
Chapter 6
Parametric Stochastic Programming with
One Chance Constraint: Gaining Insights
from Response Space Analysis

Harvey J. Greenberg, Jean-Paul Watson, and David L. Woodruff

Abstract We consider stochastic programs with discrete scenario probabilities
where scenario-specific constraints must hold with some probability, which we
vary parametrically. We thus obtain minimum cost as a function of constraint-
satisfaction probability. We characterize this trade-off using Everett’s response
space and introduce an efficient construction of the response space frontier based
on tangential approximation, a method introduced for one specified right-hand side.
Generated points in the response space are optimal for a finite set of probabilities,
with Lagrangian bounds equal to the piece-wise linear functional value. We apply
our procedures to a number of illustrative stochastic mixed-integer programming
models, emphasizing insights obtained and tactics for gaining more information
about the trade-off between solution cost and probability of scenario satisfaction.
Our code is an extension of the PySP stochastic programming library, included
with the Pyomo (Python Optimization Modeling Objects) open-source optimization
library.

Electronic Supplementary Material: The online version of this chapter (https://doi.org/10.1007/
978-3-030-56429-2_6) contains supplementary material, which is available to authorized users.

The author “Harvey J. Greenberg” is deceased at the time of publication.

H. J. Greenberg
Mathematics Department, University of Colorado, Denver, CO, USA

J.-P. Watson (�)
Center for Applied and Scientific Computing and Global Security Directorate, Lawrence
Livermore National Laboratory, Livermore, CA, USA
e-mail: jeanpaulwatson@llnl.gov

D. L. Woodruff
Graduate School of Management, University of California Davis, Davis, CA, USA
e-mail: dlwoodruff@ucdavis.edu

© Springer Nature Switzerland AG 2021
A. Holder (ed.), Harvey J. Greenberg, International Series in Operations Research
& Management Science 295, https://doi.org/10.1007/978-3-030-56429-2_6

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56429-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-56429-2_6
https://doi.org/10.1007/978-3-030-56429-2_6
mailto:jeanpaulwatson@llnl.gov
mailto:dlwoodruff@ucdavis.edu
https://doi.org/10.1007/978-3-030-56429-2_6

100 H. J. Greenberg et al.

6.1 Introduction and Background

We consider stochastic programs with discrete probabilities where one or more
constraints must hold jointly with some probability, β, which we vary parametrically
between zero and one. We refer to the probability requirement as a chance con-
straint [20, 25]. Chance constraints make sense in many settings for various reasons,
among them: (1) when constraints represent adherence to policies rather than laws
of physics, it may be deemed too expensive to comply with all constraints under all
circumstances; (2) when the discrete probabilities are the result of sampling from
continuous distributions or from simulation realizations, it is simply a form of false
advertising to claim that constraints will hold with probability 1, so it may make
sense to relax away from 1 under the control of a parameter. The usefulness of
chance constraints has led to a large body of research directed at solving these sorts
of problems for a given value of β (see, e.g., [1, 20, 21, 24, 30, 31]).

Let S = {1, . . . , NS} represent the set of scenario indexes. Each of the NS

scenarios gives a full set of the data for a constrained minimization problem,
and we associate the symbol ps with the probability that scenario s ∈ S will
be realized, where

∑
s∈S ps = 1. Following [28], we assume that the problem

formulation includes NS binary variables, δ, that take the value one if there must
be compliance with scenario-s constraints. Although δs = 0 allows violation (i.e.,
non-compliance), we discuss a model extension to allow the converse: δs = 0 only
if some scenario-s constraint is violated (see Sect. 6.6.2).

There are different formulations that fit under this rubric. For example, consider a
two-stage, chance-constrained, stochastic program where the first-stage variables, x,
are constrained to be in a set X. The second-stage variables, {ys}s∈S , are constrained
by ys ∈ Ys(x, δ). In particular, suppose the function to be minimized is c(x) +∑

s∈S pshs(x, ys), where c and {hs}s∈S are functionals and

Ys(x, δ) = {ys ∈ Ys : Asx + Bsys ≥ δsds − (1 − δs)Ms}, for x ∈ X, (6.1)

where Ms is sufficiently large to render scenario-s constraints redundant for δs = 0;
Ys may be simply Rms or it may constrain some variables to be integer-valued.

Only a proper subset of the constraints form the joint chance constraint in some
applications. In order to capture a wide range of chance-constrained models, we
express the general idea by using z∗(δ) to represent the result of solving the extended
minimization problem with an indicator vector, δ. We thus define the chance-
constrained problem as:

CC : min z∗(δ) : pδ ≥ β, δ ∈ {0, 1}n, (6.2)

where pδ
def= ∑

s∈S psδs .
We think of CC computationally as a decomposition with an outer problem

to select scenarios by setting their corresponding δs = 1; the inner problem is

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 101

what defines z∗. Specifically, the two-stage stochastic program with joint chance
constraints uses Ys as defined in (6.1) to obtain

z∗(δ) = min
{
c(x) +

∑

s∈S

pshs(x, ys): x ∈ X, ys ∈ Ys(x, δ), ∀s ∈ S
}
.

To compute solutions under parametric variation of β, we form the Lagrangian
of CC:

L∗(λ)
def= min

{
z∗(δ) − λpδ: δ ∈ {0, 1}n}. (6.3)

Each Lagrangian gives a lower bound on the minimum cost:

f ∗(β)
def= min{z∗(δ): pδ ≥ β, δ ∈ {0, 1}n} ≥ L∗(λ) + λβ. (6.4)

The optimal multiplier, λ∗, gives the tightest bound:

L∗(λ∗) + λ∗β = max
λ≥0

{L∗(λ) + λβ},

which is the weak Lagrangian dual. The Lagrangian gap is the difference in optimal
objective values:

G(β)
def=f ∗(β) − (L∗(λ∗) + λ∗β).

Let δ∗ ∈ argmin{z∗(δ) − pδ: δ ∈ {0, 1}n}. We have G(β) = 0 if, and only if,
complementary slackness holds: λ∗ > 0 ⇒ pδ∗ = β. This follows from f ∗(β) =
z∗(δ∗), and hence G(β) = λ∗(pδ∗ − β).

If β = 0, no scenarios need to be selected, so δ = 0 is optimal and λ = 0 is
an optimal multiplier. Otherwise, if the optimal solution satisfies pδ∗ = β, then it
solves the original problem (6.2). In the more typical cases, either the probabilities
are such that there is no vector δ ∈ {0, 1}n for which pδ = β, or such vectors are
suboptimal. There are two alternative Lagrangian optima in these cases, δL and δU ,
such that bL = pδL < β < pδU = bU . The interval (bL, bU) is called the gap
region.

The best feasible solution corresponds to bU , with min-cost zU = z∗(δU). The
Lagrangian duality gap is bounded by

G(β) = f ∗(β)− (
L∗(λ∗)+λ∗β

) = f ∗(β)−
(
zU −λ∗bU +λ∗β

)
≤ λ∗ (

bU − β
)
,

where the last inequality follows from the fact that β < bU ⇒ f ∗(β) ≤ f ∗(bU) =
zU . If we think of λ∗ as a unit price, then the bound value is the total cost of the
discrepancy, bU −β. We use a dimensionless measure of solution quality, called the
relative Lagrangian gap:

102 H. J. Greenberg et al.

g(β) = λ∗ (
bU − β

)

zU
. (6.5)

While our main goal is to use a chance-constraint stochastic programming model
in support of decision-making, we go beyond the model and algorithm descriptions
by emphasizing a maxim of good decision support: The purpose of mathematical
programming is insight, not numbers[6]. We envision an environment where the
mathematical program without the chance constraint is computationally difficult, so
a best algorithm is one that needs the fewest Lagrangian solutions. Furthermore, we
see the user as an analyst who wants to see a broad range of the efficient frontier, f ∗,
but not necessarily those points that add significant computational difficulty. Thus,
seeing the convex envelope, F ∗, presents a useful graph in its own right. Besides the
generated points, where f ∗ = F ∗, we provide a visual of how close the cost is for
some particular β. The user can then choose regions for which the gap, f ∗ − F ∗,
needs to be tightened. The restricted flipping heuristic offers a framework for doing
this, and the analyst could specify regions of search or use our automatic search
based on uncertainty measured by the length of the gap interval, bU − bL.

There are cases where a probability is (or appears to be) specified. For example,
consider the case of a government regulation on sulfur emissions. A company
may want parametric analysis to substantiate a challenge based on how much the
regulation costs, particularly if a small relaxation of the regulation costs much
less. The government may want to analyze consideration of a tax that incentivizes
compliance with the impact of keeping emissions and cost low. The Lagrange
multipliers provide bounds on a tax that associates cost with compliance probability.
(See LP Myth 23 in [12] to avoid seeing the tax as equivalent to the optimal
multiplier.)

The rest of this chapter is organized as follows. The response space in which
trade-offs are displayed is defined in Sect. 6.2. An algorithm that finds the optimal
Lagrange multiplier is described in Sect. 6.3. Some of our computational search
can be mitigated by the pre-processing methods in Sect. 6.4, and we emphasize
the insight that tells us when a scenario must be selected. Examples based on
instances of three models are given in the Supplementary Material for this chapter
(https://github.com/DLWoodruff/GWW). These are used to illustrate methods for
finding additional points in the response space in Sect. 6.5. Section 6.6 provides
information about details that arise when implementing algorithms that map the
trade-offs between probability and cost. The chapter closes with a summary and
conclusions. The methods described in this chapter have been implemented as an
extension to the PySP stochastic programming library [32], which is distributed as
part of the Pyomo [16, 17] algebraic modeling language.

https://github.com/DLWoodruff/GWW

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 103

6.2 Response Space Analysis

Everett’s seminal paper [5] introduced the Payoff-Resource (PR) space, which is
the range of the objective and constraint functions. His mathematical program was
a maximization of a payoff subject to resource limits. Our model is a minimization
of cost subject to a probability of scenario satisfaction, so we call it more simply
the response space (RS). (See Mathematical Programming Glossary [18].) He also
introduced the term “gap,” which is now entrenched in our vocabulary, to mean
the difference between the primal and dual objective values. There was a stream
of foundational papers that deepened our knowledge of general (non-convex) duals
based on Everett’s Generalized Lagrange Multiplier method (GLM)—see [2, 4, 7–
9, 15, 29, 33]. We present the main concepts focused on one joint chance constraint
with uncertainties that can be involved in both the left-hand side matrix and the
right-hand side vector. Our purpose is to elucidate the results, particularly the search
for an optimal Lagrange multiplier and the source of a Lagrangian duality gap, to
gain insight.

The set of feasible right-hand sides for the chance-constraint problem is B =
[0, Pmax]. For now, assume Pmax = 1. Since scenarios may compete for common
resources it may not be possible to achieve Pmax = 1, so it is important to consider
Pmax < 1, and it may be the reason for a chance-constraint model. However, in the
interest of clarity, we defer this point until after we present the main results.

The response space compares the range of probability to cost over scenario-
selection values, δ:

RS = {(b, z): b = pδ, z = z∗(δ) for some δ ∈ {0, 1}n}. (6.6)

It is helpful to realize that each Lagrangian contour in response space is a line,
regardless of the structure of decision space and objective function. Furthermore, the
transition from decision space to response space makes evident that the maximum-
Lagrangian is the convex envelope function, F ∗ (also called the second convex
conjugate of f ∗) [14]:

F ∗(β) = max
λ≥0

min
b∈B

{f ∗(b) − λb + λβ}. (6.7)

The epigraph of [F ∗, B] is geometrically the closed convex hull of the epigraph of
(f ∗, B), denoted by

epi(F ∗, B) = convh(epi(f ∗, B)). (6.8)

Figure 6.1 illustrates this epigraph, where each point is the probability, b = pδ,
and cost, z = z∗(δ). Each line supports its epigraph:

epi(F ∗, B) = {(b, z): b ∈ B, z ≥ F ∗(b)}. (6.9)

104 H. J. Greenberg et al.

Fig. 6.1 Response Space as
the range of
δ → (

b = pδ, z = z∗(δ)
)

At each change in slope, the (b, z) point corresponds to an integer optimum that
defines endpoints of the line segment whose slope is the Lagrange multiplier
that produces the support for epi(f ∗, B). If β∗ ∈ (bL, bU) (i.e., not one of the
endpoints), then it is theoretically possible to find it, but to do so requires an
enumeration of alternative optimal δ values. Only the endpoints are generated
because they have alternative optimal multipliers. (Note that it is possible that an
initial solution happens to obtain (β, f ∗(β)), but once the iterations begin, only the
endpoints are generated.) Thus, every β ∈ (bL, bU) is essentially in a gap even
though the gap value may be zero.

Because the Lagrangian approach provides a decomposition of scenarios, we
can fit it into the PySP framework by simply adjusting the stage-two objective
function to include the Lagrangian penalty cost. Luedtke [22] takes an alternative
decomposition approach designed to obtain points on [f ∗, B], the efficient frontier
of cost versus probability. Our Lagrangian approach focuses on computational
efficiency by first obtaining points on [F ∗, B], followed by exploratory analysis
of RS that includes sub-optimal solutions.

Here is a summary of the main points about response space.

• Each point in decision space, δ ∈ {0, 1}NS , maps to a point in response space,
(b, z) ∈ RS.

• A Lagrangian contour in RS is a line with slope = λ.
• The bound, f ∗(β) ≥ L∗(λ) + λβ, is the support-line value at b = β.
• The Lagrangian dual gives the tightest Lagrangian bound,

λ∗ ∈ argmax{L∗(λ) + λβ}.
• The optimal multiplier, λ∗, is unique if, and only if, β is in a gap, in which case

β ∈ (bL, bU) and λ∗ = zU − zL

bU − bL
.

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 105

6.3 Multiplier Search

We now review the method of tangential approximation [10] to find an optimal
Lagrange multiplier and then extend it to find the entire envelope function.

6.3.1 Search for One Optimal Multiplier

There are several ways to search for one optimal Lagrange multiplier, but tangential
approximation was proposed as an efficient scheme [10]. For CC, it converges
finitely to λ∗ whether β is in a gap or not.

The general class of interval reduction algorithms includes bisection and linear
interpolation, analyzed in [10]. Unlike tangential approximation, they are not
guaranteed to converge finitely although it is possible to construct numerical
examples for which they converge immediately. For example, suppose the initial
interval of the multiplier search is λ ∈ (0, λmax) and λ∗ = λmax/2. If we assume β is
in a gap, which is likely in our binary model, then the optimal multiplier is unique—
only extreme values of (b, z) yield a range, λ∗ ∈ [λL, λU] for β ∈ (bL, bU). The
multipliers are the left and right derivatives of F ∗, respectively:

λL = ∂−F ∗(β)

∂β
≤ ∂+F ∗(β)

∂β
= λU . (6.10)

One optimal search for λ∗ is Fibonacci, which minimizes the maximum number
of functional evaluations (i.e., Lagrange solutions). One problem is with initializa-
tion: setting λU = ∞ (some big number). Another problem is getting close to λ∗
but not converging finitely, in which case the computed gap region could be much
wider than the actual value.

The tangential approximation search for one optimal multiplier, λ∗(β), begins

with the search intervals (0, z∗(
0)) and (1, z∗(
1)). These are obtained by δ
fix=
0 and

δ
fix=
1, respectively. (We address the case where δ

fix=
1 is infeasible in Sect. 6.6.3.) At
a general iteration we have (bL, zL), (bU , zU) ∈ RS such that bL < β < bU ,
zL = f ∗(bL) < f ∗(bU) = zU . We set λ equal to the slope of the line segment
joining these two points:

λ = zU − zL

bU − bL
. (6.11)

Computing L∗(λ) yields the point on the support: (b = pδ∗, z = z∗(δ∗)) ∈ RS so
that b ∈ [bL, bU]. If b = β, then we are done and λ is an optimal multiplier, and
the chance-constraint instance is solved. If b = bL or b = bU , then we terminate
with the gap region, (bL, bU), which contains β. We otherwise shrink the interval
of search by replacing (bL, zL) or (bU , zU) according to whether b < β or b > β,

106 H. J. Greenberg et al.

Fig. 6.2 Complete Response Space for Example 6.1 (32 points)

respectively. Because RS is finite, this must converge in a finite number of iterations,
and our experiments indicate that it requires very few iterations.

Example 6.1 Suppose z∗(δ) = cδ and we have the following five scenarios:

Scenario

1 2 3 4 5

Probability (p) 0.05 0.05 0.07 0.08 0.75

Cost (c) 10 20 30 40 50

Figure 6.2 shows the complete response space, which has 32 points, corresponding
to the 25 subsets of selections.

The slope of the line segment joining (0, 0) and (1, 150) is the initial Lagrange
multiplier, λ = 150. Minimizing L(δ, λ) = z∗(δ) − λpδ moves the line down
(parallel) to become the support of epi(f ∗, B) and of epi(F ∗, B) at (b, z) =
(0.75, 50). We would terminate with the exact solution (no gap) if β = 0.75.
Otherwise, the left point is replaced and the interval becomes [0.75, 1] if β > 0.75;
the right point is replaced and the interval becomes [0, 0.75] if β < 0.75.

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 107

6.3.2 Parametric Search Algorithm

We extend tangential approximation to parametric analysis of β ∈ [βmin, βmax]
⊆ [0, 1]. The trade-off between cost and probability is a decision support tool
that helps a policy analyst understand impacts, notably the proverbial: What if I
loosen/tighten the probability? How does it affect cost? The analyst may also want
to explore: Why was this scenario selected and that one not?

The Lagrangian approach uses multiplier values as a trade-off between cost
and compliance probability. Varying λ generates β1, . . . , βK , such that f ∗(βk) =
F ∗(βk) = L∗(λk) + λkβk , thus creating points on the efficient frontier of the bi-
objective problem, Pareto-min{−b, z} : (z, b) ∈ RS; see [26, 27] for alternative
approaches. MOP Myth 2 in [12] also shows how a Lagrangian duality gap relates
to Pareto-frontier generation. The difference with our Lagrangian approach is that
it can be done efficiently and can provide additional perspectives of the multiplier
values—viz., each break point on the piece-wise linear convex envelope has a range
of multiplier values. See, e.g., [3, 34] for early connections between parametric
linear programming and multiple objectives.

One approach is to specify a sample of target probabilities. This may be adequate
if the Lagrangian problem is solved within a few minutes. Our applications,
however, require many minutes (sometimes more than an hour) to solve one
Lagrangian problem, so our PySP extension is designed to obtain the convex
envelope of the response function for more computer-intensive reference models.

For a specified probability, tangential approximation is efficient among interval
reduction methods [10], but it is not dominant. Shen [30] uses bisection, which may
obtain an optimal multiplier in just one iteration, once there are two initial solutions
with bL < β < bU . It may be (due to the problem instance) that λ∗ = 1

2 (λ
L + λU).

In a worst case, however, bisection may not generate any new RS point, and it may
not confirm the region as the gap region for β. The reason is that if β ∈ (bL, bU)

is in a gap and |λi − λ∗| is sufficiently small, but λi �= λ∗ for any (finite) i, then
λi < λ∗ → bi = bL and λi > λ∗ → bi = bU . Only tangential approximation is
guaranteed to set λi = λ∗ = (zU − zL)/(bU − bL) once bL and bU are generated,
thus terminating with the confirmation that β is in the gap region, (bL, bU).

Our method is an extension of tangential approximation that computes the
minimum number of Lagrangian solutions to obtain the breakpoints in the piece-
wise linear envelope. Other methods may compute solutions that provide no new
information, for example, by generating a point on the convex envelope already
generated by another Lagrange multiplier. This occurs if the probabilities are in the
same gap region. None of the target probabilities are known to be on the convex
envelope except for β = 0 and β = 1, so choosing a sparse set of targets could
provide little information to the analyst.

Initialization Set λ = 0, fix δs = 0 for all s ∈ S, and solve the Lagrangian
problem (6.3). If the Lagrangian is infeasible, so is CC problem (6.2) for all β.
Otherwise, the solution yields the point (0, z0) ∈ RS.

108 H. J. Greenberg et al.

Next, fix δs = 1 for all s ∈ S and solve the Lagrangian with λ = 0, makingL∗(λ)

to be the cost. If the Lagrangian is unbounded, then so is CC problem (6.2) for all
β. If it is infeasible, then set λ to some large value and solve to obtain the maximum
probability attainable (see Sect. 6.6.3). The solution otherwise yields (1, z1) ∈ RS.
Initialization ends with two points in RS : (0, z0) and (1, z1). Set I = {[0, 1]} and
L1 = 0.

Fathoming Gap Intervals At a general iteration we have a sequence of intervals,
I = {[b0, b1], [b1, b2], . . . , [bn−1, bn]}, with associated min-costs, {zi}n0, and truth
labels, {Li}n1 ∈ {0, 1}. Li = 1 indicates the ith interval is fathomed, meaning that it
is the gap region for β ∈ (bi−1, bi). Otherwise, the associated interval needs to be
searched if Li = 0.

Choose an interval that is not fathomed. There are tactical selections such as
choosing an interval with the greatest Lagrangian gap value. Such tactics are
important if each Lagrangian minimization takes so much time that termination may
need to occur before the parametric solution is complete. Set λ as one iteration of
tangential approximation:

λ = zi − zi−1

bi − bi−1
.

Solve the Lagrangian to obtain the response space point (b, z), where b ∈
[bi−1, bi]. If b = bi−1 or b = bi , set Li = 1 and λi = λ. Otherwise, do one of
the following:

Case 1: b < βmin (must have selected the interval [b0, b1]). Replace b0 = b.
Case 2: b > βmax (must have selected the interval [bn−1, bn]). Replace bn = b.
Case 3: βmin ≤ bi−1 < b < bi ≤ βmax. Split the interval into [bi−1, b] and

[b, bi]. Re-index to maintain b0 < b1 < · · · < bn.

This update maintains b0 ≤ βmin ≤ b1 < · · · < bn−1 ≤ βmax ≤ bn. We are
done when all intervals are fathomed. The scheme terminates in a finite number of
iterations since there is a finite number of gap regions, each detected by tangential
approximation of its endpoints.

The result is the sequence of successive points in the response space, {(bi, zi)}n0,
and their associated, optimal multipliers, {λi}n0:

λ0 = 0, λi = zi − zi−1

bi − bi−1
for i = 1, . . . , n.

We provide a function that computes the Lagrangian bound and best feasible
solution for each β ∈ [βmin, βmax] from the algorithm’s terminal information.
Specifically, find the interval that contains β: bi−1 ≤ β ≤ bi . Then, (bi, zi) is
the best feasible solution, and the Lagrangian bound is F ∗(β) = L∗(λi) + λiβ =
zi +λi(β −bi). The relative Lagrangian gap is thus g(β) = 1−F ∗(β)/zi ∈ (0, 1].
Note that g(β) > 0 because F ∗(β) < zi for β < bi . We now have the following
property.

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 109

Fig. 6.3 Result of parametric multiplier search for Example 6.1 (c.f., Fig. 6.2)

Property 6.1 Parametric Tangential Approximation solves the complete paramet-
ric CC model with the minimum number of Lagrangian optimizations.

Our parametric algorithm reduces to the method of tangential approximation for
one β. This follows because βmin = βmax implies we always have either Case 1 or
Case 2, thus shrinking the one interval of search and never splitting the interval. At
the other extreme, if βmin = 0 and βmax = 1, Case 3 always applies and the interval
is split. Hence, the number of Lagrangian minimizations is equal to the number of
gap regions.

Figure 6.3 shows the result of parametric search for β ∈ [0, 1]. The only points
generated are the endpoints of each gap interval. The point on F ∗ at b = 0.85 is
an alternative optimum to the Lagrangian defined by the slope of the line segment,
and this point is not generated. In Sect. 6.5 we describe techniques for generating
additional points.

The computational time is dominated by the time it takes to minimize the
Lagrangian to obtain z∗. Initialization requires two computations, but all δ values
are fixed, so it is the time needed to solve the instance without the chance constraint
(δ =
0) plus the time needed to solve the complete extended form with all scenarios
being satisfied (δ =
1). Each subsequent iteration solves the original instance
with the NS additional binary variables, δ, plus all scenario constraints present
with associated δ to indicate whether to require their satisfaction. Each Lagrangian
solution yields a point on the envelope, so the total time is the initialization time
plus the average time to solve the model instance multiplied by the number of points
generated.

110 H. J. Greenberg et al.

We emphasize the novelty of parametric tangential approximation. First, there are
no superfluous computations like those of other methods. Each Lagrangian solution
either generates a new point on the envelope function or it fathoms a gap region. Our
parametric tangential approximation algorithm is optimal in the sense that it requires
the minimum number of Lagrangian optimizations to generate the complete convex
envelope. Second, there is no a priori specification of target probabilities except for
β = 0 and β = 1 and all envelope points are generated a posteriori.

6.4 Pre-processing

Connections between chance constraints and knapsack constraints have been
exploited by numerous authors (e.g., [19, 23, 28]) and there are knapsack properties
that can be used for our application. We found the following property useful in
reducing the number of indicator variables when solving the CC problem (6.2).

Property 6.2 If ps > 1 − β, then δs = 1 in every feasible solution.

A proof is straightforward. If δs = 0, then the probability is at most
∑

i �=s pi ,
which equals 1−ps . We thus require 1−ps ≥ β, which is equivalent to ps ≤ 1−β.

We let α
def=1 − β for notational convenience in the remainder of this section.

If the scenarios are equally likely, then Property 6.2 yields an all-or-nothing
situation. If α < 1

NS
, then all scenarios are forced to be selected; otherwise, no

scenario is forced. In practice, the distribution is generally not uniform and there
are scenarios that must be selected for sufficiently large β. For example, if there are
only 20 scenarios (maybe during model development), then some ps ≥ 0.05—in
which case the scenario must be selected for β > 0.95.

Pre-processing with a specified probability includes fixing δs = 1 for all forced
selections, i.e., for ps > α. Figure 6.4 shows the reduced response space for
Example 6.1 with β = 0.5. The response space has only 16 of the 32 points, and the
left endpoint is (0.75, 60), corresponding to setting δ5 = 1.

In some cases forced selections solve the problem using the following property.

Property 6.3 Let Ŝ be a set of scenarios for which δs = 1 for all s ∈ Ŝ. Suppose
P(Ŝ) = ∑

s∈Ŝ ps ≥ β. Then, we can fix δs = 0 for all s �∈ Ŝ without loss in
optimality.

We can use these two properties to limit the intervals over which we must search.
Let the scenarios be sorted by non-decreasing probability, and suppose Ŝ contains
all s for which ps > α. Further suppose that k is the smallest index in the set (so
pk−1 ≤ α). Combining Properties 6.2 and 6.3, we find that the chance-constraint

instance is solved for α ∈ [1 − P(Ŝ), pk). We use this solution to find probability
intervals that solve the chance-constraint instance with forced selections. Let Is =[∑s−1

i=1 pi, ps

)
. We have I1 = [0, p1) �= ∅ (assuming p > 0). Let A = ∪sIs ,

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 111

Fig. 6.4 Reduced response space for Example 6.1, fixing the selection of scenario 5

so that the chance-constraint instance is solved by forced selections if, and only if,
α ∈ A.

Example 6.2 This is to demonstrate that solved intervals can be separated by empty
ones.

s
∑s−1

i=1 pi ps Is

1 0 0.05 �=∅
2 0.05 0.10 �=∅
3 0.15 0.10 =∅
4 0.25 0.20 =∅
5 0.45 0.55 �=∅

Thus, A = [0, 0.10) ∪ [0.45, 0.55).
In summary, we find A for parametric processing, which is a non-empty union

of intervals, and we intersect it with

[αmin = 1 − βmax, αmax = 1 − βmin].

This process is used in the parametric version of the Lagrange multiplier search by
fathoming intervals contained in the forced-selection interval. We can force at the
outset selections for scenarios such that ps > αmax. Although the conditions are
simple to establish, they can have a significant impact.

112 H. J. Greenberg et al.

We emphasize that our algorithmic goal is to provide an advanced understanding
of the chance-constraint model. An analyst needs to know why some scenarios are
selected while others are not—is it due to economic benefit or are they restricted by
other constraints? Can the analyst deduce some scenario dependence—e.g., δs =
1 → δt = 0. Such analysis could occur during a debugging stage or during data
development, but in a mature model our analysis could add clarity concerning what
the scenario constraints mean and how they relate to the rest of the model.

6.5 Gap Closing

The procedures of the previous section provide the lower convex envelope for RS,
denoted F ∗; however, analysts may benefit from seeing more points in the space
even if they are not on this frontier. We seek additional information about solutions
in gap regions by fixing δ, thus providing points above the envelope function. It is
natural for a good analyst to ask, “How close are suboptimal solutions?” (which
may have other favorable properties to present options for management).

Consider a gap region [bL, bU]with β ∈ (bL, bU) and g(β) > τ gap (a tolerance).
We present some heuristics to search for a feasible solution, (b, z), where b is in the
interior of the gap region—i.e., b ∈ [β, bU). Let δL and δU be optimal selection
values associated with the endpoints, and define the partition of scenarios:

S00 = {s: δL
s = 0, δU

s = 0}
S01 = {s: δL

s = 0, δU
s = 1}

S10 = {s: δL
s = 1, δU

s = 0}
S11 = {s: δL

s = 1, δU
s = 1}.

We must have
∣
∣S01 ∪S10

∣
∣ > 0 because the two solutions differ. Our first heuristic is

called restricted flipping and it fixes values in S00 ∪S11 and flip values in S01 ∪S10,
moving from bL to β and/or moving from bU to β.

If
∣
∣S01

∣
∣ = 1, restricted flipping takes us from bL to bU , so suppose

∣
∣S01

∣
∣ >

1. We then select a sequence to flip until the total probability, b, is at least β. If
b = bU , then this flipping sequence fails, and we order the sequence by probability,
leaving the minimum value for last. If that last flip is necessary to reach β—i.e., if∑

s∈S ps < β for all S⊂
�=

S01, restricted flipping fails. We otherwise fix δs = 1 for

those flipped. Those not flipped are fixed at 0, their current value. This gives us a
new point in the response space, (b, z∗(δ)).

Initialize zBest = zU and bBest = bU . If z∗(δ) < zBest, then update zBest = z∗(δ)
and bBest = pδ. Test for termination using a gap tolerance, g(β) ≤ τ gap, and a
probability tolerance:

∣
∣bBest − β

∣
∣ ≤ τ prob. If we do not terminate, flip from bU ,

fixing δs = 0 for a sequence of s ∈ S01, ordered by probability, until pδ < β. Let
b be the probability just before reaching this condition. As above, we must have

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 113

Table 6.1 Points in the
response space and their
associated scenario selections

Subset selected Probability Cost

S
∑

s∈S ps

∑
s∈S cs

1 {5} 0.750 50

2 {1, 5} 0.800 60

3 {2, 5} 0.800 70

4 {3, 5} 0.820 80

5 {4, 5} 0.830 90

6 {1, 2, 5} 0.850 80

7 {1, 3, 5} 0.870 90

8 {2, 3, 5} 0.870 100

9 {1, 4, 5} 0.880 100

10 {2, 4, 5} 0.880 110

11 {3, 4, 5} 0.900 120

12 {1, 2, 3, 5} 0.920 110

13 {1, 2, 4, 5} 0.930 120

14 {1, 3, 4, 5} 0.950 130

15 {2, 3, 4, 5} 0.950 140

16 {1, 2, 3, 4, 5} 1.000 150

Table 6.2 Illustration of
calculations for points in the
interval (0.85, 0.92)

b z∗ S

0.85 80 {1, 2, 5} S10 = ∅, S11 = {1, 2, 5}
0.87 90 {1, 3, 5} L∗(λ∗) + λ∗b = 90

0.88 100 {1, 4, 5} L∗(λ∗) + λ∗b = 95

0.90 120 N/Aa L∗(λ∗) + λ∗b = 105

0.92 110 {1, 2, 4, 5} S01 = {4}, S00 = {3}
af ∗(0.90) = f ∗(0.92)

b > bL to obtain a new point in the response space, and if that is the case, then
compute z∗(δ) and apply the same tests to update zBest and terminate.

Table 6.1 enumerates the 16 points of the reduced response space from Fig. 6.4,
plotted in Fig. 6.5 (spread out to see the points more distinctly). The envelope
function, F ∗, is the piece-wise linear function, with B = [0.75, 1]. We can restrict
β ∈ B because the parametric range is α ∈ [0.05, 0.25).

Suppose we want to close the gap in the interval (0.85, 0.92), with λ∗ =
(110− 80)/(0.92− 0.85) = 428.57. The two circled points are the only non-
dominated, feasible points with a better solution than zU = 110 as documented
in Table 6.2.

Restricted flipping fails because once we fix the common selections, δ1 = δ2 =
δ5 = 1, only δ4 = 1 flips from bL, which gets us to bU ; and, flipping δ4 = 0
from bU gets us to bL. However, if we relax fixing all common selections, we can
reach (0.88, 100) from bU by flipping δ2, resulting in δ = (1, 0, 0, 1, 1). This is
the optimal value, but all we can confirm is that the best feasible solution, with
z = 100, has relative gap value g(0.88) = 1 − 95/100 = 0.05. This is a significant

114 H. J. Greenberg et al.

Fig. 6.5 Reduced response space of Example 6.1 (c.f., Fig. 6.4) after our parametric search
algorithm finds F ∗(β) for β ≥ 0.75

improvement over the original value g(0.88) = 1 − 95/110 = 0.1364, and it is the
best we can do.

We also cannot reach (0.87, 90) by restricted flipping because S = {1, 3, 5}
�⊂ SU = S01 ∪ S11 implies that we cannot flip from (bU , zU). Similarly, S �⊂
SL = S10 ∪ S11 means we cannot flip from (bL, zL). However, if we relax fixing
common exclusions, we can then flip δ3 = 1 and consider flipping others in SL.
Heuristics that relax fixing common exclusions remain as future research.

It is in general inexpensive and potentially valuable to consider flipping only
scenarios that are selected by one endpoint and not the other. Contrary to the
particular example, common selections may be a form of evidence, and there is little
computational cost to try it first. That is, we need not solve any new minimization
problem to discover if this flipping generates a new probability; we simply loop
through a sorted list of probabilities. If this fails, then relaxed flipping is tried, which
may generate a new feasible response space point, (b, z) with b ≥ β and z < zU . If
this is the case, then we decrease the gap by setting zBest = z.

Suppose restricted flipping fails to yield an acceptable solution—i.e., the best
solution is not within tolerances:

∣
∣bBest − β

∣
∣ > τ prob or g(β) > τ gap. We then

begin to enlarge the space of candidates to flip. For parametric chance constraint
we use gap-closing heuristics to generate additional points in RS. The purpose is to
learn about the cost-probability trade-offs.

We applied our methods to the three models as described in the Supplementary
Material attached to the electronic version of this chapter. Two of the models capture

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 115

Fig. 6.6 Adding response space points to the 10-scenario Midwest GEP model

Fig. 6.7 Adding to the response space for the 70-scenario Korean GEP model

features of an electricity generation expansion planning (GEP) problem, and the
third model is a network flow, capacity-planning model. We refer to the models
as Midwest GEP, Korean GEP, and Network Flow, respectively. Figures 6.6, 6.7,
and 6.8 show response space points added to each of the instances by flipping
selections of each upper endpoint (δU

s = 1) not selected in the interval’s lower
endpoint (δL

s = 0).

116 H. J. Greenberg et al.

Fig. 6.8 Adding response space points to the 10-scenario network flow model

The one point added to RS in the Korean model (Fig. 6.7) tells us f ∗(0.512) ≤
124, 398, 824, 240, which is a slight improvement over the upper endpoint, zU =
124, 463, 772, 951. The relative gap is reduced by an order of magnitude to
0.000111 (from 0.006237).

Here is the algorithm to generate additional points after F ∗ is constructed. First,
form the list of gap intervals, {(i, wi,mi)}, where wi = bi − bi−1 is the width, and
mi = 1

2 (bi + bi−1) is the midpoint. Sort this list by width and drop intervals with
wi ≤ 2τ prob.

If the number of (sufficiently wide) intervals is greater than a specified maximum,
we simply drop the last few intervals. If we have fewer than the specified number of
intervals, then we use the sort-order to split the first (i.e., widest) interval:

(i, w,m)→
(

i,
1

2
w, m − 1

4
w

)

,

(

i,
1

2
w, m + 1

4
w

)

.

Note that the original index is retained when splitting. We then re-sort until we either
reach the maximum number of points specified or the split would make the width
too small—i.e., stop once w ≤ 4τ prob.

We have in the end abscissa points, {mk}, plus associated widths and gap-region
indexes, for k = 1, . . . , K , where K is within the specified maximum and wk >

2τ prob. For each k, initialize selections from zik , the upper endpoint of the ik-th gap
region, and flip s1, s2, . . . (in probability-order) until reaching b = ∑ν

j=1 psj ≥ mk

and b − psν < mk . If this is reached before bL = bik−1, we then compute z∗(δ) to
obtain the new RS point, (b, z∗(δ)). Otherwise, we simply go to the next interval.

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 117

We can combine the gap intervals with pre-processing intervals of the form

∪k(p̄sk , āk], where v̄
def=1 − v for any v ∈ [0, 1]. We know b = 1

2 (āk + p̄sk) is
solved by a forced selection (that fixes δ). If the forced selection has b = āk and the
selection is already an endpoint of a gap interval, then the solver regenerates bi and
we do not obtain a new point. However, if mini |āk − bi | > τ prob, we then compute
(b = pδ, z∗(δ)) for δ corresponding to the forced selections by solving for z∗(δ).

A major advantage of doing this is that f ∗(b) = z∗(δ). This optimality cannot be
guaranteed with a gap-closing heuristic, like restricted flipping. On the other hand,
an advantage of using gap intervals to determine the abscissa values is that we have
a more distributed collection of response space points, which gives a sense of how
the chance constraint affects the solution. Further experimentation with this avenue
of solution insights from a response space is warranted.

6.6 Some Pitfalls to Consider

Our implementation has identified pitfalls that merit some attention. For conve-
nience, assume z > 0 for all (b, z) ∈ RS, so relative cost values can be used without
absolute values.

6.6.1 Tolerance Relations

We can increase the optimality tolerance, τ opt, to reduce the time to minimize the
Lagrangian. The effect of this change depends on the solver [11] and relates to two
tolerances that can be set as options in our Python program:

• τ prob: two probabilities, b and b′, are equal if
∣
∣b − b′∣∣ ≤ τ prob.

• τ gap: (b, z) is acceptable (i.e., z is sufficiently close to f ∗(b)) if the gap between
z and the Lagrangian bound, F ∗(b) = L∗(λ)+λb, satisfies 1−F ∗(b)/z ≤ τ gap.
Recall we use this when exploring gap regions with z = zU .

We cannot be sure exactly what near-optimality means, but we can suppose L is
a lower bound on the (unknown) optimum because L(λ) ≤ L∗(λ) ≤ z − λb. The
solver terminates if

z − λb − L(λ)

L(λ)
≤ τ opt.

Equivalently (as implemented), z − λb ≤ L∗(λ)(1 + τ opt).
Figure 6.9a shows an alternative optimum for the Lagrangian with λ = z1 −

z0, which is the slope of line segment joining the two initial points, (0, z0) and
(1, z1). A solver should begin by checking the optimality of the endpoint that is still
resident, but some will begin anew. That is the only way the alternative solution

118 H. J. Greenberg et al.

Fig. 6.9 Inexact alternative Lagrange optimum in (bL + τ prob, bU − τ prob). (a) Alternative
optimum of L∗(λ). (b) Near-optimal solution of Lagrangian

Fig. 6.10 Accepting an inexact alternative Lagrange optimum as a new RS point. (a) z < zL +
λ(b − bL). (b) Update

would be reached. If this occurs, then we save the generated RS point because b is
not within tolerance of either endpoint—i.e., b ∈ (bL+τ prob, bU −τ prob). However,
the interval is fathomed because there are no points below the line.

Figure 6.9b shows a situation where a new point is generated by being within
(relative) tolerance of optimality: z − λb ≤ L∗(λ)(1 + τ opt). With cost above the
line (i.e., z > zL + λ(b − bL)), depicted as point A, we save (b, z), but we fathom
the interval, as in the case of the exact optimum.

Figure 6.10a shows the near-optimum of the Lagrangian below the line, labeled
point B. We consider B to be a new point if

∣
∣b − bL

∣
∣ > τ prob,

∣
∣b − bU

∣
∣ > τ prob,

and the Lagrangian gap exceeds tolerance: 1 − (zL + λ(b − bL))/2 > τ gap. We
otherwise treat B the same as if (b, z) is above the line.

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 119

The value τ opt pertains to the Lagrangian optimum, whereas τ gap and τ prob

pertain to the cost and probability, respectively. The action to treat (b, z) as a
new point (splitting the interval, rather than fathoming it) depends on how these
tolerances relate. Their meanings are different and can cause anomalous behavior,
even if τ opt = τ gap. See [11] for elaboration and examples of how tolerances can
interact. A pitfall to avoid is setting τ opt in a way that is inconsistent with other
tolerances. More analysis of the interaction among tolerances, including some solver
tolerances, is an avenue for further research.

6.6.2 Measuring Probability

Using the indicator variable in (6.1), we find that it is possible to have δs = 0 but
still have scenario-s constraints satisfied. Therefore, pδ is not an exact measure of
the probability of being feasible. Letting Qs denote the feasible values of (x, ys),
the real chance constraint is

∑
s Pr

(
(x, ys) ∈ Qs | s) ps ≥ β. Our probability value

is thus an underestimate:

pδ =
NS∑

s=1

psδs ≤
NS∑

s=1

Pr
(
(x, ys) ∈ Qs | s)) ps.

To see this, consider x restricted to satisfy scenario s. That is the case if δs = 1,
and we have in this case that Pr

(
(x, ys) ∈ Qs | s)) = 1. However, x can satisfy

the constraint when δs = 0, so in general δs ≤ Pr
(
(x, ys) ∈ Qs | s)). Being an

underestimate means that the chance-constraint model is conservative because pδ ≥
β implies that the true chance constraint is satisfied.

A modeler can add violation variables to measure actual violation and enforce
the converse: δs = 0 implies scenario s is violated. Let the auxiliary variable vs

i

measure violation of the ith constraint in scenario s:

∑
j as

ij x
s
j − bs

i ≥ −vs
i , 0 ≤ vs

i ≤ (1 − δs)M.

The scenario constraint is satisfied if vs = 0, which is forced by δs = 1 (as in first
model).

For δs = 0, the solver could produce a solution with vs �= 0 even if there is no
violation as long as the cost is not greater than the minimum. In fact, if an interior
solution is computed, then both the surplus variable and vs

i are positive if the ith
constraint is over satisfied in some optimal solution. To ensure v �= 0 except when
necessary, define a nuisance cost, ε > 0, and add ε

∑
i,s vs

i to the objective. If there
are alternative optima, then favor is given to v = 0. Notice that ε must be small
enough to preserve minimality of the original cost. Then, an optimal solution will
have vs

i = max
{
0, bs

i −∑
j as

ij x
s
j

}
, which equals the amount of violation of the ith

constraint.

120 H. J. Greenberg et al.

For some models, like our Network Flow, setting δs = 0 has no effect on the
objective function, but in other models, this could mislead an analyst who uses
scenario violation to support one decision over another. Moreover, the exact form
is important to answer questions like, “What is the impact of having a chance
constraint?” The level of violation may be of interest, which is not obtained in the
first (underestimate) model. Further analysis of the level of constraint violation can
be supported by taking a large number of additional samples for the purpose of a
better estimate of the actual probability of violation (see, e.g., [24]).

6.6.3 When It Is Infeasible to Select All Scenarios

We have assumed for notational convenience that it is feasible to select all
scenarios—i.e., δs = 1 for all s ∈ S. This may not be the case, and we might
need to find

Pmax = max
δ∈{0, 1}NS

{pδ: ∃x ∈ X � Ys(x, δ) �= ∅}. (6.12)

If we seek a solution for β > Pmax, then the specified chance-constraint instance
is infeasible. We otherwise need to find λ such that L∗(λ) yields the RS point,
(Pmax, z∗(δ)) for some optimal δ (not necessarily the selections computed if we
only maximized pδ without regard for cost). Tangential approximation is initialized
with this point to bracket the search in this case.

Here is how we find such a λ. Let Z be the cost for the computed solution of
Pmax, and consider λ > Z/τ ≥ z∗(δ)/τ , where τ is sufficiently small to ensure that
L∗(λ) = z∗(δ)−λpδ ⇒ pδ ≥ Pmax−τ prob. To help intuition, consider z∗(δ) = cδ.
Then, cs − λps < 0 for all s for λ > maxs

{
cs/ps

}
. This means δs = 1 unless it is

not feasible to select scenario s. Minimization of the Lagrangian takes care of the
trade-off, making pδ a maximum over all feasible selections.

6.6.4 Low Probabilities

The general range for the parametric tangential approximation algorithm is
[βmin, βmax]. If βmin = 0 is infeasible, then our code terminates, as this means
the original model instance is infeasible without the scenario constraints. One
usually imagines low values of β as being of little interest, but we assert that this is
a pitfall because low values of β can also provide some information, starting with
β = 0:

• What is my minimum cost with no scenario compliance?

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 121

• Howmuch computational time is due to adding the joint chance constraint? (That
is, what is a baseline for how much computational time to expect as we search
for optimal multiplier values, which adds NS binary variables to the model?)

The full range is useful for debugging a model and testing its validity even before
analysis support.

6.7 Summary and Conclusions

Each Lagrangian solution generates a point that is an exact optimum for the
Lagrangian problem (6.3) and its associated parametric program. The piece-wise
linear function connecting those points is the envelope function that yields the
Lagrangian bound. We have shown that the complete parametric tangential approx-
imation minimizes the number of Lagrangian solutions to generate the convex
envelope. Each iteration of parametric tangential approximation yields a new RS
point that either confirms a gap region (immediately, as the resident solution is
optimal) or causes it to shrink or split. The terminal succession of RS points,
{(bi, zi)}Ni=0, covers [0, Pmax] with b0 = 0 < b1 < · · · < bN = Pmax.

Tangential approximation for a single β was introduced decades ago, and it is
not necessarily an optimal algorithm. For example, bisection could reach the one
optimal multiplier faster. However, our extension to a complete parametric search is
optimal in that it minimizes the number of Lagrangian solutions needed for complete
parametrization.

Each interval (bi−1, bi) contains Lagrangian duality gaps, where there may be
a solution above (or on) the convex envelope function for which z < zU . Gap
intervals can be explored by a variety of heuristics. We presented one approach,
called restricted flipping, that seeks a better feasible solution for β ∈ (bi−1, bi)

than zi by flipping optimal values of δ that differ between the endpoint solutions.
Once δ is specified, we compute the RS point, (pδ, z∗(δ)). We presented a heuristic
for choosing probability values, based on the midpoints of intervals that have been
sorted by bi − bi−1.

Each Lagrangian solution to a general problem, L(x) = f (x) − λg(x), solves
two programs:

min f (x): g(x) ≥ b
def=g(x∗) and max g(x): f (x) ≤ c

def=f (x∗)

for any x∗ ∈ argminL(x). Varying λ ∈ [0,∞) yields parametric solutions
{b, f ∗(b)}b and {g∗(c), c}c. They are precisely the same set in RS. These are also
equivalent to using a weighted sum of the bi-criteria program:

min αf (x) + (1 − α)(−g(x)).

122 H. J. Greenberg et al.

Varying α ∈ (0, 1) generates Pareto-optimal points. Each α is equivalent to the
Lagrangian with λ = 1/(1 − α) (so min L = f − λg ↔ min αf + (1 − α)g).
This generates the same portion of the efficient frontier. The weighted sum fails
to generate some Pareto-optimal points—viz., non-convex segments of the frontier.
This is precisely the Lagrangian duality gap.

One reason to point this out is that there has been a vast literature on Lagrangian
duality and bi-criteria programming (separately and jointly) in the last several
decades. Most of it assumes a special structure, notably convexity or separability,
which we do not. Moreover, we go beyond the algorithmics, focusing on the use of
the convex envelope to support analysis. Our gap-resolution method demonstrates
an effective computational approach not only to reduce the gap, but also to provide
a better understanding of the cost-probability trade-off, including sub-optimal
solutions.

Most importantly, Everett’s Generalized Lagrange Multiplier Method advances
analysis with efficient computation implemented as an open-source extension of
PySP. Output includes tables of RS points, which can be used by software to provide
graphical support. The goal is insight into the trade-off between cost and scenario-
satisfaction probability. It is for that reason that we provide additional code to
explore RS, not only for near-optimal solutions, but also for gaining information
about alternative (sub-optimal) solutions. A motive for such exploration is to
consider alternative solutions that have properties not represented in the model—
e.g., ease of policy implementation.

Our current and future research extends our work to multiple chance constraints.
Our foundation is Everett’s paper and its derivatives, notably [2] and [13, 14].

Acknowledgments The research in this article was supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics
program under contract number KJ0401000 through the Project “Multifaceted Mathematics for
Complex Energy Systems”.

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes. This work
was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

6 Parametric Stochastic Programming with One Chance Constraint: Gaining. . . 123

References

1. S. Ahmed, A. Shapiro, Chapter 12: solving chance-constrained stochastic programs via
sampling and integer programming, in TutORials in Operations Research, ed. by Z.-L. Chen,
S. Raghavan (INFORMS, Catonsville, 2008), pp. 261–269

2. R. Brooks, A. Geoffrion, Finding Everett’s Lagrange multipliers by linear programming. Oper.
Res. 14(6), 1149–1153 (1966)

3. A. Charnes, W.W. Cooper, Systems evaluation and repricing theorems. Manag. Sci. 9(1), 33–49
(1962)

4. J.P. Evans, F.J. Gould, S.M. Howe, A note on extended GLM. Oper. Res. 19(4), 1079–1080
(1971)

5. H. Everett, III, Generalized Lagrange multiplier method for solving problems of optimum
allocation of resources. Oper. Res. 11(3), 399–417 (1963)

6. A.M. Geoffrion, The purpose of mathematical programming is insight, not numbers. Interfaces
7(1), 81–92 (1976)

7. F.J. Gould, Extensions of Lagrange multipliers in nonlinear programming. SIAM J. Appl.
Math. 17(6), 1280–1297 (1969)

8. H.J. Greenberg, Lagrangian duality gaps: Their source and resolution. Technical Report CP-
69005, Southern Methodist University, Dallas (1969). http://math.ucdenver.edu/~hgreenbe/
pubs.shtml

9. H.J. Greenberg, Bounding nonconvex programs by conjugates. Oper. Res. 21(1), 346–348
(1973)

10. H.J. Greenberg, The one dimensional generalized Lagrange multiplier problem. Oper. Res.
25(2), 338–345 (1977)

11. H.J. Greenberg, Supplement: tolerances, in [Holder, A. (ed.), Mathematical Programming
Glossary. INFORMS Comput. Soc. (2014)]. Posted 2003. Also appears at Optimization
Online. http://www.optimization-online.org/DB_HTML/2012/05/3486.html

12. H.J. Greenberg, Supplement: myths and counterexamples in mathematical programming, in
[A. Holder (ed.), Mathematical Programming Glossary. INFORMS Comput. Soc. (2014)].
Posted 2010

13. H.J. Greenberg, Supplement: Lagrangian saddle point equivalence, in [A. Holder (ed.),
Mathematical Programming Glossary. INFORMS Comput. Soc. (2014)]. Transcribed from
1969 Course Notes

14. H.J. Greenberg, Supplement: response space, in [A. Holder (ed.),Mathematical Programming
Glossary. INFORMS Comput. Soc. (2014)]. Transcribed from 1969 Course Notes

15. H.J. Greenberg, T. Robbins, Finding Everett’s Lagrange multipliers by generalized linear
programming. Technical Report CP-70008, Southern Methodist University, Dallas, 1970.
http://math.ucdenver.edu/~hgreenbe/pubs.shtml

16. W.E. Hart, J.P. Watson, D.L. Woodruff, Python optimization modeling objects (Pyomo). Math.
Program. Comput. 3(3), 219–260 (2011)

17. W.E. Hart, C. Laird, J.-P. Watson, D.L. Woodruff, Pyomo—Optimization Modeling in Python
(Springer, Berlin, 2012)

18. A. Holder (ed.), Mathematical Programming Glossary. INFORMS Comput. Soc. (2014).
http://glossary.computing.society.informs.org

19. S. Küçukyavuz, On mixing sets arising in chance-constrained programming. Math. Program.
132(1–2), 31–56 (2012). ISSN 0025-5610. https://doi.org/10.1007/s10107-010-0385-3

20. M.A. Lejeune, S. Shen, Multi-objective probabilistically constrained programming with
variable risk: new models and applications. Eur. J. Oper. Res. 252(2), 522–539 (2016)

21. J. Luedtke, An integer programming and decomposition approach to general chance-
constrained mathematical programs, in Integer Programming and Combinatorial Optimization,
ed. by F. Eisenbrand, F. Shepherd. Lecture Notes in Computer Science, vol. 6080 (Springer,
Berlin, 2010), pp. 271–284. ISBN: 978-3-642-13035-9

http://math.ucdenver.edu/~hgreenbe/pubs.shtml
http://math.ucdenver.edu/~hgreenbe/pubs.shtml
http://www.optimization-online.org/DB_HTML/2012/05/3486.html
http://math.ucdenver.edu/~hgreenbe/pubs.shtml
http://glossary.computing.society.informs.org
https://doi.org/10.1007/s10107-010-0385-3

124 H. J. Greenberg et al.

22. J. Luedtke, A branch-and-cut decomposition algorithm for solving chance-constrained mathe-
matical programs with finite support. Math. Program. A 146, 219–244 (2014)

23. J. Luedtke, S. Ahmed, G.L. Nemhauser, An integer programming approach for linear programs
with probabilistic constraints. Math. Program. 122(2), 247–272 (2010). ISSN: 0025-5610.
https://doi.org/10.1007/s10107-008-0247-4

24. A. Nemirovski, A. Shapiro, Convex approximations of chance constrained programs. SIAM J.
Optim. 17(4), 969–996 (2006)

25. A. Prekopa, Probabilistic programming, in Handbooks in Operations Research and Man-
agement Science, Volume 10: Stochastic Programming, ed. by A. Ruszczyński, A. Shapiro
(Elsevier, Amsterdam, 2003)

26. T. Rengarajan, D. P. Morton, Estimating the efficient frontier of a probabilistic bicriteria model,
in Proceedings of the 2009 Winter Simulation Conference, ed. by M.D. Rossetti, R.R. Hill,
B. Johansson, A. Dunkin, R.G. Ingalls (2009), pp. 494–504

27. T. Rengarajan, N. Dimitrov, D.P. Morton, Convex approximations of a probabilistic bicriteria
model with disruptions. INFORMS J. Comput. 25(1), 147–160 (2013)

28. A. Ruszczyński, Probabilistic programming with discrete distributions and precedence con-
strained knapsack polyhedra. Math. Program. 93(2), 195–215 (2002)

29. J.F. Shapiro, Generalized Lagrange multipliers in integer programming. Oper. Res. 19(1), 68–
76 (1971)

30. S. Shen, Using integer programming for balancing return and risk in problems with individual
chance constraints. Comput. Oper. Res. 49, 59–70 (2014)

31. J.-P. Watson, R.J.-B. Wets, D.L. Woodruff, Scalable heuristics for a class of chance-constrained
stochastic programs. INFORMS J. Comput. 22(4), 543–554 (2010). ISSN: 1526-5528. https://
doi.org/10.1287/ijoc.1090.0372

32. J.-P. Watson, D.L. Woodruff, W.E. Hart, Modeling and solving stochastic programs in Python.
Math. Program. Comput. 4(2), 109–149 (2012)

33. W.B. Widhelm, Geometric interpretation of generalized Lagrangian multiplier search proce-
dures in the payoff space. Oper. Res. 28(3), 822–827 (1980)

34. P.L. Yu, M. Zeleny, Linear multiparametric programming by multicriteria simplex method.
Manag. Sci. 23(2), 159–170 (1976)

https://doi.org/10.1007/s10107-008-0247-4
https://doi.org/10.1287/ijoc.1090.0372
https://doi.org/10.1287/ijoc.1090.0372

	6 Parametric Stochastic Programming with One Chance Constraint: Gaining Insights from Response Space Analysis
	6.1 Introduction and Background
	6.2 Response Space Analysis
	6.3 Multiplier Search
	6.3.1 Search for One Optimal Multiplier
	6.3.2 Parametric Search Algorithm

	6.4 Pre-processing
	6.5 Gap Closing
	6.6 Some Pitfalls to Consider
	6.6.1 Tolerance Relations
	6.6.2 Measuring Probability
	6.6.3 When It Is Infeasible to Select All Scenarios
	6.6.4 Low Probabilities

	6.7 Summary and Conclusions
	References

