
Chapter 2
CART

Abstract CART stands for Classification And Regression Trees, and refers to a sta-
tistical method for constructing tree predictors (also called decision trees) for both
regression and classification problems. This chapter focuses on CART trees, analyz-
ing in detail the two steps involved in their construction: the maximal tree growing
algorithm,whichproduces a large family ofmodels, and the pruning algorithm,which
is used to select an optimal or suitable final one. The construction is illustrated on
the spam dataset using the rpart package. The chapter then addresses interpretabil-
ity issues and how to use competing and surrogate splits. In the final section, trees
are applied to two examples: predicting ozone concentration and analyzing genomic
data.

2.1 The Principle

CART stands for Classification And Regression Trees, and refers to a statistical
method, introduced by Breiman et al. (1984), for constructing tree predictors (also
called decision trees) for both regression and classification problems.

Let us start by considering a very simple classification tree on our running example
about spam detection (Fig. 2.1).

A CART tree is an upside-down tree: the root is at the top. The leaves of the tree
are the nodes without descendants (for this example, 5 leaves) and the other nodes
of the tree are nonterminal nodes (4 such nodes including the root) that have two
child nodes. Hence, the tree is said to be binary. Nonterminal nodes are labeled by a
condition (a question) and leaves by a class label or a value of the response variable.
When a tree is given, it is easy to use it for prediction. Indeed, to determine the
predicted value ŷ for a given x , it suffices to go through the only path from the root
to a leaf, by answering the sequence of questions given by the successive splits and
reading the value of y labeling the reached leaf. When you go through the tree, the
rule is as follows: if the condition is verified then you go to the left node and if not, go
to the right. In our example, an email with proportions of occurrences of characters
“!” and “$”, respectively, larger than 7.95 and 0.65% will thus be predicted as spam
by this simple tree.

© Springer Nature Switzerland AG 2020
R. Genuer and J.-M. Poggi, Random Forests with R, Use R!,
https://doi.org/10.1007/978-3-030-56485-8_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56485-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-56485-8_2

10 2 CART

|charExclamation< 0.0795

remove< 0.045 charDollar< 0.0065

capitalAve< 2.752

ok spam

ok spam

spam

Fig. 2.1 A very simple first tree, spam data

Other methods for building decision trees, sometimes introduced before CART,
are available, such as CHAID (Kass 1980) and C4.5 (Quinlan 1993). Tree methods
are still of interest today, as can be seen in Patil and Bichkar (2012) in computer
science and Loh (2014) in statistics. Several variants for building CART trees are
possible, for example, by changing the family of admissible splits, the cost function,
or the stopping rule. We limit ourselves in the sequel to the most commonly used
variant, which is presented in Breiman et al. (1984). The latter containsmany variants
which have not been widely disseminated and implemented. Indeed, the success of
the simplest version has been ensured by its ease of interpretation. A concise and
clear presentation in French of the regression CARTmethod can be found in Chap.2
of Gey (2002) PhD thesis.

CART proceeds by recursive binary partitioning of the input space X and then
determines an optimal sub-partition for prediction. Building a CART tree is therefore
a two-step process. First, the construction of a maximal tree and the second step,
called pruning, which builds a sequence of optimal subtrees pruned from themaximal
tree sufficient from an optimization perspective.

2.2 Maximal Tree Construction

At each step of the partitioning process, a part of the space previously obtained is
split into two pieces.We can therefore naturally associate a binary tree to the partition
built step by step. The nodes of the tree correspond to the elements of the partition.
For example, the root of the tree is associated with the entire input space, its two
child nodes with the two subspaces obtained by the first split, and so on. Figure 2.2

2.2 Maximal Tree Construction 11

Fig. 2.2 Left: a classification tree to predict the class label corresponding to a given x . Right: the
associated partition in the explanatory variables’ space, here the unit square (C1, C2, and C5 do not
appear because they are not associated with leaves)

illustrates the correspondence between a binary tree and the associated partition of
the explanatory variables’ space (here the unit square).

Let us now detail the splitting rule. To make things simple, we limit to continuous
explanatory variableswhilementioning the qualitative case,whenever necessary. The
input space is then R

p, where p is the number of variables. Let us consider the root
of the tree, associated with the entire space Rp, which contains all the observations
of the learning sample Ln . The first step of CART is to optimally split this root into
two child nodes, and then this splitting is repeated recursively in a similar way. We
call a split an element of the form

{X j ≤ d} ∪ {X j > d},

where j ∈ {1, . . . , p} andd ∈ R. Splitting according to {X j ≤ d} ∪ {X j > d}means
that all observations whose value of the j th variable is smaller than d go into the left
child node, and all those whose value is larger than d go into the right child node. The
method then looks for the best split, i.e., the couple (j, d) that minimizes a certain
cost function:

• In the regression case, one tries to minimize the within-group variance resulting
from splitting a node t into two child nodes tL and tR , the variance of a node t
being defined by V (t) = 1

#t

∑

i :xi∈t (yi − yt)
2 where yt and #t are, respectively,

the average and the number of the observations yi belonging to the node t . We are
therefore seeking to maximize:

12 2 CART

V (t) −
(

#tL
#t

V (tL) + #tR
#t

V (tR)

)

.

• In the classification case, the possible labels are {1, . . . ,C}, and the impurity of
the child nodes is most often quantified through the Gini index. The Gini index
of a node t is defined by Φ(t) = ∑C

c=1 p̂
c
t (1 − p̂ct), where p̂ct is the proportion

of observations of class c in the node t . We are then led, for any node t and any
admissible split, to maximize

Φ(t) −
(

#tL
#t

Φ(tL) + #tR
#t

Φ(tR)

)

.

It should be emphasized that at each node, the search for the best split is made
among all the variables. Thus, a variable can be used in several splits (or only one
time or never).

In regression, we are therefore looking for splits that tend to reduce the variance
of the resulting nodes. In classification, we try to decrease the Gini purity function,
and thus to increase the homogeneity of the obtained nodes, a node being perfectly
homogeneous if it contains only observations of the same class label. It should be
noted that the homogeneity of the nodes could be measured by another function,
such as the misclassification rate, but this natural choice does not lead to a strictly
concave purity function guaranteeing the uniqueness of the optimum at each split.
This property, while not absolutely essential from a statistical point of view, is useful
from a computational point of view by avoiding ties for the best split selection.

In the case of a nominal explanatory variable X j , the above remains valid except
that in this case, a split is simply an element of the form

{X j ∈ d} ∪ {X j ∈ d̄},

where d and d̄ are not empty and define a partition of the finite set of possible values
of the variable X j .

Remark 2.1 In CART, we can take into account underrepresented classes by using
prior probabilities. The relative probability assigned to each class can be used to
adjust the magnitude of classification errors for each class. Another way of doing
this is to oversample observations from rare classes, which is more or less equivalent
to an overweighting of these observations.

Once the root of the tree has been split, we consider each of the child nodes and
then, using the same procedure, we look for the best way to split them into two new
nodes, and so on. The tree is thus developed until a stopping condition is reached.
The most natural condition is not to split a pure node, i.e., a node containing only
observations with the same outputs (typically in classification). But this criterion can
lead to unnecessarily deep trees. It is often associated with the classical criterion
of not splitting nodes that contain less than a given number of observations. The
terminal nodes, which are no longer split, are called the leaves of the tree. We will

2.2 Maximal Tree Construction 13

|

Fig. 2.3 Skeleton of the maximal tree, spam data

call the fully developed tree, the maximal tree, and denote it by Tmax. At the same
time, each node t of the tree is associated with a value: yt for regression or the label
of the majority class of observations present in the node t in the classification case.
Thus, a tree is associated not only with a partition defined by its leaves but also by
the values that are attached to each piece of this partition. The tree predictor is then
the piecewise constant function associated with the tree (Fig. 2.2).

The skeleton of the maximal tree on spam data is plotted in Fig. 2.3. Note that the
edges are all not of the same length. In fact, the height of an edge connecting a node
to its two children is proportional to the reduction in heterogeneity resulting from the
splitting. Thus, for splits close to the root, the homogeneity gains are significant while
for those located toward the leaves of the maximal tree, the gains are very small.

2.3 Pruning

Pruning is the second step of the CART algorithm. It consists in searching for the
best pruned subtree of the maximal tree, the best in the sense of the generalization
error. The idea is to look for a good intermediate tree between the two extremes: the
maximal tree which has a high variance and a low bias, and the tree consisting only
of the root (which corresponds to a constant predictor) which has a very low variance
but a high bias. Pruning is a model selection procedure, where the competing models
are the pruned subtrees of the maximal tree, i.e., all binary subtrees of Tmax having
the same root as Tmax.

14 2 CART

Since the number of these subtrees is finite, it would therefore be possible, at least
in principle, to build the sequence of all the best treeswith k leaves for 1 ≤ k ≤ |Tmax|,
where |T | denotes the number of leaves of the tree T , and compare them, for exam-
ple, on a test sample. However, the number of admissible models is exponential in
the characteristic sizes of the learning data leading to an explosive algorithmic com-
plexity. Fortunately, an effective alternative allows a sufficient implicit enumeration
to achieve an optimal result. The process simply consists in the pruning algorithm,
which ensures the extraction of a sequence of nested subtrees (i.e., pruned from
each other) T1, . . . , TK all pruned from Tmax, where Tk minimizes a penalized cri-
terion where the penalty term is proportional to the number of leaves of the tree.
This sequence is obtained iteratively by cutting branches at each step, which reduces
complexity to a reasonable level. In the following few lines, we will limit ourselves
to the regression case, the situation being identical in the classification case.

The key idea is to penalize the training error of a subtree T pruned from Tmax

err(T) = 1

n

∑

{t leaf of T }

∑

(xi ,yi)∈t
(yi − yt)

2 (2.1)

by a linear function of the number of leaves |T | leading to the following penalized
least squares criterion:

critα(T) = err(T) + α|T | .

Thus, err(T) measures the fit of the model T to the data and decreases when the
number of leaves increases while |T | quantifies the complexity of the model T . The
parameter α, positive, tunes the intensity of the penalty: the larger the coefficient α,
the more penalized are the complex models, i.e., with many leaves.

The pruning algorithm is summarized in Table 2.1, with the following conven-
tions. For any internal node (i.e., a node that is not a leaf) t of a tree T , we note Tt the
branch of T resulting from the node t , i.e., all descendants of the node t . The error
of the node t is given by err(t) = n−1 ∑

{xi∈t}(yi − ȳt)2 and the error of the tree Tt
err(Tt) is defined by Eq. 2.1.

The central result of the book of Breiman et al. (1984) states that the strictly
increasing sequence of parameters (0 = α1, . . . , αK) and the associated with the
sequence T1 � · · · � TK made up of nested models (in the sense of pruning) are
such for all 1 ≤ k ≤ K :

∀α ∈ [αk, αk+1[Tk = argmin
{T subtree of Tmax}

critα(T)

= argmin
{T subtree of Tmax}

critαk (T)

by setting αK+1 = ∞.

2.3 Pruning 15

Table 2.1 CART pruning algorithm

Input Maximal tree Tmax

Initialization α1 = 0, T1 = Tα1 = argminT pruned from Tmax
err(T).

initialize T = T1 and k = 1

Iteration While |T | > 1,

Calculate

αk+1 = min{t internal node of T }
err(t) − err(Tt)

|Tt | − 1
.

Prune all Tt branches of T such that

err(Tt) + αk+1|Tt | = err(t) + αk+1

Take Tk+1 the pruned subtree thus obtained

Loop on T = Tk+1 et k = k + 1

Output Trees T1 � · · · � TK = {t1},
Parameters (0 = α1; . . . ; αK)

In other words, the sequence T1 (which is nothing else than Tmax), T2, . . . , TK
(which is nothing else than the tree reduced to the root) contains all the useful
information since for any α � 0, the subtree minimizing critα is a subtree of the
sequence produced by the pruning algorithm.

This sequence can be visualized by means of the sequence of values (αk)1≤k≤K

and the generalization errors of the corresponding trees T1, . . . , TK . In the graph
of Fig. 2.5 obtained on the spam data (see p. 20), each point represents a tree:
the abscissa is placed according to the value of the corresponding αk , the ordinate
according to the error estimated by cross-validation with the estimation of the stan-
dard deviation of the error materialized by a vertical segment.

The choice of the optimal tree can be made directly, by minimizing the error
obtained by cross-validation or by applying the “1 standard error rule” (“1-SE rule”
in brief). This rule aims at selecting in the sequence a more compact tree reaching
statistically the same error. It consists in choosing the most compact tree reaching
an error lower than the value of the previous minimum augmented by the estimated
standard error of this error. This quantity is represented by the horizontal dotted line
on the example of Fig. 2.5.

Remark 2.2 The cross-validation procedure (V -fold cross-validation), executed by
default in the rpart package is as follows. First, starting from Ln and applying
the pruning algorithm, we obtain the sequences (Tk)1≤k≤K and (αk)1≤k≤K . Then,
the learning sample is randomly divided into subsamples (often V = 10) so that
Ln = E1 ∪ E2 ∪ · · · ∪ EV . For each v = 1, . . . , V , we build the sequence of subtrees
(T v

k)1≤k≤Kv
withLn \ Ev as learning sample. Then we calculate the validation errors

of the sequence of trees built on Ln: Rcv(Tk) = 1
V

∑V
v=1

∑

(xi ,yi)∈Ev

(

yi − T v
k (xi)

)2
,

16 2 CART

where T v
k minimizes the penalized criterion critα′

k
, with α′

k = (αkαk+1)
1/2.We finally

choose the model Tk̂ where k̂ = argmin1≤k≤K Rcv(Tk).
Let us mention that the choice of α by a validation sample is not available in the

rpart package.

Finally, it should be noted that, of course, if a tree in the sequence has k leaves, it
is the best tree with k leaves. On the other hand, this sequence does not necessarily
contain all the best trees with k leaves for 1 ≤ k ≤ |Tmax| but only a part of them.
However, the “missing” trees are simply not competitive because they correspond to
larger values of the penalized criterion, so it is useless to calculate them. In addition
their calculation could be more expensive since they are not, in general, pruned from
the trees of the sequence.

As we will see below, random forests are, in most cases, forests of unpruned trees.
However, it should be stressed that a CART tree, if it used alone, must be pruned.
Otherwise, it would suffer from overfitting by being too adapted to the data in Ln

and exhibit a too large generalization error.

2.4 The rpart Package

The rpart package (Therneau and Atkinson 2018) implements the CART method
as a whole and is installed by default in R. The rpart() function allows to build a
tree whose development is controlled by the parameters of the rpart.control()
function and pruning is achieved through the prune() function. Finally, the meth-
odsprint(),summary(),plot(), and predict() allow retrieving and illus-
trate the results. It should also be noted that rpart fully handles missing data, both
for prediction (see Sect. 2.5.2) and for learning (see details on the Ozone example
in Sect. 2.6.1).

Other packages that implement decision trees are used in R, such as

• tree (Ripley 2018), quite close to rpart but which allows, for example, to trace
the partition associated with a tree in small dimension and use a validation sample
for pruning.

• rpart.plot (Milborrow 2018) which offers advanced graphics functions.
• party (Hothorn et al. 2017) which proposes other criteria for optimizing the split-
ting of a node.

Now let us detail the use of the functions rpart() and prune() on the spam
detection example.

The tree built with the default values of rpart() is obtained as follows. Note
that only the syntax formula =, data = is allowed for this function.

> library(rpart)
> treeDef <- rpart(type ˜ ., data = spamApp)
> print(treeDef, digits = 2)

2.4 The rpart Package 17

n= 2300

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 2300 910 ok (0.606 0.394)
2) charExclamation< 0.08 1369 230 ok (0.834 0.166)

4) remove< 0.045 1263 140 ok (0.892 0.108)
8) money< 0.15 1217 100 ok (0.917 0.083) *
9) money>=0.15 46 11 spam (0.239 0.761) *

5) remove>=0.045 106 15 spam (0.142 0.858) *
3) charExclamation>=0.08 931 250 spam (0.271 0.729)

6) charDollar< 0.0065 489 240 spam (0.489 0.511)
12) capitalAve< 2.8 307 100 ok (0.674 0.326)

24) remove< 0.09 265 60 ok (0.774 0.226)
48) free< 0.2 223 31 ok (0.861 0.139) *
49) free>=0.2 42 13 spam (0.310 0.690) *

25) remove>=0.09 42 2 spam (0.048 0.952) *
13) capitalAve>=2.8 182 32 spam (0.176 0.824)

26) hp>=0.1 14 2 ok (0.857 0.143) *
27) hp< 0.1 168 20 spam (0.119 0.881) *

7) charDollar>=0.0065 442 13 spam (0.029 0.971) *

> plot(treeDef)
> text(treeDef, xpd = TRUE)

The print() method allows to obtain a text representation of the obtained
decision tree, and the sequence of methods plot() then text() give a graphical
representation (Fig. 2.4).

Remark 2.3 Caution, contrary to what one might think, the tree obtained with the
default values of the package is not an optimal tree in the pruning sense. In fact, it
is a tree whose development has been stopped, thanks to the parameters minsplit
(the minimum number of data in a node necessary for the node to be possibly
split) and cp (the normalized complexity-penalty parameter), documented in the
rpart.control() function help page. Thus, as cp = 0.01 by default, the
tree provided corresponds to the one obtained by selecting the one corresponding
to α = 0.01 ∗ err(Tn) (where T1 is the root), provided that minsplit is not the
parameter that stops the tree development. It is therefore not the optimal tree but
generally a more compact one.

The maximal tree is then obtained using the following command (using the
set.seed() function to ensure reproducibility of cross-validation results):

> set.seed(601334)
> treeMax <- rpart(type ˜ ., data = spamApp, minsplit = 2, cp = 0)
> plot(treeMax)

The application of the plot()method allows to obtain the skeleton of the max-
imal tree (Fig. 2.3).

18 2 CART

|charExclamation< 0.0795

remove< 0.045

money< 0.145

charDollar< 0.0065
capitalAve< 2.752

remove< 0.09

free< 0.2

hp>=0.105
ok spam

spam

ok spam
spam

ok spam

spam

Fig. 2.4 Classification tree obtained with the default values of rpart(), spam data

Information on the optimal sequence of the pruned subtrees of Tmax obtained by
applying the pruning algorithm is given by the command:

> treeMax$cptable

In the columns of Table 2.2, we find the value of the penalty parameter, the number
of splits of the corresponding optimal tree, the relative empirical error with respect
to the one made by the tree restricted to the root, then the relative cross-validation
error, and an estimate of the standard deviation of the associated estimator.

More graphically, we can visualize the sequence of the pruned subtrees of Tmax

(Fig. 2.5), thanks to the plotcp() function:

> plotcp(treeMax)

Each point thus represents a tree, with the estimation of the standard deviation
of the cross-validation error as a vertical segment, quite hard to distinguish on this
example (see Fig. 2.11 for a more meaningful graph). The position of the point
indicates on the y-axis the (relative) cross-validation error, on the bottom x-axis the
value of the penalty parameter, and on the top x-axis the number of leaves of the tree.

The shape of this graph is typical. Let us read it from left to right. When the model
is too simple, the bias dominates and the error is significant. Then, it decreases
fairly quickly until it reaches a minimum reflecting a good balance between bias
and variance and finally rises slightly as the complexity of the model increases.

2.4 The rpart Package 19

Table 2.2 Component cptable of the object treeMax, spam data

CP nsplit rel error xerror xstd

0.4713 0 1.0000 1.0000 0.0259

0.0839 1 0.5287 0.5519 0.0218

0.0591 2 0.4448 0.4570 0.0203

0.0419 4 0.3267 0.3565 0.0184

0.0265 5 0.2848 0.3146 0.0174

0.0177 6 0.2583 0.2947 0.0170

0.0110 7 0.2406 0.2815 0.0166

0.0088 8 0.2296 0.2638 0.0162

0.0055 9 0.2208 0.2517 0.0158

0.0044 14 0.1932 0.2483 0.0157

0.0039 16 0.1843 0.2528 0.0158

0.0033 18 0.1766 0.2373 0.0154

0.0028 24 0.1567 0.2296 0.0152

0.0022 26 0.1512 0.2296 0.0152

0.0015 48 0.1015 0.2307 0.0152

0.0015 53 0.0938 0.2329 0.0153

0.0011 56 0.0894 0.2351 0.0153

0.0009 102 0.0386 0.2439 0.0156

0.0008 110 0.0309 0.2506 0.0158

0.0007 118 0.0243 0.2494 0.0158

0.0006 124 0.0199 0.2517 0.0158

0.0006 131 0.0155 0.2704 0.0163

0.0004 153 0.0033 0.2726 0.0164

0.0000 162 0.0000 0.2759 0.0165

In addition, we find in Fig. 2.6 the same cross-validation error together with the
empirical error. This last one decreases until reaching 0 for the maximal tree.

The tree minimizing the cross-validation error is sometimes still a little too com-
plex (23 leaves here).

The optimal pruned tree is plotted in Fig. 2.7 and is obtained by

> cpOpt <- treeMax$cptable[which.min(treeMax$cptable[, 4]), 1]
> treeOpt <- prune(treeMax, cp = cpOpt)
> plot(treeOpt)
> text(treeOpt, xpd = TRUE, cex = 0.8)

By relaxing a little the condition of minimizing the generalization error by apply-
ing the “1-SE rule” of Breiman (which takes into account the uncertainty of the error
estimation of the trees in the sequence), we obtain the tree of Fig. 2.8, the “1-SE”
pruned tree:

20 2 CART

cp

X−
va

l R
el

at
iv

e
Er

ro
r

0.
2

0.
4

0.
6

0.
8

1.
0

Inf 0.07 0.022 0.007 0.0036 0.0015 0.00076 0

1 3 6 8 10 17 25 49 57 111 125 154

size of tree

Fig. 2.5 Errors estimated by cross-validation of the sequence of subtrees pruned from the maximal
tree, spam data

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size of tree

Er
ro

r

CV error
Empirical error

Fig. 2.6 Evolution of the error of pruned trees, learning and test, on the spam data

> thres1SE <- sum(treeMax$cptable[
which.min(treeMax$cptable[, 4]), 4:5])

> cp1SE <- treeMax$cptable[
min(which(treeMax$cptable[, 4] <= thres1SE)), 1]

> tree1SE <- prune(treeMax, cp = cp1SE)
> plot(tree1SE)
> text(tree1SE, xpd = TRUE, cex = 0.8)

The best pruned subtree of the maximal tree (up to one standard deviation
according to “1-SE” rule) has 19 leaves and only 15 of the 57 initial variables are
involved in the splits associated with the 18 internal nodes: charExclamation,

2.4 The rpart Package 21

|charExclamation< 0.0795

remove< 0.045

money< 0.145
free< 0.165

num000< 0.305
font< 0.1

charSemicolon>=0.023

our< 0.335
re>=0.35
capitalLong< 10

george>=0.08

charDollar< 0.0065
capitalAve< 2.752

remove< 0.09

free< 0.2
internet< 0.535

business< 0.355
you< 1.355

charExclamation< 0.4575
your< 1.33

hp>=0.105
edu>=0.28
meeting>=0.445

hp>=0.605

ok ok spam

spam ok spam ok ok spam

ok spam

ok ok spam

spam ok spamspam

spam
ok

ok ok spam

ok spam

Fig. 2.7 Optimal pruned tree, spam data

|charExclamation< 0.0795

remove< 0.045

money< 0.145
free< 0.165

num000< 0.305our< 0.335
re>=0.35

george>=0.08

charDollar< 0.0065
capitalAve< 2.752

remove< 0.09

free< 0.2
internet< 0.535

business< 0.355
you< 1.355

hp>=0.105
edu>=0.28

meeting>=0.445
ok spam ok spam

ok spam
ok spam

ok ok spam

spam
spam

spam
ok

ok ok spam

spam

Fig. 2.8 Tree “1-SE” pruned, spam data

22 2 CART

Table 2.3 Test and empirical errors for the maximal tree, optimal tree, 1-SE tree, and 2-leaf tree
(Stump), spam data

Max tree Optimal tree 1-SE tree Stump

Test error 0.096 0.086 0.094 0.209

Empirical error 0.000 0.062 0.070 0.208

charDollar, remove, capitalAve, money, george, hp, free, re,
num000, our, edu, internet, business, and meeting.

We can illustrate the ease of interpretation by considering, for example, the path
from the root to the rightmost leaf which says that an email containing a lot of “$” and
“!” is almost always spam. Conversely, the path from the root to the third most right
leaf expresses that an email containing a lot of “!”, capital letters, and occurrences
of the word hp but a few “$” is almost never spam. For this last interpretation, it
is worth recalling that the emails examined are the professional emails of a single
individual working for HP.

Finally, the empirical and test errors obtained by the different trees are summarized
in Table 2.3 and calculated, for example, for themaximal tree, using the predict()
function (which calculates the predictions for a given tree of a set of observations)
by the following commands:

> errTestTreeMax <- mean(
predict(treeMax, spamTest, type = "class") != spamTest$type)

> errEmpTreeMax <- mean(
predict(treeMax, spamApp, type = "class") != spamApp$type)

It should be noted that, as announced, the maximal tree (too complex) has an
empirical error (i.e., on the learning sample) of 0 and that the two-leaf tree (too
simple) has similar test and empirical errors. The optimal tree has the best test error
of 8.6%.

2.5 Competing and Surrogate Splits

2.5.1 Competing Splits

We have at each node of the tree, the sequence of all the splits (one per explanatory
variable) ordered by decreasing reduction of the heterogeneity. These are called the
competing splits. They are, in all nodes, necessarily calculatedduring the construction
of the maximal tree but only a small number of them are, in general, kept (we refer
to the summary of the object treeStump on the next page for an illustration on
the spam data). The possibility of manual development of the maximal tree can be
valuable and can be achieved by choosing in each of the nodes in the ordered list

2.5 Competing and Surrogate Splits 23

of splits, either the optimal one, or a slightly worse split. The actual split variable
could be less uncertain, easier, cheaper to measure, or even more interpretable (see,
for example, Ghattas 2000).

2.5.2 Surrogate Splits

One of the practical difficulties in calculating a prediction is the presence of missing
values. CART offers an effective and very elegant way to circumvent it. First of all,
it should be noted that when some input variables are missing for a given x , there is a
problem only if the path to calculate the predicted value goes through a node whose
split is based on one of these variables. Then, in a node where the split variable is
missing, one of the other variables can be used, for example, the second competing
split. But this idea is not optimal, since the routing rule in the right and left nodes,
respectively, can be very different from the routing rule induced by the optimal split.
Hence, the idea is to calculate at each node the list of surrogate splits, defined by
the splits minimizing the number of routing errors with respect to the routing rule
induced by the optimal split. This provides a method for handling missing values for
prediction that is both local and efficient, avoiding to use global and often too coarse
imputation methods.

These two aspects are illustrated by the following instructions.

> treeStump <- rpart(type ˜ ., data = spamApp, maxdepth = 1)
> summary(treeStump)

Call:
rpart(formula = type ˜ ., data = spamApp, maxdepth = 1)

n= 2300

CP nsplit rel error xerror xstd
1 0.4713024 0 1.0000000 1.0000000 0.02586446
2 0.0100000 1 0.5286976 0.5474614 0.02177043

Variable importance
charExclamation free your charDollar

44 12 12 12
capitalLong all

11 10

Node number 1: 2300 observations, complexity param=0.4713024
predicted class=ok expected loss=0.393913 P(node) =1

class counts: 1394 906
probabilities: 0.606 0.394

left son=2 (1369 obs) right son=3 (931 obs)
Primary splits:

24 2 CART

charExclamation < 0.0795 to the left, improve=351.9304
charDollar < 0.0555 to the left, improve=337.1138
free < 0.095 to the left, improve=296.6714
remove < 0.01 to the left, improve=290.1446
your < 0.605 to the left, improve=272.6889

Surrogate splits:
free < 0.135 to the left, agree=0.710, adj=0.285
your < 0.755 to the left, agree=0.703, adj=0.267
charDollar < 0.0555 to the left, agree=0.702, adj=0.264
capitalLong < 53.5 to the left, agree=0.694, adj=0.245
all < 0.325 to the left, agree=0.685, adj=0.221

Node number 2: 1369 observations
predicted class=ok expected loss=0.1658145 P(node) =0.5952174

class counts: 1142 227
probabilities: 0.834 0.166

Node number 3: 931 observations
predicted class=spam expected loss=0.2706767 P(node) =0.4047826

class counts: 252 679
probabilities: 0.271 0.729

This tree is the default tree of depth 1 (called stump), a typical weak classifier.
The result of the method summary() provides information not only about the
visible parts of the tree (such as structure and splits) but also about the hidden parts,
involving variables that do not necessarily appear in the selected tree. Thus, we first
find competing splits and then surrogate splits. It should be noted that to mimic the
optimal routing rule, the best alternative split isfree < 0.135which differs from
the competing split based on the same variable that is free < 0.095.

2.5.3 Interpretability

The interpretability of CART trees is one of the ingredients of their success. It is
indeed very easy to answer the question of why, for a given x , a particular value of
y is expected. To do this, it suffices to provide the sequence of the answers to the
questions constituted by the successive splits encountered to go through the only
path from the root to the associated leaf.

But more generally, beyond the interpretation of a particular prediction, once the
CART tree has been built, we can consider the variables that intervene in the splits of
the nodes of the tree. It is natural to think that the variables involved in splits close to
the root are the most important, since they correspond to those whose contribution to
the heterogeneity reduction is important. In a complementary way, we would tend to
think that the variables that do not appear in any split are not important. Actually, this
first intuition gives partial and biased results. Indeed, variables that do not appear
in the tree can be important and even useful in this same model to deal with the
problem of missing data in prediction, for example. A more sophisticated variable

2.5 Competing and Surrogate Splits 25

importance index is provided by CART trees. It is based on the concept of surrogate
splits. According to Breiman et al. (1984), the importance of a variable can be defined
by evaluating, in each node, the heterogeneity reduction generated by the use of the
surrogate split for that variable and then summing them over all nodes.

In rpart, the importance of the variable X j is defined by the sum of two terms.
The first is the sum of the heterogeneity reductions generated by the splits involving
X j , and the second is weighted the sum of the heterogeneity reductions generated
by the surrogate splits when X j does not define the split. In the second case, the
weighting is equal to the relative agreement, in excess of the majority routing rule,
given for a node t of size nt , by

{

(nX j − nmaj)/(nt − nmaj) if nX j > nmaj

0 otherwise

where nX j and nmaj are the numbers of observations well routed with respect to the
optimal split of the node t , respectively, by the surrogate split involving X j and by
the split according to the majority rule (which routes all observations to the child
node of largest size). This weighting reflects the adjusted relative agreement between
the optimal routing rule and the one associated with the surrogate split involving X j ,
in excess of the majority rule. The raw relative agreement would be simply given by
nX j /nt .

However, as interesting as this variable importance indexmay be, it is no longer so
widely used today. It is indeed not very intuitive, it is unstable because it is strongly
dependent on a given tree, and it is less relevant than the importance of variables by
permutation in the sense of random forests. In addition, its analog, which does not
use surrogate splits, exists for random forests but tends to favor nominal variables
that have a large number of possible values (we will come back to this in Sect. 4.1).

> par(mar = c(7, 3, 1, 1) + 0.1)
> barplot(treeMax$variable.importance, las = 2, cex.names = 0.8)

Nevertheless, it can be noted that the variable importance indices, in the sense of
CART, for the maximal tree (given by Fig. 2.9) provide for the spam detection exam-
ple very reasonable and easily interpretable results. It makes it possible to identify
a group of variables: charExclamation clearly at the top then capitalLong,
charDollar, free and remove then, less clearly, a group of 8 variables among
which capitalAve, capitalTotal, money but also your and num000 intu-
itively less interesting.

26 2 CART

ch
ar

Ex
cl

am
at

io
n

ca
pi

ta
lL

on
g

ch
ar

D
ol

la
r

fre
e

re
m

ov
e

ca
pi

ta
lA

ve
yo

ur
ca

pi
ta

lT
ot

al al
l

m
on

ey
nu

m
00

0
yo

u hp w
ill

ed
u

ou
r

bu
si

ne
ss

ge
or

ge
ch

ar
Se

m
ic

ol
on

ch
ar

H
as

h
nu

m
65

0
hp

l
m

ak
e

in
te

rn
et

ch
ar

R
ou

nd
br

ac
ke

t
ad

dr
es

s
re

ce
iv

e
nu

m
85

re
po

rt
nu

m
41

5
ov

er
em

ai
l

la
b

fo
nt

m
ai

l
pm

nu
m

85
7

cr
ed

it re
pr

oj
ec

t
or

ig
in

al
m

ee
tin

g
la

bs
nu

m
19

99
da

ta
te

ch
no

lo
gy

ad
dr

es
se

s
ch

ar
Sq

ua
re

br
ac

ke
t

te
ln

et
or

de
r

pe
op

le
di

re
ct

pa
rts

co
nf

er
en

ce

0

50

100

150

200

250

300

350

Fig. 2.9 Importance of variables in the sense of CART for the maximal tree, spam data

2.6 Examples

2.6.1 Predicting Ozone Concentration

For a presentation of this dataset, see Sect. 1.5.2.
Let us load the rpart package and the Ozone data:

> library("rpart")
> data("Ozone", package = "mlbench")

Let us start by building a tree using the default values of rpart():

> OzTreeDef <- rpart(V4 ˜ ., data = Ozone)
> plot(OzTreeDef)
> text(OzTreeDef, xpd = TRUE, cex = 0.9)

Note that the response variable is in column 4 of the data Table and is denoted by
V4.

Let us analyze this first tree (Fig. 2.10). This dataset has already been considered
in many studies and, although these are real data, the results are relatively easy to
interpret.

Looking at the first splits in the tree, we notice that the variables V8, V10 then
V1 and V2 define them. Let us explain why.

Ozone is a secondary pollutant, since it is produced by the chemical transformation
of primary precursor gases generated directly from the exhaust pipes (hydrocarbons
and nitrogen oxides) in the presence of a catalyst for the chemical reaction: ultraviolet

2.6 Examples 27

|V8< 67.5

V10>=3574

V1=al

V2=abcfhjnpqrswxCD

V5< 5735

V8< 79.5

V2=bcdefhiklopsvwCDE

V11< −13.5

V12< 73.04

V2=abhijknorwxyzAE5.07

5.424

8.93 10.56 15.48 6.125 14.21 20.75

20.29
21.12 28.05

Fig. 2.10 Default tree, Ozone data

radiation. The latter is highly correlated with temperature (V8 or V9), which is one
of the most important predictors of ozone. As a result, ozone concentrations peak
during the summer months and this explains why the month number (V1) is among
the influential variables. Finally, above an agglomeration, the pollutants are dispersed
in a box whose base is the agglomeration and whose height is given by the inversion
base height (V10).

Continuing to explore the tree, we notice that V2 defines splits quite close to the
root of the tree, despite the fact that V2 is the number of the day within the month
whose relationshipwith the response variable can only be caused by sampling effects.
The explanation is classical in tree-based methods: it comes from the fact that V2 is a
nominal variable with many possible values (here 31) involving a favorable selection
bias when choosing the best split.

Predictions can also be easily interpreted: for example, the leftmost leaf gives very
low predictions because it corresponds to cold days with a high inversion base height.
On the other hand, the rightmost leaf provides much larger predictions because it
corresponds to hot days.

Of course, it is now necessary to optimize the choice of the final tree. Let us study
for that the sequence of the pruned subtrees (Fig. 2.11) which is the result of the
pruning step starting from the the maximal tree.

> set.seed(727325)
> OzTreeMax <- rpart(V4 ˜ ., data = Ozone, minsplit = 2, cp = 0)
> plotcp(OzTreeMax)

28 2 CART

cp

X−
va

l R
el

at
iv

e
Er

ro
r

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.0076 0.0023 0.001 0.00044 0.00027 1e−04 3.6e−05

1 8 18 28 38 50 60 70 80 94 109 130 150 167

size of tree

Fig. 2.11 Errors estimated by cross-validation of the sequence of subtrees pruned from themaximal
tree, Ozone data

> OzIndcpOpt <- which.min(OzTreeMax$cptable[, 4])
> OzcpOpt <- OzTreeMax$cptable[OzIndcpOpt, 1]
> OzTreeOpt <- prune(OzTreeMax, cp = OzcpOpt)
> plot(OzTreeOpt)
> text(OzTreeOpt, xpd = TRUE)

The best tree (Fig. 2.12) is particularly compact since it has only six leaves, those
involving splits on twoof the threemajor variables highlighted above.Wewill see that
a more complete, but above all, more automatic exploration of this aspect is provided
by the permutation variable importance index in the context of random forests. This
notion will allow eliminating the variable V2 whose interest is doubtful.

There is a lot of missing data in this dataset and rpart() offers a clever way to
handle it during the learning step, without any imputation:

• The data with y missing are eliminated as well as those with all the components
of x missing.

• Otherwise, to split a node:

– Calculate the impurity reductions for each variable using only the associated
available data and choose the best split as usual.

– For this split, observations that have a missing value for the associated split
variable are routed, either using a surrogate split or to the most popular node in
case the variables determining the best available surrogate splits are all missing
for this observation (the maximum number is a parameter, set to 5 by default).

– Finally, weights in the impurity reduction are updated to take into account the
new data routed.

2.6 Examples 29

|V8< 67.5

V10>=3574

V1=al

V8< 79.5

V2=bcdefhiklopsvwCDE
5.07

5.424 11.07 13.96 20.29
24.11

Fig. 2.12 Optimal pruned tree, Ozone data

2.6.2 Analyzing Genomic Data

For a presentation of this dataset, see Sect. 1.5.3.
Let us load the rpart package, the vac18 data, and group in the same dataframe

in which the gene expressions and the stimulation are to be predicted:

> library(rpart)
> data("vac18", package = "mixOmics")
> VAC18 <- data.frame(vac18$genes, stimu = vac18$stimulation)

The tree obtainedwith the default values of rpart() is obtained as follows (note
the use of the argument use.n = TRUE in the text() function which displays
the class distribution for each leaf):

> VacTreeDef <- rpart(stimu ˜ ., data = VAC18)
> VacTreeDef

n= 42

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 42 31 LIPO5 (0.262 0.238 0.238 0.262)
2) ILMN_2136089>=9.05 11 0 LIPO5 (1.000 0.000 0.000 0.000) *
3) ILMN_2136089< 9.05 31 20 NS (0.000 0.323 0.323 0.355)

6) ILMN_2102693< 8.59 18 8 GAG+ (0.000 0.556 0.444 0.000)*
7) ILMN_2102693>=8.59 13 2 NS (0.000 0.000 0.154 0.846) *

30 2 CART

|ILMN_2136089>=9.055

ILMN_2102693< 8.59LIPO5
11/0/0/0

GAG+
0/10/8/0

NS
0/0/2/11

Fig. 2.13 Default tree obtained with rpart() on the Vac18 data

> plot(VacTreeDef)
> text(VacTreeDef, use.n = TRUE, xpd = TRUE)

The default tree, represented in Fig. 2.13, consists of only 3 leaves. This is due,
on the one hand, to the fact that there are only 42 observations in the dataset, and,
on the other hand, that the classes LIPO5 and NS are separated from the others very
quickly. Indeed, that the first split sends all the observations of class LIPO5, and
only them, to the left child node.

Themaximal tree has 6 leaves (Fig. 2.14). Thus in 5 splits, the classes are perfectly
separated. We see on this example that considering only the variables appearing in
the splits of a tree (here the deepest tree which can be built using these data) can
be very restrictive: indeed, only 5 variables (corresponding to probe identifiers of
biochips) among the 1,000 variables appear in the tree.

> set.seed(788182)
> VacTreeMax <- rpart(stimu ˜ ., data = VAC18, minsplit = 2, cp = 0)
> plot(VacTreeMax)
> text(VacTreeMax, use.n = TRUE, xpd = TRUE)

The error estimated by validation for the sequence of pruned subtrees is plotted
in the left graph of Fig. 2.15.

Given the small number of individuals, a leave-one-out estimate of the cross-
validation error may be preferred. This is obtained by setting the argument xval,
the number of folds of the cross-validation (argument of the rpart.control()
function), as follows:

> set.seed(413745)
> VacTreeMaxLoo <- rpart(stimu ˜ ., data = VAC18, minsplit = 2,

2.6 Examples 31

|ILMN_2136089>=9.055

ILMN_2102693< 8.59

ILMN_1663032>=5.31

ILMN_1800889>=7.613

ILMN_1671207< 9.927

LIPO5
11/0/0/0

GAG+
0/9/0/0 GAG+

0/1/0/0
GAG−
0/0/8/0

GAG−
0/0/2/0

NS
0/0/0/11

Fig. 2.14 Maximal tree on Vac18 data

cp

X−
va

l R
el

at
iv

e
Er

ro
r

size of tree

cp

X−
va

l R
el

at
iv

e
Er

ro
r

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
2

0.
6

1.
0

1.
4

Inf 0.27 0.046

1 2 3 4 5 6

Inf 0.27 0.046

1 2 3 4 5 6

size of tree

Fig. 2.15 Errors estimated by 10-fold cross-validation (left) and leave-one-out (right) of the
sequence of subtrees pruned from the maximal tree, Vac18 data

cp = 0, xval = nrow(VAC18))
> par(mfrow = c(1, 2))
> plotcp(VacTreeMax)
> plotcp(VacTreeMaxLoo)

32 2 CART

|ILMN_2136089>=9.055

ILMN_2102693< 8.59

ILMN_1663032>=5.31

LIPO5
11/0/0/0

GAG+
0/9/0/0

GAG−
0/1/8/0

NS
0/0/2/11

Fig. 2.16 Optimal pruned tree, Vac18 data

We can easily see on the right side of Fig. 2.15 that for leave-one-out cross-
validation, the optimal tree consists of 4 leaves while the 1-SE tree is the same as the
default tree (3 leaves). The optimal tree (Fig. 2.16) is obtained using the following
commands:

> VacIndcpOpt <- which.min(VacTreeMaxLoo$cptable[, 4])
> VaccpOpt <- VacTreeMaxLoo$cptable[VacIndcpOpt, 1]
> VacTreeOpt <- prune(VacTreeMaxLoo, cp = VaccpOpt)
> plot(VacTreeOpt)
> text(VacTreeOpt, use.n = TRUE, xpd = TRUE)

	2 CART
	2.1 The Principle
	2.2 Maximal Tree Construction
	2.3 Pruning
	2.4 The rpart Package
	2.5 Competing and Surrogate Splits
	2.5.1 Competing Splits
	2.5.2 Surrogate Splits
	2.5.3 Interpretability

	2.6 Examples
	2.6.1 Predicting Ozone Concentration
	2.6.2 Analyzing Genomic Data

