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Chapter 8
In Silico Trials and Personalized Therapy 
for Sepsis and Trauma

Yoram Vodovotz, John Bartels, and Gary An

Abbreviations

ABM	 Agent-based model
ICU	 Intensive care unit
ISS	 Injury Severity Score

�Inflammatory Diseases: A Pox on All Our Houses

We are currently faced with a barrage of complex diseases that often coexist in the 
same patient [1]. In the developing world, the modern disease landscape is a con-
stellation of acute and chronic infections, traumatic injuries, and nonhealing 
wounds; diseases that are made even more complex due to the impact of malnutri-
tion, war, and displacement [2, 3]. In the industrialized world, we face some of the 
same challenges with regard to infections, trauma, and wounds, but these diseases 
are complicated by lifestyles of excess and the attendant metabolic irregularities 
(diabetes and obesity) [4]. In addition, the generally longer lifespans now being 
experienced around the world have paradoxically resulted in the rise of aging-
related diseases, such as cancer and various neurodegenerative diseases [5]. Given 
the degree and extent of medical care in the first world, it is virtually guaranteed that 
a common pathway for patients with this range of diseases is to spend at least some 
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time in an intensive care unit with critical illness manifesting with multi-compart-
ment pathophysiological derangements and organ failure [6]. Critical illness can 
result directly from trauma, hemorrhagic shock, and bacterial infection (sepsis). On 
its own, trauma/hemorrhage is a leading cause of death worldwide, often leading to 
inflammation-related late complications that include sepsis and multiple organ dys-
function syndrome (MODS) [7–9]. Sepsis alone is responsible for more than over a 
million annual hospital admissions, more than 215,000 deaths in the United States 
per year, and an annual healthcare cost of over $20 billion [6, 10, 11], while trau-
matic injury remains the leading cause of mortality and morbidity for individuals 
under 55 years and accounts for 30% of all life-years lost, with over 190,000 lives 
lost annually in the United States [12, 13]. There is currently not a single approved 
pharmacological therapy, other than antibiotics, targeting the pathophysiology of 
critical illness [14].

It is now clear that the acute inflammatory response, with its manifold manifesta-
tions at the molecular, cellular, tissue, organ, and whole-organism levels, drives 
outcomes in all the aforementioned diseases and is central to the pathophysiology 
of critical illness. Properly regulated inflammation allows for timely recognition 
and effective reaction to threats to an individual, be it tissue damage resulting from 
injury or infection from pathogenic microbes. However, when the insult is too great, 
or repetitive in nature (as seen in chronic inflammatory and autoimmune diseases), 
inflammation can become disordered and result in ongoing tissue damage and organ 
dysfunction [15]. We assert that critical illness is the most dramatic manifestation of 
disordered, dysregulated, and mis-compartmentalized inflammation [6, 16–19]. 
Thus, the presence of a robust, evolutionarily conserved network of inflammation 
[20–22], able to respond to heterogeneous insults and tuned for effective contain-
ment, yet paradoxically capable of driving and propagating host tissue damage, 
results in disease states that are fundamentally resistant to reductionist characteriza-
tion. This property of critical illness is the basis for the lack of effective mechanism-
based pharmacologic therapies, and accounts for the fact that even life-saving/
perpetuating measures, such as mechanical ventilation or hemodialysis, may have 
detrimental effects through the induction of additional inflammation [23–25].

�Insufficiencies in the Current Process of Drug/Device Design 
and Executing Clinical Trials

For a therapeutic drug or device to reach its ultimate end user—the patient—a mul-
tistep process must be carried out, culminating in approval by regulatory agencies. 
This process generally consists of years/decades of basic research to identify candi-
date therapeutic targets, followed by sequential studies to demonstrate safety and 
some acceptable degree of efficacy (e.g., dosage or timing that results in greatest 
therapeutic benefit with least harm) in both experimental animals and humans. This 
process typically concludes with a pivotal (Phase III) clinical trial, which is 
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randomized (i.e., subjects that meet predecided inclusion and exclusion criteria are 
recruited into either a placebo or treatment arm in a random fashion) and double-
blinded (i.e., neither the clinician nor the patient knows a priori the study arm in 
which the patient is enrolled) [21, 26–29]. The enrollment into this Phase III trial is 
usually not individualized in any fashion beyond the set inclusion and exclusion 
criteria (and, of course, the withdrawal of a patient from the study if certain prede-
cided adverse events occur). This process is considered the sine qua non of the sci-
entific method, and it has indeed resulted in numerous drugs and devices available 
to physicians to treat diseases, though there has been a recent focus on novel, “adap-
tive” clinical trial designs [30]. However, it is important to recognize the difference 
between other domains where adaptive trials have been used and that of critical ill-
ness: namely that other disease processes, such as cancer and cardiovascular dis-
ease, have known and proven therapies for which the adaptive trials serve to aid in 
subgroup selection, dose optimization, and multimodal treatment efficacy. 
Therefore, while adaptive trial design can be of potential use in critical illness, the 
seeming goal of finding some subgroup in which an already failed compound can 
“possibly” be effective is asking the method to answer a question it was not designed 
to do [31].

There is a fundamental gap between preclinical studies and clinical trials. To 
begin with, the disease being targeted is usually thought of in a reductionist, static 
way as a series of discrete “stages” or “syndromes” rather than as a dynamic, sto-
chastic progression of biological events driven by initial conditions and genetically 
determined parameters that, upon reaching certain multidimensional thresholds, 
leads to multiple outcomes. This discrepancy leads to the design of drugs that are 
targeted to ostensibly diagnostic symptoms rather than to underlying causes of the 
disease as a whole. Next, a highly linear (cause–effect) view of the biological path-
ways is presumed to underlie the various discrete symptoms, leading to the genera-
tion of drugs absent any consideration (at this initial stage of drug development) of 
impact on other pathways, cells, tissues, and organs. Finally, the statistical 
approaches commonly used to structure and analyze clinical trials typically make a 
number of questionable assumptions; for example, that variables are normally dis-
tributed, that a marker of patient state is equivalent to a mechanistic driver of that 
state, and that such a marker of patient state will be altered in a statistically signifi-
cant fashion as a function of therapeutic efficacy [19, 32]. Below, we discuss how 
these general features of the healthcare delivery process manifest in therapies for 
acute inflammatory diseases, with a focus on critical illness.
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�Inflammation in Critical Illness: Rational Systems Approaches 
for a Complex Therapeutic Target

The flaws in—and the fragmented nature—of the current healthcare delivery para-
digm have led to the recognition of the need to address complex interplay between 
inflammation and physiology in critical illness, manifesting in divergent group out-
comes and heterogeneous individual trajectories [6, 19, 33, 34]. Initially, there was 
hope for some improvement in this situation through the adoption of “omics” meth-
odologies, with their theoretical capability of interrogating the complete responses 
of cells and tissues in individuals (and thereby both improving the mechanistic 
understanding of critical illness in general and enhancing diagnostic and treatment 
capacities in individuals) [35–42]. While this approach has resulted in key contribu-
tions to the understanding of molecular pathways induced by injury and infection in 
humans [43–47], as these techniques have become more commonplace there has 
been a growing recognition that more data do not necessarily lead to better—or 
any—explanations for the phenomena from which those data are derived. Thus, 
these “omics” methods have not proven to be the panacea for the design of drugs, 
clinical trials, and diagnostics that they were projected to become. Thus, despite 
extensive interest in the use of data-driven modeling (colloquially referred to as 
“artificial intelligence”) in clinical trial design [48], from a practical standpoint, 
there are multiple challenges to implementation of these purely data-driven, descrip-
tive approaches in the healthcare delivery chain [9, 16, 17].

In contrast to data-driven, descriptive modeling, mechanistic computational sim-
ulations depict the behavior of biological interactions (e.g., among cells, their prod-
ucts, and the outcomes that result under a given set of conditions) dynamically. Such 
dynamic computational models and simulations may be used as “knowledge stores” 
that may be queried as to the emergent behavior of the sum total of known or 
hypothesized reductionist biological interactions [49–53]; to suggest novel interac-
tions not yet described by experimental data [54]; and to address controversies 
based on diverse experimental/clinical conditions or other experimental differences 
among groups studying any given complex biological system [55]. Unlike data-
oriented, descriptive models, dynamic mechanistic models offer the possibility of 
prediction outside of and beyond the data on which they were developed [9, 16, 17, 
56, 57]. We have extended the classical systems biology approach to that of 
Translational (i.e. clinically applied)  Systems Biology as systems and computa-
tional biology methods have matured and begun to take on characteristics, features, 
and operating principles of engineering [18, 19, 29, 56, 58, 59].

Indeed, the computational modeling toolset now available for integration into the 
healthcare delivery pipeline is rich and suited to diverse tasks. Translational dynamic 
mechanistic modeling used to date in acute inflammation and other phenomena 
related to critical illness can be divided into two general types: continuous methods, 
generally employing differential equations (either ordinary or partial) and particu-
larly useful in settings involving data that reflect the mean field approximations of 
behavior of a biological system, for example, the concentrations of molecules in a 
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biofluid [57, 60–68]; and discrete methods, most notably agent-based modeling for 
settings in which spatial pattern/image data are involved, or for prototyping initial 
computational models of a complex system [54, 69–73]. These various method have 
their respective strengths and weaknesses [29, 58, 74–76], and have all been used in 
the setting of critical illness [20, 21, 29, 53, 56, 58, 74].

Dynamic computational modeling has improved our knowledge of the basic 
biology of inflammation, and, directly or indirectly, led to translational applications 
in critical illness [6, 9, 16–21, 29, 56, 76, 77]. One key translational application, 
namely the in silico clinical trial, was pioneered in the arena of critical illness [57, 
61, 71, 78]. The potential use of mechanistic computational modeling in the diag-
nostic arena is evidenced by studies showing the potential to predict the individual 
inflammatory and pathophysiologic outcomes of individual human subjects [57, 79] 
and large, outbred animals [80]. Thus, it is now theoretically possible to predict and 
impact the outcomes of individual critically ill patients using patient-specific com-
putational simulations, likely informed by genetic data and assessment of circulat-
ing inflammation biomarkers [53, 56, 57].

Given the multiscale complexity of the disease processes, we suggest that it is 
imperative to not merely identify candidate molecules, but also to determine if the 
higher-order, system-level consequences of attempting to intervene in a particular 
pathway will lead to an ultimately beneficial or detrimental outcome [19, 81, 82]. 
We have pointed out the need for a computational approach to dynamic knowledge 
representation as a means of hypothesis instantiation and testing [19, 53, 83]. In the 
context of translating molecular-level mechanistic hypotheses up through the vari-
ous steps of the healthcare delivery continuum, this process is envisioned as allow-
ing one to determine if the assumptions regarding manipulating a given biological 
interaction at a given scale of organization (typically the molecular/cellular scale) is 
likely to behave as expected at another, typically higher scale (e.g., tissue, organ, or 
the entire organism) [19]. In this way, one may identify effects that would otherwise 
be considered “unanticipated.” Dynamic knowledge representation may be aug-
mented with insights derived from high-throughput/high-content data [53], along 
with appropriate data analysis and data-driven modeling [22, 56, 59], in order to 
generate and parameterize mechanistic computational models of disease, patient 
[56, 57], or population [21, 29, 57, 73].

�Dynamic Knowledge Representation in the Context 
of In Silico Clinical Trials

A key example of the in silico clinical trial as a form of dynamic knowledge repre-
sentation can be seen in the simulated clinical trials of existing and hypothetical 
antimediator interventions for sepsis [61, 71, 78], trauma [57], and wound healing 
[73, 84]. Importantly, these simulated trials were based on the knowledge available 
at the time the actual clinical trials were performed. Highlighting the power of 
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computational modeling as a high-throughput test bed for novel therapies, the early 
in silico clinical trials simulated a series of existing [61, 71] and hypothetical [71] 
therapies targeting inflammatory mediators-based therapies. In one case, a simula-
tion of neutralizing antibodies to proinflammatory cytokines was implemented in an 
agent-based model (ABM) [70, 71]. This dynamic computational model reproduced 
the general disease dynamics of sepsis and multiple organ failure and was used to 
generate a simulated population corresponding to the control group in a sepsis clini-
cal trial. A similar approach was used in a contemporaneous study focusing on 
replicating the failed antitumor necrosis factor-α (TNF-α) clinical trials in sepsis, 
demonstrating that the presence of patient subgroups that were harmed by this drug 
as well as others that were helped (culminating in no net benefit); this study also 
suggested means by which biomarkers could identify these subgroups [61].

Importantly, these clinical trials were simulated in such a way that assumed that 
the proposed interventions behaved mechanistically exactly as had been hypothe-
sized. Therefore, these in silico trials are a form of verification of the underlying 
hypotheses—either explicit or implicit—that formed the basis for such trials. The 
way in which these computational simulations were structured avoided the need to 
invoke factors such as heterogeneity of adjunctive therapy, different pharmacody-
namics/kinetics, faulty randomization, or other potentially confounding practical 
issues commonly used to explain negative outcomes of clinical trials. In line with 
actual outcomes, and not surprisingly for those studies that were purely hypotheti-
cal, none of the simulated interventions demonstrated a beneficial effect [61, 71]. 
The conclusion drawn from these findings is that, most likely, the underlying con-
ceptual models that informed the development of these therapeutic strategies tar-
geted at blocking individual mediators were flawed, precisely because the hypotheses 
underlying their selection as therapeutic modalities were flawed in assuming a high 
likelihood of universal success. That is not to say that—despite this flaw of univer-
sal therapeutic efficacy—these mediator-directed therapies would fail. As noted 
above, one of the studies, an in silico trial of anti-TNF-α therapy using an equation-
based model of systemic inflammation, suggested that this type of therapy would 
work on defined subsets of sepsis patients [61]. Thus, we suggest that flaws in the 
original hypotheses and assumptions underlying these failed clinical trials would 
have been exposed through the use of computational dynamic knowledge represen-
tation been available and used early and throughout the process of drug development.

As touched upon above, in silico clinical trials offer an unprecedented possibility 
to transcend the long list of practical limitations—including relatively small cohort 
sizes, limited availability of measurements, finite study durations, and the presence 
of confounding factors—that affect real-world clinical trials. However, the interdis-
ciplinary team of clinicians, biologists, and computational modelers that carry out 
these in silico clinical trials must assure that the base models and implementation of 
simulated populations represent both the biology and clinical setting.

In addition to providing a check of the plausibility of the underlying scientific 
basis of a proposed intervention, in silico trials can augment the current process of 
performing clinical trials in three significant ways [85]:
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	1.	 Enhancement of study group substratification: The study by Clermont et al. 
[61] demonstrates the use of an in silico trial to enhance subgroup stratification 
and candidate patient identification. The finer-grained representation of each 
simulated patient, in terms of cytokine response trajectories, and how they 
respond to and without a proposed intervention allows the identification of 
potential biomarker-defined inclusion criteria for a clinical trial. In essence, this 
allows each simulated patient to act as his own control with respect to the pro-
posed intervention. This type of analysis is functionally impossible to obtain in 
clinical trial cohorts that reflect the range of response that would arise in the 
general population. Furthermore, social or ethical factors that may limit the pos-
sible representation of specific groups (e.g., African-Americans, known to be 
generally under-represented in many clinical trials, or women of child-bearing 
age, excluded for potential teratogenic risk). As a result, trials are very likely to 
miss important (positive or negative) effects in subgroups that are sampled inad-
equately. This mis-sampling can lead to later discovery of adverse events follow-
ing a promising clinical trial, or in the failure of truly useful treatments in clinical 
trials that were not properly targeted to the patients that would most benefit from 
them. By simulating massive virtual cohorts sampled from the space of potential 
patients, in silico clinical trials can achieve much more thorough sampling of 
possible patients. The acquisition and analysis of this simulation-generated data 
can in turn reveal clinical patient subgroups that merit particular attention, and 
lead to better informed patient selection criteria and more effective clinical trials.

	2.	 Augmentation and optimization of protocol design: Protocols for modern 
interventions depend on multiple complex and often interacting parameters (e.g., 
dosage levels and timing and frequency of administration). Attempting to deter-
mine these parameters experimentally over a wide range of individuals is func-
tionally impossible, and therefore the optimal intervention strategy for an 
individual patient cannot pragmatically be determined. The inability to antici-
pate and account for this degree of interindividual heterogeneity will doom a 
clinical trial to failure at the outset. In silico trials allow a more rigorous compu-
tational optimization of these parameters, both on massive populations and for 
individual patients, and will increase the precision with which protocols can be 
designed, and therapeutic endpoints defined.

	3.	 Enhanced characterization of the control group: Clinical trials rely on control 
groups against which the effect of a proposed intervention is compared. However, 
given the vagaries of clinical practice, many control groups may actually com-
pare poorly to the intervention group. Interindividual variability in both underly-
ing biology and clinical practice leads to a situation where the definition of 
“similarity” between control and intervention patients is often quite crude and 
imprecise. This situation confounds the ability to truly define the effect of the 
proposed intervention. In silico trials, however, offer the ideal control group: 
each simulated patient can be simulated with and without the intervention. 
Comparison of results against these “perfect” controls thus removes a source of 
uncertainty that is unavoidable in real trials.
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An example of the potential insights obtained from carrying out in silico trials can 
be seen in the aforementioned in silico trial based on an anti-TNF-α therapy [61]. 
These simulations recapitulated the general lack of efficacy of the intervention; 
however, the researchers used the power of computational modeling to evaluate 
what would have happened in the absence of intervention or in the setting of differ-
ent doses of the drug. In essence, the placebo group was “cloned” into multiple 
treatment arms or the placebo arm. Consequently, this in silico analysis suggested 
specific characteristics of the simulated patients who had been helped by the inter-
vention, had been harmed by the intervention, or had not been affected by the drug, 
thereby suggesting the possibility of using this in silico approach for deciding on 
inclusion and exclusion criteria for eventual clinical trials. Thus, the key take-home 
lesson of this study was that a failed randomized, placebo-controlled clinical trial 
could possibly have been successful through the use of in silico modeling.

Despite the tangible benefits of in silico trials in gaining insight into the potential 
efficacy of therapeutic interventions and why such proposed interventions might not 
be effective, it has been only recently that methods have been developed that can 
help determine what actually might be effective. Investigation into this challenge 
led to the perspective of addressing the treatment of sepsis as a control problem, 
where the goal of therapy is to “steer” a patient’s disordered inflammatory state 
back into a state of health. ABMs have been proposed as proxy systems to aid in the 
development of control strategies [86], and this has led to the use of both genetic 
algorithms/evolutionary computing to define the scope of the task of controlling 
sepsis [87], and the application of model-based Deep Reinforcement Learning to 
train an artificial intelligence (AI) agent to control sepsis [88]. The details of this 
work are presented in Chap. 5 of this book.

�Dynamic Knowledge Representation at the Individual Level: 
Optimization of Diagnosis and Therapy

It may be argued that the ultimate test of dynamic knowledge representation is that 
of characterizing the drivers of dynamic patient state to a degree sufficient to iden-
tify and treat the individual patient [6, 56, 81, 82]. To do so, a robust, mechanistic 
computational model (presumably the same one used for in silico clinical trial) must 
be adapted to reflect the temporal dynamics of inflammation and organ damage/
dysfunction in the individual patient [57]. From a practical standpoint, model 
parameters that alter the patient’s dynamics (e.g., comorbidities, prior health his-
tory, and relevant genetic traits) are modified over known or presumed ranges in 
accordance with known biology [56, 57]. The applications of this approach are 
myriad. Of most direct connection to the in silico clinical trial, individual-specific 
models could be used to generate much larger cohorts of virtual patients, which in 
turn could be used to make in silico clinical trials more realistic.
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As an example of this approach, we constructed a multicompartment, equation-
based model, consisting of the “tissue” (in which physical injury could take place), 
the “lungs” (which can experience dysfunction), and the “blood” (as a surrogate for 
the rest of the body) in order to simulate traumatic injury and subsequent inflamma-
tion and organ dysfunction [57]. This model was calibrated initially with data on 
approximately 30 individual trauma patients, all survivors of moderate blunt trauma. 
Based on these individual trajectories of both inflammatory and physiological vari-
ables, normal and uniform distributions were created. These distributions were 
sampled repeatedly to create a population of 10,000 virtual trauma patients, where 
each patient is defined by his/her parameter values in the mathematical model. Each 
patient was then subjected to simulated low, moderate, and severe trauma. These 
virtual populations of trauma patients exhibited realistic and partially overlapping 
distributions of “damage” recovery times [which we equated with intensive care 
unit (ICU) lengths of stay] and total “damage” (which we equate with degree of 
multiple organ dysfunction). These virtual patients were queried as to the parame-
ters driving the above distributions and found that for patients with a low Injury 
Severity Score (ISS), parameters related to IL-1β were the predominant drivers, 
while IL-6 was the main driver of outcome in patients with moderate or severe 
ISS.  However, while real patients could be segregated based on IL-6 single-
nucleotide polymorphism into high- versus low-IL-6-producing subcohorts, and 
while tuning up IL-6 production in silico could turn virtual survivors into virtual 
nonsurvivors, the net effect in both virtual and real patients was negligible (demon-
strating the difficulty in extrapolating linearly in complex diseases such as critical 
illness). Moreover, while only data from trauma survivors were used to calibrate the 
in silico trauma model, simulations of virtual populations predicted the appearance 
of approximately 4% nonsurvivors [57]. These predictions were in line with the 
actual mortality in this population [57, 89]. These results demonstrate the utility of 
mechanistic models with regard to predicting emergent phenomena, and suggest the 
possibility of determining novel basic mechanisms in trauma, of individualized out-
come prediction for trauma patients, and of virtual clinical trials based on a small 
number of actual patients [57].

The aforementioned studies highlight some of the particular advantages that 
mechanistic models afford: virtual cohorts can be generated of any required size, 
and each individual patient’s disease state can be tracked at an extremely high level 
of resolution (limited only by the resolution of the model) for as long as required 
[57, 87, 90]. When information is available about the approximate distribution of 
these characteristics in real populations, this information can be used in the genera-
tion of a virtual patient population to ensure that the composition of simulated 
cohorts mirrors reality.

Another application of this approach involves in silico “testing” of multiple ther-
apeutic modalities on individuals. As an example of this application of dynamic 
mechanistic modeling, an ABM of vocal fold inflammation and healing was cali-
brated to the early levels of inflammatory mediators present in the laryngeal secre-
tions of individual humans subjected to experimental phonotrauma, and could 
predict the later levels of these mediators in an individual-specific fashion [79]. 
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Importantly, these individualized ABMs were utilized to predict the likely efficacy 
of a “rehabilitative” treatment, namely resonant voice exercises, both in patients 
who had in fact received this treatment and in patients who did not [79]. A similar 
process could be employed to evaluate the specific efficacy of a drug modulating an 
aspect of inflammation or healing [57, 73], thereby forming the basis of a much 
more realistic in silico clinical trial.

�Conclusions and Perspectives

What is clear now is that the biocomplexity of pathophysiological processes under-
lying the systems-level diseases that represent the greatest health risk today, such as 
cancer, diabetes, atherosclerosis, Alzheimer’s, sepsis, and wound healing, con-
founds the use of traditional experimental methods. These reductionist experiments 
and data-oriented descriptive methods are unable to evaluate and test multiscale 
causality, an essential and critical step in the design and development of therapeutic 
interventions for systems-level diseases. The complexity and dimensionality (in 
terms of multiple factors and variables) of these biomedical issues, particularly in 
terms of translating mechanisms across scales of organization, essentially precludes 
this approach. Reliance on only these traditional methods can produce, at best, 
“one-off” products based on fortuitous discovery, but does not provide a robust and 
sustainable strategy. The Scientific Method mandates that it is the ability to evaluate 
mechanisms and causality sufficiently in a multidimensional, high-throughput 
world—as is potentially possible with dynamic computational modeling and the 
application of principles from Translational Systems Biology—that forms the crux 
of the translational dilemma [19]. The use of dynamic computational modeling can 
provide a framework that allows the introduction of “theories” into biomedicine, in 
order to facilitate the translation of robust conceptual structures and architectures 
across experimental platforms as well as into the differences among individual 
patients [19, 79, 91]. Specifically, we assert that the computational approaches 
described in this chapter, with an explicit goal of addressing the challenges of 
implementing the last stage of getting a therapy to the bedside, represents a neces-
sary step in the future of obtaining and implementing effective therapeutics for the 
complex diseases that challenge us today and in the future.
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