-off (Kiura et al. 2002). Depending on 
the electrolyte used and the pH (e.g. in AEW), pungent chlorine gas is formed that 
can cause discomfort to operators (Al-Haq et al. 2005). Excessive chlorine can be 
potentially toxic for plant produce (Grech and Rijkenberg 1992). AEW can induce 
phytotoxicity; for example, white spots and slight necrosis were observed on flow-
ers and leaf edges of some ornamental bedding plants following an AEW foliar 
spray (Buck et al. 2003). A drawback could be also the need to switch-on the appa-
ratus one or few hours before utilization to allow the bulk of water to become rich 
in antimicrobial oxidizing species (Fallanaj et al. 2013).
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 Conclusion

Disinfection of fresh produce and storage facilities is generally an important 
requirement for postharvest decay management. The applicability of disinfectants 
to control postharvest fruit decay depends on many aspects, i.e. on the fresh produce, 
the orientation towards organic or conventional agriculture, the time of the produce 
storage, the characteristics of the postharvest facilities, the possibilities to integrate 
the disinfection operations with other technologies and the know-how of the staff. 
In general, EW is characterized by a low impact on the environment and the opera-
tors, leaving no toxic residues or eliminating them on the food matrix. Because EW 
have multiple mechanisms of action it is quite unlikely that resistance in target 
microorganisms could develop. In view of the potential benefits to extend the stor-
age period of fruit provided by the disinfectant agents, further studies could opti-
mize their integration into current practices of postharvest manipulation.
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