
Chapter 5
Variable Selection

Abstract This chapter is dedicated to variable selection using random forests: an
automatic three-step procedure involving first a fairly coarse elimination of a large
number of useless variables, followed by a finer and ascending sequential introduc-
tion of variables into random forest models, for interpretation and then for prediction.
The principle and the procedure implemented in the VSURF package are presented
on the spam dataset. The choice of VSURF parameters suitable for selection is then
studied. In the final section, the variable selection procedure is applied to two real
examples: predicting ozone concentration and analyzing genomic data.

5.1 Generalities

In the past, classic statistical problems typically involved many observations (n =,
e.g., a few hundred or a few thousand) and relatively a few variables (p = one to a
few tens). Today, the ease of data acquisition has led to huge databases that collect
new information almost daily. Traditional statistical techniques are poorly suited to
processing these new quantities of data, in which the number of variables p can reach
tens or even hundreds of thousands. At the same time, for many applications, the
number of observations n can be reduced to a few tens, e.g., in the case of biomedical
data. In this context, it is indeed common to gather many types of data on a given
individual (e.g., gene expression data), but to keep the number of individuals onwhom
the experiment is conducted small (for the study of a disease, the number of affected
individuals included in the study is often very limited). These data are said to be of
high dimension: the number of variables is quite large in comparison to the number
of observations, which is classically denoted by n � p. Here, we are referring to
problems where n is several hundreds and p is several thousands. One of the most
attractive features of random forests is that they are highly efficient both for traditional
problems (where p ≤ n) and for such high-dimensional problems. Indeed, RF have
been previously shown to be inherently adapted to the high-dimensional case. For
instance, Biau (2012) shows that if the true model meets certain sparsity conditions,
then the RF predictor depends only on the active variables.

© Springer Nature Switzerland AG 2020
R. Genuer and J.-M. Poggi, Random Forests with R, Use R!,
https://doi.org/10.1007/978-3-030-56485-8_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56485-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-56485-8_5

78 5 Variable Selection

In many situations, in addition to designing a good predictor, practitioners also
want additional information on the variables used in the problem. Statisticians are
invited to propose a selection of variables in order to identify those that are most
useful in explaining the input–output relationship. In this context, it is natural to think
that relatively a few variables (say at most n and hopefully much less, for example,√
n) actually affect the output, and it is necessary to make additional assumptions

(called parsimony or sparsity) to make it tractable and meaningful. In Giraud (2014),
there is a very complete presentation of mathematical problems and techniques for
addressing this kind of questions.

Let us mention somemethods for variable selection in high-dimensional contexts.
Startingwith an empirical study in Poggi and Tuleau (2006)where amethod based on
the variable importance index provided by the CART algorithm is introduced. In the
same flavor, let us also mention Questier et al. (2005). Considering the problemmore
generally, Guyon et al. (2002), Rakotomamonjy (2003), and Ghattas and Ben Ishak
(2008) use the score provided by the Support Vector Machines (SVM: Vapnik 2013)
and Díaz-Uriarte and Alvarez De Andres (2006) propose a variable selection proce-
dure based on the variable importance index related to random forests. Thesemethods
calculate a score for each of the variables, then perform a sequential introduction of
variables (forward methods), or a sequential elimination of variables (backward or
RFE for Recursive Feature Elimination methods), or perform step-by-step methods
(stepwisemethods) combining introduction and elimination of variables. In Fan and
Lv (2008), a two-step method is proposed: a first step of eliminating variables to
reach a reasonable situation where p is of the same order of magnitude of n, then a
second step of model building using a forward strategy based, for example, on the
Least Absolute Shrinkage and Selection Operator (Lasso: Tibshirani 1996). In this
spirit, a general scheme for calculating an importance score for variables is proposed
in Lê Cao et al. (2007), then the authors use this scheme with CART and SVM as
the base method. Their idea is to learn a weight vector on all variables (their meta-
algorithm is called Optimal FeatureWeighting, OFW): a variable with a large weight
is important, while a variable with a small weight is useless.

Finally, more recently, methods to improve Lasso for variable selection have been
developed. The latter have points in common with the ensemble methods. Indeed,
instead of trying to make selection “at once” with a classic Lasso, the idea is to con-
struct several subsets of variables and then combine them. In Bolasso (for Bootstrap-
enhancedLasso), introduced byBach (2008), several bootstrap samples are generated
and then the Lasso method is applied to each of them. Bolasso is therefore to be com-
pared with the Bagging of Breiman (1996). In Randomized Lasso, Meinshausen and
Bühlmann (2010) propose to generate several samples by subsampling and add an
additional random perturbation to the construction of the Lasso itself. Randomized
Lasso is therefore to be compared to Random Forests-RI variant of random forests.
In the same spirit, we can also mention Fellinghauer et al. (2013) which use RF for
robust estimation in graphical models.

Interest in the subject still continues: for example, Hapfelmeier and Ulm (2012)
propose a new selection approach using RF, and Cadenas et al. (2013) describe and
compare these different approaches in a survey paper.

5.2 Principle 79

5.2 Principle

In Genuer et al. (2010b), we propose a variable selection method (see also in Genuer
et al. 2015, the corresponding VSURF package). This is an automatic procedure
in the sense that there is no a priori to make the selection. For example, it is not
necessary to specify the desired number of variables; the procedure adapts to the
data to provide the final subset of variables. The method involves two steps: the
first, fairly coarse and descending, proceeds by thresholding the importance of the
variables to eliminate a large number of useless variables, while the second, finer
and ascending, consists of a sequential introduction of variables into random forest
models.

In addition, we distinguish two variable selection objectives: interpretation and
prediction (although this terminology may lead to confusion):

• For interpretation, we try to select all the variables X j strongly related to the
response variable Y (even if the variables X j are correlated with each other).

• While for a prediction purpose, we try to select a parsimonious subset of variables
sufficient to properly predict the response variable.

Typically, a subset built to satisfy the first objective may contain many variables,
which will potentially be highly correlated with each other. On the contrary, a subset
of variables satisfying the second one will contain a few variables, weakly correlated.

A situation illustrates the distinction between the two types of variable selec-
tion. Consider a high-dimensional classification problem (n � p) for which each
explanatory variable is associated with a pixel in an image or a voxel in a 3D image
as in brain activity classification (fMRI) problems; see, for example Genuer et al.
(2010a). In such situations, it is natural to assume that many variables are useless
or uninformative and that there are unknown groups of highly correlated predictors
corresponding to regions of the brain involved in the response to a given stimula-
tion. Although both variable selection objectives may be of interest in this case, it is
clear that finding all the important variables highly related to the response variable
is useful for interpretation, since the selected variables correspond to entire regions
of the brain or of an image. Of course, the search for a small number of variables,
sufficient for a good prediction, makes it possible to obtain the most discriminating
variables in the regions previously highlighted but is of less priority in this context.

5.3 Procedure

In this section, we present the skeleton of the procedure before providing additional
details, in the next section, after the application of the method to the spam data.

The first step is common to both objectives while the second depends on the goal:

80 5 Variable Selection

• Step 1. Ranking and preliminary elimination:

– Rank the variables bydecreasing importance (in fact by averageVIover typically
50 forests).

– Eliminate the variables of low importance (let us denote m to be the number of
retained variables).
More precisely, starting from this order,we consider the corresponding sequence
of standard deviations of the VIs that we use to estimate a threshold value on the
VIs. Since the variability of the VIs is greater for the variables truly in the model
than for the uninformative variables, the threshold value is given by estimating
the standard deviation of the VI for the latter variables. This threshold is set at
the minimum predicted value given by the CART model fitting the data (X,Y)
where the Y are the standard deviations of the VI and the X are their ranks.
Then only variables whose average importance VI is greater than this threshold
are kept.

• Step 2. Variable selection:

– For interpretation: we build the collection of nested models given by forests
built on the data restricted to the first k variables (that is the k most important),
for k = 1 to m, and we select the variables of the model leading to the lowest
OOB error. Let us denote by m ′ the number of selected variables.
More precisely, we calculate the averages (typically over 25 forests) of the OOB
errors of the nested models starting with the one with only the most important
variable and endingwith the one involving all the important variables previously
selected. Ideally, the variables of the model leading to the lowest OOB error are
selected. In fact, to deal with instability, we use a classical trick: we select the
smallest model with an error less than the lowest OOB error plus an estimate of
the standard deviation of this error (based on the same 25 RF).

– For prediction: from the variables selected for interpretation, a sequence of
models is constructed by sequentially introducing the variables in increasing
order of importance and iteratively testing them. The variables of the last model
are finally selected.
More precisely, the sequential introduction of variables is based on the following
test: a variable is added only if the OOB error decreases more than a threshold.
The idea is that the OOB error must decrease more than the average variation
generated by the inclusion of non-informative variables. The threshold is set
to the average of the absolute values of the first-order differences of the OOB
errors between the models including m ′ variables and the one with m variables:

1

m − m ′

m−1∑

j=m ′
| errOOB(j + 1) − errOOB(j) | (5.1)

where errOOB(j) is theOOB error of the forest built with the j most important
variables.

5.3 Procedure 81

It should be stressed that all thresholds and reference values are calculated using
only the data and do not have to be set in advance.

5.4 The VSURF Package

Let us start by illustrating the use of the VSURF package (Variable Selection Using
Random Forests) on the simulated data toys introduced in Sect. 4.2 with n = 100
and p = 200, i.e., 6 true variables and 194 non-informative variables. The loading
of the VSURF package as well as the toys data, included in the package, is done
using the following commands:

> library(VSURF)
> data("toys")

The VSURF() function is the main function of the package and performs all the
steps of the procedure. The random seed is fixed in order to obtain exactly the same
results when applying later the procedure step by step:

> set.seed(3101318)
> vsurfToys <- VSURF(toys$x, toys$y, mtry = 100)

The methods print(), summary(), and plot() provide information on the
results:

> summary(vsurfToys)

VSURF computation time: 1.2 mins

VSURF selected:
34 variables at thresholding step (in 45 secs)
4 variables at interpretation step (in 24.7 secs)
3 variables at prediction step (in 1.2 secs)

> plot(vsurfToys)

Now, let us detail the main steps of the procedure using the results obtained on
simulated toys data. Unless explicitly stated otherwise, all graphs refer to Fig. 5.1.

• Step 1.

– Variable ranking.
The result of the ranking of the variables is drawn on the graph at the top left.
Informative variables are significantly more important than noise variables.

– Variable elimination.
From this ranking, we construct the curve of the corresponding standard devi-
ations of VIs. This curve is used to estimate a threshold value for VIs. This

82 5 Variable Selection

0 50 100 150 200 0 50 100 150 200

variables

VI
 m

ea
n

variables

VI
 s

ta
nd

ar
d

de
vi

at
io

n

nested models

O
O

B
er

ro
r

0 5 10 15 20 25 30 35 1.0 1.5 2.0 2.5 3.0

0.
00

0.
10

0.
00

00
0.

00
20

0.
05

0.
15

0.
02

0.
08

predictive models

O
O

B
er

ro
r

Fig. 5.1 Illustration of the results of the VSURF() function applied to the toys data

0 50 100 150 200

0.
00

00
0

0.
00

01
0

0.
00

02
0

variables

VI
 s

ta
nd

ar
d

de
vi

at
io

n

Fig. 5.2 Zoom of the top-right graph of Fig. 5.1

threshold (represented by the horizontal dotted red line in Fig. 5.2, which is a
zoom of the top-right graph of Fig. 5.1), is set to the minimum predicted value
given by a CART model fitted to this curve (see the piecewise constant green
function on the same graph).
We then retain only the variables whose average VI exceeds this threshold, i.e.,
those whose VI is above the horizontal red line in the graph at the top left of
Fig. 5.1.

5.4 The VSURF Package 83

The construction of forests and the ranking and elimination steps are obtained
using the VSURF_thres() function:

> set.seed(3101318)
> vsurfThresToys <- VSURF_thres(toys$x, toys$y, mtry = 100)

The output of the VSURF_thres() function is a list containing all the results
of this step. The main output arguments are varselect.thres which con-
tains the indices of the variables selected at this step, imp.mean.dec and
imp.sd.dec which contain the mean VI and the associated standard devia-
tion (the order induced by the decreasing values of the mean VI is available in
imp.mean.dec.ind).

> vsurfThresToys$varselect.thres

[1] 3 2 6 5 1 4 184 37 138 81 159 17 180
[14] 191 131 94 52 165 96 192 157 198 21 111 25 29
[27] 12 109 64 107 70 186 46 188

Finally, Fig. 5.2 can be obtained directly from the object vsurfToys with the
following command:

> plot(vsurfToys, step = "thres", imp.mean = FALSE,
ylim = c(0, 2e-04))

We can see on the VI standard deviation curve (top-right graph of Fig. 5.1) that
the standard deviation of the informative variables is large compared to that of
the noise variables, which is close to zero.

• Step 2.

– Procedure for selecting variables for interpretation.
We calculate the OOB errors of random forests (on average over 25 repetitions)
of nestedmodels from the onewith only themost important variable, and ending
with the one with all the important variables stored previously.
We select the smallest model with an OOB error less than the minimum OOB
error increased by its empirical standard deviation (based on 25 repetitions).
Weuse theVSURF_interp() function for this step.Note thatwemust specify
the indices of the variables selected in the previous step, so we set the argument
vars to vsurfThresToys$varselect.thres:

> vsurfInterpToys <- VSURF_interp(toys$x, toys$y,
vars = vsurfThresToys$varselect.thres)

The list of results of the VSURF_interp() function gives access mainly to
varselect.interp giving the variables selected by this step and
err.interp containing the OOB errors of the nested RF models.

84 5 Variable Selection

> vsurfInterpToys$varselect.interp

[1] 3 2 6 5

In the bottom-left graph, we see that the error is decreasing rapidly. It reaches
almost its minimum when the first four true variables are included in the model
(see the red vertical line), then it remains almost constant. The selected model
contains the variables V3, V2, V6, and V5, which are four of the six true vari-
ables, while the real minimum is reached for 35 variables.
Note that, to ensure the quality of OOB error estimates (see Genuer et al. 2008)
along nested RF models, the mtry parameter of the randomForest() func-
tion is set to its default value if k (the number of variables involved in the current
RF model) is not greater than n, otherwise it is set to k/3.

– Variable selection procedure for prediction.
We perform a sequential introduction of variables with a test: a variable is added
only if the accuracy gain exceeds a certain threshold. This is set so that the error
reduction is significantly greater than the average variation obtained by adding
noise variables.
We use the VSURF_pred() function for this step. We must specify the
error rates and variables selected in the interpretation step, respectively, in
err.interp and varselect.interp arguments:

> vsurfPredToys <- VSURF_pred(toys$x, toys$y,
err.interp = vsurfInterpToys$err.interp,
varselect.interp = vsurfInterpToys$varselect.interp)

Themain outputs of the VSURF_pred() function are the variables selected by
this last step, varselect.pred, and the OOB error rates of the RF models,
err.pred.

> vsurfPredToys$varselect.pred

[1] 3 6 5

For toys data, the final model for prediction purposes only includes variables
V3, V6, and V5 (see the graph at the bottom right). The threshold is set to the
average of the absolute values of the differences of OOB error between the
model with the m ′ = 4 variables and the model with m = 36 variables.

Finally, it should be noted that VSURF_thres() and VSURF_interp()
can be executed in parallel using the same syntax as VSURF() (by specifying
parallel = TRUE), while the VSURF_pred() function is not parallelizable.

Let us end this section by applying VSURF() to spam data.
Even if it is a dataset of moderate size, the strategy proposed here is quite time-

consuming, so we will use VSURF() by taking advantage of parallel capabilities:

5.4 The VSURF Package 85

> set.seed(923321, kind = "L’Ecuyer-CMRG")
> vsurfSpam <- VSURF(type ˜ ., spamApp, parallel = TRUE,

ncores = 3, clusterType = "FORK")

The option parallel = TRUE allows to run the procedure in parallel, and the
argumentclusterType sets the type of “cluster” used: it can be left by defaultmost
of the time but the option "FORK" (specific to Linux and MacOS systems), coupled
with the option kind = “L’Ecuyer-CMRG" of the set.seed() function ,
allows reproducibility of results.

> summary(vsurfSpam)

VSURF computation time: 42.1 mins

VSURF selected:
55 variables at thresholding step (in 12.7 mins)
24 variables at interpretation step (in 20.6 mins)
19 variables at prediction step (in 8.7 mins)

VSURF ran in parallel on a FORK cluster and used 3 cores

The overall calculation time is 42min and the interpretation phase is the longest
(half that of the total duration) while the other phases share the other half. The
procedure identifies three sets of variables of decreasing size: 55, 24, and 19 and the
results are summarized in Fig. 5.3.

> plot(vsurfSpam)

Let us focus on the 24 variables retained in the interpretation set. They are not
surprising, at least for the first ones, but they are still numerous.

> colnames(spamApp[vsurfSpam$varselect.interp])

[1] "remove" "hp" "capitalLong"
[4] "charExclamation" "capitalAve" "charDollar"
[7] "capitalTotal" "free" "george"

[10] "num000" "edu" "your"
[13] "hpl" "money" "you"
[16] "our" "business" "num1999"
[19] "meeting" "re" "font"
[22] "num650" "internet" "receive"

If we move on to the 19 variables selected for prediction, there are hardly any
fewer, but the ones that are eliminated, num000, hpl, money, internet and
receive, are either weakly interesting (the last ones) or highly correlated with
those retained (the other ones).

> colnames(spamApp[vsurfSpam$varselect.pred])

86 5 Variable Selection

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

variables

VI
 m

ea
n

variables

VI
 s

ta
nd

ar
d

de
vi

at
io

n

nested models

O
O

B
er

ro
r

5 10 15

0.
00

0.
03

0e
+0

0
4e

−0
4

0.
05

0.
15

0.
25

0.
05

0.
15

0.
25

predictive models

O
O

B
er

ro
r

Fig. 5.3 Illustration of the results of VSURF(), spam data

[1] "remove" "hp" "capitalLong"
[4] "charExclamation" "capitalAve" "charDollar"
[7] "capitalTotal" "free" "george"

[10] "edu" "your" "you"
[13] "our" "business" "num1999"
[16] "meeting" "re" "font"
[19] "num650"

Nevertheless, it is clear that our procedure keeps toomany variables and this is related
to the too small value of the average jump for the example spam:

> vsurfSpam$mean.jump

[1] 0.0002715288

Multiplying this value by 15 (fixed after a trial and error process) gives a more sat-
isfactory result with 8 variables sufficient for the prediction which are all significant
except the last one our.

> set.seed(945834)
> vsurfSpamPred <- VSURF_pred(type ˜ ., spamApp, nmj = 15,

err.interp = vsurfSpam$err.interp,
varselect.interp = vsurfSpam$varselect.interp)

5.4 The VSURF Package 87

> colnames(spamApp[vsurfSpamPred$varselect.pred])

[1] "remove" "capitalLong" "charExclamation" "capitalAve"
[5] "charDollar" "free" "george" "our"

5.5 Parameter Setting for Selection

First of all, since VSURF() is strongly based on randomForest(), the two main
parameters of this function (mtry and ntree) are taken over and have been kept
the same name, so everything that applies to RF also applies to VSURF() for these
parameters.

In addition, if you enter a value for another RF parameter, it is directly passed
to the randomForest() function for all the RF built during the procedure. For
example, if we add the option maxnodes= 2 to the arguments of the VSURF()
function, the whole procedure is performed with trees with 2 leaves.

> vsurfToysStump <- VSURF(toys$x, toys$y, mtry = 100, maxnodes = 2)
> summary(vsurfToysStump)

VSURF computation time: 31.3 secs

VSURF selected:
14 variables at thresholding step (in 27.2 secs)
8 variables at interpretation step (in 3 secs)
2 variables at prediction step (in 1.1 secs)

> vsurfToysStump$varselect.interp

[1] 3 2 1 5 6 159 37 111

> vsurfToysStump$varselect.pred

[1] 3 5

There are also parameters specific to VSURF():

• The number of trees in the forests for each of the three steps of the method:
nfor.thres (which is the most important, because if it is taken too small, the
estimated standard deviation at the thresholding step will be of bad quality; 50 by
default), nfor.interp, and nfor.pred (25 by default, which stabilize the
OOB error estimates for the last two steps).

• nmin (=number ofminimum) sets themultiplying factor of the estimated standard
deviation of the VI of a noise variable, to calculate the threshold value of the first
step: “threshold = min× standard deviation of VI for noise variables”. By default,
it is set to 1, and increasing it amounts to a more restrictive thresholding and has
the consequence of keeping fewer variables after the first step.

• nsd (=number of standard deviation) allows to apply the rule “nsd SE rule”
instead of applying the rule “1-SE rule” (introduced in Sect. 2.3). We would select
fewer variables for the “interpretation” if we increase this value.

88 5 Variable Selection

• nmj (=number of mean jump) is the multiplying factor of the mean jump due to
the inclusion of a noise variable in the nested models in the last step.

Two functions allow to adjust the thresholding and interpretation steps without
having to perform all the calculations again.

• First of all, a tune()method which, applied to the result of VSURF_thres(),
allows to set the thresholding step. The parameter nmin (whose default value is
1) can be used to set the threshold to the minimum prediction value given by the
CART model multiplied by nmin.

> vsurfThresToysTuned <- tune(vsurfThresToys, nmin = 3)
> vsurfThresToysTuned$varselect.thres

[1] 3 2 6 5 1 4 184 37 138 81 159 17 180 191

We get 16 selected variables instead of 36 previously.
• Second, a tune() method which, applied to the result of VSURF_interp(),
is of the same type and allows to set the interpretation step. If we now want to
be more restrictive in our selection in the interpretation step, we can select the
smallest model with an OOB error lower than the minimum OOB error plus an
empirical standard deviation multiplied by nsd (with nsd ≥ 1).

> vsurfInterpToysTuned <- tune(vsurfInterpToys, nsd = 5)
> vsurfInterpToysTuned$varselect.interp

[1] 3 2 6

We get 3 selected variables instead of 4 previously.

Finally, since the prediction step is a step-by-step process, to adjust this step,
simply restart the VSURF_pred() function by changing the value of the parameter
nmj.

> vsurfPredToysTuned <- VSURF_pred(toys$x, toys$y,
err.interp = vsurfInterpToys$err.interp,
varselect.interp = vsurfInterpToys$varselect.interp, nmj = 3)

> vsurfPredToysTuned$varselect.pred

[1] 3 6 5

5.6 Examples

5.6.1 Predicting Ozone Concentration

For a presentation of this dataset, see Sect. 1.5.2.

5.6 Examples 89

> library(VSURF)
> data("Ozone", package = "mlbench")

After loading the data, the result of the entire selection procedure is obtained by
using the following command:

> set.seed(303601)
> OzVSURF <- VSURF(V4 ˜ ., data = Ozone, na.action = na.omit)
> summary(OzVSURF)

VSURF computation time: 1.4 mins

VSURF selected:
9 variables at thresholding step (in 50.7 secs)
5 variables at interpretation step (in 21.6 secs)
5 variables at prediction step (in 9.8 secs)

> plot(OzVSURF, var.names = TRUE)

Let us now examine these results successively (illustrated in Fig. 5.4). To reflect
the order used in the definition of the variables, we first reorganize the variables at
the end of the procedure.

> number <- c(1:3, 5:13)
> number[OzVSURF$varselect.thres]

[1] 9 8 12 1 11 10 5 7 13

variables

VI
 m

ea
n

V9 V12 V11 V5 V13 V3 V9 V12 V11 V5 V13 V3

variables

VI
 s

ta
nd

ar
d

de
vi

at
io

n

nested models

O
O

B
er

ro
r

V9 V12 V11 V5 V13

0
5

10
20

0.
05

0.
20

0.
35

18
22

26

18
22

26

predictive models

O
O

B
er

ro
r

V9 V8 V12 V1 V11

Fig. 5.4 Illustration of the results of VSURF(), Ozone data

90 5 Variable Selection

After the first step, the 3 variables of negative importance (variables 6, 3, and 2) are
eliminated as expected.

> number[OzVSURF$varselect.interp]

[1] 9 8 12 1 11

Then, the interpretation procedure leads to the selection of the 5-variable model,
which contains all the most important variables.

> number[OzVSURF$varselect.pred]

[1] 9 8 12 1 11

With the default settings, the prediction step does not remove any additional
variables.

In fact, our strategy more or less assumes that there exist some useless variables
in the set of all initial variables, which is indeed the case in this dataset but not very
significantly.

In addition, it should be noted here that our heuristics are clearly driven by pre-
diction since the criterion for assessing the interest of a variable is closely related to
the quality of the prediction or more exactly to its increasing after permutation.

5.6.2 Analyzing Genomic Data

For a presentation of this dataset, see Sect. 1.5.3.
Let us load the VSURF package, the vac18 data, and then create an object

geneExpr containing the gene expressions and an object stimu containing the
stimuli to be predicted:

> library(VSURF)
> data("vac18", package = "mixOmics")
> geneExpr <- vac18$genes
> stimu <- vac18$stimulation

The global procedurewith all parameters set to default values (note that the default
value of mtry is p/3 even in classification, because as we have seen previously, the
value of this parameter must be relatively high for high-dimensional problems) is
obtained as follows:

> set.seed(481933)
> vacVSURF <- VSURF(x = geneExpr, y = stimu)
> summary(vacVSURF)

VSURF computation time: 3.1 mins

5.6 Examples 91

0 200 400 600 800 1000 0 200 400 600 800 1000

variables

VI
 m

ea
n

variables

VI
 s

ta
nd

ar
d

de
vi

at
io

n

0 20 40 60 80

0.
00

0
0.

02
0

0.
1

0.
4

0.
7

nested models

O
O

B
er

ro
r

2 4 6 8 10
0.

00
00

0.
00

15
0.

1
0.

4
0.

7

predictive models

O
O

B
er

ro
r

Fig. 5.5 Graphs illustrating the results of VSURF(), Vac18 data

VSURF selected:
93 variables at thresholding step (in 1.7 mins)
24 variables at interpretation step (in 1.3 mins)
10 variables at prediction step (in 7.9 secs)

> plot(vacVSURF)

The first thresholding step keeps only 93 variables. This is reasonable given the
graph of the importance of the variables located at the top left of Fig. 5.5, which as
pointed out in Sect. 4.5.3, illustrates a strong parsimony in the Vac18 data.

The interpretation step of VSURF() leads to the selection of 24 variables, while
the prediction step selects 10 variables.

Finally, the names of the variables (identifiers of the biochip probes used to mea-
sure gene expression) selected in the prediction step can be extracted as follows:

> probeSelPred <- colnames(geneExpr)[vacVSURF$varselect.pred]
> probeSelPred

[1] "ILMN_1691156" "ILMN_2124802" "ILMN_2102693" "ILMN_1736939"
[5] "ILMN_3252733" "ILMN_2188204" "ILMN_1658396" "ILMN_1663032"
[9] "ILMN_3301824" "ILMN_2067444"

Computing time
The VSURF() function can be run in parallel using the following command:

92 5 Variable Selection

> set.seed(627408, kind = "L’Ecuyer-CMRG")
> vacVSURFpara <- VSURF(x = geneExpr, y = stimu, parallel = TRUE,

ncores = 3, clusterType = "FORK")
> summary(vacVSURFpara)

VSURF computation time: 1.5 mins

VSURF selected:
97 variables at thresholding step (in 45.9 secs)
23 variables at interpretation step (in 38 secs)
13 variables at prediction step (in 7 secs)

VSURF ran in parallel on a PSOCK cluster and used 3 cores

We observe in this example a factor of about 2 in terms of saving execution time
by using 3 cores instead of 1.

	5 Variable Selection
	5.1 Generalities
	5.2 Principle
	5.3 Procedure
	5.4 The VSURF Package
	5.5 Setting parameters for selection
	5.6 Examples
	5.6.1 Predicting Ozone Concentration
	5.6.2 Analyzing Genomic Data

