Chapter 3 )
Software for an Intelligent Mathematical <
Programming System

Matthew J. Saltzman

Abstract Creating and understanding optimization models, instances, and solu-
tions of any significant size present a serious challenge, even to experts in the
field. Greenberg pursued an initiative in the 1980s and 1990s to support research
and development of computer-assisted technologies to aid decision makers in
developing models and investigating model, instance, and solution structures and
implications, which he dubbed the Intelligent Mathematical Programming System
(IMPS). Among Greenberg’s contributions is a suite of software tools that demon-
strated the potential for the initiative, including MODLER (a structured model and
instance builder), RANDMOD (a structured randomization tool), and ANALYZE (a
system for analyzing the structure of model instances and solutions). This paper
surveys the capabilities of these tools and their underlying technologies.

3.1 Introduction

It is folk history that in the decades after its early accomplishments in military
applications in World War II, operations research (OR) met with mixed success as
we discovered both the breadth of applications amenable to OR approaches and the
computational hurdles that needed to be overcome. Greenberg wrote in the preface
to an unpublished monograph [5], “Due to the explosive growth of inexpensive
computer power and to the highly successful applications during the 1960s, we
can solve far larger problems than we can understand.'” However, our aspirations
outstripped even those developments. As we can see in retrospect, the “explosive
growth” of computer power and algorithm technology of the 1960s was merely the
prelude to the dramatic progress that has occurred since.

'Emphasis in the original.

M. J. Saltzman (P<))
School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
e-mail: mjs@clemson.edu

© Springer Nature Switzerland AG 2021 47
A. Holder (ed.), Harvey J. Greenberg, International Series in Operations Research
& Management Science 295, https://doi.org/10.1007/978-3-030-56429-2_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56429-2_3&domain=pdf
mailto:mjs@clemson.edu
https://doi.org/10.1007/978-3-030-56429-2_3

48 M. J. Saltzman

Even for optimization professionals, understanding the intimate relationships
between parts of models and the extended impact on solutions of model and instance
modifications is utterly impractical without technological assistance. For experts
in application areas who have less expertise in optimization, the challenge is even
greater. As solver engine power has advanced dramatically over the last few decades,
the challenge of understanding the structure of larger and larger models has grown
as well.

Computer-assisted analysis tools can be created for individual problems through
a collaboration between optimization specialists and problem domain experts, but
such tools are expensive: they require repeated, substantial investment of skilled
labor. In the late 1970s and early 1980s, Greenberg engaged in a research program
“to move some of the art of modeling and analysis to the realm of science [6].”

3.1.1 The Drive for an Intelligent Mathematical Programming
System

3.1.2 Technology Context

It is worth recalling the state of computing technology during the period when
Greenberg’s tools were being developed. IBM announced the introduction of the
personal computer (PC) in 1981. Previously, such small computers had been almost
exclusively the province of hobbyists, but the PC rapidly began to penetrate the
business and academic markets. Those machines offered 16-bit words (32-bit longs),
less than a megabyte of RAM, and, typically, 24 x 80-character monochrome
screens. Floating-point calculations were either emulated or performed by an
extra-cost auxiliary processor. Early hard disk drives offered 5-10 megabytes of
space. Color graphics were expensive, and for PCs, offered limited resolution and
color depth. The “3M” workstation that was a target of R&D efforts at Carnegie
Mellon when the author was in graduate school there included “a megaFLOPS,> a
megaword,” and a megapixel.*” Time-sharing mainframes and minicomputers were
the main interactive technologies available, but even these had on the order of a few
megabytes of memory and tens of megaFLOPS. FORTRAN, COBOL, and to some
extent, PL/I were mainframe languages, with FORTRAN 77 the choice for scientific
computing. Pascal was the most common structured language on PCs, but it was
not standardized, so different compilers supported different features and syntaxes.
Unix, C, and C++ were starting to penetrate the small time-sharing system market
but were not widely deployed on PCs.

2Floating-point operations per second.
SRAM.

4Monochrome display resolution.



3 Software for an Intelligent Mathematical Programming System 49

By the 1990s, 32-bit CPUs, a fraction of a gigabyte of RAM, and basic color
graphics were the norm for workstations. C and C++ were becoming common
languages on PCs and were penetrating the scientific space. Hard disk drives were
still tens of megabytes. Linux was just getting its start. Java was gaining a foothold.
The World Wide Web, with support for graphics and media, was rapidly becoming
the standard for disseminating information on the Internet, which was still mainly
the province of government and academia. Remote access to networks was provided
over voice lines with modems that could transmit and receive about 10kb per
second.

With regard to mathematical programming, commercial algebraic modeling lan-
guages such as GAMS and AMPL existed, but mathematical programming instances
were still often created with custom matrix generators. The nearly universal
instance interchange format for instances of linear programs (LPs) was IBM’s MPS
format. MPS was never standardized, so even to this day, different solvers expect
slightly different variations. In addition, MPS format provides few mechanisms for
expressing special structures. While algebraic modeling packages often used their
own file formats for interacting with solvers, these were generally restricted to use
with the corresponding packages.

3.1.3 Industrial Sponsorship

Another bit of folk wisdom is that obtaining federal funding for development of
software tools to support research in multiple disciplines has historically been
more difficult than obtaining funding to carry out traditional “knowledge creation”
research. Greenberg also encountered that challenge in the 1980s. In response, he
created an industrial consortium to support his IMPS program [6].

Greenberg’s consortium proposal was developed in 1984-1985. The first com-
pany brought on board was Amoco Oil Co. Later additions included General
Research Corporation (apparently now defunct), Shell Research, Ketron Manage-
ment Science, US West (one of the Baby Bells), and MathPro, Inc. Phase 1 lasted
until about 1989. It included development of ANALYZE, MODLER, and RANDMOD
and produced over 35 documents, including software manuals and refereed journal
articles. Phase 2 was under way when Greenberg’s report appeared in 1990, with
Phase 3 planned. The author has not located documentation on later phases.

According to Greenberg’s self-assessment, there were several features of the
consortium model that contributed to its success. To attract consortium members,
Greenberg offered clear objectives with associated deliverables, early access to
results for consortium members, and inclusion of consortium members in the
priority setting process. Several workshops were held in support of the initiative,
with presentations of research results and opportunities for collaboration.



50 M. J. Saltzman
3.2 Anatomy and Views of a Model

While mathematicians are comfortable with the algebraic or netform description of
an optimization model, subject matter experts may not be comfortable working with
those expressions.”> Greenberg and Murphy [13] provide a taxonomy of LP views,
several of which are intended to be more accessible to non-mathematical subject
matter experts.

Greenberg and Murphy [13] (and Greenberg in several other publications)
describe a mathematical programming model as having the partial structure depicted
in Fig.3.1. They proceed to investigate several different views of a mathematical
programming model or instance and its solution, each of which may be appropriate
for different constituents or may provide a different form of insight into model
structure. MODLER and ANALYZE together provide a subset of the views presented
in [13]. Commercial algebraic modeling systems generally present only one or two
of these collected views.

We denote a (linear) model as an abstract representation of a class of instances.
The instance class is typically infinite and is parameterized by sets of index names
or values and numerical parameter and data values. The parameters defining a
particular instance class share a common structure, which may be specified with
more or less detail to define the structure of the abstract model.

Data objects map to the index sets and the coefficients of the objective, right-
hand side, constraint matrix, and bounds. These are the components of a model that
change from instance to instance. Sets are considered symbolic data, although they
can also be described by discrete numerical values. Sets must be discrete because
they provide values for indices of discrete objects of other types. For example, sets
can index the terms in a summation. (If a set consisted of an interval in R, the
summation would decay to an integral, which is outside the scope of these tools.)
Data objects can be explicit (expressed as a list or table) or implicit (expressed as
transformations of other sets or tables).

Relations among objects also determine how an instance is generated. Genera-
tion conditions determine whether decision or data objects appear in a particular
instance. Admissibility conditions express requirements on data objects such as a
numeric range for a table entry or a parameter.

Greenberg and Murphy note that there is some ambiguity regarding what features
are considered part of the model and what are part of an instance. In algebraic
modeling languages—including MODLER—all objects and relations that are not
explicit data must be declared as part of the model definition. Only the specification
of explicit set, table, and parameter values distinguish instances.

5The term mathematician is used somewhat loosely here to refer to someone familiar with the
mathematical aspects of optimization models, including their algebraic description, algorithmic
solution, and theoretical properties, such as duality relations. Subject matter experts are, by
contrast, familiar with the terminology related to the application area of a model, but not necessarily
with its mathematical properties.



3 Software for an Intelligent Mathematical Programming System 51

Explicit
Sets
Implicit
Data
Constants
Numeric Parameters
Explicit
Objects Tables
Implicit
Activities
Decision
Model Binaries
Generation
Conditions
Admissibility
Relations Equations
Arithmetic |
Bounds
Constraints
Logical

Fig. 3.1 Anatomy of a mathematical programming model

A view of a model is a representation of model components in a form that is
comprehensible by people involved in the modeling process. These people may have
different cognitive expectations for model presentation, and different views can be
designed to conform to the expectations of different constituents.

As an example, we map the objects and relations associated with the capacitated
transportation model to the entities displayed in Fig. 3.1. Model properties include
identifying supply and demand points, units of goods available at supply points and
required at demand points, and costs and capacities of routes connecting supply
and demand points. The explicit sets in an instance definition consist of lists of
identifiers for the supply and demand points. Explicit tables provide the number
of available units of a good at the supply points, the number of units required at
each demand point, and the shipping cost per unit and capacity in units for each



52 M. J. Saltzman

connecting route. Note that the costs and capacities are indexed by an implicit
set, namely the Cartesian product of the supply and demand sets. The actual set
elements and table values are not specified as part of the abstract model; they must
be specified to construct an instance of the model. The decision objects here are
activity levels corresponding to the number of units of goods moved from each
supply point to each demand point.

The anatomy diagram does not specify an objective object, but we can define a
constraint that specifies the computation of the total shipping cost as the sum over
all routes of the unit cost to ship on a route times the amount shipped on that route;
then we can specify that quantity is to be minimized. The remaining constraints
specify that the amount shipped out of each supply point must not exceed the supply
available, that the demand at each demand point must be met, and that the amount
shipped on each route must be nonnegative and must not exceed the route capacity.

Greenberg and Murphy provide examples of different views of a capacitated
transportation model, and Greenberg [8, 9] provides a collection of models with
the MODLER and ANALYZE software with which a user can experiment. Greenberg
and Murphy illustrate several views that could be useful to various participants in the
modeling process. The views presented in Fig. 3.2 are based on the abstract model of
the capacitated transportation example, while those presented in Fig. 3.3 are based
on a completely specified instance.

Three of the views in Fig. 3.2 are generated by MODLER. Figure 3.2a presents
an algebraic view, Fig.3.2b is a block schematic view, and Fig.3.2d is an activity
input-output view. A transportation activity in Fig. 3.2d consists of one input (the
coefficient from the corresponding supply equation) and one output (the coefficient
from the corresponding demand equation). MODLER’s views are described in
detail in Sect. 3.3. The remaining views in Fig. 3.2 were generated by other tools.
Figure 3.2e shows a netform, or a network-based model view. The underlying model
here is a classical network flow model, so each activity is represented by an arc
connecting a supply node at the tail to a demand node at the head. Figure 3.2f shows
a condensed version of an activity-constraint digraph. Figure 3.2c shows a graphical
representation of activity input and output produced by the LPFORM tool [16] (more
detail would be available in subordinate screens).

Once a model instance is instantiated by assigning values to all data objects,
additional views are possible. Figure 3.3 shows some of these views, created by
ANALYZE. Figure 3.3a is an algebraic view with coefficients displayed. Figure 3.3b
is a block schematic view with coefficient values or ranges included. Figure 3.3d
shows a syntax view, where descriptions of objects are expressed in text form using
data provided by MODLER. Figure 3.3c displays the sign pattern of entries in the
coefficient matrix and rim vectors. Figure 3.3e is an instantiated version of the
activity-constraint input/output view in Fig. 3.2d. Figure 3.3f illustrates flows from
supply centers to demand centers. ANALYZE’s views are described in Sect. 3.5.

Commercial algebraic modeling systems are primarily designed to support an
algebraic view, which is familiar to mathematicians but possibly not to other
constituents.



3 Software for an Intelligent Mathematical Programming System 53

Model TRANSCAP
Capacitated Transportation Model

Minimize COST
Subject to:

COST = SUM[i IN SR, j IN DR | TRANSCOST(i, j) * T(i, j)I;
S(SR) = SUM[j in DR | T(SR,j)] <= SUPPLY(SR)

D(DR) = SUM[i IN SR | T(i,DR)] >= DEMAND(DR)

Decision Variables:

0 <= T <= CAPACITY

(a)

T(SR,DR)
S(SR) 1 <= SUPPLY S D
D(DR) 1 >= DEMAND T
COST TRANSCOST ...MIN ol >
BOUNDS 0

CAPACITY

(b)

Activity T(SR,DR) ...transports from (SR) to (DR)
When: always
Bounds: >=0 AND <= CAPACITY
Inputs: 1 in Equation S
Outputs: 1 in Equation D

(d)

| TRANSCOST| T(SR,DR)
SUPPLY --> S(SR) >D(DR) --> DEMAND
(0, CAPACITY)

(e)

CAPACITY
|
\I/
SUPLY --> S(SR) --> [T(SR,DR)] --> D(DR) --> DEMAND
|
\I/
$: TRANSCOST

(f)

Fig. 3.2 Some model views of the capacitated transportation problem [13]. (a) An algebraic model
view. (b) A block schematic view. (¢) A block/link view. (d) An activity input/output view. (e) A
netform view. (f) An activity-constraint view (condensed)



54 M. J. Saltzman

MIN COST = TNTNT + TSWSW + 10 TNESW + 10 TSWNE
50 <= DNE = TNENE + TSWNE
100 <= DSW = TNESE + TSWSW
100 >= SNE = TNENE + TNESE
50 >= SSW = TSWNE + TSWSW

COL LO_BOUND  UP_BOUND

TNENE 0 *
TNESW 0 50.000
TSWNE 0 50.000
TSWSW 0 *
(a)
TTTT
NNSS
T(SR,DR) RHSMMODL EEWW
S(SR) 1 <= 50/100 NSNS
D(DR) 1 >= 50/100 EWEW
COST 1/10 .. .MIN COST + + + + - MIN
:LO 0 DNE + + > o+
:UP 50/* DSW + o+ >+
SNE + + < +
SSW + + < +

(b)
()

Row syntax has 2 classes
A row that begins with S limits supply at some supply region.
A row that begins with D requires demand at some demand region.

Column syntax has 1 class
A column that begins with T transports from some supply region to
some demand region.

(d)

100 --> (SNE) ---> [TNENE] ---> (DNE) --> 50
$1 ROW DIGRAPH
50 ---> [TNESW] ---> (DWS) --> 100
$10 Northeast ----> Northwest
50 --> (SSW) ---> [TSWNE] ---> % (DNE) ====> Southwest
$10 Southwest ----> Northeast
50 ---> * [TSWNE] ----> Southwest
[(TSWSW] ---> * (DSW)
$1

(f)
(e)
Fig. 3.3 Some instance views of the capacitated transportation problem [13]. (a) An algebraic

instance view. (b) A schematic view. (c) A sign-pattern view. (d) A syntax view. (e) An activity-
constraint I/O view. (f) A flow view (with English translation)



3 Software for an Intelligent Mathematical Programming System 55

3.3 MODLER: Modeling by Object-Driven Linear
Elemental Relations

Custom matrix generators were the primary method of constructing nontrivial
instances of linear programming models in the early days of computational opti-
mization. Matrix generators pulled data from whatever sources were necessary
and formatted them into MPS-format files for input to solvers. Separate custom
programs took solution files in whatever form the solver provided them and
produced reports formatted for the decision maker’s convenience. As the sizes of
instances solvable by computers increased and the reach of personal computers
expanded through the 1980s, it became clear that these tools were not adequate to
the needs of decision makers who were becoming interested in using optimization in
their work. Later in the 1980s, a number of commercial products brought to market
the idea of “algebraic modeling languages.” AMPL, GAMS, AIMMS, MPL, and LINGO
all date from that period.
Algebraic modeling languages share two key capabilities:°

e They support the abstract description of a model using an analog of the math-
ematical notation common in academic writing, with sigma notation for sums
and other arithmetic and logical operators. Capabilities include the construction
of flexible, abstract indexing sets and multi-subscript parameters, variables, and
constraints.

» They separate the specification of the abstract model from the provision of actual
values of the indexing set members and the coefficients. Thus, a single abstract
description can be reused to specify multiple instances of a problem, simply by
providing different data sets to accompany it.

Note that algebraic modeling languages mainly map to a mathematician’s view of a
problem. The level of abstraction is just what a mathematician thinks about: index
sets, coefficients, variables, objective functions, and constraints.

MODLER has a more ambitious agenda [10]. As an interactive system for creating
models and instances, MODLER implements an algebraic modeling language.
MODLER eschews some of the more esoteric features of commercial algebraic
modeling languages and is restricted to formulating linear models; however, it
attempts to provide a bridge between the entities and actions that a subject matter
expert might consider and the modeling objects (variables, coefficients, constraints,
blocks, objectives) that form the mathematician’s view. It also supports expression
of logical constraints with Boolean variables and automatically converts them to
linear inequalities. MODLER’s language supports implied indexing and implied
summations for expressions with unbound indexing variables.

SThis definition excludes the simple, row-oriented, written-out expression languages such as
LINDO or CPLEX’s LP format as well as spreadsheets.



56 M. J. Saltzman

MODLER implements a strict separation of an abstract model from the data
associated with an instance. It also supports randomization features that are closely
tied to model structure for rapid prototyping of models.

One of MODLER’s key features is the ability to generate syntactic data structures
for use with ANALYZE. This feature supports expressing results of analyses in
natural-language terms that would be familiar to the subject matter expert, as
opposed to the language of model formulations that would require a mathematician
to interpret. The instance views supported by ANALYZE are described in Sect. 3.5.

MODLER'’s extensive library of views and queries provides perspective primarily
at the level of abstract models.

* The algebraic view will be largely familiar to the mathematician. It includes the
usual representation of indexed constraints and summations describing a linear
program.

e The block schematic view is an abstraction of the blocks of variables and
constraints that share common names and index sets. The result is a grid with
columns corresponding to variable blocks and rows corresponding to constraint
blocks. The cells in each row/column indicate where the coefficients are defined.
This could be a table, a range of explicit values, etc. Blocks can also appear for
logical constraints and bounds.

* The activity input/output view shows the model as a collection of transforma-
tions. As formalized by Ma et al. [16], transformations represent conversions
of form (transforming raw material into product), place (transporting from
origin to destination locations), or time (carrying inventory or investments). In
a canonical-form LP (minimizing subject to greater-or-equal constraints and
nonnegative or bounded variables), an input to an activity is represented by a
constraint with a negative coefficient and an output is represented by a constraint
with a positive coefficient. MODLER also supports assigning these and other user-
defined attributes to sets for display in MODLER and ANALYZE views. MODLER’s
activity I/O view displays for each activity class a list of constraints where the
activity takes an input and where it produces an output.

* Dependency relations can be displayed, showing which objects are defined in
terms of the sets, parameters, and tables that provide the data for instantiation of
an instance of the model. Implicit sets and tables are dependent on the explicit
objects that define them, and variables and constraints are dependent on the sets
that index them and the parameters and tables that provide their coefficients.

MODLER includes a randomization function that is designed to rapidly prototype
instances of a model for testing. Limited randomization can be accomplished
interactively from MODLER’s console or, more flexibly, from input files that provide
explicit set, parameter, and table values. The randomizer can set probabilities for
selection among a specified list of ranges or a default range; then random numbers
of specified precision are generated with a specified distributions.



3 Software for an Intelligent Mathematical Programming System 57
3.3.1 Capturing Structure in Instance Representations

MODLER’s output is intended to provide input to a solver engine and to the
companion tools, RANDMOD (a tool to construct random instances from a template
instance) and ANALYZE (MODLER’s companion tool for analyzing instances and
solutions). The matrix file is a standard MPS-format description of the instance,
which is input to the solver and to RANDMOD and ANALYZE. The syntax file
provides a collection of verbal descriptions of objects that can be used with
MODLER’s description of the model, the matrix file, and the solution report from
the solver to display properties of an instance and its solution in natural language.

For generating views and responding to queries regarding instances, Greenberg
describes a mapping from object identifiers (variable and constraint group names,
index set members, etc.) to instance row and column names in the matrix file. In
MPS format, row names, column names, and bound and right-hand side block names
are all simple strings of eight characters. (In some MPS extensions, longer names are
permitted, but the forms and restrictions are far from universal. These tools generally
kept to the most widely supported formats.) ANALYZE and RANDMOD identify
substructures and generate views and query responses by matching substrings
to patterns. For example, in Greenberg’s WOODNET sample model describing
production and distribution of lumber, the activity name TMOSFSE represents
transportation (T) of mahogany (Mo) from a supply point in San Francisco (sF)
to a demand point in Seattle (sE). A syntax for masks supports substring matching
to select groups of objects.

3.4 RANDMOD: Controlled Randomization of Linear
Programs

RANDMOD [7] is a tool for constructing random instances of linear programs for
algorithm testing purposes. Given an input instance specified in an MPS-format
matrix file, RANDMOD can produce transformed instances using any of several
transformations and generate random values according to any of several distribution
classes. The transformations include:

¢ Augmentation—adding rows to a problem instance constructed from conic
combinations of existing inequality rows. The additional rows can be shifted to
be strictly redundant or to create degeneracies or infeasibilities.

¢ Perturbation and scaling—changing row or column bounds or coefficient values.

¢ Removing bounds.

Row augmentation and perturbation are mutually exclusive operations.

The weights used to construct combinations of rows or to modify coefficient
values are randomly generated. The user can specify a range and distribution for a
base value, scale factor, offset, and number of modifications for each operation. The



58 M. J. Saltzman

supported distributions are uniform, triangular, normal, and exponential. Transfor-
mations can be restricted to submatrices based on name patterns. Each collection of
transformations produces a new instance that can be saved in a matrix file with the
same naming patterns as the template (except for added rows).

3.5 ANALYZE: A Computer-Assisted Analysis System for
Mathematical Programming Models and Solutions

Once an instance of a mathematical programming model is instantiated, a number of
views can be produced that present the detailed data provided in context. In addition,
if a solution is available, more insights can be provided into the relationships
between activities and constraints at that solution. Even if it is determined that
no feasible solution exists, it is possible to determine what parts of the model or
instance might be responsible for that outcome. ANALYZE can provide all these
perspectives and more, and can present them in natural-language form if provided
with an appropriate syntax file. In addition, ANALYZE provides a customizable,
rule-driven interface for adding new knowledge generation tools for problems with
special structure.

A summary of the inputs to ANALYZE and the general classes of outputs are
shown in Fig. 3.4. ANALYZE requires at least a matrix file describing an instantiated
instance, and with only that input, ANALYZE supports a limited set of queries
that do not rely on the model’s structure. Dictionaries and documents define
the interaction between program and user, mediated by the FLIP subsystem (the
FORTRAN Language Interactive Processor), the dialog engine for ANALYZE as well
as MODLER and RANDMOD. The solution file is the output of any of a handful of
solver engines that ANALYZE is able to parse, as there is no widely used format for
expressing solutions.

The key to ANALYZE’s power as an investigative tool is the syntax file provided
by MODLER. This file includes the maps from the row and column names in the
matrix file to the block structure object names and indices of the original model.
It also contains the natural-language descriptions of objects used in ANALYZE’s
natural-language interface. ANALYZE’s reasoning capabilities are driven by rule-
based logic. Standard and custom rules are provided via rule files. Finally, ANALYZE
is capable of interacting with external tools such as Chinneck’s IIS (irreducible
infeasible subsystem) analyzer [2].

Provided with appropriate inputs, ANALYZE supports sensitivity analysis, various
views and queries, model simplification, and interpretation of model and solution
structure as well as debugging inquiries such as identifying infeasibilities.



3 Software for an Intelligent Mathematical Programming System 59

Dictionaries

— Documentation
Documents

|

— Sensitivity: What if ...?
Syntax Why ...?
Why not ...?

Matrix I———l ANALYZE |——— Query (multiple views)

— Simplification

— Interpretation
Other — — Debugging
(e.g., 1IS)

Fig. 3.4 ANALYZE input/output

3.5.1 Views and Analyses

Some available views of an instantiated instance of an LP refine similar views of
an abstract model. An algebraic view of a model might involve summations over
named index sets of named coefficients, but the instance view can show the actual
index and coefficient values. The block schema for a model shows groupings of
rows and columns by name, but the instance view can show ranges of coefficients.
See related views in Figs. 3.2 and 3.3 for comparison. ANALYZE can also display
constraint matrix sign patterns. While the lack of graphics capabilities limited the
size of such displays, they were still useful for selected submatrices.

In addition to refinements of model views, there are many ways to explore
relationships among components of instances and solution values. By tracing
through submatrices associated with active resource constraints and basic activities,
ANALYZE can provide information about the makeup of shadow prices and reduced
costs, marginal substitution rates, sensitivity of the solution to changes in coefficient
values, and other properties of the instance and solution. Those insights can be
presented through displays of objects and their properties in diagrams or tables.
By using the natural-language descriptions of objects in the syntax file, ANALYZE
can also represent its findings in verbal summaries.

The fundamental digraph of an instance [4] is a directed bipartite graph with a
node for each row and column and an arc connecting row i to column j if matrix
coefficient a;; is negative and an arc connecting column j to row i if g;; is positive.
For an LP in the canonical form (minimize subject to greater-or-equal constraints
and nonnegative variables), one can interpret a negative coefficient as indicating that
the row resource is an input to the column activity. A positive coefficient indicates
that the row resource is an output of the column activity.



60 M. J. Saltzman

The fundamental digraph can be projected onto the row or column node sets,
with an arc between rows in the former or columns in the latter corresponding to
directed paths of length 2 in the fundamental digraph. The row digraph captures
transformations between resources connected by an activity that takes one resource
(the tail) as input and produces another (the head) as output. The column digraph
captures precedence, in which one column (the tail) produces a resource that another
activity (the head) consumes. ANALYZE can display subgraphs of these graphs to
visualize these relations.

While the general question of whether a constraint is redundant has the same
complexity as solving the original LP, some redundancies can be verified through
the same sorts of analyses as those listed above. ANALYZE can also diagnose
infeasibilities using a successive bounding procedure or by hooking to an external
engine that implements Chinneck’s IIS detector.

3.5.2 Algorithmic Analysis

ANALYZE includes several algorithms and heuristics that support a deeper under-
standing of the interactions between model instances and solutions than is afforded
by simply looking at activity levels and dual prices. The key algorithms in
ANALYZE’s repertoire include:

* Path tracing builds a submatrix that includes rows corresponding to the resources
associated with an activity or subset of activities and all the activities that interact
with the activity of interest. From that submatrix, ANALYZE can determine the
impact of marginal changes in the activity of interest.

* Basis rearrangement permutes basis rows and columns to bring the basis matrix
to a triangular or near-triangular form.

* Rates of substitution can be computed by completing the product-form factoriza-
tion of the triangularized basis and invoking the FTRAN and BTRAN procedures
from the simplex method (to solve Bx = a and BT & = c, respectively, where a
is a column of the constraint matrix and ¢ is a subvector of the objective).

e Some cases of redundancy can be detected by computing ranges on basic
variables that maintain feasibility as nonbasic variables are set to their most
permissive bounds. If the upper or lower bounds on the left-hand sides are
tighter than the upper or lower bounds on the right-hand side, the corresponding
constraint is redundant.

* Primal and dual bounds can be reduced sequentially until infeasibility is detected
or the bound reduction process stabilizes.

* Logical implications for binary variables can be imputed based on constraint left-
hand side bounds.



3 Software for an Intelligent Mathematical Programming System 61
3.5.3 The Rule Base

Rule-based reasoning is one research thrust of artificial intelligence. The idea is to
capture the thought process of an expert analyst in the field of interest in a form that
can be carried out automatically by a computer. ANALYZE contains a rule-based
reasoning engine that includes a number of standard analytical procedures such as
interpreting a shadow price or identifying an embedded network. The rulebase is
extensible and customizable so that new analyses for special problem structures can
be implemented.

Rules can be invoked by the user and can in turn implement algorithms
automating the steps of an analysis, such as identifying the contributions of activities
to a shadow price or the contribution of resources to a reduced cost in a problem
instance. Rules can invoke the core algorithms described in Sect. 3.5.2, where the
components that contribute to an interpretation may depend on special structure of
the problem.

3.6 WRIP: A Workbench for Research in (Linear)
Programming

In 1991, Greenberg and Marsten released a package [12] containing the three
analysis tools described here together with an LP solver: Marsten et al.’s OB1 [1,
15, 17, 18]. OB1 is a FORTRAN code that includes Marsten’s XMP simplex solver
and several different interior-point solvers, plus a crossover code to recover a basic
optimal solution from an optimal interior-point solution. The package also includes
test instances from Netlib and elsewhere [3, 14] as well as tools for visualization.

Greenberg and Marsten’s view of a workflow for experimenting is pictured in
Fig.3.5. A matrix file for a base LP instance could be selected from a library or
created using MODLER. The LP could be solved with OB1 or processed through
RANDMOD to create additional, similar instances. Solutions from OB1 could be
analyzed with ANALYZE, and the output of RANDMOD, OB1, and ANALYZE could
be fed to a statistical analysis of, for example, solver performance. The results of
the analysis could be reported and could be fed to RANDMOD to produce additional
instances for further testing.

3.7 Conclusion

The Intelligent Mathematical Programming System initiative spearheaded by
Greenberg in the 1980s and 1990s was an ambitious program to harness emerging
computing power to enhance the analyst’s ability to formulate, analyze, and reason
about optimization problems in the context of decision support systems. Greenberg’s



62 M. J. Saltzman

Data files

Model library LP libra

MODLER

RANDMOD

|

Loé file Log file
ANALYZE Solution file

|

> ‘ Statistics collection ‘

f

‘ Statistical analysis/reporting package ‘

Fig. 3.5 Job flow for experimental analysis

1996 bibliography [11] lists over 500 references, which are classified as relevant
to background, analysis, discourse, formulation, model management, and software
engineering and implementations, plus relevant general knowledge. Greenberg
himself is listed as author or coauthor on nearly 50 of the publications. But among
his most influential contributions to the initiative is the fact that he put into practice
the principles that he developed and assembled by publishing the software packages
MODLER, RANDMOD, and ANALYZE.

While some of the knowledge developed through the initiative and related efforts
has been integrated into widely used tools, many of the capabilities of Greenberg’s
codes have not been so widely deployed. Compiled versions of MODLER and
ANALYZE for Microsoft Windows are distributed with user’s guides currently
available from Springer [8, 9]. Windows and Linux executables for MODLER and
ANALYZE and Windows executables for RANDMOD were available for download
from Greenberg’s University of Colorado at Denver Web pages. These can still
be run on systems available as of this writing. Source code for ANALYZE exists
and should eventually be available as open source, once proper permissions can be
secured. Sadly, source for MODLER and RANDMOD appears to be lost to history,
unless some kind reader has an archive that they can share with this author.



3 Software for an Intelligent Mathematical Programming System 63

References

L.

10.

11.

12.

13.

14.

15.

16.

17.

18.

I. Adler, N. Karmarkar, M.G.C. Resende, G. Viega, Data structures and programming
techniques for the implementation of Karmarkar’s algorithm. ORSA J. Comput. 1(2), 84—-106
(1989)

. J.W. Chinneck, E.W. Dravnieks, Locating minimal infeasible constraint sets in linear programs.

ORSA J. Comput. 3, 157-168 (1991)

. D.M. Gay, Electronic mail distribution of linear programming test problems. Math. Program.

Soc. Committee Algorithms (COAL) Newslett. (1985)

. H.J. Greenberg, A new approach to analyze information contained in a model, in Energy

Models Validation and Assessment, ed. by S.I. Gass, vol. 569 (National Bureau of Standards,
Gaithersburg, 1978), pp. 517-524

. H.J. Greenberg, Foundations for an intelligent mathematical programming system. Draft

monograph (1988)

. H.J. Greenberg, An industrial consortium to sponsor the development of an intelligent

mathematical programming system. Interfaces 20(6), 8893 (1990)

. H.J. Greenberg, RANDMOD: a system for randomizing modifications to an instance of a linear

program. ORSA J. Comput. 3(2), 173-175 (1991)

. H.J. Greenberg, A Computer-Assisted Analysis System for Mathematical Programming Models

and Solutions: A User’s Guide for ANALYZE. Operations Research/Computer Science Interface
Series, vol. 1 (Springer, Berlin, 1992)

. H.J. Greenberg, Modeling by Object-Driven Linear Elemental Relations: A User’s Guide for

MODLER. Operations Research/Computer Science Interface Series, vol. 2 (Springer, Berlin,
1992)

H.J. Greenberg, MODLER: modeling by object-driven linear elemental relations. Ann. Oper.
Res. 38, 239-280 (1992)

H.J. Greenberg, A bibliography for the development of an intelligent mathematical program-
ming system. Ann. Oper. Res. 65, 55-90 (1996)

H.J. Greenberg, R.E. Marsten, WRIP: a workbench for research in (linear) programming.
Software Manual (1991)

H.J. Greenberg, F.H. Murphy, Views of mathematical programming models and their instances.
Decis. Support Syst. 13, 3-34 (1995)

I.J. Lustig, An analysis of an available set of linear programming test problems. Comput. Oper.
Res. 16(2), 173-184 (1989)

I.J. Lustig, R.E. Marsten, D.F. Shanno, On implementing Mehrotra’s predictor-corrector
interior-point method for linear programming. SIAM J. Optim. 2(4), 435-449 (1992)

P.-C. Ma, FEH. Murphy, E.A. Stohr, A graphics interface for linear programming. Commun.
ACM 32(8), 996-1012 (1989)

R.E. Marsten, M.J. Saltzman, D.F. Shanno, G.S. Pierce, J.F. Ballintijn, Implementation of a
dual affine interior point algorithm for linear programming. ORSA J. Comput. 1(4), 287-297
(1989)

R.E. Marsten, R. Subramanian, M. Saltzman, I. Lustig, D. Shanno, Interior point methods for
linear programming: just call Newton, Lagrange, and Fiacco and McCormick! Interfaces 20(4),
105-116 (1990)



	3 Software for an Intelligent Mathematical Programming System
	3.1 Introduction
	3.1.1 The Drive for an Intelligent Mathematical Programming System
	3.1.2 Technology Context
	3.1.3 Industrial Sponsorship

	3.2 Anatomy and Views of a Model
	3.3 MODLER: Modeling by Object-Driven Linear Elemental Relations
	3.3.1 Capturing Structure in Instance Representations

	3.4 RANDMOD: Controlled Randomization of Linear Programs
	3.5 Analyze: A Computer-Assisted Analysis System for Mathematical Programming Models and Solutions
	3.5.1 Views and Analyses
	3.5.2 Algorithmic Analysis
	3.5.3 The Rule Base

	3.6 WRIP: A Workbench for Research in (Linear) Programming
	3.7 Conclusion
	References


