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Preface

Random forests are a statistical learning method introduced by Leo Breiman in 2001.
They are extensively used in many fields of application, due for sure not only to their
excellent predictive performance, but also to their flexibility, with a few restrictions
on the nature of the data. Indeed, random forests are adapted to both supervised
classification problems and regression problems. In addition, they allow to consider
qualitative and quantitative explanatory variables together without preprocessing.
Moreover, they can be used to process standard data for which the number of
observations is higher than the number of variables, while also performing very well
in the high dimensional case, where the number of variables is quite large in com-
parison to the number of observations. Consequently, they are now among preferred
methods in the toolbox of statisticians and other data scientists.

Who Is This Book for?

This book is an application-oriented statistical presentation of random forests. It is
therefore primarily intended not only for students in academic fields such as statistical
education, but also for practitioners in statistics and machine learning. A scientific
undergraduate degree is quite sufficient to take full advantage of the concepts, methods,
and tools covered by the book. In terms of computer science skills, little background
knowledge is required, though an introduction to the R language is recommended.

Book Content

Random forests are part of the family of tree-based methods; accordingly, after an
introductory chapter, Chap. 2 presents CART trees. The next three chapters are
devoted to random forests. They focus on their presentation (Chap. 3), on the
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variable importance tool (Chap. 4), and on the variable selection problem (Chap. 5),
respectively.

The structure of the chapters (except the introduction) is always the same. After a
presentation of the concepts and methods, we illustrate their implementation on a
running example. Then, various complements are provided before examining
additional examples.

Throughout the book, each result is given together with the R code that can be
used to reproduce it. All lines of code are available online1 making things easy.

Thus, the book offers readers essential information and concepts, together with
examples and the software tools needed to analyze data using random forests.

Orsay, France Robin Genuer
June 2020 Jean-Michel Poggi

1https://RFwithR.robin.genuer.fr.
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Chapter 1
Introduction to Random Forests with R

Abstract The two algorithms discussed in this bookwere proposed byLeoBreiman:
CART trees, which were introduced in the mid-1980s, and random forests, which
emerged just under 20 years later in the early 2000s. This chapter offers an intro-
duction to the subject matter, beginning with a historical overview. Some notations,
used to define the various statistical objectives addressed in the book, are also intro-
duced: classification, regression, prediction, and variable selection. In turn, the three
R packages used in the book are listed, and some competitors are mentioned. Lastly,
the four datasets used to illustrate themethods’ application are presented: the running
example (spam), a genomic dataset, and two pollution datasets (ozone and dust).

1.1 Preamble

The two algorithms discussed in this book were proposed by Leo Breiman: CART
(Classification AndRegression Trees) trees, whichwere introduced in themid-1980s
(Breiman et al. 1984), and random forests (Breiman 2001), which emerged just
under 20 years later in the early 2000s. At the confluence of statistics and statistical
learning, this shortcut among Leo Breiman’s multiple contributions, whose scientific
biography is described in Olshen (2001) and Cutler (2010), provides a remarkable
figure of these two disciplines.

Decision trees are the basic tool for numerous tree-based ensemble methods.
Although known for decades and very attractive because of their simplicity and
interpretability, their use suffered, until the 1980s, from serious justified objections.
From this point of view, CART offers to decision trees the conceptual framework of
automaticmodel selection, giving them theoretical guarantees andbroad applicability
while preserving their ease of interpretation.

But one of themajor drawbacks, instability, remains. The idea of random forests is
to exploit the natural variability of trees. More specifically, it is a matter of disrupting
the construction by introducing some randomness in the selection of both individuals
and variables. The resulting trees are then combined to construct the final prediction,

© Springer Nature Switzerland AG 2020
R. Genuer and J.-M. Poggi, Random Forests with R, Use R!,
https://doi.org/10.1007/978-3-030-56485-8_1
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2 1 Introduction to Random Forests with R

rather than choosing one of them. Several algorithms based on such principles have
thus been developed, for many of them, by Breiman himself: Bagging (Breiman
1996), several variants of the Arcing (Breiman 1998), and Adaboost (Freund and
Schapire 1997).

Random forests (RF in the following) are therefore a nonparametric method of
statistical learning widely used in many fields of application, such as the study of
microarrays (Díaz-Uriarte and Alvarez De Andres 2006), ecology (Prasad et al.
2006), pollution prediction (Ghattas 1999), and genomics (Goldstein et al. 2010;
Boulesteix et al. 2012), and for a broader review, see Verikas et al. (2011). This
universality is first and foremost linked to excellent predictive performance. This
can be seen in Fernández-Delgado et al. (2014) which crowns RF in a recent large-
scale comparative evaluation, whereas less than a decade earlier, the article in Wu
et al. (2008) with similar objectives mentions CART but not yet random forests! In
addition, they are applicable to many types of data. Indeed, it is possible to consider
high-dimensional data for which the number of variables far exceeds the number of
observations. In addition, they are suitable for both classification problems (categori-
cal response variable) and regression problems (continuous response variable). They
also allow handling a mixture of qualitative and quantitative explanatory variables.
Finally, they are, of course, able to process standard data for which the number of
observations is greater than the number of variables.

Beyond the performance and the easy to tune feature of the method with very
few parameters to adjust, one of the most important aspects in terms of application
is the quantification of the explanatory variables’ relative importance. This concept,
which is not so much examined by statisticians (see, for example, Grömping 2015, in
regression), finds a convenient definition in the context of random forests that is easy
to evaluate and which naturally extends to the case of groups of variables (Gregorutti
et al. 2015).

Therefore, and we will emphasize this aspect very strongly, RF can be used for
variable selection. Thus, in addition to a powerful prediction tool, it can also be used
to select the most interesting explanatory variables to explain the response, among a
potentially very large number of variables. This is very attractive in practice because
it helps both to interpretmore easily the results and, above all, to determine influential
factors for the problem of interest. Finally, it can also be beneficial for prediction,
because eliminating many irrelevant variables makes the learning task easier.

1.2 Notation

Throughout the book, we will adopt the following notations. We assume that a learn-
ing sample is available:

Ln = {(X1,Y1), . . . , (Xn,Yn)}
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composed of n couples of independent and identically distributed observations, com-
ing from the same common distribution as a couple (X,Y ). This distribution is, of
course, unknown in practice and the purpose is precisely to estimate it, or more
specifically to estimate the link that exists between X and Y .

We call the coordinates of X the “input variables” (or “explanatory variables” or
“variables”), where we note X j for the j th coordinate, and we assume that X ∈ X ,
a certain space that we will specify later. However, we assume that this space is of
dimension p, where p is the (total) number of variables.

Y refers to the “response variable” (or “explained variable” or “dependent vari-
able”) and Y ∈ Y . The nature of the regression or classification problem depends on
the nature of the space Y:

• If Y = R, we have a regression problem.
• If Y = {1, . . . ,C}, we have a classification problem with C classes.

1.3 Statistical Objectives

Prediction
The first learning objective is prediction. We are trying, using the learning sample
Ln , to construct a predictor:

̂h : X → Y

which associates a prediction ŷ of the response variable corresponding to any given
input observation x ∈ X .

The “hat” on̂h is a notation to specify that this predictor is constructed using Ln .
We omit the dependence over n for the predictor to simplify the notations, but it does
exist.

More precisely, we want to build a powerful predictor in terms of prediction error
(also called generalization error):

• In regression, we will consider here the mathematical expectation of the quadratic
error: E

[

(Y −̂h(X))2
]

.
• In classification, the probability of misclassification: P

(

Y �= ̂h(X)
)

.

The prediction error depends on the unknown joint distribution of the random
couple (X,Y ), so it must be estimated. One classical way to proceed is, using a test
sample Tm = {(X ′

1, Y
′
1), . . . , (X

′
m,Y

′
m)}, also drawn from the distribution of (X,Y ),

to calculate an empirical test error:

• In regression, it is the mean square error: 1
m

∑m
i=1

(

Y ′
i −̂h(X ′

i )
)2
.

• In classification, the misclassification rate: 1
m

∑m
i=1 1Y ′

i �=̂h(X ′
i )
.
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In the case where a test sample is not available, the prediction error can still be
estimated, for example, by cross-validation. In addition, we will introduce later on a
specific estimate using random forests.

Remark 1.1 In this book, we focus on regression problems and/or supervised clas-
sification ones. However, RF have been generalized to various other statistical prob-
lems.

First, for survival data analysis, Ishwaran et al. (2008) introduced Random Sur-
vival Forests, transposing the main ideas of RF to the case for which the quantity
to be predicted is the time to event. Let us also mention on this subject the work of
Hothorn et al. (2006).

Random forests have also been generalized to the multivariate response variable
case (see the review by Segal and Xiao 2011, which also provides references from
the 1990s).

Selection and importance of variables
A second classical objective is variable selection. This involves determining a subset
of the input variables that are actually useful and active in explaining the input–output
relationship. The quality of a subset of selected variables is often assessed by the
performance obtained with a predictor using only these variables instead of all the
initial sets.

In addition, we can focus on constructing a hierarchy of input variables based on
a quantification of the importance of the effects on the output variable. Such an index
of importance therefore provides a ranking of variables, from the most important to
the least important.

1.4 Packages

We will mainly focus on R three packages (R Core Team 2018):

• rpart (Therneau and Atkinson 2018) for tree methods, in Chap. 2.
• randomForest (Liaw and Wiener 2018) for random forests, in Chaps. 3 and 4.
• VSURF (Genuer et al. 2018) for variable selection using random forests, in
Chap. 5.

Remark 1.2 Regarding the variants of random forests discussed in the previous
section, the randomForestSRC package (Ishwaran and Kogalur 2017) provides a
unified implementation of RF for regression, supervised classification, in a survival
context as well as for the multivariate response case.
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1.5 Datasets

1.5.1 Running Example: Spam Detection

Wewill illustrate the application of the different methods on the very classical spam
data for educational purposes, as a running example.

This well-known and freely available dataset is due to an engineer from Hewlett-
Packard company, named George, who analyzed a sample of his professional emails:

• The observations are the 4,601 emails, of which 2,788 (i.e., 60 %) are desirable
emails and 1,813 (i.e., 40 %) are undesirable emails, i.e., spam.

• The response variable is therefore binary: spam or non-spam. We will rename
the category non-spam to ok to make some graphs easier to read.

• There are p = 57 explanatory variables: 54 are proportions of occurrences of
words or characters, such as $ (denoted charDollar), ! (denoted
charExclamation), free, money, and hp, two are related to the lengths of
the capital letter sequences (the average, capitalAve, the longest,
capitalLong), and finally the last is the number of capital letters in the mail,
capitalTotal. These variables are classical and are defined using standard text
analysis procedures, allowing observations characterized by texts to be statistically
processed through numerical variables.

The statistical objectives stated above are formulated for this example as follows:
first, we want to build a good spam filter: a new email arrives, we have to predict if it
is spam or not. Secondly, we are also interested in knowing which variables are the
most important for the spam filter (here, words or characters).

To assess the performance of a spam filter, the dataset is randomly split into two
parts: 2,300 emails are used for learning while the other 2,301 emails are used to test
predictions.1

So we have a problem of 2-class classification (C = 2) with a number of indi-
viduals (n = 2, 300 for learning, model building) much larger than the number of
variables (p = 57). In addition, we have a large test sample (m = 2, 301) to evaluate
an estimate of the prediction error.

Let us load the dataset into R, available in the kernlab package (Karatzoglou
et al. 2004); let us rename the category nonspam to ok and fix the learning and test
sets:

1Other usual choices are 70% of data for learning, 30% for test or even 80–20%: we choose 50–50%
to stabilize estimation errors and reduce computational times.
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> data("spam", package = "kernlab")
> set.seed(9146301)
> levels(spam$type) <- c("ok", "spam")
> yTable <- table(spam$type)
> indApp <- c(sample(1:yTable[2], yTable[2]/2),

sample((yTable[2] + 1):nrow(spam), yTable[1]/2))
> spamApp <- spam[indApp, ]
> spamTest <- spam[-indApp, ]

Remark 1.3 The command set.seed(9146301) allows fixing the seed of the
random numbers generator in R. Thus, if the previous instruction block is executed
several times, there will be no variability in the learning and test samples.

1.5.2 Ozone Pollution

TheOzone data is used inmany papers and is one of the classical benchmark datasets
since the article of Breiman and Friedman 1985.

The objective here is to predict themaximum ozone concentration associated with
a day in 1976 in the Los Angeles area, using 12 weather and calendar variables. The
data consist of 366 observations and 13 variables, each observation is associated with
a day. The 13 variables are as follows:

• V1Months: 1 = January, …, 12 = December.
• V2 Day of the month 1 to 31.
• V3 Day of the week: 1 = Monday, …, 7 = Sunday.
• V4 Daily maximum of hourly average of ozone concentrations.
• V5 500 millibar (m) pressure height measured at Vandenberg AFB.
• V6Wind speed (mph) at Los Angeles International Airport (LAX).
• V7 Humidity (%) at LAX.
• V8 Temperature (degrees F) measured at Sandburg, California.
• V9 Temperature (degrees F) measured at El Monte, California.
• V10 Inversion base height (feet) at LAX.
• V11 Pressure gradient (mmHg) from LAX to Daggett, California.
• V12 Inversion base temperature (degrees F) to LAX.
• V13 Visibility (miles) measured at LAX.

So it is a problem of regressionwhere we have to predict V4 (the daily maximum
ozone concentration) using the other 12 variables, nine meteorological variables (V5
to V13), and three calendar variables (V1 to V3).

In many cases, only continuous explanatory variables are considered. Here, the
tree methods allow all of them to be taken into account, even if including V2 the day
of the month is a priori irrelevant.
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This dataset is available in the mlbench package (Leisch and Dimitriadou 2010)
and can be loaded into R using the following command:

> data("Ozone", package = "mlbench")

1.5.3 Genomic Data for a Vaccine Study

The dataset vac18 is from an HIV prophylactic vaccine trial (Thiébaut et al. 2012).
Expressions of a subset of 1,000 genes were measured for 42 observations corre-
sponding to 12 negative HIV participants, from 4 different stimuli:

• The candidate vaccine (LIPO5).
• A vaccine containing the Gag peptide (GAG).
• A vaccine not containing the Gag peptide (GAG-).
• A non-stimulation (NS).

The prediction objective here is to determine, in view of gene expression, the
stimulation that has been used. So it is a 4-class high-dimensional classification
problem. It should be noted that this prediction problem is an intermediate step in
order to reach the actual objective which is the selection of the most useful genes for
the discrimination between the different vaccines.

We load the vac18 data, available in the mixOmics package (Le Cao et al.
2017):

> data("vac18", package = "mixOmics")

1.5.4 Dust Pollution

These data are published in Jollois et al. (2009).
Airborne particles come from various origins, natural or human-induced, and the

chemical composition of these particles can vary a lot. In 2009, Air Normand, the
air quality agency in Upper Normandy (Haute-Normandie), had about ten devices
measuring the concentrations of PM10 particles of diameter of less than 10 µ/m,
expressed inµ/g/m3, in average over the past quarter of an hour. European regulation
rules set the value of 50 µ/g/m3 (as a daily average) as the limit not to exceed more
than 35 days in the year for PM10.

We focused on a subnetwork of six PM10 monitoring stations: three in Rouen
GCM (industrial), JUS (urban), and GUI (near traffic); two in Le Havre REP (traffic)
and HRI (urban); and finally a rural station in Dieppe AIL.



8 1 Introduction to Random Forests with R

The data considered for the six stations are

• For weather: rain PL, wind speed VV (max and average), wind direction DV (max
and dominant), temperature T (min, max, and average), temperature gradient GT
(Le Havre and Rouen), atmospheric pressure PA, and relative humidity HR (min,
max, and average).

• For pollutants: dust (PM10), nitrogen oxides (NO, NO2) for urban pollution and
sulfur dioxide (SO2) for industrial pollution: in addition to those measured at each
station, pollutants measured nearby are added:

– For GUI: addition of SO2 measured at JUS.
– For REP: addition of SO2 measured in Le Havre (MAS station).
– For HRI: addition of NO and NO2 measured at Le Havre (MAS station).

Let us load the data for the JUS station, included in the VSURF package:

> data("jus", package = "VSURF")



Chapter 2
CART

Abstract CART stands for Classification And Regression Trees, and refers to a sta-
tistical method for constructing tree predictors (also called decision trees) for both
regression and classification problems. This chapter focuses on CART trees, analyz-
ing in detail the two steps involved in their construction: the maximal tree growing
algorithm,whichproduces a large family ofmodels, and the pruning algorithm,which
is used to select an optimal or suitable final one. The construction is illustrated on
the spam dataset using the rpart package. The chapter then addresses interpretabil-
ity issues and how to use competing and surrogate splits. In the final section, trees
are applied to two examples: predicting ozone concentration and analyzing genomic
data.

2.1 The Principle

CART stands for Classification And Regression Trees, and refers to a statistical
method, introduced by Breiman et al. (1984), for constructing tree predictors (also
called decision trees) for both regression and classification problems.

Let us start by considering a very simple classification tree on our running example
about spam detection (Fig. 2.1).

A CART tree is an upside-down tree: the root is at the top. The leaves of the tree
are the nodes without descendants (for this example, 5 leaves) and the other nodes
of the tree are nonterminal nodes (4 such nodes including the root) that have two
child nodes. Hence, the tree is said to be binary. Nonterminal nodes are labeled by a
condition (a question) and leaves by a class label or a value of the response variable.
When a tree is given, it is easy to use it for prediction. Indeed, to determine the
predicted value ŷ for a given x , it suffices to go through the only path from the root
to a leaf, by answering the sequence of questions given by the successive splits and
reading the value of y labeling the reached leaf. When you go through the tree, the
rule is as follows: if the condition is verified then you go to the left node and if not, go
to the right. In our example, an email with proportions of occurrences of characters
“!” and “$”, respectively, larger than 7.95 and 0.65% will thus be predicted as spam
by this simple tree.

© Springer Nature Switzerland AG 2020
R. Genuer and J.-M. Poggi, Random Forests with R, Use R!,
https://doi.org/10.1007/978-3-030-56485-8_2
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|charExclamation< 0.0795

remove< 0.045 charDollar< 0.0065

capitalAve< 2.752

ok spam

ok spam

spam

Fig. 2.1 A very simple first tree, spam data

Other methods for building decision trees, sometimes introduced before CART,
are available, such as CHAID (Kass 1980) and C4.5 (Quinlan 1993). Tree methods
are still of interest today, as can be seen in Patil and Bichkar (2012) in computer
science and Loh (2014) in statistics. Several variants for building CART trees are
possible, for example, by changing the family of admissible splits, the cost function,
or the stopping rule. We limit ourselves in the sequel to the most commonly used
variant, which is presented in Breiman et al. (1984). The latter containsmany variants
which have not been widely disseminated and implemented. Indeed, the success of
the simplest version has been ensured by its ease of interpretation. A concise and
clear presentation in French of the regression CARTmethod can be found in Chap.2
of Gey (2002) PhD thesis.

CART proceeds by recursive binary partitioning of the input space X and then
determines an optimal sub-partition for prediction. Building a CART tree is therefore
a two-step process. First, the construction of a maximal tree and the second step,
called pruning, which builds a sequence of optimal subtrees pruned from themaximal
tree sufficient from an optimization perspective.

2.2 Maximal Tree Construction

At each step of the partitioning process, a part of the space previously obtained is
split into two pieces.We can therefore naturally associate a binary tree to the partition
built step by step. The nodes of the tree correspond to the elements of the partition.
For example, the root of the tree is associated with the entire input space, its two
child nodes with the two subspaces obtained by the first split, and so on. Figure 2.2
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Fig. 2.2 Left: a classification tree to predict the class label corresponding to a given x . Right: the
associated partition in the explanatory variables’ space, here the unit square (C1, C2, and C5 do not
appear because they are not associated with leaves)

illustrates the correspondence between a binary tree and the associated partition of
the explanatory variables’ space (here the unit square).

Let us now detail the splitting rule. To make things simple, we limit to continuous
explanatory variableswhilementioning the qualitative case,whenever necessary. The
input space is then R

p, where p is the number of variables. Let us consider the root
of the tree, associated with the entire space Rp, which contains all the observations
of the learning sample Ln . The first step of CART is to optimally split this root into
two child nodes, and then this splitting is repeated recursively in a similar way. We
call a split an element of the form

{X j ≤ d} ∪ {X j > d},

where j ∈ {1, . . . , p} andd ∈ R. Splitting according to {X j ≤ d} ∪ {X j > d}means
that all observations whose value of the j th variable is smaller than d go into the left
child node, and all those whose value is larger than d go into the right child node. The
method then looks for the best split, i.e., the couple ( j, d) that minimizes a certain
cost function:

• In the regression case, one tries to minimize the within-group variance resulting
from splitting a node t into two child nodes tL and tR , the variance of a node t
being defined by V (t) = 1

#t

∑

i :xi∈t (yi − yt )
2 where yt and #t are, respectively,

the average and the number of the observations yi belonging to the node t . We are
therefore seeking to maximize:
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V (t) −
(

#tL
#t

V (tL) + #tR
#t

V (tR)

)

.

• In the classification case, the possible labels are {1, . . . ,C}, and the impurity of
the child nodes is most often quantified through the Gini index. The Gini index
of a node t is defined by Φ(t) = ∑C

c=1 p̂
c
t (1 − p̂ct ), where p̂ct is the proportion

of observations of class c in the node t . We are then led, for any node t and any
admissible split, to maximize

Φ(t) −
(

#tL
#t

Φ(tL) + #tR
#t

Φ(tR)

)

.

It should be emphasized that at each node, the search for the best split is made
among all the variables. Thus, a variable can be used in several splits (or only one
time or never).

In regression, we are therefore looking for splits that tend to reduce the variance
of the resulting nodes. In classification, we try to decrease the Gini purity function,
and thus to increase the homogeneity of the obtained nodes, a node being perfectly
homogeneous if it contains only observations of the same class label. It should be
noted that the homogeneity of the nodes could be measured by another function,
such as the misclassification rate, but this natural choice does not lead to a strictly
concave purity function guaranteeing the uniqueness of the optimum at each split.
This property, while not absolutely essential from a statistical point of view, is useful
from a computational point of view by avoiding ties for the best split selection.

In the case of a nominal explanatory variable X j , the above remains valid except
that in this case, a split is simply an element of the form

{X j ∈ d} ∪ {X j ∈ d̄},

where d and d̄ are not empty and define a partition of the finite set of possible values
of the variable X j .

Remark 2.1 In CART, we can take into account underrepresented classes by using
prior probabilities. The relative probability assigned to each class can be used to
adjust the magnitude of classification errors for each class. Another way of doing
this is to oversample observations from rare classes, which is more or less equivalent
to an overweighting of these observations.

Once the root of the tree has been split, we consider each of the child nodes and
then, using the same procedure, we look for the best way to split them into two new
nodes, and so on. The tree is thus developed until a stopping condition is reached.
The most natural condition is not to split a pure node, i.e., a node containing only
observations with the same outputs (typically in classification). But this criterion can
lead to unnecessarily deep trees. It is often associated with the classical criterion
of not splitting nodes that contain less than a given number of observations. The
terminal nodes, which are no longer split, are called the leaves of the tree. We will
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|

Fig. 2.3 Skeleton of the maximal tree, spam data

call the fully developed tree, the maximal tree, and denote it by Tmax. At the same
time, each node t of the tree is associated with a value: yt for regression or the label
of the majority class of observations present in the node t in the classification case.
Thus, a tree is associated not only with a partition defined by its leaves but also by
the values that are attached to each piece of this partition. The tree predictor is then
the piecewise constant function associated with the tree (Fig. 2.2).

The skeleton of the maximal tree on spam data is plotted in Fig. 2.3. Note that the
edges are all not of the same length. In fact, the height of an edge connecting a node
to its two children is proportional to the reduction in heterogeneity resulting from the
splitting. Thus, for splits close to the root, the homogeneity gains are significant while
for those located toward the leaves of the maximal tree, the gains are very small.

2.3 Pruning

Pruning is the second step of the CART algorithm. It consists in searching for the
best pruned subtree of the maximal tree, the best in the sense of the generalization
error. The idea is to look for a good intermediate tree between the two extremes: the
maximal tree which has a high variance and a low bias, and the tree consisting only
of the root (which corresponds to a constant predictor) which has a very low variance
but a high bias. Pruning is a model selection procedure, where the competing models
are the pruned subtrees of the maximal tree, i.e., all binary subtrees of Tmax having
the same root as Tmax.
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Since the number of these subtrees is finite, it would therefore be possible, at least
in principle, to build the sequence of all the best treeswith k leaves for 1 ≤ k ≤ |Tmax|,
where |T | denotes the number of leaves of the tree T , and compare them, for exam-
ple, on a test sample. However, the number of admissible models is exponential in
the characteristic sizes of the learning data leading to an explosive algorithmic com-
plexity. Fortunately, an effective alternative allows a sufficient implicit enumeration
to achieve an optimal result. The process simply consists in the pruning algorithm,
which ensures the extraction of a sequence of nested subtrees (i.e., pruned from
each other) T1, . . . , TK all pruned from Tmax, where Tk minimizes a penalized cri-
terion where the penalty term is proportional to the number of leaves of the tree.
This sequence is obtained iteratively by cutting branches at each step, which reduces
complexity to a reasonable level. In the following few lines, we will limit ourselves
to the regression case, the situation being identical in the classification case.

The key idea is to penalize the training error of a subtree T pruned from Tmax

err(T ) = 1

n

∑

{t leaf of T }

∑

(xi ,yi )∈t
(yi − yt )

2 (2.1)

by a linear function of the number of leaves |T | leading to the following penalized
least squares criterion:

critα(T ) = err(T ) + α|T | .

Thus, err(T ) measures the fit of the model T to the data and decreases when the
number of leaves increases while |T | quantifies the complexity of the model T . The
parameter α, positive, tunes the intensity of the penalty: the larger the coefficient α,
the more penalized are the complex models, i.e., with many leaves.

The pruning algorithm is summarized in Table 2.1, with the following conven-
tions. For any internal node (i.e., a node that is not a leaf) t of a tree T , we note Tt the
branch of T resulting from the node t , i.e., all descendants of the node t . The error
of the node t is given by err(t) = n−1 ∑

{xi∈t}(yi − ȳt )2 and the error of the tree Tt
err(Tt ) is defined by Eq. 2.1.

The central result of the book of Breiman et al. (1984) states that the strictly
increasing sequence of parameters (0 = α1, . . . , αK ) and the associated with the
sequence T1 � · · · � TK made up of nested models (in the sense of pruning) are
such for all 1 ≤ k ≤ K :

∀α ∈ [αk, αk+1[ Tk = argmin
{T subtree of Tmax}

critα(T )

= argmin
{T subtree of Tmax}

critαk (T )

by setting αK+1 = ∞.



2.3 Pruning 15

Table 2.1 CART pruning algorithm

Input Maximal tree Tmax

Initialization α1 = 0, T1 = Tα1 = argminT pruned from Tmax
err(T ).

initialize T = T1 and k = 1

Iteration While |T | > 1,

Calculate

αk+1 = min{t internal node of T }
err(t) − err(Tt )

|Tt | − 1
.

Prune all Tt branches of T such that

err(Tt ) + αk+1|Tt | = err(t) + αk+1

Take Tk+1 the pruned subtree thus obtained

Loop on T = Tk+1 et k = k + 1

Output Trees T1 � · · · � TK = {t1},
Parameters (0 = α1; . . . ; αK )

In other words, the sequence T1 (which is nothing else than Tmax), T2, . . . , TK
(which is nothing else than the tree reduced to the root) contains all the useful
information since for any α � 0, the subtree minimizing critα is a subtree of the
sequence produced by the pruning algorithm.

This sequence can be visualized by means of the sequence of values (αk)1≤k≤K

and the generalization errors of the corresponding trees T1, . . . , TK . In the graph
of Fig. 2.5 obtained on the spam data (see p. 20), each point represents a tree:
the abscissa is placed according to the value of the corresponding αk , the ordinate
according to the error estimated by cross-validation with the estimation of the stan-
dard deviation of the error materialized by a vertical segment.

The choice of the optimal tree can be made directly, by minimizing the error
obtained by cross-validation or by applying the “1 standard error rule” (“1-SE rule”
in brief). This rule aims at selecting in the sequence a more compact tree reaching
statistically the same error. It consists in choosing the most compact tree reaching
an error lower than the value of the previous minimum augmented by the estimated
standard error of this error. This quantity is represented by the horizontal dotted line
on the example of Fig. 2.5.

Remark 2.2 The cross-validation procedure (V -fold cross-validation), executed by
default in the rpart package is as follows. First, starting from Ln and applying
the pruning algorithm, we obtain the sequences (Tk)1≤k≤K and (αk)1≤k≤K . Then,
the learning sample is randomly divided into subsamples (often V = 10) so that
Ln = E1 ∪ E2 ∪ · · · ∪ EV . For each v = 1, . . . , V , we build the sequence of subtrees
(T v

k )1≤k≤Kv
withLn \ Ev as learning sample. Then we calculate the validation errors

of the sequence of trees built on Ln: Rcv(Tk) = 1
V

∑V
v=1

∑

(xi ,yi )∈Ev

(

yi − T v
k (xi )

)2
,
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where T v
k minimizes the penalized criterion critα′

k
, with α′

k = (αkαk+1)
1/2.We finally

choose the model Tk̂ where k̂ = argmin1≤k≤K Rcv(Tk).
Let us mention that the choice of α by a validation sample is not available in the

rpart package.

Finally, it should be noted that, of course, if a tree in the sequence has k leaves, it
is the best tree with k leaves. On the other hand, this sequence does not necessarily
contain all the best trees with k leaves for 1 ≤ k ≤ |Tmax| but only a part of them.
However, the “missing” trees are simply not competitive because they correspond to
larger values of the penalized criterion, so it is useless to calculate them. In addition
their calculation could be more expensive since they are not, in general, pruned from
the trees of the sequence.

As we will see below, random forests are, in most cases, forests of unpruned trees.
However, it should be stressed that a CART tree, if it used alone, must be pruned.
Otherwise, it would suffer from overfitting by being too adapted to the data in Ln

and exhibit a too large generalization error.

2.4 The rpart Package

The rpart package (Therneau and Atkinson 2018) implements the CART method
as a whole and is installed by default in R. The rpart() function allows to build a
tree whose development is controlled by the parameters of the rpart.control()
function and pruning is achieved through the prune() function. Finally, the meth-
odsprint(),summary(),plot(), and predict() allow retrieving and illus-
trate the results. It should also be noted that rpart fully handles missing data, both
for prediction (see Sect. 2.5.2) and for learning (see details on the Ozone example
in Sect. 2.6.1).

Other packages that implement decision trees are used in R, such as

• tree (Ripley 2018), quite close to rpart but which allows, for example, to trace
the partition associated with a tree in small dimension and use a validation sample
for pruning.

• rpart.plot (Milborrow 2018) which offers advanced graphics functions.
• party (Hothorn et al. 2017) which proposes other criteria for optimizing the split-
ting of a node.

Now let us detail the use of the functions rpart() and prune() on the spam
detection example.

The tree built with the default values of rpart() is obtained as follows. Note
that only the syntax formula =, data = is allowed for this function.

> library(rpart)
> treeDef <- rpart(type ˜ ., data = spamApp)
> print(treeDef, digits = 2)
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n= 2300

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 2300 910 ok (0.606 0.394)
2) charExclamation< 0.08 1369 230 ok (0.834 0.166)

4) remove< 0.045 1263 140 ok (0.892 0.108)
8) money< 0.15 1217 100 ok (0.917 0.083) *
9) money>=0.15 46 11 spam (0.239 0.761) *

5) remove>=0.045 106 15 spam (0.142 0.858) *
3) charExclamation>=0.08 931 250 spam (0.271 0.729)

6) charDollar< 0.0065 489 240 spam (0.489 0.511)
12) capitalAve< 2.8 307 100 ok (0.674 0.326)

24) remove< 0.09 265 60 ok (0.774 0.226)
48) free< 0.2 223 31 ok (0.861 0.139) *
49) free>=0.2 42 13 spam (0.310 0.690) *

25) remove>=0.09 42 2 spam (0.048 0.952) *
13) capitalAve>=2.8 182 32 spam (0.176 0.824)

26) hp>=0.1 14 2 ok (0.857 0.143) *
27) hp< 0.1 168 20 spam (0.119 0.881) *

7) charDollar>=0.0065 442 13 spam (0.029 0.971) *

> plot(treeDef)
> text(treeDef, xpd = TRUE)

The print() method allows to obtain a text representation of the obtained
decision tree, and the sequence of methods plot() then text() give a graphical
representation (Fig. 2.4).

Remark 2.3 Caution, contrary to what one might think, the tree obtained with the
default values of the package is not an optimal tree in the pruning sense. In fact, it
is a tree whose development has been stopped, thanks to the parameters minsplit
(the minimum number of data in a node necessary for the node to be possibly
split) and cp (the normalized complexity-penalty parameter), documented in the
rpart.control() function help page. Thus, as cp = 0.01 by default, the
tree provided corresponds to the one obtained by selecting the one corresponding
to α = 0.01 ∗ err(Tn) (where T1 is the root), provided that minsplit is not the
parameter that stops the tree development. It is therefore not the optimal tree but
generally a more compact one.

The maximal tree is then obtained using the following command (using the
set.seed() function to ensure reproducibility of cross-validation results):

> set.seed(601334)
> treeMax <- rpart(type ˜ ., data = spamApp, minsplit = 2, cp = 0)
> plot(treeMax)

The application of the plot()method allows to obtain the skeleton of the max-
imal tree (Fig. 2.3).
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Fig. 2.4 Classification tree obtained with the default values of rpart(), spam data

Information on the optimal sequence of the pruned subtrees of Tmax obtained by
applying the pruning algorithm is given by the command:

> treeMax$cptable

In the columns of Table 2.2, we find the value of the penalty parameter, the number
of splits of the corresponding optimal tree, the relative empirical error with respect
to the one made by the tree restricted to the root, then the relative cross-validation
error, and an estimate of the standard deviation of the associated estimator.

More graphically, we can visualize the sequence of the pruned subtrees of Tmax

(Fig. 2.5), thanks to the plotcp() function:

> plotcp(treeMax)

Each point thus represents a tree, with the estimation of the standard deviation
of the cross-validation error as a vertical segment, quite hard to distinguish on this
example (see Fig. 2.11 for a more meaningful graph). The position of the point
indicates on the y-axis the (relative) cross-validation error, on the bottom x-axis the
value of the penalty parameter, and on the top x-axis the number of leaves of the tree.

The shape of this graph is typical. Let us read it from left to right. When the model
is too simple, the bias dominates and the error is significant. Then, it decreases
fairly quickly until it reaches a minimum reflecting a good balance between bias
and variance and finally rises slightly as the complexity of the model increases.
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Table 2.2 Component cptable of the object treeMax, spam data

CP nsplit rel error xerror xstd

0.4713 0 1.0000 1.0000 0.0259

0.0839 1 0.5287 0.5519 0.0218

0.0591 2 0.4448 0.4570 0.0203

0.0419 4 0.3267 0.3565 0.0184

0.0265 5 0.2848 0.3146 0.0174

0.0177 6 0.2583 0.2947 0.0170

0.0110 7 0.2406 0.2815 0.0166

0.0088 8 0.2296 0.2638 0.0162

0.0055 9 0.2208 0.2517 0.0158

0.0044 14 0.1932 0.2483 0.0157

0.0039 16 0.1843 0.2528 0.0158

0.0033 18 0.1766 0.2373 0.0154

0.0028 24 0.1567 0.2296 0.0152

0.0022 26 0.1512 0.2296 0.0152

0.0015 48 0.1015 0.2307 0.0152

0.0015 53 0.0938 0.2329 0.0153

0.0011 56 0.0894 0.2351 0.0153

0.0009 102 0.0386 0.2439 0.0156

0.0008 110 0.0309 0.2506 0.0158

0.0007 118 0.0243 0.2494 0.0158

0.0006 124 0.0199 0.2517 0.0158

0.0006 131 0.0155 0.2704 0.0163

0.0004 153 0.0033 0.2726 0.0164

0.0000 162 0.0000 0.2759 0.0165

In addition, we find in Fig. 2.6 the same cross-validation error together with the
empirical error. This last one decreases until reaching 0 for the maximal tree.

The tree minimizing the cross-validation error is sometimes still a little too com-
plex (23 leaves here).

The optimal pruned tree is plotted in Fig. 2.7 and is obtained by

> cpOpt <- treeMax$cptable[which.min(treeMax$cptable[, 4]), 1]
> treeOpt <- prune(treeMax, cp = cpOpt)
> plot(treeOpt)
> text(treeOpt, xpd = TRUE, cex = 0.8)

By relaxing a little the condition of minimizing the generalization error by apply-
ing the “1-SE rule” of Breiman (which takes into account the uncertainty of the error
estimation of the trees in the sequence), we obtain the tree of Fig. 2.8, the “1-SE”
pruned tree:
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Fig. 2.5 Errors estimated by cross-validation of the sequence of subtrees pruned from the maximal
tree, spam data
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Fig. 2.6 Evolution of the error of pruned trees, learning and test, on the spam data

> thres1SE <- sum(treeMax$cptable[
which.min(treeMax$cptable[, 4]), 4:5])

> cp1SE <- treeMax$cptable[
min(which(treeMax$cptable[, 4] <= thres1SE)), 1]

> tree1SE <- prune(treeMax, cp = cp1SE)
> plot(tree1SE)
> text(tree1SE, xpd = TRUE, cex = 0.8)

The best pruned subtree of the maximal tree (up to one standard deviation
according to “1-SE” rule) has 19 leaves and only 15 of the 57 initial variables are
involved in the splits associated with the 18 internal nodes: charExclamation,
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Fig. 2.7 Optimal pruned tree, spam data
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Fig. 2.8 Tree “1-SE” pruned, spam data
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Table 2.3 Test and empirical errors for the maximal tree, optimal tree, 1-SE tree, and 2-leaf tree
(Stump), spam data

Max tree Optimal tree 1-SE tree Stump

Test error 0.096 0.086 0.094 0.209

Empirical error 0.000 0.062 0.070 0.208

charDollar, remove, capitalAve, money, george, hp, free, re,
num000, our, edu, internet, business, and meeting.

We can illustrate the ease of interpretation by considering, for example, the path
from the root to the rightmost leaf which says that an email containing a lot of “$” and
“!” is almost always spam. Conversely, the path from the root to the third most right
leaf expresses that an email containing a lot of “!”, capital letters, and occurrences
of the word hp but a few “$” is almost never spam. For this last interpretation, it
is worth recalling that the emails examined are the professional emails of a single
individual working for HP.

Finally, the empirical and test errors obtained by the different trees are summarized
in Table 2.3 and calculated, for example, for themaximal tree, using the predict()
function (which calculates the predictions for a given tree of a set of observations)
by the following commands:

> errTestTreeMax <- mean(
predict(treeMax, spamTest, type = "class") != spamTest$type)

> errEmpTreeMax <- mean(
predict(treeMax, spamApp, type = "class") != spamApp$type)

It should be noted that, as announced, the maximal tree (too complex) has an
empirical error (i.e., on the learning sample) of 0 and that the two-leaf tree (too
simple) has similar test and empirical errors. The optimal tree has the best test error
of 8.6%.

2.5 Competing and Surrogate Splits

2.5.1 Competing Splits

We have at each node of the tree, the sequence of all the splits (one per explanatory
variable) ordered by decreasing reduction of the heterogeneity. These are called the
competing splits. They are, in all nodes, necessarily calculatedduring the construction
of the maximal tree but only a small number of them are, in general, kept (we refer
to the summary of the object treeStump on the next page for an illustration on
the spam data). The possibility of manual development of the maximal tree can be
valuable and can be achieved by choosing in each of the nodes in the ordered list



2.5 Competing and Surrogate Splits 23

of splits, either the optimal one, or a slightly worse split. The actual split variable
could be less uncertain, easier, cheaper to measure, or even more interpretable (see,
for example, Ghattas 2000).

2.5.2 Surrogate Splits

One of the practical difficulties in calculating a prediction is the presence of missing
values. CART offers an effective and very elegant way to circumvent it. First of all,
it should be noted that when some input variables are missing for a given x , there is a
problem only if the path to calculate the predicted value goes through a node whose
split is based on one of these variables. Then, in a node where the split variable is
missing, one of the other variables can be used, for example, the second competing
split. But this idea is not optimal, since the routing rule in the right and left nodes,
respectively, can be very different from the routing rule induced by the optimal split.
Hence, the idea is to calculate at each node the list of surrogate splits, defined by
the splits minimizing the number of routing errors with respect to the routing rule
induced by the optimal split. This provides a method for handling missing values for
prediction that is both local and efficient, avoiding to use global and often too coarse
imputation methods.

These two aspects are illustrated by the following instructions.

> treeStump <- rpart(type ˜ ., data = spamApp, maxdepth = 1)
> summary(treeStump)

Call:
rpart(formula = type ˜ ., data = spamApp, maxdepth = 1)

n= 2300

CP nsplit rel error xerror xstd
1 0.4713024 0 1.0000000 1.0000000 0.02586446
2 0.0100000 1 0.5286976 0.5474614 0.02177043

Variable importance
charExclamation free your charDollar

44 12 12 12
capitalLong all

11 10

Node number 1: 2300 observations, complexity param=0.4713024
predicted class=ok expected loss=0.393913 P(node) =1

class counts: 1394 906
probabilities: 0.606 0.394

left son=2 (1369 obs) right son=3 (931 obs)
Primary splits:
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charExclamation < 0.0795 to the left, improve=351.9304
charDollar < 0.0555 to the left, improve=337.1138
free < 0.095 to the left, improve=296.6714
remove < 0.01 to the left, improve=290.1446
your < 0.605 to the left, improve=272.6889

Surrogate splits:
free < 0.135 to the left, agree=0.710, adj=0.285
your < 0.755 to the left, agree=0.703, adj=0.267
charDollar < 0.0555 to the left, agree=0.702, adj=0.264
capitalLong < 53.5 to the left, agree=0.694, adj=0.245
all < 0.325 to the left, agree=0.685, adj=0.221

Node number 2: 1369 observations
predicted class=ok expected loss=0.1658145 P(node) =0.5952174

class counts: 1142 227
probabilities: 0.834 0.166

Node number 3: 931 observations
predicted class=spam expected loss=0.2706767 P(node) =0.4047826

class counts: 252 679
probabilities: 0.271 0.729

This tree is the default tree of depth 1 (called stump), a typical weak classifier.
The result of the method summary() provides information not only about the
visible parts of the tree (such as structure and splits) but also about the hidden parts,
involving variables that do not necessarily appear in the selected tree. Thus, we first
find competing splits and then surrogate splits. It should be noted that to mimic the
optimal routing rule, the best alternative split isfree < 0.135which differs from
the competing split based on the same variable that is free < 0.095.

2.5.3 Interpretability

The interpretability of CART trees is one of the ingredients of their success. It is
indeed very easy to answer the question of why, for a given x , a particular value of
y is expected. To do this, it suffices to provide the sequence of the answers to the
questions constituted by the successive splits encountered to go through the only
path from the root to the associated leaf.

But more generally, beyond the interpretation of a particular prediction, once the
CART tree has been built, we can consider the variables that intervene in the splits of
the nodes of the tree. It is natural to think that the variables involved in splits close to
the root are the most important, since they correspond to those whose contribution to
the heterogeneity reduction is important. In a complementary way, we would tend to
think that the variables that do not appear in any split are not important. Actually, this
first intuition gives partial and biased results. Indeed, variables that do not appear
in the tree can be important and even useful in this same model to deal with the
problem of missing data in prediction, for example. A more sophisticated variable
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importance index is provided by CART trees. It is based on the concept of surrogate
splits. According to Breiman et al. (1984), the importance of a variable can be defined
by evaluating, in each node, the heterogeneity reduction generated by the use of the
surrogate split for that variable and then summing them over all nodes.

In rpart, the importance of the variable X j is defined by the sum of two terms.
The first is the sum of the heterogeneity reductions generated by the splits involving
X j , and the second is weighted the sum of the heterogeneity reductions generated
by the surrogate splits when X j does not define the split. In the second case, the
weighting is equal to the relative agreement, in excess of the majority routing rule,
given for a node t of size nt , by

{

(nX j − nmaj)/(nt − nmaj) if nX j > nmaj

0 otherwise

where nX j and nmaj are the numbers of observations well routed with respect to the
optimal split of the node t , respectively, by the surrogate split involving X j and by
the split according to the majority rule (which routes all observations to the child
node of largest size). This weighting reflects the adjusted relative agreement between
the optimal routing rule and the one associated with the surrogate split involving X j ,
in excess of the majority rule. The raw relative agreement would be simply given by
nX j /nt .

However, as interesting as this variable importance indexmay be, it is no longer so
widely used today. It is indeed not very intuitive, it is unstable because it is strongly
dependent on a given tree, and it is less relevant than the importance of variables by
permutation in the sense of random forests. In addition, its analog, which does not
use surrogate splits, exists for random forests but tends to favor nominal variables
that have a large number of possible values (we will come back to this in Sect. 4.1).

> par(mar = c(7, 3, 1, 1) + 0.1)
> barplot(treeMax$variable.importance, las = 2, cex.names = 0.8)

Nevertheless, it can be noted that the variable importance indices, in the sense of
CART, for the maximal tree (given by Fig. 2.9) provide for the spam detection exam-
ple very reasonable and easily interpretable results. It makes it possible to identify
a group of variables: charExclamation clearly at the top then capitalLong,
charDollar, free and remove then, less clearly, a group of 8 variables among
which capitalAve, capitalTotal, money but also your and num000 intu-
itively less interesting.
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Fig. 2.9 Importance of variables in the sense of CART for the maximal tree, spam data

2.6 Examples

2.6.1 Predicting Ozone Concentration

For a presentation of this dataset, see Sect. 1.5.2.
Let us load the rpart package and the Ozone data:

> library("rpart")
> data("Ozone", package = "mlbench")

Let us start by building a tree using the default values of rpart():

> OzTreeDef <- rpart(V4 ˜ ., data = Ozone)
> plot(OzTreeDef)
> text(OzTreeDef, xpd = TRUE, cex = 0.9)

Note that the response variable is in column 4 of the data Table and is denoted by
V4.

Let us analyze this first tree (Fig. 2.10). This dataset has already been considered
in many studies and, although these are real data, the results are relatively easy to
interpret.

Looking at the first splits in the tree, we notice that the variables V8, V10 then
V1 and V2 define them. Let us explain why.

Ozone is a secondary pollutant, since it is produced by the chemical transformation
of primary precursor gases generated directly from the exhaust pipes (hydrocarbons
and nitrogen oxides) in the presence of a catalyst for the chemical reaction: ultraviolet
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|V8< 67.5

V10>=3574

V1=al

V2=abcfhjnpqrswxCD

V5< 5735

V8< 79.5

V2=bcdefhiklopsvwCDE

V11< −13.5

V12< 73.04

V2=abhijknorwxyzAE5.07

5.424

8.93 10.56 15.48 6.125 14.21 20.75

20.29
21.12 28.05

Fig. 2.10 Default tree, Ozone data

radiation. The latter is highly correlated with temperature (V8 or V9), which is one
of the most important predictors of ozone. As a result, ozone concentrations peak
during the summer months and this explains why the month number (V1) is among
the influential variables. Finally, above an agglomeration, the pollutants are dispersed
in a box whose base is the agglomeration and whose height is given by the inversion
base height (V10).

Continuing to explore the tree, we notice that V2 defines splits quite close to the
root of the tree, despite the fact that V2 is the number of the day within the month
whose relationshipwith the response variable can only be caused by sampling effects.
The explanation is classical in tree-based methods: it comes from the fact that V2 is a
nominal variable with many possible values (here 31) involving a favorable selection
bias when choosing the best split.

Predictions can also be easily interpreted: for example, the leftmost leaf gives very
low predictions because it corresponds to cold days with a high inversion base height.
On the other hand, the rightmost leaf provides much larger predictions because it
corresponds to hot days.

Of course, it is now necessary to optimize the choice of the final tree. Let us study
for that the sequence of the pruned subtrees (Fig. 2.11) which is the result of the
pruning step starting from the the maximal tree.

> set.seed(727325)
> OzTreeMax <- rpart(V4 ˜ ., data = Ozone, minsplit = 2, cp = 0)
> plotcp(OzTreeMax)



28 2 CART

cp

X−
va

l R
el

at
iv

e 
Er

ro
r

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.0076 0.0023 0.001 0.00044 0.00027 1e−04 3.6e−05

1 8 18 28 38 50 60 70 80 94 109 130 150 167

size of tree

Fig. 2.11 Errors estimated by cross-validation of the sequence of subtrees pruned from themaximal
tree, Ozone data

> OzIndcpOpt <- which.min(OzTreeMax$cptable[, 4])
> OzcpOpt <- OzTreeMax$cptable[OzIndcpOpt, 1]
> OzTreeOpt <- prune(OzTreeMax, cp = OzcpOpt)
> plot(OzTreeOpt)
> text(OzTreeOpt, xpd = TRUE)

The best tree (Fig. 2.12) is particularly compact since it has only six leaves, those
involving splits on twoof the threemajor variables highlighted above.Wewill see that
a more complete, but above all, more automatic exploration of this aspect is provided
by the permutation variable importance index in the context of random forests. This
notion will allow eliminating the variable V2 whose interest is doubtful.

There is a lot of missing data in this dataset and rpart() offers a clever way to
handle it during the learning step, without any imputation:

• The data with y missing are eliminated as well as those with all the components
of x missing.

• Otherwise, to split a node:

– Calculate the impurity reductions for each variable using only the associated
available data and choose the best split as usual.

– For this split, observations that have a missing value for the associated split
variable are routed, either using a surrogate split or to the most popular node in
case the variables determining the best available surrogate splits are all missing
for this observation (the maximum number is a parameter, set to 5 by default).

– Finally, weights in the impurity reduction are updated to take into account the
new data routed.
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|V8< 67.5

V10>=3574

V1=al

V8< 79.5

V2=bcdefhiklopsvwCDE
5.07

5.424 11.07 13.96 20.29
24.11

Fig. 2.12 Optimal pruned tree, Ozone data

2.6.2 Analyzing Genomic Data

For a presentation of this dataset, see Sect. 1.5.3.
Let us load the rpart package, the vac18 data, and group in the same dataframe

in which the gene expressions and the stimulation are to be predicted:

> library(rpart)
> data("vac18", package = "mixOmics")
> VAC18 <- data.frame(vac18$genes, stimu = vac18$stimulation)

The tree obtainedwith the default values of rpart() is obtained as follows (note
the use of the argument use.n = TRUE in the text() function which displays
the class distribution for each leaf):

> VacTreeDef <- rpart(stimu ˜ ., data = VAC18)
> VacTreeDef

n= 42

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 42 31 LIPO5 (0.262 0.238 0.238 0.262)
2) ILMN_2136089>=9.05 11 0 LIPO5 (1.000 0.000 0.000 0.000) *
3) ILMN_2136089< 9.05 31 20 NS (0.000 0.323 0.323 0.355)

6) ILMN_2102693< 8.59 18 8 GAG+ (0.000 0.556 0.444 0.000)*
7) ILMN_2102693>=8.59 13 2 NS (0.000 0.000 0.154 0.846) *
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|ILMN_2136089>=9.055

ILMN_2102693< 8.59LIPO5
11/0/0/0

GAG+ 
0/10/8/0

NS
0/0/2/11

Fig. 2.13 Default tree obtained with rpart() on the Vac18 data

> plot(VacTreeDef)
> text(VacTreeDef, use.n = TRUE, xpd = TRUE)

The default tree, represented in Fig. 2.13, consists of only 3 leaves. This is due,
on the one hand, to the fact that there are only 42 observations in the dataset, and,
on the other hand, that the classes LIPO5 and NS are separated from the others very
quickly. Indeed, that the first split sends all the observations of class LIPO5, and
only them, to the left child node.

Themaximal tree has 6 leaves (Fig. 2.14). Thus in 5 splits, the classes are perfectly
separated. We see on this example that considering only the variables appearing in
the splits of a tree (here the deepest tree which can be built using these data) can
be very restrictive: indeed, only 5 variables (corresponding to probe identifiers of
biochips) among the 1,000 variables appear in the tree.

> set.seed(788182)
> VacTreeMax <- rpart(stimu ˜ ., data = VAC18, minsplit = 2, cp = 0)
> plot(VacTreeMax)
> text(VacTreeMax, use.n = TRUE, xpd = TRUE)

The error estimated by validation for the sequence of pruned subtrees is plotted
in the left graph of Fig. 2.15.

Given the small number of individuals, a leave-one-out estimate of the cross-
validation error may be preferred. This is obtained by setting the argument xval,
the number of folds of the cross-validation (argument of the rpart.control()
function), as follows:

> set.seed(413745)
> VacTreeMaxLoo <- rpart(stimu ˜ ., data = VAC18, minsplit = 2,
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|ILMN_2136089>=9.055

ILMN_2102693< 8.59

ILMN_1663032>=5.31

ILMN_1800889>=7.613

ILMN_1671207< 9.927

LIPO5
11/0/0/0

GAG+ 
0/9/0/0 GAG+ 

0/1/0/0
GAG− 
0/0/8/0

GAG− 
0/0/2/0

NS
0/0/0/11

Fig. 2.14 Maximal tree on Vac18 data
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Fig. 2.15 Errors estimated by 10-fold cross-validation (left) and leave-one-out (right) of the
sequence of subtrees pruned from the maximal tree, Vac18 data

cp = 0, xval = nrow(VAC18))
> par(mfrow = c(1, 2))
> plotcp(VacTreeMax)
> plotcp(VacTreeMaxLoo)
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|ILMN_2136089>=9.055

ILMN_2102693< 8.59

ILMN_1663032>=5.31

LIPO5
11/0/0/0

GAG+ 
0/9/0/0

GAG− 
0/1/8/0

NS
0/0/2/11

Fig. 2.16 Optimal pruned tree, Vac18 data

We can easily see on the right side of Fig. 2.15 that for leave-one-out cross-
validation, the optimal tree consists of 4 leaves while the 1-SE tree is the same as the
default tree (3 leaves). The optimal tree (Fig. 2.16) is obtained using the following
commands:

> VacIndcpOpt <- which.min(VacTreeMaxLoo$cptable[, 4])
> VaccpOpt <- VacTreeMaxLoo$cptable[VacIndcpOpt, 1]
> VacTreeOpt <- prune(VacTreeMaxLoo, cp = VaccpOpt)
> plot(VacTreeOpt)
> text(VacTreeOpt, use.n = TRUE, xpd = TRUE)



Chapter 3
Random Forests

Abstract The general principle of random forests is to aggregate a collection of
random decision trees. The goal is, instead of seeking to optimize a predictor “at
once” as for a CART tree, to pool a set of predictors (not necessarily optimal). Since
individual trees are randomly perturbed, the forest benefits from a more extensive
exploration of the space of all possible tree predictors, which, in practice, results
in better predictive performance. Focusing on random forests, this chapter begins
by addressing the instability of a tree and subsequently introduces readers to two
random forest variants: Bagging and Random Forest Random Inputs. The construc-
tion of random forests is illustrated on the spam dataset using the randomForest
package. The clever prediction error estimate Out-Of-Bag Error is also presented. In
turn, the chapter assesses the sensitivity of prediction performance to the two main
parameters: the number of trees and the number of variables picked at each node.
In the final section, random forests are applied to three examples: predicting ozone
concentration, analyzing genomic data, and analyzing dust pollution.

3.1 General Principle

The general principle of random forests (RF henceforth) is to aggregate a collection
of random decision trees. The goal is, instead of seeking to optimize a predictor “at
once” as for a CART tree, to pool a set of predictors (not necessarily optimal). Since
individual trees are randomly perturbed, the forest benefits from a more extensive
exploration of the space of all possible tree predictors, which, in practice, results in
better predictive performance.

The general definition of random forests, given by Breiman (2001), is as follows:

Definition 3.1 (Random forests) Let
(̂
h(.,Θ1), . . . , ĥ(.,Θq)

)
be a collection of tree

predictors, withΘ1, . . . , Θq q i.i.d. randomvariables independent ofLn . The random
forest predictor ĥ RF is obtained by aggregating this collection of random trees. The
aggregation is done as follows:
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Fig. 3.1 General scheme of
random forests

• ĥ RF (x) = 1

q

q∑

�=1

ĥ(x,Θ�) (average of individual tree predictions) in regression.

• ĥ RF (x) = argmax
1≤c≤C

q∑

�=1

1ĥ(x,Θ�)=c (majority vote among individual tree predictions)

in classification.

Remark 3.1 Actually, this definition is not exactly the same as that of Breiman
(2001), which does not specify that the variablesΘ� are independent ofLn . However,
we adopt Definition 3.1 in this book because we find it more appropriate. Indeed, it
is consistent with the intuition that the additional randomness provided by the Θ�

is disconnected from the learning sample and, in addition, it encompasses the most
commonly used RF variants.

This definition is illustrated by the diagram in Fig. 3.1. This scheme will be
adapted several times later in this chapter, depending on the different RF methods
presented.

In order to obtain good predictive performance, a random forest method must
build a collection of trees that is

• As diverse as possible, because aggregating a set of predictors that are all very
similar would give nothing more than again a similar predictor.

• Made up of individual predictors with acceptable predictive capacity, because if
for a new observation x all trees provide a bad prediction, the aggregation of these
predictions has no chance of being correct.

3.1.1 Instability of a Tree

Before presenting differentRFvariants,we illustrate awell-knownproperty ofCART
trees, namely their instability. Instability here means that if the learning sample on
which a CART tree is built is slightly modified, then the resulting tree is usually very
different from the original tree.



3.1 General Principle 35

To illustrate this behavior, let us build two CART trees (with parameter default
values of the rpart() function) from two different bootstrap samples, named
spamBoot1 and spamBoot2, derived from the spam data learning sample,
spamApp. The notion of bootstrap samples is introduced in the following definition.

Definition 3.2 (Bootstrap sample) A bootstrap sample of a learning sample Ln of
size n is obtained by randomly drawing n observations from Ln with replacement,
each observation (Xi ,Yi ) of Ln having a probability 1/n of being selected in each
draw.

> set.seed(368910)
> spamBoot1 <- spamApp[

sample(1:nrow(spamApp), nrow(spamApp), replace = TRUE), ]
> treeBoot1 <- rpart(type ˜ ., data = spamBoot1)
> plot(treeBoot1)
> text(treeBoot1, xpd = TRUE)

> set.seed(368915)
> spamBoot2 <- spamApp[

sample(1:nrow(spamApp), nrow(spamApp), replace = TRUE), ]
> treeBoot2 <- rpart(type ˜ ., data = spamBoot2)
> plot(treeBoot2)
> text(treeBoot2, xpd = TRUE)

We note that the structures of the two trees (Figs. 3.2 and 3.3) are very different.
This major difference is explained by the fact that, as illustrated, there are changes
from the first splits (at the top of the tree). Thus, the recursive nature of CART tree
building implies that these changes are reflected throughout the tree development. In
addition, since the pruning step is conditional on the maximal tree, the differences
observed would be as important for pruned trees.

If we compare them with the tree obtained in Fig. 2.4, we notice that the tree
built on the sample spamBoot2 is relatively similar to the one built on the whole
learning sample spamApp. Thus, depending on the bootstrap sample, resulting trees
could be very different from each other.

Finally, we could expect to see the variable charDollar appear in the root
node split in such a situation, because in Sect. 2.5 we saw that it occurred in the first
concurrent split of this node, with a value of improve relatively close to that of the
original split (made on the variable charExclamation).

Now let us compare predictions given by the two previous trees on the test sample.

> mean(predict(treeBoot1, spamTest, type = "class") !=
predict(treeBoot2, spamTest, type = "class"))

[1] 0.08822251
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|charDollar< 0.0335

remove< 0.06

free< 0.225

charExclamation< 0.326
capitalAve< 2.295

charExclamation< 0.289
capitalLong>=48.5

george>=0.34

hp>=0.24

ok
ok spam ok ok spam

spam

spam

ok spam

Fig. 3.2 Classification tree obtained with the default values of rpart() on the bootstrap sample
spamBoot1; spam data

|charExclamation< 0.079

remove< 0.025

money< 0.165

will< 0.235

charDollar< 0.0065

remove< 0.07

capitalAve< 2.752

free< 0.495
ok ok spam

spam

ok spam
spam

spam

spam

Fig. 3.3 Classification tree obtained with the default values of rpart() on the bootstrap sample
spamBoot2, spam data
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This result illustrates that the instability of CART trees also results in a variation
of predictions. In our example, about 8.8% of the test data has an altered prediction.

3.1.2 From a Tree to an Ensemble: Bagging

The first historical example of a random forest method that verifies the conditions
of Definition 3.1 is the Bagging method introduced by Breiman (1996). The word
Bagging is the acronym for “Bootstrap aggregating”. Thus, the Bagging predictor
is obtained by aggregating a set of tree predictors, each constructed on a different
bootstrap sample. This method is therefore a random forest where the hazard comes
from the bootstrap draw.

The diagram of Fig. 3.4 summarizes the principle of Bagging.
To illustrate Bagging on spam data, we can use the randomForest package,

presented in detail in Sect. 3.3.
The Bagging predictor is obtained using the following command, for which the

mtry parameter of the randomForest() function is set to p, the number of
explanatory variables, while all other parameters are kept to their default values. We
will come back to the meaning of the mtry parameter in Sect. 3.2.

> library(randomForest)
> bagging <- randomForest(type ˜ ., data = spamApp,

mtry = ncol(spamApp) - 1)
> bagging

Call:

Fig. 3.4 Bagging diagram
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randomForest(formula = type ˜ ., data = spamApp,

mtry = ncol(spamApp) - 1)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 57

OOB estimate of error rate: 6.13%

Confusion matrix:

ok spam class.error

ok 1339 55 0.03945481

spam 86 820 0.09492274

By default, 500 bootstrap samples are generated and a collection of 500 trees is
therefore built before being aggregated.

Remark 3.2 The predictor thus created is not exactlyBagging, as defined in Fig. 3.4,
because in fact maximal trees are built (and not optimal pruned trees as in CART). So
we are considering here the maximal trees’ Bagging instead. To our knowledge, the
Bagging method with optimal pruned trees is not implemented directly in R. More
specifically, in

• ipred (Peters and Hothorn 2017), all trees in Bagging can be pruned uniformly
using the parameters of the rpart.control() function (see Sect. 2.4).

• adabag (Alfaro et al. 2013), the same uniform pruning can be obtained, but in
addition, the autoprune() function which automatically calculates the optimal
pruned tree can easily be used to code the optimal trees’ Bagging.

Let us compute the test and learning errors obtained by Bagging on spam data
using the predict() function (which calculates the predictions of a set of obser-
vations) and compare them to the errors obtained with CART trees (Table 3.1):

> errTestBagging <- mean(
predict(bagging, spamTest) != spamTest$type)

> errEmpBagging <- mean(
predict(bagging, spamApp) != spamApp$type)

In this example, the test error reached by Bagging is indeed lower than those
obtained by the CART trees (only the smallest error, reached by the optimal tree and
computed in Sect. 2.3, is recalled in the table). Intuitively, this decrease in prediction

Table 3.1 Test and empirical errors of the optimal tree and bagging, spam data

Optimal tree Bagging

Test error 0.086 0.062

Empirical error 0.062 0.000
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error is due to CART instability. In fact, the instability of CART allows to build a
set of trees relatively different from each other in Bagging, because they are built on
different bootstrap samples.

In addition, Bagging, through aggregation, stabilizes CART trees. Indeed, by
averaging (or applying the majority vote rule in classification) the individual trees,
which are very different from each other, Bagging provides a stable predictor.

Remark 3.3 The Bagging method is very general, and could be used with any basic
predictor, but the fact that it has been used most often with trees (or what are called
weak predictors) comes precisely from the unstable nature of the latter. In other
words, applying a Bagging method with a stable base predictor (such as logistic
regression for spam data) does not bring any significant improvement.

3.2 Random Forest Random Inputs

Many RF methods, i.e., many types of additional hazards (the Θ� in Definition 3.1),
have been tried since the late 1990s (Ho 1998; Dietterich 2000; Breiman 2000).
However, one of them has become the reference method: it is the Random Forests-
Random Inputs (RF-RI) algorithm, introduced by Breiman (2001). We now detail
this variant, which we will call RF later on.

Remark 3.4 The language abuse consisting in naming the RF-RI method by RF is
widely used in the literature on random forests. Indeed, very oftenwe speakof random
forests to designate this particular case of the much more general Definition 3.1.

“Random Inputs” must be understood here as “random input variables”. The
principle of RF-RI is then to aggregate a collection of tree predictors with random
input variables, which we will call “RI trees”, each built on a bootstrap sample (see
Definition 3.2).

Definition 3.3 (RI Tree) An RI tree is a tree predictor, with the following major
differences with a CART tree:

• At each node of a tree, we randomly select a subset of mtry variables, then we
look for the best way to split this node only among the splits that involve these
variables.

• Trees are not pruned.

The random selection of variables is done by a uniform draw of mtry variables
without replacement among the p available variables.

A summary diagram of the RF-RI algorithm, whereΘ refers to the bootstrap draw
and Θ ′ refers to the random draw of variables can be found in Fig. 3.5.
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Fig. 3.5 RF-RI random
forest scheme

The general idea of this method is that the random perturbation on individuals,
brought by bootstrap sample draws, is not sufficient to promote diversity among trees
and that it is also necessary to perturb the construction of trees at the variable level.
This perturbation is applied before optimal splitting search at each node. Thus, thanks
to this additional randomness, an even more diversified collection of trees is built,
which, in practice, leads to an additional improvement in predictive performance
compared to Bagging.

Remark 3.5 It is important to note that the number of randomly selected variables,
noted mtry (for “number of variables tried to split a node”), is the most important
parameter of the method, and that it is the same for all nodes of all trees in the forest.

In the spam example, we obtain a test error rate of 0.052 for an RF with default
values for all parameters, which illustrates an improvement made by RF compared
to Bagging and therefore to CART trees (Table 3.2).

Table 3.2 Test and empirical errors of the optimal tree, bagging, and RF spam data

Optimal tree Bagging RF

Test error 0.086 0.062 0.052

Empirical error 0.062 0.000 0.004
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3.3 The randomForest Package

The randomForest package was brought into R by Liaw and Wiener (2002) and
is based on the initial Fortran code of Breiman and Cutler.1 The source code of
the package is structured in a rather complex way, with main functions in R that
call C code, which itself calls Fortran code. However for the user, the package
is very accomplished with a well-documented main function randomForest(),
with usual Rmethods such as print(), plot(), predict() (no summary()
method implemented) and other related functions that help to use or interpret ran-
dom forests such as importance() (see Chap. 4) or partialPlot() (see
Sect. 3.6.3).

Other R packages that implement random forests:

• ranger (Wright 2017) is optimized in C and is a very interesting alternative,
especially when processing high-dimensional datasets. It often allows a significant
reduction in computation times while providing essentially the same results as
randomForest.

• Rborist (Seligman 2017) has an implementation dedicated to scale in the context
of Big Data, where the number of observations n is very high;

• party (Hothorn et al. 2017) proposes a unified implementation of CART trees and
random forest methods through the functions ctree() and cforest().

Let us now detail the use of the randomForest() function which implements
the RF-RI method. The main parameters of this function are

• mtry: the number of variables randomly selected at each node, which by default
is

√
p in classification and p/3 in regression (where p refers to the number of

input variables).
• ntree: the number of trees in the forest, denoted as q in this chapter, which by
default is 500.

• nodesize: theminimumnumber of observations that a leaf of a treemust contain,
which by default is 1 in classification and 5 in regression.

Thus, to obtain an RF-RI predictor, trained on spam data, made of 500 trees and
where the number of variables randomly drawn at each node is 7 (the integer part of√
57), we use the following command:

> RFDef <- randomForest(type ˜ ., data = spamApp)
> RFDef

Call:

randomForest(formula = type ˜ ., data = spamApp)

Type of random forest: classification

1http://www.stat.berkeley.edu/~breiman/RandomForests/cc_manual.htm.

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_manual.htm
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Number of trees: 500

No. of variables tried at each split: 7

OOB estimate of error rate: 5.7%

Confusion matrix:

ok spam class.error

ok 1344 50 0.03586801

spam 81 825 0.08940397

Unlike rpart()which only accepts calls of type “formula =, data = ”,
randomForest() has an alternative syntax of type “x = , y = ”. Thus the
following command is equivalent to the previous one (and is recommended for the
application of randomForest() in high-dimensional cases, see Sect. 3.6.2):

> RFDef <- randomForest(spamApp[, -58], spamApp[, 58])

The empirical error and test rates contained in Table 3.2 are obtained using the
predict() function (which computes the predictions of a set of observations) by
the following commands:

> errTestRFDef <- mean(predict(RFDef, spamTest) != spamTest$type)
> errEmpRFDef <- mean(predict(RFDef, spamApp) != spamApp$type)

Remark 3.6 In Chen et al. (2004) are studied two ways to take into account unbal-
anced data using RF: Weighted RF that consists of putting more weight on the
minority class, thus penalizing more heavily the classification errors of the minority
class; Balanced RF that artificially modifies the distribution of classes so that they
are represented more or less equally in each tree. The two variants can be easily
implemented using randomForest() parameters: the classwt parameter for
the priors (a priori probabilities) of the classes and the strata parameter for the
stratified sampling of each bootstrap sample.

3.4 Out-Of-Bag Error

As we can see in the RFDef object print (see previous section), we have a direct
estimate of the prediction error from the output of the randomForest() function.
This estimate is of the same type as cross-validation and avoids the need for a test
sample. It is called “OOB error”, where “OOB” means “Out Of Bag”, and must be
understood as “out of the Bootstrap”. The main idea of this error estimator is to use
observations that were not selected in a bootstrap sample as test data.2 The exact
definition is as follows.

2Bootstrapping leads on average to 37% of the observations out of the bootstrap sample.
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Definition 3.4 (OOB error) To predict the i th observation Xi , we only aggregate
predictors built on bootstrap samples not containing (Xi ,Yi ). This provides a pre-
diction Ŷi for the output of the i th observation.

The OOB error is then calculated as follows:

• 1
n

∑n
i=1

(
Yi − Ŷi

)2
in regression.

• 1
n

∑n
i=1 1Yi �=Ŷi in classification.

This estimate is very often reasonable (for our two previous examples, Bagging
and RF by default, it gives error rates very close to the test error), and can in any
case be used to optimize RF parameters.

3.5 Parameters Setting for Prediction

3.5.1 The Number of Trees: ntree

The ntree parameter is not the most crucial one for the RF-RI method since the
larger the number of trees, the better. The number of trees is therefore adjusted
according to the forest’s computation time and is large enough as soon as the addition
of new trees to the forest does not bring any improvement in terms of prediction.

The plot()method implemented in the randomForest package plots the OOB
error as a function of the number of trees in the forest (once the forest is built):

> plot(RFDef)

Wesee (Fig. 3.6) that theOOBerror variations are very small as soon as the number
of trees is large enough (for our example, from 100 trees the error stabilizes), and
the default value (500) is here large enough.

Finally, let us note the existence of the do.trace option which can be useful to
follow the evolution of the OOB error according to the number of trees during the
construction of the forest itself:

> RFDoTrace <- randomForest(type ˜ ., data = spamApp, ntree = 250,
do.trace = 25)

ntree OOB 1 2

25: 6.30% 4.09% 9.71%

50: 5.83% 3.59% 9.27%

75: 5.48% 3.44% 8.61%

100: 5.48% 3.23% 8.94%

125: 5.61% 3.52% 8.83%

150: 5.26% 3.52% 7.95%

175: 5.57% 3.52% 8.72%
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Fig. 3.6 Evolution of the global OOB error and for each class, according to the number of trees,
spam data

200: 5.48% 3.23% 8.94%

225: 5.39% 3.30% 8.61%

250: 5.30% 3.16% 8.61%

3.5.2 The Number of Variables Chosen at Each Node: mtry

The mtry parameter is the most important parameter of the randomForest()
function. Indeed, different values of this parameter can lead to very different predic-
tive performance. Moreover, the optimal value of mtry will depend greatly on the
total number of variables p (and also on the number of variables really related to Y ,
but the latter is unknown).

Since the total number of variables is not very large for spam data, we can try all
possible values for mtry (i.e., all integers between 1 and p):

> nbvars <- 1:(ncol(spamApp) - 1)
> oobsMtry <- sapply(nbvars, function(nbv) {

RF <- randomForest(type ˜ ., spamApp, ntree = 250, mtry = nbv)
return(RF$err.rate[RF$ntree, "OOB"])

})

We can even stabilize the OOB error estimate by calculating an average of errors
over several runs of randomForest(). For example, the following command
calculates the average OOB error over 25 forests of 250 trees with the default value
of mtry:
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Fig. 3.7 OOB error as a function of mtry parameter value, spam data

> mean(replicate(n = 25, randomForest(type ˜ ., spamApp,
ntree = 250)$err.rate[250, "OOB"]))

TheOOBerror evolution (Fig. 3.7) according tomtryvalue onour spam example
is typical of standard (i.e., not high-dimensional) classification problems:

• If mtry is really too low, then the OOB error is relatively high (the extreme case
where mtry is 1 is to choose the split variable completely at random at each node).

• When we increase mtry the error decreases quickly, until it reaches a minimum,
then the error rises gradually.

In regression, we observe most of the time a decreasing behavior of the OOB
error as a function of mtry. The default value of the parameter is also higher in
regression, equal to p/3 (instead of

√
p in classification).

For a more detailed study of the mtry setting, we refer to Sect. 2 of Genuer et al.
(2008).

Tree Diversity Illustration
To conclude this section, let us illustrate the notion of tree diversity in a simple case
where only two-leaf trees (also called stumps) are considered. Let us start by building
a Bagging predictor made of 100 stumps:

> bagStump <- randomForest(type ˜ ., spamApp, ntree = 100,
mtry = ncol(spamApp) - 1, maxnodes = 2)

Let us now look at which variables were used to split the root node of the 100
trees:
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> bagStumpbestvar <- table(bagStump$forest$bestvar[1, ])
> names(bagStumpbestvar) <- colnames(spamApp)[

as.numeric(names(bagStumpbestvar))]
> sort(bagStumpbestvar, decreasing = TRUE)

charExclamation charDollar free

70 29 1

We notice that the root node is (among the 100 trees) almost always split either
with the charExclamation variable or the charDollar variable.

If we now consider an RF made of 100 stumps with the default value of mtry,
i.e., 7:

> RFStump <- randomForest(type ˜ ., spamApp, ntree = 100,
maxnodes = 2)

> RFStumpbestvar <- table(RFStump$forest$bestvar[1, ])
> names(RFStumpbestvar) <- colnames(spamApp)[

as.numeric(names(RFStumpbestvar))]
> sort(RFStumpbestvar, decreasing = TRUE)

free charDollar charExclamation remove

12 12 11 9

your capitalAve num000 money

9 9 6 6

our receive you credit

4 4 3 3

hp capitalLong address business

3 3 2 1

hpl george capitalTotal

1 1 1

We see that the “diversity” of the splitting variables of the trees’ root nodes is
much larger. The charExclamation and charDollar variables are still among
the most frequently chosen, but other variables were optimal for splitting, when
charExclamation and charDollar did not belong to the selected variable
set.

Even if this study is somewhat reductive because we limit ourselves only to what
happens for the root node, it gives an idea of the increase in diversity brought by
RF-RI compared to Bagging.



3.6 Examples 47

3.6 Examples

3.6.1 Predicting Ozone Concentration

For a presentation of this dataset, see Sect. 1.5.2.
Let us load the randomForest package and Ozone data:

> library("randomForest")
> data("Ozone", package = "mlbench")

Remark 3.7 It should be noted that, in this example, the standard theoretical frame-
work that assumes observations as independent realizations from the same distribu-
tion is inappropriate. Indeed, the serial dependence between two successive obser-
vations is obvious and important since it carries both short-range dependence (the
weather of the day is generally close to that of the next day) and long-range depen-
dence because of the seasonal nature of both theweather and social life. Nevertheless,
it appears that even in this context, random forests perform well.

Application of RF on this dataset can be done using the following command:

> OzRFDef <- randomForest(V4 ˜ ., Ozone, na.action = na.omit)

Note that the response variable, named V4, is located in the 4th column of the data
table. In addition, we must set the na.action parameter because we are dealing
with missing data. It should be noted that there are many of them (about 45% of the
observations contain at least one missing data) mainly because of V9. However, we
will simply omit them here.

Remark 3.8 The rfImpute() function of the randomForest package allows to
impute missing values using the proximities between complete observations. Prox-
imity between two observations is the proportion of trees in which they appear in
the same terminal node of a given forest. The iterative imputation procedure can be
deduced from this: the first forest is built using themedian imputation, the proximities
are then calculated and new imputations are made by a weighted average according
to the regression proximities or a weighted vote according to the classification prox-
imities. A new forest is then built, giving new proximities and imputations, and the
procedure is iterated until the last imputation.

Let us display the results of this random forest:

> OzRFDef

Call:
randomForest(formula = V4 ˜ ., data = Ozone, na.action = na.omit)

Type of random forest: regression
Number of trees: 500
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No. of variables tried at each split: 4

Mean of squared residuals: 21.20203
% Var explained: 68.24

> plot(OzRFDef)

The plot of Fig. 3.8 illustrates both the gain brought by the aggregation of predic-
tions provided by more and more trees (note, however, that compared to CART, the
error of a single tree is increased here because the trees are not pruned) and the fact
that increasing the number of trees no longer provides anything essential (at least for
average performance) from 50 or 100 trees and nothing at all from 200 trees.

More interestingly, it illustrates the absence of overfitting. Indeed, despite the
small number of observations (less than 400 and even 200 without missing values)
compared to the maximum number of trees in the forest (here 500), there is no
overfitting phenomenon: the error no longer decreases but does not increase either,
it stabilizes.

In this example, the OOB error increases with mtry (Fig. 3.9), which is rather
unusual. In this case, it can be explained by the importance of the variables (see
Sect. 4.5.2).

Remark 3.9 In this example, the response variable distribution is very asymmetric
and large ozone concentration values are rare.Oneway to take this aspect into account
to some extent is to consider a stratified sampling, with respect to the concentration
of pollutants (V4), when selecting OOB samples, so as to preserve the distribution
of the response variable in both bootstrap and OOB samples.

Bootstrap samples, and consequently OOB samples, can be stratified by creating
a factor, whose distribution will be used to stratify. Thus, we begin by dividing
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Fig. 3.8 OOB error as a function of the number of trees, Ozone data
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Fig. 3.9 OOB error as a function of mtry parameter value, Ozone data

the range of the response variable into 3 classes (values less than 10, between 10
and 20, and greater than 20) according to which the stratification is performed. The
commands below show how to proceed while eliminating the second temperature
variable that has a lot of missing data.

> bins <- c(0, 10, 20, 40)
> V4bin <- cut(Ozone$V4, bins, include.lowest = TRUE, right = FALSE)
> OzoneBin <- data.frame(Ozone, V4bin)
> OzRFDefStrat <- randomForest(V4 ˜ . - V9 - V4bin, OzoneBin,

strata = V4bin, sampsize = 200, na.action = na.omit)
> OzRFDefStrat

Call:

randomForest(formula = V4 ˜ . - V9 - V4bin, data = OzoneBin,

strata = V4bin, sampsize = 200, na.action = na.omit)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 3

Mean of squared residuals: 22.22533

% Var explained: 66.7

The impact is not massive on this example, but in the case of ozone measured
in cities with more pronounced seasonal contrasts, this type of stratification can be
useful. In the following, we return to the basic version.
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3.6.2 Analyzing Genomic Data

For a presentation of this dataset, see Sect. 1.5.3.
Let us load the randomForest package and vac18 data:

> library(randomForest)
> data("vac18", package = "mixOmics")

Then let us create an object geneExpr containing the gene expressions and an
object stimu containing the stimuli to be predicted:

> geneExpr <- vac18$genes
> stimu <- vac18$stimulation

The training of a random forest is done with the following commands. Dealing
with high-dimensional data, we set the value from mtry to p/3.We recommend this
value of mtry in this case because the default value

√
p (i.e., 31 in this example)

generally leads to consider too few informative variables in each node (Fig. 3.11).

> VacRFpsur3 <- randomForest(x = geneExpr, y = stimu,
mtry = ncol(geneExpr)/3)

> VacRFpsur3
> plot(VacRFpsur3)

Call:

randomForest(x = geneExpr, y = stimu, mtry = ncol(geneExpr)/3)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 333

OOB estimate of error rate: 35.71%

Confusion matrix:

LIPO5 GAG+ GAG- NS class.error

LIPO5 11 0 0 0 0.0000000

GAG+ 0 5 3 2 0.5000000

GAG- 0 4 2 4 0.8000000

NS 0 0 2 9 0.1818182

We see, thanks to the confusion matrix, giving in line the predicted class and in
column the actual class, that the relatively high OOB error is largely due to the GAG-
classwhich is predicted either inGAG+or inNS. This is because theGAG- stimulation
is not only quite close to a “non-stimulation” but also has common features with the
GAG+ stimulation.

According to Fig. 3.10, the OOB error stabilizes after about 100 trees have been
built.
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Fig. 3.10 OOB error evolution according to the number of trees in the forest (OOB errors per class
have been hidden to facilitate the reading of the graph), Vac18 data
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Fig. 3.11 OOB error evolution (averaged over 25 forests) as a function of the value of mtry,
Vac18 data. The vertical dotted line indicates the value p/3, while the dashed line indicates the
default value of mtry
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In addition, we see that the OOB error is (roughly) decreasing when the value of
mtry increases (Fig. 3.11) and stabilizes when mtry reaches p/3 in this example.

Computation time
Weused the default syntax of randomForest() of the type “x = , y = ”. In
general, we prefer this syntax to the alternative syntax of the type “formula = ,
data = ” because the first is by our experience often faster than the second when
we apply RF to high-dimensional data.
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Table 3.3 Comparison of execution times (medians on 25 runs) of the functions
randomForest() and ranger(), Vac18 data

Function Type Time (in s)

randomForest() formula 0.705

randomForest() x, y 0.498

ranger() formula 0.402

ranger() x, y 0.392

Finally, still in the context of high-dimensional data, the use of the ranger package
could give interesting results in terms of computation time (and according to our tests,
the larger the dimension, the greater the gain).

A comparison of the computation times leads to the results of Table 3.3 (the times
displayed are median execution times over 25 runs).

Finally, it should be noted that the ranger() function allows parallel computing
natively. To do this, simply set the value of the num.threads parameter, which
by default is set to the number of cores available on the computer running the code
(we set it to 1 to compare only non-parallelized commands).

3.6.3 Analyzing Dust Pollution

For a presentation of this dataset, see Sect. 1.5.4.
Let us load the randomForest package and the JUS station data, included in the

VSURF package and create a dataframe jusComp containing no missing data:

> library(randomForest)
> data("jus", package = "VSURF")
> jusComp <- na.omit(jus)

Random forests and partial effects
Random forests are a powerful and convenient tool to visualize, for each station, the
effects of variables on PM10 pollution and to identify important variables among
pollutants and weather variables.

> jusRF <- randomForest(PM10 ˜ ., data = jusComp)

To estimate the marginal effect of variable X j , we mimic the partial integration
of the forest (i.e., the estimated regression function), by using an empirical mean
which approximates the expectation according to all variables except X j :

f̃ j (x) = 1

n

n∑

i=1

ĥ RF (x1i , . . . , x
j−1
i , x, x j+1

i , . . . , x p
i ) .
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Fig. 3.12 Marginal effect of NO variable on PM10 concentration, associated with a random forest
trained using station JUS data

The following command is used to compute the marginal effect of NO variable,
at the JUS station (Fig. 3.12). In the same way, we can obtain marginal effects of all
variables at the JUS station (Fig. 3.13).

> partialPlot(jusRF, pred.data = jusComp, x.var = "NO",
main = "Marginal effect - NO")

Remark 3.10 To go further on partial effects study, and especially if we are inter-
ested in the effect of a pair of variables, we can use the forestFloor package (Welling
et al. 2016). This package provides 3D graphics and also adds color gradients useful
for investigating interactions between explanatory variables.

For the other monitoring stations, the code (omitted here, as well as the graphics)
is very similar as before. Indeed, only the name of the station changes and data for the
other stations are also available in the VSURF package. By examining the marginal
effects of all variables on PM10 pollution for every monitoring station, the following
conclusions can be drawn.

First of all, we can state a general remark: intensities of partial effects of mete-
orological variables are lower than those of pollutants. Indeed, consider a partial
effect of one pollutant. Realizations of concentrations of the other pollutants inte-
grate weather factors and lead to coherent evolutions between pollutants. This is why
we will distinguish the effects of pollutants from those of the weather.

• Effects of pollutants. They are always increasing as expected, roughly linear in
appearance, slightly convex or concave in shape depending on the pollutant and
the station.

• Rain effect. It is always decreasing since it reflects a cleaning effect.
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Fig. 3.13 Marginal effects of each variable on the PM10 concentration, from an RF trained on
station JUS

• Temperature effects. These are nonlinear effects: positive when it is cold or hot,
zero or negative when the temperature is average.

• Effect of wind direction. Two situations must be distinguished:

– The one that is similar to JUS: GCM and AIL, where the effect of the wind
direction shows an east/west axis.

– Or as for GUI, REP, HRI, where the effect of the direction shows an inhibitory
north/south axis.

• Effect of wind speed. It is necessary to distinguish three situations according to
which the effect is inhibitory (for JUS and GUI) or decreasing (for GCM, REP,
and HRI), what is expected, or even increasing for AIL. This is the only point
that is, at first sight, surprising. It is explained by the absence of a local pollution
source combined with a low level of pollution, which means that the main source
is the import of pollution, hence the increasing effect of wind speed.

• Effect of relative humidity. Those effects are of very little importance and are very
rarely useful in the rest of the work. The weak min and max effects are different:
increasing and decreasing, respectively.

• Effect of atmospheric pressure. It is still growing as expected.
• Effect of temperature gradient. It is still growing as expected. The temperature
gradients of Le Havre and Rouen give very similar and equally important infor-
mation.
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Conclusion
The main conclusion is twofold:

• The effects of pollutants are always increasing, and are therefore markers of local
pollution useful for dust modeling.

• For weather variables, we distinguish (by eliminating HR which is of low impor-
tance)

– Those that have a rather unfavorable (decreasing) effect on pollution: PL and
VV (for all stations except AIL).

– Those that have a favorable (increasing) effect: GT, PA, and VV (for AIL).
– Those that have an unfavorable and then favorable effect: T (unfavorable if cold
then favorable when it is not cold), DV.

This study on marginal effects will be supplemented by the relative importance
of the variables (see Sect. 4.5.4).



Chapter 4
Variable Importance

Abstract Here, the focus is on creating a hierarchy of input variables, based on a
quantification of the importance of their effects on the response variable. Such an
index of importance provides a ranking of variables. Random forests offer an ideal
framework, as they do not make any assumptions regarding the underlying model.
This chapter introduces permutation variable importance using random forests and
illustrates its use on the spamdataset. The behavior of the variable importance index is
first studied with regard to data-related aspects: the number of observations, number
of variables, and presence of groups of correlated variables. Then, its behavior with
regard to random forest parameters is addressed. In the final section, the use of
variable importance is first illustrated by simulation in regression, and then in three
examples: predicting ozone concentration, analyzing genomic data, and determining
the local level of dust pollution.

4.1 Notions of Importance

In this chapter, the focus is on constructing a hierarchy of explanatory variables based
on a quantification of the importance of their effects on the response variable. Such
an index of importance provides a ranking of variables, from the most important
to the least important. A general discussion on variable importance can be found
in Azen and Budescu (2003). This notion has been mainly studied in the context
of linear models, as highlighted by Grömping (2015)’s review or Wallard (2015)’s
PhD thesis. From this standpoint, random forests offer an ideal framework, as they
are much more general and, as previously mentioned, do not make any assumptions
regarding the underlying model. They combine a nonparametric method, which does
not specify a particular type of the relationship between Y and X , with resampling
to provide an efficient and convenient definition of such indices.

In this context, one of the most widely used measures of the importance of a
given variable is the average (among trees in a forest) increase in the error made by
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a tree when the observed values of that variable are randomly permuted in the OOB
samples.

Definition 4.1 (Variable importance) Let us fix j ∈ {1, . . . , p} and calculate
VI(X j ), the importance index of variable X j :

• Consider a bootstrap sample LΘ�
n and the associated OOB� sample, that is, all

observations that do not belong to LΘ�
n .

• Calculate errOOB�, the error made on OOB� by the tree built onLΘ�
n (mean square

error or misclassification rate).
• Then randomly permute the values of variable X j in the OOB� sample. This gives

a perturbed sample, noted ˜OOB
j

� .

• Finally, calculate err˜OOB
j

� , the error made on ˜OOB
j

� by the tree built on LΘ�
n .

• Repeat these operations for all bootstrap samples. The importance of the variable
X j , VI(X j ), is then defined by the difference between the average error of a tree
on the perturbed OOB sample and that on the OOB sample:

VI(X j ) = 1

q

q∑

�=1

(
err˜OOB

j

� − errOOB�

)
.

Thus, the higher the error increase originating from the random permutations of
the variable, the more important is the variable. Conversely, if permutations have
little or no effect on the error (or even cause a decrease, because VI can be slightly
negative), the variable is considered unimportant.

This variable importance calculation above is exactly the one performed in the
randomForest package. It should be noted that the definition of variable importance
given by Breiman (2001) is slightly different. Indeed, if the perturbed OOB samples
are obtained in the sameway, the importance of a variable is defined by the difference
between the OOB error on the perturbed OOB samples, and the initial OOB error.
One possible explanation for this change could be the following. In the calculation
of the OOB error, there is an aggregation step that tends to reduce individual trees’
errors, so the use of the OOB error in the calculation tends to dampen the effects of
random permutations of variables. However, when calculating importance, we want
to magnify the effects of these permutations. Therefore, the OOB error is replaced
by the average error on all trees, for which no aggregation step is performed.

Many studies, mainly by simulation, have been conducted to illustrate the behav-
ior of RF variable importance, including (Strobl et al. 2007, 2008; Archer and Kimes
2008; Genuer et al. 2008, 2010b; Gregorutti et al. 2013). In this type of empirical
work, it is often difficult to draw very confident general conclusions, but some inter-
esting behaviors can be noted from this variable importance (VI henceforth) score
that will be useful for variable selection:

• The VI variability, through repetitions, of variables outside the model is less than
that of informative variables. Non-informative variables have a very low VI and
their variation order of magnitude is useful for identifying them.
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• In the presence of a group of highly correlated variables, masking effects appear
but remain limited except when the number of variables in the group is dominant
compared to other informative variables.

• A stable evaluation of these VI requires, on the one hand, large forests (with a
high number of trees) and, on the other hand, some repetitions of such forests to
be able to quantify their variability.

Wewill now focus on RF prediction performance by estimating the generalization
error by out-of-bag error (OOB) and quantifying the permutation-based variable
importance that are the main ingredients of our variable selection strategy, presented
in Chap. 5.

To obtain the calculation of the permutation-based VI, it is necessary to add the
option importance = TRUE in the randomForest() function:

> RFDefImp <- randomForest(type ˜ ., data = spamApp,
importance = TRUE)

> varImpPlot(RFDefImp, type = 1, scale = FALSE,
n.var = ncol(spamApp) - 1, cex = 0.8,
main = "Variable importance")

We can see in Fig. 4.1 a quantification of VI for spam data. It is both enlightening
and easily interpretable. It makes it possible to identify very clearly a first group of
variables: capitalLong, remove, hp, charExclamation, capitalAve,
capitalTotal,free, andcharDollar then, less clearly, a group of 8 variables
which contains useful variables not only likegeorgebut alsoyouror number000
whose presence is less intuitive.

Itmay be noted that themost important variable (capitalLong) does not appear
in any of the splits in the optimal tree, which proves that a variable that never comes
out in the local minimization of heterogeneity can nevertheless be important because
it is well correlated with all informative variables.

Remark 4.1 The varImpPlot() function of randomForest package allows to
directly plot the importance of the variables classified in decreasing order of impor-
tance. However, we emphasize that we indicate type = 1 because we only want
to plot the permutation-based VI,1 and scale = FALSE to get the raw impor-
tance, and not the normalized importance for which the average of the trees’ errors
is divided by the standard deviation of these errors.

In Gregorutti et al. (2015), the notion of permutation-basedVI is directly extended
to a group of variables. To do this, it suffices to permute, in theOOB samples involved
in the VI definition (see Definition 4.1), not only one variable but jointly all the
variables of the same group. For functional additive models, the theoretical results
of Gregorutti et al. (2013) are extended. Then a strategy for selecting variables in a
multivariate functional data framework is derived by selecting groups of variables

1The option type = 2 allows obtaining the MDI importance, defined in the next paragraph.
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Fig. 4.1 Importance of variables ranked in descending order for spam data

made of wavelet coefficient sets, representing the different functional variables, and
using a Recursive Feature Elimination (RFE) strategy. These tools are available in
the RFgroove package (Gregorutti 2016).

Finally, the very recent work of Ramosaj and Pauly (2019) shows that, at least in
the case where input variables are independent, the permutation-based VI is asymp-
totically unbiased.
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MDI Importance
It should be noted that there is another VI index based on the Mean Decrease Impu-
rity (MDI) and inspired by the variable importance defined in CART method (see
Sect. 2.5.3). It is defined as follows (Breiman 2001): for a given variable, its MDI is
the sum of the impurity decreases for all nodes where the variable is used to split,
weighted by the proportion of individuals in the node, on average on all trees in the
forest. Although its use seems less frequent, it has given rise to theoretical results
(Louppe et al. 2013) and finds interesting practical applications despite real limita-
tions. In particular, it is highly dependent on forest parameters, biased for non-pruned
trees and finally the theoretical results only cover binary categorical variables.

4.2 Variable Importance Behavior

We illustrate the behavior of the permutation-based variable importance on a simu-
lated dataset, called toys. Introduced byWeston et al. (2003), it is a binary classifica-
tion problem (Y ∈ {−1, 1}), with 6 “true” variables (related to Y ) and noise variables
(independent of Y ). For the latter, we will speak indifferently of variables that are
out of model or not informative.

The 6 true variables are divided into two independent groups: variables V1, V2,
and V3 on the one hand and variables V4, V5, and V6 on the other hand.

Definition 4.2 (Toys model) The simulation model is defined using the distribution
of input variables X j conditionally to Y = y as follows:

• For 70%of theobservations: X j ∼ N (y × j, 1) for j = 1, 2, 3and X j ∼ N (0, 1)
for j = 4, 5, 6.

• For the remaining 30% of observations: X j ∼ N (0, 1) for j = 1, 2, 3 and X j ∼
N (y × ( j − 3), 1) for j = 4, 5, 6.

The additional noise variables, when p > 6, are generated independently of Y :
X j ∼ N (0.1) for j = 7, . . . , p.

Once simulated, the input variables are all standardized.

Figure 4.2 gives the histograms of the first 9 input variables for a simulation of
1,000 observations based on toys model. The definition of the toys model as well as
the distribution of the input variables highlight the fact that the variables of the same
group are sorted from the least related to Y to the most related to Y .

4.2.1 Behavior According to n and p

Starting from a classical situation with n = 500 and p = 6, illustrating a very good
result of VI computation, we show in Fig. 4.3 the behavior of VI when increasing
the number of input variables and also when decreasing the number of observations.
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Fig. 4.2 Histogramsof thefirst 9 input variables of toysmodel for a simulation of 1,000observations

The graphs in the first row of Fig. 4.3 illustrate that in the case of a high number
of observations, the importance of the variables behaves well (in the sense that V1 to
V6 are the most important) even when the dimension increases. Indeed, even if the
importance of the variables in the model decreases, they remain much higher than
the importance of variables outside the model.

In the second row, we see that even in cases where p > n, the overall behav-
ior remains satisfactory, even if importance of variable V4 no longer differs from
out-of-model variables when p = 200 or p = 500. However, this variable is quite
uninformative in this simulation model.
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Fig. 4.3 Boxplots of the importance of variables (on 50 forests) according to n and p, toys model

4.2.2 Behavior for Groups of Correlated Variables

Let us take as a reference the case where n = 100 and p = 200, and simulate 1, 10,
and then 20 variables linearly correlated with V3 (the most important variable of the
first group {V1, V2, V3}), with a correlation coefficient of 0.9. Importance scores of
the first variables are represented in Fig. 4.4.

We notice that as the number of variables correlatedwith V3 increases, importance
scores of the variables correlated with V3 (i.e., V1, V2, V3 and the “replicates” of
V3) decreases. However, we see that even in cases where the size of the group of
correlated variables is large (case with 20 variables), importance scores of V3 and
of many variables in the group are still much larger than the ones of variables out of
the model. Finally, we can also see that VI of variables V4, V5, V6 are not affected
at all by additional variables correlated with V3.

Let us now consider the case where we simulate both variables linearly correlated
with V3 and others with V6 (setting all correlation coefficients to 0.9). The results
of this scenario are presented in Fig. 4.5.

In this case, we notice that the importance of the two groups of correlated variables
decreases when variables, respectively, correlated with V3 and V6 are added. In
addition, the relative importance of the two groups is quite respected and many
variables in each of the two groups are still much important than variables outside
the model.



64 4 Variable Importance

0 variable 1 variable

10 variables 20 variables

0.
00

0.
02

0.
04

0.
06

0.
00

0.
02

0.
04

0.
00

0
0.

01
5

0.
03

0

0.
00

0
0.

01
5

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 12 15 18 21 24 27 30

Fig. 4.4 Boxplots of the importance of the variables (on 50 forests) according to the number of
variables correlated with V3, these being located between the two vertical lines, toys model

0 variable 1 variable

5 variables

0.
00

0.
03

0.
06

0.
00

0.
02

0.
04

0.
00

0.
02

0.
04

0.
00

0.
02

10 variables

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 12 15 18 21 24 27 30

Fig. 4.5 Boxplots of the importance of the variables (over 50 forests) according to the size of the
groups of variables correlated with V3 on the one hand and V6 on the other hand. The variables
correlated with V3 are located between the left vertical line and the dotted vertical line, followed
by those correlated with V6, toys model



4.3 Tree Diversity and Variables Importance 65

4.3 Tree Diversity and Variables Importance

Let us go back to the simple case where we consider only stumps (two-leaf trees). In
Sect. 3.5.2, we highlight the effect of mtry on the variables used in the root node.

Let us now focus on the effect of this tree diversity on variable importance, by
again building a Bagging predictor only made of stumps on spam data, but nowwith
VI computation:

> bagStumpImp <- randomForest(type ˜ ., spamApp,
mtry = ncol(spamApp) - 1, maxnodes = 2, importance = TRUE)

> varImpPlot(bagStumpImp, type = 1, scale = FALSE, n.var = 20,
cex = 0.8, main = "Variable importance")

In Fig. 4.6, we observe that almost all the variables are of no importance, and we
only detect variables charExclamation and charDollar, which is consistent
with the fact that only these two variables are actually used to split the root node.

Now let us compare it to an RF only made of stumps, built with the default value
of mtry (equal to 7 here):

> RFStumpImp <- randomForest(type ˜ ., spamApp, maxnodes = 2,
importance = TRUE)

> varImpPlot(RFStumpImp, type = 1, scale = FALSE, n.var = 20,
cex = 0.8, main = "Variable importance")
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Fig. 4.6 Importance of the 20 most important variables for a Bagging of stumps, spam data
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Fig. 4.7 Importance of the 20 most important variables for an RF of stumps with the default value
of mtry (equal to 7), spam data

We observe (Fig. 4.7) that many more variables are of strictly positive importance
(the randomization at the variable level actually changes the subset of variables
chosen at each node to participate in the split). Moreover, the variables that emerge
with the greatest importance are almost the same as those from an RF with maximal
trees, ignoring the order. Thus, even with trees that are clearly not complex enough,
RF can retrieve the interesting information contained in the variables.

4.4 Influence of Parameters on Variable Importance

If the only goal is to achieve good predictive performance with RF, we recommend
adjusting the RF parameters based on the OOB error. However, when we also wish
to have information on the variables, or even to select variables, we must try to adjust
the RF parameters by looking at their impact on VI.

We illustrate the behavior of VI as a function of parameters in the toys simulation
model. We start from the framework where n = 100 and p = 200 and represent in
Fig. 4.8 the VI obtained by varying the number of trees ntree (on rows) and the
mtry parameter (on columns).

Increasing the number of trees has the effect of stabilizing the VI, and the default
value 500 seems large enough in this example. On the other hand, when the value
of mtry increases, we notice that the importance of the most influential variables
of the model increases, with a very large increase when going from 14 (which is
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Fig. 4.8 Boxplot of the importance of the variables (on 50 forests) according to ntree and mtry,
toys model

the default value of randomForest()) to 100. Finally, we also see a stabilization
effect of VI when the value of mtry increases.

Thus, in a very parsimonious case such as the one studied here (6 variables related
toY among200), it seems necessary to increase the value of mtry in order to stabilize
importance of model variables and to help highlighting themost influential variables.
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4.5 Examples

4.5.1 An Illustration by Simulation in Regression

We use a simple example in regression, to illustrate the use of variable importance in
this context, as well as the use of partial effects (defined in Sect. 3.6.3). In this classic
example introduced in Friedman (1991) and accessible via the mlbench package,
observations are generated by the following model:

Y = 10 sin(π X1 X2) + 20(X3 − 0.5)2 + 10 X4 + 5 X5 + ε

and in which there are 10 input variables assumed independent and with the same
uniform distribution on [0, 1]. Thus, only 5 of them are actually used to generate the
outputs and, moreover, it is assumed that ε ∼ N (0, 1).

Let us simulate 500 observations using the model and build an RF with VI com-
putation:

> library(mlbench)
> fried1Simu <- mlbench.friedman1(n = 500)
> fried1Data <- data.frame(fried1Simu$x, y = fried1Simu$y)
> fried1RFimp <- randomForest(y ˜ ., fried1Data, importance = TRUE)
> varImpPlot(fried1RFimp, type = 1, scale = FALSE,

main = "Variable importance")

Variable importance (Fig. 4.9) clearly identifies the 5 variables in the model that
actually contribute to response computation and discards the non-informative vari-
ables.
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Fig. 4.9 Importance of variables, simulated data in regression
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Recall that to obtain the partial effect, for example, of variable X1, we use the
following command:

> partialPlot(fried1RFimp, fried1Data, x.var = "X1", main = "X1")

Partial effects of the first 6 variables (Fig. 4.10) allow finding a very weak effect
of the sixth, almost perfectly linear effects for X4 and X5, a quadratic effect for X3
and identical effects for X1 and X2 which are the best additive approximation of the
first term of the regression function 10 sin(π X1 X2).

4.5.2 Predicting Ozone Concentration

For a presentation of this dataset, see Sect. 1.5.2.
Let us load the randomForest package and Ozone data, then build an RF with

the default parameters and permutation-based VI computation:

> library("randomForest")
> data("Ozone", package = "mlbench")
> OzRFDefImp <- randomForest(V4 ˜ ., Ozone, na.action = na.omit,

importance = TRUE)

The plot of VI obtained using the varImpPlot() function is given in Fig. 4.11:
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Fig. 4.11 Importance of variables, obtained with a default RF, Ozone data

> varImpPlot(OzRFDefImp, type = 1, scale = FALSE,
main = "Variable importance")

This dataset has already been the subject of many studies and, even if they are
real data, it is possible to know a priori which variables are supposed to be the most
important and, on the other hand, which are the main sources of nonlinearity.

As noted in previous studies, three groups of very easily interpretable variables
can be identified, ranging from the most important to the least important:

• The first group contains the two temperatures (V8 and V9) and the inversion
base temperature (V12), known to be the best ozone predictors, and the month
number (V1), which is an important predictor since ozone concentration has a
strong seasonal component.

• The second group of significantly less important meteorological variables includes
pressure height (V5), humidity (V7), basic inversion height (V10), pressure gra-
dient (V11), and visibility (V13).

• Finally, the last group contains three irrelevant variables: the day of themonth (V2),
the day of the week (V3) as expected, and more surprisingly the wind speed (V6).
The latter is a classic fact: the wind only enters the model when ozone pollution
occurs, otherwise wind and pollution are weakly correlated and since most of the
time pollution levels are moderate, this explains the low overall importance of the
wind.

Let us go back to V2which appeared high in the default tree obtained in Fig. 2.10.
Variable importance thus shows a very satisfactory behavior by eliminating the effects
of the selection bias of this variable in the splits.

Finally, as we noticed in Sect. 3.6.1, in this example, the OOB error increases
with mtry, which is unusual. This can be explained by studying the behavior of the
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Fig. 4.12 Evolution of VI as a function of mtry, Ozone data

importance of variables as a function of mtry. Figure 4.12 contains the VI plots for
mtry values of {2, 6, 8, 10}, while Fig. 4.11 contains the one for mtry = 4.

Note that as soon asmtry equals 4, the probability that one of the variables among
{V9, V8, V12, V10} belongs to the randomly selected variables set in a node (before
the best split is determined) is increasingly high. These four variables being highly
correlated with each other and also highly correlated with the response variable V4
(Table 4.1) results is a very low tree diversity as soon as mtry equals 4, and which
decreases further as mtry increases.

4.5.3 Analyzing Genomic Data

For a presentation of this dataset, see Sect. 1.5.3.
Let us load the randomForest package and vac18 data:
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Table 4.1 Variable correlation matrix V4, V8, V9, V10, and V12, Ozone data

V4 V8 V9 V10 V12

V4 1.00 0.76 0.75 −0.54 0.70

V8 0.76 1.00 0.91 −0.51 0.84

V9 0.75 0.91 1.00 −0.59 0.93

V10 −0.54 −0.51 −0.59 1.00 −0.79

V12 0.70 0.84 0.93 −0.79 1.00

> library(randomForest)
> data("vac18", package = "mixOmics")

Then let us create an object geneExpr containing the gene expressions and an
object stimu containing the stimuli to be predicted:

> geneExpr <- vac18$genes
> stimu <- vac18$stimulation

An RF, computing permutation-based VI and with the mtry parameter set to
p/3 (as mentioned in Sect. 3.6.2, the default value, equal to 31, is too low for this
high-dimensional dataset) is obtained as follows:

> vacRFDefImp <- randomForest(x = geneExpr, y = stimu,
mtry = ncol(geneExpr)/3, importance = TRUE)

The varImpPlot() function returns by default the importance of the variables
for the 30 most important variables (see Fig. 4.13):

> varImpPlot(vacRFDefImp, type = 1, scale = FALSE, cex = 0.8)

A plot of VI of all variables (representation used in Chap. 5) can be obtained with
the following commands:

> vacImp <- vacRFDefImp$importance[, nlevels(stimu) + 1]
> plot(sort(vacImp, decreasing = TRUE), type = "l",

xlab = "Variables", ylab = "Variable importance")

The shape of the curve plotted in Fig. 4.14 is quite standard in high dimension and
highlights a very strong sparsity for Vac18 data. Indeed, we see that only a small
number of variables have a significantly positive VI score.
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Fig. 4.13 Importance of the 30 most important variables sorted in descending order, Vac18 data
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4.5.4 Air Pollution by Dust: What Is the Local Contribution?

We continue here the example of dust pollution in the network of the Haute-
Normandie region (Sect. 3.6.3), this time taking inspiration from the work of Bobbia
et al. (2011). We do not provide details on the R code used in this part, but prefer to
show another example of the possible use of variable importance.

In France, several regional plans have been defined to reduce pollution. In this
context, determining the local contribution in relation to the background contribution
of a specific pollution is necessary. This makes it possible to assess the proportion
of pollution on which it is possible to act and can help to adapt the regional plan. An
assessment of the local contribution can be carried out using deterministicmodels that
provide a pollution map of the entire country at a regional scale. They are not related
to pollution measurements at monitoring sites but depend on imprecise and difficult
to obtain emissions inventory. The large uncertainties that result from this therefore
lead to the use of statistical tools rather than a purely deterministic approach. An
example of such an approach has recently been conducted in the Haute-Normandie
region to quantify local and background contributions specifically to dust pollution.

In the first step, the marginal effects were classified according to the character-
istics of the monitoring stations: some are close to traffic, others measure urban or
industrial background pollution, and the last is located in a rural area. Local pollution
is thus characterized by conventional pollutants, including nitrogen oxides for urban
pollution and sulfur dioxide for industrial use. It should be recalled that three groups
of meteorological variables have been structured in the following way-those with
an adverse effect on pollution: PL and VV (for all stations except AIL); a positive
effect: GT, PA, and VV (for AIL); and a non-monotonic effect: T, DV.

Then, for each of the six monitoring stations, the individual VI is computed using
an RF model containing a large number of variables. To define the importance of
a group of variables, we propose to adopt the following rule: if the variables of the
group are redundant (either well correlated or, more weakly, with similar “effects on
PM10 concentrations”) then the importance of the group is defined by the maximum
individual VI in this group. In this way, groups of variables can be directly compared.
The results are summarized in Table 4.2.

The importance of the three groups of weather variables is almost equal to 20, with
the exception of PA for GUI which reaches 32. On the other hand, the importance of
pollutants (by restricting ourselves to the largest importance) fluctuates much more:
from 28 to 49 if we exclude AIL since no measurement of pollutants were made
there.

The two traffic stations (GUI and REP) give close values for the NO2 importance
(41 and 45). The two urban stations (JUS and HRI), on the other hand, have different
importance for SO2: 28 and 49, respectively. For the industrial station (GCM), the
importance of the pollutant (SO2) is 39, which is intermediate.

The idea is to use the pollution from the AIL station (noted as PM10_AIL) as a
measure of diffuse pollution at the regional level. It is supposed to capture phenomena
on a more or less large scale (regional or more) and not be affected by significant
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Table 4.2 Importance of variables, through stations, for pollutants and meteorological variables by
group, where def means that the effect is unfavorable (increasing), fav that it is favorable (decreas-
ing), and def-fav for non-monotonic effects on PM10 pollution

Pollutants Meteo def Meteo fav Meteo def-fav

GCM Rouen 39 (SO2) 23 (PL) 20 (GT) 21 (T)

JUS Rouen 28 (NO2) 19 (PL) 21 (GT) 19 (DV)

22 (SO2)

GUI Rouen 41 (NO2) 18 (PL) 32 (PA) 19 (T)

18 (SO2)

AIL Dieppe 15 (PL) 23 (PA) 21 (DV)

REP Le Havre 45 (NO2) 20 (VV) 24 (GT) 19 (T)

31 (SO2)

HRI Le Havre 22 (NO2) 16 (VV) 18 (GT) 22 (T)

49 (SO2)

Table 4.3 Importance scores of variables, through stations, for pollutants and meteorological vari-
ables by group, by adding PM10_AIL in the RF model

Pollutants Meteo def Meteo fav Meteo def-fav PM10_AIL

GCM 33 (SO2) 23 (PL) 17 (GT) 16 (DV) 68

JUS 31 (NO) 19 (PL) 16 (GT) 13 (DV) 78

18 (SO2)

GUI 40 (NO2) 18 (PL) 26 (PA) 20 (T) 64

17 (SO2)

REP 28 (SO2) 18 (VV) 19 (GT) 12 (T) 81

44 (NO2)

HRI 41 (SO2) 12 (VV) 11 (GT) 13 (T) 86

14 (NO)

local production. This is supported by examining the concentration distributions at all
stations for days when PM10_AIL exceeds 30 (33 days are concerned): the median
is around 40 and the first quartile around 33.

The computation of the importance of variable PM10_AIL in previous models
when completed by the introduction of this new variable leads to the results recorded
in Table 4.3:

• Its importance is in the order of 64 to 86, which is considerable.
• The importance of pollutants fluctuates a little bit, and this is for all stations.
• The importance of weather variables decreases significantly.

These elements are consistent with the idea that PM10 concentrations at AIL
reflect diffuse pollution in the sense that it does not perturb the importance of local
markers while it affects the importance of weather variables.
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Table 4.4 Importance of variables, through stations, for pollutants and after replacing meteorolog-
ical variables by PM10_AIL in forest variables

Main pollutant Other pollutants PM10_AIL

GCM 73 (SO2) 98

JUS 35 (NO) 26, 22 (NO2, SO2) 89

GUI 42 (NO2) 31, 20 (NO, SO2) 77

REP 42 (SO2) 41, 36 (NO2, NO) 78

HRI 50 (SO2) 21, 19 (NO, NO2) 81

For each of the other five stations, an RF is then trained with VI computation
based on available pollutants and PM10 concentrations at AIL only. This eliminates
all weather variables. The results of the importance are gathered in Table 4.4.

All partial effects are generally increasing and weakly nonlinear (except some-
times for extreme SO2 levels). The interpretation is as follows: by introducing this
variable, which seems to capture a kind of diffuse pollution by dust, the model is
almost linearized.

In conclusion, thanks to such a method, it has been possible to consider that in
the Haute-Normandie region, the importance of the local share of dust pollution,
which can be controlled by regulatory measures, does not generally exceed that of
large-scale pollution.



Chapter 5
Variable Selection

Abstract This chapter is dedicated to variable selection using random forests: an
automatic three-step procedure involving first a fairly coarse elimination of a large
number of useless variables, followed by a finer and ascending sequential introduc-
tion of variables into random forest models, for interpretation and then for prediction.
The principle and the procedure implemented in the VSURF package are presented
on the spam dataset. The choice of VSURF parameters suitable for selection is then
studied. In the final section, the variable selection procedure is applied to two real
examples: predicting ozone concentration and analyzing genomic data.

5.1 Generalities

In the past, classic statistical problems typically involved many observations (n =,
e.g., a few hundred or a few thousand) and relatively a few variables (p = one to a
few tens). Today, the ease of data acquisition has led to huge databases that collect
new information almost daily. Traditional statistical techniques are poorly suited to
processing these new quantities of data, in which the number of variables p can reach
tens or even hundreds of thousands. At the same time, for many applications, the
number of observations n can be reduced to a few tens, e.g., in the case of biomedical
data. In this context, it is indeed common to gather many types of data on a given
individual (e.g., gene expression data), but to keep the number of individuals onwhom
the experiment is conducted small (for the study of a disease, the number of affected
individuals included in the study is often very limited). These data are said to be of
high dimension: the number of variables is quite large in comparison to the number
of observations, which is classically denoted by n � p. Here, we are referring to
problems where n is several hundreds and p is several thousands. One of the most
attractive features of random forests is that they are highly efficient both for traditional
problems (where p ≤ n) and for such high-dimensional problems. Indeed, RF have
been previously shown to be inherently adapted to the high-dimensional case. For
instance, Biau (2012) shows that if the true model meets certain sparsity conditions,
then the RF predictor depends only on the active variables.
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In many situations, in addition to designing a good predictor, practitioners also
want additional information on the variables used in the problem. Statisticians are
invited to propose a selection of variables in order to identify those that are most
useful in explaining the input–output relationship. In this context, it is natural to think
that relatively a few variables (say at most n and hopefully much less, for example,√
n) actually affect the output, and it is necessary to make additional assumptions

(called parsimony or sparsity) to make it tractable and meaningful. In Giraud (2014),
there is a very complete presentation of mathematical problems and techniques for
addressing this kind of questions.

Let us mention somemethods for variable selection in high-dimensional contexts.
Startingwith an empirical study in Poggi and Tuleau (2006)where amethod based on
the variable importance index provided by the CART algorithm is introduced. In the
same flavor, let us also mention Questier et al. (2005). Considering the problemmore
generally, Guyon et al. (2002), Rakotomamonjy (2003), and Ghattas and Ben Ishak
(2008) use the score provided by the Support Vector Machines (SVM: Vapnik 2013)
and Díaz-Uriarte and Alvarez De Andres (2006) propose a variable selection proce-
dure based on the variable importance index related to random forests. Thesemethods
calculate a score for each of the variables, then perform a sequential introduction of
variables (forward methods), or a sequential elimination of variables (backward or
RFE for Recursive Feature Elimination methods), or perform step-by-step methods
(stepwisemethods) combining introduction and elimination of variables. In Fan and
Lv (2008), a two-step method is proposed: a first step of eliminating variables to
reach a reasonable situation where p is of the same order of magnitude of n, then a
second step of model building using a forward strategy based, for example, on the
Least Absolute Shrinkage and Selection Operator (Lasso: Tibshirani 1996). In this
spirit, a general scheme for calculating an importance score for variables is proposed
in Lê Cao et al. (2007), then the authors use this scheme with CART and SVM as
the base method. Their idea is to learn a weight vector on all variables (their meta-
algorithm is called Optimal FeatureWeighting, OFW): a variable with a large weight
is important, while a variable with a small weight is useless.

Finally, more recently, methods to improve Lasso for variable selection have been
developed. The latter have points in common with the ensemble methods. Indeed,
instead of trying to make selection “at once” with a classic Lasso, the idea is to con-
struct several subsets of variables and then combine them. In Bolasso (for Bootstrap-
enhancedLasso), introduced byBach (2008), several bootstrap samples are generated
and then the Lasso method is applied to each of them. Bolasso is therefore to be com-
pared with the Bagging of Breiman (1996). In Randomized Lasso, Meinshausen and
Bühlmann (2010) propose to generate several samples by subsampling and add an
additional random perturbation to the construction of the Lasso itself. Randomized
Lasso is therefore to be compared to Random Forests-RI variant of random forests.
In the same spirit, we can also mention Fellinghauer et al. (2013) which use RF for
robust estimation in graphical models.

Interest in the subject still continues: for example, Hapfelmeier and Ulm (2012)
propose a new selection approach using RF, and Cadenas et al. (2013) describe and
compare these different approaches in a survey paper.
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5.2 Principle

In Genuer et al. (2010b), we propose a variable selection method (see also in Genuer
et al. 2015, the corresponding VSURF package). This is an automatic procedure
in the sense that there is no a priori to make the selection. For example, it is not
necessary to specify the desired number of variables; the procedure adapts to the
data to provide the final subset of variables. The method involves two steps: the
first, fairly coarse and descending, proceeds by thresholding the importance of the
variables to eliminate a large number of useless variables, while the second, finer
and ascending, consists of a sequential introduction of variables into random forest
models.

In addition, we distinguish two variable selection objectives: interpretation and
prediction (although this terminology may lead to confusion):

• For interpretation, we try to select all the variables X j strongly related to the
response variable Y (even if the variables X j are correlated with each other).

• While for a prediction purpose, we try to select a parsimonious subset of variables
sufficient to properly predict the response variable.

Typically, a subset built to satisfy the first objective may contain many variables,
which will potentially be highly correlated with each other. On the contrary, a subset
of variables satisfying the second one will contain a few variables, weakly correlated.

A situation illustrates the distinction between the two types of variable selec-
tion. Consider a high-dimensional classification problem (n � p) for which each
explanatory variable is associated with a pixel in an image or a voxel in a 3D image
as in brain activity classification (fMRI) problems; see, for example Genuer et al.
(2010a). In such situations, it is natural to assume that many variables are useless
or uninformative and that there are unknown groups of highly correlated predictors
corresponding to regions of the brain involved in the response to a given stimula-
tion. Although both variable selection objectives may be of interest in this case, it is
clear that finding all the important variables highly related to the response variable
is useful for interpretation, since the selected variables correspond to entire regions
of the brain or of an image. Of course, the search for a small number of variables,
sufficient for a good prediction, makes it possible to obtain the most discriminating
variables in the regions previously highlighted but is of less priority in this context.

5.3 Procedure

In this section, we present the skeleton of the procedure before providing additional
details, in the next section, after the application of the method to the spam data.

The first step is common to both objectives while the second depends on the goal:
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• Step 1. Ranking and preliminary elimination:

– Rank the variables bydecreasing importance (in fact by averageVIover typically
50 forests).

– Eliminate the variables of low importance (let us denote m to be the number of
retained variables).
More precisely, starting from this order,we consider the corresponding sequence
of standard deviations of the VIs that we use to estimate a threshold value on the
VIs. Since the variability of the VIs is greater for the variables truly in the model
than for the uninformative variables, the threshold value is given by estimating
the standard deviation of the VI for the latter variables. This threshold is set at
the minimum predicted value given by the CART model fitting the data (X,Y )
where the Y are the standard deviations of the VI and the X are their ranks.
Then only variables whose average importance VI is greater than this threshold
are kept.

• Step 2. Variable selection:

– For interpretation: we build the collection of nested models given by forests
built on the data restricted to the first k variables (that is the k most important),
for k = 1 to m, and we select the variables of the model leading to the lowest
OOB error. Let us denote by m ′ the number of selected variables.
More precisely, we calculate the averages (typically over 25 forests) of the OOB
errors of the nested models starting with the one with only the most important
variable and endingwith the one involving all the important variables previously
selected. Ideally, the variables of the model leading to the lowest OOB error are
selected. In fact, to deal with instability, we use a classical trick: we select the
smallest model with an error less than the lowest OOB error plus an estimate of
the standard deviation of this error (based on the same 25 RF).

– For prediction: from the variables selected for interpretation, a sequence of
models is constructed by sequentially introducing the variables in increasing
order of importance and iteratively testing them. The variables of the last model
are finally selected.
More precisely, the sequential introduction of variables is based on the following
test: a variable is added only if the OOB error decreases more than a threshold.
The idea is that the OOB error must decrease more than the average variation
generated by the inclusion of non-informative variables. The threshold is set
to the average of the absolute values of the first-order differences of the OOB
errors between the models including m ′ variables and the one with m variables:

1

m − m ′

m−1∑

j=m ′
| errOOB( j + 1) − errOOB( j) | (5.1)

where errOOB( j) is theOOB error of the forest built with the j most important
variables.
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It should be stressed that all thresholds and reference values are calculated using
only the data and do not have to be set in advance.

5.4 The VSURF Package

Let us start by illustrating the use of the VSURF package (Variable Selection Using
Random Forests) on the simulated data toys introduced in Sect. 4.2 with n = 100
and p = 200, i.e., 6 true variables and 194 non-informative variables. The loading
of the VSURF package as well as the toys data, included in the package, is done
using the following commands:

> library(VSURF)
> data("toys")

The VSURF() function is the main function of the package and performs all the
steps of the procedure. The random seed is fixed in order to obtain exactly the same
results when applying later the procedure step by step:

> set.seed(3101318)
> vsurfToys <- VSURF(toys$x, toys$y, mtry = 100)

The methods print(), summary(), and plot() provide information on the
results:

> summary(vsurfToys)

VSURF computation time: 1.2 mins

VSURF selected:
34 variables at thresholding step (in 45 secs)
4 variables at interpretation step (in 24.7 secs)
3 variables at prediction step (in 1.2 secs)

> plot(vsurfToys)

Now, let us detail the main steps of the procedure using the results obtained on
simulated toys data. Unless explicitly stated otherwise, all graphs refer to Fig. 5.1.

• Step 1.

– Variable ranking.
The result of the ranking of the variables is drawn on the graph at the top left.
Informative variables are significantly more important than noise variables.

– Variable elimination.
From this ranking, we construct the curve of the corresponding standard devi-
ations of VIs. This curve is used to estimate a threshold value for VIs. This
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Fig. 5.1 Illustration of the results of the VSURF() function applied to the toys data
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Fig. 5.2 Zoom of the top-right graph of Fig. 5.1

threshold (represented by the horizontal dotted red line in Fig. 5.2, which is a
zoom of the top-right graph of Fig. 5.1), is set to the minimum predicted value
given by a CART model fitted to this curve (see the piecewise constant green
function on the same graph).
We then retain only the variables whose average VI exceeds this threshold, i.e.,
those whose VI is above the horizontal red line in the graph at the top left of
Fig. 5.1.
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The construction of forests and the ranking and elimination steps are obtained
using the VSURF_thres() function:

> set.seed(3101318)
> vsurfThresToys <- VSURF_thres(toys$x, toys$y, mtry = 100)

The output of the VSURF_thres() function is a list containing all the results
of this step. The main output arguments are varselect.thres which con-
tains the indices of the variables selected at this step, imp.mean.dec and
imp.sd.dec which contain the mean VI and the associated standard devia-
tion (the order induced by the decreasing values of the mean VI is available in
imp.mean.dec.ind).

> vsurfThresToys$varselect.thres

[1] 3 2 6 5 1 4 184 37 138 81 159 17 180
[14] 191 131 94 52 165 96 192 157 198 21 111 25 29
[27] 12 109 64 107 70 186 46 188

Finally, Fig. 5.2 can be obtained directly from the object vsurfToys with the
following command:

> plot(vsurfToys, step = "thres", imp.mean = FALSE,
ylim = c(0, 2e-04))

We can see on the VI standard deviation curve (top-right graph of Fig. 5.1) that
the standard deviation of the informative variables is large compared to that of
the noise variables, which is close to zero.

• Step 2.

– Procedure for selecting variables for interpretation.
We calculate the OOB errors of random forests (on average over 25 repetitions)
of nestedmodels from the onewith only themost important variable, and ending
with the one with all the important variables stored previously.
We select the smallest model with an OOB error less than the minimum OOB
error increased by its empirical standard deviation (based on 25 repetitions).
Weuse theVSURF_interp() function for this step.Note thatwemust specify
the indices of the variables selected in the previous step, so we set the argument
vars to vsurfThresToys$varselect.thres:

> vsurfInterpToys <- VSURF_interp(toys$x, toys$y,
vars = vsurfThresToys$varselect.thres)

The list of results of the VSURF_interp() function gives access mainly to
varselect.interp giving the variables selected by this step and
err.interp containing the OOB errors of the nested RF models.
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> vsurfInterpToys$varselect.interp

[1] 3 2 6 5

In the bottom-left graph, we see that the error is decreasing rapidly. It reaches
almost its minimum when the first four true variables are included in the model
(see the red vertical line), then it remains almost constant. The selected model
contains the variables V3, V2, V6, and V5, which are four of the six true vari-
ables, while the real minimum is reached for 35 variables.
Note that, to ensure the quality of OOB error estimates (see Genuer et al. 2008)
along nested RF models, the mtry parameter of the randomForest() func-
tion is set to its default value if k (the number of variables involved in the current
RF model) is not greater than n, otherwise it is set to k/3.

– Variable selection procedure for prediction.
We perform a sequential introduction of variables with a test: a variable is added
only if the accuracy gain exceeds a certain threshold. This is set so that the error
reduction is significantly greater than the average variation obtained by adding
noise variables.
We use the VSURF_pred() function for this step. We must specify the
error rates and variables selected in the interpretation step, respectively, in
err.interp and varselect.interp arguments:

> vsurfPredToys <- VSURF_pred(toys$x, toys$y,
err.interp = vsurfInterpToys$err.interp,
varselect.interp = vsurfInterpToys$varselect.interp)

Themain outputs of the VSURF_pred() function are the variables selected by
this last step, varselect.pred, and the OOB error rates of the RF models,
err.pred.

> vsurfPredToys$varselect.pred

[1] 3 6 5

For toys data, the final model for prediction purposes only includes variables
V3, V6, and V5 (see the graph at the bottom right). The threshold is set to the
average of the absolute values of the differences of OOB error between the
model with the m ′ = 4 variables and the model with m = 36 variables.

Finally, it should be noted that VSURF_thres() and VSURF_interp()
can be executed in parallel using the same syntax as VSURF() (by specifying
parallel = TRUE), while the VSURF_pred() function is not parallelizable.

Let us end this section by applying VSURF() to spam data.
Even if it is a dataset of moderate size, the strategy proposed here is quite time-

consuming, so we will use VSURF() by taking advantage of parallel capabilities:
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> set.seed(923321, kind = "L’Ecuyer-CMRG")
> vsurfSpam <- VSURF(type ˜ ., spamApp, parallel = TRUE,

ncores = 3, clusterType = "FORK")

The option parallel = TRUE allows to run the procedure in parallel, and the
argumentclusterType sets the type of “cluster” used: it can be left by defaultmost
of the time but the option "FORK" (specific to Linux and MacOS systems), coupled
with the option kind = “L’Ecuyer-CMRG" of the set.seed() function ,
allows reproducibility of results.

> summary(vsurfSpam)

VSURF computation time: 42.1 mins

VSURF selected:
55 variables at thresholding step (in 12.7 mins)
24 variables at interpretation step (in 20.6 mins)
19 variables at prediction step (in 8.7 mins)

VSURF ran in parallel on a FORK cluster and used 3 cores

The overall calculation time is 42min and the interpretation phase is the longest
(half that of the total duration) while the other phases share the other half. The
procedure identifies three sets of variables of decreasing size: 55, 24, and 19 and the
results are summarized in Fig. 5.3.

> plot(vsurfSpam)

Let us focus on the 24 variables retained in the interpretation set. They are not
surprising, at least for the first ones, but they are still numerous.

> colnames(spamApp[vsurfSpam$varselect.interp])

[1] "remove" "hp" "capitalLong"
[4] "charExclamation" "capitalAve" "charDollar"
[7] "capitalTotal" "free" "george"

[10] "num000" "edu" "your"
[13] "hpl" "money" "you"
[16] "our" "business" "num1999"
[19] "meeting" "re" "font"
[22] "num650" "internet" "receive"

If we move on to the 19 variables selected for prediction, there are hardly any
fewer, but the ones that are eliminated, num000, hpl, money, internet and
receive, are either weakly interesting (the last ones) or highly correlated with
those retained (the other ones).

> colnames(spamApp[vsurfSpam$varselect.pred])
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Fig. 5.3 Illustration of the results of VSURF(), spam data

[1] "remove" "hp" "capitalLong"
[4] "charExclamation" "capitalAve" "charDollar"
[7] "capitalTotal" "free" "george"

[10] "edu" "your" "you"
[13] "our" "business" "num1999"
[16] "meeting" "re" "font"
[19] "num650"

Nevertheless, it is clear that our procedure keeps toomany variables and this is related
to the too small value of the average jump for the example spam:

> vsurfSpam$mean.jump

[1] 0.0002715288

Multiplying this value by 15 (fixed after a trial and error process) gives a more sat-
isfactory result with 8 variables sufficient for the prediction which are all significant
except the last one our.

> set.seed(945834)
> vsurfSpamPred <- VSURF_pred(type ˜ ., spamApp, nmj = 15,

err.interp = vsurfSpam$err.interp,
varselect.interp = vsurfSpam$varselect.interp)
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> colnames(spamApp[vsurfSpamPred$varselect.pred])

[1] "remove" "capitalLong" "charExclamation" "capitalAve"
[5] "charDollar" "free" "george" "our"

5.5 Parameter Setting for Selection

First of all, since VSURF() is strongly based on randomForest(), the two main
parameters of this function (mtry and ntree) are taken over and have been kept
the same name, so everything that applies to RF also applies to VSURF() for these
parameters.

In addition, if you enter a value for another RF parameter, it is directly passed
to the randomForest() function for all the RF built during the procedure. For
example, if we add the option maxnodes= 2 to the arguments of the VSURF()
function, the whole procedure is performed with trees with 2 leaves.

> vsurfToysStump <- VSURF(toys$x, toys$y, mtry = 100, maxnodes = 2)
> summary(vsurfToysStump)

VSURF computation time: 31.3 secs

VSURF selected:
14 variables at thresholding step (in 27.2 secs)
8 variables at interpretation step (in 3 secs)
2 variables at prediction step (in 1.1 secs)

> vsurfToysStump$varselect.interp

[1] 3 2 1 5 6 159 37 111

> vsurfToysStump$varselect.pred

[1] 3 5

There are also parameters specific to VSURF():

• The number of trees in the forests for each of the three steps of the method:
nfor.thres (which is the most important, because if it is taken too small, the
estimated standard deviation at the thresholding step will be of bad quality; 50 by
default), nfor.interp, and nfor.pred (25 by default, which stabilize the
OOB error estimates for the last two steps).

• nmin (=number ofminimum) sets themultiplying factor of the estimated standard
deviation of the VI of a noise variable, to calculate the threshold value of the first
step: “threshold = min× standard deviation of VI for noise variables”. By default,
it is set to 1, and increasing it amounts to a more restrictive thresholding and has
the consequence of keeping fewer variables after the first step.

• nsd (=number of standard deviation) allows to apply the rule “nsd SE rule”
instead of applying the rule “1-SE rule” (introduced in Sect. 2.3). We would select
fewer variables for the “interpretation” if we increase this value.
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• nmj (=number of mean jump) is the multiplying factor of the mean jump due to
the inclusion of a noise variable in the nested models in the last step.

Two functions allow to adjust the thresholding and interpretation steps without
having to perform all the calculations again.

• First of all, a tune()method which, applied to the result of VSURF_thres(),
allows to set the thresholding step. The parameter nmin (whose default value is
1) can be used to set the threshold to the minimum prediction value given by the
CART model multiplied by nmin.

> vsurfThresToysTuned <- tune(vsurfThresToys, nmin = 3)
> vsurfThresToysTuned$varselect.thres

[1] 3 2 6 5 1 4 184 37 138 81 159 17 180 191

We get 16 selected variables instead of 36 previously.
• Second, a tune() method which, applied to the result of VSURF_interp(),
is of the same type and allows to set the interpretation step. If we now want to
be more restrictive in our selection in the interpretation step, we can select the
smallest model with an OOB error lower than the minimum OOB error plus an
empirical standard deviation multiplied by nsd (with nsd ≥ 1).

> vsurfInterpToysTuned <- tune(vsurfInterpToys, nsd = 5)
> vsurfInterpToysTuned$varselect.interp

[1] 3 2 6

We get 3 selected variables instead of 4 previously.

Finally, since the prediction step is a step-by-step process, to adjust this step,
simply restart the VSURF_pred() function by changing the value of the parameter
nmj.

> vsurfPredToysTuned <- VSURF_pred(toys$x, toys$y,
err.interp = vsurfInterpToys$err.interp,
varselect.interp = vsurfInterpToys$varselect.interp, nmj = 3)

> vsurfPredToysTuned$varselect.pred

[1] 3 6 5

5.6 Examples

5.6.1 Predicting Ozone Concentration

For a presentation of this dataset, see Sect. 1.5.2.
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> library(VSURF)
> data("Ozone", package = "mlbench")

After loading the data, the result of the entire selection procedure is obtained by
using the following command:

> set.seed(303601)
> OzVSURF <- VSURF(V4 ˜ ., data = Ozone, na.action = na.omit)
> summary(OzVSURF)

VSURF computation time: 1.4 mins

VSURF selected:
9 variables at thresholding step (in 50.7 secs)
5 variables at interpretation step (in 21.6 secs)
5 variables at prediction step (in 9.8 secs)

> plot(OzVSURF, var.names = TRUE)

Let us now examine these results successively (illustrated in Fig. 5.4). To reflect
the order used in the definition of the variables, we first reorganize the variables at
the end of the procedure.

> number <- c(1:3, 5:13)
> number[OzVSURF$varselect.thres]

[1] 9 8 12 1 11 10 5 7 13
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Fig. 5.4 Illustration of the results of VSURF(), Ozone data
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After the first step, the 3 variables of negative importance (variables 6, 3, and 2) are
eliminated as expected.

> number[OzVSURF$varselect.interp]

[1] 9 8 12 1 11

Then, the interpretation procedure leads to the selection of the 5-variable model,
which contains all the most important variables.

> number[OzVSURF$varselect.pred]

[1] 9 8 12 1 11

With the default settings, the prediction step does not remove any additional
variables.

In fact, our strategy more or less assumes that there exist some useless variables
in the set of all initial variables, which is indeed the case in this dataset but not very
significantly.

In addition, it should be noted here that our heuristics are clearly driven by pre-
diction since the criterion for assessing the interest of a variable is closely related to
the quality of the prediction or more exactly to its increasing after permutation.

5.6.2 Analyzing Genomic Data

For a presentation of this dataset, see Sect. 1.5.3.
Let us load the VSURF package, the vac18 data, and then create an object

geneExpr containing the gene expressions and an object stimu containing the
stimuli to be predicted:

> library(VSURF)
> data("vac18", package = "mixOmics")
> geneExpr <- vac18$genes
> stimu <- vac18$stimulation

The global procedurewith all parameters set to default values (note that the default
value of mtry is p/3 even in classification, because as we have seen previously, the
value of this parameter must be relatively high for high-dimensional problems) is
obtained as follows:

> set.seed(481933)
> vacVSURF <- VSURF(x = geneExpr, y = stimu)
> summary(vacVSURF)

VSURF computation time: 3.1 mins
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Fig. 5.5 Graphs illustrating the results of VSURF(), Vac18 data

VSURF selected:
93 variables at thresholding step (in 1.7 mins)
24 variables at interpretation step (in 1.3 mins)
10 variables at prediction step (in 7.9 secs)

> plot(vacVSURF)

The first thresholding step keeps only 93 variables. This is reasonable given the
graph of the importance of the variables located at the top left of Fig. 5.5, which as
pointed out in Sect. 4.5.3, illustrates a strong parsimony in the Vac18 data.

The interpretation step of VSURF() leads to the selection of 24 variables, while
the prediction step selects 10 variables.

Finally, the names of the variables (identifiers of the biochip probes used to mea-
sure gene expression) selected in the prediction step can be extracted as follows:

> probeSelPred <- colnames(geneExpr)[vacVSURF$varselect.pred]
> probeSelPred

[1] "ILMN_1691156" "ILMN_2124802" "ILMN_2102693" "ILMN_1736939"
[5] "ILMN_3252733" "ILMN_2188204" "ILMN_1658396" "ILMN_1663032"
[9] "ILMN_3301824" "ILMN_2067444"

Computing time
The VSURF() function can be run in parallel using the following command:
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> set.seed(627408, kind = "L’Ecuyer-CMRG")
> vacVSURFpara <- VSURF(x = geneExpr, y = stimu, parallel = TRUE,

ncores = 3, clusterType = "FORK")
> summary(vacVSURFpara)

VSURF computation time: 1.5 mins

VSURF selected:
97 variables at thresholding step (in 45.9 secs)
23 variables at interpretation step (in 38 secs)
13 variables at prediction step (in 7 secs)

VSURF ran in parallel on a PSOCK cluster and used 3 cores

We observe in this example a factor of about 2 in terms of saving execution time
by using 3 cores instead of 1.
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